
Designing a Software Platform for Evaluating Cyber-Attacks on the Electric Power

Grid

by

Roozbeh Khodadadeh

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved April 2019 by the
Graduate Supervisory Committee:

Guoliang Xue, Co-Chair
Lalitha Sankar, Co-Chair

Oliver Kosut

ARIZONA STATE UNIVERSITY

May 2019

ABSTRACT

Energy management system (EMS) is at the heart of the operation and control of a

modern electrical grid. Because of economic, safety, and security reasons, access to

industrial grade EMS and real-world power system data is extremely limited. There-

fore, the ability to simulate an EMS is invaluable in researching the EMS in normal

and anomalous operating conditions. I first lay the groundwork for a basic EMS loop

simulation in modern power grids and review a class of cybersecurity threats called

false data injection (FDI) attacks. Then I propose a software architecture as the basis

of software simulation of the EMS loop and explain an actual software platform built

using the proposed architecture. I also explain in detail the power analysis libraries

used for building the platform with examples and illustrations from the implemented

application. Finally, I will use the platform to simulate FDI attacks on two syn-

thetic power system test cases and analyze and visualize the consequences using the

capabilities built into the platform.

i

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

1.1 Historical Background. 1

1.2 Smart Grid vs the Traditional Grid . 2

1.2.1 Generation . 2

1.2.2 Supervisory Control and Data Acquisition (SCADA) 3

1.2.3 Energy Management System (EMS) . 4

1.2.4 Security . 4

1.3 Network and Attack Simulation . 7

1.3.1 Simulation Taxonomies . 8

1.3.2 Simulation Goals . 9

2 PLATFORM OVERVIEW . 13

2.1 Platform Architecture . 13

2.2 Power System Analysis Modules . 17

2.2.1 OpenPA Core . 17

2.2.2 Power Flow . 22

2.2.3 State Estimation . 25

2.2.4 Contingency Analysis . 30

2.2.5 Security Constrained Economic Dispatch (SCED) 35

2.2.6 Anomalous Data Detector . 40

2.3 Web Application . 41

2.4 OpenPA Parser . 43

ii

CHAPTER Page

2.5 Single Page Application . 46

3 CASE STUDIES . 49

3.1 General Attack Mechanism . 49

3.2 Attack Against Polish System . 51

3.3 Attack Against Texas Synthetic System . 54

3.4 Conclusion and Future Work . 56

REFERENCES . 58

iii

LIST OF TABLES

Table Page

2.1 OpenPA Parser Mini-Language . 44

iv

LIST OF FIGURES

Figure Page

1.1 NIST Smart Grid Network Conceptual Diagram . 6

2.1 General EMS Loop. 13

2.2 Cybersecurity Simulation Platform Architecture . 15

2.3 UML Diagram For Class Load . 19

2.4 Piece-wise Linear Cost Modeling with OpenPA Core. 21

2.5 Power Flow Algorithm Flow Diagram . 22

2.6 Power Flow Options Form . 24

2.7 Power Flow Results . 24

2.8 Calculated Branch Flows In The Polish System . 25

2.9 Change In Slack Distribution During Power Flow Iterations 26

2.10 State Estimation Components . 29

2.11 Bad Measurements In ACTIVSg Power System . 31

2.12 Bad Data Detection Results in ACTIVSg System . 31

2.13 Contingency Analysis Options . 34

2.14 Contingency Analysis Results . 35

2.15 Matrix Diagram For System Contingencies . 36

2.16 SCED Components Diagram . 37

2.17 SCED Options Form 1 . 38

2.18 SCED Options Form 2 . 38

2.19 SCED Results Table . 39

2.20 Dispatch differences After SCED . 39

2.21 Web Application Components. 41

2.22 OpenPA Parser Abstract Syntax Tree . 45

2.23 OpenPA Parser Inheritance Hierarchy . 45

v

Figure Page

2.24 SPA Components . 48

3.1 Simplified EMS Loop Diagram . 50

3.2 Attack Consequences Diagram For The Polish System 53

3.3 Worst Overload In The Physical World In The Polish System Attack . . 54

3.4 Texas System Attack Consequences . 55

3.5 Geographical Location Of The Lines Affected Most By The Texas Sys-

tem Attack . 56

vi

Chapter 1

INTRODUCTION

In this chapter, I will first provide a historical background for the smart grid evolution

and discuss the ways it is different from the traditional power grid with a focus on

the cybersecurity aspects of the smart grid. I then discuss smart grid simulation

and justify making certain design decisions which will define the framework of our

software simulation system.

1.1 Historical Background

From its beginning in the late nineteenth century, the electrical power grid has

become increasingly interconnected in response to consumer demand. For example,

in 2018 alone, the US power grid distributed more than 4,000,000 Megawatt-hours of

electrical power to hundreds of millions of consumers [1]. Along with the evolution

of the grid itself, the question of how to control and monitor it has also become

increasingly important. During the 1970s, a revolution occurred in the industrial

control systems which allowed these systems to effectively and quickly communicate

with each other. Electric grid operators have utilized these advances in information

technology to offer more accurate sensing, faster control response, and better and

more efficient grid planning and operation. In the past two decades, the combination

of advanced communication and information processing infrastructure and the electric

grid has often been called the smart grid. The European technology platform defines

a smart grid as “an electricity network that can intelligently integrate the actions of

all users connected to it, generators, consumers and those that do both, in order to

efficiently deliver sustainable, economic and secure electricity supply [2].” In general,

1

all notions of an advanced power grid for the 21st century hinge on adding and

integrating many varieties of digital computing and communication technologies and

services with the power-delivery infrastructure. Another important property of smart

grids is the bidirectional flows of energy and two-way communication and control

capabilities which will enable an array of new functionalities and applications [3].

Next section briefly goes over how smart grids have added these new functionalities

and capabilities to the traditional grid.

1.2 Smart Grid vs the Traditional Grid

1.2.1 Generation

The electricity market has seen a regulatory and societal demand in the past

decade to use more renewable energy. However, in the United States, the sources of

renewable energy are usually far from load centers [2]. This fact creates a host of issues

for the transmission system, such as new contingencies, stability issues, transients,

and power quality issues in grids that have a high share (> 20%) of renewable energy

sources [2]. Also, coordination between renewable sources and fast ramping rate units

is needed to ensure uninterrupted power supply for consumers. With the rise in the

use of electric vehicles and other novel loads, even more unpredictability is introduced

into the grid operation. The decision making infrastructure of the traditional power

grid might not be suitable to respond to these new challenges. Smart grids with high

processing powers are needed to coordinate the consumer demand and electricity

production in the modern grid.

2

1.2.2 Supervisory Control and Data Acquisition (SCADA)

SCADA consists of all the sensors installed in the field and the communication

network that transmits the data from those sensors to the control center. At one end

of the system lie the remote terminal units (RTU). At the other end, there are human

machine interfaces (HMI) that display the data for the human operator [2].

Smart grid integration has enabled vast data gathering and processing capabil-

ities. System operators can now gather data such as geographical information and

store it for later reference. However, serious security vulnerabilities accompany these

advanced functions. When SCADA systems were first equipped with advanced com-

puter technology, there was little thought given to security. The industrial commu-

nication networks were often isolated and devices manufactured by different vendors,

worked differently. The assumption was that such obscurity would ensure the secu-

rity of SCADA systems. Eventually, it became evident that SCADA systems are not

immune to cyber attacks. A survey of 100,000 attacks against industrial systems is

presented in [4]. Many of these attacks exploit the vulnerabilities within communica-

tion networks with severe consequences including code execution, privilege escalation,

denial of service, and data extraction.

The advent of the Internet of Things (IoT) has severely exacerbated the industrial

network exploitation problem since the traditional factors that contributed to a secure

industrial network are weakened or non-existent due to an interconnected and vast

communication network. In short, the smart grid has added many new data processing

capabilities to the traditional SCADA systems, but at the same time has made those

systems more vulnerable to various types of cyber attacks. It is not correct to assume

that SCADA is impenetrable simply because it is usually operated on dedicated or

private industrial networks.

3

1.2.3 Energy Management System (EMS)

Smart grid network operations rely largely on EMS. EMS is a combination of

hardware and software often used in control rooms and dispatching centers that adds

full computer automation to all operational and analytical functionalities of a smart

grid. The term “EMS” in often used the context of a high voltage transmission

system. For lower voltage distribution network, “distribution management system

(DMS)” is often used. An EMS has the following functions:

• real-time grid monitoring and control: displays signals from the SCADA sys-

tem for the operators and may allow them to open and close circuit breakers

remotely.

• frequency control: ensures that the network operates at the designated fre-

quency.

• system studies: state estimation, contingency analysis, security constrained eco-

nomic dispatch, and security constrained unit commitment among others to

facilitate efficient operation of the grid.

More discussions about the EMS role requires us to understand the concept of security

in smart grids. Next section will analyze security in smart grids and explain why EMS

has such a central role in smart grid operations.

1.2.4 Security

In contrast to the traditional power grid, A modern electric grid has large physical

and cyber components and thus is categorized as a cyber-physical system. The term

“security” can have somewhat different meanings when used in the context of power

grids. On one level, the operators pay serious attention to the electrical security of

4

the system: they plan for scenarios in which one or more network devices fails and

cannot serve its purpose and they try to plan ahead for such circumstances. This type

of study is called contingency analysis (CA). The system operator plans for as many

scenarios as is technically feasible. The typical case is to assume only one device has

failed at a time. The operators then devise contingency plans to tackle the equipment

outage problem. With such plans in place, the system is said to be N − 1 secure.

Contingency analysis requires the operators to have accurate the real time data

from the network. Due to the presence of noise in communication channels, there

is a possibility that the measurements across the system are not consistent. It is

essential to run another type of analysis called state estimation (SE) to obtain the

most probable measurements in the presence of noise.

Moreover, if the operators determine that the system is not N − 1 secure, or it

is not operating in a cost-effective manner, they may conduct another study called

security constrained economic dispatch (SCED) to make sure even in scenarios when

some network device is out of service, the rest of the network can deliver the demand

and still operate securely and economically.

N−1 security can become very complex. But the notion of security can also imply

actual physical safety of the electrical grid equipment since many of these equipment

contain sensitive measurement technologies and some may operate at high voltage

levels. To ensure public safety and preclude tampering, network equipment must also

be protected by physical enclosures and barriers.

On another level, security can be considered as the cyber security of a smart grid’s

communication network. I discussed SCADA security in subsection 1.2.2. But the

cyber component of a smart grid can be even more complex. Figure 1.1 shows a con-

ceptual diagram created by the national institute of standards and technology (NIST).

It shows the many connected networks that comprise a smart grid together[3]. Any

5

security breach that threatens confidentiality, integrity, or availability of any of these

networks has the potential of compromising the whole smart grid. Moreover, these

networks are spread over vast geographical areas and may be administered by inde-

pendent entities. These properties have made designing a comprehensive protection

scheme for the smart grid a major challenge.

Figure 1.1: Conceptual diagram showing various network interconnections in the
context of smart grids.

Still, attacking a smart grid can require a high level of sophistication. To suc-

cessfully conduct a cyber-physical attack against the smart grid, the attacker needs

to:

1. breach network infrastructure. Any of the interconnected networks depicted in

figure 1.1 can be a target for an attacker to find a way into the smart grid cyber

system.

2. The attacker ideally wants to compromise the main control system of the smart

6

grid. The attacker may achieve this by spoofing commands to the control sys-

tem. One way to carry out such attack would be by simply sending commands

that opens or closes circuit breakers. This type of attack is often detectable be-

cause it causes outages or equipment damage. Alternatively, the attacker may

use her access to the main cyber system to inject false measurements into the

smart grid decision-making loop in to deceive the operators into making bad

decisions resulting in adverse consequences for the physical network. The lat-

ter is often called false data injection attack (FDIA). In this case, the attacker

usually does not want to be detected.

An attacker may carry out an FDI attack by infiltrating either the sensor network

(SCADA and RTUs), the communication network, or the EMS and control center

itself. Because of large number of options the attacker has to carry out an FDIA, it

is worthwhile to assume a successful FDIA and study only the consequences.

Because of the size, physical and operational complexity, and expensive and sen-

sitive equipment, it is usually infeasible to conduct the security studies on a running

industrial smart grid. Researchers often use simulation to safely analyze attacks and

their consequences without endangering the sensitive operations of the grid.

1.3 Network and Attack Simulation

Shannon [5] defines simulation as “the process of designing a model of a real system

and conducting experiments with this model for the purpose either of understanding

the behavior of the system or of evaluating various strategies (within the limits im-

posed by a criterion or set of criteria) for the operation of the system.” This definition

is very broad. In this section, I first define a set of constraints which simplify the

power system as a cyber-physical model and enable us to simulate it with computer

software. The simplifications resulting from applying these constraints still allow

7

efficient modeling and analysis of false data injection attacks with high precision.

1.3.1 Simulation Taxonomies

Depending on the simulated aspect of the system, many simulation taxonomies

are devisable. Here, I use some of the taxonomies Shlooegl [6] has defined. Based on

[6], one possible simulation taxonomy is:

• A single model representing the whole system running within a dedicated run-

time environment

• Parallel models running across multiple solvers; there is still one representation

• Hybrid simulation which integrates more than one representation into a single

run-time environment

• Co-simulation in which different models with different representations are ex-

ecuted inside their own dedicated run-time environments. There needs to be

some form of synchronization between co-simulation components.

Another way [6] to categorize smart-grid simulations is to look at how the simu-

lator approaches simulation timing:

• Real-time: the simulator guarantees a constant delay between the events and the

simulation of those events. Events are usually time-stamped to ensure correct

order of execution

• Non Real-time: there is no guarantee of constant delay

The notion of being on-line or off-line may also be used to classify simulators [6]:

• Online : the simulator interacts with outside physical processes between simu-

lation steps

8

• Offline: measurements and outside processes are also simulated and there is no

interaction between the simulator and the actual physical process it is simulating

Time resolution provides an additional method to classify simulators [6]:

• Steady state range: the system is in equilibrium.

• Electro-mechanic range: (sub-seconds): generators are dynamically interacting,

and frequency transients, stability and short circuit behavior can be analyzed.

• Electro-magnetic Range (milliseconds and below): electromagnetic waves are

the dominating mechanism; fast transients, dynamic voltage problems and sta-

bility are examples.

These taxonomies provide a clear way to think about the simulation model. By care-

fully selecting taxonomy levels from the above definitions, simulation constraints and

ultimately the simulation model is precisely determined. Choosing a different simula-

tion configuration may have have profound implications on the simulation complexity

and feasibility, therefore, a more in-depth discussion of the simulation goals is needed.

1.3.2 Simulation Goals

The ultimate purpose of the simulator is to analyze FDI attacks carried out against

smart grids. While false data injection attacks can be used to compromise the system

at any level, even the electro-magnetic range [7], here the focus is on a class of

FDI attacks described in [8]. It is a sophisticated attack that calculates a set of

false measurements by formulating a bi-level optimization problem. The optimization

problem maximizes the attacker gain assuming the operator makes the best possible

decisions while trying to satisfy N − 1 security. In this context, operator action is

defined as setting the output power from the system generators. As described in

9

subsection 1.2.4. the study that determines the best dispatch point is the SCED. The

bi-level optimization problem gives a set of system measurements that if successfully

spoofed, would lead to SCED calculating a set of dispatch points which in turn would

compromise system’s N − 1 security.

The attack in [8] is carried out in the steady-state timing level. The communi-

cation system is assumed to deliver all the measurements to the control center in-

stantaneously and simultaneously and therefore is not simulated. Consequently, the

simulator can be designed to only simulate events in the steady-state timing level.

Another implication of the steady-state assumption is that the events in the sim-

ulated system occur sequentially. In other words, there are no concurrent events in

the system. If two events happen at the same time, one should have priority before

feeding them to the simulator. This is effectively a discrete event simulation loop

(DES) in which the simulator jumps from one event to another without considering

any other event between the two. Some level of concurrency can be added to DES

loop by assuming that the simulator advances in fixed time intervals. This is called

discrete time simulation (DTS). With DTS, all events occurring in a certain time

interval are assumed to have happened exactly at the same moment.

To give an example from the power system, if the operators decide to open two

circuit breakers in two different locations in the network at the same time, A discrete

simulation model completely ignores the transient effects of such openings. Instead,

the system is simply modeled as if one circuit breaker opens a long time before the

other (DES), or as if both are open at the exact same time (DTS) without having

any transient effects. As far as the attack in [8] is considered, a DES model suffices.

Simulation time moves only when a new event - whether in cyber of physical world -

occurs. Since switching operations are not simulated, there is no need for real-time

simulation.

10

The role of simulation engine users also plays an important role in determining the

simulation category. For example, a training platform may allow the users to directly

interact with the power system and simulate their actions. FDI attacks are usually

carefully designed attack scenarios that the attacker executes amidst the normal EMS

event loop. As a result, an off-line simulation model is preferred to the on-line model.

The events are predetermined and are fed to the system sequentially. To understand

this distinction, the off-line simulation model can be compared with flight simulators.

In a flight simulator - much like a power system training simulator - the actions of

the user will have real-time consequences on the simulated world. This is not the case

with FDI attack simulation. In other words, there is no human user in the simulation

loop.

To summarize, given the criteria for FDI attack studies, the simulation is limited to

the discrete event, non-real-time, and offline simulation of power system events.

The first implication of picking discrete event simulation (DES) loop as the simula-

tion basis, is that only steady-state power analysis libraries are needed. For example,

a package such as MatPower [9], which is a widely used power system analysis soft-

ware, could be used. As the system jumps from event to event, the analysis library is

used to update system state. The performance of the analysis library is not the top

priority because there is no real-time events.

Ideally, an open source software should be used to make every part of the code

accessible to programmers or researchers who wish to study or extend it. It is also

desirable to to use a software that has at least some real world and industrial usage

to obtain a better understanding of the power system industry’s perspective and

mindset.

MatPower can only be executed in MATLAB environment which itself not free

and open source software. It is also not widely used in the industry. Instead, to

11

build the platform, an industry partner (IncSys), which is active in training power

system operators, was chosen. The collaboration with IncSys had a twofold goal:

improve the performance and quality of their power analysis libraries, and to build

a full-fledged simulation platform on top of those libraries. IncSys uses Java [10]

programming language to develop their power analysis library and modeling. Java is

a general-purpose, fast, object-oriented programming language with a huge set of 3rd

party libraries, and works very well with web technologies. IncSys’ power analysis

library is called OpenPA [11].

In the next chapter, the software system platform based on the criteria laid out in

this section is described. The usage of this software system to conduct various studies

and download comprehensive reports is also illustrated.

In chapter 3, I will present two case studies to show how sophisticated FDI attacks

can be carried out against a power system and how the platform helps the user quickly

and easily understand the attack process and its consequences.

12

Chapter 2

PLATFORM OVERVIEW

This chapter describes in detail the architecture of the designed software platform.

The designed platform was then implemented to test EMS operations and various

cyber attacks. The starting point the discussion is the conceptual event loop, which

is then translated into a software architecture. Examples of how each building block

works by directly running experiments using the deployed platform are also given.

2.1 Platform Architecture

Figure 2.1 shows the concept and data flow in the general EMS loop. This loop

is the conceptual basis for the architecture design, although it is important to note

that an industrial-grade EMS may have many more components than shown in figure

2.1. The final software platform is capable of modeling the loop in figure 2.1 and also

allows building new and higher-level functionalities on top of it.

Figure 2.1: General EMS loop: solid arrows show the data flow in the cyber system.
Dashed arrow shows the concept of SCADA acquiring measurements from the physical
system.

The first step is to transform the simulation goals laid out in chapter 1 into a list

of requirements that can be met by a software system:

13

• The platform should be able to simulate the loop in figure 2.1 using a discrete

event simulation (DES) model. Time advance will be initially simulated by the

user clicking the next step.

• The platform should be able to run the power system studies and other functions

in a reasonably short time (ideally as fast as an industrial EMS system).

• The platform should be able to efficiently process power system case data, load

the case and make all the data in the case available to the client code in an

appropriate format (graph, matrix, semantic objects, etc)

• The platform should be able to run optimization software capable of solving

linear programming models for the SCED study.

• The platform should be able to present the system and the results of different

simulation stages in comprehensive reports or visualizations to the user.

• The platform should have a modular design to facilitate later addition of new

functionalities.

For the rest of this chapter, unless stated otherwise, C4 modeling language is used

to describe the software systems and its components. C4 (c4model.com) defines four

levels for a software architecture:

1. Context: defines the boundaries of the system and how it generally interacts

with the users.

2. Container: zooms into the software system and shows the main building blocks

that compromise the software system.

3. Component: zooms into individual containers and shows the inner blocks of a

container.

14

4. Code: very detailed view of each component.

Using the concepts in C4, figure 2.2 shows a container-level view of the simulator.

Figure 2.2: Cybersecurity simulation platform architecture using C4 modeling lan-
guage. Unless labeled otherwise, the arrows denote a “uses” relationship between the
containers. Each blue box denotes a “container” in C4 language.

In figure 2.2, the function of each container is printed in boldface; the technologies

used to create the container are listed in brackets below the title; and a brief descrip-

15

tion of the container is given in the bottom of each container. To summarize, this

is a client-server application ultimately delivering a single page application (SPA) to

the user. The modules in figure 2.2 can be divided into two broad categories from

a conceptual point of view: modules that make power system functions (e.g. power

flow) available, and modules that provide user interface functionalities and transfer

data (e.g. web application).

Power system modules in diagram 2.2 largely depend on the software package from

IncSys called OpenPA [11]. It is important to note that the term “OpenPA” is used

to describe a collection of software packages some of which can be used independently

of others. At the highest level, OpenPA can be seen as a collection of three packages

written in Java [10] programming language:

• OpenPA core: responsible for reading and storing the model in memory as

well as providing an interface for the model to interact with the power system

algorithms.

• OpenPA power library: power flow, state estimation, and contingency analysis

algorithms reside in this package

• OpenPA tools: matrix operations, mathematical functions, case file format def-

initions, and PSSE and ohter format converters. The Tools package is not

shown in the architecture diagram to avoid clutter and is mostly omitted from

detailed discussion unless necessary.

To avoid ambiguity, I refrain from using the term “OpenPA”. Instead, I explicitly

refer to the module being used in the context of the simulation platform regardless

of the party who has developed that module or the module’s exact code hierarchy.

Going back to figure 2.2, four modules were originally developed by Incsys: OpenPA

core, power flow, state estimation, and contingency analysis. I have collaborated with

16

Incsys and other team members to improve and debug these module and have also

contributed the rest of the modules in figure 2.2.

2.2 Power System Analysis Modules

In this section, a review of power analysis library modules provided mostly by

the industry partner (IncSys) is presented. Understanding the structure and inter-

communication of these modules is crucial to obtain an accurate idea of how the

platform operates. Such knowledge also facilitates future development efforts.

2.2.1 OpenPA Core

As its name implies, this module sits at the core of all the platform operations.

This module efficiently stores, queries, and presents the data, equipment information,

and the network structure of the power system.

OpenPA core uses a sparse graph data structure called LinkNet [12]. LinkNet

divides the network graph into nodes, branches, and topology. Nodes and branches

are stored as indexed lists, and the topology is stored by defining links between the

appropriate node and branch indices.

Podmore [12] describes in detail the implementation of LinkNet. He also proposes

algorithms to count connected islands in the graph, find a certain bus, branch, or

connection list of a bus, and calculate and triangulate the Jacobian matrix during

the fast decoupled power flow analysis. These algorithms have been implemented in

OpenPA core.

I have not compared the performance of LinkNet data structure and its associated

algorithms to other available sparse graph data structures. On the other hand, I have

never experienced a performance hit that could be directly related to the usage of

LinkNet.

17

Object Oriented Modeling of the Power System

LinkNet is useful and efficient in solving network equations. But it was originally de-

signed using FORTRAN programming language. OpenPA core additionally provides

an object oriented model to represent the network. This representation abstracts over

LinkNet operations and case data loading and provides a unified interface to commu-

nicate with the network. For example, to obtain a list of all the lines connected to a

bus with a given ID (busID), one can use the following code:

LineList lineList = model.getBuses().getByID(busID).getLines();

OpenPA core enforces unique ID constraint on its model objects. Each element

defined in any of the case files must have a unique string ID for the OpenPA core

to correctly identify it, even if the elements are not of the same type. The ID of a

transformer cannot be identical to the ID of a transmission line. It is the modeler’s

responsibility to ascertain that the input data files satisfy the unique ID constraint.

The core package has another package inside it named impl. This package is

responsible for implementation of the abstractions defined in the core package. To

understand the relationship between these packages, modeling of loads in the power

system is analyzed. Figure 2.3 shows how loads are modeled in OpenPA.

18

Figure 2.3: Diagram for class Load hierarchy in OpenPA core using unified modeling
language (UML). A (C) icon denotes class, a (|C|) icon an abstract class, and a (I)
icon denotes an interface. Dashed lines denote interface implementation and solid
lines denote inheritance. An unlocked lock icon means these classes or interfaces have
public access. Blue color is associated with classes, green color with interfaces, and
white is associated with generic containers.

The object-oriented concepts such as inheritance is explained in [13]. In short,

a class is a template that can hold both state and behavior, while an interface can

only define behavior. Note that during model loading, OpenPA core actually only

instantiates a LoadListI object. However, this object will have all the properties and

methods of the classes in its inheritance chain up to BaseObjectCore. Depending on

the usage, an instantiation (allocating memory) of a concrete class (colored green in

figure 2.3 effectively means a union of all the classes up to he topmost class in the

hierarchy chain is created.

19

Also the load list object is loaded lazily, that is, it is only retrieved when a method

requests data from it for the first time and then remains in memory. OpenPA core

provides many object properties at list level. If the user wants to obtain data for

a single load, they should instantiate that load by using its index or its ID in the

load list. This design improves caching performance and general efficiency of model

loading and data retrieval.

The LoadListI object inherits from OneTermDevListI which in turn is a container

for OneTermDev objects. OpenPA objects are mostly co-variant. To see what this

means, the relationship between the Load object and its container (LoadList in figure

2.3) should be analyzed. A Load object is a sub-type of OneTermDev, and also a list

of Loads is a sub-type of List of OneTermDevs. In other words, if class A is a subclass

of class B, a container of A’s is also a subclass of a container of B’s.

Other power system objects also follow a hierarchy similar to figure 2.3. To aug-

ment the model with new properties, the programmer will need to add new abstract

classes and associated methods in the core package and also create actual implemen-

tation of the new model objects in the impl package. As explained above, using

inheritance helps the programmer add existing behavior in OpenPA core to her new

modeling objects. Due to co-variance in OpenPA core, properties are usually imple-

mented both at single object level and at list level. For example, figure 2.3 shows

that a power system load should be modeled as a Load object but the programmer

will also need to model LoadList to add list-level behavior to the modeled object.

Modeling also involves figuring out what inheritance relationships need to be defined

between the new model object and existing OpenPA classes. Finally, the programmer

will need to define the new data field as a column from one of OpenPA CSV files and

add code to the model loader to read the data correctly from the case files.

A power system is very complex and implementing new algorithms may necessitate

20

adding new properties to the model. For example, when my team wanted to develop

a SCED module, I added piece-wise linear cost and ramp rate parameter support to

OpenPA core. Figure 2.4 shows a simplified UML diagram of the final model.

Figure 2.4: Piece-wise Linear Cost Modeling with OpenPA Core

The diagram in figure 2.4 has been simplified to emphasize the power of using

inheritance in extending OpenPA core. In this diagram, I created only PWLCost,

PWLCostList, and PWLCostListI classes. The rest of the behavior was added auto-

matically by adding inheritance relationships with existing OpenPA core classes.

Note that the programmer can always maintain new model properties by writing

code that reads the data from a separate file and synchronize that data with the

OpenPA core model objects. However, adding direct support to OpenPA core for

21

property loading is the preferred practice since it allows OpenPA core to efficiently

manage the new property. Making OpenPA core responsible for all model handling

operations also makes maintaining and debugging the code easier in the future.

2.2.2 Power Flow

OpenPA implements a fast decoupled power flow algorithm described in chapter

3 of [12] and in [14]. The general flow of the algorithm is shown in figure 2.5.

Figure 2.5: Power Flow Algorithm Flow Diagram

OpenPA power flow (OpenPA PF) adds a few adjustments and improvements to

22

this general algorithm. OpenPA PF allows the programmer to configure the thresh-

old for convergence and if the mismatches are close to this threshold, it starts dis-

tributing the slack mismatch among generators where each generator picks up slack

proportional to its maximum operating active power output. It also does not allow

generators to exceed their capability limits during this process.

In addition, OpenPA PF detects if there are multiple energized islands in the

system and runs the power flow for each island separately and reports the results.

During this process, OpenPA PF automatically assigns reference buses to each island.

OpenPA PF chooses reference buses based on node degree of the bus and its generation

capability. OpenPA PF also monitors SVC (Static Var Compensator) devices and

applies appropriate changes to the B” matrix as the algorithm progresses.

Testing Power Flow With the Platform

For this section, a power flow study is conducted on the Polish system using the

platform. This case represents the Polish 400, 220 and 110 kV networks during winter

1999-2000 peak conditions. It is part of the 7500+ bus Europen UCTE system. To

decrease the number of buses, the tie lines to foreign networks were replaced by

artificial load or generator buses (180-186). Multiple generators at a bus have been

aggregated [9].

Figure 2.6 shows power flow configuration options available in OpenPA PF which

the platform presents to the user via an HTML form. Figure 2.7 shows the results

after the power flow algorithm converges. The user can choose to render the system

graph based on various criteria. For example, figure 2.8 shows the power system

graph with branch widths reflecting line flow.

If the user wishes to investigate the power flow algorithm more, they can do so

by downloading full power flow report. I used this report to show how OpenPA PF

23

Figure 2.6: Power flow options form

Figure 2.7: Power flow results in the platform user interface

implements its distributed slack algorithm. As mentioned above, instead of simply

assigning all the slack to a single reference bus, OpenPA PF distributes it among

generators based on a capacity profile it builds for each island. Figure 2.9 shows how

some of the generators pick slack at each iteration.

In figure 2.9 each bar shows the total amount of slack picked by a generator during

all iterations (6 in this case). Each colored section of each bar shows the amount of

slack picked during a specific iteration. These colored sections are named “Change

Slack - i” in the legend. For example, it can be seen that the generator at bus 18

picks more than 45MW of the total mismatch during the course of the power flow.

Again, this is in stark contrast to some traditional power flow algorithms that simply

assign all the mismatch to one generator.

24

Figure 2.8: Branch flows after power flow in the Polish system. Higher line widths
denote larger flow values through the branch.

2.2.3 State Estimation

OpenPA provides an state estimation module (OpenPA SE). Given a set of system

measurements z, set of states x, state estimation problem can be formulated as (bold

letters denote vectors, capitalized bold letters denote matrices):

z = h(x) + e (2.1)

minF (x) = (z− h(x))TW(z− h(x)) (2.2)

25

Figure 2.9: Change in slack distribution after each iteration in power flow algorithm:
each bar shows the total slack picked by the generator during the course of the power
flow. Each colored section shows the slack picked in that specific iteration.

The solution is:

∂F (x))

∂x

∣∣∣∣
x=x̂

= −2JT
h (x̂)W((z− h(x̂))) = 0 (2.3)

In the above equation, J is the Jacobian matrix, and W is the weight assigned to

noise level for each measurement. The objective of the above formulation is a form of

weighted least square formulation where the objective is to minimize the sum of the

squares of the weighted deviations of the estimated measurements, ẑ, from the actual

measurements, z [15]. One problem with the above formulation is the existence of

zero-injection buses (buses that have neither load or generation). For these buses,

there is actually no need to estimate the state because it is perfectly known. If instead,

a large standard deviation for noise is assigned to the measurements at these buses

to force the estimate to zero, the solution matrix will become near singular.OpenPA

SE uses QR decomposition [15] to address the aforementioned issue. OpenPA SE

depends on SuiteSparse [16] library for sparse matrix factorization operations.

If the SE converges and a solution is found, OpenPA SE tries to assign those

26

measurements to the network elements. The main idea behind the state estimation

is to find a power flow that best fits the measurements. Still, due to noise, there

could be some discrepancies in the resulting power flow. OpenPA SE reconciles these

discrepancies by first changing loads and then generator outputs if there are also

generators in the buses where OpenPA SE distributes extra injections. Thus, in

effect, OpenPA SE also acts as a load estimator.

OpenPA SE also contains a bad data detection which I originally developed based

on the code other team members at Arizona State University had contributed. This

module calculates the sum of the squares of the residuals (the weighted differences

between estimated and actual measurement) after the convergence of the algorithm

and compares this sum with a threshold obtained from the inverse Chi-Square dis-

tribution. Inverse chi square distribution takes a probability value and degrees of

freedom for the system and returns a threshold for the acceptable error calculated

above. The probability is usually set at 95%. The degrees of freedom is obtained by:

degreesfreedom = nmeas + n0injmeas − nstate (2.4)

in which nmeas denotes number of measurements, n0injmeas is the number of zero-

injection measurements (buses where there is no load or generator), and nstate stands

for the number of states (which is usually all the voltage magnitudes and voltage

angles). Note that we explicitly include zero-injection buses in calculating degrees of

freedom because despite having full confidence in the injection values of zero-injection

buses, we still model them basically as measurements.

If a bad measurement is detected, state estimation is executed again after removal

of the found bad measurement. OpenPA SE repeats this loop up to 50 times before

stopping and reporting all the found bad measurements. Figure 2.10 shows a general

overview of the SE package main components. In addition to these components, SE

27

package also performs observability analysis. However, observability analysis has not

been used in the platform. Figure 2.10 shows the architecture of the main state

estimation loop. Every time a solution is found, bad data detector tests the solution

and sends back the results of the test to the solver.

28

Figure 2.10: State Estimation components (based on C4 modeling language)

OpenPA SE gets its measurements from a set of pre-calculated values in the case

files. The case files also contains the confidence values for each measurement. Since

the noise generation algorithm simply adds Gaussian noise, confidence value is the

factor that determines how much noisy a measurement can get. Consequently, since

zero-injection buses have no device attached to them, there is absolute confidence that

the measurements on those buses cannot be noisy. Instead of setting some arbitrary

large confidence value to reflect this fact, OpenPA core has a Boolean property for such

measurements named IsTelemetered. By setting that property to a value of false,

OpenPA SE solver will use a default value of 10−4 for the noise standard deviation

of such non-injection buses in the QR algorithm. Therefore the programmer does

not need to explicitly assign confidence values to zero-injection buses like some other

state estimation packages.

29

Testing the Bad Data Detector With The Platform

The performance of the bad data detector can be demonstrated in action by manu-

ally corrupting a few measurements in the system. The platform allows the user to

download flow or injection measurements at any moment. The user can also upload

data to the case by choosing “Upload Data to Model” command from the menu bar.

I used a slightly modified version of the ACTIVSg system [17] for this test. This

case is a 2000-bus power system test case simulating the Texas electrical grid and is

entirely synthetic. It is built from public information and a statistical analysis of real

power systems.

Figure 2.11 shows a plot of the Texas synthetic system generated by the single page

application in the platform with the lines with corrupted measurements highlighted

in red. Figure 2.12 shows a screen shot of the SE results with the found bad data.

Although only four flow measurements were changed (from-side active power and to-

side active power of the two branches) the bad data detector also found that these

changes would lead to a mismatch in the injection of bus 7400. The user can also

investigate more by clicking an element in the table to zoom on the clicked element.

2.2.4 Contingency Analysis

OpenPA has a real time contingency analysis (OpenPA RTCA) module. RTCA

gets a set of contingencies (devices to set out of service) and runs power flow for

each contingency. It then reports all the violations in the network resulting from

each contingency. OpenPA RTCA relies on power flow and is capable of handling

contingencies that lead the network to be divided into multiple islands. OpenPA

RTCA is also capable of running the power flows in parallel which means it performs

better if there are more CPU cores available to it. Using RTCA with code is very

30

Figure 2.11: ACTIVSg (Texas synthetic) system network graph. The red branches
are the branches with the bad data

Figure 2.12: The results of running state estimation and bad data detector on the
ACTIVSg (Texas synthetic) system.

straightforward. The programmer just needs to define her own RTCA class and

extend it from the existing BasicContingencyManager. Such class will automatically

be executable.

OpenPA RTCA has a report method which collects and processes the result of

every power flow run as they conclude. Since every object in OpenPA system has a

31

unique ID, a hash table is a natural way of storing the contingency results. The key

in this table will be the ID of the contingency and the values are the alarm reports.

Since power flows are executed in parallel, storing the results in a regular map

could lead to data corruption. To avoid concurrency issues in client applications,

I have used a concurrent hash map (from Java programming language) to store the

results of parallel execution of RTCA. A concurrent hash map automatically synchro-

nizes the keys and prevents simultaneous writing to the same key.

After running a power flow for a certain contingency, OpenPA RTCA detects

network violations based on configurable thresholds. OpenPA RTCA can also assign

MONITOR, WARNING, or VIOLATION labels depending on the severity of the

actual violation. To generate the report and determine which label should be assigned

to each contingency, OpenPA RTCA uses the following definitions:

1. Long term rating (LT rating): the loading under which the line can safely

operate up to 24 hours.

2. Short term rating (ST rating): the loading under which the line can safely

operate up to 4 hours.

3. Emergency rating: the loading under which the line can safely operate up to 15

minutes.

The above line ratings are stored in the OpenPA case files and are loaded on request

by OpenPA core. OpenPA RTCA also assigns default threshold values to alarm

labels. These threshold values can be configured using the RTCA builder:

1. MONITOR: set to 90% by default.

2. WARNING: set to 90% by default.

32

3. VIOLATION: set to 100% by default.

At the start of a contingency analysis, OpenPA RTCA first runs a base case (with-

out any contingency) power flow. For the base case power flow, LT ratings are used

to determine branch overloads along with the default threshold values. Afterwards,

OpenPA RTCA iterates over the contingency list, removes each contingency and runs

another power flow. For this stage, emergency ratings are used along with default

thresholds. For example, assume a line has a LT rating of 90MVA, and an emer-

gency rating of 104MVA. A line loading of 90MVA in the base case will raise a

VIOLATION alarm, but it will not raise any alarm if there is a contingency. On the

other hand, a line loading of 104MVA will raise a VIOLATION alarm both in the

base case and the contingency case.

Obviously, OpenPA RTCA module depends on the power flow module described

in the power flow section. If the programmer wishes to run OpenPA RTCA with

different power flow settings than OpenPA PF, they can create a configuration object

and pass it to the RTCA builder.

RTCA’s main usage in the platform is to provide security constraints for the SCED

module. To avoid problems with contingencies that lead to creation of multiple islands

in the network, RTCA should remove such contingencies. I have coded and used a

bridge finding algorithm that traverses the network branches, finds, and eliminates

all bridge branches using Tarjan’s bridge finding algorithm.

Moreover, depending on the system under study, the programmer may want to

filter contingencies based on given criteria. I created a fluid interface using the builder

pattern for the RTCA that allows the programmer to configure all the parameters.

The filtering works by the programmer passing a predicate (e.g. voltagelevel >

300KV) to the RTCA builder. This function is applied to the contingencies and to

the result set to filter out any item that does not satisfy the predicate.

33

Testing Contingency Analysis With the Platform

In this subsection, a contingency analysis on the Polish system is conducted. Figure

2.13 shows the RTCA configuration form which the user can use to define threshold

levels for alarms.

Figure 2.13: Contingency Analysis options in the platform

Figure 2.14 shows the tabular results of the CA returned by the platform and

rendered by the SPA. The results are sorted by line loading percentage. The user also

has the option to not consider a contingency by unchecking the “Active” checkbox

corresponding to each contingency.

I used Tableau visualization software to create a better visualization of the con-

tingencies using the contingency report the platform makes available for download.

Figure 2.15 shows the resulting contingency matrix diagram.

The platform parses the contingency analysis results in an interactive table. The

user can search and filter monitor and contingency branches using the results table

provided by the platform. She can also sort the contingencies based on any column.

It should be emphasized that in this context, “contingency” is the branch that goes

out of service and causes the “monitor” branch to overload. Note that a simple

contingency could cause multiple monitor branches to go into warning or violation

state.

34

Figure 2.14: Contingency analysis results table in the platform

2.2.5 Security Constrained Economic Dispatch (SCED)

SCED solves an optimization problem to determine the set points for network

generators so they operate with least cost and also satisfy all the reliability constraints

obtained from running RTCA. SCED module has been developed by a former team

member and PhD candidate Xingpeng Li. By assuming a simple DC model for the

network, SCED simplifies the problem to a linear programming problem. SCED

uses Gurobi [18] optimization software to solve the formulated linear programming

(LP) problem. The constraints for the LP are line flow limits, generator production

limits, generation and consumption equality constraints, and contingency constraints

obtained from RTCA. A detailed formulation and explanation of the optimization

problem is given in [19]. Figure 2.16 shows the general architecture of the SCED

package. Note that SCED uses the whole RTCA package (container in c4 vocabulary).

SCED also needs network sensitivity factors [20]. OpenPA Tools package provides

the necessary functions for sensitivity factor calculations.

35

Figure 2.15: Matrix diagram for system contingencies. VIO means violation, and
WAR means warning level alarm. Each cell shows the amount of line loading on the
monitored branch if the contingency branch (the column) is set out of service.

Testing SCED with the Platform

To illustrate the operation of SCED, I used the same Polish system described in

section 2.2.2. Figures 2.17 and 2.18 show all the options the SCED model builder in

the back end may use to build a SCED object. Figure 2.19 shows the results table

created by SCED. The results are sorted in a descending order by the amount of

change in generator set points.

36

Figure 2.16: SCED Components Diagram

37

Figure 2.17: SCED Options Form 1

Figure 2.18: SCED Options Form 2

The user can also choose to render the nodes based on the change in generator

dispatch calculated by SCED. Figure 2.20 shows how the generators dispatch points

changes after a SCED.

It should be noted that at this point, SCED dispatch updates are applied auto-

matically to the generators and there is no operator review process in the platform.

The user can only see information regarding the change. But it is assumed that all

the changes are accepted and applied to the generators, hence, making the next loop

start with a new dispatch point.

38

Figure 2.19: SCED Results Table

Figure 2.20: Dispatch differences after SCED: the circles with larger areas denote
larger change after re-dispatching according to the SCED solution.

39

2.2.6 Anomalous Data Detector

This detector has been contributed by the Arizona State University team member

and PhD candidate Andrea Pinceti. It uses a machine learning techniques and a set

of historical loads to detect an anomalous data point. The code for the detector has

been written entirely in MATLAB programming language. The platform gets model

load data from OpenPA and uses the Java MATLAB engine to start a MATLAB

process and pass the load vector to the MATLAB function which in turn detects if

the load vector is anomalous or not. As figure 2.1 shows, at this point, the system

does not do anything if an anomalous load is detected. In other words, this detector

only has only advisory role and will not change the system state in any way. The

MATLAB function returns all detection parameters to the calling module. These

data can be a basis for later decision making and operator review.

As mentioned, this module is directly executed inside a MATLAB process. How-

ever, using a MATLAB-Java connector, the platform starts the MATLAB process in

the background and maintains it in the memory. Every time this module runs the

MATLAB function, the platform passes the data between the main Java application

to the MATLAB process and retrieves the results.

40

2.3 Web Application

To glue together all the analytical libraries, the visual front end, and the DES event

loop, a web application has been created in Scala [21] programming language using

client-server application model. Scala is a java-like programming language which

unifies object-oriented and functional programming styles [21]. The reason for using

Scala is its brevity, powerful collection libraries, and the ability to write semantically

clear code. To develop the web application, a web application framework called

Play (www.playframework.com) ,which supports both Java and Scala programming

languages, was chosen.

Figure 2.21 shows an overview of the components in the web application.

Figure 2.21: Web Application Components

41

Web application follows the Model-View-Controller (MVC) paradigm:

1. Models: responsible for sending and receiving data from the underlying case

managed by OpenPA

2. Controllers: responsible for routing the requests to the appropriate model and

send back the results to the view

3. Views: responsible for result presentation

The goal of using MVC is mainly separation of concerns. This architecture allows

virtually independent development of each component without severely affecting other

components. For example, more sophisticated simulation models can be used in the

back-end while the front-end application can also change completely for educational

or industrial purposes. As long as the messaging protocol between the two remains

consistent, it is not hard to update or even completely re-write the front-end or the

back-end without breaking the other one.

The web application also uses dependency injection (DI) to make the dependencies

of each component explicit. Google Guice framework was chosen to handle depen-

dency injections [22]. Each modules’ dependencies are declared at the beginning and

are explicitly injected by our DI framework. DI also handles the life cycle of both

models and controllers. For example, our AppModel (2.21) module keeps the power

system state. By declaring this module as Singleton, DI framework ensures that

this object is maintained in memory as long as the application is running. This is

in contrast to declare a static object or manually maintaining instances and both

increases efficiency and makes code maintenance easier.

The web application also follows REST [23] principles. Every resource (a function-

ality or piece of data in the application) is assigned to a unique path which enables

42

retrieval through REST actions (GET or POST). Moreover, the application oper-

ates in a stateless manner: each request from the client is handled independently

from other requests and the application does not store any state between requests.

Of course, a power system has a certain state at any point in time. As mentioned

above,the responsibility of managing state has been delegated to the dependency

injection framework.

An example clarify things with an example. When the user requests a power flow,

the web application first receives this request via a controller. It then instantiates

a PFModel object which creates and configures a FDPowerFlow object which in turn

is responsible for the actual power flow analysis. After power flow analysis is over,

the underlying case is updated by calling updateResults() method from OpenPA

core. This method directly changes the data structures managed by AppModel. Since

AppModel is a singleton is always maintained in the memory, the change in state will

be permanent.

2.4 OpenPA Parser

I have written an OpenPA parser in Scala programming language. OpenPA parser

is a simple mini-language that the programmer can use to query OpenPA core’s

in-memory case model and obtain information from it. Table 2.1 summarizes the

language keywords and operators. The Bus and Branch sections of the table define

the properties the user can query from the power system. Each column in the section

defines the property type. For example, the property voltagelevel is a numerical

property while the property id is of the type string.

For example, to get all buses with voltage level above 300KV, the programmer

can use the following code:

voltagelevel > 300

43

Bus properties Branch properties Operators

numerical text boolean numerical text boolean numerical text boolean

voltagelevel id pinj telem fromp id fromp telem >= eq is

pinj station qinj telem pfrom frombus top telem <= contains and

qinj name pinj bdd fp tobus fromq telem == or

vmpu owner qinj bdd pf name toq telem !=

vm area fromq index fromp bdd <

va index qfrom top bdd >

active load genid fq fromq bdd

active gen qf toq bdd

X

R

flow

ltrating

Table 2.1: OpenPA parser mini-language. The table has three sections. Each section
has three columns which define the property types.

This command will programmatically be translated to (Scala notation):

model.getBuses.filter(bus => bus.getVoltageLevel.getBaseKV > 300)

To retrieve a line with a known id, the following code can be used:

id eq ’ln-123-124’

For which the programming instructions would be:

model.getLines().getByID("ln-123-124")

Figure 2.22 shows the partial abstract syntax tree of the parser. Operands will be

translated to the appropriate function based on the operand type and each operand

has its own parser which is shown in figure 2.23.

44

Figure 2.22: OpenPA Parser Abstract Syntax Tree

Figure 2.23: OpenPA Parser Inheritance Hierarchy

This mini-language provides a simple way to acquire data from the model using

human-like language. This can be useful when trying to query the model remotely.

The language can also be extended to enable it to send commands to the model as

well as retrieving data from it. OpenPA parser is used in the single page application

45

(SPA) to create system graph visualizations based on user criteria.

2.5 Single Page Application

The single page application (SPA) has been written in JavaScript and HTML

programming languages. It uses Bootstrap, JQuery, and CytoscapeJS [24] libraries.

It is responsible for visualizing and delivering reports to the user as well as receiv-

ing user commands which can be either a request for normal analysis or some form

of data injection request. JQuery is a well-known general-purpose JavaScript li-

brary. CytoscapeJS has been developed by bioinformatics researchers, although it is

a general-purpose visualization library with a lot of out-of-the-box graph manipula-

tion capabilities. The main purpose of the SPA is to facilitate working with various

OpenPA packages and libraries through a visual interface. I have Incorporated al-

most all the options available through direct writing of code in the SPA. The user can

get almost everything OpenPA applications have to offer without writing code. This

makes the SPA an ideal tool to use in classrooms and presentations. The following is

a list of features currently supported by the SPA:

• The user can configure any study with all the available options through a graph-

ical user interface. After running the study, the results can be examined on the

network graph or by downloading a summary report generated by the server.

• Ability to filter the elements based on the OpenPA parser mini language. The

user can choose to assign element colors, node sizes, and line widths according

to the results of the filtering operations.

• The user can change node sizes or branch widths based on definable criteria,

such as: generation, load, dispatch changes after SCED, line flows, and line

limits.

46

• The visualized graph is interactive. The user can click on nodes and links to

see corresponding system data; the user can also drag nodes to another location

and keep the layout by saving it on the server.

• The SPA allows the user to use CytoscapeJS layout algorithms such as Cose

to obtain an initial rendering if there are no geographical data available for the

system.

• The SPA allows the user to view the simulation loop and the current stage

of simulation with a graphical diagram. The user can also interact with the

diagram directly.

The SPA also has its own modular architecture. Figure 2.24 shows the general

architecture of the SPA. The graph component and the form component reside in

their own independent modules and can only be fetched via calls from the main even

handler application.

In this chapter, I went into detail about different building blocks of the simulation

platform. Although I mainly discussed IncSys’s power analysis libraries and the

options they provide for the programmer, I also showed how those libraries can be

used to create a modular discrete event simulation event loop based on a client-server

model.

In the next chapter, I show how the platform can be used to simulate FDI attacks

and analyze the consequences. I also show how the user can make use of the platform’s

user interface to create sophisticated visualizations to help clarify the attack both for

expert and non-expert users.

47

Figure 2.24: SPA Components

48

Chapter 3

CASE STUDIES

In this chapter, I go over two different case studies carried out using the EMS

platform and present the results and discuss how the user can use the tools available

in the platform to design, analyze, and showcase two successful FDI attacks. As

discussed in chapter 1, the attack described in [8] is simulated. Rather than going

into the theoretical notions, the goal is to test the attack using the simulation platform

and analyze the consequences. I also present an overview and discuss possible future

work regarding the simulation platform.

3.1 General Attack Mechanism

Figure 3.1 shows the simulation loop the platform presents to the user. This

diagram is a simplified version of 2.1. The user can interact with the diagram and

select the simulation step they desire. The user can run the operations in the general

EMS loop (figure 2.1) using the following recipe:

1. The user runs a power flow study to simulate SCADA measurements across the

system.

2. The user then changes hats and acts as an operator who runs an state estimation

study in the control room. FDI attack injection can also be carried out at this

stage. The “Bad Data Detection” box and the “Anomalous Data Detection”

box will use the results of SE to check for bad or anomalous data according to

their corresponding algorithms. The user cannot interact with these boxes.

3. The next step in the simulation is the CA box. Again, the user can fully

49

configure the CA in its corresponding tab. Clicking on this box will request and

ultimately execute a contingency analysis using OpenPA RTCA.

4. Finally, the user can run a SCED analysis to set the new dispatch points for all

the active generators in the system.

Figure 3.1: Simplified EMS loop diagram in the simulator

While the user can potentially inject data at any point in this process to simulate

attack or an anomalous event, to carry out an FDI attack, the user should inject

the false measurements during the state estimation phase of the EMS. Currently, the

platform does not have the capability to calculate an attack vector directly. The at-

tack vector and the resulting measurements are calculated offline (although the offline

calculation relies on power flow and state estimation reports from the platform). The

user can then inject the prepared measurements during state estimation by clicking

on the “Attacker” box.

50

3.2 Attack Against Polish System

The attack described in [8] is tested with the following modification: instead of

misleading operators to create line overloads in the system as [8] suggests, this attack

will create false contingencies in the system. This means an unforeseen overload

will only happen if a contingency occurs in the system. In other words, this attack

compromises the N − 1-secure state of the network (explained in chapter one) that

the operating standards require maintaining.

The attack process is similar to the normal EMS loop operation except that the

user may upload pre-calculated false measurement data after state estimation. The

process has become simpler by adding a box to the simulator that automatically

injects the pre-calculated false measurements to the model. The user can even upload

multiple false measurements files to the server and choose to inject any of them. In

any case, the user can always use the platform’s “Upload Data” feature to inject

measurements.

As noted in chapter 2, the bad data detector should be able to sense relatively

small changes in the data. However, the false measurements in this case have been

calculated using a bi-level optimization problem and are specifically designed to pass

the bad data detector. This fact is proven after the BDD does not raise any alarm

over the false data. However, the false measurements cannot pass the anomalous data

detector since that detector uses historical load data.

The working assumption is that the operators are unaware of a false data injection

attack and continue to believe the data out of the state estimator are authentic. These

measurement data results in radically different bus injection values than the values

in the real world. This change in injection is construed as a change in loads as

generators are assumed to be under operator control and having low probability of

51

sudden changes. Unaware of the attack, the operator continues to operate the cyber

system by running RTCA and SCED and applying the SCED dispatch setpoints to

all the generators in the system. This is a crucial point in the attack process since the

cyber and the physical systems now behave in completely different manners. To see

this difference, the user can first check the cyber system by running another round of

power flow (to simulate SCADA measurements), state estimation, and RTCA. The

reported contingencies are almost the same as before the attack and give no reason

for suspicion. The user may save these results either by downloading them or clicking

“Save Contingencies” button in the “Contingency Analysis” tab which will save a

copy of the contingency map in memory.

To analyze the physical system with the dispatch resulting from the false mea-

surements, the user can simply click the “Reset Loads” button shown in the main

simulation diagram. Clicking this button effectively switches the system from cyber

to physical. Note that the dispatch is still the same from the previous round of EMS

meaning that the dispatch is induced by the false data. After resetting the loads,

a power flow and a contingency analysis are executed. There is no need for state

estimation since it is the physical system that is being simulated.

At this point the attack is complete: two RTCA studies have been executed, one

in the cyber world and one in the simulated physical world. Normally it is expected

that the RTCA reports to be very similar. However, figure 3.2 tells a different story.

In figure 3.2, each dot represents a contingency, the horizontal represents the

line loadings in the cyber world, and the vertical axis stands for the line loadings in

the physical world. This diagram. In other words, the horizontal axis is about the

contingencies the operator sees, and the vertical axis represents the contingencies in

the physical world. If the cyber and physical world behaved the same way -as expected

from a normally functioning EMS - there should have been no discrepancy. On the

52

Figure 3.2: Attack consequences diagram for the Polish system. The guidelines
denote the thresholds for various alarms.

contrary, figure 3.2 shows that some very serious contingencies exist in the physical

world that the operator is not able to see in the physical world. This means despite

consuming considerable time and energy, the system would not operate without loss

of lines in a contingency event, completely defeating the purpose of RTCA and SCED

in the first place in addition to possible severe consequences for the network.

Plotting the diagram in figure 3.2 would not have been possible without the fea-

tures available from OpenPA RTCA module. To obtain hidden contingencies, I ran

a RTCA with lower threshold values. This made it possible to view branches that

would not normally show up. For this plot, I used RTCA threshold values as low as

80%.

The worst consequence of the attack is a 13% overload in the physical world which

shows only as a WARNING (94% loading) level alarm in the cyber world. Figure 3.3

shows these two branches marked on a graph of the Polish system. If the 400KV line

goes out of service, the 220KV will be forced to pick up more load and that will cause

thermal overload violations. The attack has deceived the operators to dispatch the

53

Figure 3.3: The worst overload in the physical world in the Polish system attack.
The branch marked in black (ln-67-138-1: 400KV line) is the contingency branch and
the branch marked in red (ln-66-152-1: 220KV line) is the monitor branch.

generators in a way that increases the severity of such overload; it also hides the true

contingency from the operator eyes.

3.3 Attack Against Texas Synthetic System

Our team has conducted another study using the ACTIVSg (Texas synthetic)

system [17]. Due to design issues, the team decided to derate a few lines to make

SCED feasible for this system. The list of lines to be derated are available from the

SCED options 2 tab. The user can also experiment with further deratings if she

wishes so.

The attack process is similar to the Polish system. The attack consequences

diagram (obtained using a similar method to the Polish case) is shown in 3.4.

54

Figure 3.4: Texas System Attack Consequences

Unlike the Polish case, most contingencies in both cyber and physical world seem

to have the same overload values. But the attack has succeeded in creating a very

severe hidden contingency. Figure 3.5 shows the geographical locations of the lines.

They are in the same approximate geographical location (Wenatchee, TX).

55

Figure 3.5: Geographical location of the lines affected most by the Texas system
attack. Both lines are located in Wenatchee, Texas. The line marked in black is a
500KV line; when it goes out of service the 161KV line marked in red will overload

3.4 Conclusion and Future Work

I reviewed power system operations and planning in smart grid concepts, justified

the need for power system simulation, then proposed a software architecture for im-

plementing the simulator using an open source power system analysis library created

by our industry partner. I also explained in detail various parts of those libraries and

showed how the programmer can extend them to her benefit.

I also coded and deployed the designed simulator in a modular fashion. This

platform removes the need for coding and compiling Java programs as it makes all

the options in OpenPA PF, SE, and RTCA available to the user via a graphical

56

user interface. The platform is also a DES event loop with the extra capability

of simulating FDI attacks. Moreover, it provides power system visualization and

reporting.

Finally, I used our platform to examine the consequences of FDI attacks against

two synthetic cases. I used the platform to simulate the process in a fast and efficient

manner, generate better reports, and create various visualizations to help both the

expert and non-expert user understand the attack consequences.

The platform has the potential for extension both in the front end and in the back

end. I mention a few of such improvements here:

In the front end, better visualization techniques can be used for power system

graph visualization. This can be very useful especially if the platform is to be used

in classrooms and presentations. Building further upon the REST architecture, the

platform can be transformed into a service that can send the required data to any

front end application.

In the back end, the platform can be extended by being connected to a database

system. This will allow efficient storage and retrieval of the historical data.

It should be noted that currently the platform provides only limited operator be-

havior simulation. SE and SCED results are automatically uploaded to the underlying

model without any review or action from the operator and contingencies are filtered

only by rudimentary criteria. Introducing AI based operator behavior simulation into

the DES event loop can lead to more realistic scenarios revolving around operator

decisions.

57

REFERENCES

[1] EIA, “Electric Power Annual 2017,” Tech. Rep. October, EIA, 2018.

[2] S. Borlase, Smart Grids : Infrastructure, Technology, and Solutions. Electric
Power and Energy Engineering, Boca Raton, FL: CRC Press, 2012.

[3] C. Greer, D. A. Wollman, D. E. Prochaska, P. A. Boynton, J. A. Mazer, C. T.
Nguyen, G. J. FitzPatrick, T. L. Nelson, G. H. Koepke, A. R. Hefner Jr, V. Y.
Pillitteri, T. L. Brewer, N. T. Golmie, D. H. Su, A. C. Eustis, D. G. Holmberg,
and S. T. Bushby, “NIST Framework and Roadmap for Smart Grid Interoper-
ability Standards, Release 3.0,” tech. rep., National Institute of Standards and
Technology, Gaithersburg, MD, oct 2014.

[4] S. D. Anton, D. Fraunholz, C. Lipps, F. Pohl, M. Zimmermann, and H. D. Schot-
ten, “Two decades of SCADA exploitation: A brief history,” 2017 IEEE Confer-
ence on Applications, Information and Network Security, AINS 2017, vol. 2018-
January, pp. 1–8, 2018.

[5] R. E. Shannon, Systems simulation: the art and science. Prentice-Hall, 1975.

[6] F. Schloegl, S. Rohjans, S. Lehnhoff, J. Velasquez, C. Steinbrink, and P. Palen-
sky, “Towards a classification scheme for co-simulation approaches in energy
systems,” Proceedings - 2015 International Symposium on Smart Electric Distri-
bution Systems and Technologies, EDST 2015, pp. 516–521, 2015.

[7] B. Chen, S. Mashayekh, K. L. Butler-Purry, and D. Kundur, “Impact of cyber
attacks on transient stability of smart grids with voltage support devices,” IEEE
Power and Energy Society General Meeting, pp. 1–5, 2013.

[8] J. Liang, L. Sankar, O. Kosut, and K. Hedman, “Consequences of False Data
Injection on Power System State Estimation,” Master’s thesis, Arizona State
University, 2015.

[9] R. D. Zimmerman, C. E. Murillo-sánchez, R. J. Thomas, L. Fellow, and A. M.
Atpower, “MATPOWER : Steady-State Operations , Systems Research and Ed-
ucation,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, 2011.

[10] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith, The Java R©
Language Specification Java SE 12 Edition. Oracle America, Inc, java se 12 ed.,
2019.

[11] C. Mosier, “OpenPA,” 2013. Available at github.com/powerdata/openpa-
private.

[12] R. Podmore, Digital computer analysis of power system networks. PhD thesis,
University of Canterbury, Christchurch, New Zealand, 1972.

[13] R. Klurnp, “Understanding Object-Oriented Programming Concepts,” in 2001
Power Engineering Society Summer Meeting, vol. 1070, pp. 1070–1074, 2001.

58

[14] P. S. Bodger, Fast decoupled AC and AC/DC loadflows. PhD thesis, University
of Canterbury, Christchurch, New Zealand, 1977.

[15] S. G. B. Wood Allen J., Wollenberg Bruce F., “9.3.1 introduction,” 2014.

[16] T. Davis and Y. Hu, “The university of Florida sparse matrix collection,” ACM
Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1–25, 2011.

[17] A. B. Birchfield, S. Member, T. Xu, S. Member, K. M. Gegner, S. Member,
K. S. Shetye, and T. J. Overbye, “Grid Structural Characteristics as Validation
Criteria for Synthetic Networks,” IEEE Transactions on Power Systems, vol. 32,
no. 4, pp. 3258–3265, 2017.

[18] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018.

[19] X. Li and K. W. Hedman, “Enhanced Energy Management System with Cor-
rective Transmission Switching Strategy-Part I: Methodology,” arXiv preprint
arXiv:1810.05940, 2018.

[20] G. B. Wood Allen J., Wollenberg Bruce F Sheble., “Calculation of Network
Sensitivity Factors,” 2014.

[21] M. Odersky and al., “An Overview of the Scala Programming Language,” Tech.
Rep. IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[22] R. Vanbrabant, Google Guice. APress, 2008.

[23] R. T. Fielding, Architectural styles and the design of network-based software
architectures, vol. 7. University of California, Irvine Irvine, USA, 2000.

[24] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader, “Cy-
toscape.js: A graph theory library for visualisation and analysis,” Bioinformat-
ics, vol. 32, no. 2, pp. 309–311, 2015.

59

