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ABSTRACT

This work helps to explain the drag reduction mechanisms at low and moderate turbulent

Reynolds numbers in pipe flows. Through direct numerical simulation, the effects of wall

oscillations are observed on the turbulence in both the near wall and the bulk region.

Analysis of the average Reynolds Stresses at various phases of the flow is provided along

with probability density functions of the fluctuating components of velocity and vorticity.

The flow is also visualized to observe, qualitatively, changes in the total and fluctuating

field of velocity and vorticity. Linear Stochastic Estimation is used to create a conditional

eddy (associated with stress production) in the flow and visualize the effects of transverse

wall oscillations on hairpin growth, auto-generation and structure.
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Chapter 1 - Introduction

Chapter 1

Introduction

1.1 Background

When a fluid flows over a surface a force due to viscosity and the viscous shear rate occurs

at the wall’s surface. Integrated over the surface this force is referred to as the skin friction

or the viscous drag; if the flow is laminar then viscous drag is proportional to the flow

velocity; but if the flow is turbulent the drag is proportional to the square of velocity and

increases rapidly with Reynolds number.

Viscous stress is alway the agency creating viscous drag in laminar and turbulent flow,

but the turbulent transport of high momentum fluid towards the wall and low momentum

fluid away from the wall sharpens the velocity gradient at the wall, thereby increasing the

viscous wall shear stress. The motions take the form of wallward sweeps and outward ejec-

tions (Corino and Brodkey (1969), Willmarth and Lu (1972)). Ejections see low momentum

fluid transported from the buffer region up into the log region (Corino and Brodkey (1969)).

Adrian (2007) summarized research showing that these ejection events are correlated

with the organization and coherence of packets of turbulent hairpins. These hairpins are

regions of high quasi-streamwise vorticity around 10 < y+ < 20 (see 2.18 for definition of
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y+), radial vorticity in 20 < y+ < 40, and azimuthal vorticity in the head of the hairpin.

These vortices tend to organize and form packets which induce a velocity to carry low

momentum fluid up out of the log layer and into the bulk region. By continuity ejections

are associated with sweep of high-momentum fluid to replace the displaced low-momentum

fluid. Self induction causes hairpins to lift out further towards the outer region. The

shear imposes vortex stretching which increases the ejection and forms new hairpins thus

sustaining the process. The creation of new hairpins in a packet is called autogeneration

Zhou et al. (1996). It occurs if the fast hairpin has sufficient strength.

1.1.1 Pipe Flow Motivation

Pipe flow is critical to transport of industrial fluids: oil, gas, water, steam, etc. In general,

these are all very high Reynolds number applications. As an example, the Alaskan North

Slope pipeline has a Reynolds number varying between 1.5(104) and 5.5(105)(Company

(2016)). Any energy savings achieved by reduction (especially in the cold of Alaska) equates

to large reduction of pumping costs; a simple but effective means to decrease pumping costs,

is desirable. Additionally, a system that can be implemented without extensive modification

to the pipe domain is also necessary. Methods of drag reduction follows:

1.2 Drag Reduction Mechanisms

There are two broad classes of drag reduction: passive and active. Passive drag reduction is

characterized by no energy being introduced into the system. It is achieved by modifying the

surface roughness in anisotropic manner to reduce skin friction . However, these methods

have the deficiency of being Reynold’s number dependent. Two examples are elasto-polymer

injection which adds long chain polymers to the flow to eat up momentum robbing turbulent

structures near the wall Yang (2009) and riblets Garcia-Mayoral and Jimenez (2011a).
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Generally, performance degrades with increasingly turbulent flow. Active control does work

on the flow with the goal of net energy savings. The flow control mechanism, in general

effect the near wall turbulence such that the mean streamwise velocity gradient is decreased.

An example of such a method is wall oscillations which act to mitigate the growth of said

structures Choi and Clayton (2001).

In general all these mechanisms are predicated on one thing: modifications of the near

wall turbulence. It is imperative to see what the turbulence is doing near the wall. It is

also necessary to understand what is occurring when the flow near the wall interacts with

the flow in the bulk. This is broadly understood to be sweep and ejection events. Adrian

showed that there are packets that tend to organize into larger structures in boundary layer

flow and assist with the transport of low momentum fluid away from the wall and high

momentum fluid towards the wall.

These near wall turbulent structures act to extract energy from the mean flow and

dissipate it at the walls. As previously mentioned, there are two key turbulent events that

do this: sweeps and ejections. Sweep events occur when high momentum fluid packets

from the bulk flow are guided down to the wall by the (spanwise) vortical structures in

the flow. This fluid is forced into a region of low momentum, thus pulling kinetic energy

out of the mean flow. Ejection events are characterized by low momentum fluid from the

near wall fluid being forced up into the bulk flow region. The bulk flow accelerates this low

momentum fluid, expending some of its own kinetic energy along the way. The net effect

is a steep mean streamwise velocity gradient at the wall and a nearly flat velocity profile

outside the buffer layer.
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1.2.1 Passive Methods

Riblets

As previously stated, riblets modify wall roughness in such that drag is reduced. The

intuition guiding this is that low and high speed streaks near the wall will be disrupted

by the non-uniform geometry, provided the interference is disruptive. It has been well

established that drag reduction up to 11% is achievable Choi (2000). However, it is also

known that this drag reduction is geometry specific ( although a good collapse is presented

in Mayoral and Jiminez 2011 using a ’projected area’ of Ag+1/2 = 11). The reasoning behind

these riblets interfere with the low speed streaks and streamwise vorticity is not able to lift

it up as easily. Given, the reynolds number dependence on spacing, the operation range

must be known a-priori. Furthermore, deviations into higher Reynolds number flows show

an increase in drag (for a given geometry).

There are several explainations for this drag increase:

1. generation of secondary vortices which counteract sweeps and ejections(Goldstein and

Tuan (1998))

2. the characteristic length scale of the riblets is related to turbulent structures in the

near wall region (Choi et al. (1993))

3. the generation and amplification of spanwise roll cells (Garcia-Mayoral and Jimenez

(2011b))

Polymer Additives

Polymer additives requires the addition of elasto-polymer substance on the order of parts per

million to reduce drag. These polymers change the fundamental physics of the flow from

(typically) newtonian fluid flow to non-newtonian. These elasto-polymers, as the name
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would imply, behave like a spring when sheared and the presence of such polymers, the

fluid is modeled as a ’viscoelastic fluid’. Such models exist as the FENE-P and Oldroyd-B

models for numerical simulations.

Drag reduction of upwards of 30% can be reliably achieved in channel flow with increased

viscoelasticity (Min et al. (2003)). However, in order for drag reduction to occur viscoelastic

flow requires a minimum criterion to be effective. Several proposals for this threshold exist:

1. Weτ = λu2τ
ν > α (Goldshtik et al. (1982)) shows that the relative strength of the elastic

forces to viscous forces must be greater than the some parameter (characteristic of

the viscoelastic model)

2. λ > ν
u2τ

This is known as the time criterion (Lumley (1969)). This characterizes that

the relaxation time (λ) must be longer than the near wall turbulence time scale.

Effectively, polymer drag reduction is conditioned on the wall shear. This would imply that

the polymer needs a minimum amount of shear to be effective.

1.2.2 Active Methods

Active drag reduction methods can be further broken down into two more classes: open-

loop and closed-loop. Wall modifications/wall oscillations are a kind of open loop because

no flow parameters that are fed-back as a parameter to control the flow. These methods are

simple to implement and have shown up to 40% drag reduction (Choi et al. (2002)) for wall

modifications. Closed-loop as the name would imply, requires the measurement of one or

more flow parameters such that a control surface can be modulated to effect drag reduction.

Examples of such sensed parameters include wall normal velocity, spanwise velocity, and

streamwise velocity (Choi et al. (1994))
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Wall Modifications

Wall modifications are distinct from Oscillations and riblets in that the wall deforms or

changes in some way. Examples includes:

1. wall suction/blowing

2. bubble release from walls

3. wall deformations

Wall suction and blowing was explored thoroughly by Choi et al. (1994) where the

author sought to control the wall normal, streamwise, spanwise, and velocity fluctations

with either ’in-phase’ or ’out-of-phase’ suction/blowing. Control of the normal velocity

was used to attempt to suppress the aforementioned sweep and ejection events. This was

accomplished by applying an exactly opposite normal component of velocity at the wall

(where the velocity was equal and opposite relative to some distance away from the wall).

Skin friction reduction around 25% was accomplished using this method when the measured

velocity was y+ = 10 units away. Additionally, the power savings in this method were also

very high indicating the efficacy of the method. Spanwise velocity control was implemented

to counter streamwise vorticity near the walls. Drag increased when the sensing location

was set to y+
d = 20, however y+

d = 10 yielded similar drag reduction to wall-normal control.

Combined control of wall-normal and spanwise velocity completely suppressed turbulence,

the caveat being the low Reynolds number of the flow. Lastly, streamwise control resulted in

a maximum of 10% drag reduction when the wall velocity was ’in-phase’ with the measured

velocity, otherwise the drag increase was observed.

The principle behind bubble injection arrived from the idea of placing a layer of air

between a ship and the water boundary layer to reduce skin friction (Madavan et al. (1984)).

Although a solid layer is not practically implementable, microbubbles that are injected from
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the wall is. Depending upon the method employed to deploy the bubbles, drag reduction

upward of 70% is possible (Latorre and Babenko (1998)). The method of by which this

drag reduction occurs is from the introduction of ’voids’ in the boundary layer. These

voids appear to prevent the formation of cohesive vortices which promote Reynolds stress

production.

Wall deformations are wall normal deformations that squeeze and expand the flow.

Direct numerical simulation of such wall modifications have resulted in upwards of 65% drag

reduction resulting from the re-laminarization of the flow (Nakanishi et al. (2012)), albeit at

low turbulent Reynolds number (Reτ = 180, based on unmodified case). This test further

showed that for downstream traveling waves (in general) drag decreased, while upstream

traveling waves showed drag increases. It is worth noting that peak drag reduction in this

study results from a period of oscillation very close to spanwise wall velocity oscillations

(T+ = 125 vs T+ = 100). Less effective is applying spanwise traveling wall deformation,

yielding a maximum drag reduction of only 13.4% (Tomiyama and Fukagata (2013)). In this

simulation, the traveling wave is given the typical wavelength λ+ = 100 as this is expected

to interact with the previously mentioned low speed streaks near the wall.

Wall Oscillations

The subject of investigation, drag reduction by wall oscillations is an effective mechanism

of drag reduction Choi and Clayton (2001), Baron and Quadrio (1995), Quadrio and Ricco

(2004). Wall Oscillations are characterized by applying a transverse wall velocity, i.e.:

uwall(t) = U sin

(
2π

T
t

)
(1.1)

where T is the period of oscillation and U is the amplitude of wall velocity.

Turbulent drag reduction is readily achievable in channel, boundary layer, and pipe flow
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(Zhou and Ball (2008)) using sinusoidally varying transverse wall velocity. The motivation

behind this method is that, similar to wall deformation, the imposed motion at the bound-

aries interact and disrupt the turbulent sweep and ejection events. Since these events are

associated with streamwise vorticity, spanwise wall oscillations are likely to be a method by

which drag reduction can be achieved.

Spatially varying waves (Skote (2013)) and traveling waves (Quadrio et al. (2009)) have

shown even greater drag reduction for these boundary layer and channel flows. All papers

cited are in agreement with regards to an optimal frequency and amplitude of oscillation.

This optimal frequency has been discovered to be T+ ≈ 100 at low Reynolds number in

turbulent channel flow (here ’+’ notation denote non-dimensionalization by friction velocity

and kinematic viscosity Tennekes et al. (1972)). The reasoning for this is two fold:

1. In the buffer layer (0 ≤ y+ ≤ 30) the turbulent structures are quasi-streamwise

vortices with spacing of λ+ u 100

2. The stokes layer should extend into the region where these structures persist

The second item, the Stoke’s Layer is a phenomenon that arises from a classical solution

to the Navier-Stokes equations known as Stoke’s Problem. This problem is formulated as

a viscous quiescent flow that comes under the influence of an oscillating wall. In the wall

normal direction, since flow is considered to be one-dimensional, momentum can only by

transported by viscous diffusion. Hence a decaying exponential multiplied by a sine wave

with a phase shift proportional to the distance from the wall describes the velocity profile.

In the near wall region of the oscillating turbulent pipe flow, below the buffer layer, the

viscous forces dominate the azimuthal flow and be approximated by the Stokes problem

profile. The Stokes layer would be approximated by:

δ+ = 4.5

(
T+

π

)1/2

(1.2)
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We hypothesize that the wall oscillations act upon the streamwise vorticity which sup-

presses the turbulent ejection and sweep events. Particularly it is presumed that previously

mentioned mechanism of autogeneration of turbulent hairpins is suppressed or modified in

a way that reduces the rate of ejections and sweeps.
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Chapter 2

Pipe Flow Physics

Pipe flow is characterized by a mean pressure gradient driving an internal flow between

walls. For a steady, fully developed flow in a pipe, driven by an end-to-end pressure drop,

the temporally averaged force balance relates the pressure drop to the wall shear stress τwall

Panton (1984):

(∆p)πR2 = (τwall)2πRL (2.1)

This result is usually derived for laminar, steady, fully developed, incompressible flow

analysis but it pertains quite well to steady, fully developed, incompressible turbulent flow.

2.1 Turbulent Pipe Flow Analysis

To ease the complications of analytically dealing a non-rectilinear geometry with cartesian

coordinates and for the purposes of analysis only the Navier Stokes equations are presented

in cylindrical coordinates here. However, all solutions of these equations acquired numeri-

cally are calculated on a cartesian grid with a numerical discretization of curved edges, as

will be discussed later.
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2.1.1 Governing Equations

Incompressible continuity defines the conservation of mass in the domain.

1

r

∂

∂r
(rvr) +

1

r

∂

∂θ
(vθ) +

∂

∂x
(vx) = 0 (2.2)

Where (r, θ, x) are the radial, azimuthal, and axial coordinates. The corresponding velocity

components are (vr, vθ, vx). In full, the cylindrical coordinate Navier-Stokes Equations are

as follows:

∂vr
∂t

+vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
−
v2
θ

r
+vx

∂vr
vx

= −1

ρ

∂p

∂r
+ν

{
∂

∂r

[
1

r

∂

∂r
(rvr)

]
+

1

r2

∂2vr
∂θ2

+
∂2vr
∂z2

− 2

r2

∂vθ
∂θ

}
(2.3)

∂vθ
∂t

+vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ
−vθvr

r
+vx

∂vθ
vx

= − 1

rρ

∂p

∂θ
+ν

{
∂

∂r

[
1

r

∂

∂r
(rvθ)

]
+

1

r2

∂2vθ
∂θ2

+
∂2vθ
∂z2

− 2

r2

∂vr
∂θ

}
(2.4)

∂vx
∂t

+ vr
∂vx
∂r

+
vθ
r

∂vx
∂θ

+ vx
∂vθ
vx

= −1

ρ

∂p

∂z
+ ν

{
1

r

∂

∂r

[
r
∂

∂r
vx

]
+

1

r2

∂2vx
∂θ2

+
∂2vθ
∂z2

}
(2.5)

On average the flow must be axisymmetric, the mean continuity equation reduces to

1

r

∂(rvr)

∂r
+
∂vx
∂x

= 0 (2.6)

This requires vr to be zero everywhere because the fully developed criterion means

that at every radial coordinate, the gradient of streamwise velocity is 0 in the streamwise

direction, and thus so is the mean radial velocity radial derivative. This forces the mean

radial velocity to be constant, which then (by impermeability of the wall) requires that

constant to be zero.
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The time averaged momentum equations reduces to only two, one for streamwise shear

and one for radial velocity fluctuations.

τ = ρu′xu
′
r + µ

∂ux
∂y

(2.7)

1

r

drτ

dr
− ∂p

∂x
= 0 (2.8)

dv′2r
dr

+
v′2r − v′2x

r
+

1

ρ

dp

dr
(2.9)

In equation 2.8 τ represents all stresses acting to accelerate the streamwise momentum:

viscous and turbulent. Lumping the two together is a matter of convenience. Equation

2.9 gives the mean transport of radial fluctuations. However it is only necessary for the

purposes of justifying the simulation method that the streamwise shear is given by equation

2.10.

τ =
dpw
dx

r

2
(2.10)

This is because if one integrates the equation for the radial distribution of pressure it

can be seen that deviation from the wall pressure is very small due to the mean square

fluctuations being small. Hence, the average wall shear stress and mean pressure gradient

are directly related by

dPw
dx

= 2
τwall
R

(2.11)

2.1.2 Solution to Stokes Oscillating plate

For large enough Reynolds number, the laminar region of the flow is very thin compared to

the pipe curvature. As such the behavior in the near wall region can appear to behave like

a flow past a flat wall. Let y = R − r be the coordinate perpendicular to the wall then for
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all turbulent wall bounded flows the laminar sublayer is y+ u 10 in height. This compared

to the overall radius of curvature which is R+ > 100 in height. Thus the laminar sublayer

is less than 5% of the radius is laminar and the near wall region can be treated as a flat

wall.

Using this assumption, the laminar flow created by an oscillating pipe wall has a trans-

verse velocity give by 2.12.

Uθ(Y ) = exp

(
− Y√

2

)
sin

(
T − Y√

2

)
(2.12)

where Y = y
ν/Ω

1/2, T = tΩ, and Uθ = uθ
uwall

. In this expression, ν is the fluid kinematic

viscosity, Ω is the frequency of the wall oscillation, and Uθ is the amplitude of the wall

velocity. This expression, when normalized by inner units will be shown to track the average

azimuthal velocity in the pipe out to the total thickness of the Stokes layer.

The stokes layer is defined as the location at which the induced velocity in the fluid

reaches 1% of the wall velocity. This location is given by δ = 4.5
(√

2ν
Ω

)1/2

.

2.2 Outer Parameters

Recalling the definition of the shear stress tensor

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.13)

The force balance at the wall can be shown to be:

τwall = µdvxdr |r=R = −R
2
dp
dz

↓

2πRL(τwall) = πR2(∆p)

(2.14)
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Let Ubulk be the outer scale for velocity and, along with the viscosity and pipe diameter,

defines the bulk Reynolds number:

Re =
UbulkD

ν
(2.15)

Outer scaling parameters follows:

• Ubulk; the bulk mean velocity and characteristic outer scale velocity

• D; the pipe diameter is the size order of the largest scale structures in the domain

• D
Ubulk

; the characteristic outer time scale of events

• ρU2
bulk; the outer scale pressure term

As the name suggests, the outer scale variables describe the largest scales of motion.

These are phenomena that occur at sizes of the order a pipe diameter, over time scales

of the order of the time required for a particle to convect from the top to bottom of the

pipe and with momentum on the order of the bulk mean velocity. These parameters act to

normalized these outer scale quantities to O(1).

2.3 Inner Parameters

A set of variables is necessary to scale up the small values of velocity, pressure, and stress

fluctuations. Such scaling parameters arise from the dissipation of energy due to viscous

wall shear. Noting that a shear velocity can be formed from the square root of the stress

per unit mass:

uτ =

√
τwall
ρ

(2.16)
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A second Reynolds Number, referred to as Reynolds τ to characterize the flow based on

inner scalings:

Reτ =
uτR

ν
(2.17)

Taking note of the dimensions, we can see the beginning of a development of a complete

set of inner scaling variables

• uτ =
√

τwall
ρ is the shear velocity (previously stated)

• lτ = ν/uτ is the viscous length scale

• tτ = ν/u2
τ is the viscous time scale

Equation 2.20 allows for an a-priori approximation of inner scaling on length lτ = ν
uτ

which shows that the ratio of outer to inner length scale is given by R
lτ

= uτR
ν = Reτ . This

length scale will be used shortly to demonstrate the viability of wall oscillations scaling with

Reynolds number. A time scale is also available by, tτ = lτ
uτ

.

Henceforth, anytime the following notation occurs (equation 2.18), the respective vari-

able will have been non-dimensionalized in inner variables unless otherwise stated

(X)+. (2.18)

2.4 Wall Oscillation Scaling

For a range of bulk Reynolds numbers between 5000 ≤ Rebulk ≤ 100000 the equation by

Blasius El Khoury et al. (2013) for smooth pipe friction factor gives an accurate prediction

of Reτ (equations 2.20).

Reτ = 0.099Re0.875
bulk (2.19)
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However, if we temporarily define Reτ = uτD
ν then scaling collapses in the following

way.

Reτ = 0.199Re0.875
bulk (2.20)

Wall modifications are always prescribed in terms of inner parameters. From a review of

Choi et al. (2002), an optimal (where optimal is defined as maximum drag and net energy

savings) wall velocity and period in channel flow can be observed to be: Uwall = 10uτ and

Twall = 100tτ .

This leads to a peak to peak wall displacement of WD = 2000
π uτ tτ = 2000

π lτ . As a fraction

of circumference this can be shown to be: WD
C = 2000lτ

π22R/
= 2000

π2Reτ
. Applying the empirical

correlation for Reynolds number as given by the Blasius relation (eq 2.20) we can see that

WD
C ≈

10000
π2Re.875bulk

.

Similarly for the time scale, as a fraction of a characteristic outer time scale, Tosc
TO

=

100tτubulk
Dh

= 100Rebulk
Re2τ

. Again, applying the Blasius approximation this yields: Tosc
TO

= 2500
Re.75bulk

.

Thus in terms of outer units we can see that the following relations roughly hold:

Tosc =
2500Dh

ubulkRe
.75
bulk

(2.21)

WD =
20000Dh

πRe.875
bulk

(2.22)

Implying that at most, the wall displacement will scale with D.125
h

2.5 Statistical Calculations

2.5.1 Averaging

The average or expected value of a flow is the most useful property for understanding how

a flow behaves at large scales. The average of a random variable (e.g. velocity) determines

16
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the most likely state over all possible realizable states. This allows one to further generate

other statistical quantities by defining a mean field with a fluctuating field superimposed.

These fluctuations have the very useful property of being zero mean which allows for the

development of central moments which allow for further characterization.

In order to define the expected value of a field an averaging operator must be defined.

The gold standard of averaging is the ensemble average given by equation 2.23. Here

Xi is a measured random variable where each measurement is identically distributed and

independent. This gives the true expected value.

X = lim
N→∞

1

N

N∑
i=1

Xi (2.23)

Practically speaking, running simulations to achieve identically distributed independent

data sets is not possible but it is also not necessary given the problem formulation. Two

particular properties of pipe flow allow for convergence to the ensemble average without

having to start the flow from an infinite number of initial conditions. These two properties

are that the flow is homogeneous in two spatial directions and statistically stationary.

2.5.2 Spatial Homogeneity

Statistical homogeneity states that distribution of realizable states is invariant of location

along the coordinate given by equation 2.24.

P (a ≤ u(x1) ≤ b) = P (a ≤ u(x2) ≤ b)∀a, b | a < b (2.24)

A fully-developed smooth pipe flow naturally exhibits azimuthal and streamwise ho-

mogeneity along with statistical stationarity. The implication of this properties is that all

statistical quantities (averages, variances, distributions, etc) can be shown to be depen-

dent on radial location alone and that this can employed to assist with convergence to the

ensemble by integrating over all homogeneous directions.
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2.5.3 Stationarity Principle

Similar to homogeneity, stationarity implies that the statistics are not changing in time as

shown in equation 2.25.

P (a ≤ u(t) ≤ b) = P (a ≤ u(t+ τ) ≤ b)∀a, b | a < b (2.25)

As with homogeneity, temporal integration is employed to converge to the ensemble

average.

2.5.4 Averaging Operators

Instead of attempting to perform an ensemble average, operators utilizing the previous two

properties are defined that will converge towards the ensemble average. In the most general

sense, an averaging operator is given by equation 2.26 where X is the random variable and

the xi is the coordinate of averaging.

〈Q〉xi =

∫
xi

Qdxi∫
xi
dxi

(2.26)

Throughout the research presented, the random variable Q is most often the velocity how-

ever turbulent budget terms are also used at times to further characterize drag reduction.

Most often, averaging will be performed in the azimuthal and streamwise directions along

with in a time averaging. Hence, most common average will look like equation 2.27

〈u(r)〉θ,x,t =
1

2πLxT

∫ Lx

0

∫ 2π

0

∫ T

0
u(r, θ, x, t)dtdθdx (2.27)

Since the simulation is a set of discrete points, the averaging integral is transformed into

a summation given by equation

〈u(rl)〉θ,x,t ≈
1

NxNθNt

Nx∑
k=1

Nθ∑
j=1

Nt∑
i=1

u(rl, θj , xk, ti) (2.28)
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Here the summation is represented in the order over which averaging occurs, first in

time, then azimuthal, then finally streamwise direction. If any variable is presented as()̇

that implies an average over all homogeneous dimensions available.

2.5.5 Fluctating Quantities

Although the statistics are stationary, the flow still changes through realizable states from

timestep to timestep, a fluctuating velocity can be defined as an instantaneous realization

of the flow minus the mean, i.e. equation 2.29

u′ = u− 〈u〉xi (2.29)

These fluctuations characterize the nature of the turbulence in the flow and thus it is

necessary to have a well defined averaging notation in order to accurately determine the

behavior.

u = 〈u〉θ,x,t (2.30)

Fluctuation visualizations also obey equation 2.30. Likewise, single point statistics and

distributions are presented as an average over streamwise and azimithal average along with

time averaging, i.e. equation 2.28.

2.5.6 Conditional Averaging

A conditional average is defined as the average given that some condition is met regarding

the coordinate system or flow configuration. The notation for such a conditional average is

given by 2.31. Example 2.32 shows the usage of this conditional as applied to calculating the

wall shear stress of the flow through a pipe. The average viscous shear stress is evaluated

given that the radial location is at the wall (i.e. maximum laminar shear).
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〈u|φj〉xi (2.31)

〈τzr(r)|r = R〉r,θ,z =

∫ L
0

∫ 2π
0 µduxdr r

∣∣∣∣
r=R

dθdz∫ L
0

∫ 2π
0 Rdθdz

(2.32)

The conditional average will be used to determine what will be referred to as the phase

averaged quantities of the oscillated pipe. Equation 2.33 indicates the phase mean decom-

position and figure 2.1 demonstrates the phenomenon graphically. It can be seen that if

a random variable has deterministic behavior in time, then the standard long term time

average will not subtract out the deterministic variance. Thus, in order to calculate the

phase dependent turbulent fluctuations averaging must performed over a sufficiently small

window of time around the phase or exactly at the phase. The research presented evaluates

the statistics at the given phase (equation 2.33)

〈u|t mod (
nTosc
N

) = 0〉, n = {1, 2, . . . N} (2.33)

This arises from the idea that there exists a triple decomposition of the flow field into

a mean field, a sinusoidal fluctuation (induced by the wall), and a turbulent fluctuation

(Hussain and Reynolds (1970)), i.e. equation, where uφ is the sinusodal fluctuation and

u′ is the turbulent fluctuation. In that particular work, the authors sought a closure to

determine the deterministic component of fluctuation but for the research presented the

phase mean can be calculated directly by setting the averaging frequency to match the

phase angle a-priori.

u = 〈u〉+ uφ + u′ (2.34)

Hence, for the oscillating pipe, fluctuating quantities will be given as shown in equation

2.35
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Chapter 2 - Pipe Flow Physics

Figure 2.1: Demonstration of how phase averaging behaves using a well defined sinusoid
X(φ) = 0.5 sin(3φ) + η(φ), here 〈U〉 = 0, uφ = 0.5 sin(3φ) thus if fluctuations where taken
using the standard definition then a deterministic sinusoidal behavior would be superim-
posed onto the fluctuation statistics

u′(x) = u(x, t mod (
nTosc
N

) = 0)− 〈u|t mod (
nTosc
N

) = 0〉, n = {1, 2, . . . N} (2.35)
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Chapter 3

Simulation Method

This research utilizes a Direct Numerical Simulation approach to simulating fluid flow. No

modeling appears except for the assumptions made regarding the Navier-Stokes equations.

Particulary, those assumptions are:

1. Incompressible(DρDt = 0)

2. Newtonian Fluid

Thus the equations being solved are the incompressible Navier-Stokes Equations in

Cartesian Coordinates

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+ uj
∂ui
∂xj

=
∂p

∂xi
+

1

Re

∂2ui
∂x2

k

(3.2)

3.1 Numerical Method

Spectral element code Nek5000 Deville et al. (2002) has been continually developed for

more than 30 years. It is a fast, scalable and highly efficient high-order solver for compu-
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tational fluid dynamics problems. Spectral element method (SEM) is similar in its form

to finite element methods, but it utilizes high-order basis functions, specifically, high-order

polynomials associated with the Gauss-Legendre-Lobatto quadrature points. It leverages

the chosen polynomial approximation for a tensor-product efficiency that allows for a fast

convergence.

The numerical scheme used in Nek5000 solves the incompressible Navier-Stokes equa-

tions with a backward-differentiation formula with time step δt and an explicit extrapolation

for the convective term. Pressure p and velocity u are decoupled though a standard splitting

operation in a following semi-discrete representation:

βkū

δt
− µ

ρ
∆ū = −

k∑
j=1

βk−j
δt

un+1−j

−
k∑
j=1

αj(u · ∇u)n+1−j − ∇p̄
n+1

ρ
,

(3.3)

∆(pn+1 − p̄n+1) = ∇ · (βkū
δt

), (3.4)

un+1 = ū− δt

βk
∇ · (pn+1 − p̄n+1). (3.5)

Here n is the time step index, ρ is the density of the fluid, µ is the dynamic viscosity, ū

and p̄n+1 = 2pn−pn−1 are the intermediate velocity and extrapolated pressure at n+1 time

step, respectively. The terms β and α represent the coefficients of the backward difference

and extrapolation schemes of a given convergence order k. In the current study, k is set to

2, corresponding to a second order accuracy in time both for velocity and pressure (Deville

et al. (2002); Fischer (1997)).

23



Chapter 3 - Simulation Method, Parameters, and Validation

Three-halves de-aliasing is applied to the convective terms to ensure that spurious energy

is not cascaded from higher order modes to resolved modes. This may not have been totally

necessary given the highly resolved nature of the simulation but it is a safer practice.

Additionally, the highest order mode was attenuated with a filter weight of α = 0.01. This

attenuation is applied as given in Fischer and Mullen (2001) and can be thought of as a

smooth projection from N → N − 1 space.

Nek5000 works purely in cartesian coordinates and thus for cylindrical/curvilinear do-

mains, it is necessary to introduce a Jacobian tensor for all the deformed elements. The

Jacobian tensor describes the skewness and volumetric change of an element in terms of

a mapping from (xi) → (ξi) where xi is the deformed geometry and ξi is the undeformed

computational domain given by equations 3.6.

J(r) = det

(
∂xi
∂rj

)
(3.6)

Derivatives can then be represented using chain rule as in equation 3.7

∂

∂xk
=

∂

∂ξi

∂ξi
∂xk

(3.7)

The derivatives in collocation form can be written as

∂u

∂ξi
|klm=

N∑
p=0

D̂kpuplm, k, l,m ∈ 0, ..., N3 (3.8)

Where D̂ is the spectral derivative matrix. To make the solution consistent with the

geometry, a weighting matrix Gij is introduced that contains the geometric mappings where

Gij =

[
p

3∑
k=1

∂ξi
∂xk

∂ξj
∂xk

J(r)

]
ξk,ξl,ξm

ρkρlρm (3.9)

In equation 3.9 the terms ρi are the quadrature weights and p is just a coefficient.
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3.2 Simulation Parameters

The simulations compared are Reτ = uτR
ν = 170 and Reτ = 360 based on the friction

velocity. These correspond to bulk Reynolds of number of 5000 and 11700 respectively.

3.2.1 Fluid Properties

Parameter Description Reτ = 170 Reτ = 360

ρ Fluid Density kg
m3s

1.0 1.0

ν Kinematic Viscosity m2

s 2(10−4) 8.55(10−5)

3.2.2 Domain Properties

Parameter Description Reτ = 170 Reτ = 360

D Pipe Diameter (m) 1 1

L Pipe Length (m) 12 12

3.2.3 Flow Parameters

Parameter Description Reτ = 170 Reτ = 360

Ubulk Bulk mean velocity m/s 1.00 1.00

uτ Wall Friction velocity m/s 6.800(10−2) 6.154(10−2)

dp
dx Pressure Gradient pa/m

4ρu2
τ

D = 0.0185 0.0151

3.2.4 Simulation Parameters

Parameter Description Reτ = 170 Reτ = 360

Tosc Wall oscillation period 4.32s 2.26s

dt Simulation Time Step 4.32
(32)(250)s 2.26

(32)(250)s
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3.2.5 Simulation Outer Scaling

Using the outer scaling relations from section 2.2 we can see that the following parameters

apply

Parameter Description Reτ = 170 Reτ = 360

ρ ρ
ρ0

1.0 1.0

ν ν
UbulkD

0.0002 8.55(10−5)

All flows are driving by a constant forcing function to maintain a constant long-term

time average wall shear stress between the oscillated and non-oscillated pipe. The forcing

function is given by solving ∆P
L as given in equation 2.1. It can be shown that the constant

average pressure gradient is given by 3.10

fi =
∂P

∂x
= 2

τwall
R

(3.10)

3.2.6 Mesh Parameters

The mesh was generated using the built in meshing utility to create a circular mesh of

radius 0.5 for the Reτ = 170 case while the much finer mesh in the Reτ = 360 case had

to be developed using a meshing utility known as HyperMesh. Grading near the wall is

applied to achieve 5 grid points R+ < 1. Table 3.1 lists all the mesh parameters for the

current study.

Figures 3.1 and 3.2 illustrate the mesh densities for the the Reτ = 170 and 360 cases

respectively. The figures also illustrate the implementation of grading near the wall to

achieve the necessary grid resolution without wasting computational resources.
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Figure 3.1: Mesh for the Reτ = 170 case
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Figure 3.2: Mesh for the Reτ = 360 case
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Reτ Nel,r−θ Nel,z Nel,tot Ngridpoints ∆r+ min/max ∆(rθ)+ min/max ∆z+ min/max

170 768 48 36864 36864000 .1/1.6 .67/2.75 3.4/14.05

360 2128 112 238336 173746944 .15/2.5 .81/3.30 2.9/11.90

Table 3.1: Mesh parameters of the two Reynolds number cases. Grid resolution is finest
near the wall and near element boundaries. Due to GLL point distribution largest mesh
spacing occurs at half an element thickness radius from the core and spaced even in the
streamwise direction. The Reτ = 170 case used a 9th order polynomial approximation while
the Reτ = 360 utilized an 8th order polynomial

3.3 Validation of Non-Oscillated Pipe by Comparison to Ex-

perimental and Numerical Data

To validate that all scales of motion are resolved to at least single point second order mo-

ments along with providing a baselines for data comparison, validation of mesh resolution

is performed by simulating the standard turbulent pipe of length 24R and gathering tem-

porally, azimuthally, and streamwise averaged turbulent statistics.

The simulation was started using the initial conditions from Sprague et al. and mapped

into cylindrical coordinates.

us/Ubulk = 5(1− r4)/4 + 0.3 cos (24π)θ)e0.5−32.5(1−r)2(1− r)

ur/Ubulk = 0

uθ/Ubulk = 21.6 sin(12(2π)x)e−32.4(1−r)2(1− r)

(3.11)

The radial and azimuthal velocities were mapped back into Nek5000’s native rectilinear

coordinate system:

ux = ur cos (θ)− uθ sin (θ)

uy = ur sin (θ) + uθ cos (θ)

uz = us

From this initial condition, the Reτ = 170 simulation was run for 20 flow through
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times ( L
Ubulk

) to allow turbulence to become fully developed. After which time was reset,

and statistics were gathered for another 20 flow through times. Figure 3.3 illustrates the

agreement with well established literature at a similar Reynolds number. For the moderate

Reynolds number case, a turbulent solution was mapped to the higher resolution grid and

was allowed to develop the new scales of turbulence. This greatly reduced the cost of

allowing turbulence to develop from an analytical initial condition.

Turbulent statistics presented are mean flow quantities along with the root mean square

and co-variance of single-point fluctuation terms. These quantities arise the the Reynolds

Averaged Navier-Stokes (RANS) equations in which Reynolds Decomposition ui = U i + u′i

is used, where u′i is the turbulent fluctuation about the mean. The quantities are presented

as profiles in the wall normal direction (following the convention that at the wall y+ = 0).

Statistics are averaged over time and azimuthal and streamwise directions.

To allow for turbulence to develop more quickly, the turbulent flow field from the lower

Reynolds number case was interpolated to the higher resolution grid. From these initial

conditions, the average wall shear stress was monitored until the flow ceased accelerating.

As with the Reτ = 170 case, the timer was reset and statistics were gathered for another

20 flow through times. Figure 3.4 shows the validation of the average stresses in the flow.

Good Agreement is observed with other simulations as well as experimental data for both

Reynolds numbers indicating that mean first order quantities are well converged indicating

that average fluctuations are being well resolved.

This validation is further confirmed when comparing the quadrant analysis of the pipe

flow when compared with a similar Reynolds number channel flow as shown in figure 3.5.

Normalized by the local total Reynolds Stress (〈u′xu′r〉x,θ,t), both the Reτ170 and 360 case

collapse to agreement with turbulent channel data (with slight deviation in the near wall

region) from Kim et al. (1987) and Brodkey et al. (1974). The deviation of Brodkey’s

data is discussed in both his paper along with Kim’s. The difference is attributed to data
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Figure 3.3: Validation of the Average Reynolds Stresses compared with literature − in-
dicates the research presented, ◦ is the work of El Khoury et al. (2013), 4 comes from
the work of Wu and Moin (2008) and ? is the work of Eggels et al. (1994). The first two
compared data sets are direct numerical simulations at Reτ = 180 with the former using
the same solver Nek5000 and the latter using a 2nd Order Finite Difference Scheme. Good
agreement in all the primary stresses can be observed. The work of ? was a comparison of
experimental data to DNS data. Velocity Fluctuations are measured using particle Image
Velocimetry

processing and reduction.

Taking u′x to be the x-axis and u′y = −u′r (taken to be negative because a negative radial

fluctuation is away from the wall) to be the y-axis the quadrants can be defined as follows:

• u′x > 0, u′y > 0: Quadrant 1

• u′x < 0, u′y > 0: Quadrant 2

• u′x < 0, u′y < 0: Quadrant 3

• u′x > 0, u′y < 0: Quadrant 4

Quadrants 2 and 4 are the ejection and sweep events respectively, as fluctuations in
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Figure 3.4: Validation of the Average Reynolds Stresses compared with literature − indi-
cates the research presented, ◦ is the work of El Khoury et al. (2013) and 4 comes from the
work of Den Toonder and Nieuwstadt (1997). As before the former of the two is a direct
numerical simulation now at Reτ = 360 the latter is an experimental study at Reτ = 310
which would explain the slightly decreased stress and smaller magnitude of fluctuations
away from the wall.

these quadrants contribute to a negative u′xu
′
y product in Reynolds Stress. The Conditional

Average for each can then be considered as∫ ∫
Qi

u′xu
′
yfu′xu′ydu

′
xdu

′
y = 〈u′xu′y|Qi〉x,θ,t (3.12)

Finally, to ensure that gradients are well resolved, The turbulent kinetic energy budget

was calculated for both Reynolds number and compared with simulation data available. By

virtue of the formulation of the Spectral Element method, the simulation only guarantees

that the velocity, pressure, and any passive scalar fields will be continuous and smooth across

element boundaries but not necessarily the gradients. It is critical in a direct numerical

simulation that the gradients are smooth and continuous because instabilities in the linear

region drive the turbulence.
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Figure 3.5: Validation of Quadrant Contribution at Reτ = 170 and 360
: Q1 Reτ = 170; : Q2 Reτ = 170; : Q3 Reτ = 170; : Q4 Reτ = 170; : Q1

Reτ = 360; : Q2 Reτ = 360; : Q3 Reτ = 360; : Q4 Reτ = 360; : Q1, : Q2, :
Q3, : Q4 - Brodkey et al. (1974); : Q1, : Q2, : Q3, : Q4 - Kim et al. (1987)
Both Reynolds Numbers show good agreement when collapsed using the local Reynolds
Stress −〈u′xu′r〉x,θ,t
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Figure 3.6: Turbulent Budget terms normalized by u4τ
ν for Reτ = 170, Lines are from

data collected and markers are from El Khoury et al. (2013) Production; Viscous
Dissipation; Pressure Diffusion; Viscous Diffusion; Turbulent Diffusion
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Figure 3.7: Turbulent Budget terms normalized by u4τ
ν for Reτ = 360, Lines are from

data collected and markers are from El Khoury et al. (2013) Production; Viscous
Dissipation; Pressure Diffusion; Viscous Diffusion; Turbulent Diffusion

Figures 3.6 and 3.7 both show good agreement for all Kinetic Energy terms both in the

near wall region and with a decay to zero turbulence production in the wake region of the

pipe indicating that gradients and mean turbulent production is in good agreement with

literature.
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Chapter 4

Temporal Evolution of the Flow

from startup to Fully-Developed in

the Oscillated Pipe at Both

Reynolds Numbers

4.1 Bulk Quantities

Figure 4.1 indicates the development of the volume averaged streamwise velocity as the

oscillations are applied. The low reynolds number case indicates an overshoot in which will

be explained later. The moderate reynolds number simulation experiences a damped growth

over a slightly longer time period. The skin friction coefficient indicates the force necessary

to drive with a given amount of kinetic energy. The definitions is given by Cf = 2τwall
ρU

2
bulk

, it

can be observed that in the steady-state the skin friction coefficient is reduced by ≈ 26%.

A question that needed to be answered was whether or not the initial conditions might
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Figure 4.1: Comparison of the bulk mean streamwise velocity in the two pipe from the ini-
tialization of the wall oscillations to 30Tosc or roughly the new steady-state. The low turbu-
lence level in the Reτ = 170 case (top) results in an over shoot and almost re-laminarization
where as the moderate Reynolds number obeys more over-damped dynamics

inflict a bias in the results. In theory there ought to be no bias given that the sinusoidal

forcing of the wall has zero mean. However, given the abrupt application of wall oscillations

it is necessary to convince oneself that any transients have decayed to zero. Furthermore, a

determination of sampling frequency of the phase averaging was necessary to be determined.

To achieve this end, spatial averaging in both the azimuthal and streamwise direction was

applied to show such a decay over time of the transient bias in the flow. Of most importance

here is to observe if there exists a net angular momentum in the velocity field characterized

by a non-zero azimuthal velocity when averaged in the azimuthal direction and integrated

in the radial direction. Figure 4.2 shows a development of the angular momentum in the

domain. The behavior here indicates an overall zero net torque in the long time average,

however phase to phase variation shows that the wall oscillations are imparting significant
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Figure 4.2: Development of the net angular momentum averaged in the streamwise and
azimuthal direction integrated to over the radial direction as a function of time. Normalized
by the non-oscillated friction velocity. Sinusoidal but otherwise zero mean temporal profile
indicates that the wall oscillations do not impart a net torque on the flow despite the bias
towards an initially positive wall velocity.

energy into the domain. Taking note of the lack of visible wall oscillations imposed on

the mean angular momentum on the moderate Reynolds number flow is likely due to the

increased domain size relative to the region which the wall oscillation effects.

Figures 4.3 and 4.4 contour the azimuthally and streamwise averaged azimuthal velocity

as a function of wall distance y+. Both low and moderate Reynolds number flows experience

a stokes layer solution below y+ = 25.4 (the stokes layer height). The result of this is that all

near wall structures, particularly quasi-streamwise vorticity, will experience a modulation

due to the imposed wall velocity.

Figures 4.5 and 4.6 contour the azimuthally and streamiwse averaged streamwise velocity

as it develops from the standard pipe to the oscillated pipe

Figures 4.3 through 4.6 indicate why phase averaging is necessary. At locations y+ < 30
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Figure 4.3: Contour of the streamwise-azimuthal average of the azimuthal velocity compo-
nent from start-up to steady-state at Reτ = 170. Above y+ = 30 the flow becomes invariant
of wall oscillations but the flow below can be observed to respond almost immediately to
the oscillations. Additionally, the flow obeys a stokes layer solution below the stokes layer

show a deterministic oscillation that follows the wall oscillation frequency for the azimuthal

velocity and a doubling of the wall oscillation frequency for the streamwise component.

Ignoring such an oscillation would result in over prediction of turbulent RMS quantities.

If one were to naively average over a long period of time two phenomenon would appear

in the flow: 1) a bias in mean velocity quantities as a result of not considering the averaging

time as a function of oscillation period and 2) an superposition of an RMS fluctuation as a

result of the deterministic sinusoid imposed at the boundaries. One would not be observing

the true nature of the turbulence.
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Figure 4.4: Contour of the streamwise-azimuthal average of the azimuthal velocity compo-
nent from start-up to steady-stateat Reτ = 360. Above y+ = 30 the flow becomes invariant
of wall oscillations but the flow below can be observed to respond almost immediately to
the oscillations. Additionally, the flow obeys a stokes layer solution below the stokes layer.
The dynamics are identical to figure 4.3

4.1.1 Development of the Reynolds Shear Stress 〈u′xu′r〉x,θ

Presented is the streamwise-azimuthal average of the Reynolds Shear Stress, 〈u′xu′r〉x,θ. The

following figures illustrate the decay and regeneration of drag enhancing turbulence in the

domain. The fluctuations are normalized the standard pipe friction velocity to illustrate

the relative change.

Figures 4.8 and 4.9 illustrate the development of the Reynolds Stress as function of time

and wall coordinate. Remarkably, immediately after wall oscillations the flow is character-

ized by low Mean reynolds stress, however this is only temporary and the flow redevelops

to a full turbulent, albeit with reduced streamwise-radial fluctuation state.
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Figure 4.5: Contour of the streamwise-azimuthal average of the streamwise velocity com-
ponent from start-up to steady-state at Reτ = 170. The major effect observed is the
extension of the linear region further from the wall allowing for the outer region to be
shifted up by roughly 3.5uτ (see figure 5.2)

4.1.2 Startup Velocity Fluctuations

In this section contour maps of the velocity fluctuations are presented. Due to the nature of

temporal evolution, the fluctuation is defined to be u′ = u−〈u〉x,θ, that is the instantaneous

velocity minus the average over the streamwise and azimuthal directions. Discussion of

the development of the structures is provided at key times noted in the previous section.

Particularly, the initial conditions, minimum (and maximum for Reτ = 170) drag, and the

new steady-state are the snapshots of interest.

Notably, in figure 4.5 there is a period of relatively high streamwise velocity at 10Tosc.

Visualizing the field at this time 4.11 and comparing with the initial level of turbulence

4.10. The fluctuations are highly diminished. This same phenomenon was not observed at

the moderate Reynolds number case, likely due to the much stronger levels of turbulence.
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Figure 4.6: Contour of the streamwise-azimuthal average of the streamwise velocity com-
ponent from start-up to steady-state at Reτ = 360. Dynamics are similar to Reτ = 170
(figure 4.5) where the high speed region can be seen to extend further down towards the
wall. This is a result of the linear region extending further away from the wall (see figure
5.2)

Finally, 2000t+ after startup figure 4.12 illustrates the turbulence in the low reynolds number

pipe flow. A ”cloud” of turbulence can be observed in the unwrapped pipe angled in an

anti-clockwise direction. The structures are transient and reverse directions given a long

enough time span.

Reτ = 170

Reτ = 360

4.1.3 Startup Vorticity Fluctuations

Presented are the streamwise vorticity fluctuations at various y+ coordinates. Fluctuations

are defined as the instantaneous minus the streamwise-azimuthal average.
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Figure 4.7: Streamwise-azimuthal average wall velocity gradient in inner units shows the
behavior of the flow to initially drop to ≈ 70% of standard pipe and then climb as structures
reorganize. In the low Reynolds number case, this is visualized in figure 4.15 where turbulent
spots can be seen to almost disappear in the near wall region. Similarly figure 4.19 shows
that this behavior is similar however the extent to which is not nearly as drastic despite the
similarity in initial drag reduction

Reτ = 170

At the linear and buffer layer locations (y+ = 10, 30) there are long streaky streamwise

vortical structures. These are associated with the legs of the hairpins which act as pumps

for ejecting fluid away from the wall. The initial vorticity fluctuations can be observed to

obey this behavior (figures 4.14 and 4.14). At 625t+ (figure 4.15) the vorticity is observed

to be very minimal. This behavior is only transient but it illuminates how disruption of the

near wall vortical structures has a drastic effect on the whole flow region.

Figure 4.17 illustrates the new steady-state behavior. Like in the velocity fluctuations a

helical structure can be observed in the alignment of the streamwise packets. Additionally,

the packets of vorticity below the stokes layer respond directly to the wall oscillations

showing small scale oscillations that track the azimuthal velocity.
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Figure 4.8: Development of the 〈u′xu′r〉x,θ component of Reynolds Stress in the low
Reynolds (Reτ = 170) number pipe flow . The flow appears to re-laminarize for approxi-
mately 400t+ and then redevelops its turbulence. The new steady-state is reached ≈ 2500t+

after the oscillations start

Reτ = 360

Dynamics oserved are similar to the low reynolds number case. However, the wall drag

period does not have nearly as reduced turbulence (figure 4.19). The near quiescent field

at the low Reynolds number is likely just a Reynolds number effect. However, all other

dynamics are similar. Below the Stokes’ layer the vorticity packets oscillate with the wall

and helical structures can be observed (figures 4.20 4.21).
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Figure 4.9: Development of the 〈u′xu′r〉x,θ component of Reynolds Stress in the moderate
Reynolds (Reτ = 360) number pipe flow. Like the low Reynolds number flow, for approxi-
mately 400t+ the flow behaves as a very low mean Reynolds Stress and then redevelops its
turbulence. The new steady-state is reached ≈ 2500t+ after the oscillations start

Figure 4.10: Initial turbulent streamwise velocity fluctuations in the Oscillated pipe at
Reτ = 170. Characteristic of wall bounded turbulence, long streaky structures are observed
in the linear region of the flow
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Figure 4.11: Visualization of the instantaneous Streamwise velocity in the oscillated pipe
10Tosc after initializing the boundary modification. At this time a peak in 〈ux〉x,θ component
of velocity is observed and this shows in the observation that turbulent spots are are almost
non-existent in the linear region of the flow

Figure 4.12: Visualization of the instantaneous streamwise velocity in the oscillated pipe
20Tosc after initializing the boundary modification (Reτ = 170). Clouds of streamwise
velocity can be seen to be cohering in a helical pattern around the pipe as indicated by the
black lines
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Figure 4.13: Initial Streamwise velocity fluctuation field (given by u′x = ux − 〈ux〉x,θ) in
the Oscillated pipe at Reτ = 170. Characteristic of wall bounded turbulence, long streaky
structures are observed in the linear region of the flow associated with the streaky structures
shown in figure 4.10. From top to bottom y+ = 10, 30, 50

Figure 4.14: Initial Vorticity field in the Oscillated pipe at Reτ = 170. Characteristic
of wall bounded turbulence, long streaky structures are observed in the linear region of
the flow associated with the streaky structures shown in figure 4.10. From top to bottom
y+ = 10, 30, 50
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y+ = 10

y+ = 30

y+ = 50

Time: 625.000

Figure 4.15: Vorticity fluctuations in the oscillated pipe 6.25Tosc after initializing the
boundary modification. At this point the vorticity in the near wall is minimized and cor-
responds with the low drag seen in figure 4.7. Streamwise vorticity is reduced to just a few
turbulent spots

y+ = 10

y+ = 30

y+ = 50

Time: 1300.000

Figure 4.16: Vorticity fluctuations in the oscillated pipe at Reτ = 170 and 13Tosc after
initializing the boundary modification. At this point the vorticity in the near wall is max-
imized and corresponds with the high drag seen in figure 4.7. Streamwise vorticity does
not, however, cohere in the way that the standard pipe does. Long streaky structures are
no where to be found and can be seen to correlate to the wall oscillations
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y+ = 10

y+ = 30

y+ = 50

Time: 3500.000

Figure 4.17: Vorticity flucuations in the oscillated pipe at Reτ = 170 and 35Tosc after
initializing the boundary modification. At this point the vorticity in the near wall can be
assumed to to have reached its new steady-state. It can be observed here as in figure 4.12
that the turbulent spots tend to align and cohere in a helical fashion. This

Figure 4.18: Initial Vorticity field in the Oscillated pipe at Reτ = 360. Characteristic
of wall bounded turbulence, long streaky structures are observed in the linear region of
the flow associated with the streaky structures shown in figure 4.13. From top to bottom
y+ = 10, 100, 150
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Figure 4.19: Vorticity field in the Oscillated pipe at Reτ = 360 after 3.25Tosc. This time
corresponds to roughly the minimum drag as shown in figure 4.7. In contrast with the
low Reynolds number flow, the streaky structures are not nearly as attenuated. However,
the decay of streamwise vorticity about the field is observable. From top to bottom y+ =
10, 100, 150
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Figure 4.20: Vorticity fluctation field in the Oscillated pipe at Reτ = 360 after 20Tosc.
Contrasting with the low Reynolds pipe flow there is no observable overshoot in the drag.
This is likely due to the higher levels of turbulence acting as a damper against the over-
acceleration of the fluid. From top to bottom y+ = 10, 100, 150

Figure 4.21: Fluctuating Vorticity field in the Oscillated pipe at Reτ = 360 after 40Tosc.
Wall oscillations have modified the streamwise vorticity to be inclined with the wall oscil-
lation. From top to bottom y+ = 10, 100, 150
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Chapter 5

Comparison of Standard and

Oscillated Pipe Fully Developed

Statistics at Reτ = 170 and 360

In this chapter the effects of periodic oscillations on fully developed flow is investigated

by comparing the mean velocities, select Reynolds Stresses and Energy budgets of the

turbulence in the standard pipe to those in the oscillated pipe. The oscillated pipe presents

two averages: 〈Q〉θ,x,t and conditional averages given the phase 〈Q|φ(t)〉θ,x,t. The φ average

is found by ensemble averageing samples taken at the same phase angle over many cycles.

The average over all time is then the concatenation of these phase averages.

In periodic flows, it is not clear the Reynolds’ decomposition provides the best decom-

position of the flow because the fluctuation u′i = ui − ui contains a periodic time varying

component associated with the oscillation. This can be removed by defined a fluctuation

about the phase conditioned average instead of the long term average:
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u′′i = ui = 〈ui|φ(t)〉 = u′i − 〈(ui − ui)|φ〉 (5.1)

All fluctuations in the following section for the oscillated pipe use the definition given

by equation 5.1. For simplicity we shall denote u′′i as u+
i

5.1 Mean Velocities and Reynolds Stresses

The following sections illustrates similarities of effect on statistics of the two Reynolds

numbers when normalized by the proper quanities. Furthermore, differences are shown

between the non-oscillated and oscillated cases for each Reynolds number. The effects of

wall oscillations on the turbulent stresses are shown to

Presented are the Reynolds stresses that characterize the turbulence in terms of first

and second order moments of velocity. Figure 5.1 and 5.2 illustrate the mean change in

the Reynolds stresses as a result of the wall oscillations. The effects of drag reduction

are marked by the increased flow rate illustrated by the shift upwards of the log layer

by 3.5uτ starting from y+ > 35 in both simulations. This is coupled with a decrease in

root mean square streamwise (RMS) fluctuations between y+ > 1 and y+ < 30 and mean

square radial fluctuations between y+ > 20 and y+ < 100. The reduction of the radial

fluctuations is apparent despite the boundary modifications being contained to a region

below y+ = 25 (as evidenced by the stokes layer solution of azimuthal velocity) the effects

on turbulent fluctuations extends well into the log region of the flow. This observation is

further enforced with the RMS of streamwise fluctuations which show reduction all the way

to twice the stokes layer height (y+ = 50).

As with the total time averages, the phase to phase behavior of the main Reynolds

Stresses is nearly indistinguishable (between the two reynolds numbers) by profile when

normalized by wall shear and vary only in magnitude. Notably, just below y+ = 10 is the
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Figure 5.1: Single Point statistics averaged over all time for the Reτ = 170 simulation
∗: Oscillated Pipe; ◦: standard pipe. Marked changes in the Streamwise velocity profile
show shift up in the log layer indicating an increased flow rate. This is coupled with a
decreased RMS streamwise velocity fluctuation along with a decreased mean squared radial
fluctuation at higher y+ coordinates. This is indicative of a change in the dynamics of
Q2/Q4 events which will be presented later

oscillatory behavior as a function of phase despite the azimuthal velocity not appearing

in the term for 〈u′xu′r〉 itself. However, analyzing the transport equation indicates that

the spanwise velocity has the effect of reducing the rate of streamwise-radial fluctuation

transport. In particular this has the effect of moving the location of peak reynolds stress

up and down, albeit very slightly.

Furthermore, despite the subtraction of phase velocities, there is still a distinct period-

icity in the behavior of the Reynolds Stresses below the stokes layer. This is indicative of a

fundamental change in the nature of the turbulence which was assumed to have a behavior

that appeared much like 2.1 where by phase averaging the turbulent fluctuations without a

sinusoidal bias can be isolated. This indicates that despite being uncorrelated as shown in

Hussain and Reynolds (1970), the wall oscillations are modifying the statistical distribution

of the fluctuating quantities.
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Figure 5.2: Single Points averaged over all homogeneous coordinates for Reτ = 360 simula-
tion ∗: Oscillated Pipe; ◦: standard pipe. Marked changes in the Streamwise velocity profile
show shift up in the log layer indicating an increased flow rate. Trends are similar to that
of the lower Reynolds number case with a constant displacement of the mean streamwise
velocity, decrease in streamwise and radial fluctuations and decrease in streamwise-radial
fluctuations
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Figure 5.3: Contours of the Reynolds stresses as a function of wall oscillation phase for
Reτ = 170. At low y+ levels modifications to the mean can be oberserved as a function of
phase. This is indicative of a coupling of the streamwise and radial fluctuations to the phases
despite their geometric orthogonality. A fundamental change in turbulence has occured
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Figure 5.4: Contours of the Reynolds stresses as a function of wall oscillation phase for
Reτ = 360. As in the low Reynolds number flow, the near wall mean turbulent fluctuations
vary periodically indicating a change in behavior in the region where streamwise vorticity
lies

5.2 Quadrant Analysis

Observing only the mean Reynolds Stress does not indicate well what is occurring with the

turbulence; only whether or not the mean stress producing fluctuations are reduced. To

further quantify what is happening to the turbulence between the two pipes a conditional

average of the fluctuations is taken such that the fluctuation are in given quadrant of the

(u′x, u
′
r) plane.

Using equation 3.12 and normalizing by mean wall shear stress yields figures 5.5 and

5.6. Normalization by total average wall shear stress is used rather than local Reynolds

Stress because the average wall shear is constant between the two simulations and does a

better job of illuminating how the turbulence is changing.

Figures 5.5 and 5.6 show the dynamics of the quadrant average Reynolds Stress contri-

bution. It can be conclusively determined that the effects are not to increase the Q1/Q3
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Figure 5.5: Reτ = 170, black Lines indicate Standard Pipe and blue lines Oscillated Pipe,
−〈u′xu′r〉 > 0

- Q2 Standard Pipe Q2 Oscillated Pipe Q4 Standard Pipe Q4 Oscillated
Pipe
−〈u′xu′r〉 < 0

Q1 Standard Pipe Q1 Oscillated Pipe Q3 Standard Pipe Q3 Oscillated Pipe

events but instead to interrupt the mechanism of ejection and sweep events. This can be

seen by the grossly reduced Q2/Q4 contributions of to the Reynolds stress starting all the

way from y+ = 1 and all the way up to roughly y+ = 60. This is in spite of the fact that the

stokes layer was previously shown to end around y+ = 25 as predicted by laminar solutions

to an oscillated wall.

Most notably is the effect of reducing Q2 events and shifting the intersection of Q4 to

Q2 dominant events outwards from y+ ≈ 15 to y+ = 21. This is indicative of suppression

of ejection events. However, Q4 events remain relatively unaffected though there is some

suppression both below y+ = 10 and above y+ = 30.

56



Chapter 5 - Comparison of Standard and Oscillated Pipe Fully Developed Statistics at
Reτ = 170 and 360

10
0

10
1

10
2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.6: Reτ = 360, black Lines indicate Standard Pipe and blue lines Oscillated Pipe,
−〈u′xu′r〉 > 0

Q2 Standard Pipe Q2 Oscillated Pipe Q4 Standard Pipe Q4 Oscillated Pipe
−〈u′xu′r〉 < 0

Q1 Standard Pipe Q1 Oscillated Pipe Q3 Standard Pipe Q3 Oscillated Pipe

5.3 Turbulent Kinetic Energy Budget

In order to begin answering why the quadrant 2 and 4 energy is decreased, it is necessary

to observe the effects on overall turbulence and its transport in the pipe. Turbulent Kinetic

Energy (TKE), k = 3
2u
′
ju
′
j , characterizes the mean turbulence levels in the wall normal

direction. The budget are the terms that determine the transport of TKE as given by the

RANS equation for TKE transport. The terms are given by:

1. Production: −u′iu′j
∂ui
∂xj

2. Viscous Dissipation: ν
∂u′i
∂xj

∂u′i
∂xj

3. Pressure Diffusion: 1
ρ0

∂u′ip
′

∂xi
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4. Viscous Diffusion: ν ∂
2k
∂x2i

5. Turbulent Transport: 1
2

∂u′ju
′
ju

′
i

∂xi

It is necessary here to point out that again, the notation follows that which is described in

the beginning of this chapter. The turbulent budget, in the oscillated case, is calculated

using the flucuations given by phase averaging. However, standard Reynolds Decomposition

applies to the standard pipe.

Figures 3.6 and 3.7 illustrated the validation of gradients in the simulation by compar-

ing the budget to literature. Taking note of the production term, if one considers a simple

channel flow, the turbulence production can be seen to be generated from u′1u
′
2
∂U1
∂x2

, where

subscript 1 is the streamwise direction and 2 is the wall normal direction. In the standard

pipe, all other terms in production average to zero. However, the same cannot be said for

an oscillated wall case due to the unsteady nature of the flow. In particular, the produc-

tion term can be seen to be modulated by the azimuthal and radial fluctuations as the

radial gradient of the azimuthal mean velocity is non-zero along with the azimuthal-radial

covariance (figures B.1 and B.2).

Furthermore, it can be argued that due to the temporally varying mean azimuthal

velocity, so too will the fluctuations in the azimuthal direction increase, particularly at

points of maximum mean azimuthal acceleration. This increase in fluctuation magnitude

will have an effect on increasing the overall turbulent kinetic energy in the region where the

Stokes layers sees a maximum slope (most drastic change in azimuthal velocity) and thus

increase the gradients in turbulent kinetic energy, enhancing diffusion of overall turbulent

kinetic energy.

Figure 5.7 and 5.8 clearly show that effects on turbulent budget are similar between

the two reynolds number when normalized properly. The normalization factor is as in

validation f = u4τ
ν production being reduced in the near wall region indicating that the
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Figure 5.7: Reτ = 170 normalized by u4τ
ν ; Standard Pipe ; Oscillated Pipe

?: Production, ◦: Viscous Dissipation, �: Viscous Diffusion. The average behavior is to
push the production further from the wall, increase dissipation and reduce diffusion. The
decrease in diffusion is likely due to the overall reduction in turbulent fluctuations as shown
by figures 5.1 and 5.2. The production peak is roughly the same but shifted out by the wall
oscillations and balanced more aggressively by the dissipation of TKE

contribution of radial-azimuthal fluctations act to impede the production of turbulence. In

the regions of maximum production dissipation is enhanced so in spite of the slightly higher

peak production, the enhanced dissipation acts to diminish the overall TKE productions

Figure 5.9a and 5.9b show the average effects of turbulent transport, which moves tur-

bulent fluctuations away from the wall and into the bulk flow. Clearly in the region below

y+ = 10 turbulent transport is enhanced and then is decreased everywhere beyond.

Figure 5.10 shows the modulation of the turbulent transport term as a function of wall

phase. Clearly, between the region most affected (0 < y+ < 40) the modulation must be

coming from the average azimuthal and radial fluctuations. If one considers the transport in

the radial gradient direction of azimuthal turbulent kinetic energy then it can be seen that

transport as a production sink in the regions where production is maximized, that energy

of radial and streamwise fluctations are likely being converted into azimuthal fluctuations
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Figure 5.8: Reτ = 360 normalized by u4τ
ν ; : Standard Pipe; : Oscillated Pipe

?: Production, ◦: Viscous Dissipation, �: Viscous Diffusion. Behavior is identical to that
described in figure 5.7
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(a) Turbulent Transport term Reτ = 170
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(b) Turbulent Transport term Reτ = 360

Figure 5.9: Turbulent transport term of TKE budget. : Standard Pipe; : Oscillated
Pipe; In the region between 10 < y+ < 20 the transport of turbulent kinetic energy has
been suppressed. Given the triple product of this term, it is difficult to tell what is causing
the decrease in this region

that have no direct effect on sweep and ejections events. This is the beginning of the answer

to why Q2 and Q4 events are suppressed, the TKE in the streamwise direction is acting as

a sink to the production of more turbulence.
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(a) Turbulent Transport term Reτ = 170

5 10 15 20 25 30

5

10

15

20

25

30

35

40

-0.04

-0.02

0

0.02

0.04

0.06

(b) Turbulent Transport term Reτ = 360

Figure 5.10: Turbulent transport term of TKE budget phase variation. It is evident that
the modulation of the transport term is coming from the Azimuthal Velocity Fluctuations
and azimuthal-radial fluctuations (figures B.1 and B.2 top and bottom right) as the behavior
of this term is in roughly the radial gradient of those profiles

5.4 Velocity Distributions

This section presents joint probability density functions, the pre-multiplied joint PDFs and

tabulated values of optimal disturbances. An optimal disturbance here is considered the to

be the flucations event (u′x, u
′
r) associated with a maximum contribution to the Reynolds

Stress and is given by ((
u′x, u

′
r

)
| max
u′x,u

′
r

u′su
′
rP (u′x, u

′
r)

)
This has been shown to be associated with the near wall hairpins Moin et al. (1987) which

pump low momentum fluid away from the wall and entrain high momentum fluid into the

near wall region. It has already been shown in figures 5.5 and 5.6 that the Reynolds Stress in

Quadrants 2 and 4 is diminished below y+ = 60. It is expected that below this range either

the angle of the optimal disturbance will decrease or the magnitude will decrease. Either

effect will reduce the Reynolds Stress term and in the presence of wall oscillations ought to

decrease the likelihood that an optimal disturbance will grow and produce turbulence from

a perturbed turbulent mean velocity profile.

From the statistics provided it can be seen that the effects of wall oscillations is to

vary the angle of the optimal sweep event away from the un-modified pipe. However, the
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Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD Reτ = 170 2.244 0.678 1.089 -0.92 -14.37 -1.006

– – -1.945 1.416 167.60 -2.755

OSC Reτ = 170 2.197 0.630 1.195 -0.971 -13.12 -1.161

– – -1.389 1.053 167.73 -1.463

STD Reτ = 360 2.111 0.693 1.157 -0.99 -15.70 -1.146

– – -1.667 1.274 165.90 -2.124

OSC Reτ = 360 2.056 0.661 1.249 -1.090 -15.67 -1.361

– – -1.364 1.142 164.95 -1.557

Table 5.1: Optimal Disturbances at y+ = 30. Presented are the mean Optimal Distur-
bances in the pipe both with and without wall oscillations At this wall distance the mean
phase disturbance is reduced for ejection events but not for sweeps. However, sweep distur-
bances are misaligned by 1.25 degrees indicating a deviation from the optimal due to wall
oscillations

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD Reτ = 170 1.885 0.811 0.981 -0.97 -22.98 -0.948

– – -1.688 1.405 160.29 -2.371

OSC Reτ = 170 1.910 0.767 1.144 -0.954 -18.51 -1.091

– – -1.523 1.223 162.13 -1.862

STD Reτ = 360 1.832 0.826 1.066 -1.01 -23.06 -1.074

– – -1.456 1.133 160.66 -1.649

OSC Reτ = 360 1.841 0.790 1.185 -1.058 -20.95 -1.254

– – -1.378 1.145 160.37 -1.579

Table 5.2: Optimal Disturbances at y+ = 44 It can be observed that for all phases the
angle is reduced for sweep events and both angle and magnitude are reduced for ejection
events. Notably the RMS of the radial fluctuations are decreased indicating that the overall
transfer to and from the wall is being impeded
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oscillations do not effect the magnitude of optimal sweep event Reynolds Stress despite

a clear drop in the Quadrant Analysis shown in figures 5.5 and 5.6. The lowered angle

indicates less momentum entrainment despite a similar Reynolds Stress producing event.

Ejection events see little in event angle, if they do it is always decrease in angle, indicating

less momentum transfer away from the wall from the maximum Reynolds Stress Producing

event.

These changes are mostly imperceptible in the Probability Density functions however

included in the appendix are the contour plots of the phase average joint PDFs along with

the pre-multiplied PDFs.
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Chapter 6

Conditional Eddies

In the previous chapter, optimal disturbances were presented as a function of y+. Moin

et al. (1987) tabulated the results from experimental data regarding the maximum Reynolds

Stress producing event given a conditionally averaged field. Furthermore Zhou et al. (1999)

showed a structure known as a turbulent hairpin was associated with such events. Using

the method of Linear Stochastic Estimation outlined in Bonnet and Glauser (2012), it can

be shown that a conditional average field can be approximated using a linear estimate

constructed from the unconditionally averaged correlation function.

û′i(x
′) = Lijuj(x) (6.1)

Here û′i is the estimated fluctuating field at a location in the field, uj is the conditional

event at some location and Lij is the linear stochastic estimator which can be constructed

from the following correlation calculation

〈uj(xi)uk(xi)〉x,θ,tLij = 〈ui(x′i)uk(xi)〉x,θ,t (6.2)

This is a tensor equation where x is the location of the prescribed event u′j and x′i is the
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location of the velocity to be estimated. For estimating the fluctuating velocity field given a

turbulent hairpin, the left hand side becomes the average correlation of fluctuating velocity

at a given point x and the right hand side becomes the average two-point correlation tensor

between the velocities.

Equation 6.3 gives the linear estimate of the total velocity at x′

ûi = ui(x
′) + û′i(x

′) (6.3)

Where û′i is defined as in equation 6.1.

The estimators presented in this work were generated from the correlation functions in

the standard pipe only, thus the definition of the fluctuating fields comes from the Reynolds

Decomposition.

6.1 Influence of Wall Oscillation on Hairpin Growth and

Auto-generation

Using the results presented in Table 5.2 velocity given Q2 event at y+ = 44 was estimated

for the non-oscillated pipe and it plus the mean turbulent velocity was used as an initial

condition for the pipe flow. Figure 6.1 shows that the initial fields looks somewhat like a

hairpin vortex and is allowed to grow and develop in a mean turbulent velocity profile over

a period of 400t+ for both Reynolds numbers.

This means that a fluctuating event vector given by α (u′r, u
′
θ, u
′
x) = 3.0 (ur,optimal, 0, ux,optimal)

was chosen to define the conditional fluctuating field. Figure 6.1 shows a visualization of

the initial conditions contoured on 10% of the maximum λci. λci is defined as the swirling

strength criterion given by the complex part of the eigen values of the strain rate tensor for

velocity Chakraborty et al. (2005).
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6.1.1 Simulation of Conditional Field Growth

Figure 6.1 illustrates the initial conditions for the Reτ = 170 conditional eddy. Shown is

a contour of λci conditioned on 10% of the maximum in the domain. At t = 0 the wall

velocity is zero and begins to move in the positive θ direction.

Figure 6.1: Hairpin Eddy visualized by λci contours. Value is 10% of the maximum in the
domain

This hairpin was allowed to grow for 4 oscillation periods or 400t+. Planar averages

of Reynolds Stress were calculated to see the effects of wall oscillations on given a single

hairpin. Figure 6.2 shows the development of average Reynolds stress as a function of time

and wall location. Although the initial Reynolds stresses are identical, after t+ = 200 the

Reynolds stress in the oscillated pipe almost vanishes above y+ = 110, and is reduced ev-

erywhere. Additionally, at t+ = 400, the Reynolds Stress has been reduced all along the

initial disturbance y+ location, indicating that stress production is being reduced. Fur-

thermore, above y+ = 110 the Reynolds Stress almost vanishes. In the moderate Reynolds

number case (figure 6.3), the fluctuations are merely suppressed by wall oscillations and do
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not decay as rapidly in the wake. This is likely due to the initial disturbance starting far

enough away from the stokes layer that only future hairpins are effected. Furthermore, it is

also likely a Reynolds number effect that the overall turbulence decays from such a stable

solution in the low Reynolds case

Figures 6.4 through 6.6 illustrate the development of when placed in an oscillating pipe

versus a non-oscillating pipe. As time progresses the wall oscillation greatly distort the wake

of the hairpin. Rather than generating directly behind the first hairpin the subsequents

eddies ”walk” up the wall of the pipe. Following hairpins will subsequently wrap further

around the pipe. This helps to explain the observations made from figure 4.12. Over a long

enough time period the eddies ought to walk back down the pipe.

Similar to the low Reynolds pipe, the moderate Reynolds number case exhibits similar

properties. Figures 6.4 through 6.11 illustrate the similarity in behavior

It can be concluded here that the effects on the single hairpin is as follows:

1. The wall oscillations act to strength one hairpin leg and weaken the other (see figures

6.4 and 6.8)

2. As early times the wake of the hairpin is warped causing auto-generation to either a)

be impeded or c) carry on at an angle oblique to the wake

3. As time progresses even further, auto-generation is very clearly suppressed at low

Reynolds number (at least temporarily figure 6.6)

4. The wake of the hairpin is observed to, at least over 500t+ walk up the wall of the

pipe despite the oscillations being sinusoidal
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Figure 6.2: Reτ = 170 simulation; (left) No Oscillations (right) with oscillations. Reynolds
Stress average over cyclindrical surfaces at y+ = R+ − r+ = constant. Clearly, at t+ = 400
at the at location around y+ = 50 of the given Q2 event well above the influence of the
stokes layer the Reynolds Stress is diminished in the oscillated case. Additionally, after only
200t+ it can be observed that the head of the hairpin (which has lifted into the log layer is
weakened as evidenced by the noticeable decrease in Reynolds Stress. The Reynolds Stress
almost vanishes above y+ = 110
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Figure 6.3: Reτ = 360 simulation; (left) No Oscillations (right) with oscillations. Reynolds
Stress average over cyclindrical surfaces at y+ = R+ − r+ = constant. At this Reynolds
number, the dynamics of the hairpin are markedly different. The main effects on the
hairpin is to reduce the total streamwise-radial fluctuating quantity. This is most notable
at t+ = 800. However, through out the simulation Reynolds 〈u′xu′r〉 fluctations can be
observed to be suppressed.
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Figure 6.4: Reτ = 170 simulation; (Left) standard pipe; (Right) oscillated pipe. Com-
parison of the development at a quarter of an oscillation period at low Reynolds number
Reτ = 170. Already the effects of wall oscillations can be observed to be effecting the right
hairpin leg on the oscillated pipe

Figure 6.5: Reτ = 170 simulation; Comparison of the development after a full oscillation
period at low Reynolds number Reτ = 170. Left: standard pipe; Right oscillated pipe.
After 100t+ the wall oscillations can be observed to be distorting the generation of the eddy
coming off the hairpin
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Figure 6.6: Reτ = 170 simulation; Comparison of the development after 1.75 oscillation
period at low Reynolds number Reτ = 170. Left: standard pipe; Right oscillated pipe.
At 150t+ the wall oscillations distort the secondary hairpin coming off the primary. The
hairpin walkd up the wall and distorts the ejection of low momentum fluid. Furthermore,
attenuation of generation of a third hairpin is also observed in the oscillated pipe.

Figure 6.7: Reτ = 360 simulation; (left) Standard Pipe; (Right) Oscillated Pipe. Initial
formation of the conditional eddy colored by streamwise velocity and contoured on swirling
strength.
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Figure 6.8: Reτ = 360 simulation; (left) Standard Pipe; (Right) Oscillated Pipe. Hairpin
development after 25t+, already the legs are being skewed by the wall oscillations. The
right leg is being strengthened while the left has disappeared

Figure 6.9: Reτ = 360 simulation; (left) Standard Pipe; (Right) Oscillated Pipe. Hairpin
development after 50t+, The wake of the hairpin in the oscillated pipe can be observed to be
skewed heavily by the pipe oscillations. However the head is remaining relatively unaffected

72



Chapter 7 - Conclusions

Figure 6.10: Reτ = 360 simulation; (left) Standard Pipe; (Right) Oscillated Pipe. Hairpin
development after 100t+, clearly while the beginning of a secondary hairpin is can be seen
just barely be seen in in the legs of the primary in the standard pipe, no such behavior is
observable in the oscillated case instead, the left leg has been basically cut off

Figure 6.11: Reτ = 360 simulation; (left) Standard Pipe; (Right) Oscillated Pipe. Hairpin
development after 300t+, The wake of the hairpin in the oscillated pipe is incoherent and
the trailing eddies are completely detached and skewed off to one side. Meanwhile, a packet
is beginning to form behind the hairpin in the standard pipe. A secondary hairpin is clearly
visible in the standard pipes wake
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Chapter 7

Conclusions

This research presents the results of two DNS Studies of drag reduced turbulent pipe flow

with transverse wall oscillations. Comparisons of the turbulence were made to a standard

pipe along with the collapse of the drag reduction effects when normalized with proper

scaling.

Bulk parameters show that the mean quantities are exhibiting deterministic behavior

near to the wall which necessitates implementing the phase averaged triple decomposition

developed by Hussain and Reynolds (1970). Furthermore, it can be observed that there is

no bias in the mean quantities of radial and azimuthal velocities in spite of initial transients.

Reynolds Stresses are much more telling of the changes in turbulence. Mean streamwise

velocity is increased while the Reynolds stresses along with radial and streamwise fluctua-

tions are reduced (figures 5.1 5.2). Phase to phase variation shows a fundamental change

in the turbulence as observed by the periodic behavior of the stresses below the stokes

layer (figures 5.3, B.1, 5.4, and 5.4). This indicates that the nature of the turbulence has

changed to be, although statistically uncorrelated to the wall oscillations, linked with the

wall oscillations. This makes sense when observing the turbulent budget 5.7. In particular

the production is modulated by the non-zero azimuthal velocity gradient in the wall normal
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direction. The change in turbulence all occurs to mainly suppress Q4 events (figures 5.5 and

5.6). Q2 events are suppressed somewhat as well but it is clear that most of the reduction

in Reynolds Stress comes from the change in sweeps.

In order to fully understand the changes in the mechanisms a single disturbance was

placed in the flow and allowed to grow. Figures 6.1 through 6.11 show this growth. Figure

6.2 shows that the Reynolds stress is being reduced, especially in the logarthimic region of

the flow where it vanishes. This indicates that the mechanism of lifting of the head is being

diminished as it is the azimuthal vorticity in the head that pumps fluid down towards the

wall. Additionally in the region of the initial disturbance the Reynolds Stress is reduced

indicating that the transport of fluctuations is reduced. The wake of the hairpin is heavily

distorted and walks up the wall due to its relatively weaker vorticity. This reorients the

sweep and ejection events which likely leads to sweeps colliding with ejections and cancelling

out rather than just replacing the ejected fluid.
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Appendix A

Raw Data

A.1 Optimal Disturbances for Reτ = 170

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 0.343 0.007 1.465 -0.73 -0.56 -1.070
– – -1.061 0.433 179.54 -0.459

OSC 0.266 0.009 0.727 -0.419 -1.14 -0.305
– – -0.764 0.295 179.24 -0.226

Table A.1: Optimal Disturbances at y+ = 1 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 0.979 0.045 1.580 -0.87 -1.45 -1.378
– – -1.185 0.525 178.84 -0.622

OSC 0.680 0.059 0.648 -0.675 -5.15 -0.438
– – -1.021 0.469 177.72 -0.479

Table A.2: Optimal Disturbances at y+ = 3 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.234 0.068 1.577 -0.86 -1.72 -1.359
– – -1.210 0.492 178.72 -0.596

OSC 0.840 0.095 0.700 -0.828 -7.64 -0.580
– – -1.150 0.648 176.34 -0.744

Table A.3: Optimal Disturbances at y+ = 4 over all Time

A.2 Optimal Disturbances for Reτ = 360
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Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.460 0.091 1.629 -0.86 -1.89 -1.407
– – -1.237 0.642 178.15 -0.794

OSC 0.985 0.137 0.730 -0.910 -9.82 -0.664
– – -1.295 0.847 174.81 -1.097

Table A.4: Optimal Disturbances at y+ = 5 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.880 0.145 1.581 -1.02 -2.84 -1.606
– – -1.395 0.678 177.85 -0.946

OSC 1.291 0.203 0.843 -0.944 -10.01 -0.796
– – -1.323 0.816 174.45 -1.080

Table A.5: Optimal Disturbances at y+ = 7 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.269 0.235 1.538 -1.00 -3.85 -1.537
– – -1.445 0.815 176.66 -1.178

OSC 1.684 0.276 1.136 -0.987 -8.09 -1.121
– – -1.345 0.851 174.09 -1.145

Table A.6: Optimal Disturbances at y+ = 10 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.560 0.372 1.347 -0.87 -5.35 -1.170
– – -1.649 0.769 176.12 -1.268

OSC 2.168 0.346 1.631 -1.181 -6.59 -1.927
– – -1.274 0.730 174.78 -0.931

Table A.7: Optimal Disturbances at y+ = 15 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.532 0.461 1.251 -0.94 -7.81 -1.179
– – -1.713 1.095 173.36 -1.876

OSC 2.317 0.418 1.444 -1.226 -8.71 -1.770
– – -1.326 0.850 173.41 -1.127

Table A.8: Optimal Disturbances at y+ = 20 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.248 0.678 1.087 -0.92 -14.37 -1.004
– – -1.942 1.416 167.60 -2.750

OSC 2.197 0.630 1.190 -0.992 -13.45 -1.180
– – -1.386 0.978 168.56 -1.355

Table A.9: Optimal Disturbances at y+ = 30 over all Time
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Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.887 0.811 0.980 -0.97 -22.98 -0.947
– – -1.686 1.405 160.29 -2.368

OSC 1.910 0.767 1.145 -0.970 -18.80 -1.111
– – -1.500 1.208 162.09 -1.812

Table A.10: Optimal Disturbances at y+ = 44 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.750 0.844 1.025 -1.00 -25.28 -1.029
– – -1.553 1.371 156.95 -2.130

OSC 1.790 0.807 1.110 -1.008 -22.25 -1.120
– – -1.449 1.208 159.41 -1.751

Table A.11: Optimal Disturbances at y+ = 51 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.556 0.843 1.081 -1.02 -27.07 -1.103
– – -1.560 1.442 153.42 -2.248

OSC 1.617 0.810 1.135 -0.981 -23.41 -1.113
– – -1.515 1.333 156.22 -2.019

Table A.12: Optimal Disturbances at y+ = 63 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.432 0.824 1.115 -1.13 -30.27 -1.260
– – -1.275 1.444 146.91 -1.841

OSC 1.494 0.795 1.134 -0.983 -24.76 -1.115
– – -1.429 1.380 152.82 -1.972

Table A.13: Optimal Disturbances at y+ = 75 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.313 0.791 1.224 -1.15 -29.51 -1.408
– – -1.365 1.324 149.68 -1.807

OSC 1.371 0.765 1.100 -0.978 -26.39 -1.076
– – -1.473 1.376 152.46 -2.028

Table A.14: Optimal Disturbances at y+ = 90 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.243 0.767 1.139 -1.03 -29.25 -1.177
– – -1.407 1.243 151.40 -1.748

OSC 1.297 0.745 1.072 -0.973 -27.52 -1.044
– – -1.449 1.423 150.58 -2.063

Table A.15: Optimal Disturbances at y+ = 100 over all Time
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Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.093 0.722 1.094 -1.02 -31.50 -1.112
– – -1.435 1.257 149.96 -1.805

OSC 1.165 0.708 1.012 -0.941 -29.49 -0.952
– – -1.489 1.395 150.34 -2.078

Table A.16: Optimal Disturbances at y+ = 120 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.013 0.695 0.971 -1.06 -36.84 -1.029
– – -1.496 1.398 147.34 -2.093

OSC 1.101 0.686 1.024 -0.936 -29.67 -0.958
– – -1.440 1.419 148.46 -2.044

Table A.17: Optimal Disturbances at y+ = 130 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 0.871 0.598 0.996 -0.98 -34.03 -0.975
– – -1.516 1.694 142.47 -2.568

OSC 0.974 0.598 1.101 -0.972 -28.46 -1.071
– – -1.555 1.624 147.33 -2.526

Table A.18: Optimal Disturbances at y+ = 150 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 0.845 0.594 0.993 -0.89 -32.16 -0.882
– – -1.595 1.508 146.39 -2.405

OSC 0.936 0.595 1.099 -0.999 -30.02 -1.098
– – -1.592 1.647 146.64 -2.622

Table A.19: Optimal Disturbances at y+ = 160 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 0.341 0.008 1.252 -0.60 -0.65 -0.751
– – -1.048 0.360 179.53 -0.377

OSC 0.273 0.010 0.837 -0.544 -1.35 -0.455
– – -0.804 0.285 179.27 -0.229

Table A.20: Optimal Disturbances at y+ = 1 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 0.962 0.053 1.571 -0.85 -1.70 -1.330
– – -1.109 0.516 178.53 -0.572

OSC 0.713 0.063 0.813 -0.773 -4.79 -0.628
– – -0.970 0.423 177.80 -0.410

Table A.21: Optimal Disturbances at y+ = 3 over all Time
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Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.205 0.079 1.461 -0.84 -2.15 -1.220
– – -1.151 0.596 178.05 -0.686

OSC 0.882 0.099 0.937 -0.933 -6.40 -0.874
– – -1.048 0.506 176.89 -0.530

Table A.22: Optimal Disturbances at y+ = 4 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.416 0.104 1.627 -1.01 -2.61 -1.643
– – -1.172 0.677 177.57 -0.794

OSC 1.033 0.140 0.975 -1.028 -8.11 -1.001
– – -1.156 0.613 175.89 -0.709

Table A.23: Optimal Disturbances at y+ = 5 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.805 0.165 1.636 -1.04 -3.31 -1.696
– – -1.342 0.740 177.12 -0.993

OSC 1.344 0.203 1.144 -1.071 -8.06 -1.225
– – -1.217 0.627 175.55 -0.763

Table A.24: Optimal Disturbances at y+ = 7 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.166 0.260 1.540 -1.06 -4.73 -1.633
– – -1.470 0.815 176.19 -1.198

OSC 1.718 0.277 1.391 -1.114 -7.35 -1.550
– – -1.254 0.636 175.32 -0.798

Table A.25: Optimal Disturbances at y+ = 10 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.404 0.399 1.273 -0.96 -7.15 -1.226
– – -1.542 0.997 173.87 -1.537

OSC 2.108 0.376 1.479 -1.122 -7.71 -1.660
– – -1.242 0.774 173.66 -0.961

Table A.26: Optimal Disturbances at y+ = 15 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.359 0.481 1.127 -0.99 -10.14 -1.114
– – -1.648 1.080 172.38 -1.779

OSC 2.184 0.453 1.376 -1.234 -10.54 -1.698
– – -1.346 0.994 171.29 -1.339

Table A.27: Optimal Disturbances at y+ = 20 over all Time
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Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 2.111 0.693 1.157 -0.99 -15.70 -1.146
– – -1.667 1.274 165.90 -2.124

OSC 2.056 0.661 1.213 -1.057 -15.65 -1.282
– – -1.370 1.093 165.62 -1.497

Table A.28: Optimal Disturbances at y+ = 30 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.832 0.826 1.066 -1.01 -23.06 -1.074
– – -1.456 1.133 160.66 -1.649

OSC 1.841 0.790 1.156 -1.072 -21.68 -1.239
– – -1.420 1.213 159.86 -1.722

Table A.29: Optimal Disturbances at y+ = 44 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.739 0.868 1.151 -1.02 -23.81 -1.170
– – -1.474 1.224 157.48 -1.804

OSC 1.761 0.831 1.146 -1.057 -23.53 -1.212
– – -1.408 1.256 157.17 -1.768

Table A.30: Optimal Disturbances at y+ = 51 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.614 0.886 1.213 -1.10 -26.50 -1.336
– – -1.424 1.279 153.76 -1.821

OSC 1.649 0.849 1.191 -1.083 -25.08 -1.290
– – -1.415 1.318 154.37 -1.865

Table A.31: Optimal Disturbances at y+ = 63 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.533 0.888 1.185 -1.07 -27.66 -1.272
– – -1.367 1.303 151.11 -1.781

OSC 1.575 0.852 1.160 -1.093 -27.02 -1.268
– – -1.382 1.323 152.60 -1.829

Table A.32: Optimal Disturbances at y+ = 75 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.455 0.880 1.218 -1.12 -29.15 -1.368
– – -1.359 1.208 151.75 -1.642

OSC 1.501 0.847 1.220 -1.107 -27.13 -1.350
– – -1.430 1.377 151.48 -1.969

Table A.33: Optimal Disturbances at y+ = 90 over all Time
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Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.413 0.871 1.188 -1.20 -31.95 -1.429
– – -1.349 1.314 149.03 -1.773

OSC 1.459 0.841 1.257 -1.136 -27.51 -1.428
– – -1.350 1.343 150.17 -1.814

Table A.34: Optimal Disturbances at y+ = 100 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.342 0.848 1.200 -1.15 -31.25 -1.383
– – -1.455 1.321 150.15 -1.922

OSC 1.387 0.823 1.229 -1.101 -28.00 -1.353
– – -1.375 1.341 149.94 -1.843

Table A.35: Optimal Disturbances at y+ = 120 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.305 0.821 1.175 -1.17 -32.17 -1.380
– – -1.339 1.275 149.07 -1.707

OSC 1.348 0.800 1.235 -1.129 -28.49 -1.394
– – -1.453 1.407 150.14 -2.044

Table A.36: Optimal Disturbances at y+ = 130 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.208 0.678 1.260 -1.34 -30.89 -1.690
– – -1.341 1.475 148.30 -1.978

OSC 1.251 0.668 1.250 -1.291 -28.88 -1.615
– – -1.484 1.695 148.62 -2.516

Table A.37: Optimal Disturbances at y+ = 150 over all Time

Case σ+
us σ+

ur
us
σus

ur
σur

θ usur
σusσur

STD 1.179 0.672 1.133 -1.32 -33.58 -1.496
– – -1.465 1.583 148.35 -2.319

OSC 1.224 0.662 1.252 -1.235 -28.06 -1.546
– – -1.492 1.697 148.43 -2.531

Table A.38: Optimal Disturbances at y+ = 160 over all Time
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Appendix B

Figures

B.1 Stresses

Figure B.1: Contours of the Reynolds stresses as a function of wall oscillation phase for
Reτ = 170. Non-drag related statistics
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Figure B.2: Contours of the azimuthal components of Reynolds stresses as a function of
wall phase for Reτ = 360. Non-drag related stresses

B.2 JOINT DISTRIBUTION OF STREAMWISE-RADIAL
FLUCTUATIONS AT REτ = 170
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Figure B.3: Probability Distribution of the Streamwise and Azimuthal Fluctuations at
y+ = 44 for the standard pipe; Reτ = 170

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.4: Probability Density Function of (u′x, u
′
r) at y+ = 44
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.5: Probability Density Function of (u′x, u
′
r) at y+ = 44

Figure B.6: Probability Distribution of the Streamwise and Azimuthal Fluctuations at
y+ = 150 for the standard pipe; Reτ = 170
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.7: Probability Density Function of (u′x, u
′
r) at y+ = 150

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.8: Probability Density Function of (u′x, u
′
r) at y+ = 150
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B.3 DISTRIBUTION OF REYNOLDS STRESS REτ170

Figure B.9: Premultiplied Probability Distribution of the Streamwise and Azimuthal
Fluctuations at y+ = 44 for the standard pipe; Reτ = 170
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.10: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 44

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.11: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 44
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Figure B.12: Premultiplied Probability Distribution of the Streamwise and Azimuthal
Fluctuations at y+ = 150 for the standard pipe; Reτ = 170

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.13: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 150
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.14: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 150
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B.4 JOINT DISTRIBUTION OF STREAMWISE-RADIAL
FLUCTUATIONS AT REτ = 360

Figure B.15: Probability Distribution of the Streamwise and Azimuthal Fluctuations at
y+ = 44 for the standard pipe; Reτ = 360
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.16: Probability Density Function of (u′x, u
′
r) at y+ = 44

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.17: Probability Density Function of (u′x, u
′
r) at y+ = 44
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Figure B.18: Probability Distribution of the Streamwise and Azimuthal Fluctuations at
y+ = 150 for the standard pipe; Reτ = 360

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.19: Probability Density Function of (u′x, u
′
r) at y+ = 150
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.20: Probability Density Function of (u′x, u
′
r) at y+ = 150
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B.5 DISTRIBUTION OF REYNOLDS STRESS REτ360

Figure B.21: Premultiplied Probability Distribution of the Streamwise and Azimuthal
Fluctuations at y+ = 44 for the standard pipe; Reτ = 360
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.22: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 44

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.23: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 44
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Figure B.24: Premultiplied Probability Distribution of the Streamwise and Azimuthal
Fluctuations at y+ = 150 for the standard pipe; Reτ = 360

(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 8

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 16

32π

Figure B.25: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 150
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(a) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 24

32π
(b) Probability Distribution of the Streamwise and
Azimuthal Fluctuations: φ = 32

32π

Figure B.26: Premultiplied Probability Density Function of (u′x, u
′
r) at y+ = 150
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