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ABSTRACT  

   

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading 

cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of 

newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria 

commonly use two-component systems (TCS) to sense their environment and genetically 

modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an 

auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates 

investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly 

used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not 

essential in M. smegmatis. During ammonium stress, the ΔprrAB mutant excessively 

accumulates triacylglycerol lipids, a phenotype associated with M. tuberculosis dormancy and 

chronic infection. Additionally, triacylglycerol biosynthetic genes were induced in the ΔprrAB 

mutant relative to the wild-type and complementation strains during ammonium stress. Next, 

RNA-seq was used to define the M. smegmatis PrrAB regulon. PrrAB regulates genes 

participating in respiration, metabolism, redox balance, and oxidative phosphorylation. The M. 

smegmatis ΔprrAB mutant is compromised for growth under hypoxia, is hypersensitive to 

cyanide, and fails to induce high-affinity respiratory genes during hypoxia. Furthermore, PrrAB 

positively regulates the hypoxia-responsive dosR TCS response regulator, potentially explaining 

the hypoxia-mediated growth defects in the ΔprrAB mutant. Despite inducing genes encoding the 

F1F0 ATP synthase, the ΔprrAB mutant accumulates significantly less ATP during aerobic, 

exponential growth compared to the wild-type and complementation strains. Finally, the M. 

smegmatis ΔprrAB mutant exhibited growth impairment in media containing gluconeogenic 

carbon sources. M. tuberculosis mutants unable to utilize these substrates fail to establish chronic 

infection, suggesting that PrrAB may regulate Mtb central carbon metabolism in response to 

chronic infection. In conclusion, 1) prrAB is not universally essential in mycobacteria; 2) M. 

smegmatis PrrAB regulates genetic responsiveness to nutrient and oxygen stress; and 3) PrrAB 

may provide feed-forward control of the DosRS TCS and dormancy phenotypes. The data 
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generated in these studies provide insight into the mycobacterial PrrAB TCS transcriptional 

regulon, PrrAB essentiality in Mtb, and how PrrAB may mediate stresses encountered by Mtb 

during the transition to chronic infection.  

 



  iii 

DEDICATION  
   

To all the people who have helped shape the person I am. Whether they were positive or 

negative influences, I wouldn’t be who I am without them. Special dedication to my family, 

because there’s nothing more important than family and I’m one of the lucky ones to have 

incredibly supportive relatives. 



  iv 

ACKNOWLEDGMENTS  
   

First and foremost, I need to acknowledge my father, Ron, whose constant support has 

been the single-most influential contribution toward my success in grad school and life in general. 

Through all my ups-and-downs, including too many years of uncertainty in my life’s direction, he 

never gave up on me. There is no stronger person in my life and if I can become half the man he 

is, I’m confidant I’ll be ok. I love you dad! 

 To my mother, who passed away from liver cancer when I was two years old. Though I 

never had the chance to grow up with this wonderful woman, her spirit permeates into every good 

thing I do. I don’t fully believe or reject the existence of an afterlife, but I feel she is with me during 

my trials and tribulations. I’m trying to make you proud, mama. 

 Special thanks to my aunt Martha and uncle Stewart, who became my second parents 

after mom died. I wouldn’t have achieved my successes without you. Martha, you filled mom’s 

shoes better than anyone could have, and I know she’s thanking you for doing so. Stewart, I will 

always be grateful for the lessons and morals you imparted to me during my youth, now, and in 

the future. Additionally, to my cousins (better yet, brothers) Rusty (Max), Cody, and Yari. Thanks 

for being the siblings I never had as an only child. We’ve done some stupid things in the past, but 

I wouldn’t change a thing. Though our lives take us in different directions, for better or worse, I 

would be in a much worse place without you.  

 To Dr. Maneesha Muralinath (ASU mama), my first mentor at ASU who believed in me 

and helped me get my scientific “sea legs”. To Dr. Valerie Stout, who’s ever warming smile and 

advice provided me with a sense of calm and reassurance. To my committee, Dr. Heather Bean, 

Dr. Kenneth Roland, and Dr. Todd Sandrin: thank you for your advice and encouragement during 

my graduate school tenure. It’s been a pleasure having your guidance and support throughout my 

graduate education. 

 Finally, to Dr. Shelley Haydel, my committee chair. You gave me the opportunity to work 

in a formal lab setting. I know I haven’t always been your star student, but you showed ever-

lasting patience and a refusal to give up on me. I wouldn’t be the scientist I am today without your 

mentorship and guidance. Thanks for giving me the once-in-a-lifetime chance to make something 



  v 

out of myself. I will do everything I can to make you proud in my future career and scientific 

endeavors. 

 To my girlfriend, Sam. You are my muse and gave me a reason not to quit during my last 

few years of grad school. Thanks for dealing with all my late nights and constant weekends 

working in the lab. I’m glad we had the chance to tackle the challenges of grad school together. I 

love you and will always be your support, friend, and partner. 

 Finally, to all the Haydel lab members of the present and past. Thanks to Dr. Caitlin Otto 

for the honest input regarding details of grad school. To Ryan Lamarca, my lab brother. We 

started our programs together and I couldn’t have had a better lab mate. Your work ethic and 

intelligence will take you far! Rachell Barret, my first lab sister, whom I had the pleasure to mentor 

during my first year. I’ll never forget our rides to-and-from the ASU West campus! I wish you and 

Nick a long, blissful marriage. To Michelle Stevens, the super smarty pants undergraduate and 

my second lab sister. It was an absolute pleasure seeing someone as young and talented as you 

mature in the lab. Thanks to my second lab sister, Rebecca Melo. I know you and Bryan are 

going to do well in California and best of luck during grad school! I’m excited to see lil’ Grayson’s 

pics when he’s born! To everyone else (because there are too many to list), thanks for working 

hard to support Shelley’s research goals. I know I can be intense sometimes, but please realize 

that I always had the lab’s best interest in mind. Continue the proud Haydel lab tradition and take 

care of it well!    



  vi 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ................................................................................................................................. viii  

LIST OF FIGURES ................................................................................................................................. ix  

LIST OF ABBREVIATIONS ................................................................................................................. xiii  

CHAPTER 

1 INTRODUCTION  ................................................................................................................  1  

Mycobacterium tuberculosis and its Global Implications ............................................... 1 

Two-Component Regulatory Systems............................................................................ 2 

The PrrAB TCS of Mycobacteria ................................................................................ 4 

Host-Pathogen Interactions and the Mtb PrrAB TCS ................................................. 8 

The Mtb PrrAB TCS as a Potential Therapeutic Target ........................................... 11 

M. smegmatis as a Genetic Model for Mtb ............................................................... 12 

Nitrogen Metabolism in Mycobacteria ...................................................................... 14 

Mycobacterial Lipids ................................................................................................. 19 

Respiration and Oxidative Phosphorylation in Mycobacteria ................................... 22 

Mycobacterial Dormancy and the DosRS Two-Component Regulatory System ..... 27 

Carbon Metabolism in Mycobacteria ........................................................................ 28 

2 MYCOBACTERIUM SMEGMATIS PRRAB TWO-COMPONENT SYSTEM 

INFLUENCES TRIACYLGLYCEROL ACCUMULATION DURING AMMONIUM 

STRESS ............................................................................................................................. 38 

Publication Note ........................................................................................................ 38 

Abstract ..................................................................................................................... 38 

Introduction ............................................................................................................... 39 

Methods .................................................................................................................... 40 

Results ...................................................................................................................... 48 

Discussion ................................................................................................................ 64 

 



  vii 

CHAPTER              Page 

3 COMPARATIVE TRANSCRIPTOMICS REVEALS PRRAB-MEDIATED CONTROL OF 

METABOLIC, RESPIRATION, AND ENERGY-GENERATING PATHWAYS IN 

MYCOBACTERIUM SMEGMATIS .................................................................................... 69 

Publication Note ........................................................................................................ 69 

Abstract ..................................................................................................................... 69 

Background ............................................................................................................... 70 

Results ...................................................................................................................... 72 

Discussion ................................................................................................................ 88 

Conclusions .............................................................................................................. 93 

Methods .................................................................................................................... 93 

4 MYCOBACTERIUM SMEGMATIS PRRAB REGULATES ACETATE AND 

PROPIONATE METABOLISM: CURRENT RESEARCH AND FUTURE DIRECTIONS ... 

  ............................................................................................................................................ 99 

Introduction .................................................................................................................... 99 

Materials and Methods ................................................................................................ 101 

Results ......................................................................................................................... 105 

Discussion .................................................................................................................... 119 

5 FINAL SUMMARY AND IMPLICATIONS OF THE RESEARCH PRESENTED ........... 127 

 
REFERENCES  .................................................................................................................................. 132 

 



  viii 

LIST OF TABLES 

Table Page 

1.1       Paired TCSs and Orphaned Histidine Kinases and Response Regulators in Mtb and M. 

smegmatis (Msmeg) ................................................................................................................. 6 

2.1       Strains, Mycobacteriophages, and Plasmids Used in This Study  ........................................ 42 

2.2       Oligonucleotide Primers Used in This Study  ......................................................................... 43 

4.1       Accumulated Metabolites in FDL10 Relative to mc2155 and FDL15 in Each Carbon Source 

Tested  ................................................................................................................................. 116 

4.2       Depleted Metabolites in FDL10 Relative to mc2155 and FDL15 in Each Carbon Source 

Tested  ............................................................................................................................. 118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  ix 

LIST OF FIGURES 

Figure Page 

1.1       Diagram of a Prototypical Two-Component Signaling Pathway .............................................. 3 

1.2       PrrA Multiple-Sequence Alignment Between M. smegmatis (Top Row) and Mtb (Bottom 

Row)  ..................................................................................................................................... 7 

1.3       Putative PrrB Environmental Signals and PrrA Genetic Responses in Mtb During Infection  .. 

  ................................................................................................................................... 11 

1.4       Regulation of Nitrogen Assimilatory Pathways in Mycobacteria ............................................ 18 

1.5       The Mycobacterial Respiratory Chain ..................................................................................... 24 

1.6       Central Carbon Metabolism in Mycobacteria ......................................................................... 29 

2.1       Southern Blot and Western Blot Analyses of the M. smegmatis Wild-Type (mc2155), prrAB 

Deletion Mutant (FDL10), and Genetic Complementation Strains (FDL7 and FDL15)........ 49 

2.2       Growth Characteristics of the M. smegmatis Strains in M7H9 Broth and Colony 

Morphologies on M7H10 ADS Agar ....................................................................................... 50 

2.3       Growth Characteristics of the M. smegmatis Strains in (A) SR-1-lowNO3, (B) SR-1-lowAsn, 

and (C) SR-1-lowGln .............................................................................................................. 51 

2.4       Growth Characteristics of the M. smegmatis Strains in SR-1 Media Supplemented with 

Ammonium as the Sole Nitrogen Source ............................................................................... 52 

2.5       Quantitative Analysis of prrA Transcription in mc2155 and FDL15 when Cultured in SR-1-

lowNH4 (2 mM NH4) Relative to M7H9................................................................................... 53 

2.6       Qualitative TLC Analyses of Mycolic Acid/Fatty Acid Methyl Esters (MAMEs/FAMEs) from 

M. smegmatis Cultured in (A) SR-1-lowNH4 and (B) SR-1-highNH4 .......................................................... 54 

2.7       LC/QTOF-MS Analysis of Positively-Charged Ion Lipid Species .......................................... 56 

2.8       LC/QTOF-MS Peak Heights of TAGs Significantly Elevated in the FDL10 ∆prrAB Mutant 

Compared to mc2155 .............................................................................................................. 57 

2.9       Principal Component Analysis (PCA) of M. smegmatis mc2155, FDL7, FDL10, and FDL15 

Strains Subjected to Untargeted Lipid Analysis via LC/QTOF-MS ....................................... 58 

 



  x 

Figure Page 

2.10     Qualitative TLC Analysis of TAG and DAG Lipid Species Isolated from M. smegmatis 

Cultures Grown in SR-1-lowNH4 (2 mM NH4) ........................................................................ 59 

2.11     Second Technical Replicate of Qualitative TLC Analysis of TAG and DAG Lipid Species 

from M. smegmatis Cultures Grown in SR-1-lowNH4 ............................................................ 60 

2.12     Qualitative TLC Analysis of TAG and DAG Lipid Species Isolated from M. smegmatis 

Cultures Grown in SR-1-highNH4 ........................................................................................... 61 

2.13     TAG and Fatty Acid Biosynthetic Genes Were Upregulated in the ∆prrAB Mutant During 

Growth in Low Ammonium (SR-1-lowNH4) ............................................................................ 63 

2.14     Pathways for (A) TAG and (B) Lipid Biosynthesis in M. smegmatis ...................................... 63 

2.15     M. smegmatis Growth in SR-1-lowNH4 Media During Hypoxia ............................................. 64 

3.1       Maximum-Likelihood Phylogenetic Analyses of Mycobacterial (a) PrrA and (b) PrrB 

Sequences Based on the Recent Reclassification of Mycobacterial Species by Gupta et al. 

  ................................................................................................................................... 73 

3.2     Members of the Mycobacterial Abscessus-Chelonae Clade Harbor Unique PrrA Amino Acid 

“Signatures” ............................................................................................................................. 74 

3.3     Members of the Mycobacterial Abscessus-Chelonae Clade Harbor Unique PrrB Amino Acid 

“Signatures” ............................................................................................................................. 75 

3.4     M. smegmatis Growth Characteristics in M7H9 Broth ............................................................. 76 

3.5     Multidimensional Scaling (MDS) Plot of Triplicate M. smegmatis RNA-seq Samples ............ 77 

3.6     Principal Component Analysis (PCA) of M. smegmatis Strains Used for RNA-seq DEG 

Analyses .................................................................................................................................. 77 

3.7     Global DEG Profiles (p < 0.05) Between the mc2155 vs. FDL10 and FDL15 vs. FDL10 RNA-

seq Comparisons .................................................................................................................... 79 

3.8     Global Expression Profile of DEGs (q <0.05) ........................................................................... 80 

3.9     qRT-PCR Verification of Six Randomly Selected Genes from the RNA-seq FDL10 vs. 

mc2155 Comparison ............................................................................................................... 80 

 



  xi 

Figure Page 

3.10     GO Term Enrichment Associated with DEGs (p < 0.05) that are (a, b) Repressed (c, d) or 

Induced by PrrAB in the WT Background .............................................................................. 81 

3.11     COG Analysis of DEGs (p < 0.05) Induced (Yellow) or Repressed (Blue) by PrrAB in the 

WT Background ...................................................................................................................... 82 

3.12     M. smegmatis PrrAB Regulates Dormancy-Associated Genes of the DosR Regulon ......... 83 

3.13     PrrAB is Protective During Hypoxia and Cyanide-Mediated Respiratory Inhibition and 

Regulates Cytochrome bd and dosR Expression .................................................................. 84 

3.14     PrrAB Regulates Oxidative Phosphorylation Genes and ATP Levels in M. smegmatis ....... 87 

3.15     M. smegmatis Extracellular ATP (Supernatant) Expressed as a Percentage of Whole 

Culture Normalized ATP (pM/CFU) ....................................................................................... 87 

3.16     Multiple Sequence Alignment Comparing the M. smegmatis and M. tuberculosis PrrA Amino 

Acid Sequences ...................................................................................................................... 88 

4.1     M. smegmatis Growth Curves in Different Carbon Sources (0.2%) ...................................... 106 

4.2     M. smegmatis Growth Curves in Gluconeogenic Carbon Sources (0.2%) ........................... 107 

4.3     FDL10 is Not Hypersensitive to Acetate or Propionate Toxicity ............................................ 107 

4.4     prrA is Upregulated in the Presence of Acetate and Propionate ........................................... 108 

4.5     Isocitrate Lyase 1 (aceA1) is Upregulated During Growth on Acetate or Propionate ........... 109 

4.6     Pantothenic Acid Partially Rescues the ΔprrAB Mutant Growth in Acetate and Propionate 110 

4.7     FDL10 Accumulates ATP During Growth in M7H9-Acetate or Propionate ........................... 111 

4.8     Average Linkage Hierarchical Cluster Heatmap of 109 Reliably Detected Metabolites by LC-

MS/MS in All Samples Tested .............................................................................................. 113 

4.9     Hierarchical Cluster Heat Map of Metabolites with a VIP Score >1 Shared Between Both 

Carbon Source and Time Point Statistical Models .............................................................. 114 

4.10     The Metabolic Fate of Acetate and Propionate as Sole Carbon Sources via the Glyoxylate 

Shunt and Methylcitrate Cycle, Respectively, in M. smegmatis ...................................... 123 

 

 



  xii 

Figure Page 

5.1     Overview of the M. smegmatis PrrAB regulatory properties  ............................................. 131 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



  xiii 

LIST OF ABBREVIATIONS 

 
 
ADS  Albumin-dextrose-saline 

BCG  Bacille Calmette-Guérin 

CCM  Central carbon metabolism 

COG  Cluster of orthologous groups 

d  Day 

DAG  Diacylglycerol 

DEG  Differentially expressed gene 

ESI  Electrospray ionization 

FDR  False-discovery rate 

FPKM  Fragments per kilobase per million mapped reads 

GDH  Glutamate dehydrogenase 

GO  Gene ontology 

GOGAT Glutamate synthase 

GS  Glutamine synthetase 

h  Hour 

INFγ  Interferon gamma 

LC  Liquid chromatography 

M7H9  Middlebrook 7H9 

MAME  Mycolic acid methyl ester 

MDR-TB Multi drug-resistant tuberculosis 

MDS  Multi-dimensional scaling 

min  Minute 

MS  Mass spectrometry 

MSX  Methionine-S-sulfoximine 

OD600  Optical density at 600 nm 

PCA  Principal component analysis 



  xiv 

PEP  Phosphoenolpyruvate 

PLS-DA Partial least squares discriminate analysis 

PMF  Proton motive force 

qRT-PCR Quantitative real-time polymerase chain reaction 

QTOF  Quadrapole time-of-flight 

TAG  Triacylglycerol 

TB  Tuberculosis 

TCA  Tricarboxylic acid cycle 

TCS  Two-component system 

TLC  Thin-layer chromatography 

VIP  Variable importance in projection 

XDR-TB Extremely drug-resistant tuberculosis 



  1 

CHAPTER 1: INTRODUCTION 

 

Mycobacterium tuberculosis and its Global Implications 

Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), is the leading 

cause of mortality from an infectious disease and the 10th leading cause of all global deaths 

(WHO 2018). In 2017, 10 million incident TB cases and 1.6 million deaths attributed to TB were 

reported worldwide (WHO 2018). TB accounts for 22% of deaths in co-infected HIV patients. The 

majority of the disease burden lies in South-East Asia (44%), Africa (25%), and the West Pacific 

(18%) regions (WHO 2018). The actual global TB burden is likely higher, however, due to 

underreported incident cases in high-burden countries (e.g., India and Indonesia) that lack 

mandatory TB notification policies (WHO 2018).  

Overall, the rates of infection and deaths due to TB in the United States have declined 

over the past 60 years (www.cdc.gov/tb/statistics/reports/2017/table2.htm). The consistent 

decrease in incident-reported TB cases reached a period of stagnation between 1983-1987, 

followed by a sudden resurgence until peaking in 1992 before resuming a downward trend (Small 

and Fujiwara 2001). High rates of TB infection in the United States are associated with specific 

ethnic groups, with Asian and Hispanic populations accounting for the majority of reported TB 

cases (36% and 28%, respectively) (www.cdc.gov/tb/statistics/reports/2017/table2.htm). Incident 

TB cases are greatest among foreign-born persons (70% of all reported TB cases in the United 

States), especially those of Asian descent (Stewart et al. 2018). In 2016, 92% of drug-resistant 

TB cases in the United States were diagnosed from foreign-born people (Stewart et al. 2018), 

implicating immigration as a positive contributor to the prevalence of drug-resistant incident TB 

cases in the United States. 

The emergence of drug-resistant bacteria that are recalcitrant to commonly used 

antibiotics is complicating our current treatment regimens. For 25 years, clinics have experienced 

an increase in Mtb isolates resistant to front-line antituberculosis drugs, notably documented in 

the New York City TB epidemic of the early 1990s (Frieden et al. 1993). Multidrug-resistant TB 

(MDR-TB) is defined as Mtb resistant to rifampicin and isoniazid, two established front-line 

http://www.cdc.gov/tb/statistics/reports/2017/table2.htm
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antituberculosis drugs. Extensively drug-resistant TB (XDR-TB) is defined as MDR-TB plus 

resistance to a fluoroquinolone and an injectable second-line antibiotic (e.g. kanamycin, 

amikacin). In addition to prolonged patient care and morbidity, drug-resistant TB is estimated to 

cost countries with high prevalence of MDR-TB approximately $16.2 billion, many of which are 

financially burdened and possess inadequate health care infrastructures (WHO 2018).  

 

Two-Component Regulatory Systems 

All organisms must sense their immediate environment to enact appropriate biological 

responses. Environmental signaling in eukaryotic cells is dominated by serine/threonine (Ser/Thr) 

protein kinases (Hanks, Quinn, and Hunter 1988), tyrosine kinases (Schlessinger 2000), and G-

protein coupled receptors (Rodbell 1980). Prokaryotes also utilize Ser/Thr protein kinase (Urabe, 

Ogawara, and Motojima 2015; Pan et al. 2017) and tyrosine kinase (C. Liu et al. 2017; Niesteruk 

et al. 2018) signal transduction mechanisms. Two-component systems (TCSs) are the most 

prevalent and well-studied signal transduction mechanisms in bacteria. The term “two-component 

system” was initially coined in the mid-1980s during investigations of nitrogen regulation in 

Bradyrhizobium parasponia (Nixon, Ronson, and Ausubel 1986), though seminal work on 

Escherichia coli OmpR provided the initial insights into bacterial environmental recognition (Hall 

and Silhavy 1981). A prototypical TCS consists of a membrane-bound histidine kinase sensor 

that transphosphorylates a cytoplasmic DNA-binding response regulator (Kofoid and Parkinson 

1988). Deviations from this paradigm are exemplified by the CheY response regulator, which 

interacts with and modulates rotational direction of the flagellar apparatus (Sarkar, Paul, and Blair 

2010), and the CheA (A. Stock et al. 1988) and NtrB (MacFarlane and Merrick 1985) histidine 

kinase, which are soluble cytoplasmic proteins.  

TCS signaling is initiated when an appropriate environmental signal is recognized by the 

histidine kinase (Parkinson 1976; Hall and Silhavy 1981; Soncini, Vescovi, and Groisman 1995; 

Ioanoviciu et al. 2007). Upon activation, histidine kinase monomers dimerize and catalyze a 

transphosphorylation event on the opposing protein at a conserved histidine residue (Fig. 1.1). 

Interaction of the activated histidine kinase with its cognate response regulator stimulates 
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phosphotransfer from the histidine to a conserved aspartate residue on the response regulator in 

a reaction catalyzed by the response regulator (Lukat et al. 1992). Signal transduction between 

the histidine kinase and its cognate response regulator may involve direct phosphotransfer or 

occur by phosphorelay, in which one or more adaptor proteins sequentially transfer the 

phosphate from histidine kinase to response regulator (Burbulys, Trach, and Hoch 1991; Uhl and 

Miller 1996). Once phosphorylated, the response regulator interacts with its target, such as DNA 

(Mishra et al. 2017; Filippova et al. 2018), RNA (Ramesh et al. 2012; Luque-Almagro et al. 2013), 

or a cytoplasmic protein (Banno et al. 2004; Sarkar, Paul, and Blair 2010). 

 

  

Figure 1.1. Diagram of a prototypical two-component signaling pathway. 

 

Histidine kinases are modular proteins exhibiting distinct functional domains. Effector 

domains are located proximal to the C-terminus and show a high degree of sequence similarity, 

whereas the N-terminal sensor portion is highly variable, owing to diverse recognition of 

environmental stimuli (Georgellis and Kwon 2001; Hutchings, Hong, and Buttner 2006; A.I. Lee, 
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Delgado, and Gunsalus 1999). The orthodox histidine kinase, modeled after EnvZ of E. coli, is 

embedded in the cytoplasmic membrane through two N-terminal transmembrane helices located 

in the sensing domain (Forst et al. 1987). This feature is not universal, however, as some 

histidine kinases encode additional transmembrane segments, such as FixL of Rhizobium meliloti 

(Lois, Ditta, and Helinski 1993) and UhpB of E. coli (Kadner 1995), which possess four and eight 

transmembrane helices, respectively. Phosphorylation by each histidine kinase monomer is a 

bimolecular reaction accomplished by the C-terminal catalytic ATP-binding domain, which uses 

divalent cations and ATP to transfer the γ-phosphate to the conserved histidine of the adjacent 

monomer. The histidine kinase is now posed to interact with its cognate response regulator. 

response regulators are cytoplasmic proteins that typically bind to specific DNA 

sequences and regulate gene expression (Aiba et al. 1989; Mizuno 1997). Exceptions to this 

model exist, as notably demonstrated with the E. coli CheY response regulator, which interacts 

with the flagellar motor protein, FliM, to modulate flagellar rotation (Welch et al. 1993). Response 

regulators catalyze transfer of the phosphohistidine phosphate from the histidine kinase to a 

conserved aspartate in the N-terminal regulatory domain of the response regulator (Lukat et al. 

1992). This covalent modification induces conformational changes in the response regulator that 

allow the C-terminal effector region to act on its target. Intrinsic (Zapf et al. 1998) or auxiliary 

(Keener and Kustu 1988) phosphatase activity regulates the duration of phosphorylation to 

modulate temporal patterns of response regulator activity.  

 

The PrrAB TCS of Mycobacteria 

The Mtb genome harbors 12 TCSs, 11 of which are genetically linked, in addition to five 

orphaned response regulators and two orphaned histidine kinases (Table 1.1) (Bretl, 

Demetriadou, and Zahrt 2011). Of this repertoire, prrAB (Rv0903-0902) is one of four paired 

TCSs present in all fully-sequenced mycobacterial genomes, implying strong evolutionary 

retention for the prrAB TCS in mycobacteria. Additionally, prrAB, along with mtrAB, is essential 

for viability in Mtb (Zahrt and Deretic 2000; Haydel et al. 2012). Initial attempts to generate an Mtb 

prrAB mutant used transposon-based gene disruption (Ewann et al. 2002). Subsequent work by 
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Haydel et al. (Haydel et al. 2012), however, confirmed that the transposon mutant is actually a 

prrAB knockdown strain that expresses prrA and prrB at 30% and 42%, respectively, relative to 

the wild-type strain. Deletion of the native prrAB locus in the Mtb H37Rv strain was successful 

only after ectopic expression of prrAB, confirming the essentiality of the Mtb prrAB TCS (Haydel 

et al. 2012). Recently, Mishra et al. reported prrAB as essential in M. smegmatis (A.K. Mishra, 

Yabaji, et al. 2017); however, Maarsingh and Haydel later showed that prrAB is not universally 

essential in mycobacteria (Maarsingh and Haydel 2018).  

The prrAB system was initially described and characterized using the selective capture of 

transcribed sequences (SCOTS) method whereby Mtb cDNA is generated and captured from 

Mtb-infected human macrophages (Graham and Clark-Curtiss 1999). In Mtb, prrA is expressed 

48 h after infection in human peripheral blood monocyte-derived macrophages, suggesting that 

PrrAB may contribute to adaptation in the phagosomal environment (Graham and Clark-Curtiss 

1999; Haydel and Clark-Curtiss 2004). However, prrA was not detected at 18 h or 110 h post-

infection, indicating that expression is temporally restricted during macrophage infection (Haydel 

and Clark-Curtiss 2004). During in vitro culture, prrAB is upregulated upon nitrogen-limitation 

induced by the glutamine synthetase inhibitor, methionine S-sulfoximine (MSX), and repressed 

under hypoxia (Haydel et al. 2012). Though prrAB expression is greatest during exponential 

growth, the PrrA protein is stable throughout stationary phase, suggesting a maintenance role for 

PrrAB during later growth stages (Haydel et al. 2012). prrAB is autoregulated in both the 

Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and Mtb Mt103 strains during growth in 

murine bone marrow-derived macrophages (Ewann, Locht, and Supply 2004). Purified 6XHis-

PrrA binds to a 317 bp prrAB promoter fragment and binding affinity increases upon 

phosphorylation (Ewann, Locht, and Supply 2004). The prrAB/PrrA autoregulatory properties are 

consistent with other mycobacterial TCSs, including the trcRS/TrcR (Haydel et al. 2002), 

phoPR/PhoR (Gonzalo-Asensio et al. 2008), senX3-regX3/RegX3 (Himpens, Locht, and Supply 

2000), mtrAB/MtrA (Curcic, Dhandayuthapani, and Deretic 1994), mprAB/MprA (He and Zahrt 

2005), devRS/DevRS (Bagchi et al. 2005), and tcrXY/tcrX (Bhattacharya and Das 2011).  
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Table 1.1. Paired TCSs and orphaned histidine kinases and response regulators in Mtb and M. 
smegmatis (Msmeg). NA, None available. 

Paired TCSs 

Name Mtb Msmeg Function Reference 

RegX3-SenX3 + + Pi response (Namugenyi et al. 2017) 

TcrA-Rv0600c/Rv0601c + - Unknown (Shrivastava, Ghosh, and Das 2009) 

PhoP-PhoR + + Lipid metabolism, respiration (Goyal et al. 2011) 

NarL-Rv0845 + + Nitrate metabolism (?) (Schnell, Agren, and Schneider 2008) 

PrrA-PrrB + + Intracellular adaptation (A.K. Mishra, Yabaji, et al. 2017) 

MprA-MprB + + Maintenance of persistent infection (Zahrt et al. 2003) 

KdpE-KdpD + + K+ homeostasis, osmotic balance (Freeman, Dorus, and Waterfield 2013) 

TrcR-TrcS + + Unknown (Pang et al. 2011) 

DosR-DosS-DosT + + Hypoxia and redox sensing (Honaker et al. 2010; A. Kumar et al. 2007) 

MtrA-MtrB + + Cell division, cell wall maintenance (Gorla et al. 2018) 

TcrX-TcrY + + Unknown (Bhattacharya and Das 2011) 

PdtaR-PdtaS + + Unknown (Preu et al. 2012) 

Orphaned histidine kinase 

Rv3220c + + Unknown NA 

Orphaned response regulators 

Rv0260c + + Unknown NA 

Rv0818 + + Unknown NA 

Rv1626 + + Unknown NA 

Rv2884 + - Unknown NA 

Rv3143 + + Unknown NA 

 

PrrA is a 25.2 kDa response regulator belonging to the OmpR/PhoP family and bears a 

C-terminal DNA-binding winged-helix-turn-helix motif (Brennan 1993; Nowak et al. 2006). The N-

terminal regulatory domain displays a prototypical (β/α)5 fold found in other OmpR/PhoP 

response regulators. PrrA is phosphorylated by PrrB at Asp-58, located in the α3 helix of the N-

terminal regulatory domain (Mishra et al. 2017) (Fig. 1.2). The location and phosphorylation of 

Asp-58 in PrrA is consistent with other response regulators (Makino et al. 1989; Sanders et al. 

1989; Lewis et al. 1999). The PrrA DNA-binding effector domain is found in the C-terminal region 

(Nowak, Panjikar, et al. 2006a) with the α3 helix of the helix-turn-helix motif likely involved in DNA 
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binding (Martinez-Hackert and Stock 1997; Blanco et al. 2002; Buckler, Zhou, and Stock 2002; 

Robinson, Wu, and Stock 2003). 

 

 

Figure 1.2. PrrA multiple-sequence alignment between M. smegmatis (top row) and Mtb (bottom 
row). Beta strands and alpha helices are indicted by arrows and rectangles, respectively. N-
terminal receiver and C-terminal effector secondary structures are indicated by blue and red, 
respectively. The locations of the conserved phospho-receiving aspartate (D58; both M. 
smegmatis and Mtb) and phospho-receiving threonine (T6; Mtb only) are indicated at the bottom 
of the upper alignment. 
 
 

PrrA is also phosphorylated by Ser/Thr protein kinases. The first evidence for auxiliary 

kinase action on PrrA came from analysis of the Mtb H37Rv phosphoproteome (Parandhaman et 

al. 2014). Western blot analysis using anti-phosphoserine antibodies and parallel mass 

spectrometry of in-gel trypsin digests confirmed that, during nitric oxide exposure, PrrA is 

phosphorylated in an Mtb ΔpknE mutant, but not in the wild-type background (Parandhaman et al. 

2014). These data suggest that, during nitric oxide stress, PknE negatively regulates other 

Ser/Thr protein kinases that act on PrrA, however, evidence for direct interactions of PknE with 

Ser/Thr protein kinases is lacking. Purified recombinant Mtb PknG, PknK, and PknJ proteins 

phosphorylate Mtb and M. bovis BCG PrrA at Thr-6 (Mishra et al. 2017). Furthermore, 

phosphomimetic mutation at Thr-6 to Asp (T6D) enhances the DNA binding affinity of PrrA after 

phosphorylation by PrrB (Mishra et al. 2017). These data suggest that PrrA is subject to multiple 

levels of regulation, however, the effects on gene expression by differential phosphorylation is 

currently unknown.  
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Less is known about the 47.8 kDa PrrB histidine kinase. The crystal structure has been 

solved for a truncated C-terminal fragment bearing the catalytic activity domain; however, 

attempts to crystalize the full-length PrrB protein or other components of the polypeptide (i.e. 

HAMP and/or DHp domains) were unsuccessful (Nowak, Panjikar, Morth, et al. 2006b). Purified 

PrrB transphosphorylates the MprA response regulator in vitro, though whether this occurs in vivo 

and the relevance of such crosstalk transphosphorylation is unknown (Agrawal et al. 2015). The 

MprAB TCS responds to membrane and pH stress by inducing transcription of the sigE and sigB 

sigma factors (He et al. 2006). If physiological crosstalk occurs between PrrB and MprA, it would 

indicate that PrrB potentially integrates or augments stress responses independent from PrrA. In 

M. smegmatis, PrrA appears to be capable of acting independently from PrrB, as a ΔprrAB strain 

that constitutively expresses an Mtb prrA isoform from an ectopic chromosomal location 

phenotypically resembles the wild-type strain during growth in ammonium-limited medium 

(Maarsingh and Haydel 2018). Alternatively, an additional as-yet unidentified histidine kinase may 

be capable of transphosphorylating PrrA in this setting. Further work in Mtb is required to 

determine if both prrA and prrB are essential or whether the pathogen is viable in the absence of 

prrB (DeJesus et al. 2017). 

 

Host-Pathogen Interactions and the Mtb PrrAB TCS  

Macrophages employ a variety of receptors to promote Mtb phagocytosis (Hmama et al. 

2015). Uptake through IgG receptors (type-I phagocytosis) is accompanied by activation of 

phagosome-associated NADPH oxidase (NOX2), which generates toxic superoxide radicals in an 

initial attempt to clear the pathogen (Bedard and Krause 2007; Lam, Huang, and Brumell 2010). 

Type II phagocytosis, mediated through complement (CR3), mannose, and scavenger receptors 

(among others), is not immediately associated with NOX2 activity (Hmama et al. 2015). It is likely 

that, in vivo, phagocytosis of Mtb by macrophages is accomplished through cooperative action of 

multiple receptors and the macrophage activation state influences receptor selectivity (Krauss et 

al. 1994; Chroneos and Shepherd 1995).  
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Upon internalization by the host macrophage, Mtb elicits defense mechanisms to evade 

phagosome maturation and host bactericidal attempts. Important examples include blocking 

phagosome-lysosome fusion (Ferrari et al. 1999; Fratti et al. 2003) and inhibiting phagosome 

recruitment of the vacuolar H+/ATPase to prevent phagosome acidification and protease 

activation (Sturgill-Koszycki et al. 1994; Sturgill-Koszycki, Schaible, and Russell 1996). Tubercle 

bacilli that survive these initial bactericidal attempts must then adjust to long-term residence 

inside the phagosome, which is believed to represent a nutrient-poor environment (Schnappinger 

et al. 2003; Timm et al. 2003).  

Mtb is capable of disrupting macrophage lipid metabolism by inducing the foamy 

macrophage phenotype. Foamy macrophages are characterized by significant accumulation of 

intracellular lipid droplets (Shi et al. 2017). These macrophages are frequently found at the 

periphery of the granuloma’s necrotic center (Peyron et al. 2008). Mtb drives the foamy 

macrophage phenotype in processes requiring oxygenated mycolic acids (Peyron et al. 2008) 

and the ESX-1 secretion product, ESAT-6  (Singh et al. 2012). The inability to activate the 

bactericidal respiratory burst in addition to providing an energy-dense nutrient supply marks 

foamy macrophages as safe havens for long-term residence by Mtb during non-replicating 

persistence (Peyron et al. 2008). 

Mtb-infected dendritic cells migrate to local lymph nodes to prime T-cell activation via Mtb 

antigen presentation (Wolf et al. 2007). Th1 T-cells secrete the proinflammatory cytokines, 

interferon gamma (IFNγ) (Herbst, Schaible, and Schneider 2011) and tumor necrosis factor (TNF) 

(He et al. 2010). These cytokines engage receptors at the macrophage cell membrane to activate 

nitric oxide production which exerts potent bactericidal activity (B.B. Mishra, Lovewell, et al. 

2017). Activated macrophages secrete TNF and IL-12 which augment the Th1 response (Jung et 

al. 2011). Once internalized, Mtb elicits the macrophage cytosolic surveillance pathway to 

stimulate type I interferon production (Manzanillo et al. 2012) which inhibits T-cell Th1 responses 

and promotes bacterial survival  (Manca et al. 2001). The Th1 adaptive immune response is 

therefore important for controlling Mtb infection (Redford et al. 2010). 
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During prolonged infection, activated T- and B-cells, epithelioid macrophages, and 

fibroblasts are recruited to local sites of pulmonary infection to stimulate granuloma development 

in attempts to constrain Mtb dissemination (Ulrichs and Kaufmann 2006). Mtb cells residing in 

these structures must then acclimate to the hypoxic (Tsai et al. 2006) and lipid-rich (Munoz-Elias 

and McKinney 2005) granuloma environment by modulating genetic programs to establish 

chronic infection (Shi et al. 2005; Schnappinger et al. 2003). From the outset of infection, Mtb is 

faced with repeated pernicious hurdles which require dynamic adaptive measures to survive in 

this hostile and ultra-narrow ecological niche. 

The Mtb prrAB TCS is expressed after 2 d of macrophage infection (Graham and Clark-

Curtiss 1999; Ewann et al. 2002; Haydel and Clark-Curtiss 2004), suggesting that PrrAB 

responds to cues encountered during the early infectious stages. Overexpressing prrAB or 

prrA(T6D)prrB (Figure 1.1) in M. bovis BCG improves viability after 1 and 2 d of infection in 

murine peritoneal macrophages (Mishra et al. 2017). An Mtb prrAB knockdown mutant grows 

poorly relative to the wild-type strain during the first 6 d of infection in murine bone marrow-

derived macrophages (Ewann et al. 2002). Both strains are recovered in equal proportions after 9 

d infection, indicating that PrrAB is not required for long-term infection in an ex vivo macrophage 

model. These data support the hypothesis that PrrAB provides adaptive measures during the 

early replicative stages within the host phagosome (Graham and Clark-Curtiss 1999; Haydel and 

Clark-Curtiss 2004; Ewann et al. 2002). In contrast, the Mtb prrAB knockdown mutant grew 

similar to wild-type over the course of 30 d infection in the lungs, liver, and spleen of C57BL/6J 

mice (Ewann et al. 2002), therefore highlighting the differences between ex vivo and in vivo 

infectious models and the putative interactions with the adaptive immune response. The 

combined data provide evidence for a protective role for the mycobacterial PrrAB TCS during the 

early stages of intracellular infection.  

Important gaps in our knowledge remain regarding the environmental signals that 

activate PrrAB and the adaptive/responsive measures elicited by PrrAB during Mtb infection (Fig. 

1.3). Is the Mtb PrrAB TCS responsive to phagosome acidification, energy status, and low oxygen 

tension, as suggested by transcriptomic data (Rohde, Abramovitch, and Russell 2007; Hards et 
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al. 2015; Bellale et al. 2014)? Does the Mtb PrrAB TCS regulate lipid metabolism (Maarsingh and 

Haydel 2018), respiratory pathways, and gluconeogenic carbon utilization, as demonstrated in M. 

smegmatis (unpublished data)? Further experimentation is required to answer these questions 

and the data gleaned from such studies will illuminate our currently dim understanding of the 

essential nature and virulence properties of the Mtb PrrAB TCS. 

 

 

Figure 1.3. Putative PrrB environmental signals and PrrA genetic responses in Mtb during 
infection. 
 

The Mtb PrrAB TCS as a Potential Therapeutic Target 

The essential nature of the Mtb prrAB TCS suggests that its protein products, PrrA and PrrB, are 

promising drug targets. Diarylthiazole compounds possess antituberculosis activity in vitro and in 
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differentiated THP-1 monocytes (Bellale et al. 2014). Mtb diarylthiazole resistance correlates with 

mutations in prrB that map to the interface of the extracellular region near the second 

transmembrane helix (Bellale et al. 2014). Fatostatin, also a diarylthiazole compound (Choi et al. 

2003), exerts antiobesity properties in mice by binding to and inhibiting sterol-cleavage activating 

protein (SCAP) in the endoplasmic reticulum. This event inhibits proteolytic release of sterol 

regulatory element-binding protein (SREBP), a transcription factor that modulates expression of 

fatty acid and cholesterol biosynthetic genes in human and murine cells. Fatostatin treatment in 

eukaryotic cells decreases tissue cholesterol levels (Kamisuki et al. 2009), which is required for 

Mtb phagocytosis by macrophages (Gatfield and Pieters 2000) and long-term persistence during 

infection (Pandey 2008). Mtb genes essential for cholesterol metabolism have been defined by 

Himar1-based transposon mutagenesis and highly-parallel deep sequencing (Griffin et al. 2011). 

Mtb exposed to diarylthiazoles upregulates genes participating in fatty acid catabolism, 

anaerobic/microaerophilic respiratory systems, and oxidoreductases while downregulating 

ribosomal protein, tRNA synthase, and RNA synthesis genes (Bellale et al. 2014). Additional work 

is needed to determine whether diarlythiazole compounds mediate antituberculosis activity 

through direct binding to PrrB or if diarylthiazole-resistant mutants harbor additional unreported 

chromosomal mutations that compensate for putative loss of PrrB activity.   

 

M. smegmatis as a Genetic Model for Mtb 

M. smegmatis is a saprophytic bacterium initially isolated from human smegma, a 

secretion from sebaceous glands in human genitalia (T. Alvarez 1885), however, the bacterium 

naturally resides in soil deposits (Tsukamura 1976). M. smegmatis is infrequently associated with 

opportunistic infections in immunocompetent individuals. M. smegmatis has been implicated in 

soft tissue and endocardial infections, lymphadenitis, osteomyelitis (Wallace et al. 1988), and 

pneumonia (Cox, Heil, and Kleiman 1994; Ergan et al. 2004). To date, one fatality has been 

attributed to M. smegmatis infection in a 3-year old Italian child with interferon gamma receptor 

deficiency (Pierre-Audigier et al. 1997). Though it is generally accepted that M. smegmatis is a 

relatively non-pathogenic mycobacterium, sporadic cases has surfaced that implicate this 
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mycobacterium as capable of infecting immunocompetent individuals (Saffo and Ognjan 2016; 

Butt and Tirmizi 2019).  

M. smegmatis is a commonly used mycobacterial model organism due to its safe 

handling (BSL-1) and rapid doubling time relative to Mtb (3 hours (h) vs. 24 h, respectively). 

Furthermore, Mtb and M. smegmatis share ~2,000 gene homologues, making M. smegmatis a 

popular surrogate model to study Mtb genetics (Reyrat and Kahn 2001). The M. smegmatis strain 

mc2155 exhibits high transformation efficiency which promoted widespread use of this strain for 

plasmid-based genetic manipulation (Snapper et al. 1990). Studies using M. smegmatis promoted 

advances in plasmid (Knipfer, Seth, and Shrader 1997; Saviola and Bishai 2004), phage-based 

(Bardarov et al. 2002), and recombineering (van Kessel and Hatfull 2007) allelic-exchange 

methods and contributed to our modern toolbox of mycobacterial genetic manipulation 

techniques, thus revolutionizing our current understanding of Mtb pathogenesis.  

M. smegmatis has been important for determining the targets and actions of 

antituberculosis drugs. Mtb isoniazid resistance was elucidated utilizing M. smegmatis isoniazid-

resistant strains (Zhang et al. 1992; Payton et al. 1999; Larsen et al. 2002). M. smegmatis RNA 

polymerase was used to describe the mechanism of action and resistance to rifampicin (Levin 

and Hatfull 1993). The inhibitory action of pyrazinamide on mycobacterial fatty acid synthase I 

(FasI) was demonstrated by overexpressing Mtb or M. bovis BCG fasI in M. smegmatis (Zimhony 

et al. 2000). Activation of the pro-drug form of ethionamide was described using M. smegmatis to 

screen a genomic DNA library from ethionamide-resistant Mtb strains, which identified the ethR 

gene (Baulard et al. 2000). From a clinical standpoint, M. smegmatis has been an invaluable 

model organism to promote our understanding of the mechanisms of action and resistance of 

important antituberculosis drugs.  

Despite the extensive use of M. smegmatis as an Mtb surrogate model, important 

differences between these species deserve attention. A salient distinction is reflected by the fact 

that M. smegmatis does not establish long-term infection in macrophages, owing in part to the 

inability to prevent phagolysosome fusion (Anes et al. 2006). The oxidative stress response, a 

crucial macrophage antituberculosis defense mechanism (MacMicking et al. 1997), is markedly 
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different between pathogenic and non-pathogenic mycobacteria (Sherman et al. 1995). 

Furthermore, M. smegmatis possesses additional iron acquisition mechanisms (De Voss et al. 

1999) and is more resistant to the front-line antituberculosis drug, isoniazid (Larsen et al. 2002; 

Taneja and Tyagi 2007). Large-scale duplications in regions of the M. smegmatis chromosome 

harboring Mtb virulence gene homologues also complicate interpretation of comparative genetic 

studies (Galamba et al. 2001; Warner et al. 2006). Though information gleaned from studies in M. 

smegmatis have advanced our understanding of Mtb genetics and physiology, important 

disparities between these mycobacterial species exist which necessitates studies in Mtb.  

 

Nitrogen Metabolism in Mycobacteria 

Nitrogen and nitrogenous derivatives are ubiquitous and essential components of the 

cellular biochemical repertoire. DNA, RNA, and amino acids are traditional examples of 

nitrogenous molecules found in all organisms. Peptidoglycan, an essential polymer for 

maintaining the integrity of most bacterial cell walls, is composed of repeating amino sugars [N-

glycolyl-muramic acid in mycobacteria (Petit et al. 1969)] crosslinked by a tetrapeptide. The 

mycobacterial inner membrane contains phosphatidylethanolamine, a nitrogenous phospholipid 

(Bansal-Mutalik and Nikaido 2014); therefore, nitrogen-containing biomolecules play important 

and diverse roles in both bacterial and eukaryotic organisms and are scrupulously regulated.  

The ability to sense nitrogen levels and enact appropriate genetic responses are 

important for bacterial nitrogen homeostasis. Two transcription factors are recognized as 

important regulators of nitrogen metabolism in M. smegmatis: GlnR and AmtR (Jessberger et al. 

2013; Amon et al. 2008). GlnR is the global regulator of intracellular nitrogen status in M. 

smegmatis whereas AmtR regulates far fewer genes in response to nitrogen limitation (Jenkins et 

al. 2013). In contrast, AmtR is the global regulator of nitrogen metabolism in corynebacteria 

(Walter et al. 2007), therefore highlighting discrepancies in regulatory control of nitrogen-

responsive mechanisms between these genera, despite their evolutionary relatedness. The 

protective effects of GlnR on M. smegmatis viability during nitrogen limitation coincide with 

depletion of extracellular ammonium (Jenkins, Robertson, and Williams 2012). Currently, there is 
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a paucity of empirical evidence for genetic regulation of nitrogen metabolism in Mtb. The Mtb 

GlnR homologue (Rv0818) regulates the nirBD nitrite reductase genes (Malm et al. 2009) and is 

upregulated during ex vivo macrophage infection (Schnappinger et al. 2003), potentially in 

response to low intraphagosomal nitrogen status; however, this claim has not been substantiated. 

Furthermore, an Mtb glnR mutant fails to grow when nitrate is supplemented as the sole carbon 

source, supporting the positive regulation of nirBD by Mtb GlnR (Malm et al. 2009). Gene 

expression profiles of the M. smegmatis and Mtb GlnR regulons (i.e., the set of genes regulated 

by a common transcriptional regulator) overlap, therefore suggesting redundant regulatory 

properties between these species (Williams et al. 2015).  

Mycobacteria exploit an impressive spectrum of substrates to maintain nitrogen 

homeostasis. Ammonium (NH4
+) is the simplest nitrogen source utilized by mycobacteria 

(Williams, Bryant, et al. 2013) and ammonium assimilation is mediated by the GS/GOGAT system 

(see below) (Harper et al. 2010). While studies of ammonium transport proteins in mycobacteria 

are generally lacking, the M. smegmatis genome harbors homologs of the Corynebacterium 

glutamicum amtA and amtB ammonium transporters (Walter et al. 2008). The amtA and amtB 

genes are controlled by the AmtR (Beckers et al. 2005) and GlnR (Amon et al. 2008b) 

transcriptional regulators in C. glutamicum and M. smegmatis, respectively. The C. glutamicum 

AmtA ammonium transporter is only expressed during nitrogen-limited conditions (Siewe et al. 

1996) and transport is driven by the transmembrane potential (Meier-Wagner et al. 2001). AmtB 

ammonium transport activity is regulated by GlnK, a PII-like protein (see below) which senses 

intracellular ammonium concentrations (Strosser et al. 2004). M. smegmatis ammonium 

transporters may bear functional similarities as those seen in C. glutamicum, though empirical 

observations to support this hypothesis are lacking. 

Mycobacteria are capable of assimilating nitrogenous substrates other than ammonium. 

M. smegmatis and Mtb can utilize nitrate (Khan et al. 2008; Malm et al. 2009) and urea (W. Lin, 

Mathys, Ang, Koh, Martinez Gomez, et al. 2012; Petridis et al. 2016) as sole nitrogen sources. 

The ability to assimilate multiple nitrogen sources benefits M. smegmatis, as nitrate (Ascott et al. 

2017) and urea (Rochette et al. 2013) are constituents of soil, the saprophyte’s natural ecological 
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niche. Nitric oxide produced by human macrophages infected with Mtb and M. bovis BCG may be 

oxidized and assimilated via nitrate reductase to serve as a nitrogen source within the host 

phagosome (Jung et al. 2013). Mtb urease mutants are not attenuated during murine infection, 

indicating that urea is not an important source of nitrogen in this setting (W.W. Lin, Mathys, Ang, 

Koh, Gomez, et al. 2012). Mtb and M. smegmatis can also utilize some amino acids as sole 

nitrogen sources (Lofthouse et al. 2013; Jessberger et al. 2013). Aspartate (Gouzy et al. 2013) 

and asparagine (Gouzy et al. 2014) are available nitrogen sources during Mtb infection.  

Mycobacteria therefore capitalize on a diverse range of nitrogenous substrates, possibly to 

promote growth when nutrients are limited or subject to oscillating availability. However, it’s worth 

noting that nitrogen status and substrate availability in the natural environments that 

mycobacteria occupy have not been extensively explored and, hence, the available data derives 

from controlled in vitro or ex vivo studies. Future technological advances in culture conditions and 

detections systems are required to definitively translate laboratory conditions to real-world 

scenarios, especially in the context of Mtb infection. 

Nitrogen metabolism in bacteria is subject to multiple regulatory checkpoints and control 

mechanisms. Glutamine synthetase (GS) is the key nitrogen-assimilating enzyme in bacteria. In 

Escherichia coli, GlnE reversibly adenylylates GS in a manner dependent on nitrogen availability: 

nitrogen sufficiency stimulates GS adenylylation (inhibition) whereas nitrogen limitation stimulates 

GS deadenylylation (activation) (Jaggi et al. 1997; Kingdon, Shapiro, and Stadtman 1967). GlnE 

adenylylation/deadenylylation activity is regulated through direct interactions with both GlnB (PII) 

(Jiang, Mayo, and Ninfa 2007) and GlnK (Atkinson and Ninfa 1999). GlnD reversibly uridylylates 

GlnB and GlnK to promote GlnE-mediated activation of GS while GlnD deuridylylation activity on 

GlnB or GlnK stimulates GlnE-mediated inhibition of GS. Mtb GlnD differs from the E. coli isoform 

in that it possesses adenylyltransferase activity on GlnK, however, GS activity is independent of 

GlnD during nitrogen limitation, suggesting that GlnE may be regulated by another, currently 

unknown regulatory protein (Williams, Bennett, et al. 2013). See Fig. 1.4 for a visual depiction of 

this bicyclic regulatory cascade. Mtb lacks a glnB homologue and glnK is believed to serve as the 

sole PII-like protein in this species (Cole et al. 1998; Williams, Bennett, et al. 2013). The Mtb GlnE 
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is a modular protein containing deadenylylation and adenylylation domains at the N- and C-

terminal regions, respectively, and is essential for viability (Parish and Stoker 2000). Further 

studies are needed to decipher the upstream regulators, if any exist, of GlnE in mycobacteria. 

Ammonium assimilation is accomplished through two enzymatic systems: glutamate 

dehydrogenase and glutamine synthase-glutamine oxoglutarate aminotransferase (GS/GOGAT). 

Each will be discussed in the following sections. In mycobacteria, the ATP-dependent, high-

affinity GS/GOGAT system is the preferred route of ammonium assimilation during nitrogen 

limitation whereas glutamate dehydrogenase is relatively insensitive to the extracellular nitrogen 

status (Harper et al. 2010). As described above, GS activity is regulated by GlnE. GS assimilates 

nitrogen by incorporating ammonium into glutamate to form glutamine (Fig. 1.4). The Mtb genome 

harbors four GS homologues (Cole et al. 1998) but only the glnA1 product is appreciably active 

and is an essential virulence factor (Tullius, Harth, and Horwitz 2003). Furthermore, an Mtb glnA1 

mutant is auxotrophic for glutamine (Tullius, Harth, and Horwitz 2003). In M. smegmatis, glnA1 is 

transcriptionally regulated by GlnR and expression increases upon nitrogen deprivation (Amon et 

al. 2008). GS is secreted by pathogenic mycobacteria and generates poly-L-glutamate/glutamine, 

a constituent of the Mtb (Harth and Horwitz 1999) and M. bovis (Tripathi, Chandra, and 

Bhatnagar 2013) cell walls. MSX is a potent GS inhibitor (Manning et al. 1969) and inhibits growth 

of Mtb, M. bovis, and Mycobacterium avium (Harth and Horwitz 1999). Growth inhibition by MSX 

is likely mediated by disrupting synthesis of the poly-L-glutamate/glutamine component of the cell 

wall (Harth and Horwitz 1999). Intracellular GS activity is relatively unaffected by MSX, 

suggesting that MSX is unable to permeate into the cytoplasm (Harth and Horwitz 1999). These 

features are pathogen-specific, as non-pathogenic species, such as M. smegmatis and 

Mycobacterium phlei, are not inhibited by MSX, do not secrete GS, and lack poly-L-

glutamate/glutamine cell wall structures (Harth and Horwitz 1999). The M. smegmatis genome 

harbors four annotated and three putative GS genes. GS activity is inversely related to 

ammonium availability (Harper et al. 2010), similar to the related Actinomycete, C. glutamicum 

(Schulz, Collett, and Reid 2001). GS is therefore an important ammonium assimilating enzyme in 
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both pathogenic and non-pathogenic mycobacteria and plays a pivotal role in nitrogen 

assimilatory processes. 

 

 

Figure 1.4. Regulation of nitrogen assimilatory pathways in mycobacteria. GlnD, Regulatory steps 
analogous to E. coli or C. glutamicum but not reported in mycobacteria are indicated by question 
marks (?). GlnD, GlnK adenylyltransferase; GlnK, PII-like protein; GlnE, GS adenylyltransferase; 
GltB-GltD, Glutamate synthase (GOGAT); GDH, glutamate dehydrogenase. AmtB, ammonium 
transporter. 

 

Glutamate synthase (GOGAT) is a heterodimeric enzyme composed of GltD and GltB 

subunits that are part of the GS/GOGAT system. GOGAT participates in nitrogen assimilation by 

incorporating ammonium from glutamine into 2-oxoglutarate to generate two molecules of 

glutamate (Fig. 1.4). The C. glutamicum gltB and gltD genes are upregulated during nitrogen 

limitation through relief of inhibition by AmtR (Beckers, Nolden, and Burkovski 2001). Similarly, 
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nitrogen starvation induces gltB and gltD expression in M. smegmatis, however, the 

transcriptional regulator responsible for this phenotype was not reported (Jessberger et al. 2013). 

Less evidence exists for GOGAT regulation in mycobacteria. M. bovis BCG GOGAT mutants and 

not viable in a medium containing ammonium as the sole nitrogen source and require glutamine 

supplementation for optimal growth (Viljoen et al. 2013). Further studies are needed to determine 

the fitness of Mtb GOGAT mutants during infection. 

The second ammonium assimilation pathway in bacteria is performed by the low-affinity 

glutamate dehydrogenase (GDH). GDH exists as NADPH-dependent (GDH1) or NAD+-

dependent (GDH2) isoforms, which participate in glutamate anabolism and catabolism, 

respectively (Fig. 1.4). In M. smegmatis, the ammonium-assimilating activity of GDH1 is 

responsive during the first hour of in vitro ammonium limitation (3 mM NH4
+) whereas the 

deaminating GDH2 activity remained unchanged after 4 h of ammonium limitation (Harper et al. 

2010). An M. bovis BCG gdh mutant is severely impaired for growth in minimal 7H9 medium 

supplemented with L-glutamine and L-asparagine as sole nitrogen sources; ammonium 

supplementation is required to restore growth (Viljoen et al. 2013). M. bovis BCG cells require 

GDH to utilize glutamate as a sole carbon source and gdh mutants are hyper-susceptible to acid 

and nitrosative stress, which was reversed with ammonium supplementation (Gallant et al. 2016). 

Furthermore, the M. bovis BCG gdh mutant is attenuated during residence within macrophages, 

indicating a protective role for GDH during infection (Gallant et al. 2016). When phosphorylated 

by PknG, GarA (glycogen accumulation regulator) binds to and inhibits GDH activity, suggesting 

an additional layer of glutamate metabolic regulation in M. smegmatis (O'Hare et al. 2008). 

Though relatively fewer studies have addressed the biochemical roles of GDH relative to the 

GS/GOGAT system, GDH plays an important role in mycobacterial glutamate metabolism and 

promotes the infectious process in pathogenic mycobacteria. 

 

Mycobacterial Lipids 

 Acid-fast mycobacteria are a lipid-rich genus of bacteria with up to 60% of the cellular dry 

weight represented by lipids (Wang et al. 2000). Mycobacteria are genetically classified as Gram-



  20 

positive bacteria, however, evidence for a relatively symmetrical outer membrane lipid bilayer and 

a periplasmic region analogous to Gram-negative organisms has been unambiguously identified 

(Hoffmann et al. 2008). The peptidoglycan layer is covalently linked to a linear chain of repeating 

5- and 6-linked β-D-galactose polymers which in turn are bound to a network of branched 

arabinofuranose polysaccharides (Daffe, Brennan, and McNeil 1990). Arabinan polymerization is 

inhibited by ethambutol, a primary drug used to treat tuberculosis, thus highlighting the 

importance of arabinogalactan biosynthesis in mycobacterial physiology (Belanger et al. 1996). 

Mycolic acids are esterified to the terminal ends of the arabinofuranose chains (Daffe, Brennan, 

and McNeil 1990) to complete the mycolic acid-arabinogalactan-peptidoglycan complex.  

Mycolic acids are long-chain fatty acids containing up to 90 carbon atoms in length (Barry 

et al. 1998). Mycolic acids fall into five main classes; α-mycolates, α’-mycolates, ketomycolates, 

epoxymycolates, and methyoxymycolates (Barry et al. 1998). Mtb and M. smegmatis both 

express α-mycolates; ketomycolates and methoxymycolates are restricted to Mtb; and α’-

mycolates and epoxymycolates are found in M. smegmatis (Barry et al. 1998). Mycolic acids are 

essential in mycobacteria, as highlighted by the bactericidal action of the primary antituberculosis 

drug, isoniazid, an inhibitor of mycolic acid biosynthesis (Mdluli et al. 1998). Trehalose 

dimycolate, also known as “cord factor”, is a non-covalently bound mycolic acid-containing 

glycolipid that possesses immunomodulatory properties (Indrigo, Hunter, and Actor 2003; 

Werninghaus et al. 2009). Trehalose dimycolate is synthesized by members of the antigen 85 

(Ag85) complex (designated as Ag85-A, -B, and -C) which are promising vaccine candidates 

(Dhar, Rao, and Tyagi 2004; Giri, Verma, and Khuller 2006; Pabreja et al. 2016). Mycolic acids 

protect against desiccation (Harland et al. 2008), repel hydrophilic antibiotics (Nguyen, 

Chinnapapagari, and Thompson 2005), and are important virulence factors (Forrellad et al. 2013), 

thus contributing pivotal protective roles in both environmental and infectious settings. 

 The mycobacterial outer membrane consists of a diverse collection of readily extractable 

lipids. In M. smegmatis, these lipid species include phosphatidylinositol mannosides, 

glycopeptidolipids, free mycolic acids, and di- and triacylglycerols (DAGs and TAGs, respectively) 

(Bansal-Mutalik and Nikaido 2014). Few bacteria are capable of synthesizing TAGs and most 
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known species that accomplish this task belong to the Actinomycetes, such as Gordonia (Indest 

et al. 2015a), Streptomyces (Arabolaza et al. 2008b), Nocardia (H.M. Alvarez et al. 2001), 

Rhodococcus (Amara et al. 2016), and Mycobacteria (Daniel et al. 2004). The Mtb H37Rv and M. 

smegmatis mc2155 genomes harbor 10 and 6 annotated ws/dgat (wax synthase/diacylglycerol 

acyl-CoA transferase) genes, respectively, compared to 17 and 14 ws/dgat homologues in 

Rhodococcus opacus and Rhodococcus jostii, respectively (Hernandez et al. 2013). 

Chromosomal enrichment of ws/dgat homologues in Actinomycetes is not universal, however, as 

demonstrated by the presence of only three and one ws/dgat genes in Streptomyces coelicolor 

(Arabolaza et al. 2008) and Streptomyces avermitilis (Kaddor et al. 2009), respectively. De novo 

TAG biosynthesis proceeds through the Kennedy pathway, which sequentially esterifies acyl-CoA 

intermediates of various chain lengths to a glycerol-3-phosphate backbone (Alvarez 2016). 

WS/DGATs are the key enzymes mediating TAG biosynthesis and are generally promiscuous 

regarding the specificity in the length of their fatty acyl-CoA substrates (Kalscheuer and 

Steinbuchel 2003).  

TAG accumulation is a dormancy-associated phenotype in Mtb (Daniel et al. 2004; Deb 

et al. 2009; Daniel et al. 2011) and M. smegmatis (Chen et al. 2006; Nazarova et al. 2011; Purdy 

et al. 2013). TAGs may serve as a long-term energy storage molecule during macrophage 

infection (Daniel et al. 2011). Multiple in vitro stresses that mimic the activated macrophage 

phagosome environment, such as hypoxia, nitric oxide, and low pH, elicit TAG accumulation in 

Mtb and induce phenotypic drug tolerance that is genetically dependent on TAG biosynthesis 

(Deb et al. 2009). The hypervirulent Mtb W-Beijing strain accumulates TAGs under favorable 

conditions during exponential growth, which may reflect overexpression of the dormancy-

associated DosR TCS response regulator in this strain (Reed et al. 2007). Mtb utilizes fatty acids 

liberated from the lipid-loaded macrophage host to generate intracellular TAG stores (Daniel et al. 

2011). Collectively, TAG accumulation and biosynthesis promote and contribute to Mtb survival 

within the host macrophage during chronic infection.  

The effect of nitrogen status on the ability to induce a TAG-accumulating phenotype in 

bacteria was first demonstrated in Streptomyces lividans (Olukoshi and Packter 1994). Nitrogen 
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limitation induces TAG accumulation in Actinomycetes, including R. opacus (Waltermann et al. 

2000; Alvarez, Kalscheuer, and Steinbuchel 2000), Nocardia globerula (Alvarez et al. 2001), and 

M. smegmatis (Garton et al. 2002). This phenomenon may represent a survival strategy to 

provide nutrient-deprived cells with an energy-dense carbon storage depot without negatively 

disrupting the intracellular osmotic balance (TAGs are electrically neutral) until favorable 

environmental conditions are restored. Few studies have explored transcriptional regulation of 

TAG accumulation during nitrogen limitation. The NlpR transcriptional regulator of R. opaccus 

and R. josti is expressed during in vitro nitrogen limitation and promotes TAG accumulation under 

these conditions (Hernandez et al. 2017). nlpR homologues are present in the M. smegmatis, M. 

abscessus, and Mtb chromosomes (Hernandez et al. 2017); however, the effects of NlpR on TAG 

accumulation have not been verified in mycobacteria.  

 

Respiration and Oxidative Phosphorylation in Mycobacteria 

 Mycobacteria are classified as obligate aerobes, although both Mtb and M. smegmatis 

genomes encode for anaerobic respiratory complexes capable of maintaining respiration through 

alternative electron acceptors (e.g., nitrate) during hypoxic conditions (Cook et al. 2014). In 

humans, Mtb-laden necrotic granulomas are believed to be hypoxic, as evidenced by lack of 

endothelial cell proliferation (Tsai et al. 2006) and the unique activity of metronidazole, which is 

inhibits Mtb only under hypoxic conditions (Wayne and Sramek 1994). Based on this evidence, it 

is proposed that Mtb expresses anaerobic/microaerophilic respiratory complexes to maintain 

redox balance and ATP homeostasis during periods of non-replicating dormancy (Voskuil, 

Visconti, and Schoolnik 2004). The precarious environments in which both pathogenic and 

saprophytic mycobacteria reside favor expressing multiple aerobic and anaerobic respiratory 

systems for maintaining respiratory capacity during uncertain periods of oxygen availability.   

 Mtb and M. smegmatis express two terminal aerobic respiratory branches: the 

cytochrome bc1-aa3 and cytochrome bd oxidases. In M. smegmatis, the bc1 menaquinone-

cytochrome c oxidoreductase (QcrCAB) forms a detergent-resistant supercomplex with the aa3 

cytochrome c oxidase (CtaBCDE) (Megehee, Hosler, and Lundrigan 2006). Similar interactions 
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between the bc1-aa3 complexes are found in the related species, C. glutamicum (Niebisch and 

Bott 2003). Cytochrome bd oxidase is a high-affinity respiratory complex composed of CydA and 

CydB subunits that are primarily active under low oxygen tensions (Kana et al. 2001). Both 

terminal respiratory branches couple the flow of electrons from NADH:menaquinone 

dehydrogenases (NDH-1 and NDH-2) or succinate dehydrogenases (SDH1 and SDH2) via 

reduced menaquinones to the reduction of molecular oxygen. The bc1 and aa3 oxidoreductases 

actively pump protons into the extracellular space to maintain the proton motive force (PMF), 

whereas for the cytochrome bd complex, protons are passively translocated across the cell 

membrane to generate a membrane potential (Belevich et al. 2005). 

The menaquinone:cytochrome c bc1 oxidoreductase and cytochrome c aa3 oxidase form 

the principle terminal aerobic respiratory complex in mycobacteria (Matsoso et al. 2005) (Fig. 

1.5). The cytochrome bc1 and aa3 complexes actively pump a combined 6H+/2e- into the 

extracellular space to maintain the PMF (Graf et al. 2016). This activity is accomplished through 

oxidation of the menaquinone pool by the bc1 complex which subsequently transfers electrons to 

the aa3 component with concomitant reduction of molecular oxygen to H2O. The bc1 complex is 

encoded by the qcrCAB operon in both Mtb and M. smegmatis (Matsoso et al. 2005). QcrA is a 

membrane-bound protein containing a Rieske iron-sulfur center; QcrB contains two b-type 

hemes; and QcrC contains one cytochrome c1 heme (Cook et al. 2014). Both the Mtb and M. 

smegmatis genomes harbor single copies of the qcrCAB operon. In Mtb, a functional bc1-aa3 

pathway is essential for viability (Matsoso et al. 2005). In contrast, M. smegmatis can sustain 

interruption of the qcrCAB operon and the resulting mutants exhibit growth deficiencies under 

atmospheric oxygen (Matsoso et al. 2005). The cytochrome c aa3 oxidase is encoded by ctaB, 

ctaC, ctaD, and ctaE subunits, which are located in separate chromosomal regions. CtaB is a 

cytochrome c oxidase assembly factor; CtaC is a copper A-containing cytochrome c oxidase; 

CtaD contains a, a3, and copper B-type hemes; and CtaE is a copper-containing cytochrome c 

oxidase (Cook et al. 2014). The Mtb genome encodes single copies of each cytochrome c aa3 

oxidase subunit whereas M. smegmatis harbors three ctaD alleles: two ctaD1 genes and one 
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ctaD2 allele (Matsoso et al. 2005). At least one ctaD1 gene is required for viability in M. 

smegmatis; however, the ctaD2 allele is dispensable (Matsoso et al. 2005). 

 

 

Fig. 1.5. The mycobacterial respiratory chain. BDQ, bedaquiline; CPZ, chlorpromazine; CN-, 
cyanide; MQ, menaquinone. From Ji-A Jeong et al. Journal of Bacteriology. 2018; 
doi:10.1128/JB.00152-18. 
 

The Mtb respiratory chain has garnered increased interest over the past decade as a 

therapeutic target. Inhibitors of the cytochrome bc1 complex include the imidazopyridine analogs 

(Pethe et al. 2013; Arora et al. 2014), the human gastric proton pump inhibitor, lansoprazole 

(Rybniker et al. 2015), and 2-(quinolin-4-yloxy)acetamides (Phummarin et al. 2016). No 

pharmacologic inhibitors of the mycobacterial aa3 cytochrome c oxidase have been reported to 

date.  

 Though classified as obligate aerobes, Mtb and M. smegmatis are capable of surviving 

hypoxic conditions by entering two sequential states of non-replicating persistence. These states 

are marked by downregulation of growth, DNA replication, and reduced RNA and ATP synthesis 

while maintaining basal levels of bacterial viability (Wayne and Hayes 1996). Additionally, states 

of non-replicating persistence are accompanied by induction of the DosR dormancy regulon 

(Voskuil, Visconti, and Schoolnik 2004), expression of nitrate transport (narK2) and nitrate 

reductase (narGHJI) genes, and upregulation of the cytochrome bd oxidase cydA and cydB 

genes (Shi et al. 2005).  
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During periods of hypoxia, Mtb and M. smegmatis can utilize alternative electron donors 

to maintain a transmembrane PMF for ATP generation via oxidative phosphorylation and to 

recycle NADH to NAD+. Examples of alternative electron donors include malate (Mogi et al. 

2009), H2 (Berney and Cook 2010), proline (Tanner 2008), and nitrate (Sohaskey 2008), which 

are coupled to malate:menaquinone oxidoreductase, hydrogenase, proline dehydrogenase, and 

nitrate reductase, respectively. Nitrate promotes Mtb viability during rapid oxygen depletion, 

which otherwise results in significant loss of viability (Sohaskey 2008). M. bovis BCG mutants 

lacking nitrate reductase (narGHJI) fail to persist in BALB/c mice (Fritz et al. 2002). No 

information exists for a protective role of nitrate reductase in Mtb during in vivo infection; 

however, the narX nitrate reductase gene is upregulated in activated macrophages 

(Schnappinger et al. 2003), suggesting that Mtb enacts anaerobic respiratory programs in this 

setting and possibly during chronic infection in humans. 

The cytochrome bd oxidase (CydAB) is a high-affinity terminal respiratory complex 

induced in Mtb (Voskiul 2004) and M. smegmatis (Kana et al. 2001) during microaerophilic and 

hypoxic conditions (Fig. 1.5). In many bacterial species, the cytochrome bd oxidase is relatively 

insensitive to inhibition by cyanide (Cunningham, Pitt, and Williams 1997; Kana et al. 2001; 

Voggu et al. 2006; Korshunov, Imlay, and Imlay 2016). In addition to its role in oxygen 

scavenging, the cytochrome bd oxidase also protects against oxidative (Borisov et al. 2013; Lu et 

al. 2015) and nitrosative (Giuffre et al. 2012) stresses. Mtb (Berney, Hartman, and Jacobs 2014) 

and M. smegmatis (Lu et al. 2015) cytochrome bd oxidase mutants are hypersensitive to the 

inhibitory effects of the ATP synthase inhibitor, bedaquiline. These findings suggest that 

cytochrome bd oxidase inhibitors, such as aurachin D (Lu et al. 2015), could be considered as 

adjunct therapy in combination with bedaquiline during Mtb infection.  

 Oxidative phosphorylation generates ATP through the free energy released by proton 

translocation across the membrane-bound F1F0 ATP synthase. Protons are pumped into the 

extracellular space by NDH-1 (4H+/2e-) and the bc1-aa3 cytochrome c oxidoreductase complex 

(6H+/2e-) under aerobic conditions to maintain the transmembrane PMF. At neutral extracellular 

pH (pH 7.0), actively growing aerobic cultures of M. smegmatis, M. bovis BCG, and Mtb maintain 
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a PMF of approximately -180 mV, -100 mV, and -115 mV, respectively (M. Rao et al. 2001; S.P. 

Rao et al. 2008). These values compare with -160 mV in the related Actinomycete, C. glutamicum 

(Bayan et al. 1993), and -240 mV in E. coli (Kashket 1981) cultured under similar conditions. The 

PMF is maintained in hypoxic, non-replicating Mtb cultures, despite the 5-fold decrease in 

intracellular ATP relative to aerobic cultures (S.P. Rao et al. 2008). Protons flow down the 

electrochemical gradient and through the F1F0 ATP synthase where ATP is generated from ADP 

and inorganic phosphate (Pi) using the free energy released from proton translocation. 

 The mycobacterial F1F0 ATP synthase is transcribed as an operon (atpBEFHAGDC) and 

is essential in M. smegmatis (Tran and Cook 2005) and, presumably, other mycobacteria. In 

mycobacteria, the F1F0 ATP synthase machinery does not exhibit ATP hydrolysis activity, 

indicating that ATP synthesis is a unidirectional process (Haagsma et al. 2010), similar to B. 

subtilis (Hicks, Cohen, and Krulwich 1994) and Thermus thermophilus (Nakano et al. 2008). Mtb 

downregulates expression of atp genes during in vitro non-replicating states (Shi et al. 2005; S.P. 

Rao et al. 2008; Gengenbacher et al. 2010) and murine infection (Tian, Bryk, Shi, et al. 2005), 

suggesting this dormancy-associated phenomenon is utilized to cope with limited nutrient and/or 

oxygen availability while maintaining basal ATP levels to sustain viability.  

 The Mtb F1F0 ATP synthase subunit c (AtpE) is the target of the recently-approved 

antituberculosis agent, bedaquiline (TMC207), which is active against drug-susceptible and drug-

resistant Mtb (Worley and Estrada 2014) (Fig. 1.5). Bedaquiline is believed to inhibit ATP 

synthase by preventing rotary movement between subunits a and c, thereby precluding proton 

translocation (de Jonge et al. 2007; Haagsma et al. 2011). Hards et al. later demonstrated that 

the bactericidal action of bedaquiline is mediated by uncoupling proton movement through the 

ATP synthase (Hards et al. 2015). In this model, bedaquiline binds to AtpE and disrupts 

interactions between subunits a and c, therefore causing protons to leak into and acidify the 

cytoplasm without concomitant generation of ATP (Hards et al. 2015). While resistance to 

bedaquiline in Mtb was originally associated with mutations in the AtpE subunit (Andries et al. 

2005; Petrella et al. 2006; Segala et al. 2012), mutations in the MmpL5 efflux pump (Hartkoorn, 

Uplekar, and Cole 2014) and, to a lesser degree, the PepQ aminopeptidase (Almeida et al. 2016) 
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confer cross resistance to both bedaquiline and clofazimine, indicating Mtb possesses multiple 

mutational routes to escape the bactericidal action of bedaquiline.  

 

Mycobacterial Dormancy and the DosRS Two-Component Regulatory System 

 If Mtb escapes the bactericidal attempts of the host macrophage, the bacterium 

establishes latent infection, characterized by long-term persistence and entrance into a non-

replicative state accompanied by clinical conversion to negative sputum smears (Wayne and 

Sohaskey 2001). Phenotypic traits of dormancy include loss of acid-fast staining (Seiler et al. 

2003), TAG accumulation (Deb et al. 2009), and antibiotic tolerance (Wayne and Hayes 1996). 

Dormant Mtb cells downregulate genes involved in aerobic respiration, ATP synthase, and 

ribosomal proteins (Shi et al. 2005; Keren et al. 2011). In contrast, genes of 

microaerophilic/anaerobic respiratory complexes (Shi et al. 2005), glyoxylate shunt, and 

gluconeogenesis (Timm et al. 2003) are upregulated during dormancy. 

 Hypoxia (<2% O2) is a potent inducer of the mycobacterial dormancy response which is 

relevant during infection, as human granulomas are believed to be hypoxic (Tsai et al. 2006). 

Wayne and colleagues developed an in vitro system of progressive oxygen depletion and 

demonstrated that Mtb transitions through two stages of non-replicating persistence. These 

stages are associated with metabolic shift-down (Wayne and Hayes 1996) and upregulation of 

isocitrate lyase and glycine dehydrogenase activities (Wayne and Lin 1982). Mtb cultures 

experience a significant loss of viability upon rapid oxygen depletion, suggesting that a concerted 

series of adaptations are required to successfully transition to non-replicating persistence (Wayne 

and Lin 1982). This phenomenon is not restricted to Mtb, as other mycobacteria exhibit similar 

patterns of hypoxia-induced dormancy, including M. smegmatis (Dick, Lee, and Murugasu-Oei 

1998), M. bovis BCG (Boon et al. 2001), and M. avium spp. paratuberculosis (Gumber et al. 

2009), indicating a conserved mycobacterial adaptive response to hypoxia, despite their 

classification as obligate aerobes. 

Mtb responds to hypoxia by upregulating genes of the dormancy regulon achieved 

through activation of the hypoxia-responsive DosRS (and DosT) TCS (Park et al. 2003). DosR 
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(dormancy survival regulator), belongs to the LuxR family of TCS response regulators (Dasgupta 

et al. 2000) and is regulated by the DosS (Saini et al. 2004) and DosT (Roberts et al. 2004) 

histidine kinases (herein referred to as the DosRS-DosT TCS). The DosR regulon is composed of 

~49 genes and is activated during hypoxia (Park et al. 2003), nitric oxide (Voskuil et al. 2003), 

carbon monoxide (Shiloh, Manzanillo, and Cox 2008), and perturbations of electron flux through 

respiratory systems (Honaker et al. 2010). The DosRS-DosT TCS promotes viability under 

hypoxic conditions (Boon and Dick 2002; O'Toole et al. 2003; Majumdar et al. 2012). Malhotra et 

al. demonstrated that an Mtb devR mutant (later renamed dosR by Boon and Dick (Boon and 

Dick 2002)) was attenuated in a guinea pig infectious model (Malhotra et al. 2004). Converse et 

al. reported similar results in guinea pigs and additionally demonstrated that an Mtb dosR mutant 

was attenuated in mice and, to a lesser extent, rabbits (Converse et al. 2009). Signaling through 

the DosRS-DosT TCS constitutes an important virulence factor in Mtb and provides protective 

measures during transitions to hypoxic environments encountered during chronic infection. 

 

Carbon Metabolism in Mycobacteria 

Mycobacteria are heterotrophic bacteria that utilize organic compounds for energy 

demands, cellular constituents, and biosynthetic processes. The Mtb (Cole et al. 1998) and M. 

smegmatis (https://mycobrowser.epfl.ch/) genomes harbor all genes necessary for glycolysis, the 

pentose phosphate pathway, and a near-complete tricarboxylic acid (TCA) cycle (Fig. 1.6). A 

surprising feature of the Mtb genome was the extensive enrichment of lipid degradative genes, 

suggesting the pathogen was genetically adapted to thriving on a lipid-rich diet (Cole et al. 1998). 

Evidence for this hypothesis came decades earlier when Segal and Bloch demonstrated that 

when Mtb isolated from infected mice was cultured in vitro, the bacilli failed to thrive on glucose 

and glycerol, yet multiplied in the presence of fatty acids (Bloch and Segal 1956).  

 

https://mycobrowser.epfl.ch/


  29 

 

Figure 1.6. Central carbon metabolism in mycobacteria. Enzyme abbreviation color schemes are 
as follows: red, dedicated reactions of glycolysis; grey, dedicated enzymes of gluconeogenesis; 
orange, reversible reactions of glycolysis; blue, pyruvate dehydrogenase (PDH) complex; green, 
TCA cycle; black, GABA shunt; purple, glyoxylate shunt; brown, methylcitrate cycle; pink, 
methylmalonyl-CoA pathway. Adapted from (Rhee et al. 2011). 
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To survive on a lipolytic diet, bacteria must enzymatically convert fatty acid catabolites to 

essential biosynthetic intermediates normally generated through glycolysis. Gluconeogenesis, the 

formation of glucose from non-glycolytic metabolites, is especially important for Mtb during 

infection (Marrero et al. 2010), as is the glyoxylate shunt, a metabolic bypass of the TCA cycle 

during growth on fatty acids (Munoz-Elias and McKinney 2005). Propionyl-CoA, an end-product of 

odd-chain fatty acid and cholesterol metabolism, has its own dedicated metabolic pathway 

(methylcitrate cycle) which prevents accumulation of toxic intermediates (Upton and McKinney 

2007). Bacteria have therefore evolved distinct central carbon metabolic pathways to subsist on a 

variety of organic substrates to cope with changing and often uncertain periods of nutrient 

availability.  

Glycolysis, also known as the Embden-Myerhof pathway, is the preferred route of 

glucose catabolism in most organisms (Fig. 1.6). The first step of glycolysis is the ATP-dependent 

phosphorylation, or “activation”, of glucose by glucokinase to generate glucose-6-phosphate 

(G6P) (Marrero et al. 2013). Mtb expresses two glucokinase isoforms: PPGK (polyphosphate 

glucokinase, Rv2702) and GLKA (glucokinase, Rv0650) (Marrero et al. 2013), both of which have 

homologues in M. smegmatis. PPGK is the predominantly active glucokinase in Mtb (Marrero et 

al. 2013). An Mtb ΔppgKΔglkA double-knockout mutant is attenuated after 60 d post-infection in 

the lungs, but not the spleens, of C57BL/6 mice (Marrero et al. 2013). However, the presence of 

either glucokinase alone restore virulence in a murine infection model (Marrero et al. 2013). G6P 

is then isomerized to fructose-6-phosphate by phosphoglucose isomerase (pgi). M. smegmatis 

Δpgi mutants are auxotrophic for glucose and fail to grow on glycerol, fructose, ribose, and 

succinate (Tuckman et al. 1997), suggesting an important role for Pgi during gluconeogenesis 

(see below). In the first committed ATP-dependent step in glycolysis, fructose-6-phosphate is 

phosphorylated by phosphofructokinase-1 (pfk) to generate fructose-1,6-bisphosphate. The Mtb 

genome harbors two pfk isoforms (pfkA and pfkB), but only PFKA is active in vitro (Phong et al. 

2013). In Mtb, PFKA is necessary for growth on glucose as a sole carbon source, but not glycerol 

or acetate (Phong et al. 2013). Furthermore, PFKA is not required for Mtb virulence in BALB/c 

mice but is essential for long-term survival under in vitro hypoxia (Phong et al. 2013). Fructose-



  31 

1,6-bisphophate is cleaved by fructose-1,6-bisphosphate aldolase (fba) to generate two triose 

phosphates: glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). Mtb 

fba is essential for virulence in C57BL/6 mice and bone marrow-derived murine macrophages, 

likely as a consequence of its role in gluconeogenesis (Puckett et al. 2014). DHAP is reversibly 

converted to G3P by triose phosphate isomerase (tpi). TPI represents a metabolic branch point 

between glycolysis, gluconeogenesis, the pentose phosphate pathway, and is the entry point for 

metabolites of glycerol entering glycolysis. Mtb tpi mutants require co-supplementation of 

glycolytic and gluconeogenic carbon sources to maintain viability in vitro (Trujillo et al. 2014). Mtb 

Δtpi mutants fail to establish infection are rapidly cleared from the lungs of C57BL/6 mice (Trujillo 

et al. 2014). The two molecules of G3P generated per molecule of glucose completes the energy 

input phase of glycolysis, expending two molecules of ATP. G3P then enters the payoff phase of 

glycolysis where net generation of ATP occurs. G3P dehydrogenase (gap) oxidizes G3P to 

generate 1,3-bisphosphoglycerate (BPG) with the concomitant reduction of NAD+ to NADH. Mtb 

gap is downregulated during in vitro nutrient starvation (Betts et al. 2002) and is predicted to be 

essential (Griffin et al. 2011). BPG is converted to 3-phosphoglycerate by phosphoglycerate 

kinase (pgk) with concomitant generation of ATP by substrate level phosphorylation. 3-

phosphoglycerate is an important biosynthetic precursor of serine, glycine, and cysteine. Mtb 

PGK is Mg2+-dependent and indispensable for growth (Griffin et al. 2011). 3-phosphoglycerate is 

isomerized to 2-phosphoglycerate by phosphoglycerate mutase. The Mtb genome harbors two 

phosphoglycerate mutase homologues: Rv0489 (gpm) and Rv3086c (pgmA), the former of which 

is essential (Griffin et al. 2011). 2-phosphoglycerate is dehydrated by enolase (Rv1023, eno) to 

generate phosphoenolpyruvate (PEP), a key intermediate used in a variety of metabolic 

processes. Eno is an essential surface-exposed protein in Mtb that provides protective immunity 

in C57BL/6 mice after intravenous challenge with Mtb, suggesting its potential use as a vaccine 

candidate (Rahi et al. 2017). The final step in glycolysis is the transfer of Pi from PEP to ADP to 

generate pyruvate and ATP by pyruvate kinase (pyk), an essentially irreversible and rate-limiting 

reaction. Pyruvate kinase (PK) is inactive in some members of the Mtb complex, such as M. 

bovis, Mycobacterium africanum, and Mycobacterium microti, each of which require pyruvate 
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supplementation for in vitro growth (Keating et al. 2005). The M. bovis pyk gene has a single 

nucleotide polymorphism at the enzyme’s active site (Glu220Asp) that renders PK inactive 

(Keating et al. 2005). Mtb ΔpykA mutants upregulate lipid degradation (β-oxidation) and 

downregulate lipid biosynthetic pathways (Chavadi et al. 2009). Mtb PK activity is indifferent to 

carbon availability (acetate or glucose), is required for co-catabolism of mixed carbon substrates, 

and is allosterically activated by G6P and AMP (adenosine monophosphate) (Noy et al. 2016) in 

a synergistic manner (Zhong et al. 2017). Mtb ΔpykA mutants are equally virulent as the wild-type 

strain in C57BL/6 mice (Noy et al. 2016). In summary, Mtb expresses a full complement of 

enzymes participating in glycolysis. Though fewer studies of this pathway have been conducted 

in M. smegmatis, the presence of genetic homologues for all genes of glycolysis suggest similar 

pathways operate in this nonpathogenic mycobacterium. 

The TCA cycle, also known as the citrate cycle or the Krebs cycle from its discoverer, 

Hans Krebs, is an important metabolic pathway for utilizing pyruvate generated from glycolysis for 

energy production (Fig. 1.6). The TCA cycle is present in species from all kingdoms of life. An 

equally important function of the TCA cycle is its role in anaplerosis (Greek for “to fill”), which 

replenishes key metabolic intermediates and precursors for a variety of biosynthetic reactions. 

The pyruvate dehydrogenase complex (PDH) generates acetyl-CoA from pyruvate, the end-

product of glycolysis. The E. coli PDH is a large multienzyme complex composed of E1 (pyruvate 

decarboxylase, AceE), E2 (lipoate acyltransferase, AceF), and E3 (lipoamide dehydrogenase, 

Lpd) subunits (Bates et al. 1977). In E. coli, the PDH genes are arranged in an operon (aceE-

aceF-lpd), whereas in Mtb, aceE (Rv2241), dlaT (Rv2215, homologous to aceF in E. coli), and 

lpdC (Rv0462) are located in separate genomic regions (Tian, Bryk, Shi, et al. 2005). Mtb harbors 

a second set of annotated PDH genes (pdhABC), however, the gene products do not exhibit PDH 

activity when reconstituted in vitro (Tian, Bryk, Shi, et al. 2005). Furthermore, LpdC and DlaT are 

subunits of alkyl hydroperoxide reductase (AhpC) (Bryk et al. 2002) indicating these proteins 

have dual roles in both metabolism (Tian, Bryk, Shi, et al. 2005) and antioxidant defense (Bryk et 

al. 2002). In a highly exergonic reaction catalyzed by citrate synthase, acetyl-CoA is condensed 

with oxaloacetate to generate free CoA and citrate. The Mtb genome encodes for two citrate 
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synthases (citA/Rv0889c and gltA2/Rv0896), the latter of which is essential in Mtb (Griffin et al. 

2011). Aconitase (acn, Rv1475c) catalyzes the reversible formation of isocitrate from citrate via a 

cis-aconitate intermediate followed by decarboxylation of isocitrate by isocitrate dehydrogenase 

to generate α-ketoglutarate. In a prototypical TCA cycle, succinate is generated from α-

ketoglutarate via the α-ketoglutarate dehydrogenase complex; however, activity from this 

complex is not found in Mtb cell lysates (Tian, Bryk, Shi, et al. 2005). Instead, α-ketoglutarate 

decarboxylase produces succinic semialdehyde from α-ketoglutarate followed by sequential 

action of succinic semialdehyde dehydrogenase to form succinate, which re-enters the TCA cycle 

(Tian, Bryk, Itoh, et al. 2005). Succinate donates electrons to the respiratory chain through the 

membrane-bound succinate dehydrogenase complex. Succinate oxidation generates fumarate, 

which is hydrated by fumarase to form malate (Ruecker et al. 2017). Malate is oxidized by malate 

dehydrogenase to generate oxaloacetate, which is now available to condense with an additional 

molecule of acetyl-CoA and thus completes the TCA cycle. 

As described above, the Mtb genome harbors an extensive repertoire of genes 

participating in β-oxidation, suggesting that the bacillus is well suited for metabolizing fatty acids 

as a carbon source during infection (Cole et al. 1998; Bloch and Segal 1956). To subsist on a 

lipolytic diet, Mtb utilizes the glyoxylate shunt (isocitrate lyase and malate synthase) (Munoz-Elias 

and McKinney 2005), and the methylcitrate cycle (methylcitrate synthase, methylcitrate 

dehydrogenase, and isocitrate lyase) (Munoz-Elias et al. 2006) to metabolize acetyl-CoA and 

propionyl-CoA, respectively (Fig. 1.6). In Mtb, and possibly M. smegmatis, isocitrate lyase serves 

a redundant role in both the glyoxylate shunt and methylcitrate cycle (Munoz-Elias et al. 2006). In 

contrast, M. smegmatis expresses a dedicated methylcitrate lyase which acts at the final step of 

the methylcitrate cycle. Important anapleurotic metabolites are generated by each pathway. The 

end-products of the glyoxylate shunt are succinate and malate, while the methylcitrate cycle 

generates pyruvate and succinate. Succinate and pyruvate are important biosynthetic precursors 

and the latter metabolite can also enter the TCA cycle or proceed through gluconeogenesis. A 

functional glyoxylate shunt (Munoz-Elias and McKinney 2005), but not methylcitrate cycle 

(Munoz-Elias et al. 2006), is required for Mtb virulence in mice. Mtb expresses enzymes of the 
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vitamin B12-dependent methylmalonyl pathway—an alternative route for propionate metabolism 

that incorporates carbon into methyl-branched lipids and generates succinyl-CoA (Savvi et al. 

2008). The M. smegmatis genome also harbors orthologues of the methylmalonyl pathway that 

have not been studied to date. 

Growth on fatty acids via the glyoxylate shunt or methylcitrate cycle generates 

anapleurotic metabolites and directs electron flux through respiratory systems for ATP generation 

by oxidative phosphorylation. In the absence of glucose, gluconeogenesis is important for 

maintaining carbon flux through the pentose phosphate pathway, which generates pentose 

intermediates and NADPH. Pentose sugars are components of RNA, DNA, and some coenzymes 

(e.g., ATP, NADH, FADH2, coenzyme-A), while NADPH provides reducing equivalents for 

anabolic reactions. Enzymes of gluconeogenesis provide a means to generate G6P during 

growth on fatty acids (Marrero et al. 2010). Phosphoenolpyruvate carboxykinase (PEPCK) is the 

first committed step of gluconeogenesis which forms PEP from oxaloacetate (Marrero et al. 

2010). PEP is then sequentially routed through gluconeogenesis using most of the enzymes of 

glycolysis in a reverse manner until reaching fructose-1,6-bisphosphate. At this point, the second 

dedicated enzyme of gluconeogenesis, fructose-1,6-bisphosphatase (GlpX), unidirectionally 

generates fructose-1-phosphate from fructose-1,6-bisphosphate (Gutka et al. 2011). GPM2 

(Rv3214) also exhibits fructose-1,6-bisphosphatase activity. Disruptions in both glpX and gpm2 

are required to prevent in vitro growth on gluconeogenic carbon substrates and attenuation during 

murine infection (Ganapathy et al. 2015). For Mtb to thrive on non-glycolytic carbon sources (e.g., 

acetate, propionate), as is believed occur during chronic infection, a functional gluconeogenic 

pathway must be operational. Therefore, enzymes of gluconeogenesis represent attractive drug 

targets. 

Bacterial central carbon metabolic pathways are regulated at the transcriptional and post-

translational levels. Catabolite repression is perhaps the most well-studied regulatory mechanism 

of central carbon metabolism (CCM) in prokaryotes. In this model, when two-or-more utilizable 

carbon sources are available, the substrate that provides the most rapid growth (often glucose, if 

available) is utilized first (Bettenbrock et al. 2006). Upon exhausting the favored substrate, the 
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bacterium adapts by exploiting the next most favorable carbon source to maximize growth 

potential, a phenomenon called diauxic growth (Bettenbrock et al. 2006). This shift in metabolic 

programing is modulated by protein-protein interactions of the phosphotransferase system 

(Deutscher, Francke, and Postma 2006) followed by transcriptional activation of genes required 

to utilize the secondary carbon source (F.L. Liu et al. 2005). However, Mtb does not exhibit 

catabolite repression and simultaneously utilizes multiple organic substrates that feed different 

metabolic pathways (e.g., glucose and acetate), termed co-compartmentalization, presumably to 

maximize growth potential during stringent nutrient availability inside the host phagosome (de 

Carvalho et al. 2010). 

 TCSs have been shown to regulate CCM. The Salmonella enterica spp. Typhimurium 

BarA-SirA TCS promotes intestinal epithelial cell invasion in an acetate-dependent manner 

(Lawhon et al. 2002). In E. coli, the BarA-UvrY TCS regulates expression of the carbon storage 

regulatory system (Pernestig et al. 2003) which controls metabolic switching from glycolytic to 

gluconeogenic carbon sources (Sabnis, Yang, and Romeo 1995). The CrbSR and AcsRS TCSs 

of Vibrio cholerae and Vibrio vulnificus, respectively, induce expression of genes participating in 

acetate activation and transport (Hang et al. 2014; Kim et al. 2015). Similar genetic targets are 

regulated by the Pseudomonas aeruginosa and Pseudomonas entomophila CrbSR homologues 

and the Shewanella oneidensis SO_2742/2648 TCS (unnamed) and the corresponding mutants 

are defective for in vitro growth on acetate (Jacob et al. 2017). Phosphofructokinase II (pfkB) is 

induced by the Mtb DosRS TCS (Park et al. 2003) and is predicted to be essential during hypoxic 

growth (Fang, Wallqvist, and Reifman 2012), however, the contributions of PfkB during hypoxia 

remain obscure (Phong et al. 2013; Shi et al. 2010). 

 In Mtb and M. smegmatis, genetic regulation of CCM is primarily mediated by non-TCS 

transcriptional regulators. The TetR-family transcriptional repressors, KstR and KstR2, regulate 

genes participating in lipid and cholesterol uptake and β-oxidation in a cholesterol-dependent 

manner (Kendall et al. 2007; Kendall et al. 2010). RamB, an XRE-family transcription factor in 

Mtb, represses isocitrate lyase 1 (icl1), a key gene of the glyoxylate shunt, during growth on 

glucose (Micklinghoff et al. 2009). RamB was initially identified in the related Actinomycete, C. 
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glutamicum (Gerstmeir et al. 2004), where it serves as a global regulator of acetate metabolism in 

cooperation with RamA (Auchter et al. 2011), however, ramA homologues are not found in 

mycobacteria. The Mtb and M. smegmatis PrpR is a transcriptional activator of the methylcitrate 

cycle operon (gltA1) and icl1 while repressing ramB and dnaA (DNA replication initiator) during 

growth on propionate (Masiewicz et al. 2012; Masiewicz et al. 2014). The stress-responsive 

sigma factors, SigE and SigB, also regulate the gltA1 operon and icl1 through feed-forward loops 

that interact with PrpR and RamB, respectively, adding an additional layer of complexity to 

genetic regulation of acetate and propionate metabolism (Datta et al. 2011).  

 Mycobacterial CCM is also subject to regulation at the post-translational level. The GarA 

protein of M. smegmatis inhibits α-ketoglutarate dehydrogenase, therefore reducing flux through 

the TCA cycle (Ventura et al. 2013). The M. smegmatis garA mutant grows on propionate, 

acetate, and succinate as sole carbon sources only when ammonium-donating amino acids are 

present (Ventura et al. 2013). PK activity is upregulated upon phosphorylation by the Mtb Ser/Thr 

protein kinase, PknJ, and confers a survival advantage when ectopically expressed in M. 

smegmatis during infection in differentiated THP-1 monocytes (Singh et al. 2014). An M. bovis 

BCG lysine acetyltransferase prevents accumulation of toxic propionyl-CoA metabolites by 

inhibiting acyl-CoA synthetase, an activator of acetate and propionate (Nambi et al. 2013). 

Furthermore, isocitrate dehydrogenase isoform 1, but not isoform 2, is inhibited through 

acetylation by an Mtb GCN5-like acetyltransferase (Rv2170) to inhibit carbon flux through the 

TCA cycle during growth on fatty acids (W. Lee et al. 2017). Mycobacteria therefore employ 

numerous post-translational enzymatic modifications help fine tune CCM, presumably to 

maximize growth potential and reduce toxic metabolite accumulation. 

 The studies described above demonstrate that mycobacteria exert strict regulatory 

control of CCM. Efficient management of central metabolism has likely evolved to provide growth 

and survival benefits in the diverse environmental niches occupies by mycobacteria. The host 

macrophage phagosome is believed to be a nutrient-restricted environment and Mtb utilizes fatty 

acids as primary carbon sources during chronic infection (Bloch and Segal 1956; Timm et al. 

2003; Schnappinger et al. 2003). As a saprophytic organism, M. smegmatis likely encounters 
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similar nutrient stresses due to the unpredictability of its natural environment, such as periods of 

drought, availability of decaying organic matter, temperature extremes, and competition for 

resources by co-inhabiting microorganisms. It is therefore unsurprising that mycobacteria have 

evolved intricate regulatory programs to efficiently utilize multiple organic substrates to sustain 

survival in their natural environments. 
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CHAPTER 2 

MYCOBACTERIUM SMEGMATIS PRRAB TWO-COMPONENT SYSTEM INFLUENCES 

TRIACYLGLYCEROL ACCUMULATION DURING AMMONIUM STRESS 

 

Publication Note 

The research reported in this chapter was previously published in an altered format in 

Microbiology. Jason D. Maarsingh and Shelley E. Haydel. 2018. Mycobacterium smegmatis 

PrrAB two-component system influences triacylglycerol accumulation during ammonium stress. 

Microbiology. 164:1276-1288. doi:10.1099/mic0.000705. 

 

Abstract 

The PrrAB two-component system is conserved across all sequenced mycobacterial 

species and is essential for viability in Mycobacterium tuberculosis, thus making it a promising 

drug target. The prrAB operon was successfully deleted in nonpathogenic Mycobacterium 

smegmatis, and the ∆prrAB mutant strain exhibited clumping in ammonium-limited medium and 

significantly reduced growth during ammonium and hypoxic stress. To assess the influence of M. 

tuberculosis PrrA overexpression, we constructed a recombinant M. smegmatis ∆prrAB mutant 

strain which overexpresses M. tuberculosis prrA. M. smegmatis prrAB and M. tuberculosis prrA 

complemented the M. smegmatis ∆prrAB deletion mutant in Middlebrook M7H9 and ammonium-

limited media and during hypoxic and ammonium stress. Based on quantitative untargeted mass 

spectrometry-based lipidomics, triacylglycerol lipid species were significantly upregulated in the 

∆prrAB mutant strain compared to wild-type when cultured in ammonium-limited medium, 

revealing that M. smegmatis PrrAB influences triacylglycerol levels during ammonium stress. 

These results were qualitatively corroborated by thin-layer chromatography. Furthermore, the 

∆prrAB mutant significantly upregulated expression of several genes (glpK, GPAT, WS/DGAT, 

accA3, accD4, accD6, and Ag85C) that participate in triacylglycerol and lipid biosynthetic 

pathways, thus corroborating the lipidomics analyses.  
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Introduction 

Mycobacterium tuberculosis infects one-third of the world’s population and causes 

approximately nine million new disease cases and 1.5 million fatalities each year (World Health 

2014). Since treatment options for multi-drug resistant and extensively-drug resistant tuberculosis 

are limited (Haydel 2010), new therapeutic intervention strategies are needed. Antimicrobial 

agents traditionally target pathways and/or processes that are essential for viability or survivability 

within the human host. Therefore, regulatory proteins that are essential for viability or control 

critical virulence factors represent auspicious targets for the development of novel antimicrobial 

therapeutics. TCSs embody such regulatory models as they are ubiquitous among bacteria, but 

not found in humans; have conserved structural homologies, particularly surrounding catalytic 

sites (Gao and Stock 2009); are essential for viability in several pathogens (Fabret and Hoch 

1998; Martin et al. 1999; Caimano et al. 2011; Zahrt and Deretic 2000b); are critical for bacterial 

virulence (Guzman-Verri et al. 2002; Walters et al. 2006); and are required for bacterial 

adaptation in various disease processes (Saini et al. 2004; Pflock et al. 2006). 

TCSs provide an efficient means for prokaryotes to sense and respond to environmental 

stimuli [reviewed in (A.M. Stock, Robinson, and Goudreau 2000)]. A prototypical TCS consists of 

a membrane-bound histidine sensor kinase and a cytoplasmic DNA-binding response regulator 

which acts as a transcriptional regulator. Upon recognition of an appropriate environmental signal 

by the sensor kinase, a series of phosphotransfer reactions occur which end with phosphorylation 

of the response regulator at a conserved aspartate and subsequent modulation of activity (Hoch 

2000). Diffusion of the response regulator and binding to its DNA recognition sequence induce or 

repress gene expression in response to the activating environmental signal(s) (Karimova, 

Bellalou, and Ullmann 1996; Bajaj et al. 1996).   

 The M. tuberculosis prrAB two-component system is essential for viability (Haydel et al. 

2012). The M. tuberculosis PrrB histidine kinase and PrrA response regulator represent a 

functional and highly specific cognate TCS signal transduction circuit (Nowak, Panjikar, et al. 

2006; Morth et al. 2005). Importantly, diarylthiazole compounds exhibit potent bactericidal activity 

against drug-susceptible and drug-resistant M. tuberculosis (Bellale et al. 2014). Laboratory-
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generated diarylthiazole-resistant mutants harbored prrB point mutations, thus indicating that 

diarylthiazole potentially functions through the action of the PrrAB system and highlighting PrrB 

as a bona fide therapeutic target (Bellale et al. 2014).  

 Although Mishra et al. (Mishra et al. 2017) recently reported that prrAB is essential for 

viability in M. smegmatis, in this study, we deleted the M. smegmatis prrAB genes, establishing 

that the PrrAB system is not universally essential in pathogenic and nonpathogenic mycobacteria. 

Since the M. tuberculosis and M. smegmatis PrrA and PrrB proteins exhibit 97% and 81% 

identities, respectively, it is possible that commonly-regulated genes exist within the two species. 

Therefore, we began mechanistically understanding PrrAB functionality and its role in 

mycobacterial physiology and growth. Upon exposure to ammonium stress, the M. smegmatis 

∆prrAB mutant grew similarly to the wild-type strain, but exhibited an excessive clumping during 

prolonged incubation, thereby prompting mass spectrometry-based lipidomic and thin layer 

chromatography (TLC) analyses that revealed accumulation of apolar lipids, TAG and DAGs in 

the ∆prrAB mutant. To complement the lipidomics data, qRT-PCR demonstrated that, relative to 

wild-type, the ∆prrAB mutant strain significantly upregulates key genes that contribute to TAG, 

DAG, and lipid biosynthetic processes. Furthermore, the prrAB is necessary for growth when M. 

smegmatis is cultured in both ammonium-limiting conditions and hypoxia. 

 

Methods 

Bacterial Strains, Media, and Culture Conditions 

Escherichia coli strains (Table 2.1) used for maintenance of recombinant clones and 

plasmid transformation and isolation were cultured in Luria-Bertani broth (LB) at 37°C. M. 

smegmatis strains (Table 2.1) were cultured in Middlebrook 7H9 broth supplemented with 

albumin-dextrose-saline (ADS), 0.2% glycerol, and 0.05% Tween 80 with pH 6.8 (herein referred 

to as M7H9). To mimic nitrogen-limited conditions, nitrogen sources were provided in modified 

SR-1 defined medium (20 g/L glucose, 0.5 g/L MgSO4·7H2O, 0.5 g/L NaCl, 0.5 g/L K2H2PO4, 0.5 

mg/L CaCl2, supplemented with 0.05% Tween 80) as either 2 mM NH4H2PO4 (SR-1-lowNH4), 2 

mM KNO3 (SR-1-lowNO3), 2 mM L-glutamine (SR-1-lowGln), or 2 mM L-asparagine (SR-1-
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lowAsn) with pH 6.8 (Anuchin et al. 2009). The SR-1 medium includes 3 mM K2HPO4, thus 

avoiding simultaneous limitation for nitrogen and phosphorus. SR-1 medium was also 

supplemented with 10 mM NH4H2PO4 (SR-1-highNH4) to evaluate restoration of growth in 

ammonium sufficiency. Middlebrook 7H10 agar supplemented with ADS and 0.5% glycerol 

(M7H10) was used for CFU quantification. Modified SR-1-lowNH4 agar [SR-1-lowNH4 medium 

(without 0.05% Tween 80) and 1.5% Noble agar] and M7H10 agar were used to evaluate colony 

morphologies. Colony morphology was monitored daily and images were collected using a Fisher 

Scientific Stereomaster microscope and Micron v1.08 software.  

 

Genetic Manipulations 

M. smegmatis prrAB deletion mutants were generated via mycobacteriophage-mediated 

allelic exchange (Bardarov et al. 2002). The 5’- and 3’-flanking sequences of M. smegmatis prrAB 

were amplified and cloned on either side of the res-Hyg-res cassette within pYUB854 (Bardarov 

et al. 2002) to generate pSH667. The ligation mixture of PacI-digested pSH667 and PacI-

digested concatemerized phAE87 (phSH680) was packaged using  GigaPack III packaging 

extracts (Stratagene, La Jolla, CA) and transduced into E. coli HB101. Phasmid DNA was 

prepared from pooled Hyg-resistant transductants, restriction enzyme-digested to verify the 

presence of the desired insert, electroporated into M. smegmatis mc2155, and plated for 

mycobacteriophage plaques at 30°C. A high-titer mycobacteriophage stock was generated from a 

confirmed temperature-sensitive phage plaque and was used to infect M. smegmatis mc2155 at 

37°C as previously described (Bardarov et al. 2002). Hygromycin-resistant colonies were 

selected after 6 d of growth at 37°C and screened by PCR for deletion of the prrAB genes 

(prrA∆53-611-prrB∆1-414). After Southern analysis to confirm the M. smegmatis ∆prrAB::Hyg 

deletion, the helper plasmid pYUB870 expressing tnpR resolvase was transformed into the 

M. smegmatis ∆prrAB::Hyg deletion strain to generate an unmarked prrAB deletion.  
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Table 2.1. Strains, mycobacteriophages, and plasmids used in this study. 

Strains Description Reference or source 

Mycobacterium smegmatis   
mc2155 Wild-type, electroporation-competent strain (Snapper et al. 1990) 

FDL7 ∆prrAB deletion complemented with M. tuberculosis prrA 
(mc2155::∆prrAB::Pmyc1-tetO-3XFLAG-prrAMtb-6XHis) 

This work 

FDL10 ∆prrAB knockout mutant (mc2155::∆prrAB) This work 
FDL15 ∆prrAB knockout mutant with integrated M. smegmatis 

prrAB (complemented mutant) 
(mc2155::∆prrAB::prrABMsmeg) 

This work 

Escherichia coli   
HB101 Cloning and storage strain Laboratory collection 
JM109 Cloning and storage strain Laboratory collection 
GC10 Cloning and storage strain Laboratory collection 
DH5α Cloning and storage strain Laboratory collection 

Mycobacteriophages 

phAE87 Temperature-sensitive mycobacteriophage used for 
generating phSH680 allelic exchange 

(Bardarov et al. 2002) 

phSH680 phAE87::∆prrABMsmeg::hyg This work 

Plasmids 

pYUB854 Cosmid vector with res sites flanking the HygR gene (Bardarov et al. 2002) 

pYUB870 Helper plasmid harboring -tnpR for generating 
unmarked mutations; sacB; KmR 

(Bardarov et al. 2002) 

pSH667 pYUB854::∆prrAB::res-HygR-res This work 

pSE100 pMS2 derivative containing Pmyc1-tetO; HygR (Ehrt et al. 2005) 

pTZ842 pET24b::3XFLAG-6XHis; KmR (White et al. 2011) 
pMV306 Site-specific (att) integrating E. coli – mycobacterial 

shuffle vector; KmR 
(Stover et al. 1991) 

pSH492 pMV306::aacC41; AmR (Haydel and Clark-Curtiss 
2006) 

pSH695 pMV306::prrABMsmeg; KmR This work 

 

Transformants were screened by a pick-and-patch method on LB agar with and without 

hygromycin (50 g/ml) for loss of the res-hyg-res cassette and hygromycin sensitivity. 

Hygromycin-sensitive strains were analyzed via Southern blot for loss of the res-Hyg-res 

cassette. Confirmed HygS clones were then cultured in the presence 10% sucrose to induce 

expression of sacB and provide negative selection for loss of the pYUB870 plasmid. The M. 

smegmatis HygS KmS unmarked prrAB mutant, FDL10, was confirmed via Southern blot analysis 

(Fig. 2.1). 
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Table 2.2. Oligonucleotide primers used in this study. 

PCR Primers 

Primer  Sequence Target/Product 

SH192 5’-GCTCTAGAAGTGCCGACATCAGCGTCAG-3’ prrA 5’ flanking 
SH193 5’-GCACCGGTGTCATCCACCACAAGCACCC-3’ prrA 5’ flanking 
SH194 5’-GCCCATGGGGCTGTTGTTGAGGCTGCCG-3’ prrB 3’ flanking 
SH195 5’-GCCAGATCTGGCTCACCAGGTACGAGTAG-3’ prrB 3’ flanking 
SH390 5’-GGATCGATAATGGCCAGAGGGCGAAAC-3’ attP_int_aacC41 from pMV306 
SH391 5’-GGTCGCGAGTCTGACGCCTCAGTGGAAC-3’ attP_int_aacC41 from pMV306 

qRT-PCR Primers 

Primer  Sequence Target/Product 

SH571 5’-TGTCATGCAGTCGTATGTGG-3’ MSMEG 4757 (fas) 

SH572 5’-TGCCGAGCTTGATCTTGTC-3’ MSMEG 4757 (fas) 

SH579 5’-TGCTGATGGATCTGGAGAC-3’ MSMEG 6759 (glpK) 
SH580 5’-AGACCTGACCGAACATGG-3’ MSMEG 6759 (glpK) 

SH583 5’-TCAGCTTCGACCAGTTGC-3’ MSMEG 4703 (GPAT) 

SH584 5’-GGGAAGCGGACATAGATCTTG-3’ MSMEG 4703 (GPAT) 

SH585 5’-TTTTCAAGTTCGTCCTGTTGG-3’ MSMEG 4248 (AGPAT) 

SH586 5’-GTAGAAACTGTCCATCACCG-3’ MSMEG 4248 (AGPAT) 

SH587 5’-CGACATCACTTATCACATCCG-3’ MSMEG 1882 (WS/DGAT) 

SH588 5’-CTGATGTGACTTGGTGTAGAC-3’ MSMEG 1882 (WS/DGAT) 

SH589 5’-GAATCATGGGCGTCGAAC-3’ MSMEG 4705 (WS/DGAT) 

SH590 5’-TGGTAGTCGAGGTTGAAGTC-3’ MSMEG 4705 (WS/DGAT) 

SH593 5’-TTTTCCCGTCCTGGTCTG-3’ MSMEG 3580 (Ag85C) 

SH594 5’-AGCCGTTGTAGTCATCCTG-3’ MSMEG 3580 (Ag85C) 
SH599 5’-CAAAGATCTCCAAGGTGCTG-3’ MSMEG 1807 (aacA3) 

SH600 5’-CTTCTCGAAGACCAGGTAGG-3 MSMEG 1807 (accA3) 

SH603 5’-ACAGCAAGATTTTCGTCACC-3’ MSMEG 4329 (accD6) 

SH604 5’-GCAGAACAATCCGACCAG-3’ MSMEG 4329 (accD6) 

SH605 5’-GATCAGGGCTACATGTTCATC-3’ MSMEG 6391 (accD4) 

SH606 5’-CAGGAAGCTCAGGTAGTCG-3’ MSMEG 6391 (accD4) 

SH611 5’-TCAACATGCCCGTCCTC-3’ MSMEG 5662 (prrA) 

SH612 5’-TTTCACCAGGTAGTCGTCG-3’ MSMEG 5662 (prrA) 

 

 To create integrative, expression vectors, M. tuberculosis prrA was cloned between the 

5’-3XFLAG and 3’-6XHis tags present in pTZ842 (White et al. 2011) prior to cloning downstream 

of Pmyc1-tetO in pSE100 (Ehrt et al. 2005). The Hyg resistance gene in pSE100 was replaced with 

attP_int_aacC41 from pSH492 (pMV306::aacC41) to generate integrative, expression plasmids 

conferring apramycin (Am) resistance (Consaul and Pavelka 2004). This construct was 

electroporated into the ∆prrAB background and integrated at the chromosomal attB site to 

generate FDL7. To complement the mutation, M. smegmatis prrAB with 166 bp of upstream DNA 

and 76 bp downstream of the prrB stop codon was cloned into pMV306, a site-specific integrating 

mycobacterial vector, to generate pSH695. This construct was electroporated into the ∆prrAB 
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background and integrated at the chromosomal attB site to generate the complementation strain, 

FDL15. Plasmids were electroporated into M. smegmatis FDL10, and recombinants were 

selected on LB agar with Am (10 g/ml) or Km (50 g/ml). All strains, mycobacteriophages, 

plasmids, and PCR primers used in this study are presented in Tables 2.1 and 2.2.  

 

Growth Curves 

Growth of the M. smegmatis strains was assessed in M7H9, SR-1-lowNO3, SR-1-lowNH4, 

SR-1-highNH4, SR-1-lowGln, and SR-1-lowAsn. Cultures were grown at 37°C with orbital shaking 

at 100 rpm for 96 h. Absorbance readings and samples for CFU quantitation were collected every 

24 h.  

 

MAME Extraction and TLC Analysis 

MAMEs were prepared as previously described (Slayden and Barry 2001). Briefly, 

cultures were grown in SR-1-lowNH4 or SR-1-highNH4 for 48 h, and cells were harvested by 

centrifugation. Cell pellets were lysed in 5 ml tetrabutylammonium hydroxide (TBAH) for 3 h at 

100ºC and methylated with 200 l iodomethane in 2 ml dichloromethane. The organic layer was 

collected after centrifugation at 6000 x g, washed in 2 ml 0.1 M HCl, and evaporated. MAMEs 

were eluted in 2 ml diethyl ether, dried, and resuspended in dichloromethane. Equal quantities of 

MAMEs were applied to 6.5 x 10 cm aluminum-backed silica gel TLC plates and developed 3X in 

petroleum ether:diethyl ether (9:1). MAMEs were visualized by spraying plates with 10% ethanolic 

sulfuric acid followed by charring at 110°C for 15 min. 

 

Apolar Lipid Extraction and TLC Analysis 

Apolar lipids were harvested (Slayden and Barry 2001) from cultures grown to early 

stationary phase in SR-1-lowNH4 or SR-1-highNH4. Briefly, cells were collected by centrifugation, 

washed in PBS, and resuspended in 20 ml methanol:0.3% NaCl (10:1) to which 10 ml petroleum 

ether was added and stirred for 15 min at room temperature. After phase separation, the upper 

petroleum ether layer containing apolar lipids was removed, and the extraction was repeated with 
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an additional 10 ml petroleum ether. Following evaporation of petroleum ether, dried apolar lipids 

were dissolved in dichloromethane.  

TAGs were analyzed by qualitative 1D TLC using a development system of 

hexane:diethyl ether:acetic acid (80:20:1) and were visualized with iodine vapor. Triacylglycerol 

standards (Sigma-Aldrich, St. Louis, MO) were developed with mycobacterial apolar lipids to 

identify TAG-specific bands. All experiments were performed in triplicate, and two technical 

replicates per biological replicate were processed for each strain.  

 

Sample Preparation for Lipidomics Analysis 

M. smegmatis strains were cultured in 500 ml SR-1-lowNH4 for 48 h at 37°C, 100 rpm. 

Cells were harvested by centrifugation at 4225 x g for 10 min and resuspended in PBS (25 ml). 

Each sample was adjusted to ~ 108 cells/ml, and 1 ml of each sample was harvested by 

centrifugation. Cell pellets were stored at –70°C prior to lipidomics analysis. Three biological 

replicates, each bearing two technical replicates, were prepared per strain. 

Lipid extraction was performed by the University of California, Davis West Coast 

Metabolomics Center as described by Matyash et al. (Matyash et al. 2008) using a bi-phasic 

solvent system of cold methanol, methyl tert-butyl ether, and water with slight modifications. 

Specifically, cold methanol (225 µl) containing a mixture of odd chain and deuterated lipid internal 

standards [lysoPE(17:1), lysoPC(17:0), PC(12:0/13:0), PE(17:0/17:0), PG(17:0/17:0), 

sphingosine (d17:1), d7-cholesterol, SM(17:0), C17 ceramide, d3-palmitic acid, MG(17:0/0:0/0:0), 

DG(18:1/2:0/0:0), DG(12:0/12:0/0:0), and d5-TG(17:0/17:1/17:0)] was added to 107 cells and 

vortexed for 10 sec. Next, cold methyl tert-butyl ether (750 µl) containing CE(22:1) (internal 

standard) was added, followed by vortexing for 10 sec and shaking for 6 min at 4°C. Phase 

separation was induced by adding mass spectrometry-grade H2O (188 µl). After vortexing for 20 

sec, the sample was centrifuged at 14,000 rpm for 2 min. The upper organic phase (300 µl) was 

collected and evaporated to dryness in a SpeedVac. Dried extracts were resuspended using a 

mixture of methanol/toluene (9:1, v/v) (60 µl) containing an internal standard (12-

[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid) for quality control. 
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LC/MS Parameters for Lipidomics 

The LC/QTOF-MS analyses were performed using an Agilent 1290 Infinity LC system 

(G4220A binary pump, G4226A autosampler, and G1316C Column Thermostat) coupled to either 

an Agilent 6530 (positive ion mode) or an Agilent 6550 mass spectrometer equipped with an ion 

funnel (iFunnel) (negative ion mode). Lipids were separated on an Acquity UPLC CSH C18 

column (100 x 2.1 mm; 1.7 µm) maintained at 65°C at a flow-rate of 0.6 ml/min. Solvent pre-

heating (Agilent G1316) was used. The mobile phases consisted of 60:40 acetonitrile:water with 

10 mM ammonium formate and 0.1% formic acid (A) and 90:10 propan-2-ol:acetonitrile with 10 

mM ammonium formate and 0.1% formic acid. The gradient was as follows: 0 min 85% (A); 0–2 

min 70% (A); 2–2.5 min 52% (A); 2.5–11 min 18% (A); 11–11.5 min 1% (A); 11.5–12 min 1% (A); 

12–12.1 min 85% (A); 12.1–15 min 85% (A). A sample volume of 3 µl was used for the injection. 

Sample temperature was maintained at 4°C in the autosampler. 

The quadrupole/time-of-flight (QTOF) mass spectrometers were operated with 

electrospray ionization (ESI) performing full scan in the mass range m/z 65–1700 in positive 

(Agilent 6530, equipped with a JetStreamSource) and negative (Agilent 6550, equipped with a 

dual JetStream Source) modes producing both unique and complementary spectra. Instrument 

parameters were as follows: (positive mode) Gas Temp 325°C, Gas Flow 8 l/min, Nebulizer 35 

psig, Sheath Gas 350°C, Sheath Gas Flow 11, Capillary Voltage 3500 V, Nozzle Voltage 1000V, 

Fragmentor 120V, Skimmer 65V. Data (both profile and centroid) were collected at a rate of 2 

scans per sec. In negative ion mode, all parameters were identical to the positive ion mode 

except for the following: Gas Temp 200°C, Gas Flow 14 l/min, and Fragmentor 175V. For the 

6530 QTOF, a reference solution generating ions of 121.050 and 922.007 m/z in positive mode 

and 119.036 and 966.0007 m/z in negative mode were used for continuous mass correction. For 

the 6550 QTOF, the reference solution was introduced via a dual spray ESI, with the same ions 

and continuous mass correction. Samples were injected with a needle wash solvent (isopropanol) 

for 20 sec for sample normalization.  
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Lipidomics Data Analysis 

For data processing, the MassHunter software was used, and a unique ID was given to 

each lipid based on its retention time and exact mass (RT_mz), thus allowing the report of peak 

areas/heights or concentration of lipids based on the use of particular internal standards. Lipids 

were identified based on their unique MS/MS fragmentation patterns using the LipidBlast 

software. Using complex lipid class-specific internal standards, this approach was used to 

quantify >400 lipid species including: mono-, di- and triacylglycerols, glycerophospholipids, 

sphingolipids, cholesterol esters, ceramides, and fatty acids. This approach is highly reproducible, 

displaying a relative standard deviation of 0.1% for the retention time and 1.7% for peak area 

based on replicate analysis of plasma samples (n=10). An average shot-to-shot carryover of less 

than 0.1% was observed.  

 

RNA Isolation and qRT-PCR 

After 24 h in vitro growth in SR-1-lowNH4, RNA was isolated from M. smegmatis using 

Trizol reagent according to the manufacturer’s instructions and following a previously published 

protocol (Rustad et al. 2010). Total RNA (2 µg) was digested with DNase (Thermo Scientific) for 

30 min at 37°C. Residual DNase was removed by phenol:chloroform extraction and resuspended 

in nuclease-free H2O. Total RNA (2 µg) was converted to cDNA using an iScript cDNA synthesis 

kit (Bio-Rad). Gene expression profiling was performed using a MyiQ thermocycler and reactions 

with 5 ng cDNA, 300 nM primers, and iQ SYBR Green Supermix (Bio-Rad). Relative expression 

was calculated using the comparative CT method (∆∆CT) (Livak and Schmittgen 2001) with 

mc2155 as the calibrator strain and 16S rRNA gene as an internal control. Gene expression was 

determined for three independent biological replicates, each with two technical replicates. All 

qRT-PCR primers used in this study are presented in Table 2.2. 

 

Stress Assays 

All stress assays were performed in 96-well microtiter plates using SR-1-lowNH4 with the 

following adjustments. For acid stress, SR-1-lowNH4 medium was adjusted to pH 5.5 (compared 
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to pH 6.8 for control experiments). Cell wall stress was tested with or without 0.05% SDS. 

Hypoxic conditions were generated using the GasPak EZ anaerobic system in sealed bags 

(Becton Dickinson, Franklin Lakes, NJ) with colorimetric indicator strips (Thermo Scientific, 

Waltham, MA) to monitor O2 depletion. To assess antibiotic sensitivity, all strains were exposed to 

2-fold decreasing concentrations of isoniazid (4 – 0.125 µg/ml) for 48 h. All incubations were 

performed in triplicate at 37°C with gentle agitation (100 rpm) in a humidified incubator. Cell 

growth (OD600) was measured an M2 SpectraMax 96-well plate reader (Molecular Devices, San 

Jose, CA).  

 

Statistical Analyses 

We used unpaired Student t tests to assess significant differences in growth curves and 

gene expression and one-way ANOVA to assess differences for the stress assays. Statistical 

analyses were performed using GraphPad Prism 6 (GraphPad Software, San Diego, CA), and p 

values of < 0.05 were considered statistically significant. Lipidomic datasets were statistically 

analyzed using unpaired Students t tests, univariate ANOVA, Tukey’s multiple comparisons tests, 

and principle component analysis. For volcano plot data, the -log(p) of each species was plotted 

against the ratio of the mean log2 fold-change of lipid intensities between FDL10 and mc2155. 

 

Results 

The M. smegmatis prrAB Two-Component System is not Essential for Viability 

While prrAB is essential for in vitro viability in M. tuberculosis (Haydel et al. 2012), we 

successfully constructed the M. smegmatis ∆prrAB mutant using the specialized transducing 

mycobacteriophage system (Bardarov et al. 2002). The hygromycin resistance cassette flanked 

by res sites replaced 96% of the prrAB coding sequences, leaving only the first 55 bp of prrA and 

the last 32 bp of prrB. After removing the hygromycin resistance cassette to generate M. 

smegmatis FDL10, a plasmid harboring the M. tuberculosis prrA gene controlled by the Pmyc1-tetO 

promoter, a highly active mycobacterial promoter (rpsA) flanked by TetR-operator sites (Ehrt et al. 

2005), was integrated into the chromosome via the L5 attB locus to create M. smegmatis FDL7. 
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To generate the M. smegmatis prrAB complement strain (FDL15), an integrative plasmid 

(pMV306::prrABMsmeg) expressing M. smegmatis prrAB under control of its native promoter was 

introduced into the ∆prrAB background at the chromosomal attB site. All recombinant M. 

smegmatis strains were confirmed by Southern analysis (Figs. 2.1A), and wild-type and 

recombinant PrrA expression in M7H9 and SR-1-lowNH4 was confirmed via western analysis 

(Figs. 2.1B, C). Agitated in vitro growth of all recombinant M. smegmatis strains in M7H9 was 

similar to wild-type mc2155, except for slight decreased viability (CFU) of the FDL7 prrAMtb 

complementation and FDL10 ∆prrAB strains at 96 h (Fig. 2.2A). Additionally, colony morphology 

was assessed by monitoring growth of M. smegmatis strains on M7H10 agar plates for 5 d. All 

colonies displayed wrinkled morphologies and yellow pigmentation (Fig. 2.2B), indicating that M. 

smegmatis PrrAB does not influence growth under these conditions.  

 

 

Figure 2.1. Southern blot and western blot analyses of the M. smegmatis wild-type (mc2155), 
prrAB deletion mutant (FDL10), and genetic complementation strains (FDL7 and FDL15). (A) 
Genomic DNA was digested with BsaAI, and pSH831, pSE100, and pSH695 plasmids were 
digested with XbaI, followed by hybridization with prrA. Molecular weight (MW) markers (kb) are 
shown on the left. (B) Soluble protein fractions were collected during M7H9 growth and detected 
using α-PrrAMtb polyclonal antisera. (C) Soluble protein fractions were collected during SR-1-
lowNH4 growth and detected using α-PrrAMtb polyclonal antisera. Purified recombinant 3XFLAG-
PrrA-6XHis protein is shown as a control and MW markers (kDa) are shown on the left. Predicted 
MW of M. smegmatis PrrA is 25.3 kDa (mc2155 and FDL15). Predicted MW of recombinant M. 
tuberculosis 3XFLAG-PrrA-6XHis (FDL7 and purified PrrA) is 30.6 kDa. 
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Figure 2.2. Growth characteristics of the M. smegmatis strains in M7H9 broth and colony 
morphologies on M7H10 ADS agar. (A) Growth characteristics of mc2155 (open circles), FDL7 
(closed, blue squares), FDL10 (closed, red diamonds), and FDL15 (closed, green diamonds) 
were assessed during aerated growth in M7H9 at 37ºC. At specified times, samples were plated 
on M7H10 agar and incubated at 37ºC to determine viable c.f.u. Values represent the mean ± 
SEM of data collected from three independent cultures. (B) Images (2X magnification) of c.f.u. 
morphology were taken on day 5. Scale bar, 6 mm. 
 

The M. smegmatis ΔprrAB Mutant Forms Aggregates During Growth in NH4-Limited Medium  

Expression of prrAB is induced when M. tuberculosis is cultured in the presence of 200 

M MSX, an inhibitor of glutamine synthetase which mimics a state of nitrogen limitation (Pace 

and McDermott 1952; Amon et al. 2008). Since ammonium is the preferred nitrogen source for M. 

smegmatis (Williams, Bryant, et al. 2013) and M. smegmatis assimilates nitrate (Khan et al. 

2008), we assessed whether deletion of prrAB with and without expression of episomal M. 

tuberculosis prrA altered growth of M. smegmatis in SR-1-lowNH4 and SR-1-lowNO3 media (see 

Materials and Methods). Viability of the ∆prrAB mutant in SR-1-lowNO3 was lower compared to 

wild-type mc2155 at 24 h and 96 h (Fig. 2.3A), indicating that the ∆prrAB mutant exhibits time-

dependent (mid-log and stationary phase) growth defects with limited nitrate (2 mM) as a sole 

nitrogen source. In SR-1-lowNH4 with limited ammonium as the sole nitrogen source, the M. 

smegmatis ∆prrAB mutant (FDL10) did not exhibit the early-stage (24 h) growth defects (Fig. 

2.4A) that were evident in SR-1-lowNO3 medium (Fig. 2.3A). After 72 h of growth, the FDL10 
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culture in SR-1-lowNH4 exhibited extensive clumping (Fig. 2.4C). Attempts were made to 

disperse cells by thorough agitation, however, the discrepancy in viability between mc2155 and 

the ΔprrAB mutant at 96 h (Fig. 2.4A) could be masked by residual cell clumps not visible to the 

naked eye. All strains displayed similar growth kinetics in SR-1-highNH4 medium (Fig. 2.4B), and 

no visible clumping patterns were detected in any strain under these conditions.  

 

 

Figure 2.3. Growth characteristics of the M. smegmatis strains in (A) SR-1-lowNO3, (B) SR-1-
lowAsn, and (C) SR-1-lowGln. Growth characteristics of mc2155 (open circles), FDL7 (closed, 
blue squares), FDL10 (closed, red triangles), and FDL15 (closed, green diamonds) were 
assessed during aerated growth in SR-1 broth containing at 37°C. At specified times, samples 
were plated on M7H10 agar and incubated at 37°C to determine viable c.f.u. Values represent 
the mean ± SEM of data collected from three independent cultures. **, P<0.01; Student’s t-test. 
 

Complementation of ∆prrAB with M. smegmatis prrAB (FDL15) and M. tuberculosis prrA 

(FDL7) restored wild-type growth characteristics similar to mc2155 (Fig. 2.4A, B). Since FDL7 

lacks prrB, these data suggest that PrrB is dispensable during ammonium stress conditions, M. 

tuberculosis PrrA can functionally replace the native PrrAB in M. smegmatis, or another histidine 

kinase may be capable of transphosphorylating PrrA. After incubation on modified SR-1-lowNH4 

agar for 5 days, wild-type mc2155 and FDL7 colonies were smooth on the outer edges with a 

central “cracked” appearance, while the ΔprrAB mutant and FDL15 both displayed smooth colony 

morphologies (Fig. 2.4D). Although the colony morphologies of mc2155 and the FDL15 

complementation strain differed on modified SR-1-lowNH4 agar, FDL15 did not clump in SR-1-

lowNH4 broth (Fig. 2.4C), suggesting prrAB complementation.  
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Figure 2.4. Growth characteristics of the M. smegmatis strains in SR-1 media supplemented with 
ammonium as the sole nitrogen source. Viability of mc2155 (open circles), FDL7 (closed, blue 
squares), FDL10 (closed, red triangles), and FDL15 (closed, green diamonds) was assessed 
during aerated growth in SR-1 broth containing (A) 2 mM NH4 or (B) 10 mM NH4 at 37ºC. At 
specified times, samples were plated on M7H10 agar and incubated at 37ºC to determine viable 
CFU. Values represent the mean ± SEM of data collected from three independent cultures. (C) M. 
smegmatis cultures during growth in low ammonium (SR-1-lowNH4). Relative to mc2155, FDL7, 
and FDL15, the M. smegmatis ΔprrAB strain (FDL10) exhibited a clumping phenotype after 72 h 
growth in SR-1 medium with 2 mM NH4. (D) Images (2X magnification) of CFU morphology on 
modified SR-1-lowNH4 agar were taken on day 5. Scale bar, 2 mm. 
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Growth of the M. smegmatis ΔprrAB Mutant with Different Nitrogen Sources 

To determine the growth characteristics of the M. smegmatis strains cultured under 

alternative nitrogen sources, growth curves were performed in SR-1 medium supplemented with 

2 mM L-asparagine (SR-1-lowAsn) or L-glutamine (SR-1-lowGln). All strains grew similarly in SR-

1-lowAsn (Fig. 2.3B). While CFU levels of the ∆prrAB mutant were slightly lower than wild-type 

mc2155 in SR-1-lowGln at 24 and 48 h, the two strains were similar at 72 h and 96 h (Fig. 2.3C). 

While the mc2155 growth rate was approximately 3X greater than the ∆prrAB mutant during the 

initial 24 h in SR-1-lowGln medium, mc2155 declined at a greater rate than the ∆prrAB mutant 

with continued growth (Fig. 2.3C). The data suggests that despite the more robust growth 

potential achieved in mc2155 during growth in SR-1-lowGln, the ∆prrAB mutant resisted the 

deleterious effects of glutamine depletion in a time-dependent manner. Cell clumping was not 

observed in either SR-1-lowAsn or SR-1-lowGln media.  

 

Ammonium Stress Does Not Alter prrA Transcription in M. smegmatis 

Since prrA is upregulated in M. tuberculosis in response to in vitro nitrogen-limiting 

conditions (Haydel et al. 2012), M. smegmatis prrA transcriptional activity during ammonium 

stress was characterized. prrA transcription was similar in mc2155 and the complemented ∆prrAB 

mutant (FDL15) in SR-1-lowNH4 medium (Fig. 2.5), revealing that ammonium stress does not 

alter prrA transcription.  

 

 

Figure 2.5. Quantitative analysis of prrA transcription in mc2155 and FDL15 when cultured in SR-
1-lowNH4 (2 mM NH4) relative to M7H9. Log2-fold change calculated using the comparative CT 
method (ΔΔCT). P=0.7675, unpaired Student’s t-test. 
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Mycolic Acid Methyl Esters (MAMEs) Profiles of the ∆prrAB Mutant During Ammonium Stress 

Since the M. smegmatis ∆prrAB mutant clumped during prolonged growth in SR-1-

lowNH4, we used alkaline methanolysis to generate MAMEs and analyzed these key lipid 

constituents of the mycobacterial envelope by qualitative 1D TLC. MAMEs isolated from the M. 

smegmatis strains grown in SR-1-lowNH4 or SR-1-highNH4 and visualized with ethanolic sulfuric 

acid produced similar profiles with regards to the major α, α’, and epoxy mycolate species (Fig. 

2.6). Quantitative assessments with radiolabeled lipids and mass spectrometry are necessary to 

determine and further explore the influence of PrrAB on MAME production.  

 

 

Figure 2.6. Qualitative TLC analyses of mycolic acid/fatty acid methyl esters (MAMEs/FAMEs) 
from M. smegmatis cultured in (A) SR-1-lowNH4 and (B) SR-1-highNH4. Mycolic acids and fatty 
acids were extracted by alkaline methanolysis and derivatized with CH3I to generate methyl 
esters. MAME/FAME species were resolved using petroleum ether:diethyl ether (9:1) and 
visualized by charring with 10% ethanolic sulfuric acid at 110°C for 15 min. The major MAME 
species (α, α’, and epoxy) are as indicated. 
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M. smegmatis ∆prrAB Mutant Accumulates TAGs, DAGs, and Lipids in Ammonium Stress 

To begin globally profiling lipids in an untargeted manner, we subjected the M. 

smegmatis cultures grown in SR-1-lowNH4 to high-resolution liquid chromatography followed by 

ESI-QTOF. Univariate ANOVA revealed 319 significantly expressed (p < 0.05) lipid species 

between mc2155 and FDL10, with the vast majority (309 species) elevated in FDL10 compared to 

mc2155 (Fig. 2.7A). LC/QTOF-MS analyses revealed a series of positive molecular ions, m/z 

834.76 – 963.84, which correspond to TAGs ranging from 49 to 58 carbons, with relative peak 

heights that were significantly elevated in the FDL10 ∆prrAB mutant compared to wild-type 

mc2155 (Fig. 2.7B). Of these significantly-elevated lipid species, nine were identified as TAGs 

(Fig. 2.8). Quantitative lipidomics analyses revealed that TAG species with 49, 50, 51, and 58 

total carbons exhibited median fold increases of 4.9 (3.9 – 6.4 range), 6.2 (3.2 – 8.4 range), 5.5 

(4.1 – 6.9 range), and 4.8, respectively, in the FDL10 ∆prrAB mutant compared to wild-type 

mc2155 (Fig. 2.8). Principal component analysis categorized mc2155, FDL7, and FDL15 as a 

separate group from FDL10 (Fig. 2.9). Univariate ANOVA comparing mc2155 to FDL7 or FDL15 

revealed only 29 and 15 differentially-expressed positive molecular ion lipid species, respectively, 

further confirming the principal component analysis. While complementation with M. smegmatis 

prrAB (FDL15) did not completely restore lipid abundance to wild-type mc2155 levels (Fig. 2.7B), 

1,996 out of 2,089 positively-charged molecular ion lipid species were not significantly different.  
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Figure 2.7. LC/QTOF-MS analysis of positively-charged ion lipid species. (A) Volcano plot of 
mc2155 and FDL10 lipid species identified in positive ion mode. Vertical lines represent FDL10 
lipid species exhibiting a log2 fold change of ± 1 relative to mc2155. All species above the 
horizontal line represent p < 0.05. Red dots indicate TAG species. (B) 3D spectra and M. 
smegmatis strain comparison of lipid species within the m/z range of TAG species. All mass 
spectra were displayed after normalization to the base peak present in FDL15. m/z, mass-to-
charge ratio. 
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Figure 2.8. LC/QTOF-MS peak heights of TAGs significantly elevated in the FDL10 ∆prrAB 
mutant compared to mc2155. Na+, molecular ion of target lipid species plus sodium; NH4

+, 
molecular ion of target lipid species plus ammonium. Values represent the peak heights of 
positive molecular ions analyzed from three independent cultures, each with two technical 
replicates. Boxplots with median lines extend from the 25th to 75th percentiles and show Tukey 
whiskers. *, adjusted p < 0.05; **, adjusted p < 0.01; two-way ANOVA, Tukey’s multiple 
comparisons. 
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Figure 2.9. Principal component analysis (PCA) of M. smegmatis mc2155, FDL7, FDL10, and 
FDL15 strains subjected to untargeted lipid analysis via LC/QTOF-MS. 
 

Qualitative Assessment of TAGs and DAGs in the M. smegmatis ∆prrAB Mutant During 

Ammonium Stress 

To support the LC/QTOF-MS quantitative TAG analyses (Fig. 2.8), apolar lipids were 

extracted, separated by TLC, and visualized with iodine vapor. Qualitative TLC analysis revealed 

slightly higher levels of TAGs, DAGs, and other apolar lipids in the ∆prrAB mutant compared with 

wild-type mc2155 when cultured in SR-1-lowNH4 (Fig. 2.10, Fig. 2.11). The relative levels of 

TAGs, DAGs, and apolar lipids were similar in mc2155, FDL7, and FDL15 compared to FDL10 

during growth in SR-1-lowNH4, revealing reproducibility in three biological (Fig. 2.10) and two 

technical replicates (Fig. 2.11). These qualitative TLC analyses corroborated the LC/QTOF-MS 

lipidomics results (Fig. 2.7) and the associated TAG quantitative levels shown in Figure 2.8 and 

further indicate that PrrAB influences TAG and DAG production.  
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Figure 2.10. Qualitative TLC analysis of TAG and DAG lipid species isolated from M. smegmatis 
cultures grown in SR-1-lowNH4 (2 mM NH4). M. smegmatis apolar lipids (75 g) from three 
independent biological replicates and TAG standards (Std; 500 g) were separated, and TLC 
plates were developed using hexane:diethyl ether:acetic acid (80:20:1). Apolar lipids were 
visualized with I2 vapor. 
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Figure 2.11. Second technical replicate of qualitative TLC analysis of TAG and DAG lipid species 
from M. smegmatis cultures grown in SR-1-lowNH4. M. smegmatis apolar lipids (75 g) from 
three independent biological replicates and TAG standards (Std; 500 g) were separated, and 
TLC plates were developed using hexane:diethyl ether:acetic acid (80:20:1). Apolar lipids were 
visualized with I2 vapor. 
 

TAG Accumulation is a PrrAB-Dependent Phenotype During Ammonium Stress   

We next sought to determine if TAG accumulation was a PrrAB-dependent phenotype 

during M. smegmatis ammonium stress. Culturing the strains under ammonium sufficient 

conditions (SR-1-highNH4) and resolving the apolar lipid fractions containing TAG and DAG 

species revealed no consistent qualitative differences in TAG accumulation in the M. smegmatis 

strains (Fig. 2.12). Compared to mc2155, FDL7, and FDL15, DAG species appeared elevated in 

the ∆prrAB mutant in one biological replicate (Fig. 2.12). These results further indicate that M. 

smegmatis PrrAB contributes to TAG regulation specifically in response to ammonium stress 

conditions.  
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Figure 2.12. Qualitative TLC analysis of TAG and DAG lipid species isolated from M. smegmatis 
cultures grown in SR-1-highNH4. M. smegmatis apolar lipids (75 µg) from three independent 
biological replicates and TAG standards (Std; 500 µg) were separated, and TLC plates were 
developed using hexane:diethyl ether:acetic acid (80:20:1). Apolar lipids were visualized with I2 
vapor. Panels (a) and (b) shows the first and second technical replicates, respectively, of the 
three independent biological replicates. 
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M. smegmatis Lipid and TAG Biosynthesis Genes are Regulated by PrrAB During Ammonium 

Stress 

To examine the genetic basis for the lipid-accumulating phenotype in the ∆prrAB mutant, 

total RNA was isolated from mc2155, FDL10, and FDL15 strains cultured for 24 h in SR-1-

lowNH4. We analyzed transcript profiles of genes belonging to the Kennedy pathway of TAG 

biosynthesis (Fig. 2.13A) and fatty acid biosynthesis (Fig. 2.13B). As shown in Fig. 2.13A, 

transcriptional profiles for glycerol kinase (glpK, MSMEG_6759) and glycerol-3 phosphate acyl 

transferase (GPAT, MSMEG 4703), whose enzyme products catalyze the first two steps in TAG 

biosynthesis (Fig. 2.14A), were upregulated >4-fold in the ∆prrAB mutant. Two wax ester 

synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) genes, which catalyze the final 

TAG biosynthetic reaction (Fig. 2.14A), were upregulated >2 fold in the ∆prrAB mutant (Fig. 

2.13A). The accD6 and accA3 acetyl-CoA carboxylase genes were also highly upregulated (>2 

fold each) in the ∆prrAB mutant (Fig. 2.13B), indicating that PrrAB may influence de novo lipid 

biosynthesis (Fig. 2.14B). In the ∆prrAB mutant, Ag85C (fbpC, MSMEG 3280) transcripts were 

upregulated >4 fold (Fig. 2.13B), indicating that PrrAB is involved in regulating genes involved in 

mycolic acid biosynthesis (Fig. 2.14B) despite qualitative TLC revealing similar MAME profiles in 

the M. smegmatis strains (discussed above; Fig. 2.6a). Collectively, these quantitative 

transcriptional results revealed that PrrAB directly or indirectly represses genes involved in TAG 

and lipid biosynthesis, corroborating the LC/QTOF-MS lipidomics results (Fig. 2.7) data and lipid-

accumulating phenotype in the ∆prrAB mutant (Figs. 2.8, 2.10).  
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Figure 2.13. TAG and fatty acid biosynthetic genes were upregulated in the ∆prrAB mutant during 
growth in low ammonium (SR-1-lowNH4). (A) Transcriptional profiles of key genes participating in 
TAG and (B) fatty acid biosynthesis. Log2 expression values compare the FDL10 ∆prrAB mutant 
(solid bars) and the FDL15 complemented mutant (hatched bars) relative to mc2155 (∆∆Ct 
method using 16S rRNA as a reference gene). *, p < 0.05; unpaired t test. 
 

 

Figure 2.14. Pathways for (A) TAG and (B) lipid biosynthesis in M. smegmatis. TAG and fatty acid 
biosynthetic genes upregulated in the ∆prrAB mutant during growth in low ammonium (SR-1-
lowNH4) (Fig. 2.13) are marked with an asterisk. 
 

The M. smegmatis ∆prrAB Mutant is Sensitive to Hypoxia in Ammonium-Limited Medium 

To determine if the ∆prrAB mutant exhibits sensitivity or resistance to environmental stresses in 

the presence of low ammonium, we monitored growth of the M. smegmatis strains in the 

presence of isoniazid (INH) and upon exposure to acidic (pH 5.5), SDS (0.05%), and hypoxic 

stresses for 48 h. In SR-1-lowNH4 medium, the ∆prrAB mutant grew poorly during hypoxia for 48 



  64 

h, exhibiting 70% reduced growth, compared to mc2155 (p < 0.0001) (Fig. 2.15). After 48 h 

incubation in SR-1-lowNH4 medium, wild-type mc2155 and the ∆prrAB mutant grew similarly in 

the presence of acidic (pH 5.5) and detergent (0.05% SDS) stress and upon exposure to 

isoniazid (data not shown).  

 

 

Figure 2.15. M. smegmatis growth in SR-1-lowNH4 media during hypoxia. Growth (OD600) of 
mc2155, FDL7, FDL10, and FDL15 was assessed during hypoxia in SR-1-lowNH4 media for 48 h. 
Values were normalized to the average OD600 of mc2155 replicates at 48 h and represent the 
mean ± SD of data collected from six independent cultures. A.U., arbitrary units; ****, p < 0.0001; 
ANOVA. 
 
 
Discussion 

The M. tuberculosis prrAB two-component system is expressed during infection in human 

peripheral blood-derived macrophages (Graham and Clark-Curtiss 1999; Haydel and Clark-

Curtiss 2004) and is required for early intracellular infection in murine bone-derived macrophages 

(Ewann et al. 2002). Additionally, prrAB is essential for viability in M. tuberculosis and is 

significantly upregulated under nitrogen-limited conditions (Haydel et al. 2012). In addition to 

PrrAB, the MtrAB TCS is also essential in M. tuberculosis (Zahrt and Deretic 2000). The essential 

nature of prrAB in M. tuberculosis implicates this TCS as a bona fide target for development of 

novel classes of antituberculosis drugs (Bellale et al. 2014), and the transcriptional 
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responsiveness to nitrogen availability provides a platform for experimentally determining the 

physiological role of PrrAB.  

Due to the inability to generate a targeted prrAB gene deletion in M. tuberculosis (Haydel 

et al. 2012), we questioned if the conserved PrrAB system was universally essential in 

pathogenic and nonpathogenic mycobacteria. In this report, we show that prrAB was not essential 

in M. smegmatis (Figs. 2.1, 2.2), contrary to a recent study describing prrAB essentiality in M. 

smegmatis (Mishra et al. 2017). Generation of the M. smegmatis ∆prrAB mutant strain prompted 

us to explore the physiological contributions of this TCS in mycobacteria. PrrAB was necessary 

for maintaining a dispersed cell phenotype in ammonium-limiting growth conditions during 

stationary phase (Fig. 2.4C), likely through coordinated lipid expression patterns. Growth of the 

M. smegmatis ∆prrAB mutant displayed early (24 h) and late (96 h) growth deficiencies when 

nitrate was present at limiting (2 mM) concentrations (Fig. 2.3A), however, no clumping 

phenotype was observed in this growth medium. To test amino acid-derived nitrogen sources, M. 

smegmatis strains were cultured in minimal media supplemented with 2 mM L-asparagine or 2 

mM L-glutamine. In a limited L-glutamine environment, ∆prrAB mutant growth was slightly 

decreased at 24 h but subsequently mimicked the growth rate of wild-type M. smegmatis (Fig. 

2.3C).  

Overexpression of M. tuberculosis prrA in the M. smegmatis ∆prrAB background restored 

growth to M. smegmatis wild-type levels in vitro (Fig. 2.4; Fig. 2.2A), possibly due to the M. 

smegmatis and M. tuberculosis PrrA proteins exhibiting 97% overall identity and 100% identity in 

the 8 DNA-binding recognition helix. Genetic complementation in the absence of PrrB suggests 

that in vivo cross talk occurs or that PrrA is functional in vivo in a non-phosphorylated state. 

Although genetic complementation and growth phenotype restoration occurs in the absence of 

the PrrB cognate histidine kinase, in vitro phosphorylation reactions reveal that PrrA is specifically 

transphosphorylated by PrrB (Agrawal et al. 2015).  

Mycobacteria produce an extensive repertoire of lipids, many of which are virulence 

factors, including phthiocerol dimycocerosate (Goren, Brokl, and Schaefer 1974), sulfolipids 

(Goren, Brokl, and Schaefer 1974), and trehalose dimycolate (Behling et al. 1993). Additionally, 
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M. tuberculosis accumulates TAGs in response to various physical stresses that mimic the 

phagosomal environment of activated macrophages, including hypoxia (Daniel et al. 2004), acidic 

conditions, and nitric oxide exposure (Sirakova et al. 2006). Accumulation of large quantities of 

TAGs in the highly virulent W-Beijing M. tuberculosis strain correlates with upregulation of the 

DosR dormancy regulon (Reed et al. 2007), a 48-gene regulon associated with latent tuberculosis 

infection (Sherman et al. 2001). In M. smegmatis, TAGs accumulated during in vitro culture 

growth in a low nitrogen medium (Garton et al. 2002). Clearly, upregulation of TAG biosynthetic 

pathways and accumulation of TAGs are strategies which allow mycobacteria to cope with 

environmental stresses and provide M. tuberculosis with an energy source during dormancy 

(Garton et al. 2002; Daniel et al. 2011). 

While TAG accumulation in prokaryotes is a relatively rare phenomenon, numerous 

members of the Actinomycetes, including Gordonia, Mycobacteria, Streptomyces, and Nocardia 

(Indest et al. 2015; Daniel et al. 2004; Arabolaza et al. 2008; H.M. Alvarez et al. 2001), share this 

phenotype. TAGs accumulate in M. tuberculosis during periods of dormancy induced by hypoxia 

and nitric oxide (Daniel et al. 2004) and during in vitro nitrogen limitation in M. smegmatis (Garton 

et al. 2002). Additionally, TAGs are located in the cell envelope (Bansal-Mutalik and Nikaido 

2014) and as intracellular inclusions during nutrient starvation (Wu, Gengenbacher, and Dick 

2016) in M. smegmatis. In the absence of PrrAB and during growth in an ammonium-limiting 

environment, M. smegmatis clumped excessively (Fig. 2.4C) and accumulated TAGs (Figs. 2.7, 

2.8, and 2.10). Since low ammonium levels generate dormancy-associated signals that induce 

accumulation of TAGs (Garton et al. 2002), these results could link PrrAB to particular dormancy 

phenotypes (Daniel et al. 2011).  

Genes of the Kennedy TAG biosynthesis pathway (Fig. 2.14A) were universally 

upregulated in the ∆prrAB mutant compared to wild-type mc2155 and the prrAB complementation 

strain, FDL15. Genes participating in the first two steps of TAG biosynthesis, catalyzed by 

glycerol kinase (MSMEG 6759) and glycerol-3 phosphate acyltransferase (MSMEG 4703), and 

two WS/DGAT genes (MSMEG 4705, MSMEG 1882) (Fig. 2.14A) were significantly upregulated 

in the ∆prrAB mutant (Fig. 2.13A). Overall, transcriptional profiling of genes participating in 
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numerous steps in the Kennedy pathway for TAG biosynthesis genetically corroborates the 

LC/QTOF-MS lipidomics data (Fig. 2.7) and quantitative TAG analyses (Fig. 2.8), indicating that 

PrrAB indirectly or directly contributes to regulating TAG biosynthesis. 

The first reaction in fatty acid biosynthesis is the irreversible carboxylation of acetyl-CoA 

with bicarbonate to generate malonyl-CoA, catalyzed by acetyl-CoA carboxylase (ACCase) (Fig. 

2.14B). The accD6 and accA3 genes, encoding two biosynthetic ACCase subunits, were 

significantly upregulated in the ∆prrAB mutant relative to wild-type mc2155 (Fig. 2.13B). Although 

differences in α, α’, and epoxy mycolic acid species were not observed via qualitative TLC (Fig. 

2.6), deletion of prrAB resulted in upregulation of the Ag85C mycolyl transferase gene, which is 

important for incorporation of mycolic acids into the cell envelope (Belisle et al. 1997), further 

implicating PrrAB in lipid metabolism regulation. Global transcriptomics analyses of the ∆prrAB 

mutant are currently underway and will further link PrrAB and M. smegmatis metabolism 

(Maarsingh and Haydel, unpublished data).  

M. tuberculosis modulates its transcriptional programming to adapt to the phagosomal 

environment during infection (Schnappinger et al. 2003; Rohde et al. 2012). We have 

demonstrated that an M. smegmatis ∆prrAB mutant accumulates TAGs (Fig. 2.8) and increases 

transcription of several TAG and fatty acid biosynthetic genes in an ammonium-limited 

environment (Fig. 2.13A). The M. smegmatis genome is annotated with six WS/DGAT genes 

which catalyze the final and committed step in TAG biosynthesis. The abundance of these 

enzymes in M. smegmatis complicates enzymatic studies to mechanistically determine the 

contributions of specific WS/DGAT isoforms to explain the upregulated TAG phenotype in the 

∆prrAB mutant. The M. smegmatis PrrAB TCS may serve to repress transcription of one or more 

of the less active WS/DGAT genes during ammonium limitation, as our qRT-PCR data suggests 

(Fig. 2.13A). TAGs accumulate in M. tuberculosis during residence in macrophages grown under 

hypoxic conditions (Daniel et al. 2011) and upon exposure to in vitro stress responses that mimic 

the phagosome environment (Sirakova et al. 2006). Additional studies are needed determine if 

other in vitro stresses produce an exacerbated TAG accumulation phenotype in the ∆prrAB 

mutant. Since M. tuberculosis prrAB is expressed during early infection in macrophages (Graham 
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and Clark-Curtiss 1999; Haydel and Clark-Curtiss 2004; Ewann et al. 2002) and is significantly 

upregulated under nitrogen-limited conditions (Haydel et al. 2012), PrrAB could serve to repress 

transcriptional adaptive responses during early stages of macrophage infection.  

As M. tuberculosis advances into a persistent state during infection, it must adapt to the 

nutritionally-deprived and anoxic environment of the granulomatous lesion (Timm et al. 2003). 

Additionally, nutrient starvation is associated with tolerance to rifampicin and isoniazid (Betts et 

al. 2002). Although exposure to low pH, cell wall (detergent) stress, or isoniazid did not affect the 

M. smegmatis ∆prrAB mutant in ammonium-limiting media, hypoxic conditions significantly 

compromised ∆prrAB mutant growth (Fig. 2.15). The M. tuberculosis DosRS TCS is required for 

long-term in vitro survival during anaerobic conditions (Park et al. 2003; Leistikow et al. 2010), 

and dosR and dosS mutants fail to establish persistent infection and hypoxic granulomas in 

rhesus macaques (Mehra et al. 2015). Given that M. tuberculosis accumulates TAGs and lipids 

and shifts nitrogen metabolic pathways during hypoxia (Leistikow et al. 2010; Baek, Li, and 

Sassetti 2011; Akhtar et al. 2013) and that the DosRS system is inextricably linked to M. 

tuberculosis hypoxic responsiveness and persistence (Park et al. 2003; Leistikow et al. 2010; 

Mehra et al. 2015), our results suggest PrrAB TCS also contributes to mycobacterial metabolic 

responsiveness and changes.  

To better understand the essential nature of the M. tuberculosis PrrAB TCS and its 

potential role in tuberculosis disease progression, efforts to generate a titratable prrAB 

knockdown mutant using a tetracycline-responsive repression system (Ehrt et al. 2005) are 

underway. Additionally, M. tuberculosis PrrA site-specific mutations will be generated to 

investigate transcriptional and phenotypic responses of this essential TCS. While additional 

studies are necessary to explore the role of PrrAB in pathogenesis, mechanistic and metabolic 

understanding of the essential M. tuberculosis PrrAB system and investigations into how 

diarylthiazoles functionally disrupt PrrAB (Bellale et al. 2014) or PrrAB-regulated pathways are 

necessary to help combat the ongoing epidemic of drug-resistant tuberculosis. 
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CHAPTER 3 

COMPARATIVE TRANSCRIPTOMICS REVEALS PRRAB-MEDIATED CONTROL OF 

METABOLIC, RESPIRATION, ENERGY-GENERATING, AND DORMANCY PATHWAYS IN 

MYCOBACTERIUM SMEGMATIS 

 
 
Publication Note: This article was submitted for publication in an altered format to BMC 

Genomics on April 5, 2019. 

 
 
Abstract  

Background  

Mycobacterium smegmatis is a saprophytic bacterium frequently used a as a genetic 

surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic 

regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. 

In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to 

define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. 

tuberculosis. 

 

Results  

RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB 

mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB 

regulates 683 genes, 62% of which are repressed in the WT background. Gene ontology and 

cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion 

homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of 

dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis. 

Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated 

delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene 

expression profiling correlated with these growth deficiency results, revealing that PrrAB induces 

transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic 
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conditions. ATP synthesis was ~64% lower in the ΔprrAB mutant relative to WT strain, further 

demonstrating that PrrAB regulates energy production. 

 

Conclusions  

The M. smegmatis PrrAB two-component system regulates respiratory and oxidative 

phosphorylation pathways, potentially to provide tolerance against the dynamic environmental 

conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels 

during exponential growth, presumably through transcriptional activation of both terminal 

respiratory branches (cytochrome c bc1-aa3 and cytochrome bd oxidases), despite transcriptional 

repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the 

dormancy-associated dosR response regulator in an oxygen-independent manner, which may 

serve to fine-tune sensory perception of environmental stimuli associated with metabolic 

repression. 

 

Background  

TCSs participate in signal transduction pathways and are ubiquitously found in bacteria, 

archaea, some lower eukaryotes and plants (Zschiedrich, Keidel, and Szurmant 2016; Krell 2018; 

Schaap et al. 2015; Liu et al. 2018). TCSs recognize specific environmental stimuli (A. Kumar et 

al. 2007) and integrate an adaptive response, frequently by modulating transcription (Richmond 

et al. 2016). A prototypical TCS consists of a membrane-bound histidine kinase sensor and a 

cytoplasmic DNA-binding response regulator. In pathogenic bacteria, TCSs act as virulence 

factors that regulate diverse survival mechanisms, such as antibiotic resistance (Gebhardt and 

Shuman 2017), phosphate limitation (Kelliher, Radin, and Kehl-Fie 2018), low oxygen tension 

(Mehra et al. 2015), and evasion of immune responses (Herrera et al. 2014). Though mammalian 

proteins bearing histidine kinase sequence motifs and activity (Srivastava et al. 2006) have been 

identified, response regulators appear absent in humans, opening the possibility for development 

of inhibitors targeting virulence-related or essential bacterial TCSs as novel therapeutic 

approaches.  
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Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient disease of 

mankind and the leading cause of death from an infectious agent (WHO 2017). The M. 

tuberculosis genome harbors 11 paired TCSs, two orphaned histidine kinases, and six orphaned 

response regulators (Haydel and Clark-Curtiss 2004). Of these TCSs, only MtrAB (Zahrt and 

Deretic 2000) and PrrAB (Haydel et al. 2012) are essential for M. tuberculosis viability. The prrAB 

genes are conserved across all fully-sequenced mycobacterial genomes, suggesting an 

evolutionary selective pressure to retain this TCS. The M. tuberculosis prrAB is upregulated 

during the early stages of human macrophage infection (Haydel and Clark-Curtiss 2004) and 

under in vitro nitrogen limitation (Haydel et al. 2012). During infection in murine macrophages, 

prrAB is required for early replication and adaptation to the intracellular environment (Ewann et al. 

2002). Capitalizing on findings that diarylthiazole compounds inhibit M. tuberculosis growth via 

the PrrAB TCS, Bellale et al. (Bellale et al. 2014) exposed M. tuberculosis cultures to 

diarylthiazole and found that PrrAB modulates transcription of genes enabling metabolic 

adaptation to a lipid-rich environment, responsiveness to reduced oxygen tension, and production 

of essential ribosomal proteins and amino acid tRNA synthases.  

Mycobacterium smegmatis strain mc2155 (Snapper et al. 1990) is a non-pathogenic, 

rapid-growing, saprophytic mycobacterium that is used as a surrogate model to study M. 

tuberculosis genetics and mycobacterial TCSs. We recently demonstrated that prrAB is not 

essential in M. smegmatis and that PrrAB differentially regulates triacylglycerol biosynthetic 

genes during ammonium limitation (Maarsingh and Haydel 2018). The inability to generate an M. 

tuberculosis prrAB knockout mutant (Haydel et al. 2012), the high degree of PrrA sequence 

identity (95%) between M. tuberculosis and M. smegmatis, and the presence of over 2,000 

homologous genes (51% of total genes in M. tuberculosis H37Rv) shared between these species 

prompted use of the M. smegmatis ΔprrAB mutant to better understand PrrAB transcriptional 

regulatory properties. A comprehensive profiling of the genes and pathways regulated by PrrAB 

in M. smegmatis would provide insights into the genetic adaptations that occur during M. 

tuberculosis infection and open new avenues for discovering novel therapeutic targets to treat 

tuberculosis.   
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In this study, we used RNA-seq-based transcriptomics analysis to obtain a global profile 

of the genes regulated by PrrAB in M. smegmatis. We compared the transcriptomic profiles of M. 

smegmatis WT, ΔprrAB mutant, and prrAB complementation strains during mid-logarithmic 

growth under standard laboratory conditions. PrrAB primarily functioned as repressor, decreasing 

transcription of twice as many genes as it induced. Down-regulated genes were associated with 

nitrogen, nucleotide, and fatty acid metabolism, while PrrAB-induced genes were implicated in 

ATP synthesis, respiration, and ion homeostasis. These data provide seminal information into the 

transcriptional regulatory properties of the mycobacterial PrrAB TCS and how PrrAB may be 

controlling molecular processes important in M. tuberculosis and other mycobacteria. 

 

Results 

Phylogenetic Analyses of PrrA and PrrB in Mycobacteria   

Since prrAB orthologues are present in all mycobacterial species and prrAB is essential 

for viability in M. tuberculosis (Haydel et al. 2012), it is reasonable to believe that PrrAB fulfills 

important regulatory properties in mycobacteria. We therefore questioned the evolutionary 

relatedness or distance between PrrA and PrrB proteins in mycobacteria. The M. tuberculosis 

H37Rv and M. smegmatis mc2155 PrrA and PrrB amino acid sequences share 93% and 81% 

identity, respectively. Maximum-likelihood phylogenetic trees, based on PrrA (Fig. 3.1a) and PrrB 

(Fig. 3.1b) multiple sequence alignments, were generated. Using the Gupta et al. (Gupta, Lo, and 

Son 2018) recent reclassification of mycobacterial species, the results suggested that, with a few 

exceptions, PrrA and PrrB evolved with specific mycobacterial clades (Fig. 3.1). While subtle 

differences in the PrrA or PrrB sequences may represent evolutionary changes as mycobacterial 

species of the same clade adapted to similar environmental niches, additional experiments are 

needed to determine if prrAB is essential in other pathogenic mycobacteria. 
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Figure 3.1. Maximum-likelihood phylogenetic analyses of mycobacterial (a) PrrA and (b) PrrB 
sequences based on the recent reclassification of mycobacterial species by Gupta et al. (Gupta, 
Lo, and Son 2018). Blue squares, Fortuitum-Vaccae clade. Red triangles, Trivale clade. Green 
diamonds, Tuberculosis-Simiae clade. Yellow circles, Abscessus-Chelonae clade. Purple 
triangles, Terrae clade. M. smegmatis mc2155 and M. tuberculosis H37Rv are indicated by blue 
and green arrows, respectively. PrrA and PrrAB sequences were aligned using default MUSCLE 
algorithms (Edgar 2004) and phylogenetic tree was generated in MEGA 7 (S. Kumar, Stecher, 
and Tamura 2016). 
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We next questioned if the distinct phylogenetic separations between clades could be 

mapped to specific PrrA or PrrB amino acid residues. We separately aligned mycobacterial PrrA 

and PrrB sequences in JalView using the default MUSCLE algorithm (Edgar 2004). Within 

species of the Abscessus-Chelonae clade, two unique PrrA signatures were found: asparagine 

and cysteine substitutions relative to serine 38 (S38) and serine 49 (S49), respectively, of the M. 

smegmatis PrrA sequence (Fig. 3.2). These Abscessus-Chelonae clade PrrA residues were not 

found at similar aligned sites in other mycobacteria (Fig. 3.2). Similarly, members of the 

Abscessus-Chelonae clade (except Mycobacteriodes abscessus) harbored unique amino acid 

substitutions in PrrB, including glutamate, valine, lysine, aspartate, lysine, and valine 

corresponding to threonine 42 (T42), glycine 67 (G67), valine 90 (V90), methionine 318 (M318), 

alanine 352 (A352), and arginine (R371), respectively, of the M. smegmatis PrrB sequence (Fig. 

3.3).  

 

 

Figure 3.2. Members of the mycobacterial Abscessus-Chelonae clade harbor unique PrrA amino 
acid “signatures”. Boxed residues correspond to amino acid residues only found in mycobacterial 
species belonging to the Abscessus-Chelonae clade (bottom row) compared to all other 
mycobacterial clades (top row) or M. smegmatis mc2155 and M. tuberculosis H37Rv (middle 
row). Numerical system below single-letter amino acid codes correspond to the residue position 
in M. smegmatis (top and middle rows) or M. abscessus (bottom row). Left box corresponds to 
PrrA residue S38 of M. smegmatis (top and middle rows) and N35 of M. abscessus. Right box 
corresponds to PrrA residue S49 of M. smegmatis (top and middle rows) and C46 of M. 
abscessus. 
 



  75 

 

Figure 3.3. Members of the mycobacterial Abscessus-Chelonae clade harbor unique PrrB amino 
acid “signatures”. Boxed residues correspond to amino acid residues only found in mycobacterial 
species belonging to the Abscessus-Chelonae clade (bottom row) compared to all other 
mycobacterial clades (top row) or M. smegmatis mc2155 and M. tuberculosis H37Rv (middle 
row). Numerical system below single-letter amino acid codes correspond to the residue position 
in M. smegmatis (top and middle rows) or M. abscessus (bottom row). (a) PrrB residue T42 of M. 
smegmatis (top and middle rows) and E66 of M. abscessus. (b) PrrB residue G67 of M. 
smegmatis (top and middle rows) and V93 of M. abscessus. (c) PrrB residue V90 of M. 
smegmatis (top and middle rows) and 117 of M. abscessus. (d) PrrB residue M318 of M. 
smegmatis (top and middle rows) and D343 of M. abscessus. (e) PrrB residue A352 of M. 
smegmatis (top and middle rows) and K377 of M. abscessus. (f) PrrB residue R371 of M. 
smegmatis (top and middle rows) and V396 of M. abscessus. 
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Transcriptomics Analysis of the M. smegmatis WT, prrAB Mutant, and Complementation Strains   

We previously generated an M. smegmatis mc2155 prrAB deletion mutant 

(mc2155::ΔprrAB; FDL10) and its complementation strain (mc2155::ΔprrAB::prrAB; FDL15) 

(Maarsingh and Haydel 2018). Since the prrAB regulon and the environmental cue which 

stimulates PrrAB activity are unknown, a global transcriptomics approach was used to analyze 

differential gene expression in standard laboratory growth conditions. RNA-seq was used to 

determine transcriptional differences between the prrAB mutant, mc2155, and the 

complementation strains during mid exponential growth, corresponding to an OD600 of ~0.6 (Fig. 

3.4), in supplemented Middlebrook 7H9 (M7H9) broth. Total RNA was isolated from three 

independent, biological replicates of each M. smegmatis strain. Based on multidimensional 

scaling (MDS) plot, one mc2155 biological replicate which was deemed an outlier and excluded 

from subsequent analyses (details in Methods, Fig. 3.5). Principal component analysis (PCA) of 

the global expression patterns of the samples (excluding the mc2155 outlier) demonstrated that 

samples from the mc2155 and FDL15 complementation strains clustered together, apart from 

those of the FDL10 ΔprrAB strain with the majority of variance occurring along PC1 (Fig. 3.6), 

indicating complementation with ectopically-expressed prrAB in the ΔprrAB background. 

 

 

Figure 3.4. M. smegmatis growth characteristics in M7H9 broth. Optical density (OD600) of mc2155 
(open circles), FDL10 (red triangles), and FDL15 (green diamonds). The blue arrow shows the 
OD600 (~0.6) when cultures were collected for RNA isolation. Values represent the mean ±SEM of 
data collected from three independent cultures. 
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Figure 3.5. Multidimensional scaling (MDS) plot of triplicate M. smegmatis RNA-seq samples. 
Given the MDS-based distance separation of the mc2155_2 sample (circled in the bottom-left 
corner of plot) from other mc2155 replicates, the mc2155_2 sample was removed from differential 
expression analysis. 
 

 

Figure 3.6. Principal component analysis (PCA) of M. smegmatis strains used for RNA-seq DEG 
analyses. 
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Identifying the PrrAB regulon 

To identify differentially-expressed genes (DEGs), pair-wise comparisons of normalized 

read counts between the prrAB mutant and WT (FDL10 vs. mc2155) as well as the prrAB 

mutant and prrAB complementation (FDL10 vs. FDL15) datasets were performed using EdgeR. 

Deletion of prrAB resulted in induction of 426 genes and repression of 257 genes (p < 0.05), 

representing 683 transcriptional targets (Fig. 3.7a) that are repressed and induced, respectively, 

by PrrAB in the WT background (Fig. 3.7c). More conservative FDR-based comparisons revealed 

167 DEGs (q < 0.05) between the WT and prrAB mutant strains (Fig. 3.8a). Between the prrAB 

complementation and prrAB mutant strains, 578 DEGs (p < 0.05) were identified (Fig. 3.7b), 

representing 412 repressed and 166 induced genetic targets by the complementation of PrrAB 

(Fig. 3.7c), while FDR-based comparisons revealed 67 DEGs (Fig. 3.8a). Overall, pair-wise DEG 

analyses revealed that during mid-logarithmic M. smegmatis growth, PrrAB primarily functions to 

transcriptionally repress genes via direct or indirect mechanisms. In addition, comparison 

between the two DEG sets (i.e., for mc2155 vs. FDL10 and FDL15 vs. FDL10) datasets revealed 

226 (Fig. 3.7e) and 40 (Fig. 3.8b) overlapping DEGs at the significance levels of p < 0.05 and q < 

0.05, respectively. Hierarchical clustering with the overlapping DEGs further illustrated that gene 

expression changes induced by the prrAB deletion were partially recovered by prrAB 

complementation (Fig. 3.7d). We randomly selected six DEGs for qRT-PCR analyses and verified 

the RNA-seq results for five genes, thus strengthening the transcriptomics data (Fig. 3.9).  
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Figure 3.7. Global DEG profiles (p < 0.05) between the mc2155 vs. FDL10 and FDL15 vs. FDL10 
RNA-seq comparisons. Volcano plots of (a) FDL10 vs. mc2155 and (b) FDL10 vs. FDL15 group 
comparisons with red and blue dots representing differentially-expressed genes with p < 0.05 and 
q < 0.05, respectively. The horizontal hatched line indicates p = 0.05 threshold, while the left and 
right vertical dotted lines indicate log2 fold change of -1 and +1, respectively. (c) Repressed (blue) 
and induced (yellow) DEGs in mc2155 (WT) and FDL15 (prrAB complementation strain) 
compared to the FDL10 ΔprrAB mutant. (d) Average hierarchical clustering (FPKM +1) of 
individual RNA-seq sample replicates. (e) Venn diagrams indicating 226 overlapping DEGs 
between mc2155 vs. FDL10 (WT vs. ΔprrAB mutant) and FDL15 vs. FDL10 (prrAB 
complementation strain vs. ΔprrAB mutant) strain comparisons.  
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Figure 3.8. Global expression profile of DEGs (q <0.05). (a) Total DEGs (q < 0.05) induced 
(yellow) or repressed (blue) by PrrAB in mc2155 (WT) and FDL15 (ΔprrAB complementation) 
backgrounds (RNA-seq pair-wise comparisons to the ΔprrAB mutant). (b) Venn diagrams of 
DEGs (q < 0.05) demonstrating that 40 DEGs (q < 0.05) overlapped between RNA-seq pair-wise 
comparisons. 
 

 

Figure 3.9. qRT-PCR verification of six randomly selected genes from the RNA-seq FDL10 vs. 
mc2155 comparison. All qRT-PCR measurements were performed from the same RNA samples 
used for RNA-seq analyses and each gene was tested in triplicate. Absolute fold-change ratios 
were calculated using the 2-ΔΔCt method (Livak and Schmittgen 2001). 
 

Gene Ontology and Clustering Analyses  

To infer function of the genes regulated by PrrAB, enrichment of gene ontology (GO) 

terms (biological processes and molecular functions) in the DEGs of the mc2155 vs. FDL10 
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comparison was assessed by the DAVID functional annotation tool. The two sets of DEGs from 

the mc2155 vs. FDL10 comparison (Fig. 3.7c), were examined. In general, genes repressed by 

PrrAB were associated with numerous metabolic processes (Fig. 3.10a) and nucleotide binding 

(Fig. 3.10b), while PrrAB-induced genes were associated with ion or chemical homeostasis (Fig. 

3.10c) and oxidoreductase, catalase, and iron-sulfur cluster binding activities (Fig. 3.10d). The 

GO enrichment analyses suggested that during M. smegmatis exponential growth in M7H9 

medium, PrrAB negatively regulates genes associated with diverse components of phosphorus, 

nitrogen, carbohydrate, and nucleotide metabolic and biosynthetic processes and positively 

regulates expression of genes participating in cation (particularly, iron) homeostasis, redox 

mechanisms, and gluconeogenesis (Fig. 3.10). 

 

 

Figure 3.10. GO term enrichment associated with DEGs (p < 0.05) that are (a, b) repressed (c, d) 
or induced by PrrAB in the WT background. GO terms categorized by (a, c) biological processes 
(BP) or (b, d) molecular function (MF). 
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Classification of genes based on clusters of orthologous groups (COGs) analyses were 

then performed using the online eggNOG mapper program. Of all COG categories in each gene 

list, 39% (N=146) and 28% (N=59) of genes repressed or induced by PrrAB, respectively, 

participate in diverse aspects of metabolism (Fig. 3.11), thus corroborating the GO results. Of the 

COG categories induced by PrrAB, 17% (N=36) were associated with energy production and 

conversion (COG Category C). The relatively even proportions of COG categories associated 

with PrrAB-induced and repressed genes (Fig. 3.11) suggest that this TCS, as both 

transcriptional activator and repressor, fine-tunes diverse cellular functions to maximize and/or 

optimize growth potential during exponential replication.  

 

 

Figure 3.11. COG analysis of DEGs (p < 0.05) induced (yellow) or repressed (blue) by PrrAB in 
the WT background. COGs from each category were normalized to represent the percent 
abundance of each category to all COGs returned in the induced or repressed analyses, 
respectively.   
 

PrrAB Regulates dosR Expression in M. smegmatis 

Differential expression analysis revealed significant repression of MSMEG 5244 and 

MSMEG 3944, two paralogues of the dosR (devR) response regulator gene, in the ΔprrAB 

mutant strain (Fig. 3.7a). In M. tuberculosis, the hypoxia-responsive DosRS (DevRS) TCS (along 

with the DosT histidine kinase) induces transcription of ~50 genes that promote dormancy and 

chronic infection (Park et al. 2003). Here, we designate MSMEG 5244 as dosR1 (due to its 

genomic proximity to dosS) and MSMEG 3944 as dosR2. Among the 25 M. smegmatis 

homologues of the M. tuberculosis DosRS regulon genes, 23 genes were differentially expressed 
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(+/- 2-fold changes) in pair-wise comparisons among the three strains (Fig. 3.12). Importantly, 21 

of the 25 M. smegmatis DosRS regulon homologues were induced by PrrAB in the WT and 

complementation backgrounds, corroborating the activity of the DosR as a positive transcriptional 

regulator (Park et al. 2003).  

 

Figure 3.12. M. smegmatis PrrAB regulates dormancy-associated genes of the DosR regulon. 
Heatmap of M. smegmatis RNA-seq DEGs associated with M. tuberculosis dosR regulon 
homologues. Color bar indicates log2 fold change values corresponding to mc2155 vs. FDL10 (left 
tiles) and FDL15 vs. FDL10 (right tiles) DEGs. MSMEG genes differentially regulated (p < 0.05) 
are denoted by asterisks. 
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PrrAB is Necessary for M. smegmatis Adaptation to Hypoxia 

The cytochrome bd oxidase respiratory system is a high-affinity terminal oxidase that is 

important for M. smegmatis survival under microaerophilic conditions (Kana et al. 2001). Because 

the cydA, cydB, and cydD genes were repressed in the in the ΔprrAB mutant during aerobic 

growth (Fig. 3.7a), we questioned if the ΔprrAB mutant was more sensitive to hypoxia than the 

WT strain. Compared to WT and the prrAB complementation strains, the ΔprrAB mutant exhibited 

reduced viability (Fig. 3.13a) and produced smaller colonies (Fig. 3.13b) after 24 h hypoxia 

exposure. In contrast, cell viability and colony sizes were similar for all strains cultured under 

aerobic growth conditions (Fig. 3.13a, b).  

 

 

Figure 3.13. PrrAB is protective during hypoxia and cyanide-mediated respiratory inhibition and 
regulates cytochrome bd and dosR expression. (a, b) Viability of M. smegmatis strains after 24 h 
incubation in hypoxic or aerobic environments at 37ºC. *, p = 0.04; **, p = 0.0099; one-way 
ANOVA, Dunnett’s multiple comparisons. (c) qRT-PCR of cydA (MSMEG 3233), cydB (MSMEG 
3232), cydD (MSMEG 3231), dosR1 (MSMEG 5244), and dosR2 (MSMEG 3944) RNA isolated 
from M. smegmatis after exposure to hypoxia for 24 h. Relative fold change in gene expression 
was calculated using the 2ΔΔCt method. *, p = 0.0103; **, p = 0.0013; ****, p < 0.0001; unpaired 
Student’s t tests. (d) M. smegmatis growth in the presence (dashed lines) or absence (solid lines) 
of 1 mM cyanide (KCN). **, p < 0.01; ****, p < 0.0001; unpaired Student’s t tests. Values 
represent the mean ±SEM of data collected from three independent cultures. 
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Next, we questioned if differential expression of cydA, cydB, and cydD correlated with 

growth deficiencies in the ΔprrAB mutant. We compared transcriptional profiles of cydA, cydB, 

and cydD by qRT-PCR from each strain incubated in M7H9 broth and hypoxic conditions for 24 h. 

Expression levels of cydA, cydB, and cydD were universally reduced in the ΔprrAB mutant 

relative to the WT strain (Fig. 3.13c). Furthermore, both dosR1 and dosR2 were also 

downregulated in the ΔprrAB mutant after 24 h hypoxia (Fig. 3.13c), demonstrating that PrrAB is 

required for activating dosR under hypoxic conditions. Complementation with M. smegmatis 

prrAB restored expression of cydA, cydB, cydD, and dosR2 to levels similar to WT, while the 

dosR1 paralogue was expressed approximately 6-fold higher in the complementation strain 

relative to WT after 24 h hypoxia (Fig. 3.13c). Overall, the gene expression profiles correlated 

with in vitro growth characteristics, indicating that PrrAB expression is necessary for M. 

smegmatis survival under hypoxic conditions and confirms that PrrAB induces cydA, cydB, cydD, 

dosR1, and dosR2 in both oxygen-rich and oxygen-poor environmental conditions.  

 

The ΔprrAB Mutant is Hypersensitive to Cyanide Exposure  

Cyanide is a potent inhibitor of the aa3 cytochrome c oxidase in bacteria. Conversely, 

cytochrome bd oxidases in Escherichia coli (Korshunov, Imlay, and Imlay 2016), Pseudomonas 

aeruginosa (Cunningham, Pitt, and Williams 1997), some staphylococci (Voggu et al. 2006), and 

M. smegmatis (Kana et al. 2001) are relatively insensitive to cyanide inhibition. In the absence of 

alternative electron acceptors (e.g., nitrate and fumarate), aerobic respiratory capacity after 

cyanide-mediated inhibition of the M. smegmatis aa3 terminal oxidase would be provided by the 

cytochrome bd terminal oxidase (CydAB). Because cydA, cydB, and cydD were significantly 

repressed in the ΔprrAB mutant (Fig. 3.7a), as were most subunits of the cytochrome c bc1 – aa3 

respiratory oxidase complex, we hypothesized that the ΔprrAB mutant would be hypersensitive to 

cyanide relative to the WT and complementation strains. Cyanide inhibited all three strains during 

the first 24 h (Fig. 3.13d). While the WT and complementation strains entered exponential growth 

after 24 h of cyanide exposure, the ΔprrAB mutant exhibited significantly delayed and slowed 

growth between 48-72 h (Fig. 3.13d). These data demonstrated that the ΔprrAB mutant strain had 



  86 

defects in alternative cytochrome bd terminal oxidase pathways, further supporting that genes 

controlling cytochrome c bc1 and aa3 respiratory oxidases are induced by PrrAB.  

 

PrrAB Positively Regulates ATP Levels 

KEGG pathway analysis of DEGs (p < 0.05) induced by PrrAB revealed oxidative 

phosphorylation as a significantly enriched metabolic pathway (enrichment = 3.78; p = 0.017). 

Further examination of the RNA-seq data generally revealed that genes of the terminal 

respiratory complexes (cytochrome c bc1-aa3 and cytochrome bd oxidases) were induced by 

PrrAB, whereas F1F0 ATP synthase genes were repressed by PrrAB (Fig. 3.14a). Therefore, we 

hypothesized that ATP levels would be greater in the ΔprrAB mutant relative to the WT and 

complementation strains despite the apparent downregulation of terminal respiratory complex 

genes (except ctaB) in the ΔprrAB mutant (Fig. 3.14a). While viability was similar between strains 

at the time of sampling (Fig. 3.14b), ATP levels ([ATP] pM/CFU) were 36% and 76% in the 

ΔprrAB mutant and complementation strains, respectively, relative to the WT strain (Fig. 3.14c). 

Ruling out experimental artifacts, we confirmed sufficient cell lysis with the BacTiter-Glo reagent 

(See Methods) and that extracellular ATP in cell-free supernatants were similar in all three strains 

(Fig. 3.15). These data suggested that PrrAB positively regulates ATP levels during aerobic 

logarithmic growth, although prrAB complementation did not fully restore ATP to WT levels (Fig. 

3.14c). Additionally, ATP levels correlated with PrrAB induction of respiratory complex genes 

rather than PrrAB-mediated repression than F1F0 ATP synthase genes (Fig. 3.14a). 
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Figure 3.14. PrrAB regulates oxidative phosphorylation genes and ATP levels in M. smegmatis. 
(a) Heatmap of genes participating in oxidative phosphorylation. Color bar indicates log2 fold 
change of gene expression between mc2155 vs. FDL10 (left column) and FDL15 vs. FDL10 (right 
column). MSMEG genes significantly regulated (p < 0.05) are indicated with asterisks. (b) M. 
smegmatis viability (CFU/ml) at harvest and (c) corresponding ATP levels (pM/CFU) normalized 
to mc2155 were measured from exponentially-growing (OD600 ~0.6) aerobic cultures in M7H9 
broth. ****, p < 0.0001; one-way ANOVA, Dunnett’s multiple comparisons.  
 

 

Figure 3.15. M. smegmatis extracellular ATP (supernatant) expressed as a percentage of whole 
culture normalized ATP (pM/CFU). Values represent the mean ±SEM of data collected from three 
independent cultures. 
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Discussion 

TCSs provide transcriptional flexibility and adaptive responses to specific environmental 

stimuli in bacteria (Calva and Oropeza 2006). The mycobacterial PrrAB TCS is conserved across 

most, if not all, mycobacterial lineages and is essential for viability in M. tuberculosis (Haydel et 

al. 2012), thus representing an attractive therapeutic target (Bellale et al. 2014). Here, we use an 

M. smegmatis ΔprrAB mutant (Maarsingh and Haydel 2018) as a surrogate to provide insights 

into the essential nature and regulatory properties associated with the PrrAB TCS in M. 

tuberculosis. Our rationale for this approach is founded on the high degree of identity between the 

M. smegmatis and M. tuberculosis PrrA and PrrB sequences, including 100% identity in the 

predicted DNA-binding recognition helix of PrrA (Fig. 3.16) (Nowak et al. 2006).  

 

 

Figure 3.16. Multiple sequence alignment comparing the M. smegmatis and M. tuberculosis PrrA 
amino acid sequences. Secondary structures are represented by arrows (β-sheets) or bars (α-
helices). Secondary structures colored in blue correspond to the N-terminal receiver domain while 
red corresponds to the C-terminal effector domain. The conserved phosho-receiving aspartate 
(D58) and DNA-binding recognition helix are labeled. Multiple sequence alignments were 
performed in JalView using default MUSCLE algorithms (Edgar 2004). Secondary structure and 
DNA-binding recognition helix designations were adapted from Nowak et al. (Nowak et al. 
2006a). 

 

Using BLAST queries of M. smegmatis PrrA and PrrB against 150 recently reclassified 

mycobacterial species, as proposed by Gupta et al. (Gupta, Lo, and Son 2018), all fully-

sequenced mycobacterial genomes harbored prrA and prrB homologues, implying strong 

evolutionary conservation for the PrrAB TCS. Likely due to the incomplete genomic sequences 
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(Gupta, Lo, and Son 2018), prrA was not found in Mycobacterium timonense and Mycobacterium 

bouchedurhonense genomes, while a prrB homolog was not identified in Mycobacterium avium 

subsp. silvaticum. Phylogenetic analyses showed that PrrA and PrrB sequences grouped closely, 

but not perfectly, within members of specific mycobacterial clades (Fig. 3.1), and members of the 

Abscessus-Chelonae clade harbored unique PrrA and PrrB amino acid substitutions (Figs. 3.2, 

3.3). While it is unclear if these residues impact PrrA or PrrB functionality in the Abscessus-

Chelonae clade, it may be possible to develop prrAB-based single nucleotide polymorphism 

genotyping or proteomic technologies for differentiating mycobacterial infections. Multiple 

sequence alignments of the M. smegmatis and M. tuberculosis PrrA DNA-binding recognition 

helices revealed 100% sequence conservation (Fig. 3.16), suggesting a shared set of core genes 

regulated by PrrA in mycobacteria. Incorporation of a global approach, such as ChIP-seq, will be 

valuable for identifying and characterizing the essential genes directly regulated by PrrA in M. 

tuberculosis and other mycobacterial species. 

We used RNA-seq-based transcriptomics analyses to define the M. smegmatis PrrAB 

regulon during exponential growth under standard laboratory conditions. We showed that in M. 

smegmatis, PrrAB deletion led to differential expression of 683 genes (p < 0.05), corresponding 

to ~10% of chromosomal genes, of which 257 genes are induced and 426 are repressed in the 

WT background (Fig. 3.7). Importantly, PrrAB differentially regulated genes involved in aerobic 

and microaerophilic respiration. The cytochrome c terminal oxidase bc1 (qcrCAB) and aa3 (ctaC) 

genes are essential in M. tuberculosis, but not in M. smegmatis, and mutants in the latter species 

are attenuated during exponential phase growth (Matsoso et al. 2005). If M. tuberculosis PrrAB 

also regulates genes of the cytochrome c bc1 and/or aa3 respiratory complex, it could partially 

explain prrAB essentiality. Further, to corroborate the key findings from comparison between 

the prrAB mutant and WT strains, we included the prrAB complementation strain in our RNA-seq 

analyses. Of the 683 DEGs that were affected by the prrAB mutation, expression changes of 

226 genes were variably reversed (p < 0.05) in the prrAB complementation strain (Fig. 3.7e). For 

example, three genes (MSMEG 5659, MSMEG 5660, and MSMEG 5661) located upstream of the 

prrAB genes were overexpressed in the complementation strain compared to WT, suggesting 
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imperfect transcriptional complementation. We previously demonstrated similar prrA transcription 

and PrrA protein levels in the WT and complementation strains during aerobic mid-logarithmic 

growth in M7H9 broth (Maarsingh and Haydel 2018). The lack of full complementation seen in our 

RNA-seq results may have associated with sequencing artifacts. For example, the average 

number of uniquely mapped reads in the WT strain was 68% of the average in the 

complementation strain. These results were unlikely due to poor RNA quality, as RNA integrity 

numbers were consistently high. Global DEG regulation, however, was similar between mc2155 

vs. FDL10 and FDL15 vs. FDL10 pairwise comparisons. In both pairwise comparisons, 32% and 

36% of all DEGs were induced by PrrAB in the WT and complementation backgrounds, 

respectively, while 68% and 64% of all DEGs were repressed by PrrAB in the WT and 

complementation backgrounds, respectively. These data indicate that complementation with 

prrAB in the deletion background restored global transcriptomic profiles to WT levels. Future 

studies are warranted to explore the utility of incorporating sequencing data from both WT and 

complementation strains to improve the reliability of transcriptomics experiments. 

M. tuberculosis acclimates to an intramacrophage environment and the developing 

granuloma by counteracting the detrimental effects of hypoxia (Aly et al. 2006), nutrient starvation 

(Schnappinger et al. 2003), acid stress (Rohde et al. 2012), and defense against reactive oxygen 

and nitrogen species (Voskuil, Visconti, and Schoolnik 2004). Adaptive measures to these 

environmental insults include activation of the dormancy regulon and upregulation of the high-

affinity cytochrome bd respiratory oxidase (Voskuil, Visconti, and Schoolnik 2004), induction of 

the glyoxylate shunt and gluconeogenesis pathways (Timm et al. 2003), asparagine assimilation 

(Gouzy et al. 2014), and nitrate respiration (Tan et al. 2010). As a saprophytic bacterium, M. 

smegmatis could encounter similar environmental stresses as M. tuberculosis, despite their 

drastically different natural environmental niches. Conserving the gene regulatory circuit of the 

PrrAB TCS for adaptive responses would thus be evolutionarily advantageous. 

The hypoxia-responsive DosRS TCS controls the dormancy regulon in both M. 

tuberculosis (Park et al. 2003) and M. smegmatis (Mayuri et al. 2002; Bagchi, Mayuri, and Tyagi 

2003; O'Toole et al. 2003). The M. smegmatis DosRS TCS regulates dormancy phenotypes 
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similar to M. tuberculosis, including upregulation of the dosRS TCS (Mayuri et al. 2002), gradual 

adaptation to oxygen depletion (Dick, Lee, and Murugasu-Oei 1998), and upregulation of alanine 

dehydrogenase (Feng et al. 2002). DosR is required for optimal viability in M. smegmatis after the 

onset of hypoxia (O'Toole et al. 2003). Our RNA-seq and qRT-PCR data revealed that PrrAB 

induces both M. smegmatis dosR paralogues (dosR1 and dosR2) during aerobic and hypoxic 

growth (Fig. 3.7a, and Fig. 3.13c). Additionally, the RNA-seq data revealed that PrrAB induces 

genes associated with the M. tuberculosis DosR regulon (Park et al. 2003; Voskuil et al. 2003) 

(Fig. 3.12). Thus, it is possible that PrrAB also positively regulates dosR expression in M. 

tuberculosis, which would provide additional mechanisms of dosR control as previously 

demonstrated with PknB (Bae et al. 2017), PknH (Chao et al. 2010), NarL (Malhotra et al. 2015), 

and PhoP (Vashist et al. 2018).  

The M. tuberculosis respiration and oxidative phosphorylation pathways have 

increasingly gained attention as promising anti-tuberculosis therapeutic targets. Bedaquiline 

(TMC207), a recent FDA-approved mycobacterial F1F0 ATP synthase inhibitor, is active against 

drug-sensitive and drug-resistant M. tuberculosis strains (Diacon et al. 2009; Andries et al. 2005), 

as is Q203, a cytochrome c bc1 inhibitor, which has advanced to phase-I clinical trials (Butler, 

Blaskovich, and Cooper 2017). Accumulating evidence suggests that the alternative terminal 

cytochrome bd oxidase system, encoded by the cydABDC operon in M. tuberculosis, is important 

during chronic infection and may represent a novel drug target. M. tuberculosis cydA mutants are 

hypersensitive to the bactericidal activity of bedaquiline (Berney, Hartman, and Jacobs 2014), 

suggesting that combined therapeutic regimens simultaneously targeting the F1F0 ATP synthase 

and cytochrome bd oxidase represent promising anti-tuberculosis treatment strategies. Analysis 

of the DEGs (p < 0.05) induced by PrrAB revealed significant enrichment of the oxidative 

phosphorylation KEGG pathway, including genes encoding the cytochrome c bc1 (qcrA), 

cytochrome c aa3 (ctaC, ctaE), and cytochrome bd (cydB, cydD) terminal respiratory branches. 

We showed that the ΔprrAB mutant was more sensitive to hypoxic stress and cyanide inhibition 

relative to the WT and complementation strains (Fig. 3.13), thus corroborating the transcriptomics 

results. Bacterial cytochrome bd oxidases are relatively insensitive to cyanide inhibition compared 
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to the cytochrome c oxidase respiratory branch (Megehee, Hosler, and Lundrigan 2006; Hammer 

et al. 2016; Hirai et al. 2016). Growth of the ΔprrAB mutant in the presence of 1 mM potassium 

cyanide was similar to M. smegmatis cydA mutant growth under similar conditions (Kana et al. 

2001). Our data demonstrates that the M. smegmatis PrrAB TCS controls expression of aerobic 

and microaerophilic respiratory genes, and it should be noted that, to date, a master 

transcriptional regulator of respiratory systems has not been discovered in M. tuberculosis.  

ATP is required for all living organisms and serves as the cellular energy currency. We 

found increased expression of the F1F0 ATP synthase genes, including atpA, atpD, atpF, atpG, 

and atpH, in the ΔprrAB mutant strain compared to WT (Fig. 3.14a), leading us to hypothesize 

that ATP levels would be elevated in the ΔprrAB mutant. Conversely, ATP levels were lower in 

ΔprrAB mutant strain compared to the WT and complementation strains (Fig. 3.14c). Induction of 

atp genes in the ΔprrAB mutant may indicate a compensatory measure to maintain ATP 

homeostasis due to repression of the bc1-aa3 terminal respiratory complex (except ctaB) and 

hence, disruption of the transmembrane proton gradient.  

Via comprehensive transcriptomics analyses, we demonstrated that PrrAB regulates 

expression of genes involved in respiration, environmental adaptation, ion homeostasis, 

oxidoreductase activity, and metabolism in M. smegmatis. The inability to induce transcription of 

the cydA, cydB, cydD, dosR1, and dosR2 genes likely led the ΔprrAB mutant to grow poorly after 

24 h hypoxia exposure. An important goal of our RNA-seq study was to provide insight into the 

essential nature of PrrAB in M. tuberculosis using an M. smegmatis ΔprrAB mutant as a 

surrogate model while recognizing differences in their natural environmental niches, pathogenic 

potential, and genetic composition. From a therapeutic perspective, PrrAB could influence the 

sensitivity of M. tuberculosis to Q203 and/or bedaquiline by controlling expression of cytochrome 

bd oxidase, cytochrome c bc1 oxidase, and ATP synthase genes. Furthermore, it remains 

unknown whether diarylthiazoles directly target PrrB (Bellale et al. 2014) or whether the prrB 

mutations associated with diarylthiazole resistance are compensatory in nature. Taken together, 

our study provides seminal information regarding the mycobacterial PrrAB TCS regulon as well 
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as a powerful surrogate platform for in-depth investigations of this essential TCS in M. 

tuberculosis. 

 

Conclusions 

We used RNA-seq-based transcriptomics as an experimental platform to provide insights 

into the essential M. tuberculosis prrAB TCS using an M. smegmatis prrAB mutant as a genetic 

surrogate. In M. smegmatis, PrrAB regulates high-affinity respiratory systems, intracellular redox 

and ATP balance, and the dosR TCS response regulator genes, all of which promote infectious 

processes in M. tuberculosis. Using these results, we may be able to exploit diarylthiazole 

compounds that putatively target the PrrB histidine kinase as synergistic therapies with 

bedaquiline. These results are informing the basis of prrAB essentiality in M. tuberculosis and 

advancing our understanding of regulatory systems that control metabolic, respiration, energy-

generating, and dormancy pathways in mycobacteria. Exploitation of PrrAB as a drug target 

through development of small molecule inhibitors will advance the discovery and development of 

novel therapeutics to combat the global tuberculosis epidemic.  

 

Methods 

Bacterial Strains and Culture Conditions   

Genetic construction of the M. smegmatis FDL10 prrAB deletion mutant and the FDL15 

complementation strain was previously described (Maarsingh and Haydel 2018). All M. 

smegmatis strains (mc2155, FDL10, and FDL15) were routinely cultured in M7H9 broth (pH 6.8) 

supplemented with 10% ADS, 0.2% glycerol (v/v), and 0.05% Tween 80 (v/v), herein referred to 

as M7H9. M. smegmatis was incubated on Middlebrook 7H10 agar supplemented with 10% ADS 

and 0.5% glycerol, herein referred to as M7H10 agar, for CFU/ml enumeration. 

 

Hypoxic Growth Conditions  

M. smegmatis strains were cultured in M7H9 medium at 37°C, 100 rpm to an OD600 ~0.6. 

Cells were diluted into fresh, pre-warmed M7H9 to an OD600 ~0.05, serially diluted in PBS (pH 
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7.4), and spot-plated onto M7H10 agar. Hypoxic cultures were transferred to a GasPak chamber 

containing two anaerobic GasPak sachets (Beckon Dickinson, Franklin Lakes, NJ, USA), sealed, 

and incubated at 37°C for 24 h after the onset of hypoxia (~6 h), as indicated by decolorization of 

an oxygen indicator tablet included with the sachet. Plates were then incubated aerobically for an 

additional 48 h to allow colony outgrowth. Control plates were cultured under aerobic conditions 

for 48 h prior to counting and documenting colonies. Colonies were visualized using a dissecting 

microscope (Stereomaster, Fisher Scientific). All experiments were performed in triplicate. 

 

Cyanide Inhibition Assays  

M. smegmatis strains were grown in the presence of potassium cyanide (KCN) as 

described by (Kana et al. 2001) with modifications. Briefly, cultures were inoculated into 

prewarmed M7H9 broth to an OD600 ~0.05 and incubated at 37°C, 100 rpm for 30 min. KCN, 

prepared in M7H9 broth, was then added to a final concentration of 1 mM and growth was 

allowed to resume. Negative control cultures using M7H9 broth without KCN addition were 

performed concurrently. Cultures were grown for 5 d with samples collected at 24 h intervals for 

OD600 measurements and CFU quantitation on M7H10 agar. All experiments were performed in 

triplicate. 

 

ATP Assays  

M. smegmatis strains were cultured in M7H9 broth at 37°C, 100 rpm. Cultures were 

sampled in 100 µl aliquots upon reaching an OD600 ~0.6, flash-frozen in a dry ice-ethanol bath, 

and stored at -70°C for 7 d. Cells were thawed at room temperature and ATP quantification was 

performed using the BacTiter-Glo kit (Promega, Madison, WI, USA). 50 µl of cells were mixed 

with equal volumes of BacTiter-Glo reagent in opaque 96-well plates and incubated at room 

temperature for 5 min. ATP standard curves were included in the same plate. Relative 

luminescence was measured in a SpectraMax M5 plate reader (Molecular Devices, San Jose, 

CA, USA). To assess lysis efficiency, viability of all samples was confirmed after both freeze-thaw 

and processing in the BacTiter-Glo reagent by plating serial dilutions onto M7H10 agar followed 
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by incubation at 37°C for 48-72 h. Lysis efficiencies collected from three independent culture of 

mc2155, FDL10, and FDL15 were 99.97% (± 0.03), 99.99% (± 0.04), and 99.99% (± 0.02), 

respectively. Cell viability was quantified for each sample at the time of harvest by plating serial 

dilutions onto M7H10 agar followed by incubation at 37°C for 48 h before enumerating CFU/ml. 

All strains were analyzed in triplicate with two technical replicates each. 

 

RNA Isolation  

M. smegmatis strains mc2155, FDL10, and FDL15 were grown in 30 ml M7H9 at 37°C, 

100 rpm until mid-logarithmic phase (OD600 ~0.6). Culture aliquots (15 ml) were harvested by 

centrifugation at 4,000 rpm for 10 min at 4°C. The supernatant was discarded, and the cell pellet 

was resuspended in 1 ml TRIzol (Invitrogen), transferred to 2 ml screw cap tubes containing 500 

mg of zirconia-silicate beads (0.1-0.15 mm), and placed on ice. Cells were mechanically 

disrupted 3X by bead beating (BioSpec Products) at the highest setting for 40 s and incubated on 

ice for at least 1 min between disruptions. The cell lysates were incubated at room temperature 

for 5 min, centrifuged at 13,000 x g for 1 min to separate cell debris, and the supernatant was 

transferred to a new microcentrifuge tube. Chloroform (200 µl) was added, and samples were 

vortexed for 15 s followed by 5 min incubation at 4°C. The homogenate was centrifuged at 

13,000 x g for 15 min at 4°C and the upper, aqueous phase was transferred to a new 

microcentrifuge tube. RNA was precipitated with 500 µl isopropanol overnight at 4°C. Total RNA 

was pelleted by centrifugation at 13,000 x g for 15 min at 4°C, and the supernatant was 

discarded. RNA pellets were washed 2X with 70% ethanol and centrifuged at 13,000 x g for 5 min 

at 4°C between washes. After evaporation of residual ethanol by air-drying, total RNA was 

resuspended in 100 µl nuclease-free H2O. Total RNA (10 µg) was treated with TURBO-DNase 

(Invitrogen, Carlsbad, CA) for 20 min at 37°C to degrade residual genomic DNA. RNA samples 

were purified using the RNeasy Mini Kit (Qiagen, Germany) and eluted in 50 µl nuclease-free 

H2O. RNA yields were quantified by Nanodrop (Thermo Scientific, Waltham, MA), and quality was 

assessed by agarose gel electrophoresis and a 2100 Bioanalyzer (Agilent, Santa Clara, CA). 
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RNA (250 ng) was subjected to PCR using primers directed at the 16S rRNA gene to confirm lack 

of residual genomic DNA. 

 

RNA-seq Library Preparation   

cDNA was generated from RNA using the Nugen Ovation RNA-seq System via single 

primer isothermal amplification and automated on the BRAVO NGS liquid handler (Agilent, Santa 

Clara, CA, USA). cDNA was quantified on the Nanodrop (Thermo Fisher Scientific) and was 

sheared to approximately 300 bp fragments using the Covaris M220 ultrasonicator. Libraries were 

generated using the Kapa Biosystem’s library preparation kit (Kapa Biosystems, Wilmington, MA, 

USA). Fragments were end-repaired and A-tailed and individual indexes and adapters (Bioo, 

catalogue #520999) were ligated on each separate sample. The adapter-ligated molecules were 

cleaned using AMPure beads (Agencourt Bioscience/Beckman Coulter, La Jolla, CA, USA), and 

amplified with Kapa’s HIFI enzyme (Kapa Biosystems, Wilmington, MA, USA). Each library was 

then analyzed for fragment size on an Agilent Tapestation and quantified by qPCR (KAPA Library 

Quantification Kit, Kapa Biosystems, Wilmington, MA, USA) using Quantstudio 5 (Thermo Fisher 

Scientific) prior to multiplex pooling.  

 

Sequencing and Data Processing  

Sequencing was performed on a 1x75 bp flow cell using the NextSeq500 platform 

(Illumina) at the ASU Genomics Core facility. The total number of 101,054,986 Illumina 

NextSeq500 paired-end reads were generated from nine RNA samples (i.e., triplicates for each 

strain). The total number of reads generated for each sample ranged from 7,729,602 to 

14,771,490. RNA-seq reads for each sample were quality checked using FastQC v 0.10.1 and 

aligned to the Mycolicibacterium smegmatis MC2155 assembly obtained from NCBI 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_000015005.1/) using STAR v2.5.1b. Cufflinks 

v2.2.1 was used to report FPKM (Fragments Per Kilobase of transcript per Million mapped reads) 

values and the read counts. As a quality check for the biological replicates, overall similarity of 

gene expression profiles were then assessed by MDS, in which distances correspond to leading 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000015005.1/
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log-fold changes between samples. The MDS analysis demarcated clearly one of the three 

mc2155 samples as an outlier that did not cluster with the other two mc2155 samples and the 

three FDL15 samples (See Fig. 3.5), and the sample was thus excluded from further analysis. 

Average genome-wide expression (FPKM) was 6.76 for the WT strain, 5.88 for the ΔprrAB 

mutant, and 6.38 for the complementation strain. 

 

Bioinformatics Analysis  

Differential expression analysis was performed with EdgeR package from Bioconductor 

v3.2 in R 3.2.3. EdgeR applied an overdispersed Poisson model to account for variance among 

biological replicates. Empirical Bayes tagwise dispersions were also estimated to moderate the 

overdispersion across transcripts. Then, a negative binomial generalized log-linear model was fit 

to the read counts for each gene for all comparison pairs. For each pairwise comparison, genes 

with p values <0.05 were considered significant and log2-fold changes of expression between 

conditions (logFC) were reported. False discovery rate (FDR) was calculated following the 

Benjamini and Hochberg procedure (Benjamini and Hochberg 1995), the expected proportion of 

false discoveries amongst the rejected hypotheses.  

PCA was done on the scaled data using the prcomp function in R. Clustering analysis 

was done using Cluster 3.0 software, in which normalized expression (FPKM +1) values were 

log2 transformed and grouped using uncentered Pearson’s correlation distance and average 

linkage hierarchal clustering (Eisen et al. 1998). Data matrices and tree dendrograms were 

visualized in Java TreeView. Gene ontology (GO) term enrichment, KEGG pathways, and 

statistical analyses of differentially expressed genes (DEGs, p < 0.05) were performed using the 

DAVID functional annotation tool (https://david.ncifcrf.gov/summary.jsp). Clusters of orthologous 

groups (COGs) were obtained by querying DEGs (p < 0.05) against the eggNOG Mapper 

database (http://eggnogdb.embl.de/#/app/emapper). 

 

 

 

https://david.ncifcrf.gov/summary.jsp
http://eggnogdb.embl.de/#/app/emapper
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Quantitative RT-PCR (qRT-PCR)  

cDNA libraries from each sample were generated by reverse transcription of 1 µg total 

RNA using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA), according to the 

manufacturer’s instructions. Primer efficiency was validated against 10-fold dilution standard 

curves using a cutoff criterion for acceptable efficiency of 90-110% and coefficient of 

determination (R2) ≥ 0.997. Relative gene expression was calculated using the 2-ΔΔCt method 

(Livak and Schmittgen 2001) using the 16S gene as an internal normalization reference. 

 

Phylogenetic Analyses  

The M. smegmatis mc2155 PrrA and PrrB sequences were separately queried in BLASTp 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) against all Mycobacteriacea (taxid: 1762). Sequences 

corresponding to the revised mycobacterial phylogenetic clade classification (Gupta, Lo, and Son 

2018) were selected for further analysis. When multiple hits were returned from the same 

species, those corresponding to the lowest E-value were selected for alignment. Compiled PrrA 

and PrrB sequences were separately aligned in MEGA 7 (https://www.megasoftware.net/) using 

default MUSCLE algorithms. Maximum-likelihood phylogenetic trees were generated in MEGA 7 

and visualized by iTOL (Letunic and Bork 2016). 

 

Statistical Analyses  

We used one-way ANOVA to assess significant differences in cell viability and ATP 

quantification assays. Student’s t tests were used to assess differences in qRT-PCR gene 

expression. Statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, 

San Diego, CA) and p-values of <0.05 were considered statistically significant. For volcano plot 

data, the -log10 p-value of each DEG was plotted against the ratio of the mean log2-fold change of 

each differential expressed gene between FDL10 vs. mc2155 or FDL10 vs. FDL15. 

 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.megasoftware.net/
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CHAPTER 4 

MYCOBACTERIUM SMEGMATIS PRRAB REGULATES ACETATE AND PROPIONATE 

METABOLISM: CURRENT RESEARCH AND FUTURE DIRECTIONS 

 

Introduction 

CCM feeds a multitude of biological processes, including energy production via oxidative 

phosphorylation (Munoz-Elias and McKinney 2006), replenishment of anapleurotic intermediates 

(Xu et al. 2012), and carbon assimilation (Baughn et al. 2009). Saprophytic mycobacteria, such 

as Mycobacterium smegmatis, are genetically well-equipped to metabolize a diverse collection of 

carbon sources (Titgemeyer et al. 2007; Chopra et al. 2014) relative to the highly pathogenic 

Mycobacterium tuberculosis, which is specialized to reside within the nutrient-poor host 

macrophage phagosome (Schnappinger et al. 2003; Rohde, Abramovitch, and Russell 2007; 

Rohde et al. 2012). The M. tuberculosis chromosome is highly enriched in fatty acid degradative 

genes (Cole et al. 1998) which are upregulated during infection in activated macrophages 

(Schnappinger et al. 2003; Rohde et al. 2012) . It is widely-believed that M. tuberculosis persists 

on a diet of fatty acids and host cholesterol during chronic infection and mutants unable to utilize 

fatty acids are severely attenuated (Munoz-Elias and McKinney 2005; Pandey and Sassetti 2008; 

Hu et al. 2010).  

CCM is orchestrated through a variety of regulatory checkpoints, owing to the fluxuating 

physiologic demands and intricate control of metabolic homeostasis. Enzymes of microbial CCM 

are allosterically regulated by metabolic intermediates (Link, Kochanowski, and Sauer 2013; Noy 

et al. 2016; Wagner et al. 2011), cofactors (Stokke et al. 2007; Zheng et al. 2014; Willquist and 

van Niel 2010) and protein-protein interactions (Ventura et al. 2013). In the presence of two 

utilizable carbon sources, many bacteria will first metabolize the substrate that provides the most 

rapid growth before utilizing the other substrate. This phenomenon, termed catabolite repression, 

involves the reversible induction of genes required to catabolize each carbon source (Gorke and 

Stulke 2008). Mycobacteria do not appear to exhibit catabolite repression and instead, 

simultaneously utilize mutliple organic substrates in a process termed co-compartmentalization 
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(de Carvalho et al. 2010). Cues within the host phagosome activate signaling pathways that 

stimulate the tubercle bacilli to modulate gene transcription to adapt to long-term residence wihin 

the host macrophage. To date, little is known regarding the transcriptional machinery that 

regulates CCM genes in mycobacteria. In M. tuberculosis, PrpR (Rv1129c) induces expression of 

the methycitrate operon (prpDC) and is required for optimal growth on propionate as a sole 

carbon source (Masiewicz et al. 2012). RamB (Rv0465c) represses isocitrate lyase 1 (Rv0467, 

icl1) during growth on glucose, but does not influence icl1 expression during growth on acetate 

(Micklinghoff et al. 2009). PrpR and RamB work in feed-forward loops with the sigma factors SigE 

and SigB, respectively, to positively regulate prpDC and icl1 during hypoxic growth (Datta et al. 

2011). KstR (Kendall et al. 2007) KstR2 (Kendall et al. 2010) are transcriptional regulators of 

genes participating in lipid and cholesterol metabolism, including a small subset of five β-

oxidation genes. In contrast, no information is available describing specific transcriptional 

regulators that control expression of genes participating in gluconeogenesis or acetate and 

propionate activation. Given that fatty acid metabolism plays a pivotal role in M. tuberculosis 

pathogenesis and mycobacterial metabolism, a comprehensive description of the regulatory 

circuits that control these physiological processes would be beneficial and would aid in the  

development of novel small-molecule inhibitors against essential pathways.  

 TCSs are signal-transducing proteins extensively utilized by prokaryotes to sense their 

immediate environment and generate appropriate adaptive responses (Alvarez et al. 2016). A 

prototypical TCS is composed of a membrane-bound histidine kinase sensor and a cytoplasmic 

DNA-binding response regulator. Upon activation by a specific environmental stimulus, histidine 

kinase proteins dimerize and propogate the signal through a series of phosphorylation events 

which culminate on the response regulator. The phosphorylated response regulator then 

generates an adaptive response, frequently through modulating gene expression (Stock, 

Robinson, and Goudreau 2000). Some TCSs have been demonstrated to regulate CCM 

pathways. The Escherichia coli BarA-UvrY TCS regulates metabolic shifting from glycolytic to 

gluconeogenic carbon metabolism (Pernestig et al. 2003). Acetate and formate are the 

physiologic stimuli for activating BarA-UvrY, which in turn induce expression of the acetate 



  101 

activating genes, acetate kinase (ack) and phosphotranacetylase (pta) (Chavez et al. 2010). In 

Vibrio cholerae, the CrbRS TCS promotes colonization of the host intestines by activating genes 

that metabolize acetate (Hang et al. 2014). It is likely that other bacterial TCSs regulate additional 

CCM pathways, however, little information is currently known. 

The M. tuberculosis genome harbors 11 genetically linked TCSs, two orphaned histidine 

kinases, and five orphaned response regulators (Bretl, Demetriadou, and Zahrt 2011). Of this 

repertiore, the M. tuberculosis mtrAB (Zahrt and Deretic 2000) and prrAB (Haydel et al. 2012) 

TCSs are essential for viabilty. We recently constructed an M. smegmatis ΔprrAB mutant, 

therefore demonstrating that prrAB is not universally essential in mycobacteria (Maarsingh and 

Haydel 2018). During in vitro ammonium limitation, the ΔprrAB mutant accumulates triacylglycerol 

lipids (Maarsingh and Haydel 2018), which is a hallmark of M. tuberculosis (Deb et al. 2009) and 

M. smegmatis (Nazarova et al. 2011) dormancy. Preliminary growth experiments in our lab 

revealed the M. smegmatis ΔprrAB mutant experiences early stage growth defects in a medium 

supplemented with glycerol as the primary carbon source. This prompted us to explore the growth 

potential of the ΔprrAB mutant in the presence of other organic substrates. In this paper, we 

demonstrate that PrrAB is required for optimal growth on gluconeogenic carbon sources. We took 

a global untargeted metabolomics approach to precisely locate the metabolic discrepencies 

between the ΔprrAB mutant, wild-type, and complementation strains. Our studies provide 

evidence that the M. smegmatis PrrAB TCS participates in CCM by regulating assimilation of 

gluconeogenic carbon sources known to be important during M. tuberculosis chronic infection 

(Munoz-Elias and McKinney 2005). 

 

Materials and Methods 

Bacterial Media and Culture Conditions  

M. smegmatis strains were routinely cultured in M7H9 medium supplemented with 10% 

ADS, 0.2% glycerol (v/v), and 0.05% Tween 80 and adjusted to pH 6.8. Carbon-defined 

experiments were performed in M7H9 medium supplemented with 10% albumin-saline, 0.05% 

Tyloxapol, and 0.2% of the described carbon sources (herein referred to as M7H9-glucose, 
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M7H9-acetate, and M7H9-propionate) and adjusted to pH 6.8. All cultures were incubated at 

37°C on a platform rotary shaker (100 rpm) for the indicated times. Media supplements were 

included at 100 µg/ml where specified.  

 

Growth Curves  

To assess growth kinetics, M. smegmatis overnight cultures (2 ml) were harvested by 

centrifugation at 10,000 rpm for 2 min in a microcentrifuge. The cell pellets were washed twice in 

PBS (pH 7.4) (1 ml) to remove residual carbon sources. Cell pellets were resuspended in 

prewarmed medium (1 ml) and used to inoculate same medium (30 ml) to an OD600 ~0.05. 

Cultures were grown at 37°C, 100 rpm for the indicated times. Absorbance (OD600) and viability 

(CFU/ml) measurements were performed at 24 h intervals. To assess viability, cultures were 

serially diluted in sterile PBS (pH 7.4) and plated in 5 µl aliquots onto M7H10 agar supplemented 

with 10% ADS and 0.5% glycerol (herein referred to as M7H10 agar), and colonies were 

enumerated after 48 h growth at 37°C. For supplementation experiments, FDL10 was initially 

grown as overnight cultures in M7H9-ADS-glycerol-TW80. Cells were harvested by centrifugation, 

washed twice in PBS (pH 7.4) to remove residual carbon sources, and resuspended in pre-

warmed M7H9-acetate (1 ml) or M7H9-propionate (1 ml). Samples were inoculated into M7H9-

acetate (3 ml) or M7H9-propionate (3 ml) to an OD600~0.05 and cultures were grown on a rotary 

drum at 37°C. Absorbance (OD600) values were measured at 24 h intervals for 3 d. 

 

RNA Isolation  

Samples were collected from M. smegmatis strains cultured in M7H9-glucose, M7H9-

acetate, and M7H9-propionate at 1 and 4 d growth. Cells were harvested by centrifugation at 

4,000 rpm for 10 min at 4°C, resuspended in Trizol (Thermo Scientific) (1 ml), and flash frozen 

until future use. Upon RNA isolation, samples were thawed on ice and mechanically disrupted by 

bead beating (BioSpec Products, Bartlesville, OK, USA) using 0.1 mm diameter glass beads. 

Each sample was disrupted for 30 s, three times each, at the highest setting and intermittently 

cooled on ice for at least 1 min between disruptions. Cell debris was separated by centrifugation 
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at 10,000 rpm for 1 min and the Trizol-containing supernatant was transferred to a fresh 

microfuge tube. Chloroform (200 µl) was added and the samples were homogenized by vortexing 

for 15 s followed by 5 min incubation at room temperature. Samples were centrifuged at 13,000 x 

g, the upper aqueous phase was transferred to a fresh microfuge tube, and RNA was precipitated 

with  isopropanol (500 µl) overnight at 4°C. RNA was pelleted by centrifugation at 4°C for 15 min, 

13,000 x g, washed twice with 70% ethanol (1 ml), air-dried for 10 min at room temperature, and 

resuspended in nuclease-free H2O (50 µl). Total RNA (10 µg) was treated with TURBO DNase-

free (Ambion) for 20 min at 37°C and cleaned using the RNeasy mini kit (Qiagen, Germany) 

according to the manufacturer’s instructions. RNA quality was assessed by agarose gel 

electrophoresis and lack of contaminating genomic DNA was evaluated by PCR using 16S gene 

primers.  

 

Quantitative RT-PCR (qRT-PCR)  

cDNA was prepared from total RNA (1 µg) using the iScript cDNA synthesis kit (Bio-Rad, 

Hercules, CA, USA) according to the manufactures’ instructions. Gene expression was measured 

by qRT-PCR using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), 300 nM primers, 

and cDNA (5 ng) per reaction on a MyiQ thermocycler (Bio-Rad, Hercules, CA, USA). The M. 

smegmatis 16S gene was used for internal normalization before calculating fold-change 

expression values between test and calibrator samples using the comparative CT method (Livak 

and Schmittgen 2001).  

 

ATP Quantification  

Cultures were harvested at 24 h intervals in 100 µl aliquots, flash-frozen in an ethanol-dry 

ice slurry and stored at -70°C until further use. Upon ATP measurement, culture samples were 

thawed at room temperature and aliquoted in 50 µl samples in an opaque 96-well plate. Serially-

diluted ATP samples were included in the same plate to generate standard curves. Equal 

volumes of BacTiter-Glo reagent (Promega, Madison, WI, USA) were added to experimental 

wells; samples were thoroughly mixed by pipetting and allowed to incubate at room temperature 
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for 5 min. Relative luminescence (RLU) was measured on a SpectraMax M5 plate reader 

(Molecular Devices, San Jose, CA, USA) using an integration time of 0.5 s.  

 

Metabolite Extraction  

M. smegmatis strains were grown in M7H9-glucose, M7H9-acetate, or M7H9-propionate 

and samples (5 ml) were collected at 1 and 4 d growth. All samples were kept on ice or at -72°C 

in an ethanol/dry ice slurry unless stated otherwise. Culture aliquots were harvested by 

centrifugation at -4°C at 7,800 x g, the supernatant was discarded, and the pellet was washed 

with ice-cold PBS (pH 7.4) (1 ml) and transferred to pre-chilled 2 ml screw-cap tubes. Cells were 

harvested at 10,622 x g for 1 min in a pre-chilled microcentrifuge set to 0°C. The supernatant was 

discarded and cells were immediately resuspended in pre-chilled quenching solution (1 ml) 

consisting of acetonitrile:methanol:H2O (40:40:20) (Marrero et al. 2010). Metabolism was 

quenched by incubating samples at -72°C for 30 min. To extract intracellular metabolites, 0.1 mm 

diameter glass beads (BioSpec Products, Bartesville, OK) (500 mg) were added to each sample, 

and cells were disrupted twice by bead beating (BioSpec Products, Bartlesville, OK) at the 

highest speed for 30 s each. Samples were incubated at -72°C for at least 4 min between 

disruptions. The lysate was centrifuged at 10,622 x g for 1 min at 0°C, and the lysate was 

transferred to a fresh microcentrifuge tube. Samples were centrifuged for 20 min, 20,817 x g, at -

4°C to separate the protein fraction, and the supernatant containing intracellular metabolites were 

transferred to a fresh microfuge tube. This process was repeated once, and the lysate was 

clarified through 0.22 µm-pore filtration devices. Metabolites were evaporated to dryness and 

stored at -70°C until analysis by LC-MS. Protein fractions were analyzed via BCA assay (Thermo 

Scientific) in microplate format according to the manufacture’s protocol and quantified based on a 

simultaneously-generated BSA standard curve. Prior to LC-MS, metabolites were reconstituted in 

PBS:acetonitrile (4:6) (150 µl) and centrifuged at 20,817 x g for 10 min at 4°C. Metabolites (100 

µl) were aliquoted into 2 ml glass vials containing 300 µl glass capillary tubes. Each metabolite 

sample (50 µl) was pooled and analyzed by LC-MS as a quality control.  
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Liquid Chromatography-Mass Spectrometry  

Metabolites were resolved on an XBridge BEH Amide XP column (Waters Corporation, 

Milford, MA). An Agilent 6490 triple quadrapole mass spectrometer (Agilent Technologies, Santa 

Clara, CA) was coupled to an Agilent UHPLC liquid chromatography system. Each sample (4 µl) 

was resolved at a column temperature of 40°C. The mobile phase consisted of the following: 

solvent A [H2O:acetonitrile (95:5), 10 mM ammonium acetate, and 10 mM ammonium hydroxide] 

and solvent B [H2O:acetonitrile (95:5)]. 

 

Statistical Analyses  

Comparative gene expression and inter-strain ATP levels were statistically analyzed 

using two-way ANOVA in GraphPad Prism 7.0 (GraphPad Software, San Diego, CA, USA). 

Partial least squared discriminate analysis (PLS-DA) was used to discriminate metabolites based 

on variable importance in projection values (VIP >1). Univariate testing was performed using 

SPSS 22.0 (SPSS Inc., Chicago, IL). Multivariate statistical analyses were performed using open-

source R software and SIMCA-P (Umetrics, Umeå, Sweden). The data were log10-transformed 

prior to model construction. Pathway analysis and integrating enrichment analysis were 

performed and visualized using MetaboAnalyst software. 

 

Results 

PrrAB is Required for Early Growth on Gluconeogenic Carbon Sources  

Preliminary experiments revealed that the ΔprrAB mutant experienced early-stage growth 

defects in M7H9 medium containing glycerol as the primary carbon source (Fig. 4.1A). Co-

supplementation with glucose restored the growth defect, however, the ΔprrAB mutant reached 

stationary phase earlier than the wild-type and complementation strains (Fig. 4.1B). All strains 

grew similarly during growth with glucose alone (Fig. 4.1C). We then questioned if the ΔprrAB 

mutant exhibited other carbon-specific growth defects. We found that the ΔprrAB mutant 

experienced an extended lag phase growth (early-stage growth) in the presence of acetate, 

propionate, butyrate (Figs. 4.2A, B, C), and succinate (Fig. 4.1D) as primary carbon sources. 
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Supplementing M7H9-propionate medium with vitamin B12 (10 µg/ml), which activates an 

alternative route of propionate utilization via the methylmalonyl pathway (Savvi, 2008), did not 

rescue the ΔprrAB mutant growth defects (Fig. 4.2D). In the presence of pyruvate and 

oxaloacetate, the ΔprrAB mutant was only slightly compromised for early-stage growth relative to 

the wild-type and complementation strains (Figs. 4.1E, F). Furthermore, the ΔprrAB mutant was 

not hypersensitive to acetate or propionate toxicity, as demonstrated by comparable growth 

between all strains during co-supplementation with glucose-acetate or glucose-propionate (Fig. 

4.3). Co-supplementation experiments were terminated after 24 h due to excessive clumping in 

all which prevented accurate measurements of viability. Collectively, the data demonstrates that 

PrrAB is required for early growth when the gluconeogenic substrates acetate, propionate, and 

succinate (and glycerol, a mixed glycolytic/gluconeogenic metabolite) are provided as primary 

carbon sources.  

 

 

Figure 4.1. M. smegmatis mc2155 (○), FDL10 (▲), and FDL15 (♦) growth curves in different 
carbon sources (0.2%). Note that only growth in M7H9-glycerol was performed over 7 d period, 
whereas all other experiments were terminated after 4 d. Values represent the mean ± SEM of 
data collected from three independent cultures. 
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Figure 4.2. M. smegmatis growth curves in gluconeogenic carbon sources (0.2%). Values 
represent the mean ± SEM of data collected from three independent cultures. 
 

 

Figure 4.3. FDL10 is not hypersensitive to acetate or propionate toxicity. Strains were cultured for 
24 h in M7H9 co-supplemented with 0.2% glucose and acetate or propionate or glucose alone. 
Values represent the mean ± SEM of data collected from three independent cultures. 
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prrA is Upregulated During Growth on Propionate and Acetate  

Since PrrAB is required for optimal growth in short time periods on acetate and 

propionate, we questioned if prrA expression was upregulated during growth on these organic 

substrates. We measured relative expression values of the wild-type and complementation 

strains during exponential growth in M7H9-acetate and M7H9-propionate relative to M7H9-

glucose. prrA was upregulated by ~1.5 and ~3.5 log2 fold change in the wild-type strain during 

growth on acetate and propionate, respectively (Fig. 4.4). Similarly, prrA was upregulated by ~2 

log2 fold in the complementation strain during growth on propionate, however, prrA expression 

was not different in the complementation strain relative to mc2155 during growth on acetate (-0.18 

log2 fold change), indicating lack of prrAB complementation in this setting (Fig. 4.4). These results 

suggested that propionate and, possibly, acetate, are environmental stimuli that activate prrA 

expression. 

 

 

Figure 4.4. prrA is upregulated in the presence of acetate and propionate. qRT-PCR comparative 
gene expression profiling of prrA transcripts in mc2155 (wild-type) and FDL15 (complementation 
strain) during growth in acetate (blue bars) or propionate (red bars). Log2 fold change values are 
relative to growth in glucose. Relative prrA expression values were not significantly different 
between M7H9-acetate and M7H9-propionate (two-tailed Student’s t test) or between strains 
(two-way ANOVA).  
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Isocitrate Lyase is Upregulated in the ΔprrAB Mutant During Growth on Acetate and Propionate 

Isocitrate lyase (Icl) is the first enzyme of the glyoxylate cycle and M. tuberculosis icl 

(annotated as aceA1 in M. smegmatis) mutants are defective for growth on acetate and fatty 

acids (and to a lesser extent, propionate) as sole carbon sources (Munoz-Elias and McKinney 

2005). To determine if PrrAB regulates isocitrate lyase, we compared aceA1 (MSMEG 0911) 

expression in the ΔprrAB mutant during exponential growth on acetate and propionate relative to 

the wild-type strain. aceA1 was minimally upregulated in the ΔprrAB mutant during growth on 

glucose (Fig. 4.5A), however, expression was upregulated by ~1 log2 fold and ~3.5 log2 fold 

during growth on acetate and propionate, respectively (Fig. 4.5A and B). aceA1 levels were 

similar in FDL15 relative to mc2155, indicating complementation (Fig. 4.5). The results suggested 

that the growth defects in the ΔprrAB mutant during growth on acetate and propionate were not 

due to insufficient expression of aceA1.  

 

 

Figure 4.5. Isocitrate lyase 1 (aceA1) is upregulated during growth on acetate or propionate. qRT-
PCR results from samples harvested after 1 d in (A) M7H9-glucose, (B) M7H9-acetate, and (C) 
M7H9-propionate. Log2 fold change expression values are relative to mc2155 samples taken from 
same carbon source, as indicated. All measurements were performed in biological triplicate. Error 
bars represent ±SEM. *, p = 0.0119, Student’s t test. 
 
 
Pantothenic Acid Partially Rescues Growth in Acetate and Propionate  

We sought to determine if the growth defects experienced by ΔprrAB mutant during 

growth on acetate or propionate could be rescued by specific cellular metabolites. 

Supplementation with glucose and media-only samples were included as positive and negative 
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controls, respectively. Pantothenic acid (vitamin B5) rescued growth over the course of 3 d in both 

media tested (Fig. 4.6). Phenylalanine also provided a slight growth advantage after 2 d culture in 

M7H9-propionate, however, the results were transient (Fig. 4.6B). All other supplements tested 

inhibited growth relative to the media only controls. The results suggest that defects in coenzyme-

A (CoA) metabolism may contribute to the growth defects in the ΔprrAB mutant during culture 

under acetate and propionate.  

 

 

Figure 4.6. Pantothenic acid partially rescued the ΔprrAB mutant growth in acetate and 
propionate. (A) Three-day cultures in M7H9-acetate. (B) 3 d cultures in M7H9-propionate. Values 
within heatmap cells indicate mean OD600 values. Absorbance values normalized to media-only 
samples at each day. Red and blue colored cells indicate increased and decreased growth, 
respectively, compared to media-only samples. Green cells indicate supplement/media-only 
ratios >2.5. Data is representative of the mean values of triplicate, independently-grown cultures.  
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The M. smegmatis ΔprrAB Mutant Accumulates ATP in the Presence of Acetate and Propionate  

To determine if FDL10 displays an energy imbalance during growth in carbon-defined 

conditions, we measured ATP levels in all strains after 1 and 4 d of growth. During growth in 

propionate, average ATP levels were 66-fold and 48-fold greater in FDL10 relative to mc2155 and 

FDL15 (p < 0.01), respectively, during early growth (Fig. 4.7C). In the presence of acetate, 

average ATP levels were 21-fold and 23-fold greater in FDL10 compared to mc2155 and FDL15 

(p = 0.0011), respectively, after 1 d of growth (Fig. 4.7B). Average ATP levels remained greater in 

FDL10 after 4 d of growth in acetate and propionate relative to mc2155 and FDL15 (Fig. 4.7B, C). 

In the presence of glucose, ATP levels were slightly lower in FDL10 compared to mc2155 and 

FDL15, respectively, at 1 d, whereas ATP levels were slightly, but significantly (p < 0.003), 

greater in FDL10 relative to mc2155 and FDL15 after 4 d of growth (Fig. 4.7A). The results 

demonstrated that the early growth defects in FDL10 during growth on acetate and propionate 

are not due to insufficient ATP levels and that FDL10 accumulates ATP during culture in these 

carbon sources relative to mc2155 and FDL15.  

 

 

Figure 4.7. FDL10 accumulates ATP during growth in M7H9-acetate or M7H9-propionate. 
Relative ATP (fM/CFU) was calculated at 1 and 4 d growth in (A) M7H9-glucose, (B) M7H9-
acetate, and (C) M7H9-propionate media. Values are representative of triplicate, independently-
grown cultures. Error bars represent ±SEM. **, p < 0.01; ****, p < 0.0001; one-way ANOVA 
(within each day) with Dunnett’s multiple comparisons.  
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Untargeted Metabolomics Analyses  

To understand dysregulation in metabolite levels in FDL10, we utilized an untargeted LC-

MS/MS metabolomics approach. Of 278 metabolites detected in both positive and negative 

ionization modes, 109 metabolites were reliably identified, as defined by counts greater than 1000 

in ≥80% of samples and a QC coefficient of variation <20%. Of this cohort, 28, 64, and 63 

metabolites were significant between the strain, carbon source, and time point multivariate 

general linear models, respectively. Hierarchical cluster analysis comparing reliably detected 

metabolites demonstrated different metabolite profiles in FDL10 relative to mc2155 and FDL15 

(Fig. 4.8). These effects were readily evident at 1 d in acetate or propionate (Fig. 4.8). VIP scores 

based on partial least squares models identified 20 and 25 metabolites in the carbon source and 

time point models, respectively, with VIP scores >1; 9 metabolites with VIP scores >1 were 

shared between both models (Fig. 4.9). No metabolites with VIP scores >1 were found in the 

strain model.  
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Figure 4.8. Average linkage hierarchical cluster heatmap of 109 reliably detected metabolites by 
LC-MS/MS in all samples tested. Individual strains and time points are listed at the top of the 
heatmap under each respective carbon source tested. 
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Figure 4.9. Hierarchical cluster heat map of metabolites with a VIP score >1 shared between both 
carbon source and time point statistical models. Carbon source: 1, glucose (pink); 2, acetate 
(blue), 3, propionate (yellow). Time: 1, 1 d (purple); 2, 4 d (green).   
 

Comparative Metabolomic Profiles by Carbon Source  

To help explain the ΔprrAB mutant growth defects during early-stage growth in acetate or 

propionate, we compared normalized relative abundances of 109 reliably detected metabolites in 

each strain at 1 and 4 d growth. Since we specifically sought to identify metabolites that were 

accumulated or depleted in FDL10, metabolite abundances ratios were calculated in FDL10 
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relative to mc2155 or FDL15. We defined accumulated metabolites as a ratio >2 and depleted 

metabolites as a ratio <0.5 when present between both pair-wise strain comparisons. Only 

metabolites that were present in at least one-of-two online data bases (Metacyc and KEGG) and 

found in the M. smegmatis search criteria were retained for further analysis. See Tables 4.1 and 

4.2 for all relevant information. 

 

Comparative Metabolomes in M7H9-Glucose  

Since all strains grew similarly in M7H9-glucose over the 7 d growth period, we expected 

to find similar comparative metabolomes. Consistent with this hypothesis, the metabolite profiles 

of each strain were mostly similar after 1- and 4-d growth in M7H9-glucose (Fig. 4.8). One 

metabolite (urocanic acid) accumulated in FDL10 at 1 d, while three metabolites (creatine, 

creatinine, and cytidine) accumulated and one metabolite (methionine) was depleted at 4 d. The 

results corroborated the growth data and suggest that glucose metabolism is not genetically 

regulated by PrrAB.  

 

Comparative Metabolomes in M7H9-Acetate  

We found 10 metabolites accumulated and 13 metabolites depleted in FDL10 after one 

day of growth in M7H9-acetate. Notably, pantothenic acid was elevated 53- and 25-fold in FDL10 

relative to mc2155 and FDL15, respectively, at 1 d in M7H9-acetate (Table 4.1). Pantothenic acid 

levels were similar in FDL10 relative to mc2155 and FDL15 at 4 d. Other highly-accumulated 

metabolites in FDL10 at 1 d include asparagine, hydroxybutyryl-CoA, and shikimic acid (Table 

4.1). At 4 d culture, 52 metabolites accumulated and 4 metabolites were depleted in FDL10 in 

M7H9-acetate. The accumulation of metabolites at day 4 was likely due to the opposing growth 

stages of FDL10 (exponential growth) relative to mc2155 and FDL15 (death/early stationary 

phase) (Fig. 4.1A). Three disaccharides (lactose, sucrose, and trehalose) were severely depleted 

in FDL10 at 1 d, suggesting defects in carbohydrate storage metabolism. 
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Comparative Metabolomes in M7H9-Propionate  

We found 27 metabolites accumulated and 20 depleted metabolites in FDL10 at 1 d 

culture in M7H9-propionate. There were 21 accumulated and 9 depleted metabolites in FDL10 

after 4 d culture in M7H9-propionate. During growth in M7H9-propionate, pantothenic acid 

accumulated 24- and 14-fold greater in FDL10 relative to mc2155 and FDL15, respectively. These 

results were similar to those seen in M7H9-acetate, however, pantothenic acid accumulated to a 

lesser degree in M7H9-propionate. Shikimic acid and UDP-GlcNAc also accumulated to high 

levels in FDL10 at d 1 in M7H9-propionate (Table 4.1). Fewer metabolites accumulated in FDL10 

at d 4 in M7H9-Prp relative to M7H9-acetate, potentially reflecting different end products of 

acetate (malate and succinate) and propionate (pyruvate and succinate) metabolism. Lactose, 

sucrose, and trehalose were also severely depleted in FDL10 at d 1, similar to the results seen at 

d 1 in M7H9-acetate (Table 4.2). 

Table 4.1. Accumulated metabolites in FDL10 relative to mc2155 and FDL15 in each carbon 
source tested.  

M7H9-Glucose 

 Day 1 Day 4 

Metabolite FDL10/mc2155 FDL10/FDL15 FDL10/mc2155 FDL10/FDL15 

Creatine - - 5.567 7.389 

Creatinine - - 5.01 7.244 

Cytidine - - 2.211 2.102 

Urocanic acid 2.115 2.044 - - 

     
M7H9-Acetate 

 Day 1 Day 4 

Metabolite FDL10/mc2155 FDL10/FDL15 FDL10/mc2155 FDL10/FDL15 

Dimethylglycine 3.541 3.149 16.993 16.36 

2-deoxyguanosine 8.943 3.716 7.581 3.26 

2-hydroxybutyric acid - - 4.258 2.338 

2/3-Hydroxyphenylacetic acid - - 3.647 2.483 

3-Phosphoglyceric acid - - 30.314 10.637 

4-Hydroxyphenylpyruvic acid - - 3.269 2.206 

Ketoleucine/Ketoisoleucine 4.393 2.113 3.581 3.883 

Acetylornithine - - 38.646 20.754 

Aconitic acid 2.363 3.51 - - 

Adenosine - - 13.07 3.876 

Adenosyl-L-homocysteine - - 3.131 2.44 

Alanine - - 4.837 2.491 

2-Ketoisovaleric acid - - 3.556 2.235 

Asparagine 31.396 17.531 - - 

Betaine - - 8.625 5.794 

Choline 6.277 3.805 18.33 14.664 
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Citrulline - - 20.114 7.016 

Creatine - - 3.836 3.925 

Creatinine - - 5.062 4.649 

dTMP - - 4.218 2.018 

G1P - - 10.553 22.127 

Glutamine - - 35.873 29.322 

Glycine - - 3.587 2.048 

Heptadecanoic acid - - 4.005 2.602 

Homocysteine - - 3.321 3.27 

Homoserine/Threonine - - 7.803 5.787 

Hydroxybutyryl-CoA 27.858 16.851 7.511 3.356 

Indole - - 4.254 5.036 

Inosine - - 2.274 2.763 

Isoleucine - - 4.814 4.797 

Lactate - - 4.42 3.02 

Lactose - - 34.127 9.518 

Leucine - - 3.275 3.216 

Lauric acid - - 3.952 2.355 

Lysine - - 16.538 6.422 

Methylmalonic acid 3.977 2.112 - - 

Myoinositol - - 3.233 2.21 

Myristic acid - - 3.562 2.059 

Nonadecanoic acid - - 4.8 3.351 

Ornithine - - 20.346 7.736 

Pantothenic acid 52.591 25.448 - - 

Pentadecanoic acid - - 3.529 2.07 

Phenylacetic acid - - 2.81 2.05 

Phosphocreatine - - 3.099 2.248 

Pipecolinic acid - - 4.992 2.933 

R5P - - 5.572 2.64 

Sarcosine - - 4.61 2.314 

Shikimic acid 13.792 7.969 83.991 2.721 

Sorbitol - - 5.513 6.999 

Stearic acid - - 4.697 2.531 

Sucrose - - 16.651 9.736 

Trehalose - - 24.19 7.234 

UDP-GlcNAc - - 4.656 7.043 

Urate - - 4.958 2.177 

Valine - - 3.815 2.467 

     
M7H9-Propionate 

 Day 1 Day 4 

Metabolite FDL10/mc2155 FDL10/FDL15 FDL10/mc2155 FDL10/FDL15 

2-Aminobutyric acid - - 2.284 2.637 

2-deoxyguanosine 5.401 3.502 2.878 2.35 

2-hydroxyglutarate - - 6.147 2.665 

2/3-Hydroxyphenylacetic acid 5.092 2.649 - - 

3-Methyl-2-oxovaleric acid 3.917 2.118 - - 

3-Phosphoglyceric acid - - 5.818 5.726 

4-Hydroxyphenylpyruvic acid 4.121 2.536 - - 

Ketoleucine/Ketoisoleucine 11.139 4.974 - - 

Adenosine - - 3.807 2.283 

Alanine - - 8.097 5.884 

Aspartate 5.646 2.892 - - 

Benzoic acid 5.487 2.4 - - 
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Capric acid 5.329 2.555 - - 

Choline 2.589 7.646 - - 

Creatine 6.366 3.1 - - 

dTMP 5.604 2.51 - - 

G1P - - 32.424 12.5 

Guanine - - 2.173 2.239 

Homocysteine - - 5.257 6.235 

Homoserine/Threonine - - 2.582 2.522 

Hydroxybutyryl-CoA 4.174 2.09 - - 

Indole 4.041 2.695 - - 

Inosine - - 7.997 4.556 

Lactate 6.302 4.513 - - 

Lactose - - 8.744 2.509 

Lauric acid 5.283 2.296 - - 

Lysine - - 6.417 4.923 

Methylmalonic acid - - 2.34 2.527 

Myoinositol 4.004 2.448 - - 

Myristic acid 5.513 2.294 - - 

Ornithine - - 10.571 4.279 

Palmitic acid 6.309 2.726 - - 

Pantothenic acid 23.705 13.616 - - 

Pentadecanoic acid 4.369 2.436 - - 

Phenylacetic acid 4.103 2.523 - - 

Phosphocreatine 4.161 2.159 - - 

Sarcosine - - 8.299 6.144 

Shikimic acid 49.223 20.196 - - 

Sorbitol - - 8.531 4.973 

Stearic acid 6.427 3.636 - - 

Succinate - - 3.685 2.932 

Sucrose - - 10.91 3.107 

Trehalose - - 12.733 3.428 

UDP-GlcNAc 17.414 7.723 - - 

Urate 5.123 2.427 - - 

Urocanic acid 4.629 4.201 - - 

Valine - - 2.577 2.324 

 

Table 4.2. Depleted metabolites in FDL10 relative to mc2155 and FDL15 in each carbon source 
tested. 

M7H9-Glucose 

 Day 1 Day 4 

Metabolite FDL10/mc2155 FDL10/FDL15 FDL10/mc2155 FDL10/FDL15 

Methionine - - 0.42 0.42 

     
M7H9-Acetate 

 Day 1 Day 4 

Metabolite FDL10/mc2155 FDL10/FDL15 FDL10/mc2155 FDL10/FDL15 

2-Aminoadipic acid 0.276 0.271 0.331 0.137 

2-hydroxyglutarate 0.356 0.321 - - 

4-Aminobutyric acid - - 0.065 0.044 

Adenosyl-L-homocysteine 0.205 0.18 - - 

α-ketoglutarate - - 0.166 0.158 

Glutaric acid - - 0.013 0.006 

Homocysteine 0.188 0.19 - - 
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Indole-3-lactic acid 0.393 0.314 - - 

Isoleucine 0.433 0.48 - - 

Lactose 0.027 0.02 - - 

Lysine 0.273 0.332 - - 

Methionine 0.243 0.285 - - 

Nicotinamide 0.368 0.337 - - 

Ornithine 0.321 0.354 - - 

Sucrose 0.016 0.01 - - 

Trehalose 0.019 0.014 - - 

Tryptophan 0.332 0.336 - - 

Tyrosine 0.487 0.411 - - 

Valine 0.136 0.134 - - 

     
M7H9-Propionate 

 Day 1 Day 4 

Metabolite FDL10/mc2155 FDL10/FDL15 FDL10/mc2155 FDL10/FDL15 

2-Aminoadipic acid - - 0.096 0.094 

2-Aminobutyric acid 0.359 0.172 - - 

2-hydroxyglutarate 0.248 0.145 - - 

2/3-Hydroxyphenylacetic acid - - 0.49 0.49 

Acetylornithine 0.436 0.23 - - 

Adenosyl-L-homocysteine 0.327 0.114 - - 

α-ketoglutarate - - 0.077 0.12 

Asparagine - - 0.312 0.439 

Carnitine - - 0.39 0.474 

Citrulline - - 0.482 0.446 

Glutaric acid - - 0.004 0.004 

Glycine 0.101 0.389 - - 

Homocysteine 0.102 0.071 - - 

Isoleucine 0.366 0.171 - - 

Lactose 0.032 0.019 - - 

Lysine 0.113 0.068 - - 

Methionine 0.243 0.124 - - 

Nicotinamide 0.487 0.364 0.191 0.112 

Ornithine 0.146 0.105 - - 

Picolinic acid 0.426 0.214 - - 

Serine 0.429 0.256 - - 

Sorbitol 0.392 0.294 - - 

Succinate 0.321 0.245 - - 

Sucrose 0.01 0.006 - - 

Trehalose 0.006 0.003 - - 

Tryptophan 0.427 0.191 - - 

UDP-GlcNAc - - 0.261 0.247 

Valine 0.185 0.105 - - 

 
Discussion 

The natural environments that saprophytic bacteria reside are subject to uncertain 

periods of nutrient availability and may experience periods of starvation. For instance, deep 

freezes may delay decomposition of fallen foliage; extended periods of drought prevent optimal 

enzymatic activity and cellular growth; or leaching of nutrients from the soil depletes organic and 
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inorganic matter. Pathogenic bacteria, such as M. tuberculosis, are believed to experience 

nutrient-limitation during prolonged residence within the host macrophage (Schnappinger et al. 

2003; Rohde et al. 2012; Timm et al. 2003). The ability to capitalize on a diverse collection of 

organic substrates to fuel energetic and biosynthetic demands is therefore evolutionarily 

advantageous to both pathogenic and non-pathogenic mycobacteria in their natural ecological 

niches.  

 CCM is an intricate and highly interactive network of anabolic and catabolic reactions that 

fulfills many of the metabolic pathways that sustain life. As heterotrophic organisms, 

mycobacteria assimilate organic compounds available in their environment for immediate use or 

as metabolic intermediates. As a saprophytic mycobacterium, M. smegmatis is genetically 

equipped to metabolize a wide range of carbon sources, including, but not limited to, sterols 

(Fernandez-Cabezon et al. 2017), TAGs (Nakagawa, Kashiwabara, and Matsuki 1976), 

propionate (Upton and McKinney 2007), and acetate (Hayden et al. 2013), in addition to a wide 

variety of sugars (Titgemeyer et al. 2007). It is believed that M. tuberculosis utilizes fatty acids as 

primary carbon sources during chronic infection (Bloch and Segal 1956; Timm et al. 2003) and 

mutants defective in these pathways are attenuated during infection (Munoz-Elias and McKinney 

2005; Marrero et al. 2010). Though the natural ecological niche that each species occupies is 

profoundly different, M. smegmatis and M. tuberculosis both exhibit redundancy in the pathways 

employed to exploit available organic substrates. 

A paucity of information is available regarding transcriptional regulation of CCM in 

mycobacteria. In M. tuberculosis, RamB represses isocitrate lyase-1 (icl1) during growth on 

glucose (Micklinghoff et al. 2009); PrpR acts as a transcriptional activator of the methylcitrate 

operon (Masiewicz et al. 2012); the RegX3 and DosR TCS response regulators induce the citrate 

synthase (gltA1) (Roberts et al. 2011) and phosphofructokinase (pfk) (Park et al. 2003) genes, 

respectively, during hypoxic growth. In this study, we add to the current body of knowledge by 

demonstrating that the M. smegmatis PrrAB TCS promotes early growth in the presence of 

acetate, butyrate, propionate, and succinate as primary carbon sources. However, it currently 
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remains unknown the precise gene(s) regulated by PrrAB that enable utilizing these 

gluconeogenic substrates. 

Utilizing acetate or propionate as primary carbon sources requires an intact 

gluconeogenesis pathway. Phosphoenolpyruvate carboxykinase (PEPCK) represents the first 

committed step of gluconeogenesis. PEPCK generates phosphoenolpyruvate from oxaloacetate 

and is required for M. tuberculosis in vitro growth on acetate and to establish infection in mice 

(Marrero et al. 2010). The second committed enzyme of gluconeogenesis is fructose-1,6-

bisphosphatase (GlpX), which generates fructose-6-phosphate from fructose-1,6-bisphosphate. 

M. tuberculosis mutants lacking two enzymes with fructose-1,6-bisphosphatase activity fail to 

grow on fatty acids and are severely attenuated in mice (Ganapathy et al. 2015). Fructose-6-

phosphate is a precursor of UDP-N-acetylglucosamine (UDP-GlcNAc), an integral component of 

the essential peptidoglycan cell wall structure (Moraes et al. 2015), or is reversibly isomerized to 

glucose-1-phosphate. Glucose-1-phosphate can then enter the pentose phosphate pathway to 

generate essential pentose intermediates for nucleotide and cofactor synthesis and NADPH as 

reducing power for anabolic reactions. It seems unlikely that PrrAB positively regulates PEPCK, 

as FDL10 is only slightly compromised for growth when oxaloacetate is supplemented as the 

primary carbon source and follows the same overall growth pattern relative to the wild-type and 

complementation strains (Fig. 4.1F). Additionally, the accumulation of UDP-GlcNAc in FDL10 

after 1 d growth on acetate and propionate suggests that fructose-6-phosphate is generated 

through the action of GlpX. If PrrAB regulates downstream genes of peptidoglycan biosynthesis, 

then FDL10 should also be compromised for growth on glucose, a phenomenon which is not 

seen on this carbon source (Figs. 4.1B, C).  

 The accumulation of ATP in FDL10, relative to mc2155 and FDL15, after 1 d culture on 

acetate and propionate was unexpected, since FDL10 was severely inhibited for growth under 

these conditions. We currently hypothesize that genes of the glyoxylate shunt and methylcitrate 

cycle are repressed by PrrAB in the wild-type setting and hence, are active in FDL10. This 

premise is first based on evidence for the accumulated ATP levels in FDL10, which suggests that 

acetate and propionate are metabolized to succinate through the glyoxylate shunt and 
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methylcitrate cycles, respectively. Succinate would then be oxidized by succinate 

dehydrogenase, with subsequent transfer of electrons through the respiratory chain to generate 

ATP through oxidative phosphorylation. Our previous RNA-seq data shows that both succinate 

dehydrogenase operons (MSMEG 0420-sdh1DAB-MSMEG 0416 and sdh2CDAB) are 

overexpressed in FDL10 relative to mc2155 (except sdh2D) during mid-logarithmic growth in 

M7H9-ADS-glycerol-TW80 (Maarsingh et al., unpublished data). Overexpression of the SDH1 

and SDH2 complexes may at least partially explain the accumulated ATP seen in FDL10 relative 

to mc2155 and FDL15 during growth on acetate and propionate. Second, we show that isocitrate 

lyase (aceA1), a key enzyme of the glyoxylate shunt, is upregulated in the ΔprrAB mutant during 

growth on acetate and propionate (Figs. 4.5B, C), indicating that PrrAB represses aceA1 in the 

wild-type background. RNA-seq data shows that glcB, prpB, and prpC are expressed at similar 

levels in FDL10 relative to mc2155 and prpD expression is ~2-fold lower in FDL10 relative to 

mc2155; however, none of the differential expression values were statistically significant. Gene 

expression profiling of malate synthase (glcB), the second enzyme of the glyoxylate shunt, and 

genes of the methylcitrate cycle (prpDBC), in addition to measuring enzymatic activity, are 

required to support to this hypothesis (Fig. 4.10).  
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Figure 4.10. The metabolic fate of acetate and propionate as sole carbon sources via the 
glyoxylate shunt and methylcitrate cycle, respectively, in M. smegmatis. ackA, acetate kinase; 
aceA1/aceA2, isocitrate lyase1/2; acn, aconitase; citA, citrate synthase; glcB, malate synthase; 
prpB, methylisocitrate lyase; prpC, methylcitrate synthase; prpD, methylcitrate dehydratase; pta, 
phosphotranacetylase; SDH1/SDH2, succinate dehydrogenase complex; bc1-aa3, cytochrome 
c:menaquinol oxidase-cytochrome c oxidase respiratory complex; FAD, flavin adenine 
dinucleotide.  
 

It is possible that FDL10 is unable to utilize acetate or propionate for energy-demanding 

biosynthetic pathways during early growth stages. An intriguing postulate is that PrrAB regulates 

lipid or mycolic acid biosynthesis, both of which are energetically expensive processes and use 

acetate (Zimhony, Vilcheze, and Jacobs 2004) or propionate (Gago et al. 2006) as building 

blocks for fatty acid chain elongation. Fatty acid biosynthesis requires the input of energy from 

both ATP and NADPH. Though we demonstrated that ATP accumulates to high levels in FDL10 

during growth on acetate and propionate (Figs. 4.7B, C), intracellular redox balance (NAD+:NADH 

and  NADP+:NADPH) remains unknown and should be measured under the growth conditions 

employed in these studies. The severe depletion of trehalose seen in FDL10 after 1 d in M7H9-

acetate and M7H9-propionate suggests a modified hypothesis that mycolic acid incorporation into 

the outer membane may be regulated by PrrAB. Trehalose is a non-reducing disaccharide 
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composed of 1,1-linked α-glucose molecules and is essential in M. smegmatis (Woodruff et al. 

2004). Trehalose dimycolate, also known as cord factor, is an important M. tuberculosis virulence 

factor (Hunter, Venkataprasad, and Olsen 2006) and both trehalose dimycolate and trehalose 

monomycolate are present in the M. smegmatis outer membrane (Bansal-Mutalik and Nikaido 

2014). MmpL3 transports trehalose monomycolate to the outer membrane for synthesis of the 

mycolyl-arabinogalactan-peptidoglycan cell wall structure (Takayama, Wang, and Besra 2005; Xu 

et al. 2017). RNA-seq analysis shows that mmpL3 (MSMEG 0250) is expressed at similar levels 

between the FDL10 and mc2155 (+1.24 fold, p = 0.5204) or FDL15 (+1.23 fold, p = 0.4901) pair-

wise comparisons, suggesting that PrrAB does not regulate mycolic acid transport across the 

inner membrane via MmpL3. Defects in trehalose synthesis would decrease incorporation of 

mycolic acid into the outer membrane and may explain the growth defects seen in FDL10 during 

growth on acetate and propionate. However, further investigations are required to determine the 

enzymatic pathways from acetate to trehalose synthesis putatively interrupted in FDL10. 

Isotopically-labeled acetate or propionate could be used to quantitatively investigate lipid 

biosynthetic activity between strains during growth in the presence of different carbon sources. 

These results may provide insight into the choice of genes to pursue in efforts to correlate the 

transcriptional deficiencies with the carbon-specific growth defects seen in FDL10. Furthermore, 

this would provide valuable information for exploring PrrAB redundancy in M. tuberculosis.  

 Pantothenic acid is a precursor to CoA biosynthesis, an important cofactor for many 

biological processes (Begley, Kinsland, and Strauss 2001). Free acetate is activated to acetyl-

CoA by acetyl-CoA synthetase (Noy, Xu, and Blanchard 2014) or the acetate kinase-

phosphotransacylase pathway (Rucker et al. 2015). The key lipid and mycolic acid biosynthetic 

enzymes, fatty acid synthase and polyketide synthase, are activated from their inactive apo- to 

the active holo-forms through covalent attachment of the 4’-phosphopantetheine moiety of CoA 

by phosphopantetheinyl transferase (Chalut et al. 2006). Comparative metabolomic profiles 

revealed that FDL10 accumulates pantothenic acid by 53- and 24-fold after 1 d growth in M7H9-

acetate and M7H9-propionate, respectively, relative to mc2155 (Table 4.1). Paradoxically, 

supplementing M7H9-acetate or M7H9-propionate with pantothenic acid rescued growth, albeit 
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modestly, in FDL10 after 2 d culture relative to media-only controls (Fig. 4.6). Previous RNA-seq 

data shows that phosphopantetheine adenylyltransferase (coaD, MSMEG 2414) is expressed at -

3.37-fold in FDL10 relative to mc2155 (p = 0.0246) during exponential growth in M7H9-ADS-

glycerol-TW80 (unpublished data). CoaD catalyzes the transfer of ATP to pantetheine to generate 

dephospho-CoA, representing the penultimate step in CoA biosynthesis. If FDL10 under-

expresses CoaD during growth on M7H9-acetate or M7H9-propionate, it could explain the 

accumulation of pantothenate and thus represent a metabolic bottleneck that hinders optimal CoA 

biosynthesis. Desphospho-CoA kinase (CoaE) generates CoA from desphspho-CoA, however, 

the M. smegmatis genome (https://mycobrowser.epfl.ch/) lacks an annotated coaE gene and an 

Mtb coaE (Rv 1631) homologue is not found in M. smegmatis. Free CoA or propionyl-CoA was 

not detected by LC-MS/MS (acetyl-CoA was not reliably detected), therefore, it is uncertain how 

intracellular levels of these metabolites correlate with FDL10 growth in M7H9-acetate or M7H9-

propionate. However, as described above, the elevated ATP levels in FDL10 suggest that 

activation of acetate and propionate to their CoA derivatives, which are required to enter the 

glyoxylate shunt and methylcitrate cycle, respectively, is not responsible for the growth defects 

seen in FDL10. It is possible that import of exogenous pantothenic acid activates an alternative 

pathway that promotes CoA synthesis or utilization that is independent of regulation by PrrAB.  

 The chorismate pathway for aromatic amino acid biosynthesis (phenylalanine, 

tryptophan, and tyrosine) is essential in mycobacteria (Parish and Stoker 2002). Chorismate is a 

precursor for the biosynthesis of two other important molecules: folic acid (Bermingham and 

Derrick 2002) and menaquinones (Dhiman et al. 2009). Shikimic acid, a metabolic intermediate of 

the chorismate pathway, was highly accumulated in FDL10 at day 1 in both M7H9-acetate and 

M7H9-propionate, suggesting blockade of downstream biosynthetic reactions leading to 

chorismate (chorismate itself was not detected by LC-MS/MS). In FDL10, two VIP metabolites of 

tryptophan catabolism (indole-3-lactic acid and pipecolinic acid), including tryptophan itself (Fig. 

4.9), were depleted at day 1 in M7H9-acetate and M7H9-propionate (Table 4.2). Other products 

of phenylalanine and tyrosine metabolism were depleted or accumulated in FDL10 at day 1 

during growth in M7H9-acetate or -propionate, suggesting that PrrAB regulates numerous 

https://mycobrowser.epfl.ch/
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pathways of aromatic amino acid metabolism (Tables 4.1, 4.2). Tryptophan supplementation 

inhibited FDL10 during growth on acetate, but not propionate, compared to media-only controls, 

while phenylalanine supplementation only produced a modest growth inhibition after 3 d growth 

on both acetate and propionate (Fig. 4.6). It is possible that accumulation of these aromatic 

amino acids contributed to the growth inhibition seen in FDL10 under the conditions employed. 

Further investigations are required to determine if PrrAB regulates one or more genes involved in 

the chorismite, shikimate, or aromatic amino acid metabolism pathways. 

 In conclusion, we have identified numerous metabolic abnormalities between the M. 

smegmatis ΔprrAB mutant (FDL10) relative to the wild-type (mc2155) and prrAB complementation 

strain (FDL15). The highly complex nature of CCM complicates precisely locating the genes 

responsible for the growth defects seen in the ΔprrAB mutant during early growth on acetate or 

propionate. Ideally, integrating next-generation transcriptomic sequencing (RNA-Seq) with the 

LC-MS/MS metabolomic techniques described in this report will elucidate the transcriptional 

regulatory defects that ultimately are at the root of the carbon-specific growth deficiencies seen in 

FDL10. Preliminary work in our lab demonstrates that an M. tuberculosis prrAB knockdown 

mutant is compromised for in vitro growth on glycerol and acetate in a manner similar to that seen 

in M. smegmatis (unpublished data). It therefore appears that PrrAB functional redundancy exists 

between these species and, hence, M. smegmatis is an appropriate surrogate model to approach 

understanding the phenotypes and genetics influenced by PrrAB in M. tuberculosis. Since prrAB 

deletion mutants are not viable in M. tuberculosis (Haydel et al. 2012), generating a conditional 

prrAB knockdown mutant appears the best option for deciphering the essential nature of this 

TCS.  
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CHAPTER 5: FINAL SUMMARY AND IMPLICATIONS OF THE RESEARCH PRESENTED 

 

Infections by M. tuberculosis, the etiological cause of tuberculosis, constitutes a global 

health crisis. Tuberculosis is the 10th leading cause of death worldwide, and M. tuberculosis is the 

most deadly infectious agent (WHO 2017). For decades, isoniazid, rifampicin, pyrazinamide, and 

ethambutol have proven to be effective antituberculosis drugs. However, the increasing rates of 

multiple drug-resistant M. tuberculosis clinical isolates necessitate discovery of new antibiotics. 

The development of bedaquiline for treating drug sensitive and -resistant M. tuberculosis 

represents the first antituberculosis drug approved worldwide in the past 40 years (Worley and 

Estrada 2014). Other promising drug candidates in clinical phase testing include Q203 (Lu et al. 

2018), delamanid (von Groote-Bidlingmaier et al. 2019), and pretomanid (Diacon et al. 2012). 

Increased efforts are needed to reveal essential and promising drug targets in M. tuberculosis to 

stay ahead of the evolutionary arms race between us and this global scourge. 

Two-component systems (TCSs) represent important, and in some instances, essential 

(Haydel et al. 2012; Zahrt and Deretic 2000; Yan et al. 2011; Howell et al. 2003) signal 

transduction pathways in bacteria. TCSs allow bacteria to sense their immediate environment and 

enact appropriate adaptive responses. Disrupting signal transduction pathways has led to the 

development of new approaches for treating many human diseases (Noble, Endicott, and 

Johnson 2004). It therefore surprising that relatively less effort has been dedicated toward 

inhibiting essential signaling pathways in pathogenic bacteria. However, small molecules have 

been discovered that inhibit TCSs. Examples include walkmycin B inhibition of the essential WalK 

histidine kinase of Bacillus subtilis and Staphylococcus aureus (Okada et al. 2010); LED209 

inhibition of the QseC histidine kinase of Salmonella enterica spp. Typhimurium (Rasko et al. 

2008); and diarylthiazole inhibition via the M. tuberculosis PrrB histidine kinase (Bellale et al. 

2014). In our current period of increasing prevalence of antibiotic-resistant bacterial pathogens, 

investing in the discovery and development of novel and unorthodox essential targets, such as 

TCSs, represent promising therapeutic modalities. 
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Our lab previously demonstrated that the M. tuberculosis prrAB TCS is essential for 

viability (Haydel et al. 2012). Subsequent work by Bellale et al. reported that the M. tuberculosis 

growth inhibition exerted by diarylthiazole compounds is mediated through the PrrB histidine 

kinase (Bellale et al. 2014). Fatostatin is a representative diarylthiazole compound and has 

previously been demonstrated to act as an antiobesity agent in mice and prevents fatty acid 

biosynthesis in human cell lines (Kamisuki et al. 2009). Furthermore, fatostatin exhibits anticancer 

properties (Gholkar et al. 2016) and prevents bone loss (Inoue and Imai 2015). The pleiotropic 

effects of fatostatin may complicate its clinical use for treating tuberculosis. Efforts to repurpose 

this small molecule by rationale pharmacological design may alleviate the eukaryotic mechanisms 

of action and direct use towards antituberculosis activity. However, it is imperative that we reveal 

the genetic cause of the essential nature of PrrAB in M. tuberculosis. Furthermore, this 

information will provide us with a more comprehensive understanding of the transcriptional 

programs that make M. tuberculosis an extremely successful intracellular pathogen. 

Since we are currently unable to construct a ΔprrAB mutant in M. tuberculosis, we have 

directed our efforts toward the non-pathogenic relative, Mycobacterium smegmatis. In the studies 

reported here, we have shown that prrAB is not universally essential in mycobacteria, evidenced 

by the ΔprrAB mutant generated in M. smegmatis (Maarsingh and Haydel 2018). PrrAB is 

responsive to at least two in vitro stress conditions: ammonium limitation and hypoxia. PrrAB 

represses excessive triacylglycerol (TAG) accumulation during ammonium limitation in M. 

smegmatis (Maarsingh and Haydel 2018) (Fig. 5.1). We corroborated these data using gene 

expression profiling (qRT-PCR) which showed that the ΔprrAB mutant overexpresses numerous 

TAG and fatty acid biosynthetic genes (Maarsingh and Haydel 2018). The TAG accumulating 

phenotype under this condition is believed to provide bacteria with a long-term carbon storage 

molecule which the cell can utilize upon return of favorable nitrogen availability. M. tuberculosis 

also accumulates TAGs during in vitro stresses that mimic the host macrophage phagosome 

(Deb et al. 2009). Additionally, the M. tuberculosis W-Beijing lineage, which constitutively 

expresses the dormancy-associated dosRS TCS, accumulates TAGs under favorable laboratory 

growth conditions (Reed et al. 2007).  
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We also demonstrate that the M. smegmatis PrrAB TCS positively regulates the dosR 

TCS response regulator during aerobic and hypoxic growth, (Maarsingh et al., submitted for 

review) (Fig. 5.1). Hypoxia is an activating environmental signal of the DosRS-DosT TCS in M. 

tuberculosis (A. Kumar et al. 2007) and M. smegmatis (Lee et al. 2008) and induces the 

dormancy regulon in M. tuberculosis (Park et al. 2003). PrrAB therefore provides an additional 

layer of genetic regulation for the hypoxic response in M. smegmatis and likely serves to fine-tune 

regulation of dosR in this species. To corroborate this data, we showed that the ΔprrAB mutant is 

deficient, compared to the wild-type and complementation strains, during hypoxic growth and 

cyanide inhibition (Maarsingh et al., manuscript in preparation). The hypersensitivity of the 

ΔprrAB mutant to cyanide inhibition correlated with the data revealing that PrrAB positively 

regulates expression of the cytochrome bd oxidase genes (cydABD), the products of which serve 

as important respiratory complexes during microaerophilic/hypoxic conditions (Kana et al. 2001). 

Unexpectedly, ATP levels were ~64% lower in the ΔprrAB mutant compared to the wild-type 

strain, despite upregulation of the ATP F1F0 synthase genes in the former strain (Maarsingh et al., 

manuscript submitted for review) (Fig. 5.1). We hypothesize that this phenotype is due to 

downregulated expression of the bc1-aa3 aerobic terminal respiratory complexes in the ΔprrAB 

mutant. The bc1-aa3 respiratory complexes are essential in M. tuberculosis and genes encoding 

these proteins are found in multiple copies in M. smegmatis. If PrrAB functional redundancy 

exists between M. tuberculosis and M. smegmatis, this may, at least in part, explain the essential 

nature of PrrAB in the former species.  

Lastly, the research presented here implicates PrrAB in utilization of acetate, propionate, 

butyrate, and succinate as primary carbon sources during early growth stages. These nutrients 

are gluconeogenic substrates and M. tuberculosis mutants unable to metabolize these 

metabolites are severely attenuated during infection (Munoz-Elias and McKinney 2005; Marrero 

et al. 2010; Ganapathy et al. 2015). Though we currently lack a genetic explanation for the growth 

defects seen in the ΔprrAB mutant during growth on these carbon sources, comparative 

metabolomics suggests that PrrAB may regulate aromatic amino acid metabolism, lipid 

biosynthesis, or cell well biosynthesis. Further experiments are forthcoming that will 
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comparatively measure expression of genes involved in these metabolic pathways. M. 

tuberculosis central carbon metabolism has attracted great attention over the past decade, and 

these data provide novel insights into a putative master regulator of essential central metabolism 

during chronic infection. 

In summary, we provide the first biochemical evidence for metabolic regulation of 

triacylglycerol lipids and gluconeogenic carbon sources by PrrAB in M. smegmatis. Our results 

provide seminal data that have advanced our understanding of this essential TCS in M. 

tuberculosis. Furthermore, these studies further support diarylthiazole compounds as novel 

therapeutic agents that add to our arsenal of antituberculosis therapies. We believe that these 

molecules will also prove invaluable towards development of a more comprehensive 

understanding of the detailed regulatory mechanisms imparted on the physiology of M. 

tuberculosis.  
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Figure 5.1. Overview of the M. smegmatis PrrAB TCS regulatory properties. Genes to the left of 
the vertical dashed line are repressed by PrrAB in the wild-type background whereas genes to 
the right of the vertical dashed line are induced by PrrAB in the wild-type background. Metabolic 
pathways are represented above the horizontal dashed line and respiratory pathways are 
indicated below the horizontal dashed line. Green lines, central metabolism genes; blue lines, 
genes affected during ammonium limitation; red lines, respiratory genes; purple line, ATP 
synthase genes. 
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