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ABSTRACT  

   

Disease prevention and personalized treatment will be impacted by the continued 

integration of protein biomarkers into medical practice. While there are already numerous 

biomarkers used clinically, the detection of protein biomarkers among complex matrices 

remains a challenging problem. One very important strategy for improvements in clinical 

application of biomarkers is separation/preconcentration, impacting the reliability, 

efficiency and early detection. Electrophoretic exclusion can be used to separate, purify, 

and concentrate biomarkers. This counterflow gradient technique exploits hydrodynamic 

flow and electrophoretic forces to exclude, enrich, and separate analytes. The development 

of this technique has evolved onto an array-based microfluidic platform which offers a 

greater range of geometries/configurations for optimization and expanded capabilities and 

applications. Toward this end of expanded capabilities, fundamental studies of subtle 

changes to the entrance flow and electric field configurations are investigated. Three 

closely related microfluidic interfaces are modeled, fabricated and tested. A charged 

fluorescent dye is used as a sensitive and accurate probe to test the concentration variation 

at these interfaces. Models and experiments focus on visualizing the concentration profile 

in areas of high temporal dynamics, and show strong qualitative agreement, which suggests 

the theoretical assessment capabilities can be used to faithfully design novel and more 

efficient interfaces. Microfluidic electrophoretic separation technique can be combined 

with electron microscopy as a protein concentration/purification step aiding in sample 

preparation. The integrated system with grids embedded into the microdevice reduces the 

amount of time required for sample preparation to less than five minutes. Spatially 

separated and preconcentrated proteins are transferred directly from an upstream reservoir 
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onto grids. Dilute concentration as low as 0.005 mg/mL can be manipulated to achieve 

meaningful results. Selective concentration of one protein from a mixture of two proteins 

is also demonstrated. Electrophoretic exclusion is also used for biomarker applications. 

Experiments using a single biomarker are conducted to assess the ability of the microdevice 

for enrichment in central reservoirs. A mixture of two protein biomarkers are performed to 

evaluate the proficiency of the device for separations capability. Moreover, a battery is able 

to power the microdevice, which facilitates the future application as a portable device. 
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CHAPTER 1 

INTRODUCTION 

1.1 Electrophoresis 

1.1.1 History of electrophoresis 

The late eighteenth century witnessed the proposal of the laws of electrolysis by 

Faraday. Johann Wilhelm Hittorf, Walther Nernst, and Friedrich Kohlrausch combined 

electrolysis concepts with some early electrochemistry knowledge, and designed 

experiments to study the properties and behaviors of small ions moving through aqueous 

solutions under the influence of an electric field. Kohlrausch also came up with general 

mathematical descriptions of the electrochemistry in aqueous solutions, especially for 

charged particles with varying concentrations moving through solutions [1]. In 1937, 

Swedish scientist Arne Tiselius successfully applied electrophoretic techniques for the 

separation of colloidal mixtures [2]. Tiselius was awarded the Nobel Prize in Chemistry 

in 1948, "for his research on electrophoresis and adsorption analysis, especially for his 

discoveries concerning the complex nature of the serum proteins" [3].  

However, electrophoresis was not widely known or accessible until the 

development of new electrophoresis approaches in late 1940s. These new electrophoresis 

approaches appeared to address some of the drawbacks from the Tiselius apparatus and 

attempted to separate compounds with similar electrophoretic properties. Instead of 

moving charged molecules freely through solutions, these new approaches used 

anticonvective media, such as solid or gel matrices to help separate compounds into 

discrete and stable bands (zones). In 1950 Tiselius named one of these methods zone 

electrophoresis [4]. Although it is one of the most widely used separation techniques, slab 
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gel electrophoresis still suffers from long analysis times, low efficiencies, and difficulties 

in detection and automation. 

An alternative to the slab-format is to perform the electrophoretic separation in 

narrow-bore tubes or capillaries. Since narrow capillaries are themselves anticonvective, 

gel media are not essential to perform that function. This allows the performance of free-

solution (or open tube) electrophoresis, as well as the use of the traditional gel media in 

the capillary. The earliest example of the use of capillaries for electrophoretic separations 

with high electric fields was from Hjerten in 1967, where he demonstrated the separation 

of proteins with a 3 mm I.D. capillary [5]. In 1974, Virtenen [6] discussed several 

advantages of using smaller diameter columns in electrophoretic separations. However, 

due to the inability for producing stable capillary columns, these works were unable to 

achieve high efficiencies. 

The commonly accepted modern capillary electrophoresis (CE) system was 

introduced by James W. Jorgenson and his graduate student Krynn Lukacs, at the 

University of North Carolina, Chapel Hill. As a result of their pioneering work in the 

1980s [7-10], the CE system has been widely used in academia, and resulted in CE 

industrial commercial availability in the late 1980s. From their work, fundamental 

concepts of modern capillary electrophoresis, such as zone broadening, as well as 

theoretical ideas on CE separation mechanisms, were proposed and presented [9]. 

Today, capillary electrophoresis is gaining popularity as a powerful analytical tool 

for various applications in terms of high separation efficiency, simplicity, low sample and 

solvent volume consumption, and short analysis time, and it has demonstrated 

tremendous capabilities for a wide range of applications [11]. 
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1.1.2 Electrophoresis mechanism 

Electrophoresis is defined as the motion of ions under the influence of an electric 

field in a condensed liquid phase. The ion undergoes force induced by the electric field 

and a frictional drag force. The force induced by the electrical field (𝐹𝐸 = 𝑞𝐸) is 

proportional to its effective charge, q, and the electric field, E. The frictional force (𝐹𝑓 =

𝑓𝑣𝑒𝑝) is proportional to the velocity of the ion, 𝑣𝑒𝑝, and the friction coefficient, f. The ion 

reaches a steady state velocity when the force induced by the electric field equals the 

frictional force: 

𝑞𝐸 = 𝑓𝑣𝑒𝑝    (1) 

Rearranging equation (1) yields: 

𝑣𝑒𝑝 =
𝑞

𝑓
𝐸 = 𝜇𝑒𝑝 × 𝐸                                                                                   (2) 

Here 𝜇𝑒𝑝 is the electrophoretic mobility of the ion, which is a constant of proportionality 

between the velocity of the ion, 𝑣𝑒𝑝, and the electric field, E. The electrophoretic mobility 

is proportional to the effective charge of the ion, q, and inversely proportional to the 

friction coefficient, f. The friction coefficient of the moving ion is related to the 

hydrodynamic radius, r, of the ion, and the viscosity, η, of the surrounding medium: 

𝑓 = 6𝜋𝜂𝑟                                                                                                                         (3)              

So 

𝜇𝑒𝑝 =
𝑞

𝑓
=

𝑞

6𝜋𝜂𝑟
                                                                                                              (4) 

This indicates that for a given charge state a larger hydrodynamic radius is correlated to a 

lower electrophoretic mobility. 

1.2 Equilibrium gradient focusing 
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Capillary electrophoresis can be used for a wide range of charged samples, but it 

is still restricted by a low concentration limit of detection and limited reproducibility. As 

a result, it becomes a major challenge for the increasing demand of complex sample 

analysis. To improve the efficiency of capillary electrophoresis, researchers have focused 

on many other electrophoretic techniques, for instance, isotachophoresis (ITP), field 

amplified sample stacking (FASS), sweeping, and equilibrium gradient focusing [12-18].   

The equilibrium gradient principle was first summarized by Giddings in 1971 

with the proposal of a separation scheme that largely overcomes the sensitivity limitation 

of traditional separation methods while retaining the high-resolution benefit associated 

with these techniques [19]. In conventional CE, the concentrated bands/zones 

continuously migrate through the separation channel, which might contribute to the band-

broadening. In contrast, equilibrium gradient focusing sets a condition similar to Hooke’s 

Law, where the deviation from the equilibrium point would result in a restoring force, 

pushing the analytes to be concentrated in narrow bands.  

Equilibrium gradient focusing strategies generally utilize an electric field to drive 

charged analytes to a position of net zero force [20, 21]. These methods can be classified 

into two categories. In the first category, a constant external field is applied along the 

separation channel and a gradient in some properties, such as density or pH can be 

created. Isoelectric focusing (IEF) is an example of the first category, where a pH 

gradient is established through the application of an electric field and ampholytic analytes 

reach their unique isoelectric points [22]. The other strategy, also known as counter-flow 

gradient focusing, employs a force that is the opposite of a gradient force to establish the 

equilibrium condition [23]. Earlier research was from O’Farrell’s counteracting 
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chromatographic electrophoresis (CACE) approach, where a separation column was 

packed with two different materials of different porosities to induce a gradient 

hydrodynamic velocity, opposing a constant electrophoretic velocity [24]. Later counter-

flow gradient focusing techniques employed a gradient electrophoretic velocity induced 

by establishing conductivity [25-27], electric field [28-30], or temperature [31, 32] 

gradients within the system to counterbalance a hydrodynamic flow. More recent work 

also uses varying hydrodynamic velocity field to oppose the constant electric field for 

separation as gradient elution moving boundary electrophoresis (GEMBE) [33-39]. 

Simultaneous separation and preconcentration can be achieved through equilibrium 

gradient focusing techniques. Compared with IEF, counter-flow gradient focusing has a 

wider application of analytes with charges as it does not require ampholytic materials. 

1.3 Electrophoretic exclusion 

Inspired by the techniques mentioned above, Hayes research group, who is also 

working on the development of electrophoretic separation for biological sample 

applications, came up with another new technique, electrophoretic exclusion. 

The principle of electrophoretic exclusion is illustrated with a simplified module 

with two reservoirs connected by one channel (Figure 1). The device is filled with 

solution containing two different analytes (black and green dots). The black analyte has a 

higher mobility than that of the green one (Figure 1 A). Once the solution is injected into 

the device from the left side, due to the pressure difference, hydrodynamic flow velocity 

is induced. This flow carries analytes moving from left to right. Potentials are applied to 

the electrodes to create an electric field, which induces electrophoretic velocity. By 

employing proper potentials, the direction of electrophoretic velocity can be opposite to 
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the hydrodynamic flow velocity. When the electrophoretic velocity of an analyte is larger 

than the hydrodynamic flow velocity, this analyte can be excluded at the entrance to the 

channel. Electrophoretic velocity depends on the mobility and the electric field. With a 

properly selected electric field, the black analyte, with a larger mobility, has a higher 

electrophoretic velocity to counterbalance the hydrodynamic flow velocity, thus being 

excluded at the entrance to the channel; while for the green analyte, its electrophoretic 

velocity is smaller than the hydrodynamic flow velocity, so it can flow through the 

channel. In this way, species with different mobilities can be separated (Figure 2 B). As 

the separation takes place at the entrance to the channel, the isolated analytes also 

experience accumulation simultaneously, which facilitates preconcentration.   

A)                                                                B) 

 

Figure 1.1 A simplified module with two reservoirs connected by one channel to illustrate 

the principle of electrophoretic exclusion. A) The solution contains analytes is loaded 

from the left side of the device to induce a hydrodynamic flow velocity. Two analytes are 

of different electrophoretic mobilities (black>green). B) A properly selected electric field 

across the channel induces electrophoretic velocity for these two charges particles. When 

the electrophoretic velocity is larger than the hydrodynamic velocity, sample can be 

excluded at the entrance of the channel. The electrophoretic velocity depends on the 

electrophoretic mobility and the applied electric field. With a carefully selected electric 

field, the analyte with a higher mobility can be excluded, while the analyte with a smaller 

mobility can still flow through the channel. Separation can be performed with this 

strategy. 
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This technique was first demonstrated as a bench-top device by Polson et al. [40]. 

Later, theoretical study on the conditions to achieve electrophoretic exclusion was 

investigated by the collaboration of Hayes group and KP Chen’s group [41]. Meighan et 

al. showed the exclusion with an in-house built instrument [42] using an acidic buffer to 

minimize the electroosmotic flow (EOF) for simple interpretation and stable flow. The 

principle of exclusion was confirmed by using a mixture of fluorescent methyl green and 

neutral red dyes. A similar apparatus was used for the separation of proteins [43]. The 

capillary was modified via polyimide coating to eliminate the EOF. Myoglobin was 

concentrated over 1000-fold within a short period of time. Moreover, multiple proteins 

were able to separate, including a mixture of two positively charged species, and another 

mixture of species with opposite charges. Theoretical work from Kenyon et al. presented 

that electrophoretic exclusion can separate species with very similar mobilities (~10−13 

m2/Vs), indicating that this technique may be able to generate better experimental results 

than those reported for CE [44]. 

Compared to other gradient focusing techniques, electrophoretic exclusion 

establishes a punctuated gradient instead of a smooth varying or incrementally stepped 

gradient within a channel to create a distinct interfacial zone at the channel entrance, 

which could allow separation of species with very similar mobilities at the interface. 

Moreover, since the exclusion takes place outside the channel, unlike those of 

chromatography, this technique is independent of the length of the channel, which makes 

this technique adaptable for use in microfluidic devices. Furthermore, species are 

separated in the bulk solution based upon their native properties without the need for a 

binding step or other pretreatment, and it can be easily coupled with various techniques 
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for detection, such as spectroscopy, mass spectrometry, and electron microscopy. The 

device is easy to fabricate, without using any membranes, which could avoid many 

issues, such as the retention of small molecules, and non-uniformities of the fields. 

Moreover, by applying small pressures, analytes can be easily separated with low 

absolute magnitude voltage, which could minimize bubble formation from electrolysis. In 

addition, due to the high surface to volume ratio of the micro-channels, the heat 

dissipation is of high efficiency.  

1.4 Microfluidics 

Emerging in the early 1990s, microfluidics refers to a set of technologies for the 

manipulation of small fluid volumes (µL, nL, pL) within artificially fabricated 

microsystems [45]. These devices can be made from different materials, with polymers 

presently emerging as the most popular choice. Other than being optically clear, non-

toxic and inexpensive, polymers can also be easily fabricated with a variety of 

techniques. In addition, there are many polymer surface modification methods available 

to improve the efficiency of these devices [46]. Microfluidics have been widely adopted 

in various fields of analytical chemistry and life science. Recent decades have witnessed 

the rapid development of microfluidic devices due to their advantages over bench-top 

devices, such as portability, flexibility in design, miniaturization of operating systems, 

reduced reagent consumption, decreased run time, minimized sample dilution, and 

accelerated mass and heat transfer [47].  

Consequently, the realization of microfluidic platforms for the manipulation and 

analysis of protein biomarker samples has attracted significant interest, especially for 

point-of-care diagnosis in future clinical applications. 



  9 

1.5 Protein biomarkers  

Biomarkers have been initially defined as “cellular, biochemical or molecular 

alterations that are measurable in biological media such as human tissues, cells or fluids” 

[48]. The definition has been broadened to objective indicators that can be measured or 

evaluated to reflect the biological, pathologic or pharmacologic processes [49]. 

More attention has been attracted to the biomarkers from the beginning of this 

century, as biomarkers could allow prediction of individual diseases, differentiation of 

“good outcome” from “poor outcome”, decision of whom to treat and/or how 

aggressively to treat, assessment of a particular treatment, measurement of drug effect, 

and guidelines of dose selection [50]. 

Among all the research on biomarkers, 78% is focused on disease-related 

biomarkers and is one of the best strategies to combat diseases since they can provide 

early diagnosis and assist with administration of effective treatment (drugs, surgery, and 

vaccines) [51]. These efforts can potentially improve human life expectancy [52]. 

Several types of analytes can be considered as potential biomarkers, including 

physical symptoms, DNA or RNA, proteins, processes such as death cells or 

proliferation, and existence of small molecules in serum such as glucose [53].  

Among these, protein biomarkers have been extensively studied, as they are the 

critical machinery of the functioning living organism, acting as hormones, hormone or 

drug receptors, enzyme and enzyme substrates or inhibitors, antigens and antibodies, 

structural elements and transporting molecules [54]. The protein domain is more likely to 

be affected by disease, response and recovery when compared to transcriptional profiling, 

DNA methylation, and metabolomics approaches [55]. Protein concentration are 
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relatively more detectable by current technologies, and guidelines and predications can be 

obtained through genomics as complementary information [56]. Accordingly, great focus 

has been placed on proteins in biomarker research. Protein biomarkers include peptides, 

globular proteins, fibrous proteins, and membrane proteins. Their differential 

expression/abundance (including absence), and structural or functional alterations (e.g. 

via post-translational modifications) can provide markers of certain biological states [57].  

With rapid developments in clinical trial results and new technology 

developments, disease prevention and personalized therapy and treatment will be 

supported with the integration of protein biomarkers into medical practice.  

One major focus of bioanalytical chemists and clinical researchers is the detection 

of protein biomarkers among complex matrices or biofluids, such as plasma, serum, 

urine, and cerebrospinal fluid (CSF). Identification and quantification of proteins remains 

as a significant analytical problem. The proteome of a cell or serum is defined by a 

combination of genome, environment, and history, which is quite complicated, dynamic, 

and adds many challenges to protein analysis and interpretation. Moreover, a human cell 

may express up to 20, 000 proteins with a high dynamic range spanning over ten orders 

of magnitude, while the target protein biomarker may be in the low abundance range 

[58]. 

Therefore, it is generally necessary to perform a preconcentration process prior to 

performing detection of protein biomarkers in order to improve the reliability and 

efficiency of the measurement. Separation science, thus, plays an important role for better 

protein biomarker analysis. Various methods have been presented for the isolation and 

preconcentration of proteins, including chromatographic (e.g. high-performance liquid 
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chromatography (HPLC) and gas chromatography (GC)) and electrophoretic methods 

(e.g. gel electrophoresis, capillary electrophoresis and equilibrium gradient focusing 

techniques). 

1.6 Dissertation objectives 

This dissertation is dedicated to describing an electrophoretic separation 

technique on a microfluidic device that is envisioned as a tool for protein biomarker 

isolation and preconcentration for future point-of-care diagnosis in clinical applications. 

Electrophoretic exclusion, the off-gel electrophoretic separation method presented here, 

was initially performed on a bench-top device. The performance of a capillary-based 

bench top apparatus has been examined and the resolution is estimated to be comparable 

to a conventional CE instrument. The bulk of the work presented in this document 

discusses the investigation of electrophoretic exclusion on a microdevice for 

developmental aspects and applications of this technique. These two aspects are closely 

related, and three main topics are derived from these two aspects, including: the influence 

of electrode placement on concentration, the possibility of manipulating diluted protein 

samples for electron microscopy detection and structural determination, as well as the 

separation and preliminary quantification of biomarkers. These works are expected to 

move steps towards point-of-care diagnosis in future clinical applications. 

1.7 Dissertation summary 

To first introduce the field of electrophoretic-related separation and 

preconcentration techniques on miniaturized devices, a review is included as Chapter 2. 

This chapter covers several gradient-based techniques according to a broad definition, 

including conductivity, field, and concentration, organized by the method of gradient 



  12 

generation. Each technique is introduced and described, and recent seminal advances are 

explored. Articles that are reviewed in this chapter are focused on literature in the past 

few years. Chapters 3-4 present simulations and experiments with electrophoretic 

exclusion. Chapter 3 describes the advantages of an array-based microdevice of 

electrophoretic exclusion and presents general results using dye molecules obtained from 

this device with detection occurring in central reservoirs and/or channel areas. Chapter 4 

investigates different electrode placement patterns by comparing the simulation results 

from commercial finite element mesh software to experiment results, demonstrating 

subtle changes at interfacial zone have significant and non-linear impact on distribution 

of concentration profiles. A 3D simulation is also developed and included in this chapter.  

Chapter 5-6 covers applications on more practical samples and realistic scenarios 

with array-based microfluidic electrophoretic exclusion. Chapter 5 presents coupling of 

electrophoretic exclusion with transmission electron microscopy, especially focused on 

demonstrating electrophoretic exclusion as a method to improve electron microscopy 

sample preparation and loading process with diluted protein samples, which potentially 

benefits further structural determination as well as protein biomarker structural 

identification and validation. Chapter 6 demonstrates consistent separation and 

concentration behaviors of two protein biomarkers with current electrophoretic exclusion 

microdevice. A preliminary test without bulky high voltage power supply is also 

investigated, which opens up the possibility of electrophoretic exclusion microdevice for 

point-of-care diagnosis. An intermediate design is also proposed to achieve separation 

and preliminary quantification in an integrated system. 
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Chapter 7 summarizes the goals and results of the electrophoretic exclusion 

technique that were presented in Chapters 3-6. Conclusions and future directions are also 

discussed.   

1.9 References 

[1] Kohlrausch, F., Annalen der Physik 1897, 298, 209-239. 

[2] Tiselius, A., Transactions of the Faraday Society 1937, 33, 524-531. 

[3] NobelPrize.org, Nobel Media AB 2019, p. 

https://www.nobelprize.org/prizes/chemistry/1948/summary/. 

[4] Tiselius, A., Flodin, P., In Advances in Protein Chemistry 1953, 8, 461-486. 

[5] Hjertén, S., Chromatographic reviews 1967, 9, 122-219. 

[6] Virtanen, R., Acta Polytechnica Scandinavica-Chemical Technology Series 1974, 123, 

1-67. 

[7] Jorgenson, J. W., Lukacs, K. D., Journal of Chromatography A 1981, 218, 209-216. 

[8] Jorgenson, J. W., Lukacs, K. D., Clinical chemistry 1981, 27, 1551-1553. 

[9] Jorgenson, J. W., Lukacs, K. D., Science 1983, 222, 266-274. 

[10] Jorgenson, J. W., Lukacs, K. D., Journal of High Resolution Chromatography 1985, 

8, 407-411. 

[11] Rajput, H. H., Deokate, U. A., Nawale, R. B., World J. Pharm. Pharm. Sci 2016, 5, 

450-465. 

[12] Breadmore, M. C., Electrophoresis 2007, 28, 254-281. 

[13] Breadmore, M. C., Thabano, J. R., Dawod, M., Kazarian, A. A., Quirino, J. P., Guijt, 

R. M., Electrophoresis 2009, 30, 230-248. 

[14] Breadmore, M. C., Dawod, M., Quirino, J. P., Electrophoresis 2011, 32, 127-148. 

[15] Breadmore, M. C., J Chromatogr A 2012, 1221, 42-55. 

[16] Breadmore, M. C., Shallan, A. I., Rabanes, H. R., Gstoettenmayr, D., Abdul Keyon, 

A. S., Gaspar, A., Dawod, M., Quirino, J. P., Electrophoresis 2013, 34, 29-54. 

[17] Breadmore, M. C., Tubaon, R. M., Shallan, A. I., Phung, S. C., Abdul Keyon, A. S., 

Gstoettenmayr, D., Prapatpong, P., Alhusban, A. A., Ranjbar, L., See, H. H., Dawod, M., 

https://www.nobelprize.org/prizes/chemistry/1948/summary/


  14 

Quirino, J. P., Electrophoresis 2015, 36, 36-61. 

[18] Breadmore, M. C., Wuethrich, A., Li, F., Phung, S. C., Kalsoom, U., Cabot, J. M., 

Tehranirokh, M., Shallan, A. I., Abdul Keyon, A. S., See, H. H., Dawod, M., Quirino, J. P., 

Electrophoresis 2017, 38, 33-59. 

[19] Giddings, J. C., Dahlgren, K., Separation Science 1971, 6, 345-356. 

[20] Ista, L. K., Lopez, G. P., Ivory, C. F., Ortiz, M. J., Schifani, T. A., Schwappach, C. D., 

Sibbett, S. S., Lab on a chip 2003, 3, 266-272. 

[21] Wang, Q., Tolley, H. D., LeFebre, D. A., Lee, M. L., Analytical and bioanalytical 

chemistry 2002, 373, 125-135. 

[22] Righetti, P. G., Chillemi, F., Journal of Chromatography A 1978, 157, 243-251. 

[23] Shackman, J. G., Ross, D., Electrophoresis 2007, 28, 556-571. 

[24] O'FARRELL, P. H., Science 1985, 227, 1586-1589. 

[25] Greenlee, R. D., Ivory, C. F., Biotechnology progress 1998, 14, 300-309. 

[26] Ren, C. L., Li, D., J Colloid Interface Sci 2006, 294, 482-491. 

[27] Barz, D. P. J., Microfluidics and Nanofluidics 2008, 7, 249-265. 

[28] Humble, P. H., Kelly, R. T., Woolley, A. T., Tolley, H. D., Lee, M. L., Analytical 

chemistry 2004, 76, 5641-5648. 

[29] Sun, X., Farnsworth, P. B., Woolley, A. T., Tolley, H. D., Warnick, K. F., Lee, M. L., 

Analytical chemistry 2008, 80, 451-460. 

[30] Sun, X., Farnsworth, P. B., Tolley, H. D., Warnick, K. F., Woolley, A. T., Lee, M. L., 

Journal of chromatography. A 2009, 1216, 159-164. 

[31] Hoebel, S. J., Balss, K. M., Jones, B. J., Malliaris, C. D., Munson, M. S., Vreeland, W. 

N., Ross, D., Analytical chemistry 2006, 78, 7186-7190. 

[32] Shackman, J. G., Munson, M. S., Ross, D., Analytical and bioanalytical chemistry 

2007, 387, 155-158. 

[33] Shackman, J. G., Munson, M. S., Ross, D., Analytical chemistry 2007, 79, 565-571. 

[34] Burke, J. M., Ivory, C. F., Electrophoresis 2008, 29, 1013-1025. 

[35] Strychalski, E. A., Henry, A. C., Ross, D., Analytical chemistry 2009, 81, 10201-10207. 

[36] Strychalski, E. A., Henry, A. C., Ross, D., Analytical chemistry 2011, 83, 6316-6322. 



  15 

[37] Smejkal, P., Bottenus, D., Breadmore, M. C., Guijt, R. M., Ivory, C. F., Foret, F., 

Macka, M., Electrophoresis 2013, 34, 1493-1509. 

[38] Ross, D., Munson, M. S., Electrophoresis 2014, 35, 770-776. 

[39] Sikorsky, A. A., Fourkas, J. T., Ross, D., Analytical chemistry 2014, 86, 3625-3632. 

[40] Polson, N. A., Savin, D. P., Hayes, M. A., Journal of Microcolumn Separations 2000, 

12, 98-106. 

[41] Pacheco, J. R., Chen, K. P., Hayes, M. A., Electrophoresis 2007, 28, 1027-1035. 

[42] Meighan, M. M., Keebaugh, M. W., Quihuis, A. M., Kenyon, S. M., Hayes, M. A., 

Electrophoresis 2009, 30, 3786-3792. 

[43] Meighan, M. M., Vasquez, J., Dziubcynski, L., Hews, S., Hayes, M. A., Analytical 

chemistry 2011, 83, 368-373. 

[44] Kenyon, S. M., Keebaugh, M. W., Hayes, M. A., Electrophoresis 2014, 35, 2551-2559. 

[45] Halldorsson, S., Lucumi, E., Gomez-Sjoberg, R., Fleming, R. M. T., Biosens 

Bioelectron 2015, 63, 218-231. 

[46] Lim, C. T., Zhang, Y., Biosens Bioelectron 2007, 22, 1197-1204. 

[47] Tabeling, P., Introduction to microfluidics, Oxford University Press on Demand 2005. 

[48] Humphries, S., Journal of epidemiology and community health 1991, 45, 173. 

[49] Naylor, S., 2003, 525-529. 

[50] Vogenberg, F. R., Barash, C. I., Pursel, M., Pharmacy and Therapeutics 2010, 35, 560. 

[51] Diamandis, E. P., Mol Cell Proteomics 2004, 3, 367-378. 

[52] Sonker, M., Sahore, V., Woolley, A. T., Anal Chim Acta 2017, 986, 1-11. 

[53] Rusling, J. F., Kumar, C. V., Gutkind, J. S., Patel, V., Analyst 2010, 135, 2496-2511. 

[54] Wu, L., Qu, X., Chem Soc Rev 2015, 44, 2963-2997. 

[55] Rifai, N., Gillette, M. A., Carr, S. A., Nat Biotechnol 2006, 24, 971-983. 

[56] Hanash, S. M., Pitteri, S. J., Faca, V. M., Nature 2008, 452, 571-579. 

[57] Nahavandi, S., Tang, S. Y., Baratchi, S., Soffe, R., Nahavandi, S., Kalantar-zadeh, K., 

Mitchell, A., Khoshmanesh, K., Small 2014, 10, 4810-4826. 



  16 

[58] Chandramouli, K., Qian, P. Y., Hum Genomics Proteomics 2009, 2009. 

 



  17 

CHAPTER 2 

EXPLORING GRADIENTS IN ELECTROPHORETIC SEPARATION AND 

PRECONCENTRATION ON MINIATURIZED DEVICES 

2.1 Introduction 

Superior capabilities of microfluidic devices, compared to bench-top equivalents, 

have earned them significant popularity. Advantages for the microdevices include 

miniaturized operation systems, reduced reagents consumption, minimal waste, and 

reduced time per operation. Examples of these features include separation and 

preconcentration methods, including gravitational force [1], electrophoretic force [2-6], 

magnetic force [7, 8], acoustic waves [9-11], and optofluidics [12-14].  

Electrophoretic-based separation and preconcentration schemes were initially 

drawn from capillary electrophoretic methods. Electrophoresis has exerted a powerful 

influence and has led to a variety of derivations and branches, including field-amplified 

sample stacking [15-24], isotachophoresis [19, 25-33], free flow electrophoresis [34-38], 

and gradient focusing [39-46]. Among them, gradient techniques are of special interest. 

In addition to creating separations, they can function in sample preparation and/or 

preconcentration roles to increase sensitivity of microdevices [41, 42, 46].  

This chapter focuses on strategies that include gradients which improve 

performance. The term gradient, as used here, has a broad definition and includes 

conductivity, concentration or velocity profile. Articles are sourced from recent years and 

the review does not attempt to be comprehensive or exhaustive, but instead, provides a 

new perspective of recent developments. Several subjects are excluded for clarity and 



  18 

space, including dielectrophoresis, field-flow electrophoresis, and droplet-based 

microfluidics—while these are all recognized to use gradients.  

2.2 Conductivity gradient 

One strategy to create a gradient is to induce a variation in conductivity. This can 

be trivially understood by examining equation E=I/σA (or simply, Ohm’s law, where E is 

the electric field, I is the current, σ conductivity, and A the cross-sectional area), the 

conductivity difference directly influences the local electric field, thus creating the 

gradient. 

2.2.1 Field-amplified sample stacking/Field-amplified sample injection (FASS/FASI) 

Field amplified sample stacking/sample injection has long been considered. It is 

one of the most commonly used and straight-forward mode of electrophoretic separation. 

The stacking effect can be achieved through a conductivity difference between samples 

and background electrolyte (usually the conductivity of background electrolyte is 10 

times higher than that of the sample). When the voltage is applied, the electric field 

strength on the sample is higher compared to the background electrolyte, due to the lower 

conductivity. As a result, sample starts to stack in the boundary—the nominal location of 

the gradient.  

The dynamics of this technique have been fully investigated by Bharadwaj et al. 

[18]. In that work, situations with and without electroosmotic flow (EOF) were studied. 

By building up the governing equations regarding convention, migration and diffusion, as 

well as considering the boundary conditions, the study provided a platform for a better 

understanding of FASS. In the following work, they calculated that the highest 

concentration enhancement achieved is 1100 fold [17]. 
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Figure 2.1 A schematic showing the basic principle of field-amplified sample stacking 
[18]. 

These techniques are not typically used alone, as it serves as an efficient sample 

introduction technique. They couple with a variety of other analytical methods for 

detection and identification on miniaturized-scales, including microchip electrophoresis, 

ICP-MS [47], ELISA [48], MEKC [49], and amperometry [50]. 

2.2.2 Isotachophoresis (ITP) 

Isotachophoresis techniques have been common since the 1970’s and, similar to 

field-amplified sample stacking method, ITP also uses conductivity difference to form 

gradient. The major difference is that amplified sample stacking relies on only one 

background electrolyte, while ITP uses two background electrolytes with different 

mobilities. The higher mobility is the leading electrolyte and the lower mobility the 

terminating electrolyte. The mobility of all the components of the sample must be 

between that of leading electrolyte and terminating electrolyte. Given the similarities 

between FASS and ITP, a comparison is tabulated (Table 2.1).  
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Table 2.1 A comparison between field-amplified sample stacking (FASS) and 

isotachophoresis (ITP). 

Techniques FASS ITP 

Mobility 

requirement 

Background 

electrolyte (BGE), 

sample (S), usually 

μBGE ≥ 10 μS 

Leading electrolyte (LE), terminating electrolyte 

(TE), sample (S), μTE < μS < μLE 

Governing 

equations 

𝜕𝐶𝑖

𝜕𝑡
+ 𝑢 ⋅ 𝛻𝐶𝑖 =

−𝑧𝑖𝑣𝑖𝐹𝛻 ⋅ (𝐶𝑖𝐸) +
𝐷𝑖𝛻

2𝐶𝑖, Ci is the 

concentration of 

ionic species i, Di is 

the molar 

diffusivity of 

species i, νi is the 

electromigration 

mobility, zi is the 

valence number, F 

is Faraday’s 

constant, u is the 

fluid velocity, and 

E is electric field; 

solution is 

approximately 

electrically neutral 

(except EDL); 

modified Stokes 

equation; a slip 

surface [16]. 

𝜕𝐶𝑖

𝜕𝑡
+ 𝛼𝑢⃗ ⋅ 𝛻𝐶𝑖

⃗⃗  ⃗ = −𝑣𝑖𝛻⃗ ⋅ (𝐶𝑖𝐸⃗ ) +
1

𝑃𝑒
𝐷𝑖𝛻

2𝐶𝑖, Ci 

is the molar concentration of ion i, νi is the 

electrophoretic mobility, E is the electric field, 

and Di is the diffusion coefficient, Pe =
𝐸0𝑣0𝛿 𝐷0⁄ , α = −𝜖𝜁0 (𝜇𝑣0)⁄  (µ is viscosity, ζ0 

is zeta potential, and δ is the length of stacked 

sample zone); EOF suppressed; diffusion 

dominates [48]. 

Concentration 

enhancement 

Based on the ratio 

of electric field in 

the sample and the 

BGE regions 
𝐶𝑠𝑡𝑎𝑐𝑘𝑒𝑑

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙
=

𝐸𝑆

𝐸𝐵𝐺𝐸
, up 

to 1100-fold [43]. 

Derived from Kohlrausch regulating function 

(KRF)  

𝐶𝑆𝑎𝑚𝑝𝑙𝑒−𝑝𝑙𝑎𝑡𝑒𝑎𝑢

=
𝑍𝐿𝐸(|𝜔𝐿𝐸| + |𝜔𝐶𝑜𝑢𝑛𝑡𝑒𝑟−𝑖𝑜𝑛|)𝜔𝑆𝑎𝑚𝑝𝑙𝑒

𝑍𝑆𝑎𝑚𝑝𝑙𝑒(|𝜔𝑆𝑎𝑚𝑝𝑙𝑒| + |𝜔𝐶𝑜𝑢𝑛𝑡𝑒𝑟−𝑖𝑜𝑛|)𝜔𝐿𝐸

𝐶𝐿𝐸   

Z, ω, C are charge, mobility, concentration 

respectively, up to 100,000 -fold [48]. 

Coupled 

techniques 

Mass spectroscopy 

[44], amperometry 

[47], ELISA [45],  

MEKC [46]. 

GEITP [28], FFITP [49], EKS [50], CZE [51]. 

Bocek et al. has contributed a great deal to this area. They published reviews 

every two years describing new progress in the field of capillary isotachophoresis [26, 29, 
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33]. They also collaborated with Ivory’s group and reported a review on microfluidic 

isotachophoresis [30]. Santiago’s group has contributed a review on the development of 

ITP (in addition to his considerable original contributions, see below)  [32].  

This technique can be roughly divided into two categories, regular (mono-

directional) and bidirectional. Here, mono-directional ITP refers to those isotachophoretic 

methods that only apply to enrich cations or anions. Bidirectional ITP aims at 

concentrating both cations and anions at the same time. Mono-directional ITP has been 

highly developed and most recent works have been focused on practical applications on 

biological samples. Below are some seminal examples among all the elegant applications. 

Ivory’s group selected biomarker cardiac troponin I (cTnI) as a model study. cTnI 

is produced in myocardium and is related to heart disease (also see Chapter 6). The 

phosphorylated level of cTnI can help to determine the risk and best treatment option. 

They started this work with a poly(methylmethacrylate) (PMMA) microdevice with a 50x 

reduction in the cross-sectional area [51]. The reduction in width or depth can give rise to 

a concentration increase. With this device, over 10,000 fold concentration of cTnI and R-

phycoerythrin was achieved, and, with modifications, optimized their device to a 100x 

reduction [52]. With that device, labeled cTnI sample in depleted human serum was 

examined. Cationic ITP in a straight channel was investigated for a sample with more 

components in solution to mimic the situation even closer to human serum, such as NaCl, 

urea, and triton X-100 [53]. However, the results did not give as high efficiency as they 

previously demonstrated. They proposed it was mainly due to the surface adsorption and 

formation of bubbles from the sample loading procedures. To further explore and confirm 

their hypothesis, they conducted the numerical simulation. Future directions include 
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adapting this strategy to immunoassay for distinguishing of phosphorylated and 

unphosphorylated cTnI. 

A) 

 

B) 

 

Figure 2.2 The schematics of reduction (A:50x [51], B:100x [52]) cross-sectional area 

PMMA ITP microdevices for cTnI concentration from Ivory’s group. When samples 

passed through the reduction area, the sample concentration increased based on the 

reduction ratio. 

Another excellent example is from Santiago and co-workers showing 

preconcentration of biomolecules, especially DNA and RNA [32]. In 2012, they reported 

a miniaturized system for extracting RNA from bacteria suspended in blood and avoided 

some contamination and degradation issues, achieving high sensitivity, up to 100,000 

higher than some popular schemes [27]. The design was fairly simple, with a single 

straight channel and two ports. Terminating electrolytes (TE) were injected into the left 

port, while the leading electrolytes (LE) were injected into the right port. The samples 

were introduced directly into the left port after incubation. After separation they could be 
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easily coupled to PCR and other secondary detection methods. In that work, they 

validated their results with qPCR. They also  published a modified design to 

simultaneously separate and concentrate RNA and DNA from single cells [54]. The 

design was implemented with branched channels, connecting to vacuum for sample 

loading. Coupling online pretreatment steps have also been accomplished. The whole 

process, including lysis, extraction and fractionation could be done in less than five 

minutes [55]. A similar design has also been applied to co-focus DNA and beads, which 

could potentially increase the DNA hybridization rate [56]. The complete process only 

took less than 20 minutes, a large reduction in the time required compared to 

conventional methods (20 hours) without significant concentration loss. In other work, a 

novel ITP device was designed to have two identically-shaped simple compartments 

connected with a thin channel [57]. The latter compartment contained some DNA probes. 

The sample underwent preconcentration via ITP, diffusion through the thin channel and 

entered the second compartment for hybridization. In a third design, both PMMA and 

cyclin olefin copolymer (COC) chips were fabricated to conduct ITP separation of DNA 

samples [58]. The design had a long turn channel and high aspect-ratio, which could 

potentially reduce dispersion and heat dissipation. A special structure for loading was 

incorporated in this device, which enabled the injection of 25 μL samples into device 

without waste. This method proved to have high recovery efficiency, well suited for 

precious and limited volume samples. 
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A)                                                                                   B) 

                 

C)                                                                             D) 

                                   

Figure 2.3 Four promising ITP devices from Santiago’s group. A) Most typical design 

that has been used for DNA and/or RNA extraction by their group [54]. B) The modified 

version with branches facilitating sample loading [55]. C) Two identical shaped 

compartments for ITP and capture [57]. D) Long-wind channel for high performance ITP 

[58]. 

Santiago’s group led the development of bidirectional ITP as well. In their work, 

they achieved bidirectional ITP in a straight channel through the application of shock 

wave [59, 60]. Different from mono-directional ITP, in their applications, four 

electrolytes were used, namely cationic leading electrolyte, cationic terminating 

electrolyte, anionic leading electrolyte and anionic terminating electrolyte. Using anionic 

analytes as an example, when voltage was applied, they formed distinct bands between 

leading electrolyte and terminating electrolyte, migrating in one direction. At the same 

time, the cationic electrolytes also underwent isotachophoresis, migrating in the opposite 

direction. When these two shock waves met, there would be a replacement of ions, so the 

conditions would dramatically change. In one of these applications, the ion exchanging 
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process eliminated the isotachophoresis condition. Then, it was switched to 

electrophoretic separation automatically without any treatment and non-focusing tracer 

method was used to visualize experimental results [59]. In another case, they have 

successfully generated the LE concentration cascade to further increase the sensitivity of 

ITP technique [60]. Their schemes could also achieve bidirectional ITP for protein and 

DNA purifications [61]. This bidirectional device was with one single input in the middle 

and two output reservoirs connected by two ‘C’ shaped channels for ITP separation of 

proteins and nucleic acids simultaneously. One channel conducted cationic ITP for 

enriching positively-charged proteins, the other channel performed anionic ITP for 

negatively-charged nucleic acids from human blood serum. This bidirectional ITP 

method was demonstrated to have high recovery efficiency and compatibility with PCR 

and other extraction methods. 

Ross and co-workers have contributed to gradient elution ITP (GEITP) [31]. 

Compared to conventional ITP, it includes applied pressure-driven flow as a counterforce 

to the electrophoretic movement, generating precise position control and avoids 

introduction of contaminates. In their research, the capillary-based GEITP device was 

used to extract DNA from crude samples without significant pretreatment.  

Free flow electrophoresis is another direction aimed at the improvement of 

current capillary electrophoresis [62]. Unlike most of the techniques addressed here, the 

field is applied perpendicular to the velocity direction, making the deflection of the 

species unique to their electrophoretic mobility. This technique is quite flexible and is 

hybridized with other electrophoretic separation techniques, such as isotachophoresis 

(FFITP). Prest and co-workers first miniaturized the FFITP device and applied this to 
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separation of bacteria. The design consisted of a rectangular chamber with nine inlets and 

nine outlets on short sides of the chamber as well as electrodes on long sides. The leading 

electrolytes were injected into the chamber from the left three inlets with a higher rate, 

while the terminating electrolytes from the right three inlets with a smaller flow rate and 

samples from the middle three inlets. Once the chambers were filled with a mixture of 

leading and terminating electrolytes, the separation started with the application of a 

constant current. Prior to bacteria separation, they first used this device on dyes. The 

results were quite promising. While dealing with bacteria samples, they made the 

visualization available by mixing the bacteria samples with a dye solution.  

Electrokinetic supercharging (EKS) consists of field-amplified sample injection 

and isotachophoresis. Hirokawa and his co-workers designed a microdevice with three 

ports and a long curved channel for floating electrokinetic supercharging to separate, 

concentrate and analyze DNA samples [63]. The three ports were electronically floated to 

differ from conventional EKS and the long, turned channel was used for separation. 

Parameters and geometry were optimized for reducing band broadening effect. Fung and 

co-workers have realized two-dimensional transient scheme (t-ITP/CZE) for the detection 

of clinical urinary proteins [64]. Four urinary samples were successfully separated 

through a 2D t-ITP/CZE microdevice. The transient step was mainly used for desalting 

and preconcentration, while CZE was used for separation. The microdevice generated 

results in a short time, showing high enrichment and low LOC compared to standard 

clinical techniques. 

Isotachophoresis can be performed in other mediums, paper-based microdevice 

serving as a prime example. In Bercovici’s work, 1000-fold concentration enhancement 
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was demonstrated with porous media [65]. The device was easy to fabricate without 

complicated enclosure. The key point of designing this device was to minimize Joule 

heating and evaporation. This was achieved by printing shallow channels for a high heat 

dissipation efficiency. One major drawback was the dispersion effects. Another example 

was from Posner and co-workers [66]. A simple paper-based device was used to perform 

ITP concentration of fluorescent tracer. The results showed good agreement with 

numerical simulations. Moreover, the device can be powered by battery, showing the 

ability to be a portable device. 

Separations based on ITP have been performed on commercialized all-in-one 

platform microdevices. Breadmore and co-workers explored some customized features of 

this instrument [67-69]. To evaluate the analytical potential of the system, the method 

was used for the quantitative analysis of benzoate in soft drinks. The results were 

validated with a CZE method with generally good agreement [68]. Using the same 

strategy on lactate in serum did not produce the same results, especially compared to the 

commercial chips [69]. In response, they designed a chip for ITP separation. With this 

customized chip, they performed lactate concentration determination in three different 

serum samples quantified by CZE and ITP individually using commercial systems. Both 

methods generated comparable results, demonstrating the platform was available for a 

diverse range of applications. 

2.2.3 Conductivity gradient focusing 

The early application of conductivity gradient for protein concentration came 

from Ivory’s group [40]. They used a chamber that was divided into compartments by a 

dialysis membrane. Buffers of different conductivities were placed in each section. The 
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species with low molecular weight could pass through the membrane, creating the 

conductivity gradient when the voltage was applied. A convective force was employed to 

balance the electrophoretic velocity of proteins. The basic principles of this technique 

combining electric field, fluid field and mass transportation, were described as well. 

 

Figure 2.4 Schematic of conductivity gradient focusing from Ivory’s group [40]. 

Inglis and co-workers have contributed to the development of this technique with 

a device that has a tapered channel, filled with low conductivity buffer on one side and 

high on the other side, creating gradient along the channel [70]. Once the electric field is 

applied, both electrophoretic velocity and the electroosmosis are induced. In the low 

conductivity zone, the electrophoretic velocity dominates, while at the high conductivity 

zone, the electroosmotic flow dominates, thus focusing different species at distinct 

locations based on their individual mobilities. Separation and concentration of two 

proteins were performed in this device, achieving 1000-fold concentration enhancement 

within 20 minutes. They also investigated the effects of altering the electric field [71]. 

Four different geometries, including rectangular channel and three tapered channels with 

different length ratios were studied. Based on the numerical simulations and experimental 

results, the tapered channel had the best performance. They proposed that in the 

rectangular channel focusing took place only when the flow direction was opposite to the 

conductivity gradient, since the electric field increased at low conductivity end. When 

flow direction and conductivity gradient were the same, the trapping was unstable. While 
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in the tapered channel, the electric field was higher at both ends and, with the channel 

width reduced, the field magnitude increased. A weakness was that, in the numerical 

simulation, it was assumed the electroosmotic flow was constant along the channel. In 

reality the electroosmotic flow was non-uniform due to gradients in the electric field and 

local electroosmotic mobility [72]. The non-uniformity of the electroosmotic flow 

changed the proposed mechanism and the varying electric field and the electric double 

layer thickness formed a counter electroosmotic flow at the low conductivity zone end of 

the device, increasing the trapping efficiency of proteins. With a new simulation, they re-

examined the four geometries and the numerical results matched well with experimental 

results.  

2.3 Counterflow electric field gradient 

When electric field gradient is combined with another force to perform focusing 

in a single buffer, the strategy is commonly referred as counterflow electric field gradient 

(Figure 2.5). In most cases, one of the velocities holds constant while the other varies, the 

species focuses at the place where two velocities sum to zero. 

 

Figure 2.5 A universal schematic of counterflow electric field gradient focusing strategies 

[43].  

2.3.1 Electric field gradient focusing/Dynamic field gradient focusing (EFGF/DFGF) 
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This technique employs an electric field and a pressure-induced flow. Ivory’s 

group has made significant contributions to the development of EFGF. As early as 1996, 

they published an article introducing the strategy, where the electrophoretic force was 

countered by the convective force [39, 73]. The apparatus consisted of a chamber with 

varying cross-sectional area along the axis, inducing the electric field gradient. The flow 

was constant in the chamber. The chamber was split into two parts via a dialysis 

membrane, which allowed electric current to pass but not the convective flow. With this 

setup, they examined the focusing and separation of hemoglobin. 

They also investigated a computer controlled array of electrodes to create a 

precise electric field gradient [74]. They termed this new branch dynamic field gradient 

focusing. From 2008 to 2010, they reported a variety of applications using this technique 

in preparative-scale apparatus [74-76]. The applications were all on preparative-scale and 

some were considered to be cumbersome and complicated. 

Lee and colleagues contributed to analytical EFGF devices. They first proposed a 

device made of ionically conductive acrylic copolymer, which allowed ions to permeate 

but not proteins. A horn shape of the device enabled the creation of an electric field 

gradient [77, 78]. They successfully concentrated fluorescent protein 10,000-fold and 

demonstrated the separation of a mixture of proteins. The peak capacity and resolution of 

this device was relatively low, and the protein adsorption was a challenge. To ameliorate 

these problems, they used poly (ethylene glycol) (PEG)-functionalized acrylic plastic, 

which decreased protein adsorption. The PEG-functionalized monolith was also used to 

reduce dispersion [79]. The packed or monolithic column could disrupt the laminar flow 

profile (compared to an open channel), which flattened the parabolic shape of laminar 
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flow, thus increasing resolution. They optimized the device via switching to another 

buffer solution, which could produce a more linear electric field [80]. The results from 

this modified device showed narrower peak width and smaller standard deviation. With 

the optimized device, they investigated the ability to create bilinear electric field gradient 

focusing, which would enhance the resolving power and the peak capacity 

simultaneously [81]. 

In 2012, Breadmore and his co-workers developed a new strategy to generate 

electric field gradient by using a variable width polyaniline (PANI) electrode [82]. The 

idea was similar to Lee’s work, replacing the horn-shape hydrogel with a PANI electrode. 

The width along the axial dimension varied to create variable resistances, thus generating 

an electric field gradient. The advantage of PANI electrode was that it relied on the low 

conductivity of PANI polymer, enabling the application of higher voltage with less 

current. With this technique, they were able to successfully concentrate two fluorescent 

dyes. 

A)                                                                 B) 

 

Figure 2.6 Schematics of two electric field gradient focusing techniques. A) Horn-shape 

design from Lee’s group [77]. The device was fabricated with poly (ethylene glycol) 

(PEG)-functionalized acrylic plastic to reduce protein adsorption. Moreover, the PEG-

functionalized monolith was incorporated in the device to reduce dispersion. B) Variable 

width PANI electrode design from Breadmore’s group [82]. The dark-green area in the 

picture was made of PANI electrode with variable width. 
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More recent work on EFGF focused on theoretical foundations. A group in 

Canada, inspired by Lee’s work, combined the bilinear gradient with swept counter-flow 

[83]. Numerical simulations were performed to assess the resolution using various 

parameters, including length, scan rate and potential. The results agreed well with the 

predicted valued from an existing literature. 

Another direction of EFGF started with the observation of isotachophoretic 

phenomena within an EFGF device. The observations were supported by theoretical 

simulations. While DFGF is a somewhat unique. It does not necessarily scale linearly and 

therefore miniaturization must be done with care. Moreover, the technique typically has 

relied upon membranes. Ivory’s group explored some major issues associated with semi-

permeable membranes [84]. The membranes were removed and a novel DFGF design 

was developed [85]. To overcome the electrolysis in this design, an 'on-line degas' 

compartment was included. Compared to their previous design, the degas compartment 

was located at the bottom of the device and hooked to in-house vacuum. To prevent the 

collapse, the degas compartment and the main compartment—separation compartment 

with multiple electrodes—are connected only through a Teflon sheet as well as the 

porous ceramics. With this design, three dyes with lower molar weight were separated 

over 10 h without noticeable degradation.  

2.3.2 Gradient elution moving boundary electrophoresis (GEMBE) 

Ross’ group proposed gradient elution moving boundary electrophoresis 

(GEMBE). Unlike EFGF with a constant convective flow, this technique used variable 

hydrodynamic flow from high to low opposing to a constant electrophoretic velocity. All 

the species were initially placed outside the entrance of the separation channel. Thus, 
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only when the bulk counter-flow velocity was smaller than the species’ electrophoretic 

velocity, could they enter the channel. Sample could be injected without using any 

critical sample injection mechanisms. 

This strategy was first made available on a CE platform in 2006 [38] with a 

pressure-controlled waste reservoir coupled to CE. As a model study, fluorescein and 

carboxyfluorescein were used to perform the separation. This apparatus could be 

miniaturized with only an all-in-one inlet port and one outlet port per analyte. With 

microfluidic apparatus, they studied linear pressure gradient, which successfully 

separated two fluorescent dyes. With a multistage (nonlinear) gradient, five dansyl-

labeled amino acids were isolated. The method gave rise to stair-like data, and 

electropherogram-like data could be achieved by plotting the first derivative of the raw 

data. 

To avoid some instrument-related issues, Ross’ group used capacitively-coupled 

contactless conductively detection (C4D). Post processing of the data was used to 

generate the electropherogram-like signal. With this detection method, numerous 

complex samples have been investigated, including dirt [86, 87], estuarine sediment, coal 

fly ash and leaves [87]. Samples were injected into the capillary-based apparatus filled 

with background electrolytes without any pretreatment. This idea has been adapted to a 

microfluidic device. The design was relatively simple, with one port for sample injection, 

and the other port for background electrolyte injection. The detection was performed 

around 1 mm from the sample reservoir. The pressure adjustment compartment was 

connected with buffer reservoir. With this device, dirt and whole blood samples were 

tested. 
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When implemented with a sample stacking technique, GEMBE could load 

preconcentrated samples continuously. Ross’ group have successfully achieved 

substantial signal enhancement, which was not limited to just the conductivity ratio any 

more. The continuous sample loading process was accomplished by preparing samples in 

a lower conductivity buffer and using a higher concentration buffer for experiments. 

2.3.3 Electrophoretic exclusion (EE) 

Inspired from the techniques mentioned above as well as electrophoretic 

separation of biological samples is electrophoretic exclusion. It also exploits an electric 

field to establish a gradient and the pressure-driven hydrodynamic flow is used to 

counter. However, with the geometry of the apparatus, the electric field gradient is 

formed only at the entrance to the channel, making the exclusion take place in the 

immediate vicinity of the entrance and nowhere else.  

The technique was started as a bench-top device by Polson et al., demonstrating 

exclusion on polystyrene spheres. Small molecule exclusion was shown by Meighan et al. 

with an in-house built instrument [88]. The setup was not complex. Separate sample and 

buffer vials were connected by a capillary. Two vials were placed at different heights to 

create pressure-driven flow. The electric field was applied cross the capillary with an 

integrated electrode exactly at the entrance and a standard electrode in the buffer vial. 

The spectrometer was placed near the entrance of the capillary. The principle of 

exclusion was confirmed by using a mixture of fluorescent dyes, namely methyl green 

and neutral red. Similar results were shown with proteins [89] by modifying the capillary 

with an inner surface polyimide coating to eliminate EOF. Myoglobin, as a model study, 

was concentrated 1000-fold in a short period of time. Moreover, separation of multiple 
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proteins was also shown, including mixtures of two positively charged species and one of 

mixed charge.  

Kenyon et al. adapted this technique to a microfluidic device [90]. They 

investigated this miniaturized device using rhodamine 123 and 100 µm polystyrene 

beads. Images demonstrated the separation of these two species. They also investigated 

the theoretical limit of this technique, indicating that is very high resolution, can be run 

parallel, and separations can occur quickly [91].  

Currently, a device with one entrance reservoir and three parallel functional units 

is used. To better understand how the microdevice works and how it can be optimized, 

investigation on asymmetric electrode placement (electrode only on one wall) was 

conducted. Numerical simulations were compared with the experimental results, showing 

a good agreement. The model constructed is believed to be beneficial for designing next-

generation devices [92] and is discussed more fully in Chapter 4. 
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Table 2.2 A brief comparison between four common counterflow gradient focusing 

strategies. 

Techniques 
EFGF-Ivory 

[36,72] 

EFGF-Lee 

[76–80] 

GEMBE  

[85–88] 

EE  

[90–92,94] 

Forces 

Electrophoretic 

force, constant 

convective 

force 

Electrophoretic 

force, constant 

bulk fluid flow 

Bulk flow 

swept from 

high to low, 

electrophoretic 

migration 

constant 

Hydrodynamic 

flow, 

electrophoretic 

velocity 

Sample 

injection 
A sample loop 

Electrokinetic 

injection or 

pumped 

Continuous 

introduction 

Pipetting small 

volume or 

syringe pump 

Pressure 

control 

A back-

pressure 

regulator 

A syringe 

pump 

A precision 

pressure 

controller 

A rotatable 

board or 

syringe pump 

Electric field 

gradient 

establishment 

A shaped 

chamber 

A horn-shaped 

chamber 

Distal 

electrode and 

standard CE 

capillary 

Electrode and 

sudden 

expansion 

channel-

reservoir 

interface 

EOF control Not mentioned 

Suppressed 

with poly(vinyl 

alcohol) 

coating the 

capillary wall 

Coating DDAB 

on capillary 

surface 

Suppressed 

with low pH 

buffer or 

polyimide 

Detection 

method 
UV detector 

Laser-induced 

fluorescence 

detection 

Fluorescence 

microscope, 

current, C4D 

Fluorescence 

microscope 

Concentration 

degree 

2~3-fold in  

~7 h 

Up to 14,000-

fold in 60 min 

(bilinear) 

110× with a 

conductivity 

ratio of 8.21 

1200 times in 

60 s (bench-

top), estimated 

more than 10-

fold in 30 s 

(microdevice) 

2.4. Temperature gradient focusing (TGF) 

An alternative technique, temperature gradient focusing (TGF) was described by 

Ross’ group [93-95]. In this technique, the electric field gradient was created through a 

buffer with a temperature-dependent ionic strength and local heating. Pressure-driven 
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flow was balanced by varying electrophoretic velocity, and the targeted analytes can be 

focused at specific position. 

They demonstrated external heating/cooling equipment to generate temperature 

gradient. However, the technique has limited peak capacity as well as the dependence of 

analytes and buffers to temperature. Some other groups found alternative ways to conduct 

temperature gradient. Normally, Joule heating should be eliminated for separations, as it 

causes internal convection within the channel or reservoir. However, in TGF regime, 

separation and concentration can take advantage of Joule heating and achieve excellent 

performance. The first attempt was by Hasselbrink’s group [96]. Their work aimed to 

reduce the energy needed for the TGF device, as well as eliminate the usage of 

temperature-dependent buffer. The microchannel was wide at the end and narrow in the 

middle to establish the temperature gradient. Due to the smaller cross-sectional area in 

the middle, the current density was higher in this region, thus creating the highest 

temperature. Electroosmotic flow was used to counterbalance the electrophoretic velocity 

generated through temperature gradient. A mixture of two dyes were separated and 

concentrated in this device. However, the steady-state temperature profile was difficult to 

maintain, making the focused plug gradually move towards the anode side. This group 

further studied the Joule heating effect for temperature gradient generation with 

numerical simulations [97]. 

Instead of using the geometries mentioned above, Yang’s research group designed 

a new system with sudden expansion. They started their investigation with numerical 

simulations and tested some parameters that might potentially affect the performance of 

the device, including voltage, buffer concentration, and channel width ratio, among 
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others. It turned out that all these factors influenced the concentration enhancement. The 

simulation results were comparable with experiments and showed higher concentration 

enhancement than the method developed by Ross. With this information, they further 

optimized the device by using combined AC and DC field to induce the Joule heating 

effect, thus suppressing electroosmotic flow and decreasing the required DC field. With 

this modification, the concentration could be enhanced to 2500 fold [98]. They performed 

concentration of DNA with the same setup, accomplishing 480-fold concentration 

enhancement in 40 s. 

A)                                                              B) 

      

Figure 2.7 Two common schematics for temperature gradient focusing. A) Ross and co-

workers design using external heating/cooling equipment for temperautre gradient 

generation [99]. B) Yang’s work by using electroosmotic flow with a sudden expansion 

design for creating temperature gradient [100]. 

The usage of internal heater is also a trend for temperature gradient focusing, 

including Peltier element [35, 99], radiative heater [101], and optothermal accessories 

[102] among others. A miniaturized application focused on the use of liquid-metal [103]. 

In the work proposed by Liu and co-workers, they first filled the channel with liquid 

metal as heater, then with the application of voltage, Joule heating was generated from 
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this liquid-metal gallium-base alloy heater to form temperature gradient with low 

conductivity. 

A)                                                                        B) 

                          

C)                                                  D)    

        

Figure 2.8 Different strategies for creating temperature gradient through an internal 

heater. A) Peltier elements were incorporated into the device, and applied by different 

temperatures. The area between two elements formed the temperature gradient [99]. B) A 

slantwise radiative heater was tilted and generated an angle with the plate, and the 

temperature gradient was generated along the channel [101]. C) The heated area was 

generated through the precise projection of a pattern onto the surface of microdevice 

[102]. D) Liquid metal was filled in the channel of microdevice for generating 

temperature gradient [103]. 

In temperature gradient focusing, bilinear gradient can also be applied to enhance 

the peak capacity and resolving power at the same time. Ren’s group investigated the 

bilinear gradient formation in TGF device [83, 104, 105]. The basic idea was very similar 
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to what was proposed by Lee’s team, namely combining a steep gradient followed by a 

shallow gradient. In order to achieve such a bilinear gradient, a heater was integrated into 

the microdevice. The heater was designed to have one large end and one small end to 

allow for the heat generation, thus creating a desired temperature profile. In order to 

obtain a broad temperature gradient, the large region was operated in cooled water at 

initial stage to enhance the temperature difference. The temperature profile was 

confirmed was finite element simulation software. A comparison between linear and 

bilinear experimental results were also made, and the bilinear method showed a fairly 

good resolving power when performing separation of three fluorescent labeled amino 

acids, while the linear method only showed two peaks. 

2.5. Concentration polarization (CP)/Ion concentration polarization (ICP) and 

bipolar electrodes (BPE) 

2.5.1 Concentration polarization (CP)/Ion concentration polarization (ICP) 

Concentration polarization (CP) or ion concentration polarization (ICP) is well 

known to electrochemists, in many instances as a nuisance. ICP is commonly achieved 

purposefully through nanochannel structure and ion-permselective membrane.  

The ICP phenomenon is generated by a gradient of ions and co-ions of differing 

mobilities across a nanopore that is small enough to allow for the electric double layer 

(EDL) overlaps or by permselective membrane. A nanostructure has pores small enough 

to allow the overlap of the electrical double layer from opposite sides of the opening. The 

overlapping of the electrical double layer causes the solution in the nanostructure to be 

charged, preventing transport of co-ions. The nanostructure then exhibits the 

permselectivity property, enriching ions or co-ions [106]. For the membrane, the 
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mismatch of mobile and stationary charge carriers across the membrane causes 

accumulation of ions.  

Early work using nanochannel structures and charge-selective membranes for 

separation and preconcentration was from Sweedler and Bohn’s research groups [107, 

108]. In their work, two microfluidic channels were placed cross-wise in a layered device 

with a nanofluidic membrane in between. This design enabled the sorting of species 

between layers and enabled the possibility of using nanostructures and membranes as 

well as 3D multilayer constructions for preconcentration.  

A novel nanostructure with the Nafion membrane for separation of salted species 

from seawater was shown by Han and his co-workers [109]. In their device, the 

nanostructure was located at the intersection of two branches. Due to the ion-depletion, 

the charged species were repelled to one branch, while the desalted species (mainly 

water) could flow through the other. Since the charged species were repelled, the 

nanoporous membrane did not foul. They showed that 99% of the salt could be removed 

and the energy consumption was low. However, recent work showed it was not as 

efficient as initial presented. But no doubt, this was a very successful trial and provided a 

convenient way to address the water shortage problem throughout the world. Later, the 

same device was used for separation of biomolecules and cells [110]. 

This design inspired other configurations. Kang’s group using a Nafion 

membrane tilted 45 degree positioned between channels [111], where the ion-depletion 

zone formed near the one bottom edge of the membrane. The outlet region was expanded 

compared to the separation channel, amplifying the separation efficiency and acting as a 
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dimension sorter. The separation was demonstrated with two particles of differing 

diameters. 

Sinton’s group contributed a 3D design for its potential use of high-throughput 

detection and analysis related to desalination [112]. The device had three stacked vertical 

units, the top layer was a vertical membrane, the middle layer was a channel for purified 

water, and the bottom was used to transport charged species. Similar to Han and Kang’s 

designs, when voltage was applied, the region near membrane formed an ion-depletion 

zone, deflecting the charged species. As a result, the neutral water molecules flow 

through the second layer, while the charged impurities passed through the bottom. It was 

noteworthy that the purified layer and bottom layer were not overlapped in space, making 

the visualization more convenient. The device had three-fold functional density and 

required less energy consumption than planar devices. 

Preconcentration can also be achieved through a straight channel. Han and Kang’s 

group collaborated in 2012 and developed a straight channel design with membrane 

located in the middle of the channel [113]. With the application of a sufficient flow, 

depletion and ion-enrichment zones formed. The spread of these zones was limited 

compared to conventional devices. They also coupled this to immunoassay for 

preconcentration and obtained a limit of detection of 1 ng/mL, which was 1000 times 

lower than classical strategies. Tang’s group developed a similar single-channel device, 

achieving over 10,000-fold concentration enhancement of protein samples in one case 

and simultaneous accumulation of cells in another application [114]. Tang’s group further 

investigated the theoretical basis of their scheme using numerical simulations [115]. 
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Channel structures were expanded to a radial concentrator by Sinton’s and his co-

workers [116]. A vertical channel was placed in the center of a radial chamber covered by 

a Nafion membrane. Application of voltages created an ion-depletion zone around the 

membrane. The depletion zone spread until entering the middle vertical channel. No 

additional flow was required, and over 150-fold concentration was achieved in a short 

period of time. 
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A)                                        B)                                            C) 

    

D)                                                                                     E)  

    

Figure 2.9 Various ICP devices. A) Seawater purification device from Han’s group [109]. 

B) Tilted Nafion membrane for particle sorting from Kang’s group [111]. C) Single 

channel ICP [113]. D) Out-of-plane ICP for purification of seawater from Sinton’s group 

[112]. E) Radial concentration from Sinton’s group [116]. 

Most recent research has been focused on paper-based devices, easing fabrication 

requirements. A good example came from Wang’s group in Taiwan. They tested several 

different geometries. Optimized converging device can result in ~20-fold increase, while 

straight channel only gave ~10-fold enhancement [117]. 

Another fabrication technique, called xurography can also be cleanroom-free 

[118]. Microchannels were created on a double-face adhesive-film, then adhered to a 
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glass slide. A strip of Nafion was placed above the film. A cutting plotter, which was 

formerly used industrially, was used for adjusting the shape of the channels and the 

Nafion membrane. With this simple device, a concentration factor of over 5000-fold was 

shown. 

2.5.2 Bipolar electrodes (BPE) 

Bipolar electrodes, mostly with respect to bipolar electrochemistry, have long 

been investigated. They did not receive much attention in electrophoretic separation and 

preconcentration until Crooks and co-workers reported competition between ionic 

conductance and electronic conductance in a microfluidic device [119]. A number of 

projects followed, first, they developed a theoretical model and studied the dynamics of 

species transportation and the electric field formation [120]. They then determined the 

rates of hydrolysis that led to the differences in conductivity, thus creating an electric 

field gradient. They extended the application to simultaneously enrich and concentrate 

three different species and the result was quite promising: within 200 s, they successfully 

enriched three negatively charged species over 200-fold [121]. The focusing mechanism 

was mainly due to the electric field generated by faradaic reactions. When a pH-sensitive 

buffer, for instance, Tris/TrisH+, was used, the OH- generated at the cathodic pole of the 

BP could react with the TrisH+ near that region, forming neutral Tris and reducing the 

conductivity regionally. The conductivity difference established the electric field 

gradient. In addition, the electroosmotic flow was used to counter the electrophoretic 

velocity, making the species accumulate at a specific position. They termed this 

phenomenon as ‘bipolar electrode focusing’ and investigated current and electric field 
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effects [122, 123]. Moreover, with the modification of the channel walls, the reversal 

EOF enabled the enrichment of cations in the BPE-based microdevices [124]. 

They also explored the depletion zone using bipolar electrodes [125]. The 

principle behind it was quite similar to that of bipolar electrode focusing, but the 

electrolyte was not pH-sensitive. As a result, the OH- at the cathodic pole and H+ at the 

anodic pole increased the conductivity near these two regions. Consequently, the electric 

field was relatively low between BPE and high on both poles, making the anions 

migrated towards cathode. They further studied the ability of this device acting as a 

membraneless filter when one negatively charged dye and one neutral dye were 

combined together. 

They also investigated both single-channel and dual-channel designs, leading to a 

discussion of faradic ion concentration polarization [126]. Compared to conventional 

ICP, which transports charged species through a nanostructure/membrane, the faradic 

ICP from BPE ‘transported’ species through electrochemical reactions on both cathodic 

and anodic poles of electrodes. As a result, conventional ICP was noted as mass-transport 

limited, while faradic ICP is electron-transfer limited. 

With a clear understanding of faradic ICP, the dual-channel design has been used 

for enrichment and concentration of both cations and anions [127]. In this design, two 

channels were connected by a bipolar electrode with a TrisH+ buffer in the top channel, 

and an acetate buffer in the bottom channel. 

Building on this body of work, Song and co-workers developed a bipolar 

electrode-based microdevice combining the end-label free-solution electrophoresis for 

preconcentration and separation of DNA [128]. In their approach, a simple dual-channel 
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design was used. DNA was labeled by a protein tag to achieve different mass-to-charge 

ratio, which enabled the free-solution electrophoresis for separation and enrichment in a 

BPE-coupled dual-channel microdevice. 

2.6. Concluding remarks 

This review provides a distinctive view of electrophoretic separation and 

preconcentration strategies. Gradient-based approaches in electrophoretic methods are 

promising and continue to attract attention of the scientific community since they serve as 

selective preconcentration platform for complex matrices. Growing interest is visible in 

new fabrication procedures aiming to reduce the complicated and labor-intensive work 

with standard lithography procedures in the cleanroom. A remarkable trend can be seen 

in paper-based microdevices.  

Among all the techniques mentioned in this review, isotachophoretic strategies 

might be the most practical ones as they can be applied to a variety of analytes including 

biological samples and inorganic components. Field-amplified sample stacking still 

serves as an important role in sample injection or introduction and may facilitate a better 

performance when combined with other techniques. Counterflow electric field gradient 

focusing remains as an effective separation and preconcentration method. Gradient 

elution moving boundary electrophoresis might be the most powerful tool in this category 

as it can be applied to raw samples even without prior treatment. Electric field gradient 

focusing maintains its advantage and can be used for some biosamples. Electrophoretic 

exclusion is still at an early phase and aims to provide new insight for next-generation 

design. Temperature gradient focusing continues to grow, with new fabrication or new 

materials facilitating further development of the technique.  
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The reviewed papers demonstrate that gradient-based electrophoretic approaches 

remain an effective tool for keeping CE techniques competitive, and in many cases 

superior, compared with other separation methods.  
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CHAPTER 3 

GENERAL OVERVIEW OF ELECTROPHORETIC EXCLUSION 

3.1 Introduction 

Previous chapters have discussed the role of separations in protein biomarker 

analysis and provided an overview for a variety of electrophoretic separation techniques.  

Current electrophoretic separation strategies can be divided into two categories. 

The first type is migration-based techniques, such as isotachophoresis (ITP), field-

amplified sample stacking (FASS), and sweeping [1-6]. While the second type is 

focusing techniques. Compared with migration-based techniques, focusing approaches 

employ a counter-flow, so that analytes could be concentrated and allows for increased 

peak capacity and resolution. This idea was initially proposed by O’ Farrell [7]. In his 

work termed as counteracting chromatographic electrophoresis (CACE), the column was 

packed with two different materials of different porosities, and the target protein could 

accumulate in the junction of two materials. Later Giddings and Dahlgren [8] 

summarized equilibrium gradient methods, in which the analytes could reach an 

equilibrium point where the net force summed to zero. In addition, similar to Hooke’s 

Law, the deviation from the equilibrium point could result in a restoring force, which 

caused the analytes to be concentrated in narrow bands. These efforts led to new 

applications on electrophoretic separation such as flow counterbalanced capillary 

electrophoresis (FCCE) [9], electric field gradient focusing (EFGF) [10-20], temperature 

gradient focusing (TGF) [21, 22], and gradient elusion moving boundary electrophoresis 

(GEMBE) [23-28]. Most of these elegant electrophoretic separation techniques have been 

discussed in Chapter 2. 
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Similar to these techniques, and pre-dating some, is electrophoretic exclusion.  

[29-33]. Consistent with other techniques, it exploits an electric field (E) to establish a 

gradient and a pressure-driven flow (v) to counter the electrophoretic force. Since the 

electrophoretic velocity (u) is equal to the product of the electrophoretic mobility (μ) and 

the electric field strength (E), each analyte accumulates at the point where the 

electrophoretic velocity of the analyte is equal and opposite to the bulk fluid flow 

(v=u=μE). With the geometry of the apparatus, the electric field is formed at the entrance 

to the channel where the gradient is established, resulting in the exclusion taking place 

out of the channel.  

This technique was started as a bench-top device. Polson et al. first demonstrated 

the capability of exclusion with this technique [29]. Later, a theoretical study was 

presented with the collaboration of Hayes group and Chen group, through whose work 

the electrophoretic exclusion conditions were examined [30]. Meighan et al. showed the 

exclusion phenomenon with in-house built instrument. To better control and minimize the 

electroosmotic flow (EOF), an acidic buffer was used. The principle of exclusion was 

confirmed with a mixture of methyl green and neutral red dyes [31].  Later, this apparatus 

was used for the separation of proteins. The capillary was modified with polyimide 

coating to eliminate the EOF. Myoglobin was concentrated 1000-fold in a short period of 

time. Moreover, multiple proteins were also separated on the apparatus, including a 

mixture of two positively charged species, and another mixture of one positively and one 

negatively charged species [32].  

Compared to other methods, this new technique has some advantages. First, with 

this technique a species can be excluded by employing carefully chosen electric field 
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strengths. The flow rate is designed to be relatively slow, which does not acquire a high 

electric field to conduct separations, minimizing bubble formation. Second, there is no 

need for critical injection and sample loading is no longer a major problem; this does not 

cause band broadening, which simplifies the sample injection. Third, species are 

separated in bulk solution based upon their native properties without the need for a 

binding step or other pretreatment, which makes it possible for coupling with various 

downstream techniques for detection, such as mass spectrometry and electron 

microscopy. Since the exclusion takes place outside the channel, unlike those of 

chromatography, or capillary electrophoresis, this technique is independent of the length 

of the channel, which makes this technique adaptable for use in microfluidic devices. In 

addition, this technique does not depend upon usage of membranes for isolation, which 

could avoid any issues associated with the retention of small molecules or the non-

uniformities of the fields.  

More recently, Kenyon et al. adapted this technique to a microfluidic device. As 

microfluidic devices gained popularity recently due to their superior properties compared 

to bench-top devices, such as miniaturized operation systems, reduced reagents 

consumption, reduced wastes formation, and decreased time consumption [34].   

This microdevice was a complete hybrid glass/PDMS chip with nine single separation 

channels. The principle of this technique on this miniaturized device was studied with 

exclusion of Rhodamine 123 and 100 m polystyrene beads. Visual evidence of images 

from fluorescent microscope were used to demonstrate the separation of these two 

species [33]. 
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In the simple format as a single-channel separation interface, the separation 

capability of electrophoretic exclusion is limited as the analytes could either enter the 

reservoir or be excluded at the entrance to the channel. In order to achieve higher 

separation capability, the coupling of multiple channel entrances in series and in parallel 

could be advantageous. Considering the non-linear, punctuated microgradient property of 

this technique, it is possible to allow for customizable separation for specific analytes 

with known electrophoretic mobilities by adjusting the electric field applied. As a result, 

an array-based design was proposed by Dr. Kenyon. This array-based design consists of a 

large reservoir for sample loading, followed by three individual separation units. Each 

unit comprises a central reservoir and an exit reservoir (Figure 3.1).  

In the present work, this array-based microfluidic device format was tested. With 

this geometry, analytes of different mobilities were separated spatially and 

simultaneously. Results from individual dye solutions showed they exhibited different 

behaviors when varying the applied electric field strength. Moreover, when the voltage 

was released, a bright concentration bolus would flow through the channel, indicating the 

device capabilities for exclusion, enrichment, and separation. The separation of a mixture 

of two dye solutions was demonstrated through images/videos of fluorescence 

microscopy. Centerline concentration profile was established for studying the mechanism 

of exclusion. The phenomenon of partial exclusion was also observed from the centerline 

concentration profile. The obtained results indicated that electrophoretic exclusion is a 

promising technique, which could be further used for more applications. 

3.2 Experimental 

3.2.1 Microfluidic device fabrication 
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A photograph of the device as well as schematics with isometric view and top 

view were shown in Figure 3.1. The hybrid glass/PDMS array was used for all 

experiments. Each device contained a large entrance reservoir, three central reservoirs 

and three exit reservoirs connected by separation channels. The development of this 

device is briefly discussed below. 

 

Figure 3.1 A photograph of the actual device is included on the left. Top right shows a 

schematic with isometric view, and all the reservoirs and channels are labeled with 

terminology. Bottom right presents a schematic with top view. 

3.2.1.1 PDMS casts fabrication 

This array-based microdevice consisted of an entrance reservoir connected to 

three central and exit reservoirs through separation channels. The dimension of the 

entrance reservoir was 19 mm x 5 mm, central and exit reservoirs were 5 mm x 5 mm, 

and the channels were 1 mm in length, 100 μm in width, and 10 μm in depth. Masks were 

designed using Illustrator (Adobe, San Jose, CA, USA) and printed on transparency using 

a resolution of 65,000 dpi (Fine Line Imaging, Colorado Springs, CO, USA). Positive 

photoresist AZ 4620 was spun onto a silicon wafer and exposed using an EVG®620 
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Automated UV-NIL, μ-CP System (EV Group, Austria) at 500 mJ/cm2 with the 

transparency as a mask.  

The microdevice was then fabricated using common soft lithography techniques. 

Using Sylgard 184 (Dow Corning, Midland, MI, USA), polymer and curing agent was 

prepared as a 10:1 mass ratio, and the mixture was poured onto the wafer at a thickness of 

roughly 5 mm. The crude mixture with wafer was allowed to sit at room temperature for 

15 minutes to remove all the air bubbles and cured at 70-80°C for 60 min in the oven. 

The cured PDMS cast was peeled off from the wafer and 3 mm diameter holes were 

punched in the entrance and exit reservoirs using a Harris Uni-Core quill (Shunderson 

Communications Inc., Orleans, Ontario, Canada). 

3.2.1.2 Electrode fabrication 

Ti/Pt electrodes were plated on standard glass microscope slides (VWR 

International). A mask was designed using Adobe Illustrator and printed on transparency 

using a resolution of 8000 dpi (Fine Line Imaging, Colorado Springs, CO USA). 

Electrodes were plated 500 μm in width and bracketed three sides of each reservoir to 

produce a flat potential. A schematic of the electrode design is shown (Figure 3.1, left). 

Positive photoresist AZ 4330 was spun onto glass microscope slides and then exposed 

with the EVG®620 Automated UV-NIL, μ-CP System at 150 mJ/cm2 using the 

transparency mask. Two layers of metal were deposited on the glass slides using electron 

beam physical vapor deposition (PVD75, Kurt J. Lesker Company, Jefferson Hills, PA, 

USA). A 30 nm layer of Ti was deposited onto the slides, followed by 50 nm of Pt. 

Copper wires were attached to the deposited metal stripes on the glass slides using silver 

conductive epoxy to create electrical connection to an external high voltage power supply 
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(Series HV5448, LabSmith Inc., Livermore, CA, USA) through an in-house built voltage 

divider. 

3.2.2 Materials 

Aspartic acid, hydrochloric acid (1 M), Rhodamine 123 stock solution (2 mM), 

Rhodamine 6G stock solution (2 mM), 8-Hydroxypyrene-1,3,6-trisulfonic acid (HPTS) 

stock solution (2 mM), True Blue chloride stock solution (~10 mM) were used as 

received. Aspartic acid buffer solution was prepared to 5 mM with a pH around 2.95 

using 18 MΩ Milli-Q water (hydrochloric acid was used to adjust the pH value). 

Rhodamine 123, Rhodamine 6G, HPTS, and True blue stock solution were diluted to 10 

µM, 40 µM, 60 µM, 1.5 mM, respectively, using aspartic acid buffer solution on the day 

of the experiment. Under acidic buffer solution conditions, HPTS is a negatively charged 

dye, while the other three are positively charged. Rhodamine 123, Rhodamine 6G and 

HPTS show green fluorescence under microscope, while True Blue shows blue 

fluorescence. 

3.2.3 Experimental setup 

The upper PDMS layer and the electrode slide were bound together after surface 

treatment with oxygen plasma operated at high radio frequency (RF) for 60 s (Plasma 

Cleaner, Harrick Plasma). The copper wires of the device were connected to an in-house 

fabricated voltage divider. The voltage divider was further linked to a high voltage power 

supply. An Olympus IX70 microscope with a mercury light source was used to monitor 

the experiment. 

The array was filled with a solution containing fluorescent dye molecules by 

pipetting the solution into the entrance reservoir. Channels were filled through capillary 
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action and bulk flow was directed towards the exit reservoirs by the difference in height 

between the menisci of the entrance and exit reservoirs. A total of 21 μL of solution was 

added to each device. Properly selected electric fields were applied so that exclusion of 

dye molecules could be observed near the entrance to exit channel. 

For each trial with the microdevice, the general procedure for data collection was 

designed as: for the initial 10 s, the device filled with sample was placed on the stage of 

microscope without voltage applied; next 15 s, a low voltage configuration was applied 

manually for voltage accuracy checking with a voltage meter; at 25 s, the voltage was 

triggered through a programmable voltage sequence from the voltage power supply to a 

desired value and left on for another 20 s; at 45 s, the voltage was released, and videos 

were recorded for another 15 s. The images from the videos were saved as .tiff files from 

the camera software. 

3.2.4 Data processing 

ImageJ software (NIH, Bethesda, MD, USA) was used for intensity 

measurements. For the centerline concentration profile, pre-selected images were 

imported into the software. A centerline was established within the channel of each image 

and the intensity of each pixel along this line was achieved through the command 

‘Analysis’→‘Plot profile’.  

3.3 Results and discussion 

3.3.1 Exclusion principle 

As discussed before, electrophoretic exclusion takes place when the 

electrophoretic velocity of a charged analyte is larger than the counteracting 

hydrodynamic flow. Three main factors are required to achieve exclusion: hydrodynamic 
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flow, positive or negative charge, as well as an electric field. Due to the punctuated 

feature of electrophoretic exclusion, the charged target analyte, with the application of a 

proper electric field, is expected to be excluded in the interface between channel and 

reservoir, while other species could still flow through the channel. For a given set of 

experiments as well as the device, the electrophoretic mobility of the analyte remains 

constant (giving the same buffer condition and analyte concentration). While the 

pressure-driven hydrodynamic flow does not change significantly within the time frame 

of experiment, so the electric field strength can be manipulated to achieve exclusion for 

different analytes. 

This array-based microchip is expected to separate and concentrate three different 

species with various electrophoretic mobilities. The principle of electrophoretic exclusion 

is illustrated below with schematics (Figure 3.2). As the hydrodynamic flow direction 

points down, it is necessary for have a negative electric field to counterbalance the 

negatively charged species (Figure 3.2 A). With a positively charged species with a 

higher mobility, a relatively small electric field is sufficient to achieve exclusion (Figure 

3.2 B); while a positively charged species with a lower mobility needs a higher electric 

field to be excluded (Figure 3.2 C). 
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A)                                                                    B) 

 

C) 

 

Figure 3.2 Detailed exclusion conditions for an array-based device. Three different 

colors, red, yellow, and green represent the three different species: A) negatively charged, 

B) positively charged with a higher mobility, C) positively charged with a lower 

mobility, respectively. Different electric field strengths are required to exclude different 

types of species, making electrophoretic exclusion a good strategy for separation.  

3.3.2 Demonstration of exclusion phenomenon  

To demonstrate the exclusion phenomenon in the microdevice, behaviors of dye 

molecules were investigated. Images focused on the exit channels were captured, 

presenting the various dye behaviors with the voltage on and off.  

The individual fluorescent dyes, including HPTS (negatively charged), True Blue, 

Rhodamine 6G and Rhodamine 123 (all positively charged) behaved in predictable 

manners as discussed in section 3.3.1. The successful exclusion of Rhodamine 6G in the 

exit channel 2 region was shown below as an example (Figure 3.3). In the experiment, the 
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bulk flow was from top to bottom. Before any electric field was applied, the dye 

molecules could travel through the channel due to the bulk flow, so the channel area was 

quite bright (Figure 3.3 A). When sufficient voltage was applied, the opposing 

electrophoretic velocity induced the dye molecules to be excluded, and the channel area 

was almost dark (Figure 3.3 B). When the voltage was off, the channel area was bright 

again, suggesting the excluded dye had collected near the entrance. It was again allowed 

to flow through the system once the electric field was removed from the channel and the 

hydrodynamic flow dominated (Figure 3.3 C).  

However, in the exit channel 1 region, when a different electric field was applied, 

no obvious change was observed (pictures not shown), indicating only with the specific 

voltage configuration, exclusion could take place. This pattern of intensity changes was 

also observed for all the other experiments with other dye molecules as visual evidence of 

exclusion at the entrance area and demonstrated the exclusion can be achieved through 

manipulation of proper electric fields. 

A)                                          B)                                           C) 

 

Figure 3.3 Exclusion for Rhodamine 6G. A) Before potential was applied, the channel 

area was still bright. B) Potential was applied, the channel area was completely dark. C) 

Potential was released, the intensity of the channel recovered. Red rectangle highlighted 

the channel area. 

3.3.3 Concentration profiles within channel  
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With qualitative evidence demonstrating the exclusion phenomena, more 

quantitative results were pursued, especially for the dynamics of dye molecules in the 

channels between reservoirs. The intensity along the centerline of the channel was 

quantitated as a method to assist in describing the exclusion behavior. Logically, very 

low electric field strength is not sufficient to exclude dye molecules, and very high 

electric field strength can completely exclude species from the channel in a short period 

of time. While for the intermediate electric field strength, when the electrophoretic 

velocity is higher than hydrodynamic flow velocity, the dye molecules can be pushed 

backwards gradually, thus excluding from the channel with a longer period of time. 

Several trials focused on the channel area, seeking to quantitate the behaviors. 

Two representative data sets (Figure 3.4) are shown to allow discussion. For Figure 3.4 

A, the same voltage (400 V) was applied to the exit channel region, and the intensity of 

channel centerline was depicted at different time scales; while for Figure 3.5 B, different 

voltages were applied for the same period of time (15 s). Control experiments were 

performed with no electric field applied, no hydrodynamic flow, or no charged analytes, 

respectively. No exclusion phenomenon was observed (results not shown), as these three 

factors were required to achieve exclusion. 

For experiments with the same voltage (electric field) applied for different 

amounts of time, the intensity change was observed (Figure 3.4 A). Initially, when the 

voltage was applied for a short period of time, the intensity was relatively steady, as the 

amount dye molecules entering and leaving the channel was close to equilibrium. When 

the voltage was on for several seconds, the dye molecules were excluded from the end of 

the channel area as indicated by the curves with decreased intensities. This was 
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interpreted as evacuation of the charged dye from the channel and being replaced by the 

buffer that has had the dyes electrophoretically removed. At a longer time from 4.3 s to 

15.7 s, the excluded species grew from a small amount to occupying most of the channel, 

which supported the expectation that species were quickly and efficiently excluded. 

Moreover, with the species pushed backwards more and more, the shapes of the curves 

were approximately the same. The largest intensity change was observed for about 15 s 

after voltage was applied, indicating that at about 15 s, the amount of Rhodamine 6G that 

was excluded was the most. As time further increased to 20 s, the amount of excluded 

dye molecules did not rise as expected (data not shown), this was mainly due to the 

diffusion and penetration of concentrated bolus.  

In addition, the voltage applied was varied to study the exclusion process in the 

channel area (Figure 3.4 B) while the amount of time was held constant (15 s) based upon 

the discussion above to achieve more exclusion. When the voltage was relatively low 

(250 V), there was no measured change for the intensity within the channel, indicating 

the electric field was not sufficient to counterbalance the hydrodynamic flow. As the 

voltage increased to 300 V, the intensity near the end of the channel was decreased, 

consistent with the species moving backwards due to the high electrophoretic velocity. 

Still, at this time, the hydrodynamic flow velocity was competing with electrophoretic 

velocity, as well as the diffusion of the concentrated species and other intermolecular 

interactions. The concentration profile in the channel did not show a sudden change, 

instead, it was a gradual shift. While the voltage was even higher, the electrophoretic 

velocity dominated, and the species could be pushed backwards faster. As a result, after 



  68 

15 s, the centerline profile differences between 500 V and 550 V did not present 

significant changes in intensity. 

The intensity change from either time or electric field influence was non-linear, 

mainly due to the complex and asymmetric interface between channel and electrode, 

which will be further discussed in Chapter 4. 

A)                                                                     B) 

  

Figure 3.4 Concentration profile in channel: A) When 400 V applied with different time 

scales; B) Different voltages applied for 15 s. 

3.3.4 Separation of two fluorescent dyes  

Experiments were performed to demonstrate the capability of this technique to 

differentiate two charged fluorescent dyes. 

A mixture of HPTS (-) and Rhodamine 123 (+) was tested on the microdevice 

with a negative electric field applied on exit channel 1 area to exclude HPTS and a 

positive electric field on exit channel 2 area to exclude Rhodamine 123. Exclusion 

phenomena were observed in both channel areas, and were similar to those presented in 

section 3.3.1, while the individual dye molecule could only result in exclusion in one 

specific area with the applied electric fields (i.e. HPTS alone could only be excluded at 
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the entrance to exit channel 1, and Rhodamine 123 could only be excluded at the entrance 

to exit channel 2 with the same voltage configuration applied). 

Intensity in the central reservoir was also measured to confirm the exclusion 

taking place in the area to the exit channel. As a result, the dye molecules accumulated in 

the central reservoir area, leading to an increased intensity change. However, the intensity 

in the central reservoir 1 did not give rise to a significant enhancement, and even reduced 

in intensity as compared to the central reservoir 2 (Figure 3.5 A), which was mainly due 

to the photobleaching effect of HPTS (Figure 3.5 B). It was clear that within 30 s, the 

intensity in the reservoir area decreased more than half with HPTS loaded. 

A)                                                                       B) 

      

Figure 3.5 Intensity change in the central reservoir of different dye molecules. A) 

Intensity difference in the central reservoirs when a mixture of HPTS and Rhodamine 

123 were excluded after 15 s (n=3, error bar stands for standard deviation). B) Intensity 

of the central reservoir when HPTS was loaded in the device for half a minute (n=3, error 

bar stands for standard deviation). 

3.4 Concluding remarks 

In summary, a miniaturized array-based device for this novel counter-flow 

gradient focusing technique, electrophoretic exclusion, has been tested. Images captured 

via fluorescence microscopy allow investigation of the microdevice and help to 

understand the behaviors of excluded species with applied electric fields. Moreover, the 

data extracted from the centerline of the channel indicates the dynamics of exclusion is 
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time-dependent and a higher voltage facilitates the complete exclusion of the species. 

This work is expected to achieve high resolution separation and can be potentially 

applied to biological samples. 
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CHAPTER 4 

SIMULATION AND EXPERIMENT OF ASYMMETRIC ELECTRODE PLACEMENT 

FOR ELECTROPHORETIC EXCLUSION IN A MICRODEVICE 

4.1 Introduction 

Investigations towards better separation have been the focus of research for many 

decades, as separation science serves as the preliminary step before identification and 

quantification for many workflows. As research focuses on more and more complex 

samples, increasingly sophisticated separation methods with sufficient high resolution are 

required [1]. 

Electrophoretic exclusion (EE) was developed to meet this demand. The basic 

premise of EE is derived from capillary electrophoresis (CE) and counterflow gradient 

focusing techniques, aimed at retaining the advantages of both types of techniques. 

CE has been widely used in complex sample analysis. However, it is restricted by 

a poor concentration limit of detection and reproducibility issues. Several strategies have 

been examined to improve the technique. Examples, which increase concentration, are 

isotachophoresis (ITP) [2-5], field amplified sample stacking (FASS) [6], sweeping [7], 

and counterflow gradient focusing (CFG) [8]. Among them, the counterflow technique 

offers external control of focus locations with variable restoring forces to enhance peak 

capacity and resolution, in addition to the increased concentration. 

Several groups have contributed to the development of CFG techniques. Ivory’s 

group established an electric field gradient by changing cross-sectional area and used 

convective force to counter electrophoresis [9, 10]. They also created a precise electric 
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field gradient by employing an array of actively controlled electrodes. However, the 

strategy was limited by large and complex instruments [11-13]. Lee’s group developed a 

horn-shaped geometry, with the varying cross-sectional area on the longitudinal axis 

creating the electric field gradient. Several species were separated using pressure-driven 

flow as the balancing force [14-17]. However, sample absorption and degradation on the 

membrane restricted its further development, among other issues [18]. Alternatively, 

gradient elution moving boundary electrophoresis uses a constant flow while temporarily 

varying the electric field. This has been applied to complex ‘real-world’ samples, such as 

milk, whole blood, and leaves among others without pretreatment [19-23]. A gradient can 

also be formed using buffer which varies its ionic strength with temperature. Temperature 

gradient focusing (TGF) was developed using this concept, coupling a heating element 

and pressure-driven flow to create the gradient [24, 25]. The technique is limited by 

buffer matching issues and resulting in a modest range of analytes.  

EE exploits an electric field to establish a gradient and a pressure-driven flow to 

counter the electrophoretic force. This technique was first demonstrated as a bench-top 

device, where Polson et al. demonstrated exclusion using a traditional capillary entrance 

in 2000 [26]. Fundamental field and fluid effects were modeled [27] and proteins and 

small molecules have since been effectively manipulated [28, 29]. Experimental and 

theoretical descriptions of the flow and electric fields about the capillary entrance have 

been established [30]. Kenyon et al. adapted this technique to a microfluidic device, 

demonstrating separations of Rhodamine 123 and 100 μm polystyrene beads [31]. 

Theoretical work of EE technique on capillary-based apparatus noted that the resolving 

power as a minimum electrophoretic mobility difference could be as small as 10-13 
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cm2/Vs. While the format and purpose of EE differs significantly, this value is 

comparable to best results from channel and capillary electrophoresis systems [32]. A 

typical capillary zone electrophoresis system enables the separation of closest resolvable 

species differ by approximately 10-10 m2/Vs.  

To understand the significance of the current work, a brief summation of EE is 

required. The unique feature underlying all EE is the geometry of the apparatus, where 

the electric field is formed at the entrance to the channel, causing the exclusion to occur 

near to, but outside of the channel. Specific analytes can be excluded by an easily 

adjustable parameter of the electric field strength. Species are held in bulk solution based 

upon their native properties without the need for a binding step or other pretreatment, and 

it can be easily coupled to various techniques for detection, such as mass spectrometry. 

The exclusion taking place outside the channel (unlike chromatographic or other CE-

related systems) allowing independence of channel length, which makes it adaptable for 

use in microfluidic devices. An optimized system with low flow, short channel length and 

small magnitude applied voltage can minimize electrolysis and bubbles. Due to the high 

surface to volume ratio of the entrance area and micro-channels, the heat dissipation is 

efficient. 

The performance of the microdevice is expected to differ significantly compared 

to the radially-symmetric capillary device. Further, the location of the electrode for the 

capillary-based system is limited to the face of the capillary and could not be varied. With 

a microdevice, the dispersive force and flow rate are reduced as the decreased size of 

device, and the position of the electrodes can be varied with asymmetric interfaces, which 

may possibly increase the resolution of this technique. Subtle changes in interface is 
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expected to generate different behaviors under such a sensitive system. 3D simulations 

are created on commercial finite element mesh software. The results of the models can be 

compared directly to the experimental evidence because of the ease of monitoring 

afforded by the 3D microfluidic device. Significant and obvious changes are expected in 

the concentration profiles with relatively small alterations of the location of the electrode, 

thus providing a robust test for the theoretical assessments.  

For the modeling, finite element numerical simulation method is used. Numerical 

simulations have been developed as a useful and efficient tool to study microfluidics 

phenomena because it enables the integration of multiphysics, such as fluidics, 

transportation, electrics, and mechanics. However, to solve these simulations, the 

coupling of multiple components is required, adding a layer of complexity. Another 

challenge arises from highly varied length scales of most microfluidic devices. They vary 

by several orders of magnitude in geometrical scales: reservoirs length and width in 

millimeter scale, channels dimensions in micrometer scale, and thickness of electric 

double layer in nanometer scale [33]. 

The work presented here is built upon a strong fundamental foundation of 

numerical simulations. Various numerical schemes and techniques have been developed 

to solve these problems. As early as 1986, Saville et al. presented a 1D model on 

monovalent, soluble materials in electrophoresis without considering the bulk flow 

influence and boundaries [34].  Quasi-1D models to simulate nonlinear electrokinetic 

processes have also been addressed by Santiago and co-workers more recently [35]. 

Ramsay and co-worker came up with a 2D mathematical model to investigate the 

influence from electroosmotic flow, electrophoretic motion, and diffusion on sample 
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mass transport in microchip channels, and finite-difference algorithms on finite volume 

method in structured grids were employed to solve the problem [36, 37]. Girault et al. 

developed a 2D model for an electroosmotic driven flow at a T-junction of rectangular 

microscale channel and a numerical software Flux Expert was used to assess the 

performance of the model [38]. A fully coupled model for electrokinetic flow and 

transport in an electrophoresis microdevice was reported by Ehrhard et al. with time-

dependent and two-dimensional Finite Element (FEM) simulations [39]. A generalized 

and unified model on 3D dimension was reported by Chatterjee and a specific example of 

electrophoretic transport of weak analytes was also given in the work with the application 

of multi-block finite-volume scheme [40]. Kler et al. performed 3D finite element model 

for the simulation of electrophoretic flow and transport in different microgeometries with 

parallel computations and domain decomposition techniques [33, 41-43].   

Our work, which reflects all of the developments noted, was greatly simplified by 

the introduction of commercial finite element mesh software. With the usage of 

commercial finite element mesh software, the numerical simulation was more accessible 

and convenient. An elegant example was from Mansouri et al. with the study of transient 

streaming potential using a commercial code, Femlab, and the results were confirmed 

with existing analytical results [44]. 

The work presented here is a detailed investigation of an inherently asymmetric 

microfluidic interface. In this study, the interface was varied by moving the glass-

deposited electrode to various positions near and within a channel entrance: leading 

electrode placed outside of channel entrance, leading electrode aligned with entrance, and 

leading electrode within channel. The different electrode placement has a significant 
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impact on the exclusion behavior of the interface. Full 3D numerical simulation was built 

in finite element multiphysics commercial software. Simulation results were validated 

with known microfluidic and electrochemical interfaces giving results quantitatively 

equal to systems with analytical solutions. Using the same approach, the simulations were 

applied to the problem at hand and then compared experimental data with generally good 

agreement. Combined with previous studies, this work on electrode placement provides a 

foundation for examining new geometries and parameters for next-generation designs.  

4.2 Experimental 

4.2.1 Microfluidic device fabrication 

The microdevices is a hybrid system using a glass base plate with deposited 

electrodes and a PDMS cover plate with channels embedded. Standard soft lithography 

methods were used to fabricate the upper PDMS layer [31]. Punched holes on the surface 

of PDMS layer were used to create access ports for sample injection. Electrodes 

consisting of 300 nm Ti and 500 nm Pt were deposited on microscope slides using 

electron beam evaporation (PVD75, Kurt J. Lesker Company, Clairton, PA, USA). The 

upper PDMS layer (Figure 4.1 A) and electrode slide (Figure 4.1 B) were bound together 

after pretreatment using oxygen plasma with high RF setting and a pressure of 

approximately 500 mTorr for 60 s (Harrick, Ithaca, NY, USA). The device consists of 

one large reservoir and six small reservoirs (Figure 4.1 C), forming three parallel units, 

and within each unit, reservoirs are interconnected with channels. The size of large 

reservoir is 20 mm × 5 mm, small reservoir is 5 mm × 5 mm. The channels are 1 mm in 

length and 0.1 mm in width. All channels and reservoirs are 10 μm in depth. 
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4.2.2 Materials 

Aspartic acid and hydrochloric acid stock solution (1 M) were used as received 

(Sigma-Aldrich, St. Louis, MO, USA). Aspartic acid buffer solution was prepared to 5 

mM with a pH of 2.95 (pH adjusted with hydrochloric acid). Rhodamine 6G (R6G) stock 

solution was prepared by dissolving the pure material (Sigma-Aldrich, St. Louis, MO, 

USA) into deionized water (Millipore, Bedford, MA, USA) to 20 mM. The stock solution 

was diluted to 1 mM, using aspartic acid buffer for each experiment. R6G exhibits green 

fluorescence (excitation: 495 nm, emission: 570 nm) and is positively charged under the 

acidic buffer solution conditions. 

4.2.3 Experimental setup 

Copper wires were attached to the electrodes using silver epoxy (Sigma-Aldrich, 

St. Louis, MO, USA) to ensure continuity. The wires of the device were connected to a 

high voltage power supply (HVS448-3000D LabSmith, Livermore, CA, USA) through an 

in-house constructed voltage divider (1:100 or 1:10) for each channel. An Olympus IX70 

microscope (Olympus, Japan) with mercury arc lamp (HBO, OSRAM, Germany), and a 

12-bit fast cooled monochrome CCD camera (Qimaging, Canada) was used to monitor 

experiments and capture images/videos. 

4.2.4 Device operation 

The microdevice was filled with R6G solution through the entrance ports, and 

rested on the bench for 2 minutes. Differing liquid levels from between entrance and exit 

ports were used to generate pressure-driven hydrodynamic flow. The device was then 

placed on the microscope stage, connected to the voltage divider and a high voltage 
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configuration applied. The voltage for each channel was confirmed through a digital 

multimeter (DM-4400A Sperry, Menomonee Falls, WI, USA). The captured data 

contained a whole process including 10 s before voltage was applied, a simple and quick 

step to trigger the voltage on with an easy programmed sequence from the high voltage 

power supply, 30 s when voltage was applied, and another 10 s when voltage was 

released. The process was repeated greater than five times for each experimental setting. 

The florescent intensity for each series of images was quantified through ImageJ 

(publicly available, National Institute of Health) by loading a stack of images, drawing a 

centerline, and obtaining the pixel value along this centerline. The intensity of the images 

from the first 10 s was averaged as the baseline for each set of data, and was subtracted 

from the data images. 

4.2.5 Theoretical modeling  

A mathematical model was used to simulate 3D and time-dependent electrokinetic 

flow and transport phenomena in an electrophoretic exclusion microdevice. 

4.2.5.1. Governing equations 

Governing equations for electrokinetics, fluid mechanics and species transport are 

used [45-48]. Definition and value of each parameter are given below. 
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Table 4.1 Physical parameters/constants used. 

Parameter/Constant Symbol  Value Unit 

Density ρ 1000 kg/m3 

Viscosity μ 10-3 kg/m s 

Ionic valence z 1 - 

Electric field E 350 V/cm 

Temperature T 300 K 

Gas constant R 8.31 J/mol K 

Faraday constant F 96500 C/mol 

Permittivity 

Diffusion coefficient 

Mobility  

Pressure 

Concentration 

ε 

D 

ν 

p 

c 

80x8.85x10-12 

5x10-9 

5x10-9 

25 

10-3 

F/m 

m2/s 

m2/V s 

Pa 

mol/L 

The flow in a typical microfluidic device is considered as laminar flow due to the 

low Reynolds number caused by small dimension and low flow velocity. The velocity 

field can be described by Navier-Stokes and continuity equations, which includes the 

conservation of mass for incompressible fluids: 

𝛻 ∙ 𝒖 = 0 (1) 

where u is fluid velocity.  

As well as the conservation of momentum for Newtonian fluids (Navier-Stokes 

equation): 

𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖) = 𝛻 ∙ 𝜎 + 𝜌𝑒𝑬 (2) 

ρ and μ represent density and viscosity, respectively. They are considered consistent over 

all the domain during the whole process. Stress tensor σ is described as 𝜎 = −𝑝𝑰 +

𝜇(𝛻𝒖 + 𝛻𝒖𝑇), where p is pressure, and I is identity matrix. The last term on the right side 

is for momentum balance denoted by electric forces. 𝜌𝑒 is the electric charge density of 
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the electrolyte solution, which can be obtained from 𝜌𝑒 = 𝐹 ∑𝑧𝑗𝑐𝑗, where zjcj represents 

valence and molar concentration respectively, and F is the Faraday constant.  

The equation describing the relation between electric field and charge 

distributions in the fluid of permittivity ε is given as (Poisson equation):  

 𝛻 ∙ (𝜀𝑬) = 𝜌𝑒  (3) 

Mass transport of moderately or weakly concentrated sample ions as well as 

buffer electrolyte can be expressed as below (the reactive term is neglected with the 

assumption of strong electrolytes existing in the system): 

 
𝜕𝑐𝑖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝑐𝑗 = 𝐷𝑗𝛻

2𝑐𝑗 − 𝛻 ∙ (𝑣𝑗𝑧𝑗𝑐𝑗𝐹𝑬)  (4) 

which describes the transportation of diluted species 𝑗, with a concentration of 𝑐𝑗. 𝐷𝑗  is 

the diffusion coefficient, νj is the mobility, and F is Faraday constant. 

In order to accurately solve the situation, Eqs. (1)– (4) need to be fully coupled. 

Kostiuk and co-workers’ work offered an insight on solving fully coupled system[44]. 

First, the electric potential distribution was solved in stationary study. Using the electric 

fields and the calculated charge densities, velocity profile was solved with the applied 

pressure. With these initial steps, all the governing equations were solved together in a 

time-dependent mode. 

4.2.5.2 Simulation geometry and boundary conditions 

A 3D model (Figure 4.1 E) of electrophoretic exclusion was generated with finite 

element multiphysics commercial software (COMSOL Multiphysics v.5.0a, COMSOL, 

Palo Alto, CA, USA) to obtain the electric field, the velocity field, and the fluorescent 
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dye concentration profile. The graphical user interface (GUI) and pre-programmed 

modules of COMSOL Multiphysics allow for rapid creation of different interfaces and/or 

electrode placement as the subdomains and boundary conditions can be easily setup.  

The simulated geometry was a simplified module with two 5 mm × 5 mm 

reservoirs connected by one 1 mm × 0.1 mm channel. Two electrodes were 0.5 mm × 5 

mm, placed at the bottom surface of the device. The device height was set to 10 µm, 

while the electrode height was 0.1 μm according to the actual device.  

For the area not close to electrode and channel, a mapped mesh was used with 

extremely fine setting. For the area close to electrode and channel, a triangular mesh was 

applied with maximum element size as 50 µm and minimum element size a 5 μm. For the 

channel area, even more fine triangular mesh was exploited, with maximum element size 

as 10 μm and minimum element size as 1 µm. A swept mesh was used for both the 

reservoir layer (swept from the top of reservoir layer to the boundary between reservoir 

and electrode) and electrode layer (swept from the boundary between reservoir and 

electrode to bottom of electrode layer). 

Materials, including liquid, silica glass, and copper were selected from the built-in 

library and assigned to the respective geometric entities. With the usage of a diluted 

solution, the liquid viscosity, density and other parameters were close to those of water. 

The electrical conductivity was modified to 0.03 S/m, reflecting the aspartic acid buffer 

used in the experiments. 

Equation (1) and (2) can be implemented into COMSOL Multiphysics with 

steady-state, laminar flow (spf) module. The no-slip boundary condition was applied. The 



  83 

pressure at the inlet was set to 25 pa, and 0 pa at outlet in order to maintain a flow rate 

similar to experimental values in the channel. 

Equation (3) can be realized with the application of electric current (ec) module. 

Electric field was applied to the two electrodes to reach a 350 V/cm electric field 

strength. Electric insulation condition was assumed on the channel walls and surfaces. 

Equation (4) can be solved with transport of diluted species (chds) module in 

COMSOL Multiphysics. For the initial condition, buffer solution was 5 mM aspartic 

acid, and the microdevice was filled with a fluorescent dye of the 0.001 mol/L 

concentration with +1 charge, 5x10-9 m2/Vs in mobility and 5x10-9 m2/s as diffusion 

coefficient.  

The electric field was solved first, followed by the velocity field. The simulation 

results of velocity were compared to the results solved by Hagen Poiseuille equation for 

rough validation. With stored solution of electric field and velocity field, the 

concentration distribution was solved with a time-dependent study.  

The simulations were run on a Windows Server Win7 Professional Enterprise 

(64-bit) operating system that included 64 GB of installed memory (RAM). 
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Figure 4.1 Photographs and schematics of the microdevice. A) A shadow pattern 

photograph for PDMS cast. B) A schematic of glass slide with electrodes, gold lines 

indicate electrodes (not to the scale). C) A photograph of the microdevice with PDMS 

cast and electrode slide sealed together. D) Isometric view with highlighted area of 

entrance reservoir, entrance channel, central reservoir, exit channel and exit reservoir 

from top to bottom. Channels are present between each vertical set of reservoirs. E) 

Isometric and top view of the simplified model used in simulation with single channel, 

electrodes and reservoirs system. 

4.3 Results & Discussion  

4.3.1 Strong changes in the profile of concentration with small changes in electrode 

placement  

Dramatic differences in the concentration profiles near channel entrances were 

observed in response to small changes in the placement of the electrodes. Three 

conditions were quantitatively investigated with numerical modeling and device testing: 

leading electrode outside the channel entrance, leading electrode align with channel 

entrance, and leading electrode within channel entrance. The distance between two 
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electrodes were kept constant. Generally good agreement between simulation and 

experiment was observed. 

For an asymmetric (three walls insulating, one wall electrode) channel entrance, 

vertical and lateral asymmetries between flow and electric fields dramatically affect the 

behavior of concentration profiles. These affects are investigated using fluorescence 

microscopy of operating devices and quantitatively compared to finite-element based 

models. A stringent study is presented here, where any discrepancies between models and 

data are well articulated in the visual representations of the concentration profiles. This 

study includes two-dimensional z-axis views of the device and models for three electrode 

placements at three time-points each (and a modeled side view of flow and electric 

fields), and a centerline concentration profile for each at a set time and single voltage. 

Qualitative observations of the data and model include (Figure 4.2). For leading 

electrode outside the channel, only a small concentration increase is observed outside the 

channel and an evacuated zone lies in between the channel exit and the trailing electrode 

(Figure 4.2 A). For the edge of the leading electrode coinciding with the channel 

entrance, the evacuation of dye is initiated at the exit of the channel (Figure 4.2 B). No 

evacuated zone forms at the entrance, just an increase in local concentration. Note that 

the evacuation zone and increased concentration zones are not observed directly in 

experiments, but the intensity within the channel is greatly diminished, consistent with 

the simulation. For leading electrode placed within channel entrance, the electric field is 

initiated well with the channel entrance, where the charged dye molecules are evacuated 

at unique areas for the entrance and the exit in both simulations (Figure 4.2 C, top) and 

experiments (Figure 4.2 C, bottom). The evacuation is initiated at the edge of the trailing 
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electrode. Eventually, the charged dye is accumulated to the edge of the leading 

electrode. The increased concentration is located directly above the electrode.  

The model and experimental results qualitatively matched well, even with regards 

to some tiny details. These details include the evacuation area between the leading 

electrode and trailing electrode for all three electrode placements, the formation of semi-

circle shape at the entrance to the channel when the leading electrode is placed outside of 

the channel entrance (Figure 4.2 A), and the triangular shape between the channel and the 

trailing electrode, as well as the extremely bright spot at the front of channel when the 

leading electrode is placed within the channel (Figure 4.2 C). 

 Examining the side view of the modeling results can inform some of these 

behaviors (Figure 4.3). The lateral spreading of the electric field (Figure 4.3 A, top and 

middle) and reduced average flow velocity (Figure 4.3 A, bottom) from the increased 

cross-sectional area can account for the semi-circle shape of the evacuated zone under the 

condition of leading electrode outside the channel. The electric field lines are parallel in 

the rectangular channel region, but laterally spread in the ‘T’-shaped region between the 

electrode and channel. This creates a curvature to the local electric field resulting in the 

observed/modeled isotropic exclusion of depletion zone within the region. Even though 

the local electric field is somewhat reduced, reflected by the spreading electric field lines, 

the flow rate is also reduced, such that exclusion occurs.  

 The spreading field lines shown in the side view can also account for the 

triangular evacuated zone under the condition of trailing electrode outside the channel. 

Similar to the condition of leading electrode outside the channel, the intensity of the 
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laminar flow profile is reduced (the maximum versus average velocity, Figure 4.3 C, 

bottom). The spreading electric lines (Figure 4.3 C, top) indicate the lower electric field 

strength. In this case, however, the net transport is towards the channel, and the 

molecules in the center are evacuated more so, while those off-center undergo a smaller 

electrophoretic force in the vertical direction. The further the molecules are from the 

center, the smaller the vertical movement, so in the middle the depletion zone penetrates 

to a greater extent. Near the channel wall, there is almost no depletion, creating a 

triangular shape. 
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A) 

 

(see figure legend on Page 89) 

B) 

 

(see figure legend on Page 89) 
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C) 

  

Figure 4.2 Experimental data exploring qualitative spatial-temporal features of modeling 

for all three entrance configurations. Calculated concentration changes and fluorescence 

measurements of A) leading electrode placed outside of channel entrance, B) leading 

electrode aligned with entrance, and C) leading electrode within channel. All simulations 

(top, each section) created with finite element multiphysics commercial software. Thick 

grey vertical lines (labeled leading electrodes, trailing electrode) represent the electrode 

placement. Dashed orange zones indicate the locations that can be experimentally 

observed via microscopy and similar locations are also shown in simulations. Zoom-in 

area of A) and C) indicate the semi-circle pattern and triangular shape pattern. Dominant 

color differences between A, B and C are due to the varying degrees of concentration 

changes for each electrode placement. Black parts in all experimental results (bottom, 

each section) are electrodes. The placement of the electrodes has a significant effect on 

the features and patterns of 2D concentration distribution for electrophoretic exclusion.  
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A)                                          B)                                           C)  

 

Figure 4.3 Detailed plots of qualitative features for simulations of electric field strength 

(side-view, top sections), electric field strength (top-view, middle sections), and velocity 

(side-view, bottom sections) along x-axis of A) leading electrode placed outside of 

channel entrance, B) leading electrode aligned with entrance, and C) leading electrode 

within channel. Red color and more intense streamlines indicate higher velocity fields 

(blue is low intensity flow) or electric fields. There are clearly observable changes for 

these fields in response to small changes in electrode placement. 

Another method to explore the dramatic differences from subtle electrode position 

change is to examine the concentration profile along the longitudinal axis centerline. In 

plotting these values (Figure 4.4, bottom of each section), three distinct patterns emerge. 

Here, all plots were from the same electric field (350 V/cm) and the electric field was 

applied for the same amount of time (5 s). 

For the electrode placed outside the channel (Figure 4.4 A, bottom), a small 

concentration enhancement is present, coupled with a depletion zone. For the electrode 

aligned with the entrance (Figure 4.4 B, bottom), a concentration enhancement is present 

again near the entrance, however, not as significant. With the leading electrode placed 

within the channel (Figure 4.4 C, bottom), a significant concentrated zone is apparent 
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near the entrance. Moreover, by comparing these three patterns, the electrode placed 

within the channel (Figure 4.4 C, bottom) creates a little bit depletion in 5 s, while 

electrode aligned with the entrance (Figure 4.4 B, bottom) has some material remaining 

at the boundary of leading electrode and channel, and electrode placed outside the 

channel (Figure 4.4 A, bottom) has more exclusion in the channel. 

One issue that is obvious when examining this representation of the data is that 

the concentration increase associated with the electrode region does not fully compensate 

for the concentration decrease within the channel area (apparently conflicting with 

conservation of mass). This is simply due to the univariate view not being sufficient to 

depict the whole concentration distribution in a 3D model. That notwithstanding, the 

investigation with a centerline is informative, when combined with other assessments, 

since most of the concentration enhancement is taking place along the centerline. 

Among all the three placements, the leading electrode within channel entrance 

gives rise to the highest local concentration increase. Several factors contribute to this 

result. First, the concentrated dyes molecules are accumulated in a confined region with 

less diffusion. The region within channel contributes to the amount of dye captured 

within the concentrated zone. The flow rate is high in that region. The electric field is 

also high, and net transport is still towards the leading electrode. Second, the electric field 

at the edge of the electrode is high and concentrated near the bottom of the reservoir, 

adding to local transport. In addition, the total current across the electrode/channel system 

is slightly higher, since there is reduced resistance within the reservoir area from an 

increased cross-sectional area and the length of the channel between conductors is 

reduced.  
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For the channel entrance aligned configuration, the overall current is the lowest of 

the three conditions and the flow and electric fields are essentially aligned and counter 

one-another. The only materials are those transported to the channel entrance and the 

within-channel initial concentration.  

For the leading electrode outside the channel entrance, no significant concentrated 

bolus is observed. The total resistance is slightly reduced, similar to the leading electrode 

within channel and thus electrophoretic velocity somewhat is reduced. The penetration of 

the reduced electric field in the vertical dimension is apparently insufficient to prevent 

the bleed-through associated with the velocity laminae as well as lateral diffusion. 

In addition to the two-dimensional spatial assessment, time-dependent simulation 

allows comparison of the dynamics of the exclusion. The concentration profile along the 

longitudinal axis centerline provides a good representation of the system. All plots are 

chosen at the time point when the electric field is applied for 1, 2, 3, 4 and 5 s, 

respectively (Figure 4.4 D).  

The data and simulation results show the exclusion starting from the end of the 

channel, and gradually moving towards to the front of the channel, reaching exclusion. 

When the voltage is applied for a short period of time, the concentration/intensity drops 

beginning at the exit, which could be observed from both simulation and experimental 

results (Figure 4.4 D). This configuration also gives rise to a similar concentration factor, 

as consistent with mentioned in previous sections. 
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C)                                                                                       

 

               

0.00

0.50

1.00

1.50

2.00

4.25 4.82 5.15 5.43 5.70 5.98

C
o

n
ce

n
tr

at
io

n
 (

m
M

)

Distance to inlet (cm)

0.00

1.00

2.00

3.00

4.00

5.00

4.50 5.05 5.34 5.63 5.91 6.31
C

o
n
ce

n
tr

at
io

n
 (

m
M

)

Distance to inlet (cm)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

4.75 5.15 5.44 5.72 6.01 6.34

C
o

n
ce

n
tr

at
io

n
 (

m
M

)

Distance to inlet (cm)



  94 

D) 

 

Figure 4.4 A-C: Concentration profile from simulation along the centerline for various 

electrode alignments: A) electrode outside of channel entrance, B) electrode aligned with 

entrance, and C) electrode within channel. Black line in each schematic (top, each 

section) outlines the top-view shape of the reservoirs (2) and channel (1) used in the 

model. Total length of the device is 11 mm, with reservoir length of 5 mm and channel 

length of 1 mm. Grey rectangles present electrodes and their locations indicate the 

positions in the model. The electric field is applied to the electrodes. Red line across the 

device highlights the centerline used for each plot. Yellow dash boxes are chosen left end 

of the left electrode to right end of the right electrode. Values along x-axis are the relative 

length to the left side of the device. D) Simulations and representative experimental 

results for the electrode within the channel entrance pattern, demonstrates semi-

quantitative, temporal differences in concentration along the centerline, showing 

consistent features. 

4.3.2 Resolution characterization of current interfaces and impact on design of next-

generation devices 

With this work, a model which captures observed experimental behaviors has 

been built to assess asymmetric interfaces with varying electrode placement. The 

accuracy with which this model reflects even the tiny details of the experimental 

concentration profiles instills confidence that a similar modeling strategy for evolving 

designs will reflect experimental performance. The observation that small changes make 

a big difference in concentration distribution and a model which faithfully reflects those 
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distributions suggests the modeling capability will enable significantly higher resolution 

interfacial designs. 

Resolution description of electrophoretic exclusion is defined significantly 

different than standard linear separations schemes. Kenyon et al.’s theoretical work 

provided a fundamental basis of resolution assessment on capillary-based EE apparatus 

and other similar techniques. One method to compare interfaces and estimate resolution 

is to compare the concentration at consistent point in the channel. For a fully excluded 

species, the concentration is zero and a non-excluded species is still at the nominal 

concentration.  

Based on this approach, exclusion efficiency of three interfaces described above 

are solved as 50%, 30% and 10% for leading electrode outside the channel, leading 

electrode aligned with channel, leading electrode within channel, respectively. Based on 

this brief assessment, this can be compared to the capillary-based radially symmetric 

entrances, and the current interface does not provide high separation resolution.  

Building on the previous simulations and experiments with capillaries and 

rotational symmetry [27, 30], this work expands to an asymmetric geometry. This system 

is of high complexity and subtle variations result in significantly different behaviors 

captured in both the simulations and experiments. This suggests that the simulation 

strategy is useful for complex geometries. These studies build a foundation for 

exploration using modeling for new electrode geometry and placement and channel 

entrance configuration. New designs promise to improve efficiency of exclusion and 

begin to reach theoretical limits recently described [32].  
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In addition, the ability of building 3D structures potentially benefits to the 

development of mimicking physiological features. Combined with newly emerged 

fabrication techniques, it can result in a better understanding of physiological micro-

environment [49]. 

4.4 Concluding remarks 

Numerical and experimental studies as well as resolution characterization of an 

electrophoretic separation technique with three different interfaces has been investigated. 

The simulation constructed in 3D reflects the experimental effects of three patterns 

resulting from electrode placement. It was found that the placement of the electrodes in 

relation to the separation channel had a large impact on the concentration properties. The 

comparisons between calculated profiles and experimental results generated excellent 

qualitatively agreement. The development of a 3D numerical simulation provides a 

convenient tool for examining current design constraints and enables predicting future 

design features. It is believed that the device and the analysis presented here can serve as 

a guide to the design of next-generation device with enhanced concentration ability and 

increased resolving power. 
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CHAPTER 5 

PREPARING DILUTE SMALL VOLUME PROTEIN SAMPLES WITH 

ELECTROPHORETIC EXCLUSION FOR ELECTRON MICROSCOPY DETECTION 

5.1 Introduction 

The function of cellular macromolecules, such as proteins, is linked to their three-

dimensional architectures. High resolution, atomic level structural information not only 

provides clues for protein function, interactions, and conformational changes, but also 

offers insights for the development of potential therapeutic medicine and treatment [1, 2]. 

Over the last several decades, X-ray crystallography and NMR spectroscopy were 

quite successful and largely dominated the field of determination of atomic resolution 

protein structures. However, even with a very high level of development, there are some 

drawbacks to these techniques. For X-ray crystallography, proteins must be crystallized. 

It is often challenging, labor-intensive, and time-consuming to achieve crystals which 

generate good diffraction patterns. Moreover, not all the proteins can be easily 

crystallized. NMR spectroscopy, on the other hand, does not require protein 

crystallization. It is primarily used for proteins with relatively low molecular weight (< 

50 kDa) and relatively large pure and concentrated samples are used [3]. 

Transmission electron microscopy (TEM) has been an alternative method for 

structure determination of biological samples spanning several decades, and it has 

provided many important insights into fundamental biological processes and diseases. 

Unlike X-ray crystallography or NMR spectroscopy, it does not require protein 

crystallization, nor a large sample amount [4]. 
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While great strides have been made in EM data collection and processing, sample 

preparation is still performed using decades old techniques [5, 6]. Optimal samples have 

a high density of well-separated biomolecular complexes embedded in ice within the 

voids of the EM grid support film. This sample preparation method has been enormously 

successful and has been used to produce the majority of the high-resolution EM 

structures. However, this method relies on extensive macroscale benchtop purification 

and concentration to achieve homogeneity suitable for high-resolution analysis. It is 

extremely challenging when dealing with target proteins in low abundances among 

complex matrices. One significant example was from the early detection of Alzheimer’s 

diseases (AD). Patients with AD suffer from memory impairment, disorientation, and 

executive dysfunction [7] and lead to death within 3 to 9 years after diagnosis [8]. Recent 

studies suggest that therapy and treatment in the early stages of AD may be more 

effective [9]. The biomarkers of AD play an important role and the 3D structures of 

biomarkers provide great insights into the mechanism of diseases, and thereby allowing 

rational design of novel diagnostic and therapeutic agents. However, the concentrations 

of such markers in biofluids (such as cerebral spinal fluid) are so low in the early stages 

that they cannot be identified accurately [10]. Therefore, it is often necessary to conduct a 

purification and preconcentration step before effective imaging can be achieved.   

Conventional preconcentration techniques, such as centrifuge or chromatography, 

often do not help with purification and concentration in a rapid time frame with enhanced 

efficiency and throughput. Gel-electrophoresis has been used for protein isolation and 

purification in most cases [11]. However, this conventional protein isolation and 

purification strategy is time-consuming and labor-intensive. The conventional techniques 
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with poor efficiency require an adapted methodology in EM for selective sample 

preconcentration prior to applying samples onto grids, while still keeping grid 

complete/undamaged, electron microscopy detectable, and data interpretable.  

A novel electrophoretic separation and preconcentration technique could be 

potentially applied to enhance the efficiency and facilitate selective preconcentration. 

This electrophoretic isolation and preconcentration technique, electrophoretic exclusion, 

is a counterflow gradient focusing technique which exploits hydrodynamic flow to 

counterbalance the electrokinetic force, thus focusing target molecules to a specific 

location [12-22]. The gradient is established between the boundary of the channel and an 

expanded reservoir. Electrophoretic exclusion can be achieved at the entrance to a 

channel in bulk solution when the electrokinetic velocity (electric field-induced) is larger 

than or equal to the hydrodynamic flow (pressure-induced). The electrokinetic velocity 

depends on the mobility and the electric field, so by manipulating the applied voltage (or 

the electric field), separation of different species with various mobilities can be achieved. 

Selective preconcentration and isolation of different protein samples and dye molecules 

has been demonstrated with this technique [15, 17, 18]. 

As TEM imaging does not require a large sample amount, microfluidic devices 

could potentially help promote the performance of electron microscope imaging. 

Beginning in the early 1990s, microfluidics has since been widely adopted in various 

fields of analytical chemistry and life sciences. This expansion is due to microfluidics 

having advantages over bench-top devices, such as portability, flexibility in design, 

miniaturization of operating systems, reduced reagent consumption, decreased run time, 

minimized sample dilution, and accelerated mass and heat transfer [23]. Several groups 
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have begun to recognize this natural fit between TEM imaging and microfluidics. Giss 

and co-workers presented a microfluidic approach for a fast protein isolation method to 

separate untagged target protein from a complex cell lysate background and achieved 

relative or even absolute quantification of protein levels [24]. Roper et al. demonstrated a 

microfluidic device to deal with the variability issues of manual staining of EM grids by 

confining grids into a chamber performing reagent delivery and drying. With their device, 

negative staining could be achieved in a controlled manner with reproducible results and 

minimized artifacts [25]. Other investigations focused on the cryo-EM grid preparation. 

Arnold et al. developed a method by directly depositing a small volume of sample (3-20 

nL) on to the grid through a microcapillary, without blotting steps, and achieved 

resolution between 0.3 and 0.6 nm [26]. Feng et al. came up with a fast and effective 

microfluidic spraying-plunging method for cryo-EM to have a better control of the ice 

thickness of the droplet. With this strategy, they solved the structure of apoferritin to 0.3 

nm resolution [27]. A more recent work by Ashtiani applied surface acoustic wave 

(SAW) to deliver femtoliter (30-200 fL) droplets from a microfluidic chip in the form of 

aerosol and the delivered droplets spread on the surface of grid to form a film. The main 

difference in mechanism is that SAW drives the atomization instead of a fluid, so the 

system can be simplified to a capillary without using pumping, which further decreases 

the volume of the sample required [28].  

Advances have been made by these strategies, but selective concentration has not 

been addressed, especially for samples with complex matrices. An approach is 

investigated here that uses electrophoretic exclusion in a microfluidic chip as a sample 

preparation strategy for TEM imaging. Grids are directly embedded into the central 
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reservoir of the microfluidic device, where the samples are preconcentrated in the 

upstream area of the reservoir. As proof-of-usefulness, preconcentration of single protein 

and selective isolation and concentration of one protein in a mixture of two are presented. 

The results are monitored with fluorescence microscopy and TEM imaging.   

5.2 Experimental 

5.2.1 Materials 

Acetone, isopropanol, sodium hydroxide, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), dimethyl sulfoxide (DMSO), and human 

immunoglobin M (IgM) were obtained from Sigma-Aldrich (St. Louis, MO). NHS-

rhodamine and NHS-fluorescein were purchased from Thermo Scientific (Waltham, 

MA). Horse spleen apoferritin was received from the collaborator (Nannenga, 

Engineering ASU) with a concentration of 25 mg/ml in glycerol. Formvar coated grids, 

stabilized with evaporated carbon film (FCF300-Cu-SB, 10 nm formvar and 3-4 nm 

carbon) were purchased from Electron Microscopy Sciences (Hatfield, PA). Uranyl 

acetate for negative staining was prepared as 2% by staff in Eyring Materials Center at 

Arizona State University. For all solutions, ultrapure deionized water was used 

(Barnstead International, Inc., Dubuque, IA). 

HEPES stock solution (0.1 M, pH 7.2) was freshly prepared prior to each 

experiment by dissolving 2.38 g of HEPES with 100 mL distilled water and adding one 

NaOH pellet to raise the pH to around 7.2. The solution was then sterile-filtered and 

stored in the refrigerator temporally if necessary. 

5.2.2 Protein labeling 
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NHS-rhodamine was dissolved in DMSO to concentrations of 10 mg/mL. Horse 

spleen apoferritin stock sample used was prepared as 25 mg/mL in glycerol. Glycerol was 

removed from a 50 μL sample by transferring it to a dialysis tube unit (Thermo Fisher 

Scientific, Waltham, MA) placed in 1000 mL distilled water for more than 15 minutes. 

The content in the dialysis tube was transferred into a centrifuge tube, and 1.6 μL of 

NHS-rhodamine-DMSO mixture was added according to instruction provided by kit 

manufacturer (Thermo Fisher Scientific, Waltham, MA). The tube was gently shaken in 

dark for one hour to allow the reagents fully react. Afterwards, the content in the tube 

was again placed into a dialysis unit and dialyzed against about 250 mL 20 mM HEPES 

solution overnight. Final concentration was 10 mg/mL. Sample were diluted to certain 

concentrations upon use. 

NHS-fluorescein was dissolved in DMSO to concentrations of 10 mg/mL. IgM 

was commercially available with a concentration of 1 mg/mL. 50 μL sample was 

transferred to a dialysis tube unit and placed in 250 mL 20 mM HEPES solution for more 

than 4 hours to allow buffer exchange. The content in the dialysis tube was then 

transferred into a centrifuge tube, and 1 μL of NHS-fluorescein-DMSO mixture was 

added into the tube according to manual instruction. The tube was gently shaken in dark 

for one hour to let the reagents fully react. Afterwards, the content in the tube was again 

placed into a dialysis unit and dialyze in 250 mL 20 mM HEPES solution overnight. 

Final concentration was 0.5 mg/mL, and diluted to certain concentrations upon use.  

5.2.3 Microdevice fabrication 

Devices were fabricated according to an established procedure [18, 22], and the 

procedure was described in previous chapters. 
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5.2.4 Microdevice operation 

For a common microdevice (without grids embedded) operation, the sample was 

loaded into device prior to voltage application. When voltages were applied, a certain 

part of the device was monitored with fluorescence microscopy, and results were 

recorded. 

For a microdevice of TEM applications, grids were pretreated in the glow 

discharger unit (Harrick, Ithaca, NY, USA) for 60 seconds with medium RF setting and a 

pressure of approximately 1000 mTorr on both sides. Then the grids were placed on glass 

slide within the area of central reservoir (Figure 5.1). A PDMS cast was placed on top. 

The microdevice was filled with HEPES buffer solution by placing the liquid into the 

entrance ports and allowed to fill the channels and reservoirs though capillary action. The 

buffer was pipetted from the entrance ports after 2 minutes. The device was then placed 

on the microscope stage, connected to the voltage divider and a high voltage 

configuration was applied. The voltage for each channel was confirmed through a digital 

multimeter (DM-4400A Sperry, Menomonee Falls, WI, USA). Afterwards, samples were 

loaded into each entrance port. After 3 minutes, voltage was released. Right before 

releasing voltage, exit ports of unit 1 and/or 2 were filled with DI water and channels 

were blocked by collapsing with external physical pressure to prevent any further 

movement of fluid. 

After experiments, grids were removed from the microdevice and negative 

stained. The procedures of negative staining in this particular case were: on a clean piece 

of parafilm place two drops of distilled water and two drops of staining solution (uranyl 

acetate), around 5 µL each. The grid with the carbon-side down was placed on the first 



  107 

drop of water stain and let it rest for 10-15 seconds. The excess was blotted to remove the 

excess stain by touching the edge of the grid to a piece of filter paper. The same operation 

was used for the next drop of water and the other two drops of staining solution. The grid 

was then placed carbon-side down on a piece of dry filter paper and let it dry for five 

minutes before viewing in the electron microscope.  

 

Figure 5.1 The integrated microdevice with grids embedded (left: schematic; right: 

photograph). 

5.2.5 TEM imaging 

Philips CM12 TEM was used for detection. Micrographs were taken with desired 

field and magnification using the software DigitalMicrograph (Gatan, Pleasanton, CA). 

Intensity was adjusted to set EXP TIME as 2.0-3.0 seconds before taking the 

micrographs. 

5.2.6 Data processing 

 The acquired micrographs were processed with ImageJ (NIH). For images from 

fluorescence microscopy, a region of interest was chosen for each image in the grid area, 

and the averaged intensity was measured with the software. For a chosen micrograph, the 

contrast, brightness, and/or background was adjusted to make the particles of interest 
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more visible and clearer. The threshold of the micrograph was then adjusted to distinct 

analytes and create a binary image. Analyze particle command was used to count the 

number of particles. The area with aggregations (black area) was outlined with Wand 

function and the surface area was estimated from the software. Based on the area and the 

average protein size (10-12 nm), the number of particles in the black region can be 

estimated by assuming the particles tile one layer in that region. 

5.3. Results and Discussion 

5.3.1 Preconcentration 

Electrophoretic exclusion technique is extended to concentration and deposition of 

proteins directly to grids for TEM detection. The grids were embedded into a device, 

allowing for easier operation and less contamination (Figure 5.1). Horse spleen apoferritin 

was used a standard proof-of-principle sample. It has a distinctive hollow sphere shape 

when visualized in the TEM and it has been used to benchmark many new EM methods 

[27, 29]. Apoferritin samples were prelabeled with NHS-rhodamine for direct visualization 

during concentration via fluorescence microscopy, showing red fluorescence under these 

conditions. 

A set of electric fields were determined to achieve sample preconcentration and 

provide control experimental condition. The field strengths used were somewhat lower 

than conventional electrophoretic methods, due to a relatively low flow rate in the system. 

The criteria for the choice of electric fields was that the electric field cannot be exceedingly 

large, which may cause damage to the biological samples, nor too low to not be sufficient 

for exclusion. Three conditions were selected for apoferritin enrichment: a smaller electric 
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field (10 V/mm), a higher electric field (20 V/mm), and no electric field as control (Figure 

5.2).  

Average intensity of the grids before and after electric field applied was compared 

and representative images were presented (n=3) (Figure 5.2). Images were captured from 

central reservoir before electric field was applied (left of each set), central reservoir after 

electric field was applied (right of each set), and grids removed from the microdevice 

(top of each set). With no electric field applied, the intensity of the images did not 

change; while with an electric field applied, the intensity increased. When a relatively 

higher electric field (20 V/mm) was applied, a higher intensity enhancement was 

obtained and a significant red color on the grid was observed. This is consistent with 

more sample being accumulated on the grid, suggesting a suitable electric field for 

operation.  
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Figure 5.2 Electric field strength was varied to examine the optimal exclusion condition 

(n=3, error bar stands for standard deviation). Samples were loaded into each individual 

unit under different conditions. Left: with a smaller electric field (10 V/mm); Middle: 

with a higher electric field (20 V/mm); Right: with no electric field as control. Results 

were detected under fluorescence microscopy coupled with an SLR camera. 

Proteins will adsorb immediately to a clean grid surface and this can complicate 

monitoring the effects of electrophoretic exclusion. This is evidenced by the absorption 

of analytes on the grid (Figure 5.2) with 10 V/mm and 0 V/mm applied (top of each set). 

Both images show similar levels of intensity, indicating analytes attached on the grids in 

both cases, even though the grid with 10 V/mm had experienced preconcentration while 

the grid with 0 V/mm did not. For regular operation of the device (consistent with 

previous uses), when sample was injected throughout the device prior to applying voltage 
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configurations, the absorption effect on the grid dominated. This loading was reflective of 

the initial concentration of analytes prior to any electrophoretic effects.  

To avoid an initial adsorption event, a voltage configuration was designed to 

concentrate analytes in the upstream reservoir. The concentrated bolus was then allowed 

to flow onto the grids (Figure 5.3). The device was filled with buffer with no analyte to 

prevent collapse and maintain flow. After 3 minutes of sample accumulation, the 

concentrated bolus was released to the grid in the downstream reservoir. One unit was set 

as control and sample was allowed to flow through during the whole experiment. Another 

unit was blocked immediately prior to the voltages were released. 

 

Figure 5.3 Strategy for capture high quality TEM data of protein from solutions that are 

too dilute to detect without enhancement. Fluorescent labels on protein are used to 

monitor the process. 

Micrographs were captured (n=3) from TEM using this strategy (Figure 5.4). For 

these images, the grey area nominally represents protein, while the less grey or white area 

is background. At closer inspection or high magnification (bottom), the characteristic 
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hollow doughnut shape of apoferritin is apparent. The micrograph from central reservoir 

3 acted as a control without taking any preconcentration action and an intermediate 

amount of proteins observed on the grid, presumable due to absorption. The micrograph 

from central reservoir 1 showed more white area and less grey area, indicating fewer 

proteins were accumulated on the grid. This also suggested that with this strategy, 

samples were able to effectively preconcentrate in the upstream reservoir. The 

micrograph from central reservoir 2 accumulated more protein samples, evidenced by 

even more grey area compared to the control. 

 

Figure 5.4 Representative images for grids from different reservoirs. Gray area nominally 

represents protein with a characteristic doughnut shape. Less gray or white area is 

background. Grid 3 acts as a control, Grid 2 appears to have accumulated more proteins, 

while Grid 1 accumulates fewer. An area in each micrograph (highlighted in blue) was 

magnified to present results in a better resolution.  



  113 

5.3.2 Dilute samples 

Using the strategy to minimize the effects of adsorption of sample onto the grids, 

the concentration of the original sample was varied to investigate the ability to gain high 

quality TEM from dilute solutions of protein. A typical EM sample contains biological 

species at concentration about 0.1 mg/mL to 3 mg/mL [30]. With the electrophoretic 

exclusion component applied, the available concentration for detection is expected to be 

much lower. 

To develop a data set for comparison to the electrophoretic exclusion 

experiments, conventional negative staining treatment was performed on a range of 

apoferritin concentrations (Figure 5.5). The concentration ranged from 0.2 mg/mL to 0.01 

mg/mL were prepared and applied directly onto the grids (n=10). After incubation, 2 

drops of stain were applied sequentially. The grids were examined under TEM.  

For concentration ranges between 0.1 mg/mL and 0.01 mg/mL, the number of 

particles observed exhibited a relatively linear relationship with concentration. From the 

graphical information, a reasonable detection limit is 0.007 mg/mL. The linearity of the 

quantification falls off at concentrations somewhat above 0.1 mg/mL and below 0.2 

mg/mL, indicating a saturating imaging field (Figure 5.5).  
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Figure 5.5 Calibration curve of apoferritin particles versus concentration (n=10, error bar 

stands for standard deviation) with representative micrographs. The curve was extended 

to 0.2 mg/mL, whereas the data point for 0.2 mg/mL was significantly lower than the 

curve, indicating the grid was saturated with particles. 

Using the adsorption avoidance process again, three concentrations, 0.05, 0.005 

and 0.0005 mg/mL, of apoferritin were tested (n=3) for effects from electrophoretic 

exclusion. We note that a concentration of 0.05 mg/mL is considered low for a 

conventional TEM test. However, with an electrophoretic exclusion microdevice 

treatment, this resulting sample was too concentrated as the representative TEM image 

gave rise to a largely grey featureless image. The concentration increase is estimated to 

be two-fold (Figure 5.6 A). With lower concentration, 0.005 mg/mL, for which it is 

almost impossible to achieve meaningful micrographs with conventional TEM, results 
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from imaging produced circular proteins evenly distributed (Figure 5.6 B). By comparing 

this result with the calibration curve (Figure 5.5), the concentration is estimated to be 

increased by four-fold. For a more diluted sample (0.0005 mg/mL), the image was taken 

under low magnification and there was almost no sample on the grid (Figure 5.6 C). 

The lower concentration enhancement when a higher concentration of apoferritin 

sample was applied was mainly due to the lower ability of the complex interfacial zone to 

hold concentrated bolus when the concentration got higher as the concentrated bolus 

tended to diffuse laterally and breakthrough the channel area [19, 20]. 

     A)                                              B)                                               C) 

 

Figure 5.6 Representative micrographs containing samples with different concentrations. 

However, it is worth mentioning that the concentration of specimen was not the 

higher, the better in TEM applications as the micrographs need a reasonable particle 

density to facilitate the particle selection step in further structural determination. The 

micrograph with a concentration of 0.05 mg/mL (Figure 5.6 A), although with plenty of 

particles on it, was not considered as a good example as the particle density was too 

large. Electrophoretic exclusion was more powerful on the diluted sample side as it 

enabled preconcentration and allowed conventional low concentrations to be detectable 

with a reasonable particle density. 
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5.3.3 Selective concentration on a mixture of apoferritin and IgM  

Selective concentration of one component can be achieved from a protein mixture 

with the electrophoretic exclusion. The protein IgM was prelabeled with NHS-fluorescein 

(green fluorescence) and apoferritin was unlabeled as it demonstrated consistent 

behaviors in TEM imaging for the experiments performed. 

A voltage configuration was designed to exclude apoferritin in Unit 1, exclude 

IgM in Unit 2, and take Unit 3 as a control (Figure 5.7 A). Results (n=3) (Figure 5.7 B) 

from fluorescence microscopy were used to test the applicability of this modified 

strategy. According to the results, both central and exit reservoir area of Unit 1 and Unit 3 

showed green color, as IgM was expected to flow through Unit 1 and Unit 3 based on the 

modified strategy; while Unit 2 did not exhibit any green color, indicating IgM was 

excluded in the upstream reservoir. 

TEM imaging was used to further characterize this strategy. Data from the central 

reservoir 3 grid was the control and both apoferritin and IgM can be observed. The 

representative micrograph from the grid in central reservoir 1 showed dark black 

particles, which were mostly IgM particles (Figure 5.7 C, bottom right) as compared to 

the IgM control (Figure 5.7 C, top left), since apoferritin has been effectively excluded to 

the entrance of the central reservoir 1. The representative micrograph from the central 

reservoir 2 grid showed round particles with doughnut shape, indicating they were mostly 

apoferritin particles (Figure 5.7 C, bottom middle). 

Under the conditions of this strategy, there is a concentrated bolus outside of the 

exclusion area of the channel entrance. This was investigated with another set of trials 

(n=3) where the voltage was released without collapsing channels after the 
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electrophoretic exclusion was applied. As a result, the central reservoir 1 grid had image 

features consistent with IgM at a normal concentration level and apoferritin at a higher 

concentration level (Figure 5.7 D, bottom left). In a similar fashion, the grid from central 

reservoir 2 contained apoferritin at a normal level and IgM at a higher concentration level 

(Figure 5.7 D, bottom middle). 
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A)                                                                  B) 

 

C)                                                                    D) 

 

Figure 5.7 Results for selective concentration of a protein mixture. A) Illustration for 

selective concentration of protein from a simple mixture using electrophoretic exclusion. 

B) Results from fluorescence microcopy. C) Results from TEM. Top left corner: IgM 

only as a control; top right: mixture applied directly on the grid; bottom left: grid from 

central reservoir 1, IgM only; bottom middle: grid from central reservoir 2, apoferritin 

only; bottom right: grid from central reservoir 3, control. D) Results from TEM without 

collapsing all the channels. Bottom left: grid from central reservoir 1, IgM and a higher 

level of apoferritin; bottom middle: grid from central reservoir 2, apoferritin and a higher 

level of IgM; bottom right: grid from central reservoir 3, control. 

When leaving the channel open upon release of the voltage (not collapsed), 

apoferritin which was being held back entered the grid chamber. By comparing 

micrographs from central reservoir 1 grids of channel collapsed (Figure 5.8 A, top) and 
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open (Figure 5.8 A, bottom), there is an obvious increase in apoferritin (round particles). 

Particle counting indicates the concentration of apoferritin is enhanced approximately 

two-fold. Similarly, but less straight forward, features consistent with IgM changed 

between the open and collapsed channel states.  

The comparison between central reservoir 2 grids with collapsed (Figure 5.8 B, 

top) and open (Figure 5.8 B, bottom) did give rise to a difference, but the contrast is less 

straightforward than for apoferritin. The degradation of IgM made it difficult to 

quantitatively differentiate IgM from the background as the degraded protein lead to 

amorphous shapes without clear edges, although figures still showed significant 

difference in the background (note three image locations with enhanced contrast). The 

micrograph with apoferritin only had a more consistent background (Figure 5.8 B, top, 

three highlighted locations), while the micrograph with a mixture of apoferritin and IgM 

showed uneven background (Figure 5.8 B, bottom, three highlighted locations), 

indicating the presence of IgM. After adjusting the parameters of micrographs, the 

surface plots presented that the background was relatively clean and homogeneous with 

apoferritin samples only as there were almost no random peaks expect for apoferritin 

peaks (Figure 5.8 C); it was very noisy with IgM and apoferritin on the grid together as 

more peaks showed up besides apoferritin peaks (Figure 5.8 D). The uneven background 

is interpreted as an indication of the presence of IgM particles.  
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A)                                                  B) 

 

C)                                                                    D) 

 

Figure 5.8 Comparison between results with and without channels collapsed. A) Higher 

magnification micrographs of grids from central reservoir 1 with channels collapsed (top) 

and without channels collapsed (bottom). B) Micrographs from central reservoir 2 with 

(top) and without (bottom) channels collapsed. Insets: higher magnification with 

enhanced contrast. C) Surface plot of micrograph from central reservoir 2 with channels 

collapsed. D) Surface plot of micrograph from central reservoir 2 without collapsing 

channels. 
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The preliminary example discussed above showed successful selective 

concentration of a mixture of two proteins. With other targets or buffer conditions, more 

qualitative selective concentration results can be accomplished. In addition, in most TEM 

applications, the specific sample of interest needs to be carefully purified so that only one 

single band appeared on PAGE, indicating no contaminants or other traces existed. Based 

on the general procedure of structural determination, acquisition of high-quality 

micrographs is followed by particle selection and 2D classification of selected particles. 

Theoretically, it is possible to conduct structural determination with a mixture of samples 

as long as the sample of interest can be easily recognized by some algorithms and can 

generate enough images of high quality. The selective concentration feature of 

electrophoretic exclusion can be integrated into TEM sample pretreatment to simplify the 

purification step and facilitate the detection capability. 

5.4 Concluding remarks 

Embedding grids into microdevice and using electrophoretic exclusion as a 

preconcentration step before applying samples on the grids broadens the capability of the 

TEM technique. Results of one model protein from both fluorescence microscopy and 

TEM demonstrate this work is promising. With the grids embedded into the device, a 

new strategy was established, a lower detection limit was achieved, and selective 

concentration was demonstrated. It is believed that with a refined next-generation, 

electrophoretic exclusion will be able to manipulate with more diluted samples or more 

complicated mixtures for structural determination and facilitate future clinical 

applications. In addition, designs for cryo-EM applications are also under investigation. 

Cryo-EM is experiencing an explosion in popularity and can achieve resolution down to a 
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few Å, which allows the proper placement of amino acid side-chains and develops atomic 

models of these biomolecules. This technique combined with electrophoretic exclusion is 

expected to achieve higher resolution for structural determination. 
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CHAPTER 6 

PROTEIN BIOMARKER SEPARATION VIA ELECTROPHORETIC EXCLUSION 

AND PRELIMINARY QUANTIFICATION ON MICROFLUIDIC DEVICES 

6.1 Introduction 

A spectrum of diseases begins with biomarkers at clinically undetectable levels, 

stochastically increasing concentration until symptoms eventually appear. When a disease 

is fully developed, it is sometimes too late to treat and potentially cure. The earlier that 

the disease is diagnosed, the more diverse therapies can be applied in curing, treating and 

even reversing the progress of the disease, thus larger possibility for survival. Early 

detection of diseases has therefore assumed an essential role in modern medical therapy. 

Surveillance and monitoring of the progression and/or the management of the disease, 

and individually assessing the response to treatment are becoming the hallmarks of 

personalized medicine [1]. 

Biomarkers are cellular, biochemical or molecular alterations that are measurable 

in biological media, such as cells, body fluids [2]. They have proven their scientific and 

clinical value and are commonly used in the practice of medicine. This value and use 

notwithstanding, detection of biomarkers still facing challenges and can be improved. For 

instance, an ideal sample source is serum for noninvasive disease diagnosis for early 

stage screening. Serum proteomics is often used for the identification of disease 

biomarkers. Serum contains species ranging from proteins, electrolytes, waste products, 

dissolved gases and water. Additionally, some tissue leakage proteins and various 

immunoglobulins are present in abundance. This is very challenging due to the presence 

of wide dynamic range of proteins over 10 orders of magnitude and probability of the low 
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abundance proteins being important biomarkers [3]. Moreover, many diseases biomarkers 

may have high sensitivity for the clinical stage, when it comes to early detection, few of 

them will still maintain high sensitivity for preclinical, which adds a layer of complexity 

for early detection [4]. 

Successful early detection of these low-abundance disease biomarkers will 

depend upon the development of sophisticated methods for separation prior to robust 

detection techniques with high sensitivity, and specificity [5].  

Microbead-based arrays are an emerging technology used for early diagnosis, and 

in simultaneous detection, quantification and profiling of a range of targets of interest 

relevant to a particular disease. Dated back to 1920s, this technique began using 

particulate materials. Over the hundred years of continuous development, this technique 

is now used in a variety of applications, especially for biomarker analysis, such as 

proteins, genes, and DNA profiles. Results from some applications are quite promising as 

the detected biomarkers are able to characterize specific disease states for diagnosis or 

predication [6, 7]. 

A magnetic beads based micro-immunoassay platform with extremely sensitive 

quantitative property has been proposed [8]. The general principle can be summarized in 

Figure 6.1. The procedure is similar to other immunoassay methods as the magnetic 

beads, sample, detection antibody with fluorescent tag are mixed together, then the 

mixture droplet is placed on a slide for magnetic rotor manipulation, after that 

fluorescence microscopy is used to record results. The main feature of this detection 

method is to incorporate a periodic fluctuation into the observed fluorescence by rotating 
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the magnetic field, which aids in the identification and quantification of the specific 

signal. This reduces the impact of background fluorescence and enables increased 

sensitivity. This work has demonstrated that the system was able to manipulate small 

sample volume (10 μL) in an applied magnetic field, and the signal was captured as 

periodic change in observed fluorescence. After data processing, this strategy 

successfully achieved lower detection limit compared to commercial methodologies. 

Moreover, this format can be easily adaptable to the detection of many targets and 

incorporated as a detection method into a microdevice for the parallel detection and 

quantification of biomarker panels. 

Figure 6.1 A schematic for general procedure of microbead immunoassay. 
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To further broaden the capability of this detection method, electrophoretic 

exclusion is used to allow for parallel separation and preconcentration of biomarker 

samples. Electrophoretic exclusion is a counterflow gradient focusing technique which 

exploits hydrodynamic flow and opposed electrophoretic velocity to exclude, enrich and 

separate analytes with different mobilities. Previous work has demonstrated that this 

technique was able to manipulate particles, dye molecules and various proteins [9-15]. 

Theoretical work indicated that this technique could achieve higher resolution 

comparable to conventional electrophoresis [16].  

Myoglobin (Mb) and cardiac troponins (cTnI) are used in the present work as 

model study. They are both acute myocardial infarction (AMI) biomarkers recognized by 

the American College of Cardiology (ACC) and the American Heart Association (AHA) 

[17]. Mb is a relatively small protein (only 17.8 kDa), abundant in both cardiac and 

striated muscle, and currently used as a routine biomarker for AMI [18]. This is one of 

the earliest biomarkers to appear during the development of the disease [19]. No single 

marker currently has shown adequate diagnostic accuracy for AMI, but a combination of 

Mb and cTnI may achieve a high sensitivity and specificity as part of a biomarker panel 

[20-22]. The troponin protein complex consists of 3 subunits, and the I subunit (TnI) 

maintains the structural position of the troponin-tropomyosin complex. It is one of the 

most tissue-specific biomarkers related to cardiac damage and has been included as a 

diagnostic criterion for several cardiac-related pathologies [23]. 

In present work, the array-based electrophoretic exclusion microdevice was used 

for sample separation and preconcentration. Experiments using a single target were 

conducted to assess the ability of the device to enrich an individual species in central 
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reservoirs. Simulations for protein exclusion phenomenon were also investigated. 

Experiments were also performed using a mixture of Mb and cTnI to evaluate the 

proficiency of the device in performing separations along the primary separation channel. 

The possibility for achieving a point-of-care device has been investigated with a regular 9 

V battery without bulky high voltage power supply applied. Furthermore, an intermediate 

design has been developed and tested, and the capacity of this device and the limitations 

were also assessed. Additionally, a new design has been proposed and is expected to 

achieve better performance. 

6.2 Experimental 

6.2.1 Reagents 

Aspartic acid and hydrochloric acid were obtained from VWR (Radnor, PA). 

Sodium chloride, potassium chloride, disodium hydrogen phosphate, potassium 

dihydrogen phosphate, acetone and isopropanol were purchased from Sigma-Aldrich (St. 

Louis, MO). 10X phosphate buffer saline (PBS) was prepared by dissolving 80.0 g NaCl, 

2.0 g KCl, 14.4 g Na2HPO4 and 2.4 g KH2PO4 in 1 liter of DI water. Myoglobin (Mb) and 

cardiac troponin I (cTnI) were purchased from Life Diagnostics (West Chester, PA). NHS-

rhodamine and NHS-fluorescein were obtained from Thermo Scientific (Waltham, MA). 

For all solutions, ultrapure deionized water was used (Barnstead International, Inc., 

Dubuque, IA). 

6.2.2 Labeling step 

NHS-fluorescein and NHS-rhodamine were dissolved in DMSO to concentrations 

of 10 mg/mL. Protein samples were thawed and equally divided into ten centrifuge tubes 
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upon receiving, then kept frozen. One centrifuge tube (about 0.1 mg, 10 μL) was used for 

each preparation. For Mb, the content in the centrifuge tube was thawed first, and 3.0 µL 

of NHS-rhodamine was added into the tube directly according to the instruction (Thermo 

Scientific, Waltham, MA). The sample was incubated in the dark at room temperature for 

one hour to allow full reaction of the reagents. For cTnI, the content in the tube was 

transferred to a dialysis tube unit (Thermo Scientific, Waltham, MA) and placed in 1000 

ml 1X PBS buffer overnight. The content in the dialysis tube was then transferred into a 

centrifuge tube, and 1.5 µL NHS-fluorescein was added into the tube according to the 

manual instruction and reacted in the same manner. After reaction, the crude reaction 

mixtures were added to dialysis tube units with a molecular weight cut-off of 3,500 Daltons. 

Samples were dialyzed against 100 mM PBS, pH 7.2 overnight. After dialysis, the final 

concentration of each sample was 0.33 mg/mL Mb and 0.2 mg/mL cTnI, respectively.  

6.2.3 Microdevice fabrication 

The microdevice was fabricated with the same procedure described in the 

previous chapters. 

6.2.4 Microdevice operation 

The protein sample was mixed with 5 mM aspartic acid buffer solution to a 

concentration of 0.05 mg/mL. The microdevice was filled with protein solution using the 

entrance ports and the device was then placed on the microscope stage, connected to the 

voltage divider and high voltage configuration applied. The voltage for each channel was 

confirmed through a digital multimeter (DM-4400A Sperry, Menomonee Falls, WI, USA). 

After 5 minutes, voltage was released.  
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6.2.5 Mobility measurement 

The capillary electrophoresis instrument was from LabAlliance, model 500 (serial# 

093/27228, model# 0200-9060) with a home-built software (package-PCI6023E.exe). The 

detection lamp was set to 250 nm for protein molecules and 207 nm for dye molecules. 

Total length of capillary was 47.0 cm, while the distance to detection was 35.0 cm, with 

360 µm outer diameter, and 75 µm inner diameter. Two reservoirs were filled with 5 mM 

aspartic acid buffers and labeled as “cathode vial” and “anode vial”. 

Upon use, the lamp was turned on at least 15 minutes ahead of time. The capillary 

was rinsed with NaOH first and then 5 mM aspartic acid buffer for 20 minutes each with 

around ~20 Pa pressure applied. A sample was injected with siphoning action by 

elevating the injection tube relative to the exit reservoir for 10 seconds. Afterwards, a 

high voltage power supply was set to 5 kV and turned on. 207 nm and 250 nm detection 

wavelengths were chosen for the dye molecule sample as a control to demonstrate signal 

only shows up with 207 nm, not 250 nm. Then two detection wavelengths were selected 

for the protein sample, which both 207 and 250 nm showed similar migration times. The 

software generated both spectroscopic signal and current signal (for reference). The high 

voltage power supply was turned off when a peak was detected or when necessary. 

6.2.5 Data analysis/image processing 

Data collection used an inverted microscope with fluorescence capabilities (IX70, 

Olympus) using a 100 W high-pressure Hg lamp as the light source. Light was passed 

through a band-pass filter and 5X microscope objective to the array. Light emitted from the 

sample was collected through a long-pass dichroic mirror and band-pass filter to a CCD 
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camera capable of image-capture (QICAM, Q imaging, Inc.). Color images focusing on 

central reservoir area were taken with an SLR camera (Nikon, Tokyo, Japan) from time 0 

to about 15 seconds as RGB files. ImageJ (NIH, Bethesda, MD) was used for image 

analysis. For each file, red (R), green (G), blue (B) channels were split and the fluorescence 

intensity of each channel was compared in the central reservoir area to monitor protein 

exclusion. TSC SP5 confocal microscopy (Leica Camera AG, Wetzlar, Germany) was used 

for the portable device section. Argon 488 laser line was used to excite labeled cTnI (green), 

and 561 laser line was used for labeled Mb (red). 

6.2.6 Theoretical modeling 

The simulations were conducted based on the structure built (electrode aligned 

with channel entrance) in Chapter 4. Some of the parameters were adjusted to reflect the 

protein exclusion conditions, including the mobility 10-4 cm2/Vs, electric field 10 V/cm, 

and concentration 10-6 mol/L. Diffusion coefficient was varied from 10-9 to 10-6 cm2/s. 

6.3 Results and Discussion 

6.3.1 Exclusion of individual protein 

The behavior of Mb under varying electric fields was investigated by filling the 

array device with aspartic acid buffer (pH 2.95) with NHS-rhodamine labeled Mb 

showing red fluorescence (Figure 6.2 A). As discussed in Chapter 3, when exclusion 

occurs the channel area is dark; when the voltage is released the sample flows back 

through the channel. In this work, results on central reservoir area presented more 

straightforward exclusion phenomena. Labeled Mb was concentrated within a reservoir 

immediately upstream of that channel as the noticeable arc of increased concentration 
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grew (Figure 6.2 A, left). This was confirmed with the intensity measurement within the 

central reservoir area (Figure 6.2 A, bottom left), as a higher electric field applied, the 

intensity of red channel increased (green and blue channel did not have significant 

intensity change, acting as background control). It also underwent a slight decrease when 

the electric field applied for a longer time, which indicated the lateral diffusion of the 

concentrated bolus. With a lower electric field, when the electrophoretic velocity was 

smaller than the hydrodynamic flow, there was no significant change with the channel 

area remained red (Figure 6.2 A, right). Similarly, the temporal intensity change of the 

central reservoir was investigated and the intensity of red channel also increased. This 

was mainly because the applied electric field, though was not sufficient enough to cause 

exclusion, still hindered the outflow that left the central reservoir. With the inflow (the 

flow entered the central reservoir) still kept consistent, the amount of the samples in the 

central reservoir during that time-frame increased, leading to a higher concentration 

and/or intensity. 

From the results, it can also be concluded that the threshold electric field for 

exclusion of Mb in this device was between 50 V/cm and 100 V/cm. Given the average 

linear flow rate 0.02 cm/s (estimated from experiment and simulation in Chapter 4), the 

calculated mobility from experiment was 2.00-4.00x10-4 cm2/Vs. The mobility measured 

from benchtop CE was 2.00x10-4 cm2/Vs (Figure 6.2 C, right), which was consistent with 

the experimental results, also suggested that the calculated electric field for exclusion was 

around 100 V/cm. Compared to the literature value of Mb mobility, this number is about 

one order of magnitude larger. The existing literature values are all based on pH 7, 

however in this case, a more acidic pH environment is applied. With a lower pH, the 
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mobility tends to increase based on the experimental values from Davis and Cohn’s work 

[24]. Moreover, with a lower pH, most of the proteins process net charges as the pH is 

away from their pIs, thus the greater the net charge and therefore the greater the mobility.  

The behavior of cTnI under varying electric fields was also investigated. cTnI was 

labeled with NHS-fluorescein, showing green color with fluorescence microscopy. cTnI 

needs an even higher electric field to achieve exclusion since its mobility is even smaller 

(Figure 6.2 C, right) according to discussion in Chapter 3. Based on the current 

conditions (50 V/cm and 100 V/cm), it might be difficult to capture cTnI, as none of the 

experimental electric field strengths were sufficiently large to exclude cTnI with the 

averaged linear flow rate 0.02 cm/s. No significant exclusion phenomena took place in 

central reservoirs as the channel area did not change color (for Figure 6.2 B, left, the 

channel area was dark all the time, mainly due to the artifact when preparing the 

microchip). Moreover, the results from central reservoir intensity of green channel 

measurement matched with the visual results as the intensity in the region of interest 

enhanced (red and blue channel did not have significant intensity change, acting as 

background control). The grey area on the right side could be interpreted as breaking 

through of some impurities (Figure 6.2 B, left). This process was consistent with the 

electropherogram of cTnI showing several extra peaks after the main peak (Figure 6.2 C, 

right). 
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A) 

 

(see figure legend on Page 136) 
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B) 

 

(see figure legend on Page 136) 
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C) 

 

Figure 6.2 Individual protein test and mobility measurement. A) Behaviors of myoglobin 

were presented as well as intensity measurement in the central reservoir. With a higher 

electric field (100 V/cm), myoglobin was excluded into the upstream reservoir and a clear 

semi-circle was formed (left); while with a lower electric field (50 V/cm), no obvious 

exclusion phenomenon was observed (right). B) Behaviors of cTnI were presented as well 

as intensity measurement in the central reservoir. With a higher electric field (100 V/cm), 

no clear exclusion was taken place for cTnI (left); while with an even lower electric field, 

no significant observation was captured (right). C) Mobility was measurement with a 

commercial CE instrument and the mobility of Myoglobin was higher than that of cTnI, 

consistent with their molecular weights. 

6.3.2 Simulations varying diffusion coefficient 

From the figures presented, when exclusion took place, the intensity of the central 

reservoir varied and was heterogeneous. A growing concentrated arc was formed in the 

central reservoir (Figure 6.2 A, left). It was mainly due to the competing interaction 

between diffusion and electrophoretic velocity.  
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Simulations with different diffusion coefficients on the 3D model developed in 

Chapter 4 were presented below (Figure 6.3). When the diffusion coefficient was 

relatively low, there was almost no concentrated arc forming in the upstream reservoir. 

With the diffusion coefficient increased, a more significant concentrated arc was 

established. For a typical protein with size of 20 kDa, this diffusion coefficient is around 

10-7 cm2/s [25], giving rise to a consistent results comparing experimental results with 

simulations. 

However, the simulated results in the channel area did not fully match the 

experimental evidence. That was mainly due to the complex structure of protein. Protein 

was considered as a point charge in the simulation, however, the non-uniform surface 

charge density of protein particle in the actual experiment contributed to the 

inconsistence [26]. 

 

Figure 6.3 Simulations with different diffusion coefficients. With a higher diffusion 

coefficient, the concentrated arc in the upstream reservoir got larger. 

6.3.3 Differentiation of a mixture of two proteins 
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Experiments were performed to demonstrate the capability of electrophoretic 

exclusion to separate labeled proteins Mb (red) from cTnI (green) within the array. A 

mixture of two proteins was loaded into the device, and central reservoirs were monitored 

simultaneously (Figure 6.4). The separation can be clearly visualized as Mb was excluded 

in the central reservoir starting off from the exit channel area and cTnI was not. With a 

higher electric field, the exclusion of Mb with a red arc originated from the exit channel 

as well as the penetration of cTnI with a green arc from the upstream entrance channel 

could still be observed, which were consistent with individual protein test (Figure 6.4 

left); with a lower electric field, there was no significant response (results not shown).  

The phenomena of Mb exclusion with cTnI penetration can be interpreted as 

schematics below (Figure 6.4, right). The structure with a larger square and a smaller 

rectangle represents reservoir and upstream channel, respectively. Based on the 

information from CE measurement, the mobility of cTnI is smaller than that of Mb. 

When the electric field is lower than threshold exclusion electric field of Mb, both Mb 

and cTnI can still enter the reservoir with different rates, so two semi-circular bands can 

be observed (Figure 6.4, top right). When the applied electric field is between the 

threshold electric field of Mb and cTnI, this is the desired situation, where Mb can be 

excluded while cTnI can still enter the reservoir (Figure 6.4, bottom right).  

Proteins behave in predictable manners evidenced by the results discussed above. 

With consistent behaviors from both proteins, it is possible to forgo the labeling process 

and manipulate with more dilute solutions to push the limit of separation and enrichment. 
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Figure 6.4 Results from a protein mixture and a possible explanation. A mixture of two 

proteins was loaded into device and the same voltage configuration was applied. Mb 

exclusion was observed as indicated by the red bolus from channel and grew into the 

reservoir. cTnl was not excluded at this condition. Moreover, some cTnI penetrated the 

reservoir through the upstream channel. Possible explanation for the phenomena of Mb 

exclusion with cTnI penetration was interpreted on the left. 

6.3.4 Possibility to achieve a portable device 

A portable setup was created and tested to show that these systems can be powered 

by a regular 9 V battery as a step towards future point-of-care diagnosis. Based on the 

information retrieved from section 6.3.1, the threshold electric field for Mb exclusion was 

between 50 V/cm to 100 V/cm, while the threshold electric field for cTnI exclusion was 

beyond 100 V/cm. With a 9 V battery, an electric field of 90 V/cm was generated, which 

was expected to exclude Mb but not cTnI. 
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The device uses a 9 V battery connected to a subunit through copper wires (Figure 

6.5 A). The imaging area was the channel region between central reservoir 2 and exit 

reservoir 2 (red area highlighted). Confocal microscopy was used to record results under 

this condition (Figure 6.5 B). The results were consistent with Mb being excluded when 

the electric field applied leading to the red color gradually disappeared. The green color 

remaining in the imaging area is evidence supporting cTnI was not excluded. Further 

supporting evidence is found in the overlay images, as the color of the channel area was 

orange at the beginning and turned to green when the electric field was applied, indicating 

red species (Mb) was removed. Results from confocal microscopy can be used to further 

confirm the behavior of two proteins as they showed consistent results under fluorescence 

microscopy. 
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A) 

 

B) 

 

Figure 6.5 Device connection and results from confocal microscopy. A) A regular 9 V 

battery was connected to the device through copper wires to power the device. The 

imaging area was the channel between central reservoir 2 and exit reservoir 2 (red area 

highlighted in picture). B) Results were monitored with confocal microscopy. Green laser 

was used to excite and monitor cTnI, while red laser was used to excite Myoglobin. The 
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images on the left side are the overlay of two sets of data. When electric field was 

applied, Mb was excluded and cTnI did not show a significant difference. 

6.3.5 Examination of an intermediate design for sensitive immunoassay 

An intermediate device (Figure 6.6) for sample separation, concentration and 

quantification was proposed by Dr. Woolley, fabricated by the author, and tested together 

[27]. With this device, three AMI protein biomarkers were expected to achieve separation 

and quantification as a multiplex platform for potentially better diagnosis of AMI. 

 

Figure 6.6 Microdevice for protein separation and quantitation by immunoassay. 

Photograph (top left) of the complete microfluidic device with one separation channel 

and three isolation channels, and a schematic of a single (right) isolation channel 

explaining terminology used in the device. 

With this integrated device, a mixture of Mb and cTnI was used to evaluate the 

proficiency of the device towards performing separations along the primary separation 
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channel. The experimental results exhibited a similar trend as the Mb was excluded while 

the cTnI was not. These results demonstrated the ability of the device to isolate and 

concentrate analyte in one of the separation channel reservoirs prior to quantification. 

Data consistent with the concentration of cTnI was observed in separation 

reservoir, as evidenced by the increase in fluorescence intensity. The concentrated 

samples were observed to enter the quantitation reservoir by removing the electric 

potential and adding buffer to the buffer reservoir. However, the flow into the reservoir 

was slow, and incomplete over the time course of the experiment. The magnetic chains in 

the quantitation reservoir could be observed with a higher magnification. However, not 

all material was effectively binding as there was still a high background fluorescence 

intensity. This was probably due to the protein denaturation or the interference from 

fluorescent dyes.  

6.3.6 Proposing new designs for future applications 

The current and the intermediate devices were able to achieve separation and 

preliminary quantification of proteins. However, the concentrations of protein biomarkers 

currently used in experiments were still magnitude higher than those used in actual 

clinical applications [18]. As discussed in section 6.3.2, with consistent behaviors from 

protein tests, it was possible to eliminate the labeling process and move forward to a 

lower concentration. Moreover, to further optimize the performance of this integrated 

system, valves are desired for better manipulation and control. Incorporation of physical 

valves can improve the overall performance within a microfluidic device [28]. Valves, 

especially with PDMS valves can be designed with soft lithography techniques [28-31], 
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and are easy to fabricate, maintain a low device fabrication cost, and may easily be scaled 

to fit the dimensions of system.  

A design combined with electrophoretic exclusion (EE), insulated 

dielectrophoresis (iDEP) and immunoassay detection on an integrated platform is 

proposed below (Figure 6.7). 

 

Figure 6.7 A proposed new design incorporating DEP component, EE component and 

immunoassay detection technique as an integrated platform for future clinical 

applications.  

 The general procedure is described below. Fluorescently labeled sample is first 

introduced from inlet of the DEP component, meanwhile all the valves are closed, and 

both the syringe pumps are not in use. Analytes in the sample are accumulated at 

different gates in the DEP component upon a proper electric field applied. After that, 

syringe pump 1 with working buffer starts to work at a reasonable flow rate. Valve 1, 2, 

and 3 are open thereafter, and each analyte is transferred to corresponding transfer 

reservoir. Meanwhile, electric fields are applied to the electrodes in the EE reservoir, 
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enriching target analytes in the EE reservoir, and flushing unwanted or interfering species 

to the waste reservoir. Then syringe pump 1 is closed, so are valve 1,2 and 3. Syringe 

pump 2 (with a higher flow rate) is turned on and valve 4 is open, bringing excess 

immunoassay reagents/magnetic beads from the immunoassay reservoir into the EE 

reservoir. Then close syringe pumps 2 and valve 4. Incubate for 1 hour. After incubation, 

open syringe pump 1 and valve 1, 2, and 3 again, flushing excess reagents into the waste 

reservoir. Meanwhile, holding a magnet underneath each EE reservoir to avoid magnetic 

beads-target analytes complex being flushed away. Finally, close all the valves and 

syringe pumps, detecting signal with microscopy.  

In addition, it is advisable to incorporate a gas-removing setup (membrane or 

pump) to minimize the bubble formation. The interface between the syringe pump and 

the microdevice needs to be refined. Furthermore, ITO can be used as materials for 

transparent electrodes to ensure clearer capture of exclusion phenomenon and better 

understanding of this technique.    

6.4 Concluding remarks 

Electrophoretic exclusion is advanced, where protein biomarker enrichment and 

separation has been performed. Evidence from the central reservoirs show that 

electrophoretic exclusion of proteins on a microfluidic device behaves in a predictable 

manner. Due to the low flow rate in the system, the electric field applied to achieve 

separation and preconcentration is relatively low, which also facilitate the development of 

a portable device without using high voltage power supply. An intermediate design for 

multifunction (separation, preconcentration, quantification) is also designed and tested. 
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This intermediate design still has some drawbacks, leading to the proposal of a next-

generation design, which will provide new insight for the future application of this device 

on more complex samples and/or more practical situations. 
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CHAPTER 7 

CONCLUDING REMARKS 

7.1 Developmental aspects of electrophoretic exclusion  

Electrophoretic exclusion is emerging as a punctuated microgradient technique 

for separation and preconcentration with enhanced resolution and performance. An array-

based design has enabled parallel spatial separation of analytes. The electrophoretic 

exclusion studies presented here on the developmental aspects of the device has helped 

evolve the understanding of the interfacial zone and built the foundation for designing 

novel and more efficient interfaces. 

 Initial work described the general basis of electrophoretic exclusion of dye 

molecules on an array-based microfluidic design (Chapter 3). Planar microchip 

experiments demonstrated the ability to exclude dye molecules at specific locations. 

These results indicated that the technique was useful for addressing analytes with varying 

properties.  

Additionally, the electrode placement along asymmetric interface was 

investigated to understand the impact of seemingly subtle changes to the entrance flow 

and electric field configurations (Chapter 4). Experimental data and simulation results 

showed strong qualitative agreement. The complexity of the electric and flow fields about 

this interface and the agreement between models and testing suggests the theoretical 

assessment capabilities can be used to construct next-generation designs that enable 

integration into parallel configurations for multiplexed separations.  
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New design perspectives include but are not limited to the refinement of channel 

geometry, electrode shapes/position, and surface properties. In order to evaluate the 

performance of possible new designs in an effective and efficient way, concentration 

profile along the centerline can be assessed. The optimized next-generation design is 

expected to generate a higher concentration enhancement in the interfacial zone, 

meanwhile achieve large exclusion efficiency in the channel area. Moreover, the 

concentrated bolus needs to be conserved or confined into a small region/volume to 

reduce the lateral diffusion, which can be potentially achieved with the application of 

droplet microfluidics. One direction that can be tested first is to flatten hydrodynamic 

flow velocity profile and/or curve the electrophoretic velocity profile, which can be 

realized by different geometries and electrode designs with 3D printing possibility, and 

combination of slip and non-slip surface etc. 

7.2 Practical applications of electrophoretic exclusion 

In addition to developmental investigations, applications with practical samples 

continue to push the limit of the current device.  

The coupling of electrophoretic exclusion to TEM was developed to prepare 

diluted small volume protein samples for electron microscopy imaging, which broadened 

the capability of electrophoretic exclusion (Chapter 5). It also suggested that the 

technique was capable of handling more diluted species and facilitating further structural 

determination or other clinical applications.  

Good separation and preconcentration properties from the current device also 

enabled the applications with two protein biomarkers (Chapter 6). Consistent behaviors 
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of these two samples were observed from experiments. An intermediate design aimed to 

incorporating this separation/preconcentration feature prior to sensitive microbeads 

immunoassay detection showed some preliminary progress. Further refinement of the 

system, including incorporation of physical valves and gas-free setup, holds the potential 

for the development of an optimized system for multiplexed quantification.  

7.3 Future directions 

 The array-based design of electrophoretic exclusion enabled separation and 

preconcentration in parallel and/or in series with potentially high resolution at the 

interfacial zone. This feature is not achievable with conventional linear single channel 

separation interfaces.  

Current studies have demonstrated its wide applications in biological studies, 

from hyphened strategies with downstream detection techniques to practical samples. The 

further optimized devices will potentially enable coupling with more downstream 

techniques, not limited to transmission electron microscopy, but also a variety of other 

techniques, such as matrix assisted laser desorption/ionization (MALDI) and surface 

enhanced laser spectroscopy (SERS). The work will also facilitate the advancement of 

proteomics. Even though LC-MS has been a routine technique in the field, it is nearing 

the fundamental limitations and significant improvements are unlikely to be realized in 

the current stage. While electrophoretic exclusion will serve as an alternative approach 

with high effectiveness and efficiency in top-down proteomics for intact protein 

separation and preconcentration prior to detection, and potentially achieve better 

performance compared with conventional chromatographic methods. In addition, the 
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array-based design enables spatial separation into corresponding reservoirs and 

multiplexed detection of multiple targets simultaneously. These works are expected to 

promote the future development of clinical trials for point-of-care diagnosis for rapid 

identification and quantification with reduced time, decreased sample amount, increased 

capability, as well as enhanced sensitivity and specificity. 
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