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ABSTRACT 

Feedback represents a vital component of the learning process and is especially 

important for Computer Science students. With class sizes that are often large, it can be 

challenging to provide individualized feedback to students. Consistent, constructive, 

supportive feedback through a tutoring companion can scaffold the learning process for 

students.  

This work contributes to the construction of a tutoring companion designed to 

provide this feedback to students. It aims to bridge the gap between the messages the 

compiler delivers, and the support required for a novice student to understand the problem 

and fix their code. Particularly, it provides support for students learning about recursion in a 

beginning university Java programming course. Besides also providing affective support, a 

tutoring companion could be more effective when it is embedded into the environment that 

the student is already using, instead of an additional tool for the student to learn.  The 

proposed Tutoring Companion is embedded into the Eclipse Integrated Development 

Environment (IDE).  

This thesis focuses on the reasoning model for the Tutoring Companion and is 

developed using the techniques of a neural network. While a student uses the IDE, the 

Tutoring Companion collects 16 data points, including the presence of certain key words, 

cyclomatic complexity, and error messages from the compiler, every time it detects an event, 

such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as 

inputs to the neural network. The neural network produces a correlating single output code 

for the feedback to be provided to the student, which is displayed in the IDE. 
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The effectiveness of the approach is examined among 38 Computer Science students 

who solve a programming assignment while the Tutoring Companion assists them. Data is 

collected from these interactions, including all inputs and outputs for the neural network, and 

students are surveyed regarding their experience. Results suggest that students feel supported 

while working with the Companion and promising potential for using a neural network with 

an embedded companion in the future. Challenges in developing an embedded companion 

are discussed, as well as opportunities for future work.  
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CHAPTER 1 

INTRODUCTION 

 

The education of Computer Science (CS) students is a significant problem that has 

warranted much attention. In fact, issues surrounding CS education have been identified as 

one of the seven grand challenges in computing (McGettrick, Boyle, et al., 2005). A 

common need for CS students is personalized quality feedback (Seymour and Hewitt, 

1997), but it is challenging to provide this kind of feedback. One might suggest that the 

faculty and teaching assistants should devote additional time to giving students feedback 

on their code. However, given the data on large class sizes (King, 2018; Pisan, Sloane, et 

al., 2002; Smaill, 2005; Hounsell, 2007),  it is extremely challenging – perhaps even 

unrealistic – for instructors to devote significant time to providing individual feedback to 

students. Thus, providing feedback to beginning CS students is a problem that needs to be 

addressed. 

 The nature of giving feedback to students is complex, and there are many factors 

involved regarding why and how students engage with certain types of feedback (Price, 

Handley, et al., 2011). Specifically, in the context of CS programs, feedback may be 

perceived as even more important due to the difficulty of these courses and the high 

attrition rate. This can be seen based on the research regarding feedback in general, as it 

has been rated as being among the top 10 influences of 138 influences studied, using 800 

meta-reviews (Hattie, 2009). Furthermore, some have argued that feedback is perhaps 

among the primary determinants for higher gains in student learning (Hattie and Timperley, 
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2007; Carless, 2006; Hounsell, 2003). The amount and type of feedback can even influence 

students’ satisfaction with their degree programs (Jessop, Hakim, et al., 2013). 

Beginning CS students often struggle to represent concepts in code. Winslow 

presents evidence that students struggle to produce “syntactically valid statements once 

they understand what is needed. The difficulty is knowing where and how to combine 

statements to generate the desired result” (Winslow, Sept. 1996). Additionally, students 

can experience feelings of anxiety about programming, and since these feelings are 

typically driven by their thinking patterns, perhaps instructors can help decrease these 

negative thought patterns by “changing the way the student constructs his/her thinking 

about writing computer programs” (Connolly, Murphy, et al., 2009). Thus, teaching 

students problem-solving strategies and, essentially, teaching them how to think about 

programming can bring significant results for the students not just academically, but also 

emotionally. Consequently, it is the intent of this thesis to provide students with knowledge 

about how to proceed by giving them hints about problem-solving strategies that will assist 

them not just with completing the assignment, but also providing them with improved 

knowledge regarding why something needs to change. 

Thus, helpful, constructive feedback delivered in a timely manner is important to 

learning, and CS programs are certainly not an exception to this. Yet, the difficulty of 

providing this feedback persists. This begs the question: How can this kind of quality, 

formative feedback be delivered to students? Tutoring Companions as Intelligent Tutoring 

Systems (ITS) can help to provide such academic support to students. In this chapter we 

describe key concepts for this topic and the current research. After that, we discuss the 

problem to be addressed in this thesis and our hypotheses. Next, we provide our proposed 
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solution and outline our contributions, as well as how we will evaluate these. Lastly, we 

discuss the scope of this thesis and provide an outline of the structure of this document. 

 

1.1 Key Concepts 

It is important to begin by defining some terms and providing an introduction to their 

significance for this thesis. This section defines such concepts. 

Feedback.  Feedback is defined as an explanation or information for the student 

regarding the student’s current skill set or knowledge and where it should be, allowing the 

student to understand what actions need to be taken to make the needed progress 

(Ramaprasad, 1983). The Companion implemented in this thesis provides feedback about 

student code. 

Hints. Hints are messages to assist with solving the problem (Nesbit, Liu, et al., 

2015). Since the goal is that this hint replicates the assistance of a human tutor, the hints 

must adapt to the student’s progress and work (Crow, Luxton-Reilly, et al., 2018). 

Furthermore, the hints must extend beyond what could be received by utilizing only the 

compiler errors; otherwise, the hints cannot be considered truly “intelligent” (Crow, 

Luxton-Reilly, et al., 2018). Hints are a specific type of feedback. The Companion 

implemented in this thesis also provides hints. 

Integrated Development Environment. Distinguishing characteristics of an 

Integrated Development Environment (IDE) are that it supports programming and is also 

integrated with a software application with key tools available, such as a code editor, 

compiler, and a debugger, which is accessible through a GUI interface (Chen and Marx, 

2005). Specifically, in CS education IDEs are often used to aid students with the 
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complexities of writing code (Chen and Marx, 2005; Chatley and Timbul, 2005; Spacco, 

Hovemeyer, et al., 2004; Reis and Cartwright, 2003).  

Intelligent Tutoring Systems. An Intelligent Tutoring System (ITS) is a computer 

system that “performs teaching or tutoring functions…and adapts or personalizes those 

functions by modeling students’ cognitive, motivational or emotional states” (Nesbit, Liu, 

et al., 2015). Student modeling is a primary distinguishing factor of ITS compared to other 

instructive systems (Nesbit, Liu, et al., 2015; Sottilare, Graesser, et al., 2013), which 

involves identifying a student’s problem in real-time (Shute and Psotka, 1996). Its ability 

to customize the teaching function by, essentially, “remembering” the states from student 

responses, in order to provide better feedback in the future to a student in a similar situation 

is what sets an ITS apart (Nesbit, Liu, et al., 2015; Ma, Adesope, et al., 2014). In other 

words, the knowledge of the tutor should be persistent, continually growing over time 

(VanLehn, 2006; Pillay, 2003). 

Tutoring Companion. A companion is an instant, on-demand support system that 

emulates the traits of a human tutor and is a subcategory of ITS. We implement a 

companion in this thesis. It differs from an ITS in that it is part of an already existing 

system, which in this case is the Eclipse IDE. An ITS represents a standalone system, which 

has many types, such as an alternative IDE designed specifically for teaching or perhaps a 

web-based ITS that gives lessons to students. Regardless, it is important to distinguish 

between Companion and ITS in this thesis. The relationship between Companions, ITS, 

and other key concepts is shown in Figure 1.1. 

Eclipse Platform. Eclipse is an IDE widely used by professionals (Judd and Shittu, 

2005) and is commonly used in programming courses (Chen and Marx, 2005; Chatley and 
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Figure 1.1. Relationship between ITS, Companions, and Embedded Companions as 
it pertains to student modeling, feedback, and CS 

 

Timbul, 2005; Reis and Cartwright, 2003).  One reason for its popularity is its extensibility 

(Chen and Marx, 2005), which allows other tools or applications to be smoothly integrated 

with the existing functionality of Eclipse (International Business Machines Corporation, 

2006). As an open-source software platform, this allows many to contribute and facilitates 

adding onto it for various purposes by utilizing the existing components of the IDE (Judd 

and Shittu, 2005). 

Eclipse Plug-ins. An Eclipse plug-in “is the smallest unit of Eclipse Platform 

function that can be developed and delivered separately” (International Business Machines 

Corporation, 2006). The Companion implemented in this thesis is an Eclipse plug-in that 

“lives” inside of the Eclipse IDE. This plug-in connects to the existing Eclipse Platform, 

allowing students to still use the IDE as they typically would with the Companion’s added 

functionality on top of the existing system.  
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1.2 State-of-the-Art  

ITS have been used for instruction in a wide range of disciplines, including math, medicine, 

reading, and language-learning, and have been used for students of all levels – from 

elementary school through university level students (Nesbit, Liu, et al., 2015). Numerous 

ITS already exist for teaching programming (Crow, Luxton-Reilly, et al., 2018; Nye, 

Graesser, et al., 2014; Keuning, Jeuring, et al., 2018), and engineers and researchers have 

made some progress addressing the need for individualized feedback in CS education, 

albeit in a somewhat limited manner. Many options exist, but more work is needed in this 

area in order to better meet the needs of a diverse student population. 

Training students how to use tools like compilers is an important component of the 

educational process, so it is important that any type of support that is provided does not 

deprive students of this. Nevertheless, “the tools involved are complex and require a certain 

degree of user experience. For example, error messages are often cryptic or misleading and 

require tutor support to be resolved. Small exercises could help students learn how to read 

a runtime error or typical compiler errors and how to find a solution more independently” 

(Ott, Robins, et al., 2016). As experienced programmers, instructors may simplify the 

process of understanding the error messages, for “what is a problem to a beginner may be 

a task to someone more advanced” (Winslow, Sept. 1996). Hence, it seems that there is a 

gap between what beginning CS students can accomplish and the skill level required for 

troubleshooting the messages received from the compiler. 

In fact, it may be detrimental to the learning process of new CS students if they are 

compelled to rely primarily on error messages to debug their code. Some have found that 

this process can lead beginning CS students to perceive the ongoing error messages as 



 

7 

failure on their part or that they do not have the ability to perform as needed (Perkins, 

Hancock, et al., 1989). Others have asserted that students can develop “programming 

anxiety” – even leading them to “fear” programming (Connolly, Murphy, et al., 2009). This 

anxiety, which negatively impacts these students’ academic performance, is prompted by 

a response to the complex set of steps given to beginning CS students for which they are 

not mentally prepared, and these researchers even argue that it has negative effects on 

retention rates (Connolly, Murphy, et al., 2009). 

Consequently, some have proposed the use of an educational tool integrated into 

the IDE itself (Chen and Marx, 2005; Chatley and Timbul, 2005; Reis and Cartwright, 

2003). These modifications to the IDE include modifying the IDE to simplify it for 

beginners (Reis and Cartwright, 2004), implementing a plug-in so that students can use a 

simpler programming language in the same IDE (Chatley and Timbul, 2005), or even using 

a completely different, simplified IDE altogether (Storey, Damian, et al., 2003).  

A companion can also provide this function to the student by offering assistance to 

the student with feedback regarding how to fix the issues in the code. These can be 

delivered in such a way that this does not interfere with the learning process of how to 

interpret the error messages received. Instead, a companion can help to bridge the gap 

between what a compiler is expecting the programmer can do and the typical level of 

beginning CS students.  

Previously, a companion for teaching Java was developed with a focus on 

monitoring students’ actions while completing a programming assignment (Penumala and 

Gonzalez-Sanchez, 2018). This previous work focused on collecting data from students 

while completing the assignments, providing the data to the instructor of the course through 



 

8 

a convenient Graphical User Interface to allow instructors to quickly evaluate the progress 

of their students (Penumala and Gonzalez-Sanchez, 2018).  Certainly, instructors need to 

understand the needs of their students, which may allow them to modify lecture instruction 

accordingly. However, if class sizes are large, this still will not effectively remedy the 

problem that CS students need someone to help them individually with their code. 

 

1.3 Problem to be Addressed  

However, even with all these existing systems, it is rare for an ITS to offer a combination 

of features in which it provides feedback to students, as well as something that does not 

require the use of a new tool. It would be ideal if students could use a tool that would 

naturally be used in writing code so that they simultaneously learn how to understand the 

messages from the compiler. 

It seems that a tool – a tutor, of sorts – could assist students in beginning CS courses 

by providing them with feedback. Building upon prior work (Penumala and Gonzalez-

Sanchez, 2018), this thesis proposes the use of a companion designed to assist students 

with programming exercises on recursion in lower-division CS courses. As an embedded 

companion, this differentiates it in providing feedback to students about how to proceed. 

Although many ITS exist, it is rare for one to offer this combination of features. 

Compiler messages are important but are complicated for beginning students to 

understand (Ott, Robins, et al., 2016). Furthermore, the IDEs themselves can be at times 

complex, which can, in fact, exacerbate the issues for beginning CS students learning to 

program (Chen and Marx, 2005; Reis and Cartwright, 2004), so feedback while using the 

IDE may be beneficial. Some may argue that this can hinder the learning process because, 
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after all, students need to acquire the skill of how to decipher the messages produced by 

the compiler. Few would dispute that students need to understand errors messages and learn 

how to approach solving these issues; however, for beginning CS students relying primarily 

on error messages by the compiler can be quite challenging (Ott, Robins, et al., 2016). 

Regardless of the approach to resolving the complexity with the IDE, existing 

options do not effectively address both issues at hand: offering a tool to students that does 

not increase the complexity of what already exists and providing first-rate feedback to 

students simultaneously. In some cases, students are, in fact, given feedback directly in the 

IDE; however, it lacks a robust intelligence to allow feedback to improve over time 

(Spacco, Hovemeyer, et al., 2004). The limitations of the current work can be summarized 

as follows: 

• Existing programming companions within the IDE lack a strong intelligence, 

especially one that applies current AI techniques. 

• Few embedded companions exist that provide feedback to students on problem-

solving skills or how to proceed with an assignment. These exist as ITS but are not 

common within the IDE. 

• Many existing programming companions in the IDE for beginning CS students 

significantly modify the appearance of the IDE or the programming language. This 

leads to a disconnect between the IDE and language that students use and a standard 

IDE and programming language. 

As a result, more investigation into this area would be beneficial. 
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1.4 Hypotheses 

With the goal of improving the current practice and overcoming these limitations, this 

thesis investigates a solution to provide feedback on programming assignments to 

beginning CS students. The primary research goal for this thesis is to extend an existing 

Companion to enable it to provide valuable feedback to beginning CS students. This thesis 

addresses the aforementioned challenges and limitations and is stated as follows: 

We propose a solution using a neural network to provide students with a sense of 

tutoring and affective support through feedback and implementing a modular, extensible, 

modifiable software solution. 

 Our hypotheses are that students will be receptive to trying this tool and perceive its 

importance, as they are personally aware of the challenges associated with programming 

and often seem willing to try new things to help address this situation. Current artificial 

intelligence (AI) trends will inform our decision regarding how to generate feedback. We 

expect that the feedback will be slightly helpful to students, although improvements to the 

AI may be expected in the future. Finally, we expect that the Companion can be fairly 

effective at generating feedback for programming assignments with recursion, as there are 

fairly specific problems that arise with recursion. 

 

1.5 Proposed Solution or Approach 

We propose a tutoring companion integrated into the Eclipse IDE that provides customized 

feedback to students while completing recursion programming homework assignments.  
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Figure 1.2. The Proposed Solution: The Companion is embedded into the Eclipse 
IDE. It models the student’s knowledge through the use of a neural network and provides 

intelligent feedback on a recursion programming assignment. 
 

The tutor’s goal is to simulate a companion that will provide both content support to the 

student, as well as affective support. The results of this Companion are examined utilizing 

beginning CS students in a university programming course. The depiction of the proposed 

solution is given in Figure 1.2. 

Every time a student initiates an action in the IDE, data will be sent from the 

student’s code to the server. Simultaneously, the data from the code will be sent locally 

within the plug-in to the Brain of the Companion that calculates a response, using the 

intelligence facilitated through the use of a neural network. The Brain produces intelligent 

feedback tailored to this situation, which is then displayed to the student. This process, 

illustrated in Figure 1.3, continues until the student’s code is complete. 
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Figure 1.3. Overview of Proposed Solution: The Companion collects data while a 
student completes a programming assignment. The Brain of the Companion determines 
individualized intelligent feedback for the student, which the Companion displays inside 

the Eclipse IDE so that the student will not need to learn a new tool to use the 
Companion.   

 

Additionally, this Companion provides support to the student so that this 

“programming anxiety” in beginning CS students is minimized. Connolly et al. conducted 

a longitudinal study of CS students, investigating the presence of programming anxiety, 

especially with how this occurred in their first year of the CS program. They write: 

The extent of negative cognitions regarding control in computing situations, and 
the lack of sense of computing self-efficacy shown in this study strongly points to 
the need for strategies to be devised by computer programming course designers 
to foster student confidence and motivation…The findings…would suggest that 
providing learners with opportunities to gain experience in skills involved in 
programming computerized equipment routinely themselves, for example…dealing 
with error messages, would be important elements of developing confidence and 
perceptions about computer programming (Connolly, Murphy, et al., 2009).  
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The Companion implemented in this study has this goal in mind. Since it is an additional 

feature in the Eclipse IDE, which already needs to be used as part of the software 

development cycle, it will scaffold the learning process for the student. This still allows the 

student to learn from the error messages produced by the compiler, but also provides 

support and encouragement through the feedback delivered. 

 

1.6 Contributions  

In this thesis, we assert the use of a tutoring companion integrated as a plug-in into the 

Eclipse IDE for providing feedback to students. We provide an overview of existing 

research, introduce the intelligence of the Companion, examine its effectiveness and 

whether it fulfills the goals set for this study, and evaluate the Companion via CS students 

using it for an assignment. This thesis advances the state-of-the-art in CS education by 

integrating a tutoring Companion into the Eclipse IDE, delivering intelligent feedback by 

utilizing current work in AI, and investigating its effects among beginning CS students. 

The key contributions of this thesis include: 

• The Software of the Companion. Using best practices in software engineering, 

the product is a sophisticated working software. On the front-end, the students 

install it as an Eclipse plug-in. On the back-end, it sends the students’ data to the 

neural network and the database – both of which are located on the server. Since all 

of these are implemented with existing enterprise-level tools, rather than creating it 

from scratch, this increases the complexity of the software in achieving the desired 

functionality.  
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• The Brain of the Companion. Leveraging AI technology through the 

implementation of a neural network, it represents an improvement in existing ITS 

for programming, allowing students to receive intelligent feedback without 

requiring a separate tool just for the ITS. Additionally, we determined necessary 

input data for the neural network to respond to possible problems in the code and 

created messages for the Companion designed for its educational purpose. 

• The Research Study of the Companion. Demonstrating the effectiveness of the 

Companion developed for particular users, namely, beginning CS students, its 

effectiveness was examined among this target audience. Furthermore, the study 

provides evidence that the software developed works and functions according to 

expectations. These students are enrolled in at least one of two lower-division CS 

courses. One of these courses includes an introduction to different programming 

languages, and the other course is on elementary data structures. 

 

1.7 Evaluation Plan 

Evaluating the Companion includes: 

• Testing. The software will be tested according to the principles of Software 

Engineering. This includes the use of component, integration, and Alpha testing to 

validate that the software works as expected. 

• Software Release. The Companion’s validity is further validated by releasing it to 

a set of users who are, in a sense, the “customers” for the software. Having students, 

the intended audience for the Companion, use the Companion validates not only 
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that it works, but also that it can be used for its intended purpose: delivering 

feedback to students about a programming assignment. 

• Evaluation of the Companion’s Feedback. The students using the Companion 

will provide opinions regarding how helpful the Companion’s feedback is for 

various scenarios with their code. For each message delivered, the plug-in prompts 

students to evaluate how helpful it was, and the plug-in logs this data for the data 

in the student’s code. Thus, this will be helpful in improving the Companion in 

future iterations and evaluating whether the Companion’s feedback was effective. 

Additionally, students will complete a survey at the conclusion of the experience 

with the Companion, providing additional data regarding the helpfulness of the 

feedback and their reactions to the Companion. 

 

1.8 Scope of Work 

Several topics are beyond the scope of this thesis, including: 

• Continual Execution of a Neural Network. Currently, the neural network 

developed in this project requires human intervention to train the model with 

collected student data. A fully automated Companion would learn at all times and 

provide feedback without requiring a human in the data training process. This, 

however, is beyond the scope of this work. 

• Cross-compatibility. Plug-ins are typically developed for the current version of 

Eclipse, but they often work with other versions of Eclipse, as well as for other Java 

versions. Since this was not a focus of this study, development efforts were not 

focused on this facet of the software. 



 

16 

• Companions in Other IDEs. Companions can also exist in other IDEs used for 

Java development, such as Visual Studio, NetBeans, or IntelliJ. Although these may 

also be worthy of consideration, they are not evaluated or included in this study. 

 

1.9 Document Roadmap 

The rest of this thesis will describe the research and work on the Companion. Chapter 2 

provides a survey of the existing work on this topic and establishes the need for an 

integrated tutoring Companion with this type of intelligence. Chapter 3 contains a detailed 

explanation of the Companion’s intelligence, including the technical implementation 

details of the neural network and the model generation. Chapter 4 discusses the technical 

details behind the Companion’s Brain, such as architecture, design, and testing. Chapter 5 

comprises the details on the study completed with the students. Chapter 6 presents the 

results of the study, and, lastly, chapter 7 discusses the results and plausible conclusions, 

along with possible future research areas. 
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CHAPTER 2 

BACKGROUND 

 

The tutoring function performed by our Companion involves giving feedback to the 

students, as well as “offering prompts to provoke cognitive, motivational, or metacognitive 

change” (Nesbit, Liu, et al., 2015). Such feedback could improve a student’s interest in 

learning through an interesting message or the use of humor (Ma, Adesope, et al., 2014). 

 

2.1 Tutoring Companions Background 

ITS for teaching programming typically exist for a distinct purpose, such as helping 

students with a particular concept in programming, and are often designed for a specific 

programming course at a certain university (Nesbit, Liu, et al., 2015; Crow, Luxton-Reilly, 

et al., 2018; Nye, Graesser, et al., 2014; Keuning, Jeuring, et al., 2018). They often fall into 

two categories for their intended function: assisting a student with a programming exercise 

or supporting the debugging of code (Pillay, 2003). Various facets of teaching or tutoring 

functions exist in these systems, such as providing lessons to students with an explanation 

of key concepts, giving short programming exercises for students to complete, or offering 

suggestions on improving the efficiency of the code (Pillay, 2003). At any rate, these are a 

system, rather than being integrated into an already existing tool. 

 Many different categories have been used to analyze ITS for teaching 

programming, ranging from learning outcomes (Nesbit, Adesope, et al., 2014) to the age 

of the students in the target audience (Pillay, 2003) to the classification of the feedback 

provided (Le, 2016). One type of feedback in ITS for programming is adaptive feedback.  
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Adaptive feedback consists of not just telling the user whether an answer is correct in a 

binary sense; rather, it provides different information for different students in different 

situations (Le, 2016). Some have suggested that the feedback in this approach could be the 

line number in the code with the error, an explanation of a concept, or a customized hint 

(Le, 2016). 

 Feedback in general, not just for programming, has been divided into various 

categories, including knowledge about mistakes, knowledge about how to proceed, and 

knowledge about concepts (Narciss, 2008). Automated feedback generation tools for 

programming assignments have been classified according to these types of general 

feedback. Knowledge about mistakes accounts for 96% of feedback tools, while knowledge 

about how to proceed accounts for about 45% of available tools, although tools may fall 

into multiple categories (Keuning, Jeuring, et al., 2018). Even though 45% of tools already 

developed are in this category, many in this category do not have strong features, such as 

being embedded into an IDE. A discussion of specific examples of programming ITS in 

each general feedback category will now be provided. 

Feedback about Knowledge about Task Constraints. One example of a tutoring 

system that provides feedback on task constraints is INCOM, which is for teaching logic 

programming (Nguyen-Thinh, Menzel, et al., 2009). This operates by highlighting 

keywords about what the student missed.  Other types, such as BASIC Instructional 

Program (BIP), which is a historical example of an ITS, require that a component of the 

language is used, so the system will deliver a message stating that the student is missing a 

keyword (Barr and Beard, 1976). These types of systems may have a benefit in assisting 

the student to complete the assignment successfully, but they will most likely not help the 
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student to think through similar types of problems in the future, as the student will not 

improve his or her understanding of how to solve that type of problem. Systems in this 

category represent about 15% of available tools, and the focus is on helping the student 

with breaking down the tasks (Keuning, Jeuring, et al., 2018). 

Feedback about Knowledge about Concepts. Next, an example of knowledge 

about concepts is the FIT Java Tutor, that allows students to compare their solution side-

by-side with a sample solution. In some cases, this ITS provides the student with an 

example containing mistakes, asking the student to correctly identify the mistakes. 

Another example, the Lisp Tutor, which is an early ITS, continuously monitors the 

student’s work for errors, and, once an error is detected, it provides guidance to the student 

(Anderson and Skwarecki, 1986). It also offers students reference materials on various 

topics, guiding him or her through a series of examples for similar situations and concepts 

(Crow, Luxton-Reilly, et al., 2018; Keuning, Jeuring, et al., 2018). Although the feedback 

offered by Lisp Tutor may have benefits, it lacks the ability to deliver feedback in non-

erroneous scenarios. 

Feedback about Knowledge about Mistakes. Tutors in this category often report 

test failure cases. Online Judge reports whether test cases pass or fail, and another system, 

ProgTest, which teaches testing, has students upload their code and test cases. Then, it 

reports the results of running the instructor’s test, along with the code coverage analysis 

given the student’s test cases (Keuning, Jeuring, et al., 2018). A well-known early 

programming tutor in this category is PROUST, which helps beginning Pascal students 

locate errors in their programs (Johnson and Soloway, 1984). This tutor functions by 

generating a list of all errors in the student program (Pillay, 2003). COALA is a tool that 
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provides the results of running JUnit test cases in the Eclipse IDE (Jurado, Redondo, et al., 

2012). Knowledge About Mistakes may also involve providing more details on compiler 

errors, such that the students do not need to use an actual compiler, even going so far as to 

replace an actual compiler (Keuning, Jeuring, et al., 2018). However, it is a vital skill for 

students to learn to use the compiler directly, so replacing the standard compiler in an IDE 

is not desirable. Other ITS may give feedback on solution errors by attempting to match 

the student’s code with a sample solution program. Singh13, which is one such type of tool, 

gives students the line number and function that needs to be changed with the exact change 

that should be made to the code (Singh, Gulwani, et al., 2012). Moreover, systems like 

Singh13 do not particularly benefit a student’s problem-solving ability. In fact, only 

providing the solution to the problem will resolve the issue at that moment, but in a similar 

scenario in the future, the student will likely have the same issue. Although these types of 

debugging tutors might have been helpful in bygone eras, IDEs can, in general, provide 

this for students, so it seems that this type of system is not really relevant today. 

Furthermore, most IDEs have debugging support built into them, so to create this type of 

system is not a good use of resources. Assisting students with writing a program is still 

something that is relevant and needed, as much of what goes into this involves how to think 

about the problem, which is more than just understanding the syntax of the language. Thus, 

the programming Companion we developed falls into this first category. 

Feedback about Knowledge about How to Proceed. In the literature review 

conducted by Keuning et al, they found that 45 of 101 tools reviewed provide this type of 

feedback (Keuning, Jeuring, et al., 2018). They further subdivide this category into three 

other categories: bug-related hints, program improvements, and task-processing steps. 
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Bug-related hints focus on assisting the student with fixing errors, such as fixing errors 

with spelling or checking input for validity. Some, such as CSTutor, offer these in the  form 

of questions to greater assist the student’s learning (Keuning, Jeuring, et al., 2018). Another 

category, program improvements, provides ways the student can improve the performance 

or style of the program (Keuning, Jeuring, et al., 2018). Even though these are important 

considerations, if novices cannot represent the basic logic of their task in a programming 

language (Winslow, Sept. 1996), these are secondary issues. Lastly, task-processing steps 

offer feedback for how to think about the problem without examining the student’s current 

code. A Prolog tutor providing task-processing steps, Hong04, gives hints on how to 

logically step through the problem with templates for the student to fill in the blanks. Ask-

Elle, which is used to teach the functional programming language Haskell, gives 

suggestions for how to attack the problem, which can help the student to learn how to think 

about the problem as if the instructor were present, walking the student through the thought 

process.  

 Feedback about Knowledge about Metacognition. Keuning et al. found only one 

example of a tutor focused on Knowledge About Metacognition, HabiPro, which asks 

students to justify their answers (Keuning, Jeuring, et al., 2018). This type of system is rare 

and is often implemented using natural language processing. 

 

2.2 ITS in the IDE 

While programming ITS with adaptive feedback offer many features, most of the features 

center around providing lessons and reference materials to students, rather than being 

directly embedded into an IDE (Crow, Luxton-Reilly, et al., 2018). Nevertheless, there are 
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a handful of ITS embedded into the IDE that are worth considering. One such ITS, Cimel 

ITS, which was used to teach program planning and modeling, integrates the tutor with the 

Eclipse IDE, sending UML designs from Eclipse to be evaluated by the system (Moritz, 

Wei, et al., 2005). Although Cimel is an Eclipse plug-in, its essential purpose is different 

because it teaches UML, instead of assisting with a programming exercise. Other similar 

plug-ins for UML have also been developed (Moritz, Blank, et al., 2007). Nonetheless, 

these are not really programming ITS because they teach modeling, not programming. 

ITS as Eclipse plug-ins exist for a variety of purposes, such as helping with 

collaboration, especially with pair programming (Devide, Meneely, et al., 2008; Jurado, 

Molina, et al., 2013; Yusri, Mashita Syed-Mohamad, et al., 2015). An Eclipse plug-in was 

also developed to track keystrokes, classifying students’ level of activity in a programming 

lab setting to aid tutors with knowing whom to assist (Karkalas and Gutierrez-Santos, 

2014). Another example is a plug-in to assess students’ code, evaluating whether it is 

suitable for submission (Silva, Leal, et al., 2018). An interactive tutorial that records 

students’ actions in the IDE to be preserved as a tutorial for future students also exists, but 

this differs significantly from an ITS programming tutor that provides feedback (Zhang, 

Huang, et al., 2009). Another tutor, Coala, assists students and teachers with assessing a 

programming algorithm by collecting data from students’ code through an Eclipse plug-in 

(Jurado, Redondo, et al., 2014). Thus, there are ITS worthy of consideration, but their focus 

is not on giving students feedback on how to proceed.  
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2.3 Intelligence for ITS 

Various approaches have been used for intelligence in the ITS. Before considering pure AI 

methods in this section, we will consider a few other existing methods for providing 

feedback on programming in an ITS. Sometimes these possess some similarities to AI 

methods, but all aim to help students with their programming assignments regardless of the 

method for generating the intelligence. 

Generating Feedback through Data Analysis. Data analysis, which can also be 

referred to as data-driven ITS (Rivers and Koedinger, 2017), involves “using large sets of 

historical student data to generate hints” (Keuning, Jeuring, et al., 2018), and only about 

8% of existing systems use this method. Decisions within the ITS are based on prior 

students’ work, instead of relying on an expert knowledge base that requires an instructor 

to enter solutions (Rivers and Koedinger, 2017). One reason that data-driven techniques 

for generating hints can be helpful is because it helps to resolve the “cold-start problem” 

(Chow, Yacef, et al., 2017). When the first students initially use an ITS, some of the early 

hints may be poor or even non-existent. The developers of the Grok Learning platform, an 

online programming tutoring system, found that when using a data-driven approach, they 

only needed data from 10 students to generate a quality hint (Chow, Yacef, et al., 2017). 

Thus, it seems using historical student data is worthwhile. The Intelligent Teaching 

Assistant for Programming (ITAP) is another ITS that uses data analysis, with the goal of 

being a self-improving tutor so that feedback is increasingly better matched to each unique 

student (Rivers and Koedinger, 2017). ITAP “creates a solution space graph with 

(intermediate) program states as nodes, in which directed edges represent next steps” 

(Rivers and Koedinger, 2017). After matching a student solution with a node in the graph, 
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it searches for a path from the student’s current node to a correct solution, using the path 

as the basis for the hint (Rivers and Koedinger, 2017). Although this method has found 

some success with ITAP, ITAP cannot handle incorrect syntax (Rivers and Koedinger, 

2017). Furthermore, if data analysis is used on its own without the advantage of machine 

learning techniques, it is time-intensive and involves a complex process to determine how 

to traverse the graph to an ideal solution, as well as how to match a student’s code with a 

current node in the solution graph. Whereas these ITS rely, typically, on some graph 

traversal algorithm that the developers must create, a machine learning approach can build 

on existing software libraries for machine learning without being limited to the arena of 

ITS.  

Generating Feedback through Static Analysis. Static analysis tools for code are 

ubiquitous, and these are frequently incorporated into university classes to enforce coding 

standards through a variety of tools (Keuning, Jeuring, et al., 2018). However, as Keuning 

et al. argue, the disadvantage of such tools is that their messages are often complex and not 

tailored for beginning programming students.  

Generating Feedback through AI. AI techniques are relatively common for 

generating feedback, with approximately 28% of surveyed tutors in a major literature 

review relying on AI for feedback generation (Keuning, Jeuring, et al., 2018). Many 

different AI techniques exist, which range from giving intelligent feedback through the 

execution of test cases to more elaborate methods involving tracing the student’s solution 

model compared with a model of a sample solution (Le, Strickroth, et al., 2013). Some so-

called AI methods are limited to “detecting errors in student solutions in order to provide 

feedback” (Le, Strickroth, et al., 2013). However, a compiler can provide these types of 
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feedback, so this does not really represent a needed area of research. Another example of 

an AI method for feedback is through natural language processing. AutoTutor is perhaps 

the quintessential example of such a system (Graesser, Lu, et al., 2004). Seeking to simulate 

a conversation with a human tutor, it uses a predictive script to determine which direction 

to take the student. In these types of approaches, an expected answer exists for each 

question the tutor asks. If the answer given is not what the expected or “right” answer is, 

then a series of remediation steps is generated (Le, Strickroth, et al., 2013). Nonetheless, 

the focus of AutoTutor has not typically been assisting students with programming. 

PROPL, a natural-language processing ITS designed for programming, guides a student to 

a pseudocode solution using a series of questions and natural-language processing (Le, 

Strickroth, et al., 2013). Yet, PROPL only assists with creating a pseudocode solution, not 

with the actual coding process. 

Generating Feedback through Machine Learning Techniques. Machine 

learning, a specific type of AI, is another possibility for generating feedback. JavaBugs 

sought to identify a student’s intention by using a machine learning approach to generate a 

library of common bugs for beginning Java students (Suarez and Sison, 2008). This ITS 

utilized a set of sample solutions to the problems and compared the student’s solution to 

these samples, using it to determine how the student intends to solve the problem. Using 

machine learning, they determined how the student diverged from this program and 

updated the error library accordingly. Although they did return feedback to the student, the 

true aim of this study was using machine learning techniques to generate a bug library, 

rather than using it to generate the feedback itself. Others have used neural networks to 

generate hints (MacNish, 2002; Beck, Woolf, et al., 2000).  
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2.4 Summary 

Certainly, much work has been done in the area of programming ITS, including 

companions embedded in the IDE and even ITS with intelligence. One might wonder why 

yet another type of ITS could be worthwhile. Among these options, few, if any, exist as an 

embedded companion in the IDE, utilizing a neural network to generate feedback about 

how to proceed with a programming assignment, as well as offering affective support. Of 

course, companions embedded into the Eclipse IDE for programming assignments already 

exist. Coala, for instance, is an Eclipse plug-in that adds information to the IDE to help 

students with their code and extracts data from students’ code (Jurado, Redondo, et al., 

2014). Nevertheless, it also differs in significant ways, as this tutor requires an instructor 

to enter a sample solution to generate the data used for evaluating students’ code. 

Furthermore, its feedback most closely resembles that from running test cases. CIMEL also 

exists as an Eclipse plug-in, but this is for UML, not for programming (Moritz, Wei, et al., 

2005). Intelligent ITS also already exist, such as ITAP (Rivers and Koedinger, 2017), but 

it cannot handle incorrect syntax and also does not minimize instructor involvement. Thus, 

this type of companion – one in the Eclipse IDE delivering intelligent feedback with hints 

about how to proceed with an assignment – is situated in a unique niche among prior ITS. 
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CHAPTER 3 

THE TUTORING COMPANION BRAIN 

 

The intelligence for the Brain is implemented using a neural network with a supervised 

learning algorithm. We considered other options for the intelligence and found that a neural 

network is a good fit for this data and the intended purpose of the Companion. Before a 

more detailed discussion of the brain, we will briefly explain the rationale for choosing a 

neural network over other possibilities.  

Besides neural networks, possibilities for the brain include linear regression and 

Bayesian networks. Linear regression has been used with ITS for simple classification 

problems (Beck, Woolf, et al., 2000), but it is too simple because the inputs in an ITS can 

have a high degree of variance, which requires a more sophisticated algorithm than that 

supported by linear regression. Bayesian networks have been effective in cases involving 

complex decision-making to determine the outcome, such as games within an ITS (Conati, 

Gertner, et al., 2002; Hooshyar, Binti Ahmad, et al., 2018), but these are too sophisticated. 

Moreover, these are usually when the ITS has many facets, such as lessons, quizzes, and 

games, and the intelligence must control how the student moves through these phases. 

Embedded companions do not require this level of sophistication. A neural network 

provides a perfect compromise between the two extremes of complexity offered by linear 

regression and Bayesian networks; it supports variance among the possible inputs to 

provide an accurate outcome and allows for additional complexity to be added in future 

versions of the Companion. 
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The following sections provide the details of the Companion’s Brain. First, the 

structure of the neural network will be described, including the data that enters and leaves 

it. Next, the possible messages available in the Brain will be presented. Then, the flow of 

data within the Brain will be depicted and the necessary transformations to the data. Lastly, 

the approach to the training of the neural network will be described. 

 

3.1  Inputs and Outputs to the Neural Network  

A multi-layer perceptron neural network, as shown in Figure 3.1, with a back propagation 

learning algorithm was used for the intelligence of the Companion. The backpropagation 

utilizes a sigmoid transfer function. The input layer contains 16 nodes containing students’ 

data. There is one hidden layer with seven nodes, which reflects others’ neural network  

implementation for hint generation using a single hidden layer (MacNish, 2002). The 

output layer consists of a single node corresponding to the feedback to give to the student.  
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Figure 3.1. Structure of the Neural Network 
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The input to the neural network consists of 16 nodes with data extracted from the 

student’s code and events in the IDE. Some of the nodes contain data about feedback given 

in this situation, which will be helpful for future training of the neural network. The specific 

input fields can be seen in Figure 3.2. After considering areas that often cause problems 

with recursion for software engineers and particularly students, such as a missing base case 

or StackOverFlowError, we selected inputs that can help to provide this information to the 

Companion. 

 

1. Action Debug, Error, Help, Run, or Submit 
2. Assignment successfully completed 0, 1 
3. Comparator operator found 0, 1 
4. Keyword Double Found 0, 1 
5. Keyword Float Found 0, 1 
6. Keyword If Found 0, 1 
7. Keyword New Found 0, 1 
8. Keyword Return Found 0, 1 
9. Loop Found 0, 1 
10. Number of Comment Lines 0 to Infinity 
11. Total lines of code 0 to Infinity 
12. Cyclomatic Complexity 0 to Infinity 
13. Error Type Most recent error message 

 collected from compiler 
14. Message Code Multiples of 10 from 10 to 280 
15. Message Given Text for message matching message code 
16. Feedback on Message Whole numbers, 0 to 4 
17. ID Sequential number, automatically 

 assigned for ID in database table 
18. Student ID Participant identification number  

 randomly assigned per IRB protocol 
19. Submission date and time Current date and time stamp 
20. Course Name "SER222", "CSE240", or "Both" 
21. Assignment Name "Assignment.java" 

 
Figure 3.2. Data Collected by the Plug-in and the Possible Values for Each Item: 

There were 16 values sent to the neural network, which are numbers 1-16. Numbers 17-
21 are 5 other values that were collected but not sent to the neural network.  
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Now, we will provide a detailed explanation of each input and output field and the 

rationale for including this field in the neural network. 

• Action. An Action is defined as an event that occurs while the student uses the plug-

in. The plug-in detects which action has been executed and saves this data. Possible 

actions include Debug, Error, Help, Run, and Submit. Debug and Run actions occur 

when a student selects debug or run, respectively, within the plug-in. The plug-in 

detects the different ways that run or debug can be executed, such as right clicking, 

clicking the shortcut buttons, or selecting from the menu. Clicking the help button, 

which is visible within the view in the plug-in, triggers the Help action. The Error 

action is set when the student receives run-time error messages from the compiler. 

The Error state supersedes Run or Debug. For example, if the student runs or debugs 

the program and receives error messages, the state automatically is saved as Error, 

instead of as Run or Debug. The Error action also causes the exact error message 

from the compiler to be saved. Submit means that the student’s code has passed all 

the test cases, so the assignment is completed successfully. The Submit action 

changes the assignment completed successfully field. The Action field can be used to 

interpret how the student is interacting with his or her code. For instance, students 

who utilize the debug function in the IDE may show a greater understanding of how 

to use the available tools while writing code. It also assists with determining what the 

student is doing, and if the student continues with many Error states, this could 

indicate a problem that the Companion should address with a message. 

• Assignment Completed Successfully. This field indicates whether the assignment 

is finished correctly, and the test cases have been passed. It is important for the 
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Companion to display encouraging feedback when this happens, so this field helps 

detect this situation. 

• Comparator Operator Found. A field representing whether the comparator 

operator is found represents whether the “==” is used in the code. Although it is not 

always required for all situations involving recursion, a common mistake for CS 

students is to use the assignment operator (“=”), instead. This allows the 

Companion a chance to reiterate the importance of this operator. 

• Keyword Double and Keyword Float Found. The presence of the keywords 

double and float assist the Companion in determining why a student’s code might 

not be producing the correct result. While it is not necessary data for all recursion 

assignments, it is important for many situations. Thus, we opted to include this data 

in the neural network. 

• Keyword If Found. Evaluating whether the student has used the keyword if is an 

essential component of recursion. This is important for the Companion to know 

whether the student has included this keyword because if the student omitted it, 

some review of the fundamentals of recursion is important. 

• Keyword New Found. Whether the keyword new is found is not relevant for the 

assignment used in this study; however, in order to allow for greater versatility in 

the future, we opted to collect this field. It is common for students to try to call 

methods on objects that have not been created, so this allows a future version of the 

Companion to respond to that situation. 
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• Keyword Return Found. The keyword return must also be used in the recursive 

method. When return is not used, as is the case with if, the student is almost 

certainly missing the base case and likely misunderstands recursion.  

• Loop Found. If the student used a loop, which is determined by whether the 

keywords for, while, or do are found in the code, this also represents a fundamental 

misunderstanding of recursion that the Companion will need to address.  

• Number of Comment Lines. The number of comment lines are used as an input 

to evaluate whether the student is leaving a large amount of commented out, “dead” 

code. Although this is acceptable while working on an assignment, it should not be 

left there, so the Companion may give feedback on this situation. 

• Total Lines of Code. This represents the lines of code for the recursive method of 

the student’s program. Having this data can help in determining how much code 

the student has written before performing an action on it. For example, if the student 

has a large amount of code for a recursive method, this could indicate a problem, 

and, similarly, for an extremely small amount of code. 

• Cyclomatic Complexity. The cyclomatic complexity can help in evaluating 

whether the student is using recursion correctly, for in a recursive method there 

exists a logical minimum cyclomatic complexity. It also follows that if the student’s 

recursive method has a high cyclomatic complexity, this is also a warning that the 

student does not fully understand recursion. 

• Error Type. This represents the type of error that has occurred in the student’s 

code after running or debugging it. When an Error action is triggered in the plug-

in, it collects the error message generated by the compiler. Not all errors are sent to 
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the neural network in their entirety; rather, in the data pre-processing phase they 

are mapped to a set of common errors for recursion.  

• Message Given, Message Code, and Message Feedback. This contains the 

message that a student received, given the current inputs of the neural network, 

along with the corresponding numeric message code, indicating how helpful this 

message was for the student for this set of inputs. When generating feedback for a 

student while using the plug-in in real-time, these fields will not contain a value. 

However, they are important when training the model after collecting data from 

students, for they can help predict whether the same feedback should be delivered. 

After all, if unhelpful feedback was given previously for a similar set of inputs, the 

Companion should select different feedback, given this data. 

• Outputs from the Neural Network. The neural network produces a single node 

as an output. This number will, in turn, be post-processed in order to correlate it 

with the exact feedback to display. 

• Extra Data Collected in Plug-in. Some data was collected by the plug-in, but we 

chose not to send it to the neural network because it is needed more for 

administrative purposes for the study or the instructor, but is not pertinent for the 

Companion to have the data, as it will not influence the feedback the Companion 

gives to the student.  

 

3.2  Messages in the Brain 

Messages were developed for the Brain with the intention of providing students with 

feedback about how to proceed, especially with feedback about how to approach the  
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Table 3.1. Possible Feedback in the Brain: Feedback content focuses on two key 
areas: (1) Feedback about how to proceed with recursion, such as problem-solving 

methods and (2) Affective support. Feedback in the table is categorized by the type of 
feedback it provides. PS represents feedback about how to proceed or problem-solving 

feedback. A represents affective support. O represents feedback on another small coding 
issue.   

 
 Situation Message Type Code 

1 No message available 
Sorry, I don't have any messages for  
you right now. Try again later. O 10 

2 
Problem with  
recursion identified 

Think about breaking the problem 
into smaller parts. Ask yourself. What 
is the smallest problem I'm trying to 
solve? PS 20 

3 
Debug initiated with no 
other problems identified 

Good thinking - Using the debug tool 
is very helpful for problems with 
recursion. A 30 

4 
Student passed at least one 
test case Nice job! You got the right answer! A 40 

5 
Cyclomatic  
complexity is too low 

Think about changing the  
control flow of your code. PS 50 

6 Missing keyword: If 

You're missing an important part for  
recursion. Think about using a 
keyword. PS 60 

7 Missing comparator operator 

Try checking the value of something  
in your code to determine how the 
 recursion unfolds. PS 70 

8 
Too many comment  
lines detected 

Remember to clean up your code!  
That's a lot of comment lines. O 80 

9 
Student used a  
loop in the code 

Uh-oh! I think your code using a 
feature that shouldn't be there in 
recursion. Review the concept of 
recursion. PS 90 

10 
No return statement is 
present in code 

I'm looking for an important keyword 
in your code, but I think it's missing. PS 100 

11 
Used keyword "new"  
in the recursive method 

I think I see a keyword in your code  
that's not really needed for this type of 
situation. PS 110 

12 
Too many lines of  
code for the situation 

That's a lot of code in this method! 
You might want to think about 
shortening it or double-checking what 
you're doing. PS 120 

13 
StackOverFlowError 
received 

Don't worry, StackOverflowError  
is a really common error with 
recursion. That's normal. Check that 
you reach your base case. A 130 

14 
ArrayIndexOutOfBoundsEx
ception received 

Software engineers get the  
ArrayIndexOutOfBoundsException  
quite a bit. It's a frustrating one. Using 
the debugger might help you. A 140 
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 Situation Message Type Code 

15 
Compilation error caused 
 by missing syntax 

I think you're missing some important  
syntax in your code. O 150 

16 

No errors reported  
by the compiler and  
no other issues identified 

Nice! No errors were found when  
you ran your code! A 160 

17 

Student is doing well,  
but the method has 
 too much code. 

It looks like you're on the right track. 
That seems like a lot of code, though. 
It probably does not need to be that 
long. A 170 

18 

Student has not  
successfully completed  
the assignment,  
but no issues are detected. Nice work! Keep it up. A 180 

19 

Student clicks the help  
button, but no  
issues are detected  
with the code. 

I'm here to help you. Once you take 
an action with your code, I can help 
you with a hint. A 190 

20 
Cyclomatic complexity  
is too high 

That code looks pretty complex. 
Think about simplifying the logic a 
bit. PS 200 

21 

Error is reported by the  
compiler, but the  
Companion is unable to 
 identify a specific issue. 

Hmmm, it looks like you should re-
think something in your code. O 210 

22 
ArithmeticException is 
reported 

I think there's a problem with 
something with your math. PS 220 

23 

Student is doing well,  
but not much  
code has been written yet. 

Keep going. It looks like you'll need  
some more code. O 230 

24 

A loop is present or  
some other  
syntax that is not needed. 

I see some extra keywords that don't  
need to be used for this. Think about  
which ones you may not need. PS 240 

25 

ArithmeticException  
is reported,  
but other features of  
the student's 
code are reasonable. 

You're really close. Just check your 
mathematical operations. A 250 

26 

Compilation error  
caused by  
missing syntax, but other  
features look good 

Almost. I think you're missing  
some syntax, though. A 260 

27 The base case is missing. 
This is common with recursion.  
Think about creating a base case. A 270 

28 
The student has not written  
any code yet. 

Try writing some code first, then I 
can help you. O 280 
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problem. We envisioned situations that would frequently arise for students learning 

recursion. Such scenarios are comparable to an instructor who anticipates that students 

frequently have questions or confusion regarding certain problems with their code. 

Instructors likely often find themselves repeating similar explanations each time they teach 

the course, as these misunderstandings are extremely common for students with particular 

topics. 

Thus, we applied this same type of thinking was applied to creating the messages 

for the Brain. We considered the most common challenges students face when learning 

recursion. After forming a list of several different situations, we selected a specific message 

for this situation that would assist the student with how to proceed. As a result, the focus 

was on giving the student feedback on how to solve the problem, rather than fixing syntax 

or a detailed explanation of the error message from the compiler. The messages in the 

Companion’s repertoire are provided in Table 3.1. Since the output number from the neural 

network was scaled to correlate with the appropriate message, the codes for each message 

are also shown. The messages in the Brain comprise three categories: problem-solving or 

how to proceed, affective support, or other programming issues. The focus of the 

Companion’s intelligence is on assisting the student with how to solve the problem or how 

to proceed with the assignment and also on providing affective support for the student. 

Consequently, the majority of the messages fall into these two main categories, as shown 

with the numerical breakdown in Figure 3.3. Some of the messages providing affective 

support could also be categorized as problem-solving feedback, but to emphasize the 

affective support, they are separated in the categorization here. A limited number of other 

general programming messages are also included to assist the student if he or she is stuck  
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Figure 3.3. Categories of Messages in the Brain 
 

on an issue involving syntax; nevertheless, the focus of this Companion is not on providing 

feedback about syntax, so a limited number of these messages were included. 

 

3.3  Data Flow in the Brain 

When the data initially enters the Brain of the Companion, it is not yet ready to enter the 

neural network. Some of the fields are initially represented as Strings from the plug-in and 

other similar situations. Moreover, the data must be normalized so that all numbers are 

between 0 and 1 before it can be processed by the neural network. As a result, several steps 

must occur before intelligent feedback can be displayed in the plug-in. The overview of 

how data enters and travels within the Companion’s Brain is shown in Figure 3.4, which 

will now be explained in detail. 

Data Pre-Processed. Since the data enters the Brain as different data types, the Brain must 

first produce corresponding numbers for each field that are all the same data type. The 

neural network expects all data as doubles, so conversions must occur as part of the data 

28 messages 

11 problem-solving or how to proceed 

11 affective support 

6 other programming issue 
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Figure 3.4. Data Flow in the Companion Brain 
 

Table 3.2. Data Pre-Processing Needed after the Brain Receives Data from the Plug-in 

 
Input Neural Network 

Data 
Type  Pre-Processing Description 

1 Action String 

Mapped to corresponding  
number, saved as  
double 

2 

Assignment 
Successfully 
Completed Integer Converted to double 

3 
Comparator operator 
found Integer Converted to double 

4 
Keyword Double 
Found Integer Converted to double 

5 Keyword Float Found Integer Converted to double 
6 Keyword If Found Integer Converted to double 
7 Keyword New Found Integer Converted to double 
8 Keyword Return Found Integer Converted to double 
9 Loop Found Integer Converted to double 

10 
Number of Comment 
Lines Integer Converted to double 

11 Total lines of code Integer Converted to double 
12 Cyclomatic Complexity Integer Converted to double 

13 Error Type String 
Mapped to corresponding number, according to rules 
for errors messages included; saved as double 

14 Message Code Integer Converted to double 
15 Message Given String Mapped to corresponding number; saved as double 
16 Feedback on Message Integer Converted to double 
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pre-processing. In some cases, as shown in Table 3.2, the conversion is simple; the integer 

is just converted to a double and saved as the appropriate variable. However, in other cases 

the conversion is not quite as straightforward. The Action field initially enters the brain as 

a String. Each possible value is mapped to a corresponding number and is subsequently 

saved as a double. The Message Given field functions in a similar way by looking up the 

matching value for the text of the message. Although the message code could serve this 

same purpose, we still chose to implement this look-up procedure for the message text to 

achieve redundancy in case there might be a mismatch between the message code and the 

message text. 

Lastly, the Error Type comes into the Brain as a String representing the error 

message from the compiler. Since the compiler can produce a multitude of error messages 

for different situations, it could be possible to receive a detailed error message for a variety 

of situations. However, with the Companion’s focus on assisting students with recursion 

assignments in Java, relevant errors were considered for this topic, which include:  

• StackOverflowError 

• ArrayIndexOutOfBoundsException 

• NullPointerException 

• ArithmeticException 

• UnresolvedCompilationIssue 

We include StackOverflowError because this is perhaps the most common error with 

students learning recursion. ArrayIndexOutOfBoundsException will, of course, only occur 

in some instances, but if the recursion utilizes an array as a data structure, this is important 

to detect. Although NullPointerException, ArithmeticException, and 
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UnresolvedCompilationIssue are not specific to recursion, since students encounter these 

relatively frequently, we also chose to include them. Other represents any other error 

message besides the aforementioned possibilities. None exists when no error messages are 

reported, and we want the Companion to be certain of this data, so this is indicated here. 

Normalize Input Data. After the data is pre-processed, all values are represented 

as doubles; however, the neural network expects values as doubles between 0 and 1. Thus, 

the data must be normalized, that is, scaled to be between 0 and 1. Within the Neuroph 

library, several built-in normalization options exist (Neuroph Library, 2014). The 

DecimalScaleNormalizer was utilized for this data, as it provided the most consistent 

logical way of normalizing the data, and the other library options for normalization did not 

apply to this data set. The DecimalScaleNormalizer divided each input by a multiple of 10 

to produce a result between 0 and 1.  

Send to Neural Network. Once the data is normalized and pre-processed, it is 

ready for the neural network. The saved model for the neural network is stored on the 

server, so the Brain first retrieves the neural network. After this, the input data is loaded 

into the neural network, which computes a single number as an output. 

Scale Output from Neural Network. Since the output from the neural network is 

also between 0 and 1, it must be scaled to the expected format for the corresponding 

message codes. All the output message codes are multiples of 10, so the output code from 

the neural network must be multiplied accordingly. For example, if the output from the 

neural network were 0.7, the message code would be 70. However, usually the outputs 

from the neural network are not such “tidy” numbers. For instance, if the output from the 

neural network were 0.7382, it should correlate to the message code of 70. Thus, the neural 
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network output must be multiplied by 100, then rounded to the nearest 10. One might 

wonder why this scaling was chosen for the output from the neural network. After all, the 

neural network should already produce the appropriate output. If we chose not to have this 

scaling, all codes for the messages would need to be between 0 and 1. Since we have 28 

messages, this would only allow for a small numerical difference between the number for 

each message. As a result, numerically speaking, the messages would be very close 

together, which would require a high degree of precision from the neural network. 

Although we anticipated it being reasonably accurate, the difference between a message 

labeled 0.17 and a different message labeled 0.18 could be quite small. Consequently, we 

opted for message labels as multiples of 10 to reduce the required numerical precision. 

Thus, the output must be scaled from the neural network to map it to its corresponding 

message in a multiple of 10. 

Retrieve Corresponding Message. The scaled output from the neural network 

serves as a key to look up the corresponding message. The message from the Brain for this 

situation is retrieved from the messages dictionary. 

Output Data Available to Plug-in. Lastly, the data from the Brain is ready for the 

plug-in. The message and its code are saved, and the plug-in can retrieve them to display 

for the student in the Eclipse IDE. 

 

3.4  Training of the Neural Network 

Since no authentic student data existed before this study, the training of the neural network 

was completed using automatically generated data. We generated 100 data entries for the 

neural network using a JSON generator tool (Data Design Group, 2018). Constraints were 
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placed on the data generated to ensure that all data is within the possible ranges. The 

generated JSON data used for training is located in the online code repository for this 

project (Day, 2019).  

Although all data was within the expected ranges, some slight imperfections were 

present in the generated training data that would not occur in an authentic setting with 

students due to the random nature of the generation. For example, in the generated data 

there were some instances where the Action field contained “Run,” but an error message 

was still present in the data. This is not realistic because if the compiler reports an error 

message, the plug-in automatically classifies it as “Error” for the Action. Thus, it is 

impossible for the Action to be “Run” with an error message also reported.  

Another case involved a high cyclomatic complexity reported, but the if keyword 

was not used, which is highly improbable. Even though other similar situations existed, 

they were the exception rather than the rule within the generated training data; in most 

cases, the data seemed realistic for an assignment from beginning CS students. Thus, the 

data was still used for training the neural network. 

After the data was generated, we manually labeled the 100 input entries with a 

corresponding message code applicable for this situation. Human tutors and instructors can 

quickly scan a student’s code and have an idea of what might be wrong with a recursive 

method. Similar logic applies to labeling the data for the training. In many cases, the type 

of problem with the code closely matches the situation description.  

In some instances, multiple situations could apply, which would be comparable to 

what would happen with a human tutor. For example, if the data contains 

StackOverFlowError and the student also does not have the keyword if, the feedback could 
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either be regarding the error or it could be about the missing keyword, for either feedback 

would be valid. When a human tutor sees this type of case, typically one just quickly 

mentally chooses between the different possible options. We applied this same type of logic 

to data to which multiple messages applied. While a rule generator could be used to classify 

the data, when humans choose between options, there is still a small sense of randomness, 

so it seemed manually labeling the data would better simulate the human interaction. Once 

all generated data was labeled with a corresponding number for the appropriate feedback, 

the expected outputs were saved in the neural network to train it before use with the 

students. 

 

3.5 Summary 

This chapter provided an overview of the Brain of the Companion, including the details of 

the neural network. We discussed the decisions regarding the inputs and outputs of the 

neural network with details regarding each input to the neural network and possible 

messages in the Brain. We also provided an overview of the flow of data within the Brain 

to arrive at the appropriate feedback to display to the student. In this chapter, we 

concentrated on the intelligence of the Companion. The next chapter focuses on the 

technical details surrounding the Companion’s Brain.  
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CHAPTER 4 

IMPLEMENTATION OF THE TUTORING COMPANION BRAIN 

 

This research builds upon prior work (Penumala and Gonzalez-Sanchez, 2018) available 

as open-source software (Penumala, 2017). The existing software facilitated the sending of 

information between the student and the instructor using the Eclipse plug-in. In order to 

achieve the goals of this project, the existing project required modifications. The core 

functionality of the improved software for this project involves collecting data from the 

student’s code, sending the data, and displaying the Companion’s feedback. On the surface, 

this functionality seems simple; however, in reality there are numerous technical decisions 

that must be made in order to achieve this functionality.  

This chapter provides an overview of the technical implementation of the 

Companion’s Brain. First, the user interface for the Companion plug-in will be discussed. 

Next, the software architecture will be described, followed by the details of the technical 

design and implementation of the plug-in and the Brain. Then, the libraries used for the 

project are described and the motivation for these selections. Lastly, the approach to 

software testing will be described. 

 

4.1  User Interface 

Views are an existing component in Eclipse and are established when Eclipse is launched. 

Eclipse comes with pre-installed views, such as the console at the bottom of the screen. 

Plug-ins can add views to the IDE, which is how the Companion displays feedback. This 

section describes the plug-in’s modifications to the User Interface in Eclipse. 
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After the plug-in is installed, when Eclipse launches, two additional views are 

added to the IDE: the Help View and the Assignment View, as shown in Figure 4.1. The 

arrow and help icons are also added to this view. When the student clicks the yellow arrow 

in the Assignment View, this pulls in the assignment from the server, which displays the 

name of the assignment and is depicted in Figure 4.2. When the student double-clicks the 

name of the assignment, it opens inside the package explorer in Eclipse, as shown in Figure 

4.3, and the student can open the project in the typical way. Once the student performs an 

action in the IDE, such as run, debug, or help, the plug-in displays the feedback from the 

Brain, as shown in Figure 4.4. Choices are also shown to the student to collect data from 

the student about how helpful the Companion’s feedback is for the current situation. After  

 

 

Figure 4.1. Assignment View and Help View are added to the plug-in when Eclipse 
launches. 
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Figure 4.2. Assignment is pulled from the server, and the name is displayed in the 
Assignment View. 

 

 

Figure 4.3. Assignment is opened inside the package structure in Eclipse. 
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Figure 4.4. The plug-in displays feedback to the student after the student performs 
an action in the IDE. 

 

 

 

Figure 4.5. The plug-in acknowledges the student’s response rating the Companion’s 
feedback. 
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the student double-clicks the response about the feedback, the plug-in displays an 

acknowledgement of the response, which is illustrated in Figure 4.5. 

 

4.2  Architecture 

Now, the overall structure will be described for the Companion. The architecture is 

depicted in Figure 4.6. The Companion plug-in is added on top of the existing functionality 

in the Eclipse platform. The Brain contains all the logic and decision-making capabilities 

of the Companion, whereas the plug-in is responsible for the data collection from the 

student’s code.  

Each time the plug-in collects data when an action is detected in the IDE, it sends 

it to two places: a MySQL database and the Brain. The 21 pieces of data described in 

chapter three are sent to both these locations. Although all of these are saved in the 

database, the Brain does not use all 21 items, so only the 16 inputs to the neural network 

are retained in the Brain. A new MySQL database on a server hosted by Amazon Web 

Services was created for this project to separate the data from the existing data in the 

previous research. 

The Companion’s Brain is contained inside the plug-in, so when the plug-in is 

installed, the Brain will exist locally. The trained model for the neural network is stored in 

the cloud to achieve separation of concerns. This also makes it easy to update the neural 

network in the future. Someone can train a different model and replace the current neural 

network without the plug-in or the Brain requiring any changes. 
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Figure 4.6. Companion Architecture 
 

4.3 Eclipse Plug-in  

The Eclipse platform is composed of many plug-ins. When developing plug-ins, it is 

possible to connect to existing components within Eclipse. The workspace and the view 

already exist within the Eclipse Platform. When the IDE is launched, the views and the 

workspace are created, and any existing plug-ins are initialized.  

Since the Companion plug-in collects data from the student’s code, it connects with 

the workspace and retrieves required information, including the code itself, as well as 

tracking when the student initiates a run or debug action. In order to display the help button, 

the assignment, and the Companion’s feedback, it also connects to the views in the 

workbench. The required connections between the Companion plug-in and existing Eclipse 

components are shown in Figure 4.7. The logic for creating and displaying the assignment 

and feedback are inside the plug-in, so these views are directly tied to the life cycle of the 

plug-in. 
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4.4 Design 

This section describes the design of the Companion plug-in. First, an overview will be 

provided of the design of the plug-in. Then, details of the Brain’s design will be given with 

a description of the details of each class in the Brain. 

 

Figure 4.7. Eclipse Plug-in Architecture: The Companion plug-in connects to 
already existing components within the Eclipse IDE. 

 

 

Figure 4.8. Package Diagram for the Companion Plug-in 
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The plug-in is composed of five packages, as shown in the package diagram in 

Figure 4.8. The BrainPlugin package contains classes that control the lifecycle of the plug-

in and that directly interact with the workbench. The package entitled “custom” contains 

most of the logic for the Companion, such as handling listeners and sending data to the 

server. The launching package connects to the console to collect error messages. The views 

package, as its name indicates, contains the two views added to Eclipse. Data is sent 

between the plug-in and the views, and the plug-in also tracks various actions that occur in 

these views, such as clicking the help button or evaluating the feedback. After the student 

gives feedback on a message in the Help View, the plug-in updates the current data row 

stored in the database with the feedback received from the Brain and the student’s rating 

of the feedback. Further details of the plug-in are described in prior work (Penumala and 

Gonzalez-Sanchez, 2018). 

The design of the entire Companion plug-in is depicted in Figure 4.9. The Brain, as 

a self-contained unit, can achieve its full functionality without any dependencies on the 

plug-in. The connection between the plug-in and the Brain is established by one simple 

connection: the plug-in creates a Brain object and calls its method to retrieve the feedback 

from the Brain. Thus, the intelligence of the Companion can be easily updated without 

impacting the plug-in.  

Now, we will provide a discussion of each class within the Brain. The 

TutorBrain class controls the overall structure of the Brain. This class has an 

overloaded constructor. One of the constructors handles training the neural network. Its 

parameter is the training data as a JSONArray. The other constructor allows the plug-in to  
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get needed information from the Brain. The plug-in calls TutorBrain’s constructor with 

no parameters. Another method exists for the plug-in to retrieve the Brain’s feedback, 

which expects the data for that situation as a JSONObject. This class also uses the Factory 

pattern and creates the necessary objects for use within the Brain. 

The NeuralNetworkBrain class controls the training of the neural network. 

When a TutorBrain object is created with one parameter for the purpose of passing the 

training data, the data is, in turn, passed to this class. The structure of the neural network 

is set within this class, which is done primarily through the use of the Neuroph library. 

NeuralNetworkBrain creates the multilayer perceptron and sets the options, such as 

the transfer function, number of nodes in the hidden layer, learning rate, maximum error, 

and the number of iterations. It has a method to save the trained neural network locally, as 

well as one to normalize the data. 

The DataPreProcessing class preprocesses all data for the Brain. Data 

initially enters the Brain as either a JSONArray or JSONObject, which is passed as a 

parameter to this class to pre-process the data. DataPreProcessing takes all input 

fields and produces outputs of corresponding doubles for the neural network represented 

as a two-dimensional array of doubles, which is the expected format for the neural network. 

 Lastly, the StudentMessageCalculator class in the Brain controls the 

feedback to display to the student and steps that must occur with the data received. First, it 

calls the method from DataPreProcessing to preprocess the data and normalize the 

data. Then, it retrieves the trained neural network stored in the cloud and sends the 

normalized data to it. Once it has the output from the neural network, which is a numerical 

code between 0 and 1, it uses a formula to calculate the corresponding code for the message. 
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Since messages are labeled as multiples of 10 between 10 and 280, the output from the 

neural network must be scaled to match this. Thus, the output from the neural network was 

scaled with the method in Figure 4.10. This method multiplies the output from the neural 

network by 100, then rounds it to the nearest 10. If the output is very small, then it is 

multiplied by 1000. 

 

public long calculateMessageCode() { 
 double nnOutputRaw = this.getNnOutput()[0]; 
 double nnOutput = 0; 
 // Output is so small that special calculations need to be made 
 if (nnOutputRaw < 0.1) { 
  nnOutput = nnOutputRaw * 1000; 
 } 
 else { 
        nnOutput = this.getNnOutput()[0] * 100;  
        // Used for conversion to expected error code 
 } 
 long messageCode = Math.round(nnOutput / 10.0) * 10; 
 return messageCode; 
} 

 
Figure 4.10. Code Used in the Formula to Scale the Output from the Neural Network 

 

Several challenges were encountered relating to where to store the trained neural 

network created in NeuralNetworkBrain. The Brain exists as a .jar file within the 

plug-in, which is itself a .jar file. Thus, there is a .jar file within a .jar file, which is installed 

in Eclipse as a plug-in. Since a method from the Neuroph library is called within the plug-

in to load the neural network file, this requires having the trained model stored within the 

local package structure. However, the challenge arises because the package structure for 

the Brain is not preserved when the Brain.jar is contained within the plug-in .jar file, 

causing the Brain not to find the neural network when it attempts to load the neural 

network.  
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As a result, we chose to store the neural network on a server to avoid the file 

structure issue with exporting the Brain as a .jar file. Moreover, the trained neural network 

model is external to the Brain, so the neural network can also be changed without impacting 

the functionality of the Brain.  Each time the plug-in requests feedback, the trained neural 

network is loaded from the server. The ideal situation would allow the neural network to 

be stored locally after loading it, but the Neuroph library only supports the saving of a 

neural network file after training, which means it can only be saved locally immediately 

after training. 

 

4.5 Libraries 

Several external libraries were used in this project in order to minimize the amount of 

brand-new code to write. In some ways, writing code from scratch might have been easier 

because it would reduce the amount of time spent understanding existing code and how to 

use it. However, since we wanted to have a professional-level product, it seems that 

libraries are appropriate. Furthermore, this will make it easier to extend this project at a 

later time. 

The libraries used in this project are shown in Figure 4.11. These libraries were 

selected because they are professional level tools that enabled us to incorporate existing 

functionality, such as JSON. Various libraries exist for implementing neural networks in 

Java with varying levels of features and sophistication (Heaton, 2015; Dogaru and Dogaru, 

2013). Given the wide range of quality and extensibility of the libraries, some have even 

opted to create their own neural network libraries for Java (Dogaru and Dogaru, 2013).  
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Figure 4.11.  Libraries Used for the Companion Plug-in 
 

We chose the Neuroph library for this project, which is an open-source Java library 

(SourceForge, n.d.). One of the goals of Neuroph is to simplify the implementation of 

neural networks so that users can start using them quickly. Even with its simplicity, it still 

offers a range of features to facilitate a fully customizable neural network. Additionally, 

since it is open source, many other open-source projects utilize it for more sophisticated 

use cases, ranging from image classification to cancer identification and many other 

projects (Neuroph Projects, 2019). Thus, it seemed an appropriate selection for the 

Companion because the library could be learned quickly, yet it would also allow for more 

sophistication at another time. Even though the tools from the libraries brought a great deal 

of functionality to the project, they also presented challenges, such as all of them 

functioning together without conflicts. 
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4.6 Testing Process 

The agile development model best characterizes the software development process for the 

Companion. In a sense, we were both the customer and the developers for the project, so 

the process was not typical; however, we used the agile method because this would make 

the project easier to change. We began with a set of requirements and started to implement 

them. Along the way, the requirements began to change due to research being conducted 

in parallel, as well as unexpected technical hurdles. When this happened, the development 

effort was adjusted to match the revised requirements. Although formal sprints were not 

conducted, the process informally reflected sprints with development efforts focused on 

achieving functionality for various aspects of the system at different points along the way. 

Prior to the release of the software, the system underwent several phases of testing. 

Since there were no dedicated testers in this project, the developers performed most of the 

testing. Although more testing could have been beneficial, since most of the testing was 

completing by a single developer, this posed a time constraint on the project. As a result, 

the tests were not as extensive as would have been ideal; nevertheless, the testing process 

exposed the major defects before the release of the software. Since we followed agile 

development methods, testing was fairly informal and was conducted throughout the entire 

development process, rather than just at the end. 

Component Testing. We used component testing throughout the development 

process as we deemed various parts of the software complete. Once a portion of the 

software appeared to be complete, we connected it with a relevant existing part to 

determine whether the functionality worked. These tests typically involved calling methods 

in the main method and checking if the values were changed accordingly. This type of test 
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was a significant portion of the testing for the Brain in particular, as it involved much data 

manipulation with data being passed between multiple classes and methods. When the 

values were not updated as expected, the issues were documented to revisit at a later time. 

Integration Testing. The development process was punctuated by integration testing 

at several key points. First, we integrated the server code and the database functionality 

into the Brain and the plug-in separately, allowing us to test whether the calls updated the 

data as expected in the database.  

Next, we integrated the Brain and plug-in while still in development. This phase of 

testing led to errors that involved significant changes to both the plug-in and the Brain. The 

design had been determined, but until the two were actually integrated many of the 

challenges were unknown. In fact, this phase of testing exposed the most significant 

challenges of the software development. A couple of the major issues uncovered are listed 

in Table 4.1, as well as the chosen solution. As each part was changed and, at times, 

reworked, this resulted in further integration testing needed once all parts were integrated 

yet again. Thus, this phase of testing was a cycle between testing and more development 

time until everything worked together. 

 

 
Table 4.1. Challenges and Resolutions during Integration Testing 

 
Challenge Description of Issue Solution 
Including the Brain  
as a jar within  
the plug-in 

Libraries used by the Brain not  
included when generating   
jar for the Brain 

Use a Maven  
packaging structure  
for the Brain 

No messages  
displayed in plug-in 

Plug-in waited to display  
message until after feedback  
was provided. 

Updated when the  
View was refreshed 
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Alpha Testing. When the software seemed complete, Alpha Testing was conducted 

with a small group of users. These users were two students from the Master of Science in 

Software Engineering program, so they were high-ability users who would be more 

familiar with how to use the IDE and how to complete the assignment than the typical user. 

The goal was to determine whether multiple users could use the plug-in and, consequently, 

access the database simultaneously, along with whether the plug-in would work on a non-

development computer. Neither user received feedback from the Companion. The 

assignment was loaded successfully, but feedback was not displayed because the neural 

network could not be located due to it not being found in the package structure. After this 

issue was resolved, Alpha Testing was repeated with another high-ability user. This time 

the Companion also failed to deliver feedback, but the problem was an error reported within 

the plug-in. Once this issue was also fixed, the test was repeated with the same user, which 

led to the expected behavior of the Companion. Then, the software was ready for release. 

 

4.7 Summary 

In this chapter, we described the student’s interaction with the Companion in the Eclipse 

IDE. We also provided the details of the architecture, design, and technical implementation 

of the Companion plug-in and Brain. Lastly, we discussed the process of how the software 

was developed, especially the details around its testing. All of this information is important 

to understand the Companion fully, and the testing, to some extent, underscores that the 

software works. However, there is no substitute for authentic users interacting with the 

software. Thus, it is important to test it with real users, which we will describe in the 

following chapter about the case studies.  
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CHAPTER 5 

CASE STUDIES 

 

In order to test the effectiveness of the Companion, we conducted a research study with 28 

students. Each student completed an assignment and solved a recursion programming 

problem while receiving feedback from the Companion. This allowed us to test our 

software with the intended user, evaluate the effectiveness of the feedback generated using 

the neural network, and measure students’ perceptions of the usefulness of the Companion. 

All materials used in the study were approved by the IRB for research involving human 

subjects. IRB details can be found in Appendices A and B. This chapter describes 

characteristics of participants in the study and the protocol followed for the research study. 

 

5.1 Participants 

To recruit participants, courses were identified at Arizona State University in the Spring 

2019 semester in which students would possess similar characteristics to the intended user 

for the software. Since the Companion is designed for beginning CS students in a Java 

programming course and would involve recursion, the intention was to identify lower-

division courses in which students learn to program in Java and have already had some 

experience with recursion. Thus, the effectiveness of the software can be evaluated by 

testing with a subset of students representative of the target audience for the Companion. 

Two courses were identified that possess the aforementioned criteria.  

Data Structures and Algorithms. The first course, Data Structures and 

Algorithms, is a required 200-level course offered to Software Engineering majors. Thus, 
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the course contains primarily beginning CS students, although there may also be a small 

number of graduate students required to take it as a prerequisite. In this course, students 

learn about elementary data structures, including when to use them with the data at hand, 

and Java is used as the programming language in the course (Acuña, 2018). Recursion is 

also covered through a required assignment involving a recursive implementation of a 

function. Thus, by mid-semester in the course, which is when the study was conducted, 

students have a strong understanding of the array data structure and a working 

understanding of recursion. 

Introduction to Programming Languages. The other course, Introduction to 

Programming Languages, is also a required 200-level course offered for both Software 

Engineering and CS majors. As in the case of the other course, it primarily contains 

beginning CS students with a small number of graduate students. As prerequisite 

knowledge, this course assumes that students are proficient in a high-level language such 

as Java and that they have a working understanding of basic data structures like arrays 

(Gonzalez-Sanchez, 2018). This course provides an overview of different programming 

language paradigms, such as functional and procedural languages, as well as programming 

assignments in various languages, including a high-level review of Java and one 

assignment in Java (Gonzalez-Sanchez, 2018). Thus, most of the student population in both 

classes possesses the desired traits for students using the plug-in: first, they are students in 

the first two years of their CS program in a course that involves programming in Java, 

second, they have some exposure to recursion, and third, they understand arrays. There 

were 28 students who participated in the study over the course of 3 days. The composition 

of the study group can be seen in Figures 5.1 and 5.2. 
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Figure 5.1. Student Population:  
A. Second-year undergraduate B. Third-year undergraduate  
C. Fourth-year undergraduate D. Graduate Student E. Other 

 

 

 

 

Figure  5.2. Participants by Course Enrollment 
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Students were recruited through an announcement on the course site describing the 

study and what participants would be asked to do in the study. In the Spring 2019 semester, 

there were 51 students enrolled in the Data Structures and Algorithms course and 36 

students enrolled in Introduction to Programming Languages. Thus, 87 students total were 

invited to participate in the study. Students received 3% extra credit on their final course 

grade in exchange for study participation. Participants were instructed to send an e-mail 

message to the author to sign up for the study. After sending the e-mail message, students 

scheduled an appointment to come to a classroom where they would complete the 

assignment for the study. 

 

5.2 Study Protocol 

Students were given instructions for installing the needed version of the Eclipse IDE and 

an up-to-date Java version. While many students already use Eclipse, most needed to install 

the Enterprise version, which supports sending data to a server from the IDE. We gave 

them download and installation instructions for updating their Java version to Java 1.8 and 

the Eclipse version to Eclipse 2018-12 Enterprise edition. These instructions are located in 

Appendix C. 

Although the goal is to eventually have students use the plug-in to complete a 

programming assignment at home, future work involves improving the usability of the 

plug-in, so it was expected that students would require some assistance with plug-in 

installation. Thus, we opted to have them come to a classroom to complete the assignment, 

instead of completing it at home. This allowed us to help them troubleshoot possible 

installation issues, as well as supervise their use of the plug-in to ensure that they used it 
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correctly. By confirming that their system was configured correctly and that they 

understood how to use the plug-in, this helped to achieve greater consistency in the data, 

as it would reduce the possibility of data discrepancies due to factors external to the 

Companion’s intelligence, such as installation and system configuration issues. 

When participants arrived for the study, we gave them a series of steps to complete 

as part of the study preparation. We also gave participants a flash drive containing two 

files: the directions with hyperlinks for the documents and surveys, as well as the plug-in 

as a .jar file. Unique participant identification numbers were created using a random 

number generator. This allowed us to identify all the data that came from the same person 

without compromising his or her privacy. Participants entered their participant 

identification number on all documents collected in the study. 

First, participants reviewed the consent form, approved by the IRB, which is 

provided in Appendix D. After consenting to participate, they took a pre-assignment 

survey. The purpose of the survey was to collect basic demographical data from students 

and to gauge their background knowledge with the assumed prior knowledge for the study. 

For example, students were asked to rate their familiarity with recursion and using Eclipse 

as their IDE. The full survey is located in Appendix E. Additionally, another goal for this 

survey was to collect data about how easily they are able to get help with programming 

assignments, as well as what kind of struggles they have with programming assignments. 

The pre-assignment survey data was collected through Google Forms. 

After this, we asked the students to install the Eclipse plug-in. They copied the .jar 

file for the plug-in on the flash drive to their local machine. Each participant received plug-

in installation directions, which are located in Appendix F. We assisted participants as 
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needed with plug-in installation issues. Most issues with installing the plug-in were related 

to system configuration or clarifying the directions, given that there were many steps 

involved in the installation. 

Once the plug-in was installed, participants opened Eclipse and could begin 

completing the programming assignment. In most cases, we double-checked that the plug-

in was working correctly as participants were in the early stages of the assignment; 

however, in a few instances there were as many as 10 students in the room at once, so we 

were unable to check a few participants’ set-up. 

When students first use the plug-in, the two tabs for the views appear at the bottom 

of the IDE. This is evidence that the plug-in installation was successful. Prior to the start 

of the study, we posted the programming assignment on the server, so when students first 

use the plug-in, they must pull it from the server by clicking the refresh button in the 

Assignment View. This retrieves the assignment, which they can then open and use as a 

typical Java class in Eclipse. 

The assignment, which is located in Appendix G, asked students to calculate the sum 

of the numbers in an array that fall within a given range of numbers. For example, in an 

array containing the numbers 1, 5, 2, and 4 with a starting range of 2 and an ending range 

of 5, the method should return the sum as 11. The parameters of the method were provided 

to students, as well as three test cases in the main method to demonstrate how to call the 

method. The method was set up to use an accumulator in order to calculate the result. 

Students were instructed to provide a recursive implementation of the method and were not 

permitted to use “helper methods.” Once the Companion detected that the success message 
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was printed to the console, it received a different action notification so that the data is saved 

as “Success” in the server. 

Students included their participant identification number and course number at the 

top of the page. This information was collected with the data sent to the server in order to 

facilitate better data analysis, as shown in Figure 5.3. Each time the student executed an 

action in the IDE, the Companion delivered feedback, and data was sent to the server. 

 

 

Figure  5.3.  Students provided participant identification number and course 
number at the top of the assignment. 

 

After each time the Companion displayed feedback, participants were asked to rate 

how helpful it was for the situation in the assignment. Although the tool did not require 

that they rate each feedback message, we frequently reminded them of this throughout the 

study. If the student did not provide feedback before proceeding, the data was still saved 

for this situation, but no feedback evaluation was included. 

Most participants worked on the assignment for approximately 30 minutes. We told 

students to spend about 30 minutes working on the assignment, and we instructed them 

that after this time period had passed, they could decide whether to keep working or 
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whether they wanted to stop. This was to be respectful to the time frame that participants 

were told to allot in their schedule for participating in the study. The amount of time 

students spent on the assignment varied; some finished before 30 minutes, others did not 

finish the assignment within the allotted time, and others spent longer than 30 minutes. 

Lastly, participants completed a post-assignment survey, which can be found in 

Appendix H, in which they were asked questions about their experience with the 

Companion. They were asked to rate how much they liked working with the Companion 

and how helpful the feedback was, as well as their opinion on different issues they noticed 

with the messages. This data was also collected through a Google Form. 

The design of the post-assignment survey followed the principles of educational 

research for evaluating the effectiveness of teaching methods. Prior to my current degree 

program, I earned a Master of Arts in Education and took graduate courses on study design 

for measuring educational effectiveness. Thus, I have formal graduate-level training in 

evaluating this type of research. This helps to provide validity for the data collected through 

the surveys. After this survey, participants had completed the study, and they uninstalled 

the plug-in before leaving. 

 

5.3 Summary 

In this chapter, we provided a summary of the case study conducted with students test how 

well the Companion plug-in and Brain worked. We described the participants in the study 

from the two courses at Arizona State University. We also explained the procedures that 

were followed while conducting the study. All of these procedures were approved by the 

IRB. In the following chapter, we will analyze the data gleaned from this study.  
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CHAPTER 6 

RESULTS 

 

After the conclusion of the study, the data was analyzed through a combination of methods. 

Most of the data from the surveys could be analyzed by tallying the number of responses 

in each category. When responses were open-ended, the data was examined for trends. As 

categories emerged, these open-ended responses were classified by the category into which 

they fell. Some themes that emerged from the data will be discussed in this chapter. 

 This chapter discusses the results of the study. First, data that was gathered from 

the pre-assignment survey will be provided regarding the students’ background. Next, the 

overall perceptions of the Companion will be explored, and the Companion’s feedback will 

be examined. After that, the data collected from the students’ code will be discussed. 

Finally, the software tool itself will be evaluated. 

 

6.1 Students’ Background 

As part of the pre-assignment survey, students were asked about their background with 

recursion and Eclipse. They also answered questions about how often they need help with 

programming assignments and how they approach this. This section describes trends 

observed in this data. 

Students had a moderate amount of exposure to recursion before using the 

Companion.  Before using the Companion, all students had some exposure to recursion in 

other courses. In fact, more than half of the students already had two prior courses in which 

they studied recursion. Furthermore, the majority of students reported feeling that they 
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understand recursion, and over half reported “a lot” of prior experience with recursion in 

Java.  

Many students understand how to use Eclipse, but the response is mixed 

whether they prefer to use it. We developed a Companion for Eclipse due to the belief 

that large numbers of students use Eclipse. Many students report that they understand how 

to use Eclipse, although nearly 30% of students surveyed feel they do not understand how 

to use Eclipse. Over half of students in the study do not prefer to use Eclipse as their IDE. 

In fact, only 46% of students in the study prefer to use Eclipse as their IDE, with only 14% 

strongly agreeing that it is their IDE of choice. 

Students often feel that they need help with programming assignments. In 

terms of students’ perceptions of content with which they need help on programming 

assignments, 86% of students report that it is hard for them to understand how to fix the 

errors reported by the IDE. The overwhelming majority of students feel that they get stuck 

on programming assignments and are unsure how to proceed. Not only do 82% of students 

sense this, but 50% of all students feel this strongly. 

Students like to get help on programming assignments, although they already 

have resources for getting help. Many students find it helpful to get help from someone 

when they are stuck on a programming assignment with 64% of students reporting this. 

However, 36% report that they do not find this helpful. All students report that they can 

easily find someone who can answer their questions when they are stuck, with the 

overwhelming majority strongly agreeing. 

 

 



 

70 

6.2 Overall Perceptions of the Companion 

This section explores students’ general reactions to the Companion and opinions about it. 

Overall, students were receptive to the idea of the Companion, and 68% reported that they 

liked working with it. The Companion helped 64% of the students to feel supported while 

completing the assignment, as depicted in Figure 6.1. Students could select more than one 

response for statements that were true about their interactions with the Companion, and 23 

out of 28 students found the idea of using a Companion during programming assignments 

attractive. 

Although the response differed, depending on how the survey question was worded, 

as many as 43% of students said that the feedback from the Companion was helpful to 

them. Yet, when the same question was asked in a different way, only 15% of students 

report that the Companion’s feedback helped them. Even though the idea of the Companion 

is attractive to students, most feel that it needs some improvement in order to be helpful to 

them. According to 71% of students, the Companion does not seem “intelligent” to them. 

 

 

Figure 6.1. Students’ response to whether the Companion helped them feel 
supported while completing the programming assignment 
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Thus, with improvement, students report that the Companion could help them, and they 

like the idea. As one student put it on the survey, “I love the idea of a companion while 

programming, [so] I can’t wait to see how this performs when it’s polished!” Given the 

data, this is a good summary of the students’ overall perception of the Companion. 

 

6.3 Evaluation of the Companion’s Feedback 

After collecting the data regarding the Companion’s feedback, we analyzed it for trends, 

looking for common patterns that emerged from it. The data used to evaluate the 

Companion’s feedback stems from the survey questions posed to the students and the 

ratings of the Companion’s feedback provided within the IDE while completing the 

assignment. This section categorizes the data based on the observed trends to evaluate how 

effective the Companion’s Brain was at generating intelligent feedback. 

The Companion’s messages were successful in providing some of the intended 

types of hints. The intention for this thesis was to provide hints on how to proceed with an 

assignment, as well as problem-solving hints, specifically for a recursion programming 

assignment in Java. In some respects, some of these goals were accomplished. Over half 

of the students report that the Companion’s feedback gave hints about concepts needed for 

the assignment, which is shown in Figure 6.2. Similarly, 57% of students report that the 

Companion did not provide hints about syntax. Both of these trended towards the goals for 

the types of feedback the Companion should and should not provide. 

However, only 36% of students report that the feedback provided hints about how 

to proceed with the assignment, which means that the majority of students did not perceive 

this to be true. Furthermore, only about a third of the students describe the Companion’s 
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Figure 6.2. Students’ perceptions of the type of feedback the Companion provided 
 

feedback as logical for what was happening with their code. Also, only 36% say that the 

Companion improved their understanding of recursion. 

Students suggest changing the messages themselves, the frequency, and the 

timing. Most commonly, students suggest changing the messages to something different. 

Students also believe that the frequency and the timing of the messages should be changed. 

Responses differ, but students suggest that it would be helpful if the Companion provided 

messages only in certain situations, such as when they have errors, after a time interval has 

passed, or when they request help. When problems were reported with feedback, students 

noticed that they frequently received the same feedback, making it seem repetitive. The 

other problems reported with the feedback indicate they did not understand what it meant. 

Open-ended responses regarding what improvements were needed on the feedback 

encompassed a range of topics, with wanting more specific feedback occurring the most 

frequently. Others ranged from giving an example of the problem to when to deliver the 

hint. One student suggests, “When the program compiles, it would be nice if it gave you 
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an explanation of what the error was before.” Thus, this student would like an explanation 

concerning what he or she fixed and why it did not previously work. 

Many messages were not saved in the database when they were given. Ideally, 

every time feedback was given to a student, the exact feedback would be saved in the 

database. However, this occurred less than half of the time. Thus, often students received 

feedback, but no data was collected regarding what the exact feedback was. 

Students received a limited number of messages, given the values in the 

training data. Most of the 28 messages appeared at least once in the data used to train the 

neural network; however, students only received 10 different messages during the study. 

Thus, even though many different messages were labeled in the training data, only 10 of 

these were actually delivered to students.  

Students reported mixed results about the helpfulness of the Companion’s 

feedback. Among the 10 messages delivered and the times when students’ ratings were 

collected in Eclipse, some messages were deemed more helpful than others. The three 

messages that least matched the situation were the following: “Sorry, I don’t have any 

messages for you right now. Try again later,” “Nice job! You got the right answer!” and 

“Remember to clean up your code! That’s a lot of comment lines.” Few messages were 

reported to be unequivocally helpful, but the ones reported to be the most helpful were the 

following: “Think about breaking the problem into smaller parts. Ask yourself: What is the 

smallest problem I’m trying to solve?” and “Think about changing the control flow of your 

code.” However, the latter message was also commonly marked as one that students did 

not understand. 
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Figure 6.3. Students’ ratings collected in the IDE of the Companion’s feedback for 
the individual situation: 

A. Message was helpful.  B. Message was somewhat helpful.  
C. Message did not match the situation. D. I did not understand what the message meant. 

 

Students also provided mixed responses of their overall evaluation of the Companion’s 

feedback. As shown in Figure 6.3, 42% of students reported that the feedback from the 

Companion was helpful or slightly helpful to them. Yet, 41% also stated that the 

Companion’s feedback did not match the situation in their code. Some suggested that they 

did not understand the meaning of the feedback, which concerns what the message meant, 

but not necessarily the situation in which the Companion gave the feedback. 

 

6.4 Evaluation of Data Collected from Students’ Code 

It may also be helpful to consider what data the plug-in collected from students’ code. 

While the purpose of this thesis is mainly concerned with how to give helpful feedback to 

students in Eclipse, considering the input data may provide useful data for analyzing what 

types of feedback CS students would most require.  
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Students require support in understanding the features of recursion. Based on 

the data regarding keywords collected from students’ code, approximately 20% of the time 

the keywords if or return were missing from the code or a loop was found. This suggests 

that a percentage of students require support in understanding which syntactical features 

are important for recursion.  

The usefulness of the comparator operator depends upon the recursion 

assignment. The comparator operator appeared roughly half of the time in the 

programming assignment. The recursion assignment given to students did not require this 

operator; however, many other assignments do require it. Thus, it seems this may not be a 

useful input to the neural network, as the usefulness of this data varies based on the 

programming assignment. 

Students at this level have a strong grasp of data types and when to use them. 

This assignment required students to use integers, so the double keyword only appeared 

1% of the time, which was appropriate for the situation. Nonetheless, the usefulness of this 

data will vary based on the exact programming assignment, so this data may not be as 

relevant for the Brain. 

 

6.5 Evaluation of the Software Tool  

Since students were not specifically asked for feedback regarding the software tool itself, 

this data comes from any comments reported on the survey concerning the tool, as well as 

our observations throughout the study. Student comments on the survey made about the 

tool typically were provided as a response classified as “other,” and often they did not 

necessarily pertain to the question asked. Nonetheless, they provided helpful data to 
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evaluate the software tool and the technical decisions that need to be considered for 

maximizing the effectiveness of the Companion. 

 There were six responses that indicated that the usability of the tool detracted from 

their experience with the Companion. When students were asked what could make the 

Companion’s feedback more helpful, one student reported issues with the tool itself that 

impacted the effectiveness of the feedback. This student suggested that being taught how 

the tool works in advance would have been helpful for interacting with the feedback. 

Furthermore, this same student wrote, “I didn’t know I had to manually check it myself 

after writing code.” The tool required students to toggle between two views in Eclipse: the 

console view with compiler error messages and the Help View with the Companion’s 

feedback. This student found that this factor affected his or her experience with the 

feedback. 

 Based on observation, the time spent installing the plug-in took almost as long as 

the completion of the assignment itself. Most students spent about 30 minutes installing 

the plug-in and 30 minutes completing the assignment. Although this installation time is 

somewhat misleading because a portion of the time was installing the correct version of 

Eclipse, it is still significant.  

Furthermore, even though students were provided with detailed directions for the 

plug-in installation, they struggled with the installation process and frequently needed 

assistance with it. Most of the issues encountered were configuration problems between 

Eclipse and the plug-in, which could have been resolved with following the instructions. 

Nevertheless, the instructions were complex and required attention to detail. 
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An issue frequently occurred for students using Macs. The directions for the plug-

in installation on a Mac were from the previous version of the plug-in implemented 

(Penumala and Gonzalez-Sanchez, 2018). Even though the directions for installation in 

Windows remained unchanged and still worked correctly, it appears that with an update to 

the Mac operating system, this resulted in the plug-in installation failing in these Macs, 

which accounted for approximately three participants. One student verbally hypothesized 

that the students with a Mac who got the plug-in to work had an older version of the OS 

than she did. She noticed that all students with Macs for whom the installation failed had 

the most recent Mac OS. In such cases when the installation failed, these students used the 

plug-in on our computer to complete the assignment, thus still allowing for data collection; 

however, due to our laptop already being used by another student, one student came for the 

study but could not use the plug-in. 

 Once students installed the plug-in, we observed that using the plug-in required 

some training. Most students did not intuitively know the process for interacting with the 

plug-in and checking the feedback. Since the IDE switches to the console view by default 

after compiling with an error message, some students did not even realize for a while that 

they were receiving feedback since they needed to click on the Help View in order to see 

it. Since the plug-in required students to enter their participant identification number and 

course number at the top of the assignment, the Companion would not deliver feedback if 

this was omitted. Consequently, some students did not receive any feedback for a period 

of time before realizing what the issue was. One student did not create a new workspace 

and even proceeded through the entire assignment without receiving any feedback because 

he did not realize he should receive it. 
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6.6 Summary 

In this chapter, we discussed the results of the study. Initially, we reviewed students’ 

background with recursion, how often they need help, and their success with resolving 

errors reported by the IDE. After that, we discussed how students perceived the 

Companion. They had an overwhelmingly positive response to the idea of the Companion 

and enjoyed working with it. Then we examined how the students reported the Companion 

did with the intelligent feedback. We found that the Companion successfully provided 

some of the types of feedback, but only 10 different messages were actually given to the 

students. Many students said the feedback was helpful or slightly helpful, although many 

also said the feedback did not make sense for the situation at hand. Following that, we 

discussed the data collected from students’ code, and, lastly, we evaluated the Companion 

plug-in as a software tool. In the next chapter, we will provide a rationale for the results 

and discuss opportunities for improvement. 
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CHAPTER 7 

DISCUSSION 

 

Some clear trends were evident in the data collected from this study. The types of questions 

posed in the surveys were focused on getting suggestions for how to improve the 

Companion rather than ways the Companion was successful. It may be possible, then, that 

the students could have offered specific positive comments if we had asked different 

questions. Even so, both positive and negative traits can be seen in the Companion. This 

chapter explores possible reasons for this data. First, we will discuss strengths of the 

Companion as shown in this study. Next, we will provide an analysis of shortcomings of 

the Companion. Lastly, we will discuss opportunities for future work in this research area. 

 

7.1 Strengths of the Companion 

The Companion implemented in this study offers a worthwhile contribution to the previous 

work on ITS, specifically about Companions. There are several beneficial traits of our 

Companion that emerged from this research. This section provides an explanation of 

several of these characteristics. 

Proof of Concept. Our Companion exists as a proof of concept for a Companion 

embedded into the IDE that provides feedback on how to proceed and affective support for 

students in a beginning Java programming course. The literature demonstrates a need for 

this type of work, as few companions in the IDE exist for teaching programming, and those 

existing do not provide feedback on how to proceed. Moreover, those implemented have 

not investigated using a neural network to generate the feedback. A proof of concept is an 
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important first step in advancing this area of research. Thus, our Companion provides a 

valuable contribution to the existing research. The software for the Companion worked to 

accomplish the goal of delivering intelligent feedback to students within the Eclipse IDE. 

Of course, it is the goal for all software to work. Nonetheless, due to the complexity of 

integrating existing software components to create a working product, it is important to 

fully appreciate the contribution of the Companion plug-in toward this end. Data was 

collected from each student’s code, sent to the brain, saved to the server, and relatively 

intelligent feedback was displayed. This represents a new advancement in tutoring 

Companions. Thus, our Companion’s role as a proof of concept is significant. 

Neural Network for Feedback in the Eclipse IDE. Just as the Companion’s 

contribution as a proof of concept is valuable, providing feedback within the IDE via a 

neural network is also noteworthy. Using neural networks in an ITS is not a novel 

contribution but delivering it within the IDE is rare. Neural networks are an area of AI 

attracting much attention and demonstrating the potential for using them with an embedded 

Companion for CS education is beneficial. 

Support for Beginning CS Students. Even though some of the data was mixed 

regarding the effectiveness of the Companion’s feedback, the students clearly conveyed 

that they liked the Companion and felt supported by it. They even saw the potential for a 

Companion helping them in the future. It is well-known that CS courses are difficult, 

especially for beginning students, which prompts many to leave CS (Giannakos, Pappas, 

et al., 2017). Retention is certainly not the topic for this thesis but having a tutoring 

Companion that can help CS students – even if only to provide affective support – is 

valuable for students. Perhaps in the future this data could contribute to these other 
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discussions. At any rate, this Companion succeeded in helping students feel supported. 

Nonetheless, our Companion succeeds at more than just affective support. Although the 

Brain will need some improvement, there was some data that showed that students received 

feedback that made sense at the appropriate time. Furthermore, students reported that it 

helped them with concepts for problem-solving, which was one of the stated outcomes for 

this research. Thus, some of the Companion’s feedback provided affective support for 

students and guidance about problem-solving concepts for recursion. 

 

7.2 Opportunities for Improvement in the Companion 

Although we made meaningful contributions to the research in this area and the Companion 

met some of its objectives, there are opportunities to refine the Companion, particularly 

with its intelligence. This section provides a discussion of some opportunities for 

improvement in the Companion as shown through this study. 

The messages did not always fit the situation. Students reported that sometimes 

the feedback did not make sense based on what was happening in their code. In fact, this 

was rather evident in the data and their responses. The data sent to the server with messages 

in different situations also shows that a human tutor would not select this same message 

for the situation. For instance, at times the students had an error in their code, and the 

Companion told them, “Nice job! You got the right answer!” Clearly, this was not the 

intent. This is, of course, the challenge with neural networks in any domain; it is difficult 

to simulate the thinking that occurs in the human brain and how humans reach those 

conclusions. Nonetheless, neural networks can, in fact, produce intelligent responses, and 

are used in many fields for this very purpose. Therefore, it is important to analyze why our 
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Companion missed the mark in this respect. One alarming piece of data was that the 

Companion only delivered 10 different messages regardless of the situation. The Brain had 

28 unique messages, and these were labeled in the training data, so it leads one to wonder 

why this happened. After examining the data collected from the code, the same feedback 

was at times given even when the input data to the neural network was quite different. After 

closer investigation, a bug was identified in the Brain, which led to only 10 possible 

messages being generated. This bug was introduced when the output from the neural 

network was scaled to match the type of label for the number for the feedback. Since the 

output was multiplied by 100 to make it a multiple of 10, sometimes the code for the 

feedback should have been 200, for instance, instead of 20. In hindsight, this seems clear, 

but this bug was not detected in the testing plan since it was hard to notice what should be 

expected without authentic data entering the neural network. Furthermore, this decision to 

give a code to the messages as a multiple of 10 was to create a larger “spread” between the 

numbers for cases where the output from the neural network might be close together. This 

decision, in part, led to this bug. In the future, this is a technical decision that will require 

closer examination, but it seems that the neural network could be 28 outputs with the Brain 

choosing the node with the greatest weight. However, this will require greater investigation 

in the future. 

The meaning of the feedback was not always clear to students. Students 

frequently reported that they did not understand what the feedback meant. This was a 

surprising trend in the data, as this does not pertain to the brain or even the software; rather, 

it concerns the wording of the feedback . Since it is not really a technical issue and is more 
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of an educational concern, it is beyond the scope of this thesis to analyze it, but it is, 

nevertheless, worth mentioning. 

The usability of the plug-in appeared to detract from the Companion’s 

feedback. The students seemed frustrated with navigating the views in Eclipse. This was 

not concrete data reported from the study, and it appears they may not have even 

consciously realized this affected the data. However, after finishing the assignment, 

numerous students verbally told us that they rated the Companion’s feedback for a while, 

but then they stopped because they got tired of switching between views. A limitation of 

the plug-in implementation was that the Companion’s feedback was only saved in the 

database after a student rated the feedback. Thus, if the student did not rate the feedback, 

the exact feedback was not recorded. Furthermore, since the students wanted to see the 

error messages from the compiler, this required navigating between the console view and 

the help view that was added for the plug-in. This limited the usability, and it seems this 

may have been a contributing factor to students not rating as much of the feedback or 

perhaps even checking the feedback at all. 

 

7.3 Future Work 

Now that strengths and weaknesses of the Companion have been discussed, we will 

consider the vision for future research. Some of these opportunities for future work involve 

improvements to the Companion by improving the software used in this study, which will 

be discussed first. Then, the potential of a self-training network will be discussed. Lastly, 

opportunities regarding when to give feedback will be explored.  
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Software Improvements to the Companion. It would be informative to see how 

the Companion’s feedback can change once the bug is fixed in the Brain for the scaling of 

the output. One could examine whether the neural network delivers quality messages with 

even this small change. Since the usability of the plug-in seemed to affect the data from 

the Companion, improving the UI experience of the plug-in would be beneficial. Instead 

of adding the views as tabs next to the console view, the view could be placed somewhere 

else in the IDE where it would not interfere with students’ typical interactions with the 

IDE. It is difficult to determine where this would be, but this could be another topic of 

research. Examining this could help to determine what role the feedback plays as compared 

to the UI experience. ITS often use an avatar to make the Companion more visually 

appealing and to seem more personal. It also could make it seem more “fun” to the student 

and perhaps increase the level of personal engagement. This represents another opportunity 

for future improvements on the Companion. Improvements to the Brain would also be 

beneficial. Now that authentic data has been collected from beginning CS students, this 

data can be used to retrain the neural network. This would greatly enhance which feedback 

to provide in which situation, instead of relying on automatically generated data as in this 

study. 

Self-training Neural Network. Since one of the purposes of the Companion is to 

emulate the traits of a human tutor, it is important for the Companion to possess the 

capability to provide feedback without the intervention of a human. Currently, the neural 

network is a supervised learning algorithm that requires human intervention. Since the data 

is saved to the server and the neural network is also on the server, there is potential to have 

the neural network automatically train so that the brain continually learns from the data 
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from the students. Perhaps the neural network could train in a short daily scheduled 

downtime with an unsupervised learning algorithm. This would mark a significant 

advancement in this research, for it would allow the Companion to rely less on human 

intervention and, thus, each student using the Companion would benefit from what the 

Companion learned from every preceding student. 

When to Give Feedback. This is a broader research question that has already 

warranted significant attention (VanLehn, 2006). Students reported many issues about the 

timing of the Companion’s feedback, ranging from only wanting feedback when they have 

errors to wanting feedback after a certain amount of time has passed to almost every other 

conceivable option. Even more problematic is that students can abuse hints because they 

do not want to give a quality attempt at solving the problem (VanLehn, 2006). When to 

give feedback is a difficult question to answer, and it could inform future research with this 

Companion. In the context of a programming Companion embedded into the IDE, this 

could mean changing what triggers displaying the feedback. For us, this was the defined 

actions detected in the IDE. In the future, this could be giving feedback on a timer. Or, 

perhaps the Companion could project when the student will encounter problems and issue 

feedback preemptively. Indeed, a plethora of options exist that are worth exploring, 

especially since the neural network can be used to give a hint in many different types of 

scenarios. 

 

7.4 Summary 

This thesis provided important research in the area of embedded tutoring Companions. It 

contained some limitations, such as a small bug and the usability of the plug-in. However, 
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it suggests the opportunity to use neural networks in embedded Companions in the future. 

Most importantly, this thesis exists as a proof of concept that neural networks can be 

effectively used to provide intelligent feedback directly in the IDE for students’ 

programming assignments. Since students like the feedback and even report that it is 

somewhat intelligent, this provides opportunities to leverage this technology in the future 

with beginning CS students. Many of these students struggle to obtain valuable feedback 

on their programming assignments and experience a lack of quality personalized feedback 

on their code. It seems that a Companion embedded into the IDE can help to provide this 

feedback, using a neural network for its intelligence. This, it seems, should warrant future 

research attention.  
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Instructions and Notes: 
• Depending on the nature of what you are doing, some sections may not be applicable to your research. If so, 

mark as “NA”.  
• When you write a protocol, keep an electronic copy. You will need a copy if it is necessary to make changes. 

 

1 Protocol Title 
Include the full protocol title: A Neural Network Model for a Tutoring Companion Supporting Students in a 
Programming with Java Course 
 

2 Background and Objectives 
Provide the scientific or scholarly background for, rationale for, and significance of the research based on the 
existing literature and how will it add to existing knowledge. 

• Describe the purpose of the study. 
• Describe any relevant preliminary data or case studies. 
• Describe any past studies that are in conjunction to this study. 

With large class sizes and instructors who may not be equipped to assist struggling students, many students 
abandon the field, deeming it to be too difficult and not for them. Consistent, constructive, supportive feedback 
through a Tutoring Companion can scaffold the learning process for students. This poster describes a reasoning 
model, using neural networks techniques, for a tutoring companion embedded into the Eclipse IDE. The companion 
provides support for students in a first-year university Java programming course. The companion collects data from 
students’ events and programming assignments, analyzes it for relevant trends, and estimates each student’s 
situation. The input data for the neural network comes from areas with which beginning computer science students 
often struggle, such as the presence of important keywords and the amount of time spent in a state with errors. 
Then, it determines the feedback to be provided for students to overcome a detected challenging situation, providing 
both hints on how to fix the problem with the code, as well as encouragement to help keep students motivated and 
learning.  The effectiveness of the approach is examined among first-year computer science students through the 
completion of recursion and control flow programming assignments. The students complete surveys regarding their 
learning experience to assist in evaluating the companion’s pedagogical effectiveness, which is discussed with an 
emphasis on the value of feedback provided. 

3 Data Use 
Describe how the data will be used.  Examples 
include: 

• Dissertation, Thesis, Undergraduate 
honors project 

• Publication/journal article, 
conferences/presentations 

• Results released to agency or 
organization 

 
 
• Results released to participants/parents 
• Results released to employer or school 
• Other (describe) 

The data will be used for an MS Thesis project. It will be analyzed and included the thesis document in aggregate 
form. It also may be used as part of a future journal article for publication. 

4 Inclusion and Exclusion Criteria 
Describe the criteria that define who will be included or excluded in your final study sample. If you are 
conducting data analysis only describe what is included in the dataset you propose to use. 
Indicate specifically whether you will target or exclude each of the following special populations:  

• Minors (individuals who are under the age of 18) 
• Adults who are unable to consent 
• Pregnant women 
• Prisoners 
• Native Americans 
• Undocumented individuals 
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Students in two undergraduate software engineering courses (SER 222 CSE 240) will be recruited for participating 
in the study. Any student who chooses to participate may do so. The following fields will be collected from each 
student’s code for the programming activity: 

• Action on the code (run attempt, debug attempt, help requested) 
• Number of lines of code 
• Keywords found in the code 
• Number of comment lines 
• Errors found in the code 
• Submission time of the assignment 
• Whether the assignment was completed successfully 
• Message given as a hint to the student for that situation 
• Student’s feedback on the message received for that situation 
• Metrics for the code 

 

5 Number of Participants 
Indicate the total number of participants to be recruited and enrolled: 40 

 

6 Recruitment Methods 
• Describe who will be doing the recruitment of participants. 
• Describe when, where, and how potential participants will be identified and recruited.  
• Describe and attach materials that will be used to recruit participants (attach documents or 

recruitment script with the application). 
• Recruitment will be conducted by a combination of the graduate student (Melissa Day) and the two 

professors (Ruben Acuña and Javier Gonzalez-Sanchez) of the courses from which the students will 
be recruited. 

• Students will be invited to participate through two means: an announcement posted on Canvas and 
an in-person announcement in each of the two courses. 

• See attached recruitment materials. 

7 Procedures Involved 
Describe all research procedures being performed, who will facilitate the procedures, and when they will be 
performed. Describe procedures including: 

• The duration of time participants will spend in each research activity.  
• The period or span of time for the collection of data, and any long term follow up. 
• Surveys or questionnaires that will be administered (Attach all surveys, interview questions, scripts, 

data collection forms, and instructions for participants to the online application). 
• Interventions and sessions (Attach supplemental materials to the online application).  
• Lab procedures and tests and related instructions to participants.  
• Video or audio recordings of participants. 
• Previously collected data sets that that will be analyzed and identify the data source (Attach data use 

agreement(s) to the online application). 
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Participants will participate in the following research activities, which will take about 1 hour. Data collection will 
occur over a one-week time period, and there will be no long-term follow up. 
 
These activities will be conducted in the presence of the graduate student conducting the research (Melissa Day). 
Melissa Day will assist with any technical issues with the software during the data collection process. 

• Survey before using the software – approximately 10 minutes 
Students will be given a survey as a Google Form with questions regarding their prior experience 
and reactions to the topic presented in the assignment. 

• Using the software – approximately 30 minutes 
• Survey after using the software – approximately 10 minutes 

Students will be given a survey as a Google Form with questions regarding their experience with the 
software and opinions about it. 

See attached documents for an overview of these items. 

8 Compensation or Credit 
• Describe the amount and timing of any compensation or credit to participants. 
• Identify the source of the funds to compensate participants   
• Justify that the amount given to participants is reasonable.  
• If participants are receiving course credit for participating in research, 

alternative assignments need to be put in place to avoid coercion.   
Students who participate will receive 3% extra credit on their final course grade. 
 
If students do not wish to participate, another extra credit opportunity will be offered in the course. 

9 Risk to Participants 
List the reasonably foreseeable risks, discomforts, or inconveniences related to participation in the research. 
Consider physical, psychological, social, legal, and economic risks. 

There are no risks, discomforts, or inconveniences related to participation in the research. 

10 Potential Benefits to Participants 
Realistically describe the potential benefits that individual participants may experience from taking part in the 
research. Indicate if there is no direct benefit. Do not include benefits to society or others.  

Participants may receive extra knowledge from the tutoring software regarding a topic presented in computer 
science courses. If the tutoring software is not particularly effective, then there may be no direct benefit to the 
participants. 
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11 Privacy and Confidentiality 
Describe the steps that will be taken to protect subjects’ privacy interests. “Privacy interest” refers to a person’s 
desire to place limits on with whom they interact or to whom they provide personal information. Click here for 
additional guidance on ASU Data Storage Guidelines. 

Describe the following measures to ensure  the confidentiality of data:  
• Who will have access to the data? 
• Where and how data will be stored (e.g. ASU secure server, ASU cloud storage, filing cabinets, 

etc.)? 
• How long the data will be stored? 
• Describe the steps that will be taken to secure the data during storage, use, and transmission. (e.g., 

training, authorization of access, password protection, encryption, physical controls, certificates of 
confidentiality, and separation of identifiers and data, etc.). 

• If applicable, how will audio or video recordings will be managed and secured. Add the duration of 
time these recordings will be kept. 

• If applicable, how will the consent, assent, and/or parental permission forms be secured. These 
forms should separate from the rest of the study data. Add the duration of time these forms will be 
kept.  

• If applicable, describe how data will be linked or tracked (e.g. masterlist, contact list, reproducible 
participant ID, randomized ID, etc.). 

If your study has previously collected data sets, describe who will be responsible for data security and monitoring. 
Data collected will be stored on a secure server with password protection. The graduate student and the PI will 
have access to the data. It will be stored throughout the duration of the study and for 6 months following the 
conclusion of the study.  
 
Participants will be given a participant ID that is collected with the data. Participants’ names will be separated from 
the data collected so that their responses cannot be traced back to them. This will be implemented with the 
following procedure: 

• Random number generator will be used to create a unique ID for each participant. For data analysis, 
they will enter this number on the surveys and the programming assignment. This allows the 
researchers to group responses from each participant together for data analysis. 

• This participant ID will not be recorded on any documents or other materials with the participant’s 
name. 

• Thus, the data anonymity will be preserved so that the response cannot be traced back to the 
participant. 

• Participants’ names will be collected for extra credit purposes only. This will be in a secure online 
survey in which students enter their name. It will contain no language regarding the study or their 
participant ID. 

12 Consent Process 
Describe the process and procedures process you will use to obtain consent. Include a description of: 

• Who will be responsible for consenting participants? 
• Where will the consent process take place? 
• How will consent be obtained?  
• If participants who do not speak English will be enrolled, describe the process to ensure that the oral 

and/or written information provided to those participants will be in that language. Indicate the 
language that will be used by those obtaining consent.  Translated consent forms should be 
submitted after the English is approved. 

The graduate student conducting the research (Melissa Day) will be responsible for obtaining the consent of 
participants. 
 
When participants come for the 1-hour session for the study, they will be provided the HRP-502a-Consent 
Document Social Behavioral. It will be posted in a Google Form, and they will acknowledge their agreement by 
proceeding with the pre-assignment quiz. 

https://uto.sp10.asu.edu/sites/sec/isodocs/isodocs-asurite/Documents/Data%20Storage%20Guidelines%202012%20Final.pdf
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13 Training 
Provide the date(s) the members of the research team have completed the CITI training for human 
participants. This training must be taken within the last 4 years. Additional information can be found at: 
Training. 

March 2019 

 
 

 

  

http://researchintegrity.asu.edu/training/humans
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APPENDIX B 

IRB APPROVAL 
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EXEMPTION GRANTED 

Javier Gonzalez Sanchez 
Software Engineering 
javiergs@asu.edu 
Dear Javier Gonzalez Sanchez: 
On 3/13/2019 the ASU IRB reviewed the following protocol: 
 

Type of Review: Initial Study 
Title: A Neural Network Model for a Tutoring Companion Supporting Students 

in a Programming with Java Course 
Investigator: Javier Gonzalez Sanchez 

IRB ID: STUDY00009864 
Funding: None 

Grant Title: None 
Grant ID: None 

Documents 
Reviewed: 

• StudyProtocol_RecruitmentMaterials_IRB.pdf, Category: 
Recruitment Materials; 

• StudyProtocolForm_IRB.docx, Category: IRB Protocol; 
• HRP-502a - TEMPLATE CONSENT SOCIAL 

BEHAVIORAL_Revised.pdf, Category: Consent Form; 
• Pre-Assignment Survey.pdf, Category: Participant materials (specific 

directions for them); 
• Programming Assignment.pdf, Category: Participant materials 

(specific directions for them); 
• Software Procedure & Screenshots.pdf, Category: Participant materials 

(specific directions for them); 
• Post-Assignment Survey.pdf, Category: Participant materials (specific 

directions for them); 
 

The IRB determined that the protocol is considered exempt pursuant to Federal Regulations 
45CFR46 (1) Educational settings, (2) Tests, surveys, interviews, or observation on 
3/13/2019.  

In conducting this protocol you are required to follow the requirements listed in the 
INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 
IRB Administrator 
cc: Melissa Day 

Javier Gonzalez Sanchez 
Melissa Day 
 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BC314605B3ACF0A488740894E8B937A80%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5B166C0541E252E54E961669201D82D98F%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BC314605B3ACF0A488740894E8B937A80%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BC314605B3ACF0A488740894E8B937A80%5D%5D
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APPENDIX C 

SYSTEM SET-UP DIRECTIONS 
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System Set-up 

Before installing the plug-in, you need to confirm the following: 
 

1. The correct version of Eclipse is installed. 
  Eclipse IDE 2018-12, Java EE 
 Make sure that it is the Enterprise Edition. 

If you already have Eclipse, check the version by doing the following: 
• Open Eclipse 
• Help 
• About -> It should say “Enterprise” and look like this. 

 
 

 
 
It can be downloaded here: https://www.eclipse.org/downloads/packages/. 
Download this option. 
 

 
 
 

2. Java 1.8 is installed. 
If you need help determining this, see this article: 
https://www.java.com/en/download/help/version_manual.xml. 
It can be downloaded here: 

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html. 

https://www.eclipse.org/downloads/packages/
https://www.java.com/en/download/help/version_manual.xml
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APPENDIX D 

IRB SOCIAL BEHAVIORAL CONSENT FORM  
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Title of research study: A Neural Network Model for a Tutoring Companion Supporting 

Students in a Programming with Java Course 

Investigator: Dr. Javier Gonzalez-Sanchez 

Why am I being invited to take part in a research study? 

We invite you to take part in a research study because we have developed a tutoring 
companion as a plug-in for the Eclipse Integrated Development Environment (IDE). This 
provides feedback to students in a course that involves programming with Java. 
You must be at least 18 or older to participate in this study. 

Why is this research being done? 

The effectiveness of the approach is examined among computer science students through 

the completion of recursion and control flow programming assignments.  

How long will the research last? 

We expect that individuals will spend 1 hour participating in the proposed activities. 

How many people will be studied? 

We expect about 40 people will participate in this research study. 

What happens if I say yes, I want to be in this research? 

You will be given instructions and asked to install a plug-in to use in the Eclipse Integrated 
Development Environment and to complete a short programming assignment. You will 
receive hints/messages about your code and asked to complete a short survey before and 
after the assignment. 
You are free to decide whether you wish to participate in this study. Instead of being in this 
research study, your choices may include: This study is for extra credit in your course, but 
it will have no impact on your “standard” grade in the course. You will not have any points 
deducted if you decide not to participate in the study. If you choose not to participate, 
another extra credit opportunity will be offered in the course. 
There are no foreseeable risks or discomforts to your participation. 

What happens if I say yes, but I change my mind later? 

You can leave the research at any time it will not be held against you. 

  Will being in this study help me in any way? 

We cannot promise any benefits to you, but you may receive extra knowledge from the 
tutoring software regarding a topic presented in computer science courses.  
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What happens to the information collected for the research? 

Efforts will be made to limit the use and disclosure of your personal information, including 
research study records, to people who have a need to review this information. We cannot 
promise complete secrecy. Organizations that may inspect and copy your information 
include the University board that reviews research who want to make sure the researchers 
are doing their jobs correctly and protecting your information and rights. 
 
The results of this study may be used in reports, presentations, or publications but your 
name will not be used. Your identity will be separated from your responses by the 
following: 
 
Data collected will be stored on a secure server with password protection. The graduate 
student and the PI will have access to the data. It will be stored throughout the duration of 
the study and for 6 months following the conclusion of the study.  
 
You will be given a participant ID that is collected with the data. Your name will be 
separated from the data collected so that your responses cannot be traced back to you. 
This will be implemented with the following procedure: 

Random number generator will be used to create a unique ID for each participant. 
For data analysis, you will enter this number on the surveys and the programming 
assignment. This allows the researchers to group responses from each participant 
together for data analysis. 
This participant ID will not be recorded on any documents or other materials with 
the participant’s name. 
Thus, the data anonymity will be preserved so that the response cannot be traced 
back to the participant. 
Participants’ names will be collected for extra credit purposes only. This will be 
in a secure online survey in which students enter their name. It will contain no 
language regarding the study or their participant ID. 

Who can I talk to? 

If you have questions, concerns, or complaints, talk to the research team at 
javiergs@asu.edu. 
This research has been reviewed and approved by the Social Behavioral IRB. You may 
talk to them at (480) 965-6788 or by email at research.integrity@asu.edu if: 

Your questions, concerns, or complaints are not being answered by the research team. 
You cannot reach the research team. 
You want to talk to someone besides the research team. 
You have questions about your rights as a research participant. 
You want to get information or provide input about this research. 

 

If you agree to participate in this study, please begin by completing the 
Pre-Assignment Survey. 



 

107 

APPENDIX E 

PRE-ASSIGNMENT SURVEY 
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APPENDIX F 

PLUG-IN INSTALLATION DIRECTIONS 
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System Set-up 
Before installing the plug-in, you need to confirm the following: 

1. The correct version of Eclipse is installed. 
  Eclipse IDE 2018-12, Java EE 

It can be downloaded here: https://www.eclipse.org/downloads/packages/. 
2. Java 1.8 is installed. 

If you need help determining this, see this article: 
https://www.java.com/en/download/help/version_manual.xml. 
It can be downloaded here: 
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html. 

 
Directions to install plug-in 
Windows 

1. Go to the location where the Eclipse 2018-12 Java EE IDE is extracted in your 
local machine. In my case, it is: 

  C:\Users\<Username>\eclipse 
2. Go to  

 …\eclipse\2018-12\eclipse\dropins 
3. Create a new folder “plugins”. 
4. Copy the .jar file into the “plugins” folder. 

 
5. Create a shortcut of eclipse. 
6. Right click on the shortcut, go to Properties  Shortcut  Target. 
7. Add “ -clean” (there is a space before -) at the end of the contents of Target. In my 

case, it looks something like this: 
 C:\Users\Melissa\eclipse\eclipse.exe -clean 

https://www.eclipse.org/downloads/packages/
https://www.java.com/en/download/help/version_manual.xml
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
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8. Start Eclipse. Eclipse will take a considerable amount of time to launch for the 
first time (5 – 15 minutes). 

9. Once Eclipse starts, it will prompt the user to enter the workspace location. Select 
a new folder as workspace and continue. 

10. Delete the Eclipse shortcut. 
 
 
 
Mac 

1. Go to the location where the Eclipse 2018-12 Java EE IDE is extracted in your 
local machine. In my case. It is at 

 Users  <UserFolder>  Applications  Eclipse (it can be inside a folder like 
eclipse or 2018-12) 

2. Right click on the executable Eclipse file and select “show Package contents” 
3. Go to  Contents  Eclipse  dropins 
4. The above 3 steps can be represented as below: 

 /Applications/Eclipse.app/Contents/Eclipse/dropins 
5. Create a new folder “plugins”. 
6. Copy the .jar file into the plugins folder. 
7. Go to /Applications/Eclipse.app/Contents/MacOS. Here we should have an 

executable called eclipse. 
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8. Clean launch eclipse by running the command below on terminal: 

 ./eclipse -clean 

 
9. Start Eclipse. Eclipse may take some time to launch. 
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10. Once Eclipse starts, it will prompt the user to enter the workspace location. Select 
a new workspace for running eclipse. 

 
Using the Plug-In 

1. To use the plugin, make sure you have continuous internet connection. 
2. Start eclipse. Go to Window  Perspective  OpenPerspective  Java. 
3. If you don’t see “Assignment Questions View” in the bottom section of eclipse, 

then go to 
 Window  ShowView  Other  Assignments Category  Assignment 
Questions View. 

4. Select “Assignment Questions View”. This should have an “empty list”. 
5. Click the “Refresh Action Tooltip” (top right corner of the view). This should 

fetch the list of available assignment(s) from server. The list can be java file(s) 
and/or text file(s). 

 
 

 
 

6. Open the assignment by double-clicking on it. This will open the Java project in 
Eclipse in project explorer. 
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7. Next, you will begin completing the assignment. 

 
Completing the Assignment  
Please follow these directions exactly. 

1. Open the Assignment.java file from the project. 
2. Add study ID and course number to the comments at the top of the file. 

a. Student_ID_Entry 
Use the random ID assigned to you by the graduate student. 
Do NOT use your student ID number! 

b. Student_Course_Entry 
Complete your course number. 
This will be: “SER222” or “CSE240”. Do not use spaces. 
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3. Complete the assignment according to the directions. 
Do not remove the comments surrounding the function.  
 
 

 
 
 

4. Interact with the Tutor Companion through the following actions. 
a. Run – Completed as usual 
b. Debug – Completed as usual 
c. Help – You can receive help by clicking the help icon in the view. 

 
 

 
 
 

5. After each action, navigate (if needed) to the “Help View” tab to see the message 
displayed. It will look something like this: 
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6. After each message received, double-click a feedback option about the message. 
Do not proceed until you have given feedback! 
 
 

 
 
 

7. Continue until you have completed the assignment. When all tests pass, you 
should see a “Success” message displayed in the Console. 

 
 
Uninstalling the plug-in 
Windows: 

1. Go to the location where the eclipse IDE is extracted in your local machine. In my 
case. It is at  

 C:\Users\<Username>\eclipse\dropins 
2. Delete the “plugins” folder. 
3. Create a shortcut of eclipse. 
4. Right click on the shortcut, go to Properties  Shortcut  Target. 
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5. Add “ -clean” (there is a space before -) at the end of the contents of Target. In 
my case, it looks something like this: 

 C:\Users\manoh\eclipse\jee-neon\eclipse\eclipse.exe -clean 
6. Start Eclipse. Eclipse will take a considerable amount of time to launch for the 

first time (5 – 15 minutes). 
7. Once Eclipse starts, you can use it as usual. Delete the Eclipse shortcut. 

 
Mac: 

1. Go to the location where the eclipse IDE is extracted in your local machine. In my 
case. It is at 

 Users  <UserFolder>  Applications  Eclipse (it can be inside a folder like 
eclipse or 2018-12) 

2. Right click on the executable Eclipse file and select “show Package contents” 
3. Go to  Contents  Eclipse  dropins 
4. The above 3 steps can be represented as below: 

 /Applications/Eclipse.app/Contents/Eclipse/dropins 
5. Delete the “plugins” folder. 
6. Go to /Applications/Eclipse.app/Contents/MacOS. Here we should have an 

executable called eclipse. 
7. Clean launch eclipse by running the below command on terminal: 

 ./eclipse -clean 
9. Start Eclipse. Eclipse may take some time to launch. 
10. Once Eclipse starts, you can use it as usual. 
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APPENDIX G 

RECURSION PROGRAMMING ASSIGNMENT  
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This programming assignment was used with students in the case study. It was saved on 

the server. When students used the plug-in, this assignment was retrieved from the server. 

Students completed the findSum method following the directions provided. 

 
//Student_ID_Entry= 
//Student_Course_Entry= 
 
public class Assignment { 
 /** 
  *  TODO:  
  *  Use recursion to calculate the sum of the numbers in an 
array that 
  *  are in a given range of values (inclusive). 
  *  
  *  The method will have 5 parameters, which are given to 
you. 
  *  
  *  Example:  
  *  For these values below, your method should return 11. 
  *  int[] array = {1, 5, 2, 4}, 
  *  start = 2 
  *  end = 5 
  *   
  *  1. You must use recursion. 
  *  2. You may only use one method (no helper methods). 
  *  3. Do NOT remove or change any comments. 
  *  4. Do NOT remove any code inside the main method. You may 
add more code 
  *   inside main, but do not remove any. 
  *  5. There are syntax errors with the skeleton code 
provided, 
  *   which you will need to fix as part of the assignment. 
  *  6. Add your student ID number and course name at the top 
of the  
  *   file in the comment. 
  *  
  */ 
 // Complete this function -- This comment not to be removed 
 public static int findSum(int[] array,  n,  start,  
    end,  accumulator) { 
   
   
   
 } 
 // End of function -- This comment not to be removed 
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public static void main(String[] args) { 
  int[] array1 = {100, 5, 6, 0, -5, 10, 30, -6, 101}; 
   
  int[] array2 = {Integer.MAX_VALUE, 

-461, 33, -375, 408, -193, 496, -95, 52, -146, 
284, -153, 80, -203, 245, -472, 98, -228, 379, -
179, 159, -172, 239, -139, 336, -298, 460, -162, 
390, -174, 304, -409, 330,  -240, 135, -137, 111, 
-32, 490, -243, 141, -348, 254, -101, 42, -31, 
176, -58, 37, -123, 298, -97, 452, -87, 399, -293, 
468, -439, 367, -154, 239, -116, 498, -431, 136, 
-155, 146, -438, 106, -474, 369, -408, 72, -368, 
298, -458, 227, -111, 281, -29, 151, -40, 62, -
153, 248, -42, 42, -339, 127, -187, 496, -380, 
376, -220, 379, -306, 239, -231, 489, -129, 436}; 

   
  int[] array3 = {-19, 2, -19, 12, -17, 16, -23, 17, -19,  

8, -5, 5, -5, 3, 0, 8, -10, 12, -3, 12, 0, 10,  
-10, 10, -15, 9, -13, 6, -15, 16, -10, 21, -10, 2, 
-13, 9, -6, 4, -10, 10, -3, 8, -2, 19, -5, 1, -22, 
12, -8, 8, -9, 20, -15, 21, -3, 15, -18, 15, -15,  

   16, -6, 10, -4, 16, -18, 8, -11, 14, -18, 11, -10, 
6, -18, 4, -16, 13, -23, 11, -12, 16, -16, 18,  
-24, 18, -8, 21, -7, 8, -24, 20, -18, 17, -15, 22, 
-20, 13, -6, 20, -10, 8}; 

   
  if (findSum(array1, array1.length - 1, -5,  

100, 0) == 146) { 
   System.out.println("Success!"); 
  } 
   
  if (findSum(array2, array2.length - 1, -228,  

436, 0) == 5385) { 
   System.out.println("Success!"); 
  } 
   
  if (findSum(array3, array3.length - 1, 5,  

15, 0) == 271) { 
   System.out.println("Success!"); 
  } 
    } 
 } 
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APPENDIX H 

POST-ASSIGNMENT SURVEY 
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