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ABSTRACT

There are many applications where the truth is unknown. The truth values are

guessed by different sources. The values of different properties can be obtained from

various sources. These will lead to the disagreement in sources. An important task

is to obtain the truth from these sometimes contradictory sources. In the extension

of computing the truth, the reliability of sources needs to be computed. There are

models which compute the precision values. In those earlier models Banerjee et al.

(2005) Dong and Naumann (2009) Kasneci et al. (2011) Li et al. (2012) Marian and

Wu (2011) Zhao and Han (2012) Zhao et al. (2012), multiple properties are modeled

individually. In one of the existing works, the heterogeneous properties are modeled in

a joined way. In that work, the framework i.e. Conflict Resolution on Heterogeneous

Data (CRH) framework is based on the single objective optimization. Due to the

single objective optimization and non-convex optimization problem, only one local

optimal solution is found. As this is a non-convex optimization problem, the optimal

point depends upon the initial point. This single objective optimization problem is

converted into a multi-objective optimization problem. Due to the multi-objective

optimization problem, the Pareto optimal points are computed. In an extension of

that, the single objective optimization problem is solved with numerous initial points.

The above two approaches are used for finding the solution better than the solution

obtained in the CRH with median as the initial point for the continuous variables and

majority voting as the initial point for the categorical variables. In the experiments,

the solution, coming from the CRH, lies in the Pareto optimal points of the multi-

objective optimization and the solution coming from the CRH is the optimum solution

in these experiments.
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Chapter 1

INTRODUCTION

In this section, the objective of the thesis is provided, which is followed by the

motivation of the thesis.

1.1 Objective

The purpose of the thesis is to express a single objective optimization problem in

Truth Discovery into a multi-objective optimization problem. This is accompanied

by an analysis of the results of both single objective optimization problem as well

as its similar multi-objective optimization problem with the different approaches.

Throughout an investigation, either the result of the single optimization problem is

present in the Pareto points of the multi-objective optimization problem Srinivas and

Deb (1994) Deb et al. (2002) or a better solution is present in the Pareto points of

the multi-objective optimization problem.

1.2 Motivation

Due to the growth of big data, the companies are collecting data from different

origins including business activities, social media, etc. With the rise of big data,

there are wide variations of data values. The information of sufferers can be found

from different hospitals. The weather information of different cities can be recorded

by different laboratories. The information sent by the satellites can be inconsistent.

Due to the malfunctioning of the machines, error in communications, intentional

variations, etc., the values of different sources can be contradictoryLi et al. (2014).

The reliance on unreliable sources can lead to a huge loss in terms of money and data.
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For example, while getting an account information of the customer in banks, if the

value of the account number is incorrect, the money can be transferred to a wrong

person. One can contact a wrong person by an incorrect phone number. One can get

the wrong arrival date of a train in a station. One can make crazy business decisions.

So, there is a requirement of finding the correct values as well as the source reliability

of different sources for the future use. In an extension to this, these days, there is a

lot of incorrect information present on the Web.
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Chapter 2

BACKGROUND LITERATURE

There are many case scenarios where the truth is hidden. For example, in the case

of weather forecasting, an average temperature for the day is predicted by different

agencies. These values can be different for different agencies. There is a need to

compute the truth value of the average temperature for the day. The values of different

properties can be obtained from various sources. These will lead to disagreement in

the sources. The important task is to obtain the truth from these clashing sources. In

addition, to compute the truth, the reliability of the sources needs to be computed.

This is very important to compute the reliability of the sources. As in the real

world, there are always sources of different reliability. It is always useful to compute

the reliability of the sources for future use. As in the case of an above example,

computing the reliability of the source is always good for future use. In the database

area, resolving conflicts, in case of data integration, have been studied in detail Dong

and Naumann (2009) Bleiholder and Naumann (2006) Jiang (2012). There are some

approaches that have been proposed to induce the truth in case of disputes. In the

case of categorical data, the most commonly used method is Majority Voting. The

value having a maximum number of appearances will be taken as truth. In the

case of continuous data, it is the median method. These approaches essentially deal

with a single data type. In addition to that, it is assuming that all sources have

equal reliability measure. In the real world, there are many objects of heterogeneous

properties. For example, in banks, there are many attributes for a customer like age,

gender, salary, etc. In the above example, gender is of a type categorical and salary

is of a type continuous. In the case of a weather forecast, the day can be described
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in terms of high temperature, low temperature, weather condition, etc. In the above

example, the high temperature is of a type continuous and weather condition is of a

type categorical. However, it is not easy to unify the data of different properties in one

model. Existing works model multiple properties separately Banerjee et al. (2005)

Dong and Naumann (2009) Kasneci et al. (2011) Li et al. (2012) Marian and Wu

(2011) Zhao and Han (2012) Zhao et al. (2012). The sources can behave differently

with different properties for the object. As in the case of categorical data, it is either

right or wrong and in case of continuous data, it is a distance from the true value.

For example, in the case of categorical data, if the truth value is White and the

value other than White will be equal in terms of distance from the true value. In

case of continuous data, if the truth value is 60F and the observation having value

61F is closer to true value as compared to the observation having 66F. In one of the

current works, it deals with data of many types i.e. heterogeneous data. In that

work, the multiple heterogeneous properties are modeled in a joined way, but it is

calculating only one solutionLi et al. (2014). In that work, the optimization framework

is a single objective optimization. Due to the single objective optimization, a local

optimal solution is obtained Boyd and Vandenberghe (2004). As the problem which

is solved in Li et al. (2014) is a non-convex optimization problem, there can be many

local optimal points. It may happen that the solution found in Li et al. (2014) is a

local optimal point. There is a need to devise another method for computing another

global optimal point if exist.
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Chapter 3

METHODOLOGY

In this section, firstly, the single objective optimization problem introduced in Li

et al. (2014) is expressed into the multi-objective optimization problem. It is followed

by the description of the CRH framework. After that, two methods which are used to

find a more optimal solution than the solution Li et al. (2014) are provided. One of

the methods is Single Objective Optimization With Multi-Start and another method

is Non-dominated Sorting Genetic Algorithm II (NSGA).

3.1 Problem Formulation

The single objective optimization problem, introduced in Conflict Resolution on

Heterogeneous Data (CRH) framework Li et al. (2014), is converted into the multi-

objective optimization problem. In the paper Li et al. (2014), there are K sources and

M heterogenous properties. The problem in Li et al. (2014) has the following form:

minimize
X∗,W

f(X∗,W ) =
K∑
k=1

wk

N∑
i=1

M∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
K∑
k=1

e−wk = 1,

W ≥ 0.

(3.1)

In problem (3.1), W is a weight vector having K elements. xkim is a value of ith

object corresponding to mth property given by kth source. N is the number of data

objects. dm(∗, ∗) is a loss function. ξ(W ) is a regularization function whose value

is equal to 1. W corresponds to the reliability of the sources. The regularization
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function is used to constrain the values of W. In problem (3.1), X∗ is defined below:

X∗ =



x∗11 x∗12 · · · x∗1M

x∗21 x∗22 · · · x∗2M
...

...
. . .

...

x∗N1 x∗N2 · · · x∗NM


. (3.2)

In equation (3.2), x∗ij is truth value of ith object corresponding to jth property. In

equation (3.2), X∗ can be written as a vector having N*M elements as below:

X∗ =

[
x∗11 x∗12 x∗13 . . . x∗N∗M−1 x∗NM

]
. (3.3)

In problem (3.1), W is defined below:

W =

[
w1 w2 w3 . . . wK

]
. (3.4)

wi is a weight value corresponding to ith source.

The problem (3.1) is transformed into the multi-objective optimization problem

as follows:

minimize
X∗,W

(f 1(X∗,W ), f 2(X∗,W ), . . . , fM(X∗,W ))

subject to ξ(W ) =
K∑
k=1

e−wk = 1,

W ≥ 0.

(3.5)
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In the multi-objective problem (3.5), W is a vector having K elements. In the

problem (3.5), f i(X∗,W ) is defined as follows:

f i(X∗,W ) =
K∑
k=1

wk

N∑
j=1

dM(x∗jM , x
k
jM), i = 1, . . . ,M. (3.6)

The loss function, used in the multi-objective optimization problem, is selected

according to the problem and properties. On categorical data, one of the most com-

monly used loss function is the 0-1 loss in which an error is incurred if the observation

is different from the truth. If the mth property is categorical, the formula of the 0-1

loss, where x∗im is truth and xkim is observation, is as follows:

d(x∗im, x
k
im) =

1 if x∗im 6= xkim, (3.7)

0 if x∗im = xkim. (3.8)

On continuous data, there are many loss functions. One of the loss functions is

the normalized absolute deviation. If the mth property is continuous, the formula

of the normalized absolute deviation, where x∗im is truth and xkim, x1im and xKim are

observations, is as follows:

d(x∗im, x
k
im) =

|x∗im − xkim|
σ(x1im, . . . , x

K
im)

. (3.9)

In equation (3.9), σ(x1im, . . . , x
K
im) is a standard deviation.

In case of continuous data, another loss function is the normalized squared loss.

If the mth property is continuous, the formula of the normalized squared loss, where

x∗im is truth and xkim, x1im and xKim are observations, is as follows:

7



d(x∗im, x
k
im) =

(x∗im − xkim)2

σ(x1im, . . . , x
K
im)

. (3.10)

In equation (3.10), σ(x1im, . . . , x
K
im) is a standard deviation. This notation is used

in subsequent chapters.

The solution of the problem (3.5) is a set of Pareto points. The set of Pareto points

is a collection of the Pareto optimal points. The point P is said to be Pareto-optimal

if no solution of problem (3.5) dominates P. Here, P is an (M*N+K)-dimensional

vector where M is a number of heterogeneous properties and N is the number of

objects and K is the number of sources. Vector u=(u1, u2, . . . , uM∗N+K) dominates

Vector v=(v1, v2, . . . , vM∗N+K) if u is better than v with respect to one objective and

not worse than with respect to all other objectives.

3.2 CRH Framework

Algorithm 1 CRH Framework.

Input : Data from K sources: X1, X2, . . . , XK .
Output :Truth X∗={x∗im}

N,M
i=1,m=1, source weights W ={w1, w2, . . . , wK}.

1: Initialize the truths X∗;
2: while Convergence criterion is not satisfied do
3: Update source weights W while minimizing the equation corresponding to the

problem (3.1) and keeping X∗ constant;
4: Update truth X∗ while minimizing the equation corresponding to the problem

(3.1) and keeping W constant;
return X∗ and W.

The algorithm of the CRH framework is given in an Algorithm 1Li et al. (2014).

X∗ is started with an initial point. The values of W and X∗ are updated according to

the block coordinate descent approachBertsekas (2006). The output of the algorithm

is the value of X∗ and W for which the equation corresponding to problem (3.1) is

8



minimized. As, problem (3.1) is a non-convex optimization problem, the optimum

value of f(X∗,W ) depends upon the initial point.

3.3 Two Approaches

The two approaches are used for finding the solution, more optimal than the

solution found from the Conflict Resolution on Heterogeneous Data framework Li

et al. (2014). These are as follows:

3.3.1 Single Objective Optimization With Multi-Start (SOOWMS)

The problem (3.1) is a non-convex optimization problem. The value of the function

in search space can be visualized as shown in figure 3.1.

In the figure, if an initial point is A or B, then an optimal point will be C. If an

initial point is D, then an optimal point will be E. This is evident from the figure that

E is a local optimal point but C is the global optimal point. The different optimal

points can be obtained from the different initial points. In this method, the CRH

method has been applied with the different initial points. The problem is of form as

below:

minimize
X∗,W

f(X∗,W ) =
K∑
k=1

wk

N∑
i=1

M∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
K∑
k=1

e−wk = 1,

W ≥ 0.

(3.11)

Please note that the data in these experiments is continuous and there is no

categorical data. As there is a continuous data, the normalized squared loss is used

as a loss function. If the mth property is continuous, the formula of the normalized

squared loss, where x∗im is truth and xkim, x1im and xKim are observations, is as follows:

9



A

B

C

D

E

Figure 3.1: Visualization of Non Convex Optimization Problem.

d(x∗im, x
k
im) =

(x∗im − xkim)2

σ(x1im, . . . , x
K
im)

. (3.12)

In equation (3.12), σ(x1im, . . . , x
K
im) is a standard deviation. It has been used in

subsequent chapters. In each experiment, there is a value of ε in each dimension which

is used to select the initial points. The ε value of a dimension is minimum distance

between two initial points along the dimension. The value of ε is selected differently

in every dimension and in every experiment. If the value of the ε is increased, the

number of the initial points is reduced. If the value of the ε is decreased, the number

10



of the initial points is increased. The solutions obtained with many different initial

points is compared with the solution obtained by applying the CRH method with an

initial point as the median Li et al. (2014). As this is a time taking approach, it has

been applied to small data set only.

3.3.2 Non-dominated Sorting Genetic Algorithm II (NSGA)

Non-dominated Sorting Genetic Algorithm II is a multi-objective genetic algo-

rithm. This algorithm is fast and elitist Srinivas and Deb (1994) Deb et al. (2002)

Agrawal et al. (1995). This approach is applied to both small and large data set. The

description of the NSGA is as follows:

Description The population of size N is initialized randomly. Once the population

is initialized, the population is classified and sorted based on non-domination into

each front. The first front being completely non-dominant in the current candidates.

The first front dominates second front and so on. The rank value of 1 is assigned to

members of the first front and rank value of 2 is assigned to the second front and

so on. The solution having less rank value is preferred as compared to the solution

having a higher rank value. In addition to the rank value, there is another measure

which is said to be crowding distance. The crowding distance of Point P is calculated

as the average distance of two points on either side of P along each of the objectives.

If both solutions belong to the same front, then the solution that is having higher

crowding distance is selected first. The child population of size N is created by binary

tournament selection on parent population based on rank and crowding distance and

simulated binary crossover and mutation operation. In order to preserve an elitism,

the population of parent and child is combined into the resultant population of size

11



START

Initialize population of
Size N. 

Gen = 0. 

Sort the population
based on Rank and
Crowding Distance.

Reproduce Child
population of Size N
based on Selection,

Crossover and
Mutation Operator.

Combine Child and
Parent population into
population of Size 2N.

Extract the first N
candidates based on
Rank and Crowding

Distance.

Gen<MaxGen

Gen = Gen+1.

STOP

No 
 

YES

Figure 3.2: Flow Chart of Non-dominated Sorting Genetic Algorithm II (NSGA).

2N. Out of this resultant population, first N solutions, having less rank and in case

of the tie, having higher crowding distance are selected. These N solutions act as

a parent for the next iteration. While implementing NSGA, the link 1 has been

referred. The flow chart of NSGA has been given in figure 3.2. The solution of the

NSGA is the set of Pareto points.

1https://www.mathworks.com/matlabcentral/fileexchange/49806-matlab-code-for-constrained-
nsga-ii-dr-s-baskar-s-tamilselvi-and-p-r-varshini
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Chapter 4

EXPERIMENTS AND RESULTS

In this section, the information about the dataset is provided. After that, the

experiments that are performed on small data using both approaches (SOOWMS

and NSGA) are presented. After that, the experiments that are conducted on large

data set using NSGA are presented. In the case of a large data set, the data is of

both heterogeneous and homogeneous type.

4.1 Dataset Information

For a large data set, Weather Forecast Data Set has been used. As it contains

heterogeneous types of properties, it is an adequate data set for testing. The data set

is available at the link 1 Li et al. (2014). The data is crawled from the three types of

platforms: Wunderground 2 , HAM weather 3 , and World Weather Online 4 . The

data of three properties are crawled: high temperature, low temperature and weather

condition for the day. Of these three properties, the first two are continuous and the

last is categorical.

1https://cse.buffalo.edu/ jing/software.htm

2http://www.wunderground.com

3http://www.hamweather.com

4http://www.worldweatheronline.com

13



4.2 Small Dataset

4.2.1 Single Objective Optimization With Multi-Start (SOOWMS)

a) First experiment having two variables with a small range:- In this

experiment, there are two variables. The problem solved in this experiment is as

follows:

minimize
x1,x2,w1,w2,w3

f2(x1, x2, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.1)

In problem (4.1), f2(x1, x2, w1, w2, w3) is defined as follows:

f2(x1, x2, w1, w2, w3) =
1

σ(1, 3, 6)
∗ [w1 ∗ (x1 − 3)2 + w2 ∗ (x1 − 1)2

+ w3 ∗ (x1 − 6)2]

+
1

σ(1, 4, 5)
∗ [w1 ∗ (x2 − 4)2 + w2 ∗ (x2 − 5)2

+ w3 ∗ (x2 − 1)2].

(4.2)

ε1 is a minimum distance between two initial points along x1 dimension and ε2 is

a minimum distance between two initial points along x2 dimension. The value of the

ε1 is 0.001 and the value of the ε2 is 0.01. The number of initial points, in this case,

is calculated as follows:

(
6− 1

0.001
+ 1) ∗ (

5− 1

0.01
+ 1) = 2005401. (4.3)

The number of initial points is 2005401. After applying the CRH method with

14



Figure 4.1: SOOWMS on the Problem Involving 2 Variables Having Small Range.

2005401 different initial points, only one optimal solution is found. The figure 4.1

shows the plot of f 1
2 and f 2

2 . These functions f 1
2 and f 2

2 are defined in equations (4.26)

and (4.27). In figure 4.1, the point shows the solution obtained from the SOOWMS

and the solution obtained from the CRH method with the median as an initial point

Li et al. (2014). The figure shows that both points are the same.

For given x1 and x2, the values of w1, w2 and w3 are computed Li et al. (2014)

while minimizing f2 in problem (4.1). The minimum f2 values are computed for

given x1 and x2. The figure 4.2 shows the plot of minimum function value, x1 and

x2. In figure 4.2, Min(f2) is the minimum value of f2 for given x1 and x2. As it is

evident from the figure, the problem corresponding to problem (4.1) is a non-convex
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Figure 4.2: Plot of Function Value with Respect to x1 and x2.

optimization problem with one minimal point.

b) Second experiment involving two variables with a large range:- In

this experiment, there are two variables. The problem solved in this experiment is as

follows:

minimize
x1,x2,w1,w2,w3

g2(x1, x2, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.4)
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Figure 4.3: SOOWMS on the Problem Involving 2 Variables with a Large Range.

In problem (4.4), g2(x1, x2, w1, w2, w3) is defined as follows:

g2(x1, x2, w1, w2, w3) =
1

σ(100, 300, 500)
∗ [w1 ∗ (x1 − 300)2

+ w2 ∗ (x1 − 100)2 + w3 ∗ (x1 − 500)2]

+
1

σ(400, 500, 600)
∗ [w1 ∗ (x2 − 400)2 + w2 ∗ (x2 − 600)2

+ w3 ∗ (x2 − 500)2].

(4.5)

ε1 is a minimum distance between two initial points along x1 dimension and ε2 is

a minimum distance between two initial points along x2 dimension. The value of the

ε1 is 0.5 and the value of the ε2 is 0.5. The number of initial points, in this case, is
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Figure 4.4: Plot of Function Value with Respect to x1 and x2.

calculated as follows:

(
500− 100

0.5
+ 1) ∗ (

600− 400

0.5
+ 1) = 321201. (4.6)

The number of initial points is 321201. After applying the CRH method with

321201 different initial points, only one optimal solution is found. The figure 4.3

shows the plot of g12 and g22. These functions g12 and g22 are defined in equations (4.29)

and (4.30). In figure 4.3, the point shows the solution obtained from the SOOWMS

and the solution obtained from the CRH method with the median as an initial point.

As evident from the figure, both points are the same.

For given x1 and x2, the values of w1, w2 and w3 are computed Li et al. (2014)

while minimizing g2 in problem (4.4). The minimum g2 values are computed for given

x1 and x2. The figure 4.4 shows the plot of minimum function value, x1 and x2. In

figure 4.4, Min(g2) is the minimum value of g2 for a given x1 and x2. As it is evident
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from the figure, the problem (4.4) is a non-convex optimization with one minimal

point.

c) Third experiment involving four variables with a small range:- In

this experiment, there are four variables. The problem solved in this experiment is

as follows:

minimize
x1,...,x4,w1,w2,w3

f4(x1, . . . , x4, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.7)

In problem (4.7), f4(x1, . . . , x4, w1, w2, w3) is defined as follows:

f4(x1, . . . , x4, w1, w2, w3) =
1

σ(1, 4, 6)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 4)2

+ w3 ∗ (x1 − 6)2]

+
1

σ(1, 2, 4)
∗ [w1 ∗ (x3 − 2)2 + w2 ∗ (x3 − 4)2

+ w3 ∗ (x3 − 1)2]

+
1

σ(3, 5, 7)
∗ [w1 ∗ (x2 − 3)2 + w2 ∗ (x2 − 5)2

+ w3 ∗ (x2 − 7)2]

+
1

σ(1, 5)
∗ [w1 ∗ (x4 − 1)2 + w2 ∗ (x4 − 5)2].

(4.8)

ε is minimum distance between two initial points along any dimension. The value

of the ε is 0.1. The number of initial points is calculated as follows:

(
6− 1

0.1
+ 1) ∗ (

7− 3

0.1
+ 1) ∗ (

4− 1

0.1
+ 1) ∗ (

5− 1

0.1
+ 1) = 2657661. (4.9)

The number of initial points is 2657661. After applying the CRH method with
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Figure 4.5: SOOWMS on the Problem Involving 4 Variables with a Small Range.

2657661 different initial points, only one optimal solution is found. The figure 4.5

shows the plot of f 1
4 and f 2

4 . These functions f 1
4 and f 2

4 are defined in equations (4.32)

and (4.33). In figure 4.5, the point shows the solution obtained from the SOOWMS

and the solution obtained from the CRH method with the median as an initial point

Li et al. (2014). The figure demonstrates that both points are the same.

d) Fourth experiment involving four variables with a large range and a

function change:- In this experiment, there are four variables. The problem solved

in this experiment is as follows:
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minimize
x1,...,x4,w1,w2,w3

g4(x1, . . . , x4, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.10)

In problem (4.10), g4(x1, . . . , x4, w1, w2, w3) is defined as follows:

g4(x1, . . . , x4, w1, w2, w3) =
1

σ(1, 46, 50)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 46)2

+ w3 ∗ (x1 − 50)2]

+
1

σ(2, 15, 22)
∗ [w1 ∗ (x3 − 2)2 + w2 ∗ (x3 − 15)2

+ w3 ∗ (x3 − 22)2]

+
1

σ(3, 23, 33)
∗ [w1 ∗ (x2 − 3)2 + w2 ∗ (x2 − 23)2

+ w3 ∗ (x2 − 33)2]

+
1

σ(4, 18, 44)
∗ [w1 ∗ (x4 − 4)2 + w2 ∗ (x4 − 18)2

+ w3 ∗ (x4 − 44)2].

(4.11)

ε is a minimum distance between two initial points along any dimension. The

value of the ε is 1. The number of initial points is calculated as follows:

(
50− 1

1
+ 1) ∗ (

33− 3

1
+ 1) ∗ (

22− 2

1
+ 1) ∗ (

44− 4

1
+ 1) = 1334550. (4.12)

The number of initial points is 1334550. After applying the CRH method with

1334550 different initial points, only one optimal solution is found. The figure 4.6

shows the plot of g14 and g24. These functions g14 and g24 are defined in equations (4.35)

and (4.36). In figure 4.6, the point shows the solution obtained from the SOOWMS
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Figure 4.6: SOOWMS on the Problem Involving 4 Variables with a Large Range and
a Function Change.

and the solution obtained from the CRH method with the median as an initial point

Li et al. (2014). According to the figure, both points are the same.

e) Fifth experiment involving eight variables with a small range:- In this

experiment, there are eight variables. The problem solved in this experiment is as

follows:

minimize
x1,...,x8,w1,w2,w3

f8(x1, . . . , x8, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.13)

22



In problem (4.13), f8(x1, . . . , x8, w1, w2, w3) is defined as follows:

f8(x1, . . . , x8, w1, w2, w3) =
1

σ(1, 2)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 2)2]

+
1

σ(4, 4.3, 5)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 4.3)2

+ w3 ∗ (x3 − 5)2]

+
1

σ(0.1, 0.5)
∗ [w1 ∗ (x5 − 0.1)2 + w3 ∗ (x5 − 0.5)2]

+
1

σ(6, 6.5)
∗ [w1 ∗ (x7 − 6)2 + w2 ∗ (x7 − 6.5)2]

+
1

σ(6, 6.5)
∗ [w2 ∗ (x2 − 6)2 + w3 ∗ (x2 − 6.5)2]

+
1

σ(7, 7.7)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 7.7)2]

+
1

σ(8, 8.5)
∗ [w1 ∗ (x6 − 8.5)2 + w3 ∗ (x6 − 8)2]

+
1

σ(9, 9.5, 9.7)
∗ [w1 ∗ (x8 − 9)2 + w2 ∗ (x8 − 9.5)2

+ w3 ∗ (x8 − 9.7)2].

(4.14)

ε is a minimum distance between two initial points along any dimension. The value

of the ε is 0.1. The number of initial points, in this case, is calculated as follows:

(
2− 1

0.1
+ 1) ∗ (

6.5− 6

0.1
+ 1) ∗ (

5− 4

0.1
+ 1) ∗ (

7.7− 7

0.1
+ 1)

∗ (
0.5− 0.1

0.1
+ 1) ∗ (

8.5− 8

0.1
+ 1) ∗ (

6.5− 6

0.1
+ 1) ∗ (

9.7− 9

0.1
+ 1) = 8363520.

(4.15)

The number of initial points is 8363520. After applying the CRH method with

8363520 different initial points, only one optimal solution is found. The figure 4.7

shows the plot of f 1
8 and f 2

8 . These functions f 1
8 and f 2

8 are defined in equations (4.38)
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Figure 4.7: SOOWMS on the Problem Involving 8 Variables with a Small Range.

and (4.39). In figure 4.7, the point shows the solution obtained from the SOOWMS

and the solution obtained from the CRH method with the median as an initial point.

In the figure, both points are the same.

f) Sixth experiment involving eight variables with a large range:- In this

experiment, there are eight variables. The problem solved in this experiment is as

follows:

minimize
x1,...,x8,w1,w2,w3

g8(x1, . . . , x8, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.16)
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In problem (4.16), g8(x1, . . . , x8, w1, w2, w3) is defined as follows:

g8(x1, . . . , x8, w1, w2, w3) =
1

σ(1, 4)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 4)2]

+
1

σ(4, 6, 7)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 7)2

+ w3 ∗ (x3 − 6)2]

+
1

σ(1, 4)
∗ [w1 ∗ (x5 − 1)2 + w3 ∗ (x5 − 4)2]

+
1

σ(6, 10)
∗ [w1 ∗ (x7 − 6)2 + w2 ∗ (x7 − 10)2]

+
1

σ(5, 10)
∗ [w2 ∗ (x2 − 5)2 + w3 ∗ (x2 − 10)2]

+
1

σ(7, 10)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 10)2]

+
1

σ(13, 20)
∗ [w1 ∗ (x6 − 20)2 + w3 ∗ (x6 − 13)2]

+
1

σ(10, 14, 20)
∗ [w1 ∗ (x8 − 10)2 + w2 ∗ (x8 − 14)2

+ w3 ∗ (x8 − 20)2].

(4.17)

ε is a minimum distance between two initial points along any dimension. The

value of the ε is 1. The number of initial points, in this case, is calculated as follows:

(
4− 1

1
+ 1) ∗ (

10− 5

1
+ 1) ∗ (

7− 4

1
+ 1) ∗ (

10− 7

1
+ 1)

∗ (
4− 1

1
+ 1) ∗ (

20− 13

1
+ 1) ∗ (

10− 6

1
+ 1) ∗ (

20− 10

1
+ 1) = 675840.

(4.18)

The number of initial points is 675840. After applying the CRH method with

675840 different initial points, only one optimal solution is found. The figure 4.8

shows the plot of g18 and g28. These functions g18 and g28 are defined in equations (4.41)

and (4.42). In figure 4.8, the point shows the solution obtained from the SOOWMS
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Figure 4.8: SOOWMS on the Problem Involving 8 Variables with a Large Range.

and the solution obtained from the CRH method with the median as an initial point

Li et al. (2014). The figure demonstrates that both points are the same.

g) Seventh experiment involving ten variables with a small range:- In

this experiment, there are ten variables. The problem solved in this experiment is as

follows:

minimize
x1,...,x10,w1,w2,w3

f10(x1, . . . , x10, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.19)

In problem (4.19), f10(x1, . . . , x10, w1, w2, w3) is defined as follows:
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f10(x1, . . . , x10, w1, w2, w3) =
1

σ(1, 2)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 2)2]

+
1

σ(4, 4.4, 5)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 4.4)2

+ w3 ∗ (x3 − 5)2]

+
1

σ(0.1, 0.7)
∗ [w1 ∗ (x5 − 0.1)2 + w3 ∗ (x5 − 0.7)2]

+
1

σ(2, 2.4)
∗ [w1 ∗ (x7 − 2)2 + w2 ∗ (x7 − 2.4)2]

+
1

σ(3, 3.4, 3.8)
∗ [w1 ∗ (x9 − 3)2 + w2 ∗ (x9 − 3.4)2

+ w3 ∗ (x9 − 3.8)2]

+
1

σ(6, 6.6)
∗ [w2 ∗ (x2 − 6)2 + w3 ∗ (x2 − 6.6)2]

+
1

σ(7, 7.6)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 7.6)2]

+
1

σ(8, 8.8)
∗ [w2 ∗ (x6 − 8)2 + w3 ∗ (x6 − 8.8)2]

+
1

σ(9, 9.8)
∗ [w1 ∗ (x8 − 9)2 + w2 ∗ (x8 − 9.8)2

+
1

σ(5, 5.6, 5.8)
∗ [w1 ∗ (x10 − 5)2 + w2 ∗ (x10 − 5.6)2

+ w3 ∗ (x10 − 5.8)2].

(4.20)

ε is a minimum distance between two initial points along any dimension. The value

of the ε is 0.2. The number of initial points, in this case, is calculated as follows:

(
2− 1

0.2
+ 1) ∗ (

6.6− 6

0.2
+ 1) ∗ (

5− 4

0.2
+ 1) ∗ (

7.6− 7

0.2
+ 1)

∗ (
0.7− 0.1

0.2
+ 1) ∗ (

8.8− 8

0.2
+ 1) ∗ (

2.4− 2

0.2
+ 1) ∗ (

9.8− 9

0.2
+ 1)

∗ (
3.8− 3

0.2
+ 1) ∗ (

5.8− 5

0.2
+ 1) = 4320000.

(4.21)
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Figure 4.9: SOOWMS on the Problem Involving 10 Variables with a Small Range.

The number of initial points is 4320000. After applying the CRH method with

4320000 different initial points, only one optimal solution is found. The figure 4.9

shows the plot of f 1
10 and f 2

10. These functions f 1
10 and f 2

10 are defined in equations

(4.44) and (4.45). In figure 4.9, the point shows the solution obtained from the

SOOWMS and the solution obtained from the CRH method with the median as an

initial point Li et al. (2014). Both points are the same in the figure.

h) Eighth experiment involving ten variables with a large range and a

function change:- In this experiment, there are ten variables. The problem solved

in this experiment is as follows:
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minimize
x1,...,x10,w1,w2,w3

g10(x1, . . . , x10, w1, w2, w3)

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.22)

In problem (4.19), g10(x1, . . . , x10, w1, w2, w3) is defined as follows:

g10(x1, . . . , x10, w1, w2, w3) =
1

σ(1, 5)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 5)2]

+
1

σ(4, 6, 8)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 6)2

+ w3 ∗ (x3 − 8)2]

+
1

σ(6, 9)
∗ [w1 ∗ (x5 − 6)2 + w3 ∗ (x5 − 9)2]

+
1

σ(2, 4)
∗ [w2 ∗ (x7 − 4)2 + w3 ∗ (x7 − 2)2]

+
1

σ(3, 5, 7)
∗ [w1 ∗ (x9 − 3)2 + w2 ∗ (x9 − 5)2

+ w3 ∗ (x9 − 7)2]

+
1

σ(5, 7, 8)
∗ [w1 ∗ (x2 − 5)2 + w2 ∗ (x2 − 7)2

+ w3 ∗ (x2 − 8)2]

+
1

σ(7, 10)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 10)2]

+
1

σ(8, 10)
∗ [w2 ∗ (x6 − 10)2 + w3 ∗ (x6 − 8)2]

+
1

σ(10, 12, 13)
∗ [w1 ∗ (x8 − 10)2 + w2 ∗ (x8 − 12)2

+ w3 ∗ (x8 − 13)2]

+
1

σ(10, 14)
∗ [w1 ∗ (x10 − 10)2 + w3 ∗ (x10 − 14)2].

(4.23)

ε is a minimum distance between two initial points along any dimension. The
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Figure 4.10: SOOWMS on the Problem Involving 10 Variables with a Large Range
and a Function Change.

value of the ε is 1. The number of initial points, in this case, is calculated as follows:

(
5− 1

1
+ 1) ∗ (

8− 5

1
+ 1) ∗ (

8− 4

1
+ 1) ∗ (

10− 7

1
+ 1)

∗ (
9− 6

1
+ 1) ∗ (

10− 8

1
+ 1) ∗ (

4− 2

1
+ 1) ∗ (

13− 10

1
+ 1)

∗ (
7− 5

1
+ 1) ∗ (

14− 10

1
+ 1) = 1440000.

(4.24)

The number of initial points is 1440000. After applying the CRH method with

1440000 different initial points, only one optimal solution is found. The figure 4.10

shows the plot of g110 and g210. These functions g110 and g210 are defined in equations

(4.47) and (4.48). In figure 4.10, the point shows the solution obtained from the
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SOOWMS and the solution obtained from the CRH method with the median as an

initial point Li et al. (2014). In this experiment, both points are the same.

The summary of the above experiments is as follows:

Table 4.1: Statistics of SOOWMS.

Function Number of Initial Points ε Number of Solutions
f2 2005401 ε1=0.001 ε2=0.01 1
f4 2657661 ε=0.1 1
f8 8363520 ε=0.1 1
f10 4320000 ε=0.2 1
g2 321201 ε=0.5 1
g4 1334550 ε=1 1
g8 675840 ε=1 1
g10 1440000 ε=1 1

4.2.2 Non-dominated Sorting Genetic Algorithm II (NSGA)

a) First experiment involving two variables with a small range:- In this

experiment, there are two variables. The problem (4.1) is transformed into the multi-

objectiive optimization problem as follows:

minimize
x1,x2,w1,w2,w3

(f 1
2 (x1, x2, w1, w2, w3), f

2
2 (x1, x2, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.25)

In problem (4.25), f 1
2 (x1, x2, w1, w2, w3) and f 2

2 (x1, x2, w1, w2, w3) are defined as

follows:

f 1
2 (x1, x2, w1, w2, w3) =

1

σ(1, 3, 6)
∗ [w1 ∗ (x1 − 3)2 + w2 ∗ (x1 − 1)2

+ w3 ∗ (x1 − 6)2].

(4.26)
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Figure 4.11: NSGA on the Problem Involving 2 Variables Having a Small Range.

f 2
2 (x1, x2, w1, w2, w3) =

1

σ(1, 4, 5)
∗ [w1 ∗ (x2 − 4)2 + w2 ∗ (x2 − 5)2

+ w3 ∗ (x2 − 1)2].

(4.27)

After the NSGA is run with a population size of 50 for solving the problem (4.25),

the Pareto optimal points are computed. In figure 4.11, the blue points denote the

Pareto optimal points and the red point denotes the solution obtained by the CRH

having the median as an initial point. As demonstrated by the figure, the solution

obtained by the CRH lies in the Pareto front of the NSGA. The solution, coming
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from the CRH with the median as an initial point, is optimal in this experiment.

b) Second experiment involving two variables with a large range:- In

this experiment, there are two variables. The problem (4.4) is transformed into the

multi-objectiive optimization problem as follows:

minimize
x1,x2,w1,w2,w3

(g12(x1, x2, w1, w2, w3), g
2
2(x1, x2, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.28)

In problem (4.28), g12(x1, x2, w1, w2, w3) and g22(x1, x2, w1, w2, w3) are defined as

follows:

g12(x1, x2, w1, w2, w3) =
1

σ(100, 300, 500)
∗ [w1 ∗ (x1 − 300)2 + w2 ∗ (x1 − 100)2

+ w3 ∗ (x1 − 500)2].

(4.29)

g22(x1, x2, w1, w2, w3) =
1

σ(400, 500, 600)
∗ [w1 ∗ (x2 − 400)2 + w2 ∗ (x2 − 600)2

+ w3 ∗ (x2 − 500)2].

(4.30)

After the NSGA is run with a population size of 50 for solving the problem (4.28),

the Pareto optimal points are obtained. In figure 4.12, the blue points represent the

Pareto front and the red point denotes the solution obtained by the CRH having the

median as an initial point. As evident from the figure, the solution obtained by the

CRH lies on the Pareto frontier of the NSGA. The solution, getting from the CRH
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Figure 4.12: NSGA on the Problem Involving 2 Variables Having a Large Range.

with the median as an initial point, is optimal in this test.

c) Third experiment involving four variables with a small range:- In

this experiment, there are four variables. The problem (4.7) is transformed into the

multi-objectiive optimization problem as follows:

minimize
x1,x2,w1,w2,w3

(f 1
4 (x1, . . . , x4, w1, w2, w3), f

2
4 (x1, . . . , x4, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.31)
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In problem (4.32), f 1
4 (x1, . . . , x4, w1, w2, w3) and f 2

4 (x1, . . . , x4, w1, w2, w3) are de-

fined as follows:

f 1
4 (x1, . . . , x4, w1, w2, w3) =

1

σ(1, 4, 6)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 4)2

+ w3 ∗ (x1 − 6)2]

+
1

σ(1, 2, 4)
∗ [w1 ∗ (x3 − 2)2 + w2 ∗ (x3 − 4)2

+ w3 ∗ (x3 − 1)2].

(4.32)

f 2
4 (x1, . . . , x4, w1, w2, w3) =

1

σ(3, 5, 7)
∗ [w1 ∗ (x2 − 3)2 + w2 ∗ (x2 − 5)2

+ w3 ∗ (x2 − 7)2]

+
1

σ(1, 5)
∗ [w1 ∗ (x4 − 1)2 + w2 ∗ (x4 − 5)2].

(4.33)

After the NSGA is run with a population size of 50 for solving the problem (4.31),

the Pareto optimal points are computed. In figure 4.13, the blue points denote the

Pareto optimal points and the red point denotes the solution obtained by the CRH

having the median as an initial point. As demonstrated by the figure, the solution

obtained by the CRH lies on the Pareto frontier of the NSGA. The solution, getting

from the CRH with the median as an initial point, is optimal in this test.

d) Fourth experiment involving four variables with a large range and a

function change:- In this experiment, there are four variables. The problem (4.10)

is transformed into the multi-objectiive optimization problem as follows:
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Figure 4.13: NSGA on the Problem Involving 4 Variables Having a Small Range.

minimize
x1,x2,w1,w2,w3

(g14(x1, . . . , x4, w1, w2, w3), g
2
4(x1, . . . , x4, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.34)

In problem (4.34), g14(x1, . . . , x4, w1, w2, w3) and g24(x1, . . . , x4, w1, w2, w3) are de-

fined as follows:
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g14(x1, . . . , x4, w1, w2, w3) =
1

σ(1, 46, 50)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 46)2

+ w3 ∗ (x1 − 50)2]

+
1

σ(2, 15, 22)
∗ [w1 ∗ (x3 − 2)2 + w2 ∗ (x3 − 15)2

+ w3 ∗ (x3 − 22)2].

(4.35)

g24(x1, . . . , x4, w1, w2, w3) =
1

σ(3, 23, 33)
∗ [w1 ∗ (x2 − 3)2 + w2 ∗ (x2 − 23)2

+ w3 ∗ (x2 − 33)2]

+
1

σ(4, 18, 44)
∗ [w1 ∗ (x4 − 4)2 + w2 ∗ (x4 − 18)2

+ w3 ∗ (x4 − 44)2].

(4.36)

After the NSGA is run with a population size of 50 for solving the problem (4.34),

the Pareto optimal points are computed. In figure 4.14, the blue points are the Pareto

optimal points and the red point is the solution obtained by the CRH having the me-

dian as an initial point. As apparent from the figure, the solution obtained by the

CRH lies on the Pareto frontier of the NSGA. The solution, coming from the CRH

with the median as an initial point, is optimal in this experiment.

e) Fifth experiment involving eight variables with a small range:- In this

experiment, there are eight variables. The problem (4.13) is transformed into the

multi-objectiive optimization problem as follows:
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Figure 4.14: NSGA on the Problem Involving 4 Variables Having a Large Range.

minimize
x1,...,x8,w1,w2,w3

(f 1
8 (x1, . . . , x8, w1, w2, w3), f

2
8 (x1, . . . , x8, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.37)

In problem (4.37), f 1
8 (x1, . . . , x8, w1, w2, w3) and f 2

8 (x1, . . . , x8, w1, w2, w3) are de-

fined as follows:
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f 1
8 (x1, . . . , x8, w1, w2, w3) =

1

σ(1, 2)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 2)2]

+
1

σ(4, 4.3, 5)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 4.3)2

+ w3 ∗ (x3 − 5)2]

+
1

σ(0.1, 0.5)
∗ [w1 ∗ (x5 − 0.1)2 + w3 ∗ (x5 − 0.5)2]

+
1

σ(6, 6.5)
∗ [w1 ∗ (x7 − 6)2 + w2 ∗ (x7 − 6.5)2].

(4.38)

f 2
8 (x1, . . . , x8, w1, w2, w3) =

1

σ(6, 6.5)
∗ [w2 ∗ (x2 − 6)2 + w3 ∗ (x2 − 6.5)2]

+
1

σ(7, 7.7)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 7.7)2]

+
1

σ(8, 8.5)
∗ [w1 ∗ (x6 − 8.5)2 + w3 ∗ (x6 − 8)2]

+
1

σ(9, 9.5, 9.7)
∗ [w1 ∗ (x8 − 9)2 + w2 ∗ (x8 − 9.5)2

+ w3 ∗ (x8 − 9.7)2].

(4.39)

After the NSGA is run with a population size of 50 for solving the problem (4.37),

the Pareto optimal points are computed. In figure 4.15, the blue points represent the

Pareto frontier and the red point denotes the solution obtained by the CRH having

the median as an initial point. As evident from the figure, the solution obtained by

the CRH lies on the Pareto frontier of the NSGA. The solution, coming from the

CRH with the median as an initial point, is optimal in this experiment.

f) Sixth experiment involving eight variables with a large range:- In this

experiment, there are eight variables. The problem (4.16) is transformed into the
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Figure 4.15: NSGA on the Problem Involving 8 Variables with a Small Range.

multi-objectiive optimization problem as follows:

minimize
x1,...,x8,w1,w2,w3

(g18(x1, . . . , x8, w1, w2, w3), g
2
8(x1, . . . , x8, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.40)

In problem (4.40), g18(x1, . . . , x8, w1, w2, w3) and g28(x1, . . . , x8, w1, w2, w3) are de-

fined as follows:
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g18(x1, . . . , x8, w1, w2, w3) =
1

σ(1, 4)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 4)2]

+
1

σ(4, 6, 7)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 7)2

+ w3 ∗ (x3 − 6)2]

+
1

σ(1, 4)
∗ [w1 ∗ (x5 − 1)2 + w3 ∗ (x5 − 4)2]

+
1

σ(6, 10)
∗ [w1 ∗ (x7 − 6)2 + w2 ∗ (x7 − 10)2].

(4.41)

g28(x1, . . . , x8, w1, w2, w3) =
1

σ(5, 10)
∗ [w2 ∗ (x2 − 5)2 + w3 ∗ (x2 − 10)2]

+
1

σ(7, 10)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 10)2]

+
1

σ(13, 20)
∗ [w1 ∗ (x6 − 20)2 + w3 ∗ (x6 − 13)2]

+
1

σ(10, 14, 20)
∗ [w1 ∗ (x8 − 10)2 + w2 ∗ (x8 − 14)2

+ w3 ∗ (x8 − 20)2].

(4.42)

After the NSGA is run with a population size of 50 for solving the problem (4.40),

the Pareto optimal points are obtained. In figure 4.16, the blue points denote the

Pareto optimal points and the red point denotes the solution obtained by the CRH

having the median as an initial point. As demonstrated by the figure, the solution

obtained by the CRH lies on the Pareto frontier of the NSGA. The solution, getting

from the CRH with the median as an initial point, is optimal in this test.

g) Seventh experiment involving ten variables with a small range:- In

this experiment, there are ten variables. The problem (4.19) is transformed into the
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Figure 4.16: NSGA on the Problem Involving 8 Variables Having a Large Range.

multi-objectiive optimization problem as follows:

minimize
x1,...,x10,w1,w2,w3

(f 1
10(x1, . . . , x10, w1, w2, w3), f

2
10(x1, . . . , x10, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.43)

In problem (4.43), f 1
10(x1, . . . , x10, w1, w2, w3) and f 2

10(x1, . . . , x10, w1, w2, w3) are

defined as follows:
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f 1
10(x1, . . . , x10, w1, w2, w3) =

1

σ(1, 2)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 2)2]

+
1

σ(4, 4.4, 5)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 4.4)2

+ w3 ∗ (x3 − 5)2]

+
1

σ(0.1, 0.7)
∗ [w1 ∗ (x5 − 0.1)2 + w3 ∗ (x5 − 0.7)2]

+
1

σ(2, 2.4)
∗ [w1 ∗ (x7 − 2)2 + w2 ∗ (x7 − 2.4)2]

+
1

σ(3, 3.4, 3.8)
∗ [w1 ∗ (x9 − 3)2 + w2 ∗ (x9 − 3.4)2

+ w3 ∗ (x9 − 3.8)2].

(4.44)

f 2
10(x1, . . . , x10, w1, w2, w3) =

1

σ(6, 6.6)
∗ [w2 ∗ (x2 − 6)2 + w3 ∗ (x2 − 6.6)2]

+
1

σ(7, 7.6)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 7.6)2]

+
1

σ(8, 8.8)
∗ [w2 ∗ (x6 − 8)2 + w3 ∗ (x6 − 8.8)2]

+
1

σ(9, 9.8)
∗ [w1 ∗ (x8 − 9)2 + w2 ∗ (x8 − 9.8)2]

+
1

σ(5, 5.6, 5.8)
∗ [w1 ∗ (x10 − 5)2 + w2 ∗ (x10 − 5.6)2

+ w3 ∗ (x10 − 5.8)2].

(4.45)

After the NSGA is run with a population size of 50 for solving the problem (4.43),

the Pareto optimal points are computed. In figure 4.17, the blue points are the Pareto

optimal points and the red point is the solution obtained by the CRH having the me-

dian as an initial point. As apparent from the figure, the solution obtained by the

CRH lies on the Pareto frontier of the NSGA. The solution, coming from the CRH
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Figure 4.17: NSGA on the Problem Involving 10 Variables Having a Small Range

with the median as an initial point, is optimal in this experiment.

h) Eighth experiment involving ten variables with a large range and a

function change:- In this experiment, there are ten variables. The problem (4.22)

is transformed into the multi-objectiive optimization problem as follows:

minimize
x1,...,x10,w1,w2,w3

(g110(x1, . . . , x10, w1, w2, w3), g
2
10(x1, . . . , x10, w1, w2, w3))

subject to e−w1 + e−w2 + e−w3 = 1,

wi ≥ 0.

(4.46)
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In problem (4.46), g110(x1, . . . , x10, w1, w2, w3) and g210(x1, . . . , x10, w1, w2, w3) are

defined as follows:

g110(x1, . . . , x10, w1, w2, w3) =
1

σ(1, 5)
∗ [w1 ∗ (x1 − 1)2 + w2 ∗ (x1 − 5)2]

+
1

σ(4, 6, 8)
∗ [w1 ∗ (x3 − 4)2 + w2 ∗ (x3 − 6)2

+ w3 ∗ (x3 − 8)2]

+
1

σ(6, 9)
∗ [w1 ∗ (x5 − 6)2 + w3 ∗ (x5 − 9)2]

+
1

σ(2, 4)
∗ [w2 ∗ (x7 − 4)2 + w3 ∗ (x7 − 2)2]

+
1

σ(3, 5, 7)
∗ [w1 ∗ (x9 − 3)2 + w2 ∗ (x9 − 5)2

+ w3 ∗ (x9 − 7)2].

(4.47)

g210(x1, . . . , x10, w1, w2, w3) =
1

σ(5, 7, 8)
∗ [w1 ∗ (x2 − 5)2 + w2 ∗ (x2 − 7)2

+ w3 ∗ (x2 − 8)2]

+
1

σ(7, 10)
∗ [w1 ∗ (x4 − 7)2 + w2 ∗ (x4 − 10)2]

+
1

σ(8, 10)
∗ [w2 ∗ (x6 − 10)2 + w3 ∗ (x6 − 8)2]

+
1

σ(10, 12, 13)
∗ [w1 ∗ (x8 − 10)2 + w2 ∗ (x8 − 12)2

+ w3 ∗ (x8 − 13)2]

+
1

σ(10, 14)
∗ [w1 ∗ (x10 − 10)2 + w3 ∗ (x10 − 14)2].

(4.48)

After the NSGA is run with a population size of 50 for solving the problem (4.46),

the Pareto optimal points are computed. In figure 4.18, the blue points represent the
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Figure 4.18: NSGA on the Problem Involving 10 Variables Having a Large Range
and a Function Change.

Pareto frontier and the red point denotes the solution obtained by the CRH having

the median as an initial point. As evident from the figure, the solution obtained by

the CRH lies on the Pareto frontier of the NSGA. The solution, getting from the

CRH with the median as an initial point, is optimal in this test.

4.3 Large Dataset

a) First experiment involving 14 homogeneous variables:- In this exper-

iment, it contains data corresponding to two properties. There are 14 variables in
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which all of them are of continuous type. The loss function used corresponding to

continuous variables is the normalized squared loss. The problem solved in this ex-

periment, of form (3.1), is below:

minimize
X∗,W

j14(X
∗,W ) =

9∑
k=1

wk

7∑
i=1

2∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.49)

In problem (4.49), W is a weight vector having 9 elements. xkim is a value of ith

object corresponding to mth property given by kth source. The number of data objects

is 7. The number of different properties is 2. d1(∗, ∗) is the normalized squared loss

and d2(∗, ∗) is the normalized squared loss. ξ(W ) is a regularization function whose

value is equal to 1. W corresponds to the reliability of the sources. The values of W

are constrained by the regularization function. In problem (4.49), X∗ is defined as

follows:

X∗ =



x∗11 x∗12

x∗21 x∗22

x∗31 x∗32

x∗41 x∗42

x∗51 x∗52

x∗61 x∗62

x∗71 x∗72



. (4.50)

In equation (4.50), x∗ij is truth value of ith object corresponding to jth property.
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In problem (4.49), W is defined as follows:

W =

[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]
. (4.51)

wi is a weight value corresponding to ith source.

The problem (4.49) is transformed into the multi-objective optimization problem

as follows:

minimize
X∗,W

(j114(X
∗,W ), j214(X

∗,W ))

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.52)

In problem (4.52), j114(X
∗,W ) and j214(X

∗,W ) are defined as follows:

j114(X
∗,W ) =

9∑
k=1

wk

7∑
i=1

d1(x
∗
i1, x

k
i1). (4.53)

j214(X
∗,W ) =

9∑
k=1

wk

7∑
i=1

d2(x
∗
i2, x

k
i2). (4.54)

In problem (4.52), the definition of the variables is the same as in problem (4.49).

In the dataset, if the value of a property of an object is not present, then the value of

the property of the object is ignored in problem (4.52). It is applied to all experiments.

The NSGA is run for solving the multi-objective problem (4.52) and the CRH is

run for solving the single-objective problem (4.49) on same data set. In the NSGA, the

population size is 100. The figure 4.19 shows the Pareto optimal points of the NSGA

and the solution from the CRH. In figure 4.19, j114 is the function value corresponding
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Figure 4.19: NSGA on the Problem Having 14 Homogeneous Variables.

to seven continuous variables and j214 is the function value corresponding to another

seven continuous variables. The blue points represent the Pareto optimal points and

the red point represents the solution coming from the CRH. As evident from the

figure, the solution, coming from CRH, lies on the Pareto frontier of the NSGA. The

solution, getting from the CRH with the median as an initial point, is optimal in this

test.

b) Second experiment involving 28 homogeneous variables:- In this ex-

periment, it contains data corresponding to two properties. There are 28 variables

in which all of them are of continuous type. The loss function used corresponding

to continuous variables is the normalized squared loss. The problem solved in this
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experiment, of form (3.1), is below:

minimize
X∗,W

j28(X
∗,W ) =

9∑
k=1

wk

14∑
i=1

2∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.55)

In problem (4.55), W is a weight vector having 9 elements. xkim is a value of

ith object corresponding to mth property given by kth source. The number of data

objects is 14. The number of different properties is 2. d1(∗, ∗) is the normalized

squared loss and d2(∗, ∗) is the normalized squared loss. ξ(W ) is a regularization

function whose value is equal to 1. W corresponds to the reliability of the sources.

The regularization function is used to constrain the values of W. In problem (4.55),

X∗ is defined as follows:

X∗ =



x∗11 x∗12

x∗21 x∗22

x∗31 x∗32
...

...

x∗N1 x∗N2


. (4.56)

In equation (4.56), x∗ij is truth value of ith object corresponding to jth property.

The value of N is 14. In problem (4.55), W is defined as follows:

W =

[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]
. (4.57)
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wi is a weight value corresponding to ith source.

The problem (4.55) is transformed into the multi-objective optimization problem

as follows:

minimize
X∗,W

(j128(X
∗,W ), j228(X

∗,W ))

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.58)

In problem (4.58), j128(X
∗,W ) and j228(X

∗,W ) are defined as follows:

j128(X
∗,W ) =

9∑
k=1

wk

14∑
i=1

d1(x
∗
i1, x

k
i1). (4.59)

j228(X
∗,W ) =

9∑
k=1

wk

14∑
i=1

d2(x
∗
i2, x

k
i2). (4.60)

In problem (4.58), the definition of variables is the same as in problem (4.55).

The NSGA is run for solving the multi-objective problem (4.58) and the CRH

is run for solving the single-objective (4.55) on same data set. In the NSGA, the

population size is 100. The figure 4.20 shows the Pareto optimal points of the NSGA

and the solution from the CRH. In figure 4.20, j128 is the function value corresponding

to fourteen continuous variables and j228 is the function value corresponding to another

fourteen continuous variables. The blue points represent the Pareto optimal points

and the red point represents the solution coming from the CRH. In the figure, the

solution, coming from the CRH, lies on the Pareto frontier of the NSGA. The solution,

getting from the CRH with the median as an initial point, is optimal in this test.

c) Third experiment involving 38 homogeneous variables:- In this ex-

periment, it contains data corresponding to two properties. There are 38 variables
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Figure 4.20: NSGA on the Problem Having 28 Homogeneous Variables.

in which all of them are of continuous type. The loss function used corresponding

to continuous variables is the normalized squared loss. The problem solved in this

experiment, of form (3.1), is below:

minimize
X∗,W

j38(X
∗,W ) =

9∑
k=1

wk

19∑
i=1

2∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.61)

In problem (4.61), W is a weight vector having 9 elements. xkim is a value of
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ith object corresponding to mth property given by kth source. The number of data

objects is 19. The number of different properties is 2. d1(∗, ∗) is the normalized

squared loss and d2(∗, ∗) is the normalized squared loss. ξ(W ) is a regularization

function whose value is equal to 1. W corresponds to the reliability of the sources.

The regularization function is used to constrain the values of W. In problem (4.61),

X∗ is defined as follows:

X∗ =



x∗11 x∗12

x∗21 x∗22

x∗31 x∗32
...

...

x∗N1 x∗N2


. (4.62)

In equation (4.62), x∗ij is truth value of ith object corresponding to jth property.

The value of N is 19. In problem (4.61), W is defined as follows:

W =

[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]
. (4.63)

wi is a weight value corresponding to ith source.

The single objective problem (4.61) is transformed into the multi-objective opti-

53



mization problem as follows:

minimize
X∗,W

(j138(X
∗,W ), j238(X

∗,W ))

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.64)

In problem (4.64), j138(X
∗,W ) and j238(X

∗,W ) are defined as follows:

j138(X
∗,W ) =

9∑
k=1

wk

19∑
i=1

d1(x
∗
i1, x

k
i1). (4.65)

j238(X
∗,W ) =

9∑
k=1

wk

19∑
i=1

d2(x
∗
i2, x

k
i2). (4.66)

In problem (4.64), the definition of variables is the same as in problem (4.61).

The NSGA is run for solving the problem (4.64) and the CRH is run for solving

the problem (4.61) on same data set. In the NSGA, the population size is 150. The

figure 4.21 shows the Pareto optimal points of the NSGA and the solution from the

CRH. In figure 4.21, j138 is the function value corresponding to nineteen continuous

variables and j238 is the function value corresponding to another nineteen continuous

variables. The blue points represent the Pareto optimal points and the red point

represents the solution coming from the CRH. The figure shows that the solution,

coming from the CRH, lies on the Pareto frontier of the NSGA. The solution, coming

from the CRH with the median as an initial point, is optimal in this experiment.

d) Fourth experiment involving 62 homogeneous variables:- In this ex-

periment, it contains data corresponding to two properties. There are 62 variables

in which all of them are of continuous type. The loss function used corresponding to
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Figure 4.21: NSGA on the Problem Having 38 Homogeneous Variables.

the continuous variables is the normalized squared loss. The problem solved in this

experiment, of form (3.1), is below:

minimize
X∗,W

j62(X
∗,W ) =

9∑
k=1

wk

31∑
i=1

2∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.67)

In problem (4.67), W is a weight vector having 9 elements. xkim is a value of ith

object corresponding to mth property given by kth source. The number of data objects

is 31. The number of different properties is 2. d1(∗, ∗) is the normalized squared loss
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and d2(∗, ∗) is the normalized squared loss. ξ(W ) is a regularization function whose

value is equal to 1. W corresponds to the reliability of the sources. The regularization

function is used to constrain the values of W. In single objective problem (4.67), X∗

is defined as follows:

X∗ =



x∗11 x∗12

x∗21 x∗22

x∗31 x∗32
...

...

x∗N1 x∗N2


. (4.68)

In equation (4.68), x∗ij is truth value of ith object corresponding to jth property.

The value of N is 31. In problem (4.67), W is defined as follows:

W =

[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]
. (4.69)

wi is a weight value corresponding to ith source.

The problem (4.67) is transformed into the multi-objective optimization problem

as follows:

minimize
X∗,W

(j162(X
∗,W ), j262(X

∗,W ))

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.70)

In problem (4.70), j162(X
∗,W ) and j262(X

∗,W ) are defined as follows:
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j162(X
∗,W ) =

9∑
k=1

wk

31∑
i=1

d1(x
∗
i1, x

k
i1). (4.71)

j262(X
∗,W ) =

9∑
k=1

wk

31∑
i=1

d2(x
∗
i2, x

k
i2). (4.72)

In problem (4.70), the definition of variables is the same as in problem (4.67).

The NSGA is run for solving the problem (4.70) and the CRH is run for solving the

problem (4.67) on same data set. In the NSGA, the population size is 200. The figure

4.22 shows the Pareto optimal points of the NSGA and the solution from the CRH. In

figure 4.22, j162 is the function value corresponding to thirty one continuous variables

and j262 is the function value corresponding to another thirty one continuous variables.

The blue points represent the Pareto optimal points and the red point represents the

solution coming from the CRH. As evident from the figure, the solution, coming from

the CRH, lies on the Pareto frontier of the NSGA. The solution, coming from the

CRH with the median as an initial point, is optimal in this experiment.

e) Fifth experiment involving 14 heterogeneous variables:- In this ex-

periment, it contains data corresponding to two properties. One property is of a

categorical type and another property is of a continuous type. There are 14 variables

in which 7 variables are of the categorical type and 7 variables are of the continuous

type. The loss function used corresponding to the categorical variables is the 0-1 loss

and the loss function used corresponding to the continuous variables is the normalized

squared loss. The problem solved in this experiment, of form (3.1), is below:
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Figure 4.22: NSGA on the Problem Having 62 Homogeneous Variables.

minimize
X∗,W

h14(X
∗,W ) =

9∑
k=1

wk

7∑
i=1

2∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.73)

In problem (4.73), W is a weight vector having 9 elements. xkim is a value of ith

object corresponding to mth property given by kth source. The number of data objects

is 7. The number of different properties is 2. d1(∗, ∗) is the 0-1 loss and d2(∗, ∗) is

the normalized squared loss. ξ(W ) is a regularization function whose value is equal

to 1. W corresponds to the reliability of the sources. The regularization function is
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used to constrain the values of W. In the problem, X∗ is defined as follows:

X∗ =



x∗11 x∗12

x∗21 x∗22

x∗31 x∗32

x∗41 x∗42

x∗51 x∗52

x∗61 x∗62

x∗71 x∗72



. (4.74)

In equation (4.74), x∗ij is the truth value of ith object corresponding to jth property.

In problem (4.73), W is defined as follows:

W =

[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]
. (4.75)

wi is a weight value corresponding to ith source.

The problem (4.73) is transformed into the multi-objective optimization problem

as follows:

minimize
X∗,W

(h114(X
∗,W ), h214(X

∗,W ))

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.76)

In problem (4.76), h114(X
∗,W ) and h214(X

∗,W ) are defined as follows:
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h114(X
∗,W ) =

9∑
k=1

wk

7∑
i=1

d1(x
∗
i1, x

k
i1). (4.77)

h214(X
∗,W ) =

9∑
k=1

wk

7∑
i=1

d2(x
∗
i2, x

k
i2). (4.78)

In problem (4.76), the definition of the variables is same as in problem (4.73).

The NSGA is run for solving the multi-objective problem (4.76) and the CRH is

run for solving the single objective problem (4.73) on same data set. In the NSGA,

the population size is 100 and the number of generations is 5000. The figure 4.23

shows the pareto-optimal points of the NSGA and the solution from the CRH. In

figure 4.23, h114 is the function value corresponding to the categorical variables and

h214 is the function value corresponding to the continuous variables. The blue points

represent the Pareto optimal points and the red point represents the solution coming

from the CRH. As evident from the figure, the solution, coming from the CRH, lies

on the Pareto frontier of the NSGA. The solution, getting from the CRH with the

median as an initial point for the continuous variables and majority voting as an

initial point for the categorical variables, is optimal in this test.

f) Sixth experiment involving 28 heterogeneous variables:- In this ex-

periment, it contains data corresponding to two properties. One property is of a

categorical type and another property is of a continuous type. There are 28 variables

in which 14 variables are of the categorical type and 14 variables are of the continuous

type. The loss function used corresponding to the categorical variables is the 0-1 loss

and the loss function used corresponding to the continuous variables is the normalized

squared loss. The problem solved in this experiment, of form (3.1), is below:
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Figure 4.23: NSGA on the Problem Having 14 Heterogeneous Variables.

minimize
X∗,W

h28(X
∗,W ) =

9∑
k=1

wk

14∑
i=1

2∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.79)

In problem (4.79), W is a weight vector having 9 elements. xkim is a value of ith

object corresponding to mth property given by kth source. The number of data objects

is 14. The number of different properties is 2. d1(∗, ∗) is the 0-1 loss and d2(∗, ∗) is

the normalized squared loss. ξ(W ) is a regularization function whose value is equal

to 1. W corresponds to the reliability of the sources. The regularization function is
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used to constrain the values of W. In problem (4.79), X∗ is defined as follows:

X∗ =



x∗11 x∗12

x∗21 x∗22

x∗31 x∗32
...

...

x∗N1 x∗N2


. (4.80)

In equation (4.80), x∗ij is the truth value of ith object corresponding to jth property

and N = 14. In problem (4.79), W is defined as follows:

W =

[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]
. (4.81)

wi is a weight value corresponding to ith source.

The single objective problem (4.79) is transformed into the multi-objective opti-

mization problem as follows:

minimize
X∗,W

(h128(X
∗,W ), h228(X

∗,W ))

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.82)

In problem (4.82), h128(X
∗,W ) and h228(X

∗,W ) are defined as follows:

h128(X
∗,W ) =

9∑
k=1

wk

14∑
i=1

d1(x
∗
i1, x

k
i1). (4.83)
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h228(X
∗,W ) =

9∑
k=1

wk

14∑
i=1

d2(x
∗
i2, x

k
i2). (4.84)

In problem (4.82), the definition of the variables is same as in problem (4.79).

The NSGA is run for solving the multi-objective problem (4.82) and the CRH is

run for solving the single objective problem (4.79) on same data set. In the NSGA,

the population size is 200. The figure 4.24 shows the Pareto optimal points of the

NSGA and the solution from the CRH. In figure 4.24, h128 is the function value corre-

sponding to the categorical variables and h228 is the function value corresponding to

the continuous variables. The blue points represent the Pareto optimal points and

the red point represents the solution coming from the CRH. The figure shows that

the solution, coming from the CRH, lies on the Pareto frontier of the NSGA. The

solution, getting from the CRH with the median as an initial point for the continu-

ous variables and majority voting as an initial point for the categorical variables, is

optimal in this test.

g) Seventh experiment involving 38 heterogeneous variables:- In this

experiment, it contains the data corresponding to two properties. One property is

of a categorical type and another property is of a continuous type. There are 38

variables in which 19 variables are of the categorical type and 19 variables are of the

continuous type. The loss function used corresponding to the categorical variables is

the 0-1 loss and the loss function used corresponding to the continuous variables is

the normalized squared loss. The problem solved in this experiment, of form (3.1), is

below:
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Figure 4.24: NSGA on the Problem Having 28 Heterogeneous Variables.

minimize
X∗,W

h38(X
∗,W ) =

9∑
k=1

wk

19∑
i=1

2∑
m=1

dm(x∗im, x
k
im)

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.85)

In problem (4.85), W is a weight vector having 9 elements. xkim is a value of ith

object corresponding to mth property given by kth source. The number of data objects

is 19. The number of different properties is 2. d1(∗, ∗) is the 0-1 loss and d2(∗, ∗) is

the normalized squared loss. ξ(W ) is a regularization function whose value is equal

to 1. W corresponds to the reliability of the sources. The values of W are constrained

64



by the regularization function. In the problem, X∗ is defined as follows:

X∗ =



x∗11 x∗12

x∗21 x∗22

x∗31 x∗32
...

...

x∗N1 x∗N2


. (4.86)

In equation (4.86), x∗ij is truth value of ith object corresponding to jth property

and N = 19. In problem (4.85), W is defined as follows:

W =

[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]
. (4.87)

wi is a weight value corresponding to ith source.

The problem (4.85) is transformed into the multi-objective optimization problem

as follows:

minimize
X∗,W

(h138(X
∗,W ), h238(X

∗,W ))

subject to ξ(W ) =
9∑

k=1

e−wk = 1,

W ≥ 0.

(4.88)

In problem (4.88), h138(X
∗,W ) and h238(X

∗,W ) are defined as follows:

h138(X
∗,W ) =

9∑
k=1

wk

19∑
i=1

d1(x
∗
i1, x

k
i1). (4.89)
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h238(X
∗,W ) =

9∑
k=1

wk

19∑
i=1

d2(x
∗
i2, x

k
i2). (4.90)

In problem (4.88), the definition of variables is same as in problem (4.85).

The NSGA is run for solving the multi-objective problem (4.88) and the CRH is

run for solving the single-objective problem (4.85) on same data set. In the NSGA,

the population size is 150. The figure 4.25 shows the Pareto optimal points of the

NSGA and the solution from the CRH. In figure 4.25, h138 is the function value corre-

sponding to the categorical variables and h238 is the function value corresponding to

the continuous variables. The blue points represent the Pareto optimal points and the

red point represents the solution coming from the CRH. As evident from the figure,

the solution, coming from the CRH, lies on the Pareto frontier of the NSGA. The

solution, getting from the CRH with the median as an initial point for the continu-

ous variables and majority voting as an initial point for the categorical variables, is

optimal in this test.
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Figure 4.25: NSGA on the Problem Having 38 Heterogeneous Variables.
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Chapter 5

CONCLUSION

To extract the useful knowledge from the data while keeping in mind the non-

uniform reliability of the sources, the single objective optimization introduced in Li

et al. (2014), is formulated into the multi-objective optimization problem. In one

approach (SOOWMS), the CRH method Li et al. (2014) is run with many different

initial points on different test cases. The solution coming from these experiments is

the same as the solution coming from the CRH method with the median as an initial

point for continuous variables. In another approach (NSGA), the NSGA method Deb

et al. (2002) is run with data set (heterogeneous or homogeneous). These experiments

give an output of the Pareto frontier. The solution coming from the CRH method,

with the median as an initial point for continuous variables and majority voting as

an initial point for categorical variables, lies on the Pareto frontier of the NSGA.

The solution getting from the CRH method, with the median as an initial point for

continuous variables and majority voting as an initial point for categorical variables,

is optimal in these experiments.
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