
Adaptive Optimal Control  

in Physical Human-Robot Interaction  

by 

Rebecca C. Bell 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  

Master of Science  

 

 

 

 

 

 

 

 

 

 

Approved April 2019 by the 

Graduate Supervisory Committee:  

 

Wenlong Zhang, Chair 

Erin Chiou 

Daniel Aukes 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

May 2019  



  i 

ABSTRACT  

   

What if there is a way to integrate prosthetics seamlessly with the human body 

and robots could help improve the lives of children with disabilities?  With physical 

human-robot interaction being seen in multiple aspects of life, including industry, 

medical, and social, how these robots are interacting with human becomes even more 

important. Therefore, how smoothly the robot can interact with a person will determine 

how safe and efficient this relationship will be. This thesis investigates adaptive control 

method that allows a robot to adapt to the human's actions based on the interaction force. 

Allowing the relationship to become more effortless and less strained when the robot has 

a different goal than the human, as seen in Game Theory, using multiple techniques that 

adapts the system. Few applications this could be used for include robots in physical 

therapy, manufacturing robots that can adapt to a changing environment, and robots 

teaching people something new like dancing or learning how to walk after surgery.  

 The experience gained is the understanding of how a cost function of a system 

works, including the tracking error, speed of the system, the robot’s effort, and the 

human’s effort. Also, this two-agent system, results into a two-agent adaptive impedance 

model with an input for each agent of the system. This leads to a nontraditional linear 

quadratic regulator (LQR), that must be separated and then added together. Thus, creating 

a traditional LQR. This new experience can be used in the future to help build better 

safety protocols on manufacturing robots. In the future the knowledge learned from this 

research could be used to develop technologies for a robot to allow to adapt to help 

counteract human error.  

  



  ii 

DEDICATION 

 I would like to dedicate this to my parents for always pushing me further. 

   



  iii 

ACKNOWLEDGMENTS  

   

I would like to express my thanks of gratitude to my professor, Dr. Zhang, and Ph.D. 

student, Yiwei Wang, who gave me the golden opportunity to do this wonderful project 

on the topic of Adaptive Control.  This permitted me to do an immense amount of 

research and I came to learn about a great deal of new things. I would also like to give a 

special thanks to Dr. Oakes and Dr. Isom for helping me in understanding the complex 

mathematical side of this project. 

Finally, I would like to thank my parents and friends who assisted in finalizing this 

project within the limited time frame. 



  iv 

TABLE OF CONTENTS  

Page 

LIST OF TABLES ................................................................................................................... vi  

PREFACE  ............................................................................................................................ viii  

CHAPTER 

1 Introduction  ...........................................................................................................  1 

1.1 Litature Review and Background ....................................................................  1 

1.2 Motivation ........................................................................................................  6 

1.3 Organization of Paper ......................................................................................  6 

2 The System: Two-Agent Shared Control ..............................................................  7 

3 Method ....................................................................................................................  8 

3.1 System Variables and Initial Values ................................................................  8 

3.2 Simulation Study ............................................................................................  15 

4 Reconstruction  .....................................................................................................  19 

5 Simulations ...........................................................................................................  28 

5.1 System Check – Changing the System Constants .........................................  28 

5.2 Changing the Mass Constant .........................................................................  28 

5.3 Changing the Damping Constant ...................................................................  30 

5.4 Techniques Tested to Update R2 ....................................................................  33 

5.5 Care and Nonlinear fsolve Function ..............................................................  33 

5.6 Basic fsolve Function .....................................................................................  34 

5.7 Difference Technique Using Equation (30)  .................................................  34 

 



  v 

 

CHAPTER              Page      

6 Closing ..................................................................................................................  37 

6.1 Limitations and Challenges............................................................................  37 

6.2 Application  ....................................................................................................  38 

6.3 Future Work ...................................................................................................  40 

6.4 Conclusion  .....................................................................................................  40 

REFERENCES  ...................................................................................................................... 41 

APPENDIX 

A      System’s Values  ......................................................................................................  44  

B      Matlab Code  ............................................................................................................  46 

C      Code Using the fsolve Function ...............................................................................  50 

D      Function Code  .........................................................................................................  54 

E      Code Using Basic fsolve Function ...........................................................................  56 



  vi 

LIST OF FIGURES 

Figure Page 

Figure 1 - Children with autism working with robotic doll, learning social skills [1] ...... ix 

Figure 2 - Kuka Robot being setup to run on the assembly line - ASU 2018 Capstone 

with Raytheon ..................................................................................................................... 3 

Figure 3 - Social interaction between a child and robot, using a touchscreen to interact 

[30] ...................................................................................................................................... 5 

Figure 4 – Illustrated scenario of the system ...................................................................... 8 

Figure 5 – (Above) The expected outcome of the graphs from [9] .................................. 22 

Figure 6 – Position Plot based on equations (1) vs (1a) ................................................... 22 

Figure 7 – Results from [9] of Interactive Force and the Force Error .............................. 24 

Figure 8 – Interactive Force and Force Error based on differentiating (26) ..................... 24 

Figure 9 - Article [9] Gain Plot ......................................................................................... 26 

Figure 10 - Gain Plot using (28) to update R2 ................................................................... 26 

Figure 11 - R2 Plot from article [9] ................................................................................... 27 

Figure 12 - R2 Plot as the system adapts ........................................................................... 27 

Figure 13  – Position plot when Md is halved vs original system ..................................... 29 

Figure 14 – Force plot when the Md is halved vs original system .................................... 29 

Figure 15 - Gain plot when Md is halved vs original system ............................................ 29 

Figure 16 - Position plot with Cd halved vs original system ............................................ 30 

Figure 17 - Force plot with Cd halved vs original system................................................. 30 

Figure 18 - Gain plot with Cd halved vs original system .................................................. 31 

Figure 19 - Position plot with Cd doubled vs original system .......................................... 32 



  vii 

Figure                          Page 

Figure 20 - Force plot with Cd doubled vs original system .............................................. 32 

Figure 21 - Gain Plot with Cd doubled vs original system ............................................... 33 

Figure 22 - R2 Plot using care and fsolve function vs linsolve function ........................... 34 

Figure 23 - Gain Plot - Updating R2 using equation 30 vs linsolve function .................... 35 

Figure 24 - R2 Plot using equation 30 vs linsolve function ............................................... 36 



  viii 

PREFACE 

Each day there are military troops and individuals suffering from accidents 

around the world, leaving people with injuries that will affect them for the rest of their 

lives. When my god-father was deployed in Iraq, he was medically discharged after 

sustaining a broken pelvis. He underwent a traditional hip replacement and received a 

femoral implant, which left him with a limp and some physical limitations. In the future, 

there may be a possibility for a new type of implant or robotic joint that could improve 

the results of joint replacement such as this. More research regarding physical human-

robot interaction must be conducted for this to become a reality. 

 Robotics engineering covers a multitude of topics including industry, prosthetics, 

rehabilitation machines, and even education. Considering the types of engineering and 

the technology currently available, robots could help humans improve both their 

efficiency in the workplace and their quality of life.  

Robots can be utilized in industrial settings to reduce takt time and physical strain 

on workers. Currently, prosthetics and rehabilitation machines are being engineered with 

motors and actuators. One day they may also include artificial intelligence in order to 

minimize the patient’s struggles by assisting with the patient’s body and muscles. In 

schools, children with autism interact with robots to learn acceptable social behaviors and 

understand social cues provided by the robot [1]. This type of interaction can be seen in 

Figure 1. Before any of these robots can be implemented into society, there must be a 

fundamental understanding of the interactions between humans and robots, which may be 

the future of the robotic engineering field. This thesis is based on research regarding the 

optimization of the physical relationship between a robot and a human. Simulations have 



  ix 

established the idea that interaction forces are created when humans and robots work 

together.  This in turn can cause the robot to recognize alterations to the plan of action 

and adapt quickly with minimal strain on the human.  

 

 

Figure 1 - Children with autism working with robotic doll, learning social skills 

[1] 

 



  1 

CHAPTER 1 

INTRODUCTION 

1.1 Literature Review and Background 

When a person goes through physical therapy, they are put through different 

movements with resistance bands. When my grandma shattered her shoulder, she had a 

metal plate put in. After she was healed enough to be able to move her arm again, she 

was given stretches to strengthen her shoulder. One of these exercises was to grab both 

ends of a rope that is hanging from a pully and use the good arm to pull the other arm up 

so that it could stretch her shoulder. Due to the type of stretches, she had to do them on 

her own. Yet, because she did not want to push herself too far, she never was able to 

regain full motion of her arm. 

What if there was a robot that could help her stretch, by helping her raise her arm 

and push her to reach a little higher each time? Then maybe she could regain the whole 

range of motion to that shoulder thanks to the help of that robot. To do this, the robot 

would have to have a slightly different desired goal and path than the human. For 

example, the human wants to be able to reach the whole area of the table but can only 

reach a small circle within the table due to an injury. With the robot’s help and desire to 

reach the whole area of the table, it gives some pull on the human that helps the human 

reach further than it could before, but also be adaptive so that it would not go beyond the 

human’s physical limits. This could be done with a robot that has adaptive control within 

its programming. 

Role adaptation control can be used in physical human-robot interaction (HRI) for 

rehabilitation (as seen in [2]) and social development, like working with children with 



  2 

autism (as seen in [3]). Another way robots have been implemented is in home settings, 

using a service robot [4] or an industrial setting, using a robot designed to carry heavy 

objects [5]. As technology advances, interactions between humans and robots will 

become more frequent, presenting a need to understand the coordination and safety 

aspects of their relationships. One way that was looked at to understand the coordination 

aspect of HRI is in article [6], using an adaptive optimal control in a nonlinear system 

like the robots used in manufacturing. Then we must understand the importance of the 

safety aspect. For instance, in article [7] a safety protocol is used to access the 

surrounding area of the robot to ensure there is not any danger within the area. These 

aspects will be necessary to educate robot users about safety protocols concerning the 

utilization of robots in many industries [8]. Research in the field of physical HRI 

specifically looks at continuous time role adaptation and the dynamics of shared control 

[9]. When performing a single task, research has shown that humans and robots have 

different goals, which allows researchers to understand the adaptive shared control 

between the human and robot [10]. 

The importance of role adaptation is to understand the models of the human-robot 

relationship so that it can be adapted into a model that is able to assist people. Current 

techniques of robot utilization include social learning for children diagnosed with autism 

[11] and physical therapy [12]. One way of understanding the role of adaptation is using 

motion capture cameras to examine human movements [13] and behaviors when 

interacting with robots [14] as well as other humans [15]. Prior to looking at a system 

using optimal control [7], the robot must be modeled to be able to analyze how it 

interacts with its environment. At this point, the model can then be altered to fit any need, 



  3 

including but not limited to developments in safety [16], rehabilitation and therapy [17], 

and even dance instruction [18]. 

In industry there are several different reasons to incorporate a robotic system into 

the work place. For example, the Kuka robot seen in Figure 2, made for the assembly line 

to lower takt time and increase the accuracy of the machined parts. These robots can be 

used to manufacture parts more precisely [19] or help workers handle tools [20]. Role 

assignment policies have become an important research topic when it comes to robots in 

industry [21]. In article [21], it shows that there are several issues that need to be resolved 

before humans and robots can work together seamlessly. These issues are cues that a 

robot can understand: social factors, competition between dyads, mechanical impedance, 

asymmetric relations, and psychological aspects [21]. Therefore, understanding how a 

human and a robot interact and how to better this interaction is very important in the 

industry. If people and robots can interact seamlessly, then manufacturing plants become 

a more productive and promote a higher output of product. 

 

Figure 2 - Kuka Robot being setup to run on the assembly line - ASU 2018 Capstone with 

Raytheon 

Robots are being used in rehabilitation using a nonlinear adaptive impedance 

model with haptic feedback [22]. The research provides a stable impedance model that 



  4 

can be used in the Cartesian space [22]. Therefore, this research can provide a basis to 

build upon for recreating a stable system that will allow robots to help in rehabilitation 

and physical therapy. There is also research that has investigated exoskeletons to help 

strength joints, like an exoskeleton upper arm to help strengthen and move the upper arm. 

[23]. Also, built upon the idea of exoskeletons, there is a new type of exoskeleton known 

as soft robotics. It can be used as any other exoskeleton, but instead of actuators and 

motors it has inflatable bags like seen in article [24] when used on the elbow to help 

movement. Then soft robotics is also being used in HRI as seen in [25] to allow for easier 

collaboration between the robot and human when the exoskeleton is on the human. 

People interact every day, but they never analyze how to interact with someone 

else. When a robot interacts with a human, there is a great amount of thought that goes 

into how the robot should interact with humans, specifically socially [26]. There has been 

research done that investigates how to look at the conceptual model. For example, how to 

articulate, intentionality, interpret, and evaluate the problem at hand [27]. This 

investigation into how to model HRI includes looking at the problem from the view of 

the robot acting as a human, just like an actor becomes a character when acting in a 

movie [27]. With this way of thinking, it could lead to a new way in how robots are 

programmed to interact like a human, like how robots are being programmed to work 

with humans in a more human-like way [28]. Just like how article [29] investigates how 

to calculate the optimal grasping and manipulation forces needed to control and use the 

robotic hand properly.  

 Another type of research going on in HRI is having robots socially interact with 

children to help build social bonds [30]. This is done by having the children work with 



  5 

their robot companion, virtual and physical. The result is that the children respond best 

with robots that adapt to their behavior, especially when there is physical interaction from 

the robot instead of virtual [30]. This is important because if physical robots can be used 

to help children learn best and can be used for helping children and adults with autism 

understand social situations [31]. Yet, these robots do not have to be fancy, there is some 

research that is looking into the benefits of Lego robots when used to help children with 

autism and their social behavioral growth [32]. For this physical interaction can happen, 

there must be a foundation of how robots and humans interact. 

 
Figure 3 - Social interaction between a child and robot, using a touchscreen to interact 

[30] 

The common link between the different types of HRI is the physical aspect. These 

interactions are mostly based on force and how the robot responds to the human’s input. 

Thus, if the interaction between the human and robot is going to be smooth, then the 

robot needs to be able to respond to the human’s interaction force in a certain way. This 

thesis looks at an algorithm that adapts to the interaction force being inputted into the 

system as well as how this system can be adapted to minimalize the amount of force is 

needed to change the direction of the robot’s path. The relationship between the human 



  6 

and robot can be improved in the future to allow for the use in the medical, industrial, and 

social fields. The basis of the derived equations and cost functions will come from [9], 

[6], [33], and [34] to build the basic model.  

1.2 Motivation 

The motivation to do this project is to examine and develop an adapt robotic 

control method to improve physical HRI, such as prosthetics to help disabled veterans 

and to grow the adaptiveness of robots that could work with children with disabilities to 

improve their life experience. 

1.3 Organization of Paper 

 This thesis is organized using six different chapters. Chapter 1 provides and 

literature review and background of the research that has been done in the pass and 

motivation for this thesis. While Chapter 2 is setting up the system that is being analyzed. 

Next, Chapter 3 establishes all the critical equations needed for running the algorithm as 

well as the assumptions made. Once the equations have been established the algorithm is 

constructed in Chapter 4 before going onto the tests seen in following chapter. In Chapter 

5, the constants of the system are changed to check the system is working properly before 

testing the adapting part of the algorithm. Thus, three techniques are conducted to update 

the weight within the system that makes it adaptive. Then, Chapter 6 is about the 

limitations and challenges of the system, the applications of this algorithm, and the future 

work that is required to be able to use this algorithm. Lastly, at the end of this thesis there 

are five appendices with the different codes that are used in this thesis. 

  



  7 

CHAPTER 2 

THE SYSTEM: TWO-AGENT SHARED CONTROL 

 Research in physical human-robot interaction has mostly been on the leader-

follower role adaptions [35]. This thesis will look at how a continuous role adaption 

algorithm could be adopted into a robot control that allows the robot to be able to teach 

their human partner to do something new. If a robot can adapt to a human’s action based 

on force, then a robot could teach a person how to dance [18] or teach a person how to 

walk again after surgery. If an algorithm could be configured to control a robot to be able 

to adapt based on the human’s actions and allow for the robot to be able to teach the 

human without pushing the human passed his or her limits [9]. 

The human-robot system is a two-agent take on game theory, with the cost 

function of each agent with the system set-up almost the same as in [9]. The system 

includes the human and the robot as their own entities, working together with the same 

goal in mind, but different ways of achieving this goal. The way this is done is the human 

and robot work together to draw a path, but the human has a different desired path than 

the robot. To solve this problem, game theory needs to be introduced. Game theory is 

looking at how a human and robot can best work together if their cost functions or goals, 

are different [36]. Not only can game theory be used to help understand this relationship, 

but it can also help analyze how this relationship will affect each agent [37] and 

understand the social aspect of the system [38]. 

This thesis is looking at reconstruction of the system seen in article [9] and 

reproduce the results, however due to unseen circumstances, this thesis looks at the 

reconstruction of the system and different techniques it could use to adapt. In this system, 



  8 

the human will be working with the robot to draw a desired path. The overall goal is to 

work together to move the object with the robot’s goal to move the block along the red 

path and the human’s goal is to follow the blue path, as seen in Figure 4. Yet neither 

knows each other’s desired path goal. The robot’s adaption is controlled by the 

interaction force between the human and the robot, with the desire of the optimal control 

producing the minimal interaction force while keeping the desired path of the human. 

This is done by a computer simulation of the robot and human interaction in order to 

understand how the robot can adapt to the human’s actions. 

     

 

Figure 4 – Illustrated scenario of the system 

  



  9 

 CHAPTER 3  

METHOD 

3.1 System Variables and Initial Values 

 The system being tested is a two-input system: one input from the robot, and the 

other from the human. In the simulation, the input from the human is fixed while the 

input from the robot changes based on how the human acts while working with the robot. 

These equations are based on the equations seen in article [9].  

 Equation (1) looks similar to a traditional steady-state system equation with one 

exception: there are two input matrices and two input vectors. This system has the 

human’s and the robot’s reaction effecting the system. Similarly, in this system the B1 

matrix is the same as B2 matrix in this model. This allows the system updates and the 

robot reacts, the adjustments the robot makes in response to the human is directly 

proportional to the action of the human.  

𝑧̅̇(𝑡) = �̅�𝑧̅(𝑡) + 𝐵1
̅̅ ̅𝑢(𝑡) + 𝐵2

̅̅ ̅𝑓(𝑡)    (1) 

With an input from the human (f(t)) and an input from the robot (u(t)) can have 

different input matrices depending on what is desired from the system. The values for 

these matrices seen in (1) and the rest of the equations can be found in Appendix A. 

Equation (1) does not give the desired path results as seen in [9],  instead it must be 

changed to (1a) before the outcome of the graphs will look like the results on page 677 of 

[9]. This is because the force should be affecting the system in a negative way in the 

position plot. However, this does not happen. If the human’s input of the system is 

changed to a negative, then the system reacts as desired, specifically in the position plots 

of the system reactions. These differences can be seen later in Chapter 4. 



  10 

𝑧̅̇(𝑡) = �̅�𝑧̅(𝑡) + 𝐵1
̅̅ ̅𝑢(𝑡) − 𝐵2

̅̅ ̅𝑓(𝑡)    (1a) 

𝑧̅ = [
𝑥
�̇�
𝜔

]      (2) 

Now 𝑧̅ is formatted like (2) because the first state is the position vector of the 

system in the x and y direction. Then the next state is the velocity vector of the system in 

the x and y directions. Finally, the third state is the auxiliary state of the system in the x 

and y directions. All these states are only in the x and y directions since this system is 

only working in a 2D plane. Thus, this can easily be changed into a 3D system by 

changing the state’s dimensions. This formatting of the state matrix is also seen on page, 

673 in article [9].   

�̇� = 𝑈𝜔      (3) 

𝑥𝑑 = 𝑉𝜔      (3) 

To acquire the initial auxiliary state equation (3) can be used. This auxiliary state 

is based on the desired position state, 𝑥𝑑, and a constant matrix, V.  This desired path is 

the path the robot wants to take, a circle about the center of (0,0) with a radius of 0.2, as 

seen in (4). This path was chosen because a circle is easiest to simulate over time. This 

trajectory is then used in this reconstruction of article [9] to find the auxiliary state 𝜔, 

x(0), �̇�(0), and 𝑧̅(0).  

𝑥𝑑 = [
−0.2 cos (

𝜋

5
𝑡)

0.2sin (
𝜋

5
𝑡)

]     (4) 

The first assumption when solving for �̇�(0) is that it can be differentiated from 𝑥𝑑 

as seen in (5). This assumption is based on the initial value of 𝑥𝑑 used for the initial value 

of x, so if 𝑥𝑑 is differentiated to change the position to the velocity, then 𝑥𝑑 can also be 



  11 

used to find the initial velocity. But, from then on, according to Algorithm 1 on page 675 

in [9], �̇� can be solved from equation (1).  

𝑥�̇� = [
0.2sin (

𝜋𝑡
5⁄

25
)

−0.2cos (
𝜋𝑡

5⁄

25
)
]    (5) 

 One of the ways to understand how the system is reacting is to look at the gain of 

the system. Meaning that K1 and K2 need to be calculated and looked at as the system 

runs to see how the robot and human parts of the system are reacting. If the system is 

reacting properly, K1, the robot side, should be changing proportional to K2, the human 

side, but in the opposite direction. The way these values are calculated is found in article 

[9] and are shown below in (6) and (7). Equations (6) and (7) are used based on 

separating the system into 2 parts, the robot system part (6) and the human system part 

(7). When the norm of these two equations are graphed over time, the graphs show how 

the system is behaving. This is important to note because the systems should look alike if 

the R2 is updating correctly. The gain plots will be looked over in more depth in Chapter 

4 and 5. 

𝐾1 = −
1

2
𝑅1

−1𝐵1
̅̅ ̅𝑇

𝑃𝑧̅     (6) 

𝐾2 = −
1

2
𝑅2

−1𝐵2
̅̅ ̅𝑇

𝑃𝑧̅     (7) 

On the other hand, to be able to calculate the gains of the system, P must first be 

calculated. To accomplish this, a Riccati equation can be used. This equation is not a 

simple Riccati equation because this is a two-agent system. The structure of this complex 

Riccati equation can be found in article [9], equation (8). This is a LQR of a 2-input 

system which makes a normal LQR solver almost impossible to use unless the equation is 



  12 

manipulated some. In order to be able to solve for P in the LQR of (8), it first needs to be 

separated into 2 separate Riccati equations. From here they can be added together and 

then divided by 2 so that the resulting LQR looks like (9). Another way to solve for P in 

the LQR, (8) is referencing the book, [33], that sets up the problem to solve a two-agent 

LQR as a traditional LQR on pages 280-284. Resulting in equation (9). The only 

difference between what is in [33] and how (9) is formatted is the B part of (9) needs to 

be divided by 2. This is due to if (8) is separated into two separate equations, then added 

together, every part is multiplied by two except the B part of the equation. However, 

when simplified so that the whole equation is divided by two, the B part gets divided by 

two, resulting in equation (9). Due to this technique, the first assumption is that (8) = 

(9). 

�̅�𝑇𝑃 + 𝑃�̅� + 𝑄 − 𝑃𝐵1
̅̅ ̅𝑅1

−1𝐵1
̅̅ ̅𝑇

𝑃 − 𝑃𝐵2
̅̅ ̅𝑅2

−1𝐵2
̅̅ ̅𝑇

𝑃 = 0𝑚𝑥𝑚   (8) 

�̅�𝑇𝑃 + 𝑃�̅� + 𝑄 − 𝑃
(𝐵1̅̅̅̅ 𝑅1

−1𝐵1̅̅̅̅ 𝑇
+𝑅2

−1𝐵2̅̅̅̅ 𝑇
)

2
𝑃 = 0𝑚𝑥𝑚   (9) 

Leading to where Q, �̅�, 𝐵1
̅̅ ̅, 𝑅1, 𝐵2

̅̅ ̅, and 𝑅2 came from. Each one has their own set 

of values. Some of the variables are constants in the system while other variables change 

over time as the system adapts. Now, to get �̅�, 𝐵1
̅̅ ̅, and 𝐵2

̅̅ ̅ values for A, B1, and B2 need to 

be understood. These values can be seen in (10). The A’s and B’s matrices are formatted 

like a traditional A and B matrices of a steady state system, based on the mass and 

damping constants of the system. Since this system does not have a spring constant, this 

constant is neglected from the A’s and B’s matrices of this system. These values can be 

seen in (10) with �̅�, 𝐵1
̅̅ ̅, and 𝐵2

̅̅ ̅ in (12). 

 



  13 

𝐴 = [
0𝑚×𝑚 𝐼𝑚×𝑚

0𝑚×𝑚 −𝑀𝑑
−1𝐶𝑑

]     (10) 

𝐵 = 𝐵1 = 𝐵2 = [
𝑜𝑚×𝑚

−𝑀𝑑
−1]     (10) 

These matrices in (10) are used for the state-space form seen in (11) of the 

dynamic system. 

�̇�(𝑡) = 𝐴𝑧(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2𝑓(𝑡)    (11) 

However, this cannot be used for an optimal tracking problem, so the system must 

be transformed. Equation (1) is the new augmented system. Thus, (10) must also be 

augmented, which can be seen in (12). These matrices are based on the three states in 𝑧̅. 

So, to augment A and B, the auxiliary state needs to be considered. For this reason, the A 

and U matrices are in �̅�, so that it updates the system the same way as a traditional A 

matrix. Similarly, �̅� is formatted. 

�̅� = [
𝐴 02𝑚×𝑙

0𝑙×2𝑚 𝑈
]     (10) 

�̅� = 𝐵1
̅̅ ̅ = 𝐵2

̅̅ ̅ = [
𝐵1

0𝑙×𝑚
]    (12) 

Yet, there is a slight issue with the annotation of the dimensions within (12). The 

l×2m, 2m×l, and l×m are supposed to be zero matrices that are the proper dimensions, 

but in 𝐵1 is a 4×2 matrices, which means the l×m should be 2×2 matrix to make it a 6×2 

matrix. This assumption is due to �̅� being a 6×6 matrix. So, this mean l=m. Therefore, 

this will also solve the confusion for �̅�, since l×2m and 2m×l are supposed to be 2×4 and 

4×2 matrices to make the overall matrix square and match the dimension made by A and 

U. 



  14 

Since l=m must be true, then this also helps with the dimension issues of V and U, 

since on page 673 of article [9] it states 𝑉𝜖ℝ𝑛×𝑙 and 𝑈𝜖ℝ𝑙×𝑙, but on page 677 when 

article [9] explains the values used for the simulation, the results are in (13). 

𝑉 =
1

𝜋
[
1 0
0 1

]                             (13)  1 

𝑈 = [
0

𝜋

5

−
𝜋

5
0

]     (13) 

This means that n must also equal l, leading to Assumption 2: m=n=l. So, if this is the 

case than when building the matrix Q, the dimensions also work out. Q can be seen in 

(15), but to understand the dimensions, Q1 and Q2 need to be understood. Q1 and Q2 are 

shown below in (14).  

𝑄1 = 50 [
1 0
0 1

]     (10) 

𝑄2 = [
1 0
0 1

]      (14) 

The matrices values in (14) are the values used for the simulation in [9]. Q1 is the 

weight of the robot’s side while Q2 is the weight of the human’s side. These values must 

be inputted into Q, (15), to be able to use the values in the LQR. 

𝑄 = [

𝑄1 0𝑚×𝑚 −𝑄1𝑉
0𝑚×𝑚 𝑄2 0𝑚×𝑙

−𝑉𝑇𝑄1 0𝑙×𝑚 𝑉𝑇𝑄1𝑉
]    (15) 

As seen in (15) m and l must be equal according to Assumption 2, otherwise the 6×6 

matrix of Q would have holes that are unexplainable.  Under Assumption 2, these zero 

matrices are 2×2 in (15), (12), and (10), then the overall row dimension for the 

augmented system is 6, meaning P will be a 6×6 solved from the LQR and 𝑧̅ is a 6×1 

matrix. m, l, and n must all equal each other for these equations to work. One could make 



  15 

them not equal each other, but then the matrices will not compute properly since xd is a 

2×1 as given in (4), so �̇� must be a 2×1 and 𝜔 calculates to a 2×1, making 𝑧̅̇ a 6×1. 

Understanding this then leads to understanding u, the control input of the robot.  

𝑢 = −
1

2
𝑅1

−1𝐵1
̅̅ ̅𝑇

𝑃𝑧̅     (16) 

𝑢∗ = −
1

2
𝑅1

−1𝐵1
̅̅ ̅𝑇

𝑃𝑧̅∗     (17) 

Under the assumptions made, u should be a 6×1 matrix, solved using (16). This is 

considered the actual control input of the robot during the simulation or during a physical 

interaction between human and robot. While (17) is considered the optimal control input 

of the robot, based from the optimal state of the optimal system (18). The optimal state of 

the system is updated per (18). The way (18) is formatted is the same as (1), to ensure the 

system updated the same, but using the optimal inputs instead of the actual inputs. 

𝑧̅̇∗(𝑡) = �̅�𝑧̅∗(𝑡) + 𝐵1
̅̅ ̅𝑢∗(𝑡) + 𝐵2

̅̅ ̅𝑓∗(𝑡)   (18) 

 Once the equations that define the system are in place, the equations that change 

over time within the system must be implemented. This is seen in the next section. 

3.2 Simulation Study 

The difference between the actual state and the optimal state for this system is the 

force matrices. The actual force, (19), is kept the same as what is seen in article [9], to 

keep a solid reference point when comparing plots of how the system is reacting later. 

Thus, the forces seen in (19) will not change throughout all the tests done on this system.  

The optimal force is updated just like the optimal input of the robot but using the 

weights of the human instead of the robot’s weights. This can be seen in equation (20). 



  16 

𝑓𝑥 = {

0𝑁, 𝑡 ≤ 4𝑠
0.5𝑁, 4𝑠 < 𝑡 ≤ 5𝑠
0.1𝑁, 5𝑠 < 𝑡 ≤ 7𝑠

0 𝑡 ≥ 7𝑠

     (19) 

𝑓∗ = −
1

2
𝑅2

−1𝐵2
̅̅ ̅𝑇

𝑃𝑧̅∗      (20) 

When 𝑓∗ is solved, 𝑓∗ becomes a 2×1 matrix while 𝑓𝑥 is a scalar in (19). Hence why that 

force is noted with an x, meaning this force in only affecting the x direction of the 

system. So the y direction of the force is noted as 𝑓𝑦 = 0𝑁 for 𝑡 ∈ [0,10]𝑠, which 

changes the force to become dependent on an x and y values, making it a 2×1 matrix, 

𝑓(𝑡) = [𝑓𝑥(𝑡), 𝑓𝑦(𝑡)]
𝑇
.  This means the human’s input force is only in the x direction, 

however, as seen in the system’s position plots, this force will affect the system in both 

the x and y directions. 

𝑅1 = 0.5 [
1 0
0 1

]     (10) 

𝑅2 = 20 [
1 0
0 1

]     (21) 

The final piece of the puzzle for the equations are the values for R1 and R2. These 

values are shown above in (21). R1 is the weight of the robot system input while R2 is the 

weight of the human system input. These weights determine how the robot perceives who 

is considered leader and who is follower. But, if these weights are adapted properly, it 

could allow the robot to understand how to be a teacher with the human being the 

student. Therefore, the system must have a way to change R2 overtime depending on the 

interaction force the human has applied to the system. Due to this system being an 

adaptive control system, R2 is ever changing. To see how R2 changes, the equations on 

page 674-675 in [9] must be understood. These equations are shown below, with 𝛼 =



  17 

5000. Equation (22) looks at the force error of the system with the hope it can be used to 

help minimize the force of the system. Then equation (23) is how R2 is updated 

dependent on the partial differential of the force error multiplier, 𝐸 = 0.5𝑒𝑓
𝑇𝑒𝑓. However, 

to make the arithmetic easier, (23) is augmented to be equivalent to (24). Therefore, (25) 

is needed to be able to update r2. Equation (25) is the partial differential of equation (22) 

based on r2 which due to the force, f, being the set as seen in (19). Equation (25) then 

becomes dependent on equation (20). Then equation (27) is the partial differential of P 

with respect to r2 from equation (8). From here, the partial differential of 𝑧̅∗ with respect 

to r2 needs to be found so that R2 can be updated. This can be done by using equation 

(26). 

𝑒𝑓 = 𝑓 − 𝑓∗      (22) 

𝑅2̇ = −𝛼
𝜕𝐸

𝜕𝑅2
      (23) 

𝑟2̇ = −𝛼
𝜕𝐸

𝜕𝑟2
= −𝛼𝑒𝑓

𝑇 𝜕𝑒𝑓

𝜕𝑟2
     (24) 

𝜕𝑒𝑓

𝜕𝑟2
=

1

2𝑟2
2 𝐵2

̅̅ ̅𝑇
𝑃𝑧̅∗ −

1

2𝑟2
𝐵2
̅̅ ̅𝑇 𝜕𝑃

𝜕𝑟2
𝑧̅∗ −

1

2𝑟2
𝐵2
̅̅ ̅𝑇

𝑃
𝜕�̅�∗

𝜕𝑟2
   (25) 

𝑧̅̇∗ = 𝑟2̇
∂�̅�∗

∂𝑟2
      (26) 

𝜕𝑃

𝜕𝑟2
=

1

2
(�̅� − (𝐵1

̅̅ ̅𝑅1
−1𝐵1

𝑇̅̅ ̅̅ + 𝐵2
̅̅ ̅𝑅2

−1𝐵2
𝑇̅̅ ̅̅ )𝑃)−𝑇 ∗ (

1

2𝑟2
2 𝑃𝐵2

̅̅ ̅𝐵2
𝑇̅̅ ̅̅ 𝑃)  (27) 

To update R2, (27) is inputted into (25) then (24) and (25) are put into (26) to solve for 

𝜕�̅�∗

𝜕𝑟2
. Then this new value can be used to solve (25) and then (24) to finally solve the 

updated value of R2. In (28), the way (26) is solved is shown, this is with Assumption 3: 

�̅�∗̇ is not directly related to 
𝛛�̅�∗

𝛛𝒓𝟐
 when it is differentiated with respect to r2. 



  18 

𝑧̅̇∗ = −𝛼𝑒𝑓
𝑇(

1

2𝑟2
2 𝐵2

̅̅ ̅𝑇
𝑃𝑧̅∗ −

1

2𝑟2
𝐵2
̅̅ ̅𝑇 𝜕𝑃

𝜕𝑟2
𝑧̅∗ −

1

2𝑟2
𝐵2
̅̅ ̅𝑇

𝑃
𝜕�̅�∗

𝜕𝑟2
)

∂�̅�∗

∂𝑟2
  (28) 

𝑧̅̇∗ = −𝛼𝑒𝑓
𝑇 (𝑐 − 𝑑 − 𝑣

∂𝑧̅∗

∂𝑟2
)

∂𝑧̅∗

∂𝑟2
= (−𝐶 + 𝐷 + 𝑉

∂𝑧̅∗

∂𝑟2
)

∂𝑧̅∗

∂𝑟2
 

𝑑𝑦

𝑑𝑥
(𝑧̅̇∗ = (𝐶 + 𝐷)

∂�̅�∗

∂𝑟2
+ 𝑉

∂�̅�∗

∂𝑟2

2

) → 06×1 = (𝐶 + 𝐷) + 2𝑣
∂�̅�∗

∂𝑟2
  (28) 

 The goal of this robot’s control is to minimize the cost function in (29), to allow 

for optimal control between the human and the robot. 

Γ = ∫ 𝑐(𝑡)𝑑𝑡
∞

0

 

𝑐(𝑡) = (𝑥 − 𝑥𝑑)𝑇𝑄1(𝑥 − 𝑥𝑑) + �̇�𝑇𝑄2�̇� + 𝑢𝑇𝑅1𝑢 + 𝑓𝑇𝑅2𝑓  (29) 

This cost function shown in (29), shows the tracking error in the first part, the speed in 

the second part, the robot’s input in the third, and the human’s input in the fourth. 

Therefore, as 𝑅1 and 𝑅2 changes, the leader and follower roles change. If 𝑅2 becomes the 

bigger of the two weights in the system, then the human becomes the leader. The same is 

true for the opposite, when 𝑅1 becomes larger, then the robot becomes the leader.  



  19 

CHAPTER 4 

RECONSTRUCTION 

After the assumptions and equations are understood, the simulation in MATLAB 

was reconstructed based on the algorithm process from [9]. In Appendix B, the 

MATLAB code for the simulation of this system can be seen, with annotations and 

comments from where in [9] the equation came. 

Before the system from [9] can be reconstructed, the understanding of how an 

impedance system works needs to be done. This understanding of the impedance system 

comes from article [34]. Article [34] looks at an impedance control model between robot 

and the environment it is within. Specifically, this model looks at a mass-damping 

stiffness model and a damping stiffness model. Their cost function that they derived for 

their models involve speed (for the mass-damping stiffness model), tracking error, and 

interaction force. Also, in article [34], the k variable that is used for optimal control is a 

value that changes over time instead of staying constant like some systems. Their models 

were simulated within MATLAB while also looking at the Linear Quadratic Regulator 

(LQR) and the desired trajectory compared to the results of the model’s trajectory. The 

results showed that the adaptive impedance model did have aspects that they desired but 

would need more testing and changes since it was not an ideal model for the robot that 

was tested, which lead to their next article, [9].  

The first part of the system setup is making sure all the constants are the correct 

dimensions and inputted into the code in the correct order. Ensuring that the model is 

setup for the specific model that is being looked at. This means that when it comes to 

setting up the dimensions of x, it needs to be a 2×1 matrix since the end effector is 



  20 

moving in a 2D plane. At this point, �̇� dimensions can be found, being 2×1 as well due to 

the velocity being in the same plane as the position vector. From here 𝜔 can be calculated 

by (3), which results in a 2×1 vector. Now, the force matrix can also be concluded as a 

2×1 since it is also from the 2D plane. This creates 𝑧̅ to become a 6×1 and since �̇� is the 

future version of 𝑧̅, that makes �̇� a 6×1 as well. Using (1), the dimensions of �̅�, 𝐵1
̅̅ ̅ , and 

𝐵2
̅̅ ̅ can be determined.  From (1), �̅� must be a 6×6 with 𝐵1

̅̅ ̅  and 𝐵2
̅̅ ̅ being 6×2, so that the 

dimensions multiply out correctly. Consequently, when looking at (12), l×2m, 2m×l, and 

l×m are said to be zero matrices that are the proper dimensions, but in 𝐵1, a 4×2 

matrices, which means the l×m should be 2×2 matrix to make it a 6×2 matrix. Assuming 

this is due to �̅� being a 6x6 matrix. So, this mean l=m. Since l=m, then this also helps 

with the dimension of V and U, since on page 673 of article [9] it states 𝑉 = ℝ𝑛×𝑙 and 

𝑈 = ℝ𝑙×𝑙, but looking at (13), V and U are 2×2 matrices. Leading to Assumption 2: 

n=l=m. Now, looking at later works by the authors of [9], the dimensions are m×m in 

article [10], fixing this problem of having to figure out the different values of l, m, and n. 

Next, the initial values of the time dependent variables can be calculated so that 

when the for loop runs, there is reference variables for the initial time step. This also tells 

the system where it is starting. It is important to have these initial values initialized with 

the desired values, so that the system responds properly. For example, if the initial value 

of Md or cd is changed, then the system will respond different. This can be seen later in 

this chapter.  

Once these values are initialized, the for loop can be implemented with all the 

time dependent variables and the updating of R2 within this loop. The for loop allows the 

system to run for a set amount of time with a predetermined time step. This simulation is 



  21 

set to run for 10 seconds with a time step of 10 milliseconds. When this for loop is ran, 

all the time dependent variables and the system is updated then saved for each time step. 

In these 10 seconds, the robot is trying to draw a desired path, (in this simulation a 

circle), while the human is impacting the robot’s path by applying a force. As a result, a 

path that makes the circle look like someone took a bite from the circle. As represented in 

the graph in Figure 5. The blue path is showing what would happen in real life if the 

human exerted the same force as seen in (19) while the red path is showing the path the 

robot desired to take before it adapts to the human’s actions. Yet, if the system is to run 

optimally, with the minimal amount of force excreted by the human, then the path of 𝑧̅∗ 

would be the result, as seen in Figure 6. The optimal path is to allow the best human-

robot interaction experience with little strain on the person working with the robot. 

After all these values are collected, graphs are made to plot the values of the 

position values of the actual and optimal response data, the force plot, and the gain plots 

of the system’s response. The first set of position graphs are shown in Figure 6. The first 

force plot that is looked at containing the actual force, optimal force, and force error can 

be seen in Figure 8. Then the first gain plot of the norm of K1 and K2 can be seen in 

Figure 10. 

Yet, there is an issue when trying to re-simulate the results of [9] of the desired 

path and actual path generated from their simulation. As seen in Figure 5, when the same 

equations are running as in [9] and the desired path and actual path are looked at, there is 

a huge difference in the actual paths across the figures until (1) is changed to (1a). This 

update between (1) and (1a) can be seen in Figure 6. 

 



  22 

 
Figure 5 – (Above) The expected outcome of the graphs from [9]  

 
Figure 6 – Position Plot based on equations (1) vs (1a) 

These differences raise the question of why the force is pushing to the right 

instead of the left. In [9], there is no reference as to if the force provided is pushing into 

the circle or pushing out of the circle when it is applied to the system. However, as seen 

in Figure 1, the intended goal was to have the force pushing the circle in, to cause a dent-

looking effect to the circle. Yet when the information from [9] is applied as shown, the 

results are not consistent with what is being said. Therefore, the change from (1) to (1a) is 

made. Due to this change, the resulting figure from the model is shown in Figure 6, and 

when compared to the desired outcome in Figure 5, the results are consistent with what 



  23 

was expected. Switching the sign from positive to negative may seem small, but as seen 

in Figure 6, this is a huge change in the expected results.  

If the change made in (1a) is correct, then the force plots in Figure 7 should look 

exactly like Figure 8. The actual force is given in (19), which is a nonchanging variable. 

Yet, the optimal force as seen in equation (20), is ever changing. This is due to how R2 is 

updating. R2 updated based on equations (22) through (27). In article [9], it does not 

specifically state or reference how to solve (26) once (24) and (25) are substituted in. To 

ensure the minimal force error between the actual force and the optimal force, and to 

ensure that the optimal system has the minimal force needed to obtain the same path as 

the actual path, does not have a detailed way of how to update the system. The difficulty 

that arises, causing this difference in how the optimal system responds, is how (26) is 

being solved. The equation becomes a quadratic-like equation with matrices when (24), 

(25), and (27) are substituted into (26), resulting (26) having multiple ways to compute 

the desired value that is then used to update R2.  

In this thesis paper, one way (26) is solved, is by differentiating it. This is under 

the assumption that 𝑧̅̇∗ is only remotely related to 
𝜕�̅�∗

𝜕𝑟2
 when the partial differential of 𝑧̅∗ is 

taken in respect to r2. Under this assumption, (26) can be differentiated and then 

rearranged to be able to solve using the linsolve function in MATLAB. The process of 

how this differential of (26) can be seen in (28). The results of this technique to update R2 

is seen in Figure 6, 8, and 10. However, this is not the same as the results from [9] as seen 

in Figures 5 and 7, because there are several differences between the figures due to the 

information lost when the equation of differentiated. Meaning that the optimal position 

plot is not following the actual position plot, and the force error is extremely high while 



  24 

the optimal force is extremely low. Resulting in the optimal system following the robot’s 

desired position path because the system is acting like the human is not inputting any 

force into the system, which is also seen in Figure 8.  

 
Figure 7 – Results from [9] of Interactive Force and the Force Error 

    
Figure 8 – Interactive Force and Force Error based on differentiating (26) 

 Another part of this system is looking at the norms of the K1 and K2 values. These 

values show how the gain of each agent of the system is responding based on how R2 is 

updating.  The values of K1 and K2 can be found in equations (6) and (7). The plots of the 

gain, of K1, show how the robot responds to the human’s force and how the robot adjusts 

its stiffness based on equation (6). The same can be seen with the gain plot of K2, which 

is the response of the human based on the updated value of R2, this value is calculated in 

equation (7). As more tests are run, the gain plots become more important as it shows 



  25 

how the system responds based on the techniques used to update R2. In [9], the gain plot 

can be seen in Figure 9, while the system of this paper can be seen in Figure 10. These 

two plots have major differences, which is due to how the system is updating R2 and how 

the robot is responding to the updated weight of the human’s actions in the optimal 

system.  

The last plot that is looked at is the plot of the values of R2 as this variable update. 

This plot shows how the system is reacting to the interaction force by changing the values 

of R2 based on who is leading or following. Due to the robot’s weight being set at 0.5, the 

human’s weight, R2, needs to be lower than 0.5 to allow the robot to head. However as 

seen in Figure 12, this is not the case with this system. As the system adapts, the R2 value 

slowly declines, then spikes when the human applies force at 400 milliseconds before 

slowly decreasing again. Yet, when Figure 12 is compared to Figure 11 from article [9], 

the system in Figure 11 is not adapting the system enough to allow the robot to lead the 

system. As seen in Figure 11, the system allows the robot to lead except when the human 

applies a force that changes the direction of the robot’s desired path. When this happens, 

the result is the human leading the robot the whole time, making the system not adaptable 

since it does not change who is leading and who is following based on who needs to lead. 

For a system to be adaptive, it must automatically change the weight of R2 to a proper 

value so that when there is no force from the human, then the robot is considered the 

leader and when the human does apply force, the system can adapt to allow the human to 

lead. This way the path the system draws is the path desired by the human instead of the 

robot. Yet, the way this system is updating R2, there is no adaption by the system taking 

place that would allow the robot to lead. This is why when Figure 11 is looked at, the 



  26 

system can be considered adaptive because the weight of R2 goes done low enough at 

times to allow the robot to be considered the leader of the relationship. This happens 

when the path of the human and the robot are the same. 

Therefore, this system is not adapting to the human’s actions, because as seen in 

Figure 8, the optimal force of the human’s actions is almost zero. Also, as seen in Figure 

6, the optimal system is following the robot’s desired path instead of the actual path. Plus, 

as seen in Figure 12, the human’s weight is not adapting to allow the robot to lead. Thus, 

this technique is not adapting properly and R2 is not updating using the best possible 

method. So, other techniques are tested for solving (26) later in Chapter 5. 

 
Figure 9 - Article [9] Gain Plot 

 

 
Figure 10 - Gain Plot using (28) to update R2 

 

 



  27 

 
Figure 11 - R2 Plot from article [9] 

 

 
Figure 12 - R2 Plot as the system adapts 



  28 

CHAPTER 5 

SIMULATIONS 

5.1 System Check – Changing the System Constants 

 Once the simulation is working, keeping how R2 is updating the same, other tests 

were performed. These tests mainly looked at the effects of changing the system’s mass 

and damping constants. The first test was halving the mass of the system. The next test 

halved the damping constant of the system before testing the effects of multiplying the 

damping constant by 2. These results can be seen below in Figures 13-24. 

5.2 Changing the Mass Constant 

 When the mass of the system was halved, it did not have a huge effect on the 

force plot, as seen in Figure 14, but there was a noticeable impact to the position plot 

seen in Figure 13. Figure 13 shows this position plot, and if it is compared to Figure 6, 

there is a noticeable difference in the path of the actual and optimal plot. The reason the 

mass change to the system only showed a major change in the position graph and not the 

force graph is due to how easily it is to move with the robot. Since there is less 

impedance when the human works with the robot, the path this system takes is greatly 

affected by the same amount of force the human applied to the robot. Thus, the indent in 

the circle in Figure 13 is much larger, the force is the same but the human and robot must 

move only half the weight. The same can be seen with the optimal plot in Figure 13, 

however there is not as much of a noticeable impact as seen in the actual plot in Figure 

13. This is also why the force plot in Figure 14 does not show a great impact, since the 

actual force being applied is not changed. The only effect the mass has on the force is 

when calculating the optimal force, and that effect is minor. When the gain plot is looked 



  29 

at in Figure 15, the norm values of K1 and K2 are halved when compared to Figure 10. 

Meaning that the mass constant is affecting the system as expected, because when the 

gains are calculated, it is calculated based on the �̅� matrices., which was halved when Md 

is halved.   

 
Figure 13  – Position plot when Md is halved vs original system 

 
Figure 14 – Force plot when the Md is halved vs original system 

 
Figure 15 - Gain plot when Md is halved vs original system 



  30 

5.3 Changing the Damping Constant 

The next test conducted was to see how the damping constant affects the system. 

In Figures 16 and 17, the position plot and force plot can be seen when the damping 

constant is halved. When Figure 16 is compared with Figure 6, there is not a noticeable 

change, the same with when Figure 17 is compared to Figure 8. Then if the gain plot of 

the system when Cd is halved, there is not a noticeable difference when compared to 

Figure 10.  

 

Figure 16 - Position plot with Cd halved vs original system 

 

Figure 17 - Force plot with Cd halved vs original system 

 



  31 

 
Figure 18 - Gain plot with Cd halved vs original system 

Yet, when the Cd value is doubled, as seen in Figures 19, 20, and 21 are compared 

to Figures 6, 8, and 10, there is a noticeable difference. This is due to the damping 

constant has an exponential type of effect on the system. If the constant is only halved, 

then there will not be a big change in the plots, but if there is a larger change in the 

damping constant, like doubling it, then there is a more noticeable difference.  

When a damping constant of a system is changed, it affects how smoothly the 

system will respond and how quickly. This could be explained like a car shock. When the 

shock is working properly, then when the car goes over a bump, there is little bounce 

before the car settles back to equilibrium. However, if the shock is not working properly, 

and the car goes over the bump, there is a longer period the car spends bouncing before 

returning to the equilibrium point.  

As seen in Figure 19, when the damping constant is doubled, the effect of this 

change to the position plot is greater. This is due to the system wanting to oscillate more 

so than normal, resulting in larger change in position. The affects the force plot, since it 

now requires more force to keep the system on the desired path. This can be seen in the 

optimal plot line in Figure 20. The optimal force is growing, creating a smaller force 

error. But as before the actual force the human is applied was not changed. Allowing the 



  32 

force to be used a constant variable in all the tests. Equally, when the gain plot is looked 

at in Figure 21, there is only a slight change in how K1 is calculating at. The change is not 

huge, like how the mass constant changed this plot, but it is affected because the gain is 

affected by how R2 is updating which is also affected by the value of Cd. 

These tests show how changing the constants in the system will affect how the 

robot and human work together. It could affect the force required to work with the robot, 

or it could affect the overall path of the system. These settings for a system are critical to 

understand, so that the experience when working with a robot will be the best possible for 

the human and the desired outcome. 

 
Figure 19 - Position plot with Cd doubled vs original system 

 

Figure 20 - Force plot with Cd doubled vs original system 



  33 

 

 
Figure 21 - Gain Plot with Cd doubled vs original system 

5.4 Techniques Tested to Update R2 

 After these tests are done to ensure the system is working properly, more 

techniques of updating 𝑅2 are tested.  

5.5 Care and nonlinear fsolve functions 

The next technique that was tried was using the care function to solve 
𝜕𝑃

𝜕𝑟2
, to then 

use to solve for 
𝜕�̅�∗

𝜕𝑟2
 in equation (26) with (24) and (25) substituted in. (26) was then 

solved by using the nonlinear fsolve function. This code can be found in Appendix C and 

with the function code needed to use the nonlinear fsolve function can be found in 

Appendix D. The outcome of this way of updating 𝑅2 when compared to Figures 6, 8, 

and 10, are the same. However, the R2 plot is completely different from Figure 12. 

Instead of R2 slowly decay until a force is applied, the weight of R2 does not change until 

the force from the human is applied at 400 milliseconds. This change is due to using 

fsolve function instead of the substitution technique shown in Chapter 4. Yet, this plot 

does not allow the robot to lead either, as seen in Figure 22. 



  34 

 

Figure 22 - R2 Plot using care and fsolve function vs linsolve function 

5.6 Basic fsolve function 

Due to this technique not changing the outcome of the plots, another technique 

was used. This technique, the traditional fsolve function was tried with using the original 

way of solving for 
𝜕𝑃

𝜕𝑟2
 as seen in (27). This code can be found in Appendix E. These 

results show the same results as seen in Figures 6, 8, 10, and 22. So this technique is not 

the technique used to update 𝑅2. 

5.7 Difference Technique using Equation (30) 

 The next technique that’s tested is using a way to update  
𝜕�̅�∗

𝜕𝑟2
 that was 

recommended by the author of article [9]. Instead of using substitution of equations (24), 

(25), and (27) into (26), it was suggested to use difference when solving (26) to solve for 

𝜕�̅�∗

𝜕𝑟2
. The equation that is used is (30). The code for this technique is the same as Appendix 

C, but with equation (30) uncommented and the fsolve function commented out. 

𝜕�̅�∗

𝜕𝑟2
=  

�̅� ∗̇

𝑟2̇
     (30) 



  35 

The results from this technique of updating R2 is the same as seen in Figures 6 and 

8, showing that this is also not the best way of updating R2. Yet, when the Gain Plot, 

Figure 23, is compared to Figure 10, there is a noticeable difference, but not huge. Also, 

the R2 plot is different than Figures 11, 12, and 22, this can be seen in Figure 24. The first 

400 milliseconds of this system is the same as Figure 22, but then this is a drastic drop 

before slowly increasing past the original value of R2 and then settling to the weight of 

24. Due to the weight of R2 becoming larger rather than smaller, the system never allows 

the robot to lead, meaning this system cannot be considered adaptive. Thus, this 

technique is not the technique used in article [9] and this is not the best way to adapt the 

control of the system to minimize the required interaction force and the force error. So, 

another technique is needed to be able to adapt this system in such manner that the 

optimal force and force error is minimal, and the optimal path follows the path the human 

desires instead of the robot’s desire. This way the robot is adapting to the human’s 

actions in the best possible way with this type of adaptive control. 

 
Figure 23 - Gain Plot - Updating R2 using equation 30 vs linsolve function 



  36 

 

Figure 24 - R2 Plot using equation 30 vs linsolve function 

 
  



  37 

CHAPTER 6 

CLOSING 

6.1 Limitations and Challenges 

 As discussed in Chapter 2, the robot’s adaption is based on the interaction force 

between the human and the robot. This leads to limitations of this type of control. These 

limits are that this type of control can only be used when it involves the robot using the 

interaction force in the system. Due to the game theory system setup, the robot has its 

own task it wants to achieve and does not change if the human is moving with the robot 

or in the system at all, but if the human does decide to work with the robot and apply 

force to the robot, it will adapt based on the force applied.  

For example, if a manufacturing robot is putting the door panels onto a truck, and 

there is a manager standing in the regular path of the robot. The robot could be pushed 

away by the manager to tell the robot to go around him and has the abilities to adapt to go 

around that manager because it of its type of system control it has in its safety protocol 

programming. However, there are limits to this example because it must have some type 

of haptic feedback to trigger the adaption, such as the force applied by the manager. This 

means that the manager had to have seen the robot and pushed it away for this type of 

system adaption to work. If the manager had not seen the robot and pushed the robot 

away, the robot could have hit the manager, causing safety issues. So, any system that 

rely on haptic feedback or does have this type of two-agent game theory will be able to 

use this type of control. But if the system uses any other type of feedback control or is not 

setup as a game theory system, then this algorithm can not be used for that system. 



  38 

Also, the system needs to be calibrated to the agents in the system, because if the 

human applies extreme force to move the robot, it could throw the robot pass the path the 

human wanted because the weights, Q’s and R’s, were not calibrated properly to that 

more forceful human. Thus, to stray from coordination issues, the system must also be 

calibrated before use, to ensure that the system works properly with the robot being used 

and the human working with the robot. 

 Due to the complexity of how R2 is updated, there are multiple ways of solving 

(26) and updating R2 based on the force that the human is putting on the system. Several 

techniques were tested, however due to the complexity, none of these techniques made 

the system respond as seen in [9]. As seen in all the position plots, the paths are almost 

the same as what is seen in [9], but the force plots have a huge discrepancy between the 

optimal force and the force error. This is due to how the R2 is updating and making the 

system respond to the human’s actions. This is because, the gain plots from the system 

also do not match the gain plots from [9]. With each new technique that is tested the gain 

plots start to show a larger response than before to the human’s actions. As a result, each 

test is making progress towards the technique that is used in [9]. To be able to have the 

system respond like seen in [9], further research will be needed. 

6.2 Applications 

 As stated above, this type of adaptive control can be used with robots that are 

dependent on interaction force. It is limited to only being able to be used with force 

dependent systems and systems that have at least two agents working together. 

Nonetheless, there are multiple applications for which this type of control can be used. 

Once this algorithm is updating properly with minimal force error and smooth response 



  39 

to the human’s actions, this algorithm could be used in physical therapy, industry, and for 

teaching.  

 This type of control could be implemented in physical therapy robots that are 

working with people to help retrain muscle control, just like what is tested in article [39]. 

If a person hurt their shoulder or broke their rotator cuff, they would be required to go to 

physical therapy weekly and stretch daily. If the person is not strong enough to pull the 

one arm up with the other arm, then a machine or robot could be used to help that person. 

When a situation like this happens, a robot could react to the person in a similar way to 

what would happen with this algorithm. This would become useful to recovering 

individuals, since the algorithm could be adapted to help the person reach their recovery 

goals. 

 Another way this algorithm could be used is in industry. When a robot is used on 

an assembly line, it may need to move a large object to a specified location like seen in 

[40]. Unknowing to it, there could be an obstacle in the way. If the robot has this 

algorithm as part of its safety protocol, when a human or another object puts force on the 

system, the robot would adapt to either stop or move in the opposite direction of the force 

applied, avoiding the obstacle in its way.  

 The third application of this type of control is that it could be used for teaching a 

person. This type of application is very broad. Adaptive control could be used in robots to 

teach people how to dance (as seen in article [18]) or could be used to teach children with 

disabilities how to regain their ability to walk. The only limits of this algorithm are that it 

is dependent on the interaction force and being a two-agent system.  

 



  40 

 

6.3 Future Work 

 Work will be needed in the future to continue to find a more suitable way to 

update R2, (24)-(27). Future work will be required on physical experiments using a 

algorithm to adapt a robot's response to working with a person. For example, using a UR5 

robot working with a human to testing this algorithm by testing different desired paths for 

each agent within the partnership. As well as seeing if the system adapts to the human’s 

path with minimal amount of force needed. These findings could prove that this 

algorithm can be used in industry to allow for better ergonomics for human workers or to 

help in physical therapy. There needs to be more research done with this algorithm before 

it is ready to use. 

6.4 Conclusion 

 In conclusion, physical HRI can have a positive impact in several areas in life. 

The greatest impact will come from how the system is defined and therefore how the 

robot will respond to the human relationship. Once the flaws are smoothed out, the 

algorithm can be improved, and the best results will be seen. In this research, it was 

learned that in the future a robot can be programmed to adapt to its surroundings and 

respond accordingly based on the feedback within the adaptive control system. However, 

if this system is not done properly, then the robot will not adapt to its surroundings. Thus, 

more research is needed before this type of control should be implemented. 

    



  41 

REFERENCES 

[1] B. Robins, K. Dautenhahn, R. Boekhorst and A. Billard, "Robotic assistants in 

therapy and education of children with autism: can a small humanoid robot help 

encourage social interaction skills?", Universal Access in the cxcxvInformation 

Society, vol. 4, no. 2, pp. 105-120, 2005. 

[2] R. Chemuturi, F. Amirabdollahian and K. Dautenhahn, "Adaptive training algorithm 

for robot-assisted upper-arm rehabilitation, applicable to individualised and 

therapeutic human-robot interaction", Journal of NeuroEngineering and 

Rehabilitation, vol. 10, no. 1, p. 102, 2013. 

[3] C. Liu, K. Conn, N. Sarkar and W. Stone, "Online Affect Detection and Robot 

Behavior Adaptation for Intervention of Children With Autism", IEEE Transactions 

on Robotics, vol. 24, no. 4, pp. 883-896, 2008. 

[4] D. Kang and H. Choi, "Robot Task Planning for Mixed-Initiative Human Robot 

Interaction in Home Service Robot", IEEE, 2018. 

[5] M. Khoramshahi and A. Billard, “A dynamical system approach to task-adaptation in 

physical human–robot interaction,” Autonomous Robots, vol. 43, no. 4, pp. 927–946, 

2018. 

[6] Y. Li, K. Tee, R. Yan, W. Chan, Y. Wu and D. Limbu, "Adaptive Optimal Control 

for Coordination in Physical Human-Robot Interaction", pp. 20-25, 2015. 

[7] B. Lacevic and P. Rocco, "Kinetostatic Danger Field - a Novel Safety Assessment for 

Human-Robot Interaction", pp. 2169-2174, 2010. 

[8] C. Liu and M. Tomizuka, "Robot Safe Interaction System for Intelligent Industrial 

Co-Robot", pp. 1-12, 2018. 

[9] Y. Li, K. Tee, W. Chan, R. Yan, Y. Chua and D. Limbu, "Continuous Role 

Adaptation for Human–Robot Shared Control", IEEE Transactions on Robotics, vol. 

31, no. 3, pp. 672-681, 2015. 

[10] Y. Li, K. Tee, R. Yan, W. Chan and Y. Wu, "A Framework of Human–Robot 

Coordination Based on Game Theory and Policy Iteration", IEEE Transactions on 

Robotics, vol. 32, no. 6, pp. 1408-1418, 2016. 

[11] A. Peca, R. Simut, S. Pintea, C. Costescu, and B. Vanderborght, “How do 

typically developing children and children with autism perceive different social 

robots?,” Computers in Human Behavior, vol. 41, pp. 268–277, 2014. 

[12] D. Losey, C. McDonald, E. Battaglia and M. O'Malley, "A Review of Intent 

Detection, Arbitration, and Communication Aspects of Shared Control for Physical 



  42 

Human–Robot Interaction", Applied Mechanics Reviews, vol. 70, no. 1, p. 010804, 

2018. 

[13] S. Albrecht, K. Ramirez-Amaro, F. Ruiz-Ugalde, D. Weikersdorfer, M. Leibold, 

M. Ulbrich and M. Beetz, "Imitating human reaching motions using physically 

inspired optimization principles", pp. 602-607, 2011. 

[14] A. L. Thomaz and C. Chao, “Turn-Taking Based on Information Flow for Fluent 

Human-Robot Interaction,” AI Magazine, vol. 32, no. 4, p. 53, 2011. 

[15] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, and E. Burdet, 

“Human-Like Adaptation of Force and Impedance in Stable and Unstable 

Interactions,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 918–930, 2011. 

[16] Y. Wang, Y. Sheng, J. Wang, and W. Zhang, “Optimal Collision-Free Robot 

Trajectory Generation Based on Time Series Prediction of Human Motion,” IEEE 

Robotics and Automation Letters, vol. 3, no. 1, pp. 226–233, 2018. 

[17] A. Sawers and L. Ting, "Perspectives on human-human sensorimotor interactions 

for the design of rehabilitation robots", Journal of NeuroEngineering and 

Rehabilitation, vol. 11, no. 1, p. 142, 2014. 

[18] R. Ros, I. Baroni, and Y. Demiris, “Adaptive human–robot interaction in 

sensorimotor task instruction: From human to robot dance tutors,” Robotics and 

Autonomous Systems, vol. 62, no. 6, pp. 707–720, 2014. 

[19] M. Edwards, “Robots in industry: An overview,” Applied Ergonomics, vol. 15, 

no. 1, pp. 45–53, 1984. 

[20] W. R. Tanner, “Industrial Robots and Flexible Manufacturing,” Robotics and 

Factories of the Future, pp. 435–441, 1984. 

[21] N. Jarrassé, V. Sanguineti, and E. Burdet, “Slaves no longer: review on role 

assignment for human–robot joint motor action,” Adaptive Behavior, vol. 22, no. 1, 

pp. 70–82, 2013. 

[22] M. Sharifi, S. Behzadipour, and G. Vossoughi, “Nonlinear model reference 

adaptive impedance control for human–robot interactions,” Control Engineering 

Practice, vol. 32, pp. 9–27, 2014. 

[23] W. Huo, J. Huang, W. Xu, S. Mohammed, and Y. Amirat, “Control of upper-limb 

power-assist exoskeleton based on motion intention recognition,” IEEE Transactions 

on Automation Science and Engineering, vol. 12, no. 04, 2015. 

[24] D. Copaci, E. Cano, L. Moreno, and D. Blanco, “New Design of a Soft Robotics 

Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire 

Actuators,” Applied Bionics and Biomechanics, vol. 2017, pp. 1–11, 2017. 



  43 

[25] C. Jarrett and A. J. Mcdaid, “Robust Control of a Cable-Driven Soft Exoskeleton 

Joint for Intrinsic Human-Robot Interaction,” IEEE Transactions on Neural Systems 

and Rehabilitation Engineering, vol. 9, no. 1, pp. 976–986, 2001. 

[26] J. E. Young, JaYoung Sung, A. Voida, E. Sharlin, T. Igarashi, H. I. Christensen, 

and R. E. Grinter, “Evaluating Human-Robot Interaction - Focusing on the Holistic 

Interaction Experience,” International Journal of Social Robotics, pp. 53–67, Jan. 

2011. 

[27] D. V. Lu and W. D. Smart, “Human-robot interactions as theatre,” 2011 Ro-Man, 

2011. 

[28] C. Breazeal, “Social Interactions in HRI: The Robot View,” IEEE Transactions 

on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 2, 

pp. 181–186, 2004. 

[29] E. Al-Gallaf, K. A. Mutib, and H. Hamdan, “Artificial neural network dexterous 

robotics hand optimal control methodology: grasping and manipulation forces 

optimization,” Artificial Life and Robotics, vol. 15, no. 4, pp. 408–412, 2010. 

[30] T. Belpaeme, P. E. Baxter, R. Read, R. Wood, H. Cuayáhuitl, B. Kiefer, S. 

Racioppa, I. Kruijff-Korbayová, G. Athanasopoulos, V. Enescu, R. Looije, M. 

Neerincx, Y. Demiris, R. Ros-Espinoza, A. Beck, L. Cañamero, A. Hiolle, M. Lewis, 

I. Baroni, M. Nalin, P. Cosi, G. Paci, F. Tesser, G. Sommavilla, and R. Humbert, 

“Multimodal Child-Robot Interaction: Building Social Bonds,” Journal of Human-

Robot Interaction, vol. 1, no. 2, 2013. 

[31] F. Jimenez, T. Yoshikawa, T. Furuhashi, M. Kanoh, and T. Nakamura, 

“Feasibility of Collaborative Learning and Work Between Robots and Children with 

Autism Spectrum Disorders,” New Frontiers in Artificial Intelligence Lecture Notes 

in Computer Science, pp. 454–461, 2017. 

[32] S. Costa, F. Soares, C. Santos, A. Pereira, and M. Moreira, “Robot Lego & 

Trastorno del Espectro Autista: Una asociación posible? || Lego Robots & Autism 

Spectrum Disorder: a potential partnership?,” Revista de Estudios e Investigación en 

Psicología y Educación, vol. 3, no. 1, p. 50, 2016. 

[33] T. Basara and G. J. Olsder. (1998). Dynamic Noncooperative Game Theory. 2nd 

ed. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics. [Online]. 

Available: http://epubs.sian.org/doi/abs/10.1137/1.9781611971132 

[34] S. Ge, Y. Li and C. Wang, "Impedance adaptation for optimal robot–environment 

interaction", International Journal of Control, vol. 87, no. 2, pp. 249-263, 2013. 

[35] A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan, and S. Hirche, 

“The role of roles: Physical cooperation between humans and robots,” The 

International Journal of Robotics Research, vol. 31, no. 13, pp. 1656–1674, 2012. 

http://epubs.sian.org/doi/abs/10.1137/1.9781611971132


  44 

[36] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game 

Theory, Cambridge University Press, 2007. 

[37] N. Jarrasse, T. Charalambous, and E. Burdet, “A Framework to Describe, Analze 

and Generate Interactive Motor Behaviors”, PLoS ONE, vol. 7, no. 11, p. e49945, 

2013. 

[38] A. Wagner, “Using Games to Learn Games: Game-Theory Representations as a 

Source for Guided Social Learning,” Social Robotics Lecture Notes in Computer 

Science, pp. 42–51, 2016. 

[39] K. Tsiakas, M. Dagioglou, V. Karkaletsis, and F. Makedon, “Adaptive Robot 

Assisted Therapy Using Interactive Reinforcement Learning,” Social Robotics 

Lecture Notes in Computer Science, pp. 11–21, 2016. 
[40] F. Nagata and K. Watanabe, “Controller design for industrial robots and machine 

tools,” 2013. 
  



  45 

APPENDIX A 

SYSTEM’S VALUES 



  46 

The values for each equation are given below as they are referenced in the 

equations referenced. These values are unedited from [9]. However, if the variable is ever 

changing as time goes one, those values are not recorded here. 

 

(1)      𝑧̅̇(𝑡) = �̅�𝑧̅(𝑡) + 𝐵1
̅̅ ̅𝑢(𝑡) + 𝐵2

̅̅ ̅𝑓(𝑡)     

 

�̅� = [
𝐴 02𝑚𝑥𝑙

0𝑙𝑥2𝑚 𝑈
] 

 

𝐵1
̅̅ ̅ = 𝐵2

̅̅ ̅ = [
𝐵1

0𝑙𝑥𝑚
] 

 

𝐴 = [
0𝑚𝑥𝑚 𝐼𝑚𝑥𝑚

0𝑚𝑥𝑚 −𝑀𝑑
−1𝐶𝑑

] 

 

𝐵1 = 𝐵2 = [
0𝑚𝑥𝑚

𝑀𝑑
−1] 

 

𝑀𝑑 = 𝐼2𝑥2 

 

𝐶𝑑 = 𝐼2𝑥2 

 



  47 

APPENDIX B 

MATLAB CODE 



  48 

clear  

close all 

  

Md=[eye(2)]; %2x2 pg677 

Cd=[eye(2)]; %2x2 pg677 

a=5000; %pg 677 

U=[0 pi/5;-pi/5 0]; %2x2 pg677 

V=(1/pi)*[eye(2)]; %2x2 pg677 

A=[zeros(2) eye(2);zeros(2) -Md^-1*Cd]; %4x4 pg673 

B1=[zeros(2);Md^-1]; %4x2 pg673 

B2=B1; 

Abar=[A zeros(4,2);zeros(2,4) U]; %6x6 pg674 

Bbar1=[B1;zeros(2)]; %6x2 pg674 

Bbar2=Bbar1; 

Q1=50*[eye(2)]; %2x2 pg677 

Q2=[eye(2)]; %2x2 pg677 

R1=0.5*[eye(2)]; %2x2 pg677 

R2=20*[eye(2)]; %2x2 pg677 

VT=transpose(V); %or could do V' 

 Q=[Q1 zeros(2) -Q1*V;zeros(2) Q2 zeros(2);-VT*Q1 zeros(2) VT*Q1*V]; %6x6 pg674 

 dt=0.01; 

t=0:dt:10; %pg 677 %time vector length of sim - start:timestep:end 

 

f=zeros(max(size(t)),1); %pg 677 %linear function-     force=f(t) 

f(401:500)=0.5; %pg677 %force vector from 4 to 5 sec 

f(501:700)=0.1; %pg677 %force vector from 5 to 7 sec 

f(701:1001)=0; %pg677 %force vector from 7 to 10 sec 

fy=0; 

  

xd=[-0.2*cos((pi/5)*0),0.2*sin((pi/5)*0)]'; 

x=xd; 

xdot=[(sin((pi*0)/5))/25,(pi*cos((pi*0)/5))/25]'; %differential of xd 

%pg 673 finding w=auxiliary state 

%xd=V*w; %pg673 desired trajectory 

w=linsolve(V,xd); 

wdot=U*w; %pg673 

 %Finding P eq 12 pg674 

P=care(Abar,(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')./2,Q); 

 %equation 26 pg 675 

K1=0.5*(R1^-1)*Bbar1'*P; 

K2=0.5*(R2^-1)*Bbar2'*P; 

 z=[x;xdot]; %equation given on pg 673 

zbar=[z;w]; %zbar initial pg 673 

zbarstar=zbar; %6x1 

 r2=20; %initial scalar value 

 for k=1:length(t) %algorithm 1 pg 675 step of milliseconds 

%caluate f from pg677 

    f=zeros(max(size(t(k))),1); %pg 677 %linear function-     force=f(t) 

    f(1:400)=0; 

    f(401:500)=0.5; %pg677 %force vector from 4 to 5 sec 

    f(501:700)=0.1; %pg677 %force vector from 5 to 7 sec 

    f(701:1001)=0; %pg677 %force vector from 7 to 10 sec  

    fy=0; 

    ft=[f(k);fy]; 

 



  49 

    xd=[-0.2*cos((pi/5)*t(k));0.2*sin((pi/5)*t(k))]; %page 677 

%pg 673 finding w=auxiliary state 

%xd=V*w; %pg673 desired trajectory equation 6 

    w=linsolve(V,xd); 

    wdot=U*w; %pg673     

    %Finding P eq 12 pg674 

    P=care(Abar,(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')./2,Q); %solved using 

equation A-9 from page 282 of reference 31 in article 

    %solving for u equation 24 pg 675 

    u=-0.5*(R1^-1)*Bbar1'*P*zbar;  

    %equation 26 pg 675 

    K1=0.5*(R1^-1)*Bbar1'*P; 

    K2=0.5*(R2^-1)*Bbar2'*P; 

 %Pg 674     

    ustar=-0.5*(R1^-1)*(Bbar1')*P*zbarstar; %equation 10 pg 674 

    fstar=-0.5*(R2^-1)*(Bbar2')*P*zbarstar; %equation 11 pg 674 

 %Update R2 Pg 675 equations 17-23 

     X=Abar-(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')*P; 

    Y=-(1/r2^2)*P*Bbar2*Bbar2'*P; 

%Equation 22 

    dP=0.5*(X'^-1)*Y; 

%equation 13 

    zbarstardot=Abar*zbarstar+Bbar1*ustar-Bbar2*fstar; 

%pg 674 

    ef=ft-fstar; 

    %equations 23 with 18 and 17 substituted in 

        %zbarstardot=r2dot*dzbarstar 

            %r2dot=-a*ef'*def %17 

            %def=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar)-

((1/(2*r2))*Bbar2'*P*dzbarstar) %18 

        %zbarstardot=-a*ef'*((1/(2*r2^2))*Bbar2'*P*zbarstar)-

((1/(2*r2))*Bbar2'*dP*zbarstar-((1/(2*r2))*Bbar2'*P*dzbarstar)*dzbarstar; 

    E=-a*ef'; 

    g=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar); 

    c=E*g; 

    v=E*(-(1/(2*r2))*Bbar2'*P); 

    %zbarstardot==(E*(G-v*dzbarstar))*dzbarstar; 

%     D=2*eye(6)*[v;v;v;v;v;v]+c*eye(6); 

%     dzbarstar=linsolve(D,zbarstardot); 

%equation 18 

    def=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar)-

((1/(2*r2))*Bbar2'*P*dzbarstar); 

%pg 674 

    ef=ft-fstar;  

%equation 17 

    r2dot=-a*ef'*def; 

    r2=r2+r2dot*dt; 

    if r2<0.4 

        r2=0.4; 

    end 

     R2=r2*eye(2); 

%solving for zbarstar equation 12 pg 674 

    zbarstardot=Abar*zbarstar+Bbar1*ustar-Bbar2*fstar; 

    zbarstar=zbarstar+zbarstardot*dt; 

    %solving for zbar equation 7 -- results in desired path since x=xd 



  50 

    zbardot=Abar*zbar+Bbar1*u-Bbar2*ft; %makes zbar a 6x1 

    zbar=zbar+zbardot*dt; %new zbar, makes a 6x1 

    %Storing values 

    zbarstarresult(:,k)=zbarstar; 

    xdresult(:,k)=xd; 

    fstarresult(:,k)=fstar;   

    zbarresult(:,k)=zbar; 

    efresult(:,k)=ef; 

    fstarresult(:,k)=fstar; 

    K1result(:,k)=norm(K1); 

    zbarstardotresult(:,k)=zbarstardot; 

    zbardotresult(:,k)=zbardot; 

    K2result(:,k)=norm(K2); 

    r2results(:,k)=r2; 

    ustarresult(:,k)=ustar; 

    end 

  

figure 

hold on 

plot(xdresult(1,:),xdresult(2,:)) 

plot(zbarresult(1,:),zbarresult(2,:)) 

plot(zbarstarresult(1,:),zbarstarresult(2,:)) 

hold off 

  

figure 

hold on 

plot(f) 

plot(fstarresult(1,:)) 

plot(efresult(1,:)) 

%plot(r2results) 

hold off 

  

figure 

hold on 

plot(K1result) 

hold off 

  

figure 

hold on 

plot(K2result) 

hold off 

 

figure 

hold on 

plot(K1result) 

plot(K2result) 

hold off 

 

 

  

  



  51 

APPENDIX C 

CODE USING THE fsolve FUNCTION 

  



  52 

clear  

close all 

%% ssetup intial values and constants 

Md=[eye(2)]; %2x2 pg677 

Cd=[eye(2)]; %2x2 pg677 

a=5000; %pg 677 

U=[0 pi/5;-pi/5 0]; %2x2 pg677 

V=(1/pi)*[eye(2)]; %2x2 pg677 

A=[zeros(2) eye(2);zeros(2) -Md^-1*Cd]; %4x4 pg673 

B1=[zeros(2);Md^-1]; %4x2 pg673 

B2=B1; 

Abar=[A zeros(4,2);zeros(2,4) U]; %6x6 pg674 

Bbar1=[B1;zeros(2)]; %6x2 pg674 

Bbar2=Bbar1; 

Q1=50*[eye(2)]; %2x2 pg677 

Q2=[eye(2)]; %2x2 pg677 

R1=0.5*[eye(2)]; %2x2 pg677 

%% Orginal Start Value of R2 

R2=20*[eye(2)]; %2x2 pg677 

%% Change Start value of r2 

r2=19; 

%%  

Q=[Q1 zeros(2) -Q1*V;zeros(2) Q2 zeros(2);-V’*Q1 zeros(2) V’*Q1*V]; %6x6 pg674 

   

dt=0.01; 

t=0:dt:10; %pg 677 %time vector length of sim - start:timestep:end 

  

f=zeros(max(size(t)),1); %pg 677 %linear function-     force=f(t) 

f(401:500)=0.5; %pg677 %force vector from 4 to 5 sec 

f(501:700)=0.1; %pg677 %force vector from 5 to 7 sec 

f(701:1001)=0; %pg677 %force vector from 7 to 10 sec 

fy=0; 

   

xd=[-0.2*cos((pi/5)*0),0.2*sin((pi/5)*0)]'; 

x=xd; 

xdot=[(sin((pi*0)/5))/25,(pi*cos((pi*0)/5))/25]'; %differential of xd 

%pg 673 finding w=auxiliary state 

%xd=V*w; %pg673 desired trajectory 

w=linsolve(V,xd); 

wdot=U*w; %pg673  

%Finding P eq 12 pg674 

P=care(Abar,(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')./2,Q); 

%equation 26 pg 675 

K1=0.5*(R1^-1)*Bbar1'*P; 

K2=0.5*(R2^-1)*Bbar2'*P; 

 z=[x;xdot]; %equation given on pg 673 

zbar=[z;w]; %zbar intial pg 673 

zbarstar=zbar; %6x1 

 %% for loop 

for k=1:length(t) %algorithm 1 pg 675 step of milliseconds 

%caluate f from pg677 

    f=zeros(max(size(t(k))),1); %pg 677 %linear function-     force=f(t) 

    f(1:400)=0; 

    f(401:500)=0.5; %pg677 %force vector from 4 to 5 sec 

    f(501:700)=0.1; %pg677 %force vector from 5 to 7 sec 



  53 

    f(701:1001)=0; %pg677 %force vector from 7 to 10 sec  

    fy=0; 

    ft=[f(k);fy]; 

    xd=[-0.2*cos((pi/5)*t(k));0.2*sin((pi/5)*t(k))]; %page 677 

%pg 673 finding w=auxiliary state 

%xd=V*w; %pg673 desired trajectory equation 6 

    w=linsolve(V,xd); 

    wdot=U*w; %pg673 

%Finding P eq 12 pg674 

    P=care(Abar,(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')./2,Q); %solved using equation A-9 from 

page 282 of reference 31 in article 

%solving for u equation 24 pg 675 

    u=-0.5*(R1^-1)*Bbar1'*P*zbar;  

%Pg 674     

    ustar=-0.5*(R1^-1)*(Bbar1')*P*zbarstar; %equation 10 pg 674 

    fstar=-0.5*(R2^-1)*(Bbar2')*P*zbarstar; %equation 11 pg 674 

%% Update R2 Pg 675 equations 17-23 

    %equation 19 solved using care function 

    q=(1/(2*r2^2))*P*Bbar2*Bbar2'*P; 

    b=((Bbar1*(R1^-1)*Bbar1'*P+P*Bbar1*(R1^-1)*Bbar1')+(Bbar2*(R2^-1)*Bbar2'*P+P*Bbar2*(R2^-

1)*Bbar2')); 

    dP=care(Abar,b,q); 

%Equation 22   

    X=Abar-(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')*P; 

    Y=-(1/r2^2)*P*Bbar2*Bbar2'*P; 

    dp=0.5*(X'^-1)*Y; 

%equation 13 

    zbarstardot=Abar*zbarstar+Bbar1*ustar-Bbar2*fstar; 

%pg 674 

    ef=ft-fstar; 

    %equations 23 with 18 and 17 substituted in 

        %zbarstardot=r2dot*dzbarstar 

            %r2dot=-a*ef'*def  

            %def=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar)-

((1/(2*r2))*Bbar2'*P*dzbarstar)  

        %zbarstardot=-a*ef'*((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar-

((1/(2*r2))*Bbar2'*P*dzbarstar)*dzbarstar; 

    E=-a*ef'; 

    g=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar); 

    c=E*g; 

    v=E*((1/(2*r2))*Bbar2'*P); 

%% solving for dzbarstar 

    %fsolve  

    %Equation 30 from paper 

  %% Nonlinear fsolve - Same results as everything else 

   x0=[-0.2;0;0;0.1257;-0.6283;0];  

    options = optimoptions('fsolve','Display','iter'); 

     [dzbarstar,fval] = fsolve(@(dzbarstar)root2d(dzbarstar,c,v,zbarstardot),x0,options);  

%% finish updating R2 

%equation 18 

    def=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar)-((1/(2*r2))*Bbar2'*P*dzbarstar); 

%pg 674 

    ef=ft-fstar; 

%equation 17 

    r2dot=-a*ef'*def; 



  54 

    r2=r2+r2dot*dt; 

    if r2<0.4 

        r2=0.4; 

    end 

    R2=r2*eye(2); 

    %% update states 

%solving for zbarstar equation 12 pg 674 

    zbarstardot=Abar*zbarstar+Bbar1*ustar-Bbar2*fstar; 

    zbarstar=zbarstar+zbarstardot*dt; 

%solving for zbar equation 7  

    zbardot=Abar*zbar+Bbar1*u-Bbar2*ft; %makes zbar a 6x1 

    zbar=zbar+zbardot*dt; %new zbar, makes a 6x1 

%% Storing values 

    zbarstarresult(:,k)=zbarstar; 

    dzbarstarresult(:,k)=dzbarstar; 

    xdresult(:,k)=xd; 

    fstarresult(:,k)=fstar;   

    zbarresult(:,k)=zbar; 

    efresult(:,k)=ef; 

    fstarresult(:,k)=fstar; 

    K1result(:,k)=norm(K1); 

    zbarstardotresult(:,k)=zbarstardot; 

    zbardotresult(:,k)=zbardot; 

    K2result(:,k)=norm(K2); 

    r2results(:,k)=r2; 

    ustarresult(:,k)=ustar;    

end 

%% plots 

figure 

hold on 

plot(xdresult(1,:),xdresult(2,:)) 

plot(zbarresult(1,:),zbarresult(2,:)) 

plot(zbarstarresult(1,:),zbarstarresult(2,:)) 

hold off 

   

figure 

hold on 

plot(f) 

plot(fstarresult(1,:)) 

plot(efresult(1,:)) 

hold off 

 

figure 

hold on 

plot(K1result) 

plot(K2result) 

hold off 

  



  55 

 

 

APPENDIX D 

FUNCTION CODE 

  



  56 

  

 function F=root2d(dzbarstar,c,v,zbarstardot) 

    %% for Nonlinear fsolve 

    

F=[c*dzbarstar(1)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzbars

tar(1)-zbarstardot(1); 

        

c*dzbarstar(2)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzbarstar(

2)-zbarstardot(2); 

        

c*dzbarstar(3)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzbarstar(

3)-zbarstardot(3); 

        

c*dzbarstar(4)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzbarstar(

4)-zbarstardot(4); 

        

c*dzbarstar(5)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzbarstar(

5)-zbarstardot(5); 

        

c*dzbarstar(6)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzbarstar(

6)-zbarstardot(6);]; 

     

    %% for basic fsolve 

%     

F(1)=c*dzbarstar(1)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzba

rstar(1)-zbarstardot(1); 

%     

F(2)=c*dzbarstar(2)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzba

rstar(2)-zbarstardot(2); 

%     

F(3)=c*dzbarstar(3)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzba

rstar(3)-zbarstardot(3); 

%     

F(4)=c*dzbarstar(4)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzba

rstar(4)-zbarstardot(4); 

%     

F(5)=c*dzbarstar(5)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzba

rstar(5)-zbarstardot(5); 

%     

F(6)=c*dzbarstar(6)+v*[dzbarstar(1);dzbarstar(2);dzbarstar(3);dzbarstar(4);dzbarstar(5);dzbarstar(6)]*dzba

rstar(6)-zbarstardot(6); 

      

  

end 

  



  57 

APPENDIX E 

CODE USING BASIC fsolve FUNCTION 

  



  58 

clear  

close all 

%% ssetup intial values and constants 

Md=[eye(2)]; %2x2 pg677 

Cd=[eye(2)]; %2x2 pg677 

  

a=5000; %pg 677 

U=[0 pi/5;-pi/5 0]; %2x2 pg677 

V=(1/pi)*[eye(2)]; %2x2 pg677 

  

A=[zeros(2) eye(2);zeros(2) -Md^-1*Cd]; %4x4 pg673 

B1=[zeros(2);Md^-1]; %4x2 pg673 

B2=B1; 

 Abar=[A zeros(4,2);zeros(2,4) U]; %6x6 pg674 

Bbar1=[B1;zeros(2)]; %6x2 pg674 

Bbar2=Bbar1; 

 Q1=50*[eye(2)]; %2x2 pg677 

Q2=[eye(2)]; %2x2 pg677 

R1=0.5*[eye(2)]; %2x2 pg677 

%% Orginal Start Value of R2 

R2=20*[eye(2)]; %2x2 pg677 

%r2=20 

%% Change Start value of r2 

r2=19; 

%% R2dot initial 

%r2dot=25; 

%% 

Q=[Q1 zeros(2) -Q1*V;zeros(2) Q2 zeros(2);-V’*Q1 zeros(2) V’*Q1*V]; %6x6 pg674 

 dt=0.01; 

t=0:dt:10; %pg 677 %time vector length of sim - start:timestep:end 

f=zeros(max(size(t)),1); %pg 677 %linear function-     force=f(t) 

f(401:500)=0.5; %pg677 %force vector from 4 to 5 sec 

f(501:700)=0.1; %pg677 %force vector from 5 to 7 sec 

f(701:1001)=0; %pg677 %force vector from 7 to 10 sec 

fy=0; 

xd=[-0.2*cos((pi/5)*0),0.2*sin((pi/5)*0)]'; 

x=xd; 

xdot=[(sin((pi*0)/5))/25,(pi*cos((pi*0)/5))/25]'; %differential of xd 

%pg 673 finding w=auxiliary state 

%xd=V*w; %pg673 desired trajectory 

w=linsolve(V,xd); 

wdot=U*w; %pg673 

%Finding P eq 12 pg674 

P=care(Abar,(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')./2,Q); 

z=[x;xdot]; %equation given on pg 673 

zbar=[z;w]; %zbar intial pg 673 

zbarstar=zbar; %6x1 

%% for loop 

for k=1:length(t) %algorithm 1 pg 675 step of milliseconds 

%caluate f from pg677 

    f=zeros(max(size(t(k))),1); %pg 677 %linear function-     force=f(t) 

    f(1:400)=0; 

    f(401:500)=0.5; %pg677 %force vector from 4 to 5 sec 

    f(501:700)=0.1; %pg677 %force vector from 5 to 7 sec 

    f(701:1001)=0; %pg677 %force vector from 7 to 10 sec  



  59 

    fy=0; 

    ft=[f(k);fy]; 

    xd=[-0.2*cos((pi/5)*t(k));0.2*sin((pi/5)*t(k))]; %page 677 

%pg 673 finding w=auxiliary state 

%xd=V*w; %pg673 desired trajectory equation 6 

    w=linsolve(V,xd); 

    wdot=U*w; %pg673 

     

%Finding P eq 12 pg674 

    P=care(Abar,(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')./2,Q); %solved using equation A-9 from 

page 282 of reference 31 in article 

%solving for u equation 24 pg 675 

    u=-0.5*(R1^-1)*Bbar1'*P*zbar;   

%Pg 674     

    ustar=-0.5*(R1^-1)*(Bbar1')*P*zbarstar; %equation 10 pg 674 

    fstar=-0.5*(R2^-1)*(Bbar2')*P*zbarstar; %equation 11 pg 674 

%% Update R2 Pg 675 equations 17-23  

%Equation 22   

    X=Abar-(Bbar1*(R1^-1)*Bbar1'+Bbar2*(R2^-1)*Bbar2')*P; 

    Y=-(1/r2^2)*P*Bbar2*Bbar2'*P; 

    dP=0.5*(X'^-1)*Y; 

%equation 13 

    zbarstardot=Abar*zbarstar+Bbar1*ustar-Bbar2*fstar;  

%pg 674 

    ef=ft-fstar; 

    %equations 23 with 18 and 17 substituted in 

        %zbarstardot=r2dot*dzbarstar 

            %r2dot=-a*ef'*def %17 

            %def=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar)-

((1/(2*r2))*Bbar2'*P*dzbarstar) %18 

        %zbarstardot=-a*ef'*((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar-

((1/(2*r2))*Bbar2'*P*dzbarstar)*dzbarstar; 

    E=-a*ef'; 

    g=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar); 

    c=E*g; 

    v=E*((1/(2*r2))*Bbar2'*P); 

%% solving for dzbarstar 

    %fsolve 

   %% fsolve basic - Same results as Nonlinear 

    fun=@(dzbarstar)root2d(dzbarstar,c,v,zbarstardot);  

    x0=[-0.2;0;0;0;0;0]; 

%% Equation 30 from paper 

%     dzbarstar=zbarstardot/r2dot; 

%% finish updating R2 

%equation 18 

    def=((1/(2*r2^2))*Bbar2'*P*zbarstar)-((1/(2*r2))*Bbar2'*dP*zbarstar)-((1/(2*r2))*Bbar2'*P*dzbarstar); 

%pg 674 

    ef=ft-fstar; 

%equation 17 

    r2dot=-a*ef'*def; 

    r2=r2+r2dot*dt; 

    if r2<0.4 

        r2=0.4; 

    end 

    R2=r2*eye(2); 



  60 

    %% update states 

%solving for zbarstar equation 12 pg 674 

    zbarstardot=Abar*zbarstar+Bbar1*ustar-Bbar2*fstar; 

    zbarstar=zbarstar+zbarstardot*dt; 

%solving for zbar equation 7  

    zbardot=Abar*zbar+Bbar1*u-Bbar2*ft; %makes zbar a 6x1 

    zbar=zbar+zbardot*dt; %new zbar, makes a 6x1 

%% Storing values 

    zbarstarresult(:,k)=zbarstar; 

    dzbarstarresult(:,k)=dzbarstar; 

    xdresult(:,k)=xd; 

    fstarresult(:,k)=fstar;   

    zbarresult(:,k)=zbar; 

    efresult(:,k)=ef; 

    fstarresult(:,k)=fstar; 

    K1result(:,k)=norm(K1); 

    zbarstardotresult(:,k)=zbarstardot; 

    zbardotresult(:,k)=zbardot; 

    K2result(:,k)=norm(K2); 

    r2results(:,k)=r2; 

    ustarresult(:,k)=ustar;    

end 

 

%% plots 

figure 

hold on 

plot(xdresult(1,:),xdresult(2,:)) 

plot(zbarresult(1,:),zbarresult(2,:)) 

plot(zbarstarresult(1,:),zbarstarresult(2,:)) 

hold off 

  

figure 

hold on 

plot(f) 

plot(fstarresult(1,:)) 

plot(efresult(1,:)) 

hold off 

 

figure 

hold on 

plot(K1result) 

plot(K2result) 

hold off 


