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ABSTRACT

Lidar has demonstrated its utility in meteorological studies, wind resource assessment,

and wind farm control. More recently, lidar has gained widespread attention for

autonomous vehicles.

The first part of the dissertation begins with an application of a coherent Doppler

lidar to wind gust characterization for wind farm control. This application focuses on

wind gusts on a scale from 100 m to 1000 m. A detecting and tracking algorithm is

proposed to extract gusts from a wind field and track their movement. The algorithm

was implemented for a three-hour, two-dimensional wind field retrieved from the

measurements of a coherent Doppler lidar. The Gaussian distribution of the gust

spanwise deviation from the streamline was demonstrated. Size dependency of gust

deviations is discussed. A prediction model estimating the impact of gusts with

respect to arrival time and the probability of arrival locations is introduced. The

prediction model was applied to a virtual wind turbine array, and estimates are given

for which wind turbines would be impacted.

The second part of this dissertation describes a Time-of-Flight lidar simulation.

The lidar simulation includes a laser source module, a propagation module, a receiver

module, and a timing module. A two-dimensional pulse model is introduced in the

laser source module. The sampling rate for the pulse model is explored. The propa-

gation module takes accounts of beam divergence, target characteristics, atmosphere,

and optics. The receiver module contains models of noise and analog filters in a lidar

receiver. The effect of analog filters on the signal behavior was investigated. The

timing module includes a Time-to-Digital Converter (TDC) module and an Analog-

to-Digital converter (ADC) module. In the TDC module, several walk-error com-

pensation methods for leading-edge detection and multiple timing algorithms were

modeled and tested on simulated signals. In the ADC module, a benchmark (BM)
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timing algorithm is proposed. A Neyman-Pearson (NP) detector was implemented in

the time domain and frequency domain (fast Fourier transform (FFT) approach). The

FFT approach with frequency-domain zero-paddings improves the timing resolution.

The BM algorithm was tested on simulated signals, and the NP detector was evalu-

ated on both simulated signals and measurements from a prototype lidar (Bhaskaran,

2018).
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Chapter 1

BACKGROUND

1.1 Wind Gust Detection and Impact Prediction for Wind Turbines

Rapid changes of wind speed in the atmosphere, also called wind gusts, cause

large fatigue loads on wind turbines. These loads reduce the lifetime of wind tur-

bine components. Oscillations or ramping of the generated power can result in fast

fluctuations of grid voltage and may pose additional burdens to the electric grid. To

investigate the profile of the wind interacting with wind turbines, researchers have

conducted measurements of wind field at and behind the rotor-swept area of a wind

turbine (Kumer et al., 2015; Smalikho et al., 2013; Aitken et al., 2014; Wang and

Barthelmie, 2015; Banta et al., 2015; Zhou and Calhoun, 2016). Additionally, re-

searchers have proposed adaptive and feed-forward control systems, which can adjust

wind turbine settings for approaching winds (Schlipf et al., 2012; Scholbrock et al.,

2013; Kumar et al., 2015; Kristalny and Madjidian, 2011; Zhou and Calhoun, 2016).

A feed-forward control system requires an accurate and fast gust detection system.

Our purpose is to provide the information of wind gusts to the control systems.

There are a variety of gust detecting and tracking algorithms in the literature.

The international standard IEC 61400-1 specifies standardization of several temporal

gust models for wind turbine design. Branlard defined gusts as a short-term wind

speed variation within a turbulent wind field (International Electrotechnical Com-

mission et al., 2005; Branlard, 2009). Although different definitions exist, all suggest

gusts invoke rapid wind speed changes. As many atmospheric sensors measure winds

in relatively small volumes, changes in wind speed have been considered temporally.
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Temporal variations of wind speed can be converted to spatial variations using Tay-

lor’s frozen turbulence hypothesis. Note that spatial variations in pressure on wind

speed also damage buildings (Beljaars, 1987). However, fewer studies directly mea-

sure spatial variations. The lack of such studies could be due to the limitation of the

available instruments. Anemometers on met masts are the most common instruments

for gust studies, but they are limited to measuring wind speed at fixed points. On

the other hand, Doppler lidar can address this limitation. A long-range Doppler lidar

can provide wind velocity field in a 3D domain up to 10 km with high temporal and

spatial resolution.

The scale of a spatial gust is an important factor. Kelley et al. (2004) and

Chamorro et al. (2015) studied the flow-structure interaction between wind turbines

and atmospheric coherent structures with a scale ranging from the size of a wind

turbine rotor to the thickness of the atmospheric boundary layer. They found that

structures primarily in that range have a high correlation with the generated power

and can induce strong structural responses. For structures with scales smaller than

the size of a wind turbine rotor, the effects of their high-frequency components will

be averaged out along the turbine blades and will not propagate to the drive train of

a wind turbine and affect the power generation. For atmospheric gusts larger than

1000 m, varying winds in these large-scale gusts can be classified and captured as

“meandering of the wind.” Effects of the wind meandering on wind turbines are com-

plicated and begin to become relevant for yaw control. Therefore, we believe the

gusts with scales between 100 m and 1000 m have the most significant effects on wind

turbine performance.

In addition to the definition of wind gusts, the literature contains a variety of ideas

for gust detecting and tracking. Mayor et al. adapted two computer-vision methods

for flow motion estimation: the cross-correlation method and the wavelet-based op-
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tical flow method (Mayor et al., 2012, 2013). However, the cross-correlation method

has limitations for non-uniform velocity fields, and the optical flow method requires

relatively small (few pixels) movement and is computationally demanding. On the

other hand, Branlard proposed several detection methods for different gust models

in Branlard (2009), but gusts are defined in the time domain. He also estimated

the arrival time of the gusts and presented an exponential probability distribution

of the gust’s spanwise propagation. However, the gust distribution may not be rep-

resentative, as the turbulence induced by the blades would heavily contaminate the

signal collected behind the turbine rotor. The number of measurement points from

anemometers is also limited. Therefore, a fast detecting and tracking algorithm and

a reliable prediction model that can be used in real-time prediction of spatial gusts

need to be developed.

1.2 Time of Flight Lidar

1.2.1 Overview of Time of Flight Lidar Techniques

Ranging sensors

With the emergence and evolution of autonomous driving vehicles in the last five

years, many effects have been made to provide an intelligent and safe driving en-

vironment. The brain of an autonomous vehicle consists of several core advanced

algorithms like perception, localization, path planning, and vehicle control, and ex-

amples of the advanced driving assistant system (ADAS) includes departure warning

system, collision avoidance system, and self-parking system. All the systems directly

or indirectly require sensing of the environment from various perspectives, and the

range between the ego car and surrounding objects is one of the indispensable infor-

mation.
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Common ranging sensors include cameras, ultrasonic sensors, radars, and lidars,

but each sensor has its advantages and shortcomings under different conditions. Trian-

gulation that uses two cameras as a passive stereoscope is the most common approach

of range sensing for cameras, and it has advantages of offering high-resolution depth

maps. However, the high dependency on the lighting condition, as for any passive

camera-based approaches, make triangulation method subject to noise from ambient

light and less reliable on poor lighting conditions. Also, features of small objects

at a remote distance are also difficult to be identified by a camera. Even though

advanced computer vision algorithms could compensate this drawback, intense com-

putation effort is a demand for computer vision algorithms (Hussmann et al., 2008).

Structured-light sensors provide a solution applying artificial structured light to ad-

dress the lightening issue. However, this approach is limited to the indoor application

due to its high sensitivity to environment light (Kadambi et al., 2014). Compared

to cameras, ultrasound sensors are alternative sensors of depth measurement, but it

has a limited range of detection (a few meters) due to the strong attenuation by air.

Moreover, the dependency of sound propagation on humidity and air pressure also

makes the measurement less robust to complex atmospheric conditions (Süss et al.,

2016; Fersch et al., 2017). Radar is a supplementary for ultrasonic sensors because

of its immunity to varying environmental conditions, which also allows sensing of

the velocity of objects by using Doppler effect. However, radar has a difficulty of

detection of objects with high absorption of transmit frequency band (Fersch et al.,

2017). Moreover, since major targets are close to the ground in the application of au-

tonomous vehicles, radars suffer strong ground clutters, which is caused by reflection

of slide lobes of a waveform by ground surfaces. In addition to the ground cluster,

the low resolution of sensing image also makes radars only useful in applications like

collision warning, but less reliable on high-precision functions like object classifica-
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tion or localization. Lidar, short for Laser Imaging, Detection And Ranging, has

drawn increasing attention for range sensing from last decade. Compared to ultra-

sonic sensors, lidar has its advantages thanks to its more robustness to environmental

conditions and the independence on the surrounding lighting. Moreover, the narrow

laser beams allow a high-resolution depth map than that radar can produce. Fast

and adjustable scanning patterns with advanced control systems also allow dense and

high-precision sensing of remove objects that could fail a camera, which provides a

complementary tool of cameras for perception applications. However, complicated

atmospheric conditions, like rain, fog or snow are still a challenge of lidar which could

lead to in noisy result or reduced maximum observable distance, and the cost of lidar

sensors is also higher than cameras or radars.

Using a lidar sensor, the range between the sensor and an object can be calcu-

lated from the time of flight (TOF) of the laser emitted from a lidar, and the TOF

measurement can be classified into direct TOF method and indirect TOF method.

In the direct TOF method, narrow laser pulses are emitted. After being reflected

by an object, the return pulses are received by a photon-receiver (receiver), and the

flying time of the pulse until its reception is measured by an electronic counter. On

the other hand, indirect TOF method usually utilizes continuous wave laser and the

phase and power information of the incident light to obtain the TOF. Depending on

if frequency or amplitude of the wave is modulated, the indirect TOF methods can be

divided into frequency-modulated continuous wave (FMCW) method and amplitude

modulated continuous wave (AMCW) method. Since this dissertation focuses on di-

rect detection TOF lidar using pulsed laser, only the previous work on direct TOF

method will be reviewed next, and readers could refer to (Pierrottet et al., 2008; Poul-

ton et al., 2017; Ebben et al., 1995; Adams and Probert, 1996; Adams, 2000; Godbaz

et al., 2011; Banks, 2013; Jo et al., 2016; Zhang et al., 2017; Schmidt et al., 2012; Jo
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et al., 2016) for details of in-direct TOF methods.

Direct TOF method

The direct TOF method can be further classified according to the number of pulses

required for the TOF calculation. Single-shot method provide a TOF product using a

single return, in which linear-mode avalanche photon-detector (APD) is the common

choice. Single-shot TOF method has been well developed in academic (Burns et al.,

1991; Kilpelä et al., 1998) and are also available in industry, like Velodyne. Velodyne

HDL-64E lidar and its similar products have a mechanical scanning system that emits

one or a line of laser pulses each time, and rotates the scanner with a certain speed

to cover a wide field of view (FOV). On the contrary, solid-state lidars avoid the

mechanical scanning components, but direct the beams using optical phase array

(Heck, 2017), or spreads the light using an optical diffuser to illuminate the entire

scene of interest. The latter one is also referred to as a flash lidar, which is another

common lidar design for autonomous driving vehicles. At the receiver end of a flash

lidar using the single-shot method, a focal plane array (FPA) with 2D linear-mode

APD’s is used as a photo-sensor, and behind each pixel, an APD is integrated with

a circuit that amplifies and filters the input analog signals and convert the signals to

TOF measurements. The flash lidar design provides 2D TOF images each time the

light is emitted, rather than a dot or a line as a scanning lidar does. Examples of

using such FPA for single-shot method includes the work done by Richmond et al.

(1996), and commercial products of Voxtel and advanced scientific concepts (ASC),

Inc. (McManamon et al., 2017). Both the scanning and flash lidar design using

the single-shot measurement method demonstrates the advantage of allowing high-

quality TOF products at a single laser event. Moreover, the LM-APD is less sensitive

to ambient light compared to Geiger-mode APD’s used in multiple-shot method that
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will be introduced next. One drawback of the single-shot method is that the gain

of the photon-detector is relatively low, which requires high laser energy to ensure

weak signals beyond the noise level. Additionally, fast electronic clocks and high

bandwidth of the detection circuits are also required to achieve a distance resolution

of a few centimeters. However, high bandwidth could lead to increased system noise

and reduced signal SNR, which makes the weak signal less detectable from noise.

In addition to linear-mode APD’s, another widely applied photon-detectors for

TOF lidars are Geiger-mode APD’s (GM-APD’s) (Aull, 2016; Becker, 2015; Niclass

et al., 2007; Niclass, 2008; Stoppa and Simoni, 2011; Albota et al., 2002; Beer et al.,

2018). Due to the extreme high gain, a GM-APD has the capability to detect ex-

tremely weak signals down to single photon level. Therefore, such a photon-detector

is also referred to as single-photon avalanche diodes (SPAD’s) (with exception that

some designs using LM-APD’s are also belonged to SPAD’s (Kasunic, 2016)). How-

ever, the high sensitivity of GM-APD’s makes it extremely susceptible to other events

than the desired photons reflected from targets, and the undesired events could arise

from various sources like ambient light (i.e. sunlight), dark current, and backscatter

from unintended objects. Therefore, signals from multiple returns have to be averaged

to reduced the noise, which is why such approach is also called multi-shot method. In

addition to the high false positive events, the Geiger-mode avalanching process makes

GM-APD’s unable to measure the signal intensity, instead, only binary intensity can

be provided. In light of these drawbacks, GM-APD’s are commonly employed in

a group of arrays, which is also called multipixel photon counters (MPPC), and the

MPPC is usually applied in a flash lidar design integrated with digital CCD or CMOS

timing circuits (Kasunic, 2016). Each MPPC consists a 2D array of GM-APD’s and

produces a single TOF product (a pixel value), calculated from the measurements

of all the GM-APD’s, rather than an image has multiple pixels (Kasunic, 2016). At
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each pixel, the MPPC produces a histogram of incident event against time. The

time stamp of the histogram is recorded by a high-precision Time-to-Digital Con-

verter (TDC), and the number of events at each timestamp is obtained by averaging

the measurements over multiple returns (Niclass et al., 2013). Then, the TOF is

obtained from the time stamp of the peak of the histogram, and a coincidence de-

tection (time-correlation) technique could be applied to reduce the false positives in

the measurements (Niclass et al., 2013; Beer et al., 2017; Steinvall et al., 2008). The

advantage of using GM-APD’s is that the nearly infinite gain enable the detection of

extremely weak signal and reduces the requirement of laser energy. However, if it is

used in a flash-lidar design, the wide transmitter FOV also causes intensity drops. As

will be seen in Section 4.1.2 that, the power drops to the 4-th power with distance.

Therefore, to detect signals from remote distance, the laser power is still a major

concern for flash lidars using MPPC’s.

1.2.2 Overview of TOF Lidar Simulation

With the growth of various lidar technologies, the simulation of those systems

have become a valuable tool for the evaluation of the performance under various con-

ditions and the investigation of different components for new system development. In

general, a lidar system consists of laser source, transmitter and receiver lens systems,

photon-detectors and signal processing units. Since the overall performance of a lidar

system relies on the functionality of all the components and the interaction between

each other, a full-system lidar simulation that covers all the major components is of

importance, rather than analyzing each component individually. Correspondingly, a

full-system lidar simulator could be divided into modules that account each stage of

a lidar system, and the modules include laser source module, propagation module

(including propagation through free space, and reflection by targets), receiver mod-
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ule, optics module (transmitter and receiver) and signal processing module (or timing

module). A schematic of a full-system lidar simulation is shown in Figure 1.1. Re-

searches have conducted extensive investigation on the full-system lidar simulation

with various emphases. Depending on purposes, some modules are modeled in more

depth and the others of less interests are simplified. Previous efforts on different

modules of a full-system lidar simulation are reviewed next.

Figure 1.1: Schematic of Full-System Lidar Simulation Modules.

The laser source module of a lidar simulation is to model the temporal and spatial

power distribution of a laser pulse generated by a laser source, given laser specifica-

tion like pulse width, rise time and peak power. Depending on the complicity, a laser

intensity can be simulated by a volume distribution (3D) or approximated by a Gaus-

sian curve in 2D neglecting the power distribution of the cross-section (Chevalier and

Steinvall, 2009; Al-Temeemy, 2017; Richmond and Cain, 2010). Budge et al. (2006)

also proposed a sophisticated model which divides the laser beam to sub-samples to

account the beam divergence.

Models in the propagation module simulate the absorption, scattering, and re-

fraction by targets with different geometries and particles in the air (e.g. dust, water
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droplets, and ice crystal) under various atmospheric conditions (e.g. turbulence).

Several atmospheric models have been developed (refer to Section 4.1.3), but they

are rarely implemented in a full-system lidar simulator. Among those atmospheric

effects, power attenuation by the medium is the most covered effect by existing sim-

ulators. Der et al. (1997) took the speckle noise and scintillation due to atmospheric

turbulence into account, and Chevalier and Steinvall (2009) modeled the laser beam

distortion caused by turbulence, including scintillation, beam broadening, and beam

wandering on output images. Richmond and Cain (2010) proposed a comprehensive

model of laser beam propagation through free space in which speckle noise is taken

into account. Broad studies are also conducted on the influence of characteristics

of targets on laser propagation. Chevalier and Steinvall (2009) took into account

the target size, shape, and bidirectional reflectance distribution function (BRDF) in

their model. Steinvall emphasized on a comprehensive study on the distortion of

laser shape after reflection by different geometries, which was later included in their

full-system lidar model (Steinvall, 2000; Steinvall and Carlsson, 2001). Alternatively,

Al-Temeemy (2017) proposed an impulse response function to describe the changes

of pulse energy and shape after interaction of laser pulse with targets.

The receiver module simulates the functionality of a receiver, including the con-

version from optical power to electrical signals, and noise contamination from various

sources. The characteristics of a receiver play an important role in determining the

performance of a lidar sensor, and they were simulated by researchers from differ-

ent aspects (Budge et al., 2006; Der et al., 1997; Burns et al., 1991). Budge et al.

(2006) introduced transfer functions to describe the propagation of electrical signals

and noises through the electrical components, and Burns et al. (1991) focused on the

modeling of dominant noises including shot noise and thermal noise in the system-

wise lidar model. Among all the lidar simulations, noise on the signals is assumed
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to be white. However, noise occurring periodically or randomly in the time domain,

which is also common to real lidar systems, is not taken into consideration. More-

over, no detailed analog filters were included in the aforementioned full-system lidar

simulation.

The time discriminator module is another important module that simulates how

to distinguish pulse from noises and how to measure the TOF by time-discrimination

algorithms. The commonly modeled timing algorithms in a full-system lidar simu-

lation include peak detection, leading-edge detection, constant fractional discrimina-

tion (CFD) and matched filter (Budge et al., 2006; Al-Temeemy, 2017; Chevalier and

Steinvall, 2009; Der et al., 1997; Richmond and Cain, 2010). Nevertheless, no further

discussion on the performance of detection algorithms was provided. Moreover, the

trigger level in a leading-edge detection method and the constant fraction in a CFD

are usually chosen arbitrarily without involving any detection theory. Richmond and

Cain (2010) illustrated the underlying detection and estimation theory in addition to

peak estimator and leading-edge detection and also provided corresponding models.

However, since the noise is assumed to be white in the receiver module, behaviors

of matched filters on non-white or structured noise in the time domain were not dis-

cussed. In addition, the signal input to the detection algorithms in this module is

usually assumed to be obtained in advanced. Therefore, how the configuration of a

TDC or an ADC affects the resolution, accuracy, and precision of TOF measurements

were not further discussed.

1.2.3 Prototype Lidar Design

Due to the importance of lidar on the autonomous industry, we started a TOF lidar

project, to first design a long-range, high pulse repetition frequency (PRF), highly

tunable lidar at the ’whiteboard’ level. The project is to augment a ’camera-first’
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autonomous car sensor philosophy, that is, the role of a lidar is to ’disambiguate’

tough cases, since 5 − 10% of the most difficult cases cause most accidents. Sec-

ond, the project is to build and physically test components and a full lidar proto-

type (Bhaskaran, 2018). Third, the project is aimed at modeling, characterizing and

testing various system settings and detection algorithms for this prototype lidar.

1.3 Outline of the Dissertation

In the first part of this dissertation, we focus on spatial wind gusts within a limited

range of scales. We propose a practical gust detecting and tracking algorithm with

low computational cost (Zhou et al., 2018). The novelty of the algorithm is to utilize

dispersion and transport theory to create a practical tool which can provide short-

range predictions of probable impact zones downstream for puffs or gusts detected

upstream with a long-range Doppler lidar. The tool can provide real-time short-term

predictions of impact time and location for gusts approaching a wind farm. The

propagation of the wind gusts through the wind farm is not considered in this paper.

By taking the gust size into consideration, the accuracy of the prediction can be

increased, and valuable wind forecasting information can be provided to the control

system.

Secondly, this dissertation proposes a full-system lidar simulation that consists of

all the main stages of a lidar system with emphasis on signal processing and time

discrimination methods. In the simulator, the parameters of the whole lidar system

are adjustable from the laser source to the timing device. Users can also test various

analog filters on signals with different types of noise. Additionally, both TDC and

ADC timing devices that have tunable specifications and different timing algorithms

implemented are also available in the proposed simulator. This full-system simulator

was proposed from the aspect of system design, and it is aiming to provide a fast and
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reliable tool for the evaluation of the performance of the current lidar system and

exploration of different system settings for a new lidar design.

This dissertation will describe the proposed gust detecting and tracking algorithm

in Chapter 2. Next, the dissertation will introduce the fundamentals of the laser pulse,

propagation module, receiver and time discrimination individually in Chapter 3 - 9,

followed by application of models to simulated signals or/and experimental data.

Specifically, Chapter 3 focuses on the simulation of the laser source. Chapter 4 de-

scribes the models applied in the propagation module. Chapter 5 explains the receiver

module, followed by the application of different analog filters. Chapter 6 discusses

the Time-to-Digital converters and corresponding timing algorithms. Chapter 7 fo-

cuses on the key characteristics of the analog-to-digital converter. Chapter 8 and 9

illustrated a new ADC-based timing algorithm and the Neyman-Pearson detector.

Finally, Chapter 10 gives the conclusion and future work.
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Chapter 2

WIND GUST DETECTION AND IMPACT PREDICTION FOR WIND

TURBINES

2.1 Methodology

2.1.1 Definition of Spatial Gusts

The spatial gust studied in the present work is defined mathematically in this

section. The scale of the gust of interest ranges from 1D to 10D (D is the diameter

of a wind turbine. D = 100 m is used, hereinafter). The magnitude of the wind

speed fluctuation of a gust region, |v′|, should be 1.5 times larger than the standard

deviation σ of the wind speed over the wind field, i.e. |v′| > 1.5σ and v′ = v − v̄,

where v is the local velocity vector and v̄ is the mean wind velocity. The gust regions

should also have good temporal coherency and local spatial connectivity around their

centers. Gusts are assumed to advect roughly along the mean streamline, and the

major structure should preserve during traveling.

2.1.2 Data Information and Wind Field Retrieval

The wind field utilized in this work was retrieved by a new proposed 2D variational

analysis method (2D-VAR) from the measurements collected by a Lockheed Martin

Coherent Technologies (LMCT) WindTracer® Doppler lidar (Louisville, CO, USA)

during 25 - 27 June 2014, at Tehachapi, California (Cherukuru et al., 2017). The

specification of the Doppler lidar is listed in Table 2.1. The lidar was located on a

hill (1450 m above sea level (ASL)) at a wind farm near Tehachapi City, which is at

an altitude of 1220 m (ASL). The data was collected in a horizontal plane at 1453 m
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Table 2.1: Specifications of the Doppler Lidar

Parameter Value

Wavelength 1.6 µm

Pulse energy 2 mJ

Pulse repetition frequency 750 Hz

Range resolution 100 m

Blind zone 436 m

Max range 10 km

ASL which included the height of the lidar system (3 m).

The 2D-VAR method used in the present work is based on a variational parameter

identification formulation (Cherukuru et al., 2017). The method involves finding

the best fit 2D wind velocity vector (X) which minimizes a cost function: J(X) =

1
Ω

∫ ∑
WiC

2
i dΩ, whereW is a pre-defined weight matrix which determines the relative

importance of the terms in the cost function. The constrains, C, are functions of the

wind vector X, and are comprised of radial velocity equation, tangential velocity

equation for low elevation angles and the advection equation. And Ω represents the

analysis domain. A quasi-Newton method is implemented for the minimization. This

retrieval algorithm has the advantage of preserving local structures in complex flows

while being computationally efficient with possible real-time applications.

The retrieval algorithm was used to convert the measured radial velocities to two-

dimensional wind field in Cartesian coordinate in a domain of size 6 km × 4 km. A

sample contour plot of the retrieved wind field is shown in Figure 2.1. The temporal

resolution of the retrieved results is 30 s as determined by the lidar scanning pattern,

and the size of the spatial grid is 80 m× 80 m as specified by the retrieval algorithm.
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Figure 2.1: Wind Field Retrieved by the 2D Variational Analysis Method (2D-VAR)

Algorithm. Background colors indicate the magnitude of the local wind speed, and

the arrows show the local wind direction.

Note that even though the 2D-VAR method was used in the present work, the pro-

posed detecting and tracking algorithm can be applied to any 2D wind field retrieved

from any algorithm or obtained from any experimental instrument, given sufficient

spatial and temporal resolution.

2.1.3 Data Preprocessing

Data quality control was first performed in the wind field. The dark red regions

at the northeast and southwest corners in Figure 2.1 were removed. The reason the

data at the two corners were removed is two-fold: First, the hills were treated as hard
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targets, and therefore, due to possible contamination in the range-gates immediately

in front of the hard targets, the data at the hills and 1-2 range gates before the hills

were removed before running the retrieval algorithm. Second, the retrieval algorithm

requires the data to be treated with a Gaussian filter to minimize the effect of noise

on the gradients for the advection term in the cost function. Therefore, the Gaussian

filter could not be applied at the boundaries of the lidar scan due to the missing data,

which caused the artifacts at the corners in Figure 2.1, so the results 1-2 more range

gates before the hills were removed.

Additionally, data with very high magnitudes above 30 m/s were rejected since

they were judged to be spurious for this dataset. While a small amount of still valid

data might be filtered out, we found empirically 30 m/s could be a reasonable trade-off

value between removing most of the noises and keeping sufficient valid data points.

Moreover, the spatial resolution of the dataset needs to be considered. The current

grid size is 80 m, implying any structures smaller than the grid size will be smoothed.

Only very few data points were left for atmospheric structures with scales of a few

hundred meters. Because the gust extraction process in the next step (Section 2.1.4

is based on the wind speed at the data points and the size and shape of the gust

patch, the truncation process may cause unnatural-looking contours of the extracted

gusts. Because the shape of the small-scale gusts is reduced to few pixels connected

only at the vertices, some small patches could be easily neglected during the bound-

ary tracing process. Therefore, to avoid losing many valid small-scale patches, linear

interpolation using Delaunay triangulation was used to keep the shape of the gust

contour to some extent (Amidror, 2002). Delaunay triangulation is a method that

triangulates the discrete points in a plane such that no discrete point is inside the

circumcircle of any triangle in the triangulation of the points. In the Delaunay trian-

gulation, same weights were assigned to the vertices of the triangular. The wind field
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after the interpolation is shown in Figure 2.2. However, the interpolated boundaries

should not be interpreted as better approximations to true boundaries than the coarse

grid. Ideally, one may avoid the interpolation step, if the lidar range-gate size were

significantly smaller.

Figure 2.2: Wind Field in Figure 2.1 after Data Preprocessing. Colors indicate the

magnitude of the local wind speed.

2.1.4 Detection of Gust Patches

Peak over threshold (POT) method was used to extract gust regions from the

wind field (Branlard, 2009). The POT method is to detect any wind event that

has an amplitude over a predefined threshold. Here, we used the POT method for

both up-crossing and down-crossing the threshold. The POT method removes the

data points not satisfying the velocity threshold mentioned in Section 2.1.1 and only
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keeps the gust regions. The resultant data was converted to binaries to facilitate the

boundary tracing algorithm. The extracted and converted gust regions are shown in

Figure 2.3, with gust regions in white. Note that no scale filters were applied to the

patches presented in Figure 2.3.

Figure 2.3: Extracted Gust Regions in Black-White Scale from the Wind Field in

Figure 2.2. The gust regions are in white.

Next, the Moore-Neighbor tracing algorithm with Jacob’s termination condition

was applied to the binary data to trace the boundaries of the patches (Weisstein,

2019). In the Moore-Neighbor tracing algorithm, an important concept is the Moore

neighborhood which is a set of 8 pixels around a target pixel that share a vertex or

edge with the target pixel. To track the boundary of a patch, as in Figure 2.3, the

tracking algorithm uses any one of the white pixels on the boundary of the patch as

the target pixel, and visits (moving clockwise for example) its Moore-neighbor pixels

(black pixels) before entering another white pixel. Then, it uses the next white pixel
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(moving clockwise for example) as the target pixel and repeats the procedure. When

it revisits the first white pixel it entered originally, the algorithm stops and all the

visited black pixels comprise the boundary of the patch. There are two widely used

termination conditions for the algorithm. The original one is to stop the algorithm

after reentering the first white pixel for the second time. The other one is called

Jacob’s stopping condition, which also stops the algorithm after reentering the first

white pixel for the second time, but in the same direction one originally enters it.

Since concave shapes are common for gust regions as seen in Figure 2.3, Jacob’s

stopping condition was applied because it is more powerful to trace such shapes than

the original stopping condition.

Moreover, since the patches with holes inside due to the above filtering still need

to be considered as a whole, only exterior boundaries of the patches were traced.

Additionally, patches with scale out of the range from 1D to 10D were filtered out

and the centroids of the patches were calculated during the tracing process. The scale

of a patch is defined as the square root of its area calculated by multiplying the grid

area (10 m× 10 m) by the number of the grid points inside or on the boundary. The

retrieved wind field along with detected gust boundaries is shown in Figure 2.4.

2.1.5 Tracking of Gust Patches

To predict the future location of the gust patches, their advective characteristics

need to be confirmed at first. Therefore, the next question is how to associate the

patches between time frames given the detected regions. Given the formation of the

spatial gust is contributed by the atmospheric turbulence, we assume that the gust

regions propagate along the mean wind direction and their turbulent properties re-

main unchanged according to Taylor’s frozen turbulence hypothesis. Nevertheless,

since the time intervals between two wind fields are integers, multiples of 30 s, they
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Figure 2.4: Retrieved Wind Field with Detected Boundaries of Gust Regions. Black

contours are the boundaries of the detected patches.

are relatively long compared to the eddies in the atmosphere, so Taylor’s hypothesis

is relaxed to some extent. It means slight changes in wind speed and wind direc-

tion, variations of scales, and deformation of the shapes are allowed in the proposed

algorithm.

After extracting the gust regions from the wind field at two time frames, the

tracking algorithm takes the detected gusts as inputs. The patches at an earlier

frame are called ’original patches,’ and patches at later frame are called ’candidate

patches.’ The time interval between the two frames should not be larger than 90 s.

Otherwise, the tracking algorithm will fail due to large changes in wind speed or
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shape caused by the evolution of the wind field.

Next, a searching zone is assigned to each original patch. In the searching zone,

the algorithm searches for the corresponding target patch on the second frame over all

the candidate patches. The candidate patches close to the boundaries of the studied

wind field are neglected because of partial observation of the patches. The searching

zone is placed downstream of the original patches and oriented along the mean wind

direction of the measurement domain. The distance between the original patch and

the center of the searching zone is set to the product of the mean wind speed of

the measurement domain and the time interval between the frames. The size of the

searching zone changes adaptively because a patch could deviate further from the

streamline as time elapses. In that case, a large searching zone is needed to cover the

possible area that the target patch could reach. The spanwise searching range is set

proportional to the product of time and the standard deviation of wind velocity in

the spanwise direction, and the same method is applied in the streamwise direction.

The spanwise and streamwise velocity components can be calculated by projecting

the retrieved x and y velocity components to the streamwise and spanwise directions.

The searching zone constrains the tracking algorithm to a small window instead of the

whole domain, which avoids unnecessary calculation. Examples of the original-target

patch pairs along with their searching zones are presented in Figure 2.5c. The wind

fields are shown in Figure 2.5a and 2.5b.

For an original patch, the algorithm searches for the target patch over all the can-

didate patches. Then, it loops the same procedure over all the other original patches.

The target patch of each original patch is chosen from the candidate patches accord-

ing to predefined criteria, and scores are assigned to the candidate patches for each

criterion. The criteria include the changes of wind speed, the directional difference

between the mean wind direction and the real moving direction, size difference, and
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Figure 2.5: (a) Wind Field at the First Time Frame. Colors indicate the wind speed.

Black contours are the boundaries of detected patches; (b) Wind Field at the Second

Time Frame; (c) Example of Original- Target Patch Pairs. Black patches are the

original gust regions extracted from (a), and red patches are the corresponding target

gust regions extracted from (b). Green dashed boxes are the searching zones. Black

and red dashed lines indicate the moving direction of the streamline and the real

movement of the patches, respectively. Pink crosses indicate the locations of a virtual

wind turbine array.
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shape deformation. For the changes of wind speed and direction, the root-mean-

square deviations (RMSD) of the wind speed and direction between the points in the

original and candidate patch are calculated using Equation (2.1), and the scores are

assigned according to the RMSD’s in Equation (2.2).

RMSDp =

√∑N
i=1(xi,original − xi,target)2

N
(2.1)

Scorep =


1 RMSDp < X

0 RMSDp ≥ X

(2.2)

Here, the subscript p represents the calculated variable name, wind speed or wind

direction, and xi stands for the value of the corresponding variable of the i-th point

inside or on the original or candidate patch. The threshold X = 0.5 m/s for wind

speed, and X = 10◦ for wind direction. The values of X are determined empirically.

In the calculation, we assume that the original and candidate patches share the same

centroid. N represents the number of the points that are in both original and candi-

date patches. If a point is only in either the original or candidate patch, the point is

ignored during the calculation.

For size changes and shape deformation, the intersection of union (IoU) value

for each original-candidate pair is obtained by calculating the ratio of the number of

intersection points to the number of union points. Here, we assume the original and

candidate patch share the same centroid as well. The score for the shape change is

calculated by Equation (2.3).

Scorep =


0 IoU< 0.5

IoU IoU≥ 0.5

(2.3)

The threshold value (0.5) in Equation (2.3) is determined empirically. After the

individual score for each criterion is obtained, the total score for each candidate
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patch m, TotalScorem, is calculated by summarizing over all the individual scores.

TotalScorem = Scorespeed + Scoredirection + Scoreshape (2.4)

Patches with small difference earn high total scores, and patches with zero total

scores are rejected. If multiple candidates have non-zero total scores, the one with

the highest total score is chosen as the target. If such a target is identified, we claim

that the original patch is advecting, and the target patch is the counterpart of the

original at the second frame. Conversely, if no target is detected, the original patch

loses its temporal coherency during traveling.

The tracking algorithm was tested on the wind fields shown in Figure 2.5a and

Figure 2.5b. Three examples of tracked original-target pairs are shown in Figure 2.5c.

The time interval between the original and target patches is 60 s. The other patch

pairs are not shown. In Figure 2.5, we can see many small-scale patches shown in

Figure 2.5a are not shown inside the corresponding searching zones in Figure 2.5b

where they should arrive after 60 s by following Taylors’ hypothesis. It provides the

evidence that smaller patches are more difficult to track than larger ones. The rea-

son would be that larger-scale patches have strong connectivity inside their internal

structures, while the spatial correlation of small patches is weak and unstable. The

coherency can be easily destroyed by the stretching and compression of larger-scale

turbulent eddies. The destructive effect can reduce the velocity of the patches to a

value beyond the threshold, deform or separate the patches, or merge small patches

with other structures. All these situations can make the detecting and tracking algo-

rithm ineffective.
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2.1.6 Prediction of Impact

After identifying advecting patches, the arrival time and probability of arrival

locations of the patches can be predicted.

Prediction of impact time

The impact time of gust patches at a certain location can be predicted using Taylor’s

hypothesis, that is, dividing the distance between the gust and the location by the

mean velocity. The equation is shown as:

t =
dstream
vstream

. (2.5)

Both the distance dstream and velocity vstream are the values projected on the mean

wind direction. The digression of wind speed along the streamline during traveling

to the location of interest is ignored due to the negligible difference for high wind

speed (> 15 m/s) (Branlard, 2009). Equation (2.5) provides us with fair estimation

of the arrival time, since the gust generally follows Taylor’s hypothesis in a short

time period without much deviation, and this simple estimation makes the real-time

prediction possible. However, spatial gusts do not always travel with the same velocity

in reality. Alternatively, one can track the same patch for several time steps, calculate

the actual traveling speed, and replace the mean wind speed with the obtained wind

speed. Using the actual speed could improve the accuracy of the prediction, but it

might also increase the complexity of the algorithm. Since the present work is to

provide a fast prediction within a few seconds for wind turbine control, we focus on

using the mean wind speed to calculate the arrival time.
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Prediction of the probability of impact location

If Taylor’s hypothesis holds, the gust region should arrive at a point downstream

from the original patch, called the ’predicted point.’ However, due to the turbulent

nature of the atmosphere, the real arrival point can only be estimated by a statis-

tical probability centered at the predicted point. Here, we treat the gust patches

as massless passive particles that are released from a point source, and use the con-

centration distribution model of plumes to model the spanwise distribution of gust

patches dispersing in a turbulent wind field.

Several plume models and puff models have been developed by researchers to

investigate the particle distribution in the air, such as Gaussian plume model (Batch-

elor, 1952; Petersen et al., 1984), K-model, statistical model, and similarity model

(Hanna et al., 1982) etc., and more advanced but computationally more expensive

models like SCIPUFF (Sykes et al., 1998), RIMPUFF (Thykier-Nielsen et al., 1999),

and LODI (Leone Jr et al., 2005). Since this work is aimed at estimating the impact

of gusts in a few seconds or minutes in advance of wind turbine control, the fast

Gaussian plume model is used.

The reason for using the Gaussian plume model for wind gust studies is explained

in the following. First, since the gusts travel in a relatively short distance in this

study, we assume the interaction between the large-scale structures and the back-

ground turbulence is small. Therefore, we can treat the gusts as passive quantities.

Second, we assume the eddy viscosity and eddy diffusivity are of comparable value, i.e.

the Prandtl number is close to 1. The reason is that, according to the Reynold anal-

ysis, under stable or neutral boundary conditions, the turbulent transport of scalar

quantities is similar to the transport of momentum, given the transport agents are

the same (Li et al., 2015). In our case, the mean wind speed during the studied time
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period is relatively high (around 15 m/s), so the neutral boundary condition domi-

nated the studied time period (The strong mechanical mixing due to the high wind

speed balanced the buoyance-driven turbulence in the atmosphere.). Therefore, we

can apply the plume model that was used for passive particles to the transportation

of gust structures studied in the present work.

The original Gaussian model (Equation (2.6)) is modified to suit the current case:

vertical distribution is neglected since only the deviation of gusts in the horizontal

plane is of interest. The velocity term is removed as the probabilities will be normal-

ized by the maximum value, meaning only relative probabilities matter. The modified

equation is shown in Equation (2.7).

P (y, z) =
1

2πσyσz~u
e−y

2/2σ2
y ×

[
e−(z−h)2/2σ2

z + e−(z+h)2/2σ2
z
]

(2.6)

P (y) =
1√

2πσy
e−y

2/2σ2
y (2.7)

where y refers to the spanwise deviation of a gust patch from the streamline with

y equal to zero on the streamline, and z indicates the height above the ground. In

Equation (2.6) h is the distance from the source to the ground. P is the probability

at the deviation y, and σy is the standard deviation of y. We assume the turbulence

field driving the gust patches is stationary and homogeneous. Taylors’ dispersion

theorem provides an expression of σ2
y as a function of the releasing time t for stationary

turbulence (Hanna et al., 1982).

σ2
y = 2σ2

v′L

∫ t

0

∫ τ

0

r(τ)dτdt (2.8)

where σv′L is the standard deviation of the spanwise Lagrangian velocity fluctuation

in which the subscript L stands for Lagrangian scale, and r is the autocorrelation of

the spanwise velocity fluctuation. Using the random walk theory (Kundu and Cohen,

2010), the standard deviation of the deviation y, σy in the Lagrangian system can be
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approximated by Equation (2.9) when t→∞

σy =
√

2σ2
v′L
TLt (2.9)

and TL is the Lagrangian integral time scale.

Here, we assume the gust patches are ’released’ for sufficient time (t→∞) in the

atmosphere, so the gust structures only advect but not disperse (grow) during trav-

eling. It indicates that the diffusivity is constant, i.e. K ∝ σ2
v′TL. As the diffusivity

is defined as K = dσ2
y/2dt, Equation (2.9) can be deduced from the diffusivity. On

the other hand, because of the stationary and homogenous turbulence assumption,

the temporal correlation of the spanwise velocity fluctuation is approximated by in-

stantaneous spatial correlation. The standard deviation of the Lagrangian velocity

fluctuation σv′L was replaced by the standard deviation of Eulerian velocity fluctua-

tion σv′ , due to instantaneous velocities being studied in Price (2005). The spanwise

velocity fluctuation and its standard deviation were obtained from the given wind

field. Equation (2.9) is transformed to

σy =
√

2σ2
v′TLt, (2.10)

where the Lagrangian time scale TL=200 s, adapted from the work of Dosio et al.

(2005). The reason of the adoption is that, we did not have sufficient statistical

measurements for the time scale calculation in the present work, since the time interval

of our lidar measurements is relatively long (30 s) and we did not have any other

supplementary device installed locally. Therefore, instead of calculating the time scale

directly, we adapted the result from Dosio et al.’s simulation of a convective boundary

layer. The data used in this paper is between 3 pm and 6 pm (local time), so the

atmospheric flow may be expected to contain some convective activity. Therefore, we

believe the selected value could be considered as the best available approximation of
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the time scale during the studied period. However, we suggest to use meteorological

measurements (like a met mast) if available to calculate the time scale, which would

improve the estimations.

Additionally, we assume the atmospheric characteristics, with respect to the me-

andering of gusts, are preserved during the studied period so that the Lagrangian time

scale remains constant. Furthermore, the random walk theory used above is only for

particles. The effect of the scales of the gusts needs to be considered in Equation (2.10)

since we are modeling gusts. The details will be illustrated in Section 2.2, and the

modified random walk theory is given in Equation (2.11). The modified random

walk theory (Equation (2.11)) and the Gaussian model (Equation (2.7)) comprise the

impact prediction model for advecting gust patches with different sizes.

2.2 Results and Discussion

2.2.1 Preliminary Results

Three hours of retrieved wind fields (during 3 - 6 pm PST on 26 June) were

processed. A time interval of 60 s between original patches and target patches was

used. The original patches and corresponding target patches were extracted and as-

sociated using the detecting and tracking algorithm. Original random walk theory,

Equation (2.10) was used for prediction. The spanwise deviation (Lreal) of the target

patches was measured. The spanwise deviation is defined as the deviation of the

centroid of the gust from the streamline of the wind field, in the direction perpen-

dicular to the mean wind direction of the measurement domain. Then, the spanwise

deviation was normalized by the rotor diameter, i.e. lreal = Lreal/D, and lreal is the

dimensionless spanwise deviation. The histogram of the distribution probability of

the dimensionless deviation is shown in Figure 2.6. The probability is normalized
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by the value at the ’predicted point’. The predicted point is assumed to have the

maximum probability. Figure 2.6 presents a Gaussian shape distribution of the gust

spanwise deviation. It demonstrates our assumption that the spanwise distribution

of advecting patches can be represented by a Gaussian model, rather than the expo-

nential shape found by Branlard (2009).

Figure 2.6: Normalized Distribution Probability of the Patches Spanwise Deviation

from the Predicted Points. The dashed line represents the normalized probability

modeled by Equation (2.10). The histogram shows the normalized probability of the

real spanwise deviations.

However, a large discrepancy was observed between the modeled distribution of

the gust spanwise deviation (dashed line) and the real deviation using the detecting

and tracking algorithm (histogram). The reason is that the original random walk

32



theory does not consider the size of the particles, as the random walk theory assumes

that the size difference between particles is negligible. However, the assumption does

not hold for gust patches with scales in the order larger than 100 m. The size of

the gusts significantly affects their movement. Small gusts are easy to move because

many large-scale eddies in the atmosphere move them around, which makes their

movement relatively random. On the other hand, large-scale gusts that need even

larger-scale eddies to move them are more likely to flow along the streamline of the

wind field. Therefore, size dependency of the gust patches needs to be considered.

2.2.2 Size Dependency

To study the effect of the size of the gusts on the spanwise deviation, the dimen-

sionless deviation lreal was further normalized by the square root of the time interval,

i.e. lreal,∆t = lreal/
√

∆t, to remove the dependency of the deviation on time. The

usage of the square root is according to the relationship between the deviation and

time presented in Equation (2.10). The patch scale (Lpat) was normalized by the

rotor diameter, i.e. lpat = Lpat/D, and lpat is the dimensionless scale. A scatter plot

of the normalized deviation lreal,∆t of all the detected patches with the dimensionless

scale lpat is shown in Figure 2.7. Then, the dimensionless deviations were grouped to

bins according to their sizes, and inside each bin, the deviations and the dimension-

less scales were averaged, respectively. The averaged values were fitted by a power

function. The results and the fitting curve are plotted in Figure 2.8. Figures 2.7

and 2.8 present a negative dependency of the deviation on the patch scale. The re-

lationship can be well expressed by a function lreal,∆t = αlpat
−β, where α and β are

fitting parameters, and α = 1.0 and β = −0.36 is found for the current dataset.

After the size dependency was empirically derived, Equation (2.10) was modified
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to include the derived relationship by multiplying it by the derived power function.

σ̃y,mod = σ̃y · α(lpat)
β

σ̃y =
√

2σ2
v′TLt/D

lpat = Lpat/D

(2.11)

where σ̃y is the dimensionless standard deviation of the deviation y, modeled by the

original random walk theory.
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Figure 2.7: Scatter Plot of Normalized Deviations vs Patch Scales. The streamline

overlays the line with the deviation lreal,∆t equal to zero. The red dashed lines imply

the edges of the bins. The average dimensionless scales at the bins are 1.75, 3.25,

4.75, 6.25, 7.75, and 9.25.
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Figure 2.8: The Relationship between Dimensionless Deviations and Dimensionless

Gust Scales. Circles are the average dimensionless deviations at different average gust

scales, and the solid line is the fitting curve.

2.2.3 Improved Results using the Modified Prediction Model

After the size dependency correction was added to Equation (2.10), the modified

model was retested on the data presented in Figure 2.6. The patches were separated

into three groups according to their sizes: 1D - 2.5D, 2.5D - 4D, and 4D - 5.5D.

Patches larger than 5.5D are not included due to insufficient sample points. The

results are shown in Figure 2.9. Gaussian functions (red lines) were fitted to the his-

tograms. The modeled distribution (black lines) were computed using Equations (2.7)

and (2.11). A good match for different sizes of patches are shown in the comparison
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(a) Size: 1D - 2.5D

(b) Size: 2.5D - 4D
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(c) Size: 4D - 5.5D

Figure 2.9: Normalized Distribution Probability of the Modeled Deviation (Black

Lines) and Real Deviation (Histogram) of the Patches. The red lines are the fitting

curves to the histograms. The same dataset was used as in Figure 2.6. The patches

were separated into three groups: (a) 1D - 2.5D, (b) 2.5D - 4D, and (c) 4D - 5.5D.

between the real measured distribution and the modeled distribution. It illustrates

that the distribution probability of gust spanwise deviation can be well represented

by the proposed prediction model at least for the current dataset.

2.2.4 Application of the Modified Prediction Model

By applying the detecting and tracking algorithm to the retrieved wind field, we

monitored the movement of the gusts during the three-hour period. Next, we posi-

tioned a virtual wind turbine array in the wind field shown in Figure 2.5a, and used
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the three original gusts in Figure 2.5c as examples, to illustrate what the time of

impact and probable arrival locations of the gusts are for the hypothetical turbines.

Here, the impact time and locations were calculated by the prediction model. The

wind turbine array consists of four turbines that align perpendicular to the mean

wind direction. The distance between two adjacent wind turbines is 700 m. The dis-

tance between the gusts and the wind turbine locations were measured, and the time

taken by the gusts to reach the turbines was estimated using Equation (2.5). The

real arrival time was also obtained by applying the detecting and tracking algorithm

to the wind field at different time frames. Additionally, the spanwise distribution

probabilities of the gusts at different wind turbines were predicted and are shown

in Figure 2.10. Both predicted and real arrival time and positions are listed in Ta-

ble 2.2. Patch 11 disappeared before reaching any wind turbine, so the real arrival

time and position were left blank in Table 2.2 and the real arrival position is not

shown in Figure 2.10. This fact also verifies that small patches are more difficult to

track. Table 2.2 shows a good match between the predicted and real arrival time

and locations within reasonable tolerances, which validates the proposed prediction

model. However, a further quantitative validation is needed in the future work.

2.3 Conclusion

Due to the importance of wind gusts for wind turbine performance, spatial wind

gusts with a scale from 100 m to 1000 m are studied using a Doppler lidar. A de-

tecting and tracking algorithm for the spatial gusts is introduced. The proposed

algorithm is computationally inexpensive and can provide real-time tracking and pre-

diction. However, it is sensitive to the temporal and spatial resolution of the dataset.

The algorithm was performed on a three-hour wind field data obtained from the

measurements of a WindTracer Doppler lidar. The results reveal a Gaussian shape
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Figure 2.10: Real and Predicted Arrival Positions, and Predicted Normalized Span-

wise Distribution Probability of the Gusts. The patch numbers correspond to the

gust numbers in Figure 2.5c. Green dash lines indicate the locations of the wind

turbines relative to Turbine 1, and the distance is measured along the wind turbine

array. The blue and black dash lines represent the real arrival positions of Patch 13

and 17, respectively. Since Patch 11 disappeared before arriving any wind turbine,

no line indicates its real arrival location in the figure.
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Table 2.2: Predicted and Real Arrival Time and Position of Patches

Patch Number #11 #13 #17

Impact wind turbine Turbine 3 Turbine 2 Turbine 4

Predicted arrival time 183.03 s 116.37 s 92.9 s

Real arrival time - ∼119.54 s ∼119.54 s

Spanwise distance between predicted arrival

position and wind turbine of impact
285.2 m 1 153.7 m 1 144.9 m 1

Spanwise distance between real arrival

position and wind turbine of impact
- 106.16 m 1 87.48 m 1

distribution of gust spanwise deviation from the streamline and a negative power-law

dependency of the deviation on gust scales. Furthermore, a prediction model using

the Gaussian plume model and random walk theory was introduced and corrected by

the size dependency. The prediction model was tested on the same dataset, and the

results further demonstrate the power law relationship. The prediction model was

applied to a virtual wind turbine array to estimate the impact time and locations of

the gusts on the turbines. The model was validated in a limited set of conditions, due

to the lack of the dataset with a longer time period. Therefore, more quantitative

validation of the model is suggested for future work. However, the major value of

this work is to provide a novel approach for the study of large-scale wind gusts using

a long-range Doppler lidar. In real-life applications, the proposed algorithm could

be efficiently integrated to feed-forward wind turbine control systems given 2D wind

fields in time series, and the wind field could be provided by a long-range Doppler

lidar. Given the knowledge of the movement of potential hazardous gusts, the control

1The measurement is to the left of the wind turbine of impact.
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system would have sufficient leading time to adjust wind turbines to optimal settings.

In this case, the power generation could remain stable at the desired value, and the

loads on the turbine components could be reduced. Consequently, the impact on the

electric grid due to the power fluctuation could be mitigated.
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Chapter 3

LASER SOURCE

3.1 Fundamentals of Laser Source

The laser source is the heart of a lidar system. Laser pulses are transmitted to free

space and return to be detected by photon-detectors. Laser sources can be divided

into different categories according to the gain medium where stimulated emission of

photons and optical gains take place. Examples of different types of laser sources are

semiconductor lasers, solid-state lasers, fiber lasers, and gas lasers. Kasunic (2016)

reviewed the characteristics and applications of different laser sources. This section

will focus on the fundamentals and modeling of the laser source for a TOF lidar.

3.1.1 Characteristics

Key characteristics of a laser source include temporal and spatial coherence, wave-

length, pulse width, rise time, pulse repetition frequency (PRF), energy and power.

Temporal and spatial coherence

Temporal coherence of a laser source describes the average correlation period between

two wavelengths over which they become completely out of phase. The temporal

coherence can be specified by a coherence time τc and the corresponding coherent

length dc = cτc (Kasunic, 2016):

τc =
1

2c

λ2
0

|∆λ|
, (3.1)

where c is the speed of light, λ0 is the center wavelength of a laser and ∆λ is the

linewidth of a laser. Even though a single-mode laser should ideally emit at a sin-
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gle wavelength, the gain medium or quantum-mechanical always broadens the wave-

length. The wavelength difference from the center wavelength in a laser spectrum is

called linewidth. The temporal coherence of a laser tells the degree of monochromatic-

ity of a laser, i.e. a laser with larger average linewidth starts to decorrelate faster.

A laser with low temporal coherence is more likely subject to chromatic aberration.

A lens may, therefore, be unable to focus all wavelengths at a convergence point.

Specifically, if a laser has a wide spectrum, the beam could disperse after the focusing

lens due to different refractive indices for different wavelengths of light. Minimizing

the chromatic aberration is important for a TOF lidar, since large dispersion of the

laser requires a large detector which could introduce more unwanted ambient light.

However, speckle noise is a drawback of a temporally coherent laser, because the

reflection of highly correlated beams from rough surfaces causes stable interference.

The interference could produce obvious speckle patterns which affects the power of

return pulses and the image quality of a flash lidar.

Spatial coherence describes the phase correlation across the wavefront of a laser

beam. For a spatially coherent beam, the irradiance distribution profile is an ideal

Gaussian profile. However, in practice, due to unavoidable misalignment between

the mirrors of a laser cavity, the distribution profile becomes a near-Gaussian profile

superposed by non-Gaussian beams which results in phase variation, and the laser

becomes spatially incoherent. The degraded spatial coherence due to the phase dis-

tortion results in (1) an increase of divergence angle at which the beam exits the laser,

and (2) an increase of the spot size when the beam is focused with a lens. Therefore,

spatially coherent beams are also called diffraction-limited beams. The spatial coher-

ence of a laser beam can be quantified by the beam quality factor M2. Specifically,

for a diffraction-limited beam the beam quality M2 = 1, while for the beam that is

not diffraction-limited, M2 > 1. The spatial coherence is also crucial for a TOF lidar.
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One one hand, a large beam size due to large divergence of a beam at a long distance

limits the resolvable size of a target and makes the edges less resolvable. A large

beam size can also cause multiple-path effects (Adams, 2000). On the other hand,

when the return beam is focused on a detector, the increasing spot size requires a

larger detector to cover the whole profile, which allows more background light inci-

dent on the detector and increases electrical noise of the system. However, similar to

the temporal coherence, the speckle noise is also a disadvantage of a spatial-coherent

laser. The standard deviation of the speckle noise (Richmond and Cain, 2010) is:

σsp =
iG

M
. (3.2)

It has the largest value for an ideal laser that is temporally and spatially coherent

(i.e. M2 = 1), compared to a non-diffraction-limited laser. The iG in Equation (3.2)

is the signal current output from a photon-detector with a gain of G. Therefore, a

laser with broadband spectrum and low spatial coherence is less subject to speckle

noise.

Wavelength

The wavelength is another important factor of a laser source. The most common

wavelength bands for the TOF lidar application are near infrared band (NIR, 0.7 −

1.1 µm) and shortwave infrared band (SWIR, 1.1−3.0 µm). Two commercial examples

for each band are 905 nm and 1550 nm. Each band of wavelength has its own

advantages and weaknesses from different perspectives. Wojtanowski et al. (2014)

studied the vulnerability of the 905 nm and 1550 nm laser to different environmental

conditions with respect to normal atmospheric conditions and conditions with high

water content. The results show at normal atmospheric conditions, the atmospheric

extinction coefficient for 1550 nm is two times lower than that for 905 nm, while
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the water extinction coefficient γwater for the former one is two orders of magnitude

higher than latter one (Figure 3.1). The comparison indicates that 1550 nm could

Figure 3.1: Water Extinction Coefficient Spectrum (Wojtanowski et al., 2014).

provide farther measurable distance at normal conditions, but at conditions with

increasing humidity, rains, fogs, or wet targets, the maximum detectable distance

for 1550 nm drops dramatically. Moreover, the water absorption of the wavelength

is only a portion of the atmospheric effects on the laser. The other influence of

the atmosphere on the laser include Mie-scattering of fog, specular reflection of rain

droplets, and complex reflection mechanisms at a wet surface (Wojtanowski et al.,

2014), which will be briefly discussed in Section 4.1.3.

In addition to the effect of atmosphere, the eye-safety of a laser also needs to be

considered when choosing a wavelength. The maximum permissible exposure (MPE)

for 905 nm is much lower than 1550 nm (Wojtanowski et al., 2014). It is because

905 nm wavelength is close to the visible light range and can be focused to a tiny

spot on the retina, while 1550 nm wavelength rarely reaches the retina due to high

water absorption of the interior of human eyes, and it is less hazardous. Therefore,

the laser safety standards allow higher power output at 1550 nm which provides a
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positive impact on the maximum measurable distance. The selection of wavelength

is also depended on the selection of photon-detectors, so the performance of photon-

detectors under different conditions should be considered. More details of the behavior

of photon-detectors will be discussed in Chapter 5.

Pulse width and rise time

Another key parameter for a laser is the pulse width which is the time duration of

a pulse, and is usually approximated by the Full width half maximum (FWHM) for

a Gaussian pulse. Another parameter of importance is the rise time defined as the

time required for a pulse to rise from 10% to 90% of its peak value. The relation

between the rise time tr and the pulse width ∆tw can be related using Equation (3.8)

and Equation (3.9), tr ≈ 0.7164∆tw. The rise time of a laser pulse affects the timing

accuracy of a TOF lidar which will be discussed further in Chapter 6.

Pulse repetition rate

The pulse repetition rate, PRF , is defined as the number of pulse transmitted by a

laser source per second. The PRF represents the number of products per second for

a scanning lidar assuming one product per pulse, and the frame rate for a flash lidar

(assuming one image frame is generated from one flash of the source). In addition,

the PRF also limits the maximum achievable range of a laser: Rmax = c/2PRF . An

explanation is that, when a laser emits a first pulse, the timing device associates the

returns with the first pulse only before the second pulse is emitted. When the second

pulse is emitted, the returns from the first pulse will be considered as the returns of

the second pulse. Therefore, there is a trade-off between the number of points per

second and the maximum distance a lidar can achieve.
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Power and energy

Pulse energy E is the power integrated over the time duration of a pulse, and can be

calculated using the pulse width and peak power for a rectangular pulse

E =

∫
P (t)dt = P0 ·∆tw. (3.3)

We can also use Equation (3.3) to approximate the pulse energy of a Gaussian pulse

under the assumption that the area under a Gaussian curve is equal to the area of a

rectangular defined by the pulse width and the peak power, as shown in Figure 3.2.

Thus, a useful form of the peak power of a pulse is derived as

P0 =
E

∆tw
. (3.4)

Figure 3.2: Approximation of Pulse Energy of a Gaussian Pulse. The area of the red

rectangular represents the approximated pulse energy.
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The peak power is a key parameter of a laser source, which represents the maximum

optical power occurs during the pulse duration and significantly affects the maximum

achievable range of a laser. In addition to the peak power, we also concern the average

power Paveg of a laser which is defined as the power averaged over an entire period

between the emission of two successive pulses T = 1/PRF :

Paveg =
E

T
= E · PRF . (3.5)

The peak power and average power can be related by the duty cycle of a pulse:

Duty cycle =
∆tw
T

=
Paveg
P0

. (3.6)

3.2 Transmit Pulse Model

In this work, the laser pulse is assumed to have a Gaussian distribution in time

(Richmond and Cain, 2010; Budge et al., 2006):

Pt(t) =
E

σ
√

2π
e−
−t2
2σ2 (3.7)

where E is the pulse energy of the laser, and σ is the standard deviation of the

Gaussian distribution. The relation between the standard deviation, the pulse width

∆tw and the rise time ∆tr are

∆tw = 2σ
√

2 ln 2 ≈ 2.355σ (3.8)

∆tr ≈ 1.687σ, (3.9)

assuming the area under the Gaussian curve is equal the area of a rectangular defined

by the pulse width and the peak power. The derivation is given in Appendix B. The

peak power can be found as

P0 =
E

∆tw
=

E

2σ
√

2 ln 2
(3.10)
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Inserting Equation (3.10) to Equation (3.7), the Gaussian pulse model used in this

work is obtained

Pt(t) = 2

√
ln 2

π
P0e

−4 ln 2 t2

∆t2w ≈ 0.94P0e
−4 ln 2 t2

∆t2w . (3.11)

Equation (3.11) also describes the relation between the height of the Gaussian pulse

and the peak power: hpulse ≈ 0.94P0. Using Equation (3.11), one can obtain the

temporal power distribution of the transmit pulse given the peak power and the

pulse width of a laser source. The corresponding pulse energy, average power, duty

cycle and rise time can be obtained using Equation (3.3), (3.5), (3.6) and (3.9). One

example of the transmit pulse is shown in Figure 3.3, and the peak power and pulse

width is obtained from the specification (Table A.1) of a prototype lidar developed

by our team. The other characteristics of a laser source is given in Table 3.1.

Figure 3.3: Example of the Modeled Transmit Pulse.
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Table 3.1: Parameters of Transmit Pulse Model

Parameter Symbol Value

Peak power P0 300 W

PRF - 1 MHz

Pulse energy E 1.5 µJ

Average power Paveg 1.5 W (31.76 dbm)

Pulse width ∆tw 5 ns

Rise time tr 3.52 ns

Duty cycle - 0.005

3.3 Sampling Rate

Since we utilized discrete signals to simulate continuous signals in the pulse model,

the sampling rate of the discrete signals needs to be considered. Wahab et al. (2016)

summarized research on the selection of sampling-rate for chromatographic separa-

tions with a focus on accurate description peak height, pulse area, and pulse shape.

They discussed the effects of the sampling rate on noise modeling, taking account

of the response time of detection devices. For the simulation of continuous signals,

a proper representation of a pulse with respect to the peak, area, and shape is crit-

ical, but additional factors also need to be considered to fully describe the nature

of a continuous signal and the response of the electrical system to the signal. The

considerations are listed as following:

• accurately represent the pulse characteristics with respect to heights, area, and

shape;

• have no effect on the precision of arrival time measurement by any timing algo-
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rithm using any timing device;

• have no effect on the resolution of any timing device;

• accurately represent noise and the effect of the noise on the time measurement;

• low computational cost.

We used the above considerations as metrics to determine the sampling rate of the

pulse model.

3.3.1 Simulation

In this study, we tested several sampling rates of 1 GHz, 10 GHz, 100 GHz,

1000 GHz, and 10000 GHz to simulate continuous signals. Those signals is referred

to as original ’continuous’ signals. To properly describe the shape of a signal, we

followed the Nyquist sampling theorem that the sampling rate of the signal should

be at least twice the bandwidth of the signal. Since the bandwidth of the transmit

signal is around 0.2 GHz as shown in Figure 3.4, all the sampling rates satisfy the

first metric and also meet the suggestions proposed by previous work (Kelly and

Horlick, 1973; Dyson, 1999; Vandeginste et al., 1998; Scheeren et al., 1985; Kromidas

and Kuss, 2009; Hinshaw, 2003). Next, the return signals were calculated in the

Table 3.2: Simulation Parameters

Parameter Value

Target Distance R (m) 10, 15, 20, 25

SNR (dB) 32.99, 25.95, 20.95, 17.07

Reflectivity ρ (%) 10

Visibility V (km) 10
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Figure 3.4: Transmit Pulse (Top) and Its Single-Sided Power Spectrum (Bottom).

propagation module (Chapter 4) and targets were placed at different distances. Noise

on the signals was calculated in the receiver module (Chapter 5) and added to each

data sample. The tested target distances and the corresponding SNR’s are listed in

Table 3.2, as well as the key parameters used in the propagation module and the

receiver module. Other variables in those modules were kept unchanged.

A leading-edge timing method using a TDC was applied. The TDC model and

the leading-edge detection method is described in details in Section 6.2. Here, a

brief description of the TDC model is provided. The TDC model first takes ’analog

signals’ and produces transient signals (signals being processed by a comparator). The

transient signal is smoother than the initial ’analog signal’ due to the propagation
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delay (bandwidth) of the TDC. Then, the transient signals are processed by the

leading-edge timing method. The TDC resolution was set to 1 ps (AMS, 2017), and

the trigger of the leading-edge detection was set at 3x the noise-floor. It should be

noticed that it is impossible to represent infinite many modes of noise using finite

sampling rate, but it is not necessary since the propagation delay of the TDC limits

the highest frequency of the noise that needs to be modeled. Examples of the original

’continuous’ signals and the corresponding transient signals using different sampling

rates are shown in Figure 3.6.

A Monte-Carlo simulation was performed on 100 observations of signals for each

sampling rate at each distance. Meanwhile, the arrival time of corresponding noise-

free signals was measured by the same technique and used as references. The root-

mean-square (RMS) error of the distance measurement ∆d was calculated at each

distance (SNR). The RMS error is defined as:

∆d =

√√√√ 1

N

N−1∑
0

(dmeas,i − dnoise−free)2, (3.12)

where dmeas is the distance measurement of the i-th observation, dnoise−free is the

distance measurement of the noise-free signal, and N is the total number of observa-

tions. The results are shown in Figure 3.5. From the results, we observe that when

the sampling rate is higher than 10 GHz, the RMS error becomes independent on the

sampling rate. Therefore, sampling rates equal or larger than 10 GHz satisfy the sec-

ond metric. The reason for the independence is that the arrival time was measured on

’smoothed’ transient signals. Even though the original ’continuous’ signal was sam-

pled at very high frequency, the fluctuation of frequencies higher than the bandwidth

of the TDC comparator was smoothed out by the comparator. In other words, the

RMS error is determined by the natural of noise on the transient signals (independent

on the sampling rate). Another concern of the sampling rate is the resolution of the
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Figure 3.5: Distance RMS Error at Different Sampling Rates and SNR’s.

timing device (the third metric). Since the TDC resolution was achieved by inter-

polating the ’smoothed’ transient signal to the TDC resolution in the TDC model,

the sampling rate of the original signal has no effect on the TDC resolution. For an

ADC, oversampling increases the bit resolution according to (Nakhostin, 2017):

F = 4nFs,

where Fs is the original ADC sampling frequency, F is the oversampling frequency,

and n is the number of additional bits. The increased bit resolution reduces the quan-

tization noise (refer to Chapter 7 for details). Thus, signals are usually oversampled

before being fed into an ADC to achieve a higher amplitude resolution (Nakhostin,

2017). A sampling rate a few orders higher than the ADC sampling frequency is rec-

ommended to model the oversampled ’continuous’ signals. The sampling frequency

of the ADC used in this study is 2.5 GHz for the two-channel mode, so the sampling

rates equal to and higher than 100 GHz satisfy the third metric, among which 100

GHz has a lower computational cost (the fourth metric).

Consequently, after evaluating the different sampling rates according to the met-

rics, the sampling rate of 100 GHz is selected for the ’continuous’ signal simulation in
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the pulse model without loss of generality for different types of timing devices. This

selection is under the assumption that the smoothing effect of the comparator and

the linear interpolation are implemented in the TDC model. The recommendations

for the sampling rate selection for each metric is given in Table 3.3.
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Figure 3.6: Original ’Continuous’ Signals, Signals with Noise after being ’Smoothed’

by the Comparater of a TDC (transient signals), and the Trigger Events at Different

Sampling Frequencies for an SNR of 25.95 dB. No sub-sampling was performed on

the original signal in (a) because the sampling rate is smaller than twice the TDC

bandwidth.
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Chapter 4

LASER PROPAGATION

4.1 Radiometry of Laser Propagation

After a laser pulse is emitted from a laser diode, it propagates through the optical

system of a transmitter and travels through a free-space environment. After hitting a

target, a portion of the backscattered energy will reach the receiver and be sensed by

a photon-detector. The pulse is significantly altered through its pathway, including,

for example, shape, amplitude and optical noises. This section will discuss the change

of energy content of a laser pulse at each stage of the propagation process, and the

influence of the optical system, atmospheric conditions, and target characteristics on

the behavior of a laser pulse. A schematic of the laser propagation process is given

in Figure 4.1. The energy quantities at each stage will be discussed next, focused on

the peak power of the laser pulse for simplification.

• Location 0: at the laser source. The peak power of an emitted pulse is equal to

P0.

• Location 1: after the lens system of the transmitter. The laser power P1 =

P0 ·ηlens,transmitter, where ηopt,transmitter is the overall efficiency of the transmitter

optical system, such as lens, scanner, and circulator (refer to Section 4.1.4).

• Location 2: position just before striking targets at distance of R. After the

laser pulse passes through free space to the target, the power is:

P2 = P1 · ηatm,R,
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Figure 4.1: Schematic of Laser Propagation Process for a Bi-Static Lidar.

and the radiance (units of Wm−2sr−1)

L2 =
P2

Abπ
.

The area Ab is the size of the laser beam at Location 2 (refer to Section 4.1.1)

and ηatm,R is the atmospheric transmission through distance R (refer to Sec-

tion 4.1.3).

• Location 3: right after a laser beam hits a target. A portion of the backscattered

energy falls into receiver’s FOV. Assuming the target has Lambertian reflection

(i.e. the radiance is constant seen from different look-angles), the irradiance

(units of Wm−2) seen by the receiver

Ee3 = L2 · Ωr,θ · ρ = L2 ·
Ax
R2
· ρ.

The variable ρ is the target reflectivity. If the receiver’s look-direction and

the normal of the target surface have an angle θ, only a projected area that is

perpendicular to the receiver’s look-direction can be seen by the receiver, and
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the area is referred as Ax. Consequently, the solid angle subtended by Ax at

the receiver can be expressed by Ωr,θ = Ax
R2 . The area Ax is determined by

the minimum value among the beam size Ab, target size Atarget and receiver’s

FOV (Ar,FOV ) at Location 2. Details will be illustrated in Section 4.1.2 and

Figure 4.2.

• Location 4: at the surface of the receiver lens. After the backscattered laser

travels through the distance R and reaches the receiver, the irradiation can be

expressed as

Ee4 = Ee3 · ηatm,R.

• Location 5: at the photon-detector. After passing the optical system of the re-

ceiver with an overall efficiency ηopt,receiver, the irradiation sensed by the photon-

detector

Ee5 = Ee4 · ηopt,receiver ,

and the optical power of the return pulse

Pr = P5 = Ee5 · Ar .

Here, we assume the laser beam has a circular cross-section and the detector

has a diameter Dr and an area

Ar = πD2
r/4 . (4.1)

Combining all the stages together, we can derive an equation for the return power,

which is referred to as Lidar Equation:

Pr = P0 · ηopt,transmitter · ηatm,R ·
1

Abπ
· ρ · Ax

R2
· ηatm,R · ηopt,receiver · Ar

= P0 · (ηopt,transmitter · ηopt,receiver) ·
AxAr
πR2Ab

· ηatm,2R · ρ.
(4.2)
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Here, the two atmospheric transmission ηatm,R are combined to ηatm,2R. Equation (4.2)

illustrates how the laser radiation quantities are calculated at each propagation pro-

cess. Next, we will further discuss how the characteristics of the laser pulse changes

at each stage individually.

4.1.1 Laser Beam Divergence

As shown in Section 3.1, a fiber laser can produce diffraction-limited laser beams.

However, the divergence angle is still too large at the exit of the fiber to produce small

spots at remote distance. The divergence is usually reduced by placing a collimator

after the fiber exit and the divergence angle can be reduced to the order of 1 mrad.

However, even in this case, a beam of size of 7 mm can still be broadened to≈ 10 cm at

100 m. The diverged beam reduces laser irradiance, and the relative size between the

laser beam and targets can also affect the backscattered energy. Thus, it is beneficial

to calculate the beam size at the target distance. The beam area (Ab) at distance R

can be obtained by

Ab = πω(R)2, (4.3)

where ω(R) is the far-field Gaussian 1/e2 beam radius (in units of mm) at the distance

R. The far-field beam radius can be expressed by (Kasunic, 2016):

ω(R) = ωc

√
1 +

( λR
πω2

c

)2
,

where λ is the wavelength, ωc is the Gaussian 1/e2 beam radius after a collimator. The

beam radius after a collimator is related to the divergence angle of the collimator θdiv

by θdiv = λ/πωc (Kasunic, 2016). Diffraction-limited beam is assumed in the above

calculation. The wavelength and the divergence angle are usually available in the

specification of a collimator.
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4.1.2 Target Characteristics

In Equation (4.2), the target reflectivity ρ is an important variable for the return

power calculation. The reflectivity is defined as the fraction of the incident optical

power that can be reflected by the target. Reflectivity of an object depends on many

factors, including material properties, surface roughness, wavelength of the incident

light, and polarization of light. In addition to the reflectivity, the geometry of the

target could also change the beam shape and the amount of energy that reaches the

receiver (Steinvall, 2000; Al-Temeemy, 2017). In this section, we will provide a brief

introduction on how different characteristics of a target can affect the backscatter of

a laser beam.

Materials

The roughness of the object surface plays an important role in determining the type of

reflection by an object. If the surface of a target (e.g. metal or mirror) is smooth (the

roughness is small compared to a wavelength of a laser beam), all the incident light is

reflected into a single direction following the law of reflection. Such reflection is called

specular reflection. On the other hand, if the surface of a target is rough compared to

a wavelength (e.g. concrete wall and paper), the light is reflected in all directions, and

this type of reflection is named ’diffuse reflection’. In this study, we used Lambertian

reflection model to approximate the diffuse reflection, which assumes the reflecting

surface of objects has zero roughness and the radiance of the light reflected by an

object surface is the same seen from different look-angles in the semi-sphere adjacent

to the surface. The reason for the approximation is that the intensity distribution of

reflected light varies with the roughness of an object for diffuse reflection in reality,

but the roughness is not always available for the modeling. Therefore, we ignore the
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effect of the roughness on the intensity distribution and assume the diffuse reflection is

perfect. However, more advanced models for diffusive reflection could also be applied

such as Oren–Nayar reflectance model. It has been shown to provide more accurate

prediction of natural surfaces, but the albedo and the roughness of the surface have

to be known (Oren and Nayar, 1994). In addition to the roughness, the composition

and structure of the material of an object also lead to different absorption of light

with different wavelengths. Thus, the reflectivity also varies accordingly. Therefore,

the reflectivity of the object needs to be determined carefully for the laser power

calculation.

Geometry

The geometry of the object includes object orientation, size, and edges of the surface.

Figure 4.2 shows a case where the normal of the object surface points to the laser

source, but it does not align with the look-direction. In this case, the area of the

object subtended to the receiver’s FOV, Ax, is equal to Ax,normal cos θ, and Ax,normal

Figure 4.2: The Normal of the Target Surface Has an Angle θ to the Receiver’s

Look-Direction. The area subtended to the receiver becomes Anormal,cosθ which is a

projection of Ax,normal to the plane perpendicular to the receiver’s look-direction.
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is the area subtended to the receiver when the normal of the target surface is aligned

with the look-direction of the receiver. Moreover, if sharp edges on the surface are

illuminated by a laser beam or the object surface does not face the incident light

perpendicularly, the light could be multi-reflected, and the pulse shape could be

modified (Richmond and Cain, 2010).

Furthermore, as mentioned in Section 4.1.1, the beam size expands with distance,

and it could become greater than the size of a target at Location 2, in which case,

only a portion of the beam that hits the target can be reflected. On the other hand,

if the lateral FOV of the receiver Ar,FOV is smaller than the beam size and the target

size, the area that can be seen by the receiver is limited by the receiver’s FOV. A

schematic of the relative size between the beam and the lateral FOV of the receiver at

the object distance and the target size are given in Figure 4.3. A mono-static optical

path is used and the target surface is assumed perpendicular to the look-angle of the

transmitter and receiver. From the figure, we can see the relative size determines the

value of Ax, and thus, the return power. Specifically,

• Case 1: if Ar,FOV > min(Ab, Atarget) and Atarget ≥ Ab, the entire laser beam hits

the target and receivers’ FOV is sufficient large. Thus, Ax = Ab·cos θ (projection

of the reflected beam front to the plane perpendicular to the receiver’s look-

direction).

• Case 2: if Ar,FOV > min(Ab, Atarget) and Atarget < Ab, the target size is smaller

than the beam size and receivers’ FOV is sufficient large. In this case, only

the portion of energy that hits the target is reflected and the rest of the energy

keeps traveling. Thus, Ax = Atarget · cos θ.

• Case 3: if Ar,FOV ≤ min(Atarget, Ab), the receivers’ FOV is the limiting factor,

since no matter how much energy is reflected by the target, only the energy
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falling into the receiver’s FOV can be detected. Thus, Ax = Ar,FOV = πβ2
rR

2/4,

where βr is angular FOV of the receiver. In this case, the angle between the

receivers’ look-direction and normal of the target surface does not matter any

more.

Mathematically,

Ax =


Ab · cos θ if Ar,FOV > min(Ab, Atarget) and Atarget ≥ Ab

Atarget · cos θ if Ar,FOV > min(Ab, Atarget) and Atarget < Ab

Ar,FOV = πβ2
rR

2

4
if Ar,FOV ≤ min(Atarget, Ab)

(4.4)

Figure 4.3: Relative Size between Ar,FOV , Atarget and Ab. In Case 3 (receiver’s FOV

is in green), the return power is always a function of 1/R2. However, in Case 1 and 2

(the receiver’s FOV is in blue), as target distance increases to Rc (critical distance),

the target size Atarget becomes smaller than beam size Ab. Thus, only a portion of

the laser beam can be reflected, resulting in a power drop of 1/R4. (Figure is adapted

from Kasunic (2016)).
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Plugging Equation (4.4) into Equation (4.2), we obtain:

Pr ∝



Ab
R2Ab

∝ 1
R2 if Ar,FOV > min(Ab, Atarget) and Atarget ≥ Ab

Atarget
R2Ab

∝ 1
R4 if Ar,FOV > min(Ab, Atarget) and Atarget < Ab

Ar,FOV
AbR2 ∝ 1

R2 if Ar,FOV ≤ min(Atarget, Ab)

(4.5)

The relationship given in Equation (4.5) is important to understand how power decays

with distance. We observe that the return power reduces rapidly with distance (1/R4)

when the target distance is larger than a critical distance Rc (target size smaller than

beam size). This is frequently the case for flash lidar, which emit light with a wide

FOV, given targets can only reflect a portion of the light. Consequently, the maximum

achievable distance is dramatically reduced as distance increases. On the other hand,

a scanning lidar usually has a narrow beam, so the power decay against distance is

only 1/R2, which allows detection of targets at further distance.

4.1.3 Atmospheric Effects

During the propagation of laser beam through free space, the light interacts with

atmospheric turbulence and molecules with different sizes and geometries. These in-

teractions modify the beam shape, wavefront, and attenuate optical power. Moreover,

ambient light from the surroundings inject noise into the lidar system.

Background light

The receiver of a lidar system does not only accept backscattered laser pulse but

also light from environment, e.g. sunlight. The incident ambient light can be from

ambient light backscattered by objects or from unwanted light directly shooting into

the receiver (e.g. the receiver accidentally ’looking’ into the sun). The power of inci-

dent background light can be calculated by Equation (4.2) with minor modifications.
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First, we assume the background light is parallel light, and we replace the transmit

laser power by the spectral radiance of the background light source.

In the first situation, since the background light only travels a single trip (distance

R), the atmospheric attenuation is reduce to half, and no transmission coefficient of

the transmitter lens is needed. A schematic of the background light propagation is

given in Figure 4.4a, and a more specific description is given as following:

Figure 4.4: Schematic of Propagation of Background Light. (a) Background light is

reflected by targets. (b) Background light directly shoots into the receiver.
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• Location 2: position right before the background light reaches a target. The

radiance of the background light L2 = Lλ∆λ, where Lλ is the spectral radiance

of the background light (units of W ·m−2 · sr−1 · nm−1) and ∆λ (units of nm)

is the bandwidth of the spectral filter of the photon-receiver. Take the sunlight

for example, the solar spectral radiance can be found in (ASTMG159-98, 1998)

(Figure 4.5). Moreover, since background light usually has a wide spectrum, a

spectral filter is applied to remove wavelengths beyond the spectrum of interests

(1550 nm in this study). In this case, much background noise can be removed.

• Location 3: right after background light hits a target. The backscattered radi-

ance

Ee3 = L2 · ρ · Ωr,θ = L2 · ρ ·
Ax
R2

.

In this case, the ’beam’ size Ab is infinite large, so we only need to compare the

receiver’s lateral FOV and the target size:

– If Atarget ≤ Ar,FOV , Ax = Atarget · cos θ.

– If Atarget > Ar,FOV : Ax = Ar,FOV = π(βr/2 ·R)2

• Location 4-5: the same as the discussion at the beginning of Section 4.1.

In summary, the optical power of backscattered background light received by a

photon-detector can be obtained by:

Pamb = (Lλ∆λ) · ρ ·
Ax
R2
· ηatm,R · ηopt,receiver · Ar

= Lλ∆λ · ηopt,receiver ·
AxAr
R2

· ηatm,R · ρ
(4.6)

where

Ax =


Atarget · cos θ if Atarget ≤ Ar,FOV

Ar,FOV = π(βr/2 ·R)2 if Atarget > Ar,FOV

(4.7)
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In the second situation (Figure 4.4b), we assume the incident background light

has infinite large beam. Thus, Ax = Ar,FOV at Location 4, and the irradiation can

be expressed as

Ee4 = (Lλ∆λ) · Ωr,FOV = (Lλ∆λ) ·
Ar,FOV
R2

. (4.8)

The optical power of direct-shooting background light received by a photon-detector

(Location 5) can be obtained by:

Pamb = Ee4 · ηopt,receiver · Ar = (Lλ∆λ) ·
Ar,FOV
R2

· ηopt,receiver · Ar

= (Lλ∆λ) · π(βr/2)2 · ηopt,receiver · Ar.
(4.9)
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Figure 4.5: Solar Spectral Irradiance Measured at Air Mass 1.5 and 37 Degree Titled

Surface (ASTMG159-98, 1998).
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Power attenuation

During the propagation through the atmosphere, a portion of the laser beam is scat-

tered and absorbed by molecules, fog, dust, and other aerosols, while the rest of the

power is passed through the atmosphere. The scattering and absorption together

contribute to the power attenuation and the ratio of attenuation can be obtained as

1 − ηatm, in which ηatm is the atmospheric transmittance. Opposite to attenuation,

the transmittance is defined as the ratio of the transmission to the incident light, and

by following Beer’s law, the transmittance through a distance 2R can be modeled as

(Richmond and Cain, 2010)

ηatm,2R = e−2
∫R
0 α(λ,R)dR ,

where α is attenuation coefficient in units of length. In principle, the transmission

should be calculated by integrating the coefficient α over a range of 2R. However, since

the maximum achievable distance is less than 200 m for a TOF lidar, the attenuation

coefficient can be assumed to be constant through the maximum observable distance.

Thus, the transmission is reduced to

ηatm,2R = e−2α(λ)R. (4.10)

The contribution to the power attenuation from absorption can be obtained from the

transmittance spectra of atmosphere given the wavelength of interest. However, the

scattering mechanics for particles of different sizes are different and thus, the power

attenuation due to scattering varies accordingly. When the size of molecules is much

smaller than a wavelength, Rayleigh scattering is the dominant scattering mechanism,

in which case the attenuation coefficient varies as λ−4. As the particle size approaches

the wavelength (e.g. fog, haze or dust) of the laser beam, Mie scattering occurs

primarily, and the attenuation coefficient follows different functions of wavelength. In
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this case, to model the laser propagation through different atmospheric conditions, the

particle size is required, which, however, is usually not readily available. Alternatively,

Kim et al. (2001) related atmospheric conditions to the visibility which can be easily

obtained from weather stations or airports, and proposed an model that describes the

attenuation coefficient is a function of visibility and wavelength:

α =
3.91

V
(

λ

550 nm
)−q

q =



1.6 V > 50 km

1.3 6 km < V < 50 km

0.16V + 0.34 1 km < V < 6 km

V − 0.5 0.5 km < V < 1 km

0 V < 0.5 km

(4.11)

where α is in units of km−1, V is the visibility (units of km), λ is the wavelength in

units of nm, and q is the size distribution of the scatting particles which is obtained

empirically from experiments (Kruse et al., 1962; Kim et al., 2001).

The scattering mechanism of rain droplets is different from fog or haze, as the size

of rain droplets is a few orders larger than a wavelength. In this case, the scattering

is independent of wavelength, and the laws of geometric optics are usually used to

describe the interaction of light with particles (Kim et al., 2001). Moreover, the

attenuation coefficient of rain becomes sensitive to droplet size and the rainfall rate

(Middleton, 1952; Brazda et al., 2012; Rahman et al., 2008). Guo et al. (2015) pointed

out that the scattering event increases with rainfall rate and propagation distance.

As a result, the trajectory of light deviates further from straight lines, resulting in

greater attenuation of laser power and delayed arrival time. Moreover, the arrival of

multiple reflections by rain droplets on the detector also elongates the falling edge

of the laser pulse and distorts the pulse shape. The interaction between rain and
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the laser beam is complicated, and advanced optical simulation may be necessary to

obtain accurate results.

Speckle and scintillation

The coherency of a laser source is important to achieve a diffraction-limited beam.

However, high temporal coherence could also lead to speckle noise. After a coherent

laser beam is scattered by molecules in the atmosphere or by a rough surface of a

target, the phase of the wavefronts is not identical. Wavefronts with different phases

will interfere constructively and destructively, and result in bright and dark patterns

on an imager (speckles). An imager is a photon-detector with multiple pixels, which

is commonly used in a flash lidar. Speckle causes intensity variance across adjacent

pixels, which degrades the image quality of a flash lidar. The speckle noise could also

alter the return power seen by a scanning lidar.

Turbulence in the atmosphere also affects the laser propagation. Turbulence

causes temperature variations and thus, variations of air density. Since the refrac-

tive index varies with air density, the refractive index fluctuates when a laser beam

propagates through the turbulent atmosphere. The fluctuation in the refractive index

is referred to as optical turbulence. Optical turbulence alters the phase, power and

center position (meandering) of laser beams (Lane et al., 1992). Meandering of laser

beams is mainly due to large scale turbulence and it can be neglected because of

the short length scale studied in this work. Phase distortion is a major effect among

all those mentioned. The changes of optical index distort the phase of wavefronts,

resulting in a break of diffraction-limited beam into speckles, and subsequently, in-

tensity fluctuation across wavefronts. The intensity fluctuation observed by a receiver

is called scintillation. Since turbulence occurs all the time, the intensity also varies

with time. The variance σ2
φ of phase changes across the aperture of a receiver with a
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diameter Dr can be quantified by (Fried, 1966):

σ2
φ = 1.03(

Dr

r0

)
5
3 ,

where r0 is the Fried parameter, defined as the diameter of an area of which the

standard deviation of phase aberration equal to 1 radian. In other words, the Fried

parameter defines the diameter of a bright or dark spot of the speckle, within which

the phase variation (intensity variation) is negligible. That is why people usually

compare the diameter of a receiver aperture Dr with the Fried parameter. If Dr is

equal to or less than r0, the image captured by the aperture is inside a bright/dark

spot. Thus, the intensity variation is small and the effect of scintillation can be

ignored. On the other hand, if the aperture is larger than r0, more than one spots

appear on the aperture, resulting in intensity variation. In this case, the effect of

scintillation becomes significant.

The Fried parameter is a function of turbulence strength and propagation distance

(Fried, 1966) as illustrated by:

r0 =
[
0.423k2 sec ζ

∫
R

C2
n(z)dz

]−3/5
, (4.12)

where k = 2π/λ is the wavenumber, λ is the wavelength in units of meter, and ζ is the

zenith angle. The turbulence strength is denoted by C2
n, which is a function of altitude

z and can be obtained from experiments. Since, we consider more about the horizontal

propagation of a laser beam in the application of autonomous vehicles, we assume the

turbulence strength is constant through a range of R. The turbulence strength C2
n

near the ground in hot weathers ranges from 10−14 to 10−12 m−2/3, and 10−12 m−2/3 is

considered to be very turbulent conditions (Andrews et al., 2001). After plugging the

values of C2
n, maximum achievable distance (300 m) and the operational wavelength

(1550 nm) into Equation (4.12), we obtained r0 ≈ 16 cm when C2
n = 10−14 m−2/3,
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and r0 ≈ 1 cm when C2
n = 10−12 m−2/3. Since the diameter of the receiver used in

this work is 2.54 cm, the scintillation effect is negligible in most conditions. However,

if the temperature and turbulence strength becomes extremely high, the scintillation

effect should be taken into account.

4.1.4 Optics

Optics in a lidar system also affect the return power of a laser beam. The effi-

ciencies ηopt,transmitter and ηopt,receiver in Equation (4.2) are actually a multiplication

of optical efficiencies (e.g. ηopt,transmitter = ηmirror · ηlens,transmitter, and ηopt,receiver =

ηfilter · ηlens,receiver · ηFOV , where ηlens is the transmittance of the transmitter lens or

receiver lens, ηmirror is the efficiency of a mirror of a scanning lidar, ηfilter is the

transmittance of the spectral filter, and ηFOV is the overlap ratio of the FOV of the

transmitter and the receiver). The lens of the transmitter and receiver only pass a

portion of energy, and the spectral filter of a receiver that removes wavelengths out

of the spectrum of interest also reduces pulse energy.

Generally, there are two types of optical system: mono-static system and bi-

static system. In a mono-static system, the transmitter and receiver share the same

optical pathway, and a circulator is used to separate transmit signals and return

signals (Figure 4.6). Oppositely, in a bi-static optical system the transmitter and

receiver are located separately, and because of the separation (Figure 4.7), a bi-static

system has a blind zone in front of the system. The blind zone means within a short

distance from the lidar, the receiver and transmitter have zero overlapping FOV’s.

In other words, the receiver cannot capture any light emitted from the transmitter.

As distance increases, the FOV of the receiver and the transmitter begin to overlap

partially. They fully overlap with each other after a sufficient distance. The partially

overlapping zone reduces laser power until the fully overlapping zone. The blind,
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partial overlapping and fully overlapped zone are also shown in Figure 4.7.

Figure 4.6: Schematic of a Mono-Static Optical System.

Figure 4.7: Schematic of a Bi-Static Optical System and Illustration of FOV Overlap.

4.2 Modeling Pulse Propagation

4.2.1 Elements in Propagation Model

The propagation model proposed in this dissertation follows the Lidar Equation

(Equation (4.2)) and the models used to calculate the variables in the Lidar Equation

are listed below:
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• Beam divergence: Equation (4.3);

• Area seen by a receiver with a look-angle θ to the normal of target surface:

Equation (4.4);

• atmospheric attenuation: Equation (4.10) and Equation (4.11);

• Background light: Equation (4.6) and Equation (4.7);

• Receiver area: Equation (4.1);

• Transmission of transmitter lens and FOV overlap between transmitter and

receiver are taken into account in ηopt,transmitter;

• Optical filter and transmission of receiver lens are accounted in ηopt,receiver.

4.2.2 Validation

The propagation model was validated by comparing the peak voltage of return sig-

nals between modeled results and measurements from a prototype lidar (Bhaskaran,

2018). For the propagation model, the peak power was first calculated by the Lidar

Equation and then converted to voltage using Vr = Pr · R0 ·M · RTIA, where R0 is

the responsivity of a photon-detector, M is the APD gain, and RTIA is the gain of a

transimpedance amplifier (TIA) (Kasunic, 2016). The values of the parameters are

given in Table A.1 and Table 4.1. In the propagation model, we used the same value

of the parameters in the prototype lidar specifications (if available). The transmis-

sions in Table 4.1 that is not available were from Burns et al. (1991) who built a

similar pulsed range-finding lidar. We also assumed clear environmental condition.

Thus, the visibility was set as 10 km. For comparison, we fired the prototype lidar

to targets at different distances and used an oscilloscope to collect the return signals.
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Table 4.1: Parameters of Propagation Model

Parameter Symbol Value

Transmission of transmitter lens ηlens,transmitter 0.9

Transmission of receiver lens ηlens,receiver 0.9

Visibility V 10 km

Transmission of spectral filter ηfilter 0.7

Aluminum foils were used as targets. A schematic of the experimental setup is given

in Figure 4.8.

The peak power at different distances from the propagation model and experi-

ments are given in Figure 4.9. From the comparison, we can see the results from the

propagation model and experiments mainly follow the same trend. The discrepancy

could be due to that the reflection at the aluminum foil targets which is not pure

diffuse and orienting the surface to the receiver’s look-angle was difficult. When the

surface is not perpendicular to the receiver’s look-angle, Ax is reduced, and part of

energy was lost. When the target was moved from one distance to another, the ori-

entation of the target may be changed, which could also cause variation of the return

power.

Figure 4.8: Experimental Setup for the Validation of the Propagation Model.
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Chapter 5

PHOTON-RECEIVER

5.1 Photon-detectors and System Noise

Photon-receivers (or receivers) are systems that receive laser beams and convert

the incident photons into electrical signals. Generally, a photon-receiver consists of

lens, photon-detectors, amplifiers and analog front ends (AFE’s). The function of

a photon-detector is to convert photons that are collected by the receiver lens to

electrical currents. Amplifiers convert the output current to voltage and amplify it

to exceed the noise level. Transimpedance amplifiers (TIA’s) are one of the com-

monly used amplifiers. The amplified signals could be noisy due to noise from various

sources, so AFE’s are usually placed after an amplifier to truncate the noise spec-

trum and increase the signal-to-noise ratio (SNR) of the signal. Depending on the

purpose, different types of AFE’s could be applied. This section will introduce the

fundamentals of the receivers, and the application of AFE’s to various types of noise

follows.

5.1.1 Characteristics of Photon-detectors and Amplifiers

A photon-detector is a device that has a p-n junction that can absorb photons

and generate electron-hole pairs when the energy of the absorbed photons exceeds

the band-gap of the materials. The flow of the electrons creates an electrical current,

which is also called photo-current. Photon-detectors can be classified into different

types according to their stimulation mechanism, and in this study, we focus on semi-

conductor photon-detectors (photon-detector here after).
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Quantum efficiency

In a photon-detector, the incident photons do not always generate electron-hole pairs,

and the activated electrons are not always collected at the respective electrodes to

produce photo-current. The quantum efficiency of a photon-detector is a ratio of the

average number of photons required by a photon-detector to produce one electron of

photo-current. It is given by:

η =
ne
nph

, (5.1)

where ne and nph are the number of electrons of the photo-current and the number

of incident photons, respectively. The quantum efficiency depends on the photon

wavelength, doping materials and the structure of photon-detector.

Responsivity

Responsivity is another measure of the capability of a photon-detector to convert

optical power to electrical current. It is defined as the ratio of the incident optical

power (Pph) to photo-current (Ie)

R0 =
Ie
Pph

, (5.2)

and it is in units of A/W . Applying the relation between optical power and number of

photons per second (Pph = nphhν/∆t) and between current and number of electrons

per second (Ie = neq/∆t), the relationship between the responsivity and the quantum

efficiency can be derived as

R0 =
ηq

hν
=
ηqλ

hc
=
ηλ(µm)

1.24
(5.3)

where q is the charge of electron, h is the Planck’s constant, λ is the wavelength, and ν

is the center frequency of the photons and ν = c/λ. Equation (5.3) presents a linear

dependency of the responsivity on the photon wavelength for a constant quantum
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efficiency. It is as expected since one watt of optical power has more photons for

pulses with a longer wavelength (nph = 1(W )·∆t
(hc/λ)

), which consequently produces a

larger photo-current if the quantum efficiency remains the same.

Different materials of a photon-detector have their own operational ranges of wave-

length due to their band-gap energy, and the responsivity also varies with the wave-

length within the range. Therefore, the selection of laser wavelength determines the

material used in a photon-detector. Figure 5.1 schematically illustrates the relation-

ship between the responsivity and the wavelength of different materials. We can see

that silicon has its optimal operation at NIR, but it is transparent at SWIR. On the

other hand, InGaAs has much higher responsivity at SWIR.

Figure 5.1: Schematic of Responsivity vs Wavelength for Different Materials (Kumar

and Deen, 2014).
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Response time and bandwidth

A fast response time of the photon-detector and amplifier are of importance for a

receiver to reproduce the temporal characteristics (e.g. rise time) of the transmit

signal. The response time τt of an electrical device is determined by the intrinsic

junction capacitance (C) and load resistance (R):

τt = RC =
1

2π ·B
, (5.4)

where B is the bandwidth of the system, which is related to the rise time of the

output signal by (Ziemer and Tranter, 2006)

tr =
0.35

B
. (5.5)

Equation (5.4) and Equation (5.5) illustrate that to capture a fast rise time, a wide

bandwidth is necessary which requires a photon-detector and amplifier that has a

small RC time response.

Linearity

The linearity is another key characteristic of a photon-detector. It describes how linear

the conversion is from incident optical power to photo-current within the operational

range of the photon-detector and conversion from photo-current to voltage by an

amplifier. The operational range of a photon-detector is bounded on lower limit

by the noise equivalent power (or voltage) of the photon-detector and on the upper

limit by the saturation power (or voltage), beyond which the photon-detector won’t

response further. The noise equivalent power is defined as the signal power that is

equal to the standard deviation of noise, i.e. SNR = 1. The linearity of a photon-

detector and an amplifier is significant to maintain the shape of the incident laser

pulses. Otherwise, a distorted signal could lead to errors in TOF measurements.
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5.1.2 Type of Photon-detectors

Common photon-detectors include PIN photodiodes and avalanche photodiodes

(APD’s). PIN photodiodes are photodiodes that have an undoped intrinsic region

in between the p-doped and n-doped regions, and they convert optical power to

photo-current with unit gain. In contrast to PIN’s, APD’s are photodiodes that have

internal gain greater than one where one photon can produce more than one electron,

which makes it widely used for detection of weak signals.

The internal gain of the APD’s results from the avalanche multiplication process.

In the process, when one incident photon activates several free electron-hole pairs,

the charge carriers are accelerated by a strong electric field to a high enough energy,

so that they can knock out more free carries. This process is referred to as impact

ionization and a chain of impact ionization results in a multiplication of the number

of charge carriers in the avalanche process, and therefore, an larger photo-current. In

an APD, the high electric field is provided by a sufficiently high reverse-bias voltage.

If the reverse-bias voltage is less than the breakdown voltage of the semiconductor,

the APD is said to be working in a linear mode, in which case the resultant photo-

current is linear with the incident optical power and the internal gain is of the order of

ten or a few hundred depending on the material. On the contrary, if the reverse-bias

voltage exceeds the breakdown voltage, the number of produced carriers is extremely

large, and the output current is no longer linear with the optical power. Such types

of APD’s are referred to as Geiger-mode APD’s (GM-APD’s). Compared to linear-

mode APD’s, Geiger-mode APD’s are much more susceptible to other events that can

initialize the avalanche process other than return pulses, which makes the output cur-

rent much noisier. Additionally, GM-APD’s are not capable of counting the number

of photons. Therefore, more than one GM-APD is usually used for the application of
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signal detection. One example is the multipixel photon counter (MPPC).

5.1.3 System Noise

When a photon-detector converts optical power to electrical signals (current or

voltage), noise is also added. Here, we mainly focus on electrical noise in APD’s,

and for simplicity, all the noise mentioned in this section is current. Major noise in a

photon-detector includes shot noise and thermal noise.

Shot noise

Shot noise results from the discrete nature of photons and electrons, and it results

in variation of signal magnitude. Shot noise occurs on all kinds of signals including

return laser pulses, ambient light, and also inherent dark current in an electrical sys-

tem. Those shot noises are referred to as signal-induced shot noise (σss), background-

induced shot noise (σbs) and dark current-induced shot noise (σds), respectively. Shot

noise follows a Poisson distribution at each event, and the standard deviation of shot

noise current can be expressed by:

σss =
√

2qIsigB ·M2F

σbs =
√

2qIbcB ·M2F

σds =
√

2qIdcB ·M2F

(5.6)

where the current I is the mean current without avalanche process, and the subscript

sig, bc and dc stand for pulse-induced current, ambient-light-induced current and dark

current. The average pulse-induced current and ambient-light-induced current can be

calculated using the optical power Preturn and the responsivity of the photon-detector

by Isig = PreturnR0. The dark current can be measured from electrical devices. The

bandwidth B in Equation (5.6) is inverse proportional to the integration time (τint)
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of a photon-detector: B = 1/2τint. The term 2qIB is due to the random arrival times

of photons collected by a PIN, and M2F applies to photon-detectors with gains, like

APD’s. The variable M is the APD gain, and F is the excess noise factor of the

avalanche process. The M used here is the ensemble average gain, and the excess

noise factor is to take care of the gain variation. Since each electron-hole pair does not

always experience the same multiplication during the avalanche process, the variation

causes additional noise (Webb, 1974). The excess noise factor can be calculated by

F = KM + (1−K)(2− 1/M),

where K is the ionization ratio (Kilpela, 2004). Under the assumption that all the

shot noises are independent to each other, the total shot noise in a receiver is equal

to the summation of the shot noise from all the currents:

σS =
√
σ2
ss + σ2

bs + σ2
ds .

Thermal noise

Thermal noise is also called Johnson Noise, which originates from free electrons agi-

tated by heat in electronic circuits (Johnson, 1928). Different than shot noise, thermal

noise follows a Gaussian distribution and is independent on signal amplitude. On the

other hand, thermal noise is a function of temperature and system resistance:

σth =

√
4kBTB

R
= NSD

√
B, (5.7)

where kB is the Boltzmann’s constant, and NSD is the noise density spectral density

(equivalent to noise equivalent power) which is usually available for a TIA prod-

uct. In a receiver, the resistance of the amplifier is much greater than that of the

photon-detector. Thus, the bandwidth of the amplifier is used in Equation (5.7).

Note that the thermal noise increases with amplifier bandwidth, but as discussed in
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Section 5.1.1, a wide bandwidth is required to capture a fast rise time. Therefore, a

trade-off needs to be made between the rise time and the thermal noise.

Signal to Noise ratio

Given the shot noise and thermal noise, the standard deviation of the total noise

can be calculated from Equation (5.6) and Equation (5.7), assuming the noise are

independent of each other:

σtotal =
√
σ2
s + σ2

th. (5.8)

Given the total noise and signal we now can calculate the signal-to-noise ratio (SNR),

which is a key metric describing the ratio of the signal to the noise in a system. The

SNR can be expressed by :

SNR =
IsigM

σtotal
=

IsigM√
σ2
ss + σ2

ds + σ2
bs + σ2

th

. (5.9)

Each term has been described in the above sections. Note that, here we use current

to define the SNR. Alternatively, we can also use electric power (∝ I2) to defined the

SNR in units of dB, giving SNRdB = 10 log 10(SNR).

5.1.4 System Noise Modeling

In the receiver module, the shot noise and thermal noise are modeled differently.

For the shot noise, since the Poisson distribution expresses the probability of distri-

bution of positive numbers, we first convert the mean current I to mean number of

electrons N using

N = IM2F ·∆t/q =
IM2F

2Bq
,

where ∆t is the integration time of an ADC, and q is the charge of electrons. Then,

we generate the random number of electrons following the Poisson distribution with
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the mean of N , and convert the number of electrons back to current. Mathematically,

σ2
i = σ2

N · (
q

∆t
)2 = N · ( q

∆t
)2 = 2qBIM2F. (5.10)

Thus, the random shot-noise current with a STD of σi is generated. On the other

hand, the thermal noise is directly generated using σth as the STD and zero as the

mean of the Gaussian distribution (Equation (5.7)). The total noise can be calcu-

lated by Equation (5.8) and added to each sample of a return signal. Note that the

calculated σ in the above equations is for each sample in a signal, which means the

value of σ may vary between samples depending on the type of noise. In addition,

no optical noise was included in the model, such as speckle noise or overlapping of

multiple returns. The values of the variables used in the equations can be found in

Table A.1, or are already described in the particular sections. An example of the

return pulse from a target at 15 m is given in Figure 5.2.
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Figure 5.2: Return Signal with Modeled Noises.
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5.1.5 White Noise and Structured Noise

In the above section, noise is classified based on their source. Alternatively, accord-

ing their characteristics in time and frequency domain, noise can also be categorized

into three classes: white noise, frequency-structured noise, and temporal-structured

noise.

White noise

White noise is the noise that has a constant power spectral density through the whole

frequency spectrum. Both shot noises and ideal thermal noise are white noise (Kittel,

2004; Blanter and Büttiker, 2000). Their power spectral densities can be expressed

as
Sshot(f) = 2qI

Sthermal(f) = 4kBRT

(5.11)

where S represents the power spectral density, I is the average current over the

detector integration time, R is the system resistance, and T is the overall temperature

of the system. From Equation (5.11), we can see the power spectral density of shot

noise and ideal thermal noise is independent to frequency. In practice, thermal noise

is only white through a finite bandwidth of an electrical system (Kasunic, 2016). Even

though shot noise and thermal noise are all white noise, their magnitude distributions

are different. Therefore, shot noise belongs to Poisson-white noise and thermal noise

Gaussian-white noise.

Frequency-structured noise

Noises can also have certain structures in the frequency domain and periodical appear-

ance if seen in the time domain. Such noise is referred to as frequency-structured noise
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Figure 5.3: Frequency-Structured Noise and Its Power Spectrum. The noise oscillates

at 645 MHz. The signal is from the prototype lidar.

in this study. Frequency-structured noises can be divided into in-band frequency-

structured noise and out-of-band noise depending on whether the noise frequency is

within the bandwidth of the signal of interests. Frequency-structured noise could

result from unclean power supplies, impedance mismatch at connections between

electrical components, or other periodic noise sources. An example of the frequency-

structured noise is given in Figure 5.3, in which the noise oscillates with a frequency

of 645 MHz.

Temporal-structured noise

Contrary to frequency-structured noise that has a periodic occurrence, noise can

also occur randomly in the time domain, which is referred to as temporal-structured

noise. Temporal-structured noises usually have certain shapes (structures) in the time
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Figure 5.4: Temporal-Structured Noise. A frequency-structured noise at 1.22 GHz

also exists on the signal. The temporal-structured noise causes the power spectrum

in the red box. The signal is from the prototype lidar.

domain, but its appearance is unpredictable. Temporal-structured noises could result

from ambient light, the reflection of a laser pulse from surrounding objects except the

target, and loss connection of cables. An example of the temporal-structured noise is

shown in Figure 5.4, in which the temporal-structured noise results in the power at

frequencies inside the red box.

5.2 Analog Filters

In a TOF lidar, return signals can be contaminated by all the kinds of aforemen-

tioned noise. Distortion of signals could result in uncertainty of time measurement

(Details will be described in Chapter 6, 8 and 9). Hence, the return pulses need to

be separated from the noise and restored if their shape is distorted. The noise can
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be removed by placing an analog filter before a timing device, and such analog filters

are also referred to as analog front ends (AFE’s). Analog filters act on continuous-

time (analog) signals and manipulate the spectra of a signal to reduce or remove the

noise frequencies. The simplest analog filters are RLC filters which are composed

of capacitors, inductors, and resistors, and other analog filters include crystal filters,

microwave filters, and mechanical filters. This section will introduce the fundamental

characteristics of analog filters, followed by the application of different analog filters

to various types of noise.

5.2.1 Frequency-domain Characteristics

The characteristics of an analog filter can be described in the time and frequency

domain. The frequency-domain characteristics will be introduced in this section,

and time-domain ones will be discussed in the next section. The characteristics of

an analog filter can be described by its frequency response which consists of the

magnitude response and phase response. The magnitude and phase response are

schematically shown in Figure 5.5, in which a low-pass filter is taken as an example.

The magnitude response describes the magnitude change (gain) caused by a filter at

different frequencies and the phase response presents the phase shift (or phase delay).

The frequency response can be divided into three regions: passband, transition band

and stopband. The passband is a range of frequencies passed by the filter, the stopband

is the frequencies that are blocked, and the region in between is the transition band.

According to the position of the passband over the whole spectra, filters could be

classified as low-pass filters, high-pass filters, band-pass filters, band-stop filters, and

all-pass filters. The passband is bounded by a cut-off frequency fcut, defined to be

where the frequency magnitude response is reduced to -3 dB. In the passband, the

frequencies are desired to be unaltered (flat passband or unity gain), but the gain
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(a) Magnitude Response

(b) Phase Response

Figure 5.5: Schematic of the Frequency Response of a Low-Pass Filter.

may vary in certain filter designs, and the fluctuation is called passband ripple. Since

a large passband ripple alters the magnitude of in-band frequency components, the

passband ripple should remain small in filter design. In the stopband, the blocked

frequencies are attenuated by a stopband attenuation which is measured between the

peak of the passband and the largest stopband lobe. To sufficiently attenuate the
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stopband frequencies, the stopband attenuation should be adequately large. Note

that filters usually have different gains at the passband and stopband, but the all-

pass filter, as indicated by the name, passes all the frequencies with a unity gain.

Even though an all-pass filter has no change on the magnitude of a signal, it plays an

important role in modifying the phase of the signal.

The roll-off of a filter defines the steepness or slope of the magnitude response

in the transition band, and it also sets the corner frequency of the stopband. A fast

roll-off is preferred for a filter to truncate undesired frequencies band with minimum

impact on the rest frequency components. However, a fast roll-off could result in

distortion (passband ripples) on the passband for certain filters. Another key charac-

teristic of a filter is order. The order of a filter is defined as the highest exponent in

the numerator or denominator of the transfer function. The concept of the transfer

function will not be expanded in this work. In general, a filter with a higher order

has more capacitors, inductors and resistors in the structure and it can achieve a

better performance. However, a high order also increases the complexity of the filter

structure.

5.2.2 Time-domain Characteristics

In addition to frequency-domain characteristics, the performance of an analog

filter in the time domain is also important, and the step response of a filter is a useful

tool to analyze a filter in the time domain. The time-domain parameters include

rise time and overshoot of the step response. The rise time of a filter describes the

transition period of the step response. It should be shorter than the duration of a

signal event (e.g. changing from ’low’ to ’high’) so that the event can be distinguished

from the step response. Second, overshoot changes the magnitude of a signal, so it

should be avoided at a filter design. The phase response of a filter also plays a
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significant role in the time-domain characteristics of a filter. One of the key concepts

is group delay, defined as

τg = −dΦ(ω)

dω
, (5.12)

where Φ(ω) is the phase response at angular frequency ω and ω = 2πf . The group

delay is equal to the slope of the phase response which depicts the linearity of the

phase response. Here, the group delay should not be confused with the phase delay

which is defined as

τΦ = −Φ(ω)

ω
. (5.13)

The phase delay of a filter only describes the absolute phase shift at each frequency

without any expression of the relationship between adjacent frequencies as the group

delay does. The linearity of the phase response of a filter is a powerful indicator of

the distortion enforced by the filter. Using the Fourier transform, a signal can be

decomposed into several sinusoidal components with different frequencies. If a filter

has a linear phase response, all the frequency components are delayed by the same

phase. Thus, all the components can reconstruct the original signal, and only the time

is shifted. In this case, the phase delay is equal to the group delay. However, if a filter

has a nonlinear phase response, the frequency components of the signal are shifted by

different amounts. Thus, they can no longer compose the original signal shape, i.e.

the signal is distorted. If symmetric signals are used as in our case, the symmetry

of the signal is impacted. Therefore, a linear-phase filter is preferred for applications

that require the preservation of signal shapes. All-pass filters can also provide phase

compensation. Since all-pass filters are designed to have different phase shifts among

various frequencies, it can be used after other filters in a system to compensate the

undesired phase shift.
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5.2.3 Characteristics of Different Analog Filters

According to the characteristics of a filter in time and frequency domain, filters

can be designed in various types. The most common filters are Butterworth filter,

Chebyshev filter, Elliptic filter, and Bessel filter. The frequency response of the

filters is shown in Figure 5.6. The magnitude response shows that both Butterworth

and Bessel filter has no ripple at the passband, but the roll-off is slower than the

other two. On the contrary, Chebyshev and Elliptic filters sacrifice the flatness of
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Figure 5.6: Frequency Response of Different Types of Filters. fcut = 2 GHz, 5-th

order, the passband ripple for the Chebyshev and the Elliptic filter are 3 dB, and the

stopband ripple of the Elliptic filter is 30 dB.
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the passband to achieve a faster roll-off, which is why they are commonly used for

noise band removal. In the phase response, the Bessel filter has a maximally linear

phase response, followed by the Butterworth filter, while the phase response of the

Chebyshev and Elliptic filters are very nonlinear. Hence, the Bessel filter is the best

option for applications where the shape of the filtered signal is crucial. The shape

distortion of a signal needs to be considered when Chebyshev and Elliptic filters are

used. The application of those filters to different types of noise will be discussed in

the next section.

5.3 Effects of Analog Filter Characteristics on Signal Behaviors

In the section, the effects of different filter characteristics on the rise time, time

delay, and magnitude attenuation of input signals are studied. The studied filters

include a Butterworth filter, a Chebyshev filter, and an Elliptic filter. Since the Bessel

filter is a pure analog filter which cannot be simulated by MATLAB, its application

is not included in this work. The experimented filter characteristics are given in

Table 5.1.

In the simulations, return pulses reflected from a target at 20 m (0.133 µs) were

used as the signals feed into the filters. White noise was added to the return pulses,

Table 5.1: Characteristics of Analog Filters

Type Butterworth Chebyshev Elliptic

Cut-off Frequency 2.5 GHz

Order 3, 5, 7

Passband ripple - 3 dB, 5 dB, 10 dB

Stopband ripple - 30 dB
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Figure 5.7: Transmit Pulse (Top) and the Single-Sided Power Spectrum (Bottom).

and the white noise was generated by the system noise model (Section 5.1.4). Here, we

assume no other distortion or noises acted on the signal. A noise-free signal returned

from the same distance without filtering was used as a reference. The transmit signal

and its single-sided power spectrum is given in Figure 5.7 and the return signal

contaminated by white noise and its power spectrum is shown in Figure 5.8. Figure 5.8

shows that the return signal has a noisy spectrum at high frequencies which causes

the magnitude fluctuation in the time domain. By comparing with the noise-free

signal, the following metrics are used for the evaluation of the influence of the filters

on the signals:

• Rise-time difference: ∆tr = tr,meas − tr,ref , and tr,ref = 3.55 ns;
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• Time shift: ∆tpeak = tpeak,meas − tpeak,ref , and tpeak,ref = 0.133 µs;

• Amplitude attenuation: ∆P =
Pmeans−Pref

Pref
, and Pref = 20.17 µW .

Here, the subscript meas represents the measured values of filtered signals, and the

subscript ref represents the values of reference signals without filtering. tref is ob-

tained from the laser source model (Section 3.2) given the pulse width. tpeak,ref is the

TOF of the reference signal corresponding to the target distance. Pref is the power

attenuation of the reference signal calculated in the propagation model (Section 4.2.1).
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Figure 5.8: Return Pulse (Top) and the Single-Sided Power Spectrum (Bottom). The

lower portion of the power spectrum is zoomed in and is shown in the sub-figure on

the right.
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5.3.1 Effect of Orders

In the study of the effect of filter order, the passband ripple of the Chebyshev and

the Elliptic filters was set to 3 dB and the stopband of the Elliptic filter was set to

30 dB. The effects of the order on the signal characteristics are shown in Figure 5.9.

Figure 5.9 shows that the magnitude attenuation by the filters increases with orders

for the Chebyshev and the Elliptic filter. The Chebyshev filter has the largest at-

tenuation, followed by the Elliptic filter at the same order, while the Butterworth

filter has the least effect. The reason is that the oscillation of the passband ripple

of the Chebyshev and the Elliptic filter increases with the order, as shown in the
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Figure 5.9: Effect of Order on Signal Characteristics.
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magnitude response of the two types of filters (Figure 5.12b and Figure 5.12c). The

increasing passband ripple results in a larger distortion of the signal magnitude. On

the contrary, the Butterworth filter has a flat passband (Figure 5.12a), so the in-band

frequency components are intact when the order changes.

The rise time and time shift of the signal also changes with the order. As shown

in Figure 5.12a, Figure 5.12b and Figure 5.12c, the nonlinearity of the phase response

increases with orders, and the Chebyshev filter has the worst linearity followed by

the Elliptic filter. According to Equation (5.12), the non-constant slope of the phase

response curve causes group delay distortion of the signal, which eventually alters the

rise time. Since the time delay of the signal is equal to the slope of the response curve

(group delay), a higher order also results in an increase of the time shift.

5.3.2 Effect of Passband Ripples

The effect of passband ripples on the signal characteristics is also studied. In the

study, to control the number of variables, the order of all the filters was set to 3 and

the stopband ripple of the Elliptic filter remains 30 dB. The signal characteristics af-

ter filtering with different passband ripples are presented in Figure 5.10. The results

of the Butterworth filter are also provided for comparison. The frequency response of

the Chebyshev and the Elliptic filter are shown in Figure 5.13a and Figure 5.13b. As

discussed before, a high passband ripple causes a larger magnitude distortion, result-

ing in an increase of power attenuation. Furthermore, as the ripple value increases,

the phase response becomes more nonlinear, which results in a larger change of rise

time and the time shift.
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Figure 5.10: Effect of Passband Ripple on Signal Characteristics.

5.3.3 Zero-phase Filtering

Filters with nonlinear phase response could lead to an increase in the rise time

and a time delay of the signal. Long rise time and time shift could bias distance

measurement and increase measurement uncertainty. Therefore, a filter with a linear

phase response is needed to reduce the impact, and the Bessel filter has a favorable

characteristics. However, the trade-off is that the roll-off of the filter is slower than

other filters like Chebyshev filters or Elliptic filters. One solution is to apply a filter

to both START signal and STOP signal feed into the receiver. In this way, the time

delay occurred at the two signals are canceled in the TOF calculation. Additionally,
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Table 5.2: Results of Signal Characteristics after Phase-Shift Compensation

Filter Type Butterworth Chebyshev Elliptic

Zero-phase filtering No Yes No Yes No Yes

Rise-time difference (ns) 0.042 0.037 0.061 0.218 0.061 0.196

Time shift (ns) 0.632 -0.015 0.750 -0.030 0.726 -0.030

Power attenuation ratio (%) 0.010 -0.104 -2.045 -4.022 -1.984 -3.907

an all-pass filter with a customized phase response according to the time delay can

also be added after the other filter to compensate the group delay.

In the signal processing, zero-phase filtering can compensate for the time shift

caused by the filter and provide a zero-phase shift. Generally, a signal is only fed into

the filter once, which is called ’forward filtering’. However, the zero-phase filtering

has an additional step that feeds the signal backward after the forward filtering. Since

the backward filtering causes a negative group delay, the positive and negative group

delays are canceled, so a zero-phase signal is achieved. The zero-phase filtering can

be performed by using any filters mentioned above. The effect of the zero-phase

filtering on the signal characteristics is also studied in this work. In the study, the

cutoff frequency of the filters was set to 1 GHz, the order of the filters set to 3,

the passband ripple 3 dB and stopband ripple 30 dB. The filtered signals and the

resultant characteristics are given in Figure 5.11 and Table 5.2. From the results, we

can see that the time shift is theoretically eliminated. However, the power attenuation

caused the Chebyshev and the Elliptic filter is doubled, and rise-time difference also

becomes worse. The reason for those effects is that in fact, the zero-phase filter

filters a signal twice, so the distortion of the signal is worse than the single forward

filtering. Taking this experiment as an example, the signals were, in fact, filtered
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Figure 5.11: Signal before and after Zero-Phase Filtering. The dashed curves are

signals after zero-phase filtering. The solid curves are signals after forward filtering.

The black dashed line indicates the peak position of the reference signal (black curve).

by filters with a passband ripple of 6 dB. In contrast, the Butterworth filter has the

least distortion, because of its flat passband. A drawback of the zero-phase filtering is

that the entire signal should be available for the zero-phase filtering, which means the

zero-phase filtering cannot be realized in real-time by an analog circuit but can only

be performed offline. Therefore, even though the zero-phase is powerful of removing

the time-shift of the signal, it is only limited to offline post-processing signals that

are stored beforehand.
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Figure 5.12: Frequency Response of Different Types of Filters with Various Orders.
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Figure 5.13: Frequency Response of Different Types of Filters with Various Passband
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5.4 Performance of Analog Filters on Different Types of Noise

As discussed in Section 5.1.5, noise can be classified as white noise, frequency-

structured noise, and temporal-structured noise. In the previous section, different

filters have been applied to white noise, and the Butterworth filter with an order

of 3 demonstrates its best performance of smoothing the signal with least distortion

compared to other filters at the same order. Also, we observe that the white noise

cannot be entirely removed by a low-pass filter because the white noise spreads across

all the spectrum. In this section, the performance of different filters on frequency-

structured and temporal structured noise is studied, and the signal was collected by

an ADC installed on a prototype lidar.

First, signals contaminated by frequency-structured noise with a frequency of

645 MHz (645MHz-Noise) are studied. The original signal and its power spectrum

are shown in Figure 5.14. From the power spectrum, we observe the noise has strong

power at 645 MHz. Three different types of filters were applied to the signal, and the

orders of the three filters were all set to 3. The passband ripple of the Chebyshev

and the Elliptic filter was set to 3 dB, and the stopband ripple of the Elliptic filter

was set to 30 dB. For the purpose of illustration, the cut-off frequency was set at

0.5 GHz, which is close to the noise spectrum. The signal filtered by the three filters

and their corresponding power spectra are given in Figure 5.15a, Figure 5.15b and

Figure 5.15c, respectively.

From the power spectra, we notice that the noise after filtering by an Elliptic

filter has the smallest power at 645 MHz, followed by the Chebyshev filter, while

the Butterworth filter has the least truncation of the noise. The difference can be

explained by the roll-off of the magnitude response of the three filters. The Elliptic

filter has the fastest roll-off which means it acts a large attenuation of the frequency
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Figure 5.14: Original Signal Contaminated by Frequency-Structured Noise (625

MHz). The signal is from the prototype lidar.

components in the transition band. Since the noise band is mostly inside the transition

band of the filter, most of the noise is attenuated. On the contrary, the roll-off of

the Butterworth filter is slower. Thus, the noise power inside the transition band is

less attenuated, which results in a larger remaining noise. Therefore, a fast roll-off

filter is necessary to remove noise in the transition band, especially in the case where

the noise band of the signal spectrum is very close to the noise band. On the other

hand, if the spectrum of a signal is far from the noise band, one can also set the

cut-off frequency away from the noise band (e.g. 0.2 GHz in this case) to ensure

the noise band falls inside the stopband of the filter rather than the transition band.
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In this way, the noise band can be sufficiently truncated. The signal filtered by a

Butterworth filter with fcut = 0.2 GHz is given in Figure 5.16, from which we can see

the noise is mostly removed by the Butterworth filter.

From the above discussion, we can see the low-pass filters efficiently remove out-

of-band frequency-structured noise. However, they cannot reduce in-band frequency-

structured noise without altering the spectrum of the original signal. Also, since the

temporal-structured noise is also in-band noise (Figure 5.4), it is also difficult to be

removed by the low-pass filters.
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Figure 5.15: Signal Filtered by Different Filters (top) and Their Power Spectra (bot-

tom). The signals are from the prototype lidar.
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Figure 5.16: Signal Filtered by Butterworth Filter and Its Power Spectrum (3rd

Order, fcut=0.2 GHz). The signals are from the prototype lidar after filtering.
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Chapter 6

TIME DISCRIMINATION: TIME-TO-DIGITAL CONVERTER

6.1 Time-to-Digital Converter

After the photon-detector converts the incident optical signals to analog electrical

signals, a time discriminator measures the transmit time (start time) and arrival time

(stop time) of the signals and calculates the TOF and corresponding distance. The

detection algorithm attempts to determine whether signals are pulses or noises. The

transmit time and the arrival time are usually measured by the same technique. This

section will focus only on the time discrimination techniques for the arrival time.

Two commonly utilized timing devices are Time-to-Digital Converters (TDC’s)

and Analog-to-Digital Converters (ADC’s). This chapter focuses on TDC’s and TDC-

based timing algorithms, and the ADC-based devices will be introduced in Chapter 7,

Chapter 8 and Chapter 9. A TDC is presented schematically in Figure 6.1. Two

key components of a TDC are a comparator and a timing circuit. The comparator

generates logic signals by comparing analog signals with a predefined threshold. The

timing circuit measures the timestamp when a logic signal changes its value from

’low’ to ’high.’ and it consists of a coarse counter and a finer counter. Taking the

measurement of the arrival time for example, the coarse counter measures how many

clocks have been passed since the start trigger event. The finer counter (usually made

of ring oscillators) tracks the number of sub-divisions within a clock cycle from the

last preceding clock recorded by the coarse counter. Using the recordings of the coarse

and finer counter, the TDC can achieve a picosecond resolution. After measuring the

start and stop timestamp, the timing circuit subtracts the start time from the stop
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Figure 6.1: Schematic of a TDC.

time to calculate the TOF. Various time discrimination methods are available for

timing using TDC’s, and they generally fall into two main categories: leading-edge

discrimination and constant fraction discrimination (CFD).

6.1.1 Leading-Edge Time Discrimination

In leading-edge time discrimination algorithms, a timestamp is measured when

the leading edge of a signal crosses the threshold of the comparator. Since the mea-

surement is carried out at the leading edge of a signal, the time detection method

will still be functional even if the signal saturates a photon-detector. In other words,

the leading-edge detection is not limited by the dynamic range of a photon-detector.

However, the major disadvantage of the leading-edge discrimination is walk error

which is due to variation in the signal amplitude. Walk error is illustrated in Fig-

ure 6.2, where two signals are reflected by targets at the same distance, but the signals

have different return powers. Keeping the comparator threshold and the rise-time of

the two signals the same, the signal with a smaller amplitude triggers the threshold
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Figure 6.2: Illustration of Walk Error.

later than the larger one, which leads to a difference of arrival time between the sig-

nals. Such a time difference due to the amplitude change is called walk error and it

is a major contributor to timing inaccuracy of leading-edge timing algorithms.

Gain-control compensation

Many methods have been developed to compensate for the walk error. One of them

is to reduce the amplitude variation utilizing gain control. A variable-gain amplifier

followed by an amplitude-insensitive time discriminator was proposed by Ruotsalainen

et al. (2001). In the gain amplifier, the amplitude of a signal is first measured with

a peak detector. The gain control circuit is adjusted to set the signal amplitude

to a constant value. Ideally, the gain-control technique succeeds in presenting a

constant amplitude signal to the comparator. In practice, the limited bandwidth of

the amplifiers in the gain control circuit restrains the operational dynamic range to
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1 : 650 and the delay variation of the amplifiers limits the timing precision to ±25

ps (Ruotsalainen et al., 2001). The limited dynamic range makes the gain-control

less practical for the autonomous vehicle application, since the dramatically varying

atmospheric attenuation and target reflectivity can lead to a dynamic range of the

signal amplitude of more than 1 : 100, 000 (Ruotsalainen et al., 2001).

Time-over-Threshold (TOT) compensation

A time-over-threshold (TOT) compensation was developed to allow a high operational

dynamic range for input signals (Kurtti and Kostamovaara, 2009, 2011; Nissinen et al.,

2009; Williams, 2018). The schematic of the TOT compensation is shown in Fig-

ure 6.3. In the TOT compensation, both the trigger-crossing time of the leading edge

and the falling edge of a signal are measured, and the time difference between the time

stamps of the leading and the falling edges is referred to as time-over-threshold (TOT)

(the TOT is the same as the ’pulse length’ in Kurtti and Kostamovaara (2011)). As

seen in Figure 6.3, the TOT increases monotonically with the pulse amplitude and

the walk error ∆w decreases with the amplitude. Thus, if the relationship among the

amplitude, walk error and the TOT can be found, the walk error can be determined

and compensated given a TOT.

In practice, a look-up table or a compensation curve containing the relationship

of the walk error and the TOT can be made by calibrating a TDC (Kurtti and

Kostamovaara, 2009). A compensation circuit was also proposed to realize the TOT

compensation (Kurtti and Kostamovaara, 2009, 2011). Alternatively, in this disser-

tation, we provide an analytic description of the relationship among the TOT, pulse
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amplitude, and walk error.

Vr =
Vth

exp
(

(TOT/2)2

2σ2

)
∆w = |tref | −

√
t2ref − 2σ2 ln(

Vref
Vr

)

(6.1)

where Vth is a TDC threshold, and Vr is the signal amplitude. Variable σ is the stan-

dard deviation of the Gaussian distribution in the transmit pulse model whose value

can be obtained given a pulse width (Equation (3.8)). Variable tref and Vref represent

convenient reference time and reference amplitude for the calculation of walk error

∆w, respectively. Equation (6.1) is called the TOT compensation model (or TOT

model) and its derivation is given in Appendix C.1. In the TOT model, the value of

Figure 6.3: Schematic of TOT Compensation. The subscript 1 and 2 of Vr, TOT and

∆w indicate the blue signal and the red signal, respectively.
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Figure 6.4: TOT Compensation Curve.

TOT should be measured from experiments, while Vr and Vref are pre-defined vari-

ables and the rest variable can be obtained from pulse information. The relationships

between the signal amplitude and TOT, amplitude and walk, and TOT and ampli-

tude, are plotted in Figure 6.4. After a TOT is measured, using the TOT model or

the TOT compensation curve, the walk error can be calculated analytically or found

by using the conpensation curve. Then, the walk error on a time measurement can be

compensated by subtracting Twalk from the original time measurement. The process

of using the TOT compensation curve to find the walk error is shown in Figure 6.4c.

The TOT method can achieve a time measurement precision of picosecond level and a

larger dynamic range of a signal amplitude of 1 : 30, 000 (Kurtti and Kostamovaara,
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2009). However, we should notice that the TOT method is highly sensitive to the

symmetricity of a signal. In other words, if the falling edge of a signal is heavily

distorted due to, for example, multiple returns or slow response time of the system,

the relation between the TOT and the walk error is impaired. In this case, the TOT

compensation will not give accurate results.

Slew-rate compensation

An alternative way to compensate for walk error is to use the relation of the walk error

and the slew rate of a pulse. This approach is called slew-rate compensation. The slew

rate is the slope of a signal at the point of interest. For the slew-rate compensation,

the TDC should be equipped with two comparators with two predefined thresholds. A

schematic of the slew-rate compensation is shown in Figure 6.5. The lower threshold

(Vth1) is set at a constant value as a normal TDC does, and the higher threshold (Vth2)

is set C (C is an integer constant) times larger than Vth1, i.e. Vth2 = CVth1. The two

Figure 6.5: Slew-Rate Compensation: (a) Linear and (b) Nonlinear. The subscript 1

and 2 of ∆w and ∆t indicate the blue signal and the red signal, respectively.
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time stamps, t1 and t2, are measured from the comparator for Vth1 and Vth2, and the

time difference ∆t between t1 and t2 is calculated by ∆t = t2 − t1. The walk error

∆w is the time difference between t1 and a convenient time reference tref . Figure

6.5a shows an example of signals with linear slew-rates between the high and low

threshold. In the example, since the slew rate can be calculated by (Vth2 − Vth1)/∆t,

the walk error can be related to ∆t by ∆w/∆t = 1/(C − 1) following the geometry

of similar triangles. Thus, the walk error is a linear function of ∆t (Nissinen et al.,

2009):

∆w =
∆t

C − 1
. (6.2)

A Gaussian signal usually has a nonlinear slew rate at the tails, which results in

a nonlinear dependency of the walk error on ∆t. Thus, in practice, the relation can

be obtained by look-up tables or compensation curves by calibrating a TDC. In this

work, we mathematically derived the nonlinear relation between the walk error and

the time difference as
∆t = STOP2 − STOP1

∆w =
−2σ2 ln(C)−∆t

2∆t

− tref
(6.3)

where STOP1 and STOP2 are the time stamps measured by the high and low com-

parator, respectively. Equation (6.3) is called slew-rate compensation model (or slew-

rate model), and the derivation is detailed in Appendix C.2. The relation between the

walk error and the ∆t is plotted in Figure 6.6. Using the slew-rate mode that takes

the measured two time stamps, one can obtain the walk error, and subtracting the

walk error from STOP1, a walk-error-free TOF result can be achieved. A schematic

of the compensation process is given in Figure 6.6b. The slew-rate compensation can

also achieve picosecond-level precision with a large dynamic range (Nissinen et al.,

2009). In addition, its independence on the falling edge of a signal makes it more
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Figure 6.6: Slew-Rate Compensation Curve. (a) Time Difference-Amplitude Curve;

(b) Slew-Rate Compensation Process. After measuring ∆t, one can use the curve to

find corresponding Twalk, and subtract the Twalk from STOP1 to compensate the walk

error.

applicable than the TOT compensation, but the additional comparator increases the

complexity of the discriminator and has a limitation measuring signals weaker than

the high threshold.

The TOT and the slew-rate compensation significantly reduce the walk error, but

also introduce additional noise to timing results. One example is the quantization

error due to the utilization of extrapolation on the compensation curves, and the

number of points used in the extrapolation affects the significance of the quantiza-
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tion error. In addition, the TDC-based timing techniques also include their inherent

noises, e.g. jitter noise. Jitter is the uncertainty in the time measurement when a

signal crosses the comparator threshold. If the signal is noise-free, the time when the

threshold is exceeded is constant. However, amplitude variation always exists due

to various noises, in which case, the measured TOF contains uncertainty. This kind

of noise is called jitter noise. An example of the jitter noise is shown in Figure 6.7.

Mathematically, the jitter noise is defined as (Skolnik, 1962):

σ2
jitter =

σ2
noise

(dV/dt)2
=

t2r
SNR2

. (6.4)

From Equation (6.4), we can see jitter has an inverse relationship with the slew rate

at the trigger position (dV/dt). In the above discrimination methods, thresholds

are set at a constant a certain level above the noise floor. Since the amplitude of

Figure 6.7: Schematic of Jitter Noise. The black curve is the signal with noise.

(Figure is adapted from Williams (2017).)
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incoming signals varies, the trigger point may not be at the optimal position that

has the highest slew rate. Thus, additional noise is introduced. Ideally, the trigger

position should be set at the linear portion (30%− 40% of the amplitude of a pulse)

of the leading or the falling edge of a pulse (Kilpelä et al., 1998), where the signal has

a sharp slew rate. In practice, keeping the threshold adjustable at a constant fraction

of a pulse is a solution to minimize the jitter.

Time-variant threshold

A time-variant threshold method was proposed by Williams (2018) to optimize the

trigger point for a leading-edge detection method, in which the threshold can be

adaptively adjusted according to the time elapsed from the start time of a pulse. In

this case, the threshold-crossing time can be kept around the optimal trigger position.

The relation of the time-variant threshold and the time elapse is given by

Vth(t) = Vth,lo + (Vth,hi − Vth,lo)e−
t
RC , (6.5)

where Vth,hi and Vth,lo are predefined optimal thresholds for short and long-distance

targets, respectively (Williams, 2018). One should note that the time t in Equa-

tion (6.5) is not the arrival time we are looking for, but the time value used to adjust

the time-variant threshold. This time could be measured by a coarse counter in a

TDC. After the time-variant threshold is adjusted, a more accurate time will be mea-

sured using the finer counter of the TDC and the above timing methods. The time

constant RC is to approximate the 1/R2 power attenuation as a function of range,

as shown in the Lidar Equation (Equation (4.2)), which is simplified to:

Vr =
V0A

R2
e−2BR, (6.6)

where A and B are hyper-parameters, and V0 and Vr are the peak voltage of the

transmit and return signal, respectively. The usage of RC to model the power decay
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instead of modeling e−2BR directly is because the time-variant threshold is achieved

by an analog circuit. Comparing Equation (6.5) and Equation (6.6), we can see

Equation (6.5) cannot exactly follow the change of power attenuation with range,

which could lead to variation of the trigger position around the optimal position. The

time constant RC also requires careful calibration to match the power attenuation

with distance (time) in practice.

The time-variant threshold method provides an approach to obtain the optimal

trigger position to reduce the time jitter, but it does not resolve the walk error issue.

Therefore, the TOT compensation was combined with the time-variant threshold

method (Williams, 2018). However, as aforementioned, the TOT compensation is

limited to symmetrical signals.

6.1.2 Constant Fraction Discrimination

Traditional CFD

In addition to the time-variant threshold method, the Constant Fraction Discrimi-

nation(CFD) techniques, as illustrated in the name, can also trigger the time at a

constant fraction of the pulse height. In the traditional CFD’s, the input signal is

copied into two identical signals, one of which is attenuated and inverted, and the

other one is delayed. The schematic of the CFD principle is shown in Figure 6.8.

The attenuation for the attenuated signal is selected as a fraction of the amplitude of

the original amplitude. At that fraction the timing position is optimal, and the value

usually ranges from 20% to 40%. Then, the time delay is tuned to make the fraction

point on the leading edge of the delayed signal align with the peak of the attenuated

signal. Subsequently, the two delayed and attenuated signals are added to generate

a bipolar signal, which is then passed to a zero-crossing comparator to generate the
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Figure 6.8: Schematic of the Principle of a Traditional CFD.

logic signal for time discrimination. The zero-crossing point corresponds to the time

stamp at the optimal fraction point on the delayed signal, which is also the time at the

peak of the original signal. In addition, a leading-edge arming discriminator triggered

above the noise floor of the signal is applied to prevent the zero-crossing comparator

from being mistakenly triggered on noise floor preceding the zero-crossing point.

The major advantage of the CFD is that it theoretically eliminates the walk error
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due to the independence of the zero-crossing point on signal amplitude (Figure 6.9).

However, in practice, a finite amount of charge is required to move the comparator

output from “0” to “1”, which results in additional walk error on the timing results

(Nakhostin, 2017). Additionally, if an incoming signal has strong amplitude beyond

the dynamic range of a photon-detector that saturates the detector, or multiple re-

turns come back in a minuscule time difference, the top of the pulse is flattened. The

flattop could result in large walk error on TOF measurements, which is why the tra-

ditional CFD is normally used in a limited range of 1:100 or less for the input signal

(Kurtti and Kostamovaara, 2011).

In addition to reducing walk errors, CFD’s also leads to less time jitter. Even

though in the summation process of the CFD, the noises of the attenuated and the

delayed signals are added as well, in fact, the jitter is mitigated, because the statistical

variation of the noise on the attenuated and the delayed signals cancel out with each

other. Since only the leading edge and the peak of the signal are involved in the

Figure 6.9: Independence of the Zero-Crossing Point on Signal Amplitude.
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summation, the CFD is not affected by the pulse symmetricity.

Leading-falling edge CFD

In the traditional CFD, the delayed and attenuated signal is added to the top of

the original signal, which could fail when the signal has a flat top (e.g. the photon-

detector is saturated). In this case, a variation of the traditional CFD, leading-falling

edge CFD was developed (Kilpela, 2004). The principle of a leading-falling edge CFD

is similar to the traditional CFD, and it is shown in Figure 6.10. The leading-falling

edge CFD copies the original signal into two identical signals, and one of the signals

is delayed by a certain amount, such that the leading edge of the delayed pulse and

the falling edge of the non-delayed pulse cross at an optimal constant fraction of the

signal height. In this case, the two signals are intersected at a fraction point which

has the largest slew rate rather than the peak. The leading-falling edge CFD can

prevent the detection from suffering from flattops, but since the technique involves

the falling edge of a signal, it is only practical for symmetric pulses.

6.1.3 Summary

From the comparison between the leading-edge and CFD detection, we can see

that leading-edge detection utilizes a simpler circuit design than the CFD techniques

which need delay and summation circuits, but the walk error is a major drawback

for the leading-edge discrimination techniques. To reduce the walk error, additional

compensation techniques that are operative in a large dynamic range are required to

achieve high timing accuracy. On the other hand, the CFD techniques address the

walk error and jitter to a large extent, but potential time delay could result from

extra electrical components. The limited dynamic range of the CFD techniques could

also restrain their application in the automotive industry.

131



Figure 6.10: Principle of a Leading-Falling Edge CFD.

6.2 TDC Modeling

In this section, the TDC modeling will be introduced first followed by the appli-

cation of different timing algorithms to simulated return signals from different target

distances. The slew-rate compensation is not included due to its reduced applica-

bility to weak signals. In addition, the time-variant threshold is not included either

since the time constant RC of a photon-detector are not available in this study, which

makes it difficult to calibrate the parameter A and B in Equation (6.5), and therefore,

modeling the time-variant threshold is impractical.

6.2.1 Propagation Delay

The comparator is one of the key components of the TDC. In practice, a TDC

circuit requires a small amount of time to respond and propagate signals for voltage
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comparison, so the comparators have a propagation delay, which limits the fastest

frequency of a signal the TDC can process (Smat, 2012). However, on the other

hand, even though the propagation delay restrains the frequency of the signal that

can be processed, slower fluctuations still exist in the comparator, caused by the

unstable transient response of the electrical device to high-frequency oscillation. To

model the response of the TDC to the input analog signal, we have to simulate the

transient signal, but the transient response of an electrical device to a rapid oscillating

signal is usually ill-defined. Thus, it is very difficult to model the exact transient

signals in a real device (Wahab et al., 2016). In this study, inspired by Wahab et al.

(2016), we approximated the transient signal by sub-sampling the original ’continuous’

signal with a sampling rate of 2 GHz and smoothing the sub-sampled signal by a

spline-line fitting, assuming no additional high-frequency noises were added to the

transient signals before comparison. If a signal was sampled at a frequency lower

than 2 GHz, no sub-sampling was performed before the spline-line fitting because the

bandwidth of the signal is already smaller than the one of the comparator. The sub-

sampling rate (2 GHz) is equal to the bandwidth of a high-speed comparator and the

bandwidth can be obtained from the propagation delay: bandwidth = 1/2τdelay and

τdelay = 0.25 ns (Analog Devices, 2003). An example of the signal after subsampling

is shown in Figure 6.11.

6.2.2 Linear Interpolation

If the sampling rate of an input signal is smaller than the TDC sampling rate,

we resolve the TDC resolution by linearly interpolating the transient signals to the

given resolution. Whenever a point on the grid exceeds the TDC threshold, the

corresponding time was measured as the arrival time (take leading-edge detection for

example). The linear interpolation is applied to all the TDC-based timing algorithms.
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Figure 6.11: The Original ’Continuous’ Return Signal (Blue) and Transient Signal

(Red) after Subsampling. Dashed green line: TDC trigger threshold.

An example of the interpolation for the traditional leading-edge algorithm is shown

in Figure 6.12. Note that in this example, the TDC resolution was set to 1 ps and the

sampling rate of the signal was set to 100 GHz or 10 ps for illustration purpose. In the

following simulation experiments, the signal sampling rate should be set according to

the conclusion of Section 3.3.

6.2.3 TDC Trigger Threshold

Setting the trigger threshold of a TDC is important because a threshold that is

too low or too high will increase the false triggering by the noise (probability of false

alarm or PFA) or decrease the sensitivity of the algorithm to weak return signals

(probability of detection or PD). In this section, the PFA is defined as the ratio of
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Figure 6.12: Illustration of Linear Interpolation (Sampling Rate: 100 GHz).

the number of samples of a noise signal above the TDC threshold to the total length

of the signal. To balance the trade-off between the PFA and PD, we follows the

Neyman-Pearson theorem to determine the threshold using a predefined PFA. More

details of the Neyman-Pearson theorem is discussed in Chapter 9. We assume the

noise of the electrical system is Gaussian-white noise. Theoretically, the threshold

can be determined by:

Vth = σ0Q
−1 (Pfa) + µ0, (6.7)

where µ0 is the mean of the noise which is equal to zero, σ0 is the STD of noise signal

(laser is turned off), and Q is the complementary cumulative distribution function

(CCDF) of the Gaussian white noise, defined by (Kay, 1998)

Q (x) =
1

2
efc

(
x√
2

)
. (6.8)
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Table 6.1: Parameters in the Lidar Model

Parameter Value

Peak power 300W

Sampling rate 100 GHz

Target reflectivity 10%

TDC propagation delay 0.25 ns

6.3 Simulations

6.3.1 Simulation Design

A Monte-Carlo experiment was conducted using 500 observations of transmit and

return signals. The target distance ranges from 5 to 60 m with an increment of 2.5 m.

The return signals were generated by the pulse model, the propagation model, and

the receiver model. The key parameters used in those models are given in Table 6.1,

and other parameters remain unchanged.

6.3.2 TDC Trigger Threshold

The PFA is preset to 0.001 in this study, and it was evaluated on 100 observations

of noise signals with the laser off. The noise signals were generated by the receiver

model, each of which has 2123 data points, that is, there are total 212, 300 points in

the 100 observations. The measured PFA is calculated by:

Pfa,meas =

∑
m km
MN

, (6.9)

where km is the number of data points in the m-th observation that is larger than

the TDC threshold, and M and N are the number of observation and the number

of points in each observation, respectively. The measured PFA = 0.000989, which is
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smaller than the predefined PFA.

6.3.3 Timing Algorithms

The traditional leading-edge timing algorithm, the leading-edge algorithm with

TOT compensation, and the CFD algorithm were applied to return signals. The

traditional leading-edge algorithm was applied to measure the start time when the

leading-edge and the TOT algorithm were used. On the other hand, the start time of

the CFD algorithm was measured by a simple peak detection. Since the transmit pulse

is noise-free, the usage of the peak detection will not affect the TOF measurement.

The constant fraction of the CFD is set to 30% of the peak power, and the arming

threshold is set the same as the TDC threshold. The mean error and RMS error

of the distance measurement are used for the evaluation of the performance of the

timing algorithms.

6.4 Results and Discussion

6.4.1 Original Results

The results of the different timing algorithms are given in Figure 6.13. From the

mean error, we can see that the leading-edge algorithm has an obvious positive bias

from the ground truth, and it increases with distance. The walk error causes a pos-

itive bias. As the distance increases, the amplitude difference between the transmit

and return signals increases, which results in a larger walk error. Compared to the

traditional leading-edge algorithm, the bias from the results of the TOT compensa-

tion and the CFD algorithm is much less. The results of those two algorithms are

given in Figure 6.13b to illustrate the details. The CFD has no bias at most the

distances, while the TOT compensation has an increasing negative mean error as
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distance increases. There are two factors that contribute to the mean error. Note

that the TOT compensation calculates the TOF by

TOF = tret,lead −∆w − tstart, (6.10)

where tret,lead is the timestamp of the trigger event at the leading edge of the return

signal, ∆w is the walk error obtained from TOT curve, and tstart is the time when the

pulse is emitted. The major factor of the negative bias is the inaccurate measurement

of tret,lead. As known, the noise on the leading edge of the signal becomes comparable
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Figure 6.13: Mean Error and RMS Error of Different Timing Algorithms (without

Low-Pass Filtering).
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Figure 6.14: Early Triggering Caused by the Noise on the Leading Edge.

to the pulse at a further distance, which causes early triggering of the TDC. An

example is given in Figure 6.14, in which the TDC is triggered earlier than it is

supposed to be. In that case the tret,lead is smaller than the ground-truth tret,lead,

resulting in a smaller TOF estimation according to Equation (6.10). The statistical

measurement of the 500 observations at distance 15m also provides evidence that the

measured tret,lead is 0.15 ns (or distance offset of 0.0233 m) less than the ground-truth

value measured from the noise-free signals. Another factor for the mean error is the

inaccurate measurement of the TOT when the SNR is low. Taking the 15 m distance

as an example, the measured TOT from noisy return signals in the experiment is larger

than the TOT of the corresponding noise-free signals, which results in the derived

walk error being 0.002 m smaller than the ground-truth walk error. However, the

inaccurate TOT measurement only contributes slightly to the mean error compared
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to the early triggering.

From the results of RMS error, we can see all the algorithms are subject to the

noise on the signal when the SNR decreases. The traditional leading-edge algorithm

is susceptible to the noise on the signal, while the effect of the noise is compensated

to some extent in the TOT algorithm because both the leading edge and falling edge

of the signal are taken into account. The CFD algorithm has the least RMS error

because of the optimal triggering point. The fact that the random noise is canceled

when the negative attenuated signal is added to the delay signal also reduces the RMS

error. However, the CFD method does not work for low SNR conditions (< 21.47

dB), because in those cases the amplitude of the attenuated signal is lower than the

arming threshold, and the algorithm ignores the signal.

6.4.2 Results after Low-pass Filtering

A low-pass filter with fcut = 0.4 GHz was applied to the return signals before the

timing algorithms to reduce the effect of the noise on the TOF estimation, and the

phase shift was corrected. A small order of the low-pass filter was selected to avoid

distortion of the pulse shape. Otherwise, the results of the TOT compensation and

the CFD will be affected.

The results after low-pass filtering are shown in Figure 6.15. From the mean

error, we can see the positive bias still exists in the traditional leading-edge algorithm

because the bias is caused by the walk error which cannot be resolved by the low-pass

filter. On the contrary, the low-pass filter improves the mean error of the CFD and

the TOT compensation. An example of the filtered signal is given in Figure 6.16, in

which the noise on the leading edge of the signal is significantly reduced. Statistical

results at distance 15 m also show the tret,lead of the filtered noisy signal is only

0.04 ns (0.006 m distance offset) smaller than the one of noise-free signals, and the
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difference of walk error is changed to 0.0038 m converted to distance. The reduction

of the tret,lead difference also demonstrates the influence of the noise on the TOF

measurements. On the other hand, the RMS error of all the algorithms are reduced

after the filtering, and the CFD still has the least RMS error followed by the TOT

compensation.
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Figure 6.15: Mean Error and RMS Error after Filtering.
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Figure 6.16: Signal after Filtering. Compared to Figure 6.14, the early triggering on

the leading edge is significantly reduced by the low-pass filter.
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Chapter 7

TIME DISCRIMINATION: ANALOG-TO-DIGITAL CONVERTER

7.1 Fundamentals of Analog-to-Digital Converter

7.1.1 Digital Processing

ADC-based time discrimination uses an ADC to convert filtered analog signals

output from a photon-detector to digital signals, determine if the signal is a pulse

or noise, and calculate the TOF if it is a pulse. The structure of the ADC-based

discriminator is shown in Figure 7.1.

The digitization process of an ADC consists of two steps: sampling and quanti-

zation. The first step is to sample an analog signal in time by a sample-and-hold

device that takes and holds a value from the continuous signal every Ts seconds. The

time interval Ts is called sampling interval, and the sampling rate is denoted as fs =

1/Ts. The resulting signal has a discrete time sequence but still has continuous values

of amplitude. In the quantization step, the continuous values of the amplitude are

converted to discrete values by a quantizer. Therefore, a signal with discrete values

in both time and amplitude is generated, and such signals are referred to as ’digital’.

Figure 7.1: Schematic of ADC-Based Time Discrimination.
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7.1.2 Quantization

In the quantization process, an important parameter of the quantizer is the reso-

lution, which indicates the number of discrete levels it can produce over the dynamic

range of the signal amplitude. The resolution is usually expressed in bits. For ex-

ample, for a 6 bit ADC, there are 26 discrete levels to store the signal amplitude.

The difference between two successive quantization levels is called quantization steps

(Nakhostin, 2017)

∆ = Vk+1 − Vk . (7.1)

Thus, the quantization steps ∆ and the ADC resolution B, are related to the dynamic

range Vdy of the input signal by

Vdy = 2B∆. (7.2)

The nature of the quantization process is to approximate an analog signal by discrete

values. The finite number of quantization levels introduces error between the digital

signal and the analog signal. The error is denoted as the quantization error, and its

variance σ2 is a function of the quantization step:

σ2 =
∆2

12
. (7.3)

The signal-to-quantization noise ratio (SQNR) is defined as the ratio of the signal

power to the noise power, and it can be written in dB as (Nakhostin, 2017)

SQNRdB = 6.02B + 1.76 . (7.4)

It should be noticed that an ADC with high resolution would have less quantization

error and a large signal SQNR.
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7.1.3 Sampling and Aliasing

The sampling rate of an ADC affects the reconstruction of an analog signal. As

known from the Nyquist’s theorem, the sampling rate should be equal to or larger than

twice the largest frequency (Nyquist frequency) of the signal to correctly represent

the signal, i.e. fs > 2fmax. Otherwise, aliasing occurs. However, the bandwidth

of the input signal of an ADC may not always be known precisely, so the Nyquist

criterion may not be met in practice. Therefore, to prevent aliasing, a low-pass filter

is usually placed before an ADC, to truncate the frequency components larger than

the Nyquist frequency. Such a filter is called anti-aliasing filter. In many cases, the

anti-aliasing filter cannot completely remove all the high-frequency components due

to the transition band of the analog filter. Therefore, to minimize the aliasing, an anti-

aliasing filter could be designed to attenuate the frequency higher than the Nyquist

frequency to a degree less than the quantization error (Mitra and Kuo, 2006). The

anti-aliasing filtering could be achieved by selecting a filter with a sharp transition

band or sacrificing some in-band frequencies by moving the transition band of the

filter inside the signal bandwidth. However, either sharp transition band or cutting

off in-band frequencies could distort the original signal. Alternatively, oversampling

of the signal to a rate much higher than the Nyquist frequency is also often used to

simplify the anti-aliasing filter and reduce the aliasing error.

7.1.4 Functionality

The important functions of an ADC include modes, zero-suppression, and trigger

modes. An ADC usually has multiple channels taking analog inputs, and the channels

could share one or multiple clocks. The ADC mode is the combination of channels

that can be used. Taking a 4-channel ADC (Channel A, B, C, D) with a clock (5 GHz)
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as an example, the ADC can be operated in 1-channel mode (Channel A, B, C, D),

2-channel mode (e.g. AC, BD) and 4-channel mode (e.g. AAAA, ABCD). If all the

channels share one clock, the 4-channel mode has a sampling frequency of 1.25 GHz

signal, one-fourth of the speed of 1-channel mode (5 GHz). In the application of

the TOF estimation, the 2-channel mode is commonly used which takes an analog

signal from a laser source (START signal) and a return signal from a photon-detector

(STOP signal). Another feature of an ADC is the analog offset. Using the analog

offset function, users can remove the DC component of the signal to keep the signal

remain within the ADC range, which maximizes the dynamic range.

The zero-suppression function is important for an ADC to reduce the load of data

transfer. The zero suppression means that an ADC only starts to acquire data when

the predefined ADC threshold is exceeded, and the stored waveform data is referred

to as packet. A packet contains the sampled data and the absolute time of the last

sample of the packet. The absolute time is measured since the data acquisition starts.

The time stamp of each sample of a signal can be calculated using the time interval

between the successive samples and the number of samples. An ADC acquires data

in units of bins, which is a group of 8 points for the 2-channel mode.

The zero suppression function has two trigger modes: edge-trigger mode and level

trigger mode, which collects data in two different ways. The edge and level trigger

modes are illustrated in Figure 7.2. The edge-trigger mode specifies the length of the

precursor in bins and the number of bins after the trigger point (collection length).

It means all the data collected using the edge-trigger mode has the same length,

but not all the samples are guaranteed to be above the threshold. On the contrary,

the level-trigger mode saves all the samples above the threshold instead of saving a

fixed number of samples. It means the length of the stored data is dependent on the

signal amplitude. Both modes can also save some samples before the ADC trigger
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(a) Edge-Trigger Mode

(b) Level-Trigger Mode

Figure 7.2: ADC Trigger Modes
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point, which is called precursor. In addition, the level-trigger mode can also save

samples after the sample becomes lower than the threshold, and such samples are

called post-cursor.

7.2 ADC modeling

An ADC with 4 channels with a total sampling frequency of 5 GHz and a dynamic

range of 10 bit are used in the prototype lidar (Cronologic, 2018). In this dissertation

we uses two channels of the ADC and they share the same clock. Thus, each channel

has a sampling frequency of 2.5 GHz, or the time interval between data samples is

0.4 ns. The ADC has a upper limit and a lower limit of the input signal amplitude,

-0.25 V and 0.25V , respectively. The specification of the ADC is given in Table A.1.

The ADC model takes return signals generated by the receiver module as inputs, and

subsamples the signals with a rate of 2.5 GHz to model the ADC sampling process.

The ADC model also digitizes the signal amplitude to 10 bit within the lower and

upper limits. The ADC trigger threshold is set at 3x noise floor in the model, and

the length of the precursor, collection length (edge-triggering) and post-cursor (level-

triggering) are adjustable.

7.3 Time Discrimination Algorithms

The time discrimination using an ADC can be achieved by applying digital versions

of the TDC-based timing algorithms to digital signals, or by taking advantages of the

shape information contained in the digital signals.

7.3.1 Digital Version of TDC-based Timing Techniques

The digital versions of TDC-based timing algorithms include all the algorithms

mentioned above like leading-edge detection techniques and CFD’s. The difference
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from the TDC-based algorithm is that which algorithms take digital signals. The

details of those methods are described in Chapter 6. A drawback of the digital

algorithms is that since the digital signals only has discrete values, the TDC trigger

threshold may not always coincide with the sample points of a digital signal. In

other words, the exact trigger point may fall in between two successive samples. In

this case, interpolation between neighborhood samples is needed to find the exact

time mark corresponding to the threshold value. Linear interpolation is a common

selection, but it could also affect the timing accuracy, depending on the local linearity

of the signal (Nakhostin, 2017).

7.3.2 Detector and Estimator

The digital version of TDC-based timing methods utilizes the ADC as a TDC. This

approach limits the potential of an ADC because the shape information contained in

the digital signal is valuable, but ignored in TDC methods. Alternatively, ADC-based

time discrimination algorithms can take advantage of the signal characteristics. ADC-

based algorithms are generally composed of a detector and an estimator. The detector

takes digital signals from an ADC as an input and determines the presence or absence

of a transmit pulse from the signal contaminated by noise. Generally, we define a

hypothesis H1 if the signal of interest (a pulse) is detected, and hypothesis H0 if the

input signal is noise. If a pulse is detected, an estimator is applied to estimate the

arrival time of the pulse.

The probability of detection (PD) and the probability of false alarm (PFA) are

normally used to evaluate the performance of a detector. The probability of detection

is defined as the ratio of the number of signals detected as H1 to the total number

of H1 signals, while the probability of false alarm is defined as the percentage of

false-positive signals to the total number of noise signals. In the next chapters, we
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will introduce two detection and estimation algorithms: centroid-based detection and

estimation algorithm (benchmark method) and Neyman-Pearson (NP) detector.
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Chapter 8

ANALOG-TO-DIGITAL CONVERTER: BENCHMARK ALGORITHM

8.1 Principle of Benchmark Detection and Estimation

8.1.1 Metrics for Signal Detection

In the benchmark detection, two metrics are utilized for the hypothesis determi-

nation of a return signal. The metrics are the number of points of a signal above the

ADC threshold and the pulse width of the signal. In this section, the metrics and the

corresponding criterion are defined first, followed by an introduction of the algorithm

used for the pulse width calculation.

Metric 1: Number of points above threshold

Strong noises could false-trigger an ADC, but it is less likely that a large number of

consecutive data points of white noise could exceed the threshold. In this case, we

use the number of data points of a signal above the ADC threshold (abbr. Number

above Threshold or NaT) as the first metric to prevent false triggering induced by

random noise. Usually, the ADC threshold is set at a constant value (i.e. 3x noise

floor), so when the amplitude of a signal changes, the NaT varies in a range according

to the target distance, and stronger signals have a larger value of NaT. To make the

metric applicable to signals from different distances, a range of the NaT is defined,

and the upper and lower bound of the range is determined by measuring the NaT

of noise-free return signals from the largest and smallest SNR’s studied in this work,

specifically, 60 dB and 8 dB, The corresponding measured NaT’s are 52 points and 10

points, respectively. Therefore, when the ADC receives a signal, the NaT of a return
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signal is counted first, and if the NaT exceeds the range of 10 and 52, the signal is

considered to be H0.

Metric 2: Pulse width

Usually, the pulse width of a signal remains constant through the whole signal prop-

agation, assuming negligible distortion of the pulse shape due to reflection or by

electrical systems. In this case, we can determine the hypothesis of a return signal

by comparing its pulse width with that of the transmit pulse. The expression of the

pulse width of a signal can be derived from Equation (3.4), such that

∆tw =
E

Pr,peak
, (8.1)

Here, we assume the approximation for the pulse energy mentioned in Section 3.1.1

also holds for digital signals. Theoretically, the energy of a signal can be obtained

by integrating the signal over an infinitely long time duration, while in practice the

signal is truncated due to a finite number of points that can be collected by an ADC.

Similar to Metric 1, the criteria for Metric 2 is bounded by the pulse width of noise-

free signals from the shortest and furthest distance. The pulse widths were calculated

using the method that will be introduced in Section 8.1.2. The measured pulse width

ranges from 4.91 ns (SNR = 8 dB) to 5.42 ns (SNR = 60 dB), and the variation of

the pulse width from the mean value is 0.51 ns or 10% of the mean. Therefore, a

tolerance of the measured pulse width is defined, such that if the difference between

the measured pulse width ∆tw,meas and the reference pulse width ∆tw,ref is smaller

than 10% of the reference, the signal passes Metric 2. In this study, the reference

pulse width is 5.17 ns. Mathematically, the signal passes Metric 2 if

|∆tw,meas −∆tw,ref | < 10%∆tw,ref . (8.2)

152



Signal detection

After defining the metric and the corresponding criterion, we can follow the flowchart

shown in Figure 8.1 to determine if the signal is a pulse. In the detection process, the

counting of NaT is straightforward, but the pulse width needs to be calculated from

the signal. This will be illustrated next.

Figure 8.1: Flow Chart of the Benchmark Detection Algorithm.
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8.1.2 Pulse Width Calculation

According to Equation (8.1), we need to obtain the energy and the peak power of

a signal before calculating the pulse width. We first define a polygon with vertices

as the data points of a signal. An example of the polygon is shown in Figure 8.2.

The energy of the signal was approximated to be equal to the area of the polygon.

A schematic of the numerical calculation of the area of a simple polygon is given in

Figure 8.2: Example of a Polygon Defined by Data Points of a Return Signal. Regions

with ’+’ signs (in blue) have positive area and regions with ’−’ sign (in red) have

negative area.
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Figure 8.3: Schematic of the Numerical Calculation of the Area of a Simple Polygon

(the Gray Region Bounded by Black Edges). Pt5, Pt6, Pt7, Pt8 are the data points

projected on the t-axis.

Figure 8.3. In the figure, the polygon is defined by the sample points (tn, Pn) and

n = 1, 2, 3, 4. The area of the polygon A can be calculated by first dividing the

polygon into several triangles (if the sample point is on the t-axis) and trapezoids,

and then adding the areas of all the regions together (Bourke, 1988). In this case,

A = A(Pt1,P t2,P t7,P t8) + A(Pt2,P t3,P t6,P t7) + A(Pt3,P t4,P t5,P t6) − A(Pt4,P t5,P t8,P t1)

and the area of the trapezoid (Pt1, P t2, P t7, P t8):

A(Pt1,P t2,P t7,P t8) =
1

2
(t2 − t1)(P1 + P2).

The same calculation can be applied to the other trapezoids. After reorganization,

the polygon area can be expressed by

A =
1

2

N∑
n=1

(tnPr,n+1 − tn+1Pr,n). (8.3)
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where the n-th vertex of the polygon is denoted by (tn, Pr,n), and tn and Pr,n are

the timestamp and the power value of the point, respectively. N is the total number

of data points in a signal. Since the ADC removes the power offset of the digital

signal in advance, the power can have negative values, which results in a self-crossing

polygon, meaning the sides of the polygon intersect with itself. The negative values

and the resultant negative areas of the self-intersecting polygon result in cancellation

between the positive and negatives areas. The cancellation is consistent with our

expectation that if a signal has powers with the same amplitude but opposite signs,

the total energy of the signal is zero.

In this section, the x-direction indicates time and y-direction indicates power. The

peak power can be approximated by the y-centroid Cy of the polygon using

Pr,peak = Fc · Cy, (8.4)

where Fc is a constant factor, approximately equal to 3. The value of 3 is derived

from combining Equation (3.11) and the fact that the height of a Gaussian pulse

hpulse ≈ 2.817Cy. The factor Fc indicates that the peak power of a Gaussian pulse

is always Fc times the y-centroid regardless of the signal amplitude. The constant

relationship provides a more stable way of estimating the peak power than directly

measuring the peak value of a pulse which is subject to large fluctuation due to the

noise at the peak.

Applying the same approach in Equation (8.3), the centroid of the polygon can

be obtained using the area A by (Bourke, 1988):

Cx =
1

6A

N∑
n=1

(tn + tn+1)(tnPr,n+1 − tn+1Pr,n)

Cy =
1

6A

N∑
n=1

(Pr,n + Pr,n+1)(tnPr,n+1 − tn+1Pr,n)

(8.5)

To simplify the algorithm, only the points above zero are used for the y-centroid
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calculation. Also, to close a polygon the value of Pr,N+1 at n = N is set equal to the

value of Pr,1 in Equation (8.3) and Equation (8.5), and to ensure the area cancellation,

the value of Pr,N and Pr,1 is set to zero, i.e. Pr,1 = Pr,N = 0.

Now, given the energy E and the centroid of the polygon (Cx, Cy), the pulse width

of a signal can be obtained by

∆tw =
E

Fc · Cy
. (8.6)

8.1.3 Estimation of Arrival Time

After the determination of the hypothesis of a signal, the arrival time of return

pulses should be estimated. A simple way for the estimation is to use the timestamp

of the peak of a pulse. However, the noise on the peak of a signal could impact

the measurement accuracy, and the result is also limited by the ADC resolution.

Alternatively, we can approximate the lateral position of the peak by the x -centroid

of the signal, and use the timestamp of Cx as the arrival time:

tSTOP = Cx. (8.7)

In this case, the resultant TOF and distance measurement is much less sensitive to the

noise near the peak of the signal, and an arrival time smaller than the ADC resolution

can be resolved. To further improve the measurement accuracy, one can also use the

data above the ADC threshold instead of the data above zero for Equation (8.7). The

rational is that the data points above the threshold contain less noise than the data

covering leading and falling edge regions. For a detailed discussion of using different

data sets, please refer Section 8.2.2. It should be noticed that one should not use only

the data above the threshold to calculate the y-centroid of a signal, since the constant

factor Fc only holds for the data points that covers the entire Gaussian curve.
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8.2 Application to Simulated Signals

8.2.1 Simulation

The performance of the benchmark detection and estimation algorithm was stud-

ied. The arrival time of the return signal was measured by the benchmark algorithm

and the arrival time of the transmit signal (start time) was measured by a peak detec-

tion algorithm. Since the transmit signal is noise-free, the usage of the peak detection

will not affect the TOF measurement. A Monte-Carlo experiment was performed on

500 observations of return signals generated by the propagation and receiver model,

and 500 observations of pure white noise. The parameters used in the above models

are given in Table 4.1 and Table A.1. The tested SNR ranges from 60 dB to 8 dB.

Both edge and level trigger modes were tested. The settings of the trigger modes are

given in Table 8.1, in which s is the number of bins that a signal contains above the

ADC threshold and the value is depended on the signal amplitude. Also, the number

of bins is set to be sufficiently large to cover the 1/e2 width of the Gaussian pulse.

Sparse random outliers can occur on the signals. Therefore, the signals are filtered

Table 8.1: Settings of ADC Trigger Modes

Trigger mode Edge Level

Length of precursor (bins) 1 1 1 2 3

Collection-length (bins) 4 5 s1

Length of post-cursor (bins) - - 1 2 3

Total length (bins) 6 7 2 + s 4 + s 8 + s

Physical length (ns) 19.2 22.4 6.4 + 3.2s 12.8 + 3.2s 25.6 + 3.2s

1Variable s is signal dependent.
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by a median filter with a kernel with a size of 3 to reduce the effect of the noise on

the detection algorithm. The small size of kernels was used to avoid distortion of the

signal by the filter.

8.2.2 Results and Discussion

Pulse width measurement

The pulse width of return signals with different SNR’s was calculated, and the results

are given in Figure 8.4a. In the figure, the number after the trigger mode indicates

the collection-length in bins for edge-triggering and the number of bins of precursor

and post-cursor for level-triggering. The results show that for a particular trigger
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Figure 8.4: (a) Pulse Width Measurement and (b) Probability of Detection.
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setting the pulse width increases/decreases with the SNR, and at the same distance

(SNR) the pulse width increases with the length (number of bins) of the signal. These

trends apply to both edge-triggering and level-triggering. The reason for the trends

is that the amplitude of the signal decreases with distance, and the edge-triggering

samples a constant length of a signal. Therefore, a larger portion of the leading and

falling edge of the signal was captured for a signal from a longer distance, which lowers

the y-centroid of the signal. Additionally, as the distance increases, the leading and

falling edge of the signal become noisier. Also, the noise contributes to a large area

at the lower portion of the signal which reduces the y-centroid. On the other hand,

the measured area under the Gaussian curve remains almost constant as the positive

and negative areas induced by the noise were canceled. Therefore, the pulse width

increases according to Equation (8.1), and more data points captured by the ADC

give a longer pulse width. The same reason applies to the edge-triggering as well.

Level-3 triggering that captures more data points gives a longer pulse width than

the other two. As the SNR decreases, the edges of a signal become noisier, which

increases the pulse width for level-2 and level-3, respectively. An exception is level-1,

which captures the smallest portion of the edges. In this case, the effect of the noise

on the pulse width is the minimum. However, on the other hand, the small size of the

precursor and the post-cursor truncates the Gaussian pulse, which results in a rise of

the y-centroid of the signal and therefore, a smaller pulse width.

Probability of detection and probability of false alarm

The PD’s were calculated using the same return signals for the pulse width calculation,

and the PFA’s at different trigger modes and ADC-trigger thresholds were computed

using 500 noise signals generated by the receiver model with laser pulse turned off.

The results of PD is shown in Figure 8.4b. From the results we observe that the
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probability of detection remains greater than 99% at an SNR of 30 dB. Moreover,

all the trigger modes give a probability of false alarm of zero for the ADC trigger at

3x the noise floor and 2% for the trigger at 1x the noise floor. The reason is that

the first metric (NaT) is the dominant factor of the PFA. Since the noise is white,

the randomness of the white noise makes it unlikely for the NaT of noise to exceed

toleration range. The median filter also removes the outliers that could cause a false

detection. Based on the probability of detection and false alarm, we conclude that the

detection algorithm that uses the number above the threshold and the pulse width of

a signal as the metrics demonstrates a high performance on the signal detection for

SNR larger than 30 dB. For lower-SNR (long distance) signals, the increased pulse

width reduces the probability of detection. However, if the trigger mode and the

length of the precursor and post-cursor is selected properly (e.g. level-1), the SNR

can be extended to 23 dB with Pd = 99% and 19 dB with Pd = 92%.

Accuracy and RMS error of distance measurement

The accuracy (mean error) and the RMS error of the distance measurement using the

benchmark estimation algorithm are also evaluated on the 500 observations of the

return signal at different distances using both edge and level triggering. The mean

error ∆d and the RMS error σd are defined as

∆d =
1

M

M∑
m=1

(dmeas,m − dGT )

σd =

√√√√ 1

M

M∑
m=1

(dmeas,m − dmeas)2

(8.8)

where dmeas,m is the distance measurement of the m-th observation of the total M

observations, after converting the measured TOF to distance. dmeas is the average

distance measurement over the M observations for a certain distance and dGT is the
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corresponding ground-truth distance. The results of the errors are shown in Figure 8.5

and Figure 8.6.

From the results, we notice that the mean distance error for the edge triggering

using data above zero presents a negative or positive bias. The reason is that at a low

SNR the noise on the signal could cause an early triggering on the signal and since

the edge-triggering samples a constant length of a signal, a longer leading edge and a

shorter falling edge of the signal are captured. The asymmetric signal with respect to

the vertical center line of the Gaussian pulse causes the left-shift of the x-centroid and
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Figure 8.5: Results of Edge-Trigger Mode (Edge-1 and Edge-2): (a) Mean Error and

(b) RMS Error. Distance calculated using data greater than zero is shown in the solid

lines and using data greater than the ADC threshold is shown in the dashed lines.
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Figure 8.6: Results of Level-Trigger Mode (Level-1, Level-2, and Level-3): (a) Mean

Error and (b) RMS Error. Distance calculated using data greater than zero is shown

in the solid lines and using data greater than the ADC threshold is shown in the

dashed lines.

consequently, earlier arrival time and shorter target distance. Figure 8.7a illustrates

the left-shift of the x -centroid of the signal, in which the blue star stands for the

x -centroid using data greater than zero and the red star represents the x -centroid

of a corresponding noise-free signal. The blue star is shifted to the left of the red

star because of the larger portion of leading-edge included in the signal. Setting a

longer length of the precursor and post-cursor to cover a longer falling edge could

partially reduce the left-shift. An example is shown in Figure 8.7b, in which the

163



same signal is sampled by twice the length of the precursor and post-cursor used in

Figure 8.7a. In this case, the blue star moves closer to the red star. However, since the

trigger position on the signal is random and difficult to predict, a longer falling edge

could also cause a right-shift of the x -centroid and a further target distance (solid

red line in Figure 8.5). An example of the right shift of the x -centroid is provided in

Figure 8.7b, in which the blue star shifts to the right of the red star because of the

longer falling-edge captured by the ADC.

Adjusting the length of the precursor and the post-cursor of the edge-trigger is

not an optimal solution to the negative/positive bias of the distance measurement

due to the randomness of noise. An alternative solution is to use the data above

the ADC threshold rather than the data greater than zero. The benefit of using

those data points is that most of the data points above the threshold belong to the

Gaussian pulse instead of the noise, and they have symmetrical distribution around

the vertical center line of the pulse. In this case, the x -centroid is calculated from

symmetric signals. The results of using data above the threshold are shown in the

dashed lines in Figure 8.5, which presents reduced bias compared to the results using

the data points above zero. Contrary to the edge-triggering, the positive/negative

bias does not appear to affect the results of level-triggering (Figure 8.6). The reason

is that the nature ofcxcxcxc the level-triggering is to capture the data points above

the threshold and symmetric signals are captured in the x -centroid calculation.

From the comparison of the RMS error of edge-1 and edge-2 (Figure 8.5b), we

observe that the edge-2, that covers a larger portion of the pulse yielded a smaller

RMS error. The reason could be that the more samples at the falling edge of signals

compensate for the random early-triggering at the leading edge, so the fluctuation of

distance measurement is reduced. However, the length should be chosen with caution

to avoid positive or negative bias on the distance measurement. Level-triggering is

164



less affected by the early-triggering at the edges, but it is sensitive to the noise at

the edges. Therefore, signals with fewer samples included at the edges have better

precision (smaller RMS error), which is evidenced by Figure 8.6b. Also, notice that

the level-triggering generally gives better precision than edge-triggering. The RMS

error due to using data greater than zero and data above the ADC threshold are also

compared. The results of both edge-triggering and level triggering show the former

gives a larger RMS error, due to noise which is included in the signal and causes a

larger fluctuation on the x -centroid measurement.
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(a) Left-Shift

(b) No-Shift
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(c) Right-Shift

Figure 8.7: Examples of Signals with Different x -centroid Shifts (Edge-Triggering).

Case (a) and (b) are from the same signal with different trigger settings, and Case

(c) is from a different signal. SNR=20.41 dB in all the cases. The trigger settings

are: (a) edge-1, (b) edge-2, and (c) edge-2.
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Chapter 9

ANALOG-TO -DIGITAL CONVERTER: NEYMAN-PEARSON DETECTOR

The Neyman-Pearson(NP) detector was first introduced by Jerzy Neyman and Egon

Pearson, and has shown to be the favorible detector for radar/ laser signal detection

(Neyman and Pearson, 1933; Kay, 1998). The NP detector has been widely utilized

in many applications like range sensing, medicine, nuclear energy, and gravitational-

wave astronomy (Hoover et al., 2000; Bousselham and Bohm, 2007; Grönwall, 2006;

Grönwall et al., 2007; Gu and Tjahjadi, 2002; Jordan, 2009; Roman et al., 2000; Ofek

and Zackay, 2018; Vio and Andreani, 2018). In general, the NP detector conducts a

likelihood ratio test (LRT) to determine the existence of a known deterministic signal

(i.e. a signal that has no unknown parameters), and a generalized likelihood ratio

test (GLRT) for detection of signals with unknown parameters. In our case, since the

arrival time and the amplitude of the return signal are unknown, a GLRT is utilized.

According to maximum likelihood estimation, the arrival time can also be derived

during the detection process (Kay, 1993). Therefore, the detection and estimation

problem are combined by using the NP detector. The problem is defined in the next

section.

9.1 Problem Definition

Hypothesis H1 states the signal ~x = {x[0], x[1], . . . , x[n]} collected by an ADC

is Gaussian distributed white noise. Hypothesis H1 states that the signal is the

summation of the noise-free return pulse with unknown amplitude and white noise
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following another Gaussian distribution. Symbolically,

H0 : x[n] = w0[n] n = 0, 1, . . . , N − 1

H1 : x[n] = As[n− n0] + w1[n] n = 0, 1, . . . , N − 1

(9.1)

where ~w0 = {w0[0], w0[1], . . . , w0[n]} and ~w1 = {w1[0], w1[1], . . . , w1[n]} are the white

noise underH0 andH1. Each sample of ~w0 and ~w1, w0[n] and w1[n], has a varianceW0

and W1, respectively. The signal ~s is the template of the transmit signal normalized

to unit amplitude which is also called the kernel. The kernel has a size of M and is

scaled by a unknown amplitude A representing the attenuation of the signal during

the propagation and reflection. The index n represents the timestamp of the n-th

sample of the signal with a size of N , and n0 stands for the unknown arrival time.

The time period [0, N − 1] should cover the signal for all the possible arrival time,

i.e. n0 ∈ [0, N −M ].

Note in Equation (9.1), the noise on each sample is approximated to be Gaussian

distributed, even though the shot noise follows a Poisson distribution. This approxi-

mation is explained in Wall (1979) that, despite the fact that the incident number of

photons follows Poisson statistics, the distribution is reduced to Gaussian if a photon-

detector integrates sufficient number of photons (> 10) per integration period. Since

the collected number of photons is far beyond 10 in our case, the Gaussian approxima-

tion is valid. In addition, the white noise ~w0 and ~w1 usually have different variances

because the shot noise induced by the laser pulse also contributes to the variance of

W1. However, the shot noise is amplitude dependent and the amplitude of incident

signals is unknown, so the W1 is usually unavailable. Therefore, the ~w0 and ~w1 are

assumed to be identical and denoted by ~w in this study. The samples in the white

noise ~w has a variance W . In next few sections, we will see that this approxima-

tion does not affect the probability of false alarm and has negligible influence on the

probability of detection.
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9.1.1 Neyman-Pearson Theorem

In this section, we introduce the Neyman-Pearson theorem which allows us to

decide the hypothesis of a signal. The Neyman-Pearson theorem states that, to

maximize the probability of detection (PD) Pd of a signal for a given probability of

false alarm (PFA) Pfa = α, decide H1 if the generalized likelihood ratio LG(~x) is

greater than a threshold γ; otherwise, decide H0:

LG(x) =
p(~x; n̂0, A,H1)

p(~x;H0)

H1

≷
H0

γ. (9.2)

The threshold γ can be derived from the definition of the PFA

Pfa =

∫
{~x:LG(~x)>γ}

p(~x;H0)d~x = α, (9.3)

and the PD can be obtained by:

Pd =

∫
{~x:LG(~x)>γ}

p(~x; n̂0, A,H1)d~x. (9.4)

The probability density distribution (PDF) of signals with unknown parameters n̂0

and A under hypothesis H0 and H1 are denoted by p(~x; n̂0, A,H1) and p(~x;H0), re-

spectively. n̂0 is the estimation of the arrival time n0 to be determined. Equation (9.2)

is called the generalized likelihood ratio test (GLRT), which evaluates if the likelihood

of a signal being H1 versus being H0 satisfies the required PFA. After mathematical

reorganization, the left-hand side of Equation (9.2) is reduced to (The derivation is

provided in Appendix D):

Tmax = T (x[n̂0]) =

n̂0+M−1∑
n=n̂0

x[n]s[n− n̂0], (9.5)

and the right-hand side is reformed to

γ′ =
A

2

M−1∑
n=0

s2[n] +
W ln γ

A
. (9.6)
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Equation (9.3) can be expressed as

Pfa = Pr(T (~x) > γ′;H0). (9.7)

In the above equations, T (~x) is the test statistic which needs to be calculated. Equa-

tion (9.5) indicates the GLRT first calculates the cross-correlation T (x[n0]) of the

signal ~x with the kernel ~s for all possible n0. Then, the GLRT finds the maximum

value of T (x[n0]) at n0 = n̂0, denoted by Tmax. By comparing the Tmax with the

threshold γ′, the presence of the pulse can be determined. Mathematically, the Tmax

can be expressed by

Tmax = max
n0∈[0,N−M ]

T (x[n0]) = max
n0∈[0,N−M ]

n0+M−1∑
n=n0

x[n]s[n− n0], (9.8)

and the GLRT (Equation (9.2)) becomes

Tmax
H1

≷
H0

γ′. (9.9)

If the pulse is present, the arrival time n̂0 can be estimated as the timestamp of Tmax,

such as

n̂0 = argmax
n0∈[0,N−M ]

T (~x). (9.10)

Equations (9.8) to (9.10) represent the core equations for signal detection using

Neyman-Pearson Theorem, and such a detector is called NP detector, ormatched filter

(MF). In this work, the NP detector and matched filter are used interchangeably.

In practice, T (~x) can be obtained from the correlation between the signal and the

kernel, or convolution of the signal with the conjugated time-reversed kernel s′[n]. In

other words, at each timestamp n, the convolution T (x[n]) can be obtained by

T (x[n]) =
n∑

m=0

x[m]s′[n−m]

s′[n] = s[N − 1− n]

(9.11)
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The correlation and the convolution approach are proved mathematically equivalent

to each other (Kay, 1998). The major difference is the way of implementation. The

correlation approach utilizes multipliers followed by an integrator, while the convo-

lution approach (MF) is an finite impulse response filter. Both approaches will give

us the same final results. For simplicity, the convolution approach is applied in this

dissertation.

9.1.2 Fast Fourier Transform Approach

The convolution approach of the NP detector can be achieved by sliding the kernel

over a signal in the time domain (sliding-window approach, or SW approach). How-

ever, the time complexity is equal to O(MN) (M and N are the respective number of

samples in the kernel and the signal), which means the NP detector could be compu-

tationally intensive if the signal contains a large number of sample points. Therefore,

an alternative approach is necessary for such situations or real-time computation is

a demand. Since the convolution of two signals in the time domain is equivalent to

a dot product of the Fourier transform of the two signals in the frequency domain,

Equation (9.11) can be implemented in the frequency domain by using a fast Fourier

transform (FFT). This approach is called the FFT approach. Mathematically,

X = F [~x]

S = F [~s]

Y = X · S

T (~x) = F−1[Y ]

(9.12)

where the variable X, S, and Y are the Fourier transform of signal ~x, ~s and T (~x)

in the frequency domain. The symbols F and F−1 are the Fourier transform and

inverse-Fourier transform operators. Since the time complexity of an FFT operation
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is O(N logN), the computational cost is dramatically reduced. Using FFT with

zero-paddings can also resolve arrival time finer than the ADC sampling interval.

The zero-padding technique is to add zeros to signals in time or frequency domain,

so that the sampling rate of signals in frequency or time domain increases after the

Fourier transform or the inverse-Fourier transform. In an FFT operation without

zero-padding, if the number of samples of a signal in frequency domain is equal to

the number used in the FFT in the time domain, the resolution of the signal is

unchanged, i.e. there is no improvement in the resolution. However, for a signal

having N samples (sampling rate of 1/N) in the time domain, if N zeros are padded

at the end of the Fourier transformed signal in the frequency domain (assuming

the frequency is centered around zero), the inverse-Fourier transformed signal (time

domain) will have 2N samples. Since the time range is unchanged, the resolution

of the signal is doubled. Furthermore, the FFT is most efficient when the number

of samples in a signal is an integer power of two, which means zero padding in the

time domain is also necessary for signals that have varying lengths. Note that the

time-domain zero-padding only extends the length of the signal rather than increases

the signal resolution.

The application of zero-padding to an FFT is explained next with a demonstration

given in Figure 9.1. In this demonstration, the original signal ~x has N = 21 samples,

and the kernel has M = 5 samples. First, we zero-pad the signal ~s and ~x to the total

length of the two signals (M + N − 1 = 25) in the time domain. If the total length

(M+N−1) is not a power of two, additional zeros are padded to achieve the smallest

power of two larger thanM+N−1. The length is denoted by Lp2 = 32 (Figure 9.1a).

The second time-domain zero-padding is to ensure the maximum efficiency of the

FFT. After an FFT and centering the spectrum around zero, KLp2 zeros are added

to the dot-product Y (KLp2/2 zeros at the tail on each side), in which K is an
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Figure 9.1: Demonstration of FFT with Zero-Padding in the Time Domain and Fre-

quency Domain. Only zero-padding on signal ~x is shown in (a). In (c) the convolution

result T (~x) has been truncated to (K + 1)N = 42 length of the original signal ~x.

non-negative integer and K = 1 in Figure 9.1. After the zero-padding in frequency

domain, the length of the resultant signal is extended to (K + 1)Lp2 = 2Lp2 = 64

(Figure 9.1b). Then, the resultant signal is converted back to the time domain using

an inverse-FFT, and the length of the signal remains the same. The convolution result

T (~x) has additional zeros due to the time-domain zero-padding at the first step, so

the additional zeros are removed from the convolution result. After the zero-removal,

the length of the result T (~x) becomes (K + 1)(M + N − 1) = 42 (Figure 9.1c), i.e.

the resolution increases K + 1 = 2 times than the SW approach. Accordingly, the
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initial time interval ∆t is reduced to ∆t/(K+ 1) = ∆t/2. Note that the length of the

convolution result is (K + 1)(M + N − 1), larger than length of the new time series

((K + 1)N) at this step, so only the center portion of the convolution result is kept,

so that both the length of the convolution result and the time series are the same

((K + 1)N). Additionally, since the amplitude of the convolution result is reduced

due to the frequency-domain zero padding, the amplitude of T (~x) has to be amplified

(K + 1) times to remain the original amplitude. After the zero-padding in the time

domain and the frequency domain, we can see in Figure 9.1c, the resolution of the

convolution result is doubled.

9.1.3 PDF’s of T (~x)

The threshold γ′ needs to be determined in a NP detector, and it can be achieved

using Equation (9.7) given a PFA Pfa = α. Therefore, the PDF’s of T (~x) under both

hypothesis H0 and H1 are required. Since T (~x) is a linear combination of Gaussian

distributed variables, the PDF’s of T (~x) should also follow a Gaussian distribution.

The estimation of the mean µ̂ and the variance σ̂2 for hypothesis H0 and H1 are given

below (derivation is given in Appendix D):

µ̂0 = 0

σ̂2
0 = W

∑
n

s[n]2

µ̂1 = A
∑
n

s2[n]

σ̂2
1 = W

∑
n

s2[n],

(9.13)

and the PDF’s of T (~x) follow

H0 :T (~x) ∼ N(µ̂0, σ̂
2
0)

H1 :T (~x) ∼ N(µ̂1, σ̂
2
1).

(9.14)
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After normalization by the mean and standard deviation, the normalized test statistic

T ′(~x) = T (~x)−µ̂
σ̂2 follows the standard normal distribution N (0, 1).

9.1.4 Estimation of Threshold γ′

Having the PDF of T (~x), Equation (9.7) can be expressed by

Pfa = Pr(T (~x) > γ′;H0)

= Pr(T ′(~x) >
γ′ − µ̂0

σ̂0

;H0)

= Q(
γ′ − µ̂0

σ̂0

),

(9.15)

where

Q(x) =

∫ ∞
x

1√
2π

exp(−1

2
t2)dt

=
1

2
[1− erf(

x√
2

)]

=
1

2
erfc(

x√
2

)

= 1− Φ(x),

(9.16)

and Φ(x) is the cumulative distribution function (CDF) for a standard normal dis-

tributed variable, and Q(x) is the complementary cumulative distribution function

(CCDF). Then, we can derive the expression of γ′

γ′ = σ̂0Q
−1(Pfa) + µ̂0. (9.17)

Here, we can see the PFA is not a function of the amplitude A or the variance ~w1,

which means PFA will not be affected by the signal amplitude or the variance under

H1.
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The theoretical PD can be obtained from Equation (9.4)

Pd = Pr(T (~x) > γ′; n̂0, A,H1)

= Pr(T ′(~x) >
γ′ − µ̂1

σ̂1

; n̂0, A,H1)

= Q(
γ′ − µ̂1

σ̂1

)

=
1

2
erfc(

γ − µ̂1√
2σ̂1

).

(9.18)

Plugging Equation (9.17) in Equation (9.18), we have

Figure 9.2: Schematic of the PDF’s of T (~x) under H0 and H1 and the Deflection

Coefficient d2. (Figure is adapted from Kay (1998)).
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Pd = Q(Q−1(Pfa)−
√
d2) (9.19)

d2 =
A2s2[n]

W
, (9.20)

where d2 is the deflection coefficient, which can be interpreted as the separation be-

tween the PDF of T (~x) under H1 and that under H0. The deflection coefficient is

illustrated in Figure 9.2. From the figure, we can see if the deflection coefficient is

large, the position of the threshold has less impact on the PD, and the detector is ap-

proaching a perfect detector (Pd = 1). However, the deflection coefficient is a function

of the amplitude A and variance Wof a signal, which means the smaller amplitude

and larger variance could move the two PDF’s closer which causes a decrease of PD.

9.1.5 Procedure of the NP Detector

Now, we summarize the procedure of using a NP detector for the signal detection

and estimation:

1. find the kernel s[n];

2. find the variance of noise x[n];

3. calculate the PDF’s of the test statistic T (~x) (Equation (9.13));

4. calculate the threshold γ′ for T (~x), given a predefined PFA (Equation (9.17));

5. calculate T (~x) over all possible n0 using SW approach or FFT approach (Equa-

tion (9.8)). Find Tmax and the corresponding n̂0 (Equation (9.10));

6. compare Tmax with γ′, and decide the hypothesis of the signal (Equation (9.9));

7. if H1, estimate the arrival time n̂0 (Equation (9.10)).
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9.2 Application to Simulated Signals

In this section, the application of the NP detector to noise and pulse signals was

studied. The experiment design will be introduced first followed by the results and

discussion.

9.2.1 Study Cases

A case with pure noise signals and one with noisy return pulses were studied in

this work. For both cases, the ADC threshold was set 3x noise floor above zero, and

the edge-trigger model with a precursor length of 1 and the collection length of 5 was

used. More details of the two cases are explained below.

Case 1: noise (laser off)

For the case of noise, 1000 observations of pure noise signals (with the laser turned off)

were generated by the receiver model with a sampling rate of 100 GHz as suggested

in Section 3.3.

Case 2: pulse

Return signals reflected from targets at different distances were tested for the case

with the laser on. The distance ranges from 5 m to 60 m with an increment of 5 m

and the corresponding SNR ranges from 44.4 dB to 1.27 dB. For each distance, 1000

return signals were generated by the pulse model, the propagation model, and the

receiver model. The process of moving averaging and subsampling is the same as in

Case 1.
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9.2.2 NP Detector

The NP detector was used for signal detection and TOF calculation. The arrival

time of the return signal was measured by the NP detector and the arrival time of the

transmit signal (start time) was measured by a peak detection algorithm. Since the

transmit signal is noise-free, the usage of the peak detection will not affect the TOF

measurement. The kernel of the NP detector was obtained from the pulse model with

the amplitude normalized to one. The PFA is set to 0.001 which is a typical value

for a laser range finder (Burns et al., 1991). In Case 1, the variance W is calculated

dynamically from each observation, meaning the threshold is dynamic for the NP

detector. In Case 2, as mentioned in Section 9.1, the variance W1 is assumed to be

equal to W0, i.e. W1 = W0 = W . The PDF’s of the T (~x) and the threshold can be

obtained from Equation (9.13).

9.2.3 Results and Discussion

Threshold

The threshold for the NP detector is determined by the STD of the H0 signals σ2
0, and

different ways of calculating the STD results in different PFA’s. The STD of the noise

signal can be obtained from the datasheet of an electronic device or measurement of

an oscilloscope or signals collected by an ADC. A comparison of the STD obtained

from signals before ADC sampling (analogous to oscilloscope measurements) and

after sampling (analogous to signals collected by an ADC) is shown in Figure 9.3.

The figure shows the before-sampling signals have a smaller STD compared to after-

sampling signals, which results in a lower threshold, and consequently a high PFA.

The reason for the difference of the STD is that the ADC only samples a limited

number of data points from analog signals, and the variance of the subset of a signal
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Figure 9.3: The STD of 1000 Noise Signals before ADC Sampling (Red) and after

ADC Sampling (Blue).

is usually higher than the entire analog signal. Consequently, the threshold for a given

PFA is underestimated by using the STD of before-sampling signals. Therefore, to

achieve the given PFA, the STD of the H0 signals should be calculated from the

signals collected by an ADC, rather than before the ADC sampling, from oscilloscope

measurements or the datasheet of an electronic device.

Probability of false alarm

A Monte-Carlo simulation was performed on 100 tests, each of which contains 1000

observations of noise (Case 1). The PFA of each test was measured, and the average

PFA was obtained by averaging over the PFA’s of the 100 tests. The resultant Pfa,aveg
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is equal to 0.08 with an STD of 0.025. The measured PFA is higher than the predefined

value (0.001). The reason is described in the following. T (~x) is the convolution of the

kernel and the signal at a single position n0 (n0 ∈ [0, N −M ]) (Equation (9.8)). T (~x)

is referred to as ’single pass’ in this work and the ’pass’ means how many convolutions

are made in the sliding window process (taking the SW approach for example). On the

other hand, Tmax is the maximum of T (~x), meaning it results from p passes of T (~x),

and p depends on the length of the single and the kernel. The calculated threshold γ′

using the predefined PFA is for an LRT on signals with known arrival time n0 = n̂0.

In other words, the threshold is used to compare with a single pass T (~x) rather than

Tmax. However, the arrival time is unknown in our study, so convolutions have to be

conducted over the entire signal (p passes). In that case, the random noise on the

signal is more likely to exceed the threshold and be detected as a pulse. Kay (1998)

gives an estimation of the measured PFA in this situation that, the measured PFA is

approximately to be p times the predefined PFA. In our case, the kernel and the signal

have the same length of 54 samples, resulting in p = 54 × 2 − 1 = 107. Therefore,

we should expect the measured PFA is approximately 0.1 (p× 0.001 ≈ 0.1) which is

close to our simulation result (0.08).

Probability of detection

All the signals in Case 2 give Pd = 1. The reason is that even though the PD is

theoretically dependent on the amplitude of the signal Equation (9.19), the deflection

coefficient is large, even for low-SNR signals. A signal observation with an SNR of

1.31 dB is shown in Figure 9.4 along with the convolution results and the threshold.

In the example, the square root of the deflection coefficient (d = 15.7) is much larger

than the normalized threshold (γ′/σ0 = 3.09), which means the PDF of hypothesis

H1 is separated from that of the hypothesis H0. One can also use the maximum
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The maximum value of the convolution result is still higher than the threshold.

likelihood estimation (MLE) to estimate the amplitude of the signal to reduce the

effect of the amplitude on the PD (Kay, 1998):

A =

∑N−1
n=0 x[n]s[n]∑N−1
n=0 s

2[n]
(9.21)

However, since the Pd is already equal to 1 in our case, the MLE estimation is skipped,

but it could be an option for readers who have situations that have a smaller ampli-

tude, and a high PD is needed.
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The hollow markesr indicate the results without filtering, and the solid markers denote

the results after filtering.

Accuracy and precision

The mean error and the RMS error are calculated to evaluate the performance of the

NP detector. Both the sliding-window and FFT approaches were applied. Also, to

reduce the effect on the noise on the measurement, a 3rd order Butterworth low-pass

filter with a cutoff frequency of 0.4 GHz and a sampling rate of 2.5 GHz was applied

on both START and STOP signals, which reduces the phase shift caused by the filter.

The results are shown in Figure 9.5. From the result of the mean error, we can see
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the FFT approaches have a smaller mean error than the SW approach, and a larger

number of zero-padding gives even better accuracy. The reason is that the mean

error is affected by the resolution of the signal. The sliding-window approach has the

coarsest resolution, so any errors caused by the noise is at least 0.4 ns (0.06 m). On

the contrary, the FFT-approach refines the resolution 5 and 10 times than the sliding-

window approach, which results in a less mean error and the FFT-10 provides the

least mean error. Additionally, the low-pass filtering slightly reduces the mean error

for long distance. The comparison of the effect of the resolution on the measurement

accuracy between different approaches is given in Figure 9.6 and Figure 9.7. From the

figure we can see because of the finer resolution, the peak position of FFT-10 is closer

to the ground-truth position than FFT-5, and the peak position of the sliding-window

approach has the largest separation from the ground-truth.

From the RMS error, we notice that the sliding-window has better precision than
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the FFT-approaches for a shorter distance, but the precision becomes worse as the

distance increases. The difference also results from the resolution of the result. At a

short distance, the signal is less, and the samples of a signal are more separated for

the sliding-window approach than the FFT’s, so the peak of the convolution result

is less challenged by the adjacent points, which results in smaller variation of the

time(distance) calculation. On the contrary, the samples at the top portion of the

signal are likely to have similar values for the FFT approaches, due to the smaller

separation between the sample points, which results in a larger variation of the peak

position, and consequently, larger RMS error. On the other hand, as the distance

increases, the signal becomes noisy, so the values at the top portion of the result from

the SW-approach also become competitive, which increases the variation of the peak

position. Therefore, the larger time interval between the samples of the SW approach

than the FFT approaches results in a larger RMS error of the former one. The low-
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pass filter improve the precision of both approaches (the RMS errors reduce to less

than 1 cm). Also, note that the RMS error of the SW approach becomes smaller than

the one of the FFT approaches at a longer distance. It is because the low-pass filter

reduces the noise of the signal, which makes the adjacent points at the top portion

of the result of the SW approach less competitive (similar to the situation for short

distance). Therefore, the variation of the peak position of the SW approach decrease.

9.3 Application to Experimental Signals

The NP detector was also applied to real signals collected by the ADC installed

on the prototype lidar. The experiment design including the experimental setup will

be introduced first in this section, followed by the results and discussion.

9.3.1 Experimental Setup

The setups for an ADC and oscilloscope experiment are given in Figure 9.8. The

RF attenuator for the ADC experiment is to reduce the return voltage to less than

the upper limit of the ADC input. In this study, off-line MATLAB scripts serve as

the digital signal processor (DSP) in Figure 9.8b. In a real-time mode, the MATLAB

scripts would be replaced wit a DSP or onboard ADC programs.

9.3.2 Study Cases

Case 1: noise (laser off)

For Case 1, the ADC threshold was set to 3x the noise floor, and the edge-triggering

with precursor length of 5 and the collection length of 40 were used. The settings

guarantee sufficient data points are collected in each observation. During the experi-

ment, there are 67, 370 noise signals with laser off that were collected from the START

channel of the ADC and 73, 133 noise signals collected from the STOP channel. The
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(a) Oscilloscope

(b) ADC

Figure 9.8: Experimental Setups of TOF Measurements using an (a) Oscilloscope (b)

ADC.
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START and STOP channels contain multiple types of noise including white noise,

temporal-structured noise, and frequency-structured noise. Examples of the noise

in the START channel are given in Figure 9.9 with the corresponding spectrum for

which the DC component of the time-domain signal was removed beforehand. Due

to the random appearance, the Ramp-Noise I is a temporal-structured noise. The

1.22GHz-Noise is almost white, but it has a high-frequency oscillation at 1.22 GHz.

The STOP channel contains two frequency-structured noises with a frequency

of 200 MHz and 645 MHz in addition to the 1.22GHz-Noise. The two frequency-

structured noises are named 200MHz-Noise and 645MHz-Noise, respectively. In addi-

tion, the STOP channel also has a ramp-like Noise, called Ramp-Noise II. Examples

of the 200MHz-Noise, 645MHz-Noise, and Ramp-Noise II are given in Figure 9.10.

From the figures, we observe that the 645MHz-Noise has a constant appearance, while

the 200MHz-Noise and the Ramp-Noise II occurs occasionally. It means the last two

noises overlap with the 645MHz-Noise noise and appear on top of the 1.22GHz-Noise.

The average STD’s of the noise signals were calculated by averaging over the STD of

each observation. The STD’s of the START and STOP signals are 0.000921 V and

0.0094 V respectively.

Case 2: pulse

In Case 2, different trigger modes with different lengths were used to collect signals

from different target distances. The ADC settings are given in Table 9.1. The ADC

thresholds for the START and STOP channels were set differently, because the am-

plitude of the transmit and return signal is different. The target distances are 1.87 m,

2.11 m, 2.58 m, 3.19 m, 3.66 m, 4.80 m and 5.08 m. For each distance, 20 files each

of which contains more than 1000 observations were collected.

The signals collected at the START and STOP channels were contaminated by the
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Figure 9.10: Noises on the STOP Channel. Top: signal; bottom: single-sided spec-

trum.

noises mentioned in Case 1. Therefore, similar in Section 9.2.3, the same low-pass filter

was applied to the START and STOP signals, and the cut-off frequency is determined

according to the spectrum of the frequency-structured noises (Figure 9.10).

9.3.3 Detection and Estimation Algorithm

The NP detector was applied for the signal detection and TOF estimation, as well

as a peak estimation algorithm for comparison. The centroid detection and estimation

algorithm were not applied in this experiment because the non-Gaussian shape of
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Table 9.1: ADC Settings

Trigger mode Edge Level

ADC threshold (START channel) 530 (8.789 mV)

ADC threshold (STOP channel) 600 (0.043 V)

Precursor (bins) 5 25 5

Collection-length (bins) 40 50 -

Post-cursor (bins) - - 40

Total length (bins) 46 76 46+s1

Physical length (ns) 147.2 243.2 147.2+ 3.2s

the signal (Figure 9.18) makes the algorithm less practical. The peak estimation

algorithm utilizes the timestamp of the peak of the transmit and return signals as the

arrival time, and the TOF is equal to the difference between the times. The TOF of

the signals collected by the oscilloscope was also calculated using the peak estimation

method for comparison.

For the NP detector, the STD of the noise in Case 1 was measured in the same

way as for the simulated signals, meaning the threshold was adjusted dynamically,

and the σ2
1 was assumed to be equal to σ2

0 for Case 2. The PFA for Case 1 and 2

were both set to 0.001. For the real signal experiment, the kernel for the real signals

was not obtained from the pulse model as did in the simulated signal experiment,

since a longer falling edge of the collected transmit and return signal are observed

(Figure 9.18), which makes the signal shape non-Gaussian. One should note that the

pulse transmitted from the laser source is still Gaussian, and the long falling edge is

due to the slow RC response of the detector. Also, the values of the resistance (R) and

1Variable s is signal dependent.
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the capacitance (C) of the detector are not available, which means the kernel cannot

be modeled by a Gaussian pulse model or an RC response. Therefore, we obtained

the kernel from the measurements. We first filtered the collected transmit and return

signals by the low-pass filter to remove the 645MHz-Noise and then averaged the

signals over 1000 observations of the transmit and return signals, respectively, to

reduce the random noise. We also checked the signals to ensure the 200MHz-Noise

contaminated no signals. Then, we used the averaged filtered signals as the kernels

of the respective transmit and return signals, which are shown in Figure 9.11.
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9.3.4 Results and Discussion

Trigger modes

For the trigger modes, both the level-triggering and edge-triggering with different

collection-lengths give the same results using different detection algorithms. The

reason is that all the trigger modes were able to capture the top of the signal where the

TOF is measured from, and the only difference is the length of the leading and falling

edge, which does not influence the TOF measurement. Therefore, only the results of

signals collected by the edge-triggering with a precursor of 25 and a collection-length

of 50 is discussed in this section.

Probability of false alarm

In Case 1, both the signals before and after filtering were used for the PFA measure-

ment. The results are shown in Table 9.2. The results show that the NP detector has

poor performance (Pfa ≈ 20%) on the START signal and applying the low-pass filter

does not make an improvement. The high PFA and large STD are due to Ramp-

Noise I. The Ramp-Noise I occurs randomly, which makes it difficult to include its

fluctuation in the STD measurement and consequently, the threshold was underes-

Table 9.2: PFA of Signals with and without Low-Pass Filtering

Channel Noise Filtering Measured Pfa

START 1.22GHz-Noise, Ramp-Noise I
No 0.207 ± 0.208

Yes 0.201 ± 0.192

STOP
1.22GHz-Noise, Ramp-Noise II No 0.0052 ± 0.0057

645MHz-Noise, 200MHz-Noise Yes 0.2306 ± 0.16
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timated. In that case, when the Ramp-Noise I occurs, the convolution results can

easily exceed the threshold and the Ramp-Noise I was identified as a pulse. Moreover,

since the frequency of the Ramp-Noise I is inside the bandwidth of the pulse, it is not

possible to filter out using a low-pass filter without distorting the pulse. Examples

of the START signals having the 1.22GHz-Noise and the Ramp-Noise I are given in

Figure 9.12 and Figure 9.13 along with the convolution result T (~x).

On the other hand, the NP detector was also challenged on the STOP signals

by the Ramp-Noise II, 645MHz-Noise and 200MHz-Noise. In the STOP signal, the

645MHz-Noise and the 200MHz-Noise have strong amplitude while the Ramp-Noise

II is buried inside the two noises. Therefore, before the low-pass filtering, the PFA

is affected majorly by the first two noises. The NP detector behaved well on the

pure 645MHz-Noise without other noises overlapped. The convolution results of 1112

signals and the corresponding thresholds are shown in Figure 9.14a. In the figure we

can see that the convolution results of most of the signals contaminated by the pure

645MHz-Noise are below the threshold which is because of the consistent appearance

of the 645MHz-Noise. The dynamic STD calculation was able to measure the fluctua-

tion, so that the NP detector can adjust the threshold accordingly and distinguish the

noise successfully. Examples of the signals contaminated by the pure 645MHz-Noise

and the corresponding convolution results and thresholds are given in Figure 9.14b.

However, the NP detector fails on the 200MHz-Noise. An example is shown in

Figure 9.15 in which the No. 664 observation was contaminated by both the 200MHz-

Noise and the 645MHz-Noise. The peak of the convolution result exceeds the thresh-

old due to the high amplitude of the 200MHz-Noise and its random appearance, which

makes it difficult to include the large amplitude in the STD measurements. Also, the

failure of the NP detector on the 200MHz-Noise results in the dramatic variation of

PFA among different files.
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Figure 9.12: 1.22GHz-Noise in the START Channel in Case 1 (Observation No.1).
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Figure 9.13: Ramp-Noise I + 1.22GHz-Noise in the START Channel in Case 1 (Ob-

servation No.70).
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Figure 9.14: 645MHz-Noise + 1.22GHz-Noise in the STOP Channel in Case 1.
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Figure 9.15: 200MHz-Noise + 645MHz-Noise + 1.22GHz-Noise in the STOP Channel

in Case 1 (Observation No.664).
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Figure 9.16: Ramp-Noise II + 645MHz-Noise + 1.22GHz-Noise in the STOP Channel

in Case 1 (Observation No.5).
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The Ramp-Noise II slightly affects the PFA without filtering, since the Ramp-

Noise II is buried inside the 645MHz-Noise. However, when the 645MHz-Noise is

removed by the low-pass filter, the Ramp-Noise II starts to influence the NP detector,

which causes an increase of PFA. An example of the Ramp-Noise II buried inside the

645MHz-Noise and the noise after the low-pass filter is given in Figure 9.16. From the

figures, we can see that it is difficult to observe the Ramp-Noise II before filtering,

but it becomes obvious after the low-pass filter and difficult to be distinguished from

a laser pulse by the NP detector.

Probability of detection

Signals from different distances in Case 2 were tested by the NP detector and Pd = 1

is achieved for all the signals. The same reason for the PD on simulated signals can

be applied here, so it is skipped in this section.

Accuracy and precision

The mean error and the RMS error are calculated by using the peak estimation and

the SW and FFT approaches for the NP detector on the ADC measurements. The

distance errors from the oscilloscope measurement were also calculated. The signals

from different trigger modes were examined for the TOF measurements as well.

Mean error The results of the mean error from different estimation algorithms are

shown in Figure 9.17. All the estimation methods and oscilloscope measurements

give a positive bias of the mean distance from the ground truth distance (i.e. longer

distance than the ground-truth distance), which could be due to the inaccurate mea-

surement of the ground truth. More evidence is given by the constant discrepancy

between the distance measurements of the oscilloscope and the ground-truth distance.
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Figure 9.17: (a) Mean Error and (b) RMS Error of the NP Detector using the SW

and FFT Approaches. The number after FFT (e.g. FFT-5) indicates the times the

resolution is refined. The hollow markers indicate the results without filtering, and the

solid markers denote the results after filtering. (b) is obtained by using the distance

of signals collected by the oscilloscope as the reference for the mean error calculation.
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Therefore, we used the distance measured by the oscilloscope as the ground-truth in

this case, and the resultant mean error is shown in Figure 9.17b.

However, the positive bias still exists even though it is reduced after changing

the reference, and the peak estimation gives less mean error than the NP detectors.

The positive bias could be due to the noise on the peak and the long falling edge of

the measured signals. The noise could make the peak of the ground-truth signal less

detectable, and the long falling edge plateaus the top of the signal, which tends to

move peak towards the falling edge. The different slopes of the falling edge of the

transmit and return signal could also cause the shift of the peak. Specifically, for the

NP detectors, in addition to the flat top of the convolution results, the convolution

with asymmetric kernels and the mismatch of the shape of the kernel with each signal

could be the reasons for the shift. Consequently, the right-shift of the peak will result

in a larger TOF and longer distance measurement.

The peak estimation algorithm has less mean error than the NP detectors, which

could be due to that the peak estimation algorithm is only sensitive to the noise on

the peak. On the other hand, the NP detectors are dependent on the noise on the

whole signal, and the noise on the falling edge of the signal could cause a larger right

shift of the convolution result.

The low-pass makes the mean error worse than the one without filtering. The

reason could be as the noise decreases, the effect of the long falling edge on the

algorithm is larger than the noise at the peak which results in a larger right shift

of the peak. On the other hand, different NP detectors with and without low-pass

filtering give similar mean errors (the difference is less than 1 cm), which demonstrates

effects of the noise on the peak shift of the results of the NP detector. It also shows

that the mean error is dominated by the noise on the signal rather than the resolution

of the results even after filtering.
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RMS error The RMS errors from different TOF estimation algorithms are shown

in Figure 9.17c. The reduction of the RMS error after low-pass filtering demonstrates

that the capability of the low-pass filter on the removal of the out-of-band frequency-

structured noise (645MHz-Noise) and improvement of the measurement precision.

The RMS error of the peak estimation is worse than the NP detector since the peak

estimation is highly sensitive to the noise at the peak of a signal. On the other

hand, the NP detectors weight the noise at the peak by a kernel, which reduces the

effect of noise. Among different approaches of the NP detector, the FFT-approach

has less RMS error than the SW-approach. The reason could be that the signal is

relatively noisy even after low-pass filtering (similar to the long-distance situation in

the simulated signal (Section 9.2.3). Therefore, even though the variation of the peak

position of the convolution result exists in both SW and FFT approaches, the FFT

approaches with a smaller sample separation provide less RMS error.

In the figure, we also observe the RMS error of the oscilloscope measurements is

better than the peak estimation method. The reason could be that the oscilloscope

has a bandwidth of 50 MHz, which works like a low-pass filter and cuts off noise with

frequencies higher than 50 MHz, while the cut-off frequency of the applied low-pass

filter is 0.4 GHz. Therefore, the signal output from the oscilloscope is less noisy than

the one after the low-pass filter, which results in a lower RMS error.

From the previous discussion, we can see the noise at the peak of a signal needs to

be treated carefully for the peak estimation algorithm and the NP detector, and a low-

pass filter is a powerful way of removing any out-of-band frequency-structured noise

and improve the measurement precision. Moreover, an ADC with a high sampling

rate is required to achieve higher precision. On the other hand, to achieve a high

measurement accuracy, asymmetric signals or kernel should be avoided which requires

a faster detector that has a fast RC response and allows symmetric output signals.
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9.4 Comparison between Benchmark Algorithm and NP Detector

After the description of the benchmark and NP signal detection and estimation

algorithm, their advantages and shortcomings are discussed in this section. The algo-

rithms were compared from the aspects of measurement accuracy and precision, the

probability of detection and probability of false alarm and their application limita-

tions.

From the comparison of the mean error of the benchmark algorithm and the

NP detector, the FFT approach of the NP detector shows the most accurate TOF

measurements even at very low SNR. The benchmark detection with level-triggering

also provides decent accuracy at high SNR, but the accuracy decreases at low SNR. On

the other hand, the SW approach of the NP detector can only resolve the arrival time

larger than the signal time interval. In terms of precision, the benchmark algorithm

provides the worst precision due to its sensitivity to noise, while the SW and FFT

approaches in the NP detector give a better precision especially at low SNR. The

application of a low-pass filter also improves the precision.

In terms of signal detection, the benchmark algorithm provides a lower PFA than

the NP detector on random noise. The reason is that the benchmark algorithm is

almost immune to white noise that has either Gaussian distribution or random strong

spike. However, the NP detection is highly dependent on the measurement of the noise

floor. If the noise is not well characterized, the NP detector fails. Moreover, both

the benchmark algorithm and the NP detectors fail on poor characterized structured

noise. The detection of H1 signals is opposite. The NP detector has perfect detection

of weak signals of interest. However, the pulse width calculation of the benchmark

algorithm is highly sensitive to noise, so the calculated pulse width is likely not to

stay within the criteria at low SNR, which degrades the capability of detection of
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weak signals.

The benchmark and the the NP detector have different requirements to achieve

a desired performance. The NP detector has a limitation to identify poorly char-

acterized noise. Thus, an accurate measurement of the noise floor is crucial which

requires a large amount of data and a long time to cover all the possible situations.

The benchmark detection is limited to symmetric signals, and the criteria range of

two metrics need to be carefully calibrated in advance.

9.5 Comparison between TDC-based and ADC-based Timing Methods

Since both TDC-based and ADC-based timing algorithms are studied, it is ben-

eficial to compare their performance. TDC-based algorithms provides the best per-

formance of filtering out well-characterized white noise between the TDC and ADC

timing algorithms, but they are unable to distinguish noise from true signals when

the noise amplitude exceeds the threshold. The TDC-based algorithms also have

difficulty of detecting true signals when their amplitude are smaller than the trigger

threshold. In terms of measurement accuracy, analog filters play an important role of

improving the accuracy. After the filtering, the TDC-based methods with TOT com-

pensation and the CFD method achieve a comparable accuracy with FFT-10 and the

benchmark algorithm (the best two algorithms among the ADC-based algorithms).

The TDC-based algorithms provide precision between the NP detector and the bench-

mark algorithm. The degraded performance could result from the fluctuation of the

trigger point and TOT measurement due to noise.

The TDC-based algorithms also have their advantages over the ADC-based ones.

One major advantage is the simplicity of the system and the fast processing speed.

Without storing a large number of samples and signal processing using DSP circuits,

TDC-based approaches can output TOF measurements much faster. Because of the
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simplicity, a TDC also costs much less than an ADC. Additionally, TDC-based algo-

rithms are less affected by the saturation of a photon-detector, and fast timing circuits

also allow a much higher time resolution than what an ADC can achieve. Therefore,

both TDC-based and ADC-based algorithms have their strength and weakness, and

careful consideration should be taken when a timing device is selected for a lidar

system.
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Figure 9.18: Examples of Raw (Blue) and Filtered (Red) Signals Collected using Edge

and Level Triggering. Top: START signals; bottom: STOP signals.
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Figure 9.19: Spectrum of Raw and Filtered Signals. Edge-triggering: precursor of 5

and collection length of 40.

212



Chapter 10

CONCLUSION

10.1 Summary

In the first part of this dissertation, a novel detecting and tracking algorithm for

the study of large-scale wind gusts using a long-range Doppler lidar was proposed.

A prediction model of the impact of downstream wind turbines, using the Gaussian

plume model and random walk theory, was introduced and corrected by the size

dependency. The prediction model was validated in a limited set of conditions, and

applied to a virtual wind turbine array to estimate the impact time and locations of

the gusts on the turbines. A comprehensive conclusion was given in Section 2.3.

In the second part of this dissertation, a modulated full-system TOF lidar simu-

lation was proposed. A pulse model was introduced in the laser source module, and

the sampling rate that is used to model continuous analog signals using digital signals

was discussed. We observe that a sampling rate equal to the bandwidth of a timing

device is sufficient for MATLAB to model analog signals using discrete signals, given

the resolution of the timing device is achieved externally.

The propagation module takes into account multiple factors in the laser propa-

gation, including beam divergence, target characteristics, atmospheric attenuation,

and optics. An attenuation model that uses visibility and wavelength to represent

atmospheric conditions was included in the simulation. The propagation model was

compared with measurements from a prototype lidar, and the same trends of signal

amplitude against distance were presented. However, due to the limitation of the

device and the dataset, only results from short distance were compared.
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The receiver module models various electric noise in a lidar receiver. Several

analog filters are also included in the receiver module. The effect of the analog filters

on signal behaviors was investigated. Butterworth filters demonstrate the least signal

distortion, but also the least attenuation of the noise spectrum in the transition

band. On the other hand, Chebyshev and Elliptic filters show their efficiency of noise

removal, even though their distortion on signals is obvious. Zero-phase filtering provn

to be useful to remove the phase shift, but it is limited to post-processing applications.

TDC-based methods and ADC-based time-discrimination methods were included

in the timing module. In the TDC module, a TDC model was first introduced.

The TOT and slew-rate compensation for the leading-edge timing method and the

CFD method are modeled. The determination of the TDC threshold was discussed.

The results show good noise recognition if the threshold is set properly. The TDC-

based algorithms were tested on simulated signals with different SNRs. The TOT

compensation and CFD demonstrated their efficiency on walk-error removal. The

sensitivity of these algorithms on noise was also observed.

A benchmark signal detection and estimation algorithm was proposed in the ADC

module. The benchmark algorithm was tested on simulated pulses and noise under

different ADC configurations. Perfect detection of whiten noise was observed, but

the detection of pulses degrades at low SNR. The level-trigger mode with a short

length of post-cursor presents the most accurate and precise distance measurement.

Using data above the ADC threshold for centroid calculation improves the distance

measurements accuracy.

A frequency-domain approach using FFT for the Neyman-Pearson (NP) detector

was proposed. Both the time-domain approach (SW approach) and the FFT approach

were evaluated on simulated pulses and noise, and measurements from a prototype

lidar. The measurements were contaminated by white noise and different frequency-
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structured and time-structured noises. The FFT approach using frequency-domain

zero-paddings efficiently improves the measurement resolution. The NP detector pre-

sented a perfect probability of pulse detection. However, the probability of false

alarm is higher than expected due to the poor characterization of noise. The SW and

FFT approaches show biased mean distance measurements, but they present a good

measurement precision. The FFT approach provides a better performence than SW

approach.

Finally, the TDC-based and ADC-based time discrimination algorithms were com-

pared, and their advantages and limitations were discussed.

10.2 Future Work

Future research for the wind gust characterization could include the validation of

the detecting and tracking algorithms on other datasets with a shorter time interval

between frames and a higher spatial resolution. Using Kalman filters or other multiple

object tracking algorithms, the detecting and tracking algorithm might be improved.

Deep learning approaches might be expected to recognize patches quickly with ac-

ceptable accuracy. For the prediction model since the size dependency was derived

empirically from the current dataset, the parameters need fine calibration for other

datasets, and the dependency of gusts with scales larger than 5.5D is not presently

clear. In addition, the quality of the prediction model needs to be validated, which

could be addressed in a dataset with longer time and in more varied atmospheric

conditions. Finally, using real-time measurements, like lidar or meteorological tower,

the Lagrangian time scale estimation can be improved.

The next step for the full-system TOF lidar simulation could focus on the in-

tegration of more sophisticated models of pulse transmission, signal-target optical

interaction, and the effect of atmosphere particles. The proposed receiver model does
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not consider effect of the response time of a photon-detector and a TIA on the signal

shape, which could be taken into account in further development. Implementation

of different digital filters in the receiver module could be another direction for future

work. Additionally, the analytic models of the TOT and slew-rate compensation needs

further validation with a real TDC device, and compensation curves might be gener-

ated and integrated into the receiver module. For the ADC benchmark algorithm, a

more robust way of the centroid and pulse width calculation could be investigated. A

dynamic criteria of NaT and pulse width, that can be adaptively adjusted according

to distance, trigger models, and pulse width in use, could be researched to improve

the probability of detection. An integration of the metrics in the benchmark algo-

rithm to the NP detector could be explored to reduce the sensitivity to white noise. A

more accurate way of noise characterization in experiments could also be investigated

to decrease the probability of false alarm. A thorough validation is needed for the

models in each module and the entire simulator. For better validation, measurements

that are collected with longer data acquisition times under various environmental and

system conditions could be beneficial.
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Table A.1: Specifications of Prototype Lidar

Laser Source
Parameter Value
Type Fiber laser
Wavelength 1550 nm
Peak power 300 W
Pulse width 5 ns
PRF 1 MHz

Optics and Receiver
Parameter Value
Optical path bi-static
FOV overlap 1 1

Material InGaAs
Responsivity 0.9 A/W
APD gain 10
APD bandwidth 10 GHz
TIA gain 1200 Ω
Receiver diameter 2.54 cm
Bandwidth of TIA 750 MHz
Standard deviation of extra noise 0.0288 V 2

TDC
Parameter Value
Resolution 1 ps

ADC (Cronologic, 2018)
Parameter Value
Number of channel 4
Sampling rate 5 Gsps (one channel-mode) 3

Dynamic range 10 bit
Input signal amplitude limits ±0.25 V

1The full-overlapping zone begins at 1.78 m with a separation of the transmitter and receiver of
7 cm (Bhaskaran, 2018).

2Measured from the prototype lidar.
3Gsps: gigasample per second.
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The transmit pulse model is given in Equation (3.7):

Pt(t) =
E

σ
√

2π
e−
−t2
2σ2 . (B.1)

Equation (3.9) and Equation (3.8) are derived next. The rise time is defined as the
time taken by a pulse to rise from 10% to 90% of its peak power. At the 90% of the
peak power, the instantaneous power is

0.9P0 = P0e
−
−t2

90%
2σ2 , (B.2)

from which we obtain
t90% =

√
−2ln(0.9) ≈ 0.459σ. (B.3)

Similarly, we can obtain t10% ≈ 2.146σ from

0.1P0 = P0e
−
−t2

10%
2σ2 . (B.4)

Thus, the rise time tr can be expressed by:

tr = t10% − t90% ≈ 1.687σ, (B.5)

or
σ ≈ tr

1.687
. (B.6)

The pulse width of a laser pulse, which is usually defined as the Full Width Half
Maximum (FWHM) of the pulse, can also be derived from Equation (3.7):

0.5P0 = P0e
−−t

2
FWHM
2σ2 . (B.7)

Thus,
FWHM = 2

√
2ln2σ ≈ 2.355σ. (B.8)
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C.1 TOT Compensation Derivation

In the TOT compensation, the TOT is measured from the two stop channels of
a TDC. As we know TOT = 2(|tref | −∆w), plugging the data points (tref , Vth) and
(TOT/2, Vth) into the pulse model (here we express the pulse model in voltage):

V (t) = Vre
− t2

2σ2 , (C.1)

we have: {
Vth = Vrefe

−t2ref/2σ
2

Vth = Vre
−(|tref |−∆w)2/2σ2

.

(C.2)

(C.3)

Combining Equation (C.2) and (C.3), we have:

Vref
Vr

= e−[(|tref |−∆w)2−t2ref ]/2σ2

(C.4)

∆2
w − 2∆w|tref |+ 2σ2 ln(

Vref
Vr

) = 0. (C.5)

Solving (C.5) we obtain

∆w = |tref | ±
√
t2ref − 2σ2 ln(

Vref
Vr

). (C.6)

Variable Vr can be derived from Equation (C.1) by setting t = TOT/2. As we know
∆w is usually smaller than tref , we ignore the positive sign in Equation (C.6). Thus,
we can derive the walk error ∆w as a function of TOT and the comparator threshold
Vth:

∆w = f(TOT, Vth, tref , Vref ) = |tref | −
√
t2ref − 2σ2 ln(

Vref
Vr

) (C.7)

Vr =
Vth

e−(TOT
2

)2/2σ2
. (C.8)
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C.2 Slew-rate Compensation Derivation

In the slew-rate compensation, the TDC provides two time stamps at the stop
channel STOP1 and STOP2 at thresholds Vth1 and Vth2 = CVth1, respectively. C is
a preset constant integer. The time difference between the two time stamps ∆t =
STOP2 − STOP1.

Plugging the measured time stamps STOP1 and STOP2 and amplitudes Vth1 and
Vth2 into the pulse model (here we express the pulse model in voltage):

V (t) = Vre
− t2

2σ2 , (C.9)

we have: 
Vth1 =

Vr

e−STOP
2
1 /2σ

2

Vth2 =
Vr

e−STOP
2
2 /2σ

2
.

(C.10)

(C.11)

Solving Equation (C.10) and (C.11), we have

STOP2 = −
√
−2σ2 lnC + STOP 2

1

∆t = STOP2 − STOP1

= −
√
−2σ2 lnC + STOP 2

1 − STOP1.

(C.12)

Thus,

STOP1 =
−2σ2 lnC −∆t2

2∆t
. (C.13)

Since we define that ∆w = STOP1 − tref , we can get the relation of ∆w with the
threshold constant C and time difference ∆t as:

∆w = f(C,∆t, tref ) =
−2σ2 lnC −∆t2

2∆t
− tref . (C.14)
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D.1 GLRT

Signals under hypothesis H1 and H0 are given in Equation (9.1) and the noise is
assumed to be white following a Gaussian distribution with a variance of W . The
PDF of a Gaussian distributed variable x can be expressed by

p(x) =
1√

2πσ2
exp[− 1

2σ2
(x− µ)2] (D.1)

Thus, the PDF of signals under H1 is given by

p(~x;n0, A,H1) =
N−1∏
n=0

p(x[n];n0, A,H1)

=

n0−1∏
n=0

1√
2πσ2

exp
(
− 1

2σ2
x2[n]

)
×

n0+M−1∏
n=n0

1√
2πσ2

exp
(
− 1

2σ2
(x[n]− As[n− n0])2

)
×

N−1∏
n=n0+M

1√
2πσ2

exp
(
− 1

2σ2
x2[n]

)
=

N−1∏
n=0

1√
2πσ2

exp
(
− 1

2σ2
x2[n]

)
×

n0+M−1∏
n=n0

1√
2πσ2

exp
(
− 1

2σ2
(−2Ax[n]s[n− n0] + A2s2[n− n0])

)
(D.2)

and the PDF of signals under H0:

p(~x;H0) =
N−1∏
n=0

p(x[n];H0)

=
N−1∏
n=0

1√
2πσ2

exp
(
− 1

2σ2
x2[n]

) (D.3)

Thus, the left-hand side of GLRT (Equation (9.2)) can be expressed by:

LG(~x) =
p(~x;n0, A,H1)

p(~x;H0)

=

n0+M−1∏
n=n0

exp
(
− 1

2σ2
(−2Ax[n]s[n− n0] + A2s2[n− n0])

) (D.4)
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Taking the logarithm on both sides:

− 1

2σ2

n0+M−1∑
n=n0

−2Ax[n]s[n− n0] + A2s2[n− n0] > ln γ (D.5)

Then, we have

Tmax = max
n0∈[0,N−M ]

T (x[n0]) = max
n0∈[0,N−M ]

n0+M−1∑
n=n0

x[n]s[n− n0] > γ′ (D.6)

γ′ =
A

2

M−1∑
n=0

s2[n] +
W ln γ

A
(D.7)
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D.2 PDF’s of T (~x)

Since the PDF’s of T (~x) should also follow a Gaussian distribution, the mean and
variance under hypothesis H0 and H1 can be derived as:

µ̂0 = E[T (~x)] = E
[∑

n

w[n]s[n]
]

=
∑
n

E
[
w[n]

]
s[n] = 0

σ̂2
0 = V ar

[
T (~x)

]
= V ar

[∑
n

w[n]s[n]
]

=
∑
n

V ar
[
w[n]

]
s2[n] = W

∑
n

s2[n]

µ̂1 = E[T (~x)] = E
[∑

n

(As[n] + w[n])s[n]
]

=
∑
n

E
[
As2[n] + w[n]s[n]

]
=
∑
n

As2[n]

σ̂2
1 = V ar[T (~x)] = V ar

[∑
n

(As[n] + w[n])s[n]
]

=
∑
n

V ar
[
As2[n] + w[n]s[n]

]
= 0 +

∑
n

V ar
[
w[n]s[n]

]
= W

∑
n

s2[n]

(D.8)

In short,
µ̂0 = 0

σ̂2
0 = W

∑
n

s2[n]

µ̂1 = A
∑
n

s2[n]

σ̂2
1 = W

∑
n

s2[n],

(D.9)

Thus, T (~x) under hypothesis H0 and H1 follows Gaussian distributions:

H0 :T (~x) ∼ N(µ̂0, σ̂
2
0)

H1 :T (~x) ∼ N(µ̂1, σ̂
2
1)

(D.10)
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MATLAB scripts to measure the TOF using the lidar simulator with an ADC
or TDC are given in this appendix. Users should keep all the files under the same
directory, and run the main functions (Section E.1 for ADC and Section E.6 for TDC)
in MATLAB for demonstration.

The main functions call the functions of different modules and output TOF and
distance measurements in the variable Results. Examples of transmit pulses and
return pulses can also be plotted (refer to the comments in the scripts for details).
Different analog filters and TDC/ADC detection algorithms can also be selected in
the main functions.

Laser parameters can be set in the main functions and in Section E.2. Target dis-
tance can be set in the main functions. Parameters used in the radiometry calculation,
target reflectivity, and the receiver configurations can be set in Section E.3.

Characteristics of analog filters including the filter type (e.g. low-pass or high-pass
filter), order, cut-off frequency, passband ripple, and stopband ripple can be set in
Section E.4.1.

The ADC sampling rate, bit resolution, and trigger threshold can be set in Sec-
tion E.5. Section E.5 also contains the functions of edge-trigger, level-trigger mode,
and the amplitude digitization. The precursor, collection length, and post-cursor can
be set in the function funADCSamplingEdge and the function funADCSamplingLevel
(refer to the comments in the functions for details).

The criteria of NaT and pulse width, and tolerance percentage for the benchmark
algorithm can be set in Section E.5.1. Examples of polygons can also be plotted. The
PFA, kernel, and number of zeros in the zero-padding for the NP detector can be set
in Section E.5.2.

The TDC resolution can be set in Section E.7.1 and Section E.7.2. The TDC
threshold can be set in Section E.7.1 and the value is also used in Section E.7.2.
The constant fraction for the CFD algorithm can be set in Section E.7.2. The TOT
compensation and the CFD algorithm are achieved in Section E.7.3 and Section E.7.4.
The function of linear interpolation is given in Section E.7.5.
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E.1 Main Function (ADC)

1 clear
2 close all
3

4 %% Constants
5 global c sampleRate Nobs P0 tStart TargetDistance
6 Nobs = 50; % number of observations in the Monte−Carlo experiment
7 c = 3E8; % speed of light [m/s]
8

9 %% Lidar settings
10 % laser source
11 P0 = 300; % Peak power of transmit pulse [W]
12 riseTime = 3.58E−9; % rise time [s]
13 sampleRate = 1e11; % sampling rate to model continuous 'analog' ...

signal [Hz]
14

15 % Target characteristics
16

17 TargetDistance = 5; % Target distance [m]
18 timeTrue = 2*TargetDistance/c; % ground−truth TOF
19

20 %% Tranmit Pulse Module
21 % OUTPUTS: time series, transmit pulse and other laser parameters
22

23 [tTran, yTran, Energy, PowerAveg] = fun_PulseModel(P0,riseTime);
24 %
25 % figure
26 % hold on
27 % plot(tTran*1e9, yTran,'b')
28 % ylabel('Power (W)')
29 % xlabel('Time (ns)')
30 % title('Transmit Pulse')
31

32 %% Propagation and Receiver Module
33 % OUTPUTS: return time series, return pulse with noise
34 tRet = tTran + timeTrue; % return time series
35 [SNRSquare, yRetClean, yRetNoisy] = ...

fun_receiver(TargetDistance,yTran); % return pulse with noise
36

37 % figure
38 % hold on
39 % plot(tRet*1e9, yRetClean,'k')
40 % plot(tRet*1e9, yRetNoisy(1,:),'b')
41 % ylabel('Power (W)')
42 % xlabel('Time (ns)')
43 % title('Return Pulse')
44 % legend('Noise−free', 'Signal with noise')
45 %% Analog Filter Module
46 % INPUTS:
47 % −1st term: filter on or off: 'on' | 'off',
48 % −2nd term: forward filter with time compensation or zero−phase ...

filtering: 'analog' | 'filtfilt'
49 % −3st term: type of filter: butterworth, chebyshev or elliptic: ...

'butter'
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50 % | 'cheby' | 'ellip'
51

52 % OUTPUTS: filtered return signals
53 for k = 1: Nobs
54 yAFE(k,:) = fun_AFE('on','filtfilt', 'butter', ...

yRetNoisy(k,:), sampleRate);
55 end
56 % apply the same filter to START signal to compensate time delay
57 yAFE_Start = fun_AFE('on','filtfilt', 'butter', yTran, sampleRate);
58 % time shift of START time (will be subtracted from the STOP time ...

measured in the timing module)
59 tStart = tTran(yAFE_Start == max(yAFE_Start));
60

61 % figure
62 % hold on
63 % plot(tRet*1e9, yRetClean,'k')
64 % plot(tRet*1e9, yRetNoisy(1,:),'b')
65 % plot(tRet*1e9, yAFE(1,:),'r')
66 % ylabel('Power (W)')
67 % xlabel('Time (ns)')
68 % title('Return Pulse')
69 % legend('Noise−free', 'Signal with noise', 'Filtered signal')
70 %% Timing Module
71 % INPUTS: types of detection algorithm: benchmark or NP detector: ...

'bm' | 'np'
72 % OUTPUTS: measured TOF and distance
73

74 Flag_detector = 'bm'; % detection algorithm (bm: benchmark ...
algorithm; np: NP detector

75 Results= fun_ADC(tRet, yRetClean, yAFE, Flag_detector);
76

77 % Results
78 Probability = Results.prob; % PFA or PD
79 DistanceMean = Results.dMean; % mean distance measurement
80 DistanceSTD = Results.dStd; % std of distance measurement

240



E.2 Function of Pulse Module

1 function [t, signal, Energy, PowerAveg] = ...
fun_PulseModel(PowerPeak, riseTime)

2 %% Gaussian Pulse Module
3 % Inputs:
4 % −PeakPower: peak power of transmit pulse [W]
5 % −riseTime: rise time of the pulse [s]
6 % −sampleRate: sampling rate to model 'analog' signals [Hz]
7 % −PRF: pulse repetition rate [Hz]
8 % Outputs:
9 % −t: transmit time series

10 % −signal: transmit pulse
11 % −pulseWidth: pulse width (FWHM) = 5 ns
12 % −Energy: energy of laser pulse {J}
13 % −PowerAveg: laser average power [W]
14

15 % Inputs
16 global pulseWidth sampleRate RMS
17 PRF = 1e6; % PRF of laser [Hz]
18

19 % Outputs
20 RMS = riseTime / 1.687; % standard deviation of the Gaussian pulse
21 pulseWidth = RMS * 2*sqrt(2*log(2));
22 Energy = PowerPeak * pulseWidth;
23 PowerAveg = Energy * PRF;
24

25 tStart = −5*RMS;
26 tEnd = 5*RMS;
27

28 t = tStart : 1/sampleRate : tEnd; % time series of transmit pulse
29 signal = 0.94* PowerPeak * exp(−0.5*(t/RMS).^2); % transmit pulse
30 end
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E.3 Function of Propagation and Receiver Module

1 function [SNRSquare, powerRet, powerRetNoisy] = ...
fun_receiver(TargetDistance, yTran)

2 %% Propagation and Receiver Module
3 % Inputs:
4 % −TargetDistance: target distance [m]
5 % −PowerTran: transmitted pulse
6

7 % Outputs:
8 % −SNRSquare: SNR of power [dB]
9 % −powerRet: noise−free return pulse

10 % −powerRetNoisy: return pulse with noise
11

12 %% Constants
13 global e integrationTime R0 Gain F Nobs NShotBackMean ...

NShotDarkMean powerNoiseFloor
14 rng(0,'twister'); % random machine seed
15 e = 1.602E−19; % charge of electrons
16 k = 1.38E−23; % Boltzmann constant [J/K]
17 Srr = 0.26226; % solar spectral irradiance W/m^2/nm
18

19 %% Variables
20 % Laser source
21 wavelength = 1550; % laser wavelength [nm]
22

23 % Atmospheric attenuation
24 visibility =10; % visibility [km]
25

26 if visibility > 50 % for high visibility
27 q = 1.6;
28 elseif visibility > 6 && visibility < 50 % for average visibility
29 q = 1.3;
30 elseif visibility > 1 && visibility < 6 % for haze visibility
31 q = 0.16 * visibility + 0.34;
32 elseif visibility > 0.5 && visibility < 1 % for mist visibility
33 q = visibility − 0.5;
34 else % for fog visibility
35 q = 0;
36 end
37 alpha = 3.91/visibility *(wavelength/550)^(−q); % [/km] specific ...

attenuation
38 coefAtten = exp(−2 * TargetDistance/1000 * alpha); % attenuation ...

coefficient, round trip
39

40 % Target characteristics
41 beta = .1; % reflectivity
42

43 % Photon−detector
44 R0 = 0.9; % responsivity [A/W]
45 Gain = 10; % APD gain
46 K = 0.45; % ionization ratio of InGaAs
47 F = K*Gain + (1−K) * (2 − 1/Gain); % excess noise factor
48 BW = 10E9; % system bandwidth [Hz]
49 integrationTime = 1/2/BW; % integration time [s]
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50 NF = 1.6; % noise factor of InGaAs
51 T = 300; % temperature [K]
52 Teff = NF * T; % effective temperature [K]
53 RTIA = 1200; % TIA resistance [ohm]
54 extraNoise = 0.0288; % STD of extra noise from prototype lidar[V]
55

56 % Receiver lens
57 d_lambda = 2; % spectral filter bandwidth [nm]
58 FOV = 0.002; % receiver FOV [rad]
59 angle = 0; % angle between the target surface normal and ...

receiver's look−angle (angle = 0: receiver faces the target.)
60 Ax = pi * (FOV/2 * TargetDistance)^2 / cos(angle); % area ...

coverage of the receiver FOV at the target distance [m^2]
61 Dr = 25.4E−3; % receiver diameter [m]
62 Ar = pi * Dr^2 / 4; % area of the receiver aperture [m^2]
63

64 % Optical coefficients
65 coefOpticTrans0 = 0.9; % transmission through transmitter optical ...

path
66 coefT = 1 ; % collection efficiency of transmitter lens
67 coefFilterTranRet = 0.7; % transmission of receiver spectral filter
68 coefOpticTranRet = 0.9; % transmission through receiver lens
69 FOVoverlap = 1; % FOV overlap between transmitter and receiver
70

71 %% Propagation Module
72 % OUTPUTS: return pulse and power of ambient light
73 powerRet = (yTran * coefOpticTrans0 * coefT * FOVoverlap) * Ar / ...

TargetDistance^2 * coefAtten * beta * coefFilterTranRet * ...
coefOpticTranRet;

74 Pamb = (Srr * d_lambda) * Ax * Ar / TargetDistance^2 * exp ...
(−TargetDistance/1000 * alpha) * beta * coefOpticTranRet ...
*coefFilterTranRet;

75

76

77 %% Receiver Module
78 % SHOT NOISE
79 % mean current
80 iBckgrd = Pamb * R0; % background current [A]
81 iDark = 150E−9; % dark current [A]
82

83 % mean number of electrons during integration time (STD)
84 NShotNoiseSigMean = powerRet * R0 * Gain^2 * F * integrationTime ...

/ e;
85 NShotBackMean = iBckgrd * Gain^2 * F * integrationTime / e;
86 NShotDarkMean = iDark * Gain^2 * F * integrationTime / e;
87

88 % generate shot noise current at each sample
89 iShotSigNoise= (poissrnd(NShotNoiseSigMean .* ...

ones(Nobs,length(powerRet)))− NShotNoiseSigMean) * e / ...
integrationTime;

90 iShotAmbNoise = (poissrnd(NShotBackMean * ...
ones(Nobs,length(powerRet))) − NShotBackMean) * e / ...
integrationTime;

91 iShotDarkNoise = (poissrnd(NShotDarkMean * ...
ones(Nobs,length(powerRet))) − NShotDarkMean) * e / ...
integrationTime;

92
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93 % total shot noise current
94 iShotNoise = iShotSigNoise + (iShotAmbNoise + iShotDarkNoise);
95

96 % THERMAL NOISE
97 % thermal noise current (STD)
98 sigmaThermalAmp = sqrt(4 * k * Teff * BW / RTIA); % TIA thermal noise
99

100 % generate thermal noise current at each sample
101 iThermal = (extraNoise / RTIA + sigmaThermalAmp) * randn(Nobs, ...

length(powerRet));
102

103 % TOTAL NOISE CURRENT
104 iNoiseElec = iShotNoise + iThermal;
105

106 % RETURN PULSE (with NOISE)
107 % total return current (with noise)
108 iRetNoisy = powerRet * R0 * Gain + iNoiseElec;
109 % total return power (with noise)
110 powerRetNoisy = iRetNoisy / R0 / Gain;
111 powerNoise = (iNoiseElec − iShotSigNoise) / R0 / Gain; % Noise ...

power (laser off)
112 powerNoiseFloor = std(powerNoise,1,2); % noise floor
113 SNRSquare = 20*log10(max(powerRet) * R0 * Gain ./ ...

std(iNoiseElec,1,2)); % SNR of power in dB
114 end
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E.4 Function of Analog Filter Module

1 function yAFE = fun_AFE(isON, methods, name, signal, samplingRate)
2 %% Analog Filter Module
3 % Inputs:
4 % −isOn:AFE is on ('on') | off ('off')
5 % −methods: type of filter
6 % −'analog': forward analog filter
7 % −'filtfilt': zero−phase filtering
8 % −name: type of analog filters
9 % −'cheby': Chebyshev filter

10 % −'butter': Butterworth filter
11 % −'ellip': Elliptic filter
12 % −signal: return pulse with noise
13 % −sampleRate: sampling rate to model 'analog' signals
14 % Outputs:
15 % −yAFE: filtered return signals
16

17

18 % Check if analog filter option is on
19 if strcmp(isON, 'off')
20 yAFE = signal;
21 return;
22 end
23

24 % Call different analog filter functions
25 switch methods
26 case 'filtfilt'
27 [sos, g] = fun_AnalogFilters(name, samplingRate);
28 yAFE = filtfilt(sos, g, signal); % zero−phasing filtering
29 case 'analog'
30 [sos, g] = fun_AnalogFilters(name, samplingRate);
31 yAFE = sosfilt(sos,signal)*g;
32 end
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E.4.1 Function of Different Analog Filters

1 function [sos, g] = fun_AnalogFilters(name, samplingRate)
2 %% Analog Filter Module
3 % Inputs:
4 % −sampleRate: sampling rate to model 'analog' signal
5 % −name: type of analog filters
6 % name:
7 % 'cheby': Chebyshev filter
8 % −need to set:
9 % −order: order

10 % −rpPass: passband ripple [dB]
11 % −fcut: cutoff frequency [Hz]
12 % −Flag_Type: 'low': low−pass filter
13 % 'butter': Butterworth filter
14 % −need to set:
15 % −order: order
16 % −fcut: cutoff frequency [Hz]
17 % −Flag_Type: 'low': low−pass filter
18 % 'ellip': Elliptic filter
19 % −need to set:
20 % −order: order
21 % −rpPass: passband ripple [dB]
22 % −rpStop: stopband ripple [dB]
23 % −fcut: cutoff frequency [Hz]
24 % −Flag_Type: 'low': low−pass filter
25 % Output:
26 % −sos: second−order section of the filter
27 % −g: gain of the filter
28

29 fNy = samplingRate / 2; % Nyquist rate
30 fcut = 0.2e9; % cutoff frequency
31 wp = fcut/fNy;
32 Flag_Type = 'low';
33 order = 3;
34 rpPass = 5;
35 rpStop = 30;
36

37 switch name
38 case 'cheby' % Chebyshev filter
39 [z, p ,k] = cheby1(order,rpPass,wp,Flag_Type); % ...

zero−pole−gain expression of the filter
40 [sos, g] = zp2sos(z, p, k);
41 case 'butter' % Butterworth filter
42 [z, p ,k] = butter(order,wp,Flag_Type);
43 [sos, g] = zp2sos(z, p, k);
44 case 'ellip' % Elliptic filter
45 [z, p ,k] = ellip(order,rpPass,rpStop, wp,Flag_Type);
46 [sos, g] = zp2sos(z, p, k);
47 end
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E.5 Function of ADC Module

1 function TOF = fun_ADC(tRet0, yRetClean0, yRet0, flag_detector)
2 %% ADC Timing Module
3 % Inputs:
4 % −tRet0: time series
5 % −yRetClean0: noise−free return signal
6 % −yRet0: return signal
7 % −flag_detector: detection algorithm: benchmark algorithm or ...

NP detector: 'bm' | 'np'
8 % Outputs:
9 % −TOF: measured TOF structure

10

11 global powerNoiseFloor ADCTriggerLevel sampleRate skip ResolADC
12 ADCTriggerLevel = 3*powerNoiseFloor; % ADC trigger threshold
13

14 %% ADC settings
15 ResolADC = 4e−10; % ADC time interval
16 skip = ResolADC*sampleRate;
17 bits = 8;
18

19 %% ADC sampling
20 % edge−triggering
21 % [tRetADC, yRetADC, ¬] = fun_ADCSamplingEdge(tRet0, yRet0, ...

bits); % time and return pulse after ADC sampling
22

23 % level−triggering
24 [tRetADC, yRetADC, ¬] = fun_ADCSamplingLevel(tRet0, yRet0, bits); ...

% time and return pulse after ADC sampling
25 yRetCleanADC = yRetClean0(1:skip:end); % noise−free return pulse ...

after sampling
26 tRetCleanADC = tRet0(1:skip:end); % time of noise−free return ...

pulse after sampling
27

28 %% Timing algorithm
29 switch flag_detector
30 case 'bm'
31 TOF = fun_detector_BM(tRetCleanADC, tRetADC,yRetCleanADC, ...

yRetADC);
32 case 'np'
33 TOF = fun_detector_NP(tRetADC, yRetADC);
34 end
35

36 %% function of ADC edge−trigger mode
37 function [tRetADC, yRetADCDigi, ind] = fun_ADCSamplingEdge(tRet0, ...

yRet0, bits)
38 global ADCTriggerLevel skip
39 lenADC = 31; % collection length [samples]
40 yRetADC = zeros(size(yRet0,1), lenADC+1+8*2);
41 tRetADC = zeros(size(yRet0,1), lenADC+1+8*2);
42 for i = 1: size(yRet0,1)
43 ind = find(yRet0(i,:) > ADCTriggerLevel(i),1); % find first ...

sample higher than the threshold
44 startInd = ind−8*skip;
45 endInd = ind+(lenADC+8)*skip;
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46 if endInd > size(yRet0,2)
47 endInd = size(yRet0,2);
48 end
49 if startInd < 1
50 startInd = 1;
51 end
52 temp = yRet0(i,startInd : skip : endInd);
53 yRetADC(i,1:length(temp)) = temp;
54 tRetADC(i,1:length(temp)) = tRet0(startInd : skip : endInd);
55 end
56 yRetADCDigi = fun_digitizer(yRetADC, bits, max(yRetADC,[],2)); % ...

digitize amplitude
57

58 %% function of ADC level−trigger mode
59 function [tRetADC, yRetADCDigi, ind] = ...

fun_ADCSamplingLevel(tRet0, yRet0, bits)
60 global ADCTriggerLevel skip
61 precursor = 16; % precursor length [samples]
62 postcursor = precursor; % postcursor length [samples]
63 lenADC = 40;
64 yRetADC = zeros(size(yRet0,1), lenADC+precursor+ postcursor);
65 tRetADC = zeros(size(yRet0,1), lenADC+precursor+ postcursor);
66 % sampling
67 yRet0 = yRet0(:,1:skip:end);
68 tRet0 = tRet0(:,1:skip:end);
69 for i = 1: size(yRet0,1)
70 ind = find(yRet0(i,:) > ADCTriggerLevel(i),1);
71 startInd = find(yRet0(i,:) > ADCTriggerLevel(i),1) − ...

precursor; % find first sample higher than the threshold
72 endInd = find(yRet0(i,:) > ...

ADCTriggerLevel(i),1,'last')+postcursor; % find first ...
sample lower than the threshold

73 if endInd > size(yRet0,2)
74 endInd = size(yRet0,2);
75 end
76 if startInd < 1
77 startInd = 1;
78 end
79 temp = yRet0(i,startInd:endInd);
80 yRetADC(i,1:length(temp)) = temp;
81 tRetADC(i,1:length(temp)) = tRet0(startInd : endInd);
82 end
83 yRetADCDigi = fun_digitizer(yRetADC, bits, max(yRetADC,[],2)); % ...

digitize amplitude
84

85 %% function of digitizing the signal amplitude
86 function yDigiY = fun_digitizer(signal, bit, yMax)
87 % Inputs:
88 % −signal: transmitted pulse
89 % −bit: ADC resolution
90 % −yMax: max value of the signal
91 % Output:
92 % −y: digitized pulse
93 for i = 1: size(signal, 1)
94 yDigiY(i,:) = double(uencode(signal(i,:), bit, ...

yMax(i),'signed'))/(2^(bit −1)) .* yMax(i);
95 end
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E.5.1 Function of Benchmark Detection Algorithm

1 function TOF = fun_detector_BM(tRetClean, t,yRetCleanDigi, yRetDigi)
2 %% Benchmark Algorithm Module
3 % Inputs:
4 % −tRetClean: time series of noise−free return signal
5 % −t: time series of return signal
6 % −yRetCleanDigi: digitized noise−free return signal in power
7 % −yRetDigi: digitized return signal with noise in power
8 % Outputs:
9 % −TOF structure:

10 % −−isPulse: hypothesis of a signal: −1 (H0) | 1(H1)
11 % −−tof: raw TOF measurement
12 % −−d: raw distance measurement
13 % −−name: detector name
14 % −−prob: probability
15 % −−tofMean: mean of TOF
16 % −−tofStd: STD of TOF
17 % −−dMean: mean distance
18 % −−dStd: STD of distance
19 global Nobs c cri ADCTriggerLevel tStart
20

21 %% Detector
22 % CRITERIA SETTING
23 % Criteria 1: NaT
24 cri.NaT_up = 52; % upper limit of NaT
25 cri.NaT_low = 10; % lower limit of NaT
26

27 % Criteria 2: pulse width
28 cri.width_mean = 5.33e−9; % mean pusle width
29 cri.tol = 0.1; % tolerate percentage
30

31 % Calculate NaT
32 meas.NaT = sum(yRetDigi > ADCTriggerLevel,2);
33

34 % Calcualte pulse width
35 [meas.width, cen] = fun_pulseWidth(t, yRetDigi, tRetClean, ...

yRetCleanDigi);
36 meas.width = meas.width';
37

38 % Determine the hypothesis of a signal
39 TOF.tof = ones(size(yRetDigi,1),1)*−1;
40 isPulse1 = (meas.NaT ≥ 10 & meas.NaT ≤ 52);
41 isPulse2 = (abs(meas.width − cri.width_mean) ≤ ...

cri.tol*cri.width_mean);
42 TOF.isPulse = isPulse1 & isPulse2;
43

44 %% Estimator: calcualte TOF (with compensation of time shift)
45 TOF.tof(TOF.isPulse == 1) = cen.x_above(TOF.isPulse == 1) − tStart;
46

47 %% Save data
48 TOF.d(TOF.isPulse == 1) = TOF.tof(TOF.isPulse == 1)*c/2;
49 TOF.d(TOF.isPulse 6= 1) = NaN;
50 TOF.name = 'bm';
51 TOF.prob = sum(TOF.isPulse)/Nobs;
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52 TOF.tofMean = nanmean(TOF.tof(TOF.tof 6=−1));
53 TOF.tofStd = nanstd(TOF.tof(TOF.tof 6=−1));
54 if sum(TOF.tof 6=−1) ≤ 0.1*Nobs % if less than 10% of the signals ...

are pulses, skip the test
55 TOF.tofStd = NaN;
56 TOF.tofMean = NaN;
57 end
58 TOF.dMean = TOF.tofMean*c/2;
59 TOF.dStd = TOF.tofStd*c/2;
60 end
61

62 %% function to calculate pulse width and x− and y− centroid
63 function [pw, cen] = fun_pulseWidth(t, y0, tRetClean, yRetCleanDigi)
64 global Nobs ADCTriggerLevel
65 Factor = 2.817; % constant factor
66 y_cenup = zeros(1,Nobs); % y−centroid using data>0
67 A_cancel = zeros(1,Nobs); % area with cancellation between ...

positive and negative area
68 for i = 1:Nobs
69 ind = find(t(i,:) 6=0);
70 if isempty(ind)
71 cen.x_above(i) = NaN;
72 cen.x_above(i) = NaN;
73 A_cancel(i) = NaN;
74 y_cenup(i) = 0;
75 continue
76 end
77 %% find all the data not equal to 0
78 x = t(i,ind);
79 y = y0(i,ind);
80 y(1) = 0; y(end) = 0; % bound two ends of a polygon with zeros
81

82 %% calcualte the area and x−centroid and y−centroid
83 yup = y; yup(yup<0) = 0; % extract data > 0
84 polyup(i) = polyshape(x,yup); % define polygon > 0
85 Aup = area(polyup(i)); % area of polygon >0
86 [¬, y_cenup(i)] = centroid(polyup(i)); % calculate y_cen ...

using data>0
87

88 ydown = y; ydown(ydown>0) = 0; % extract data < 0
89 polydown(i) = polyshape(x,ydown); % define polygon < 0
90 Adown = area(polydown(i)); % area of polygon <0
91

92 A_cancel(i) = Aup − Adown; % area
93 end
94

95 %% Calcualte pulse width
96 pw = A_cancel./y_cenup/Factor; % pulse width using data>0 to ...

calculate y−centroid
97

98 % %% noise free signal
99 % xfree = tRetClean(tRetClean 6=0);

100 % yfree = yRetCleanDigi(tRetClean 6=0);
101 % % check if noise−free signal is below the ADC trigger
102 % if isempty(xfree)
103 % xfree = [0,0,0];
104 % yfree = [0,0,0];
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105 % end
106 % polyinfree = polyshape(xfree,yfree);
107 % [x_cenfree,y_cenfree] = centroid(polyinfree);
108

109 %% Calculate TOF using x−centroid (data > threshold)
110

111 for i = 1: Nobs
112 indAbove = find(y0(i,:) > ADCTriggerLevel(i),1); % find index ...

of samples > ADC threshold
113 if isempty(indAbove)
114 cen.x_above(i) = NaN;
115 continue;
116 end
117 startInd = find(y0(i,:) > ADCTriggerLevel(i),1);
118 endInd = find(y0(i,:) > ADCTriggerLevel(i),1,'last');
119 xab= t(i,startInd:endInd);
120 yab = y0(i,startInd:endInd);
121 yab(1) = 0; yab(end) = 0;
122 polyinAb = polyshape(xab,yab); % define a polygon with data > ...

threshold
123 [cen.x_above(i),¬] = centroid(polyinAb); % calculate the ...

x−centroid
124 end
125

126 %% Plot polygons
127 % ind = Nobs;
128 % figure
129 % hold on
130 % plot(polyup(ind))
131 % plot(polyinfree)
132 % plot(x,yup,'bs−')
133 % plot(xab(2:end−1),yab(2:end−1),'b−s','MarkerFaceColor','b')
134 % plot(x_cenfree,y_cenfree,'r*')
135 % plot(cen.x_above(ind),y_cenup(ind),'g*')
136 %
137 % xlabel('Time (s)')
138 % ylabel('Power (W)')
139 % legend('Polygon of return signal: data>0', 'Polygon of ...

noise−free return', ...
140 % 'return signal: data>0','return signal: data>threshold',...
141 % 'Centroid of noise−free return','C_x: data>threshold, C_y: ...

data>0',...
142 % 'Location','northeast')
143 end
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E.5.2 Function of NP Detector

1 function TOF= fun_detector_NP(t, yRetDigi)
2 %% NP Detector Module
3 % Inputs:
4 % −t: time series
5 % −yRetDigi: digitized return signal with noise in power
6 % Outputs:
7 % −TOF structure:
8 % −−isPulse: hypothesis of a signal: −1 (H0) | 1(H1)
9 % −−tof: raw TOF measurement

10 % −−name: detector name
11 % −−prob: probability
12 % −−tofMean: mean of TOF
13 % −−tofStd: STD of TOF
14 % −−dMean: mean distance
15 % −−dStd: STD of distance
16

17 global e integrationTime R0 Gain Nobs c tStart
18 %% Median filter
19 yRetDigi = medfilt1(yRetDigi, 3,[],2); % return pulse after ...

median fitler with a kernel size of 3
20

21 %% Convert return pulse in power to number of electrons
22

23 NRetDigi = (yRetDigi * R0 * Gain) * integration Time /e; % return ...
pulse

24 noiseFloorADC_power = 5.38e−7; % precalculated noise floor when ...
laser is off

25 % noiseFloorADC_power = fun_calNoisefloor(yRetDigi); % function ...
to calculate noise floor when laser is off

26 W = (noiseFloorADC_power*R0 *Gain) *integrationTime /e; % ...
convert noise power to number of electrons

27

28 %% Kernel generation
29 amplitude = 1; % set kernel amplitude to 1
30 kernel = fliplr(fun_genKernel(amplitude));
31

32 %% Threshold
33 pfa = 0.001; % predefined PFA
34 u_T0 = 0; % mean of Tx under H0
35 var_T0 = W.^2'.* kernel*kernel'; % variance of Tx under H0
36 Q = erfcinv(2*pfa) * sqrt(2);
37 thres = Q.* sqrt(var_T0) + u_T0; % threshold of NP detector
38 if length(thres) == 1
39 thres = repmat(thres,size(yRetDigi,1),1);
40 end
41

42 %% NP detector
43 TOF.isPulse = zeros(size(yRetDigi,1),1);
44 TOF.tof = ones(size(yRetDigi,1),1)*−1;
45 kerneltemp = kernel;
46 ResConv = struct('time',[],'data',[]);
47

48 for i = 1:size(yRetDigi,1)
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49 ind = find(t(i, t(i,:) 6=0));
50 if isempty(ind)
51 TOF.isPulse(i) = 0;
52 TOF.tof(i) = NaN;
53 continue;
54 end
55 ttemp = t(i,ind);
56 Ntemp = NRetDigi(i,ind);
57 [Tmax(i), timeMax(i), ResConv(i)] = fun_convFFT(Ntemp, ...

kerneltemp, ttemp);
58 end
59 %% Determine hypothesis of a signal
60 indPUlse = find(Tmax> thres');
61 TOF.isPulse(indPUlse) = 1;
62 TOF.tof(indPUlse) = timeMax(indPUlse);
63

64 %% SW approach
65 % for i = 1:size(yRetDigi,1)
66 % ind = find(t(i, t(i,:) 6=0));
67 % if isempty(ind)
68 % TOF.isPulse(i) = 0;
69 % TOF.tof(i) = NaN;
70 % continue;
71 % end
72 % ttemp = t(i,ind);
73 % Ntemp = NRetDigi(i,ind);
74 % T_full = conv(Ntemp, kerneltemp); % calculate convolution ...

result
75 % T_same = conv(Ntemp, kerneltemp,'same');
76 % if max(T_full) > thres(i)
77 % TOF.isPulse(i) = 1;
78 % TOF.tof(i) = nanmean(ttemp(T_same == max(T_same)));
79 % else
80 % TOF.isPulse(i) = 0;
81 % TOF.tof(i) = −1;
82 % end
83 % end
84

85 %% Save data
86 TOF.name = 'np';
87 TOF.prob = sum(TOF.isPulse)/Nobs; % calculate probability of ...

signal detection
88 TOF.tofMean = nanmean(TOF.tof(TOF.tof 6=−1) − tStart); % calculate ...

mean TOF
89 TOF.tofStd = nanstd(TOF.tof(TOF.tof 6=−1)); % calculate std of TOF
90 if sum(TOF.tof 6=−1) ≤ 0.1*Nobs % if less than 10% of the signals ...

are pulses, skip the test
91 TOF.tofStd = NaN;
92 TOF.tofMean = NaN;
93 end
94 % Convert TOF to distance
95 TOF.dMean = TOF.tofMean*c/2;
96 TOF.dStd = TOF.tofStd*c/2;
97 end
98

99 %% function to calculate noise floor
100 function noisefloorADC = fun_calNoisefloor(signal)
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101 noisefloorADC = nanstd(signal,1,2);
102 end
103

104 %% function to generate kernel
105 function kernel = fun_genKernel(A)
106 global RMS ResolADC
107 tStart = −5*RMS;
108 tEnd = 5*RMS;
109 t = tStart : ResolADC : tEnd; % time series of transmit pulse
110 kernel = A*exp(−0.5*(t/RMS).^2); % transmit pulse
111 end
112

113 %% function of FFT approach of NP detector
114 function [convMax, timeMax, ResConv] = fun_convFFT(signal, ...

kernel, time)
115 zeroPad = 4; % number of zeropaddings
116

117 tNew_min = time(1);
118 tNew_max = time(end);
119 dt = (tNew_max − tNew_min)/(length(time)−1);
120 timeNew = tNew_min:dt/(zeroPad+1):tNew_max;
121

122 LA = 2^nextpow2(length(kernel)+length(signal)−1);
123 Zeros = zeros(1,LA/2*zeroPad);
124

125 %% FFT
126 temp0 = fft(signal, LA,2); % calculate FFT of signal with time ...

domain zero−padding
127 kernelFFT0 = fft(kernel, LA,2); % calculate FFT of kernel with ...

time domain zero−padding
128 convFFT = kernelFFT0.*temp0; % dot product
129 convFFT = fftshift(convFFT); % center the result around zero
130 Ypad = [Zeros, convFFT,Zeros]; % frequency−domain zero−padding
131 convY = abs(ifft(Ypad)); % convert convolution result to time domain
132

133 ind = ceil((length(kernel)*(zeroPad+1)−1−zeroPad)/2)...
134 +(1:length(signal)*(zeroPad+1));
135 Conv = convY(ind)*(zeroPad+1); % recover amplitude
136 Conv = Conv(1:end−zeroPad); % time−domain truncation
137

138 convMax = max(Conv);
139 indMax = find(Conv == convMax); % find the peak of the ...

convolution result
140 timeMax = timeNew(indMax(1)); % find the corresponding time
141 ResConv.data = Conv;
142 ResConv.time = timeNew;
143 end
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E.6 Main Function (TDC)

1 clear
2 close all
3

4 %% Constants
5 global c sampleRate Nobs P0 TargetDistance skip
6 Nobs = 100; % number of observations in the Monte−Carlo experiment
7 c = 3E8; % speed of light [m/s]
8

9 %% Lidar settings
10 % laser source
11 P0 = 300; % Peak power of transmit pulse [W]
12 riseTime = 3.58E−9; % rise time [s]
13 sampleRate = 1e11; % sampling rate to model continuous 'analog' ...

signal [Hz]
14

15 % Target characteristics
16 TargetDistance = 5; % Target distance [m]
17 timeTrue = 2*TargetDistance/c; % ground−truth TOF
18

19 %% Tranmit Pulse Module
20 % OUTPUTS: time series, transmit pulse and other laser parameters
21 [tTran, yTran, Energy, PowerAveg] = fun_PulseModel(P0,riseTime);
22

23 %% Propagation and Receiver Module
24 % OUTPUTS: return time series, return pulse with noise
25 tRet = tTran + timeTrue; % return time series
26 [SNRSquare, yRetClean, yRetNoisy] = ...

fun_receiver(TargetDistance,yTran); % return pulse with noise
27

28 %% Timing Module
29 % TDC smoothing
30 % OUTPUTS: return signal after TDC smoothing
31 bw_TDC = 2e9; % TDC bandwidth
32 intcomp = 1/bw_TDC/2; % TDC 'integration' time
33 skip = floor(sampleRate*intcomp);
34 tRetAveg = tRet(:,1:skip:end); % time series after 'smoothing'
35 yRetAveg = yRetNoisy(:,1:skip:end); % return pulse after 'smoothing'
36

37 % Timing algorithms
38 % INPUTS: types of timing algorithm: leading−edge, TOT ...

compensation or CFD:
39 % 'lead' | 'tot' | 'cfd'
40 % OUTPUTS: measured TOF and distance
41

42 Flag_TDC = 'lead';
43 timeStart = fun_TDC_Start(tTran,yTran, Flag_TDC); % measure start ...

time
44 Results = fun_TDC(tRetAveg,yRetAveg, timeStart, Flag_TDC); % ...

measure TOF
45

46 % Results
47 DistanceMean = Results.dMean; % mean distance measurement
48 DistanceSTD = Results.dStd; % std of distance measurement
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E.7 Function of TDC Module

E.7.1 Function of TDC for Transmit Signals

1 function timeMeas = fun_TDC_Start(tRet, signal, Flag_TDC)
2 %% function to measure the start time
3 % Inputs:
4 % −tRet: return time series
5 % −signal: return pulse
6 % −Flag_TDC: timing algorithm
7 % Outputs:
8 % −timeMeas: measured TOF [s]
9

10 global powerNoiseFloor RMS TDCTriggerLevelGlobe
11 pfa = 0.001; % predefined PFA
12 TDCTriggerLevelGlobe = fun_TDCTrigger(mean(powerNoiseFloor), ...

pfa); % calculate TDC trigger threshold
13

14 %% Measured real pfa
15 % pfaMeas = sum(sum(signal > ...

TDCTriggerLevelGlobe))/size(signal,1)/size(signal,2);
16

17 switch Flag_TDC
18 % leading−edge and TOT uses simple leading−edge detection to ...

measure
19 % the start time
20 case 'lead'
21 Vth =TDCTriggerLevelGlobe;
22 VthReal = Vth;
23 Vth = 0.3 * max(signal);
24 tSamp = tRet;
25 sigSamp = signal;
26 y01 = zeros(1,length(sigSamp));
27 y01(sigSamp > Vth) = 1;
28 ind = find(y01==1,1);
29 if (ind == 1)
30 timeMeas = tSamp(ind);
31 else
32 % linear interpolation
33 timeMeas = interp1([sigSamp(ind − 1), ...

sigSamp(ind)],[tSamp(ind − 1), tSamp(ind)], Vth);
34 end
35 timeMeas = −sqrt(timeMeas^2 + 2*RMS^2 * ...

log(Vth/VthReal)); % time stamp measured at the ...
leading edge

36

37 case 'tot'
38 Vth =TDCTriggerLevelGlobe;
39 VthReal = Vth;
40 Vth = 0.3 * max(signal);
41 tSamp = tRet;
42 sigSamp = signal;
43 y01 = zeros(1,length(sigSamp));
44 y01(sigSamp > Vth) = 1;
45 ind = find(y01==1,1);
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46 if (ind == 1)
47 timeMeas = tSamp(ind);
48 else
49 % linear interpolation
50 timeMeas = interp1([sigSamp(ind − 1), ...

sigSamp(ind)],[tSamp(ind − 1), tSamp(ind)], Vth);
51 end
52 timeMeas = −sqrt(timeMeas^2 + 2*RMS^2 * ...

log(Vth/VthReal)); % time stamp measured at the ...
leading edge

53

54 % CFD uses peak detection to measure the start time
55 case 'cfd'
56 timeMeas = tRet(signal == max(signal)); % time stamp ...

measured at the peak
57 end
58 %% function to calculate TDC threshold
59 function TDCTriggerLevel= fun_TDCTrigger(W, pfa)
60 u_T0 = 0;
61 var_T0 = W^2;
62 Q = erfcinv(2*pfa) * sqrt(2);
63 TDCTriggerLevel = Q.* sqrt(var_T0) + u_T0;
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E.7.2 Function of TDC for Return Signals

1 function TOF= fun_TDC(tRet, signal, timeStart, method)
2 %% TDC Module
3 % Inputs:
4 % −tRet: return time series
5 % −signal: return pulse
6 % −timeStart: start time
7 % −method: TDC methods
8 % method:
9 % Flag_detection = 'lead':

10 % −leading−edge detection, measure time at the leading edge ...
(without offset compensation)

11 % −fixed threshold
12 % Flag_detection = 'tot':
13 % −time−over−threshold(TOT) compensation
14 % −fixed threshold
15 % Flag_detection = 'cfd':
16 % −CFD detection
17 % −constant fraction is set at 30% of the pulse height
18 % Outputs:
19 % TOF measurements
20

21 global Nobs c grids TDCTriggerLevelGlobe
22 grids = 1e−12; % TDC resolution
23 TDCTriggerLevel = TDCTriggerLevelGlobe; % calculated in ...

fun_TDC_Start.m
24

25 switch method
26 case 'lead'
27 timeStop = zeros(1,size(signal,1));
28 for i = 1 : size(signal,1)
29 % error handling: if threshold is larger than the ...

signal height
30 if (TDCTriggerLevel > max(signal(i,:)))
31 timeStop(i) = NaN;
32 disp('!!! Error: Return power < Threshold. No ...

object detected !!!')
33 continue;
34 end
35 % linear interpolation
36 timeStop(i) = fun_interp(TDCTriggerLevel,tRet, ...

signal(i,:));
37

38 end
39 % calculate TOF
40 timeMeas = (timeStop − timeStart);
41

42 case 'tot'
43 timeMeas = fun_TOT(TDCTriggerLevel,tRet, signal, ...

timeStart); % call TOT function
44

45 case 'cfd' % CFD
46 TDCTriggerLevelPerc = 0.3; % constant fraction
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47 timeMeas = fun_CFD(tRet, signal, TDCTriggerLevelPerc); % ...
call CFD function

48 end
49

50 % save data
51 TOF.name = method;
52 TOF.tof = timeMeas;
53 TOF.d = timeMeas*c/2;
54 TOF.tofMean = nanmean(timeMeas);
55 TOF.tofStd = nanstd(timeMeas);
56 if sum(¬isnan(timeMeas)) ≤ 0.1*Nobs
57 TOF.tofStd = NaN;
58 TOF.tofMean = NaN;
59 end
60 TOF.dMean = TOF.tofMean*c/2;
61 TOF.dStd = TOF.tofStd*c/2;
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E.7.3 Function of TOT Compensation

1 function timeMeas = fun_TOT(TDCTriggerLevel,tRet, signal, time0)
2 %% function of TOT compensation
3 % Inputs:
4 % −tRet: return time series
5 % −signal: return pulse
6 % −TDCTriggerLevel: TDC trigger threshold
7 % −time0: start time
8 % Outputs:
9 % −timeMeas: measured TOF [s]

10

11 global RMS P0 grids
12 timeMeas = zeros(1,size(signal,1));
13

14 for i = 1 : size(signal,1)
15 % error handling: if threshold is larger than the signal height
16 if (TDCTriggerLevel > max(signal(i,:)))
17 timeMeas(i) = NaN;
18 disp('!!! Error: Return power < Threshold. No object ...

detected !!!')
19 continue;
20 end
21

22 %% measure time stamp and the power at the leading edge
23 [timeLead(i), yLead(i)] = fun_interp(TDCTriggerLevel,tRet, ...

signal(i,:));
24

25 %% measure time stamp at the falling edge
26 ind1 = find(signal(i,:) < TDCTriggerLevel);
27 if isempty(ind1)
28 timeMeas(i) = NaN;
29 continue;
30 end
31 indFall = ind1(find(ind1 > size(signal(i,:),2)/2,1)); % find ...

the index of the sample at the falling edge lower than the ...
threshold

32 t1 = tRet(indFall−1); y1 = signal(i,indFall−1);
33 t2 = tRet(indFall); y2 = signal(i,indFall);
34 tq = t1:grids:t2;
35 yq = interp1([t1, t2], [y1, y2], tq);
36 timeFall(i) = tq(find(yq<TDCTriggerLevel,1));
37 yFall(i)= yq(find(yq<TDCTriggerLevel,1)); % power at the time ...

stamp at the falling edge
38

39 %% Calculate TOT
40 tot(i) = timeFall(i) −timeLead(i);
41 if tot<0
42 timeMeas(i) = NaN;
43 continue;
44 end
45

46 %% calculate corresponding peak power
47 PrEst = TDCTriggerLevel / exp(−(tot(i)/2)^2 / 2/ RMS^2);
48
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49 %% Calculate walk error
50 walk(i) = abs(time0) − sqrt(time0^2 − 2 * RMS^2 * log(P0/PrEst));
51 timeMeas(i) = timeLead(i) − walk(i) − time0;
52 end
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E.7.4 Function of CFD Algorithm

1 function timeMeas = fun_CFD(tRet, signal, VthPerc)
2 %% Constant Fraction Discriminators (CFD) Model
3 % Inputs:
4 % −tRet: return time series
5 % −signal: return pulse
6 % −VthPerc: constant fraction of the trigger point of the pulse ...

peak
7 % Outputs:
8 % −timeMeas: measured TOF [s]
9

10 %% Generate bipolar signal
11 global RMS sampleRate grids Nobs skip TDCTriggerLevelGlobe
12

13 CFDArmTrigger = TDCTriggerLevelGlobe*ones(Nobs,1); % CFD arming ...
threshold

14 offsetTime = sqrt(−log(VthPerc) * 2 * RMS^2);
15 if ¬isreal(offsetTime)
16 error('!!! Error: Vth of TDC is larger than signal. No time ...

detected. Check Vth !!!')
17 end
18

19 % find delay time
20 NumberOffset = floor(offsetTime / (1/sampleRate)/skip);
21

22 % generate delayed signal
23 try
24 yDelay = [zeros(size(signal,1),NumberOffset), signal(:,1:end ...

− NumberOffset)];
25 catch ME
26 if (strcmp(ME.identifier, 'MATLAB:Error using zeros: Size ...

vector must be a row vector with real elements.'))
27 msg = 'Threshold of TDC is larger than signal. No signal ...

detected !!!';
28 causeException = MException('MATLAB:myCode:dimensions',msg);
29 ME = addCause(ME,causeException);
30 end
31 rethrow(ME)
32 end
33

34 % generate reversed and attenuated signal
35 yNeg = −VthPerc * signal;
36

37 % generate bipolar signal: delay + attenuated
38 yBipolar = yNeg + yDelay;
39

40 % generate logic signal of of bipolar signal
41

42 yBi01 = zeros(size(yBipolar,1),size(yBipolar,2));
43 yBi01(yBipolar > 0) = 1;
44

45 %% Measure TOF
46 % apply arming threshold
47 yArm01 = zeros(size(signal,1),size(signal,2));
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48 yArm01(yNeg <− CFDArmTrigger) = 1;
49

50 % generate logic CFD signal
51 yCFD01 = (yBi01 & yArm01);
52 timeMeas = zeros(1,size(signal,1));
53

54 for i = 1 : size(signal,1)
55 ind =find(yCFD01(i,:) ==1,1);
56 if (isempty(ind) || ind == 1 || CFDArmTrigger(i) > ...

1*max(signal(i,:)))
57 timeMeas(i) = NaN;
58 continue;
59 end
60 t1 = tRet(ind−1); y1 = yBipolar(i,ind−1);
61 t2 = tRet(ind); y2 = yBipolar(i,ind);
62 tq = t1:grids:t2;
63 yq = interp1([t1, t2], [y1, y2], tq);
64 if isempty(find(yq ≥0,1))
65 timeMeas(i) = t2;
66 else
67 timeMeas(i) = tq(find(yq ≥0,1));
68 end
69 end
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E.7.5 Function of Linear Interpolation

1 function [time, P]= fun_interp(TDCTriggerLevel,tRet, signal)
2 %% function of linear interpolation
3 % Inputs:
4 % −tRet: return time series
5 % −signal: return pulse
6 % −TDCTriggerLevel: TDC threshold
7 % Outputs:
8 % −time: trigger time stamp
9 % −P: power at the trigger time

10

11 ind =find(signal > TDCTriggerLevel,1);
12 if (isempty(ind) || ind == 1)
13 time = NaN;
14 P = NaN;
15 return;
16 end
17

18 global grids % TDC resolution
19 t1 = tRet(ind−1); y1 = signal(ind−1); % find the data point ...

before the trigger point
20 t2 = tRet(ind); y2 = signal(ind); % find the data point after the ...

trigger point
21 tq = t1:grids:t2;
22 yq = interp1([t1, t2], [y1, y2], tq); % linear interpolation
23 if isempty(find(yq > TDCTriggerLevel,1))
24 time = t2;
25 P = y2;
26 else
27 time = tq(find(yq > TDCTriggerLevel,1));
28 P = yq((find(yq > TDCTriggerLevel,1)));
29 end
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