

A Neural Network Model for a Tutoring Companion

Supporting Students in a Programming with Java Course

By

Melissa Day

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2019 by the
Graduate Supervisory Committee:

Javier Gonzalez-Sanchez, Chair

Ajay Bansal
Alexandra Mehlhase

ARIZONA STATE UNIVERSITY

May 2019

i

ABSTRACT

Feedback represents a vital component of the learning process and is especially

important for Computer Science students. With class sizes that are often large, it can be

challenging to provide individualized feedback to students. Consistent, constructive,

supportive feedback through a tutoring companion can scaffold the learning process for

students.

This work contributes to the construction of a tutoring companion designed to

provide this feedback to students. It aims to bridge the gap between the messages the

compiler delivers, and the support required for a novice student to understand the problem

and fix their code. Particularly, it provides support for students learning about recursion in a

beginning university Java programming course. Besides also providing affective support, a

tutoring companion could be more effective when it is embedded into the environment that

the student is already using, instead of an additional tool for the student to learn. The

proposed Tutoring Companion is embedded into the Eclipse Integrated Development

Environment (IDE).

This thesis focuses on the reasoning model for the Tutoring Companion and is

developed using the techniques of a neural network. While a student uses the IDE, the

Tutoring Companion collects 16 data points, including the presence of certain key words,

cyclomatic complexity, and error messages from the compiler, every time it detects an event,

such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as

inputs to the neural network. The neural network produces a correlating single output code

for the feedback to be provided to the student, which is displayed in the IDE.

ii

The effectiveness of the approach is examined among 38 Computer Science students

who solve a programming assignment while the Tutoring Companion assists them. Data is

collected from these interactions, including all inputs and outputs for the neural network, and

students are surveyed regarding their experience. Results suggest that students feel supported

while working with the Companion and promising potential for using a neural network with

an embedded companion in the future. Challenges in developing an embedded companion

are discussed, as well as opportunities for future work.

iii

DEDICATION

This is dedicated to family – my parents, Doug and Leanna Day, and my sister, Erica Day.

They encouraged and helped me throughout my entire degree program. Their

encouragement to tackle a thesis and to persevere each step of the way spoke volumes to

me, and I am so grateful for them.

iv

ACKNOWLEDGMENTS

First, I would like to thank my thesis advisor and chair, Dr. Javier Gonzalez-Sanchez. His

guidance throughout the research, project, and writing has been invaluable. He asked me

the right questions and shared constructive feedback to strengthen my work. I learned a

great deal by working with him.

I am also grateful for my committee members, Dr. Ajay Bansal and Dr. Alexandra

Mehlhase, in reviewing and providing feedback. I appreciate the help that Dr. Gonzalez-

Sanchez and Professor Acuña provided by allowing their students to participate in the

research study.

I am also extremely grateful for the assistance of Manohara Rao Penumala, an alumnus of

this program, whose work I continued with this project. He shared technical details of his

project with me and continued to make updates to the plug-in. This work was greatly

enhanced by his input.

v

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

 1 INTRODUCTION .. 1

1.1 Key Concepts .. 3

1.2 State-of-the-Art ... 6

1.3 Problem to be Addressed .. 8

1.4 Hypotheses .. 10

1.5 Proposed Solution or Approach .. 10

1.6 Contributions... 13

1.7 Evaluation Plan ... 14

1.8 Scope of Work .. 15

1.9 Document Roadmap.. 16

 2 BACKGROUND .. 17

2.1 Tutoring Companions Background ... 17

2.2 ITS in the IDE ... 21

2.3 Intelligence for ITS ... 23

2.4 Summary ... 26

 3 THE TUTORING COMPANION BRAIN ... 27

3.1 Inputs and Outputs to the Neural Network ... 28

3.2 Messages in the Brain ... 33

vi

CHAPTER Page

3.3 Data Flow in the Brain .. 37

3.4 Training of the Neural Network .. 41

3.5 Summary ... 43

 4 IMPLEMENTATION OF THE TUTORING COMPANION BRAIN 44

4.1 User Interface .. 44

4.2 Architecture... 48

4.3 Eclipse Plug-in .. 49

4.4 Design ... 50

4.5 Libraries .. 55

4.6 Testing Process ... 57

4.7 Summary ... 59

 5 CASE STUDIES ... 60

5.1 Participants .. 60

5.2 Study Protocol ... 63

5.3 Summary ... 67

 6 RESULTS ... 68

6.1 Students’ Background ... 68

6.2 Overall Perceptions of the Companion ... 70

6.3 Evaluation of the Companion’s Feedback .. 71

6.4 Evaluation of Data Collected from Students’ Code 74

6.5 Evaluation of the Software Tool ... 75

6.6 Summary ... 78

vii

CHAPTER Page

 7 DISCUSSION ... 79

7.1 Strengths of the Companion.. 79

7.2 Opportunities for Improvement in the Companion 81

7.3 Future Work .. 83

7.4 Summary ... 85

REFERENCES ... 87

APPENDIX

 A IRB PROTOCOL ... 94

 B IRB APPROVAL ... 100

 C SYSTEM SET-UP DIRECTIONS ... 102

 D IRB SOCIAL BEHAVIORAL CONSENT FORM ... 104

 E PRE-ASSIGNMENT SURVEY ... 107

 F PLUG-IN INSTALLATION DIRECTIONS ... 109

 G RECURSION PROGRAMMING ASSIGNMENT ... 118

 H POST-ASSIGNMENT SURVEY .. 121

viii

LIST OF TABLES

Table Page

3.1. Possible Feedback in the Brain ... 34

3.2. Data Pre-Processing Needed after the Brain Receives Data from the Plug-in 38

4.1. Challenges and Resolutions during Integration Testing 58

ix

LIST OF FIGURES

Figure Page

1.1. Relationship between ITS, Companions, and Embedded Companions 5

1.2. The Proposed Solution .. 11

1.3. Overview of Proposed Solution .. 12

3.1. Structure of the Neural Network ... 28

3.2. Data Collected by the Plug-in and the Possible Values for Each Item 29

3.3. Categories of Messages in the Brain ... 37

3.4. Data Flow in the Companion Brain .. 38

4.1. Assignment View and Help View... 45

4.2. Assignment Pulled from Server .. 46

4.3. Assignment Opened Inside Package Structure ... 46

4.4. Plug-in Displays Feedback ... 47

4.5. Plug-in Acknowledges Student’s Response.. 47

4.6. Companion Architecture ... 49

4.7. Eclipse Plug-in Architecture ... 50

4.8. Package Diagram for the Companion Plug-in .. 50

4.9. Class Diagram of the Companion Plug-in .. 52

4.10. Code Used in the Formula to Scale the Output from the Neural Network 54

4.11. Libraries Used for the Companion Plug-in .. 56

5.1. Student Population .. 62

5.2. Participants by Course Enrollment ... 62

x

Figure Page

5.3. Students’ Participant Identification Number for Assignment. 66

6.1. Students’ Response to the Companion’s Support ... 70

6.2. Students’ Perceptions of the Companion’s Feedback Type 72

6.3. Students’ Ratings of the Companion’s Feedback ... 74

1

CHAPTER 1

INTRODUCTION

The education of Computer Science (CS) students is a significant problem that has

warranted much attention. In fact, issues surrounding CS education have been identified as

one of the seven grand challenges in computing (McGettrick, Boyle, et al., 2005). A

common need for CS students is personalized quality feedback (Seymour and Hewitt,

1997), but it is challenging to provide this kind of feedback. One might suggest that the

faculty and teaching assistants should devote additional time to giving students feedback

on their code. However, given the data on large class sizes (King, 2018; Pisan, Sloane, et

al., 2002; Smaill, 2005; Hounsell, 2007), it is extremely challenging – perhaps even

unrealistic – for instructors to devote significant time to providing individual feedback to

students. Thus, providing feedback to beginning CS students is a problem that needs to be

addressed.

 The nature of giving feedback to students is complex, and there are many factors

involved regarding why and how students engage with certain types of feedback (Price,

Handley, et al., 2011). Specifically, in the context of CS programs, feedback may be

perceived as even more important due to the difficulty of these courses and the high

attrition rate. This can be seen based on the research regarding feedback in general, as it

has been rated as being among the top 10 influences of 138 influences studied, using 800

meta-reviews (Hattie, 2009). Furthermore, some have argued that feedback is perhaps

among the primary determinants for higher gains in student learning (Hattie and Timperley,

2

2007; Carless, 2006; Hounsell, 2003). The amount and type of feedback can even influence

students’ satisfaction with their degree programs (Jessop, Hakim, et al., 2013).

Beginning CS students often struggle to represent concepts in code. Winslow

presents evidence that students struggle to produce “syntactically valid statements once

they understand what is needed. The difficulty is knowing where and how to combine

statements to generate the desired result” (Winslow, Sept. 1996). Additionally, students

can experience feelings of anxiety about programming, and since these feelings are

typically driven by their thinking patterns, perhaps instructors can help decrease these

negative thought patterns by “changing the way the student constructs his/her thinking

about writing computer programs” (Connolly, Murphy, et al., 2009). Thus, teaching

students problem-solving strategies and, essentially, teaching them how to think about

programming can bring significant results for the students not just academically, but also

emotionally. Consequently, it is the intent of this thesis to provide students with knowledge

about how to proceed by giving them hints about problem-solving strategies that will assist

them not just with completing the assignment, but also providing them with improved

knowledge regarding why something needs to change.

Thus, helpful, constructive feedback delivered in a timely manner is important to

learning, and CS programs are certainly not an exception to this. Yet, the difficulty of

providing this feedback persists. This begs the question: How can this kind of quality,

formative feedback be delivered to students? Tutoring Companions as Intelligent Tutoring

Systems (ITS) can help to provide such academic support to students. In this chapter we

describe key concepts for this topic and the current research. After that, we discuss the

problem to be addressed in this thesis and our hypotheses. Next, we provide our proposed

3

solution and outline our contributions, as well as how we will evaluate these. Lastly, we

discuss the scope of this thesis and provide an outline of the structure of this document.

1.1 Key Concepts

It is important to begin by defining some terms and providing an introduction to their

significance for this thesis. This section defines such concepts.

Feedback. Feedback is defined as an explanation or information for the student

regarding the student’s current skill set or knowledge and where it should be, allowing the

student to understand what actions need to be taken to make the needed progress

(Ramaprasad, 1983). The Companion implemented in this thesis provides feedback about

student code.

Hints. Hints are messages to assist with solving the problem (Nesbit, Liu, et al.,

2015). Since the goal is that this hint replicates the assistance of a human tutor, the hints

must adapt to the student’s progress and work (Crow, Luxton-Reilly, et al., 2018).

Furthermore, the hints must extend beyond what could be received by utilizing only the

compiler errors; otherwise, the hints cannot be considered truly “intelligent” (Crow,

Luxton-Reilly, et al., 2018). Hints are a specific type of feedback. The Companion

implemented in this thesis also provides hints.

Integrated Development Environment. Distinguishing characteristics of an

Integrated Development Environment (IDE) are that it supports programming and is also

integrated with a software application with key tools available, such as a code editor,

compiler, and a debugger, which is accessible through a GUI interface (Chen and Marx,

2005). Specifically, in CS education IDEs are often used to aid students with the

4

complexities of writing code (Chen and Marx, 2005; Chatley and Timbul, 2005; Spacco,

Hovemeyer, et al., 2004; Reis and Cartwright, 2003).

Intelligent Tutoring Systems. An Intelligent Tutoring System (ITS) is a computer

system that “performs teaching or tutoring functions…and adapts or personalizes those

functions by modeling students’ cognitive, motivational or emotional states” (Nesbit, Liu,

et al., 2015). Student modeling is a primary distinguishing factor of ITS compared to other

instructive systems (Nesbit, Liu, et al., 2015; Sottilare, Graesser, et al., 2013), which

involves identifying a student’s problem in real-time (Shute and Psotka, 1996). Its ability

to customize the teaching function by, essentially, “remembering” the states from student

responses, in order to provide better feedback in the future to a student in a similar situation

is what sets an ITS apart (Nesbit, Liu, et al., 2015; Ma, Adesope, et al., 2014). In other

words, the knowledge of the tutor should be persistent, continually growing over time

(VanLehn, 2006; Pillay, 2003).

Tutoring Companion. A companion is an instant, on-demand support system that

emulates the traits of a human tutor and is a subcategory of ITS. We implement a

companion in this thesis. It differs from an ITS in that it is part of an already existing

system, which in this case is the Eclipse IDE. An ITS represents a standalone system, which

has many types, such as an alternative IDE designed specifically for teaching or perhaps a

web-based ITS that gives lessons to students. Regardless, it is important to distinguish

between Companion and ITS in this thesis. The relationship between Companions, ITS,

and other key concepts is shown in Figure 1.1.

Eclipse Platform. Eclipse is an IDE widely used by professionals (Judd and Shittu,

2005) and is commonly used in programming courses (Chen and Marx, 2005; Chatley and

5

Figure 1.1. Relationship between ITS, Companions, and Embedded Companions as
it pertains to student modeling, feedback, and CS

Timbul, 2005; Reis and Cartwright, 2003). One reason for its popularity is its extensibility

(Chen and Marx, 2005), which allows other tools or applications to be smoothly integrated

with the existing functionality of Eclipse (International Business Machines Corporation,

2006). As an open-source software platform, this allows many to contribute and facilitates

adding onto it for various purposes by utilizing the existing components of the IDE (Judd

and Shittu, 2005).

Eclipse Plug-ins. An Eclipse plug-in “is the smallest unit of Eclipse Platform

function that can be developed and delivered separately” (International Business Machines

Corporation, 2006). The Companion implemented in this thesis is an Eclipse plug-in that

“lives” inside of the Eclipse IDE. This plug-in connects to the existing Eclipse Platform,

allowing students to still use the IDE as they typically would with the Companion’s added

functionality on top of the existing system.

6

1.2 State-of-the-Art

ITS have been used for instruction in a wide range of disciplines, including math, medicine,

reading, and language-learning, and have been used for students of all levels – from

elementary school through university level students (Nesbit, Liu, et al., 2015). Numerous

ITS already exist for teaching programming (Crow, Luxton-Reilly, et al., 2018; Nye,

Graesser, et al., 2014; Keuning, Jeuring, et al., 2018), and engineers and researchers have

made some progress addressing the need for individualized feedback in CS education,

albeit in a somewhat limited manner. Many options exist, but more work is needed in this

area in order to better meet the needs of a diverse student population.

Training students how to use tools like compilers is an important component of the

educational process, so it is important that any type of support that is provided does not

deprive students of this. Nevertheless, “the tools involved are complex and require a certain

degree of user experience. For example, error messages are often cryptic or misleading and

require tutor support to be resolved. Small exercises could help students learn how to read

a runtime error or typical compiler errors and how to find a solution more independently”

(Ott, Robins, et al., 2016). As experienced programmers, instructors may simplify the

process of understanding the error messages, for “what is a problem to a beginner may be

a task to someone more advanced” (Winslow, Sept. 1996). Hence, it seems that there is a

gap between what beginning CS students can accomplish and the skill level required for

troubleshooting the messages received from the compiler.

In fact, it may be detrimental to the learning process of new CS students if they are

compelled to rely primarily on error messages to debug their code. Some have found that

this process can lead beginning CS students to perceive the ongoing error messages as

7

failure on their part or that they do not have the ability to perform as needed (Perkins,

Hancock, et al., 1989). Others have asserted that students can develop “programming

anxiety” – even leading them to “fear” programming (Connolly, Murphy, et al., 2009). This

anxiety, which negatively impacts these students’ academic performance, is prompted by

a response to the complex set of steps given to beginning CS students for which they are

not mentally prepared, and these researchers even argue that it has negative effects on

retention rates (Connolly, Murphy, et al., 2009).

Consequently, some have proposed the use of an educational tool integrated into

the IDE itself (Chen and Marx, 2005; Chatley and Timbul, 2005; Reis and Cartwright,

2003). These modifications to the IDE include modifying the IDE to simplify it for

beginners (Reis and Cartwright, 2004), implementing a plug-in so that students can use a

simpler programming language in the same IDE (Chatley and Timbul, 2005), or even using

a completely different, simplified IDE altogether (Storey, Damian, et al., 2003).

A companion can also provide this function to the student by offering assistance to

the student with feedback regarding how to fix the issues in the code. These can be

delivered in such a way that this does not interfere with the learning process of how to

interpret the error messages received. Instead, a companion can help to bridge the gap

between what a compiler is expecting the programmer can do and the typical level of

beginning CS students.

Previously, a companion for teaching Java was developed with a focus on

monitoring students’ actions while completing a programming assignment (Penumala and

Gonzalez-Sanchez, 2018). This previous work focused on collecting data from students

while completing the assignments, providing the data to the instructor of the course through

8

a convenient Graphical User Interface to allow instructors to quickly evaluate the progress

of their students (Penumala and Gonzalez-Sanchez, 2018). Certainly, instructors need to

understand the needs of their students, which may allow them to modify lecture instruction

accordingly. However, if class sizes are large, this still will not effectively remedy the

problem that CS students need someone to help them individually with their code.

1.3 Problem to be Addressed

However, even with all these existing systems, it is rare for an ITS to offer a combination

of features in which it provides feedback to students, as well as something that does not

require the use of a new tool. It would be ideal if students could use a tool that would

naturally be used in writing code so that they simultaneously learn how to understand the

messages from the compiler.

It seems that a tool – a tutor, of sorts – could assist students in beginning CS courses

by providing them with feedback. Building upon prior work (Penumala and Gonzalez-

Sanchez, 2018), this thesis proposes the use of a companion designed to assist students

with programming exercises on recursion in lower-division CS courses. As an embedded

companion, this differentiates it in providing feedback to students about how to proceed.

Although many ITS exist, it is rare for one to offer this combination of features.

Compiler messages are important but are complicated for beginning students to

understand (Ott, Robins, et al., 2016). Furthermore, the IDEs themselves can be at times

complex, which can, in fact, exacerbate the issues for beginning CS students learning to

program (Chen and Marx, 2005; Reis and Cartwright, 2004), so feedback while using the

IDE may be beneficial. Some may argue that this can hinder the learning process because,

9

after all, students need to acquire the skill of how to decipher the messages produced by

the compiler. Few would dispute that students need to understand errors messages and learn

how to approach solving these issues; however, for beginning CS students relying primarily

on error messages by the compiler can be quite challenging (Ott, Robins, et al., 2016).

Regardless of the approach to resolving the complexity with the IDE, existing

options do not effectively address both issues at hand: offering a tool to students that does

not increase the complexity of what already exists and providing first-rate feedback to

students simultaneously. In some cases, students are, in fact, given feedback directly in the

IDE; however, it lacks a robust intelligence to allow feedback to improve over time

(Spacco, Hovemeyer, et al., 2004). The limitations of the current work can be summarized

as follows:

• Existing programming companions within the IDE lack a strong intelligence,

especially one that applies current AI techniques.

• Few embedded companions exist that provide feedback to students on problem-

solving skills or how to proceed with an assignment. These exist as ITS but are not

common within the IDE.

• Many existing programming companions in the IDE for beginning CS students

significantly modify the appearance of the IDE or the programming language. This

leads to a disconnect between the IDE and language that students use and a standard

IDE and programming language.

As a result, more investigation into this area would be beneficial.

10

1.4 Hypotheses

With the goal of improving the current practice and overcoming these limitations, this

thesis investigates a solution to provide feedback on programming assignments to

beginning CS students. The primary research goal for this thesis is to extend an existing

Companion to enable it to provide valuable feedback to beginning CS students. This thesis

addresses the aforementioned challenges and limitations and is stated as follows:

We propose a solution using a neural network to provide students with a sense of

tutoring and affective support through feedback and implementing a modular, extensible,

modifiable software solution.

 Our hypotheses are that students will be receptive to trying this tool and perceive its

importance, as they are personally aware of the challenges associated with programming

and often seem willing to try new things to help address this situation. Current artificial

intelligence (AI) trends will inform our decision regarding how to generate feedback. We

expect that the feedback will be slightly helpful to students, although improvements to the

AI may be expected in the future. Finally, we expect that the Companion can be fairly

effective at generating feedback for programming assignments with recursion, as there are

fairly specific problems that arise with recursion.

1.5 Proposed Solution or Approach

We propose a tutoring companion integrated into the Eclipse IDE that provides customized

feedback to students while completing recursion programming homework assignments.

11

Figure 1.2. The Proposed Solution: The Companion is embedded into the Eclipse
IDE. It models the student’s knowledge through the use of a neural network and provides

intelligent feedback on a recursion programming assignment.

The tutor’s goal is to simulate a companion that will provide both content support to the

student, as well as affective support. The results of this Companion are examined utilizing

beginning CS students in a university programming course. The depiction of the proposed

solution is given in Figure 1.2.

Every time a student initiates an action in the IDE, data will be sent from the

student’s code to the server. Simultaneously, the data from the code will be sent locally

within the plug-in to the Brain of the Companion that calculates a response, using the

intelligence facilitated through the use of a neural network. The Brain produces intelligent

feedback tailored to this situation, which is then displayed to the student. This process,

illustrated in Figure 1.3, continues until the student’s code is complete.

12

Figure 1.3. Overview of Proposed Solution: The Companion collects data while a
student completes a programming assignment. The Brain of the Companion determines
individualized intelligent feedback for the student, which the Companion displays inside

the Eclipse IDE so that the student will not need to learn a new tool to use the
Companion.

Additionally, this Companion provides support to the student so that this

“programming anxiety” in beginning CS students is minimized. Connolly et al. conducted

a longitudinal study of CS students, investigating the presence of programming anxiety,

especially with how this occurred in their first year of the CS program. They write:

The extent of negative cognitions regarding control in computing situations, and
the lack of sense of computing self-efficacy shown in this study strongly points to
the need for strategies to be devised by computer programming course designers
to foster student confidence and motivation…The findings…would suggest that
providing learners with opportunities to gain experience in skills involved in
programming computerized equipment routinely themselves, for example…dealing
with error messages, would be important elements of developing confidence and
perceptions about computer programming (Connolly, Murphy, et al., 2009).

13

The Companion implemented in this study has this goal in mind. Since it is an additional

feature in the Eclipse IDE, which already needs to be used as part of the software

development cycle, it will scaffold the learning process for the student. This still allows the

student to learn from the error messages produced by the compiler, but also provides

support and encouragement through the feedback delivered.

1.6 Contributions

In this thesis, we assert the use of a tutoring companion integrated as a plug-in into the

Eclipse IDE for providing feedback to students. We provide an overview of existing

research, introduce the intelligence of the Companion, examine its effectiveness and

whether it fulfills the goals set for this study, and evaluate the Companion via CS students

using it for an assignment. This thesis advances the state-of-the-art in CS education by

integrating a tutoring Companion into the Eclipse IDE, delivering intelligent feedback by

utilizing current work in AI, and investigating its effects among beginning CS students.

The key contributions of this thesis include:

• The Software of the Companion. Using best practices in software engineering,

the product is a sophisticated working software. On the front-end, the students

install it as an Eclipse plug-in. On the back-end, it sends the students’ data to the

neural network and the database – both of which are located on the server. Since all

of these are implemented with existing enterprise-level tools, rather than creating it

from scratch, this increases the complexity of the software in achieving the desired

functionality.

14

• The Brain of the Companion. Leveraging AI technology through the

implementation of a neural network, it represents an improvement in existing ITS

for programming, allowing students to receive intelligent feedback without

requiring a separate tool just for the ITS. Additionally, we determined necessary

input data for the neural network to respond to possible problems in the code and

created messages for the Companion designed for its educational purpose.

• The Research Study of the Companion. Demonstrating the effectiveness of the

Companion developed for particular users, namely, beginning CS students, its

effectiveness was examined among this target audience. Furthermore, the study

provides evidence that the software developed works and functions according to

expectations. These students are enrolled in at least one of two lower-division CS

courses. One of these courses includes an introduction to different programming

languages, and the other course is on elementary data structures.

1.7 Evaluation Plan

Evaluating the Companion includes:

• Testing. The software will be tested according to the principles of Software

Engineering. This includes the use of component, integration, and Alpha testing to

validate that the software works as expected.

• Software Release. The Companion’s validity is further validated by releasing it to

a set of users who are, in a sense, the “customers” for the software. Having students,

the intended audience for the Companion, use the Companion validates not only

15

that it works, but also that it can be used for its intended purpose: delivering

feedback to students about a programming assignment.

• Evaluation of the Companion’s Feedback. The students using the Companion

will provide opinions regarding how helpful the Companion’s feedback is for

various scenarios with their code. For each message delivered, the plug-in prompts

students to evaluate how helpful it was, and the plug-in logs this data for the data

in the student’s code. Thus, this will be helpful in improving the Companion in

future iterations and evaluating whether the Companion’s feedback was effective.

Additionally, students will complete a survey at the conclusion of the experience

with the Companion, providing additional data regarding the helpfulness of the

feedback and their reactions to the Companion.

1.8 Scope of Work

Several topics are beyond the scope of this thesis, including:

• Continual Execution of a Neural Network. Currently, the neural network

developed in this project requires human intervention to train the model with

collected student data. A fully automated Companion would learn at all times and

provide feedback without requiring a human in the data training process. This,

however, is beyond the scope of this work.

• Cross-compatibility. Plug-ins are typically developed for the current version of

Eclipse, but they often work with other versions of Eclipse, as well as for other Java

versions. Since this was not a focus of this study, development efforts were not

focused on this facet of the software.

16

• Companions in Other IDEs. Companions can also exist in other IDEs used for

Java development, such as Visual Studio, NetBeans, or IntelliJ. Although these may

also be worthy of consideration, they are not evaluated or included in this study.

1.9 Document Roadmap

The rest of this thesis will describe the research and work on the Companion. Chapter 2

provides a survey of the existing work on this topic and establishes the need for an

integrated tutoring Companion with this type of intelligence. Chapter 3 contains a detailed

explanation of the Companion’s intelligence, including the technical implementation

details of the neural network and the model generation. Chapter 4 discusses the technical

details behind the Companion’s Brain, such as architecture, design, and testing. Chapter 5

comprises the details on the study completed with the students. Chapter 6 presents the

results of the study, and, lastly, chapter 7 discusses the results and plausible conclusions,

along with possible future research areas.

17

CHAPTER 2

BACKGROUND

The tutoring function performed by our Companion involves giving feedback to the

students, as well as “offering prompts to provoke cognitive, motivational, or metacognitive

change” (Nesbit, Liu, et al., 2015). Such feedback could improve a student’s interest in

learning through an interesting message or the use of humor (Ma, Adesope, et al., 2014).

2.1 Tutoring Companions Background

ITS for teaching programming typically exist for a distinct purpose, such as helping

students with a particular concept in programming, and are often designed for a specific

programming course at a certain university (Nesbit, Liu, et al., 2015; Crow, Luxton-Reilly,

et al., 2018; Nye, Graesser, et al., 2014; Keuning, Jeuring, et al., 2018). They often fall into

two categories for their intended function: assisting a student with a programming exercise

or supporting the debugging of code (Pillay, 2003). Various facets of teaching or tutoring

functions exist in these systems, such as providing lessons to students with an explanation

of key concepts, giving short programming exercises for students to complete, or offering

suggestions on improving the efficiency of the code (Pillay, 2003). At any rate, these are a

system, rather than being integrated into an already existing tool.

 Many different categories have been used to analyze ITS for teaching

programming, ranging from learning outcomes (Nesbit, Adesope, et al., 2014) to the age

of the students in the target audience (Pillay, 2003) to the classification of the feedback

provided (Le, 2016). One type of feedback in ITS for programming is adaptive feedback.

18

Adaptive feedback consists of not just telling the user whether an answer is correct in a

binary sense; rather, it provides different information for different students in different

situations (Le, 2016). Some have suggested that the feedback in this approach could be the

line number in the code with the error, an explanation of a concept, or a customized hint

(Le, 2016).

 Feedback in general, not just for programming, has been divided into various

categories, including knowledge about mistakes, knowledge about how to proceed, and

knowledge about concepts (Narciss, 2008). Automated feedback generation tools for

programming assignments have been classified according to these types of general

feedback. Knowledge about mistakes accounts for 96% of feedback tools, while knowledge

about how to proceed accounts for about 45% of available tools, although tools may fall

into multiple categories (Keuning, Jeuring, et al., 2018). Even though 45% of tools already

developed are in this category, many in this category do not have strong features, such as

being embedded into an IDE. A discussion of specific examples of programming ITS in

each general feedback category will now be provided.

Feedback about Knowledge about Task Constraints. One example of a tutoring

system that provides feedback on task constraints is INCOM, which is for teaching logic

programming (Nguyen-Thinh, Menzel, et al., 2009). This operates by highlighting

keywords about what the student missed. Other types, such as BASIC Instructional

Program (BIP), which is a historical example of an ITS, require that a component of the

language is used, so the system will deliver a message stating that the student is missing a

keyword (Barr and Beard, 1976). These types of systems may have a benefit in assisting

the student to complete the assignment successfully, but they will most likely not help the

19

student to think through similar types of problems in the future, as the student will not

improve his or her understanding of how to solve that type of problem. Systems in this

category represent about 15% of available tools, and the focus is on helping the student

with breaking down the tasks (Keuning, Jeuring, et al., 2018).

Feedback about Knowledge about Concepts. Next, an example of knowledge

about concepts is the FIT Java Tutor, that allows students to compare their solution side-

by-side with a sample solution. In some cases, this ITS provides the student with an

example containing mistakes, asking the student to correctly identify the mistakes.

Another example, the Lisp Tutor, which is an early ITS, continuously monitors the

student’s work for errors, and, once an error is detected, it provides guidance to the student

(Anderson and Skwarecki, 1986). It also offers students reference materials on various

topics, guiding him or her through a series of examples for similar situations and concepts

(Crow, Luxton-Reilly, et al., 2018; Keuning, Jeuring, et al., 2018). Although the feedback

offered by Lisp Tutor may have benefits, it lacks the ability to deliver feedback in non-

erroneous scenarios.

Feedback about Knowledge about Mistakes. Tutors in this category often report

test failure cases. Online Judge reports whether test cases pass or fail, and another system,

ProgTest, which teaches testing, has students upload their code and test cases. Then, it

reports the results of running the instructor’s test, along with the code coverage analysis

given the student’s test cases (Keuning, Jeuring, et al., 2018). A well-known early

programming tutor in this category is PROUST, which helps beginning Pascal students

locate errors in their programs (Johnson and Soloway, 1984). This tutor functions by

generating a list of all errors in the student program (Pillay, 2003). COALA is a tool that

20

provides the results of running JUnit test cases in the Eclipse IDE (Jurado, Redondo, et al.,

2012). Knowledge About Mistakes may also involve providing more details on compiler

errors, such that the students do not need to use an actual compiler, even going so far as to

replace an actual compiler (Keuning, Jeuring, et al., 2018). However, it is a vital skill for

students to learn to use the compiler directly, so replacing the standard compiler in an IDE

is not desirable. Other ITS may give feedback on solution errors by attempting to match

the student’s code with a sample solution program. Singh13, which is one such type of tool,

gives students the line number and function that needs to be changed with the exact change

that should be made to the code (Singh, Gulwani, et al., 2012). Moreover, systems like

Singh13 do not particularly benefit a student’s problem-solving ability. In fact, only

providing the solution to the problem will resolve the issue at that moment, but in a similar

scenario in the future, the student will likely have the same issue. Although these types of

debugging tutors might have been helpful in bygone eras, IDEs can, in general, provide

this for students, so it seems that this type of system is not really relevant today.

Furthermore, most IDEs have debugging support built into them, so to create this type of

system is not a good use of resources. Assisting students with writing a program is still

something that is relevant and needed, as much of what goes into this involves how to think

about the problem, which is more than just understanding the syntax of the language. Thus,

the programming Companion we developed falls into this first category.

Feedback about Knowledge about How to Proceed. In the literature review

conducted by Keuning et al, they found that 45 of 101 tools reviewed provide this type of

feedback (Keuning, Jeuring, et al., 2018). They further subdivide this category into three

other categories: bug-related hints, program improvements, and task-processing steps.

21

Bug-related hints focus on assisting the student with fixing errors, such as fixing errors

with spelling or checking input for validity. Some, such as CSTutor, offer these in the form

of questions to greater assist the student’s learning (Keuning, Jeuring, et al., 2018). Another

category, program improvements, provides ways the student can improve the performance

or style of the program (Keuning, Jeuring, et al., 2018). Even though these are important

considerations, if novices cannot represent the basic logic of their task in a programming

language (Winslow, Sept. 1996), these are secondary issues. Lastly, task-processing steps

offer feedback for how to think about the problem without examining the student’s current

code. A Prolog tutor providing task-processing steps, Hong04, gives hints on how to

logically step through the problem with templates for the student to fill in the blanks. Ask-

Elle, which is used to teach the functional programming language Haskell, gives

suggestions for how to attack the problem, which can help the student to learn how to think

about the problem as if the instructor were present, walking the student through the thought

process.

 Feedback about Knowledge about Metacognition. Keuning et al. found only one

example of a tutor focused on Knowledge About Metacognition, HabiPro, which asks

students to justify their answers (Keuning, Jeuring, et al., 2018). This type of system is rare

and is often implemented using natural language processing.

2.2 ITS in the IDE

While programming ITS with adaptive feedback offer many features, most of the features

center around providing lessons and reference materials to students, rather than being

directly embedded into an IDE (Crow, Luxton-Reilly, et al., 2018). Nevertheless, there are

22

a handful of ITS embedded into the IDE that are worth considering. One such ITS, Cimel

ITS, which was used to teach program planning and modeling, integrates the tutor with the

Eclipse IDE, sending UML designs from Eclipse to be evaluated by the system (Moritz,

Wei, et al., 2005). Although Cimel is an Eclipse plug-in, its essential purpose is different

because it teaches UML, instead of assisting with a programming exercise. Other similar

plug-ins for UML have also been developed (Moritz, Blank, et al., 2007). Nonetheless,

these are not really programming ITS because they teach modeling, not programming.

ITS as Eclipse plug-ins exist for a variety of purposes, such as helping with

collaboration, especially with pair programming (Devide, Meneely, et al., 2008; Jurado,

Molina, et al., 2013; Yusri, Mashita Syed-Mohamad, et al., 2015). An Eclipse plug-in was

also developed to track keystrokes, classifying students’ level of activity in a programming

lab setting to aid tutors with knowing whom to assist (Karkalas and Gutierrez-Santos,

2014). Another example is a plug-in to assess students’ code, evaluating whether it is

suitable for submission (Silva, Leal, et al., 2018). An interactive tutorial that records

students’ actions in the IDE to be preserved as a tutorial for future students also exists, but

this differs significantly from an ITS programming tutor that provides feedback (Zhang,

Huang, et al., 2009). Another tutor, Coala, assists students and teachers with assessing a

programming algorithm by collecting data from students’ code through an Eclipse plug-in

(Jurado, Redondo, et al., 2014). Thus, there are ITS worthy of consideration, but their focus

is not on giving students feedback on how to proceed.

23

2.3 Intelligence for ITS

Various approaches have been used for intelligence in the ITS. Before considering pure AI

methods in this section, we will consider a few other existing methods for providing

feedback on programming in an ITS. Sometimes these possess some similarities to AI

methods, but all aim to help students with their programming assignments regardless of the

method for generating the intelligence.

Generating Feedback through Data Analysis. Data analysis, which can also be

referred to as data-driven ITS (Rivers and Koedinger, 2017), involves “using large sets of

historical student data to generate hints” (Keuning, Jeuring, et al., 2018), and only about

8% of existing systems use this method. Decisions within the ITS are based on prior

students’ work, instead of relying on an expert knowledge base that requires an instructor

to enter solutions (Rivers and Koedinger, 2017). One reason that data-driven techniques

for generating hints can be helpful is because it helps to resolve the “cold-start problem”

(Chow, Yacef, et al., 2017). When the first students initially use an ITS, some of the early

hints may be poor or even non-existent. The developers of the Grok Learning platform, an

online programming tutoring system, found that when using a data-driven approach, they

only needed data from 10 students to generate a quality hint (Chow, Yacef, et al., 2017).

Thus, it seems using historical student data is worthwhile. The Intelligent Teaching

Assistant for Programming (ITAP) is another ITS that uses data analysis, with the goal of

being a self-improving tutor so that feedback is increasingly better matched to each unique

student (Rivers and Koedinger, 2017). ITAP “creates a solution space graph with

(intermediate) program states as nodes, in which directed edges represent next steps”

(Rivers and Koedinger, 2017). After matching a student solution with a node in the graph,

24

it searches for a path from the student’s current node to a correct solution, using the path

as the basis for the hint (Rivers and Koedinger, 2017). Although this method has found

some success with ITAP, ITAP cannot handle incorrect syntax (Rivers and Koedinger,

2017). Furthermore, if data analysis is used on its own without the advantage of machine

learning techniques, it is time-intensive and involves a complex process to determine how

to traverse the graph to an ideal solution, as well as how to match a student’s code with a

current node in the solution graph. Whereas these ITS rely, typically, on some graph

traversal algorithm that the developers must create, a machine learning approach can build

on existing software libraries for machine learning without being limited to the arena of

ITS.

Generating Feedback through Static Analysis. Static analysis tools for code are

ubiquitous, and these are frequently incorporated into university classes to enforce coding

standards through a variety of tools (Keuning, Jeuring, et al., 2018). However, as Keuning

et al. argue, the disadvantage of such tools is that their messages are often complex and not

tailored for beginning programming students.

Generating Feedback through AI. AI techniques are relatively common for

generating feedback, with approximately 28% of surveyed tutors in a major literature

review relying on AI for feedback generation (Keuning, Jeuring, et al., 2018). Many

different AI techniques exist, which range from giving intelligent feedback through the

execution of test cases to more elaborate methods involving tracing the student’s solution

model compared with a model of a sample solution (Le, Strickroth, et al., 2013). Some so-

called AI methods are limited to “detecting errors in student solutions in order to provide

feedback” (Le, Strickroth, et al., 2013). However, a compiler can provide these types of

25

feedback, so this does not really represent a needed area of research. Another example of

an AI method for feedback is through natural language processing. AutoTutor is perhaps

the quintessential example of such a system (Graesser, Lu, et al., 2004). Seeking to simulate

a conversation with a human tutor, it uses a predictive script to determine which direction

to take the student. In these types of approaches, an expected answer exists for each

question the tutor asks. If the answer given is not what the expected or “right” answer is,

then a series of remediation steps is generated (Le, Strickroth, et al., 2013). Nonetheless,

the focus of AutoTutor has not typically been assisting students with programming.

PROPL, a natural-language processing ITS designed for programming, guides a student to

a pseudocode solution using a series of questions and natural-language processing (Le,

Strickroth, et al., 2013). Yet, PROPL only assists with creating a pseudocode solution, not

with the actual coding process.

Generating Feedback through Machine Learning Techniques. Machine

learning, a specific type of AI, is another possibility for generating feedback. JavaBugs

sought to identify a student’s intention by using a machine learning approach to generate a

library of common bugs for beginning Java students (Suarez and Sison, 2008). This ITS

utilized a set of sample solutions to the problems and compared the student’s solution to

these samples, using it to determine how the student intends to solve the problem. Using

machine learning, they determined how the student diverged from this program and

updated the error library accordingly. Although they did return feedback to the student, the

true aim of this study was using machine learning techniques to generate a bug library,

rather than using it to generate the feedback itself. Others have used neural networks to

generate hints (MacNish, 2002; Beck, Woolf, et al., 2000).

26

2.4 Summary

Certainly, much work has been done in the area of programming ITS, including

companions embedded in the IDE and even ITS with intelligence. One might wonder why

yet another type of ITS could be worthwhile. Among these options, few, if any, exist as an

embedded companion in the IDE, utilizing a neural network to generate feedback about

how to proceed with a programming assignment, as well as offering affective support. Of

course, companions embedded into the Eclipse IDE for programming assignments already

exist. Coala, for instance, is an Eclipse plug-in that adds information to the IDE to help

students with their code and extracts data from students’ code (Jurado, Redondo, et al.,

2014). Nevertheless, it also differs in significant ways, as this tutor requires an instructor

to enter a sample solution to generate the data used for evaluating students’ code.

Furthermore, its feedback most closely resembles that from running test cases. CIMEL also

exists as an Eclipse plug-in, but this is for UML, not for programming (Moritz, Wei, et al.,

2005). Intelligent ITS also already exist, such as ITAP (Rivers and Koedinger, 2017), but

it cannot handle incorrect syntax and also does not minimize instructor involvement. Thus,

this type of companion – one in the Eclipse IDE delivering intelligent feedback with hints

about how to proceed with an assignment – is situated in a unique niche among prior ITS.

27

CHAPTER 3

THE TUTORING COMPANION BRAIN

The intelligence for the Brain is implemented using a neural network with a supervised

learning algorithm. We considered other options for the intelligence and found that a neural

network is a good fit for this data and the intended purpose of the Companion. Before a

more detailed discussion of the brain, we will briefly explain the rationale for choosing a

neural network over other possibilities.

Besides neural networks, possibilities for the brain include linear regression and

Bayesian networks. Linear regression has been used with ITS for simple classification

problems (Beck, Woolf, et al., 2000), but it is too simple because the inputs in an ITS can

have a high degree of variance, which requires a more sophisticated algorithm than that

supported by linear regression. Bayesian networks have been effective in cases involving

complex decision-making to determine the outcome, such as games within an ITS (Conati,

Gertner, et al., 2002; Hooshyar, Binti Ahmad, et al., 2018), but these are too sophisticated.

Moreover, these are usually when the ITS has many facets, such as lessons, quizzes, and

games, and the intelligence must control how the student moves through these phases.

Embedded companions do not require this level of sophistication. A neural network

provides a perfect compromise between the two extremes of complexity offered by linear

regression and Bayesian networks; it supports variance among the possible inputs to

provide an accurate outcome and allows for additional complexity to be added in future

versions of the Companion.

28

The following sections provide the details of the Companion’s Brain. First, the

structure of the neural network will be described, including the data that enters and leaves

it. Next, the possible messages available in the Brain will be presented. Then, the flow of

data within the Brain will be depicted and the necessary transformations to the data. Lastly,

the approach to the training of the neural network will be described.

3.1 Inputs and Outputs to the Neural Network

A multi-layer perceptron neural network, as shown in Figure 3.1, with a back propagation

learning algorithm was used for the intelligence of the Companion. The backpropagation

utilizes a sigmoid transfer function. The input layer contains 16 nodes containing students’

data. There is one hidden layer with seven nodes, which reflects others’ neural network

implementation for hint generation using a single hidden layer (MacNish, 2002). The

output layer consists of a single node corresponding to the feedback to give to the student.

1
2
3
4
5
6
7
8
9

10
11
12

14
15
16

13

1

2

3

4

5

6

7

1

Output Layer

Hidden Layer

Input Layer

Figure 3.1. Structure of the Neural Network

29

The input to the neural network consists of 16 nodes with data extracted from the

student’s code and events in the IDE. Some of the nodes contain data about feedback given

in this situation, which will be helpful for future training of the neural network. The specific

input fields can be seen in Figure 3.2. After considering areas that often cause problems

with recursion for software engineers and particularly students, such as a missing base case

or StackOverFlowError, we selected inputs that can help to provide this information to the

Companion.

1. Action Debug, Error, Help, Run, or Submit
2. Assignment successfully completed 0, 1
3. Comparator operator found 0, 1
4. Keyword Double Found 0, 1
5. Keyword Float Found 0, 1
6. Keyword If Found 0, 1
7. Keyword New Found 0, 1
8. Keyword Return Found 0, 1
9. Loop Found 0, 1
10. Number of Comment Lines 0 to Infinity
11. Total lines of code 0 to Infinity
12. Cyclomatic Complexity 0 to Infinity
13. Error Type Most recent error message

 collected from compiler
14. Message Code Multiples of 10 from 10 to 280
15. Message Given Text for message matching message code
16. Feedback on Message Whole numbers, 0 to 4
17. ID Sequential number, automatically

 assigned for ID in database table
18. Student ID Participant identification number

 randomly assigned per IRB protocol
19. Submission date and time Current date and time stamp
20. Course Name "SER222", "CSE240", or "Both"
21. Assignment Name "Assignment.java"

Figure 3.2. Data Collected by the Plug-in and the Possible Values for Each Item:

There were 16 values sent to the neural network, which are numbers 1-16. Numbers 17-
21 are 5 other values that were collected but not sent to the neural network.

30

Now, we will provide a detailed explanation of each input and output field and the

rationale for including this field in the neural network.

• Action. An Action is defined as an event that occurs while the student uses the plug-

in. The plug-in detects which action has been executed and saves this data. Possible

actions include Debug, Error, Help, Run, and Submit. Debug and Run actions occur

when a student selects debug or run, respectively, within the plug-in. The plug-in

detects the different ways that run or debug can be executed, such as right clicking,

clicking the shortcut buttons, or selecting from the menu. Clicking the help button,

which is visible within the view in the plug-in, triggers the Help action. The Error

action is set when the student receives run-time error messages from the compiler.

The Error state supersedes Run or Debug. For example, if the student runs or debugs

the program and receives error messages, the state automatically is saved as Error,

instead of as Run or Debug. The Error action also causes the exact error message

from the compiler to be saved. Submit means that the student’s code has passed all

the test cases, so the assignment is completed successfully. The Submit action

changes the assignment completed successfully field. The Action field can be used to

interpret how the student is interacting with his or her code. For instance, students

who utilize the debug function in the IDE may show a greater understanding of how

to use the available tools while writing code. It also assists with determining what the

student is doing, and if the student continues with many Error states, this could

indicate a problem that the Companion should address with a message.

• Assignment Completed Successfully. This field indicates whether the assignment

is finished correctly, and the test cases have been passed. It is important for the

31

Companion to display encouraging feedback when this happens, so this field helps

detect this situation.

• Comparator Operator Found. A field representing whether the comparator

operator is found represents whether the “==” is used in the code. Although it is not

always required for all situations involving recursion, a common mistake for CS

students is to use the assignment operator (“=”), instead. This allows the

Companion a chance to reiterate the importance of this operator.

• Keyword Double and Keyword Float Found. The presence of the keywords

double and float assist the Companion in determining why a student’s code might

not be producing the correct result. While it is not necessary data for all recursion

assignments, it is important for many situations. Thus, we opted to include this data

in the neural network.

• Keyword If Found. Evaluating whether the student has used the keyword if is an

essential component of recursion. This is important for the Companion to know

whether the student has included this keyword because if the student omitted it,

some review of the fundamentals of recursion is important.

• Keyword New Found. Whether the keyword new is found is not relevant for the

assignment used in this study; however, in order to allow for greater versatility in

the future, we opted to collect this field. It is common for students to try to call

methods on objects that have not been created, so this allows a future version of the

Companion to respond to that situation.

32

• Keyword Return Found. The keyword return must also be used in the recursive

method. When return is not used, as is the case with if, the student is almost

certainly missing the base case and likely misunderstands recursion.

• Loop Found. If the student used a loop, which is determined by whether the

keywords for, while, or do are found in the code, this also represents a fundamental

misunderstanding of recursion that the Companion will need to address.

• Number of Comment Lines. The number of comment lines are used as an input

to evaluate whether the student is leaving a large amount of commented out, “dead”

code. Although this is acceptable while working on an assignment, it should not be

left there, so the Companion may give feedback on this situation.

• Total Lines of Code. This represents the lines of code for the recursive method of

the student’s program. Having this data can help in determining how much code

the student has written before performing an action on it. For example, if the student

has a large amount of code for a recursive method, this could indicate a problem,

and, similarly, for an extremely small amount of code.

• Cyclomatic Complexity. The cyclomatic complexity can help in evaluating

whether the student is using recursion correctly, for in a recursive method there

exists a logical minimum cyclomatic complexity. It also follows that if the student’s

recursive method has a high cyclomatic complexity, this is also a warning that the

student does not fully understand recursion.

• Error Type. This represents the type of error that has occurred in the student’s

code after running or debugging it. When an Error action is triggered in the plug-

in, it collects the error message generated by the compiler. Not all errors are sent to

33

the neural network in their entirety; rather, in the data pre-processing phase they

are mapped to a set of common errors for recursion.

• Message Given, Message Code, and Message Feedback. This contains the

message that a student received, given the current inputs of the neural network,

along with the corresponding numeric message code, indicating how helpful this

message was for the student for this set of inputs. When generating feedback for a

student while using the plug-in in real-time, these fields will not contain a value.

However, they are important when training the model after collecting data from

students, for they can help predict whether the same feedback should be delivered.

After all, if unhelpful feedback was given previously for a similar set of inputs, the

Companion should select different feedback, given this data.

• Outputs from the Neural Network. The neural network produces a single node

as an output. This number will, in turn, be post-processed in order to correlate it

with the exact feedback to display.

• Extra Data Collected in Plug-in. Some data was collected by the plug-in, but we

chose not to send it to the neural network because it is needed more for

administrative purposes for the study or the instructor, but is not pertinent for the

Companion to have the data, as it will not influence the feedback the Companion

gives to the student.

3.2 Messages in the Brain

Messages were developed for the Brain with the intention of providing students with

feedback about how to proceed, especially with feedback about how to approach the

34

Table 3.1. Possible Feedback in the Brain: Feedback content focuses on two key
areas: (1) Feedback about how to proceed with recursion, such as problem-solving

methods and (2) Affective support. Feedback in the table is categorized by the type of
feedback it provides. PS represents feedback about how to proceed or problem-solving

feedback. A represents affective support. O represents feedback on another small coding
issue.

 Situation Message Type Code

1 No message available
Sorry, I don't have any messages for
you right now. Try again later. O 10

2
Problem with
recursion identified

Think about breaking the problem
into smaller parts. Ask yourself. What
is the smallest problem I'm trying to
solve? PS 20

3
Debug initiated with no
other problems identified

Good thinking - Using the debug tool
is very helpful for problems with
recursion. A 30

4
Student passed at least one
test case Nice job! You got the right answer! A 40

5
Cyclomatic
complexity is too low

Think about changing the
control flow of your code. PS 50

6 Missing keyword: If

You're missing an important part for
recursion. Think about using a
keyword. PS 60

7 Missing comparator operator

Try checking the value of something
in your code to determine how the
 recursion unfolds. PS 70

8
Too many comment
lines detected

Remember to clean up your code!
That's a lot of comment lines. O 80

9
Student used a
loop in the code

Uh-oh! I think your code using a
feature that shouldn't be there in
recursion. Review the concept of
recursion. PS 90

10
No return statement is
present in code

I'm looking for an important keyword
in your code, but I think it's missing. PS 100

11
Used keyword "new"
in the recursive method

I think I see a keyword in your code
that's not really needed for this type of
situation. PS 110

12
Too many lines of
code for the situation

That's a lot of code in this method!
You might want to think about
shortening it or double-checking what
you're doing. PS 120

13
StackOverFlowError
received

Don't worry, StackOverflowError
is a really common error with
recursion. That's normal. Check that
you reach your base case. A 130

14
ArrayIndexOutOfBoundsEx
ception received

Software engineers get the
ArrayIndexOutOfBoundsException
quite a bit. It's a frustrating one. Using
the debugger might help you. A 140

35

 Situation Message Type Code

15
Compilation error caused
 by missing syntax

I think you're missing some important
syntax in your code. O 150

16

No errors reported
by the compiler and
no other issues identified

Nice! No errors were found when
you ran your code! A 160

17

Student is doing well,
but the method has
 too much code.

It looks like you're on the right track.
That seems like a lot of code, though.
It probably does not need to be that
long. A 170

18

Student has not
successfully completed
the assignment,
but no issues are detected. Nice work! Keep it up. A 180

19

Student clicks the help
button, but no
issues are detected
with the code.

I'm here to help you. Once you take
an action with your code, I can help
you with a hint. A 190

20
Cyclomatic complexity
is too high

That code looks pretty complex.
Think about simplifying the logic a
bit. PS 200

21

Error is reported by the
compiler, but the
Companion is unable to
 identify a specific issue.

Hmmm, it looks like you should re-
think something in your code. O 210

22
ArithmeticException is
reported

I think there's a problem with
something with your math. PS 220

23

Student is doing well,
but not much
code has been written yet.

Keep going. It looks like you'll need
some more code. O 230

24

A loop is present or
some other
syntax that is not needed.

I see some extra keywords that don't
need to be used for this. Think about
which ones you may not need. PS 240

25

ArithmeticException
is reported,
but other features of
the student's
code are reasonable.

You're really close. Just check your
mathematical operations. A 250

26

Compilation error
caused by
missing syntax, but other
features look good

Almost. I think you're missing
some syntax, though. A 260

27 The base case is missing.
This is common with recursion.
Think about creating a base case. A 270

28
The student has not written
any code yet.

Try writing some code first, then I
can help you. O 280

36

problem. We envisioned situations that would frequently arise for students learning

recursion. Such scenarios are comparable to an instructor who anticipates that students

frequently have questions or confusion regarding certain problems with their code.

Instructors likely often find themselves repeating similar explanations each time they teach

the course, as these misunderstandings are extremely common for students with particular

topics.

Thus, we applied this same type of thinking was applied to creating the messages

for the Brain. We considered the most common challenges students face when learning

recursion. After forming a list of several different situations, we selected a specific message

for this situation that would assist the student with how to proceed. As a result, the focus

was on giving the student feedback on how to solve the problem, rather than fixing syntax

or a detailed explanation of the error message from the compiler. The messages in the

Companion’s repertoire are provided in Table 3.1. Since the output number from the neural

network was scaled to correlate with the appropriate message, the codes for each message

are also shown. The messages in the Brain comprise three categories: problem-solving or

how to proceed, affective support, or other programming issues. The focus of the

Companion’s intelligence is on assisting the student with how to solve the problem or how

to proceed with the assignment and also on providing affective support for the student.

Consequently, the majority of the messages fall into these two main categories, as shown

with the numerical breakdown in Figure 3.3. Some of the messages providing affective

support could also be categorized as problem-solving feedback, but to emphasize the

affective support, they are separated in the categorization here. A limited number of other

general programming messages are also included to assist the student if he or she is stuck

37

Figure 3.3. Categories of Messages in the Brain

on an issue involving syntax; nevertheless, the focus of this Companion is not on providing

feedback about syntax, so a limited number of these messages were included.

3.3 Data Flow in the Brain

When the data initially enters the Brain of the Companion, it is not yet ready to enter the

neural network. Some of the fields are initially represented as Strings from the plug-in and

other similar situations. Moreover, the data must be normalized so that all numbers are

between 0 and 1 before it can be processed by the neural network. As a result, several steps

must occur before intelligent feedback can be displayed in the plug-in. The overview of

how data enters and travels within the Companion’s Brain is shown in Figure 3.4, which

will now be explained in detail.

Data Pre-Processed. Since the data enters the Brain as different data types, the Brain must

first produce corresponding numbers for each field that are all the same data type. The

neural network expects all data as doubles, so conversions must occur as part of the data

28 messages

11 problem-solving or how to proceed

11 affective support

6 other programming issue

38

Figure 3.4. Data Flow in the Companion Brain

Table 3.2. Data Pre-Processing Needed after the Brain Receives Data from the Plug-in

Input Neural Network

Data
Type Pre-Processing Description

1 Action String

Mapped to corresponding
number, saved as
double

2

Assignment
Successfully
Completed Integer Converted to double

3
Comparator operator
found Integer Converted to double

4
Keyword Double
Found Integer Converted to double

5 Keyword Float Found Integer Converted to double
6 Keyword If Found Integer Converted to double
7 Keyword New Found Integer Converted to double
8 Keyword Return Found Integer Converted to double
9 Loop Found Integer Converted to double

10
Number of Comment
Lines Integer Converted to double

11 Total lines of code Integer Converted to double
12 Cyclomatic Complexity Integer Converted to double

13 Error Type String
Mapped to corresponding number, according to rules
for errors messages included; saved as double

14 Message Code Integer Converted to double
15 Message Given String Mapped to corresponding number; saved as double
16 Feedback on Message Integer Converted to double

39

pre-processing. In some cases, as shown in Table 3.2, the conversion is simple; the integer

is just converted to a double and saved as the appropriate variable. However, in other cases

the conversion is not quite as straightforward. The Action field initially enters the brain as

a String. Each possible value is mapped to a corresponding number and is subsequently

saved as a double. The Message Given field functions in a similar way by looking up the

matching value for the text of the message. Although the message code could serve this

same purpose, we still chose to implement this look-up procedure for the message text to

achieve redundancy in case there might be a mismatch between the message code and the

message text.

Lastly, the Error Type comes into the Brain as a String representing the error

message from the compiler. Since the compiler can produce a multitude of error messages

for different situations, it could be possible to receive a detailed error message for a variety

of situations. However, with the Companion’s focus on assisting students with recursion

assignments in Java, relevant errors were considered for this topic, which include:

• StackOverflowError

• ArrayIndexOutOfBoundsException

• NullPointerException

• ArithmeticException

• UnresolvedCompilationIssue

We include StackOverflowError because this is perhaps the most common error with

students learning recursion. ArrayIndexOutOfBoundsException will, of course, only occur

in some instances, but if the recursion utilizes an array as a data structure, this is important

to detect. Although NullPointerException, ArithmeticException, and

40

UnresolvedCompilationIssue are not specific to recursion, since students encounter these

relatively frequently, we also chose to include them. Other represents any other error

message besides the aforementioned possibilities. None exists when no error messages are

reported, and we want the Companion to be certain of this data, so this is indicated here.

Normalize Input Data. After the data is pre-processed, all values are represented

as doubles; however, the neural network expects values as doubles between 0 and 1. Thus,

the data must be normalized, that is, scaled to be between 0 and 1. Within the Neuroph

library, several built-in normalization options exist (Neuroph Library, 2014). The

DecimalScaleNormalizer was utilized for this data, as it provided the most consistent

logical way of normalizing the data, and the other library options for normalization did not

apply to this data set. The DecimalScaleNormalizer divided each input by a multiple of 10

to produce a result between 0 and 1.

Send to Neural Network. Once the data is normalized and pre-processed, it is

ready for the neural network. The saved model for the neural network is stored on the

server, so the Brain first retrieves the neural network. After this, the input data is loaded

into the neural network, which computes a single number as an output.

Scale Output from Neural Network. Since the output from the neural network is

also between 0 and 1, it must be scaled to the expected format for the corresponding

message codes. All the output message codes are multiples of 10, so the output code from

the neural network must be multiplied accordingly. For example, if the output from the

neural network were 0.7, the message code would be 70. However, usually the outputs

from the neural network are not such “tidy” numbers. For instance, if the output from the

neural network were 0.7382, it should correlate to the message code of 70. Thus, the neural

41

network output must be multiplied by 100, then rounded to the nearest 10. One might

wonder why this scaling was chosen for the output from the neural network. After all, the

neural network should already produce the appropriate output. If we chose not to have this

scaling, all codes for the messages would need to be between 0 and 1. Since we have 28

messages, this would only allow for a small numerical difference between the number for

each message. As a result, numerically speaking, the messages would be very close

together, which would require a high degree of precision from the neural network.

Although we anticipated it being reasonably accurate, the difference between a message

labeled 0.17 and a different message labeled 0.18 could be quite small. Consequently, we

opted for message labels as multiples of 10 to reduce the required numerical precision.

Thus, the output must be scaled from the neural network to map it to its corresponding

message in a multiple of 10.

Retrieve Corresponding Message. The scaled output from the neural network

serves as a key to look up the corresponding message. The message from the Brain for this

situation is retrieved from the messages dictionary.

Output Data Available to Plug-in. Lastly, the data from the Brain is ready for the

plug-in. The message and its code are saved, and the plug-in can retrieve them to display

for the student in the Eclipse IDE.

3.4 Training of the Neural Network

Since no authentic student data existed before this study, the training of the neural network

was completed using automatically generated data. We generated 100 data entries for the

neural network using a JSON generator tool (Data Design Group, 2018). Constraints were

42

placed on the data generated to ensure that all data is within the possible ranges. The

generated JSON data used for training is located in the online code repository for this

project (Day, 2019).

Although all data was within the expected ranges, some slight imperfections were

present in the generated training data that would not occur in an authentic setting with

students due to the random nature of the generation. For example, in the generated data

there were some instances where the Action field contained “Run,” but an error message

was still present in the data. This is not realistic because if the compiler reports an error

message, the plug-in automatically classifies it as “Error” for the Action. Thus, it is

impossible for the Action to be “Run” with an error message also reported.

Another case involved a high cyclomatic complexity reported, but the if keyword

was not used, which is highly improbable. Even though other similar situations existed,

they were the exception rather than the rule within the generated training data; in most

cases, the data seemed realistic for an assignment from beginning CS students. Thus, the

data was still used for training the neural network.

After the data was generated, we manually labeled the 100 input entries with a

corresponding message code applicable for this situation. Human tutors and instructors can

quickly scan a student’s code and have an idea of what might be wrong with a recursive

method. Similar logic applies to labeling the data for the training. In many cases, the type

of problem with the code closely matches the situation description.

In some instances, multiple situations could apply, which would be comparable to

what would happen with a human tutor. For example, if the data contains

StackOverFlowError and the student also does not have the keyword if, the feedback could

43

either be regarding the error or it could be about the missing keyword, for either feedback

would be valid. When a human tutor sees this type of case, typically one just quickly

mentally chooses between the different possible options. We applied this same type of logic

to data to which multiple messages applied. While a rule generator could be used to classify

the data, when humans choose between options, there is still a small sense of randomness,

so it seemed manually labeling the data would better simulate the human interaction. Once

all generated data was labeled with a corresponding number for the appropriate feedback,

the expected outputs were saved in the neural network to train it before use with the

students.

3.5 Summary

This chapter provided an overview of the Brain of the Companion, including the details of

the neural network. We discussed the decisions regarding the inputs and outputs of the

neural network with details regarding each input to the neural network and possible

messages in the Brain. We also provided an overview of the flow of data within the Brain

to arrive at the appropriate feedback to display to the student. In this chapter, we

concentrated on the intelligence of the Companion. The next chapter focuses on the

technical details surrounding the Companion’s Brain.

44

CHAPTER 4

IMPLEMENTATION OF THE TUTORING COMPANION BRAIN

This research builds upon prior work (Penumala and Gonzalez-Sanchez, 2018) available

as open-source software (Penumala, 2017). The existing software facilitated the sending of

information between the student and the instructor using the Eclipse plug-in. In order to

achieve the goals of this project, the existing project required modifications. The core

functionality of the improved software for this project involves collecting data from the

student’s code, sending the data, and displaying the Companion’s feedback. On the surface,

this functionality seems simple; however, in reality there are numerous technical decisions

that must be made in order to achieve this functionality.

This chapter provides an overview of the technical implementation of the

Companion’s Brain. First, the user interface for the Companion plug-in will be discussed.

Next, the software architecture will be described, followed by the details of the technical

design and implementation of the plug-in and the Brain. Then, the libraries used for the

project are described and the motivation for these selections. Lastly, the approach to

software testing will be described.

4.1 User Interface

Views are an existing component in Eclipse and are established when Eclipse is launched.

Eclipse comes with pre-installed views, such as the console at the bottom of the screen.

Plug-ins can add views to the IDE, which is how the Companion displays feedback. This

section describes the plug-in’s modifications to the User Interface in Eclipse.

45

After the plug-in is installed, when Eclipse launches, two additional views are

added to the IDE: the Help View and the Assignment View, as shown in Figure 4.1. The

arrow and help icons are also added to this view. When the student clicks the yellow arrow

in the Assignment View, this pulls in the assignment from the server, which displays the

name of the assignment and is depicted in Figure 4.2. When the student double-clicks the

name of the assignment, it opens inside the package explorer in Eclipse, as shown in Figure

4.3, and the student can open the project in the typical way. Once the student performs an

action in the IDE, such as run, debug, or help, the plug-in displays the feedback from the

Brain, as shown in Figure 4.4. Choices are also shown to the student to collect data from

the student about how helpful the Companion’s feedback is for the current situation. After

Figure 4.1. Assignment View and Help View are added to the plug-in when Eclipse
launches.

46

Figure 4.2. Assignment is pulled from the server, and the name is displayed in the
Assignment View.

Figure 4.3. Assignment is opened inside the package structure in Eclipse.

47

Figure 4.4. The plug-in displays feedback to the student after the student performs
an action in the IDE.

Figure 4.5. The plug-in acknowledges the student’s response rating the Companion’s
feedback.

48

the student double-clicks the response about the feedback, the plug-in displays an

acknowledgement of the response, which is illustrated in Figure 4.5.

4.2 Architecture

Now, the overall structure will be described for the Companion. The architecture is

depicted in Figure 4.6. The Companion plug-in is added on top of the existing functionality

in the Eclipse platform. The Brain contains all the logic and decision-making capabilities

of the Companion, whereas the plug-in is responsible for the data collection from the

student’s code.

Each time the plug-in collects data when an action is detected in the IDE, it sends

it to two places: a MySQL database and the Brain. The 21 pieces of data described in

chapter three are sent to both these locations. Although all of these are saved in the

database, the Brain does not use all 21 items, so only the 16 inputs to the neural network

are retained in the Brain. A new MySQL database on a server hosted by Amazon Web

Services was created for this project to separate the data from the existing data in the

previous research.

The Companion’s Brain is contained inside the plug-in, so when the plug-in is

installed, the Brain will exist locally. The trained model for the neural network is stored in

the cloud to achieve separation of concerns. This also makes it easy to update the neural

network in the future. Someone can train a different model and replace the current neural

network without the plug-in or the Brain requiring any changes.

49

Figure 4.6. Companion Architecture

4.3 Eclipse Plug-in

The Eclipse platform is composed of many plug-ins. When developing plug-ins, it is

possible to connect to existing components within Eclipse. The workspace and the view

already exist within the Eclipse Platform. When the IDE is launched, the views and the

workspace are created, and any existing plug-ins are initialized.

Since the Companion plug-in collects data from the student’s code, it connects with

the workspace and retrieves required information, including the code itself, as well as

tracking when the student initiates a run or debug action. In order to display the help button,

the assignment, and the Companion’s feedback, it also connects to the views in the

workbench. The required connections between the Companion plug-in and existing Eclipse

components are shown in Figure 4.7. The logic for creating and displaying the assignment

and feedback are inside the plug-in, so these views are directly tied to the life cycle of the

plug-in.

50

4.4 Design

This section describes the design of the Companion plug-in. First, an overview will be

provided of the design of the plug-in. Then, details of the Brain’s design will be given with

a description of the details of each class in the Brain.

Figure 4.7. Eclipse Plug-in Architecture: The Companion plug-in connects to
already existing components within the Eclipse IDE.

Figure 4.8. Package Diagram for the Companion Plug-in

51

The plug-in is composed of five packages, as shown in the package diagram in

Figure 4.8. The BrainPlugin package contains classes that control the lifecycle of the plug-

in and that directly interact with the workbench. The package entitled “custom” contains

most of the logic for the Companion, such as handling listeners and sending data to the

server. The launching package connects to the console to collect error messages. The views

package, as its name indicates, contains the two views added to Eclipse. Data is sent

between the plug-in and the views, and the plug-in also tracks various actions that occur in

these views, such as clicking the help button or evaluating the feedback. After the student

gives feedback on a message in the Help View, the plug-in updates the current data row

stored in the database with the feedback received from the Brain and the student’s rating

of the feedback. Further details of the plug-in are described in prior work (Penumala and

Gonzalez-Sanchez, 2018).

The design of the entire Companion plug-in is depicted in Figure 4.9. The Brain, as

a self-contained unit, can achieve its full functionality without any dependencies on the

plug-in. The connection between the plug-in and the Brain is established by one simple

connection: the plug-in creates a Brain object and calls its method to retrieve the feedback

from the Brain. Thus, the intelligence of the Companion can be easily updated without

impacting the plug-in.

Now, we will provide a discussion of each class within the Brain. The

TutorBrain class controls the overall structure of the Brain. This class has an

overloaded constructor. One of the constructors handles training the neural network. Its

parameter is the training data as a JSONArray. The other constructor allows the plug-in to

52

Fi
gu

re
 4

.9
.

C
la

ss
 D

ia
gr

am
 o

f t
he

 C
om

pa
ni

on
 P

lu
g-

in
: C

la
ss

es
 fo

r t
he

 B
ra

in
 a

re
 in

sid
e

th
e

gr
ay

 b
ox

. O
ra

ng
e

in
di

ca
te

s
cl

as
se

s f
ro

m
 li

br
ar

ie
s.

G
re

en
 in

di
ca

te
s e

xi
sti

ng
 c

la
ss

es
 in

 th
e

pl
ug

-in
. T

an
 in

di
ca

te
s c

la
ss

es
 im

pl
em

en
te

d
fo

r t
he

 B
ra

in

53

get needed information from the Brain. The plug-in calls TutorBrain’s constructor with

no parameters. Another method exists for the plug-in to retrieve the Brain’s feedback,

which expects the data for that situation as a JSONObject. This class also uses the Factory

pattern and creates the necessary objects for use within the Brain.

The NeuralNetworkBrain class controls the training of the neural network.

When a TutorBrain object is created with one parameter for the purpose of passing the

training data, the data is, in turn, passed to this class. The structure of the neural network

is set within this class, which is done primarily through the use of the Neuroph library.

NeuralNetworkBrain creates the multilayer perceptron and sets the options, such as

the transfer function, number of nodes in the hidden layer, learning rate, maximum error,

and the number of iterations. It has a method to save the trained neural network locally, as

well as one to normalize the data.

The DataPreProcessing class preprocesses all data for the Brain. Data

initially enters the Brain as either a JSONArray or JSONObject, which is passed as a

parameter to this class to pre-process the data. DataPreProcessing takes all input

fields and produces outputs of corresponding doubles for the neural network represented

as a two-dimensional array of doubles, which is the expected format for the neural network.

 Lastly, the StudentMessageCalculator class in the Brain controls the

feedback to display to the student and steps that must occur with the data received. First, it

calls the method from DataPreProcessing to preprocess the data and normalize the

data. Then, it retrieves the trained neural network stored in the cloud and sends the

normalized data to it. Once it has the output from the neural network, which is a numerical

code between 0 and 1, it uses a formula to calculate the corresponding code for the message.

54

Since messages are labeled as multiples of 10 between 10 and 280, the output from the

neural network must be scaled to match this. Thus, the output from the neural network was

scaled with the method in Figure 4.10. This method multiplies the output from the neural

network by 100, then rounds it to the nearest 10. If the output is very small, then it is

multiplied by 1000.

public long calculateMessageCode() {
 double nnOutputRaw = this.getNnOutput()[0];
 double nnOutput = 0;
 // Output is so small that special calculations need to be made
 if (nnOutputRaw < 0.1) {
 nnOutput = nnOutputRaw * 1000;
 }
 else {
 nnOutput = this.getNnOutput()[0] * 100;
 // Used for conversion to expected error code
 }
 long messageCode = Math.round(nnOutput / 10.0) * 10;
 return messageCode;
}

Figure 4.10. Code Used in the Formula to Scale the Output from the Neural Network

Several challenges were encountered relating to where to store the trained neural

network created in NeuralNetworkBrain. The Brain exists as a .jar file within the

plug-in, which is itself a .jar file. Thus, there is a .jar file within a .jar file, which is installed

in Eclipse as a plug-in. Since a method from the Neuroph library is called within the plug-

in to load the neural network file, this requires having the trained model stored within the

local package structure. However, the challenge arises because the package structure for

the Brain is not preserved when the Brain.jar is contained within the plug-in .jar file,

causing the Brain not to find the neural network when it attempts to load the neural

network.

55

As a result, we chose to store the neural network on a server to avoid the file

structure issue with exporting the Brain as a .jar file. Moreover, the trained neural network

model is external to the Brain, so the neural network can also be changed without impacting

the functionality of the Brain. Each time the plug-in requests feedback, the trained neural

network is loaded from the server. The ideal situation would allow the neural network to

be stored locally after loading it, but the Neuroph library only supports the saving of a

neural network file after training, which means it can only be saved locally immediately

after training.

4.5 Libraries

Several external libraries were used in this project in order to minimize the amount of

brand-new code to write. In some ways, writing code from scratch might have been easier

because it would reduce the amount of time spent understanding existing code and how to

use it. However, since we wanted to have a professional-level product, it seems that

libraries are appropriate. Furthermore, this will make it easier to extend this project at a

later time.

The libraries used in this project are shown in Figure 4.11. These libraries were

selected because they are professional level tools that enabled us to incorporate existing

functionality, such as JSON. Various libraries exist for implementing neural networks in

Java with varying levels of features and sophistication (Heaton, 2015; Dogaru and Dogaru,

2013). Given the wide range of quality and extensibility of the libraries, some have even

opted to create their own neural network libraries for Java (Dogaru and Dogaru, 2013).

56

Figure 4.11. Libraries Used for the Companion Plug-in

We chose the Neuroph library for this project, which is an open-source Java library

(SourceForge, n.d.). One of the goals of Neuroph is to simplify the implementation of

neural networks so that users can start using them quickly. Even with its simplicity, it still

offers a range of features to facilitate a fully customizable neural network. Additionally,

since it is open source, many other open-source projects utilize it for more sophisticated

use cases, ranging from image classification to cancer identification and many other

projects (Neuroph Projects, 2019). Thus, it seemed an appropriate selection for the

Companion because the library could be learned quickly, yet it would also allow for more

sophistication at another time. Even though the tools from the libraries brought a great deal

of functionality to the project, they also presented challenges, such as all of them

functioning together without conflicts.

57

4.6 Testing Process

The agile development model best characterizes the software development process for the

Companion. In a sense, we were both the customer and the developers for the project, so

the process was not typical; however, we used the agile method because this would make

the project easier to change. We began with a set of requirements and started to implement

them. Along the way, the requirements began to change due to research being conducted

in parallel, as well as unexpected technical hurdles. When this happened, the development

effort was adjusted to match the revised requirements. Although formal sprints were not

conducted, the process informally reflected sprints with development efforts focused on

achieving functionality for various aspects of the system at different points along the way.

Prior to the release of the software, the system underwent several phases of testing.

Since there were no dedicated testers in this project, the developers performed most of the

testing. Although more testing could have been beneficial, since most of the testing was

completing by a single developer, this posed a time constraint on the project. As a result,

the tests were not as extensive as would have been ideal; nevertheless, the testing process

exposed the major defects before the release of the software. Since we followed agile

development methods, testing was fairly informal and was conducted throughout the entire

development process, rather than just at the end.

Component Testing. We used component testing throughout the development

process as we deemed various parts of the software complete. Once a portion of the

software appeared to be complete, we connected it with a relevant existing part to

determine whether the functionality worked. These tests typically involved calling methods

in the main method and checking if the values were changed accordingly. This type of test

58

was a significant portion of the testing for the Brain in particular, as it involved much data

manipulation with data being passed between multiple classes and methods. When the

values were not updated as expected, the issues were documented to revisit at a later time.

Integration Testing. The development process was punctuated by integration testing

at several key points. First, we integrated the server code and the database functionality

into the Brain and the plug-in separately, allowing us to test whether the calls updated the

data as expected in the database.

Next, we integrated the Brain and plug-in while still in development. This phase of

testing led to errors that involved significant changes to both the plug-in and the Brain. The

design had been determined, but until the two were actually integrated many of the

challenges were unknown. In fact, this phase of testing exposed the most significant

challenges of the software development. A couple of the major issues uncovered are listed

in Table 4.1, as well as the chosen solution. As each part was changed and, at times,

reworked, this resulted in further integration testing needed once all parts were integrated

yet again. Thus, this phase of testing was a cycle between testing and more development

time until everything worked together.

Table 4.1. Challenges and Resolutions during Integration Testing

Challenge Description of Issue Solution
Including the Brain
as a jar within
the plug-in

Libraries used by the Brain not
included when generating
jar for the Brain

Use a Maven
packaging structure
for the Brain

No messages
displayed in plug-in

Plug-in waited to display
message until after feedback
was provided.

Updated when the
View was refreshed

59

Alpha Testing. When the software seemed complete, Alpha Testing was conducted

with a small group of users. These users were two students from the Master of Science in

Software Engineering program, so they were high-ability users who would be more

familiar with how to use the IDE and how to complete the assignment than the typical user.

The goal was to determine whether multiple users could use the plug-in and, consequently,

access the database simultaneously, along with whether the plug-in would work on a non-

development computer. Neither user received feedback from the Companion. The

assignment was loaded successfully, but feedback was not displayed because the neural

network could not be located due to it not being found in the package structure. After this

issue was resolved, Alpha Testing was repeated with another high-ability user. This time

the Companion also failed to deliver feedback, but the problem was an error reported within

the plug-in. Once this issue was also fixed, the test was repeated with the same user, which

led to the expected behavior of the Companion. Then, the software was ready for release.

4.7 Summary

In this chapter, we described the student’s interaction with the Companion in the Eclipse

IDE. We also provided the details of the architecture, design, and technical implementation

of the Companion plug-in and Brain. Lastly, we discussed the process of how the software

was developed, especially the details around its testing. All of this information is important

to understand the Companion fully, and the testing, to some extent, underscores that the

software works. However, there is no substitute for authentic users interacting with the

software. Thus, it is important to test it with real users, which we will describe in the

following chapter about the case studies.

60

CHAPTER 5

CASE STUDIES

In order to test the effectiveness of the Companion, we conducted a research study with 28

students. Each student completed an assignment and solved a recursion programming

problem while receiving feedback from the Companion. This allowed us to test our

software with the intended user, evaluate the effectiveness of the feedback generated using

the neural network, and measure students’ perceptions of the usefulness of the Companion.

All materials used in the study were approved by the IRB for research involving human

subjects. IRB details can be found in Appendices A and B. This chapter describes

characteristics of participants in the study and the protocol followed for the research study.

5.1 Participants

To recruit participants, courses were identified at Arizona State University in the Spring

2019 semester in which students would possess similar characteristics to the intended user

for the software. Since the Companion is designed for beginning CS students in a Java

programming course and would involve recursion, the intention was to identify lower-

division courses in which students learn to program in Java and have already had some

experience with recursion. Thus, the effectiveness of the software can be evaluated by

testing with a subset of students representative of the target audience for the Companion.

Two courses were identified that possess the aforementioned criteria.

Data Structures and Algorithms. The first course, Data Structures and

Algorithms, is a required 200-level course offered to Software Engineering majors. Thus,

61

the course contains primarily beginning CS students, although there may also be a small

number of graduate students required to take it as a prerequisite. In this course, students

learn about elementary data structures, including when to use them with the data at hand,

and Java is used as the programming language in the course (Acuña, 2018). Recursion is

also covered through a required assignment involving a recursive implementation of a

function. Thus, by mid-semester in the course, which is when the study was conducted,

students have a strong understanding of the array data structure and a working

understanding of recursion.

Introduction to Programming Languages. The other course, Introduction to

Programming Languages, is also a required 200-level course offered for both Software

Engineering and CS majors. As in the case of the other course, it primarily contains

beginning CS students with a small number of graduate students. As prerequisite

knowledge, this course assumes that students are proficient in a high-level language such

as Java and that they have a working understanding of basic data structures like arrays

(Gonzalez-Sanchez, 2018). This course provides an overview of different programming

language paradigms, such as functional and procedural languages, as well as programming

assignments in various languages, including a high-level review of Java and one

assignment in Java (Gonzalez-Sanchez, 2018). Thus, most of the student population in both

classes possesses the desired traits for students using the plug-in: first, they are students in

the first two years of their CS program in a course that involves programming in Java,

second, they have some exposure to recursion, and third, they understand arrays. There

were 28 students who participated in the study over the course of 3 days. The composition

of the study group can be seen in Figures 5.1 and 5.2.

62

Figure 5.1. Student Population:
A. Second-year undergraduate B. Third-year undergraduate
C. Fourth-year undergraduate D. Graduate Student E. Other

Figure 5.2. Participants by Course Enrollment

63

Students were recruited through an announcement on the course site describing the

study and what participants would be asked to do in the study. In the Spring 2019 semester,

there were 51 students enrolled in the Data Structures and Algorithms course and 36

students enrolled in Introduction to Programming Languages. Thus, 87 students total were

invited to participate in the study. Students received 3% extra credit on their final course

grade in exchange for study participation. Participants were instructed to send an e-mail

message to the author to sign up for the study. After sending the e-mail message, students

scheduled an appointment to come to a classroom where they would complete the

assignment for the study.

5.2 Study Protocol

Students were given instructions for installing the needed version of the Eclipse IDE and

an up-to-date Java version. While many students already use Eclipse, most needed to install

the Enterprise version, which supports sending data to a server from the IDE. We gave

them download and installation instructions for updating their Java version to Java 1.8 and

the Eclipse version to Eclipse 2018-12 Enterprise edition. These instructions are located in

Appendix C.

Although the goal is to eventually have students use the plug-in to complete a

programming assignment at home, future work involves improving the usability of the

plug-in, so it was expected that students would require some assistance with plug-in

installation. Thus, we opted to have them come to a classroom to complete the assignment,

instead of completing it at home. This allowed us to help them troubleshoot possible

installation issues, as well as supervise their use of the plug-in to ensure that they used it

64

correctly. By confirming that their system was configured correctly and that they

understood how to use the plug-in, this helped to achieve greater consistency in the data,

as it would reduce the possibility of data discrepancies due to factors external to the

Companion’s intelligence, such as installation and system configuration issues.

When participants arrived for the study, we gave them a series of steps to complete

as part of the study preparation. We also gave participants a flash drive containing two

files: the directions with hyperlinks for the documents and surveys, as well as the plug-in

as a .jar file. Unique participant identification numbers were created using a random

number generator. This allowed us to identify all the data that came from the same person

without compromising his or her privacy. Participants entered their participant

identification number on all documents collected in the study.

First, participants reviewed the consent form, approved by the IRB, which is

provided in Appendix D. After consenting to participate, they took a pre-assignment

survey. The purpose of the survey was to collect basic demographical data from students

and to gauge their background knowledge with the assumed prior knowledge for the study.

For example, students were asked to rate their familiarity with recursion and using Eclipse

as their IDE. The full survey is located in Appendix E. Additionally, another goal for this

survey was to collect data about how easily they are able to get help with programming

assignments, as well as what kind of struggles they have with programming assignments.

The pre-assignment survey data was collected through Google Forms.

After this, we asked the students to install the Eclipse plug-in. They copied the .jar

file for the plug-in on the flash drive to their local machine. Each participant received plug-

in installation directions, which are located in Appendix F. We assisted participants as

65

needed with plug-in installation issues. Most issues with installing the plug-in were related

to system configuration or clarifying the directions, given that there were many steps

involved in the installation.

Once the plug-in was installed, participants opened Eclipse and could begin

completing the programming assignment. In most cases, we double-checked that the plug-

in was working correctly as participants were in the early stages of the assignment;

however, in a few instances there were as many as 10 students in the room at once, so we

were unable to check a few participants’ set-up.

When students first use the plug-in, the two tabs for the views appear at the bottom

of the IDE. This is evidence that the plug-in installation was successful. Prior to the start

of the study, we posted the programming assignment on the server, so when students first

use the plug-in, they must pull it from the server by clicking the refresh button in the

Assignment View. This retrieves the assignment, which they can then open and use as a

typical Java class in Eclipse.

The assignment, which is located in Appendix G, asked students to calculate the sum

of the numbers in an array that fall within a given range of numbers. For example, in an

array containing the numbers 1, 5, 2, and 4 with a starting range of 2 and an ending range

of 5, the method should return the sum as 11. The parameters of the method were provided

to students, as well as three test cases in the main method to demonstrate how to call the

method. The method was set up to use an accumulator in order to calculate the result.

Students were instructed to provide a recursive implementation of the method and were not

permitted to use “helper methods.” Once the Companion detected that the success message

66

was printed to the console, it received a different action notification so that the data is saved

as “Success” in the server.

Students included their participant identification number and course number at the

top of the page. This information was collected with the data sent to the server in order to

facilitate better data analysis, as shown in Figure 5.3. Each time the student executed an

action in the IDE, the Companion delivered feedback, and data was sent to the server.

Figure 5.3. Students provided participant identification number and course
number at the top of the assignment.

After each time the Companion displayed feedback, participants were asked to rate

how helpful it was for the situation in the assignment. Although the tool did not require

that they rate each feedback message, we frequently reminded them of this throughout the

study. If the student did not provide feedback before proceeding, the data was still saved

for this situation, but no feedback evaluation was included.

Most participants worked on the assignment for approximately 30 minutes. We told

students to spend about 30 minutes working on the assignment, and we instructed them

that after this time period had passed, they could decide whether to keep working or

67

whether they wanted to stop. This was to be respectful to the time frame that participants

were told to allot in their schedule for participating in the study. The amount of time

students spent on the assignment varied; some finished before 30 minutes, others did not

finish the assignment within the allotted time, and others spent longer than 30 minutes.

Lastly, participants completed a post-assignment survey, which can be found in

Appendix H, in which they were asked questions about their experience with the

Companion. They were asked to rate how much they liked working with the Companion

and how helpful the feedback was, as well as their opinion on different issues they noticed

with the messages. This data was also collected through a Google Form.

The design of the post-assignment survey followed the principles of educational

research for evaluating the effectiveness of teaching methods. Prior to my current degree

program, I earned a Master of Arts in Education and took graduate courses on study design

for measuring educational effectiveness. Thus, I have formal graduate-level training in

evaluating this type of research. This helps to provide validity for the data collected through

the surveys. After this survey, participants had completed the study, and they uninstalled

the plug-in before leaving.

5.3 Summary

In this chapter, we provided a summary of the case study conducted with students test how

well the Companion plug-in and Brain worked. We described the participants in the study

from the two courses at Arizona State University. We also explained the procedures that

were followed while conducting the study. All of these procedures were approved by the

IRB. In the following chapter, we will analyze the data gleaned from this study.

68

CHAPTER 6

RESULTS

After the conclusion of the study, the data was analyzed through a combination of methods.

Most of the data from the surveys could be analyzed by tallying the number of responses

in each category. When responses were open-ended, the data was examined for trends. As

categories emerged, these open-ended responses were classified by the category into which

they fell. Some themes that emerged from the data will be discussed in this chapter.

 This chapter discusses the results of the study. First, data that was gathered from

the pre-assignment survey will be provided regarding the students’ background. Next, the

overall perceptions of the Companion will be explored, and the Companion’s feedback will

be examined. After that, the data collected from the students’ code will be discussed.

Finally, the software tool itself will be evaluated.

6.1 Students’ Background

As part of the pre-assignment survey, students were asked about their background with

recursion and Eclipse. They also answered questions about how often they need help with

programming assignments and how they approach this. This section describes trends

observed in this data.

Students had a moderate amount of exposure to recursion before using the

Companion. Before using the Companion, all students had some exposure to recursion in

other courses. In fact, more than half of the students already had two prior courses in which

they studied recursion. Furthermore, the majority of students reported feeling that they

69

understand recursion, and over half reported “a lot” of prior experience with recursion in

Java.

Many students understand how to use Eclipse, but the response is mixed

whether they prefer to use it. We developed a Companion for Eclipse due to the belief

that large numbers of students use Eclipse. Many students report that they understand how

to use Eclipse, although nearly 30% of students surveyed feel they do not understand how

to use Eclipse. Over half of students in the study do not prefer to use Eclipse as their IDE.

In fact, only 46% of students in the study prefer to use Eclipse as their IDE, with only 14%

strongly agreeing that it is their IDE of choice.

Students often feel that they need help with programming assignments. In

terms of students’ perceptions of content with which they need help on programming

assignments, 86% of students report that it is hard for them to understand how to fix the

errors reported by the IDE. The overwhelming majority of students feel that they get stuck

on programming assignments and are unsure how to proceed. Not only do 82% of students

sense this, but 50% of all students feel this strongly.

Students like to get help on programming assignments, although they already

have resources for getting help. Many students find it helpful to get help from someone

when they are stuck on a programming assignment with 64% of students reporting this.

However, 36% report that they do not find this helpful. All students report that they can

easily find someone who can answer their questions when they are stuck, with the

overwhelming majority strongly agreeing.

70

6.2 Overall Perceptions of the Companion

This section explores students’ general reactions to the Companion and opinions about it.

Overall, students were receptive to the idea of the Companion, and 68% reported that they

liked working with it. The Companion helped 64% of the students to feel supported while

completing the assignment, as depicted in Figure 6.1. Students could select more than one

response for statements that were true about their interactions with the Companion, and 23

out of 28 students found the idea of using a Companion during programming assignments

attractive.

Although the response differed, depending on how the survey question was worded,

as many as 43% of students said that the feedback from the Companion was helpful to

them. Yet, when the same question was asked in a different way, only 15% of students

report that the Companion’s feedback helped them. Even though the idea of the Companion

is attractive to students, most feel that it needs some improvement in order to be helpful to

them. According to 71% of students, the Companion does not seem “intelligent” to them.

Figure 6.1. Students’ response to whether the Companion helped them feel
supported while completing the programming assignment

71

Thus, with improvement, students report that the Companion could help them, and they

like the idea. As one student put it on the survey, “I love the idea of a companion while

programming, [so] I can’t wait to see how this performs when it’s polished!” Given the

data, this is a good summary of the students’ overall perception of the Companion.

6.3 Evaluation of the Companion’s Feedback

After collecting the data regarding the Companion’s feedback, we analyzed it for trends,

looking for common patterns that emerged from it. The data used to evaluate the

Companion’s feedback stems from the survey questions posed to the students and the

ratings of the Companion’s feedback provided within the IDE while completing the

assignment. This section categorizes the data based on the observed trends to evaluate how

effective the Companion’s Brain was at generating intelligent feedback.

The Companion’s messages were successful in providing some of the intended

types of hints. The intention for this thesis was to provide hints on how to proceed with an

assignment, as well as problem-solving hints, specifically for a recursion programming

assignment in Java. In some respects, some of these goals were accomplished. Over half

of the students report that the Companion’s feedback gave hints about concepts needed for

the assignment, which is shown in Figure 6.2. Similarly, 57% of students report that the

Companion did not provide hints about syntax. Both of these trended towards the goals for

the types of feedback the Companion should and should not provide.

However, only 36% of students report that the feedback provided hints about how

to proceed with the assignment, which means that the majority of students did not perceive

this to be true. Furthermore, only about a third of the students describe the Companion’s

72

Figure 6.2. Students’ perceptions of the type of feedback the Companion provided

feedback as logical for what was happening with their code. Also, only 36% say that the

Companion improved their understanding of recursion.

Students suggest changing the messages themselves, the frequency, and the

timing. Most commonly, students suggest changing the messages to something different.

Students also believe that the frequency and the timing of the messages should be changed.

Responses differ, but students suggest that it would be helpful if the Companion provided

messages only in certain situations, such as when they have errors, after a time interval has

passed, or when they request help. When problems were reported with feedback, students

noticed that they frequently received the same feedback, making it seem repetitive. The

other problems reported with the feedback indicate they did not understand what it meant.

Open-ended responses regarding what improvements were needed on the feedback

encompassed a range of topics, with wanting more specific feedback occurring the most

frequently. Others ranged from giving an example of the problem to when to deliver the

hint. One student suggests, “When the program compiles, it would be nice if it gave you

73

an explanation of what the error was before.” Thus, this student would like an explanation

concerning what he or she fixed and why it did not previously work.

Many messages were not saved in the database when they were given. Ideally,

every time feedback was given to a student, the exact feedback would be saved in the

database. However, this occurred less than half of the time. Thus, often students received

feedback, but no data was collected regarding what the exact feedback was.

Students received a limited number of messages, given the values in the

training data. Most of the 28 messages appeared at least once in the data used to train the

neural network; however, students only received 10 different messages during the study.

Thus, even though many different messages were labeled in the training data, only 10 of

these were actually delivered to students.

Students reported mixed results about the helpfulness of the Companion’s

feedback. Among the 10 messages delivered and the times when students’ ratings were

collected in Eclipse, some messages were deemed more helpful than others. The three

messages that least matched the situation were the following: “Sorry, I don’t have any

messages for you right now. Try again later,” “Nice job! You got the right answer!” and

“Remember to clean up your code! That’s a lot of comment lines.” Few messages were

reported to be unequivocally helpful, but the ones reported to be the most helpful were the

following: “Think about breaking the problem into smaller parts. Ask yourself: What is the

smallest problem I’m trying to solve?” and “Think about changing the control flow of your

code.” However, the latter message was also commonly marked as one that students did

not understand.

74

Figure 6.3. Students’ ratings collected in the IDE of the Companion’s feedback for
the individual situation:

A. Message was helpful. B. Message was somewhat helpful.
C. Message did not match the situation. D. I did not understand what the message meant.

Students also provided mixed responses of their overall evaluation of the Companion’s

feedback. As shown in Figure 6.3, 42% of students reported that the feedback from the

Companion was helpful or slightly helpful to them. Yet, 41% also stated that the

Companion’s feedback did not match the situation in their code. Some suggested that they

did not understand the meaning of the feedback, which concerns what the message meant,

but not necessarily the situation in which the Companion gave the feedback.

6.4 Evaluation of Data Collected from Students’ Code

It may also be helpful to consider what data the plug-in collected from students’ code.

While the purpose of this thesis is mainly concerned with how to give helpful feedback to

students in Eclipse, considering the input data may provide useful data for analyzing what

types of feedback CS students would most require.

75

Students require support in understanding the features of recursion. Based on

the data regarding keywords collected from students’ code, approximately 20% of the time

the keywords if or return were missing from the code or a loop was found. This suggests

that a percentage of students require support in understanding which syntactical features

are important for recursion.

The usefulness of the comparator operator depends upon the recursion

assignment. The comparator operator appeared roughly half of the time in the

programming assignment. The recursion assignment given to students did not require this

operator; however, many other assignments do require it. Thus, it seems this may not be a

useful input to the neural network, as the usefulness of this data varies based on the

programming assignment.

Students at this level have a strong grasp of data types and when to use them.

This assignment required students to use integers, so the double keyword only appeared

1% of the time, which was appropriate for the situation. Nonetheless, the usefulness of this

data will vary based on the exact programming assignment, so this data may not be as

relevant for the Brain.

6.5 Evaluation of the Software Tool

Since students were not specifically asked for feedback regarding the software tool itself,

this data comes from any comments reported on the survey concerning the tool, as well as

our observations throughout the study. Student comments on the survey made about the

tool typically were provided as a response classified as “other,” and often they did not

necessarily pertain to the question asked. Nonetheless, they provided helpful data to

76

evaluate the software tool and the technical decisions that need to be considered for

maximizing the effectiveness of the Companion.

 There were six responses that indicated that the usability of the tool detracted from

their experience with the Companion. When students were asked what could make the

Companion’s feedback more helpful, one student reported issues with the tool itself that

impacted the effectiveness of the feedback. This student suggested that being taught how

the tool works in advance would have been helpful for interacting with the feedback.

Furthermore, this same student wrote, “I didn’t know I had to manually check it myself

after writing code.” The tool required students to toggle between two views in Eclipse: the

console view with compiler error messages and the Help View with the Companion’s

feedback. This student found that this factor affected his or her experience with the

feedback.

 Based on observation, the time spent installing the plug-in took almost as long as

the completion of the assignment itself. Most students spent about 30 minutes installing

the plug-in and 30 minutes completing the assignment. Although this installation time is

somewhat misleading because a portion of the time was installing the correct version of

Eclipse, it is still significant.

Furthermore, even though students were provided with detailed directions for the

plug-in installation, they struggled with the installation process and frequently needed

assistance with it. Most of the issues encountered were configuration problems between

Eclipse and the plug-in, which could have been resolved with following the instructions.

Nevertheless, the instructions were complex and required attention to detail.

77

An issue frequently occurred for students using Macs. The directions for the plug-

in installation on a Mac were from the previous version of the plug-in implemented

(Penumala and Gonzalez-Sanchez, 2018). Even though the directions for installation in

Windows remained unchanged and still worked correctly, it appears that with an update to

the Mac operating system, this resulted in the plug-in installation failing in these Macs,

which accounted for approximately three participants. One student verbally hypothesized

that the students with a Mac who got the plug-in to work had an older version of the OS

than she did. She noticed that all students with Macs for whom the installation failed had

the most recent Mac OS. In such cases when the installation failed, these students used the

plug-in on our computer to complete the assignment, thus still allowing for data collection;

however, due to our laptop already being used by another student, one student came for the

study but could not use the plug-in.

 Once students installed the plug-in, we observed that using the plug-in required

some training. Most students did not intuitively know the process for interacting with the

plug-in and checking the feedback. Since the IDE switches to the console view by default

after compiling with an error message, some students did not even realize for a while that

they were receiving feedback since they needed to click on the Help View in order to see

it. Since the plug-in required students to enter their participant identification number and

course number at the top of the assignment, the Companion would not deliver feedback if

this was omitted. Consequently, some students did not receive any feedback for a period

of time before realizing what the issue was. One student did not create a new workspace

and even proceeded through the entire assignment without receiving any feedback because

he did not realize he should receive it.

78

6.6 Summary

In this chapter, we discussed the results of the study. Initially, we reviewed students’

background with recursion, how often they need help, and their success with resolving

errors reported by the IDE. After that, we discussed how students perceived the

Companion. They had an overwhelmingly positive response to the idea of the Companion

and enjoyed working with it. Then we examined how the students reported the Companion

did with the intelligent feedback. We found that the Companion successfully provided

some of the types of feedback, but only 10 different messages were actually given to the

students. Many students said the feedback was helpful or slightly helpful, although many

also said the feedback did not make sense for the situation at hand. Following that, we

discussed the data collected from students’ code, and, lastly, we evaluated the Companion

plug-in as a software tool. In the next chapter, we will provide a rationale for the results

and discuss opportunities for improvement.

79

CHAPTER 7

DISCUSSION

Some clear trends were evident in the data collected from this study. The types of questions

posed in the surveys were focused on getting suggestions for how to improve the

Companion rather than ways the Companion was successful. It may be possible, then, that

the students could have offered specific positive comments if we had asked different

questions. Even so, both positive and negative traits can be seen in the Companion. This

chapter explores possible reasons for this data. First, we will discuss strengths of the

Companion as shown in this study. Next, we will provide an analysis of shortcomings of

the Companion. Lastly, we will discuss opportunities for future work in this research area.

7.1 Strengths of the Companion

The Companion implemented in this study offers a worthwhile contribution to the previous

work on ITS, specifically about Companions. There are several beneficial traits of our

Companion that emerged from this research. This section provides an explanation of

several of these characteristics.

Proof of Concept. Our Companion exists as a proof of concept for a Companion

embedded into the IDE that provides feedback on how to proceed and affective support for

students in a beginning Java programming course. The literature demonstrates a need for

this type of work, as few companions in the IDE exist for teaching programming, and those

existing do not provide feedback on how to proceed. Moreover, those implemented have

not investigated using a neural network to generate the feedback. A proof of concept is an

80

important first step in advancing this area of research. Thus, our Companion provides a

valuable contribution to the existing research. The software for the Companion worked to

accomplish the goal of delivering intelligent feedback to students within the Eclipse IDE.

Of course, it is the goal for all software to work. Nonetheless, due to the complexity of

integrating existing software components to create a working product, it is important to

fully appreciate the contribution of the Companion plug-in toward this end. Data was

collected from each student’s code, sent to the brain, saved to the server, and relatively

intelligent feedback was displayed. This represents a new advancement in tutoring

Companions. Thus, our Companion’s role as a proof of concept is significant.

Neural Network for Feedback in the Eclipse IDE. Just as the Companion’s

contribution as a proof of concept is valuable, providing feedback within the IDE via a

neural network is also noteworthy. Using neural networks in an ITS is not a novel

contribution but delivering it within the IDE is rare. Neural networks are an area of AI

attracting much attention and demonstrating the potential for using them with an embedded

Companion for CS education is beneficial.

Support for Beginning CS Students. Even though some of the data was mixed

regarding the effectiveness of the Companion’s feedback, the students clearly conveyed

that they liked the Companion and felt supported by it. They even saw the potential for a

Companion helping them in the future. It is well-known that CS courses are difficult,

especially for beginning students, which prompts many to leave CS (Giannakos, Pappas,

et al., 2017). Retention is certainly not the topic for this thesis but having a tutoring

Companion that can help CS students – even if only to provide affective support – is

valuable for students. Perhaps in the future this data could contribute to these other

81

discussions. At any rate, this Companion succeeded in helping students feel supported.

Nonetheless, our Companion succeeds at more than just affective support. Although the

Brain will need some improvement, there was some data that showed that students received

feedback that made sense at the appropriate time. Furthermore, students reported that it

helped them with concepts for problem-solving, which was one of the stated outcomes for

this research. Thus, some of the Companion’s feedback provided affective support for

students and guidance about problem-solving concepts for recursion.

7.2 Opportunities for Improvement in the Companion

Although we made meaningful contributions to the research in this area and the Companion

met some of its objectives, there are opportunities to refine the Companion, particularly

with its intelligence. This section provides a discussion of some opportunities for

improvement in the Companion as shown through this study.

The messages did not always fit the situation. Students reported that sometimes

the feedback did not make sense based on what was happening in their code. In fact, this

was rather evident in the data and their responses. The data sent to the server with messages

in different situations also shows that a human tutor would not select this same message

for the situation. For instance, at times the students had an error in their code, and the

Companion told them, “Nice job! You got the right answer!” Clearly, this was not the

intent. This is, of course, the challenge with neural networks in any domain; it is difficult

to simulate the thinking that occurs in the human brain and how humans reach those

conclusions. Nonetheless, neural networks can, in fact, produce intelligent responses, and

are used in many fields for this very purpose. Therefore, it is important to analyze why our

82

Companion missed the mark in this respect. One alarming piece of data was that the

Companion only delivered 10 different messages regardless of the situation. The Brain had

28 unique messages, and these were labeled in the training data, so it leads one to wonder

why this happened. After examining the data collected from the code, the same feedback

was at times given even when the input data to the neural network was quite different. After

closer investigation, a bug was identified in the Brain, which led to only 10 possible

messages being generated. This bug was introduced when the output from the neural

network was scaled to match the type of label for the number for the feedback. Since the

output was multiplied by 100 to make it a multiple of 10, sometimes the code for the

feedback should have been 200, for instance, instead of 20. In hindsight, this seems clear,

but this bug was not detected in the testing plan since it was hard to notice what should be

expected without authentic data entering the neural network. Furthermore, this decision to

give a code to the messages as a multiple of 10 was to create a larger “spread” between the

numbers for cases where the output from the neural network might be close together. This

decision, in part, led to this bug. In the future, this is a technical decision that will require

closer examination, but it seems that the neural network could be 28 outputs with the Brain

choosing the node with the greatest weight. However, this will require greater investigation

in the future.

The meaning of the feedback was not always clear to students. Students

frequently reported that they did not understand what the feedback meant. This was a

surprising trend in the data, as this does not pertain to the brain or even the software; rather,

it concerns the wording of the feedback . Since it is not really a technical issue and is more

83

of an educational concern, it is beyond the scope of this thesis to analyze it, but it is,

nevertheless, worth mentioning.

The usability of the plug-in appeared to detract from the Companion’s

feedback. The students seemed frustrated with navigating the views in Eclipse. This was

not concrete data reported from the study, and it appears they may not have even

consciously realized this affected the data. However, after finishing the assignment,

numerous students verbally told us that they rated the Companion’s feedback for a while,

but then they stopped because they got tired of switching between views. A limitation of

the plug-in implementation was that the Companion’s feedback was only saved in the

database after a student rated the feedback. Thus, if the student did not rate the feedback,

the exact feedback was not recorded. Furthermore, since the students wanted to see the

error messages from the compiler, this required navigating between the console view and

the help view that was added for the plug-in. This limited the usability, and it seems this

may have been a contributing factor to students not rating as much of the feedback or

perhaps even checking the feedback at all.

7.3 Future Work

Now that strengths and weaknesses of the Companion have been discussed, we will

consider the vision for future research. Some of these opportunities for future work involve

improvements to the Companion by improving the software used in this study, which will

be discussed first. Then, the potential of a self-training network will be discussed. Lastly,

opportunities regarding when to give feedback will be explored.

84

Software Improvements to the Companion. It would be informative to see how

the Companion’s feedback can change once the bug is fixed in the Brain for the scaling of

the output. One could examine whether the neural network delivers quality messages with

even this small change. Since the usability of the plug-in seemed to affect the data from

the Companion, improving the UI experience of the plug-in would be beneficial. Instead

of adding the views as tabs next to the console view, the view could be placed somewhere

else in the IDE where it would not interfere with students’ typical interactions with the

IDE. It is difficult to determine where this would be, but this could be another topic of

research. Examining this could help to determine what role the feedback plays as compared

to the UI experience. ITS often use an avatar to make the Companion more visually

appealing and to seem more personal. It also could make it seem more “fun” to the student

and perhaps increase the level of personal engagement. This represents another opportunity

for future improvements on the Companion. Improvements to the Brain would also be

beneficial. Now that authentic data has been collected from beginning CS students, this

data can be used to retrain the neural network. This would greatly enhance which feedback

to provide in which situation, instead of relying on automatically generated data as in this

study.

Self-training Neural Network. Since one of the purposes of the Companion is to

emulate the traits of a human tutor, it is important for the Companion to possess the

capability to provide feedback without the intervention of a human. Currently, the neural

network is a supervised learning algorithm that requires human intervention. Since the data

is saved to the server and the neural network is also on the server, there is potential to have

the neural network automatically train so that the brain continually learns from the data

85

from the students. Perhaps the neural network could train in a short daily scheduled

downtime with an unsupervised learning algorithm. This would mark a significant

advancement in this research, for it would allow the Companion to rely less on human

intervention and, thus, each student using the Companion would benefit from what the

Companion learned from every preceding student.

When to Give Feedback. This is a broader research question that has already

warranted significant attention (VanLehn, 2006). Students reported many issues about the

timing of the Companion’s feedback, ranging from only wanting feedback when they have

errors to wanting feedback after a certain amount of time has passed to almost every other

conceivable option. Even more problematic is that students can abuse hints because they

do not want to give a quality attempt at solving the problem (VanLehn, 2006). When to

give feedback is a difficult question to answer, and it could inform future research with this

Companion. In the context of a programming Companion embedded into the IDE, this

could mean changing what triggers displaying the feedback. For us, this was the defined

actions detected in the IDE. In the future, this could be giving feedback on a timer. Or,

perhaps the Companion could project when the student will encounter problems and issue

feedback preemptively. Indeed, a plethora of options exist that are worth exploring,

especially since the neural network can be used to give a hint in many different types of

scenarios.

7.4 Summary

This thesis provided important research in the area of embedded tutoring Companions. It

contained some limitations, such as a small bug and the usability of the plug-in. However,

86

it suggests the opportunity to use neural networks in embedded Companions in the future.

Most importantly, this thesis exists as a proof of concept that neural networks can be

effectively used to provide intelligent feedback directly in the IDE for students’

programming assignments. Since students like the feedback and even report that it is

somewhat intelligent, this provides opportunities to leverage this technology in the future

with beginning CS students. Many of these students struggle to obtain valuable feedback

on their programming assignments and experience a lack of quality personalized feedback

on their code. It seems that a Companion embedded into the IDE can help to provide this

feedback, using a neural network for its intelligence. This, it seems, should warrant future

research attention.

87

REFERENCES

Acuña, R. 2018. SER 222: Design & Analysis: Data Structures and Algorithms Syllabus.
Retrieved February 13, 2019 from
https://webapp4.asu.edu/bookstore/viewsyllabus/2191/16004.

Anderson, J.R. and Skwarecki, E. 1986. The automated tutoring of introductory computer
programming. Communications of the ACM, 29(9), 842-849. DOI:
https://doi.org/10.1145/6592.6593.

Barr, A. and Beard, M. 1976. An instructional interpreter for basic. In SIGCSE '76
Proceedings of the ACM SIGCSE-SIGCUE Technical Symposium on Computer
Science and Education, New York, NY, ACM, 325-334. DOI:
https://doi.org/10.1145/952989.803494.

Beck, J.E., Woolf, B.P. and Beal, C.R. 2000. ADVISOR: A machine learning
architecture for intelligent tutor construction. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence, AAAI Press, 552-557.

Carless, D. 2006. Differing perceptions in the feedback process. Studies in Higher
Education, 31(2), 219-233. DOI: https://doi.org/10.1080/03075070600572132.

Chatley, R. and Timbul, T. 2005. KenyaEclipse: Learning to program in Eclipse. In
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Lisbon, Portugal, ACM, 245-248. DOI:
https://doi.org/10.1145/1095430.1081746.

Chen, Z. and Marx, D. 2005. Experiences with Eclipse IDE in programming courses.
Journal of Computing Sciences in Colleges, 21(2), 104-112.

Chow, S., Yacef, K., Koprinska, I. and Curran, J. 2017. Automated data-driven hints for
computer programming students. In 25th ACM International Conference on User
Modeling, Adaptation, and Personalization, UMAP 2017, Bratislava, Slovakia,
ACM, 5-10. DOI: https://doi.org/10.1145/3099023.3099065.

Conati, C., Gertner, A. and VanLehn, K. 2002. Using Bayesian networks to manage
uncertainty in student modeling. User Modeling and User - Adapted Interaction,
12(4), 371-417. DOI: https://doi.org/10.1023/A:1021258506583.

Connolly, C., Murphy, E. and Moore, S. 2009. Programming anxiety amongst computing
students—a key in the retention debate? IEEE Transactions on Education, 52(1),
52-56. DOI: https://doi.org/10.1109/TE.2008.917193.

Crow, T., Luxton-Reilly, A. and Wuensche, B. 2018. Intelligent tutoring systems for
programming education: A systematic review. In Proceedings of the 20th

88

Australasian Computing Education Conference, Brisbane, Queensland, Australia,
ACM, 53-62. DOI: https://doi.org/10.1145/3160489.3160492.

Data Design Group. 2018. Generate Test Data: JSON Format. Retrieved February 1,
2019 from http://www.convertcsv.com/generate-test-data.htm#keywords.

Day, M. 2019. TutorBrain GitHub Repository. Retrieved April 3, 2019 from
https://github.com/melissaDay1/TutorBrain.

Devide, J.V.S., Meneely, A., W Ho, C., Williams, L. and Devetsikiotis, M. 2008. Jazz
Sangam: A real-time tool for distributed pair programming on a team
development platform. In Workshop on Infrastructure for Research in
Collaborative Software Engineering, Atlanta, GA.

Dogaru, I. and Dogaru, R. 2013. JLCNN: An object-oriented Java package for low
complexity neural networks. In 2013 4th International Symposium on Electrical
and Electronics Engineering (ISEEE), 1-6. DOI:
https://doi.org/10.1109/ISEEE.2013.6674317.

Giannakos, M.N., Pappas, I.O., Jaccheri, L. and Sampson, D.G. 2017. Understanding
student retention in computer science education: The role of environment, gains,
barriers and usefulness. Education and Information Technologies, 22(5), 2365-
2382. DOI: https://doi.org/10.1007/s10639-016-9538-1.

Gonzalez-Sanchez, J. 2018. Syllabus: Introduction to Programming Languages. Retrieved
March 19, 2019 from http://javiergs.com/teaching/cse240.

Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H.H., Ventura, M., Olney, A. and
Louwerse, M.M. 2004. AutoTutor: A tutor with dialogue in natural language.
Behavior Research Methods, Instruments, & Computers, 36(2), 180-192. DOI:
https://doi.org/10.3758/BF03195563.

Hattie, J. 2009. Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to
Achievement. Routledge, New York, NY.

Hattie, J. and Timperley, H. 2007. The power of feedback. Review of Educational
Research , 77(1), 81-112. DOI: https://doi.org/10.3102/00346543029848.

Heaton, J. 2015. Encog: Library of interchangeable machine learning models for Java and
C#. ArXiv, 5.

Hooshyar, D., Binti Ahmad, R., Wang, M., Yousefi, M., Fathi, M. and Lim, H. 2018.
Development and evaluation of a game-based Bayesian intelligent tutoring system
for teaching programming. Journal of Educational Computing Research, 56(6),
775-801. DOI: https://doi.org/10.1177/0735633117731872.

http://www.convertcsv.com/generate-test-data.htm#keywords
http://javiergs.com/teaching/cse240

89

Hounsell, D. 2007. Towards more sustainable feedback to students. In Rethinking
assessment in higher education: Learning for the longer term, Boud, D. and
Falchikov, N., Eds. Routledge, London, UK.

Hounsell, D. 2003. Student feedback, learning and development. In Higher education and
the lifecourse, Slowey, M. and Watson, D., Eds. Open University Press,
Buckingham, UK, 67-78.

International Business Machines Corporation. 2006. Eclipse Platform Technical
Overview. Retrieved January 18, 2019 from
https://www.Eclipse.org/articles/Whitepaper-Platform-3.1/Eclipse-platform-
whitepaper.pdf.

Jessop, T., Hakim, Y.E. and Gibbs, G. 2013. The whole is greater than the sum of its
parts: A large-scale study of students’ learning in response to different
programme assessment patterns. Assessment and Evaluation in Higher Education,
39(1), 73-88. DOI: https://doi.org/10.1080/02602938.2013.792108.

Johnson, W.L. and Soloway, E. 1984. PROUST: Knowledge-based program
understanding. In Proceedings of the 7th International Conference on Software
Engineering, Orlando, Florida, USA, IEEE Press, 369-380.

Judd, C.M. and Shittu, H. 2005. Pro Eclipse JST: Plug-ins for J2EE Development.
Apress, New York, NY.

Jurado, F., Redondo, M. and Ortega, M. 2014. eLearning standards and automatic
assessment in a distributed Eclipse based environment for learning computer
programming. Computer Applications in Engineering Education, 22(4), 774-87.
DOI: https://doi.org/10.1002/cae.21569.

Jurado, F., Molina, A.I., Redondo, M.A. and Ortega, M. 2013. Cole-programming:
Shaping collaborative learning support in Eclipse. IEEE-RITA Latin American
Learning Technologies Journal, 8(4), 153-162. DOI:
https://doi.org/10.1109/RITA.2013.2284953.

Jurado, F., Redondo, M.A. and Ortega, M. 2012. Using fuzzy logic applied to software
metrics and test cases to assess programming assignments and give advice.
Journal of Network and Computer Applications, 35(2), 695-712. DOI:
https://doi.org/10.1016/j.jnca.2011.11.002.

Karkalas, S. and Gutierrez-Santos, S. 2014. Eclipse student (in) activity detection tool. In
9th European Conference on Technology Enhanced Learning (EC-TEL 2014),
Springer International Publishing, 572-3. DOI: https://doi.org/10.1007/978-3-319-
11200-8_75.

90

Keuning, H., Jeuring, J. and Heeren, B. 2018. A systematic literature review of
automated feedback generation for programming exercises. ACM Transactions on
Computing Education, 19(1), 3:1-3:43. DOI: https://doi.org/10.1145/3231711.

King, C.E. 2018. Feasibility and acceptability of peer assessment for coding assignments
in large lecture based programming engineering courses. In 2018 IEEE Frontiers
in Education Conference, San Jose, CA, IEEE, DOI:
https://doi.org/10.1109/FIE.2018.8659246.

Le, N. 2016. A classification of adaptive feedback in educational systems for
programming. Systems, 4(2), 22. DOI: https://doi.org/10.3390/systems4020022.

Le, N., Strickroth, S., Gross, S. and Pinkwart, N. A review of AI-supported tutoring
approaches for learning programming. In International Conference on Computer
Science, Applied Mathematics, & Applications 2013, Switzerland, Springer
International Publishing, 267-279. DOI: https://doi.org/10.1007/978-3-319-
00293-4_20.

Ma, W., Adesope, O.O., Nesbit, J.C. and Liu, Q. 2014. Intelligent tutoring systems and
learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4),
901-918. DOI: https://doi.org/10.1037/a0037123.

MacNish, C. 2002. Machine learning and visualisation techniques for inferring logical
errors in student code submissions. In ICALT-2002: Proceedings of the IEEE
International Conference on Advanced Learning Technologies, IEEE, 317-321.
DOI: https://doi.org/10.1017/S0890060419000027.

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G. and Mander, K. 2005.
Grand challenges in computing: Education—A summary. The Computer Journal,
48(1), 42-48. DOI: https://doi.org/https://doi.org/10.1093/comjnl/bxh064.

Moritz, S.H., Blank, G.D., Parvez, S. and Wei, F. 2007. A design-first curriculum and
Eclipse tools. Journal of Computing Sciences in Colleges, 22(3), 51-52.

Moritz, S.H., Wei, F., Parvez, S.M. and Blank, G.D. 2005. From objects-first to design-
first with multimedia and intelligent tutoring. In ITiCSE '05 Proceedings of the
10th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, Caparica, Portugal, ACM, 99-103. DOI:
https://doi.org/10.1145/1151954.1067475.

Narciss, S. 2008. Feedback strategies for interactive learning tasks. In Handbook of
research on educational communications and technology. Spector, M. J., Ed.
Springer, New York, NY, 125-144.

Nesbit, J.C., Liu, L., Liu, Q. and Adesope, O.O. 2015. Work in progress: Intelligent
tutoring systems in computer science and software engineering education.

91

Proceedings 122nd American Society Engineering Education Annual Conference,
DOI: https://doi.org/10.18260/p.25090.

Nesbit, J.C., Adesope, O.O., Liu, Q. and Ma, W. 2014. How effective are intelligent
tutoring systems in computer science education? In 2014 IEEE 14th International
Conference on Advanced Learning Technologies (ICALT), IEEE Computer
Society, 99-103. DOI: https://doi.org/10.1109/ICALT.2014.38.

Neuroph Library. 2014. API: Interface Normalizer. Retrieved March 29, 2019 from
http://neuroph.sourceforge.net/javadoc/index.html.

Neuroph Projects. 2019. Neuroph Open-Source Projects GitHub Repository. Retrieved
January 25, 2019 from https://github.com/neuroph/neuroph/tree/master/neuroph-
2.9/Samples/src/main/java/org/neuroph/samples.

Nguyen-Thinh, L.E., Menzel, W. and Pinkwart, N. 2009. Evaluation of a constraint-based
homework assistance system for logic programming. In Proceedings of the 17th
International Conference on Computers in Education (CDROM), Hong Kong,
Asia-Pacific Society for Computers in Education, 51-58.

Nye, B.D., Graesser, A.C. and Hu, X. 2014. AutoTutor and family: A review of 17 years
of natural language tutoring. International Journal of Artificial Intelligence in
Education, 24(4), 427-469. DOI: https://doi.org/10.1007/s40593-014-0029-5.

Ott, C., Robins, A. and Shephard, K. 2016. Translating principles of effective feedback
for students into the CS1 context. ACM Transactions on Computing Education,
16(1), 1:1-1:27. DOI: https://doi.org/10.1145/2737596.

Penumala, Manohara Rao. 2017. TutorHelpPlugin GitHub Repository. Retrieved
September 8, 2018 from https://github.com/mpenumal/TutorHelpPlugin.

Penumala, M.R. and Gonzalez-Sanchez, J. 2018. Towards embedding a tutoring
companion in the Eclipse integrated development environment. In 14th
International Conference on Intelligent Tutoring Systems, ITS 2018, Montreal,
Canada, Springer, 352-358. DOI: https://doi.org/10.1007/978-3-319-91464-0_39.

Perkins, D., Hancock, C., Hobbs, R., Martin, F. and Simmons, R. 1989. Conditions of
learning in novice programmers. In Studying the novice programmer, Soloway, E.
and SPOHRER, J. C., Eds. Lawrence Erlbaum, Hillsdale, NJ, 261-279.

Pillay, N. 2003. Developing intelligent programming tutors for novice programmers.
SIGCSE Bulletin, 35(2), 78-82. DOI: https://doi.org/10.1145/782941.782986.

http://neuroph.sourceforge.net/javadoc/index.html

92

Pisan, Y., Sloane, A., Richards, D. and Dale, R. 2002. Providing timely feedback to large
classes. In International Conference on Computers in Education, Auckland, New
Zealand, IEEE, 413. DOI: https://doi.org/1959.14/1232327.

Price, M., Handley, K. and Millar, J. 2011. Feedback: Focusing attention on engagement.
Studies in Higher Education, 36(8), 879-896. DOI:
https://doi.org/10.1080/03075079.2010.483513.

Ramaprasad, A. 1983. On the definition of feedback. Behavioral Science, 28(1), 4. DOI:
https://doi.org/10.1002/bs.3830280103.

Reis, C. and Cartwright, R. 2004. Taming a professional IDE for the classroom. SIGCSE
Bulletin , 36(1), 156-160. DOI: https://doi.org/10.1145/1028174.971357.

Reis, C. and Cartwright, R. 2003. A friendly face for Eclipse. In Proceedings of the 2003
OOPSLA Workshop on Eclipse Technology eXchange, Anaheim, California,
ACM, 25-29. DOI: https://doi.org/10.1145/965660.965666.

Rivers, K. and Koedinger, K.R. 2017. Data-driven hint generation in vast solution spaces:
A self-improving python programming tutor. International Journal of Artificial
Intelligence in Education, 27(1), 37-64. DOI: https://doi.org/10.1007/s40593-015-
0070-z.

Seymour, E. and Hewitt, N. 1997. Talking about leaving: Why undergraduates leave the
sciences. Westview Press, Boulder, CO.

Shute, V.J. and Psotka, J. 1996. Intelligent tutoring systems: Past, present, and future. In
Handbook of research for educational communications and technology, Jonassen,
D., Ed. Macmillan, New York, NY, 570-600.

Silva, A., Leal, J.P. and Paiva, J.C. 2018. Raccode: An Eclipse plugin for assessment of
programming exercises. In 7th Symposium on Languages, Applications and
Technologies, SLATE 2018, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing, DOI:
https://doi.org/10.4230/OASIcs.SLATE.2018.4.

Singh, R., Gulwani, S. and Solar-Lezama, A. 2012. Automated feedback generation for
introductory programming assignments. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI '13), Seattle, Washington, ACM, 15-26. DOI:
https://doi.org/10.1145/2491956.2462195.

Smaill, C.R. 2005. The implementation and evaluation of OASIS: A web-based learning
and assessment tool for large classes. IEEE Transactions on Education, 48(4),
658-663. DOI: https://doi.org/10.1109/TE.2005.852590.

93

Sottilare, R., Graesser, A.C., Hu, X. and Holden, H., Eds. 2013. Design
Recommendations for Intelligent Tutoring Systems. U.S. Army Research
Laboratory, Orlando, FL.

SourceForge. n.d. Neuroph: Java Neural Network Framework. Retrieved January 19,
2019 from http://neuroph.sourceforge.net/index.html.

Spacco, J., Hovemeyer, D. and Pugh, W. 2004. An Eclipse-based course project snapshot
and submission system. In Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology eXchange, Vancouver, British Columbia, Canada, ACM, 52-
56. DOI: https://doi.org/10.1145/1066129.1066140.

Storey, M., Damian, D., Michaud, J., Myers, D., Mindel, M., German, D., Sanseverino,
M. and Hargreaves, E. 2003. Improving the usability of Eclipse for novice
programmers. In Proceedings of the 2003 OOPSLA Workshop on Eclipse
Technology eXchange, Anaheim, California, ACM, 35-39. DOI:
https://doi.org/10.1145/965660.965668.

Suarez, M. and Sison, R. 2008. Automatic construction of a bug library for object-
oriented novice Java programmer errors. In International Conference on
Intelligent Tutoring Systems (ITS 2008), Montreal, Canada, Springer, 184-193.
DOI: https://doi.org/10.1007/978-3-540-69132-7_23.

VanLehn, K. 2006. The behavior of tutoring systems. International Journal of Artificial
Intelligence in Education, 16(3), 227-265.

Winslow, L.E. Sept. 1996. Programming pedagogy - a psychological overview. ACM
SIGCSE Bulletin, 28(3), 17-22. DOI: https://doi.org/10.1145/234867.234872.

Yusri, N., Mashita Syed-Mohamad, S. and Rashid, N.A. 2015. ReCOOP: A collaborative
tool to support teaching and learning programming. ICIC Express Letters, 9(10),
2703-10.

Zhang, Y., Huang, G., Zhang, N. and Mei, H. 2009. SmartTutor: Creating IDE-based
interactive tutorials via editable replay. In 2009 31st International Conference on
Software Engineering (ICSE 2009), IEEE, 559-62. DOI:
https://doi.org/10.1109/ICSE.2009.5070555.

http://neuroph.sourceforge.net/index.html

94

APPENDIX A

IRB PROTOCOL

95

Instructions and Notes:
• Depending on the nature of what you are doing, some sections may not be applicable to your research. If so,

mark as “NA”.
• When you write a protocol, keep an electronic copy. You will need a copy if it is necessary to make changes.

1 Protocol Title
Include the full protocol title: A Neural Network Model for a Tutoring Companion Supporting Students in a
Programming with Java Course

2 Background and Objectives
Provide the scientific or scholarly background for, rationale for, and significance of the research based on the
existing literature and how will it add to existing knowledge.

• Describe the purpose of the study.
• Describe any relevant preliminary data or case studies.
• Describe any past studies that are in conjunction to this study.

With large class sizes and instructors who may not be equipped to assist struggling students, many students
abandon the field, deeming it to be too difficult and not for them. Consistent, constructive, supportive feedback
through a Tutoring Companion can scaffold the learning process for students. This poster describes a reasoning
model, using neural networks techniques, for a tutoring companion embedded into the Eclipse IDE. The companion
provides support for students in a first-year university Java programming course. The companion collects data from
students’ events and programming assignments, analyzes it for relevant trends, and estimates each student’s
situation. The input data for the neural network comes from areas with which beginning computer science students
often struggle, such as the presence of important keywords and the amount of time spent in a state with errors.
Then, it determines the feedback to be provided for students to overcome a detected challenging situation, providing
both hints on how to fix the problem with the code, as well as encouragement to help keep students motivated and
learning. The effectiveness of the approach is examined among first-year computer science students through the
completion of recursion and control flow programming assignments. The students complete surveys regarding their
learning experience to assist in evaluating the companion’s pedagogical effectiveness, which is discussed with an
emphasis on the value of feedback provided.

3 Data Use
Describe how the data will be used. Examples
include:

• Dissertation, Thesis, Undergraduate
honors project

• Publication/journal article,
conferences/presentations

• Results released to agency or
organization

• Results released to participants/parents
• Results released to employer or school
• Other (describe)

The data will be used for an MS Thesis project. It will be analyzed and included the thesis document in aggregate
form. It also may be used as part of a future journal article for publication.

4 Inclusion and Exclusion Criteria
Describe the criteria that define who will be included or excluded in your final study sample. If you are
conducting data analysis only describe what is included in the dataset you propose to use.
Indicate specifically whether you will target or exclude each of the following special populations:

• Minors (individuals who are under the age of 18)
• Adults who are unable to consent
• Pregnant women
• Prisoners
• Native Americans
• Undocumented individuals

96

Students in two undergraduate software engineering courses (SER 222 CSE 240) will be recruited for participating
in the study. Any student who chooses to participate may do so. The following fields will be collected from each
student’s code for the programming activity:

• Action on the code (run attempt, debug attempt, help requested)
• Number of lines of code
• Keywords found in the code
• Number of comment lines
• Errors found in the code
• Submission time of the assignment
• Whether the assignment was completed successfully
• Message given as a hint to the student for that situation
• Student’s feedback on the message received for that situation
• Metrics for the code

5 Number of Participants
Indicate the total number of participants to be recruited and enrolled: 40

6 Recruitment Methods
• Describe who will be doing the recruitment of participants.
• Describe when, where, and how potential participants will be identified and recruited.
• Describe and attach materials that will be used to recruit participants (attach documents or

recruitment script with the application).
• Recruitment will be conducted by a combination of the graduate student (Melissa Day) and the two

professors (Ruben Acuña and Javier Gonzalez-Sanchez) of the courses from which the students will
be recruited.

• Students will be invited to participate through two means: an announcement posted on Canvas and
an in-person announcement in each of the two courses.

• See attached recruitment materials.

7 Procedures Involved
Describe all research procedures being performed, who will facilitate the procedures, and when they will be
performed. Describe procedures including:

• The duration of time participants will spend in each research activity.
• The period or span of time for the collection of data, and any long term follow up.
• Surveys or questionnaires that will be administered (Attach all surveys, interview questions, scripts,

data collection forms, and instructions for participants to the online application).
• Interventions and sessions (Attach supplemental materials to the online application).
• Lab procedures and tests and related instructions to participants.
• Video or audio recordings of participants.
• Previously collected data sets that that will be analyzed and identify the data source (Attach data use

agreement(s) to the online application).

97

Participants will participate in the following research activities, which will take about 1 hour. Data collection will
occur over a one-week time period, and there will be no long-term follow up.

These activities will be conducted in the presence of the graduate student conducting the research (Melissa Day).
Melissa Day will assist with any technical issues with the software during the data collection process.

• Survey before using the software – approximately 10 minutes
Students will be given a survey as a Google Form with questions regarding their prior experience
and reactions to the topic presented in the assignment.

• Using the software – approximately 30 minutes
• Survey after using the software – approximately 10 minutes

Students will be given a survey as a Google Form with questions regarding their experience with the
software and opinions about it.

See attached documents for an overview of these items.

8 Compensation or Credit
• Describe the amount and timing of any compensation or credit to participants.
• Identify the source of the funds to compensate participants
• Justify that the amount given to participants is reasonable.
• If participants are receiving course credit for participating in research,

alternative assignments need to be put in place to avoid coercion.
Students who participate will receive 3% extra credit on their final course grade.

If students do not wish to participate, another extra credit opportunity will be offered in the course.

9 Risk to Participants
List the reasonably foreseeable risks, discomforts, or inconveniences related to participation in the research.
Consider physical, psychological, social, legal, and economic risks.

There are no risks, discomforts, or inconveniences related to participation in the research.

10 Potential Benefits to Participants
Realistically describe the potential benefits that individual participants may experience from taking part in the
research. Indicate if there is no direct benefit. Do not include benefits to society or others.

Participants may receive extra knowledge from the tutoring software regarding a topic presented in computer
science courses. If the tutoring software is not particularly effective, then there may be no direct benefit to the
participants.

98

11 Privacy and Confidentiality
Describe the steps that will be taken to protect subjects’ privacy interests. “Privacy interest” refers to a person’s
desire to place limits on with whom they interact or to whom they provide personal information. Click here for
additional guidance on ASU Data Storage Guidelines.

Describe the following measures to ensure the confidentiality of data:
• Who will have access to the data?
• Where and how data will be stored (e.g. ASU secure server, ASU cloud storage, filing cabinets,

etc.)?
• How long the data will be stored?
• Describe the steps that will be taken to secure the data during storage, use, and transmission. (e.g.,

training, authorization of access, password protection, encryption, physical controls, certificates of
confidentiality, and separation of identifiers and data, etc.).

• If applicable, how will audio or video recordings will be managed and secured. Add the duration of
time these recordings will be kept.

• If applicable, how will the consent, assent, and/or parental permission forms be secured. These
forms should separate from the rest of the study data. Add the duration of time these forms will be
kept.

• If applicable, describe how data will be linked or tracked (e.g. masterlist, contact list, reproducible
participant ID, randomized ID, etc.).

If your study has previously collected data sets, describe who will be responsible for data security and monitoring.
Data collected will be stored on a secure server with password protection. The graduate student and the PI will
have access to the data. It will be stored throughout the duration of the study and for 6 months following the
conclusion of the study.

Participants will be given a participant ID that is collected with the data. Participants’ names will be separated from
the data collected so that their responses cannot be traced back to them. This will be implemented with the
following procedure:

• Random number generator will be used to create a unique ID for each participant. For data analysis,
they will enter this number on the surveys and the programming assignment. This allows the
researchers to group responses from each participant together for data analysis.

• This participant ID will not be recorded on any documents or other materials with the participant’s
name.

• Thus, the data anonymity will be preserved so that the response cannot be traced back to the
participant.

• Participants’ names will be collected for extra credit purposes only. This will be in a secure online
survey in which students enter their name. It will contain no language regarding the study or their
participant ID.

12 Consent Process
Describe the process and procedures process you will use to obtain consent. Include a description of:

• Who will be responsible for consenting participants?
• Where will the consent process take place?
• How will consent be obtained?
• If participants who do not speak English will be enrolled, describe the process to ensure that the oral

and/or written information provided to those participants will be in that language. Indicate the
language that will be used by those obtaining consent. Translated consent forms should be
submitted after the English is approved.

The graduate student conducting the research (Melissa Day) will be responsible for obtaining the consent of
participants.

When participants come for the 1-hour session for the study, they will be provided the HRP-502a-Consent
Document Social Behavioral. It will be posted in a Google Form, and they will acknowledge their agreement by
proceeding with the pre-assignment quiz.

https://uto.sp10.asu.edu/sites/sec/isodocs/isodocs-asurite/Documents/Data%20Storage%20Guidelines%202012%20Final.pdf

99

13 Training
Provide the date(s) the members of the research team have completed the CITI training for human
participants. This training must be taken within the last 4 years. Additional information can be found at:
Training.

March 2019

http://researchintegrity.asu.edu/training/humans

100

APPENDIX B

IRB APPROVAL

101

EXEMPTION GRANTED

Javier Gonzalez Sanchez
Software Engineering
javiergs@asu.edu
Dear Javier Gonzalez Sanchez:
On 3/13/2019 the ASU IRB reviewed the following protocol:

Type of Review: Initial Study
Title: A Neural Network Model for a Tutoring Companion Supporting Students

in a Programming with Java Course
Investigator: Javier Gonzalez Sanchez

IRB ID: STUDY00009864
Funding: None

Grant Title: None
Grant ID: None

Documents
Reviewed:

• StudyProtocol_RecruitmentMaterials_IRB.pdf, Category:
Recruitment Materials;

• StudyProtocolForm_IRB.docx, Category: IRB Protocol;
• HRP-502a - TEMPLATE CONSENT SOCIAL

BEHAVIORAL_Revised.pdf, Category: Consent Form;
• Pre-Assignment Survey.pdf, Category: Participant materials (specific

directions for them);
• Programming Assignment.pdf, Category: Participant materials

(specific directions for them);
• Software Procedure & Screenshots.pdf, Category: Participant materials

(specific directions for them);
• Post-Assignment Survey.pdf, Category: Participant materials (specific

directions for them);

The IRB determined that the protocol is considered exempt pursuant to Federal Regulations
45CFR46 (1) Educational settings, (2) Tests, surveys, interviews, or observation on
3/13/2019.

In conducting this protocol you are required to follow the requirements listed in the
INVESTIGATOR MANUAL (HRP-103).

Sincerely,
IRB Administrator
cc: Melissa Day

Javier Gonzalez Sanchez
Melissa Day

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BC314605B3ACF0A488740894E8B937A80%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5B166C0541E252E54E961669201D82D98F%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BC314605B3ACF0A488740894E8B937A80%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BC314605B3ACF0A488740894E8B937A80%5D%5D

102

APPENDIX C

SYSTEM SET-UP DIRECTIONS

103

System Set-up

Before installing the plug-in, you need to confirm the following:

1. The correct version of Eclipse is installed.
 Eclipse IDE 2018-12, Java EE
 Make sure that it is the Enterprise Edition.

If you already have Eclipse, check the version by doing the following:
• Open Eclipse
• Help
• About -> It should say “Enterprise” and look like this.

It can be downloaded here: https://www.eclipse.org/downloads/packages/.
Download this option.

2. Java 1.8 is installed.
If you need help determining this, see this article:
https://www.java.com/en/download/help/version_manual.xml.
It can be downloaded here:

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html.

https://www.eclipse.org/downloads/packages/
https://www.java.com/en/download/help/version_manual.xml

104

APPENDIX D

IRB SOCIAL BEHAVIORAL CONSENT FORM

105

Title of research study: A Neural Network Model for a Tutoring Companion Supporting

Students in a Programming with Java Course

Investigator: Dr. Javier Gonzalez-Sanchez

Why am I being invited to take part in a research study?

We invite you to take part in a research study because we have developed a tutoring
companion as a plug-in for the Eclipse Integrated Development Environment (IDE). This
provides feedback to students in a course that involves programming with Java.
You must be at least 18 or older to participate in this study.

Why is this research being done?

The effectiveness of the approach is examined among computer science students through

the completion of recursion and control flow programming assignments.

How long will the research last?

We expect that individuals will spend 1 hour participating in the proposed activities.

How many people will be studied?

We expect about 40 people will participate in this research study.

What happens if I say yes, I want to be in this research?

You will be given instructions and asked to install a plug-in to use in the Eclipse Integrated
Development Environment and to complete a short programming assignment. You will
receive hints/messages about your code and asked to complete a short survey before and
after the assignment.
You are free to decide whether you wish to participate in this study. Instead of being in this
research study, your choices may include: This study is for extra credit in your course, but
it will have no impact on your “standard” grade in the course. You will not have any points
deducted if you decide not to participate in the study. If you choose not to participate,
another extra credit opportunity will be offered in the course.
There are no foreseeable risks or discomforts to your participation.

What happens if I say yes, but I change my mind later?

You can leave the research at any time it will not be held against you.

 Will being in this study help me in any way?

We cannot promise any benefits to you, but you may receive extra knowledge from the
tutoring software regarding a topic presented in computer science courses.

106

What happens to the information collected for the research?

Efforts will be made to limit the use and disclosure of your personal information, including
research study records, to people who have a need to review this information. We cannot
promise complete secrecy. Organizations that may inspect and copy your information
include the University board that reviews research who want to make sure the researchers
are doing their jobs correctly and protecting your information and rights.

The results of this study may be used in reports, presentations, or publications but your
name will not be used. Your identity will be separated from your responses by the
following:

Data collected will be stored on a secure server with password protection. The graduate
student and the PI will have access to the data. It will be stored throughout the duration of
the study and for 6 months following the conclusion of the study.

You will be given a participant ID that is collected with the data. Your name will be
separated from the data collected so that your responses cannot be traced back to you.
This will be implemented with the following procedure:

Random number generator will be used to create a unique ID for each participant.
For data analysis, you will enter this number on the surveys and the programming
assignment. This allows the researchers to group responses from each participant
together for data analysis.
This participant ID will not be recorded on any documents or other materials with
the participant’s name.
Thus, the data anonymity will be preserved so that the response cannot be traced
back to the participant.
Participants’ names will be collected for extra credit purposes only. This will be
in a secure online survey in which students enter their name. It will contain no
language regarding the study or their participant ID.

Who can I talk to?

If you have questions, concerns, or complaints, talk to the research team at
javiergs@asu.edu.
This research has been reviewed and approved by the Social Behavioral IRB. You may
talk to them at (480) 965-6788 or by email at research.integrity@asu.edu if:

Your questions, concerns, or complaints are not being answered by the research team.
You cannot reach the research team.
You want to talk to someone besides the research team.
You have questions about your rights as a research participant.
You want to get information or provide input about this research.

If you agree to participate in this study, please begin by completing the
Pre-Assignment Survey.

107

APPENDIX E

PRE-ASSIGNMENT SURVEY

108

109

APPENDIX F

PLUG-IN INSTALLATION DIRECTIONS

110

System Set-up
Before installing the plug-in, you need to confirm the following:

1. The correct version of Eclipse is installed.
 Eclipse IDE 2018-12, Java EE

It can be downloaded here: https://www.eclipse.org/downloads/packages/.
2. Java 1.8 is installed.

If you need help determining this, see this article:
https://www.java.com/en/download/help/version_manual.xml.
It can be downloaded here:
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html.

Directions to install plug-in
Windows

1. Go to the location where the Eclipse 2018-12 Java EE IDE is extracted in your
local machine. In my case, it is:

 C:\Users\<Username>\eclipse
2. Go to

 …\eclipse\2018-12\eclipse\dropins
3. Create a new folder “plugins”.
4. Copy the .jar file into the “plugins” folder.

5. Create a shortcut of eclipse.
6. Right click on the shortcut, go to Properties Shortcut Target.
7. Add “ -clean” (there is a space before -) at the end of the contents of Target. In my

case, it looks something like this:
 C:\Users\Melissa\eclipse\eclipse.exe -clean

https://www.eclipse.org/downloads/packages/
https://www.java.com/en/download/help/version_manual.xml
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

111

8. Start Eclipse. Eclipse will take a considerable amount of time to launch for the
first time (5 – 15 minutes).

9. Once Eclipse starts, it will prompt the user to enter the workspace location. Select
a new folder as workspace and continue.

10. Delete the Eclipse shortcut.

Mac

1. Go to the location where the Eclipse 2018-12 Java EE IDE is extracted in your
local machine. In my case. It is at

 Users <UserFolder> Applications Eclipse (it can be inside a folder like
eclipse or 2018-12)

2. Right click on the executable Eclipse file and select “show Package contents”
3. Go to Contents Eclipse dropins
4. The above 3 steps can be represented as below:

 /Applications/Eclipse.app/Contents/Eclipse/dropins
5. Create a new folder “plugins”.
6. Copy the .jar file into the plugins folder.
7. Go to /Applications/Eclipse.app/Contents/MacOS. Here we should have an

executable called eclipse.

112

8. Clean launch eclipse by running the command below on terminal:

 ./eclipse -clean

9. Start Eclipse. Eclipse may take some time to launch.

113

10. Once Eclipse starts, it will prompt the user to enter the workspace location. Select
a new workspace for running eclipse.

Using the Plug-In

1. To use the plugin, make sure you have continuous internet connection.
2. Start eclipse. Go to Window Perspective OpenPerspective Java.
3. If you don’t see “Assignment Questions View” in the bottom section of eclipse,

then go to
 Window ShowView Other Assignments Category Assignment
Questions View.

4. Select “Assignment Questions View”. This should have an “empty list”.
5. Click the “Refresh Action Tooltip” (top right corner of the view). This should

fetch the list of available assignment(s) from server. The list can be java file(s)
and/or text file(s).

6. Open the assignment by double-clicking on it. This will open the Java project in
Eclipse in project explorer.

114

7. Next, you will begin completing the assignment.

Completing the Assignment
Please follow these directions exactly.

1. Open the Assignment.java file from the project.
2. Add study ID and course number to the comments at the top of the file.

a. Student_ID_Entry
Use the random ID assigned to you by the graduate student.
Do NOT use your student ID number!

b. Student_Course_Entry
Complete your course number.
This will be: “SER222” or “CSE240”. Do not use spaces.

115

3. Complete the assignment according to the directions.
Do not remove the comments surrounding the function.

4. Interact with the Tutor Companion through the following actions.
a. Run – Completed as usual
b. Debug – Completed as usual
c. Help – You can receive help by clicking the help icon in the view.

5. After each action, navigate (if needed) to the “Help View” tab to see the message
displayed. It will look something like this:

116

6. After each message received, double-click a feedback option about the message.
Do not proceed until you have given feedback!

7. Continue until you have completed the assignment. When all tests pass, you
should see a “Success” message displayed in the Console.

Uninstalling the plug-in
Windows:

1. Go to the location where the eclipse IDE is extracted in your local machine. In my
case. It is at

 C:\Users\<Username>\eclipse\dropins
2. Delete the “plugins” folder.
3. Create a shortcut of eclipse.
4. Right click on the shortcut, go to Properties Shortcut Target.

117

5. Add “ -clean” (there is a space before -) at the end of the contents of Target. In
my case, it looks something like this:

 C:\Users\manoh\eclipse\jee-neon\eclipse\eclipse.exe -clean
6. Start Eclipse. Eclipse will take a considerable amount of time to launch for the

first time (5 – 15 minutes).
7. Once Eclipse starts, you can use it as usual. Delete the Eclipse shortcut.

Mac:

1. Go to the location where the eclipse IDE is extracted in your local machine. In my
case. It is at

 Users <UserFolder> Applications Eclipse (it can be inside a folder like
eclipse or 2018-12)

2. Right click on the executable Eclipse file and select “show Package contents”
3. Go to Contents Eclipse dropins
4. The above 3 steps can be represented as below:

 /Applications/Eclipse.app/Contents/Eclipse/dropins
5. Delete the “plugins” folder.
6. Go to /Applications/Eclipse.app/Contents/MacOS. Here we should have an

executable called eclipse.
7. Clean launch eclipse by running the below command on terminal:

 ./eclipse -clean
9. Start Eclipse. Eclipse may take some time to launch.
10. Once Eclipse starts, you can use it as usual.

118

APPENDIX G

RECURSION PROGRAMMING ASSIGNMENT

119

This programming assignment was used with students in the case study. It was saved on

the server. When students used the plug-in, this assignment was retrieved from the server.

Students completed the findSum method following the directions provided.

//Student_ID_Entry=
//Student_Course_Entry=

public class Assignment {
 /**
 * TODO:
 * Use recursion to calculate the sum of the numbers in an
array that
 * are in a given range of values (inclusive).
 *
 * The method will have 5 parameters, which are given to
you.
 *
 * Example:
 * For these values below, your method should return 11.
 * int[] array = {1, 5, 2, 4},
 * start = 2
 * end = 5
 *
 * 1. You must use recursion.
 * 2. You may only use one method (no helper methods).
 * 3. Do NOT remove or change any comments.
 * 4. Do NOT remove any code inside the main method. You may
add more code
 * inside main, but do not remove any.
 * 5. There are syntax errors with the skeleton code
provided,
 * which you will need to fix as part of the assignment.
 * 6. Add your student ID number and course name at the top
of the
 * file in the comment.
 *
 */
 // Complete this function -- This comment not to be removed
 public static int findSum(int[] array, n, start,
 end, accumulator) {

 }
 // End of function -- This comment not to be removed

120

public static void main(String[] args) {
 int[] array1 = {100, 5, 6, 0, -5, 10, 30, -6, 101};

 int[] array2 = {Integer.MAX_VALUE,

-461, 33, -375, 408, -193, 496, -95, 52, -146,
284, -153, 80, -203, 245, -472, 98, -228, 379, -
179, 159, -172, 239, -139, 336, -298, 460, -162,
390, -174, 304, -409, 330, -240, 135, -137, 111,
-32, 490, -243, 141, -348, 254, -101, 42, -31,
176, -58, 37, -123, 298, -97, 452, -87, 399, -293,
468, -439, 367, -154, 239, -116, 498, -431, 136,
-155, 146, -438, 106, -474, 369, -408, 72, -368,
298, -458, 227, -111, 281, -29, 151, -40, 62, -
153, 248, -42, 42, -339, 127, -187, 496, -380,
376, -220, 379, -306, 239, -231, 489, -129, 436};

 int[] array3 = {-19, 2, -19, 12, -17, 16, -23, 17, -19,

8, -5, 5, -5, 3, 0, 8, -10, 12, -3, 12, 0, 10,
-10, 10, -15, 9, -13, 6, -15, 16, -10, 21, -10, 2,
-13, 9, -6, 4, -10, 10, -3, 8, -2, 19, -5, 1, -22,
12, -8, 8, -9, 20, -15, 21, -3, 15, -18, 15, -15,

 16, -6, 10, -4, 16, -18, 8, -11, 14, -18, 11, -10,
6, -18, 4, -16, 13, -23, 11, -12, 16, -16, 18,
-24, 18, -8, 21, -7, 8, -24, 20, -18, 17, -15, 22,
-20, 13, -6, 20, -10, 8};

 if (findSum(array1, array1.length - 1, -5,

100, 0) == 146) {
 System.out.println("Success!");
 }

 if (findSum(array2, array2.length - 1, -228,

436, 0) == 5385) {
 System.out.println("Success!");
 }

 if (findSum(array3, array3.length - 1, 5,

15, 0) == 271) {
 System.out.println("Success!");
 }
 }
 }

121

APPENDIX H

POST-ASSIGNMENT SURVEY

122

123

	List of Tables
	LIST OF FIGURES
	INTRODUCTION
	1.1 Key Concepts
	Feedback. Feedback is defined as an explanation or information for the student regarding the student’s current skill set or knowledge and where it should be, allowing the student to understand what actions need to be taken to make the needed progress...
	Hints. Hints are messages to assist with solving the problem (Nesbit, Liu, et al., 2015). Since the goal is that this hint replicates the assistance of a human tutor, the hints must adapt to the student’s progress and work (Crow, Luxton-Reilly, et al....
	Integrated Development Environment. Distinguishing characteristics of an Integrated Development Environment (IDE) are that it supports programming and is also integrated with a software application with key tools available, such as a code editor, comp...
	Intelligent Tutoring Systems. An Intelligent Tutoring System (ITS) is a computer system that “performs teaching or tutoring functions…and adapts or personalizes those functions by modeling students’ cognitive, motivational or emotional states” (Nesbit...
	Tutoring Companion. A companion is an instant, on-demand support system that emulates the traits of a human tutor and is a subcategory of ITS. We implement a companion in this thesis. It differs from an ITS in that it is part of an already existing sy...
	Eclipse Plug-ins. An Eclipse plug-in “is the smallest unit of Eclipse Platform function that can be developed and delivered separately” (International Business Machines Corporation, 2006). The Companion implemented in this thesis is an Eclipse plug-in...

	1.2 State-of-the-Art
	1.3 Problem to be Addressed
	1.4 Hypotheses
	1.5 Proposed Solution or Approach
	1.6 Contributions
	1.7 Evaluation Plan
	1.8 Scope of Work
	1.9 Document Roadmap

	BACKGROUND
	2.1 Tutoring Companions Background
	2.2 ITS in the IDE
	2.3 Intelligence for ITS
	2.4 Summary

	THE TUTORING COMPANION BRAIN
	3.1 Inputs and Outputs to the Neural Network
	3.2 Messages in the Brain
	3.3 Data Flow in the Brain
	Normalize Input Data. After the data is pre-processed, all values are represented as doubles; however, the neural network expects values as doubles between 0 and 1. Thus, the data must be normalized, that is, scaled to be between 0 and 1. Within the N...
	Send to Neural Network. Once the data is normalized and pre-processed, it is ready for the neural network. The saved model for the neural network is stored on the server, so the Brain first retrieves the neural network. After this, the input data is l...
	Scale Output from Neural Network. Since the output from the neural network is also between 0 and 1, it must be scaled to the expected format for the corresponding message codes. All the output message codes are multiples of 10, so the output code from...
	Retrieve Corresponding Message. The scaled output from the neural network serves as a key to look up the corresponding message. The message from the Brain for this situation is retrieved from the messages dictionary.
	Output Data Available to Plug-in. Lastly, the data from the Brain is ready for the plug-in. The message and its code are saved, and the plug-in can retrieve them to display for the student in the Eclipse IDE.

	3.4 Training of the Neural Network
	3.5 Summary

	IMPLEMENTATION OF THE TUTORING COMPANION BRAIN
	4.1 User Interface
	4.2 Architecture
	4.3 Eclipse Plug-in
	4.4 Design
	4.5 Libraries
	4.6 Testing Process
	4.7 Summary

	CASE STUDIES
	5.1 Participants
	Data Structures and Algorithms. The first course, Data Structures and Algorithms, is a required 200-level course offered to Software Engineering majors. Thus, the course contains primarily beginning CS students, although there may also be a small numb...
	Introduction to Programming Languages. The other course, Introduction to Programming Languages, is also a required 200-level course offered for both Software Engineering and CS majors. As in the case of the other course, it primarily contains beginnin...

	5.2 Study Protocol
	5.3 Summary

	RESULTS
	6.1 Students’ Background
	6.2 Overall Perceptions of the Companion
	6.3 Evaluation of the Companion’s Feedback
	6.4 Evaluation of Data Collected from Students’ Code
	6.5 Evaluation of the Software Tool
	6.6 Summary

	DISCUSSION
	7.1 Strengths of the Companion
	7.2 Opportunities for Improvement in the Companion
	7.3 Future Work
	7.4 Summary

	REFERENCES
	A
	IRB Protocol
	B
	IRB Approval
	C
	System Set-up Directions
	D
	IRB Social Behavioral Consent Form
	E
	Pre-Assignment Survey
	F
	Plug-in Installation Directions
	G
	Recursion Programming Assignment
	Appendix H
	Post-Assignment Survey

