
 
 

Forward Osmosis Desalination Using Thermoresponsive Hydrogels as Draw Agents;  

An Experimental Study  

by 

Adnan Abdullahi 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  

Master of Science  

 

 

 

 

 

 

 

 

 

 

Approved April 2019 by the 

Graduate Supervisory Committee:  

 

Patrick Phelan, Chair 

Lenore Dai 

Robert Wang 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

May 2019



 

i 
 

ABSTRACT 

Hydrogel polymers have been the subject of many studies, due to their fascinating ability 

to alternate between being hydrophilic and hydrophobic, upon the application of 

appropriate stimuli. In particular, thermo-responsive hydrogels such as N-

Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature 

(LCST) of 32°C, have been leveraged for membrane-based processes such as using 

NIPAM as a draw agent for forward osmosis (FO) desalination. The low LCST temperature 

of NIPAM ensures that fresh water can be recovered, at a modest energy cost as compared 

to other thermally based desalination processes which require water recovery at higher 

temperatures. This work studies by experimentation, key process parameters involved in 

desalination by FO using NIPAM and a copolymer of NIPAM and Sodium Acrylate 

(NIPAM-SA). It encompasses synthesis of the hydrogels, development of experiments to 

effectively characterize synthesized products, and the measuring of FO performance for 

the individual hydrogels. FO performance was measured using single layers of NIPAM 

and NIPAM-SA respectively. The values of permeation flux obtained were compared to 

relevant published literature and it was found to be within reasonable range. Furthermore, 

a conceptual design for future large-scale implementation of this technology is proposed. 

It is proposed that perhaps more effort should focus on physical processes that have the 

ability to increase the low permeation flux of hydrogel driven FO desalination systems, 

rather than development of novel classes of hydrogels. 
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CHAPTER ONE 

INTRODUCTION 

1.1 State of The World’s Water Resources and Need for Desalination 

Perhaps the most critical natural resource on earth, for which man’s survival is inextricably 

linked to, is water. Water as a resource, is of a paradoxical nature, as its abundant yet scarce 

nature can be said to exist simultaneously.  Although more than 70% of the earth’s surface 

is covered by water, 97% of the water remains unavailable to man due to its salt content 

[1]. Harnessing this vast amount of water by desalination has been studied to great extent, 

and owing to these studies, current technologies exist that allow fresh water to be tapped 

from the available salty water. The national Academy of Engineers (NAE), a global 

reputable body, rightly lists as part of its 14 grand engineering challenges, the challenge of 

providing access to clean water. This is in recognition of the primacy of water and the 

enormity of the challenge that faces mankind if more of earth’s water resources are not 

able to be tapped into sustainably and at lower energy costs than what is the norm today. 

To solve the challenge of water insecurity, scientists and engineers pursuing viable 

solutions can be classified into two main groups. The first group advocates for an approach 

that seeks to optimize the use of current water resources through recycling water and 

developing strategies for promoting reduced water use. The second group, for which this 

work may also be classified under, favors the development of more efficient and less 

expensive desalination methods. It is evident though, that no one approach can on its own 

solve the entirety of the world’s water challenge, and both groups need to trail their 

individual paths, for the benefit of the world. 
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1.2 Current Desalination State of The Art 

Desalination is currently achieved by either thermal approaches such as; Multi stage Flash 

distillation (MFD), Multi Effect Distillation (MED), and Mechanical Vapor compression, 

or by membrane-based processes such as Sea Water reverse osmosis, Brackish water 

reverse osmosis and more relevant to this work, forward osmosis [2]. Membrane-based 

desalination processes as the name implies, require the key use of a semi permeable 

membrane material to effect desalination. On the other hand, thermal approaches to 

desalination rely heavily on thermal energy input to evaporate and condense sea water.  

 Currently, thermal-based desalination processes require 7-14 kWh/m3 while membrane-

based processes require 2-6 kWh/m3 to achieve seawater desalination [4]. Amongst the 

membrane based processed, RO is the most popular and remains indispensable amongst 

membrane desalination options. However, RO has drawbacks, some of which include 

membrane fouling and high operating pressure requirements at low water recovery [4]. 

Engineers and scientists globally are continually dedicating time and resources to reducing 

both the cost of, and energy intake of both thermal and membrane-based desalination 

systems. Given the enormity of the task of attaining global water security, it is crucial that 

any long-term solution be as energy efficient as possible 
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1.3 Forward Osmosis and Issues with Current Draw Agents 

Literature is conscious to note that Forward Osmosis (FO) is an emerging technology that 

on its own has not yet found commercial use. Although FO can be used to achieve direct 

desalination, the energy required to recover conventional FO related draw agents, hinders 

this application. Indirect desalination, where salt water is used as the draw agent, and low-

quality water as the feed is a field where FO has found its niche. This coupled with a low-

pressure RO system does not require a pressure gradient and can achieve desalination at 

lower energy costs [5].  FO works by extracting water from a lower osmotic pressure saline 

feed supply through a semi permeable membrane to a higher osmotic pressure draw agent 

[5]. The now diluted draw agent must be recovered via an additional thermal process, that 

allows for both recovery of draw agent and separated water. 

Draw agents are key to FO, as they can be said to play a similar role to pumps in RO 

processes. The suitability of numerous conventional draw agents has been investigated in 

literature for use in FO direct desalination systems. However due to issues regarding 

recovery of the draw agents at low energy costs, and concerns regarding the portability of 

water produced using these draw agents, their use has been limited [6]. For example, 

ammonium bicarbonate, a thermolytic ammonium salt which has been shown to generate 

sufficient water flux, has been reported to require recovery at a temperature approaching 

60℃ and also comes with the additional drawback of difficulty in completely  separating 

it from the fresh water, resulting in quality impaired water been recovered [6]. This has led 

to the investigation of alternative draw agents, which require lower energy to recover, and 

do not mar the quality of water or lead to membrane fouling, 
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1.4 Overview of Hydrogels and Their Suitability as Draw Agents 

Hydrogels have been defined in a plethora of ways by researchers and chemists. Perhaps, 

one definition that truly captures the essence and functionality of this class of materials is 

the definition that describes hydrogels as – a polymeric material that exhibits the ability to 

swell in water and retain a significant amount of water in its structure but will not itself 

dissolve in water [7]. Hydrogels as a class of materials inherently posses a dual nature. 

They can behave as both hydrophobic and hydrophilic materials, upon the application of 

an appropriate stimuli. It is worthwhile to note that hydrogels refer to a class/group of 

materials and not a single material. 

Switching from a hydrophilic state to a hydrophobic state by hydrogels is usually achieved 

by the application of a stimulus.  Different types of hydrogels have different types of stimuli 

to which they best respond. Figure 1 shows some examples of both physical and chemical 

stimuli that would elicit a response from the hydrogel and force it to transition from being 

hydrophilic to hydrophobic. 

 

Figure 1; A schematic of various stimuli that can cause a reversible volume transition in 

hydrogels. [8] 
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N-isopropylacrylamide (NIPAM) is a class of hydrogels that undergoes a volume phase 

transition upon the application of a temperature stimulus. Literature reports that the LCST 

of NIPAM is around 32℃, which is the temperature required to force NIPAM to change 

from being hydrophilic to hydrophobic [6]. This is evidently a huge leap from the thermal 

decomposition temperature required to regenerate a conventional draw agent like 

ammonium bicarbonate. That is coupled with the facts that NIPAM presents little or no 

fouling to FO membranes, is devoid of issues concerning quality of retrieved water, and 

does not come with the high reverse diffusion of a salt like ammonium bicarbonate [6]. 

Razmjou et al. (2013) demonstrated that thermoresponsive hydrogels, particularly NIPAM, 

can generate enough osmotic pressure to serve as a draw agent for FO desalination. The 

high swelling ratio of NIPAM coupled with the fact that the water drawn through a 

membrane from a saline feed solution can be released at relatively low temperature cost, 

with NIPAM regaining its shape and volume, makes NIPAM an attractive draw agent [6]. 

Furthermore, Amir et al. demonstrated that incorporating a hydrophilic ionic compound to 

NIPAM, such as sodium acrylate (SA) increases the osmotic pressure generatable but at 

the expense of a significant increase in LCST of the new compound. Literature reports that 

a compound generated by the copolymerization of NIPAM and SA would possess an LCST 

of about 80℃ [7]. 
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CHAPTER 2 

SYNTHESIS AND CHARACTERIZATION EXPERIMENTS 

2.1 First Synthesis and Setup of Synthesis Environment 

Hydrogels can be synthesized by a number of ways, as reported by literature. For this work, 

both Thermoresponsive hydrogels, NIPAM and NIPAM-SA, were synthesized via free 

radical polymerization. The compounds required for synthesizing both NIPAM and - 

NIPAM-SA can be classified broadly into three major groups: Monomers, Crosslinkers 

and Initiator.  The monomers for the synthesis used were N-isopropylacrylamide (NIPAM, 

97%), sodium acrylate (SA, 97%), the crosslinker used was Ammonium per sulphate N, 

N′-methylenebisacrylamide (MBA, 99%), while the initiator used was ammonium 

persulfate (APS, ≥98.0%). All compounds used were purchased from Sigma Aldrich and 

were handled and stored according to best practices and standards recommended by the 

supplier. 

The objective of the first synthesis was to become familiar with the synthesis process as 

described by literature and to build confidence in the knowledge of the process. NIPAM-

SA was chosen as the first hydrogel to be synthesized via free radical polymerization. The 

following apparatus were used in the synthesis alongside the required monomers, 

crosslinker and initiator; Beakers, Capped bottles, Volumetric flask, Deionized water, 

Measuring scale, protective gloves and protective glasses and laboratory coat. 
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2.2 General Synthesis Procedure 

The synthesis procedure followed to synthesize both NIPAM and NIPAM-SA are reported 

here. The steps are based of inference from steps followed by Razmjou et al. (2013). Firstly, 

for the synthesis of NIPAM-SA, an equimolar ratio (1:1) of SA and NIPAM monomers 

was dissolved in deionized water at room temperature in a capped bottle to form 16.7 wt.% 

solution. After the complete dissolution of the monomers, 0.057 g of N,N′-

methylenebisacrylamide cross-linker was added to the monomer solution. Polymerization 

was then initiated by adding 0.04 g of ammonium persulfate into the solution at 70 °C. The 

hydrogel Sample was then kept at 70℃ overnight to ensure complete polymerization. The 

obtained hydrogels were immersed daily into fresh deionized water, for a few days, before 

drying at 80℃ in a convection oven to remove any possible un-crosslinked oligomers or 

any unreacted reactants. For the synthesis of NIPAM, the same procedure was followed 

but the difference here been, NIPAM was the only monomer used in the synthesis, as 

against an equimolar ratio of NIPAM and SA used for the synthesis of NIPAM-SA[6]. 

Figure 2 shows a schematic diagram depicting a summary of the steps undertook to achieve 

synthesis of both NIPAM and NIPAM-SA. 

 

 

 

 

  



 

8 
 

 

 

 

 

 

Figure 2: Schematic diagram of general synthesis procedure 
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2.3 Experimental Setup for First Synthesis Of NIPAM-SA 

For the first synthesis, which involved the synthesis of NIPAM-SA via free radical 

polymerization, a simple setup as can be seen from figure 3 was used. It included a Haake 

water bath to help attain and maintain a polymerization temperature of 70℃, a closed flask 

to contain the compound diluted with deionized water, thermocouples connected to an 

Omega data acquisition system, and a computer to visually monitor temperature and record 

readings from the data acquisition hardware. Figure 4 provides a more detailed depiction 

of how the individual components of the experimental setup were connected to each other. 

 

Figure 3; Experimental setup of first synthesis environment for the synthesis of NIPAM-

SA. A water bath, data logger, closed flask, thermocouples and computer can be seen 

connected to synthesize and monitor polymerization temperature. 
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Figure 4: Schematic of experimental setup for first synthesis of NIPAM-SA. This 

synthesis was performed in regular atmosphere 
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Although care was taken to minimize exposure of the diluted compounds to oxygen, it must 

be mentioned that this synthesis was not performed in an inert atmosphere. Literature 

reports that there is an advantage to synthesizing in an inert atmosphere, as the presence of 

oxygen may prevent complete polymerization [6]. Figure 5 shows an image of the output 

product from the first synthesis. It can be seen to have taken the shape of the cross section 

of the round bottom flask it was synthesized in. 

 

Figure 5: NIPAM-SA produced from first synthesis. For perspective on the size of the 

hydrogel, the inner cavity of the holding container shown here was 5mm, and the sample 

of hydrogel had little wiggle room when placed in it.  
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2.4 Synthesis of NIPAM and NIPAM-SA in An Inert Atmosphere 

Recall from section 2.3 that synthesis was performed in “open air” and not without 

attaining an inert atmosphere. The initial synthesis environment did not have a ready supply 

of inert gas, hence synthesis had to be conducted in a glove box equipment courtesy of the 

Eyring Material’s Center, Arizona State University. The glove box fitted with a ready 

supply of nitrogen, which is an inert gas, availed an inert atmosphere for synthesis to be 

conducted. The hardware setup for synthesis was similar to the setup for the synthesis in 

open air atmosphere, except that the Haake water bath was replaced with a hot plate heater 

filled with sand to serve as a thermal sink and the temperature data acquisition system was 

replaced with a liquid-in-glass thermometer. The glove box maintained a nitrogen 

atmosphere while polymerization was taking place and allowed access to the box to adjust 

temperature settings or adjust placement of beakers without running the risk of 

contaminating the inert atmosphere.  Figure 6 shows a pictorial view of the glovebox setup, 

showing the sand heating system and the separate jars of NIPAM and NIPAM-SA. Figure 

7 provides a schematic diagram showing the connections of the individual components of 

the experimental setup, 
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Figure 6: Experimental setup inside glovebox, with a flow of nitrogen gas maintaining 

inert atmosphere. 
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Figure 7: Schematic diagram showing the connection of the individual components of the 

experimental setup of the inert atmosphere synthesis of NIPAM and NIPMA-SA 
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2.5 Validation of Hydrogels Synthesis Via Swelling Ratio Comparison 

The swelling ratio of the synthesized hydrogel is perhaps the most important parameter to 

be measured, as it determines how much of an osmotic pressure the hydrogel can generate, 

ergo how efficient it will be in FO desalination. For this work, it was crucial to use the 

information obtained about the swelling ratios of the hydrogels to ascertain the validity of 

the synthesis procedure undertook. This test shed light on whether there was any gain in 

synthesizing in an inert atmosphere, and if the addition of a hydrophilic ionic group like 

Sodium Acrylate to NIPAM really had a positive effect on the swelling ratio as suggested 

by reference literature [6]. 

This test involved studying gravimetrically the mass gain of dry samples of both NIPAM 

and NIPAM-SA immersed in room temperature water, as a function of time. Swelling ratio 

as the name implies is the ratio of the mass change in the given hydrogel sample when 

immersed in a fluid over a given period, to the original dry weight of the sample: 

𝑆𝑊 =
(𝑀𝑠(𝑡)−𝑀𝐷)

𝑀𝐷
                                                              (1) 

From equation 1, we see that swelling ratio (SWR) is time dependent as the mass of wet 

hydrogel Ms varies as time evolves. 

The experimental setup for this test involved a digital scale balance, dry samples of both 

NIPAM and NIPAM-SA, and a stopwatch for accurate recording of the time the samples 

were immersed in water. Results of these tests are presented in Chapter 3. 
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2.6 Validation of Hydrogels Synthesis Via LCST Tests 

The LCST of hydrogels particularly the class of hydrogels under study which are 

thermoresponsive is of key importance as regards to not only their suitability as draw 

agents in terms of energy required to recover draw agent but can also serve to validate 

synthesis. For this study, LCST reference points of 32-34℃ and ~80℃ are the expected 

LCST for NIPAM and NIPAM-SA respectively [7][6]. 

To investigate this predicted behavior, the experimental setup consisted of applying 

temperature stimuli to both samples and ascertain their gravimetric response at relevant 

temperature values. The constant heat supply was provided by a Haake water bath, and the 

internal temperature of the gel samples was confirmed with thermocouples carefully placed 

in the gels. A scale balance alongside a timer was used to ascertain water loss as time 

evolved, and results from the experiment performed on both NIPAM and NIPAM-SA are 

available in Chapter 3. Figure 8 and figure 9, provide a pictorial view of the setup used for 

the test on both NIPAM-SA and NIPAM respectively. It must be mentioned that there is a 

unique difference as to how NIPAM-SA and NIPAM were tested for this study, albeit great 

similarity in their experimental setup. The difference being that in the case of NIPAM-SA, 

a swollen sample of NIPAM-SA was immersed in a beaker containing water at regulated 

temperatures, and its weight was monitored as temperature increased to ascertain the 

equivalent temperature when its weight gain would become insignificant and the sample 

would begin to shrink. While for NIPAM, the swollen sample was placed in a dry jar, 

which was then heated by a water bath over a range of pertinent temperature values while 

tracking water loss. 
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Figure 8; Experimental setup for NIPAM-SA LCST investigation. 

Figure 9: Experimental setup for NIPAM LCST investigation 
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2.7 Setup of FO Desalination Experiments 

 

Desalination experiments were performed using synthesized NIPAM and NIPAM-SA 

individually in a homemade cell along with a cellulose triacetate flat sheet membrane. The 

objective of this round of experiments was to measure FO performance of synthesized 

hydrogels comparatively to obtainable results in published literature. 

Of relevance to this work are the permeation flux and dewatering flux performance of the 

synthesized hydrogels. To this effect, and for ease of comparison a 2000-ppm salt solution, 

same as used in reference literature (Razmjou et al et al. 2013) was used as the feed 

solution. A water-tight glass jar with a sizeable circular opening in the top allowing for 

placement of FO membrane was used, as can be seen in figure 11. The FO cell assembly 

consisting of the membrane-covered glass jar and particulate hydrogel samples placed on 

top were placed on top a hotplate stirrer, whose only role was to provide the stirring motion 

to avoid accumulation of salt close to the membrane. This assembly/arrangement is 

depicted in figure 12 [9]. The glass jar serving as the homemade FO module, was carefully 

chosen due to its partial open top for ease of membrane placement and the slight offset it 

gives when closed that allows the feed water to always be in contact with the membrane. 

For an initial test of the homemade FO cell module, a dry sample of NIPAM-SA, depicted 

in figure 10 was placed atop the module to ascertain if permeation and hence swelling of 

the dry sample would occur. Figure 11 provides a view of the homemade FO cell, with a 

sample of NIPAM-SA that transitioned from its dry state to the swollen state atop it.  
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Figure 10: 0.9103g of dry NIPAM-SA 

 

 

Figure 11: glass jar used as homemade FO cell module under testing. NIPAM-SA sample 

atop CTA membrane swelled to 5.0809g after a 48hr period, from a dry weight of 0.9103g 
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Figure 12: Setup of desalination experiment with a layer of particle hydrogels on 

membrane. 
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2.8 Setup of Vapor adsorption test on NIPAM-SA 

 

The liquid absorption capabilities of NIPAM are well established and documented in 

literature. However, very little is known about its vapor adsorption capabilities. Due to 

NIPAM’S relatively low LCST, if found suitable for adsorption, it could be further 

leveraged as an adsorbent for adsorption cooling systems. 

NIPAM-SA, attained by the introduction of the highly hydrophilic ionic group Sodium 

acrylate into NIPAM, proved to be a greater absorber of liquid as compared to NIPAM, 

and hence it was hypothesized that perhaps it would yield more impressive adsorption rates 

than NIPAM as well. The experimental setup consisted simply of a humidifier to generate 

water vapor, a compressed air supply, and an accumulation chamber where the flow of air 

and vapor could mix. An Arduino based temperature and humidity sensor was used to 

ensure that relative humidity stayed between 80-90℃ at all times. The sample of NIPAM-

SA was placed in a test bed which was also linked to the accumulation chamber. A 

gravimetric approach was used to ascertain the percentage by mass of vapor adsorped by 

the sample. Figure 13 provides a pictorial description of the test setup and the 

interconnections between individual elements. 
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Figure 13: Vapor adsorption experimental setup 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Swelling Ratio Comparison Of NIPAM-SA’s Synthesized in Different Atmospheres 

 

Figure 14: This graph shows the comparison of the swelling ratios of two samples of 

NIPAM-SA synthesized under inert atmosphere and regular atmosphere respectively. The 

test was performed at room temperature of 23℃. 

 

The test for which figure 14 represents, was performed by simple immersion of the samples 

in room temperature water of 23℃. The NIPAM-SA synthesized in the glove box with 

flowing nitrogen at the atmosphere, clearly outperformed the product synthesized in the 

regular atmosphere as indicated by the disparity in swelling ratios over the same time 

interval. The synthesis conducted in the purge box performed better due to the fact that 

polymerization proceeded completely and was not hindered by oxygen as was the case for 

the synthesis conducted in regular atmosphere with oxygen present. 
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   3.2 Swelling ratio Comparison between NIPAM and NIPAM-SA 

 

Figure 15: This graph shows the comparison between swelling ratios of NIPAM and 

NIPAM-SA over time. Both samples were synthesized in an inert atmosphere glove box, 

with flowing nitrogen as the gas supply. 

 

 NIPAM-SA, due to the introduction of the hydrophilic ionic group of Sodium Acrylate, 

performed better as expected in terms of swelling ratio than NIPAM performed. It is 

interesting to see the huge disparity in performance over time between NIPAM-SA and 

NIPAM in terms of swelling ratio. This result provides backing to Ramzjou et al (2013) 

claim that NIPAM-SA could generate flux greater than NIPAM, and this feature made it 

suitable to serve as the absorptive layer for a proposed novel bi-layer hydrogel driven FO 

desalination system. 

   

 



 

25 
 

3.3 LCST Test for NIPAM 

 

Figure 16 ;This graph shows the dewatering profile of NIPAM at the predicted LCST 

temperature of 32 degrees Celsius, and at temperatures approaching LCST, such as 25℃ 

and 28℃  

 

It is observed, as indicated by the graph, that water is lost rapidly in the first 20 minutes, 

then less rapidly as time evolves. This is consistent with the general reported behavior of 

NIPAM in literature[6][9][10]. The test was also performed at temperatures below LCST 

of NIPAM such as at 25 C and at 28 C, with no notable change in mass recorded. The 

graph shows different starting points in terms of swelling ratios, because different samples 

were used which all possessed unique individual initial swelling rations.  
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3.4 LCST Test for NIPAM-SA  

 

Figure 17; Presented here, is the result from the LCST test performed on NIPAM-SA at 

temperatures of 45℃, 75℃ and 85℃. 

 

NIPAM-SA has a comparatively greater LCST temperature than NIPAM, which literature 

reports to be ~ 80℃ [7]. This test differs uniquely from LCST test conducted on NIPAM, 

as a swelling test (sample immersed in fluid as depicted by figure 8) at temperatures 45℃, 

70℃, 85℃ was performed to investigate its swelling behavior at key temperatures. It is 

seen that the swelling performance reduces drastically with increase in temperature, and 

this is more significantly as the sample is immersed in fluid in the region of its LCST at 

85℃. 
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3.5 Desalination Results 

 

 

Figure 18: Presented here is the permeation flux for a sample (particle) of dry NIPAM-SA 

with mass 0.95695g, spread over an area of 1.5386cm2. Permeation experiment was 

conducted over a period of 4 hours with a feed solution of 2000ppm prepared salt solution.  

 

As can be seen the average permeation flux generally decreased as time evolved. Ramzjou 

et al. (2013) reports a decreasing trend in permeation flux with a single layer of NIPAM-

SA. Ramzjou et al. (2013) reports a permeation flux peak of ~ 0.25L.m-2.h-1, and a low of 

~0.13L.m-2.h-1.Comparatively, studies conducted in this work presents a peak permeation 

flux 0.2072 L.m-2.h-1, and a low of ~0.1060L.m-2.h-1.  
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Figure 19: Presented here is the permeation flux for a sample (particle) of dry NIPAM with 

mass 0.8662g, spread over an area of 1.5386cm2. Permeation experiment was conducted 

over a period of 4 hours with a feed solution of 2000ppm prepared salt solution.  

 

As can be seen the average permeation flux generally decreased as time evolved. Razmjou 

et al (2013) reports a decreasing trend in permeation flux with a single layer of NIPAM. 

Amir et al (2013) reports a permeation flux peak of ~0.14L.m-2.h-1, and a low of 

~0.052L.m-2.h-1.Comparatively, studies conducted in this work presents a peak permeation 

flux 0.07L.m-2.h-1, and a low of 0.0032L.m-2.h-1.  
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3.6 Result of Vapor Adsorption Test on NIPAM-SA  

 

 

Figure 20: Presented here is the percent by mass of adsorped vapor by NIPAM-SA against 

time for a period of 4 hours. 

 

The results obtained are not as impressive as expected, and when compared to liquid 

absorption performance of NIPAM-SA, which absorbed over 300% of its mass in liquid 

over a 2-hour period from swelling test depicted in figure 14 (at 45℃) , the conclusion of 

poor performance is easy to reach. Further studies on adsorption, especially in the context 

of Thermoresponsive hydrogels are needed to fully understand and improve the adsorption 

potential of NIPMA-SA. 
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CHAPTER 4 

COCNLUSIONS AND FUTURE WORKS 

4.1 Conceptual Hydrogel Driven FO Design  

The low permeation flux by generated by NIPAM and NIPAM-SA layers, and even with a 

bilayer arrangement using a thin layer of NIPAM-SA as the absorptive layer due to its 

greater osmotic pull and a layer of NIPAM as the dewatering layer, is abysmal compared 

to a conventional FO draw agent such as ammonium bicarbonate, which can generate flux 

~10LMH for saline solutions comparable to sea water( 0.5M NaCl solution)[12]. Studies 

on the suitability of hydrogels as draw agents ultimately propose designs modelled around 

either a flat sheet membrane or a hollow fiber membrane. Razmjou et al (2013) proposed 

a semi batch hydrogel driven system modelled around a flat-sheet membrane with a solar 

concentrator delivering the energy input. Yufeng et al (2013) proposed a waste heat driven 

system modelled around a hollow fiber membrane, coated with semi-IPN hydrogels as 

draw agents.  

For any proposed concept, a system of temperature control must be established, to achieve 

the alternation between ~ room temperature and relevant LCST temperature. For the 

concept proposed by this work, an indoor bi layer design inspired by Razmjou et al (2013), 

leveraging the unique properties of both NIPAM-SA (high swelling ratio) and NIPAM 

(low LCST) is recommended alongside a hollow fiber membrane. The feed solution passes 

through the hollow fiber membrane and the bilayer arrangement of Thermoresponsive 

NIPAM and NIPAM-SA generate osmotic pressure to perform desalination. Temperature 

is proposed to be controlled by a relay, a temperature controller connected to the 



 

31 
 

dewatering layer of the bilayer hydrogel arrangement and a DC powered heat supply. Since 

the idea is for the proposed design to be an indoor “home module”, the DC powered heater 

can be connected with the battery supply of a home’s solar power system. Figure 21 shows 

a flowchart summarizing the proposed concept. 

 

Figure 21: Schematic representation of key components of proposed conceptual bilayer 

hydrogel driven FO desalination system. Except for the energy require to pump feed water 

through the system, the actual dewatering of the NIPAM layer would be provided by a DC 

power source, preferably a battery linked to a home solar power system.  
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4.2 Energy Requirement for NIPAM layer Dewatering 

 

It is crucial to be able to ascertain the energy requirement of any proposed design that 

requires the use of thermoresponsive hydrogels as draw agents. Ultimately, for hydrogel-

driven FO systems, the matter simplifies to an evaluation of the energy required to cause a 

reversible volume phase transition at the LCST temperature. The minimum energy required 

to achieve a breakdown of the NIPAM layer and hence dewatering serves as the guideline 

for comparison with other membrane-based processes.  

Perhaps, a better understanding of the mechanism of water release in NIPAM would aid in 

the understanding of the underlying governing thermodynamic equations that evaluates the 

minimum required energy. When NIPAM experiences a temperature above its LCST, 

PNIPAM chains receive energy to rearrange bound water into free water, and to cause 

association of hydrophobic segments of PNIPAM changes to force the release of water [6]. 

Figure 22 describes the volume phase transition process and the corresponding associated 

energy requirement for each stage. 
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Figure 22: Breakdown of the energy components of the volume phase transition of NIPAM 

 

The absorbing heat for apolar dehydration (∆𝐻𝐶) is due to the restructuring of water cages 

to bulk water around the NIPAM polar region, the absorbing energy for polar dehydration 

(∆𝐻ℎ𝑔) is due to the rearrangement of water molecules around the amide group to form 

bulk water, while the releasing heat (∆𝐻𝑟𝑒𝑠) is a result of the intermolecular interaction 

between PNIPAM residues.[6] 

                               Hence:   ∆𝐻𝑡𝑟𝑎𝑛𝑠 =  ∆𝐻𝐶 + ∆𝐻ℎ𝑔 −∆𝐻𝑟𝑒𝑠             (2) 

Reference literature gives the values of ∆𝐻𝐶 = 7.9𝑘𝐽/𝑚𝑜𝑙, ∆𝐻ℎ𝑔 = 17 − 22.6𝑘𝐽/𝑚𝑜𝑙, 

∆𝐻𝑟𝑒𝑠=-22.6𝐾𝐽/𝑚𝑜𝑙[6][10]. Hence given the ranges, we can deduce ∆𝐻𝑡𝑟𝑎𝑛𝑠 = 2.3-

7.9KJ/mol , and based on the molar mass of NIPAM (113.6g/mol) , we can deduce a range 

of 20.25-69.54𝑘𝐽/𝑘𝑔𝑃𝑁𝐼𝑃𝐴𝑀 as against  20.25-64.26𝑘𝐽/𝑘𝑔𝑃𝑁𝐼𝑃𝐴𝑀 reported in Ramzjou et 

al., which appears to be an arithmetic error on the author’s part. Hence, averaging both 
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extremes yields a value of 44.90𝑘𝐽/𝐾𝑔𝑃𝑁𝐼𝑃𝐴𝑀 as against 42.25𝑘𝐽/𝐾𝑔𝑃𝑁𝐼𝑃𝐴𝑀 reported by 

the author [6]. 

 It is worth noting that practically the energy required to deswell hydrogel is greater than 

the minimum theoretical energy due to portions of the energy being stored by free water. 

This however can be significantly reduced when the released water, which is at the same 

temperature as the LCST, is used to preheat the feed water. The energy stored by the free 

water is given by eqn (3) below. It accounts for the specific heat capacity of water (𝐶𝑝) 

with value 4.18J/g℃, a difference in temperature(∆𝑇)of 7℃ signifying a temperature rise 

in the water from room temperature of  25℃ to the hydrogel LCST temperature of  32℃, 

and the mass of water present (m) obtainable by the product of the swelling ratio of the 

hydrogel (Q) and the dry mass of hydrogel (𝑚ℎ). 

𝑞 = 𝑚𝐶𝑝∆𝑇=𝑄𝑚ℎ𝐶𝑝∆𝑇           eqn (3) 

Ultimately, eqn (4) presented below provides an accounting of all energies require for the 

release of water from a given sample of swollen hydrogel. 

                                              𝑤 = 𝑞 + 𝑚ℎ∆𝐻𝑡𝑟𝑎𝑛𝑠              (4) 

                  

The energy stored by the feed water can be used for the preheating of subsequent swelling 

cycles. Assuming perfect heat transfer, and hence raising the temperature of the feed water 

through preheating results in ∆𝑇 bcoming reasonably small and hence a drastic reduction 

in 𝑞 . Preheating the feed water with free water from collapse of the hydrogel results in the 

energy stored by the free water becoming negligible and hence eqn (4) can be simply 

resolved to eqn (5), given below. 
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                                        𝑤~𝑚ℎ∆𝐻𝑡𝑟𝑎𝑛𝑠               (5)                        

        

For context and to provide a baseline for comparison of the energy requirements of more 

established desalination technologies, a NIPAM sample with a dry mass of 1g would 

require between 0.02kJ-0.07kJ for liberation of free water. Taking into account the quantity 

of water liberated which is a product of the swelling ratio and the dry mass of hydrogel, 

the energy required translates to 4-14𝑘𝐽/𝑘𝑔 as against the 4-12.8kJ/kg reported by 

Ramzjou et al (2013). This value obtained translates to 1.11−3.9𝑘𝑊ℎ𝑟/𝑚3, as compared 

to 2.2 𝑘𝑊ℎ𝑟/𝑚3  at which well optimized RO plants operate [11]. This comparison also 

must be put in the context that most RO plants operate at a recovery of 50% as compared 

to the unrealistic assumption that 100% water recovery is attained when NIPAM collapses.  
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4.2 Conclusion and Future Works 

Despite the low permeation flux values recorded in this work, which is consistent with 

obtainable values in literature, hydrogels still represent a fascinating alternative for draw 

agents due to their membrane friendliness, water compatibility, and in the case of NIPAM, 

low LCST. A bi-layer arrangement as put forth by Razmjou et al (2013) presents great 

promise, if a means of drastically increasing permeation flux to values at least comparable 

with conventional draw agents such as ammonium bi carbonate, can be developed. Future 

endeavors should investigate what mechanism could perhaps allow for drastic 

improvement in permeation flux. Although current literature favors the investigation of 

possible materials that could be blended with NIPAM, perhaps more effort should be 

placed on physical processes that could increase permeation flux, such as the introduction 

of ultrasound. This work has studied the synthesis and characterization of both NIPAM 

and NIPAM-SA and used them to perform desalination individually, with obtained results 

comparable to published data by Razmjou et al (2013). Furthermore, a  conceptual design 

for a novel home friendly DC powered desalination module using a bilayer arrangement of 

hydrogels has been proposed. 
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APPENDIX A 

MATLAB CODES 
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APPENDIX B 

DSC RESULTS FOR NIPAM AND NIPAM-SA 
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DSC results for NIPAM showing phase transition between 32-33℃ 
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DSC results for NIPAM-SA showing phase transition between 71-80℃ 

 

 

 

 

 

 


