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ABSTRACT  

   

Autism spectrum disorder (ASD) is a developmental neuropsychiatric condition 

with early childhood onset, thus most research has focused on characterizing brain function 

in young individuals. Little is understood about brain function differences in middle age 

and older adults with ASD, despite evidence of persistent and worsening cognitive 

symptoms. Functional Magnetic Resonance Imaging (MRI) in younger persons with ASD 

demonstrate that large-scale brain networks containing the prefrontal cortex are affected. 

A novel, threshold-selection-free graph theory metric is proposed as a more robust and 

sensitive method for tracking brain aging in ASD and is compared against five well-

accepted graph theoretical analysis methods in older men with ASD and matched 

neurotypical (NT) participants. Participants were 27 men with ASD (52 +/- 8.4 years) and 

21 NT men (49.7 +/- 6.5 years). Resting-state functional MRI (rs-fMRI) scans were 

collected for six minutes (repetition time=3s) with eyes closed. Data was preprocessed in 

SPM12, and Data Processing Assistant for Resting-State fMRI (DPARSF) was used to 

extract 116 regions-of-interest defined by the automated anatomical labeling (AAL) atlas. 

AAL regions were separated into six large-scale brain networks. This proposed metric is 

the slope of a monotonically decreasing convergence function (Integrated Persistent 

Feature, IPF; Slope of the IPF, SIP). Results were analyzed in SPSS using ANCOVA, with 

IQ as a covariate. A reduced SIP was in older men with ASD, compared to NT men, in the 

Default Mode Network [F(1,47)=6.48; p=0.02; 2=0.13] and Executive Network 

[F(1,47)=4.40; p=0.04; 2=0.09], a trend in the Fronto-Parietal Network [F(1,47)=3.36; 

p=0.07; 2=0.07]. There were no differences in the non-prefrontal networks (Sensory 

motor network, auditory network, and medial visual network). The only other graph theory 
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metric to reach significance was network diameter in the Default Mode Network 

[F(1,47)=4.31; p=0.04; 2=0.09]; however, the effect size for the SIP was stronger. 

Modularity, Betti number, characteristic path length, and eigenvalue centrality were all 

non-significant. These results provide empirical evidence of decreased functional network 

integration in pre-frontal networks of older adults with ASD and propose a useful 

biomarker for tracking prognosis of aging adults with ASD to enable more informed 

treatment, support, and care methods for this growing population. 
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CHAPTER 1 

INTRODUCTION 

 

A Primer on Autism Spectrum Disorder and Need 

Autism spectrum disorder (ASD) is a developmental neuropsychiatric condition 

with early childhood onset, thus most research has focused on characterizing brain function 

in young individuals. Little is understood about brain function differences in middle age 

and older adults with ASD, despite evidence of persistent and worsening core and cognitive 

symptoms (Abbott, Happe & Charlton 2018, Happe et al. 2016; Braden et al., 2017; Walsh 

et al., in press). One study found that symptom severity peaks in middle age (Lever & 

Geurts 2018). Currently, the CDC estimates that 1/59 children have ASD, with the first 

children diagnosed with ASD now in their elderly years (CDC 2018). The United States is 

projected to have 700,000 persons over 65 who have been diagnosed with ASD by 2030; 

thus, there is a clear need for more research in this field (Pivens & Rabins 2011).  

Overview of Prior Research 

Functional MRI in younger persons with ASD demonstrate that large-scale brain 

networks containing nodes in the prefrontal cortex are affected (Gilbert 2008, Carper 

2005). Further, various graph theoretical analyses have shown disrupted topological 

organization for young individuals with ASD when compared to neurotypical (NT) 

individuals (Hill 2004, Gilbert 2008, Barnea-Goraly 2004). However, graph theory-based 

topological brain organization for older adults with ASD is unknown. The Default Mode 

Network (DMN) and Executive Networks (EN) are two specific networks of the prefrontal 

cortex of note in the field of ASD research. Various studies have shown that individuals 
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with ASD have significant deficits in social-affective processing, explicitly tied to the EN 

(Lindquist & Barrett 2012). Further, the EN has been recognized as a core network for 

aberrant functional connectivity in those with ASD (Elton et al 2016), and cognitive 

difficulties (Solomon, Hogeveen, Libero and Nordahl 2017). The DMN has also been 

identified as having significant under connectivity for individuals with ASD (Cherkassky 

2006). Recent work has demonstrated that the DMN may have aberrant hyperconnectivity 

between the posterior cingulate and retrospinal cortices and hypoconnectivity between the 

precuneus and basal ganglia (Lynch 2013). This disparity has been theorized to mean that 

ASD may have a small-network effect, effecting few but specific networks. This observed 

atypical functional activity are considered to be prominent neurobiological features of ASD 

(Padmanabhan 2017). Graph theory metrics have the potential to shed light on this 

phenomenon. But, traditional graph theory-based methods suffered from the limited 

generalization because of the difficulty to make a principled choice of threshold values 

(Chung et al 2015, Choi et al 2014, Lee et al 2017).  

Recently, a new methodology for analyzing whole brain network connectivity in 

Alzheimer’s Disease was proposed as a more precise and robust method for detecting 

differences due to the disease (Kuang & Wang, 2019). This new method is the integration 

of a prior topological feature (Zeroth Betti number) and an innovative connected 

component aggregation cost (Christ 2008, Lee et al 2012). This Integrated Persistant 

Feature (IPF) is a monotonically decreasing convergence function, which when plotted 

across all possible filtration values, enables one to track the evolution of a network from 

separate components to a fully connected component. The connected component 

aggregation cost is produced from the minimum spanning tree of the network, and thus can 
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be understood as the least amount of ‘effort’ or ‘energy’ required for the evolution of the 

fully connected component. In order to connect more components, more energy would be 

required, and is related to the length of paths between nodes via a minimum spanning tree 

(MST). As a fully connected component is the target, then when plotted over the graph 

filtration, the required energy consumption declines until said target is reached when all 

components are connected, starting at =0 when all components are loose one can utilize 

the slope of the resultant plot (SIP) as a rate of convergence. This convergence rate can be 

thought of as the “rate of information diffusion” within the network due to the encoding of 

estimated future states as represented by the aggregation cost (Kuang & Wang 2019). 

Proposal and Hypotheses 

Building on this prior aging neuroscience work, we propose this novel graph theory 

metric quantifying the rate of information diffusion as a more robust and sensitive method 

for tracking brain aging in ASD. Moreover, because this metric is free of threshold 

selection, it has the potential to provide greater generalizability across studies. We will first 

apply this metric to whole brain analysis in older adults with ASD versus matched 

neurotypical (NT) adults, as previously done to discriminate between Alzheimer’s disease, 

mild cognitive impairment, and healthy controls (Kuang et al., 2019). However, due to 

regional specificity of functional brain difference in ASD, we do not expect group 

differences from the whole brain approach. Rather, we hypothesize group differences will 

only be present in distinct large-scale brain networks containing nodes within the prefrontal 

cortex. Lastly, we compare this novel metric against five well-accepted graph theoretical 

analysis methods, and hypothesize it will provide a larger effect size for group differences.  
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As this disorder has been primarily investigated in younger individuals, namely 

children, there is little data demonstrating how aging affects symptoms of ASD, the brain, 

and future prognosis outlooks. This work serves to not only propose the novel graph theory 

metric as a potential functional biomarker to understand network organization differences 

in older adults with ASD but also to orient the field of advanced imaging analytics to a new 

area of research with a rapidly growing need. 
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CHAPTER 2 

METHODS 

 

Subject Selection 

Participants for this study were right handed males, 27 with ASD (52+/- 8.4 years), 

IQ (109 +/- 2.78) and 21 NT (49.7 +/- 6.5 years), IQ (111 +/- 2.96) for a total of 48 

participants that were well age and IQ matched. Subjects were recruited from the greater 

Phoenix, Arizona area. The cut off for older adults with ASD was 40 years of age based on 

the only other study of brain connectivity in adults with ASD showing divergent aging 

trajectories at this age (Koolschijn et al.  2016). There were no significant differences 

between diagnosis groups. Detailed demographic information can be found in Table 1. 

Participants with ASD were recruited via the Southwest Autism Research and 

Resource Center (SARRC) lifetime database, a voluntarily enrolled database that includes 

information from all clients who participated in a clinical or research program at SARRC. 

Other participants with ASD were recruited via grassroots community groups and flyers 

posted at ASD community events, and their diagnosis was confirmed by SARRC upon 

enrollment. NT participants were recruited via word of mouth and flyers posted throughout 

the community. 

 All participants with ASD reported a clinical or suspected diagnosis of ASD, 

confirmed with a research reliable psychometrist with a decade of experience via the 

Autism Diagnostic Observation Schedule-2 (ADOS-2) (Lord et al 2012). ADOS-2 results 

were reviewed and diagnosis confirmed by a psychologist with 25 years of experience 

(CJS) who completed the DSM-5 checklist (APA 2013) based on current presentation of 
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symptoms. NT participants reported no suspected or confirmed diagnosis of ASD, and 

were administered the Social Responsiveness Scale-2 Adult Self Report (SRS-2; 

Constantino 2012) in order to confirm. Due to the low level of specificity of the self-report 

measure (0.60; Mandell et al., 2012) the cutoff for NT participants was set at a T-score = 

66, in order to accommodate normal variation in social behavior that is unrelated to ASD.  

To further increase confidence in NT status, having a first-degree relative with an 

ASD diagnosis was considered as an exclusionary criteria for NT participants. Other 

exclusion criteria for all participants were score <70 on the Kaufman Brief Intelligence 

Test – 2nd Edition (KBIT – 2; Kaufman & Kaufman, 2004) and score 26 on the Mini 

Mental State Exam (MMSE; Folstein, Folstein, & McHugh, 1975).  

 All participants self-reported their medical history; no participants reported a 

history of genetic disorders, neurological illness (stroke, dementia), or any head injuries 

that led to loss of consciousness. As seizures are a common in children with ASD (Volkmar 

1990, Theoharides 2011), we did not exclude the small number of our participants who had 

experienced a single childhood seizure but who were not on anti-seizure medication and 

who no longer had seizures into their adulthood. We also did not exclude a history of 

depression or anxiety in the ASD group, as these are common comorbidities in ASD (Lever 

& Geurts 2016). The NT participants did not report any history of psychiatric mood 

disorders.  

This study was conducted in compliance with Arizona State University’s ethical 

standards for research and the Declaration of Helsinki 2000 revision. All participants 

provided written consent approved by the Institutional Review Board. 

Data Acquisition 



  7 

Images were collected using a 3-Tesla Philips Ingenia MRI scanner with a 

maximum gradient strength of 45 mT/m. All participants underwent high-resolution, T1-

weighted scans (3D magnetization prepared rapid acquisition gradient echo [MPRAGE]; 

170 axial slices, 1.2 mm slice thickness, field of view=240 mm, 256x256 acquisition 

matrix). Functional blood-oxygen-level dependent (BOLD) signal images were collected 

via a gradient-echo echo-planar series with whole brain coverage (repetition time=3000ms, 

echo time=25ms, flip angle=80°, 3mm slice thickness, 24mm field of view, 64x64 

acquisition matrix). Resting-state scans were six minutes in duration, during which 120 

brain volumes were collected while the participant had their eyes closed. Prior to MRI data 

acquisition, the option to visit the imaging center and experience the MRI environment was 

provided to all participants to minimize anxiety-related motion during fMRI acquisition. 

Padding and headphones were also used to minimize head motion in the scanner. 

Pre-Processing 

Resting-state fMRI was selected for connectivity analysis as it has shown good 

reproducibility (Shah et al., 2016), and potential for identification of neurophenotypes in 

psychiatric disorders (Van Essen & Ugurbil, 2012). Resting-state data were preprocessed 

using Statistical Parametric Mapping software (SPM-12; Wellcome Department of 

Cognitive Neurology, Institute of Neurology, London, UK; fil.ion.ucl.ac.uk/spm/) in 

Matlab (Mathworks, Natick, MA). The first two volumes were removed to account for 

time needed for scanner magnetization to reach a steady state. Wavelet Despiking using 

the BrainWavelet toolkit (Patel et al., 2014) was conducted on raw image data to reduce 

secondary motion artifacts. Slice-time correction and realignment were then performed to 

correct for differences in slice acquisition timing and motion during scanning, 
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respectively. The structural images were segmented into gray matter and white matter 

tissue maps and then skull-stripped to improve co-registration. Each participant’s 

functional image series was co-registered to their skull-stripped T1 image. Using 

DARTEL Tools implemented in SPM-12, a common template that maximizes inter-

participant alignment was generated based on participants’ gray and white matter 

segmented images using an iterative registration process. The common template was then 

transformed to MNI space, and each participant’s DARTEL flow field and MNI 

transformation parameters were applied to their functional image series. During this step, 

the data underwent smoothing using a 6-mm full-width half-maximum Gaussian kernel to 

reduce spatial noise. Images were visually inspected after each step in the preprocessing 

pipeline. Using the Artifact Detection Tools toolbox, smoothed and normalized images 

were inspected for high-motion volumes to be censored. However, no volumes exceeded 

the moderately conservative thresholding criteria (0.9mm) of relative scan-to-scan 

displacement. Data Processing Assistant for Resting State fMRI (DPARSF) (Yan & Zang 

2010) in Matlab (Mathworks) was used for the extraction of 116 regions of interest 

(nodes, ROI) signals based on the automated anatomical labelling atlas (AAL) (Tzourio-

Mazoyer 2002).  

Network Construction 

Analysis was performed at both the whole brain level and specific large-scale 

network level. Based on Smith et al (2009) and the 116 AAL Atlas, we identified 6 

networks which contained a sufficient number of nodes for graph theory analysis. These 

networks were three prefrontal-containing networks, and three non-prefrontal-containing 

networks. The prefrontal networks were the DMN, EN, and the Fronto-Parietal Network 
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(FPN). The three other networks were the sensory motor network (SMN), auditory 

network (AN), and medial visual network (MVN). Each networks dendrogram (see 

Results, Figures 9 - 14) denotes which AAL regions were assigned to each network based 

on Smith et al. (2009). 

Integrated Persistent Feature 

Each network (including the 116 ROI whole brain) was constructed where each 

ROI or node represents anatomical brain regions. The Pearson correlation was utilized to 

determine the distance between nodes, where a larger correlation coefficient implies 

stronger functional connectivity. In this way we built a hierarchical organization via a 

dendrogram using the single linkage distance matrix for each subject, and the resting state 

multiscale network is constructed for every subject in our ASD and NT group. Utilizing 

the zeroth Betti Number as a persistent homology graph filtration enables us to track the 

construction of a fully connected component (all nodes connected together of the 

network) as the filtration value increases (Giuti et al 2016). In this method, plotting the 

IPF across different filtration values enables us to track the evolution of the network to a 

fully connected component. The slope of this monotonically decreasing function, the IPF, 

(SIP) is therefore the rate of connecting components converging over the filtration value 

λ, which can be thought of as the “rate of information diffusion” within said network. 

(Kuang et al., 2019).  

Traditional Graph Theory Metrics 

 

 The IPF has been demonstrated in its initial paper to have greater sensitivity and 

robustness compared to other widely use graph theoretical network measures when 

applied to subject-wise Alzheimer’s data (Kuang & Wang 2019). In this work, the 
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authors compared its function against five other graph theoretical metrics; Betti Number 

Plot (BNP), Characteristic Path Length (CPL), Network Diameter (ND), Eiganvector 

Centrality (EC) and Modularity (Mod) (Chung et al. 2015, Lee et al 2012, Lee et al 

2017). These metrics were obtained through the Brain Connectivity Toolbox for Matlab 

(Rubinov 2010). Briefly, CPL can be understood as the average shortest distance between 

all nodal pairs once all nodes are connected, and can be understood as “ease” of data 

transfer within said network (Brier et al 2014). For example, a low CPL is understood as 

describing a network with “easily” or quickly” data transfer. ND is how far the furthest 

nodes of a network are from one another based on a paired path length (Assenov et al 

2007). It enables understanding of the size of a network. A large ND and small CP would 

therefore be considered an efficient network. Mod measures how the communities within 

a network differ from each other (Sporns & Betzel 2016). EC (Van Duinkerken et al 

2017) assigns greater weight or importance to nodes if connected to other highly 

connected nodes. In this way, a node itself that enables connection between two highly 

connected nodes is itself a very important node. 

Statistical Analysis 

The results were analyzed in SPSS (IBM SPSS Statistics for MacOs, Armonk, 

NY) using an ANCOVA for each graph theory metric for the whole brain or network, 

with IQ as the covariate due to its influence on cognitive behaviors and network 

connectivity (Bora and Pantellis 2016, Van Den Heuvel et al 2009). 
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CHAPTER 3 

RESULTS 

 

Whole Brain 

As shown in Table 2, the SIP was unable to detect a significant difference 

between the older ASD group our older NT group (F(1,47) = 0.360 P=0.552, 2=0.009). 

There were also no significant differences between groups for the five traditional graph 

theory metrics (Table 2) at the whole brain level. 

Prefrontal Networks 

 The values and statistical information for the SIP and other metrics are found in 

Table 2. We found a significant difference between older ASD and older NT groups for 

both the DMN (p=0.02, Figure 2), EN (p=0.04, Figure 3), and a trend approaching 

significance in the FPN (p=0.07, Figure 4). We also find a significant difference in the 

DMN for Network diameter (p=0.04), though as shown in Table 2, the effect size for the 

SIP was stronger. The network diameter was non-significant for the other two prefrontal 

networks. None of the other graph theory metrics were significant for any prefrontal 

network (Table 2). 

Non-Prefrontal Networks 

The values and statistical information for the SIP and other metrics are found in 

Table 2. As expected, when looking at our other non-prefrontal networks, all measures 

including the SIP were non-significant between older adults with ASD and older NT 

adults in the AN, SMN, MVN. 
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CHAPTER 4 

DISCUSSION 

Present Findings 

The presented study examined the application of novel integrated persistent 

feature to examine topological network differences in both whole brain analysis and 

network specific analysis in an older group of adults with ASD than has been 

traditionally studied. As originally expected, our hypothesis that older individuals with 

ASD when compared to NT would not have whole brain network differences was 

confirmed. As the SIP is directly related to network topology, this lack of whole brain 

convergence rate differences is most likely due to many unaffected networks within the 

brain. Thus, the lack of significant findings at the whole brain level may be a signal to 

noise issue, as other topological work found differences in local and global efficiency 

between functional networks in ASD (Rudie 2013). To confirm this, we investigated the 

prior-identified pre-frontal cortical networks for network differences. 

Within these prefrontal networks, we found a reduced SIP in the DMN and EN, 

and a trend towards significant difference in the FPN. Further, we see from figures 15-17 

that the older ASD group specifically had a reduced slope. This is interpreted to mean 

that within the DMN and EN, older individuals with ASD have reduced network 

integration when compared to the older NT group. Further, we demonstrate this measures 

sensitivity in detecting these differences in small sample sizes (Table 2) when compared 

to the traditional measures as evidenced both by the effect size between groups and that 

the other five measures were non-significant in the EN (Table 2). However, within the 

DMN the ND was also significant. Consistent with our findings, others report abnormal 



  13 

functional connectivity and reduced network recruitment in the DMN in younger groups 

with ASD as well (Assaf et al 2010, Yerys et al 2015).  

Although we did not set out to make inferences about regional within-network 

connectivity, the dendrograms (Figure 9) provide visually interesting information. 

Although we are the first to investigate resting-state network dynamics in older adults 

with ASD our findings largely correlates with previous research in younger groups with 

ASD. In reference to Figures 9-14, the dendrogram represents the strength of functional 

connections between nodes and the anatomical features represented by these nodes 

(Phipps 1971, Lee 2012). For example, as shown in other research with ASD (Lynch 

2013), the DMN has strong connections between the posterior cingulate and retrospinal 

cortices (Figure 9). This strong connection exists in older adults with ASD despite the 

observed reduced connectivity in the precuneus, hippocampus, and gyrus rectus. Further, 

this initial connectivity appears different than that of the NT dendrogram (Figure 9) 

which shows less connectivity between these areas, but stronger connectivity between 

others, such as the frontal medial and orbital gyri. Looking at our unaffected networks as 

measured by the SIP (Figures 12, 13, 14) we see that the AN, SMN, and MVN 

dendrograms are identical between the ASD to NT groups. This may imply differences in 

network organization in our ASD group that is prefrontal network specific, which is 

supported by other ASD literature. In one study, network topologies and organization 

were disrupted in the FPN, DMN, SMN, and occipital network (Itahashi 2014) as 

measured by a decrease in variety of network techniques (degree centrality, nodal 

efficiency, betweeness centrality). Functional connectivity analysis of organization also 

detected differences in networks related to social and emotional processing in the task 



  14 

negative network (i.e. DMN) despite intact organization of the task positive network 

(Kennedy 2008), with reduced connective strength being related to worse symptoms. 

However, many other studies have produced contradicting results on connectivity and 

organization, potentially due to differences in sample demographics, specifically 

symptom severity, IQ, and sex (Hull 2017, Gong 2009). Collectively, the dendrograms 

may provide utility for identifying the most vulnerable anatomical features and 

component communities for a given neurological condition, which warrants future 

follow-up. 

Previous Application of the SIP 

In its introductory paper, the SIP had only been applied to whole brain analysis, 

though the authors believed its high degree of generalization could enable its application 

to other network sizes (Kuang et al., 2019). As demonstrated in Table 2, we confirmed 

that the SIP was a more sensitive measure than the other network measures in the EN and 

DMN, as evident by effect sizes in ASD versus NT comparison. Specifically, that the 

ASD group had a reduced SIP over the NT group in both the DMN and EN, and a trend 

in the FPN (Figure 16, 17). Due to the SIP effect size in the FPN, by the boxplot shown 

in Figure 17, we believe that increasing the sample size may demonstrate a significant 

difference in this network as well. Within the DMN and the EN, these results of this 

novel metric demonstrate that older individuals with ASD have decreased functional 

integration.  

Previous Findings in ASD 

Other than the work currently being performed by our research team, there has not 

been any other study that has investigated rs-fMRI data in older adults with ASD. In a 
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study performed by Walsh et al. (in press), independent component analysis was applied 

to investigate network connectivity in younger vs. older adults with ASD. This study 

demonstrated that the EN in older persons with ASD has significant hypoconnectivity 

when compared to younger individuals with ASD. Further, reduced connectivity of 

prefrontal regions within this network to the rest of the network was correlated with 

worse social cognitive abilities. Despite this, we can look at the broader field of rs-fMRI 

ASD research and findings for support as to why we only find differences in prefrontal 

networks. A summary review article of rs-fMRI studies in ASD points to reduced 

functional coherence in DMN, and a potential compensatory increase in local cortical and 

sub cortical network connectivity (Rane et al 2015). Findings in young persons with ASD 

also demonstrate that the DMN specifically has hypoconnectivity (Jung et al 2014). Other 

work performed with multimodal brain imaging has continued to show differences in 

network connectivity and topological organization in the prefrontal cortex (Itahashi 2014, 

Itahashi 2015). As such, these network specific observations in our older populations are 

consistent with other findings in ASD that demonstrated decreased connectivity in the 

pre-frontal cortex and specifically in the EN and DMN (Pandhaman 2017, Rudie 2013). 

Previous Traditional Graph Theory Applications in ASD 

This study is not the first to propose a graph theoretical approach to investigating 

ASD. In a recent study, differences in the auditory, somatosensory, and subcortical 

networks were found using community structure analysis using community diversity 

measures; density, cohesion, and dispersity (Keown et al 2017). However, this study 

relied on a sample of 174 NT and 111 ASD participants, and only in young adults with no 

consideration for handedness, sex, or IQ influences on these networks. Other work has 
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shown increase network size for young individuals with ASD (Malaia 2016), and 

differences in degree and eigancevtor centrality in the basal ganglia and precuneus (Di 

Martino 2013). Once again, these studies were done on children with ASD. However, 

looking at effect sizes (Table 2) for some of these other measures, if a larger population 

was utilized in our study we may have also seen these differences. It is difficult, however, 

to find older adults with ASD because of the relative recentness of the diagnosis. The SIP 

is therefore extremely important over other graph theory metrics due to its sensitivity to 

detect small differences in smaller sample sizes. 

However, no other study has proposed or demonstrated a measurable factor that 

could be used for  tracking age-related changes in topological differences or network 

integration. In this regard, because the SIP is the more sensitive metric for detecting 

differences from matched NT older adults, it may also serve as a potential functional 

biomarker for tracking age-related brain changes . Such a biomarker does not currently 

exist, and with a growing affected population, could assist in informed treatment and 

large-scale care methods, while furthering our understand of ASD and its effects on the 

brain at large. 

Limitations and Future Directions 

Although this study provided significant contributions to the field of ASD, 

limitations did exist. First, this study was performed with a relatively small sample size of 

“high functioning” participants whose diagnosis was determined at different times within 

their respective lives. Despite our decision to choose the cut-off for our older group based 

on findings by Koolschijn et al 2016, the chosen range of ages is relatively large. Dividing 

this population into further age-related groupings would yield small (<5 person) groupings 
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in some brackets. Future larger sample size studies will be needed to confirm these effects 

and account for cohort differences. Ideally, longitudinal studies would be performed to 

verify and validate the SIP as a useful measure of tracking brain aging in ASD. As the 

group was all “high-functioning”, it is limited in its application to the rest of the spectrum 

for ASD. Further research is warranted to examine the range of intellectual functioning in 

ASD. Secondly, the population investigated was all male. As sex differences affect neural 

network connectivity (Ingalhaliker 2014) and organization (Wu 2013), choosing a same 

sex sample was necessary. Further, it is difficult to find older aged women with ASD due 

to camouflaging of symptoms (Lai 2017). Future studies are needed to examine if there are 

any sex differences for this measure. 

The full utility of the SIP as a biomarker in older adults with ASD is yet unknown 

because we have yet to explore relationships with symptoms. These participants are well 

characterized on an extensive symptom and cognitive battery. Future research will identify 

which behavioral metrics align most closely with SIP values, and thus estimates of the 

functional significance of the SIP. Similarly, understanding how the SIP relates  to 

structural brain measures will be necessary to characterize its role in neurobiology. We 

have extensive structural imaging on these participants as well, and future investigations 

will examine which structural network metrics (e.g. white vs. gray matter) align most 

closely with SIP values.  
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CHAPTER 5 

CONCLUSION 

Results demonstrate that this novel network measure maintains its statistical 

power and robustness when applied to ASD group difference studies, but is specific to 

prefrontal-containing networks. Understanding the full value of this functional imaging 

biomarker will come from future investigations of relationships with symptoms in ASD 

and sensitivity to age-related changes in our longitudinal study. Ultimately, we aim to 

determine if one time point analysis of the SIP can predict future symptom decline in 

aging adults with ASD. 
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Figure 1: Plot of the IPF for the Whole Brain 
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Figure 2: Plot of the IPF in the Default Mode Network 
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Figure 3:  Plot of the IPF in the Executive Network 
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Figure 4: Plot of the IPF in the Fronto-Parietal Network 
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Figure 5:  Plot of the IPF in the Auditory Network 
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Figure 6:  Plot of the IPF in the Medial Visual Network 
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Figure 7:  Plot of the IPF in the Sensory Motor Network 
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Figure 8:  Dendrogram of Connectivity between Anatomical Regions for the Whole Brain 
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Figure 9: Dendrogram of Connectivity between Anatomical Regions for the DMN 
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Figure 10: Dendrogram of Connectivity between Anatomical Regions for the EN 
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Figure 11: Dendrogram of Connectivity between Anatomical Regions for the FPN 
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Figure 12: Dendrogram of Connectivity between Anatomical Regions for the AN 
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Figure 13: Dendrogram of Connectivity between Anatomical Regions for the MVN 
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Figure 14: Dendrogram of Connectivity between Anatomical Regions for the SMN 
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Figure 15: Box Plot of the SIP in the DMN 
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Figure 16: Box Plot of the SIP in the EN 
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Figure 17: Box Plot of the SIP in the FPN 
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Table 1: Subject Demographic Data 

 ASD NT 

AGE (YEARS) 

RANGE 

52+/- 8.4 years 

40-70 

49.7 +/- 6.5 years 

40-64 

IQ 

RANGE 

109 +/- 2.78 

70-131 

111 +/- 2.96 

89-141 

YEARS EDUCATED 

RANGE 

15.5 +/- 2.7 

11-20 

16 +/- 2.4 

9-20 

SRS-2 

RANGE 

73.2 +/- 10 

56-89 

45.7 +/- 6.3 

37-60 

ADOS-2 

RANGE 

10.6 (3.0) 

7-19 

---- 
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Table 2: Statistical Analysis Results (F, P,η2) for All Networks and All Measures 

Network 

Bold – 

Bold/UL 

SIP 

Trend 

Significant 

BNP CPL ND EC Mod 

Whole  

F 

P 

η2 

 

0.360 

0.552 

0.01 

 

0.613 

0.438 

0.015 

 

0.481 

0.492 

0.12 

 

0.118 

0.733 

0.003 

 

2.08 

0.157 

0.48 

 

0.00 

0.99 

0.00 

DMN 

F 

P 

η2 

 

5.968 

0.019 

0.13 

 

0.004 

0.949 

0.00 

 

2.198 

0.145 

0.048 

 

4.502 

0.040 

0.093 

 

0.979 

0.979 

0.328 

 

1.767 

0.191 

0.039 

EN 

F 

P 

η2 

 

4.398 

0.042 

0.089 

 

2.139 

0.151 

0.045 

 

0.032 

0.859 

0.001 

 

0.001 

0.981 

0.00 

 

0.308 

0.581 

0.007 

 

0.032 

0.859 

0.001 

FPN 

F 

P 

η2 

 

3.357 

0.074 

0.071 

 

3.783 

0.058 

0.078 

 

0.595 

0.445 

0.013 

 

0.00 

0.993 

0.00 

 

1.575 

0.216 

0.034 

 

0.009 

0.925 

0.00 

AN 

F 

P 

η2 

 

1.004 

0.322 

0.022 

 

0.614 

0.437 

0.013 

 

0.136 

0.714 

0.003 

 

0.554 

0.460 

0.012 

 

1.661 

0.204 

0.036 

 

0.320 

0.575 

0.007 

MVN 

F 

P 

η2 

 

0.154 

0.697 

0.003 

 

0.074 

0.787 

0.002 

 

0.015 

0.903 

0.00 

 

0.099 

0.754 

0.002 

 

0.132 

0.718 

0.003 

 

0.045 

0.832 

0.001 

SMN 

F 

P 

η2 

 

0.008 

0.928 

0.00 

 

0.811 

0.373 

0.018 

 

1.830 

0.183 

0.039 

 

1.778 

0.189 

0.038 

 

0.831 

0.367 

0.018 

 

0.003 

0.957 

0.00 
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Table 3: AAL Atlas Regions 
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APPENDIX D 

 

SUBJECT INFORMED CONSENT FORM 
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Subject Informed Consent Form 
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