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ABSTRACT

Semiconductor nanostructures are promising building blocks for light manage-

ment in thin silicon solar cells and silicon-based tandems due their tunable optical

properties. The present dissertation is organized along three main research areas:

(1) characterization and modeling of III-V nanowires as active elements of solar cell

tandems, (2) modeling of silicon nanopillars for reduced optical losses in ultra-thin

silicon solar cells, and (3) characterization and modeling of nanoparticle-based opti-

cal coatings for light management.

First, the recombination mechanisms in polytype GaAs nanowires are stud-

ied through photoluminescence measurements coupled with rate equation analysis.

When photons are absorbed in polytype nanowires, electrons and holes quickly ther-

malize to the band-edges of the zinc-blende and wurtzite phases, recombining indi-

rectly in space across the type-II offset. Using a rate equation model, different config-

urations of polytype defects along the nanowire are investigated, which compare well

with experiment considering spatially indirect recombination between different poly-

types, and defect-related recombination due to twin planes and other defects. The

presented analysis is a path towards predicting the performance of nanowire-based

solar cells.

Following this topic, the optical mechanisms in silicon nanopillar arrays are in-

vestigated using full-wave optical simulations in comparison to measured reflectance

data. The simulated electric field energy density profiles are used to elucidate the

mechanisms contributing to the reduced front surface reflectance. Strong forward

scattering and resonant absorption are observed for shorter- and longer- aspect ra-

tio nanopillars, respectively, with the sub-wavelength periodicity causing additional

diffraction. Their potential for light-trapping is investigated using full-wave optical
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simulation of an ultra-thin nanostructured substrate, where the conventional light-

trapping limit is exceeded for near-bandgap wavelengths.

Finally, the correlation between the optical properties of silicon nanoparticle lay-

ers to their respective pore size distributions is investigated using optical and struc-

tural characterization coupled with full-wave optical simulation. The presence of

scattering is experimentally correlated to wider pore size distributions obtained from

nitrogen adsorption measurements. The correlation is validated with optical simula-

tion of random and clustered structures, with the latter approximating experimental.

Reduced structural inhomogeneity in low-refractive-index nanoparticle inter-layers

at the metal/semiconductor interface improves their performance as back reflectors,

while reducing parasitic absorption in the metal.
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Chapter 1

INTRODUCTION

The demand for electricity continues to increase with rising world population and

standards of living. From 1974 to 2016, world electricity production nearly quadru-

pled, at an average annual growth rate of 3.3% [1]. To meet that rising demand

requires substantially more energy supply. The current world demand is mostly met

through fossil fuels; coal, oil, and natural gas make up 65% of electricity production,

with only 5.6% from renewable energy sources1[1]. Electricity from solar energy

sources, which is the most abundant and distributed form of energy, has the poten-

tial to meet the additional demand, while reducing the harmful impacts on human

health and the environment from air pollution and green-house gas emissions, the

latter leading to rising temperatures and more extreme weather events [2]. Current

technology, in the form of photovoltaic (PV) solar cells, is already leading the way in

new installed electricity generation capacity to meet the rising demand. At the end of

2017, two-thirds of the added electricity generation capacity came from renewable

energy (178 GW), with solar PV expanding the most (97 GW) [3]. A combination

of cost reductions and increase in efficiency has led to a significant decrease in lev-

elized cost of electricity (LCOE) for utility-scale solar PV ($0.04-0.06/kWh, reduc-

tion of 80-82% from 2010 to 2018)2[4], making it cost-competitive with conventional

electricity generation (median cost $0.05-0.08/kWh [5]). Keeping pace with rising
1includes solar, wind, geothermal, tide, etc.

2$0.09-0.12/kWh for commercial-scale and $0.12-0.16/kWh for residential-scale
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demand necessitates reduction in material use accompanied with further efficiency

improvements.

Most of the solar energy produced today comes from silicon (Si) solar cells, mak-

ing up about 95% of the market. Since the first practical silicon solar cell was pro-

duced in 1954, while significant improvements have been made in efficiency, the

basic solar cell design and the choice of material has remained unchanged. Silicon

is a convenient choice due to its price and abundance, as well as its high material

quality, spurred partly by intense R&D efforts in the computer industry over six

decades. However, one disadvantage of Si solar cells (compared to the more expen-

sive GaAs) is poor light absorption: while only a few microns of GaAs are neces-

sary to absorb most of the incoming light, Si needs around 100 µm to do the same.

Its indirect bandgap reduces the probability of photon absorption, requiring longer

path-lengths to absorb the incoming light. Reducing material costs (due to material

quantity and quality), while maintaining efficiency of its thicker counterparts, would

necessitate the use of light-management approaches compatible with thinner solar

cells to absorb most of the above-bandgap light; at the same time, reduced solar cell

thickness decreases the need for long diffusion lengths (i.e. high quality material),

further reducing the cost. In terms of applications, thinner, more flexible substrates

provide a wider range of possibilities for seamlessly integrating electricity generation

into the built environment (i.e. building-integrated PV), as well as greater portability

for electricity deployment in remote locations, disaster zones, and space.

The emergence of nanotechnology has brought new possibilities for, among

other applications, photovoltaic devices (see Chap. 2). In particular, it has made

possible the design and control of light-matter interactions using sub-wavelength

features, altering the absorption of light and opening opportunities for new solar cell
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geometries and combinations of materials not possible in planar form. Considerable

work remains in the understanding and optimization of the material structures and

resulting optical properties in the nanoscale regime necessary for accurate tuning of

the optoelectronic properties for intended applications, which is the main focus of

the present work.

This dissertation provides information on exploiting the unique optical proper-

ties of semiconductor nanostructures for reduced optical losses in thin silicon solar

cells and silicon-based tandems. Using combined experimental and theoretical ap-

proaches, this work explores how the material structure impacts the optical proper-

ties for several semiconductor nanostructures, and how those properties can be ex-

ploited for improving the optical performance in solar cells. The following chapter

introduces different types of semiconductor nanostructures relevant to this work, in-

cluding a discussion of properties of interest for solar energy applications. Chapter 3

gives an overview of the main experimental and simulation methods used here. The

results chapters start with a study of III-V nanowires as active elements of nanowire

solar cells in Chap. 4, specifically their recombination mechanisms, through pho-

toluminescence spectroscopy and rate equation analysis. Chapter 5 focuses on the

study of silicon nanopillars for reduced optical losses in ultra-thin silicon solar cells

through finite-difference optical modeling in comparison with reflectance data. Fi-

nally, Chap. 6 presents the main results from the characterization and modeling of

nanoparticle-based optical coatings for light management, including a discussion of

their tunable physical and optical properties.
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Chapter 2

SEMICONDUCTOR NANOSTRUCTURES

This chapter introduces the reader to the different types of semiconductor nanos-

tructures relevant to the present work. The focus is placed on their unique opto-

electronic properties of interest to photovoltaics, including scattering, resonant ab-

sorption, carrier collection, and light trapping.

2.1 Challenges to overcoming fundamental limits of solar energy conversion

The performance of semiconductor-based solar cells is far below the theoretical

maximum thermodynamic efficiency limits of solar energy conversion (∼85%)[6].

State-of-the-art structures have reached slightly over 50% of that limit (four-junction

solar cells under concentration [7]), while the record single-junction solar cells (state-

of-the-art GaAs solar cells[8]) stand at barely 34% of that limit.

In 1961, Shockley and Queisser presented the first paper [9] outlining the limits

of solar energy conversion in single-junction solar cells based on detailed balance

calculations, setting the theoretical limits for an ideal solar energy converter at 33.7%

for a standard AM1.5 spectrum. The positions of the two theoretical maxima corre-

sponded to the bandgaps of 1.1 eV and 1.4 eV (close to the Si and GaAs bandgaps,

respectively) [9]. The large discrepancy between the thermodynamic limit and the

Shockley-Queisser (S-Q) stems from the loss of energy associated with the thermal-

ization of electron-hole pairs excited by above-bandgap photons, and the lack of

absorption of below-bandgap photons. Both Si and GaAs have approached their
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respective S-Q limits in state-of-the-art structures (26.3% and 28.8% [8]). Overcom-

ing those limits rests in addressing the assumptions on which the S-Q limit is based:

a single-junction material, loss of photons with energy below the bandgap, loss of

excess energy of the photons above the bandgap (due to thermalization of photo-

excited carriers to the band-edge), and one electron-hole pair generated per photon.

Some potential approaches to overcoming these assumptions include multi-bandgap

solar cells, multi-exciton generation (MEG) [10–12], intermediate band-gap mate-

rials [13], and hot-carrier solar cells [14–16]. Mechanisms involved in some these

designs necessitate the use of nanotechnology-based approaches, as they are either

weak or non-existant in bulk materials. In addition, nanotechnology also allows for

reduced quantity and quality of material through optimization of light absorption

using sub-wavelength structures.

2.2 Nanotechnology-based approaches in solar photovoltaics

Nanotechnology refers to technology conducted at the nanoscale, usually with

feature sizes between 1–100 nm. Remarkable advances in material synthesis and

nanofabrication have allowed for creation of structures with unique properties that

arise from their small dimension, setting them apart from their bulk counterparts.

Their fundamental material properties (chemical, mechanical, optical, electrical, etc.)

are modified, essentially creating a new material. No longer limited by the properties

of the bulkmaterial, nanostructuredmaterials can be tuned and optimized for specific

properties and applications.

Nanostructures in solar cells can be used to improve photovoltaic performance

in a number of ways:
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1. overcome the limitation of set material properties in bulk materials (i.e.

bandgap engineering)

2. improve mechanisms of carrier generation (i.e. multi-exciton generation)

3. reduction of optical losses

4. design new solar cell architectures that reduce the quantity/quality of material

5. overcome the limitation of combining materials based on lattice-matching

In the present work, improvements in optical performance (3) are considered.

An ideal solar cell structure should be both optically thick (to increase the proba-

bility of photon absorption) and electrically thin (to increase the probability of carrier

collection). In direct bandgap semiconductors, such as GaAs, where the absorption

coefficient is large, and only a few microns are needed to absorb most of the near-

bandgap light, the trade-off between those requirements is minimized. Nevertheless,

the costs can be reduced by further decreasing the material quantity. On the other

hand, indirect bandgap materials such as Si, where solar cell thickness exceeding 1

mm is needed to effectively absorb near-bandgap light, necessitate ways to decrease

the volume of solar cell material while increasing the probability of photo-generation.

Light-trapping approaches provide a way to increase the photon flux per unit vol-

ume, allowing for a reduction in the quantity of the solar cell material. The optical

thickness of the solar cells is effectively increased by extending the path length of

light, compensating for the reduced volume. One way to achieve this is using front

and back surface texturing to couple light obliquely into the solar cell; this can lead

to multiple internal reflections at the boundaries before the light escapes, increasing

the probability of photon absorption. In crystalline Si solar cells, random pyramid

structures produced through preferential etching of crystallographic planes, are tra-

ditionally used to improve light absorption.
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The effectiveness of the structures to generate path length enhancement is usually

compared to the conventional light-trapping limit. In 1982, Yablonovitch proposed

the maximum absorption enhancement factor of 4n2 for the weakly absorbed light,

achieved through randomization in the angular distribution of light entering the slab

[17]. The statistical ray optics approach used in the paper is based on the detailed

balancing of light incident on a small area—which undergoes internal angular ran-

domization upon entering the cell—and the light in the loss cone that escapes from

it. The derived limit is based on the assumption that feature sizes are large com-

pared to the wavelength of light, and the light interaction with matter is operating

in the ray optics regime. Solar absorbers with sub-wavelength features, governed

by wave-optics phenomena are not considered, suggesting a potential for exceeding

the conventional light trapping limit using nanostructures. Evidence that non-planar

solar cells with sub-wavelength feature may exceed the conventional light-trapping

limit has been previously investigated through experiment [18, 19], simulation [20],

and semi-analytical approaches [21, 22]. Yu et al. has suggested that the conventional

light trapping limit can be exceeded in grating structures, however, with significant

angular dependency. A statistical temporal coupled mode theory developed in the pa-

per was used to describe the combined effect of guided resonances, and compute the

resulting theoretical limit [23, 24]. Callahan et al. have generalized the assumptions

needed to exceed the conventional light trapping limit by designing structures with

an elevated local density of optical states (LDOS) — integrated over the absorber re-

gion, LDOS must exceed that of its planar counterpart [25]. Optical mechanisms of

resonant absorption, light diffraction, and scattering in nanostructures have potential

to enhance optical absorption above the conventional light trapping limit.

Information on several semiconductor nanostructures, classified by their geome-
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try into nanowires, nanopillars, and nanocrystals, is presented. Nanowires (NWs) are

filamentary crystals with high-aspect ratios that enable effective light absorption and

novel junction design for light collection. Nanopillars (NPs), on the other hand, have

short-aspect ratios, often designed to effectively scatter light with potential for light-

trapping. Crystalline nanoparticles, or nanocrystals (NCs), are ultra-fine particles,

having (approximately) spherical shape with dimensions between 1–100 nm. The

optical properties of NCs (often deposited as thin layers) can be tuned by adjusting

their size, composition, density, and arrangement.

The sections that follow provide a brief overview of the optical properties of these

semiconductor nanostructures from literature, with a focus on the improvement of

optical performance in solar cells through light trapping, scattering, and collection.

2.2.1 Light trapping and scattering

Nanowires can be used for increased light-trapping within the nanowire (used as

an active material) as well as in combination with tandem structures (to couple light

into the bottom cell). A single nanowire solar cell can even exceed the conventional

S-Q limit as a result of the increased absorption cross section [26]. However, if the ab-

sorbed cross-section is used in calculating the incident power (instead of the physical

cross section), this limit is no longer exceeded. In addition, new geometrical con-

sideration should be taken into account for calculating the S-Q limits [27]. Despite

the strong wavelength-dependence of absorption on geometry, arrays of nanowires

can also be optimized for absorption over a broad range of wavelengths [28] [shown

in Fig. 2.1(a)]; introducing non-uniformity can further increase the light absorption

[29] [shown in Fig. 2.1(b)].
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(a)

(c)

(b)

(d) (e)

FIG. 2.1: (a) Absorption enhancement in a single GaAs nanowire as a function of
wavelength (left) and the corresponding absorption cross-section (right) (Adapted
by permission from Macmillan Publishers Ltd: Nanotechnology, Ref. [28], copy-
right 2014). (b) Nanowire arrays with multiple radii, as well as tapered nanowires
(i.e. nanocones), can further boost the broadband absorption of light in the arrays
(Adapted from [29]. Optical Society of America, copyright 2014.). (c) Enhanced for-
ward scattering of low-aspect ratio silicon nanopillars (in contact with a silicon sub-
strate) due to leaky Mie resonances. Simulated normalized scattering cross-sections
of free-standing silicon spheres (green), silicon spheres in contact with a silicon sub-
strate (blue), and nanopillars of equivalent diameter (red) are shown together with
the corresponding electric field energy density at the indicated resonant wavelengths.
Leaky Mie resonance is observed for the pillars at the second resonant wavelength
(Adapted from [30]. Springer Nature, copyright 2012). (d) Light trapping enhance-
ment for nanopillar arrays having trigonal periodicity. The period (L) of nanopillar
arrays enhances the conventional light trapping limit (4n2) by a factor F for a partic-
ular wavelength. As L increases to multiples of the wavelength (λ), the light trapping
approaches the 4n2 limit (Adapted from [23]. Optical Society of America, copyright
2010). (e) Low-refractive-index nanoparticle interlayers for reduced parasitic absorp-
tion in metallic rear reflector of solar cells. Schematic of the test structure is shown
together with the EQE and 1-R comparing nanoparticle layers to the thin and thick
ITO layers (Adapted with permission from Ref. [31]. Copyright 2017 John Wiley &
Sons, Inc.).
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The implementation of nanoscale features has been investigated for reduced re-

flection and improved light-trapping in solar cell devices. Spinelli et al. [30] demon-

strated the broadband reduction in reflectance with the implementation of short-

aspect-ratio nanopillar (NP) structures due to strong forward scattering of light.

When the size of the scattering structures is comparable to the wavelength of light,

the phenomenon is often referred to as Mie scattering. Figure 2.1(c) shows the nor-

malized scattering cross-sections of a free-standing Si sphere (green), a Si sphere on

a Si substrate (blue) and a Si cylinder on a Si substrate. The electric field intensity is

shown for each case at the first and second resonance for the indicated wavelengths.

A broader resonant peak for the third case is observed as the overlap of the Mie

resonance inside the cylindrical particle with the substrate, creating a leaky channel

[30]. The strong forward scattering of these features suggested that they could also

be used in thin solar cells for improved light trapping, where conventional micro-

texturing may not be possible (due to feature size). Higher order diffraction would

contribute to increased path length of poorly absorbed light (in addition to reduced

front reflection) by increasing the likelihood of internal reflectance at the interfaces.

To investigate the suitability of Mie scatterers for increased light trapping, Spinelli et al.

investigated the geometry optimized for front-surface reflectance to investigate the

light absorption in 5 and 20 µm-thick silicon solar cells [32], and compared those to

the conventional (4n2) limit of light trapping [17, 33]. In the broadband wavelength

range, the structures did not exceed the light trapping limit. However, structures op-

timized for anti-reflection may not be optimized for light trapping. The fundamental

limits of light trapping in ordered grating structures suggests that the light-trapping

limits may be exceeded for a particular wavelength range [23] [see Fig. 2.1(d)]. For

example, the feature geometry can be chosen to optimize light trapping only for the

10



wavelength regions where the material is poorly absorbing (as opposed to the full

wavelength range).

Nanoparticle-based layers can also be used to reduce reflection and increase light

trapping, either by providing index matching or increased scattering. The porosity

of the nanoparticle layers reduces the effective refractive index of the film, allowing

the fabrication of an optical layer between that of air and the constituent material,

minimizing the reflective losses at the front surface [34]. Similarly, low-refractive

index layers can be used as inter-layers at the metal-semiconductor interface of the

back contact to increase reflection and reduce parasitic absorption due to excitation

of evanescent waves (that decay along the interface). Increased infra-red response

was experimentally demonstrated in single-junction [31] and silicon-based tandems

[35] through improved reflectance at the back interface with the implementation of

a low-refractive index nanoparticle-based layer. Figure 2.1(e) shows an improved

infrared external quantum efficiency (EQE) response of a complete solar cell with

the implemented nanoparticle layers; increased reflectance of sub-bandgap light [low

1-reflectance (R)] suggests that the improvement is associated with improved back

reflectance of the metal-semiconductor interface [31]. In addition to being used as

optical coatings, these nanoparticle layers may also be optimized for scattering: larger

scattering angles can increase the path length of poorly absorbing light when placed

on the top or bottom of the solar cell (if the particles are non-absorbing). When used

as an active material, the scattering centers within the films can be used to increase

the light trapping of the nanoparticle structure by randomizing the path of light.
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2.2.2 Light collection

The nanowire geometry and resonant absorption of light has permitted new solar

cell designs with respect to traditional junction geometry. To perform well, solar cells

should be both optically thick (to absorb most of the incoming light) and electrically

thin (to reduce carrier losses). If carrier collection and light absorption occur along

the same line, the two requirements are at odds. For indirect bandgap materials, such

as Si, where near bandgap light is poorly absorbed, high purity is necessary to ensure

that carrier losses due to trap-assisted recombination are reduced. The high purity

requirements therefore increase the material costs.
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FIG. 2.2: (a) Axial junction vs. (b) radial junction designs for carrier collection in
nanowire solar cells. For axial and radial junction designs, carriers are separated along
the axial and radial directions, respectively. The radial junction geometry allows for
shorter diffusion lengths of the minority carriers (Ln) in the absorber layer (i.e. lower
quality materials) [36].
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Kayes et al. have proposed a radial junction design that orthogonalizes the pho-

ton absorption and carrier collection, suitable for implementation in nanopillar and

nanowire geometries [36]. Figure 2.2 illustrates the difference between axial junction

and radial junction geometries. In the axial junction, light is absorbed and carriers

are separated along the axial direction of the NW. For light absorbed far away from

the junction (deeper in the material), the minority carrier diffusion length (Ln) must

be sufficiently long for carrier collection [Fig. 2.2(a)]. In the radial junction design,

light is absorbed along the axial direction, while the carriers are collected in the radial

direction. As a result, generated carriers are sufficiently close to the junction at each

point along the NW length, placing lower requirements on the Ln, and therefore, a

need for high quality material. However, the large surface-to-volume ratio, and the

resulting surface recombination losses, increases the dark current, leading to reduced

voltage. These losses are better mitigated with radial junction geometries, as shown

in Ref. [37] using coupled optical and electrical simulation. Together with enhanced

light absorption, implementation of radial junction geometry has the potential to de-

crease both the required quantity and quality of the semiconductor material, with the

potential reductions in costs, especially for more expensive III-V materials.

2.3 Overview of nanostructures used in this dissertation

A brief description of each type of nanostructure studied in this dissertation is

provided below, including their description, fabrication, and potential applications in

energy generation.
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2.3.1 Nanowires

Nanowires are filamentary crystals with a high aspect ratio where the cross-

sectional dimension is nanoscale, while the height is unconstrained (typically mi-

croscale). Two techniques are mainly used for growth of nanowires: metal-

organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE).

Nanowires can be grown with both MOCVD and MBE via two main mechanisms:

selective area epitaxy (SAE), where a mask pattern determines where on the substrate

epitaxy will occur, and vapor-liquid-solid growth (VLS). The mechanisms governing

VLS growth were first described by Wagner and Ellis in 1964 for gold-catalyzed sili-

con filaments [38]. Since incorporation of gold in some semiconductors can lead to

degradation of the optoelectronic properties (i.e. increased non-radiative recombina-

tion due to deep-level traps), self-catalyzed nanowire growth is a suitable alternative.

Figure 2.3(a) describes the typical (self-catalyzed) VLS process, followed by radial

epitaxial growth. In the self-catalyzed growth of GaAs nanowires, gallium droplets

that form on an oxidized substrate in the initial stages of gas flow act as catalysts,

providing sites for arsenic incorporation; the growth process proceeds with precipi-

tation of GaAs along the droplet interface [39]. Figure 2.3(b) shows an SEM image

of an array of GaAs nanowires grown on an oxidized GaAs substrates via the self-

catalyzed VLS method, with the Ga droplet still visible at the tip of the nanowire.

The nanowire geometry also allows for growing radial shells with modulated doping

and composition, important to the development of nanowire-based devices [40]. Di-

rectly following VLS growth, and the extinction of the Ga droplet, changes in growth

condition (increased As pressure and reduced temperature) allow for radial epitaxial

growth to proceed along the surface of the nanowire [schematically shown in the last
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step of Fig. 2.3(a)]. As is the case with planar 2D growth, doping and composition

can be modulated for different layers in the radial direction. Figure 2.3(c) shows a

TEM image of a nanowire cross-section showing their its core-shell structure, fab-

ricated following self-catalyzed VLS growth [41]. The GaAs nanowire structures

that will be discussed in this dissertation were fabricated via the VLS method and

include radial epitaxial growth (G. Tütüncüoglu and H. Potts grew the samples at

the Laboratory of Semiconductor Materials, EPFL, Switzerland).

GaAs/SiO2 
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FIG. 2.3: (a) Self-catalyzed VLS growth of a NW. The first step shows the formation
of a Ga droplet on an oxidized substrate, followed by NW growth and termination
with the extinction of the droplet. Directly following VLS growth, core-shell struc-
tures can be formed via radial epitaxial growth. Dopants and alloying materials can
be introduced during each stage of growth to modulate the doping and composition
in both the axial and radial directions. Image adapted from [42]. (b) SEM image
of GaAs NWs grown on an oxidized GaAs substrate via self-catalyzed VLS; the Ga
droplet is visible at the tip (Reprinted figure with permission from Ref. [39]. Copy-
right 2008 by the American Physical Society.). (c) Formation of core-shell structures
via radial epitaxial growth following the catalyst-free VLS nanowire growth (Repub-
lished with permission of Royal Society of Chemistry, from Ref. [41]; permission
conveyed through Copyright Clearance Center, Inc.).
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Semiconductor NWs are promising candidates for next generation photovoltaic

[26, 43–45] and photocatalytic [46–48] devices due to improved optical properties

and unique electrical properties compared to planar devices. The filamentary mor-

phology of NWs increases light absorption for the same quantity of material [28, 29,

49], while the use of radial p-n junctions reduces the need for long diffusion lengths

(i.e. high purity materials) for carrier collection [18, 36, 50]. The NW geometry

also makes it possible to overcome the limitation of combining materials based on

lattice matching [51], as well as realize advanced concept solar cell structures with

improved mechanisms of carrier generation (i.e. multi-exciton generation) [10–12],

reduction of thermalization losses (i.e. hot-carrier solar cells) [14–16], and intro-

duction of multiple energy levels (i.e intermediate bandgap solar cells) [13]. These

mechanisms offer pathways to overcoming the Schockley-Quisser (S-Q) limit of effi-

ciency [9, 52], as discussed earlier. In terms of cost, the use of less expensive silicon

substrates may decrease the large substrate costs associated with the growth of III-V

materials [53, 54]. Today, the experimental efficiency of NW-based devices has im-

proved rapidly in recent years (15.3% for GaAs [55] and 17.8% for InP in 2017 [56]),

although still below their planar counterparts that already approach their respective

Shockley-Queisser limits [8]. Their fabrication also relies on expensive nanolithog-

raphy techniques and substrates. To reduce these costs, NWs should be fabricated

via a bottom-up approach on unpatterned foreign substrates (i.e. c-Si). In order to

ensure comparable performance to their patterned, metal-catalyzed counterparts, re-

quires understanding the potential loss mechanism in NW-based GaAs solar cells at

different scales: from a collection of NWs in the array to a single diode, down to the

quality of the starting material.

Mikulik et al. have previously studied the photovoltaic performance of individual
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NWs in the array, and the impact of inhomogeneity between them on the perfor-

mance of the full solar cell device using conductive-probe atomic force microscopy

[57]. Among the individually measured NWs, however, even the highest performing

NWs showed relatively low open-circuit voltage (0.6 V). Understanding the underly-

ing physical limitations and providing meaningful simplified models are the first step

to improving their photovoltaic performance.

A major challenge to utilizing bottom-up, self-catalyzed NWs is the presence

of wurtzite (WZ)/zincblende (ZB) polytype defects along their length. The unin-

tentional phase change along the length of the NW is believed to arise due to the

local temperature and source-flux variations at its growth interface [58]; recent in-

situ observations of phase-switching during growth has given additional insight on

its mechanisms and ways to control it [59]. The main concern is the impact these

polytype defects may play in reducing the performance of a NW-based device. To

predict the expected device performance requires a model that can capture (and sim-

plify) complex carrier dynamics of an ensemble of crystalline defects. The interface

between the WZ and ZB phases of gallium arsenide (GaAs) exhibits a type-II band

offset, first computed theoretically [60–62], that has been since corroborated experi-

mentally. Nanowires containingWZ/ZB polytype defects have been previously stud-

ied via transmission electron microscopy and photoluminescence (PL) spectroscopy

[63–67] including direct correlation of structural and optical properties along the full

length of the nanowire by Heiss et al. [68], suggesting an ensemble of localized states

of varying confinement resulting from the type-II offset between the WZ and ZB

phases. Time-resolved PL studies further suggest different recombination rates for

polytype regions compared to the band-to-band [63, 69].

In Chap. 4, we analyze the various recombination mechanisms in self-catalyzed
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GaAsNWs through spectroscopicmeasurements coupled with a rate equationmodel

to help describe the results. As shown in Fig. 2.4, photo-generated carriers recombine

through various radiative channels due to crystal variations along the wire (at bandgap

and sub-bandgap energies) as previously illustrated in [69], while their proximity to

the surface makes them susceptible to non-radiative recombination through surface

traps, depleting the photo-excited carriers in the proximity of the surface [70]. When

observing only bandgap recombination, the two effects of carrier relaxation are not

readily separable: (1) recombination due to surface traps and (2) thermalization to

lower energy levels from which they radiatively recombine. The individual energy

levels are coupled and have well-defined relaxation rates, giving rise to the observed

PL intensities.
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FIG. 2.4: (a) Crystal variations along the wire give rise to 1⃝ bandgap and 2⃝ sub-
bandgap radiative transitions while being subject to (b) surface recombination in the
radial direction.

In this dissertation, time-resolved photoluminescence spectroscopy (TRPL) and

power-series time-integrated photoluminescence spectroscopy (TIPL) is used to as-

sess relaxation rates and the dominance in intensity for different transitions in GaAs

NWs (bandgap, polytype regions, and defects) in Section 4.2, and utilize a rate equa-

tion model to help describe the observed variation in spectroscopic features as a
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function of photon energy for various illumination intensities and temperatures in

Section 4.3.

2.3.2 Nanopillars

Nanopillars usually refer to the short-aspect-ratio nanostructures, in which both

the cross-sectional dimension and the length are nanometer scale (on the order

of 100 nm). Nanopillars are most often fabricated using top-down, etching tech-

niques, such as reactive ion etching (RIE) [71] and metal-assisted chemical etching

(MaCE) [72]. Prior to etching, the substrates are patterned via one of the lithogra-

phy techniques. Several alternatives to e-beam lithography have emerged, such as

nanosphere and nanoimprint lithography, that have allowed relatively inexpensive,

large-area nanopatterning of substrates [73–75].

Figure 2.5(a) provides a work-flow for fabricating low-aspect ratio nanopillars

based on silica nanosphere (SNS) lithography. SNS are spin-coated onto a silicon

substrate forming a monolayer. An SEM image of a coated substrate [Fig. 2.5(b)]

shows near-uniform arrangement of SNS and trigonal periodicity [75]. The period of

the fabricated structures is determined by the initial size of the SNS. The nanospheres

are then reduced in size through RIE prior to the deposition of a metal catalyst.

SNS size reduction can be tuned, producing nanopillars with different diameter sizes.

The SNS particles are removed prior to etching. An SEM image of three metal-

patterned silicon substates are shown in Fig. 2.5(c), where the SNS were reduced

to three different sizes. Following the MaCE step, the metal catalyst is removed.

An SEM image of the fabricated NP structures [Fig. 2.5(d)] shows the NP arrays

having comparable periodicities where the diameter is tuned through SNS reduction
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[76]. The Si nanopillar structures that will be discussed here were fabricated via

silica nanosphere (SNS) lithography and MaCE, as described in Ref. [76] (J.Y. Choi

fabricated the samples at the Solar Power Labs, Arizona State University, USA).

spin-coating SNS metal deposition SNS removal
metal-assisted 

chemical etching metal removal
SNS size
reduction

(a)

(b) (c) (d)

FIG. 2.5: (a) SNS lithography and MaCE for fabrication of large-area nanopillar ar-
rays. Period of the nanopillars is controlled by the initial size of the deposited SNS
and their thickness by SNS size reduction with RIE. (b) SNS-coated substrate is
shown after spin-coating deposition with the SEM image showing the trigonal pe-
riodicity arrangement of SNS (Adapted with permission from Ref. [75]. Copyright
2014 American Chemical Society.) (c) SEM images showing metal-patterned silicon
substrates following metal deposition and SNS removal for three different SNS size
reductions. (d) Images of the corresponding nanopillar structures following MaCE
and metal removal (Adapted with permission from Ref. [76]. Copyright 2015 Amer-
ican Chemical Society.).

The optical property of semiconductor nanopillars, of particular interest to photo-

voltaics, is the strong forward scattering of light that results in reduced front surface

reflection and enhanced light trapping [30, 32] of the nanostructured substrate. The

strong forward scattering of light occurs when the cross-sectional dimension of the

nanopillar (d) is on the order of the wavelength of light (λ): d ≈ λ. This behav-

ior was first described by the Mie theory in 1908 [77]. In thick silicon solar cells,

pyramid texturing is used to alter the angle of normally incident light as it enters the

substrate - this ensures that light is internally reflected multiple times before exiting

the cell. For ultra-thin silicon substrates (25 µm or less), 5–10 µm pyramidal textures
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may not be feasible. Spinelli et al. had already demonstrated broadband reduced re-

flection due to short-aspect ratio pillars using a square lattice arrangement through

experimental measurements and simulation [30]. However, Yu et. al., using a the-

oretical approach, have argued that hexagonal (or trigonal) periodicity can achieve

a higher maximum enhancement factor over the bulk 4n2 limit resulting from the

sub-wavelength diffraction grating geometry [23].

In Chap. 5, the optical properties of hexagonally-arranged silicon nanopillar ar-

rays for potential applications in reducing optical losses in ultra-thin silicon solar cells

are investigated. The scattering behavior of the nanopillars was investigated using the

finite-difference solver for different nanopillar geometries [78]. In addition, the po-

tential of these nanostructures for light trapping is investigated: rigorous-coupled

wave-analysis (RCWA) was used to study the impact of the nanopillars on the higher

order diffraction with visualization of the fields using finite-difference frequency-

domain solver in Ref. [79].

2.3.3 Nanoparticles

Nanoparticles have structural dimensions usually between 1–100 nm. Crystalline

nanoparticles may also be referred to as nanocrystals (NC). For very small NCs (1-

10 nm), quantum confinement effects emerge, shifting the fundamental band gap

of the material to higher energies, thus altering their optical and electrical properties

compared to that of bulk materials. In addition, silicon NCs even have high lumines-

cence despite bulk silicon being an indirect bandgap material. This phenomenon was

first observed in porous silicon [82], which garnered greater interest for silicon NCs.

Semiconductor NCs are fabricated by a variety of processes: (1) mechanical grinding,
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FIG. 2.6: (a) Gas-phase plasma process schematic for silicon nanoparticle produc-
tion. Silane gas dissociates into ions that rapidly form clusters and continue to grow
through aggregation of ions, forming silicon nanoparticles. The nanoparticles ag-
glomerate as they exit the plasma zone due to weak van-der-Waals interactions. (b)
Schematic of the RF plasma reactor used in the synthesis of silicon nanoparticles. (c)
TEM image of the produced particles with the average size of 5.7 nm. (Adapted with
permission from Ref. [80]. Copyright 2005 American Chemical Society). (d) Plasma
chamber exhaust can be adapted with a slit-shaped nozzle; combined with a movable
substrate stage, uniform, large area nanoparticle-based films are produced [81]. (e)
SEMX-section image of silicon nanoparticles grown in layers, forming a porous thin
film (Adapted with permission from Ref. [31]. Copyright 2017 John Wiley & Sons,
Inc.).

(2) pyrolisis, (3) RF plasma, (4) sol-gel, and (5) self-assembly via Stansky-Krastinov

growth process [83]. The silicon NCs investigated in this dissertation were fabricated

via the non-thermal RF plasma method [80, 81]. Figure 2.6(a) shows a simplified pro-

cess of gas-phase NC formation in the plasma, starting with dissociation of the silane
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gas (SiH4), followed by the clustering of the dissociated products into primary par-

ticles. The particles continue to grow through aggregation of dissociated products

before exiting the plasma zone. As the particles exit the plasma zone, they tend to

agglomerate due to weak Van-der-Waals forces. Figure 2.6(b) shows a schematic of

the plasma reactor, with an accompanying digital image of the argon-silane plasma.

Radio-frequency power is applied to the two copper ring electrodes attached to the

quartz tube chamber through which the gas sources continuously flow [80]. A TEM

image of the deposited NCs is shown in Fig. 2.6(c). The plasma chamber exhaust

can be adapted with a slit-shaped nozzle with increased control over the NCs depo-

sition with respect to density and uniformity of the deposited film across large areas

[81]. Figure 2.6(e) shows an SEM image of a nanoparticle-based thin films deposited

through the impaction of silicon nanocrystals following plasma synthesis (density

∼30%). The density of the resulting films can be tuned by varying the speed of NC

impaction on the substrate by adjusting the nozzle-to-substrate distance [31]. The

NC-based films studied here were fabricated in this way (P. Firth deposited the films

in the Holman Lab, Arizona State University, USA).

Introducing porosity in semiconductor materials can alter their properties, includ-

ing those related to quantum confinement, surface chemistry, and light propagation,

for applications such as anti-reflection coatings, mirrors, etc. Porous silicon (PS)

thin films, chemically etched into their native crystalline Si substrate, have been the

subject of intense research, with potential applications in light-emitting devices [82],

solar cells [34, 84, 85], sensors [86], and biomaterials [87]. Nanoparticle deposition

offers a “bottom-up” approach to the realization of porous silicon thin films. The

nanoparticle films can be deposited on a variety of substrates and with high through-

23



put [80, 81]. Their physical and chemical properties can be tuned by controlling the

size and arrangement of nanoparticles during deposition [88].

Boccard et al. recently demonstrated the use of low-refractive-index nanoparticle

layers for reducing optical losses in solar cells, specifically the reduction of parasitic

absorption at the metal-semiconductor interface of a back reflector [31]. The low-

refractive index layer between the semiconductor and the metal: (1) increases the

reflectance at the semiconductor edge (before it reaches the metal) and (2) ensures

that the light that reaches the metal is incident at an angle closer to the normal, reduc-

ing losses due to evanescent waves. As a result, the lowest possible refractive index

(closest to n=1) would be ideal. However, high-porosity low-refractive index films

performed worse than expected; the best experimental results were demonstrated

using a dense Si nanoparticle film (n=1.53). The discrepancy between the theoreti-

cal results, where films were approximated as homogeneous, and the experimental

were attributed to the increased surface roughness of the more porous nanoparticle

films; metal deposited on rougher surfaces, specifically sub-wavelength roughness,

was previously shown to increases absorption in metal due to stronger plasmonic

effects [89]. The effect of layer inhomogeneity on the performance of the optical

layers was not considered.

In Chap. 6 the impact of porosity and pore-size distribution on the optical proper-

ties in nanoparticle-based films is investigated in connection with controlling optical

losses in Si solar cells as discussed above. We study the physical properties of these

films as a function of neff , and correlate those to their scattering intensities. We ex-

perimentally demonstrate increased scattering with increased average pore size and

pore-size distribution, and show good agreement to the simulated data.
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Chapter 3

METHODS

The main experimental and simulation methods used in this thesis are described

here. A brief overview of optical characterization techniques are presented, including

photoluminescence spectroscopy and spectrophotometry. Then, full-wave optical

simulation method based on finite-difference is briefly described. Finally, structural

characterization techniques based on effective medium approximation and BET ni-

trogen absorption are provided.

3.1 Photoluminescence

Photoluminescence (PL) arises from spontaneous emission of photons resulting

from photo-excited electron-hole recombination, primarily in direct bandgap semi-

conductors. Following photo-excitation, usually with a pump laser having photon

energy above the bandgap, an electron is excited from the valance to the conduction

band, creating an electron-hole pair. In the simplest case, carriers thermalize to the

band-edge and recombine across the bandgap, emitting a photon at an energy of ap-

proximately Eg,direct of the semiconductor. In addition to band-to-band transitions,

PL spectra can reveal more complex energy transitions that arise from localized or

continuum impurity and defect levels, if those transitions are radiative.

The PL set-up used in the experimental measurements performed in Chap. 4 of

this thesis, is schematically represented in Fig. 3.1. The blue lines represent the laser

light, which is used to optically excite the carriers in the semiconductor sample. The
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FIG. 3.1: Simplified schematic of a PL set-up. The blue and red lines represent the
laser beam and PL signal respectively. Adapted from [42].

power of the laser is adjusted using a variable optical attenuator close to the laser

output. The laser light is then partially reflected on the beam-splitter: transmitted

light is monitored by the power meter, while the reflected light leads to the closed-

loop liquid helium (LHe) cryostat (stage temperature of 3.7 K), where a sample is

mounted onto a stage with a 3-axis stepper. In the cryostat, the laser light is focused

by a microscope objective, usually high magnification and high numerical aperture,

to provide sub-micron resolution.

The PL signal emitted by the sample is filtered from the reflected laser light using

a high-pass filter. The PL signal is then directed to a grating spectrometer. Grating

periods of 300, 600, and 1200 l/mm are chosen depending on desired wavelength

resolution. The dispersed light is then directed to a silicon charge-coupled device

(CCD) to detect the signal, which is then converted to wavelength-dependent inten-

sity. Additional details on the PL set-up used here can be found in Ref. [42].
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3.1.1 Time-correlated single photon counting

Time-correlated single-photon counting (TCSPC) is a powerful tool for determin-

ing the recombination rates for radiative transitions in a sample. The basic principle

consists of quickly populating the excited levels (using a short intense laser pulse)

and monitoring the emitted PL intensity as a function of time. The time-resolved

PL intensity profile of the emitted light is collected over multiple cycles of excitation

and emission using a periodic laser pulse.
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FIG. 3.2: Measurement set-up schematic for lifetime measurements based on TC-
SPC. Pulsed laser light with defined repetition rate excites the carriers in the sample.
Each pulse triggers the “start” time (via an electrical pulse). The PL signal from the
sample is filtered using a monochromator and coupled to an optical fiber. The light
from the optical fiber is coupled to the silicon photo-avalanche diode (SPAD), and
the detected photon triggers the “stop” time. The start-stop times are then binned,
generating a histogram, which is analogous to the probability of single-photon emis-
sion with respect to the elapsed time.

The TCSPCmethod is based on the repetitive, precisely-timed detection of single

photons from a PL signal [90]. Figure 3.2 provides a simplified schematic of the
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TCSPC set-up. The laser signals the emission of an optical pulse, triggering the

start channel of the timing card. The pulsed laser (blue), with predefined repetition

rate, excites the sample. The PL signal (red) is spectrally filtered using a grating and

focused onto a fiber end, limiting the bandwidth of the signal. The output of the

fiber is then focused onto a silicon photo-avalanche diode (SPAD), triggering the

stop channel of the timing card. The start-stop times are bin-casted and a histogram

is generated, which represents the time-evolution of the PL signal. The extent to

which the histogram accurately captures the time-evolution of the PL signal depends

on the instrument response function (IRF), which arises from timing uncertainties

of individual components in the system, as well as careful consideration of the laser

power and repetition rate parameters [91].

Here, the excitation source is a Q-switched diode laser operating at 475 nm, with a

pulse full-width half-max (FWHM) between 70 and 120 ps (depending on excitation

power). The repetition can be adjusted between 2.5 and 40 MHz, set to allow the

PL signal to decay before the new laser pulse is generated. Detection is preformed

with silicon photo-avalanche diodes (SPADs) with a timing jitter between 30 and 40

ps [42]. The intensity of the laser is also kept sufficiently low to reduce artifacts (i.e.

undercount of photon events due to pile-up) by keeping the detection rate on the

SPAD at most 1–5% of the excitation rate [91].

A decay model can be fit to the histogram in order to obtain the lifetime(s) of

the optical transition(s). In addition, if the measured response approaches the instru-

ment resolution, the effect of the measurement set-up becomes increasingly more

important and must be taken into account. The measured signal is the convolution

of the actual signal with the IRF (in this case with respect to time t):
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Imeas(t) = I(t)⊛ IRF (t) (3.1)

The IRF signal can be obtained by recording the time-evolution of the laser signal

(i.e. reflected from the substrate) at the same laser intensity and repetition rate at

which the measurements are performed. Figure 3.3 shows the IRF signal for the

TRPL measurements performed in Chap. 4. The IRF signal places a limit on the

decay rates that can be measured. The measured signal [Imeas(t)] is then fitted to the

convolution of the IRF, and the expected decay model of the signal [I(t)], to obtain

the fitting parameters [i.e. radiative decay lifetime(s)].
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FIG. 3.3: Measured instrument response function (IRF) used for the fit of the de-
convolution of the time-resolved signal.
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3.2 Spectrophotometry

3.2.1 Transmission haze

Transmission haze is a measure of scattering for light passing through a trans-

parent medium. The presence of irregularities within the medium (i.e. air voids) or

at the surface (i.e. roughness) may cause some light to deviate from its direct path,

either diffusing in all directions or within a narrow cone (depending on the size of

the structures).

The definition of transmission haze is the proportion of the diffuse light (Tdiffuse)

to the total transmitted light (Ttotal). This definition is captured in the equation below:

%Haze =
Tdiffuse

Ttotal

× 100 (3.2)

photodetector

incoming
light

sample total transmission 

cap 

cap on: Ttotal collected
cap off: T diffuse collected

FIG. 3.4: Measurement set-up schematic for obtaining transmission haze.

There are two different methods of measuring haze: (1) using a hazemeter and

(2) using a spectrophotometer [92]. While there are differences in the equipment
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used, the measurement principles are similar. Both methods include a collimated

light source, an integrating sphere with entrance and exit ports, and a photodetector.

A simple schematic of the measurement set-up is shown in Fig. 3.4.

Ttotal is measured with the exit port closed, capturing all of the transmitted light;

Tdiffuse is measured with the exit port open, allowing the “direct” portion of the

transmitted light to escape. The measurements performed here used a Perkin-Elmer

spectrophotometer with an integrating sphere.

3.2.2 Angular intensity distribution

Angular intensity distribution (AID) measurements provide the relative intensi-

ties of either transmitted or reflected light, resolved by the angle of detection. The

measurement captures both the direct and scattered components as the light is re-

flected from or transmitted through a sample. This method further supplements the

haze measurements by providing the angles along which the light scatters together

with their respective intensities, as opposed to only the total scattered intensity.

The AID can be measured using the automated reflectance/transmittance an-

alyzer (ARTA), an accessory to the spectrophotometer [93]. The procedure is as

follows: (1) collimated light from the spectrophotometer is incident on the sample,

parts of it being reflected/transmitted/scattered, (2) the detector, set to a particu-

lar angle, collects the light passing the entrance port of its integrating sphere and

converts it to intensity, and (3) the user-defined detector angles and corresponding

intensities are tabulated. It is important to note that the detector only collects the

light in the horizontal plane. In addition, due to the geometry of the set-up, the

detector cannot measure the intensities of angles between −12 degrees and +12 de-
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FIG. 3.5: Measurement set-up schematic for obtaining the angular intensity distribu-
tion.

grees as they are blocked by the light source post. However, the user can specify

arbitrary angles of incidence. Figure 3.5 shows a schematic of the ARTA set-up with

its components specified.

3.3 Full-wave optical simulation

3.3.1 Basic principles

To simulate the optical properties of semiconductor nanostructures, the optical

simulation method must be able to capture the wave optics phenomena present in

the nanoscale regime. The finite-difference time-domain (FDTD) method is a sim-

ple grid-based full-wave solver based on Maxwell’s equations able to handle arbitrary

nanostructured geometries [94, 95]. The method can be used to determine transmit-

tance and reflectance spectra and field patterns resulting from the interaction of the

source and the structure.
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Maxwell’s equations describe the interactions of the electric (E) and magnetic(H)

fields with each other, and in the presence of matter and sources:

dB

dt
= −∇×E − JB (3.3)

B = µH (3.4)
dD

dt
= ∇×H − J (3.5)

D = εE (3.6)

where B and D are the magnetic induction and the electric displacement, whose

quantities are related toH and E via material properties: the permeability µ and per-

mittivity ε, respectively. JB and J are the (fictitious) magnetic-charge current density

and the electric-charge current density — these quantities are used to specify sources

in the simulation. Instead of specifying a particular incident electric/magnetic field,

“equivalent” current sources are used in the simulation [96, 97].

Figure 3.6 shows a simplified schematic representing the evolution of electric

and magnetic fields in a so-called Yee cell [94]. In dispersive materials (i.e. where

permittivity or permeability is a function of frequency), the time-evolution of fields

becomes more complex.

3.3.2 Dispersive materials

Materials are represented in Maxwell’s equations via their relative permittivity ε

and permeability µ. The following analysis will focus on non-magnetic materials

(µ ≈ 1). A material whose permittivity is frequency-dependent is called dispersive.

Microscopically, their behavior arises from the relative motion of (small, negatively
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.

charged) electrons to the (large, positively charged) nucleus in response to the fre-

quency of the applied electric field, which causes the electrons to oscillate. This mo-

tion of electrons in the medium can be described using a harmonic oscillator driven

by an electric field (i.e. Lorentz oscillator model). Solids with ionic bonding have

an additional (ionic) contribution to the permittivity that arises due to the relative

displacement between positive and negative ions in response to the applied field.

Material dispersion is accounted for in the simulation with the addition of a

frequency-dependent polarization density P , defined as the density of dipole mo-

ments arising from the displacement of electrons in the material in response to the

applied electric field. Equation 3.6 is then expanded to:

D = ε0E + P (3.7)

where ε0 is the permittivity of free space. The polarization of the material does not

instantaneously respond to the applied field (i.e. the polarization is time-dependent).

As a result, a set of auxiliary fields P n (for each resonance n) is stored and evolved
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in the simulation along with the E field in order to keep track of the polarization.

P =
∑
n

P n (3.8)

d2P n

dt2
+ γn

dP n

dt
+ ω2

nP n = σnω
2
nE (3.9)

where γn is the damping constant, ωn is the resonant frequency, and σn is the strength

of the nth resonance. The permittivity ε(ω) of amaterial can bemodeled as the sum of

any number of Lorentz terms (subject to memory and time requirements to perform

the simulation):

ε(ω) = ε∞ +
∑
n

σnω
2
n

ω2
n − ω2 − iωγn

(3.10)

where ε∞ is the high-frequency permittivity.

Permittivity of a material is related to the refractive index (n) and the extinction

coefficient (k). If n and k are known for a particular material, one can compute the

permittivity to obtain a fit to the ε(ω).

ε = ñ2

= (n− ik)2 = (n2 − k2)− i2kn

(3.11)

Here, we primarily consider the optical properties of silicon in the FDTD simula-

tions. The fitting parameters for the permittivity of silicon (approximated with three

Lorentz terms) are obtained from Ref. [98], which provide excellent agreement to

experimental data from Ref. [99].

3.3.3 Frequency-domain solver

A common frequency-domain problem in electromagnetism is to find fields pro-

duced in a structure in response to a source at a constant frequency, ω. Unlike in the
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time domain, this method is based on Fourier transforming Maxwell’s equations into

a system of linear equations, and solving them iteratively. This can be achieved us-

ing the finite-difference frequency-domain (FDFD) method [100]. However, in the

simulation software used here, instead of using a full FDFD solver, the frequency-

domain solver is implemented within the FDTD environment. The FDTD timestep

is used directly to iteratively solve for the frequency-domain response, by treating the

time-step as an abstract linear operation. As a result, the features within the FDTD

solver are also readily available in the frequency-domain implementation [97].

The simulation proceeds by specifying a continuous wave source at a specific

frequency. The material properties are set using the real part of ε(ω) and electrical

conductivity σD(ω) parameters, which can be computed from the n and k. One spec-

ifies the electrical conductivity instead of the imaginary part of ε(ω) to avoid storing

complex fields (halving computational memory and time requirements), according

to the relationship Im(ε) = ε∞σD/ω.

3.3.4 Simulation set-up

The choice of the computational domain size and resolution needs to be first

taken into account, thus limiting the size of the structure being simulated. Implemen-

tation of boundary conditions — e.g. perfectly-matched layers (PMLs) and periodic

boundary conditions (PBCs)— serve to reduce the size of the computational domain.

PMLs are absorbing boundary conditions that minimize (ideally, eliminate) reflection

at the boundaries of the computational domain by “matching” the impedance (de-

fined as Z =
√

µ
ε
) of the PML to the simulation region and its materials. Their

implementation serves to simulate problems with open boundaries. Berenger first
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proposed the PML approach in FDTD simulations [101], and since then, several re-

lated reformulations have emerged. Simulations performed here employ a variation

of uniaxial PML (UPML) [102] (first proposed by Sacks et al. [103]), where the formu-

lation is based on an artificial anisotropic absorbing material. While small reflections

will always arise in practice due to discretization, in certain cases (e.g. inhomoge-

neous media at the PML boundary), PML may fail altogether; in this case, adiabatic

absorbers (with gradually turned on absorption profile) are recommended [104]. Im-

plementation of PBCs is another way to truncate the computational domain: if the

structure has translational symmetry in some direction, one would simulate only the

unit cell with the PBCs specified in that direction. With plane wave illumination at

normal incidence, PBCs simply copy the fields at one edge of the computational do-

main and place them at the opposite edge. For illumination at an angle, however,

the fields in adjacent periods are not exactly periodic, but rather phase-shifted. The

Bloch boundary conditions correct for this phase-shift by multiplying the field com-

ponents by eikbloch· a where kbloch is the Bloch wavevector and a is the length of unit

cell (i.e. period) in that direction [105].

Setting up the simulation requires specifying the geometrical structure, material

properties, light source, boundary conditions, and data collection monitors (Fig. 3.7).

The FDTD simulation presented here were performed using MEEP, an open-source

FDTD software package, which also contains a frequency-domain solver [97].

3.3.4.1 Reflectance and transmittance flux spectra

The FDTD method provides a way to investigate the reflectance and transmit-

tance flux as a function of the frequency of incident light. A single time-domain
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FIG. 3.7: FDTD simulation set-up, shown here for periodic structures.
.

simulation can solve for power for a range of frequencies by Fourier transforming

the response to a short pulse. The integral of the Poynting flux is used to compute

the power at each frequency:

P (ω) = ℜ
‹

S

Eω(x)
∗ ×Hω(x)dA (3.12)

To compute reflectance and transmittance spectra requires running two sets of

simulation: reference and structure, with incoming and outgoing fluxes computed

for each simulation. The transmittance flux is then computed as the ratio of the

transmitted power and the reference power as:

T (ω) =
P (ω)out
P (ω)ref

∗ 100 (3.13)

For reflectance, the reflected power is the sum of the incident and reflected power.

As a result, the incoming power is subtracted from the reference before the ratio is

taken:
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FIG. 3.8: (a) Schematic showing incident fields and a scattering object (b) Scattered
fields recorded on the “near” surface — E(x, y, z0) and H(x, y, z0) — inside the
computational domain are used to calculate propagating fields E(x, y, z) and H(x, y,
z) beyond the plane, assuming a homogeneous material.

.

R(ω) =
P (ω)ref − P (ω)in

P (ω)ref
∗ 100 (3.14)

3.3.4.2 Near-to-far-field transformation

Despite the small size of the computational domain (in this case, ≈ 1 µm or less),

field-patterns can be computed far away from the source (at the distance r >> λ)

using near-to-far-field transformation (NTFFT) [100]. The near-field is complicated,

containing both evanescent and propagating waves —NFFFT is performed to elim-

inate the near-field evanescent components. The remaining propagating waves are a

better approximation to our experimental measurements where detectors are placed

far away from the sample and only propagating waves are detected. The NFFFT

is based on replacing the fields at the “near” surface (inside the computational cell)

with equivalent sources and analytically propagating them to the far-field region [106].

Figure 3.8 is a simplified schematic of the NTFFT. The fields recorded on the near

fieldmonitorE(x, y, z0) andH(x, y, z0) are transformed to equivalent current sources.
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These are then propagated to a distance r >> λ, assuming that the medium is homo-

geneous. The angular dependence can be captured by computing the fields along a

hemisphere surface. The propagating fields are calculated for each frequency. The

power for each frequency (and at each point along the hemisphere surface) is com-

puted using Eq. 3.12.

The dimensions of the near-field monitor used for the projection can affect the

accuracy of the projected far-fields. Due to the assumption that the EM fields are

zero beyond the edge of the monitor, the fields are truncated at the monitor edge

(an alternative being making the monitor region, and thus the simulated domain,

impractically large). When the dimensions of the monitor are on the order of the

wavelength of light, the monitor acts like an aperture, causing strong diffraction,

making these projections limited. This is true even if periodic conditions are used.

To reduce the diffraction effects, phase corrected sums for multiple periods m can

be calculated in post-processing, knowing the E-fields from a single period E0:

Efar = Efar
0

∑
m

ei(kin-plane)·m·a (3.15)

where m is the period number, N is the total number of periods, and a is period

length. The phase corrected sums can be applied in one or both in-plane directions,

for 2D and 3D simulations, respectively.

3.3.4.3 Validation of boundary conditions

Boundary conditions in the reduced simulation domain were validated using

known sources and structures. Figure 3.9 shows the results of the FDTD simula-

tion for planar c-Si structure using a plane-wave source at normal incidence, with
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n and k values, and corresponding Lorentz-Drude fit parameters, taken from lit-

erature [98, 99]. The computational domain is reduced to 600 nm x 600 nm for

in-plane directions, and periodic boundary conditions implemented. The perfectly

matched layers are included in the vertical directions to eliminate back reflectance.

Figure 3.9(a) demonstrates good agreement between analytically computed transmit-

tance, reflectance, and absorptance to FDTD-simulated values. Electric field en-

ergy density profile of the simulation domain cross-section is shown in (b), with the

dashed line indicating the top surface of c-Si.
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FIG. 3.9: (a) Analytically-computed vs. FDTD-simulated reflectance, transmittance,
and absorptance of planar c-Si substrate (b) Electric field energy density in the cross-
section of the computational domain. The scale bar corresponds to 100 nm.

.

The in-plane dimensions of the computational domain also influence the far-field

profiles. As previously mentioned, when the size of the near-field monitor is on the

order of wavelength of light, light will diffract as it passes through the monitor, lead-

ing to broad profiles and diffraction peaks. If the structure is simulated as periodic,

broadening can be reduced using phase-shifted sums of the E-fields from a single
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period, Eq. 3.15. Figure 3.10 shows the far-field corrections for normally-incident

light in air using simulated data (shown for a single period, m=1); as the number of

periods increases from 1 to 100, the profile becomes narrower to better approximate

normally incident light. To confirm the accuracy of the phase-shifted sums, larger

computational domains, corresponding to m=2, 4, and 8, are also simulated; the

obtained data (circles) is in good agreement with the computed phase-shifted sums.
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FIG. 3.10: Far-field corrections for normally-incident light in air using phase-shifted
sums with m periods. Simulated data using larger computational domains (corre-
sponding to m=2, 4, and 8) are shown for comparison.

.

3.4 Characterization of structural properties in non-periodic media

3.4.1 Effective medium approximation

Ellipsometry is a commonly used technique for determining the optical constants

of thin films: the refractive index (n) and extinction coefficient (k). It measures

the change in polarization of reflected (or transmitted) light that arises from the
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interaction of incident light with the material. A model is then chosen to fit the

measured data and obtain the best approximation for n and k.

Sample

Light source

Polarizer Analyzer

Detector

FIG. 3.11: Schematic of an ellipsometry set-up. (Image adapted from Buntgarn, at
the English Wikipedia project [license: CC BY-SA 3.0])

.

Figure 3.11 provides a simplified schematic of an ellipsometry set-up. The in-

cident light source is linearly polarized before being incident on the sample. The

polarization of the reflected light is captured using a rotating analyzer (a polarizer),

with transmitted light incident on the detector. The ellipsometry data provides the

ratio of the reflected p-polarized (parallel to the plane of incidence) rp and s-polarized

light (perpendicular to the plane of incidence) rs, represented in terms of an ampli-

tude (Ψ) and the phase difference component (∆):

rp
rs

= tan(Ψ)ei∆ (3.16)

The ellipsometry method is an indirect measurement technique. The derivation

of n and k is based on the chosen dispersion model.

While the method is best suited for characterizing homogeneous films, it can
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FIG. 3.12: (a) Schematic of a porous nanoparticle-based film and (b) a representative
homogeneous film with effective optical properties (i.e. neff ), which are measured
with ellipsometry.

.

also provides the effective properties of some heterogeneous materials (i.e. porous

media). Figure 3.12(a) provides a schematic of a porous nanoparticle-based film

consisting of nanoparticles surround by air, with optical properties nSi and nair, re-

spectively. Ellipsometry measurements provide the film’s effective optical properties

[neff , shown in (b)], which are related to their relative fractions; if the optical proper-

ties of the constituent materials are known, a suitable model can be used to extract

them.

Several models have been developed to estimate the structural composition of het-

erogeneous films from the effective refractive index (neff ) obtained from ellipsom-

etry measurements. These effective medium approximation (EMA) models provide

a mathematical description of a heterogeneous medium based on the optical proper-

ties and relative fractions of its components. The EMA model was first proposed by

Bruggeman [107] in 1935, considering polydisperse spheres in a continuous medium

[108, 109]. The resulting equation proposed therein relates neff of the medium to

the optical properties (ni) and relative fractions (fi) of its components:
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Σfi
n2
i − n2

eff

n2
i + (d− 1)n2

eff

= (1− fAir)
n2
c-Si − n2

eff

n2
c-Si + 2n2

eff

+ fAir

1− n2
eff

1 + 2n2
eff

= 0 (3.17)

where d is the dimensionality factor.

To reduce the effect of the potential changes in absorption properties for bulk

and nano-materials (i.e. bandgap narrowing), the porosity is determined for the wave-

length regions where absorption is negligible.

3.4.2 BET porosity analysis

The BET surface area and porosity analysis techniques estimate the total area,

cumulative pore volume, and pore distribution from gas adsorption in porous media.

The analysis is based on the Brunauer-Emmett-Teller (BET) theory that aims to

explain how gas molecules are physically adsorbed on a solid surface in multilayer

form [110]. The theory, first developed in 1938, forms the basis for estimating the

surface area in both non-porous and porous materials. In 1951, Barrett, Joyner, and

Halenda expanded on this seminal work, developing a model for determining the

pore volume and area distributions in porous media [111], known as the BJH model.

A suitable analysis technique is often chosen based on the pore size (dpore) in

the material. The International Union of Pure and Applied Chemistry (IU- PAC)

classifies the pores as microporous (dpore < 2 nm), mesoporous (dpore = 2–50 nm)

and macroporous (dpore > 50 nm) [112]. The BJH model is suitable for pore size

analysis of mesoporous and macroporous materials. However, the accurate pore size

analysis in micropores often relies on density functional theory (DFT) and molecular

simulationmethods (i.e. Monte Carlo). In addition, for smaller mesopores (< 10 nm),

numerical methods can provide more accurate results [113].
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Image adapted from [114].

The appropriate analysis techniques are applied to the measured data: the ad-

sorbed amount as a function of pressure, performed at constant temperature. The

resulting curve is often referred to as the adsorption isotherm, forming the basis

for both surface area and porosity analysis discussed above. Figure 3.13 shows the

origins of the different features in the isotherm corresponding to stages of the pore

filling process. In most cases, nitrogen (N2) gas (at its boiling temperature of 77

K) is used as the adsorbate due to its non-reactivity; carbon dioxide and argon gas

are used in certain cases. The adsorbed amount is usually measured by volumetric

(manometric) methods - the amount of adsorbate removed from the gas phase is

determined by changes in pressures. (Additional details on the experimental set-up

can be found in ref. [115]). Figure 3.14 shows a simplified schematic of the set-up.

A sample holder is first immersed into a liquid nitrogen dewar. Helium gas, (which is

non-adsorbing) is then introduced to determine the void volume of the sample tube.

Following helium gas evacuation, nitrogen gas is introduced into the sample holder
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(its pressure and temperature recorded prior to opening the sample port) and allowed

to adsorb into the sample until equilibrium is reached. The quantity adsorbed (Qads)

is determined from quantity dosed minus any residual nitrogen remaining in the sam-

ple tube. The pressure is incrementally increased using an injection piston until the

saturation pressure of nitrogen (p0) is reached. The acquired data — Qads as a func-

tion of relative pressure (p/p0) — is then analyzed. The measurements performed

here used the Micrometrics Tristar II 3020.

Nitrogen

Helium

injection 
piston

liquid
nitrogen

sample

data 
acquisition

vacuum
system

P/P0,
Qads

P P

FIG. 3.14: BET porosity analysis measurement set-up for obtaining gas adsorption
isotherms.
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Chapter 4

CHARACTERIZATION AND MODELING OF III-V NANOWIRES AS

ACTIVE ELEMENTS OF NANOWIRE SOLAR CELLS

In this chapter, recombination mechanisms in polytype gallium arsenide (GaAs)

nanowires (NWs) are studied through photoluminescence measurements coupled

with rate equation analysis. Polytype NWs exhibit switching between zinc-blende

(ZB) and wutrzite (WZ) crystal phases along the wire due to rotational twinning dur-

ing self-catalyzed growth. When photons are absorbed in polytype NWs, electrons

and holes separate: in the simplest case, electrons quickly thermalize to the band-edge

of the ZB phase, while holes thermalize to the band-edge of the WZ phase, recom-

bining indirectly in space across the type-II offset. The recombination mechanisms

of this system are investigated experimentally through time-resolved photolumines-

cence (TRPL) at liquid helium temperature, and time-integrated photoluminesence

(TIPL) at various temperatures, for the baseline case of AlGaAs capped GaAs NWs.

The effects of the surface recombination on sub-bandgap transitions are also investi-

gated using Al2O3 and no capping at the surface. The inference is made that carriers

quickly thermalize to the spatially closest, lowest energy level, where they radiatively

recombine across a sub-bandgap energy gap at a slower radiative rate than band-to-

band. Finally, a rate equation model is used to investigate different configurations of

polytype defects along the wire, including the effects of the surface and temperature,

which compares well with experiment considering spatially indirect recombination

between different polytypes, and defect-related recombination due to twin planes

and other defects.
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4.1 Experimental details

4.1.1 Sample growth and preparation

The GaAs NWs were grown by molecular beam epitaxy (MBE) system via the

gold-free gallium-assisted vapor-liquid-solid (VLS) mechanism on GaAs (11̄1)B sub-

strates coated with thin SiO2 (all of the NW samples discussed here were grown

at the Laboratory of Semiconductor Materials, EPFL, Switzerland). Two uninten-

tionally doped samples were grown under similar conditions with and without the

AlGaAs shell. Both samples were first grown axially by the VLS method, with an es-

timated 70 nm diameter. Then, the samples were thickened with an epitaxial GaAs

shell (60-65 nm) to reduce the surface-to-volume ratio of the nanowires, allowing for

better optical probing of the “bulk-like” properties of polytype NWs. The first sam-

ple was then capped with an AlGaAs/GaAs epitaxial shell, while the second sample

was capped with a 10 nm As capping layer to prevent oxidation of the GaAs sur-

face. This thin layer of As was removed prior to measurements to either add the

Al2O3 via atomic layer deposition (ALD), or to use the NW sample as a reference.

The resulting three sets of samples were used in the measurements: AlGaAs-capped,

Al2O3-capped, and bare (As-decapped) GaAs NWs.

For the PL measurements, the nanowires were transferred onto polished silicon

(Si) substrates. The three nanowire samples were first sonicated in isopropyl alcohol

to detach the wires from their native substrate. The resulting solution was then de-

posited and allowed to dry, leaving behind the nanowires electrostatically attached to

the silicon substrate.
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4.1.2 Photoluminescence characterization

a b

c

d e f g

2 μm

FIG. 4.1: (a) Image from the cryostat projected onto the camera showing GaAsNWs
lying on the silicon substrate. (b) Optical microscope image of the sample following
completion of measurements to locate the NWs of interest. (c) SEM image of the
NWs to determine their orientation (i.e. tip and bottom of the NW) and correlate
the position to the PL measurement. (d)–(g) The laser spot in relation to the NW
for one set of measurements performed.

The TIPL measurements were performed using a low-temperature micro-PL set-

up consisting of a highly-stable (transverse vibration < 10 nm) closed-loop helium

cryostat (T≈3.7K) with an internal low-working distance, high numerical aperture

(NA) apochromatic cryo-compatible objective together with a wide-field, white-light

imaging [42]. With NA of 0.85 and pump-laser wavelength of 632.8 nm, sub-micron

laser spot size is achieved, estimated as 2x Rayleigh criterion (∼ 900 nm). Figure

4.1(a) shows the projected image from the cryostat on a flat substrate. Following
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the measurements, we locate the NWs on the substrate using the optical microscope

[Fig. 4.1(b)]. The SEM image allows us to determine the orientation of the NW (i.e.

tip and bottom of the NW) [Fig. 4.1(c)] and correlate the relative laser spot position

along the NW to the observed PL. Figures 4.1 (d)–(g) show the laser spot at four

different positions along the NW for one of the samples; in Fig. 4.2 (a) below, PL

measurements were taken with a continuous-wave red laser at these four positions

along the NW. The laser spot is positioned at a desired location using a piezoelectric

actuator. Using a circular variable neutral density filter in front of the laser output,

the incident power on the sample was varied logarithmically for up to 20 different

powers from 6.83 nW to 70.1 µW. A quarter-waveplate (λ/4) is used to generate

circularly polarized light incident on the sample.

The TRPL measurements were performed using a picosecond diode laser (with

λ = 475 nm and FWHM of 70–100 ps at a repetition rate of 5 MHz). The emis-

sion from the sample was filtered using a reflection grating that directs the desired

bandwidth of light onto a fiber end leading to the silicon photo-avalanche diodes

(SPAD) for time-correlated single photon counting (TCSPC). The grating filter com-

bined with the optical fiber limits the collected signal to a bandwidth of around 5–10

meV, ensuring that only the desired wavelength corresponding to a peak of interest

is measured.

For temperature-dependent TIPL, the temperature was varied with a heater in

contact with the sample holder inside the cryostat from 3.7K to 200K for 12 temper-

atures varied logarithmically. At each temperature, power-dependent measurements

were taken for up to 20 different power levels to monitor the peak evolution.
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4.2 Results

4.2.1 Time-integrated PL and TEM

The study begins by correlating the structural properties along the wire to the

TIPL of the AlGaAs-capped NW sample. This correlation allows us to confirm that

the variation observed in the PL signal along the wire is related to the crystal variation,

as previously observed [68]. Figure 4.2(a) shows the power-series PL taken at four

points along the wire. The corresponding transmission electron micrograph (TEM)

of a representative NW sample grown under similar conditions is shown in Fig. 4.2(f).

For these samples, the bottom end of the nanowire [in (g)] is mostly ZB with few

twinning defects, while the tip of the wire [in (h)] has short ZB/WZ segments. The

middle region of the wire shows a high density of twinning defects.

Looking at the AlGaAs-capped nanowires, the evolution of peaks in the PL along

the wire suggests a continuous and discontinuous density of states for the tip and bot-

tom of the NW, respectively, as shown in Fig. 4.2(a). At the tip of the NW for low

power, the presence of discrete peaks across a range of energies is observed. With in-

creasing power, lower energy peaks start to dominate in intensity before blue-shifting

as the radiative recombination energy approaches the bandgap of GaAs of 1.519 eV

(calculated for intrinsic GaAs at 3.7K). This behavior suggests a saturation of the

shallower higher energy radiative channels giving way to deeper lower energy radia-

tive channels. For the bottom of the nanowire, the presence of discrete peaks (as is

the case for the tip of the nanowire) is not observed, and the broad peak continu-
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FIG. 4.2: (a) Power-dependent PL spectra along a representative AlGaAs-capped
GaAs NW measured at four positions from the bottom to the tip. SEM image of
the measured NW with approximate measurement positions is shown. Eg,th marks
the calculated bandgap of GaAs at 3.7 K of 1.519 eV. (b) PL spectra at 6.17 µW for
the bottom of the NW; the shaded areas and corresponding symbols mark the three
integration areas, I1, I2, and I3 for the saturation curves in (c). (d) and (e) PL spectra
and saturation curves for the tip of the NW. (f) TEM of a self-catalyzed NW grown
under similar conditions showing the overall trend in crystal variation. Diffraction
patterns are shown for the bottom and tip of NW, in (g) and (h), respectively, showing
the two defect-free regions and neighboring twinned regions.
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ously blue-shifts. Unlike for the tip end of the NW, this suggests a continuous filling

of the energy bands.

With the above observations of the changes with power dependence along the

length of the NW, together with the correlation to the crystal structure from TEM,

the inferences can be made about what types of transitions are likely giving rise to

the observed PL. At the bottom end of the NW, from the TEM, a nearly defect-free

region in the ZB crystal phase, with a few twinning defects, is observed. In the PL,

from this region of the NW, the bandgap peak at higher incident power approaches

the intensity of the sub-bandgap peak that is starting to saturate. The sub-bandgap

peak, which blue-shifts with increasing power, appears related to a single type of

defect with a mostly continuous density of states. At low incident power, the appear-

ance of multiple peaks around 1.46 eV may suggest discretization of lower energies

due to quantum confinement. These transitions are associated to the twinning de-

fects observed in the TEM at the bottom end of the NW. At the top end of the NW,

a longer WZ segment (approx. 500 nm) is observed together with shorter segments

of what appears to be alterations of short WZ/ZB sections on either side of it. In

the PL, at low incident power, a range of peak energies between 1.45 and 1.49 eV

is observed that likely arise from different confinement levels associated with the

segments, where carriers quickly thermalize. Saturation of shallower, higher energy

radiative transitions, gives rise to deeper, lower energy transitions, as evidenced by

the lower-energy peak dominating in intensity with increasing power, before blue-

shifting at higher incident power. Unlike at the bottom end of the NW, the PL

intensity of sub-bandgap recombination is almost one order of magnitude higher

than the band-to-band, and does not appear to saturate.

The corresponding saturation curves for the tip and bottom of the NW shown
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in Fig. 4.2(c) and (e) [with intensity integration regions graphically represented in (b)

and (d), respectively] provide additional information on the recombination mecha-

nisms at the two extremes of the NW. The behavior with increasing power is similar

for the tip and bottom of the nanowire for the highest energy range (shown in black),

corresponding to the radiative transitions at the bandgap. The integrated PL intensity

in this range is proportional to the square of the incident power (slope s is around

2 for I ∝ P s) as would be expected for direct band-to-band radiative transitions

(I ∝ n2). The differences between the tip and bottom of the nanowire are due to

below bandgap transitions. Referring to the mid-energy range (1.447 to 1.502 eV,

shown in blue), for the bottom of the nanowire, the transitions appear to saturate,

with s ranging from 1.5 at low power to 0.5 at high power. For the tip of the nanowire,

s increases with increasing power (after first appearing to saturate), reaching approx-

imately s = 2. This trend may suggest that below bandgap transitions in this case

are becoming more direct. The lowest energy range with a peak at around 1.44 eV

(shown in red) seems to follow the trends of the mid-energy states with regards to sat-

uration, but unlike the mid-energy states, it negligibly shifts in energy with increasing

power.

4.2.2 Time-resolved PL at different energies

Figure 4.3 shows energy-resolved TRPL for a single PL spectrum of the AlGaAs-

capped nanowire to observe the variation in the radiative decay for the bandgap and

sub-bandgap energy transitions, and suggest how they may be coupled. The NW is

measured at the nearly defect-free bottom end, where a bandgap peak is clearly ob-

served. The radiative transitions near the bandgap (1 and 2), show a fast radiative de-
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FIG. 4.3: The radiative lifetime increases (i.e. carriers recombine at a slower rate)
with decreasing energy of the PL peaks. The TRPL data is taken at: (1) 1.524 eV, (2)
1.508 eV, (3) 1.484 eV, and (4) 1.487 eV indicated in the PL spectra. The fits to the
TRPL signal (red lines) are shown for (3) and (4) .

cay (limited by the resolution of the set-up), which is shorter than the typical radiative

lifetimes of bulk GaAs. The dominance in intensity of sub-bandgap radiative transi-

tions suggests that the fast radiative decay of the bandgap transitions may be associ-

ated with rapid thermalization of carriers to sub-bandgap energy levels, from where

they still radiatively recombine. Sub-bandgap energy transitions (3 and 4), fitted us-

ing a double exponential decay equation convoluted with the instrument response

function, show significantly longer radiative lifetimes in comparison to bandgap tran-

sitions (as previously observed for highly polytype regions [63]). These lifetimes also

increase as carriers go to lower energies. The longer lifetimes of sub-bandgap tran-

sitions suggests that they may be spatially indirect, dictated by the degree of overlap

between the electron and hole wavefunctions. The presented results suggest that

these transitions become less direct at lower energies.
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4.2.3 Temperature-dependent PL
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FIG. 4.4: (a) Photoluminescence from the bottom end of theGaAsNW as a function
of temperature, showing the peak positions of bandgap and below bandgap transi-
tions (b) Bandgap temperature dependence from 3.7 K to 200 K for the ZB peak at
the bottom of the nanowire fitted with the Varshni model [116]. Similar results were
obtained in [65] for polytype nanowires; (c) PL intensity vs. temperature for differ-
ent power incidence levels; (d) Integrated PL intensity for the states at and below the
bandgap at the highest power of incidence normalized to the highest intensity and
fit to the model presented in Ref. [67].
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The temperature-dependent PL shows an increase in PL intensity with increas-

ing temperature (see Fig. 4.4), suggesting thermal re-emission of carriers into faster

radiative channels, as previously shown for thin nanowires [67]. Here, the bottom

end of the nanowire is again investigated due to the presence of longer ZB segments

with a distinct ZB peak. In Fig. 4.4(a), two dominant peaks are observed: a higher en-

ergy peak, corresponding to the energy of band-to-band recombination, and a lower

energy peak, corresponding to sub-bandgap, type-II spatially indirect recombination,

that shift in energy according to different rules. The higher energy peak continually

red-shifts in accordance with the Varshni model [116], as shown in Fig. 4.4(b). The

lower energy peak negligibly shifts in energy from 11.1 to 22.9 K with a slight blue-

shift at 32.9 K. This slight blue-shift of the lower-energy peak with increasing tem-

perature together with the accompanying increase in intensity for both the band-gap

and sub-bandgap peaks, suggests thermal re-emission into faster radiative channels

(both higher energy sub-bandgap and band-to-band recombination). At 47.2K, the

intensity of both peaks drops significantly, suggesting that thermally-activated, non-

radiative recombination has surpassed the recombination due to thermal re-emission

into faster radiative channels, and the lower-energy peak noticeably red-shifts with

subsequent increase in temperature.

An increase in PL intensity is only observed around 30 K only for higher powers

of incidence. As seen in Fig. 4.4(c), at lower powers of incidence, a decrease in the

integrated PL intensity is observed. This may suggest a transfer of carriers from

slower, lower energy states to faster, higher energy radiative channels with increase

in power. A model from Ref. [67] is used to fit the curve at the highest power of

incidence to obtain the activation energy parameters [shown in (d)].

58



4.2.4 The effects of surface recombination

Changing the surface cladding produces non-negligible variations in the resulting

PL intensities among the samples as shown in Fig. 4.5.
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FIG. 4.5: Saturation curves for the bottom [first row, (a)–(c)] and tip [second row,
(d)–(e)] of three separate nanowires showing the indicated photon energy ranges in
red, blue, and black. The columns correspond to the indicated surfaces: AlGaAs-
capped, Al2O3-capped, and uncapped.

The SEM images of the measured nanowires are included in Fig. 4.6, together

with the STEM-EDX of the AlGaAs-capped sample. The images are set to the

same scale. Al2O3-capped and uncapped NWs come from the same as-grown sam-
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ple and have comparable length and thickness. Compared to the AlGaAs-capped

samples, these samples are approximately 2x longer, and appear 2x thinner. The

AlGaAs shell, as observed using scanning tunnel electron microscopy (STEM) en-

ergy dispersive X-ray (EDX) spectroscopy [Fig. 4.6(d)–(e) for the tip and bottom of

NW, respectively], adds to the radial thickness of the AlGaAs-capped sample that ac-

counts for some discrepancy in the NW thickness between the samples. (The higher

energy PL emission from the AlGaAs shell is not included in the integrated PL calcu-

lations.) Since the AlGaAs shell only partly accounts for the discrepancy in diameter

size between AlGaAs-capped and the other two samples (approx. 20-40 nm in di-

ameter), we expect that the difference in NW diameter between the AlGaAs-capped

samples and the Al2O3-capped (and uncapped) NWs contribute to some difference

in the integrated PL intensity that we observe in the Fig. 4.5. Due to non-linear ab-

sorption, it is difficult to accurately estimate the change in PL intensity arising from

the differences in NW diameter. However, we do not expect this difference to alter

the trends we observe.

1 μm

a b

c

50 nm

Al Ga

Ga
Al

d

e

FIG. 4.6: SEM images corresponding to samples investigated in Fig. 4.5: (a) AlGaAs-
capped, (b) Al2O3-capped, and (c) uncapped. (d) and (e) show the STEM-EDX
images of the tip and bottom of an AlGaAs-capped sample indicating the presence
of an AlGaAs shell, adding to the radial thickness of the sample (STEM-EDX image:
L. Francaviglia).
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The suppression of radiative recombination for the non-capped wires is due to

the rapid thermalization to lower energy bands combined with slower radiative re-

combination at those energies, increasing the probability of non-radiative recombi-

nation. In other words, an increase in surface recombination reduces the quantum

efficiency QE = 1/τrad
1/τrad+1/τnrad

disproportionately for bandgap and sub-bandgap en-

ergies. For the same non-radative lifetime, τnrad, slower radiative channels (longer

radiative lifetime, τrad) will lead to a lower QE for those energy transitions.

4.3 Theory

In polytype GaAs nanowires, carriers recombine via multiple decay channels

with different relaxation rates (band-to-band, defect bands, indirect spatial transi-

tions in polytype regions, etc.). When carriers are excited above the bandgap, they

quickly thermalize to the band edges. From there, they can recombine radiatively

or non-radiatively across the bandgap, or thermalize to lower available energy bands

from where they can also recombine. The coupling between these bandgap and

sub-bandgap excited states, together with the competing rates of radiative and non-

radiative recombination at each of the levels, give rise to the observed TIPL spec-

trum.

Here these recombination rates are analyzed using a simple model: the ex-

cited states are coupled, each of them with a well-defined relaxation rate (a fast

non-radiative and slower radiative) to a common ground state. The coupling rates

between the excited states depends on the occupancy level of the sub-bandgap states,

which eventually saturate at higher incident optical power. A schematic diagram of

this model is shown in Fig. 4.7, where:
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FIG. 4.7: Simplified recombination model representing 1⃝ faster band-to-band and
( 2⃝– k⃝) slower sub-bandgap transitions due to type-II indirect spatial transitions
and/or defect bands that occur at discrete energy levels.

Φ0: generation rate

p0: number of holes in the valance band

n1, n2, nk: number of electrons in the conduction band at energy levels E1, E2, and

Ek, respectively, where E1 > E2 > Ek

b10, b20, bk0: radiative recombination coefficients for transitions between E1, E2, and

Ek, and E0

r12, r1k: transition rate constants between energy level E1, E2 and Ek, respectively

rnr: non-radiative recombination rate for all the energy levels

It is important to note that this simple model does not assume the cause of the

below bandgap transitions (i.e. the model can be used to describe various causes

of below bandgap transitions). Rather the recombination model helps us study

the interactions between these different levels in both the steady-state and tran-

sient regimes. Equations (4.1)–(4.4) below describe the recombination mechanisms
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shown in Fig. 4.7

dp0/dt = Φ0 − b10n1p0 − rnrn1 − b20n2p0 − rnrn2...− rnrnk − bk0nkp0 (4.1)

dn1/dt = Φ0 − b10n1p0 − rnrn1 − r12n1(1− f2) + ...− r1kn1(1− fk) (4.2)

dn2/dt = r12n1(1− f2)− b20n2p0 − rnrn2 (4.3)

dnk/dt = r1kn1(1− fk)− bk0nkp0 − rnrnk (4.4)

where:

N2, Nk: number of available states in energy levels E2 and Ek, respectively

f2, fk: f2 = n2

N2
and fk =

nk

Nk

relate to the saturation of sub-bandgap energy levels. The model is further expanded

to show the effect of increasing temperature on the carrier dynamics. The effects of

thermal re-emission between sub-bandgap and bandgap energy levels are included,

as well as thermally-activated non-radiatiative recombination to the model, similar

to the model in Ref. [67]. The equations above are expanded with the inclusion of

temperature-dependent terms:

dp0/dt = Φ0 − b10n1p0 − rnrn1(1− e
−Ea,nr
kBT )− b20n2p0

−rnrn2(1− e
−Ea,nr
kBT )...− bk0nkp0 − rnrnk(1− e

−Ea,nr
kBT ) (4.5)

dn1/dt = Φ0 − b10n1p0 − rnrn1(1 + e
−Ea,nr
kBT )− r12n1(1− f2)(1− e

−(E1−E2)
kBT ) + ...

−r1kn1(1− fk)(1− e
−(E1−Ek)

kBT ) (4.6)

dn2/dt = r12n1(1− f2)(1− e
−(E1−E2)

kBT )− b20n2p0 − rnrn2(1 + e
−Ea,nr
kBT ) (4.7)

dnk/dt = r1kn1(1− fk)(1− e
−(E1−Ek)

kBT )− bk0nkp0 − rnrnk(1 + e
−Ea,nr
kBT ) (4.8)

where kB is the Boltzmann’s constant, T is the temperature, and Ea,nr is the ther-

mal activation energy to non-radiative channels. The radiative rate constants (e.g. b10,
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b20, etc.) are assumed to remain constant with temperature. A temperature depen-

dence of band-to-band radiative recombination (τrad ∝ T 3/2) suggested elsewhere is

not included in this model[117, 118] as the effect is relatively weak compared to the

thermally activated portion of the temperature dependence.

4.4 Discussion

From the experimental data and the model, several observations are made regard-

ing radiative recombination in these polytype NWs. The large laser spot relative to

the density of twin defects and polytype heterointerfaces, prevents us from analyzing

each type of transition in isolation. In the work by Vainorius et. al., the high crystal

quality and precise control of phase-switching in gold-catalyzed NWs had allowed

for characterization of optical properties of isolated WZ and ZB segments [66]. In

this case, the carrier dynamics are more complex and cannot be easily separated. Us-

ing NWs exhibiting similar trends in crystal phase-switching and density of defects to

the NWs studied here, Heiss et. al. have directly correlated the optical and structural

properties at nm-scale and used first-principle calculations to validate their results

[68]. However, doing this type of detailed calculation for each NW sample is cum-

bersome and computationally expensive. Here, a simplified approach that considers

the power- and temperature- dependence of integrated PL intensity of bandgap and

sub-bandgap transitions (that arise due to twin interface defects and spatially indirect

recombination between different polytypes), coupled with a rate equation analysis is

presented. The model helps us understand how the coupling between the bandgap

and sub-bandgap transitions gives rise to the observed PL intensity for these energy

ranges.
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FIG. 4.8: Rate equation schematic for the two cases investigated: (a) twin defect and
(b) polytype section.

Two cases of recombination dynamics corresponding to the experimental obser-

vations are modeled for the bottom and tip of the of the NW, respectively. At the

nearly defect-free bottom end of the NW, observed sub-bandgap radiative transitions

[Fig. 4.2(a)] appear to arise from a single type of defect, most likely due to the twin

interfaces observed in the corresponding TEM. Despite the fact that the laser spot is

likely illuminating multiple twin defects, in the model, the collective effect of multiple

twin defects on recombination dynamics is approximated using a representative twin

defect [Fig. 4.9(a)]. The approximation is based on the information implied from the

shape and evolution of the sub-bandgap peak—a single dominant peak that contin-

ually blue-shifts (with few individual peaks at low incident power suggesting some

discretization at lower energy levels). At the top end of the NW, the shape and evolu-

tion of the sub-bandgap peak (or rather a collection of peaks) suggests more complex

carrier dynamics that arise from both polytype crystal phases (as well as additional

twin defects) that observed in the corresponding TEM. Considering the effect of

each polytype section illuminated by the laser spot on the resulting sub-bandgap re-
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combination dynamics would be hard to separate. To simplify the model, the trends

in the PL that arise from the combined effect of these defects are considered—mul-

tiple peaks at a range of energies at low excitation giving rise to a dominant peak at

low energy with increasing power, followed by a blue-shift. This interaction between

shallow and deep traps, whose signature is observed in the PL, is approximated using

two traps with different confinement levels [Fig. 4.9(b)]. Figure 4.9 shows the model

results of radiative recombination events as a function of generation rate (power) in

assuming three energy levels (E1−3), with their corresponding radiative recombina-

tion coefficients (b10−30). In the first case [Fig. 4.9(a)], a distribution of energy levels

that fill sequentially (lowest energy level, E3 saturates first, followed by E2, before

reaching the bandgap level, E1), stemming from a single (or same type) of defect is

assumed. In the second case [Fig. 4.9(b)], multiple defects with varying confinement

levels where carriers recombine independently of each other is assumed. The two

cases aim to reproduce the effect of a spatially continuous and discontinuous density

of states that implied from experimental data in Fig. 4.2 for the low-defect (bottom

of NW) and highly polytype regions (tip of NW), respectively. The rate equation

models for the two cases are schematically represented in Fig. 4.8.

Three coupled energy levels are assumed, where E10 corresponds to radiative

recombination events at the bandgap energy. The energy levels below the bandgap

(E20 and E30) recombine at decreasing radiative recombination coefficients (b20 >

b30), and have decreasing saturation levels (N2 > N3), corresponding to the case

in (a) where states are filled sequentially in energy. The second case [Fig. 4.9(b)],

illustrates the effect of an ensemble of confined states of varying energy distributions;

it assumes recombination at two wells of different depths occurring in parallel. The

deepest well spans a wider range of available energies (represented here by energy
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FIG. 4.9: Recombination model showing the saturation of energy levels assuming (a)
a single trap and (b) distribution of deep and shallow traps. E10, E20, and E30 refer
to radiative recombination events where E10 corresponds to highest, band-to-band
transition

levels E2 and E3) while shallower wells have fewer energy levels close to the bangap

(represented here by E2). In the simulation, the recombination events (E10, E20 and

E30) of the combined effect of the two wells are tabulated, shown in (b).

The two cases illustrated here in (a) and (b) closely correspond to the experimental

observations of TIPL in Fig. 4.2 for the bottom and tip of the nanowire in (c) and

67



(e), respectively. The fit parameters for the two cases are shown in Tables 4.1 and

4.2.

TABLE 4.1: Case 1 Modeling Results
radiative recomb. coeff. saturation level transition rates between levels

(cm3/s) (cm−3) (s−1)
b10 = 8.86× 10−6

b20 = 1.00× 10−10 N2 = 1.08× 1015 r12 = 1× 1011

b30 = 1.20× 10−12 N3 = 1.08× 1014 r13 = 1× 1010, r23 = 1× 104

TABLE 4.2: Case 2 Modeling Results
radiative recomb. coeff. saturation level transition rates between levels

(cm3/s) (cm−3) (s−1)
b10 = 8.86× 10−6

b20a = 2.40× 10−9 N2a = 1.88× 1012 r12a = 1× 1011

b20b = 2.00× 10−11 N2b = 2.00× 1017 r12b = 3× 1011

b30 = 1.20× 10−12 N3 = 5.82× 1013 r13 = 1× 1010, r2b3 = 5× 104

The fit may be further improved by assuming a distribution of energies arising

from an ensemble of localized states as proposed by Li et. al. [119].

In Fig. 4.2(c) and (e), negligible non-radiative recombination is implied, corre-

sponding to well-passivated nanowires, as expected for the AlGaAs-capped wires.

To include the effect of the surface, a non-zero non-radiative component (rnr) is

added, which affects all the available energy levels. The non-radiative recombination

rate is therefore in direct competition with the radiative recombination rate at each

of the levels (an assumption is not made that regions with slower radiative channels

may also be giving rise to higher concentration of surface defects). The simulation

results with and without non-radiative recombination are shown in Fig. 4.10. These

results show the expected effect of non-radiative recombination on the sub-bandgap

68



1017 1018 1019 1020

Generation rate (cm − 3)

 

1015

1017

1019

1021

In
t. 

P
L 

in
te

ns
ity

 (
ct

s/
s/

cm
3
) rnr=0 rnr=6x106 s-1

1017 1018 1019 1020

Generation rate (cm − 3)

rnr=5x105 s-1

1017 1018 1019 1020

Generation rate (cm − 3)

rate model I3

rate model I2

rate model I1

FIG. 4.10: Recombination model showing the saturation of energy levels without
non-radiative recombination (left) and with varying levels of non-radiative recombi-
nation (middle and right).

radiative channels due to slower radiative recombination rate, corresponding to ex-

perimental observations shown in Fig. 4.5.
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to the top of the graph with each line normalized to its own max PL intensity. The
individual lines are offset for clarity. (b) The line at highest power of incidence fitted
to model from Ref. [67].

The simulations shown in Fig. 4.11 further illustrate the effect of carrier ther-
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mal re-emission and thermally activated non-radiative recombination on the radia-

tive emission. The simulated data aims to model the experimental data shown in

Fig. 4.4 (themodel, however, does not include the bandgap temperature dependence).

The simulation results shown in (a) correspond to the temperature-dependent time-

integrated PL intensity; individual lines represent varying levels of incident optical

power. At low power, increasing the temperature only leads to a decrease in inte-

grated PL intensity due to thermally activated non-radiative recombination; thermal

re-emission to faster radiative channels appears negligible due to prohibitively high

energy barrier preventing carriers from re-emitting into the bandgap continuum of

states. As sub-bandgap energy levels start to saturate with increase in power, the

probability of thermal re-emission and recombination at higher energies becomes

more likely, leading to a gain in emission.

The gain in emission occurs when the ratio of non-radiative to radiative recombi-

nation in the sub-bandgap states becomes non-negligibly higher than in the bandgap

states as a result of rising thermally activated non-radiative recombination. This pro-

duces a gain in PL intensity as carriers are re-emitted into a bandgap continuum, in-

creasing their chances of recombining radiatively. In (b), the temperature-dependent

TIPL is taken at highest incident power and apply the model in Ref. [67] to fit the

simulated data. A good agreement between the two models is demonstrated with

this fit, as well as the power dependence of temperature-dependent PL. The best fit

to the simulated data gives activation energies EA1 and EA2 of 28.5±0.2 and 9.5±0.1

meV, respectively. This is similar to the input values used in the model for Ea,nr of

30 meV and the difference between E1 and E2 of 10 meV, with discrepancies arising

from the averaged effect on recombination of the sub-bandgap states in the model.

With the experimental data of the reference sample, the AlGaAs-capped GaAs
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NW, and themodel, the following is suggested concerning recombination in polytype

NWs:

(1) Carriers thermalize from the bandgap energy level to the lowest and spatially

closest available energy level from where they either recombine radiatively (at longer

radiative lifetimes) or further thermalize to defect-level states and recombine non-

radiatively. Despite the fact that longer sections of faultless crystal are observed at

both ends of the NW—ZB at the bottom and WZ at the top [see Figs. 4.2(g) and

(h)]—TIPL in Fig. 4.2(a) shows dominance in intensity of the sub-bandgap peaks(s)

along the length of the NW. The peak associated with band-to-band recombination

approaches the intensity of the sub-bandgap peak only for the bottom of the NW

(where lowest defect density is observed) as the sub-bandgap energy levels appear

to saturate. The TRPL in Fig. 4.3, showing the rapid radiative decay of bandgap en-

ergies, coupled with dominance in intensity of the sub-bandgap peaks, further sug-

gests thermalization of carriers that suppress band-to-band recombination and en-

able recombination at sub-bandgap energies (either radiative or non-radiative). The

TRPL results also show longer radiative lifetimes at sub-bandgap energies (that fur-

ther increase for lower energy peaks). The increase in PL intensity with temperature

(Fig. 4.4) due to thermal re-emission of carriers into higher energy faster radiative

channels (evidenced by slight blue-shift of sub-bandgap energy peak), further sug-

gests thermalization to and longer radiative lifetimes at lower energies of radiative

transiton. The model results compare well to the experiment with the implementa-

tion of these experimental observations (fast thermalization rate from the bandgap

to sub-bandgap energy levels together with saturation level and longer radiative life-

times at these energies) in Fig. 4.9. The modeled temperature-dependence results

(Fig. 4.11), showing the effect of thermal re-emission and thermally-activated non-
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radiative recombination on the PL intensity, agree with the trends observed in the

experiment.

(2) In regions of low crystal variation and long diffusion lengths, carriers will

travel along the wire before reaching a lower energy state from which to recombine.

In the nearly defect-free bottom end of the NW [Fig. 4.2(g)], the PL intensity is

dominated by recombination at sub-bandgap energies [Fig. 4.2(a)], suggesting that

carriers quickly thermalize to lower energy levels before being able to recombine

at the bandgap energy. The sub-bandgap states have a continuous distribution as

evidenced by the shape of the lower energy, sub-bandgap peak, with discretization

at the lowest energies (discrete peaks at low incident power). The model results

compare well to the experiment [see Fig. 4.9(a)] when one interface defect is assumed,

where carriers quickly thermalize from the bandgap energy level until they saturate

the defect states. Carriers recombination at sub-bandgap energies is set to recombine

at longer radiative lifetimes, decreasing for higher energies of transition (as observed

from TRPL in Fig. 4.3).

(3) In regions of high crystal variation and short diffusion lengths, photo-excited

carriers thermalize close to the laser spot producing discrete peaks. Spatially local-

ized states of varied 1-D confinement level produce peaks over a range of energies

at low excitation. From the TIPL in Fig. 4.2(a) for the top end of the NW, discrete

peaks at low incident power are observed. This region shows the presence of a longer

WZ with thin alternating segments in the transition region between the two phases

[Fig. 4.2(h)] that are expected to lead to confinement of carriers at various energy

levels. The model results compare well to the experiment [see Fig. 4.9(b)] when the

presence of different confinement levels is approximated with two wells (a shallow

and a deep well) with weak transition rates between the wells. As the generation rate
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increases and the shallow wells saturate, larger portion of generated carriers thermal-

ize in the deeper well. In the TIPL, this is evidenced by the dominance in intensity

of the lower energy peak with the increase in incident power.

(4) In polytype wires, the thermalization of carriers to lower energy radiative

channels is not easily separable from surface recombination. The signature will

appear similar and further injection-dependent TRPL measurements are needed

to address the impact of the surface. In Fig. 4.3, the fast radiative decay at the

bandgap energy could either indicate non-radiative recombination or thermalization

to lower energy levels from which carriers can still radiatively recombine. Detailed

injection-dependent energy-resolved TRPL measurements, coupled with a rate equa-

tion model, can provide additonal insight into how the bandgap and sub-bandgap

energy levels couple to produce the observed steady-state PL intensities when inci-

dent power is varied.

(5) Polytype nanowiresmay exhibit higher surface recombination losses due to the

presence of slower radiative channels. Changing the properties of the surface (from

AlGaAs to Al2O3 to uncapped) increases non-radiative recombination losses, as seen

from integrated PL intensities in Fig. 4.5 and simulated data in Fig. 4.10; with rapid

thermalization to lower energy levels, and slower radiative recombination at these

sub-bandgap energies, lower radiative efficiency is expected for polytype samples

compared to defect-free samples. The model results show that slower sub-bandgap

radiative recombination is more affected by the non-radiative recombination. While

the reduction in integrated PL intensity due to increased non-radiative recombination

rate is observed for both bandgap and sub-bandgap radiative transitions, the latter

shows a more significant reduction: the integrated PL intensity due to band-to-band
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recombination approaches and then surpasses that of sub-bandgap recombination

with increased non-radiative recombination (Fig. 4.10).

4.5 Summary

The recombination mechanisms present in polytype GaAs NWs were discussed

using experimental data and a rate equation model developed in this dissertation.

First, the power-dependent PL peak evolution is correlated with TEMmeasurements

along an AlGaAs-capped NW. The observed peak evolution for nearly defect-free

regions and polytype regions suggests a spatially continuous and discontinuous den-

sity of states, respectively. Saturation curves for the integrated PL in bandgap and

sub-bandgap energy regions further show saturation of the sub-bandgap states in

nearly defect-free regions of the NW, while in polytype regions, sub-bandgap states

dominate in intensity. Time-resolved PL at different energies suggests that carriers

radiatively recombine slower at sub-bandgap energies compared to bandgap energies,

and the radiative decay rate continues to decrease with decreasing energy of the PL

peaks. The presence of slower and faster radiative channels at different sub-bandgap

energies is also evidenced by an increase in PL intensity with increasing temperature,

suggesting thermal re-emission of carriers into faster radiative channels. In addition

to the AlGaAs-capped NWs, the effect of surface recombination using NWs with

different claddings (Al2O3 and no capping at the surface) were investigated. A non-

negligible decrease in the PL intensity was observed for the two samples compared

to the AlGaAs-capped sample, which was associated with non-radiative surface re-

combination. The rate equation model developed here was then used to investigate

different configurations of polytype defects along the wire, including the effects of
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surface and temperature, which compares well with experiment considering spatially

indirect recombination between different polytypes, and defect-related recombina-

tion due to twin planes and other defects. The study of recombination mechanisms

in polytype NWs is a path towards predicting the efficiency of NW-based devices

comprising them, and coupling PL characterization with rate equation analysis is a

valuable method towards this goal.
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Chapter 5

MODELING OF SILICON NANOPILLARS FOR REDUCED OPTICAL

LOSSES IN ULTRA-THIN SILICON SOLAR CELLS

In this chapter, the properties of silicon nanopillar structures are investigated

using full-wave optical simulation, and compared to the measured values of the fab-

ricated structures. The simulated data is used to explain the mechanisms that con-

tribute to the observed reduced front surface reflectance, including their potential to

assist in increased light-trapping through scattering and light diffraction.

5.1 Samples

Si nanopillars were fabricated using silica nanosphere (SNS) lithography (SNL),

as discussed in Sec. 2.3.2, which offers a low-cost nanolithography approach with

relatively easy control of pattern scale by introducing various sizes of SNSs [76].

The SNSs were deposited via a solvent-controlled spin-coating method [75] and the

nanopillars etched via metal-assisted chemical etching (MaCE). Four different pillar

geometries were fabricated through a combination of SNL and MaCE for a diam-

eter of 344 nm and period of 600 nm at four different heights from 100 nm–400

nm, shown in Fig. 5.1. (J.Y. Choi fabricated the structures; details of the fabrication

method can be found in Ref. [120].)
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FIG. 5.1: SEM images of silicon nanopillar structures with approximate heights of
nanopillars. Scale bar corresponds to 500 nm. Images adapted from [120].

.

5.2 Simulation set-up

The reflectance spectra from fabricated nanopillar structures is simulated using

full-wave simulation using the MEEP frequency-domain solver [97] in the 300–1000

nm wavelength range using a plane wave source at normal incidence. A simulation

box of size (
√
3p×p) in the in-plane direction, where p is the array period, captures the

unit cell of the periodic structure, with periodic boundary conditions (PBCs) defined

along each direction. The height, h, of the simulation domain is chosen based on the

combined thickness of substrate and the nanopillars. To “absorb” the reflected light,

a perfectly matched layer (PML) is placed on the top of the simulation domain, as

discussed in Sec. 3.3.4. When only front reflectance is desired, the PML layer is also

placed at the bottom of the simulation domain, thus eliminating back reflectance (i.e.

representative of an infinitely thick substrate). Thin substrates with back reflectors

are simulated with a placement of a perfect electric conductor (PEC) at the bottom

boundary. The mesh grid was set to 10 nm over the entire simulation volume. The

reflectance spectra were calculated with the placement of a flux monitor between the

plane-wave source and the structure. The optical constants of Si were taken from

literature [99].
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5.3 Reduced broadband reflectance

Figure 5.2 shows the simulated and measured reflectance spectra for trigonal

arrays of Si NPs. The nanostructured surfaces reduce the reflectivity over the en-

tire spectrum for all of the four measured heights. The simulated reflection spectra

shows good correlation to spectrophotometry measurements, with major differences

arising from more defined interference peaks observed in the simulated data. Over-

all, the simulated data shows good correlation to the measured reflectance for lower

aspect ratio nanopillars, decreasing for higher aspect ratio nanopillars where interfer-

ence peaks are more prominent. The offset between reflection peaks and valleys for

higher aspect ratio NPs, between measured and simulated data, may indicate some

non-uniformity in height among the NPs that gets averaged over the measured area

of the wafer. The simulated structures also simplify the geometry of the fabricated

structures by assuming vertical sidewalls at the substrate/NP interface. The fabri-

cated structures actually have a more gradual (conical) base near the interface that

reduces the interference peaks we observe in the simulated data, and potentially ap-

proximates the measurements more closely.

The reflectance in the lower wavelength region (λ < 600 nm) can be further re-

duced with the addition of a dielectric coating. Figure 5.3 shows the simulated data

for the case of Si NPs with height of 200 nm and a conformal coating of a 70-nm

silicon dioxide layer of 70 nm showing the lowest reflectance. Simulated reflectance

of the uncoated NPs and a bare silicon substrate are shown for comparison.

78



300 400 500 600 700 800 900 1000

Wavelength (nm)

0

10

20

30

40

50

60

70

R
ef

le
ct

an
ce

 (
%

)

bare Si
Si NPs, h=300 nm
Si NPs, h=400 nm

300 400 500 600 700 800 900 1000

Wavelength (nm)

0

10

20

30

40

50

60

70

R
ef

le
ct

an
ce

 (
%

)

bare Si
Si NPs, h=100 nm
Si NPs, h=200 nm

simulated

measured

FIG. 5.2: Simulated (solid) and measured (dashed) reflectance spectra from a regular
trigonal array of Si NPs with heights of 100 (blue), 200 nm (red), 300 (green), and
400 nm (purple). The period and diameter of the structures is kept constant at 600
nm and 344 nm, respectively. The reflectance from a bare Si surface is included for
reference (gray) [78].
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5.4 Forward scattering of incident light

Spinelli et al. have previously demonstrated that short aspect ratio nanopillars

fabricated on a silicon substrate produce leaky Mie resonances, resulting in a strong

forward scattering to the Si substrate [30] (see Fig. 2.1(c), Sec. 2.2.1). The result is a

broadband reduction in reflection.

We observe the forward scattering by calculating the fields along the vertical cross-

section at the nanopillar/substrate interface. In Fig. 5.4, we observe some degree of

forward scattering for all the four heights of nanopillars at the 900 nm wavelength

shown here. At the lower end, we observe weakened forward scattering at 100 nm

height compared 200 nm, potentially due to too small a volume of pillars for efficient

scattering. On the other hand, we observe weaker scattering for the 400 nm pillars
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Normalized electric field energy density

FIG. 5.4: Electric field energy density at NP cross-sections for incident light scatter-
ing at 900 nm wavelength showing forward scattering of light to the substrate below
for nanopillar heights of 100 nm, 200 nm, 300 nm, and 400 nm (from left to right).
The scale marker indicates 200 nm.

.

compared to the 300 nm, which appears related to stronger field confinement within

the taller nanopillars that reduce scattering into the substrate below. From the sim-

ulated reflectance data, we can also confirm that the taller pillars produce stronger

interference effects, acting more as a lower refractive index coating as opposed to a
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scatterer. Light diffraction for these heights appears stronger between the NPs, as a

result of the grooves, as opposed to scattering from the NPs.
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FIG. 5.5: Percentage of higher-order diffraction (m > 0th) in transmission for differ-
ent heights of arrayed Si NPs. Adapted from [79].

.

Complementary simulations, using rigorous coupled wave analysis (RCWA), were

used to compute the optical diffraction efficiency of the structures at longer wave-

lengths [79]. Figure 5.5 shows nearly-uniform diffraction for the lower-aspect NPs,

and strong wavelength dependence for the higher-aspect NPs. At 900 nm wave-

length, 200 nm and 300 nm NP samples perform equally well. However, for the

near-bandgap light, the 300 nm NP sample outperforms the 200 nm sample (where

even the 400 nm sample surpasses the 100 nm sample).

5.5 Light-trapping in ultra-thin silicon substrates

Forward scattering from periodic arrays has the additional benefit of increasing

the diffraction order of light, beneficial for trapping light in thin substrates, especially
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at wavelengths where it is poorly absorbed. To investigate the effect of the nanopillars

on light trapping, a 1-µm Si substrate with a perfectly reflecting back was simulated

using various NP heights, keeping the NP diameter and period constant at 344 nm

and 600 nm, respectively. Figure 5.6 shows the maximum simulated short-circuit

current density, Jsc, for a 1-µm thick substrate for a set of NP heights, assuming ideal

quantum efficiency and carrier collection (i.e. each absorbed photon generates one

electron-hole pair that contributes to the current).

All of these structures appear to exceed the classical light trapping limit for a 1-

µm slab for higher wavelengths (950–1000 nm) at normal light incidence. Figure 5.7

shows the total short-circuit current density at the (a) full simulated wavelength range

(300–1000 nm) and (b) longer wavelength range (700–1000 nm) with contributions

from the NPs and the bulk shown separately. Over the entire wavelength range, the

structures with NPs of height, h=100 nm and the higher aspect ratio NPs (h=300–

400 nm), perform uniformly-well in terms of absorption for two distinct reasons:

for 100 nm pillars, the structure provides a shallow grating effect in combination

with strong forward scattering, while the structures with higher aspect ratio NPs rely

on resonance absorption within the NPs and diffraction due to the deep grating. Al-

though Fig. 5.5 shows that the fractional diffraction above the 0th order with different

heights of Si NPs is higher for h=200 nm than h=100 nm over the entire wavelength

range, these results indicate that h=100 nm may still provide a larger fraction of

higher-order diffraction outside the escape cone, thus leading to more effective light

trapping in ultra-thin absorbers (∼1 µm). As the thickness increases, and reducing

front surface reflectance becomes more important, we expect that the structure with
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FIG. 5.6: Maximum simulated short-circuit current density, Jsc, for a 1-micron nanos-
tructured silicon slab (assuming that each absorbed photon generates one electron-
hole pair and is collected) with NPs of trigonal periodicity, P=600 nm, diameter,
D=344 nm, and heights of (a) h=100 nm, (b) h=200 nm, (c) h= 300 nm, and (d) h=
400 nm. The figure shows the maximum achievable Jsc in the full structure (red),
as well as the absorption in the 1-micron slab (blue). The maximum achievable Jsc
based on the conventional (4n2) limit and the single-pass limit are shown in black
and gray, respectively [79].
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better anti-reflection properties and comparable diffraction order will perform most

optimally, in this case, 200-nm NPs.
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5.6 Summary

In this chapter, optical properties of nanopillar arrays etched into silicon sub-

strates were investigated using full-wave optical simulation in comparison to experi-

ment. Simulated structures were used to investigate the mechanisms leading to the

observed reduction in reflectance of fabricated structures. First, good agreement

was demonstrated between the measured and simulated reflectance data using a unit

cell with trigonal arrangement of cylinders and periodic boundary conditions along

in-plane directions for the simulation. Small differences between experimental and
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simulated data arose due to prominent interference peaks in the simulated data; the

presence of small variations (i.e. height, diameter, spacing), as well as the tapering at

the base of the NPs in fabricated structures, minimize interference effects over the

measured area. The mechanisms contributing to reduced reflectance were deduced

by viewing the electric field energy density profiles of the vertical cross-sections in the

simulated structures. From the cross-section profiles, strong forward scattering is in-

ferred for the short-aspect ratio nanopillars, while resonance absorption within NPs

is observed for the high-aspect ratio geometries with diffraction patterns observed

between the NPs at the NP/flat-surface interface. The suitability of NPs for light-

trapping was then investigated by calculating diffraction efficiency (using RCWA sim-

ulations performed by J.Y. Choi), which indicated a high percentage of transmitted

light at off-normal angles for poorly absorbed light. Test simulated structures were

generated in FDTD for ultra-thin silicon substrates (≈ 1 µm) to study the effect of

light-trapping. The results indicated that the conventional light-trapping limit can be

exceeded for certain wavelengths, approaching the limit in the full λ=700–1000 nm

wavelength range for the normally incident light.
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Chapter 6

PORE FORMATION IN SILICON NANOCRYSTAL THIN FILMS AND

THEIR IMPACT ON OPTICAL PROPERTIES

As discussed in Chap. 2, low-refractive index inter-layers at the back surface of the

solar cell (between the metal and the semiconductor) increase reflection and reduce

parasitic absorption at the back contact. The NC-based films provide an alterna-

tive to thermal oxides, with the ability to easily tune the refractive index by altering

their porosity. However, with increasing porosity, reduction in their performance is

observed contrary to simulation that predict an improvement, when homogeneous

films with equivalent effective properties are modeled. This discrepancy signaled to

the increasing role of 3D inhomogeneity (i.e. arrangement of NCs, pore size distri-

bution) with increasing porosity, whose effects are investigated here. In this chapter,

the correlation between the optical properties (effective refractive index and scatter-

ing) of silicon nanocrystal (NC) thin films to their respective porosities and pore size

distributions is investigated. The porosity of NC-based films is varied by adjusting

the speed of cluster impaction with the substrate, and their structural and optical

properties investigated using experimental and simulation approaches, starting with

ellipsometry to determine film porosities based on their effective properties. The

pore size distributions (PSD) were obtained using complementary approaches: ni-

trogen adsorption (a volumetric technique) and SEM cross-sections (physical repre-

sentation of pores). Their scattering properties were then investigated using transmis-

sion haze and angular intensity distribution measurements (see Chap. 3 for method

details). Nanoparticle thin films with the highest refractive index (and the smallest
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average pore sizes) have peak haze values of less than 2%; the lower refractive in-

dices have significantly higher haze values (up to 48%) for approximately the same

quantity of the material. Using full-wave optical simulation, together with the synthe-

sis of a model with random networks of NPs with different statistics, the scattering

effects are associated with differences in pore size distributions related to different

porosities.

6.1 Samples

Silicon (Si) NC thin films were deposited onto various types of substrates via su-

personic impaction following the synthesis of Si NCs in a low-pressure silane plasma

as discussed in Chap. 2. The film porosity was tuned by adjusting the distance be-

tween the exit nozzle and the substrate during deposition, which alters the speed of

impaction with the substrate, and therefore the compactness of the resulting film

(P. Firth performed the depositions). Table 6.1 summarizes the properties of the

samples based on their effective refractive index neff obtained from ellipsometry

measurements (and derived target porosities) for the thin calibration layers. To fit

the neff of the NC films, we assume the refractive index of bulk crystalline silicon

(nc−Si) for the individual NCs and that of air (nAir = 1) for the voids, extracting the

void fraction (fAir) using the Bruggeman effective medium approximation (EMA)

model (Eq. 3.17, Chap. 3). Since the layers are measured directly following deposi-

tion, the effect of oxidation of silicon NCs, which was previously shown to slightly

reduce neff following annealing, is not considered here. To reduce the effect of

absorption (and potential differences in the refractive index of Si NCs and bulk c-Si

due to confinement), the fit is performed in the 700–1700 nmwavelength range. The
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root mean square error (RMSE) of the acquired ellipsometry data are also included

for the full wavelength range.

TABLE 6.1: Summary of the nanoparticle-based layers properties
Target porosity Refractive index* EMA porosity* Layer thickness RMSE**

(%) neff at 1.2 µm (–) fAir (%) (nm) (–)
∼ 70 1.566 69.2± 0.01 118.89± 0.023 2.02 (7.20)
∼ 80 1.310 79.7± 0.02 143.66± 0.112 3.60 (6.14)
∼ 90 1.134 90.6± 0.02 304.72± 0.354 5.49 (10.3)

*Thin layers measured with ellipsometry, fit performed in 700–1700 nm range.
**Root mean squared error (RMSE) for the fit in 700–1700 nm (350–1700 nm) range.

Figure 6.1 shows the wavelength-dependent neff and keff values for the thin cali-

bration films with the derived porosity fAir included in the legend. Directly following

the deposition of calibration layers, thicker Si NC layers (t ≈ 6− 10 µm) were simul-

taneously deposited on glass and silicon substrates, as well as aluminum foil sheets

for nitrogen adsorption measurements.

6.2 Results and discussion

6.2.1 Physical properties

The physical properties of the NC-based films, specifically their pore size distri-

butions, were investigated using complementary approaches: the analysis of the film

vertical cross-sections, which provide a 2D microscopic view of the pores, together

with BET, which gives the implied volumetric distribution of pores based on nitro-

gen adsorption. Pore size distribution (PSD) analysis of the cross-sectional SEM
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FIG. 6.1: Wavelength-dependent neff and keff values are shown for the three de-
posited Si NC thin films of different porosities. The Bruggeman EMA was used to
obtain the neff and porosity of each film assuming bulk c-Si refractive index for the
NCs. The refractive index of magnesium fluoride (MgF2) is shown for reference.

images—based on the edge-to-edge distance between the bright pixels—was used

to compare the three NC samples. Prior to imaging, the samples were cleaved verti-

cally (along the deposition direction). Areas away from the top and bottom surfaces

were then imaged (J. Carpenter cleaved the samples and performed the imaging).

Figure 6.2(a)–(c) shows the cross-sectional SEM images of the ∼70%, ∼80%, and

∼90% samples, respectively, that were used for the PSD analysis. To perform the

analysis, the SEM images were first converted to binary (B&W) images, represent-

ing pores and particles. Here, two image thresholding techniques are employed to

obtain the binary images: global and local. Global image thresholding is based on

the pixel brightness of the entire image—features that arise due to unevenness of the

surface are preserved. On the other hand, local image thresholding is based on image

segmentation where thresholding is determined for each region independently; as a

result, features that arise due to the unevenness of the surface are smoothed over.
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FIG. 6.2: Cross-sectional SEM images of (a)∼70% porous, (b)∼80% porous, and (c)
∼90% porous NC layers. The scale bar corresponds to 200 nm (J. Carpenter imaged
the samples). Cumulative pore area and pore size distributions of the thresholded
cross-sectional SEM images are shown using (d)–(e) global and (f)–(g) local thresh-
olding (thresholded images with pore size distributions are included in the Appendix,
Sec. B.1.)
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Figures 6.2(d)–(e) and (f)–(g) show the cumulative pore area and pore size dis-

tribution when global and local thresholding techniques are used, respectively (the

binary (B&W) images, corresponding to global and local image thresholding, are in-

cluded in the Appendix, Sec. B.1.) Both image sets reveal an increasing pore size

distributions width with increasing porosity. In the case of local thresholding, the

resulting distributions are narrower, as the effect of the imaged surface unevenness

due to cleaving (leading to under- and over- exposure of the image regions) is min-

imized. The pore size distribution analysis of the images was performed using the

Xlib plug-in of the ImageJ software [121, 122].
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FIG. 6.3: Nitrogen adsorption isotherms at 77 K for the three nanoparticle samples
of varying porosities. The data shows the sequential pore filling for lowest, middle,
and highest porosity samples.

A complementary approach based on nitrogen adsorption in the pores provides

implied volumetric pore size distribution. The volume of nitrogen adsorbed is mon-

itored as pressure is varied, until saturation is reached. The absorption profile is

analyzed using a model (BJH in this case) to obtain the pore size distributions (see

Sec. 3.4.2 for details). Figure 6.3 shows the nitrogen adsorption isotherms at 77 K
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for the three samples—the shape and hysteresis of the adsorption curves are con-

sistent with capillary condensation in mesopores (pores ranging from 2 to 50 nm in

width) [113, 115].

TABLE 6.2: Summary of BET nitrogen adsorption measurements for the three lay-
ers

EMA porosity* Cumulative volume Calculated porosity** Average pore
(%) of pores** (cm3/g) (%) width** (nm)

69.2± 0.01 0.932 68.5± 1.4 6.88
79.7± 0.02 1.864 81.3± 1.2 13.42
90.6± 0.02 2.956 87.3± 0.9 30.05

*Thin calibration layers measured with ellipsometry.
**Thick layers measured using nitrogen adsorption.

Table 6.2.1 summarizes the results of the BET nitrogen adsorptionmeasurements.

We calculate the porosity based on the cumulative volume of pores obtained from

nitrogen adsorption and assume the density of c-Si for the nanoparticles using Eq. 6.1

below (the obtained uncertainty is included for the mass measurements ±1 mg):

Porosity[%] =
Cumulative pore volume [cm3/g]

Cumulative pore volume [cm3/g] + 1/Densityc−Si [g/cm3]
· 100

(6.1)

The calculated porosities of the three nanoparticle layers are in close agreement

with those obtained with the EMA model except for the highest porosity sample,

where the derived porosity values using the cumulative pore volume is slightly lower

than that obtained with the EMA. Previous results on mesoporous silicon indicate

that the EMA model may overestimate the porosity values of the higher porosity

samples [123]. The potential impact of surface oxidation on calculated BET poros-
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ity3 is less straightforward; if the oxidation of NCs is accompanied with increase in

volume (as suggest by neff reduction following annealing) accessible pore volume

(fAir) may still be reduced. The last column indicates the average pore width of the

three samples.
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FIG. 6.4: (a) Cumulative pore volume of the three samples and (b) the pore size
distributions in the nanoparticle films of different porosities determined through
nitrogen adsorption and BJH pore filling analysis.

The derived cumulative pore volume and pore size distributions (using the BJH

model) in Figs. 6.4(a) and (b), respectively, show the increase in distribution width

with increase in porosity. The tail of the highest porosity sample extends to approx-

imately 250 nm pore width (see Appendix, Sec. B.2). The trends that we observe

from BET—wider pore size distributions with increase in porosity—are consistent

with the trends we observe in the PSD of the cross-sectional SEM images (Fig. 6.2).

However, the BET PSDs are narrower, with a tail extending to larger pore widths.

The differences in PSD shape likely arise due to under-counting of the smallest pores
3BET measurements were performed > 1 week after deposition, allowing native oxide formation
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in the cross-sectional SEM, due to the combination of resolution and thresholding,

which results in clusters of NCs appearing as mostly homogeneous (as opposed to

made up of individual particles a few nanometers in diameters). The differences be-

tween the SEM and BET PSD of the ∼70% porous sample may also indicate that

the larger trenches observed in the cross-sectional SEM may reveal a surface feature

(i.e. surface cracking), as those larger pore sizes are negligible in the BET PSD.

6.2.2 Optical properties
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FIG. 6.5: (a) Reflectance, transmittance and absorbtance of thick silicon nanoparticle
films (teff ≈ 1.5 µm) (b) Corresponding transmission haze measurements showing
increasing haze values with increased porosity for approximately similar quantities
of material

A spectrophotometer with an integrating sphere was used to measure the

total reflection/transmission, transmission haze, and, fitted with directional re-

flectance/transmittance analyzer, angular intensity distribution profiles (see Sec. 3.2

for details). Figure 6.5(a) shows the reflectance (R), transmittance (T ), and absorb-
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tance (1 − R − T ) of the thickest nanoparticle layers deposited on glass substrates.

These nanoparticle layers were deposited under the same conditions as the thinner

layers used to obtain the neff and porosity parameters in Fig. 6.1. Figure 6.5(b) shows

the corresponding haze values. We observe an overall increase in haze with increase

in porosity—the lowest porosity films have peak haze values of less than 2%, while

the highest porosity films have significantly higher haze values (over 40%) at shorter

wavelengths, where those values are highest. The haze decreases with increasing

wavelength for all the samples. For the thinnest samples, the haze becomes negli-

gible. The haze values of the highest porosity sample at different thicknesses are

included in the Appendix (Sec. B.3).

While transmission haze compares the diffuse scattering integrated along all an-

gles within a hemisphere (except the aperture window for direct transmission) and

compares it to the total transmission through the sample (Fig. 6.5), angular inten-

sity distribution (AID) measurements provide transmission intensities at different

angles within a single horizontal plane. As a result, the values we obtain using AID

are significantly lower than those we obtain with haze. Figures 6.6(a)–(c) show the

corresponding AID of the nanoparticle samples, with the glass substrate shown for

reference in d. With AID measurements, we are still able to observe similar trends

with increase in porosity as we did with haze measurement, although small differ-

ences are harder to detect. Both 70% and 80% porous samples exhibit low levels of

scattering, but no differences are apparent between their two angular distributions.

The 90% porous film shows increased scattering across the full wavelength range, es-

pecially in the 400–800 nm region. These results are consistent with our observations

in Fig. 6.5.
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FIG. 6.6: Angle-resolved intensity scattering in transmission through Si nanoparti-
cles films of increasing porosity from (a) to (c) deposited on glass substrates [glass
reference is shown in (d)]. The incoming light is normal to the samples and is varied
in energy. We observe an increase in non-specular transmission (broader scattering
angles) with increasing porosity. These trends agree with the measured haze values.

.

6.3 Optical simulation results

Representativemodels of the three porous structures (∼70,∼80, and∼90%) were

created assuming spherical silicon nanoparticles with the same nominal diameter as

the experimental case (d=5 nm), to study the impact of the pore size distribution on

the optical properties using the FDTDmethod discussed in Sec. 3.3. To separate the

effects of porosity and pore size distribution, two sets of structures were modeled—
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random and clustered—using the BET porosity values. Random structures were

generated using a rejection algorithm, in which a periodic body centered cubic is

generated and then the NPs are randomly removed to obtain the desired porosity.

Clustered structures, on the other hand, were generated via the random addition

of clusters of particles within the unit cell to achieve the desired porosity. Figure 6.7

shows the modeled structures [(a) random and (b) clustered], with the corresponding

top views.

(a) (b)

FIG. 6.7: Simulated (a) random and (b) clustered NC structures. The scale bar cor-
responds to 50 nm.

.

To determine their volume (3D) pore size distributions, PSD analysis was per-

formed on image stacks consisting of individual layers of generated structures. Fig-

ure 6.8 shows the resulting PSDs of (a) random and (b) clustered samples; the latter

provides a better approximation to the pore size distributions obtained using BET

(see Fig. 6.4), especially for the ∼80 and ∼90% samples, with the lowest porosity

sample more closely approximated with a random structure.

These structures form unit cells for the FDTD simulations, based on the full-

wave solutions of the time-varying electric and magnetic fields. For computation
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FIG. 6.8: Pore size distribution of simulated sets with (a) random and (b) clustered
NC arrangements.

.

of the angular intensity distribution of scattered fields, near to far-field transforma-

tion (NFFT) was used on the FDTD solution to eliminate evanescent solutions as

discussed in Sec. 3.3. To reduce the computational domain size, we implement pe-

riodic boundary conditions (PBCs) in the horizontal plane, which we validated by

simulating known sources and structures compared to analytical solutions. In addi-

tion, only the thinnest layers are simulated due to computational limitations. From

the far-field distributions along a hemisphere, we compute the values correspond-

ing to our optical characterization techniques: (1) transmission haze and (2) in-plane

angular intensity distribution.

Figure 6.9 compares the simulated and experimental reflectance, transmittance,

absobtance (RTA) of structures with the same porosity and the corresponding elec-

tric field energy density for the random structures. Figure 6.10 does the same, but

for the clustered structures. When comparing the RTA of the random and clustered

structures, the smallest difference is observed for the ∼70% structure. The ∼80%
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FIG. 6.9: Top row: simulated reflectance/transmittance (markers) compared to mea-
sured (dashed lines) for the 70, 80 and 90% random porous samples. Bottom row:
corresponding electric field energy density distributions of the three samples. The
scale bar corresponds to 100 nm.

.

structure shows a decrease in transmission accompanied by an increase in absorption.

The largest difference is observed for the ∼90% structure, with clustered structures

showing decreased transmission, slightly increased reflection, and increased absorp-

tion in the shortest wavelength region (compared to random). The differences be-

tween the experimental and simulated RTA, especially with increased reflectance at

the SiO2 interface, partly results from differences in the experimental and simulated

reference (see Appendix, Sec. B.4).

The observed differences in the RTA appear related to the differences in scatter-
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row: corresponding simulated electric field energy density distributions of the three
samples. The scale bar corresponds to 100 nm.

.

ing that we observe in the cross-sectional electric field energy density profiles for the

two sets of structures. Random structures appear not to scatter the normally inci-

dent plane wave source—fringes of the plane wave are easily discernible in the SiO2

layer, especially for the ∼80% and ∼90% structures where reflection is minimized.

The corresponding clustered structures, on the other hand, show disruptions to the

plane wave fringes, resulting from scattering.

Figure 6.11 shows the simulated angular intensity distribution of the correspond-

ing structures with the air reference shown in the first frame. The full detection-

angle range, shown in (a), highlights the differences in direct transmission between
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the structures, similar to what is observed in the near-field. In (b), for the reduced

detection-angle range (θd > 7.5°), similar features are observed for the three sam-

ples, with no clear indication of differences in scattering. The ripples observed in

these graphs arise from the dimension of the near-field monitor (600 nm x 600 nm),

which, physically, acts like an aperture causing strong diffraction. The final result

plotted here is the phase-corrected sum of 100 periods, which significantly reduces

the broadening arising from diffraction.
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FIG. 6.11: Simulated angular intensity distribution in transmission for (a) the full
range of detection angles with respect to the normal and (b) detection angles above
7.5°.

.

Figure 6.12 shows the corresponding simulated haze values, defined as the per-

centage of diffuse to total transmission (Haze[%] =
Tdiffuse

Ttotal
· 100). To reduce the
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effect of diffraction peaks on the calculated haze values, the NC structure transmis-

sion is normalized to that of air. Differences between the haze value (symbols) of

the three samples appear negligible.

400 500 600 700 800 900 1000

Wavelength (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ra

ns
m

is
si

on
 h

az
e 

(%
)

~70% porous

air reference

~80% porous

~90% porous

FIG. 6.12: Simulated transmission haze showing negligible differences between dif-
ferent porosity samples.

.

6.4 Summary

In this chapter, NC-based films of various porosities deposited via cluster beam

deposition were studied using structural and optical characterization techniques, in-

cluding an analysis of full-wave optical simulation results of representative structures.

The films were first characterized based on their refractive index and porosity using

ellipsometry data fitted to the Bruggeman’s effective medium approximation model

assuming intermixing of crystalline silicon particles and air. Porosity calculations us-

ing BET, a complementary volumetric method based on nitrogen adsorption within

the voids provided good agreement to the porosity values obtained from EMA, with
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differences arising in the highest porosity film. Pore size distributions of the struc-

tures, showing increasing width of the distribution with increasing porosity (in ad-

dition to the increase in the average pore size), were obtained by applying the BJH

model to the evolution of nitrogen adsorption as a function of pressure. SEM images

of the vertical cross-sections provided a direct 2D microscopic view of the pore size

distributions; the results approximate the trends observed from BJH, but depend on

the smoothness of the cleaved surface and the choice of thresholding. In terms of

optical properties, higher porosity films show larger haze values indicating increased

scattering, as is also observed in the off-normal scattering angles using angular in-

tensity distribution measurements. Presence of scattering, especially in the highest

porosity film appears correlated to the wider pore size distributions.

The effect of porosity and pore size distributions on optical properties were stud-

ied separately using full-wave optical simulation of modeled structures with different

statistics assuming same porosities and nominal particle diameter of the deposited

films. Two sets of structures are modeled—random and clustered—with the latter

more closely approximating the pore size distributions obtained using BET nitrogen

adsorption. Random arrangement of particles, having the smallest pore size distri-

bution width, most closely approximates a homogeneous film; the simulated electric

field energy density of the vertical cross-section shows negligible scattering of the

normally-incident plane wave as it moves through the structure—even at highest

porosity. Clustering of the particles has negligible effect on the lowest porosity lay-

ers, as observed with RTA and E-field (compared to the random structures), while

increase in absorption and presence of scattering is observed for the highest porosity

films. Simulated angular intensity distribution and haze show negligible differences

between the samples.
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Chapter 7

CONCLUSIONS

This dissertation focused on several types of semiconductor nanostructures —

nanowires, nanopillars, and nanoparticles — for potential applications in thin sili-

con solar cells and silicon-based tandems, with an emphasis on the correlation of

their structural and optical properties using combined experimental and simulation

approaches. The first results presented showed the impact of wurtzite/zinc-blende

polytypism in III-V nanowires on recombination mechanisms using experimental

data and a rate equation modeled developed in this dissertation, providing insight

into the factors contributing to reduced photovoltaic performance of single NW de-

vices, and ways to improve them, for applications in NW-based solar cells. The most

likely reduction in performance of individual NWs is due to the high non-radiative re-

combination losses from the uncapped surface. The potential losses due to structural

inhomogeneity along the length of the NW are minimized with the radial junction

geometry since carriers separate in the radial direction where crystal structure is ho-

mogeneous and mobility high. Additionally, reduced radiative recombination rates

due to spatially indirect recombination of electrons (in ZB segments) and holes (in

WZ segments) may be beneficial to carrier collection: the increased diffusion length

of carriers due to suppressed radiative recombination increases the probability of

carrier collection before the excited carriers recombine. Nevertheless, the structural

inhomogeneity along the length of the NW is still expected to present an issue for

carrier extraction at the contacts, where carriers must travel in the direction of low
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carrier mobility to reach them. To maximize carrier extraction in highly polytype

NWs, a transparent conductive oxide (TCO) conformal to the NWs is needed.

The results on the optical properties of silicon nanopillar arrays presented an

analysis of mechanisms with potential for light-trapping (of poorly absorbing near-

bandgap light) in ultra-thin silicon solar cells and silicon-based tandems, starting with

full-wave optical simulation compared to the measured reflectance data. Simulated

structures showing good agreement to measured reflectance were used to investigate

the mechanisms leading to its reduction (when compared to planar substrates). The

simulated electric field energy density profiles of the structures’ cross-sections sug-

gest strong forward scattering for short-aspect ratio nanopillars, with resonance ab-

sorption within and diffraction patterns between the nanopillars for the high-aspect

ratio nanopillars. Complimentary analysis revealed a high percentage of transmitted

light at off-normal angles for the poorly absorbed light, suggesting the suitability

of nanopillars for light-trapping in ultra-thin silicon substrates. The results from

the simulated test structures with ∼ 1µm thickness and perfectly reflective back

confirmed these suggestions, showing that conventional light-trapping limit can be

exceeded for certain wavelengths, approaching the limit in the 700–1000 nm range

for normally incident light.

Finally, the presented results on the optical properties of nanoparticle-based sili-

con thin films showed the impact of pore size distribution on scattering using struc-

tural and optical characterization techniques combined with full-wave optical simu-

lation. Porosity values derived using ellipsometry showed good agreement with the

more direct nitrogen adsorption method, with discrepancies arising for the highest

porosity. Results from the complementary nitrogen adsorption and cross-sectional

SEM analysis showed a significant increase in pore size distribution with increase in
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porosity. These differences in structure appeared to cause scattering in thick films,

observed using transmission haze and angular intensity distribution measurements.

The effects of porosity and pore size distribution were studied separately using full-

wave optical simulation of thin films composed of random and clustered arrange-

ments of particles, with the latter more closely approximating the experimental struc-

tures. Simulated absorption and the electric field energy density profiles of the films

are compared for the two cases: the E-field profiles for random arrangements of

particles show negligible effect on scattering due to their small size; with clustering,

the two lowest porosity layers show negligible change in the film absorption and scat-

tering, while the highest porosity film shows increased absorption and the presence

of scattering. The onset of scattering appears related to the larger deviation from

a random arrangement of nanoparticles for the highest porosity film (as observed

from the simulated pore size distributions of the random and clustered structures):

the inter-dispersion of particles and air is reduced, making the film less homogeneous

and creating scattering centers. Used as an inter-layer at the metal/semiconductor

interface, the inhomogeneity of the layer is expected to reduce the reflectance at

the layer/semiconductor interface; the light transmitted through the interface would

more likely get trapped in the layer inducing higher plasmonic losses. The methodol-

ogy for studying nanoparticle-based systems presented here can be expanded to other

applications in solar cells (e.g. anti-reflection optical coatings at the front surface) and

other material systems (e.g. dielectric and metalic nanoparticle-based structures).
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B.1 Pore size distribution from cross-sectional SEM images
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FIG. B.1: SEM cross-section images using (a) global and (c) local thresholding and
the corresponding pore size distributions in (b) and (d). Scale bar corresponds to
200 nm.
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B.2 BET pore size distribution, tail-end
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FIG. B.2: BET pore size distribution showing the tail extension of the∼90% sample.

B.3 Haze with respect to thickness of the most porous film
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FIG. B.3: Haze of the ∼90% porous film at different thicknesses.
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B.4 Reference glass substrate: measured vs. simulated
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FIG. B.4: Measured (dashed lines) vs. simulated (symbols) RTA for the glass ref-
erence. The electric field energy density is included on the right. The scale bar
corresponds to 100 nm.
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