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ABSTRACT  
 

Atmospheric deposition of iron (Fe) can limit primary productivity and carbon 

dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass 

burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. 

Existing studies of burn-induced trace element mobilization have often collected both 

entrained soil particles along with material from biomass burning, making it difficult to 

determine the actual source of aerosolized trace metals. 

In order to better constrain the importance of biomass versus entrained soil as a 

source of trace metals in burn aerosols, small-scale burn experiments were conducted 

using soil-free foliage representative of a variety of fire-impacted ecosystems. The 

resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on 

cellulose filters using a high-volume air sampler equipped with an all-Teflon impactor. 

Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using 

inductively coupled plasma mass spectrometry (ICP-MS). 

Results of this analysis show that less than 2% of Fe in plant biomass is likely 

mobilized as atmospheric aerosols during biomass burning events. The results of this 

study and estimates of annual global wildfire area were used to estimate the impact of 

biomass burning aerosols on total atmospheric Fe flux to the ocean. I estimate that 

foliage-derived Fe contributes 114 ± 57 Gg annually. Prior studies, which implicitly 

include both biomass and soil-derived Fe, concluded that biomass burning contributes 

approximately 690 Gg of Fe. Together, these studies suggest that fire-entrained soil 

particles contribute 83% (576 Gg) of Fe in biomass burning emissions, while plant 

derived iron only accounts for at most 17%. 
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CHAPTER 1 

INTRODUCTION 

The global carbon cycle depends upon the productivity of photosynthetic 

organisms. Marine primary producers called phytoplankton convert atmospheric carbon 

dioxide into 45 gigatons (Gt) of organic carbon annually.1 Phytoplankton depend upon 

macronutrients such as nitrate, phosphate, and silicate. However, even when there is a 

sufficient supply of these macronutrients, phytoplankton productivity may be limited in 

areas termed “high nutrient, low chlorophyll (HNLC),” which constitute approximately 

25% of the surface ocean.2 It is believed that HNLC areas lack sufficient concentrations 

of micronutrients, such as Fe. Iron facilitates electron transport in the mitochondria and 

chloroplasts of phytoplankton cells.3 Therefore, without a sufficient supply of Fe, 

phytoplankton cannot perform photosynthesis. Therefore, biogeochemical models of 

marine productivity and atmospheric carbon dioxide must account for all sources of Fe to 

the surface ocean. 

There are several known sources of Fe to the surface ocean.4 Upwelling in 

Equatorial regions and the Southern ocean supplies Fe-rich deep water to the surface.5 

Water along continental margins may also experience upwelling and/or sediment 

dissolution, which releases Fe into the surrounding waters.6–8 However, these processes 

do not impact the surface waters of much of the open ocean. In these areas, atmospheric 

deposition of particles is considered to be the most important source of Fe.7,9,10 

Atmospheric particles, in turn, may be derived from mineral dust or combustion, 

like anthropogenic activity or biomass burning events. Mineral dust contributes 

approximately 12 Tg of Fe annually to the ocean – significantly more Fe than combustion 
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processes.11 However, Fe in these particles is highly insoluble in ocean water, with some 

studies reporting Fe solubility of less than 1%.12 Because of this insolubility, most of the 

Fe in mineral dust may not be readily available to phytoplankton (i.e., bioavailable). 

Conversely, combustion aerosols only contribute 660-690 Gg of Fe to surface 

waters.11,13 While this represents less total Fe than mineral dust, combustion aerosols are 

far more soluble, with measured Fe solubilities between 0.7-13%.11,14 This may be due to 

the size and residence time of these particles. Combustion aerosols, on average, are 

typically < 1 µm in diameter, and thus are much smaller than dust aerosols, which may 

have diameters > 10 µm.2 Therefore, combustion aerosols have higher surface-area-to-

volume ratios and longer atmospheric residence times. Both of these factors allow more 

atmospheric processing of aerosols by acidic gases, which increases particle solubility.15 

According to recent modeling studies, up to 60% of the soluble Fe in the eastern Pacific 

and Southern Oceans, two HNLC areas is derived from combustion processes.16,17 

Because of these differences in solubility, it is important to determine the relative 

importance of the sources of marine aerosols. Several methods currently exist to 

differentiate mineral dust and combustion aerosols from each other. Anthropogenic 

aerosols are differentiated based on the presence of elements such as vanadium and lead. 

The most prevalent tracers for biomass burning include levoglucosan and soluble 

potassium (K+) because both are released in abundance during biomass burning 

events.18,19 However, significant issues exist with these methods. Levoglucosan has been 

shown to degrade on the timescale of  hours under typical atmospheric conditions.20 For 

example, K+ is also found in sea spray aerosol and therefore requires a correction factor.18 

Therefore, a new tracer is needed that more accurately source apportions Fe in aerosols. 
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One potential aerosol tracer is Fe isotopes, as various chemical reactions may 

fractionate isotopes of Fe uniquely. Isotopic fractionation has been studied for over 70 

years and is the foundation of the field of stable isotope geochemistry.21 Until the 

development of the multiple collector inductively-coupled plasma mass spectrometer 

(MC-ICP-MS), isotope fractionation measurements were only practical for light elements 

such as carbon and oxygen. The development of MC-ICP-MS has facilitated the 

measurement of isotopes of heavier elements, such as Fe. 

Researchers recently began using variations in Fe isotope values to apportion 

sources of marine aerosols. Mead and others22 collected aerosols in Bermuda and 

analyzed their Fe concentration and Fe isotopes. They determined that aerosols primarily 

originating in the Sahara had Fe isotope compositions resembling mineral dust. In months 

outside of this “Saharan season,” the aerosols had distinctly lighter Fe isotope values, 

indicating a non-mineral dust source. They concluded that this isotopically light source 

could be biomass burning, as studies by Guelke and von Blanckenburg indicated that Fe 

taken up by some plants was isotopically lighter than the soil in which the plant was 

grown.23–26 Recent studies by Kurisu and others14,27–29 indicate that combustion aerosols 

may also contain light Fe. These studies measured Fe isotopes in combustion aerosols 

from anthropogenic activity and discovered Fe isotope compositions much lighter than 

those observed by Majestic and others.30 

Further studies by Kurisu and Takahashi14 found that Fe in biomass burning 

aerosols is isotopically indistinguishable from mineral dust. This aligns with other studies 

that posit most of the Fe in biomass burn aerosols is derived from lofted soil particles 

from uplifting air currents and burning duff during floor fires.11,31 Thus, these aerosols 
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may have Fe isotope compositions similar to mineral dust. If lofted soil particles are the 

primary source of Fe in biomass burning aerosols, then aerosols from natural sources 

(mineral dust and biomass burning) would have similar isotope values. If, on the other 

hand, a substantial amount of Fe comes from burning foliage (crown fires), then these 

aerosols may show light isotope ratios. However, no studies have directly measured the 

isotopic composition of burning foliage in biomass burning aerosols. In addition, the 

contribution of Fe from burning foliage vs lofted soil has not yet been quantified. 

Measurements of Fe in biomass burning aerosols are hindered by low Fe 

concentrations (as low as 0.0045 ± 0.026% of collected aerosol mass).32 The most 

obvious solution to this challenge is to increase the amount of material burned. However, 

doing so raises some significant issues. First, burning more material would increase the 

total number of particles, most of which are organic or black carbon. Because many 

studies of trace metals in aerosols use cellulose filters which may clog when too much 

material is collected, there is a limit to how many aerosol particles may be collected. 

Second, burning more material also increases the temperature dramatically. The intake air 

frequently reached above 175 ˚C, and cellulose filters ignite at 233˚C. Even keeping the 

temperature below 175 ˚C, cellulose filters become very brittle. Therefore, there is a risk 

of damaging the cellulose filters if more material is burned in experiments. 

Additionally, measurements of trace metals in biomass burning aerosols are 

limited by available facilities. Current fire lab facilities are designed to capture and study 

organic materials, not trace metals. These facilities use metal ductwork, stages, and other 

Fe-containing components.33,34 Thus, the background contribution of Fe may exceed the 

concentration in collected aerosols. For example, Brian Majestic at the University of 
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Denver received samples from the U. S. Forest Service Fire Science Laboratory (FSL) in 

Missoula, Montana. However, these samples were only one half of a 1” diameter Teflon 

filter, and did not contain more Fe than the background [personal communication]. 

To overcome these challenges and collect a substantial amount of Fe, I developed 

rigorous experimental methods. I determined the maximum amount of material that could 

be burned without overloading the filters, and added this material to the fuel bed in small 

increments to keep the temperature under 175 ˚C. In addition, I used aluminum ductwork 

and a Teflon stage to minimize aerosol contact with Fe-containing materials. I also 

developed rigorous filter cleaning protocols (detailed in Appendix A) and foliage sample 

cleaning methods to reduce the amount of Fe-rich soil adhered to the foliage. 

Additionally, I minimized the impact of anthropogenic and mineral dust aerosols by 

conducting all burn experiments in an isolated location on a tarp. 

These procedures enabled me to conduct biomass burning experiments and 

quantify the amount of Fe released from burning foliage during these events. I use these 

analyses to estimate the annual flux of Fe that comes from burning foliage versus 

entrained soil. This, in turn, could help us to determine if Fe isotopes are appropriate to 

use to distinguish sources of Fe in atmospheric particles. 
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CHAPTER 2 

EXPERIMENTS 

1. INTRODUCTION 

Iron (Fe) is important to the carbon cycle and global ocean productivity, as it is a 

critical micronutrient for phytoplankton in the surface ocean. Constraints on marine 

primary productivity in high-nutrient, low-chlorophyll (HNLC) regions, which constitute 

as much as 25% of the open ocean, are attributed to limited bioavailability of Fe.35–37 In 

HNLC areas, Fe concentrations fall below 0.2 nM.38 An influx of Fe to HNLC areas of 

the Southern Ocean and equatorial Pacific has been shown to induce phytoplankton 

blooms.39–41 Due to phytoplankton’s impact on the global carbon cycle, it is necessary to 

identify and quantify all sources of Fe to the marine environment. 

While Fe is supplied to the ocean from several sources, few may increase open 

ocean phytoplankton productivity. While Fe may be supplied to some marine areas by 

hydrothermal vents and sediment dissolution,6,8,42–47 atmospheric particle deposition 

contributes the greatest flux of Fe to the surface waters of the open ocean.9,10,48 Mineral 

dust aerosols make up approximately 98% of these particles.11 However, the Fe in 

mineral dust may have solubilities as low as 1%,49 thus most of Fe in mineral dust is not 

readily available to phytoplankton, or “bioavailable”. 

In contrast, Fe in combustion aerosols from anthropogenic emissions and biomass 

burning events are more soluble,17,49,50 and thus provide a substantial amount of 

bioavailable Fe to the open ocean.51 Combustion aerosols have large surface-area-to-

volume ratios and long atmospheric residence times, which promotes breakdown by 

acidic atmospheric gases.15,18,52–54 A recent modeling study estimated that combustion 
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aerosols supply up to 50 Gg/yr of soluble Fe to the ocean, representing 15% of the total 

global soluble Fe flux from atmospheric particles.17 This study suggests that biomass 

burning aerosols, in particular, contribute up to 60% of the soluble Fe in certain HNLC 

regions, such as the Southern Ocean. 

Recent studies have suggested that the Fe in biomass burning aerosols is primarily 

derived from soil suspension due to uplifting air currents in the smoke plume14,55 and 

burning duff, which consists of leaf litter, decomposing plant matter, and plant roots.31,56 

Studies of Fe in aerosols produced during biomass burning may help quantify the amount 

of Fe from burning foliage in biomass burning aerosols. However, no studies have 

directly measured the amount of Fe derived from burning foliage. 

In this study, small-scale burn experiments were conducted to determine the 

amount of Fe released from burning foliage. The results of these experiments were used 

to estimate the contribution of burning foliage to the global flux of aerosol Fe released 

from biomass burning events annually. 

2. MATERIALS AND METHODS 

Clean foliage was burned, and the resulting aerosols were collected on cellulose 

filters via a modified high-volume sampler (Figures 4-6). These filters were digested and 

analyzed for their Fe content. Details provided in the following subsections include (1) 

reagent and material preparation, (2) sample collection, (3) burn experiment procedures, 

(4) sample processing, (5) sample analysis, and (6) blanks. 

2.1 Reagent and material preparation 

In anticipation of low Fe concentrations, reagents and materials were chosen 

and/or cleaned to avoid possible contamination. Laboratory procedures were conducted 
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in a Class 10 laminar flow hood. Unless otherwise specified, acids used in this study were 

purified via sub-boiling in-house distillation, and concentrated acids were diluted using 

18 MΩ-cm DI water. Plastics in contact with samples and reagents were first degreased 

in Micro90 trace metal cleaning solution (1%), rinsed with DI water, and sequentially 

soaked in reagent-grade HNO3 (7.8 M), HCl (6.1 M), and DI water, using standard trace‑ 

metal clean lab protocols.57 Polytetrafluoroethylene (PTFE, Teflon) containers were 

further cleaned by refluxing with concentrated HCl on a hotplate for 2‑3 hours. 

Full and slotted cellulose filters (203 x 254 mm (TE-241), 152 x 152 mm (TE-

230-WH), Whatman 41, Tisch Env.) soaked overnight in reagent-grade HCl (0.24 M) and 

were rinsed with DI water three times. This process was repeated for a total of three wash 

cycles. Filters dried and were stored in plastic zipper bags. Filter handling was minimal, 

but during handling, gloves were worn and acid‑washed PTFE tweezers were used. 

2.2 Sample collection 

Foliage samples were selected to represent plants in areas subject to frequent or 

intense biomass burning events. Pine needles sampled from the Coconino National Forest 

were selected as analogues for boreal biomes. Tropical foliage from Biosphere 2 was 

selected to represent various plants from humid, tropical biomes. Eucalyptus foliage from 

the Desert Botanical Garden was selected to typify arid tropical biomes. Grassland and 

croplands were represented by grass samples from Buffalo Park in Flagstaff, AZ. 

One sample of each tree species outlined in Table 1 was collected from 1‑2 m 

above ground and each grass sample was cut approximately two inches above the roots to 

minimize soil contact. These samples were rinsed three times in DI water and dried at 

50 ºC in a standard laboratory oven. Pine needles, eucalyptus foliage, and grass herbage 
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were also rinsed with a methanol‑water solution (50%) to remove particulates adhered to 

the outer waxy coating.58 A small portion (1-2 g) of each foliage sample was analyzed for 

trace metal concentrations. 

2.3 Burn experiment procedures 

Clean foliage samples were burned outdoors on a secluded gravel lot located in 

Gilbert, AZ during three separate sessions (January 13, July 19, and September 1, 2017). 

Schematics and pictures of the experimental setup can be found in Appendix I. The setup 

was assembled on a tarp to prevent contamination by soil particles in the vicinity of the 

experiment. Aerosol samples were collected using a high-volume sampler, drawing air at 

approximately 1.13 m3/min. Aluminum ductwork (4” diameter) was connected to the 

sampling stage (Figure A). The sampling stage was constructed out of a PTFE frame and 

mesh to reduce Fe transfer from the sampler to filters. This stage was soaked in reagent-

grade HCl (2.4 M) overnight, rinsed, and dried prior to use. The stage was equipped with 

an aluminum cascade impactor to separate aerosols into fine (PM<2.5 µm) and coarse 

(PM>2.5 µm) modes. This study focuses on fine particles, as they have long atmospheric 

residence times and are more likely to deliver soluble Fe to the ocean.27,28,49,59 

The fire bed was constructed using cinder blocks and a ceramic floor tile, which 

were covered in aluminum foil (Figure 5, Appendix I). Two cinder blocks were placed on 

the tarp to prevent melting. Aluminum sheeting and the ceramic floor tile were placed on 

top of the tarp for further insulation. This arrangement was surrounded by cinder blocks 

to prevent the fire from spreading to surrounding vegetation and structures. A new piece 

of aluminum foil was placed on top of the ceramic floor tile before each burn to prevent 

cross-contamination and to enable collection of post-burn ash. 
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Table 1: Sample details including species, total dry weight, and sampling location. Dry 
weights represent the weight of clean, dry foliage samples. A small portion (1-2 g) was 
set aside for elemental analysis. The remaining material was ignited in burn experiments. 

Biome Classification Dry sample 
wt. (g) Location collected 

Temperate/Boreal Pinus ponderosa 123.90 Coconino National Forest 
Sedona, AZ 

  Pinus ponderosa 156.96 

  Pinus ponderosa 135.52 

  Pinus ponderosa 156.71 

Humid tropical Arenga pinnata 82.67 Biosphere 2 
Oracle, AZ 

  Bambusa spp. 39.72 

  Cissus sicyoides 17.00 

  Costas spp. 23.33 

  Elaeis guianensis 102.06 

  Inga spp. 29.42 

  Melia azedarach 70.11 

  Musa spp. 41.31 

  Pachira aquatica 30.68 

  Spathodea campanulata 23.59 

Arid tropical Eucalyptus camaldulensis 97.12 Desert Botanical Garden 
Phoenix, AZ  

  Eucalyptus erythrocorys 165.57 

  Eucalyptus microtheca 108.14 

  Eucalyptus papuana 61.60 

  Eucalyptus woodwardii 101.53 

Grassland Pascopyrum smithii 53.48 Buffalo Park 
Flagstaff, AZ 

  Elymus elymoides 56.62 

  Thinopyrum intermedium 32.77 

  Bouteloua gracilis 38.96 

  Sorghastrum nutans 65.79 
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At the beginning of each burn, small amounts of foliage were placed on the 

aluminum foil, sprayed with 1 mL of acetone, and ignited using matches. All matches 

were discarded after ignition, and thus were not burned with foliage. The sampler was 

turned on before ignition and turned off post-smoldering. To prevent damage to the PTFE 

sampler, air temperature was kept below 300 ˚C by gradually adding small amounts of 

foliage to the fuel bed until all sample was consumed. Occasionally, re-ignition using a 

small amount of acetone (< 1 mL) and matches was required. Each burn lasted four to ten 

minutes. Cellulose filters were collected from the sampling stage using acid-washed 

tweezers and returned to their zipper bags. Ash from the fire was wrapped in aluminum 

foil and secured in zipper bags in the field. 

2.4 Sample processing 

Sample digestion was conducted according to modified methods described in 

Upadhyay and others.60 One to two grams of unburned foliage was placed into PTFE-

lined glass digester vessels (35 mL, Discover SP-D, CEM) with concentrated HNO3 

(10 mL) and DI water (5 mL). These vessels were microwaved at 240 ºC for 15 min [full 

ramp procedures in Appendix B]. The volume of the resulting digest was transferred to a 

PTFE vial, reduced to < 5 mL on a hot plate, transferred back to the digestion vessel 

using concentrated HNO3 (10 mL), re-digested, and dried to residue. Residues were 

subjected to a secondary hot plate digestion procedure, as follows: concentrated HNO3 

and 30% trace metal grade H2O2 (750:250 µL) for two  hours; concentrated HNO3 and 

HCl overnight (3:1 mL); concentrated HNO3 and HF (4:1 mL) overnight; and 

concentrated HCl (5 mL) overnight. Between each step, sample containers were opened, 

and their volume was reduced to near-dryness. 
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One quarter of each filter was digested via microwave (25 mL MARSXpress 

vessels, MARS 5, CEM). Filters were cut using zirconia ceramic blades (Specialty 

Blades, Inc.) on an acid-washed polypropylene cutting board and handled using acid-

washed PTFE tweezers. Samples were placed into digestion vessels with concentrated 

HNO3 (10 mL), concentrated trace metal grade HF (1 mL), and DI water (4 mL). 

Digestion vessels were heated over 30 min to 180 ºC. The volume of the resulting digest 

was reduced to < 5 mL, transferred back into the digestion vessel with 10 mL HNO3, re-

digested, and dried to residue. The residue was treated with concentrated HNO3 and 30% 

trace metal grade H2O2 (500:250 µL) over a hot plate for two hours. 

An ash sample from each burn was digested via microwave (25 mL MARSXpress 

vessels, MARS 5, CEM). Samples were placed into digestion vessels with concentrated 

HNO3 (10 mL) and DI water (4 mL). The volume of the resulting digest was reduced to 

< 5 mL on a hotplate, transferred back to the digestion vessel with 10 mL concentrated 

nitric acid, re-digested, and dried to residue. These samples then underwent a hot plate 

digestion procedure, as follows: concentrated HNO3 and H2O2 (750:250 µL) for two 

hours in a closed vessel; aqua regia overnight (3:1 mL); concentrated HNO3 and HF 

(4:1 mL) overnight; and, concentrated HCl (5 mL) overnight. Between each step, sample 

containers were opened, and their volume was reduced to near-dryness. 

2.5 Sample analysis 

An aliquot of each digest was diluted to 5 mL using HNO3 (0.32 M) and analyzed 

for 42 major and minor elements using a quadrupole inductively-coupled plasma mass 

spectrometer (ICP-MS, iCAP Q, Thermo Scientific) at the W.M. Keck Foundation 

Laboratory for Environmental Biogeochemistry. He was used as a collision gas to 
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remove polyatomic interferences such as 40Ar16O+. An internal standard containing Sc, 

Ge, Y, In, and Bi was used to correct for instrumental drift throughout each run. The limit 

of detection for Fe measurements was < 6 ng L-1. The precision of Fe measurements was 

± 2% based on repeated measurements of standard solutions interspersed within each run. 

2.6 Blanks 

Several types of blank were collected during sampling and sample processing to 

account for all sources of Fe in the experiment. Fe concentrations of in-house distilled 

HNO3 and HCl were 1.3 and 8.9 parts per trillion, respectively. Clean acid processed as a 

sample with each set of digestions was called the “reagent blank.” The digestion of 

unburned materials had a reagent blank containing 393 ng Fe. The reagent blanks that 

accompanied burn aerosol samples contained < 195 ng of Fe. For each burn session, one 

quarter of two clean filters were digested as samples to evaluate the Fe contribution from 

the cellulose filter substrate. This blank was termed the “filter blank.” Each blank had 

1.1 – 2.5 µg of Fe per filter. To determine the Fe contribution from the sampling stage, 

one clean filter was placed in the PTFE sampling stage for 10 min without the air pump 

turned on and removed with PTFE tweezers. One quarter of this filter, termed the 

“contact blank,” was processed as a sample. The Fe concentration of the contact blanks 

did not exceed the filter blanks. Particulate matter from the ambient air was collected on 

clean filters before, during (every three samples), and after each session for five to ten 

minutes and processed as a sample to determine the Fe contribution from ambient 

particulate matter. This blank was termed the “field blank”. Concentrations of the field 

blanks are shown in white in Figure 2. 
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3. RESULTS AND DISCUSSION 

 
Figure 1: Amount of Fe concentrations in unburned foliage (µgFe) normalized to the dry 
weight (gDW) of material analyzed. Error bars represent 5% of the measured value. 

 
We conducted biomass burn experiments on 25 samples spanning four biomes. 

The Fe concentrations of unburned foliage samples are shown in Figure 1. In unburned 

pine, tropical, and eucalyptus foliage, 10-125 µgFe/gDW was measured, which is consistent 

with previous studies that measured 40-112 µgFe/gDW.61,62 Differences between the 

average Fe concentration in pine, tropical, and eucalyptus foliage were investigated using 

a one-factor analysis of variance (ANOVA). At the 95% confidence level, these three 

types of foliage are statistically indistinguishable (p = 0.86). 

Grass samples have an average Fe concentration of 249.0 ± 35.2 µgFe/gDW, which 

is significantly more Fe compared to the other types of plant material analyzed (ANOVA, 

p < 0.05). In addition, this is slightly higher than Fe concentrations measured by Schlegel 

and others63 of 207.1 ± 208.1 µgFe/gDW. The grass samples analyzed in this study were 

collected in Buffalo Park, Flagstaff, where soils are rich in basaltic material due to the 

proximity of several dormant volcanoes. Because basalts weather more easily, plants 

grown in basaltic soils tend to have higher concentrations of Fe and other trace metals.64 
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The concentration of Fe in the grass herbage agrees with studies of the Fe concentration 

in grass shoots grown in basaltic soils.65 

 
Figure 2: Concentrations of Fe in the filter blank corrected samples. The average 
measured concentration of Fe in unused, clean filters were subtracted from the measured 
amount of Fe in each filter. Error bars represent propagated error.  
 

Figure 2 shows the amount of Fe in the fine particulate matter collected from each 

burn. Field blanks and burn aerosol samples were corrected for the contribution of Fe 

from the cellulose filter by subtracting the average amount of Fe in the filter blank 

(1.69 ± 1.45 µg filter-1) from the amount of Fe in each field blank and burn aerosol 

sample. To compare field blanks and burn samples, each aerosol measurement was 

normalized for their respective particle collection times. 

The concentrations in burned pine needle aerosol samples have an average and 

associated uncertainty of 0.56 ± 0.32 µg filter-1 min-1 (2σ). Because these samples were 

collected from the same tree at the same height, they may be considered replicates. 

Therefore, consistent amounts of Fe to be aerosolized between these samples are 

expected. When these samples are considered to be replicate measurements of the amount 

of Fe collected during the burning of replicate samples, the relative standard error of 

these measurements is approximately 29% (2σ). Replicate measurements of similar 
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biomass burning experiments conducted by the U. S. Forest Service’s Fire Sciences 

Laboratory (FSL) at Missoula report a 16% (2σ) total error.56 Unlike the FSL 

experiments, these experiments were conducted outside where air currents were less 

predictable. Therefore, a slightly larger relative standard error is expected. 

The amount of Fe in the field blanks exceeds the amount of Fe in many burn 

aerosol samples. This could be a result of changing wind conditions bringing mineral dust 

aerosols into the setup. Because mineral dust aerosols have orders of magnitude more Fe 

than burn aerosols,2,66 a small amount of mineral dust could have a significant effect on 

the amount of Fe collected on the filters. Despite this limitation, these measurements 

were utilized to determine the percentage of Fe aerosolized. 

The percent of Fe that is aerosolized from unburned foliage during these burn 

experiments is estimated using the measured concentrations of Fe in the burn aerosols, 

field blanks, and unburned starting material, as shown in equation (1): 

!"#$%&'&()*$+(%) = 	1
!"#$%&'&( − !"3)$(+

!"3&()#4$
5 	6	100 (1) 

 
where Feaerosol is the filter blank corrected amount of Fe in each sample in µgFe filter-1 

min-1, Fefie is the average field blank for each burn session in µgFe filter-1 min-1, Fefoliage is 

the amount of Fe in the unburned foliage in µgFe per burn. 

The results of this calculation are shown in Figure 3. No samples exceed 2% 

aerosolization of the Fe in the starting material. Several samples have slightly negative 

percentages of aerosolized Fe because these samples have Fe concentrations that are 

indistinguishable from their field blanks. Each value was weighted against its error, and a 

weighted average was calculated. The weighted average percent aerosolized, by sample 
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type, are -0.01 ± 0.01, 0.37 ± 0.09, -0.05 ± 0.04, and 0.06 ± 0.02 for pine, tropical, 

eucalyptus and grass samples, respectively. To take the weighted average, all of the 

samples within a given foliage type are assumed to be replicates and representative of the 

Fe content of that biome. These averages were used to estimate the impact of burning 

foliage on total biomass burning aerosols. 

 
Figure 3: Percent of Fe aerosolized in PM<2.5 from the unburned foliage during biomass 
burning experiments. The average field blank has been subtracted from each sample. 
Error bars on the data points represent propagated error from the field blanks. Horizontal 
lines represent the weighted average, and shaded boxes represent the weighted error for 
each type of sample. 
 

To assess the impact that burning foliage has on the global Fe flux from biomass 

burning aerosols, the percent of Fe aerosolized from burning foliage and the measured 

concentration of Fe in the unburned foliage were used, as shown in equation (2): 

Fe flux = Feaerosol x Fefoliage x densityfuel x areaburned  (2) 
 
where Feaerosol is the percent of Fe aerosolized during foliage burning, Fefoliage is the Fe 

concentration in unburned foliage in ppm, densityfuel is the fuel density of each biome in 

Mg/ha,67 and areaburned is the annual area of each biome subject to biomass burning in 

Mha.68 This calculation was repeated for each biome and summed. The end result is an 

estimate of the total amount of Fe released due to burning foliage. 
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To account for uncertainties in Feaerosol and Fefoliage, two different methods were 

used to determine the annual flux of Fe from biomass burning aerosols: 1) weighted 

average, and 2) maximum value. In both methods, outliers in each foliage type were 

excluded using a Q test (p < 0.05). P. ponderosa Sample 3 and P. aquatica are outliers in 

unburned pine and tropical foliage, respectively. B. gracilis is an outlier in the percent of 

Fe aerosolized by burning grass herbage. 

Method 1: Weighted Average (Table 2) The weighted averages for the percent Fe 

released from burning pine and eucalyptus foliage are negative because the concentration 

of Fe in the average field blanks for these burn sessions were larger than the amount of 

Fe collected during the experiment for these foliage types. In these calculations, negative 

percentages translate to these types of foliage are removing Fe, which is not physically 

possible. To account for this impossibility, these values were set to zero, and thus, boreal 

and arid tropical biomes have no calculated impact on the annual flux of Fe. Humid 

tropical and grassland/cropland biomes account for a flux of 27 ± 13 Gg of Fe per year. 

 
Table 2: Global estimate of the Fe flux from burning foliage using Method 1. 

Biome 
Average 

Aerosolized 
Fe (%) 

[Fe] in  
Foliage 
(ppm) 

Fuel 
Density 

(Mg/ha)67 

Burned 
Area 

(Mha/yr)68 

Annual 
Fe Flux 
(Gg/yr) 

Boreal forest 0 ± 0.01 49 ± 2 215 ± 73 8.7 0 ± 0 

Tropical 
forest 

0.37 ± 0.09 32 ± 3 220 ± 101 6 16 ± 8 

Savannah and 
shrub 

0 ± 0.04 19 ± 8 16 ± 11 350.2 0 ± 0 

Grassland 0.06 ± 0.02 249 ± 35 7 ± 11 48.1 5 ± 7 

Croplands 0.06 ± 0.02 249 ± 35 10 ± 9 46.9 7 ± 6 

Total  --- --- --- --- 27 ± 13 
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Method 2: Maximum values (Table 3) Using the maxima for the percent of Fe 

aerosolized and the Fe concentration of unburned foliage, the flux of Fe from burning 

foliage using this method is 114 ± 57 Gg Fe/yr. This figure represents an upper bound of 

Fe released from burning foliage. 

 

Table 3: Global estimate of the Fe flux from burning foliage using Method 2. 
 

These estimates of the amount of Fe released from burning foliage are premised 

on several assumptions. First, that the foliage samples analyzed are accurate 

representations of the given biomes. Because biomes include many different types of 

plant, burning individual samples of each species may not be representative of the whole 

biome. Second, that the species collected are similar enough that an average may be 

taken. The amount of Fe in different species of plant may vary based on their metabolic 

needs; this would alter the range of Fe for plants in that biome.23 Third, that the Fe 

concentration of collected samples and wild foliage are the same. These values may differ 

because the samples collected were typically grown in optimal growing conditions 

(water, sunlight, nutrients), but areas subject to burning may have water- or nutrient-

Biome 
Maximum 

Aerosolized 
Fe (%) 

[Fe] in  
Foliage  
(ppm) 

Fuel 
Density 

(Mg/ha)67 

Burned 
Area 

(Mha/yr)68 

Annual 
Fe Flux 
(Gg/yr) 

Boreal forest 0.01 ± 0.09 58 ± 3 215 ± 73 8.7 0.9 ± 0.3 

Tropical forest 0.8 ± 0.3 49 ± 3 220 ± 101 6 54 ± 31 

Savannah and shrub 0.02 ± 0.04 113 ± 6 16 ± 11 350.2 12 ± 8 

Grassland 0.128 ± 0.006 460 ± 23 7 ± 11 48.1 19 ± 30 

Croplands 0.128 ± 0.006 460 ± 23 10 ± 9 46.9 29 ± 24 

Total  --- --- --- --- 114 ± 57 
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depleted soils that alter the amount of Fe that the plants can harvest.69 In these instances, 

the concentration of Fe in the foliage may be smaller than measured. 

With these assumptions in mind, these conservative estimates of the annual flux 

of Fe from burning foliage may be compared to values reported by recent studies. A 

recent modeling study suggests that the annual flux of Fe from biomass burning aerosols 

is 690 Gg/year, which includes both burning foliage aerosols and lofted soil particles.17 

Based on these estimates, burning foliage may account for up to 16% of the Fe from 

biomass burning aerosols. This result implies that the majority of the Fe from biomass 

burning aerosols is derived from lofted soil, which is consistent with the findings of 

previous studies.14,31,55 

This result also implies that the Fe in biomass burning aerosols should have 

similar chemical characteristics to mineral dust sources. However, the smaller particle 

size created by biomass combustion lends itself to long atmospheric residence times and 

increased atmospheric processing. Biomass burning also creates acidic gases that could 

increase the solubility of these particles. As a result, we predict biomass burning aerosols 

to have increased solubility compared to mineral dust. 

In summary, less than 2% of the Fe in foliage is released during biomass burning 

events. Extrapolated to a global scale, these results imply that during biomass burning 

events, at most 114 Gg of Fe in biomass burning aerosols is derived from burning foliage, 

which represents approximately 17% of the global flux of Fe from biomass burning 

events. The remaining 576 Gg of Fe is hypothesized to be derived from burning duff and 

soil entrainment. However, biomass burning aerosols may be more soluble than mineral 

dust due to long residence times and atmospheric processing by acidic gases. Future 
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studies should explore the composition of aerosols from burning duff, as well as the 

resulting particles’ interactions with atmospheric gases over various time periods. With 

the anticipated increase in biomass burning events in coming years due to climate 

change,70 the importance of biomass burning aerosols to the flux of Fe to the surface 

ocean may increase, thus potentially increasing marine primary productivity and altering 

the global carbon cycle. 
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CHAPTER 3 

IMPLICATIONS 

The results of my burn experiments indicate that burning duff and lofted soil 

particles provide most of the Fe in biomass burning aerosols. The following sections 

focus on the implications of my results in the context of 1) Fe isotopes, 2) soil impacts, 

3) Fe solubility, 4) annual Fe flux, and 5) method improvements. 

3.1 FE ISOTOPES 

Mead and others22 observed a non-dust source of fine particles that were 

isotopically distinct from mineral dust. They suggested these particles could have 

originated from biomass burning. In further research on Fe in fine aerosols Kurisu and 

others29,71 measured Fe isotopes in anthropogenic aerosols and found the values were 

significantly lighter than in mineral dust. They attribute this fractionation to FeCl3 

evaporation during high temperature combustion (> 1000 ˚C). When FeCl3 evaporates, 

light isotopes are preferentially taken into the gas phase before the heavier isotopes. 

Therefore, the Fe in aerosols generated from high-temperature combustion are very 

isotopically light compared to mineral dust. Biomass burning events, on the other hand, 

may only reach 800 ˚C, and thus FeCl3 is unlikely to evaporate and fractionate Fe 

isotopes as significantly. Thus, isotope ratios observed in biomass burning aerosols may 

not be as light as the Fe isotope ratios observed in anthropogenic combustion aerosols. 

The burn experiments conducted in Chapter 2 demonstrate that most of the Fe in 

biomass burning aerosols is derived from burning duff and lofted soil. This means that 

the Fe isotope composition of biomass burning aerosols may not be distinguishable from 

mineral dust sources. Kurisu and Takahashi14 measured the Fe isotope composition of 
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biomass burning aerosols from a reed fire in Japan and concluded that Fe isotope ratios 

could not be used to distinguish biomass burning aerosols from mineral dust aerosols. 

However, their measurements may only be relevant to biomass burning events 

that primarily involve grass herbage. Grasses and non-grass plants have developed 

distinct mechanisms for obtaining Fe from the soil, as much of the Fe in soil is in the 

insoluble Fe(III) oxidation state. Grasses take up Fe by releasing siderophores, large 

organic ligands, into the rhizosphere.72 Organic complexation of Fe generally does not 

cause significant fractionation, therefore the Fe isotope ratios of soil and grass herbage 

should be similar.26 However, other higher plants reduce Fe(III) to Fe(II) at their roots, 

which may induce a significant isotope fractionation.73 Direct studies of Fe isotope ratios 

in plants by Guelke and von Blanckenberg26 found that compared to the soil, grasses are 

isotopically unfractionated, whereas non-grasses show a distinct isotope fractionation. 

The Fe isotopes in biomass burning aerosols could be a mixture of burned foliage 

and mineral dust. Aerosols derived from burning non-grass foliage could have a lighter 

Fe isotope composition than the surrounding soil, which would cause biomass burning 

aerosols to be slightly lighter overall than mineral dust. Therefore, there may be a slight 

Fe isotope variation between biomass burning aerosols and mineral dust if a significant 

amount of non-grass plant material was burned. However, more studies on Fe isotopes in 

biomass burning aerosols of non-grassy plants versus grassy plants are needed to fully 

settle this question. In addition, the Fe released by burning duff should be directly 

measured as well to determine if the Fe isotopes in these aerosols resembles mineral dust. 
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3.2 IMPACT OF SOIL 

The amount of Fe in biomass burning aerosols could be controlled by the Fe 

availability of the surrounding soil. In this study, I examined the Fe content of several 

types of foliage, and I observed that grass samples had a significantly higher Fe 

concentration than the Fe in the other foliage samples. I also observed that burning these 

grass samples produced aerosols with a higher Fe content than the other types of foliage. 

I attribute this to the basaltic soil in which these samples grew. Basaltic soils weather 

easily, releasing Fe into the surrounding soils. Plants increase their uptake of Fe when 

they are planted in Fe-rich soil. While there are limits due to the damage that Fe can 

induce to plant cells through the Fenton reaction, soil Fe content directly impacts the 

amount of Fe in associated plant matter. 

Therefore, the amount of available Fe in the soil may control the amount of Fe 

released by a biomass burning event. For example, a forest fire occurring in an area with 

basaltic soil would generate biomass burning aerosols with a higher Fe content than a 

forest fire occurring in an area with non-basaltic soils. To explore this idea, future studies 

should compare the Fe in atmospheric particles collected over various regions around the 

world to geologic maps indicating the presence of basaltic rocks. These studies should 

aim to determine if biomass burning aerosols generated from areas with basaltic-derived 

soils have a higher Fe content than biomass burning aerosols from non-basaltic areas. 

3.3 FE SOLUBILITY 

Based on my estimates of the Fe flux from burning foliage and the solubility of 

mineral dust, biomass burning, and anthropogenic aerosols,17 it is possible to derive an 

approximate amount of soluble Fe from biomass burning activities. Biomass burning 



 

25 

aerosols have an Fe solubility of 21%. If we assume uniform Fe solubility in all biomass 

burning aerosols (i.e., that aerosols derived from burning foliage are not more soluble 

than entrained soil or aerosols derived from burning duff), then the maximum amount of 

soluble Fe from burning foliage is approximately 23 Gg of Fe per year. 

However, the solubility of biomass burning particles may decrease with 

increasing percent composition of mineral dust, as mineral dust has a very low solubility. 

If this is the case, and the solubility of Fe in aerosols from burning foliage more closely 

resembles the solubility of anthropogenic aerosols (at 65% solubility), this figure 

increases to approximately 74.1 Gg of Fe per year, which would represent about half of 

the total flux of soluble Fe from biomass burning aerosols. 

It is possible to determine the burned foliage-to-entrained soil ratio by assuming 

that biomass burning aerosols are a mixture of anthropogenic combustion-like particles 

and mineral dust particles. The solubility of biomass burning aerosols (21%) falls 

between anthropogenic combustion aerosols (65%) and mineral dust (2%). If burning 

foliage has a solubility resembling anthropogenic aerosols, and entrained soil has a 

solubility resembling mineral dust, a mixing model may enable an estimate the amount of 

Fe from each source contained within biomass burning aerosols. Using mineral dust and 

anthropogenic aerosols as two end members, I determine that approximately 30% of the 

soluble Fe in biomass burning aerosols is derived from burning foliage. 

This figure is nearly twice my estimate of the contribution of burning foliage 

(17%). There are a few explanations for this discrepancy. First, our experiments 

measured the amount of Fe in unprocessed aerosols. Processing of suspended soil by 

acidic gases generated from biomass burning would increase their solubility, which 
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would decrease the percentage of Fe coming from foliage. For example, if atmospheric 

processing raises dust solubility to 10%, the overall contribution of foliage to biomass 

burning aerosols decreases to 20%, which is much closer to my estimate. More research 

is needed into how the solubility of mineral dust aerosols changes as they are processed. 

3.4 ANNUAL FE FLUX 

Globally, mineral dust contributes the most soluble Fe to atmospheric aerosols. 

Mineral dust contributes 1580 Gg of soluble Fe annually, compared to anthropogenic 

combustion and biomass burning at 462 and 145 Gg per year of Fe, respectively.17 This 

study strengthens the importance of mineral dust, as I estimate that approximately 83% of 

the Fe in biomass burning aerosols is derived from entrained soil particles. 

Regionally, however, biomass burning may significantly impact the Fe flux to 

HNLC areas, such as the Southern Ocean. A modeling study by Ito suggests that in the 

southern hemisphere, biomass burning aerosols may contribute up to 60% of the soluble 

Fe deposited on surface waters.17 This is particularly critical in the Southern Ocean, one 

of the largest HNLC areas on the planet. The location in which these aerosols are 

deposited is as important as the amount of Fe deposited from each aerosol source. Further 

studies are needed to confirm this modeling observation. Such studies would measure the 

Fe content in aerosols in the Southern Ocean and Equatorial Pacific, and, using Fe 

isotopes, soluble potassium, or other tracers for biomass burning, determine the 

percentage of Fe in these marine aerosols that is derived from biomass burning events. 

3.5 METHOD IMPROVEMENTS 

For future experiments, several methodological changes would improve the 

quality of these experiments. First, burning replicates of each type of material would 
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improve the error estimated mass fluxes produced in this study. Second, a quantitative 

method to collect ash samples would allow closure of the mass balance among unburned 

foliage, aerosols, and ash. Third, burning duff and leaf litter in addition to foliage would 

directly test the hypothesis that biomass burning aerosols are primarily derived from soil. 

Fourth, burning a larger mass of material would collect more Fe. Significant 

modifications would have to be made to the experimental setup to accomplish this, such 

as utilizing longer ductwork and/or designing a better system for particle collection than 

the cellulose filters. Finally, the most significant improvement would be to conduct the 

experiment in an enclosed, slightly pressurized space with HEPA-filtered air. These 

experiments were conducted outside, which led to large field blank values compared to 

collected burn aerosol values. Conducting these experiments in an enclosed area free 

from the impact of mineral dust would drastically improve these measurements. 
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APPENDIX A 

PROTOCOL: CELLULOSE FILTER CLEANING 
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Note: Always wear gloves and tweezers when handling filters. 

1) Remove cellulose filters (full or slotted) from package individually and place on 

plastic mesh 

2) Rinse with 18 MΩ-cm DI water and place in labelled plastic container 

3) Repeat for as many filters as needed (container holds about 20 filters), placing them 

on top of each other. 

4) Rinse each filter twice more, working through the pile of filters. 

5) Place all filters into the container.  

6) Add reagent-grade conc HCl (2% solution, 2 L) to the container. 

7) Leave overnight 

8) Empty container of acid into waste 

9) Rinse each filter at least three times using 18 MΩ-cm DI water 

10) Repeat Steps 5-9 for a total of three cleaning cycles. 

11) Let filters dry in plastics hood.  

12) When dry, place each filter into individual zipper bags (gallon for 203x241 mm 

filters, quart for slotted filters). Label each bag with the date that the filters were 

placed into the bag. 
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APPENDIX B 

PROTOCOL: MICROWAVE DIGESTION 
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These instructions are for the CEM Discover located in PSF 066. 

Note: During digesting, reflux concentrated HCl (approx. half the volume of the 

beaker) in all post-digestion Teflon beakers. 

1) Pre-Digestion Procedure (use Class 10 Laminar Flow hood) 

a) Make sure that enough vessels are clean, including glass, caps, stir bars, and (if 

HF is used) Teflon liners. 

b) Assemble the vessels: 

i) Place a Teflon liner in the glass vessel (especially with HF) and add a 

stir bar using tweezers 

c) Carefully add samples to the vessels using weigh paper or a weigh boat. 

d) Add digestion reagents. 

i) Clean foliage: 10 mL HNO3 

ii) Burn aerosols: 10 mL conc. HNO3, 4 mL DI H2O, and 1 mL conc. HF.  

iii) Ash: 10 mL HNO3 

e) Cap samples before transport 

2) Digester Setup 

a) Make sure the outlet vent in the adjacent hood is uncapped. 

b) Turn on the air (valve on the wall) and the fan (switch on the autosampler near the 

bubbler). 

c) Wear gloves to place samples into the autosampler. 

i) Any marker labels will wear off in the digestion process. Sketch a simple 

diagram of vessels to keep track of samples. 

d) If HF is used, add 1g of boric acid to the bubbler for every 1 mL of HF. 
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(1) Add ~75% of the boric acid to initial bubbler. Add the rest to the 

second bubbler. Stir the resulting solutions. 

e) On the computer: 

i) In the Data/Methods window, select your method. 

(1) In the diagram of the sample racks, click on the positions of each 

sample, right-click on the position, and select “Add Method.” 

(a) For unburned foliage, use “Biomass” method for first round of 

digestions, “BBA Soot” for second round 

(b) For aerosols, use “BBA” method 

(c) For ash, use “BBA Soot” method 

f) Run a “Water Clean” method at the end to flush out the system. 

i) Fill a digestion vessel with approximately the same volume of tap water 

as acid in the samples. 

ii) Add the “Water Clean” method to the end of the queue. 

g) Press the green Play button at the top of the window to begin digesting 

3) Post-Digestion Procedure 

a) Wear gloves and carefully remove samples from the autosampler. 

b) Place the glass vials into the magnetic cup to keep the stir bar in the vial 

Carefully pour samples into the “post-digestion” beakers, rotating the vessel 

each time to remove any adhered sample. 

i) Set aside vessels if a second round of digestion is needed. Clean all 

vessels when digestion is completed. 
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c) Transfer to one of the dry-down hoods, uncap the beakers and place them onto a 

hot plate, leaving at least 0.5 cm of space between each sample. 

i) Place a Post-It on the plastic door with your name, the date, and contents. 

ii) Reduce volume to near dryness. 

iii) Add 5 mL of conc HNO3 to each beaker and transfer back to glass vial. 

Repeat for a total of 10 mL conc HNO3. Add additional reagents if applicable. 

4) Vessel cleaning procedure 

a) Add the same volume of reagents used to digest samples. 

b) Cap each vessel with a new cap. 

i) Caps last through two digestion cycles. Using new caps with these vessels 

ensures that the caps are clean. 

c) Digest the samples using the same method used to digest samples. 

d) After completing the digestion, place vessels into magnetic cup and discard the 

solution in a waste container. 

e) Remove the stir bars after discarding the cleaning solution. Place them into a 

small, clean Teflon beaker 

f) Rinse all components with 18MΩ H2O at least 5x. 

g) Place them in the Low-Fe hood to air dry. 

h) When dry, reassemble the vessels and cap 
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Ramp Procedures: 

1. Unburned Foliage 

a. Microwave: CEM DISCOVER 

b. Method: BIOMASS 

i. Ramp to 220 ˚C and 225 psi over 20 minutes 

ii. Hold for 10 minutes 

iii. Cool for 5-10 minutes (or until temperature fell below 60 ˚C) 

2. Cellulose filters and ash 

a. Microwave: CEM MARS5 

b. Method: AIRPUFF PP (per Upadhyay et al. 2009)60 

i. Ramp to 140 ˚C for 3 minutes 

ii. Hold for 3 minutes 

iii. Ramp to 160 ˚C for 3 minutes 

iv. Hold for 3 minutes 

v. Ramp to 180 ˚C for 3 minutes 

vi. Hold for 15 minutes 

vii. Cool for at least 1 hour  
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APPENDIX C 

PROTOCOL: HOTPLATE DIGESTION 
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1) Nitric/Peroxide: to remove organics  

a) Time on hotplate: 2 hours  

b) Reagents: 750 μL conc HNO3 + 250 μL concentrated H2O2  

c) Post-digestion: Sonicate for 5 min and dry samples to near dryness  

2) Aqua Regia: to remove difficult organics  

a) Time on hotplate: Overnight  

b) Reagents: 3 mL concentrated HCl + 1 mL concentrated HNO3  

c) Post-digestion: Sonicate for 5 min and dry samples to near dryness 

3) Nitric/HF: To remove silicates  

a) Time on hotplate: Overnight  

b) Reagents: 4 mL concentrated HNO3 + 1 mL concentrated HF  

i) USE CAUTION WHEN WORKING WITH HF  

c) Post-digestion: Sonicate for 5 min and dry samples to near dryness 

4) Hydrochloric: To break down SiF4 crystals that may form  

a) Time on hotplate: Overnight  

b) Reagents: 5 mL concentrated HCl  

c) Post-digestion: Sonicate for 5 min and dry samples to near dryness  

d) Repeat as needed 

5) Nitric/peroxide  

a) Time on hotplate: 2 hours  

b) Reagents: 500 μL concentrated HNO3 + 100 μL concentrated H2O2  

c) Post-digestion: Sonicate for 5 min and dry samples to near dryness  

d) Repeat as needed to dissolve any solids  
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APPENDIX D 

DATA: FE IN ANALYZED SAMPLES 
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Table 4: Fe concentrations in field blank 
samples. 

Field Blank  
Fine 

(µg filter-1) 
Coarse 

(µg filter-1) 
1 3.4 (0.84) 19.12 (0.98) 

2 9.22 (0.96) 1.81 (0.13) 

3 11.86 (1.66) 2.57 (0.15) 

4 5.08 (1.56) 1.32 (0.1) 

5 3.52 (1.55) 0.79 (0.08) 

6 1.9 (1.53) 0.78 (0.08) 

7 1.22 (1.53) 0.16 (0.07) 

8 19.56 (1.38) 7.33 (0.63) 

9 2.91 (0.87) 1 (0.49) 

10 2.29 (0.86) 0.88 (0.49) 

11 5.61 (0.92) 2.14 (0.5) 
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Table 5: Fe in unburned foliage, ash, coarse, and fine samples. The Fe concentration of 
reagent blanks were subtracted from each sample. Average filter blanks were subtracted 
from coarse and fine filters.  

Sample Name 
Unburned Foliage  

(mg) 
Ash 
(mg) 

Fine 
(µg filter-1) 

Coarse 
(µg filter-1) 

Pinus ponderosa 1 6.3 (0.3) 6.8 (0.3) 3.87 (0.85) 0.59 (0.08) 

Pinus ponderosa 2 7.6 (0.4) 12.1 (0.6) 5.66 (0.88) 21.13 (1.08) 

Pinus ponderosa 3 8.4 (0.4) 8.3 (0.4) 6.16 (0.89) 9.69 (0.51) 

Pinus ponderosa 4 7.9 (0.4) 9.7 (0.5) 5.53 (0.87) 2.22 (0.15) 

Arenga pinnata 1.84 (0.09) 0.93 (0.05) 13.87 (1.71) 2.15 (0.13) 

Bambusa spp. 1.07 (0.05) 0.98 (0.05) 10.97 (1.65) 1.58 (0.11) 

Cissus sicyoides 0.69 (0.03) 0.183 (0.009) 14.4 (1.72) 2.94 (0.16) 

Costas spp. 0.92 (0.05) 0.32 (0.02) 6.78 (1.58) 1.43 (0.1) 

Elaeis guianensis 2.9 (0.1) 2.2 (0.1) 6.1 (1.57) 1.28 (0.1) 

Inga spp. 1.19 (0.06) 2 (0.1) 5.9 (1.57) 0.45 (0.07) 

Melia azedarach 2.3 (0.1) 2.1 (0.1) 4.01 (1.55) 1.52 (0.1) 

Musa spp. 2 (0.1) 1.31 (0.07) 5.07 (1.56) 0.42 (0.07) 

Pachira aquatica 3.9 (0.2) 7.2 (0.4) 25.9 (2.05) 1.01 (0.09) 

Spathodea campanulata 1.13 (0.06) 1.23 (0.06) 3.1 (1.54) 1.02 (0.09) 

Eucalyptus camaldulensis 11 (0.6) 8.1 (0.4) 1.97 (1.54) 4.01 (0.21) 

Eucalyptus erythrocorys 6.6 (0.3) ** 11.35 (1.08) 2.63 (0.51) 

Eucalyptus microtheca 6.2 (0.3) 10.9 (0.5) 4.62 (0.9) 0.44 (0.48) 

Eucalyptus papuana 2.6 (0.1) 2 (0.1) 2.37 (0.86) 0.71 (0.48) 

Eucalyptus woodwardii 0.016 (0.001) 0.73 (0.04) 4.73 (0.9) 1.2 (0.49) 

Pascopyrum smithii 10.9 (0.5) 17 (0.8) 13.08 (1.13) 3.41 (0.52) 

Elymus elymoides 24 (1) 28 (1) 37.02 (2.14) 8.86 (0.68) 

Thinopyrum intermedium 5.7 (0.3) 6.3 (0.3) 9.78 (1.03) 5.27 (0.57) 

Bouteloua gracilis 12.9 (0.6) 27 (1) 94.23 (4.91) 12.47 (0.82) 

Sorghastrum nutans 12.4 (0.6) 17.2 (0.9) 21.63 (1.46) 5.41 (0.57) 

**Sample was lost during processing.  
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DATA: TRACE METALS IN UNBURNED FOLIAGE 

 



 

 

Table 6: Unburned foliage concentrations of Na, Mg, Al. P, K, Ca, Ti, and V. The reagent blank concentration of each trace metal 
analyzed was subtracted from the unburned foliage samples. 

Sample Name Na (mg) Mg (mg) Al (mg) P (mg) K (mg) Ca (mg) Ti (µg) V (µg) 
Pinus ponderosa 1 25 (1) 64 (3) 18.1 (0.9) 147 (7) 578 (29) 83 (4) 477 (24) 10.1 (0.5) 
Pinus ponderosa 2 45 (2) 73 (4) 16 (0.8) 186 (9) 935 (47) 109 (5) 473 (24) 9 (0.4) 
Pinus ponderosa 3 12.3 (0.6) 100 (5) 23 (1) 137 (7) 478 (24) 163 (8) 668 (33) 13 (0.6) 
Pinus ponderosa 4 26 (1) 105 (5) 22 (1) 188 (9) 603 (30) 149 (7) 520 (26) 9.4 (0.5) 

Arenga pinnata 16.3 (0.8) 85 (4) 0.44 (0.02) 61 (3) 257 (13) 483 (24) 29 (1) 5.5 (0.3) 
Bambusa spp. 8.5 (0.4) 33 (2) 0.26 (0.01) 50 (3) 430 (22) 113 (6) 21 (1) 0.012 (0.001) 

Cissus sicyoides 7 (0.3) 32 (2) 0.056 (0.003) 74 (4) 285 (14) 942 (47) 7.4 (0.4) 3 (0.1) 
Costas spp. 10.9 (0.5) 64 (3) 0.4 (0.02) 37 (2) 500 (25) 362 (18) 28 (1) 0.86 (0.04) 

Elaeis guianensis 30 (2) 168 (8) 0.48 (0.02) 74 (4) 617 (31) 698 (35) 40 (2) 1.7 (0.08) 
Inga spp. 13.4 (0.7) 80 (4) 0.2 (0.01) 43 (2) 181 (9) 369 (18) 20 (1) 0.4 (0.02) 

Melia azedarach 20 (1) 451 (23) 0.54 (0.03) 139 (7) 651 (33) 1019 (51) 31 (2) 1.06 (0.05) 
Musa spp. 14.3 (0.7) 40 (2) 0.65 (0.03) 38 (2) 970 (48) 450 (23) 76 (4) 0.6 (0.03) 

Pachira aquatica 11.8 (0.6) 60 (3) 0.68 (0.03) 38 (2) 274 (14) 404 (20) 251 (13) 0.75 (0.04) 
Spathodea campanulata 5.3 (0.3) 59 (3) 0.19 (0.01) 50 (3) 312 (16) 268 (13) 14.1 (0.7) 0.31 (0.02) 

Eucalyptus camaldulensis 86 (4) 361 (18) 15.8 (0.8) 121 (6) 413 (21) 2068 (103) 807 (40) 18 (0.9) 
Eucalyptus erythrocorys 1043 (52) 628 (31) 9 (0.4) 98 (5) 587 (29) 1266 (63) 796 (40) 0 (0) 
Eucalyptus microtheca 266 (13) 113 (6) 8.6 (0.4) 57 (3) 954 (48) 857 (43) 620 (31) 0 (0) 
Eucalyptus papuana 31 (2) 148 (7) 2.9 (0.1) 48 (2.4) 306 (15) 888 (44) 252 (13) 0 (0) 

Eucalyptus woodwardii 412 (21) 53 (3) 0.93 (0.05) 16.9 (0.8) 678 (34) 239 (12) 107 (5) 882 (44) 
Pascopyrum smithii 8.2 (0.4) 36 (2) 13.8 (0.7) 41 (2) 188 (9) 72 (4) 1278 (64) 0 (0) 
Elymus elymoides 6.4 (0.3) 10.3 (0.5) 29 (1) 7.9 (0.4) 12 (1) 48 (2) 2667 (133) 132 (7) 

Thinopyrum intermedium 18.8 (0.9) 23 (1) 10.7 (0.5) 36 (2) 282 (14) 60 (3) 739 (37) 0 (0) 
Bouteloua gracilis 14.3 (0.7) 42 (2) 21 (1) 57 (3) 334 (17) 147 (7) 1696 (85) 51 (3) 

Sorghastrum nutans 6.3 (0.3) 22 (1) 17.1 (0.9) 9.8 (0.5) 32 (2) 54 (3) 1508 (75) 75 (4) 
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Table 7: Unburned foliage concentrations of Cr, Mn, Co, Ni, Cu, Zn, Rb, and Sr. The reagent blank concentration of each trace 
metal analyzed was subtracted from the unburned foliage samples. 

Sample Name Cr (µg) Mn (mg) Co (µg) Ni (µg) Cu (µg) Zn (mg) Rb (µg) Sr (µg) 
Pinus ponderosa 1 9.6 (0.5) 12.5 (0.6) 17.7 (0.9) 53 (3) 712 (36) 2.2 (0.1) 192 (10) 64 (3) 
Pinus ponderosa 2 7.2 (0.4) 12.4 (0.6) 12.5 (0.6) 189 (9) 1040 (52) 3.6 (0.2) 411 (21) 96 (5) 
Pinus ponderosa 3 12.1 (0.6) 14 (0.7) 21 (1) 33 (2) 523 (26) 2 (0.1) 152 (8) 149 (7) 
Pinus ponderosa 4 8.4 (0.4) 14.7 (0.7) 23 (1) 55 (3) 754 (38) 2.5 (0.1) 205 (10) 110 (6) 

Arenga pinnata 0 (0) 0.69 (0.03) 0 (0) 5.1 (0.3) 558 (28) 0.61 (0.03) 28 (1) 1036 (52) 
Bambusa spp. 1.84 (0.09) 0.34 (0.02) 1.39 (0.07) 3 (0.2) 239 (12) 0.4 (0.02) 109 (5) 222 (11) 

Cissus sicyoides 0.26 (0.01) 0.53 (0.03) 0 (0) 2.2 (0.1) 197 (10) 0.19 (0.01) 43 (2) 3382 (169) 
Costas spp. 0.75 (0.04) 9.7 (0.5) 0 (0) 7.4 (0.4) 85 (4) 0.25 (0.01) 84 (4) 917 (46) 

Elaeis guianensis 133 (7) 3.6 (0.2) 978 (49) 33 (2) 305 (15) 1.44 (0.07) 111 (6) 1100 (55) 
Inga spp. 3.8 (0.2) 2.3 (0.1) 11.1 (0.6) 3.7 (0.2) 214 (11) 0.46 (0.02) 95 (5) 1178 (59) 

Melia azedarach 0 (0) 3.2 (0.2) 32 (2) 10.7 (0.5) 127 (6) 0.55 (0.03) 126 (6) 4008 (200) 
Musa spp. 3.2 (0.2) 2.1 (0.1) 0 (0) 6.5 (0.3) 145 (7) 0.45 (0.02) 48 (2) 1623 (81) 

Pachira aquatica 0 (0) 1.2 (0.06) 0 (0) 10.9 (0.5) 123 (6) 0.32 (0.02) 31 (2) 1903 (95) 
Spathodea campanulata 0 (0) 0.35 (0.02) 0 (0) 6 (0.3) 197 (10) 0.23 (0.01) 89 (4) 761 (38) 

Eucalyptus camaldulensis 9.9 (0.5) 17.5 (0.9) 0 (0) 129 (6) 260 (13) 5.7 (0.3) 77 (4) 14740 (740) 
Eucalyptus erythrocorys 0 (0) 3.3 (0.2) BDL 71 (4) 1042 (52) 1.62 (0.08) 87 (4) 11782 (589) 
Eucalyptus microtheca 73 (4) 3.6 (0.2) 183 (9) 107 (5) 328 (16) 1.43 (0.07) 177 (9) 5757 (288) 
Eucalyptus papuana 0 (0) 11.5 (0.6) 473 (24) 206 (10) 441 (22) 3.4 (0.2) 81 (4) 5920 (296) 

Eucalyptus woodwardii 163 (8) 1.51 (0.08) 427 (21) BDL 55 (3) 0.3 (0.01) 60 (3) 2348 (117) 
Pascopyrum smithii 5.2 (0.3) 1.46 (0.07) BDL 22 (1) 174 (9) 0.45 (0.02) 122 (6) 486 (24) 
Elymus elymoides 17.9 (0.9) 0.62 (0.03) 29 (1) 9 (0.4) 81 (4) 0.35 (0.02) 22 (1) 466 (23) 

Thinopyrum intermedium 3.6 (0.2) 1.34 (0.07) BDL 5.7 (0.3) 111 (6) 0.53 (0.03) 203 (10) 383 (19) 
Bouteloua gracilis 18.7 (0.9) 1.85 (0.09) BDL 2.7 (0.1) 259 (13) 0.69 (0.03) 230 (11) 942 (47) 

Sorghastrum nutans 327 (16) 0.7 (0.04) 816 (41) 45 (2) 116 (6) 0.26 (0.01) 33 (2) 431 (22) 
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Table 8: Unburned foliage concentrations of Zr, Mo, Cd, Cs, Ba, La, Ce, and Pr. The reagent blank concentration of each trace 
metal analyzed was subtracted from the unburned foliage samples. 

Sample Name Zr (µg) Mo (µg) Cd (µg) Cs (µg) Ba (µg) La (µg) Ce (µg) Pr (ng) 
Pinus ponderosa 1 0.74 (0.04) 14.6 (0.7) 10.3 (0.5) 1.04 (0.05) 98 (5) 4.7 (0.2) 8.9 (0.4) 1084 (54) 
Pinus ponderosa 2 2.7 (0.1) 15 (0.7) 15.5 (0.8) 1.81 (0.09) 105 (5) 5.2 (0.3) 9.7 (0.5) 1148 (57) 
Pinus ponderosa 3 2.3 (0.1) 23 (1) 10.7 (0.5) 1.54 (0.08) 124 (6) 8 (0.4) 13.7 (0.7) 1774 (89) 
Pinus ponderosa 4 1.21 (0.06) 17.2 (0.9) 11 (0.5) 1.76 (0.09) 94 (5) 6 (0.3) 10.7 (0.5) 1330 (66) 

Arenga pinnata 2.8 (0.1) 8.4 (0.4) 2.4 (0.1) 0.25 (0.01) 652 (33) 0.29 (0.01) 0.44 (0.02) 69 (3) 
Bambusa spp. 0.08 (0.004) 42 (2) 0.101 (0.005) 0.36 (0.02) 314 (16) 0.044 (0.002) 0.08 (0.004) 8 (0) 

Cissus sicyoides 3.6 (0.2) 388 (19) 0.146 (0.007) 0.47 (0.02) 1047 (52) 0.67 (0.03) 0.86 (0.04) 79 (4) 
Costas spp. 2.9 (0.1) 180 (9) 0.38 (0.02) 1.04 (0.05) 1124 (56) 0.86 (0.04) 1.77 (0.09) 140 (7) 

Elaeis guianensis 2.03 (0.1) 90 (5) 0.48 (0.02) 3.5 (0.2) 380 (19) 0.22 (0.01) 0.37 (0.02) 44 (2) 
Inga spp. 1.3 (0.07) 107 (5) 0.59 (0.03) 4.2 (0.2) 264 (13) 0.087 (0.004) 0.088 (0.004) 14 (1) 

Melia azedarach 28 (1) 114 (6) 0.15 (0.008) 1.9 (0.1) 1363 (68) 1.46 (0.07) 2.3 (0.1) 227 (11) 
Musa spp. 0.77 (0.04) 108 (5) 0.067 (0.003) 0.86 (0.04) 995 (50) 0.22 (0.01) 0.45 (0.02) 49 (2) 

Pachira aquatica 0.57 (0.03) 1.71 (0.09) 0.28 (0.01) 0.42 (0.02) 562 (28) 0.69 (0.03) 1.3 (0.06) 111 (6) 
Spathodea campanulata 3.7 (0.2) 17.6 (0.9) 0.23 (0.01) 0.92 (0.05) 534 (27) 0.22 (0.01) 0.27 (0.01) 29 (1) 

Eucalyptus camaldulensis 37 (2) 8.9 (0.4) 4.7 (0.2) 3.8 (0.2) 3859 (193) 17.7 (0.9) 35 (2) 3680 (184) 
Eucalyptus erythrocorys 38 (2) 118 (6) 0.61 (0.03) 2.2 (0.1) 2827 (141) 8.3 (0.4) 16.2 (0.8) 1730 (87) 
Eucalyptus microtheca 33 (2) 22 (1) 0.5 (0.02) 1.6 (0.08) 818 (41) 7 (0.4) 14.5 (0.7) 1520 (76) 
Eucalyptus papuana 2.1 (0.1) 5 (0.3) 5.6 (0.3) 0.76 (0.04) 1466 (73) 3.2 (0.2) 6.2 (0.3) 677 (34) 

Eucalyptus woodwardii 22 (1) 1.45 (0.07) 1.38 (0.07) BDL 138 (7) 0.88 (0.04) 1.8 (0.09) 192 (10) 
Pascopyrum smithii 18.2 (0.9) 7.3 (0.4) 0.72 (0.04) 0.85 (0.04) 557 (28) 9.2 (0.5) 17.2 (0.9) 1864 (93) 
Elymus elymoides 545 (27) 7.4 (0.4) 0.68 (0.03) 1.46 (0.07) 1336 (67) 26 (1) 50 (3) 5406 (270) 

Thinopyrum intermedium 21 (1) 12.4 (0.6) 0.66 (0.03) 2 (0.1) 537 (27) 5.4 (0.3) 10.2 (0.5) 1096 (55) 
Bouteloua gracilis 110 (6) 63 (3) 0.59 (0.03) 1.83 (0.09) 1295 (65) 11.7 (0.6) 23 (1) 2470 (123) 

Sorghastrum nutans 30 (1) 30 (1) 0.44 (0.02) 1.21 (0.06) 629 (31) 13.4 (0.7) 27 (1) 2928 (146) 
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Table 9: Unburned foliage concentrations of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm. The reagent blank concentration of each 
trace metal analyzed was subtracted from the unburned foliage samples. 

Sample Name Nd (µg) Sm (ng) Eu (ng) Gd (ng) Tb (ng) Dy (ng) Ho (ng) Er (ng) Tm (ng) 
Pinus ponderosa 1 4.5 (0.2) 911 (46) 203 (10) 849 (42) 139 (7) 864 (43) 178 (9) 505 (25) 65 (3) 
Pinus ponderosa 2 4.7 (0.2) 901 (45) 195 (10) 836 (42) 133 (7) 816 (41) 173 (9) 496 (25) 64 (3) 
Pinus ponderosa 3 7.2 (0.4) 1382 (69) 290 (15) 1253 (63) 197 (10) 1199 (60) 248 (12) 705 (35) 94 (5) 
Pinus ponderosa 4 5.4 (0.3) 1038 (52) 221 (11) 943 (47) 148 (7) 905 (45) 190 (9) 536 (27) 71 (4) 

Arenga pinnata 0.33 (0.02) 72 (4) 44 (2) 87 (4) 15.2 (0.8) 94 (5) 19 (1) 57 (3) 8.3 (0.4) 
Bambusa spp. 0.033 (0.002) 9 (0) 13.6 (0.7) 7.1 (0.4) 2 (0.1) 9.6 (0.5) 2.6 (0.1) 7.1 (0.4) 1.4 (0.1) 

Cissus sicyoides 0.3 (0.01) 53 (3) 45 (2) 58 (3) 8 (0.4) 36 (2) 8.8 (0.4) 19 (1) 2.5 (0.1) 
Costas spp. 0.59 (0.03) 129 (6) 62 (3) 156 (8) 25 (1) 153 (8) 30 (2) 86 (4) 11.4 (0.6) 

Elaeis guianensis 0.178 (0.009) 45 (2) 23 (1) 45 (2) 7.6 (0.4) 46 (2) 11.1 (0.6) 35 (2) 4.8 (0.2) 
Inga spp. 0.062 (0.003) 12 (1) 12.4 (0.6) 16.2 (0.8) 2.3 (0.1) 20 (1) 4.6 (0.2) 13.3 (0.7) 1.9 (0.1) 

Melia azedarach 0.92 (0.05) 167 (8) 78 (4) 178 (9) 25 (1) 140 (7) 29 (1) 75 (4) 9.4 (0.5) 
Musa spp. 0.185 (0.009) 60 (3) 41 (2) 39 (2) 6.8 (0.3) 34 (2) 8.5 (0.4) 26 (1) 3.7 (0.2) 

Pachira aquatica 0.47 (0.02) 84 (4) 83 (4) 95 (5) 19 (1) 73 (4) 15.2 (0.8) 40 (2) 5 (0.3) 
Spathodea campanulata 0.122 (0.006) 25 (1) 22 (1) 27 (1) 3.7 (0.2) 22 (1) 4.8 (0.2) 11 (0.6) 1.5 (0.1) 

Eucalyptus camaldulensis 14.4 (0.7) 2647 (132) 626 (31) 2380 (119) 337 (17) 1928 (96) 380 (19) 1073 (54) 154 (8) 
Eucalyptus erythrocorys 6.6 (0.3) 1171 (59) 641 (32) 1048 (52) 149 (7) 916 (46) 187 (9) 587 (29) 90 (5) 
Eucalyptus microtheca 5.9 (0.3) 1020 (51) 321 (16) 932 (47) 144 (7) 884 (44) 166 (8) 494 (25) 79 (4) 
Eucalyptus papuana 2.6 (0.1) 442 (22) 288 (14) 412 (21) 59 (3) 349 (17) 66 (3) 192 (10) 29 (1) 

Eucalyptus woodwardii 0.82 (0.04) 119 (6) BDL 108 (5) BDL 86 (4) 23 (1) 66 (3) BDL 
Pascopyrum smithii 7.4 (0.4) 1270 (64) 389 (19) 1113 (56) 157 (8) 895 (45) 168 (8) 466 (23) 67 (3) 
Elymus elymoides 21.31 (1.07) 3707 (185) 1015 (51) 3249 (162) 465 (23) 2616 (131) 494 (25) 1410 (71) 196 (10) 

Thinopyrum intermedium 4.3 (0.2) 769 (38) 251 (13) 667 (33) 96 (5) 596 (30) 115 (6) 338 (17) 51 (3) 
Bouteloua gracilis 9.7 (0.5) 1745 (87) 565 (28) 1475 (74) 212 (11) 1248 (62) 249 (12) 707 (35) 105 (5) 

Sorghastrum nutans 11.9 (0.6) 2179 (109) 550 (27) 1842 (92) 269 (13) 1569 (78) 303 (15) 861 (43) 120 (6) 
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Table 10: Unburned foliage concentrations of Yb, Lu, Hf, W, Re, Pb, Th, and U. The reagent blank concentration of each trace 
metal analyzed was subtracted from the unburned foliage samples. 

Sample Name Yb (ng) Lu (ng) Hf (ng) W (ng) Re (ng) Pb (µg) Th (ng) U (µg) 
Pinus ponderosa 1 394 (20) 59 (3) 11 (0.6) 644 (32) 60 (3) 10 (0.5) 883 (44) 0.34 (0.02) 
Pinus ponderosa 2 383 (19) 58 (3) 26 (1) 702 (35) 32 (2) 11.8 (0.6) 1175 (59) 0.34 (0.02) 
Pinus ponderosa 3 569 (28) 86 (4) 28 (1) 1096 (55) 69 (3) 13 (0.7) 1382 (69) 0.49 (0.02) 
Pinus ponderosa 4 432 (22) 66 (3) 43 (2) 1022 (51) 66 (3) 13.7 (0.7) 999 (50) 0.38 (0.02) 

Arenga pinnata 44 (2) 7.2 (0.4) 109 (5) 1029 (51) 59 (3) 5.6 (0.3) 4.1 (0.2) 5.6 (0.3) 
Bambusa spp. 12.9 (0.6) 2.7 (0.1) 9.1 (0.5) 1789 (89) 80 (4) 1.57 (0.08) 4.3 (0.2) 0.024 (0.001) 

Cissus sicyoides 11.9 (0.6) 2.2 (0.1) 93 (5) 19376 (969) 132 (7) 4.1 (0.2) 37 (2) BDL 
Costas spp. 61 (3) 8.4 (0.4) 63 (3) 3157 (158) 0 (0) 1.85 (0.09) 18.1 (0.9) 0.31 (0.02) 

Elaeis guianensis 31 (2) 6.1 (0.3) 53 (3) 3737 (187) 40 (2) 4.3 (0.2) 5.5 (0.3) 0.85 (0.04) 
Inga spp. 12 (0.6) 1.9 (0.1) 27 (1) 559 (28) 65 (3) 1.9 (0.1) 8.2 (0.4) 0.51 (0.03) 

Melia azedarach 55 (3) 9.1 (0.5) 552 (28) 3030 (151) 534 (27) 8.2 (0.4) 30 (2) 0.89 (0.04) 
Musa spp. 29 (1) 5.7 (0.3) 84 (4) 1150 (58) 202 (10) 3.2 (0.2) 31 (2) 1.81 (0.09) 

Pachira aquatica 27 (1) 3.9 (0.2) 44 (2) 244 (12) 60 (3) 7.4 (0.4) 14.3 (0.7) 0.94 (0.05) 
Spathodea campanulata 8.6 (0.4) 1.4 (0.1) 78 (4) 569 (28) 75 (4) 1.28 (0.06) 10.2 (0.5) 0.79 (0.04) 

Eucalyptus camaldulensis 1018 (51) 154 (8) 938 (47) 1456 (73) 4837 (242) 20.82 (1.04) 3434 (172) 7.2 (0.4) 
Eucalyptus erythrocorys 628 (31) 82 (4) 1135 (57) 286 (14) 5218 (261) 19 (1) 1735 (87) 2.6 (0.1) 
Eucalyptus microtheca 513 (26) 80 (4) 1016 (51) 525 (26) 2353 (118) 13.7 (0.7) 1983 (99) 0.84 (0.04) 
Eucalyptus papuana 190 (10) 28 (1) 114 (6) 0 (0) 868 (43) 6.7 (0.3) 640 (32) 1.68 (0.08) 

Eucalyptus woodwardii 56 (3) BDL 562 (28) 0 (0) 224 (11) 6 (0.3) 582 (29) 0.19 (0.01) 
Pascopyrum smithii 430 (21) 62 (3) 463 (23) 149 (7) 2.1 (0.1) 8.1 (0.4) 1026 (51) 0.41 (0.02) 
Elymus elymoides 1276 (64) 179 (9) 11601 (580) 506 (25) 0 (0) 19 (1) 3661 (183) 1.13 (0.06) 

Thinopyrum intermedium 340 (17) 51 (3) 188 (9) 204 (10) 136 (7) 6.9 (0.3) 1215 (61) 0.4 (0.02) 
Bouteloua gracilis 661 (33) 102 (5) 2482 (124) 1102 (55) 31 (2) 9.5 (0.5) 2370 (118) 0.67 (0.03) 

Sorghastrum nutans 797 (40) 112 (6) 778 (39) 843 (42) 0 (0) 8.3 (0.4) 1968 (98) 0.69 (0.03) 
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DATA: TRACE METALS IN COARSE AEROSOLS 
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Table 11: Coarse fraction field blank aerosol concentrations of Na, Mg, Al, P, K, and Ca. 

The average filter blank concentration of each trace metal was subtracted from the field 

blanks. 

 

 

 

Table 12: Coarse fraction field blank aerosol concentrations of Ti, V, Cr, Mn, Co, and 

Ni. The average filter blank concentration of each trace metal was subtracted from the 

field blanks. 

Field Blank Ti (µg) V (ng) Cr (ng) Mn (µg) Co (ng) Ni (ng) 

1 0.1 (0.02) 0 (11) 18675 (1051) 0.58 (0.04) 32958 (1649) 1011 (51) 

2 0.13 (0.02) 0 (11) 0 (463) 0.11 (0.02) 0 (26) 7 (5) 

3 0 (0) 0 (3) 0 (0) 0.044 (0.002) 0.4 (0.2) 8 (11) 

4 0.37 (0.02) 8 (3) 61 (3) 0.024 (0.001) 0.3 (0.2) 5 (11) 

5 0 (0) 2 (3) 0 (0) 0.009 (0) 0 (0.2) 14 (11) 

6 0 (0) 0 (3) 0 (0) 0.018 (0.001) 0.2 (0.2) 5 (11) 

7 0 (0) 0 (3) 0 (0) 0.011 (0.001) 0 (0.2) 0 (11) 

8 0.46 (0.12) 4 (1) 20 (51) 0.073 (0.009) 1 (0.5) 1 (51) 

9 0.05 (0.12) 4 (1) 0 (51) 0.018 (0.008) 0.1 (0.5) 0 (51) 

10 0.12 (0.12) 5 (1) 75 (52) 0.014 (0.008) 0.4 (0.5) 15 (51) 

11 0.15 (0.12) 0 (1) 4 (51) 0.06 (0.009) 0.6 (0.5) 0 (51) 

  

Field Blank Na (µg) Mg (µg) Al (µg) P (µg) K (µg) Ca (µg) 

1 0 (5.1) 0.23 (0.31) 1.1 (0.6) 0 (0.04) 0 (0.2) 0 (0) 

2 0 (5.1) 0.85 (0.31) 2.8 (0.6) 0.34 (0.06) 1.3 (0.2) 0.7 (0.2) 

3 0.8 (0.5) 0.37 (0.02) 0 (0) 0.21 (0.05) 0.9 (0.04) BDL 

4 1.2 (0.5) 0.023 (0.001) 1.81 (0.09) 0.34 (0.06) 1 (0.1) BDL 

5 0.1 (0.5) 0.18 (0.01) 0 (0) 0.13 (0.05) 0.39 (0.02) BDL 

6 0.6 (0.5) 0.32 (0.02) 0 (0) 0.29 (0.05) 0.84 (0.04) BDL 

7 2.1 (0.5) 0.057 (0.003) 0 (0) 0.22 (0.05) 2.5 (0.1) BDL 

8 1.1 (1.5) 0.99 (0.59) 6.6 (0.8) 0 (0.2) 2.1 (0.3) 1.6 (0.3) 

9 1.5 (1.5) 0.24 (0.58) 16.2 (1.1) 0.38 (0.21) 0.9 (0.3) 0.2 (0.3) 

10 2.6 (1.5) 0.17 (0.58) 12 (0.9) 0 (0.21) 0.3 (0.3) 2.2 (0.3) 

11 0.9 (1.4) 0.73 (0.59) 4.6 (0.8) 0.36 (0.21) 1.5 (0.3) 1.6 (0.3) 
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Table 13: Coarse fraction field blank aerosol concentrations of Cu, Zn, Rb, Sr, Zr, and 

Mo. The average filter blank concentration of each trace metal was subtracted from the 

field blanks. 

 

 

 

Table 14: Coarse fraction field blank aerosol concentrations of Cd, Cs, Ba, La, Ce, and 

Pr. The average filter blank concentration of each trace metal was subtracted from the 

field blanks. 

Field Blank Cd (ng) Cs (ng) Ba (µg) La (ng) Ce (ng) Pr (ng) 

1 BDL 0.157 (0.008) 0.06 (0.01) 1 (0.3) 2.3 (0.6) 0.22 (0.01) 

2 0.157 (0.008) 0.33 (0.02) 0.03 (0.01) 1.8 (0.3) 4.3 (0.6) 0.41 (0.02) 

3 BDL 0.46 (0.02) 0.05 (0.01) 0 (0) 0 (0) 0 (0) 

4 BDL 0.207 (0.01) 0.02 (0.01) 0.33 (0.02) 0 (0) 0.07 (0) 

5 BDL 0.08 (0.004) 0 (0.01) 0 (0) 0 (0) 0 (0) 

6 BDL 0.061 (0.003) 0.01 (0.01) 0 (0) 0 (0) 0 (0) 

7 0 (0) 0.02 (0.001) 0.04 (0.01) 0 (0) 0 (0) 0 (0) 

8 0.57 (0.04) 0.3 (0.2) 0.06 (0.01) 1.6 (0.7) 4 (1) 0.36 (0.1) 

9 0.17 (0.02) 0.3 (0.2) 0.04 (0.01) 1.4 (0.7) 3 (1) 0.24 (0.1) 

10 BDL 0.1 (0.2) 0.01 (0.01) 0.6 (0.7) 1 (1) 0.18 (0.09) 

11 0.018 (0.008) 0.3 (0.2) 0.04 (0.01) 1.6 (0.7) 3 (1) 0.39 (0.1) 

  

Field Blank Cu (ng) Zn (µg) Rb (ng) Sr (ng) Zr (ng) Mo (ng) 

1 BDL 0 (1) 1.2 (0.1) BDL 6 (1) 0.5 (0.4) 

2 BDL 0 (1) 3.6 (0.2) 14 (1) 2 (1) 0 (0.4) 

3 BDL 0.47 (0.02) 3.2 (0.2) 5 (0) 0 (0) 0 (0.6) 

4 BDL 0.153 (0.008) 1.47 (0.07) 12 (1) 1.34 (0.07) 0 (0.6) 

5 BDL 0.149 (0.007) 0 (0) 6.1 (0.3) 0.51 (0.03) 0.7 (0.6) 

6 BDL 0.159 (0.008) 0 (0) BDL 0 (0) 1.3 (0.6) 

7 BDL 0.29 (0.01) 0 (0) BDL 0 (0) 0 (0.6) 

8 271 (14) 1.2 (0.1) 5 (4) 9 (5) 2 (2) 1 (2) 

9 64 (3) 0 (0) 6 (4) 0 (5) 3 (2) 0.5 (2) 

10 79 (4) 0 (0) 0 (4) 12 (5) 3 (2) 0.6 (2) 

11 106 (5) 0 (0) 3 (4) 5 (5) 6 (3) 3 (2) 
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Table 15: Coarse fraction field blank aerosol concentrations of Nd, Sm, Eu, Gd, Tb, and 

Dy. The average filter blank concentration of each trace metal was subtracted from the 

field blanks. 

 

 

 

Table 16: Coarse fraction field blank aerosol concentrations of Ho, Er, Tm, Yb, and Lu. 

The average filter blank concentration of each trace metal was subtracted from the field 

blanks. 

Field Blank Ho (ng) Er (ng) Tm (ng) Yb (ng) Lu (ng) 

1 0.032 (0.002) 0.056 (0.003) BDL 0.045 (0.003) 0.007 (0) 

2 0.052 (0.003) 0.157 (0.008) 0.02 (0.001) 0.108 (0.006) 0.02 (0.001) 

3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

4 0 (0) 0 (0) 0 (0) 0.042 (0.002) 0 (0) 

5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

6 BDL 0 (0) 0 (0) 0 (0) BDL 

7 BDL BDL BDL BDL BDL 

8 0.089 (0.004) 0.202 (0.01) 0.029 (0.001) 0.15 (0.01) 0.027 (0.001) 

9 0.041 (0.002) 0.168 (0.008) BDL 0.002 (0.005) BDL 

10 0.047 (0.002) 0.171 (0.009) BDL BDL BDL 

11 0.066 (0.003) 0.181 (0.009) 0.026 (0.001) 0.12 (0.01) 0.029 (0.001) 

  

Field Blank Nd (ng) Sm (ng) Eu (ng) Gd (ng) Tb (ng) Dy (ng) 

1 1 (0.2) 0.19 (0.01) 0.045 (0.002) 0.15 (0.01) BDL 0.11 (0.01) 

2 1.6 (0.2) 0.32 (0.02) 0.083 (0.004) 0.3 (0.01) 0.036 (0.002) 0.24 (0.01) 

3 0 (0) 0 (0) 0.01 (0.001) 0 (0) 0 (0) 0 (0) 

4 0.4 (0) 0.1 (0.01) 0.026 (0.001) 0.06 (0) 0.002 (0) 0.01 (0) 

5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

6 0 (0) 0 (0) 0 (0) 0 (0) BDL 0 (0) 

7 0 (0) 0 (0) BDL 0 (0) BDL BDL 

8 1.5 (0.6) 0.25 (0.03) 0.05 (0.03) 0.21 (0.07) 0.067 (0.003) 0.26 (0.05) 

9 0.9 (0.6) 0.1 (0.03) 0 (0.03) 0.1 (0.07) 0.071 (0.004) 0.09 (0.05) 

10 0.6 (0.6) 0.22 (0.03) 0.01 (0.03) 0.07 (0.07) 0.05 (0.002) 0.15 (0.05) 

11 1.5 (0.6) 0.28 (0.03) 0.05 (0.03) 0.22 (0.07) BDL 0.19 (0.05) 
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Table 17: Coarse fraction field blank aerosol concentrations of Hf, W, Re, Pb, Th, and U. 

The average filter blank concentration of each trace metal was subtracted from the field 

blanks. 

Field Blank Hf (ng) W (ng) Re (ng) Pb (ng) Th (ng) U (ng) 

1 0.09 (0.01) 4 (2) 0 (0) 5 (2) 0.05 (0.02) BDL 

2 0.09 (0.01) 0 (2) 0 (0) 3 (2) 0.04 (0.02) BDL 

3 0 (0) BDL BDL 0 (0) 0 (0) BDL 

4 0 (0) BDL 0 (0) 1.6 (0.1) 0 (0) 0.46 (0.02) 

5 0 (0) BDL BDL 0 (0) 0 (0) BDL 

6 0 (0) BDL BDL 26 (1) 0 (0) BDL 

7 0 (0) BDL BDL 0 (0) 0 (0) BDL 

8 0.05 (0.02) BDL 0 (0) 48 (3) 0.16 (0.01) 0 (0.2) 

9 0.09 (0.02) BDL 0 (0) 3 (1) 0 (0) 0 (0.2) 

10 0.07 (0.02) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0.2) 

11 0.19 (0.02) BDL 0 (0) 2 (1) 0.13 (0.01) 0.1 (0.2) 

 



 

 

Table 18: Coarse fraction burn aerosol concentrations of Na, Mg, Al, P, K, Ca, and Ti. The average filter blank concentration of 
each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Na (µg) Mg (µg) Al (µg) P (µg) K (µg) Ca (µg) Ti (µg) 
Pinus ponderosa 1 0 (5) 1.1 (0.3) 39.9 (2) 2.5 (0.2) 29 (2) 0 (0) 0.05 (0.02) 
Pinus ponderosa 2 2.3 (5) 75 (4) 23.8 (1) 140 (7) 711 (36) 121 (6) 1.51 (0.08) 
Pinus ponderosa 3 0 (5) 78 (4) 4.5 (0.7) 96 (5) 401 (20) 109 (6) 0.77 (0.05) 
Pinus ponderosa 4 0 (5) 4.3 (0.4) 0 (0) 6.3 (0.4) 49 (3) 3.5 (0.3) 0.15 (0.02) 

Arenga pinnata 0.8 (0.5) 1.09 (0.05) 0 (0) 1.5 (0.1) 7.2 (0.4) 3.5 (0.2) 0 (0) 
Bambusa spp. 0.9 (0.5) 0.78 (0.04) 0.34 (0.01) 0.84 (0.08) 15.1 (0.8) BDL 0 (0) 

Cissus sicyoides 1.6 (0.5) 1.89 (0.09) 0 (0) 1.3 (0.1) 10.1 (0.5) 5.7 (0.3) 0 (0) 
Costas spp. 0.3 (0.5) 2.1 (0.1) 0 (0) 1.3 (0.1) 16.2 (0.8) 10.6 (0.5) 0 (0) 

Elaeis guianensis 1.7 (0.5) 6.1 (0.3) 0 (0) 3.2 (0.2) 47 (2) 14.4 (0.7) 0 (0) 
Inga spp. 0.2 (0.5) 2.5 (0.1) 0 (0) 1.9 (0.1) 8.8 (0.4) 15.1 (0.8) 0 (0) 

Melia azedarach 1.5 (0.5) 81 (4) 0 (0) 21 (1) 101 (5) 109 (5) 0 (0) 
Musa spp. 0 (0.5) 3.4 (0.2) 0 (0) 2.8 (0.2) 49 (2) 32 (2) 0 (0) 

Pachira aquatica 0.3 (0.5) 1.69 (0.08) 0 (0) 1.03 (0.09) 10.7 (0.5) 21 (1) 0 (0) 
Spathodea campanulata 0 (0.5) 0.65 (0.03) 3.3 (0.1) 0.36 (0.06) 5.0 (0.2) 0.81 (0.04) 0 (0) 

Eucalyptus camaldulensis 10.7 (0.8) 40 (2) 1.2 (0.7) 11.4 (0.6) 113 (6) 150 (8) 0 (0) 
Eucalyptus erythrocorys 15 (2) 4.4 (0.6) 13.9 (1) 0.8 (0.2) 22 (1) 2.9 (0.3) 0.1 (0.1) 
Eucalyptus microtheca 3 (2) 0.7 (0.6) 12.8 (1) 0 (0.2) 17.8 (0.9) 1.9 (0.3) 0.1 (0.1) 
Eucalyptus papuana 3 (2) 4.5 (0.6) 5.3 (0.8) 2.2 (0.2) 49 (3) 14.0 (0.8) 0.1 (0.1) 

Eucalyptus woodwardii 21 (2) 4.3 (0.6) 5.4 (0.8) 1.7 (0.2) 20 (1) 18 (1) 0.1 (0.1) 
Pascopyrum smithii 2 (2) 2.3 (0.6) 16.5 (1) 0.9 (0.2) 4.3 (0.4) 5.0 (0.4) 0.5 (0.1) 
Elymus elymoides 3 (2) 3.7 (0.6) 63.9 (3) 1.6 (0.2) 9.8 (0.6) 9.1 (0.5) 1 (0.1) 

Thinopyrum intermedium 4 (2) 8.2 (0.7) 18.2 (1) 9.3 (0.5) 54 (3) 22 (1) 0.8 (0.1) 
Bouteloua gracilis 3 (2) 3.7 (0.6) 7.3 (0.8) 0.9 (0.2) 3.9 (0.4) 10 .0(0.6) 1.6 (0.1) 

Sorghastrum nutans 0 (1) 3.5 (0.6) 39.9 (2) 1.6 (0.2) 10.9 (0.6) 5.0 (0.4) 0.6 (0.1) 
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Table 19: Coarse fraction burn aerosol concentrations of V, Cr, Mn, Co, Ni, Cu, and Zn. The average filter blank concentration of 
each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name V (ng) Cr (ng) Mn (µg) Co (ng) Ni (ng) Cu (ng) Zn (µg) 
Pinus ponderosa 1 0 (11) 0 (463) 0.42 (0.03) 0 (26) 110 (8) BDL 0 (1) 
Pinus ponderosa 2 37 (11) 0 (463) 24 (1) 6 (26) 95 (7) BDL 3.4 (0.7) 
Pinus ponderosa 3 18 (11) 0 (463) 16.2 (0.8) 19 (26) 37 (5) BDL 1.5 (0.6) 
Pinus ponderosa 4 8 (11) 0 (463) 1.06 (0.06) 1 (26) 0 (5) BDL 0 (0.6) 

Arenga pinnata 0 (3) 0 (0) 0.041 (0.002) 0 (0.2) 5 (11) BDL 0.60 (0.03) 
Bambusa spp. 0 (3) 0 (0) 0.023 (0.001) 0 (0.2) 4 (11) BDL 0.78 (0.04) 

Cissus sicyoides 0 (3) 0 (0) 0.067 (0.003) 0.9 (0.2) 5 (11) BDL 0.30 (0.02) 
Costas spp. 0 (3) 0 (0) 0.34 (0.02) 0.4 (0.2) 1 (11) BDL 0.26 (0.01) 

Elaeis guianensis 0 (3) 0 (0) 0.15 (0.008) 0.3 (0.2) 5 (11) BDL 0.26 (0.01) 
Inga spp. 0 (3) 0 (0) 0.089 (0.004) 0 (0.2) 5 (11) BDL 0.172 (0.009) 

Melia azedarach 0 (3) 0 (0) 0.82 (0.04) 8.2 (0.4) 19 (11) BDL 0.29 (0.01) 
Musa spp. 1 (3) 0 (0) 0.30 (0.02) 0 (0.2) 0 (11) BDL 0.146 (0.007) 

Pachira aquatica 4 (3) 0 (0) 0.07 (0.004) 0.3 (0.2) 14 (11) BDL 0.176 (0.009) 
Spathodea campanulata 6 (3) 0 (0) 0.033 (0.002) 0 (0.2) 1 (11) BDL 5.2 (0.3) 

Eucalyptus camaldulensis 16 (3) 0 (0) 1.16 (0.06) 0.7 (0.2) 20 (11) BDL 2.6 (0.1) 
Eucalyptus erythrocorys 6 (1) 0 (51) 0.042 (0.009) 0.4 (0.5) 0 (51) 70 (4) 0.3 (0.1) 
Eucalyptus microtheca 1.6 (0.9) 0 (51) 0.031 (0.009) 0 (0.5) 0 (51) BDL 0.1 (0.1) 
Eucalyptus papuana 8 (1) 0 (51) 0.28 (0.02) 16 (1) 0 (51) 48 (2) 0.3 (0.1) 

Eucalyptus woodwardii 7 (1) 0 (51) 0.25 (0.02) 0.1 (0.5) 0 (51) 21 (1) 0.5 (0.1) 
Pascopyrum smithii 10 (1) 0 (51) 0.075 (0.009) 1.1 (0.5) 0 (51) BDL 0.2 (0.1) 
Elymus elymoides 25 (2) 0 (51) 0.17 (0.01) 2.7 (0.5) 0 (51) 28 (1) 0.1 (0.1) 

Thinopyrum intermedium 26 (2) 62 (51) 0.34 (0.02) 4.1 (0.6) 21 (51) 46 (2) 0.1 (0.1) 
Bouteloua gracilis 31 (2) 0 (51) 0.18 (0.01) 3.9 (0.6) 0 (51) BDL 0.0 (0.1) 

Sorghastrum nutans 10 (1) 0 (51) 0.14 (0.01) 1.5 (0.5) 0 (51) 92 (5) 0 (0) 
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Table 20: Coarse fraction burn aerosol concentrations of Rb, Sr, Zr, Mo, Cd, Cs, and Ba. The average filter blank concentration of 
each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Rb (ng) Sr (ng) Zr (ng) Mo (ng) Cd (ng) Cs (ng) Ba (µg) 
Pinus ponderosa 1 13 (1) BDL 7 (1) 0 (0.4) 3.2 (0.2) 0.108 (0.005) 0.00 (0.01) 
Pinus ponderosa 2 235 (12) 135 (7) 19 (2) 7 (0.5) 22 (1) 2.8 (0.1) 0.22 (0.02) 
Pinus ponderosa 3 119 (6) 114 (6) 16 (2) 3.4 (0.4) 10.6 (0.5) 1.29 (0.07) 0.11 (0.01) 
Pinus ponderosa 4 25 (1) 14.4 (0.7) 8 (1) 0 (0.4) 2.9 (0.1) 0.46 (0.02) 0.03 (0.01) 

Arenga pinnata 1.09 (0.05) 16.2 (0.8) 0 (0) 0 (0.6) 1.07 (0.05) 0.170 (0.008) 0.02 (0.01) 
Bambusa spp. 4.2 (0.2) 4.6 (0.2) 0 (0) 0 (0.6) 0 (0) 0.115 (0.006) 0.02 (0.01) 

Cissus sicyoides 6.6 (0.3) 38 (2) 0 (0) 3 (0.6) 0 (0) 0.50 (0.03) 0.05 (0.01) 
Costas spp. 5.7 (0.3) 33 (2) 0 (0) 1.3 (0.6) 0 (0) 0.179 (0.009) 0.07 (0.01) 

Elaeis guianensis 8.9 (0.4) 32 (2) 0 (0) 4.2 (0.6) 0.43 (0.02) 0.54 (0.03) 0.02 (0.01) 
Inga spp. 2.3 (0.1) 51 (3) 0 (0) 3.6 (0.6) 0.138 (0.007) 0.170 (0.009) 0.01 (0.01) 

Melia azedarach 17 (1) 613 (31) 0 (0) 25 (1) 0.0097 (0.0005) 0.26 (0.01) 0.38 (0.02) 
Musa spp. 0 (0) 115 (6) 0 (0) 3.3 (0.6) BDL 0 (0) 0.08 (0.01) 

Pachira aquatica 0.98 (0.05) 97 (5) 0 (0) 1.3 (0.6) 0.114 (0.006) 0.050 (0.002) 0.04 (0.01) 
Spathodea campanulata 2.2 (0.1) 12.3 (0.6) 0 (0) 0 (0.6) BDL 0.157 (0.008) 0.02 (0.01) 

Eucalyptus camaldulensis 18 (1) 1155 (58) 4.8 (0.2) 0 (0.6) 3.2 (0.2) 0.95 (0.05) 0.36 (0.02) 
Eucalyptus erythrocorys 5 (4) 29 (5) 7 (3) 12 (2) 0.12 (0.01) 0.2 (0.2) 0.02 (0.01) 
Eucalyptus microtheca 7 (4) 19 (5) 1 (2) 0.9 (2) 0.51 (0.03) 0.2 (0.2) 0.01 (0.01) 
Eucalyptus papuana 24 (5) 106 (7) 5 (3) 0 (2) 4.9 (0.3) 0.2 (0.2) 0.05 (0.01) 

Eucalyptus woodwardii 6 (4) 141 (9) 7 (3) 2 (2) 1.9 (0.1) 0 (0.2) 0.04 (0.01) 
Pascopyrum smithii 5 (4) 43 (5) 12 (3) 0.3 (2) 0.42 (0.03) 0.1 (0.2) 0.20 (0.02) 
Elymus elymoides 19 (4) 91 (7) 20 (3) 3.3 (2) 0.20 (0.02) 0.5 (0.2) 0.14 (0.01) 

Thinopyrum intermedium 49 (5) 161 (9) 25 (3) 25 (2) 0.024 (0.008) 0.5 (0.2) 0.16 (0.01) 
Bouteloua gracilis 7 (4) 135 (8) 27 (3) 0 (2) 0.49 (0.03) 0.3 (0.2) 0.21 (0.02) 

Sorghastrum nutans 9 (4) 60 (6) 15 (3) 0 (2) 0.37 (0.03) 0.0 (0.2) 0.10 (0.01) 
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Table 21: Coarse fraction burn aerosol concentrations of La, Ce, Pr, Nd, Sm, Eu, and Gd. The average filter blank concentration 
of each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name La (ng) Ce (ng) Pr (ng) Nd (ng) Sm (ng) Eu (ng) Gd (ng) 
Pinus ponderosa 1 0.5 (0.3) 0.9 (0.6) 0.11 (0.01) 0.5 (0.2) 0.075 (0.004) 0.030 (0.001) 0.084 (0.004) 
Pinus ponderosa 2 17.7 (0.9) 35 (2) 4.1 (0.2) 16.9 (0.9) 3.2 (0.2) 0.69 (0.03) 2.82 (0.14) 
Pinus ponderosa 3 7.7 (0.5) 14.7 (0.9) 1.76 (0.09) 7.1 (0.4) 1.41 (0.07) 0.27 (0.01) 1.24 (0.06) 
Pinus ponderosa 4 1.6 (0.3) 3.4 (0.6) 0.32 (0.02) 1.3 (0.2) 0.30 (0.01) 0.068 (0.003) 0.26 (0.01) 

Arenga pinnata 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
Bambusa spp. 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Cissus sicyoides 0 (0) 0 (0) 0 (0) 0 (0) 0.056 (0.003) 0.026 (0.001) 0.20 (0.01) 
Costas spp. 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Elaeis guianensis 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
Inga spp. 0 (0) 0 (0) 0 (0) 0 (0) BDL BDL 0 (0) 

Melia azedarach 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.110 (0.005) 0 (0) 
Musa spp. 0 (0) 0 (0) 0 (0) 0 (0) BDL 0 (0) 0 (0) 

Pachira aquatica 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.017 (0.001) 0 (0) 
Spathodea campanulata 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Eucalyptus camaldulensis 2 (0.1) 3.5 (0.2) 0.48 (0.02) 1.9 (0.1) 0.30 (0.01) 0.107 (0.005) 0.25 (0.01) 
Eucalyptus erythrocorys 0.7 (0.7) 2 (1) 0.15 (0.09) 0.8 (0.6) 0.2- (0.03) 0.02 (0.03) 0.03 (0.07) 
Eucalyptus microtheca 0.7 (0.7) 1 (1) 0.15 (0.09) 0.2 (0.6) 0.10 (0.03) 0.03 (0.03) 0.03 (0.07) 
Eucalyptus papuana 0.4 (0.7) 1 (1) 0.11 (0.09) 0.5 (0.6) 0.12 (0.03) 0.00 (0.03) 0.09 (0.07) 

Eucalyptus woodwardii 0.8 (0.7) 2 (1) 0.19 (0.09) 0.8 (0.6) 0.21 (0.03) 0.02 (0.03) 0.12 (0.07) 
Pascopyrum smithii 2.5 (0.7) 5 (1) 0.6 (0.1) 2.1 (0.6) 0.25 (0.03) 0.10 (0.03) 0.28 (0.07) 
Elymus elymoides 5.8 (0.7) 12 (1) 1.2 (0.1) 4.5 (0.6) 0.95 (0.06) 0.26 (0.03) 0.70 (0.08) 

Thinopyrum intermedium 5.1 (0.7) 9 (1) 1.1 (0.1) 4.4 (0.6) 0.87 (0.05) 0.19 (0.03) 0.59 (0.08) 
Bouteloua gracilis 8.3 (0.8) 16 (1) 1.7 (0.1) 6.9 (0.7) 1.28 (0.07) 0.34 (0.03) 0.99 (0.09) 

Sorghastrum nutans 3.7 (0.7) 8 (1) 0.9 (0.1) 2.9 (0.6) 0.54 (0.04) 0.16 (0.03) 0.42 (0.07) 
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Table 22: Coarse fraction burn aerosol concentrations of Tb, Dy, Ho, Er, Tm, Yb, and Lu. The average filter blank concentration 
of each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Tb (ng) Dy (ng) Ho (ng) Er (ng) Tm (ng) Yb (ng) Lu (ng) 
Pinus ponderosa 1 BDL 0.06 (0.004) BDL 0.046 (0.002) BDL 1.09 (0.06) 0.0081 (0.0004) 
Pinus ponderosa 2 0.40 (0.02) 2.70 (0.14) 0.52 (0.03) 1.51 (0.08) 0.19 (0.01) 0.51 (0.03) 0.145 (0.007) 
Pinus ponderosa 3 0.20 (0.01) 1.20 (0.06) 0.23 (0.01) 0.75 (0.04) 0.089 (0.004) 0.127 (0.007) 0.073 (0.004) 
Pinus ponderosa 4 BDL 0.23 (0.01) 0.042 (0.002) 0.151 (0.008) 0.013 (0.001) 0.019 (0.001) 0.017 (0.001) 

Arenga pinnata 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
Bambusa spp. 0 (0) 0 (0) 0 (0) 0 (0) BDL 0.027 (0.001) 0 (0) 

Cissus sicyoides 0.039 (0.002) 0.053 (0.003) 0 (0) 0 (0) 0.0039 (0.0002) 0 (0) 0 (0) 
Costas spp. 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) BDL 0 (0) 

Elaeis guianensis BDL 0 (0) 0 (0) BDL 0 (0) BDL BDL 
Inga spp. BDL 0 (0) BDL BDL BDL 0 (0) 0 (0) 

Melia azedarach 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) BDL BDL 
Musa spp. BDL 0 (0) BDL BDL BDL BDL BDL 

Pachira aquatica 0 (0) 0 (0) BDL BDL BDL 0 (0) BDL 
Spathodea campanulata BDL 0 (0) 0 (0) BDL BDL 0.099 (0.005) BDL 

Eucalyptus camaldulensis 0.040 (0.002) 0.35 (0.02) 0.06 (0.003) 0.17 (0.009) 0.018 (0.001) 0.009 (0.005) 0.0023 (0.0001) 
Eucalyptus erythrocorys 0.047 (0.002) 0.09 (0.05) 0.025 (0.001) 0.152 (0.008) BDL 0.056 (0.008) 0.02 (0.001) 
Eucalyptus microtheca 0.048 (0.002) 0.13 (0.05) 0.049 (0.002) 0.14 (0.007) BDL 0 (0) BDL 
Eucalyptus papuana BDL 0.03 (0.05) 0.035 (0.002) 0.119 (0.006) BDL 0 (0) 0.018 (0.001) 

Eucalyptus woodwardii BDL 0.11 (0.05) 0.057 (0.003) 0.149 (0.007) BDL 0.13 (0.01) BDL 
Pascopyrum smithii 0.052 (0.003) 0.20 (0.05) 0.080 (0.004) 0.23 (0.01) 0.027 (0.001) 0.28 (0.02) 0.029 (0.001) 
Elymus elymoides 0.132 (0.007) 0.64 (0.06) 0.15 (0.01) 0.43(0.02) 0.060 (0.003) 0.28 (0.02) 0.056 (0.003) 

Thinopyrum intermedium 0.119 (0.006) 0.65 (0.06) 0.12 (0.01) 0.35 (0.02) 0.039 (0.002) 0.43 (0.03) 0.052 (0.003) 
Bouteloua gracilis 0.177 (0.009) 0.86 (0.07) 0.20 (0.01) 0.54 (0.03) 0.082 (0.004) 0.15 (0.01) 0.06 (0.003) 

Sorghastrum nutans 0.079 (0.004) 0.45 (0.06) 0.093 (0.005) 0.29 (0.01) 0.039 (0.002) 1.09 (0.06) 0.035 (0.002) 
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Table 23: Coarse fraction burn aerosol concentrations of Hf, W, Re, Pb, Th, and U. The average filter blank concentration of each 
trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Hf (ng) W (ng) Re (ng) Pb (ng) Th (ng) U (ng) 
Pinus ponderosa 1 0.19 (0.02) 0 (2) 0 (0) 1 (2) 0.02 (0.02) BDL 
Pinus ponderosa 2 0.61 (0.04) 0 (2) 0 (0) 14 (2) 1.66 (0.09) 0.83 (0.04) 
Pinus ponderosa 3 0.43 (0.03) 0 (2) 0 (0) 10 (2) 1.15 (0.06) 0.46 (0.02) 
Pinus ponderosa 4 0.19 (0.02) 0 (2) 0 (0) 2 (2) 0.47 (0.03) BDL 

Arenga pinnata 0 (0) BDL BDL 0.31 (0.02) 0 (0) BDL 
Bambusa spp. 0 (0) BDL BDL 0 (0) 0 (0) BDL 

Cissus sicyoides 0 (0) BDL BDL 5.9 (0.3) 0 (0) BDL 
Costas spp. 0 (0) BDL BDL 0 (0) 0 (0) BDL 

Elaeis guianensis 0 (0) BDL BDL 1.12 (0.06) 0 (0) BDL 
Inga spp. 0 (0) BDL BDL 0 (0) 0 (0) BDL 

Melia azedarach 0 (0) BDL 0 (0) 0.46 (0.02) 0 (0) BDL 
Musa spp. 0 (0) BDL BDL 0 (0) 0 (0) BDL 

Pachira aquatica 0 (0) 0 BDL 1.61 (0.08) 0 (0) BDL 
Spathodea campanulata 0 (0) BDL BDL 0 (0) 0 (0) BDL 

Eucalyptus camaldulensis 0 (0) BDL 0.29 (0.01) 9.6 (0.5) 0.089 (0.004) 1.22 (0.06) 
Eucalyptus erythrocorys 0.19 (0.02) 0 0 (0) 2 (1) 0.032 (0.002) 0.0 (0.2) 
Eucalyptus microtheca 0.06 (0.02) BDL 0 (0) 1 (1) 0 (0) 0.0 (0.2) 
Eucalyptus papuana 0.11 (0.02) BDL 0.0038 (0.0001) 2 (1) 0 (0) 0.1 (0.2) 

Eucalyptus woodwardii 0.22 (0.02) BDL 0.084 (0.004) 45 (3) 0 (0) 0.0 (0.2) 
Pascopyrum smithii 0.29 (0.02) BDL 0 (0) 3 (1) 0.144 (0.007) 0.0 (0.2) 
Elymus elymoides 0.49 (0.03) BDL 0 (0) 3 (1) 0.36 (0.02) 0.2 (0.2) 

Thinopyrum intermedium 0.52 (0.03) 0 0 (0) 5 (1) 0.71 (0.04) 0.4 (0.2) 
Bouteloua gracilis 0.56 (0.04) BDL 0 (0) 8 (1) 0.77 (0.04) 0.3 (0.2) 

Sorghastrum nutans 0.35 (0.03) BDL 0 (0) 1 (1) 0.43 (0.02) 0.1 (0.2) 
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APPENDIX G 

DATA: TRACE METALS IN FINE AEROSOLS 
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Table 24: Fine fraction field blank aerosol concentrations of Na, Mg, Al, P, K, Ca, and 
Ti. The average filter blank concentration of each trace metal was subtracted from the 
field blanks. 

 
 
 
Table 25: Fine fraction field blank aerosol concentrations of V, Cr, Mn, Co, Ni, and Cu. 
The average filter blank concentration of each trace metal was subtracted from the field 
blanks. 

Field Blank V (ng) Cr (ng) Mn (µg) Co (ng) Ni (ng) Cu (µg) 
1 7.2 (0.4) 51 (64) 0 (0.2) 6.6 (0.3) 12 (3) 4.2 (0.2) 
2 17.2 (0.9) 1422 (97) 1.2 (0.2) 4848 (242) 137 (8) 3.3 (0.2) 
3 8 (7) 51 (60) 0.16 (0.02) 4 (3) 20 (17) BDL 
4 9 (7) 503 (66) 0.07 (0.02) 4 (3) 30 (17) BDL 
5 5 (7) 18 (60) 0.02 (0.02) 2 (3) 10 (17) BDL 
6 7 (7) 3 (60) 0.04 (0.02) 1 (3) 0 (17) BDL 
7 1 (7) 0 (60) 0.05 (0.02) 0 (3) 0 (17) BDL 
8 9 (5) 53 (208) 0.19 (0.01) 0 (4) 25 (2) 0.94 (0.05) 
9 0 (5) 0 (208) 0.058 (0.009) 0 (4) 6 (1) 0.55 (0.03) 
10 10 (5) 62 (208) 0.056 (0.009) 1 (4) 3 (1) 0.46 (0.02) 
11 16 (5) 64 (208) 0.19 (0.01) 0 (4) 28 (2) 0.85 (0.04) 

  

Field Blank Na (µg) Mg (µg) Al (µg) P (µg) K (µg) Ca (µg) Ti (µg) 
1 0 (32) 4.2 (0.3) 3.3 (0.6) 0 (2) 0 (8) 1 (6) 0.27 (0.04) 
2 0 (32) 6.2 (0.4) 11.6 (0.8) 5 (2) 14 (8) 14 (6) 0.54 (0.05) 
3 5 (2) 2.7 (0.3) 12 (1) 1.3 (0.4) 5 (1) 2.1 (0.1) 0.6 (0.1) 
4 1 (2) 1.4 (0.2) 15.8 (1.1) 0.1 (0.3) 3 (1) BDL 1.1 (0.2) 
5 1 (2) 0.7 (0.2) 1.8 (0.7) 0 (0.3) 2 (1) BDL 0.1 (0.1) 
6 7 (2) 1.5 (0.2) 3.4 (0.7) 0.7 (0.3) 4 (1) BDL 0.3 (0.1) 
7 1 (2) 2.6 (0.3) 3.3 (0.7) 0.3 (0.3) 10 (1) 1.9 (0.1) 0.2 (0.1) 
8 0 (23) 3.4 (0.4) 2.7 (0.1) 0 (2) 17 (1) 12 (2) 0.3 (0.2) 
9 6 (23) 1.2 (0.3) 0.19 (0.01) 0 (2) 4.8 (0.7) 0 (2) 0.2 (0.2) 
10 0 (23) 1.1 (0.3) 2.7 (0.1) 0 (2) 2 (0.7) 6 (2) 0.2 (0.2) 
11 0 (23) 3.6 (0.4) 7.1 (0.4) 0 (2) 4.1 (0.7) 5 (2) 0.7 (0.2) 



 

65 

Table 26: Fine fraction field blank aerosol concentrations of Zn, Rb, Sr, Zr, Mo, and Cd. 
The average filter blank concentration of each trace metal was subtracted from the field 
blanks. 

 
 
 
Table 27: Fine fraction field blank aerosol concentrations of Cs, Ba, La, Ce, and Pr. The 
average filter blank concentration of each trace metal was subtracted from the field 
blanks. 

Field Blank Cs (ng) Ba (µg) La (ng) Ce (ng) Pr (ng) 
1 0.56 (0.07) 0.12 (0.07) 2 (0.9) 6 (0.4) 0.4 (0.04) 
2 1.6 (0.1) 0.13 (0.07) 6 (1) 11.6 (0.7) 1.4 (0.08) 
3 1.6 (0.2) 0.07 (0.02) 5 (0.4) 10.1 (0.9) 1.1 (0.1) 
4 0.7 (0.2) 0.06 (0.02) 9 (0.6) 19 (1) 1.9 (0.1) 
5 0.2 (0.2) 0.05 (0.02) 1 (0.3) 2 (0.7) 0.19 (0.1) 
6 0.3 (0.2) 0.06 (0.02) 1.6 (0.3) 3.3 (0.7) 0.35 (0.1) 
7 0.4 (0.2) 0.04 (0.02) 1.4 (0.3) 3.1 (0.7) 0.24 (0.1) 
8 0.5 (0.2) 24 (133) 0.75 (0.04) 1.56 (0.08) 0.25 (0.01) 
9 0.4 (0.2) 125.5 (133.3) 0.57 (0.03) 1.33 (0.07) 0.107 (0.005) 
10 0.3 (0.2) 13 (133) 0.41 (0.02) 1.44 (0.07) 0.29 (0.01) 
11 0.8 (0.2) 326.2 (134.3) 2.6 (0.1) 5.8 (0.3) 0.65 (0.03) 

  

Field Blank Zn (µg) Rb (ng) Sr (ng) Zr (ng) Mo (ng) Cd (ng) 
1 0 (0.03) 3 (5) 5 (1) 18 (2) 4 (4) 2.8 (0.2) 
2 0 (0.03) 19 (5) 40 (3) 21 (2) 2 (4) 2 (0.1) 
3 2.3 (0.1) 18 (2) 42 (2) 21 (33) 0 (3) 0 (0) 
4 0.45 (0.04) 11 (2) 42 (2) 33 (33) 4 (3) 0 (0) 
5 0.37 (0.04) 3 (1) BDL 0 (33) 3 (3) 0 (0) 
6 0.36 (0.04) 4 (1) 10.6 (0.5) 24 (33) 1 (3) 0 (0) 
7 0.27 (0.04) 5 (1) 25 (1) 4 (33) 1 (3) 0 (0) 
8 3.6 (0.2) 10 (4) 109 (14) 18 (28) 0 (0) 0.5 (0.03) 
9 0.4 (0.2) 11 (4) 2 (13) 0 (28) 0 (0) 0.132 (0.007) 
10 0.1 (0.2) 5 (3) 38 (13) 0 (28) 0 (0) 0.29 (0.01) 
11 0.3 (0.2) 12 (4) 35 (13) 0 (28) 0 (0) 0.91 (0.05) 
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Table 28: Fine fraction field blank aerosol concentrations of Nd, Sm, Eu, Gd, and Tb. 
The average filter blank concentration of each trace metal was subtracted from the field 
blanks. 

 
 
 
Table 29: Fine fraction field blank aerosol concentrations of Dy, Ho, Er, Tm, and Yb. 
The average filter blank concentration of each trace metal was subtracted from the field 
blanks. 

Field Blank Dy (ng) Ho (ng) Er (ng) Tm (ng) Yb (ng) 
1 0.22 (0.06) 0.024 (0.003) 0.12 (0.07) 0.011 (0.001) 0.08 (0.02) 
2 0.77 (0.07) 0.141 (0.009) 0.44 (0.07) 0.054 (0.003) 0.38 (0.03) 
3 0.7 (0.09) 0.159 (0.008) 0.4 (0.02) 0.061 (0.007) 0.47 (0.02) 
4 1 (0.09) 0.23 (0.01) 0.62 (0.03) 0.078 (0.007) 0.74 (0.04) 
5 0.08 (0.08) 0.031 (0.002) 0.135 (0.007) 0 (0.005) 0.127 (0.006) 
6 0.21 (0.08) 0.066 (0.003) 0.23 (0.01) 0.004 (0.006) 0.2 (0.01) 
7 0.15 (0.08) 0.042 (0.002) 0.114 (0.006) 0.001 (0.005) 0.145 (0.007) 
8 0.25 (0.01) 0.048 (0.002) 0.137 (0.007) 0.021 (0.001) 0.103 (0.005) 
9 0 (0) 0.03 (0.001) 0.067 (0.003) 0 (0) 0.077 (0.004) 
10 0.148 (0.007) 0.052 (0.003) 0.112 (0.006) 0.011 (0.001) 0.071 (0.004) 
11 0.4 (0.02) 0.071 (0.004) 0.26 (0.01) 0.039 (0.002) 0.26 (0.01) 

  

Field Blank Nd (ng) Sm (ng) Eu (ng) Gd (ng) Tb (ng) 
1 1.5 (0.1) 0.2 (0.02) 0.08 (0.01) 0.3 (0.02) BDL 
2 5.3 (0.3) 1.16 (0.07) 0.21 (0.02) 0.9 (0.05) 0.158 (0.008) 
3 4.5 (0.5) 0.82 (0.1) 0.17 (0.01) 0.76 (0.05) 0.115 (0.006) 
4 6.3 (0.5) 1.4 (0.1) 0.23 (0.01) 1.03 (0.06) 0.17 (0.008) 
5 0.7 (0.4) 0.1 (0.09) 0.023 (0.006) 0.12 (0.03) 0.026 (0.001) 
6 1.5 (0.4) 0.31 (0.09) 0.067 (0.008) 0.29 (0.04) 0.046 (0.002) 
7 1 (0.4) 0.28 (0.09) 0.046 (0.007) 0.18 (0.03) 0.039 (0.002) 
8 0.7 (0.04) 0.3 (0.02) 0.093 (0.005) 0.23 (0.01) 0 (0.1) 
9 0.62 (0.03) 0.059 (0.003) 0.052 (0.003) 0.159 (0.008) 0 (0.1) 
10 0.96 (0.05) 0.4 (0.02) 0.065 (0.003) 0.3 (0.02) 0 (0.1) 
11 2.5 (0.1) 0.49 (0.02) 0.141 (0.007) 0.51 (0.03) 0.1 (0.1) 
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Table 30: Fine fraction field blank aerosol concentrations of Lu, Hf, W, Re, Pb and U. 
The average filter blank concentration of each trace metal was subtracted from the field 
blanks. 

 

Field Blank Lu (ng) Hf (ng) W (ng) Re (ng) Pb (ng) U (ng) 
1 0.019 (0.003) 0.35 (0.09) 1 (3) 0.079 (0.004) 79 (4) BDL 
2 0.049 (0.004) 0.57 (0.09) 0 (3) 0.028 (0.001) 49 (3) BDL 
3 0.059 (0.003) 0.7 (0.7) 25 (1) BDL 9.6 (0.7) BDL 
4 0.097 (0.005) 1.1 (0.8) 5 (0.4) 0 (0) 7.8 (0.7) 1.25 (0.06) 
5 0.014 (0.001) 0 (0.7) 0 (0.2) BDL 4.2 (0.6) BDL 
6 0.019 (0.001) 0.6 (0.7) 20 (1) BDL 2.9 (0.5) BDL 
7 0.013 (0.001) 0.3 (0.7) 4.5 (0.4) BDL 6.5 (0.6) BDL 
8 0.021 (0.002) 0.5 (0.6) BDL 0 (0) 14 (1) 0.041 (0.002) 
9 0.019 (0.002) 0 (0.6) BDL 0 (0) 9.8 (0.9) 0 (0) 
10 0.012 (0.002) 0.2 (0.6) 25 (1) 0 (0) 5.7 (0.7) 0.036 (0.002) 
11 0.045 (0.003) 0 (0.6) 0 (0) 0 (0) 17 (1) 0.108 (0.005) 



 

 

Table 31: Fine fraction burn aerosol concentrations of Na, Mg, AL, P, K, Ca, Ti, V, and Cr. The average filter blank concentration 
of each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Na (µg) Mg (µg) Al (µg) P (µg) K (mg) Ca (µg) Ti (µg) V (ng) Cr (ng) 
Pinus ponderosa 1 0 (32) 2.3 (0.2) 1.4 (0.5) 10 (2) 4.1 (0.2) 1 (6) 0.03 (0.04) 0 (0) 1686 (108) 
Pinus ponderosa 2 0 (32) 6.5 (0.4) 4.2 (0.6) 18 (2) 11.2 (0.6) 9 (6) 0.22 (0.04) 0.45 (0.02) 211 (65) 
Pinus ponderosa 3 0 (32) 14.8 (0.8) 5.5 (0.6) 25 (2) 8.1 (0.4) 16 (6) 0.17 (0.04) 0.56 (0.03) 80 (64) 
Pinus ponderosa 4 0 (32) 5.1 (0.4) 5 (0.6) 12 (2) 4.6 (0.2) 5 (6) 0.14 (0.04) 2.55 (0.13) 201 (65) 

Arenga pinnata 34 (3) 9.2 (0.5) 12 (1) 3.7 (0.4) 1.19 (0.06) 22 (1) 0.7 (0.1) 14 (7) 58 (60) 
Bambusa spp. 3 (2) 4.3 (0.3) 5.2 (0.8) 2.8 (0.4) 2.2 (0.1) 5.2 (0.3) 0.5 (0.1) 0 (7) 39 (60) 

Cissus sicyoides 55 (4) 11.8 (0.6) 22 (1) 7.2 (0.6) 0.89 (0.04) 52 (3) 1.4 (0.2) 27 (8) 63 (60) 
Costas spp. 4 (2) 8.2 (0.5) 11 (1) 2.4 (0.4) 1.02 (0.05) 40 (2) 0.7 (0.1) 2 (7) 58 (60) 

Elaeis guianensis 44 (4) 9.1 (0.5) 15 (1) 10.6 (0.7) 2.3 (0.1) 15.3 (0.8) 1.6 (0.2) 17 (7) 463 (65) 
Inga spp. 29 (3) 7.9 (0.5) 2.2 (0.7) 3.5 (0.4) 1.89 (0.09) 10 (0.5) 0.3 (0.1) 0 (7) 39 (60) 

Melia azedarach 15 (3) 71 (4) 4.5 (0.8) 18 (1) 2.1 (0.1) 135 (7) 3.7 (0.2) 2 (7) 18 (60) 
Musa spp. 4 (2) 5.7 (0.4) 12 (1) 2.3 (0.4) 3.2 (0.2) 12.6 (0.6) 0.9 (0.1) 0 (7) 416 (64) 

Pachira aquatica 19 (3) 12 (0.7) 3.3 (0.7) 1.8 (0.4) 2.3 (0.1) 26 (1) 0.2 (0.1) 0 (7) 0 (60) 
Spathodea campanulata 7 (2) 4.6 (0.3) 18 (1) 2.3 (0.4) 0.76 (0.04) 15 (0.8) 1.3 (0.2) 15 (7) 489 (66) 

Eucalyptus camaldulensis 44 (4) 4.5 (0.3) 8.7 (0.9) 0.8 (0.3) 0.74 (0.04) 20 (1) 0.6 (0.1) 8 (7) 228 (61) 
Eucalyptus erythrocorys 1957 (102) 16.7 (0.9) 0 (0) 8 (2) 3 (0.2) 13 (2) 0.1 (0.2) 0 (5) 16 (208) 
Eucalyptus microtheca 289 (28) 5.1 (0.4) 7.9 (0.4) 2 (2) 3 (0.2) 7 (2) 0.6 (0.2) 0 (5) 0 (208) 

Eucalyptus papuana 189 (26) 3.2 (0.4) 0.35 (0.02) 5 (2) 6.2 (0.3) 9 (2) 0.1 (0.2) 0 (5) 0 (208) 
Eucalyptus woodwardii 3000 (153) 4.6 (0.4) 10 (0.5) 4 (2) 3.5 (0.2) 17 (2) 0.9 (0.2) 0 (5) 130 (208) 

Pascopyrum smithii 25 (23) 7.8 (0.5) 18.3 (0.9) 7 (2) 0.24 (0.01) 16 (2) 1.7 (0.2) 22 (5) 0 (208) 
Elymus elymoides 21 (23) 14.6 (0.8) 52 (3) 9 (2) 1.05 (0.05) 30 (2) 4.5 (0.3) 60 (6) 0 (208) 

Thinopyrum intermedium 0 (23) 9.6 (0.6) 13.3 (0.7) 10 (2) 3.2 (0.2) 19 (2) 1.1 (0.2) 11 (5) 104 (208) 
Bouteloua gracilis 52 (24) 42 (2) 124 (6) 26 (3) 1.33 (0.07) 91 (5) 11.1 (0.6) 235 (13) 460 (210) 

Sorghastrum nutans 0 (23) 16.3 (0.9) 26 (1) 12 (2) 1.21 (0.06) 24 (2) 2.4 (0.2) 35 (5) 37 (208) 
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Table 32: Fine fraction burn aerosol concentrations of Mn, Co, Ni, Cu, Zn, Rb, Sr, Zr, and Mo. The average filter blank 
concentration of each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Mn (µg) Co (ng) Ni (ng) Cu (µg) Zn (µg) Rb (µg) Sr (ng) Zr (ng) Mo (ng) 
Pinus ponderosa 1 1.4 (0.2) 3.9 (0.8) 7752 (388) 203 (11) 2.7 (0.1) 2.02 (0.1) 0 (0.9) 7 (2) 5 (4) 
Pinus ponderosa 2 3.3 (0.3) 5.7 (0.9) 315 (16) 88 (6) 4.9 (0.2) 5.4 (0.3) 7 (1) 6 (2) 3 (4) 
Pinus ponderosa 3 4.8 (0.3) 6.2 (0.9) 103 (5) 53 (4) 4.9 (0.2) 4.1 (0.2) 15 (2) 8 (2) 5 (4) 
Pinus ponderosa 4 1.8 (0.2) 5.5 (0.9) 891 (45) 60 (5) 3.2 (0.2) 2.8 (0.1) 2 (1) 38 (3) 1 (4) 

Arenga pinnata 0.54 (0.03) 14 (2) 6 (3) 20 (17) 1.26 (0.06) 0.12 (0.01) 113 (6) 35 (33) 7 (3) 
Bambusa spp. 0.41 (0.03) 11 (2) 3 (3) 26 (17) 2.09 (0.1) 0.66 (0.03) 31 (2) 3 (33) 10 (3) 

Cissus sicyoides 0.42 (0.03) 14 (2) 7 (3) 22 (17) 1.17 (0.06) 0.17 (0.01) 239 (12) 17 (33) 26 (3) 
Costas spp. 2.4 (0.1) 7 (2) 5 (3) 26 (17) BDL 0.41 (0.02) 122 (6) 0 (33) 9 (3) 

Elaeis guianensis 1.19 (0.06) 6 (2) 6 (3) 16 (17) 0.5 (0.03) 0.53 (0.03) 69 (3) 59 (33) 17 (3) 
Inga spp. 1.57 (0.08) 6 (2) 13 (3) 27 (17) 1.57 (0.08) 1.04 (0.05) 50 (3) 11 (33) 25 (3) 

Melia azedarach 1.02 (0.05) 4 (2) 26 (3) 13 (17) BDL 0.43 (0.02) 653 (33) 31 (33) 31 (3) 
Musa spp. 2.8 (0.1) 5 (2) 2 (3) 2 (17) 0.62 (0.03) 0.11 (0.01) 69 (3) 23 (33) 11 (3) 

Pachira aquatica 2.4 (0.1) 26 (2) 15 (3) 20 (17) 0.98 (0.05) 0.28 (0.01) 142 (7) 22 (33) 5 (3) 
Spathodea campanulata 0.1 (0.02) 3 (2) 1 (3) 0 (17) BDL 0.27 (0.01) 94 (5) 49 (33) 4 (3) 

Eucalyptus camaldulensis 0.17 (0.02) 2 (2) 0 (3) 6 (17) BDL 0.11 (0.01) 156 (8) 17 (33) 2 (3) 
Eucalyptus erythrocorys 0.17 (0.01) 11 (1) 0 (4) 23 (2) 1.24 (0.06) 0.56 (0.03) 113 (14) 0 (28) 0 (0) 
Eucalyptus microtheca 0.23 (0.01) 4.6 (0.9) 2 (4) 16 (1) 0.42 (0.02) 0.39 (0.02) 90 (14) 0 (28) 0 (0) 
Eucalyptus papuana 0.48 (0.03) 2.4 (0.9) 350 (18) 115 (6) 3.8 (0.2) 3.2 (0.2) 77 (14) 0 (28) 0 (0) 

Eucalyptus woodwardii 0.47 (0.03) 4.7 (0.9) 6 (4) 59 (3) 1.27 (0.06) 1.27 (0.06) 151 (15) 42 (28) 0 (0) 
Pascopyrum smithii 0.33 (0.02) 13 (1) 6 (4) 46 (3) 0.45 (0.02) 0.15 (0.01) 150 (15) 73 (29) 0 (0) 
Elymus elymoides 0.88 (0.05) 37 (2) 12 (4) 28 (2) 0.59 (0.03) 0.93 (0.05) 342 (22) 68 (28) 0 (0) 

Thinopyrum intermedium 0.76 (0.04) 9.8 (1) 3 (4) 14 (1) 0.62 (0.03) 3.2 (0.2) 162 (16) 0 (28) 0 (0) 
Bouteloua gracilis 1.9 (0.1) 94 (5) 31 (4) 119 (6) 0.69 (0.04) 1.29 (0.06) 1057 (55) 252 (32) 0 (0) 

Sorghastrum nutans 0.71 (0.04) 22 (1) 4 (4) 44 (3) 0.4 (0.02) 1.17 (0.06) 250 (18) 47 (28) 0 (0) 
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Table 33: Fine fraction burn aerosol concentrations of Cd, Cs, Ba, La, Ce, Pr, Nd, and Sm. The average filter blank concentration 
of each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Cd (ng) Cs (ng) Ba (µg) La (ng) Ce (ng) Pr (ng) Nd (ng) Sm (ng) 
Pinus ponderosa 1 457 (23) 10.7 (0.5) 0.01 (0.07) 0.8 (0.9) 1.6 (0.2) 0.2 (0.04) 0.76 (0.09) 0.12 (0.02) 
Pinus ponderosa 2 1156 (58) 21 (1) 0.14 (0.07) 2 (0.9) 3.8 (0.3) 0.48 (0.04) 2.1 (0.1) 0.32 (0.03) 
Pinus ponderosa 3 1074 (54) 24 (1) 0.03 (0.07) 3.7 (0.9) 6.6 (0.5) 0.77 (0.06) 2.8 (0.2) 0.5 (0.04) 
Pinus ponderosa 4 478 (24) 14.5 (0.7) 0.03 (0.07) 2.3 (0.9) 4.2 (0.3) 0.53 (0.05) 2 (0.1) 0.46 (0.03) 

Arenga pinnata 274 (14) 2 (0.2) 0.15 (0.02) 3.5 (0.4) 7.3 (0.8) 0.8 (0.1) 3.1 (0.4) 0.7 (0.1) 
Bambusa spp. 8.2 (0.4) 1.3 (0.2) 0.05 (0.02) 1.5 (0.3) 3 (0.7) 0.3 (0.1) 1.2 (0.4) 0.34 (0.09) 

Cissus sicyoides 1.17 (0.06) 3.9 (0.3) 0.26 (0.03) 9 (0.6) 18 (1) 2 (0.1) 8.1 (0.6) 1.6 (0.1) 
Costas spp. 11.1 (0.6) 3.1 (0.2) 0.17 (0.02) 3.5 (0.4) 7 (0.8) 0.8 (0.1) 3.1 (0.4) 0.6 (0.1) 

Elaeis guianensis 30 (2) 21 (1) 0.06 (0.02) 11.9 (0.7) 25 (1) 2.2 (0.2) 8.1 (0.6) 1.3 (0.1) 
Inga spp. 52 (3) 49 (2) 0.03 (0.02) 0.8 (0.3) 1.8 (0.7) 0.12 (0.1) 0.5 (0.4) 0.16 (0.09) 

Melia azedarach 4.6 (0.2) 5 (0.3) 1.43 (0.08) 1.5 (0.3) 3 (0.7) 0.3 (0.1) 1.2 (0.4) 0.39 (0.09) 
Musa spp. 2.2 (0.1) 0.8 (0.2) 0.09 (0.02) 5.6 (0.4) 12 (1) 1.1 (0.1) 3.7 (0.5) 0.72 (0.1) 

Pachira aquatica 32 (2) 1 (0.2) 0.09 (0.02) 0.8 (0.3) 1.7 (0.7) 0.2 (0.1) 0.5 (0.4) 0.21 (0.09) 
Spathodea campanulata 2.4 (0.1) 4.1 (0.3) 0.11 (0.02) 11.8 (0.7) 25 (1) 2.4 (0.2) 9.2 (0.6) 1.7 (0.1) 

Eucalyptus camaldulensis 40 (2) 5 (0.3) 0.06 (0.02) 3.1 (0.4) 6.1 (0.8) 0.6 (0.1) 2.3 (0.4) 0.48 (0.09) 
Eucalyptus erythrocorys 23 (1) 5 (0.3) 0 (0.1) 0.69 (0.03) 0.8 (0) 0.13 (0.01) 0.3 (0) 0.17 (0.01) 
Eucalyptus microtheca 55 (3) 4.5 (0.3) 0.1 (0.1) 7.8 (0.4) 15.9 (0.8) 1.5 (0.07) 5.8 (0.3) 0.93 (0.05) 
Eucalyptus papuana 597 (30) 20 (1) 0.1 (0.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Eucalyptus woodwardii 357 (18) 24 (1) 0.1 (0.1) 5.5 (0.3) 12.6 (0.6) 1.15 (0.06) 4.5 (0.2) 0.76 (0.04) 
Pascopyrum smithii 78 (4) 2.8 (0.2) 0.3 (0.1) 8.2 (0.4) 17 (0.9) 1.73 (0.09) 7.3 (0.4) 1.49 (0.07) 
Elymus elymoides 75 (4) 8.8 (0.5) 0.5 (0.1) 27 (1) 51 (3) 5.6 (0.3) 22 (1) 4.2 (0.2) 

Thinopyrum intermedium 13.8 (0.7) 8.3 (0.4) 0.2 (0.1) 6 (0.3) 11.7 (0.6) 1.38 (0.07) 5.7 (0.3) 1.28 (0.06) 
Bouteloua gracilis 135 (7) 7.6 (0.4) 1.5 (0.2) 57 (3) 109 (5) 12.07 (0.6) 49 (2) 9.1 (0.5) 

Sorghastrum nutans 77 (4) 3.8 (0.3) 0.4 (0.1) 11.4 (0.6) 22 (1) 2.5 (0.1) 9.7 (0.5) 1.91 (0.1) 
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Table 34: Fine fraction burn aerosol concentrations of Eu, Gd, Tb, Dy, Ho, Er, and Tm. The average filter blank concentration of 
each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Eu (ng) Gd (ng) Tb (ng) Dy (ng) Ho (ng) Er (ng) Tm (ng) 
Pinus ponderosa 1 0.02 (0.01) 0.12 (0.01) 0.05 (0) 0.15 (0.05) 0.022 (0.003) 0.09 (0.07) 0.01 (0) 
Pinus ponderosa 2 0.12 (0.01) 0.31 (0.02) 0.07 (0) 0.27 (0.06) 0.052 (0.004) 0.15 (0.07) 0.03 (0) 
Pinus ponderosa 3 0.08 (0.01) 0.42 (0.03) 0.07 (0) 0.34 (0.06) 0.045 (0.004) 0.18 (0.07) 0.02 (0) 
Pinus ponderosa 4 0.08 (0.01) 0.33 (0.02) 0.08 (0) 0.43 (0.06) 0.08 (0.01) 0.23 (0.07) 0.02 (0) 

Arenga pinnata 0.15 (0.01) 0.55 (0.04) 0.1 (0) 0.51 (0.08) 0.12 (0.01) 0.39 (0.02) 0.03 (0.01) 
Bambusa spp. 0.07 (0.01) 0.31 (0.04) 0.06 (0) 0.21 (0.08) 0.063 (0.003) 0.2 (0.01) 0.02 (0.01) 

Cissus sicyoides 0.33 (0.02) 1.55 (0.09) 0.22 (0.01) 1.5 (0.1) 0.33 (0.02) 0.91 (0.05) 0.12 (0.01) 
Costas spp. 0.17 (0.01) 0.59 (0.05) 0.11 (0.01) 0.64 (0.08) 0.15 (0.01) 0.4 (0.02) 0.04 (0.01) 

Elaeis guianensis 0.26 (0.02) 1.2 (0.07) 0.18 (0.01) 1.02 (0.09) 0.23 (0.01) 0.67 (0.03) 0.08 (0.01) 
Inga spp. 0.05 (0.01) 0.18 (0.03) 0.05 (0) 0.18 (0.08) 0.046 (0.002) 0.15 (0.01) 0.02 (0.01) 

Melia azedarach 0.09 (0.01) 0.24 (0.03) 0.05 (0) 0.21 (0.08) 0.075 (0.004) 0.17 (0.01) 0 (0.01) 
Musa spp. 0.13 (0.01) 0.66 (0.05) 0.11 (0.01) 0.55 (0.08) 0.14 (0.01) 0.41 (0.02) 0.04 (0.01) 

Pachira aquatica 0.04 (0.01) 0.13 (0.03) 0.04 (0) 0.2 (0.08) 0.075 (0.004) 0.22 (0.01) 0.02 (0.01) 
Spathodea campanulata 0.32 (0.02) 1.41 (0.08) 0.24 (0.01) 1.5 (0.1) 0.31 (0.02) 0.81 (0.04) 0.1 (0.01) 

Eucalyptus camaldulensis 0.1 (0.01) 0.43 (0.04) 0.08 (0) 0.35 (0.08) 0.11 (0.01) 0.33 (0.02) 0.04 (0.01) 
Eucalyptus erythrocorys 0.046 (0.002) 0.25 (0.01) 0.06 (0.1) 0.16 (0.01) 0.046 (0.002) 0.19 (0.01) 0.02 (0) 
Eucalyptus microtheca 0.15 (0.01) 0.9 (0.04) 0.13 (0.1) 0.65 (0.03) 0.087 (0.004) 0.38 (0.02) 0.04 (0) 
Eucalyptus papuana 0 (0) 0 (0) 0 (0.1) 0 (0) 0 (0) 0 (0) 0 (0) 

Eucalyptus woodwardii 0.17 (0.01) 0.65 (0.03) 0.09 (0.1) 0.66 (0.03) 0.15 (0.01) 0.45 (0.02) 0.06 (0) 
Pascopyrum smithii 0.34 (0.02) 1.16 (0.06) 0.15 (0.1) 1.11 (0.06) 0.23 (0.01) 0.59 (0.03) 0.08 (0) 
Elymus elymoides 1.06 (0.05) 3.4 (0.2) 0.5 (0.1) 2.9 (0.1) 0.57 (0.03) 1.63 (0.08) 0.23 (0.01) 

Thinopyrum intermedium 0.32 (0.02) 0.91 (0.05) 0.11 (0.1) 0.58 (0.03) 0.13 (0.01) 0.4 (0.02) 0.02 (0) 
Bouteloua gracilis 2.6 (0.1) 7.7 (0.4) 1.2 (0.1) 6.7 (0.3) 1.32 (0.07) 3.9 (0.2) 0.52 (0.03) 

Sorghastrum nutans 0.55 (0.03) 1.56 (0.08) 0.2 (0.1) 1.61 (0.08) 0.28 (0.01) 0.88 (0.04) 0.11 (0.01) 
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Table 35: Fine fraction burn aerosol concentrations of Yb, Lu, Hf, W, Re, Pb, and U. The average filter blank concentration of 
each trace metal analyzed was subtracted from the aerosol samples. 

Sample Name Yb (ng) Lu (ng) Hf (ng) W (ng) Re (ng) Pb (ng) U (ng) 
Pinus ponderosa 1 0.09 (0.02) 0.01 (0.003) 0.11 (0.08) 0 (3) 1.46 (0.07) 111 (6) BDL 
Pinus ponderosa 2 0.16 (0.02) 0.015 (0.003) 0.15 (0.08) 0 (3) 6 (0.3) 166 (9) BDL 
Pinus ponderosa 3 0.21 (0.02) 0.022 (0.003) 0.27 (0.08) 0 (3) 4.8 (0.2) 198 (10) BDL 
Pinus ponderosa 4 0.2 (0.02) 0.015 (0.003) 0.9 (0.1) 3 (3) 2 (0.1) 98 (5) BDL 

Arenga pinnata 0.39 (0.02) 0.044 (0.003) 0.9 (0.8) 0 (0.2) 0.55 (0.03) 58 (3) 1.17 (0.06) 
Bambusa spp. 0.21 (0.01) 0.014 (0.001) 0.1 (0.7) 2.6 (0.3) 0.45 (0.02) 11 (1) BDL 

Cissus sicyoides 0.82 (0.04) 0.1 (0.01) 0.5 (0.7) 8.9 (0.6) 0 (0) 38 (2) 0.78 (0.04) 
Costas spp. 0.39 (0.02) 0.044 (0.003) 0.1 (0.7) 0 (0.2) 0 (0) 23 (1) 0.6 (0.03) 

Elaeis guianensis 0.67 (0.03) 0.082 (0.005) 1.8 (0.8) 23 (1) 0 (0) 30 (2) 1.37 (0.07) 
Inga spp. 0.16 (0.01) 0.015 (0.001) 0.4 (0.7) 2.2 (0.3) 0.02 (0) 21 (1) BDL 

Melia azedarach 0.19 (0.01) 0.014 (0.001) 0.9 (0.8) 3.3 (0.4) 0.45 (0.02) 46 (2) 0.53 (0.03) 
Musa spp. 0.42 (0.02) 0.054 (0.003) 0.8 (0.8) 22 (1) 0.34 (0.02) 33 (2) 1.2 (0.06) 

Pachira aquatica 0.21 (0.01) 0.023 (0.002) 0.6 (0.7) 0 (0.1) 0.04 (0) 184 (9) BDL 
Spathodea campanulata 0.81 (0.04) 0.1 (0.01) 1.4 (0.8) 26 (1) 0 (0) 29 (2) 1.25 (0.06) 

Eucalyptus camaldulensis 0.28 (0.01) 0.053 (0.003) 0.5 (0.7) 1.4 (0.3) 1.85 (0.09) 77 (4) 0.48 (0.02) 
Eucalyptus erythrocorys 0.15 (0.01) 0.028 (0.003) 0 (0.6) BDL 3.2 (0.2) 210 (11) 0.07 (0) 
Eucalyptus microtheca 0.24 (0.01) 0.039 (0.003) 0.2 (0.6) 0 (0) 5.9 (0.3) 178 (9) 0.12 (0.01) 
Eucalyptus papuana 0.01 (0) 0.002 (0.002) 0 (0.6) 0 (0) 16.5 (0.8) 246 (12) 0 (0) 

Eucalyptus woodwardii 0.47 (0.02) 0.062 (0.004) 1.1 (0.6) 18.8 (0.9) 14.6 (0.7) 525 (26) 0.62 (0.03) 
Pascopyrum smithii 0.53 (0.03) 0.09 (0.01) 1.6 (0.6) BDL 0.1 (0) 244 (12) 0.38 (0.02) 
Elymus elymoides 1.53 (0.08) 0.22 (0.01) 1.8 (0.6) 0 (0) 0.56 (0.03) 163 (8) 1.25 (0.06) 

Thinopyrum intermedium 0.26 (0.01) 0.039 (0.003) 0 (0.6) BDL 2.2 (0.1) 65 (3) 0.11 (0.01) 
Bouteloua gracilis 3.4 (0.2) 0.49 (0.02) 5.8 (0.7) 0 (0) 0.13 (0.01) 501 (25) 2.73 (0.14) 

Sorghastrum nutans 0.68 (0.03) 0.13 (0.01) 1.2 (0.6) 0 (0) 0.1 (0.01) 94 (5) 0.45 (0.02) 
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Table 36: Ash concentrations of Na, Mg, Al. P, K, Ca, Ti, and V. The reagent blank concentration of each trace metal analyzed 
was subtracted from the ash samples. Costas spp. and Eucalyptus erythrocorys were lost during sample processing. 

Sample Name Na (mg) Mg (mg) Al (mg) P (mg) K (mg) Ca (mg) Ti (µg) V (µg) 
Pinus ponderosa 1 1.04 (0.05) 69 (3) 18.5 (0.9) 139 (7) 558 (28) 88 (4) 526 (26) 10.1 (0.5) 
Pinus ponderosa 2 2 (0.1) 99 (5) 27 (1) 245 (12) 1148 (57) 194 (10) 899 (45) 16.6 (0.8) 
Pinus ponderosa 3 1.41 (0.07) 111 (6) 24 (1) 170 (8) 611 (31) 170 (9) 657 (33) 12.5 (0.6) 
Pinus ponderosa 4 1.43 (0.07) 111 (6) 27 (1) 228 (11) 938 (47) 141 (7) 707 (35) 14.1 (0.7) 

Arenga pinnata 31 (2) 58 (3) 0.98 (0.05) 60 (3) 535 (27) 565 (28) 243 (12) 0 (0) 
Bambusa spp. 1.5 (0.08) 58 (3) 0.37 (0.02) 70 (4) 622 (31) 247 (12) 142 (7) 0 (0) 

Cissus sicyoides 8.5 (0.4) 73 (4) 0.151 (0.008) 54 (3) 214 (11) 948 (47) 80 (4) 224 (11) 
Costas spp. 0.23 (0.01) 2.3 (0.1) 0.76 (0.04) 1.27 (0.06) 18 (0.9) 11.02 (0.55) 44 (2) 0 (0) 

Elaeis guianensis 29 (1) 166 (8) 0.49 (0.02) 70 (4) 580 (29) 724 (36) 155 (8) 0 (0) 
Inga spp. 7.4 (0.4) 63 (3) 1.72 (0.09) 48 (2) 222 (11) 368 (18) 168 (8) 0 (0) 

Melia azedarach 7.3 (0.4) 396 (20) 0.53 (0.03) 113 (6) 551 (28) 1290 (64) 522 (26) 0 (0) 
Musa spp. 4 (0.2) 59 (3) 0.32 (0.02) 49 (2) 937 (47) 426 (21) 123 (6) 0 (0) 

Pachira aquatica 7.9 (0.4) 104 (5) 1.01 (0.05) 62 (3) 499 (25) 950 (48) 634 (32) 821 (41) 
Spathodea campanulata 2.2 (0.1) 66 (3) 0.72 (0.04) 48 (2) 334 (17) 352 (18) 110 (6) 0 (0) 

Eucalyptus camaldulensis 60 (3) 286 (14) 11.12 (0.56) 101 (5) 590 (30) 1678 (84) 713 (36) 0 (0) 
Eucalyptus microtheca 325 (16) 284 (14) 14.32 (0.72) 92 (5) 2084 (104) 1871 (94) 1289 (64) 0 (0) 
Eucalyptus papuana 25 (1) 126 (6) 2 (0.1) 56 (3) 420 (21) 619 (31) 202 (10) 0 (0) 

Eucalyptus woodwardii 97 (5) 50 (3) 1.08 (0.05) 17 (0.9) 324 (16) 223 (11) 103 (5) 0 (0) 
Pascopyrum smithii 3.4 (0.2) 27 (1) 25 (1) 14.9 (0.7) 42 (2) 67 (3) 2321 (116) 0 (0) 
Elymus elymoides 6.7 (0.3) 48 (2) 41 (2) 50 (2) 263 (13) 205 (10) 3730 (187) 0 (0) 

Thinopyrum intermedium 1.9 (0.1) 28 (1) 9 (0.4) 40 (2) 237 (12) 65 (3) 841 (42) 0 (0) 
Bouteloua gracilis 6.2 (0.3) 12.6 (0.6) 32 (2) 8 (0.4) 15.02 (0.75) 43 (2) 3197 (160) 0 (0) 

Sorghastrum nutans 4.9 (0.2) 52 (3) 23 (1) 56 (3) 228 (11) 97 (5) 2060 (103) 0 (0) 
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Table 37: Ash concentrations of Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, and Zr. The reagent blank concentration of each trace metal 
analyzed was subtracted from the ash samples. Costas spp. and Eucalyptus erythrocorys were lost during sample processing. 

Sample Name Cr (µg) Mn (mg) Co (µg) Ni (µg) Cu (µg) Zn (mg) Rb (µg) Sr (mg) Zr (µg) 
Pinus ponderosa 1 24 (1) 11.8 (0.6) 47 (2) 84 (4) 630 (32) 2 (0.1) 185 (9) 0.075 (0.004) 9.8 (0.5) 
Pinus ponderosa 2 16 (0.8) 26 (1) 21 (1) 180 (9) 940 (47) 4.4 (0.2) 344 (17) 0.139 (0.007) 17 (0.9) 
Pinus ponderosa 3 10.7 (0.5) 18.1 (0.9) 24 (1) 80 (4) 665 (33) 2.4 (0.1) 188 (9) 0.182 (0.009) 12.9 (0.6) 
Pinus ponderosa 4 11 (0.5) 18.1 (0.9) 27 (1) 130 (6) 967 (48) 3 (0.2) 311 (16) 0.119 (0.006) 13.6 (0.7) 

Arenga pinnata 47 (2) 0.72 (0.04) BDL BDL 271 (14) 0.58 (0.03) 43 (2) 1.24 (0.06) 9.9 (0.5) 
Bambusa spp. 0 (0) 0.59 (0.03) BDL BDL 280 (14) 0.56 (0.03) 143 (7) 0.47 (0.02) 1.6 (0.08) 

Cissus sicyoides BDL 0.56 (0.03) BDL BDL 152 (8) 0.2 (0.01) 36 (2) 3.1 (0.2) 4.3 (0.2) 
Costas spp. 0.03 (0) 0.17 (0.01) BDL BDL 4.7 (0.2) 0.015 (0.001) 5.1 (0.3) 0.033 (0.002) 0.43 (0.02) 

Elaeis guianensis 0 (0) 3.3 (0.2) BDL 0.04 (0) 186 (9) 1.18 (0.06) 107 (5) 0.93 (0.05) 3.7 (0.2) 
Inga spp. 0 (0) 1.75 (0.09) BDL 3.9 (0.2) 193 (10) 0.54 (0.03) 104 (5) 1.12 (0.06) 2.2 (0.1) 

Melia azedarach 0 (0) 2.9 (0.1) 37 (2) 15.3 (0.8) 143 (7) 0.58 (0.03) 97 (5) 4.7 (0.2) 9.7 (0.5) 
Musa spp. BDL 4.4 (0.2) BDL 2.1 (0.1) 134 (7) 0.5 (0.03) 24 (1) 1.27 (0.06) 0 (0) 

Pachira aquatica BDL 2.2 (0.1) BDL BDL 183 (9) 0.4 (0.02) 48 (2) 4.2 (0.2) 9.2 (0.5) 
Spathodea campanulata 0 (0) 0.37 (0.02) BDL 6.1 (0.3) 204 (10) 0.32 (0.02) 108 (5) 0.87 (0.04) 2.3 (0.1) 

Eucalyptus camaldulensis 6.1 (0.3) 10.4 (0.5) BDL 146 (7) 356 (18) 4.3 (0.2) 67 (3) 11.2 (0.6) 15.4 (0.8) 
Eucalyptus microtheca 14.5 (0.7) 8.6 (0.4) BDL 99 (5) 328 (16) 1.9 (0.1) 231 (12) 16.1 (0.8) 32 (2) 
Eucalyptus papuana 2 (0.1) 7.4 (0.4) 287 (14) 162 (8) 511 (26) 2.3 (0.1) 172 (9) 4.6 (0.2) 6.4 (0.3) 

Eucalyptus woodwardii 162 (8) 1.15 (0.06) 418 (21) 19 (1) 72 (4) 0.4 (0.02) 54 (3) 2 (0.1) 6.3 (0.3) 
Pascopyrum smithii 37 (2) 0.82 (0.04) BDL 28 (1) 132 (7) 0.3 (0.01) 44 (2) 0.55 (0.03) 44 (2) 
Elymus elymoides 42 (2) 2.4 (0.1) BDL 13.3 (0.7) 116 (6) 0.53 (0.03) 231 (12) 1.14 (0.06) 72 (4) 

Thinopyrum intermedium 3.4 (0.2) 1.58 (0.08) BDL 4.8 (0.2) 91 (5) 0.38 (0.02) 211 (11) 0.44 (0.02) 17.8 (0.9) 
Bouteloua gracilis 22 (1) 0.67 (0.03) BDL 12.3 (0.6) 66 (3) 0.26 (0.01) 22 (1) 0.44 (0.02) 57 (3) 

Sorghastrum nutans 15.5 (0.8) 1.9 (0.1) BDL 50 (2) 149 (7) 0.74 (0.04) 236 (12) 0.67 (0.03) 46 (2) 
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Table 38: Ash concentrations of Mo, Cd, Cs, Ba, La, Ce, Pr, and Nd. The reagent blank concentration of each trace metal 
analyzed was subtracted from the ash samples. Costas spp. and Eucalyptus erythrocorys were lost during sample processing. 

Sample Name Mo (µg) Cd (µg) Cs (ng) Ba (µg) La (µg) Ce (µg) Pr (ng) Nd (µg) 
Pinus ponderosa 1 7.1 (0.4) 2.5 (0.1) 1053 (53) 86 (4) 5.1 (0.3) 9.5 (0.5) 1134 (57) 4.7 (0.2) 
Pinus ponderosa 2 6 (0.3) 2.3 (0.1) 1490 (75) 151 (8) 9.7 (0.5) 17.5 (0.9) 2145 (107) 9 (0.4) 
Pinus ponderosa 3 7.1 (0.4) 1.59 (0.08) 1288 (64) 142 (7) 8.4 (0.4) 15.4 (0.8) 1909 (95) 7.9 (0.4) 
Pinus ponderosa 4 9.5 (0.5) 2.2 (0.1) 1539 (77) 121 (6) 8 (0.4) 14.8 (0.7) 1770 (89) 7.2 (0.4) 

Arenga pinnata 21 (1) 1.04 (0.05) 448 (22) 614 (31) 0.53 (0.03) 0.83 (0.04) 109 (5) 0.51 (0.03) 
Bambusa spp. 81 (4) 0.12 (0.01) 178 (9) 859 (43) 0.129 (0.006) 0.21 (0.01) 24 (1) 0.095 (0.005) 

Cissus sicyoides 282 (14) 0.3 (0.02) 515 (26) 1342 (67) 0.53 (0.03) 0.72 (0.04) 73 (4) 0.265 (0.013) 
Costas spp. 2.7 (0.1) 0.02 (0) 81 (4) 49 (2) 0.34 (0.02) 0.66 (0.03) 74 (4) 0.292 (0.015) 

Elaeis guianensis 95 (5) 0.16 (0.01) 3426 (171) 295 (15) 0.3 (0.02) 0.54 (0.03) 62 (3) 0.271 (0.014) 
Inga spp. 144 (7) 0.24 (0.01) 5022 (251) 404 (20) 0.89 (0.04) 1.7 (0.08) 209 (10) 0.84 (0.04) 

Melia azedarach 125 (6) 0.29 (0.01) 982 (49) 2466 (123) 1.62 (0.08) 2.5 (0.1) 253 (13) 1.04 (0.05) 
Musa spp. 92 (5) 0.12 (0.01) 85 (4) 865 (43) 0.131 (0.007) 0.33 (0.02) 25 (1) 0.125 (0.006) 

Pachira aquatica 7.7 (0.4) BDL BDL 1234 (62) 1.5 (0.07) 3.1 (0.2) 233 (12) 1.02 (0.05) 
Spathodea campanulata 24 (1) 0.19 (0.01) 1430 (71) 600 (30) 0.73 (0.04) 1.4 (0.07) 156 (8) 0.64 (0.03) 

Eucalyptus camaldulensis 8.2 (0.4) 0.15 (0.01) 2348 (117) 2616 (131) 15 (0.8) 31 (2) 3089 (154) 12.1 (0.6) 
Eucalyptus microtheca 10.5 (0.5) 0.6 (0.03) 1797 (90) 1027 (51) 13.8 (0.7) 28 (1) 2992 (150) 11.5 (0.6) 
Eucalyptus papuana 9.8 (0.5) 0.34 (0.02) 1004 (50) 1060 (53) 2.5 (0.1) 4.8 (0.2) 521 (26) 2 (0.1) 

Eucalyptus woodwardii 2.9 (0.1) 0.23 (0.01) 295 (15) 138 (7) 0.91 (0.05) 1.81 (0.09) 183 (9) 0.77 (0.04) 
Pascopyrum smithii 39 (2) 0.2 (0.01) 1749 (87) 794 (40) 20 (1) 39 (2) 4269 (213) 16.7 (0.8) 
Elymus elymoides 68 (3) 0.36 (0.02) 2725 (136) 1268 (63) 26 (1) 52 (3) 5398 (270) 21 (1) 

Thinopyrum intermedium 14.3 (0.7) 0.08 (0) 715 (36) 486 (24) 5.8 (0.3) 10.9 (0.5) 1185 (59) 4.7 (0.2) 
Bouteloua gracilis 5.5 (0.3) 0.18 (0.01) 1358 (68) 875 (44) 25 (1) 47 (2) 5111 (256) 20 (1) 

Sorghastrum nutans 11.4 (0.6) 0.37 (0.02) 1513 (76) 1183 (59) 15.4 (0.8) 29 (1) 3131 (157) 12.3 (0.6) 
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Table 39: Ash concentrations of Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm. The reagent blank concentration of each trace metal 
analyzed was subtracted from the ash samples. Costas spp. and Eucalyptus erythrocorys were lost during sample processing. 

Sample Name Sm (ng) Eu (ng) Gd (ng) Tb (ng) Dy (ng) Ho (ng) Er (ng) Tm (ng) 
Pinus ponderosa 1 902 (45) 203 (10) 849 (42) 137 (7) 860 (43) 176 (9) 505 (25) 67 (3) 
Pinus ponderosa 2 1781 (89) 387 (19) 1731 (87) 280 (14) 1728 (86) 373 (19) 1054 (53) 132 (7) 
Pinus ponderosa 3 1539 (77) 322 (16) 1359 (68) 211 (11) 1265 (63) 258 (13) 726 (36) 93 (5) 
Pinus ponderosa 4 1396 (70) 305 (15) 1256 (63) 200 (10) 1213 (61) 250 (12) 710 (35) 93 (5) 

Arenga pinnata 110 (6) 97 (5) 105 (5) 17.5 (0.9) 102 (5) 26 (1) 70 (4) 8.3 (0.4) 
Bambusa spp. 25 (1) 114 (6) 21 (1) BDL 16.3 (0.8) BDL 9.3 (0.5) BDL 

Cissus sicyoides 49 (2) 188 (9) 53 (3) BDL 43 (2) BDL 15.6 (0.8) BDL 
Costas spp. 57 (3) 18.5 (0.9) 49 (2) 7.6 (0.4) 49 (2) 9.2 (0.5) 27 (1) 3.8 (0.2) 

Elaeis guianensis 58 (3) 48 (2) 48 (2) 7.4 (0.4) 54 (3) 7.8 (0.4) 31 (2) BDL 
Inga spp. 177 (9) 89 (4) 150 (8) 26 (1) 160 (8) 31 (2) 89 (4) 12.9 (0.6) 

Melia azedarach 202 (10) 375 (19) 194 (10) 22 (1) 165 (8) 26 (1) 78 (4) 9.3 (0.5) 
Musa spp. 23 (1) 114 (6) 24 (1) BDL 24 (1) 4.8 (0.2) 14.4 (0.7) BDL 

Pachira aquatica 147 (7) 343 (17) 203 (10) 34 (2) 157 (8) 29 (1) 97 (5) BDL 
Spathodea campanulata 129 (6) 104 (5) 116 (6) 17.5 (0.9) 124 (6) 22 (1) 71 (4) 10.4 (0.5) 

Eucalyptus camaldulensis 2138 (107) 755 (38) 1908 (95) 259 (13) 1471 (74) 289 (14) 824 (41) 113 (6) 
Eucalyptus microtheca 1996 (100) 550 (27) 1825 (91) 274 (14) 1502 (75) 296 (15) 856 (43) 122 (6) 
Eucalyptus papuana 345 (17) 218 (11) 313 (16) 47 (2) 269 (13) 51 (3) 145 (7) 20 (1) 

Eucalyptus woodwardii 134 (7) 46 (2) 120 (6) 15.6 (0.8) 101 (5) 20 (1) 60 (3) 9.5 (0.5) 
Pascopyrum smithii 3027 (151) 780 (39) 2642 (132) 382 (19) 2210 (111) 417 (21) 1192 (60) 169 (8) 
Elymus elymoides 3805 (190) 1030 (51) 3275 (164) 463 (23) 2630 (131) 503 (25) 1438 (72) 202 (10) 

Thinopyrum intermedium 818 (41) 268 (13) 714 (36) 100 (5) 583 (29) 109 (5) 307 (15) 43 (2) 
Bouteloua gracilis 3509 (175) 974 (49) 3071 (154) 418 (21) 2419 (121) 454 (23) 1299 (65) 173 (9) 

Sorghastrum nutans 2109 (105) 638 (32) 1816 (91) 251 (13) 1450 (72) 264 (13) 744 (37) 104 (5) 
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Table 40: Ash concentrations of Yb, Lu, Hf, W, Re, Pb, Th, and U. The reagent blank concentration of each trace metal analyzed 
was subtracted from the ash samples. Costas spp. and Eucalyptus erythrocorys were lost during sample processing. 

Sample Name Yb (ng) Lu (ng) Hf (ng) W (ng) Re (ng) Pb (µg) Th (ng) U (µg) 
Pinus ponderosa 1 408 (20) 59 (3) 276 (14) 564 (28) 44 (2) 4.9 (0.2) 986 (49) 0.34 (0.02) 
Pinus ponderosa 2 779 (39) 113 (6) 493 (25) 706 (35) 104 (5) 6.1 (0.3) 2521 (126) 0.67 (0.03) 
Pinus ponderosa 3 558 (28) 82 (4) 373 (19) 985 (49) 58 (3) 6.3 (0.3) 1849 (92) 0.5 (0.03) 
Pinus ponderosa 4 555 (28) 82 (4) 396 (20) 517 (26) 53 (3) 6.3 (0.3) 1695 (85) 0.51 (0.03) 

Arenga pinnata 54 (3) BDL 320 (16) 540 (27) 350 (18) 221 (11) 173 (9) 4.5 (0.2) 
Bambusa spp. 6.7 (0.3) BDL 92 (5) 3764 (188) 206 (10) 1.81 (0.09) 59 (3) 0.028 (0.001) 

Cissus sicyoides 15.5 (0.8) BDL 92 (5) 14992 (750) 111 (6) 0.57 (0.03) 38 (2) BDL 
Costas spp. 27 (1) 3.7 (0.2) 20 (1) 51 (3) 0 (0) 0.5 (0.02) 28 (1) 0.033 (0.002) 

Elaeis guianensis 15.9 (0.8) BDL 158 (8) 2826 (141) 58 (3) 3.3 (0.2) 89 (4) 0.91 (0.05) 
Inga spp. 80 (4) 10.4 (0.5) 76 (4) 440 (22) 66 (3) 0.98 (0.05) 209 (10) 0.79 (0.04) 

Melia azedarach 47 (2) 7.7 (0.4) 246 (12) 2271 (114) 344 (17) 3.4 (0.2) 96 (5) 0.85 (0.04) 
Musa spp. 4.5 (0.2) BDL 56 (3) 327 (16) 251 (13) 0.85 (0.04) 0 (0) 1.67 (0.08) 

Pachira aquatica 75 (4) BDL 231 (12) 130 (6) 147 (7) 6.1 (0.3) 26 (1) 1.74 (0.09) 
Spathodea campanulata 68 (3) 9.4 (0.5) 87 (4) 657 (33) 89 (4) 0.86 (0.04) 195 (10) 0.92 (0.05) 

Eucalyptus camaldulensis 750 (37) 103 (5) 494 (25) 718 (36) 2921 (146) 4.8 (0.2) 2086 (104) 5 (0.3) 
Eucalyptus microtheca 793 (40) 120 (6) 904 (45) 2008 (100) 5239 (262) 12.8 (0.6) 3370 (169) 3.1 (0.2) 
Eucalyptus papuana 134 (7) 18.5 (0.9) 177 (9) 257 (13) 698 (35) 2.2 (0.1) 513 (26) 1.76 (0.09) 

Eucalyptus woodwardii 66 (3) 10.2 (0.5) 176 (9) 0 (0) 267 (13) 2.3 (0.1) 243 (12) 0.183 (0.009) 
Pascopyrum smithii 1115 (56) 154 (8) 1236 (62) 889 (44) 4.8 (0.2) 10.6 (0.5) 3146 (157) 0.86 (0.04) 
Elymus elymoides 1283 (64) 177 (9) 1941 (97) 1656 (83) 97 (5) 12.5 (0.6) 4175 (209) 1.21 (0.06) 

Thinopyrum intermedium 281 (14) 39 (2) 492 (25) 144 (7) 126 (6) 2.6 (0.1) 949 (47) 0.24 (0.01) 
Bouteloua gracilis 1086 (54) 153 (8) 1452 (73) 394 (20) 0 (0) 13.2 (0.7) 3313 (166) 0.99 (0.05) 

Sorghastrum nutans 680 (34) 92 (5) 1199 (60) 184 (9) 6.9 (0.3) 8 (0.4) 2748 (137) 0.65 (0.03) 
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APPENDIX I 

PHOTOGRAPHS OF EXPERIMENTAL SETUP 
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Figure 6: Burn experiment setup. Foliage was burned within the fuel bed (detailed in 
Figure 7), resulting combustion particles were drawn through the aluminum ductwork via 
the VFC sampler, and impacted clean cellulose filters at the sampling stage (Figure 8). 
Equipment was assembled upon a tarp to decrease soil entrainment during experiments. 
 
 
 
 

 
Figure 7: Contained fuel bed. Per fire marshal requirements, each burn was surrounded 
by aluminum foil-covered concrete blocks. To prevent tarp melting, the fuel bed 
consisted of an aluminum foil-covered ceramic floor tile on top of a 50 x 50 x 0.3 cm 
aluminum sheet and aluminum foil-covered ceramic blocks. The material for each burn 
was placed on top of a fresh piece of aluminum foil to prevent cross-contamination 
between samples and to facilitate the collection of post-burn ash. 
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Figure 8: Sampling stage. To prevent contact between the filter and the steel mesh of the 
VFC sampler, the sampling stage was constructed with a polytetrafluoroethylene (PTFE, 
Teflon,) stage and impactor. PTFE and other plastic components were soaked in 20% 
trace metal grade HCl between each burn experiment. The aluminum impactor was 
cleaned before and after each burn using Kimwipes. 


