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ABSTRACT

Speech intelligibility measures how much a speaker can be understood by a listener.

Traditional measures of intelligibility, such as word accuracy, are not sufficient to

reveal the reasons of intelligibility degradation. This dissertation investigates the un-

derlying sources of intelligibility degradations from both perspectives of the speaker

and the listener. Segmental phoneme errors and suprasegmental lexical boundary er-

rors are developed to reveal the perceptual strategies of the listener. A comprehensive

set of automated acoustic measures are developed to quantify variations in the acous-

tic signal from three perceptual aspects, including articulation, prosody, and vocal

quality. The developed measures have been validated on a dysarthric speech dataset

with various severity degrees. Multiple regression analysis is employed to show the de-

veloped measures could predict perceptual ratings reliably. The relationship between

the acoustic measures and the listening errors is investigated to show the interaction

between speech production and perception. The hypothesize is that the segmental

phoneme errors are mainly caused by the imprecise articulation, while the spraseg-

mental lexical boundary errors are due to the unreliable phonemic information as well

as the abnormal rhythm and prosody patterns. To test the hypothesis, within-speaker

variations are simulated in different speaking modes. Significant changes have been

detected in both the acoustic signals and the listening errors. Results of the regression

analysis support the hypothesis by showing that changes in the articulation-related

acoustic features are important in predicting changes in listening phoneme errors,

while changes in both of the articulation- and prosody-related features are important

in predicting changes in lexical boundary errors. Moreover, significant correlation has

been achieved in the cross-validation experiment, which indicates that it is possible

to predict intelligibility variations from acoustic signal.
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Chapter 1

INTRODUCTION

1.1 Problem Statement and Hypothesis

Speech enables human to communicate efficiently. Speech disorders affect the

way a person produces speech sounds. Being unable to articulate their thoughts

clearly and fluently impacts communicative ability and overall quality of life (Smith

et al., 1996). Speech-language pathologists help people with speech disorders find and

overcome the issues in their speech production and develop practical communication

strategies. Since intelligibility is an indication of general communicative competence,

improving intelligibility is the central goal of speech therapy.

In laymans terms, intelligibility is the degree to which a speaker can be understood

by a listener, or how comprehensible the speech is. Although the word “intelligibil-

ity” appears frequently in the literature, there has not been a commonly accepted

agreement on the definition and measurement of intelligibility. The reason is that

intelligibility is an aggregative indicator of speech which can be affected by many

factors, such as linguistic structure, articulatory precision, perceptual strategies, and

sometimes physiological causes (Kent, 1992). Many studies have attempted to assess

intelligibility using a variety of methods.

Early literature has largely focused on intelligibility tests that provide an index of

severity (Enderby, 1980; Yorkston, Beukelman, & Traynor, 1984). Weismer, Martin,

and Kent (1992) suggest that an analysis model based on acoustic-phonetics can be

potentially more useful in guiding the decision-making process in clinical practice.

Moreover, they suggest that intelligibility is not only a speaker characteristic, rather

1



it is a two-way measure of the speaking-listening process. The degraded speech signal

may present more difficulties to the listener than the expected mismatch between

acoustic-phonetic events.

In the studies by Liss and colleagues (Liss, Spitzer, Caviness, Adler, & Edwards,

1998; Liss, Spitzer, Caviness, & Adler, 2002; Liss, Spitzer, Caviness, Adler, & Ed-

wards, 2000), evidence has been offered for this bidirectional relationship between the

degraded speech signal and the strategies listeners use to decipher it. They suggest

that in the perception of disordered speech, more higher-level cognitive processing is

involved when the lower-level acoustic information becomes degraded or unreliable. It

has been found that listeners relied on temporal rhythmic cues, such as the contrast-

s between stress-unstressed syllables to make lexical segmentation decisions. This

also suggests that when assessing intelligibility, both segmental and suprasegmental

information should be considered.

From the speakers perspective, acoustic analysis is necessary to identify the cues

in the speech signal that are related to intelligibility degradation. In the literature, a

number of acoustic features have been developed and used for analyzing disordered

speech, such as speaking rate, vowel spaces, formant slopes, jitter/shimmer, voice

onset time (VOT), etc. (Kent & Kim, 2003; Weismer, Jeng, Laures, Kent, & Kent,

2001) It is known that to explore the sources of intelligibility degradation, acoustic

analysis must be done on various aspects of speech, such as articulation, prosody,

vocal quality, nasality, etc. However, traditional acoustic analysis largely relies on

human labor, which results in the difficulties of studying acoustics of speech disorders

in a broader range. Our lab has focused during the last several years on developing

automated acoustic analysis tools for the study of speech disorders. We aim to explore

clinically useful information from the speech signal and providing reliable, quantita-

tive and comprehensive indexes of speech to facilitate clinical practice. Although the

2



validity of each of the developed methods has been shown separately in our previous

work, they have not been used together in the context of an explanatory model of

intelligibility.

This dissertation describes the work of the following:

1. The development of a systematic listener transcript analysis method. A multidi-

mensional intelligibility profile (MIP) will be estimated automatically from the

listener transcripts. Different from traditional perceptual intelligibility mea-

sures, the MIP reveals how degraded speech challenges listeners attempt to

decipher it by characterizing speech perception process across multiple level-

s of granularity, from segmental (phoneme errors) to suprasegmental (lexical

boundary errors). Multiple regression analysis will show the relationship be-

tween the estimated MIP metrics with the multi-dimensional perceptual ratings

of dysarthric speech.

2. The development of a suite of automatic acoustic measurements that quantify

speech signal along multiple temporal and frequency scales. These measures

provide analysis of speech from different aspects, including articulation, prosody,

rhythm and phonation. Multi-task learning based multiple regression will help

us study the relationship between the developed acoustic features with each

dimension of the perceptual ratings of dysarthric speech.

3. The exploration of the relationship between variations in the acoustic measures

and those in the MIP metrics. It will reveal the interaction between acoustic

signal and listener perception strategies. Speakers will be instructed to make

changes in their speaking manners so as to elicit changes in acoustic signals.

Regression models are built to estimate the relationship between change in the

acoustic measures and that in MIP metrics.

3



Acoustic signal will drive the percepts of the listeners. The level of speech intelli-

gibility depends on the pronunciation as well as the rhythm controls of the speaker.

Since English is a stress timed language, when the low-level phonemic information is

degraded, listeners tend to rely on the contrastivity between stressed and unstressed

syllables to segment a continuous acoustic stream into words so as to facilitate speech

understanding. We hypothesize that the patterns of change in the MIP metrics can be

explained by changes in the acoustic features, as a consequence of modifying speech

based on intervention instructions. The specific hypothesis is as follows:

1. The MIP metrics measures phoneme recognition accuracy and lexical segmen-

tation accuracy of the listeners. We hypothesize that the phoneme error metrics

are closely related to the perceptual ratings on articulation, and the lexical seg-

mental error metrics are closely related to the perceptual ratings on prosody.

2. The acoustic features measure speech production from the aspects of articu-

lation, prosody, and voice quality. We hypothesize that the the articulation-

related features are important in predicting perceptual ratings on articulation,

the prosody-related features are important in predicting perceptual ratings on

prosody, and the voice quality-related features are important in predicting per-

ceptual ratings on vocal quality. All of the three categories of features are

important in predicting the overall intelligibility of dysarthric speech.

3. We expect that speech produced in different speaking manners will be detected

by the developed MIP metrics and acoustic features. We hypothesize that

variations observed in the acoustic features can explain the variations in listener

perceptual strategies measured by MIP metrics. Articulation-related acoustic

features account for the most variations in phoneme error metrics. However,

variations in lexical boundary errors should be explained by the degradations

4



in both articulation- and prosody-related features. The voice quality-related

features measure the noisiness of the signal, which can have more impact on

phoneme perception than prosody perception.

1.2 Significance of the Study

Speech disorders affect millions of people. Speech intelligibility, as a general in-

dicator of communication ability, is central in the diagnosis and treatment of speech

disorders. In the current clinical setting, the most commonly used intelligibility assess-

ment is the clinicians informal perceptual estimation of the patients speech. However,

ample evidence exists to suggest that auditory-perceptual judgements are inherently

biased, especially those of the treating clinician whose perceptual system has been

adapted to the patients speech patterns. There is an urgent need to develop a suite

of reliable and comprehensive measurements to assess the intelligibility of disordered

speech objectively and facilitate clinical practice. The current study investigates the

relationship between the available acoustic information in the degraded speech and

how listeners use that information. The mismatches between the availability of a-

coustic cues and the ones that listeners need to decipher speech reveal sources of

intelligibility degradation. As a result, intelligibility can be modeled computationally

by a number of automated acoustic features and measures automatically extracted

from listener transcripts. The contribution of the current study is as follows:

1. We develop algorithms for holistic automated listener transcript analysis, in-

cluding segmental and suprasegmental metrics based on phoneme and lexical

segmentation errors. This promotes the development of objective perceptual

intelligibility assessment.

2. We develop novel automated and clinically interpretable acoustic features, in-

cluding spontaneous speech rate estimation (Jiao, Berisha, Tu, & Liss, 2015;

5



Jiao, Tu, Berisha, & Liss, 2016), entropy based phonemic inventory estima-

tion (Jiao, Berisha, Liss, Hsu, et al., 2017), interpretable phonological features

(Jiao, Berisha, & Liss, 2017), etc. We link these acoustic features to speech as-

pects that clinicians care, such as prosody and articulatory precision. Moreover,

this study explores the different contribution of these features to intelligibility

degradation.

3. This study provides a theoretical explanation of intelligibility degradation in

adverse listening conditions, by considering the impact of available acoustic

information and strategies employed by listeners to decode speech.

4. By estimating intelligibility in a computational and clinically meaningful way,

the importance of the factors affecting intelligibility are identified. It will pro-

vide valid and reliable outcome measures for progress tracking which is impor-

tant for decision-making and the evaluation of interventions.

1.3 The Outline of the Dissertation

The dissertation is divided into 7 chapters. Chapter 1 is the current chapter and

it introduces the scientific problem, our hypotheses, and the significance of the s-

tudy. Chapter 2 introduces the up-to-date research progress in speech intelligibility

assessment and the existing methods of pathological speech acoustic analysis. Chap-

ter 3 describes the experiment design and data collection. Chapter 4 introduces the

automated MIP metrics developed for analyzing listener transcript errors, including

phoneme errors and lexical boundary errors. Chapter 5 introduces the automated

acoustic measures developed for analyzing disordered speech across several subsys-

tems and temporal scales (articulation, prosody, rhythm, and phonation). Chapter 6

investigates the impact of changes in acoustic signal on the changes in speech percepts

6



by exploring the relationship between variations in the acoustic features and in the

MIP metrics. Chapter 7 discusses the findings from the experiments.
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Chapter 2

LITERATURE REVIEW

This chapter reviews the literature related to the study of intelligibility in speech

disorders. Section 2.1 introduces two traditional perceptual intelligibility assessment

methods commonly used in the literature: assessment based on scaling procedures

and assessment based on word identification/transcription tasks. In the same section,

we provide an overview of problems associated with these methods and recently-

proposed improvements. Section 2.2 introduces some emerging studies in automated

intelligibility assessment. Section 2.3 reviews the existing studies investigating the

relationship between acoustic features and intelligibility percepts.

2.1 Perceptual Intelligibility Assessment

Schiavetti et al. (1992) stated that any measure of speech intelligibility is a mea-

surement of the interaction between a speaker, a transmission system, and a listener.

Therefore, he suggested that speech intelligibility could be defined as the match be-

tween the intention of the speaker and the response of the listener to the speech

passed through the transmission system. In the speech-language pathology field, the

measure of intelligibility is typically treated as a criterion for assessing the severity

of speech disorders (Metz, 1980). Traditionally, there are two methods to assess

intelligibility:

1. Word identification test in which the listener is required to transcribe

what the speaker says: The outcome variable in these tests is the percent-

age of words that the listener’s responses match the speaker’s indention. The

test can be done on single-word stimuli by using a carefully designed word list
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that considers phonemic contrasts (Kent, Weismer, Kent, & Rosenbek, 1989;

Tikofsky, 1970; Yorkston & Beukelman, 1980), or at the utterance level by

considering contextual impact on intelligibility (Dongilli, 1993; Hammen et

al., 1991; K. K. Tjaden & Liss, 1995; Yorkston & Beukelman, 1981b) Figure

2.1 shows the procedures of the two tasks.

2. The scaling procedures in which the listener makes judgements about

the speaker’s intelligibility: Equal appearing interval (EAI) (Frearson, 1985)

is one of the techniques where the listeners, typically a speech-language pathol-

ogist (SLP), rates the speech on a pre-defined scale (e.g., 7-point or 5-point in-

terval scale). Different from the interval scaling procedure where a constrained

scale is provided, another technique is the direct magnitude estimation (DME)

(S. S. Stevens & Galanter, 1957; Weismer & Laures, 2002) in which listen-

ers scale each speech sample with or without a given standard stimulus. A

standard stimulus or modulus is chosen by the experimenter to represent low,

middle, or high intelligibility and is assigned to a number. Listeners then rate

other samples against the modulus. In a free modulus setting, listeners assign

any number to the first speech sample and then scale subsequent samples as

magnitude ratios relative to preceding stimuli (Schiavetti et al., 1992). Figure

2.2 shows the procedures of EAI, free-modulus DME, and with-modulus DME.

Due to their complementary benefits and drawbacks, both methods are widely

used in the research and clinical studies of pathological speech. On one hand, the

word identification test is interpretable to the patients and other professionals by

quantifying intelligibility using an interpretable percentage value (e.g. percent words

correct). It has also been shown to have a close relationship with the information

transferred during communication (Beukelman & Yorkston, 1979). Moreover, listen-
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Figure 2.1: Illustration of the Procedures of the Isolated (Upper) and Continuous
(Lower) Word Identification Tasks.
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Figure 2.2: Illustration of the Scaling Procedures of Intelligibility Scoring Tasks.

ers can be recruited from the general population which makes the conduction of the

test efficient and economical. However, the intelligibility scores are frequently derived

from single word identification task, which may not be sensitive to non-segmental con-

tributors of intelligibility deficits, such as prosody and voice quality. Compared to

single word intelligibility test, evaluation on connected speech is closer to the func-

tional level of communication, and evidence has shown that the results are different
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to that in isolated word intelligibility tests (Fogerty & Kewley-Port, 2009; Weismer

et al., 1992).

On the other hand, the scaling procedure is a direct assessment of perceptual

intelligibility. It can be applied to various dimensions of speech, such as articulatory

precision, speech naturalness, voice quality, etc. EAI has been frequently used in the

early relevant studies (Frearson, 1985). One of the most concerns regarding the use of

EAI is its validity. S. Stevens (2012) suggests that the equal partition of the scale may

not be consistent with the nonlinear perception of some dimensions. An alternative

method, DME, has been widely accepted in the communication disorders field. DME

with modulus is usually preferred because free modulus scaling may make listeners

uncomfortable and the post-processing of the data complicated (Weismer & Laures,

2002). The advantage of DME over EAI is that it does not make linear assumptions

and is not bound by fixed minimum/maximum values and thus no constraints on the

scales (Zraick & Liss, 2000). Despite the popularity of the scaling methods, there are

some crucial problems with it. One of the inherent issues is that the scaling method is

a subjective procedure which is prone to human bias. The bias can derive from many

factors, such as the different internal standards, the familiarization with the material

or the speaker, and the varied experience (Hustad & Cahill, 2003; Liss et al., 2002;

McHenry, 2011) Another problem comes from the design of the test. Studies have

shown that the perceptual scaling of a fixed set of utterances depends on the identity

of the standard (Poulton & Poulton, 1989; Weismer & Laures, 2002) For example,

in the DME method, there is not a standard modulus can be broadly used across

different studies so that the selection of the modulus relies heavily on the expertise of

the experimenters. Last but not least, the participants of the scaling test are either

experienced SLPs or people who have received a certain amount of training. Unlike

the word identification test which can be done by any normal hearing listeners, the
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cost of the scaling procedures is much higher and more time consuming.

Although the drawbacks of the traditional methods are acknowledged, they are

still widely used in the current studies (Lansford, Luhrsen, Ingvalson, & Borrie, 2018;

McAuliffe, Fletcher, Kerr, O’Beirne, & Anderson, 2017) and there have been sev-

eral efforts focused on improving the reliability of intelligibility assessment criteria.

De Bodt, Huici, and Van De Heyning (2002) stated that intelligibility is the product

of a series of interactive processes as phonation, articulation, resonance and prosody.

Therefore, they proposed to estimate intelligibility using a linear combination of rat-

ings on voice quality, articulation, nasality, and prosody (See Equation 2.1). The

coefficients are shown as below. Their findings suggest that articulation and prosody

have stronger impact on intelligibility than the other two dimensions.

Intelligibility =0.1626× (voice quality) + 0.66× (articulation)

+ 0.0141× (nasality) + 0.3139× (prosody)

(2.1)

However, this method is still based on auditory-perceptual judgements, which are

inherently biased as mentioned in the previous subsection. To evaluate intelligibil-

ity objectively, Liss et al. (1998, 2002, 2000) attempt to derive more information

from listener transcripts than the word identification test. They suggest that phone-

mic degradation forces listeners to use more robust acoustic cues, such as syllabic

contrastivity, to segment speech into word-size frames, in which to resolve phoneme

identity and comprehend speech. Thus, lexical segmentation is critical in speech in-

telligibility. Therefore, in their studies, a list of phrases was designed especially for

studying lexical segmentation strategies used by the listeners so that the supraseg-

mental impact on intelligibility deficits can be estimated from listener transcripts by

estimating lexical boundary errors.
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2.2 Automated Intelligibility Assessment

As we can see, the current methods for intelligibility assessment involve significant

human effort, which can make them impractical for use in-clinic. The development

of automated methods which require little to no human involvement will not only

make intelligibility assessment more reliable but also provide a handy research and

clinical tool for the community. Automatic speech recognition (ASR) is a technique

that automatically transforms an acoustic representation of human speech into a text

of word sequence. The training of an ASR engine usually requires a large amount

of speech samples. In the speech disorders field, ASR has been used to recognize

pathological speech and intelligibility is estimated as the percentage of words correctly

decoded by ASR (Maier et al., 2009; Middag, Martens, Van Nuffelen, & De Bodt,

2009; Middag, Van Nuffelen, Martens, & De Bodt, 2008; Tu, Wisler, Berisha, &

Liss, 2016). Although there exists a correlation between the estimated values and

the perceptual intelligibility scores, the underlying difference of speech recognition in

human and ASR makes it unreliable to reflect real speech perception process.

Bocklet and colleagues (Bocklet, Haderlein, Hönig, Rosanowski, & Nöth, 2009)

borrow the idea from speaker identification and propose to predict intelligibility us-

ing the super-vector extracted from the Gaussian mixture models (GMM). It also

has been proven to be language-independent (Middag, Bocklet, Martens, & Nöth,

2011). Other automated methods include predicting intelligibility from the statistics

of acoustic features. Falk, Chan, and Shein (2012) use 6 acoustic features to char-

acterize atypical speech from multiple perceptual dimensions, such as voice quality,

temporal dynamics, nasality, and prosody. These features are used to classify speech

samples into four categories with low to high intelligibility scores. Similarly, Kim and

colleagues (J. Kim, Kumar, Tsiartas, Li, & Narayanan, 2012) predict intelligibility
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using acoustic features from multiple aspects of speech. Instead of using a linear

combination of all the features, multiple classification models based on each category

of features are fused together to predict intelligibility.

2.3 Acoustic Measures Related to Intelligibility

Apart from the progress in the assessment of intelligibility, attentions have also

been placed on investigating acoustic cues related to intelligibility. Speaking rate is

one of the most prominent symptoms of speech disorders. Although no significant

correlation is found between speaking rates and intelligibility scores (Weismer, Laures,

Jeng, Kent, & Kent, 2000; Yorkston & Beukelman, 1981b), studies have shown

that rate control strategies had positive impact on speech intelligibility (Yorkston,

Hammen, Beukelman, & Traynor, 1990). Yorkston and Beukelman (1981a) suggest

that there exists an optimal speaking rate for a speaker to achieve a relatively good

speech intelligibility. The explanation could be that rate control intervention does

not only modify the speaking rate of a speaker, it may also increase articulatory

precision, as well as help to coordinate various speech processes. Moreover, listeners

may also use different perception strategies when listening to different rates of speech

(Blanchet & Snyder, 2010). This indicates that the intelligibility and the changes in

acoustic signals have a complex relationship due to the interaction among different

acoustic features and the hierarchical structure of speech perception.

This effect can be also reflected in the loudness treatment method. Treatment of

loudness, usually referring to the Lee Silverman Voice Treatment (LSVT), focuses on

increasing the speech loudness of dysarthric speakers. It has also been shown to have

positive effects on improving speech intelligibility (Ramig, Sapir, Fox, & Countryman,

2001; Wenke, Theodoros, & Cornwell, 2008). Again, the effects are not only due to

the increased sound pressure level (SPL), but also the subsequent changes in other
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acoustic features, such as formants (Sapir, Spielman, Ramig, Story, & Fox, 2007).

K. Tjaden and Wilding (2004) investigated the effects of rate and loudness control on

the acoustic signal and the intelligibility of dysarthric speech. The results showed that

the vowel space area was maximized in slow speech, while the first-moment difference

measures, indexing stop consonant acoustic distinctiveness, was maximized in loud

speech, with intelligibility improved in both conditions. The authors also suggest

in another study (K. Tjaden & Wilding, 2011) that dysarthric speech with slowed

rate and increased vocal loudness has distinctive F0 variations than the habitual

speech. All of these findings suggest that the improved intelligibility is related to

the changes of a series of acoustic features even if the treatment focuses on a single

aspect. However, it is unclear how the changes in acoustic features are related to

intelligibility degradation or improvement, and if they are reliable enough to assess

intelligibility.

Articulation has been shown as the strongest contributor to intelligibility among

other perceptual dimensions, such as voice quality, nasality, and prosody (De Bodt

et al., 2002). Therefore, measures related to articulation, such as the vowel formant

frequencies and the vowel space measures have been widely used to assess speech

intelligibility. It has been shown that the speakers with larger vowel spaces are more

intelligible than those with reduced spaces, and vowel space measures are significantly

correlated with speech intelligibility (Bradlow, Torretta, & Pisoni, 1996; H.-M. Liu,

Tsao, & Kuhl, 2005; Turner, Tjaden, & Weismer, 1995). It suggests that the vowel

space measure is a good predictor of intelligibility. Some latest studies indicate that

there exist other articulatory measures that could better represent speech intelligibili-

ty, such as the overlap degree among vowels (H. Kim, Hasegawa-Johnson, & Perlman,

2011), the distinctiveness among neighboring vowels (Neel, 2008), etc. Other acoustic

features have also been shown related to intelligibility, such as F0 variability, segment
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durations, format slopes, modulation energies, residual signal distributions, cepstral

coefficients (Bunton, Kent, Kent, & Duffy, 2001; Falk et al., 2012; Weismer et al.,

2001).

Although the above studies have shown a relationship between acoustic features to

intelligibility, it has not been shown how they are related to intelligibility gains, which

should be more meaningful in helping identify treatment targets and select interven-

tion strategies. To simulate intelligibility variation, Fletcher and colleagues (Fletcher,

McAuliffe, Lansford, Sinex, & Liss, 2017a) (Fletcher, Wisler, McAuliffe, Lansford, &

Liss, 2017) recorded the same group of speakers reading the same material in differ-

ent speaking modes (habitual, loud, and slow). A set of acoustic features, related to

prosody and articulation were extracted manually or automatically to predict intelli-

gibility gains obtained in a subjective listening experiment. Their results suggest that

variance in intelligibility gains can be partially explained by their explored acoustic

measures.
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Chapter 3

METHOD OVERVIEW AND DATA COLLECTION

3.1 Method Overview

To investigate the research questions and test the hypotheses described in Chapter

1, the following steps will be employed and shown in Figure 3.1.

Step1 Audio data collection. Speech samples from people with and without motor

speech disorders were collected. Intelligibility variations was simulated with

different speaking modes, which are habitual, slow, loud, and clear. The proce-

dures will be described in Section 3.2.2.

Step2 Listener transcript collection. Transcripts for each sample were collected from

multiple non-expert listeners. We conducted the listening experiment through

an online crowd-sourcing platform, MTurk. The procedures will be described

in Section 3.2.3

Step3 Transcript scoring. MIP metrics were used to quantify perceptual intelligibility

segmentally and suprasegmentally from listener transcripts. Algorithms were

developed to estimate three phoneme errors and four lexical boundary errors.

The validity of the algorithms was proved by comparing the estimated metrics

with hand labels. The capability of the metrics to predict intelligibility was

examined using linear regression. Details of the algorithms and the experiments

will be described in Chapter 4.

Step4 Acoustic analysis. A variety of acoustic features were developed for analyz-

ing the collected speech signal from different aspects, including articulation,
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prosody, and voice quality. Their relationship with perceptual ratings was ex-

amined using multi-task learning. The algorithms of each acoustic measure

along with their perceptual interpretation, and the experiment settings and

results will be described in Chapter 5.

Step5 Relationship investigation. We investigated the relationship between acoustic

features and MIPs. Statistics (e.g. means) of the acoustic features and the

MIP metrics were calculated from the collected audios and transcripts for each

speaker. Changes were identified from habitual to the other speaking modes

in every measure. Regression analysis was conducted to reveal how changes

in acoustic features impact the strategies listeners used to understand speech

(measured by MIP metrics). Details of the experiment and results will be

described in Chapter 6.
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Figure 3.1: Experimental Procedures.
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3.2 Data Collection

3.2.1 Stimuli

The speech stimuli consist of 80 phrases, which had a rich and balanced phoneme

inventory. They were designed especially for studying the relationship of intelligibility

and lexical boundary error (LBE) in dysarthric speech (Liss et al., 1998, 2002, 2000).

Please see Appendix A for the whole list of the phrases. Briefly, they are comprised of

6 syllables that create 3 to 5 mono- and di-syllabic words, which form grammatically

plausible phrases with low inter-word predictability. The phrases were designed to

alternate strong (S) and weak (W) syllables in either trochaic or iambic stress patterns

to induce LBEs. Some examples of the phrases and their stress patterns are shown

in Table 3.1, where spaces in the stress pattern indicate the word boundaries.

Table 3.1: Examples of the Stimuli Phrases and the Stress Patterns.

Phrase Stress Pattern

address her meeting time WS W SW S

bolder ground from justice SW S W SW

beside a sunken bat WS W SW S

cool the jar in private S W S W SW

3.2.2 Audio Data Collection

Two speech datasets were used in this study. The first dataset was used in our

previous study and described in the paper by Liss et al. (2009). Briefly, it contains

speech samples from 73 dysarthric speakers with 34 females and 39 males. The

dysarthria subtypes included ataxic dysarthria secondary to cerebellar degradation
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(Ataxic, N = 16), hyperkinetic dysarthria secondary to Huntington’s disease (HD, N

= 6), mixed spastic-flaccid dysarthria secondary to amyotrophic lateral sclerosis (ALS,

N = 14), and hypokinetic dysarthria secondary to idiopathic Parkinsons disease (PD,

N = 37). These speakers provided a variety of speech error patterns and represent

mild to severe intelligibility decrements within each subtype (see Table 3.2). Each

speaker in this dataset read the above mentioned 80 phrases in their normal voice.

Table 3.2: Descriptions of the Four Subtypes of Dysarthria in the Dataset.

Dysarthria Types Etiology Speech Characteristics

Ataxic Cerebellar degeneration

Irregular articulatory breakdown,

distorted vowels, prolonged phonemes,

monopitch

Hyperkinetic Huntington’s disease

Irregular and intermittent

consonant and vowel distortion,

inappropriate,silences,

bursts of loudness change

Mixed Spastic-Flaccid ALS

Imprecise consonants, hypernasality,

slow rate, distorted vowels,

strained-strangled vocal quality

Hypokinetic Parkinson’s disease

Imprecise consonants, breathiness,

monopitch, reduced stress,

inappropriate silences,

short rushes of speech

For this dataset, perceptual ratings were also collected. Fifteen second-year master

students enrolled in the SLP program at ASU rated each speaker along five perceptual

dimensions: severity, nasality, vocal quality, articulatory precision, and prosody on a

scale from 1 to 7 (from normal to severely abnormal). Their ratings were integrated
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into a single set using the evaluator weighted estimator (EWE) method.

The other dataset was newly collected for this study. It contains 20 healthy

participants, including 10 females and 10 males with average age as 69.2. To simulate

acoustic changes within speakers, each speaker read 40 phrases randomly selected

from the 80 ones in four different speaking modes: habitual, loud, clear, and slow.

Following habitual, the other three modes were randomized for each speaker and each

phrase. The instructions for the four speaking modes are as follows:

− Please read the following phrase in your typical voice. (Habitual)

− Please read the following phrase loud enough for a person across the room to

hear. (Loud)

− Please read the following phrase using a very clear voice. (Clear)

− Please read the following phrase about half as fast as you usually talk. (Slow)

Note that these instructions were for eliciting variants of speech change within a

given speaker. However, there was no experimental need to ensure speakers produce

speech changes in any particular way. Instead, the potential changes would be defined

acoustically and perceptually.

All speech samples were recorded either in the Motor Speech Disorders Laboratory

at Arizona State University (ASU) or IRB-approved auxiliary research sites (Liss et

al., 2009). An elicitation interface created on DMDX, an experimental interface free-

ware (Forster & Forster, 2003), was used for the audio collection. Participants were

seated in a sound-attenuating booth or a quiet room and fitted with a head-mounted

microphone. The reading instruction and the text of the phrase were presented to

the speaker visually on a computer screen. Before each recording the speaker was

prompted by a tone to start.
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To induce perceptual intelligibility degradation on healthy speech, white noises

were added to the speech signals. In a pilot study, 30 randomly selected habitual

phrases were embedded in the white noise at different signal-to-noise ratios (SNR)

measured by root-mean-squares (RMS) from -5dB to 0dB. Listener transcripts were

collected (in the way described in the following subsection) to calculate an average

word error rate. We intended to achieve 50% intelligibility degradation, which was a

level that is known to lead listeners to syllabic contrastivity cues for lexical segmen-

tation (Borrie, McAuliffe, & Liss, 2012; Liss et al., 2002). As a result, 0dB was

selected with 57% WER. In the formal listener experiment, all healthy speech samples

were embedded into white noises to reach 0dB SNR. As such, the sound pressure level

that may affect intelligibility variations was excluded.

3.2.3 Listener Transcript Collection

Non-expert listeners were recruited to transcribe the audio samples in the two

speech datasets. The consent form approved by IRB can be found in Appendix B.

Different from experienced clinicians and listeners after training, these näıve listeners

represented a realistic perceptual audience, in which a wide cross-section of typical lis-

teners found themselves in the position of attempting to decipher pathological speech.

For each speech sample, 10 transcripts were collected from different listeners because

our previous study (Berisha, Liss, Sandoval, Utianski, & Spanias, 2014) showed that

10 transcripts per speech sample by unfamiliar non-expert listeners could achieve sta-

ble reliability. To avoid any familiarization with the speakers and the speech material,

we set the rule as that each listener transcribed no more than two phrases from the

same speaker and never transcribed the same phrase more than once.

To facilitate the recruitment of a large number of listeners, Amazon Mechanical

Turk (MTurk) was used in this study. MTurk is an online crowdsourcing platform
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which enables individuals (Workers) and organizations (Requesters) to coordinate the

use of human intelligence to perform tasks. In our study, a website was developed

to which listeners are directed from MTurk. Participants were instructed to listen

to each spoken phrase using headphones, and type what they think the speaker was

saying in a given area. They were asked to make their best guesses if they were unsure

about what was said. Each phrase could be played no more than twice.

The biggest advantage of using MTurk comparing to conventional subject recruit-

ment methods is its efficiency. For example, in our study, the speed of data collection

could be up to 50 participants per day. Moreover, the reward given to the partici-

pants on MTurk was less than that given to the on-site subjects. For example, in our

study, each participant received $1-$2 for transcribing 40 to 80 phrases. However, the

disadvantage we found in using MTurk was the lack of control and supervision. For

example, we wanted to recruit listeners with English as their first languages. However,

we were only able to specify their locations as US on MTurk. To obtain such demo-

graphic information we need, we designed a questionnaire and asked the participants

to provide information about their native languages and mental/hearing conditions

before leading them to the transcribing task. Moreover, since the workers completed

the task without being monitored, it is questionable whether people pay enough at-

tention to the task. Although the study by (Paolacci & Chandler, 2014) have shown

that the rate of failing attention on MTurk was no higher than other formats, it is

better to identify those listeners. Therefore, four easy-to-understand phrases read

by two healthy speakers were randomly embedded to the task for identifying any

inattentive participants.

23



Chapter 4

THE DEVELOPMENT OF AUTOMATED MIP ANALYSIS

4.1 Introduction

Although perceptual evaluation is central to the differential diagnosis of motor

speech disorders (see, The Preferred Practice Patterns for the Profession of Speech-

Language Pathology; ASHA), abundant evidence suggests that perceptual estimates

of speech intelligibility are inherently biased, unreliable and are particularly unsuit-

able for the tracking of speech change secondary to intervention or disease progression

by the treating clinicians (Liss et al., 2002; McHenry, 2011; Sheard, Adams, &

Davis, 1991). Despite that, the most commonly used clinical method for charac-

terizing changes in speech intelligibility is the treating clinicians informal perceptual

estimation of their patients speech (Duffy, 2013; King, Watson, & Lof, 2012;

Miller, 2013). Survey results suggest that SLPs highly value subjective perceptual

assessment and feel comfortable with the common practice of informal estimation of

intelligibility; and they regard objective metrics estimated from transcribed speech

as a nice to have rather than a must have for clinical practice (Alice & O., 2008;

Miller, 2013).

There are at least two factors that contribute to the current clinical practice of

preferring subjective over objective assessments for speech characterization. First,

the quality of speech is ultimately judged by a human listener, as it impacts the abil-

ity to communicate. In the absence of such human factors, objective measures lack

clinical interpretability. Second, more objective approaches are resource-heavy and

may involve manual coding and scoring of speech transcripts. In this Research Note,
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we present an automated approach for scoring transcripts that provides a holistic

and objective representation of intelligibility that derives from its underlying percep-

tual tasks of phoneme identification and lexical segmentation of the speech stream

(Hustad, 2006).

Traditional objective measures derived from transcripts usually capture word ac-

curacy which provides a percentage of words that the listener’s responses match the

speaker’s intention (Kent et al., 1989; Yorkston & Beukelman, 1981b). Manual

scoring is also required if we want to extract additional information from the tran-

scripts, such as lexical segmentation errors. Since this is time consuming and requires

specialized training, it has only been done in a few research studies (Liss et al., 1998,

2002, 2000). More recently, there have been several approaches aimed at automating

transcript scoring (Borrie, Barrett, & Yoho, 2019; Le, Licata, Persad, & Provost,

2016). These approaches result in objective measures of word or phoneme errors and

show a good correlation with perceptual ratings. However, to the best of our knowl-

edge, no existing literature addresses the problem of automated estimation of lexical

segmentation errors.

In this chapter, we present a family of algorithms for automating transcript s-

coring (relative to a target transcript). The approach described herein automatically

extracts information related to phoneme and lexical segmentation errors directly from

the transcripts. We call it the multidimensional intelligibility profile (MIP). Specifi-

cally, the scoring scheme yields information related to the perceptual task of phoneme

identification (phoneme substitution, insertion, and deletion errors) by aligning the

target transcript with the transcript the listener produces. In addition, by comparing

the word boundaries and the stress patterns of the target and listener transcript-

s, we automated the extraction of lexical segmentation metrics previously used in

the literature to capture the perceptual task of lexical segmentation of the speech
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stream (Liss et al., 1998). We demonstrate the validity of the automated metrics

by comparing them against manual labels from trained coders. In addition, linear

regression analysis provides evidence that these metrics are significant predictors of

clinical auditory-perceptual ratings provided by trained listeners and word accuracy

from transcription.

4.2 Method

4.2.1 Data Collection

The audio stimuli used in this study was the 73 dysarthric speaker dataset. To

collect transcripts, 819 listener participants were recruited via MTurk. Our target

was to collect approximately 10 different transcripts per phrase. As a result, a total

number of 63,840 phrase transcriptions were collected.

Using a survey, non-native English speakers, listeners with hearing loss, head in-

jury, psychiatric disorders, and attention deficit disorders (ADD) were identified, and

their data was excluded from analysis. Additionally, only the data from listeners who

transcribed all four easy-to-underastand phrases correctly were included for analy-

sis. After filtering, 498 listeners (60.8%) and 33,969 phrase transcriptions (53.2%)

were left. In other words, 39.2% speakers and 46.8% transcripts were discarded from

analysis.

4.2.2 Pre-processing of the Transcripts

Because listener responses were not constrained in any way, the collected data

contains misspellings, non-English words, acronyms, and other unanalyzable respons-

es. Some examples of these errors are shown in Table 4.1 Although a protocol for

manually assessing these entries could be undertaken, it defeats the purpose of an
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Table 4.1: Errors Appeared in the Collected Transcripts and the Corresponding
Examples.

Error Type Example

Contractions dont, hed

Loan words Lakh

Hyphen Space Holders jack

Hyphens Instead of Spaces man-to-state

No Spaces fellingrecklessviolet

Proper Names spock, amanda

Truncations fam; vid;

Acronyms pe

Ambiguous Pronunciation herby [eôbi] or [heôbi]

Morphologized Real Word Results in Nonword unfortune; precoat

Nonwords awa

Misspellings aprthied, cancle

automated assessment measure. Therefore, these transcripts were subject to a series

of automated corrections as follows: 1) all special characters were removed except

for single quotes and hyphens since they are allowed in the dictionary; 2) an auto-

mated spell checking and correction tool was used to correct any misspelling and

typos; 3) the whole transcript was discarded if there was any out-of-dictionary word

in it. A total of 2,645 transcripts (7.8% of the 33,969 transcripts) were discarded.

For the above procedure, we used the Carnegie Mellon University (CMU) English

pronouncing dictionary (CMUdict, http://www.speech.cs.cmu.edu/cgi-bin/cmudict)

27



4.2.3 Automated Transcript Analysis

The automated transcript analysis was then conducted on the qualified transcripts

to calculate measures related to phonemic identification (phoneme insertion, deletion,

and substitution errors), and to lexical segmentation (4 LBEs). Figure 4.1 provides

a schematic example of the scoring of a transcribed phrase relative to the target.

Figure 4.1: An Example of Automated Transcript Analysis.

Phoneme errors include phoneme insertion, deletion, and substitution errors. An

example of the phoneme error analysis is shown in the left box of Figure 4.1. To cal-

culate phoneme errors, we aligned the target and transcript using algorithms for pho-

netic sequence alignment that considers the articulation similarity between phonemes

(Kondrak, 2003). We used the CMUdict to generate phonetic sequences from each
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word. The output of the alignment algorithm is a list of aligned phoneme pairs. There

are four types of pairs from the output, and we define them as follows: 1) two iden-

tical phonemes are aligned to each other, e.g., (b,b), which is a correct transcription;

2) two distinct phonemes are aligned to each other, e.g., (æ, E), which is counted

as a substitution error; 3) the target phoneme cannot be aligned to any transcribed

phoneme, e.g., (n,-), which is counted as a deletion error; 4) the transcribed phoneme

cannot be aligned to any target phoneme, e.g., (-,2), which is counted as an insertion

error. The number of errors were then normalized by the total number of phonemes

in the target phrase.

LBEs include 4 subtypes: 1) lexical boundary insertion error before a strong

syllable (IS); 2) lexical boundary insertion error before a weak syllable (IW); 3) lexical

boundary deletion error before a strong syllable (DS); 4) lexical boundary deletion

error before a weak syllable (DW). In the example shown in Figure 4.1, instead of

perceiving the first word in the target phrase as “balance”, the participant perceived

it as “bell is”. Thus, a lexical boundary was wrongly inserted before the unstressed

second syllable of balance, resulting in an IW error.

To automate the calculation of LBEs, we developed the algorithms as follows.

For LBE analysis we only need to know the stress pattern of the target phrase. We

first used a placeholder X to represent a syllable, and a space to represent the lexical

boundary. (See the right box of Figure 4.1) By comparing the location of the lexical

boundaries with the target stress pattern, we counted the number of the four possible

LBEs automatically. Taking the transcript in Figure 4.1 as an example, the lexical

boundary pattern of the target phrase is [before the 3rd syllable, before the 4th

syllable], while the pattern of the transcript is [before the 2nd syllable, before the 3rd

syllable, before the 4th syllable]. Therefore, there is an insertion error before the 3rd

syllable, and the 3rd syllable in the target phrase is an unstressed syllable. Thus, the
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LBE is IW. There were no other types of LBEs for this example. It should also be

noted that at this stage of development, the algorithm performs best on transcripts

which match the target in terms of syllable numbers, therefore all analyses included

are comprised of transcript and targets comprised of 6 syllables (exclusions of more

or fewer syllables account for approximately 15.4% of the data).

For each speaker, we calculated the statistics of the metrics as follows: 1) phoneme

errors were calculated as the total number of errors normalized by the total number

of phonemes in the target phrases; 3) LBEs were calculated as the number of each

error type normalized by the number of the corresponding error opportunities in the

target phrases. Taking the sample in Figure 4.1 as an example, the error opportunity

of IS, IW, DS and DW was 0, 2, 2, 1, respectively. Across each entire corpus of

phrases transcribed by each listener, the opportunities to produce the four categories

of errors were roughly equivalent.

To formulate the MIP metrics, suppose a transcript ts comes from a speaker

s, where t = 1, 2, ..., T, s = 1, 2, ..., S, and T is the total number of the collected

transcripts for speaker s, and S is the number of speakers in the dataset, which is 73

here. We count the number of the insertion, deletion, substitution phoneme errors

and denote them as ins(ts), del(ts), sub(ts). The total number of phonemes in ts is

denoted as N(ts). Therefore, for speaker s, the phoneme errors can be calculated as

Equation 4.1, 4.2, and 4.3.

INS(s) =

∑T
t=1 ins(ts))∑T
t=1N(ts))

(4.1)

DEL(s) =

∑T
t=1 del(ts))∑T
t=1N(ts))

(4.2)
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SUB(s) =

∑T
t=1 sub(ts))∑T
t=1N(ts))

(4.3)

For LBEs, we count the number of IS and DW errors and denote them as is(ts)

and dw(ts). The opportunities of IS and DW errors in a target phrase of ts is de-

noted as Ois(ts) and Odw(ts). Therefore, the LBEs can be calculated as Equation

4.4 and 4.5 The complete MIP metrics for speaker s is represented as MIP (s) =

[INS(s), DEL(s), SUB(s), IS(s), DW (s)].

IS(s) =

∑T
t=1 is(ts))∑T
t=1Ois(ts))

(4.4)

DW (s) =

∑T
t=1 dw(ts))∑T
t=1Odw(ts))

(4.5)

4.2.4 Validity of the Automated Transcript Analysis

To assess the validity of the algorithms for transcript analysis, the estimated

metrics were compared to the results of the gold-standard manual scoring. Two

research assistants enrolled in the speech language pathologist master program of

ASU were trained by an LBE analysis expert (AL) to independently analyze phoneme

errors and LBEs of a randomly selected subset of 40 samples from the collected data.

They were given 40 pairs of target phrase and the corresponding listener transcription.

The target-transcript phoneme alignment generated by the alignment tool were also

provided for their reference (the estimated LBEs were not provided). They were

trained to transform the text to phoneme sequences using CMUdict and align the

target and transcript phonemes based on their knowledge. The research assistants

were also instructed to manually code each lexical boundary error as occurring before

strong or weak syllables (IS, IW, DS, DW).
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The results of comparing the calculations between the two research assistants and

between each research assistant and the algorithm are shown in Table 4.2. We use

the Pearson correlation and mean absolute error (MAE) to evaluate the reliability of

the algorithm relative to the reliability of the two raters.

Table 4.2: Validity Evaluation Results of the Automated Transcript Analysis.

Correlation MAE

Inter-

rater

Phoneme errors 0.97 0.15

LBEs 0.59 0.12

Algorithm-

Rater1

Phoneme errors 0.89 0.38

LBEs 0.90 0.03

Algorithm-

Rater2

Phoneme errors 0.90 0.34

LBEs 0.69 0.09

For phoneme error analysis, the algorithm is strongly correlated with the results

provided by the individual research assistants, but the MAE is much larger. This

is because the raters tend to use alignment strategies that differ slightly from the

alignment algorithm. One of the common disagreements between manual coding

and the algorithm was the alignment of diphthongs. In some cases, the alignment

algorithm treats a diphthong as one vowel and sometimes as two. For example, for

“beside” in the target phrase and “they say” in the transcript, the output of the

alignment algorithm is (b, ð), (i, ei), (s,s), (a, e), (i, i), (d, -), where the first ‘ei’ was

not separated, but the second one was separated into two monophthongs. Another

type of disagreement came from the different alignment decisions made by the manual

coders when compared to the algorithm. For example, when the target was “used”

and the transcript was “good”, the research assistants aligned the first phoneme ‘j’
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with ‘g’ (1 substitution error), while the algorithm did not align them together based

on their phonological distance (1 deletion and 1 insertion error).

In contrast to the high correspondence between the coding of the two research as-

sistants for phoneme errors, the LBE analysis results yielded low inter-rater reliability.

This is not unexpected because coding consistency is a function of experience, which

is why it is common protocol in LBE studies to include multiple coders, including

at least one with coding expertise to resolve discrepancies among coders (Liss et al.,

1998). Also, as expected, the algorithm achieved higher correlation coefficients and

lower MAEs with each rater. The algorithm was more stable because decision rules

are clearly defined instead of relying on unstable internal rules that different coders

likely have. As per manual coding protocol, the teams expert coder (AL) coded the

LBEs on the same set as those coded by the research assistants and calculated the

correlation and MAE between the algorithm and the experts codings. This achieved

1.0 correlation coefficient and 0.0 MAE on 34 of the selected phrases. For the other 6

phrase transcriptions, the algorithm could not analyze due to the different number of

syllables in the transcript and target. However, the expert could code LBEs for them

because she was not constrained by the requirement of a 6-syllable transcription to

make coding decisions.

4.2.5 Regression Analysis with Perceptual Ratings Related to Intelligibility

To examine the ability of the estimated metrics to predict perceptual intelligi-

bility, we performed a linear regression analysis using the statistics of the estimated

metrics as independent variables. For the dependent variable, we used three percep-

tual ratings and word accuracy, which is a traditional intelligibility measure derived

from listener transcripts. We obtained perceptual scores of the 73 dysarthric speakers

from 15 master students enrolled in the SLP program of ASU in a previous study (Tu,
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Berisha, & Liss, 2017). They were instructed to listen to five sentences from each

speaker and provide ratings for severity, articulatory precision, and prosody on a 1-7

scale (typical to severely atypical). Their ratings were integrated using the evaluator

weighted estimator (EWE). The word accuracy was calculated as the number of cor-

rectly transcribed words over the total number of words in the target phrase. Mean

value was calculated for each speaker. In this study, we examine the relationship

between the proposed metrics and the three perceptual dimensions along with word

accuracy. For the metrics, since the four LBEs were strongly correlated, we only used

IS and DW in the regression analysis, which are the theoretically most commonly

produced insertion and deletion error types in English (Cutler & Carter, 1987). Be-

cause different speakers have different number of transcripts, we normalized IS and

DW errors by their corresponding opportunities in the target phrases. Statistical

Package for the Social Sciences (SPSS) was used for this analysis.

Table 4.3: The Estimated Linear Regression Model for Predicting Severity.

Coefficients

Model

Unstandardized

Coefficients

Standardized

Coefficients t Sig.

B Std. Error Beta

(Constant) 2.367 .194 12.177 .000

Phoneme insertion -11.852 11.939 -.440 -.993 .324

Phoneme deletion -.975 4.684 -.059 -.208 .836

Phoneme substitution 12.734 7.305 .679 1.743 .086

IS 5.957 2.557 .714 2.330 .023

DW -4.970 3.935 -.139 -1.263 .211

R2 = 0.667, p < 0.001
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Table 4.4: The Estimated Linear Regression Model for Predicting Articulatory Pre-
cision.

Coefficients

Model

Unstandardized

Coefficients

Standardized

Coefficients t Sig.

B Std. Error Beta

(Constant) 1.741 .175 9.950 .000

Phoneme insertion -16.044 10.747 -.566 -1.493 .140

Phoneme deletion 1.253 4.216 .072 .297 .767

Phoneme substitution 17.343 6.576 .879 2.637 .010

IS 4.847 2.302 .552 2.106 .039

DW -4.211 3.542 -.112 -1.189 .239

R2 = 0.757, p < 0.001

4.3 Results

Table 4.3 4.4 4.5 4.6 show the coefficients of the metrics when predicting the four

dependent variables respectively. From the results, we can see that all the models

fit the data well with significance level p < 0.001. The R2 for predicting severi-

ty, articulatory precision, prosody, and word accuracy are 0.667, 0.757, 0.620, and

0.973, respectively. It indicates that the metrics are reliable features to predict per-

ceptual ratings and the traditional intelligibility measure. From the standardized

coefficients, we can see how changes in the proposed metrics accounted for changes

in each response variable. Taking severity as an example, one deviation in phoneme

substitution errors accounted for a change of 0.679 in severity (on a 7-point scale),

while IS errors accounted for 0.714.

The importance of the metrics was different when predicting different perceptual

ratings and word accuracy. The most significant predictor of articulatory precision

was phoneme substitution errors, while IS errors emerged as the most significant pre-
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Table 4.5: The Estimated Linear Regression Model for Predicting Prosody.

Coefficients

Model

Unstandardized

Coefficients

Standardized

Coefficients t Sig.

B Std. Error Beta

(Constant) 2.379 .193 12.296 .000

Phoneme insertion -18.414 11.884 -.735 -1.549 .126

Phoneme deletion .229 4.662 .015 .049 .961

Phoneme substitution 13.238 7.272 .758 1.820 .073

IS 6.290 2.545 .809 2.471 .016

DW -4.419 3.917 -.132 -1.128 .263

R2 = 0.620, p < 0.001

dictor of prosody and severity. Apart from phoneme substitution errors and IS errors,

the other metrics are less prominent (p > 0.05) in predicting the three perceptual rat-

ings. When predicting word accuracy, all metrics except for phoneme insertion errors

emerged as significant predictors (p < 0.05). If we consider word accuracy as an over-

all intelligibility score, and integrate the three phoneme errors as a single articulation

measure and two LBEs as a single prosodic measure, we are able to tell the relative

importance of articulation and prosody to intelligibility. To do that, in Table 4.6, we

averaged the absolute values of the standardized coefficients of three phoneme errors

and two LBEs respectively and got 0.346 for articulation and 0.174 for prosody. This

result coincides with a previous study by De Bodt et al. (2002) where intelligibility

was represented as a linear combination of multiple dimensions, and the relative im-

portance of articulation to prosody is also nearly 2:1 (0.66 articulation and 0.3139

prosody).

36



Table 4.6: The Estimated Linear Regression Model for Predicting Word Accuracy.

Coefficients

Model

Unstandardized

Coefficients

Standardized

Coefficients t Sig.

B Std. Error Beta

(Constant) .898 .008 113.935 .000

Phoneme insertion .681 .484 .177 1.406 .164

Phoneme deletion -.403 .190 -.171 -2.120 .038

Phoneme substitution -1.853 .296 -.690 -6.254 .000

IS -.254 .104 -.212 -2.449 .017

DW -.699 .160 -.136 -4.379 .000

R2 = 0.973, p < 0.001

4.4 Discussion

The automation of scoring to capture the various contributors to speech intelligi-

bility should have dramatic implications for both clinical practice in speech-language

pathology and for moving forward communication sciences. However, there exists a

natural tension in this goal because human perception is the final arbiter of speech

goodness. Automated algorithms are only useful to the extent they can be designed

to extract perceptually-meaningful aspects from the speech signal. In this report,

we presented a method for achieving this goal by focusing on measures that tap t-

wo fundamental components of speech intelligibility–the listeners ability to identify

constituent phonemes and to segment the acoustic stream at its word boundaries.

While the automated phoneme measures were highly correlated with the manually

coded measures, human coders were more flexibly able to deal with coding of diph-

thongs and unexpected transcription errors. The automated lexical boundary error

coding was superior to trained human coders in its consistent application of opera-
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tional definitions. This level of stability matched the coding of an expert LBE coder,

but unlike the expert, the algorithm could not navigate coding of transcribed phrases

that exceeded or did not include the target six syllables. Within these parameters,

the automated coding enjoyed a high level of success.

The algorithms were also largely successful in generating perceptually- and clinically-

meaningful data in their correspondence with perceptual ratings for severity, articu-

lation and prosody. The automated measures that accounted for the most variability

in articulatory precision were phoneme substitution errors. The automated measures

that accounted for most of the variability in prosody were IS errors. These patterns

make intuitive sense because phoneme errors are mainly due to the imprecise articu-

lation, while LBEs reveal the lack of prosodic control. For severity, IS accounted for

most of the variability among the automated measures. It can be interpreted as that

variations in phoneme errors did not necessarily result in severity variation. However,

the judgement of how severe a speaker was depended on whether this speaker was able

to use syllabic contrasts to help listeners make right decisions on lexical boundaries.

It coincides with the underlying theory that humans reply on lexical segmentation

cues to understand speech when low-level phonemic information is degraded (Liss

et al., 1998). When lexical segmentation cues were also degraded, it would be an

extreme challenge for the listener to understand the speech.

The overarching goal of this research is to deliver objective intelligibility assess-

ments that are reliable and clinically meaningful. By scoring listener transcripts from

segmental (phoneme errors) and suprasegmental (LBEs) levels, clinicians could have

a view of their patients speech from the listeners perspectives and conduct clinical

interventions by considering listener processing strategies to improve intelligibility.
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4.5 Limitations

The limitations of the current study and the projected improvements for future

research is as follows. Due to the large range of severity levels of the speakers and the

unsupervised transcript collection through MTurk, 48.3% listener transcripts were

discarded during the analysis. In the future, listener selection will be refined to in-

clude a pre-screening survey to ensure listeners which meet our criteria. Additionally,

the LBE analysis algorithm could only process transcripts with six syllables, while

humans are capable of coding transcripts with fewer or more syllables than the target

phrase at most times. In follow up analyses, we found that a large portion (approx-

imately 39.4%) of the excluded transcripts only missed the first unstressed syllable.

For those cases, we plan to add an extract placeholder (‘X’) to the beginning of the

transcript and analyze them in the same way as we did for the six-syllable transcripts.

Finally, the proposed metrics are not able to predict other variables which underly

intelligibility degradations, such as vocal quality and nasality. For that, we will con-

duct acoustic analysis on the speech signals to extract relevant features and combine

them with the current metrics to form a more comprehensive objective assessment of

speech intelligibility.
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Chapter 5

INTERPRETABLE AUTOMATED ACOUSTIC ANALYSIS

5.1 Introduction

In the study of motor speech disorders, acoustic analysis is a useful tool to quan-

tify changes in speech signal. As we presented in Chapter 2, commonly used acoustic

measures include VSA, segment durations, formants transitions, etc. We noticed

that acoustic analysis was usually conducted by researchers for testing a specific hy-

pothesis, but not often in clinical applications. One of the substantial reasons is

that traditional acoustic measures usually require human labors, such as segmenting

and labeling, which make it time-consuming and therefore, not flexible to be used

frequently or on a large scale. However, we believe that if they are easy to access, a-

coustic measures can be appreciated in clinical practice because they directly measure

changes in speech, which reveals the actual speech characteristics objectively with-

out involving the auditory-perception processes. With the aim of making acoustic

analysis accessible and meaningful in the clinical practice, we developed a group of

acoustic measures which possess the following three characteristics: comprehensive,

interpretable, and automated.

First, the acoustic measures analyze speech from different perceptual aspects and

at different spectral-temporal scales, including vowel/consonant/syllable articulation,

speaking rate and rhythms, prosody variation, syllable contrasts, and voicing qual-

ities. Second, the acoustic features we employed were all clinically interpretable.

Although high dimensional speech engineering features, such as the mel-frequency

cepstral coefficients (MFCC) were widely used in speech signal processing, they were
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not included in our study due to their lack of interpretability. Besides their calcula-

tion process, in this chapter, we will provide interpretations for each acoustic feature

with examples and illustrations. Third, all of the features can be extracted from the

raw speech signal automatically using the computer-based algorithms.

To be specific, we developed 36-dimension acoustic measures as shown in Table

5.1. In the articulation category, we measure vowel distinctiveness by using an auto-

mated VSA analysis algorithm. In order to also cover consonant pronunciations, we

developed a novel measure, articulation entropy, by measuring the overall phonemic

inventory of a speaker. Besides these two long-term features, at segmental level, we

employed the acoustic model of a pre-trained ASR system and calculated the goodness

of pronunciation (GOP) of phonemes. For measuring prosody and rhythm, speak-

ing rate and pitch variations were calculated first. Low-rate amplitude fluctuations

were measured using six-dimension envelope modulation spectrum (EMS) features,

which quantified the fluctuations of speech temporal envelopes. Moreover, the degree

of syllable contrasts was measured by the ratio of the duration and intensity of the

stressed and unstressed syllables. For characterizing voice quality, we measured the

period and amplitude disturbances using jitter and shimmer features. Moreover, the

general quality of the speech was measured with the harmonic-to-noise ratio (HNR)

and the fraction of unvoiced frames. Section 5.2 introduces the calculation process of

the above acoustic features and provides examples to interpret them.

To examine the validity of the developed acoustic features, we investigated their

relationship with perceptual ratings. Instead of using a traditional multiple regression

model, we employed the multi-task learning technique. It helped us answer what

features were important to all perceptual dimensions, and what were important to

a specific dimension. Section 5.3 introduces the multi-task learning technique and

the model we selected for our study. Section 5.4 describes the experiments and the
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results.

Table 5.1: The Comprehensive and Interpretable Automated Acoustic Measures.

Perceptual

category
Acoustic feature Dimension Interpretation

Articulation

VSA 1 Vowel distinctiveness

Articulation entropy 1 Phonemic inventory

GOP 9 Goodness of pronunciation

Prosody

EMS 6
Fluctuations in

envelop modulation

Speaking rate 1 Speed of speech

F0 variation 1 Pitch variation

Syllable contrast 2 Stress-unstressed syllable contrast

Vocal quality

Voice breaks 3 Unvoiced fractions

Jitter 4 Periodicity Stability

Shimmer 5 Amplitude Stability

HNR 3 Harmonicity

5.2 Acoustic Measures

5.2.1 Articulation-Related Acoustic Features

Automated VSA. In pathological speech analysis, VSA is often used as a mea-

sure of articulatory precision (Roy, Nissen, Dromey, & Sapir, 2009; Turner, Tjaden,

& Weismer, 1995). It measures vowel distinctiveness by calculating the area of the

quadrilateral in a 2D space formed by the first and second formants of the corner vow-
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els. It is a proxy of articulatory working space and perceptual separability between

vowels. The traditional measure of VSA requires manual segmentation of individual

vowels. Sandoval and colleagues (Sandoval, Berisha, Utianski, Liss, & Spanias, 2013)

developed an automated algorithm to estimate VSA on a continuous speech by in-

cluding all vowels instead of corner vowels only. The diagram of the VSA calculation

is shown in Figure 5.1. The speech signal, which contained a variety of vowels, was

first processed into consecutive frames with 20ms length. A voiced/unvoiced detec-

tion module identified the voiced segments. The first and second formants (F1/F2)

were extracted automatically from each voiced frame. After removing the outliers,

the remaining points were clustered into 12 groups (corresponding to the 12 English

vowels) using the k-means algorithm. The convex hull spanned by the cluster centers

was then determined. The area of the resulting convex polygon was calculated as the

VSA. Sandoval et al. (2013) has shown that the measures estimated in this approach

are strongly correlated with the traditional VSAs. Figure 5.2 shows an example of

VSAs of two speakers. The left speaker (A) has a mild hyperkinetic dysarthria and

his perceptual score in articulatory precision is 1 (least severe). On contrary, the right

speaker (B) has a severe mixed spastic-flaccid dysarthria with a perceptual score as

7 (most severe). It is clear from the figure that the F1/F2 points of speaker A are

distributed in a larger space than speaker B. It indicates that in speaker A’s speech,

different vowels are pronounced differently due to the effective movement of artic-

ulators. However, the vowels produced by speaker B are gathered together, which

indicates that he was not able to make his articulators, such as tongues and lips, to

reach the target positions for correctly and clearly producing a specific vowel.

Articulation entropy. VSA has been a prevalent metric in evaluating the artic-

ulation of the disordered speech, but it has some limitations. First of all, VSA is

designed to only measure vowel pronunciation but ignoring consonants. Second, the
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Figure 5.1: The Diagram of Automated VSA Estimation.

Figure 5.2: The Comparison of VSAs Between a Mild Dysarthric Speaker (left) and
a Severe Dysarthric Speaker (right).

VSA calculation relies on precise formant estimation, which implies that it could be

unreliable when the formant estimation is less accurate. To avoid those issues, we

proposed an unsupervised metric, called articulation entropy (Jiao, Berisha, Liss, H-

su, et al., 2017), that considered both vowel and consonant production and did not

require formant estimation. We extented the idea of entropy in information theory to

the acoustic representation of speech. We estimated the entropy of the distribution

of someone’s sounds and used it to characterize his/her working phonemic inventory.

The framework of articulation entropy calculation is shown in Figure 5.3. A continu-

ous speech signal with various phonemes was first pre-processed by removing the silent

periods and normalized into a uniform intensity level. From each frame (20ms) of the
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speech, we extracted mel-filterbank features with cubic root compression (MelRoot3)

(Tu, Xie, & Jiao, 2014). Features from consecutive frames within a phoneme-length

window (100-200ms) were stacked into a long feature vector. The entropy of the

distribution of these feature vectors was calculated using a nonparametric estimation

method (Berisha, Wisler, Hero, & Spanias, 2016). The hypothesis is that when two

speakers read the same content, we expect to see that the distribution of acoustic fea-

tures from the speaker who had more precise articulation should have larger variation,

and a larger entropy, than that of the speaker who has imprecise articulation. We

can also interpret the articulation entropy using a similar concept as VSA, which is

that the larger the features span in the space, the better the articulation is. For VSA,

the features are F1/F2 points and the space is 2D, while for articulation entropy, the

features are the stacked MelRoot3 features and the space is high-dimensional. For

visualization, we reduced the high-dimensional features into 2D space using principal

component analysis (PCA). Figure 5.4 shows an example of articulation entropy by

comparing two speakers. The dot in the plots can be treated as a sound segmented

from the speaker’s speech. (The edges are used to calculate entropy.) The closer the

dots are in the space, the similar those sounds are. Therefore, it is clear that sounds

produced by the right speaker are more distinct to each other than those produced

by the left speaker. We denote articulation entropy as artEnt in the experiment.

GOP GOP is a measure based on the log-posterior probabilities calculated from

a pre-trained ASR system. It was originally developed for evaluating the degree

of mispronunciation in non-native speech (Witt & Young, 2000). Here we employ

it to measure the articulation precision of disordered speech. Figure 5.5 shows the

diagram of the GOP calculation. First, an ASR system was trained using a large

spoken speech dataset from normal speakers. The pronunciation of each phoneme was

represented with computational models. After that, on the collected audio samples,
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Figure 5.3: Procedures of the Articulation Entropy Estimation.

the acoustic models from the trained ASR system were used to align the speech signal

with the phonemes in the target phrase (forced-alignment). For a target phoneme p,

the GOP was calculated using Equation 5.1, where the numerator is the probability

of the acoustic features belonging to the target phoneme, and the denominator is the

probability of the acoustic features belonging to the other phonemes in the dictionary,

and |Op| is the duration of the acoustic segment. We can interpret it as how much

this segment of sound looks like the target phoneme compared to how much it looks

like the other phonemes. When the speaker produces the target phoneme correctly,

we would expect to see that the posterior of the target phoneme (numerator) is high,

and the posterior of the other phonemes (denominator) is low, therefore, the GOP

score is high. In the experiment, for each speaker, we calculated the minimum, mean

and the standard deviations of GOP scores for the vowels, consonants, and syllables.

We denote them as GOP minV, GOP minC, GOP minS, GOP meanV, GOP meanC,

GOP meanS, GOP stdV, GOP stdC, and GOP stdS.
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Figure 5.4: The Comparison of Articulation Entropy Between a Mild Dysarthric
Speaker (left) and a Severe Dysarthric Speaker (right).

Figure 5.5: The Procedures of GOP Estimation.

GOP (p) = log

[
P (Op|p)P (p))∑
qεQ P (Oq|q))P (q))

]
/ |Op| (5.1)

5.2.2 Prosody-Related Acoustic Features

EMS The envelope modulation spectrum (EMS) is a spectral analysis of the slow

amplitude modulations of the speech envelope. EMS has been shown to be a useful

indicator of atypical rhythm patterns in pathological speech analysis (Liss, LeGen-
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dre, & Lotto, 2010). The calculation of EMS features is shown in Figure 5.6. The

envelope of a continuous speech signal was first obtained by passing the half rectifica-

tion of the signal through a low-pass filter with 30Hz cutoff frequency. The resulting

envelope contained temporal variations in amplitude such as those that corresponded

to syllables and the stressed-unstressed rhythmic patterns. EMS features were ex-

tracted from the power spectrum of the envelope signal. We extracted six variables:

(1) peak frequency (EMS pFreq) and (2) peak amplitude (EMS pAmp) normalized

by the total energy of the signal were related to the dominant modulation rates, by

indexing the dominant fluctuation rate and the degree of the dominance. The third

variable was (3) the normalized energy between 3Hz-6Hz (EMS E3-6), corresponding

to periods from 167ms to 333ms, which covered the majority of syllable durations in

normal English (Arai & Greenberg, 1997). This frequency band was also across the

4Hz rate, which had been shown as the dominant rate in normal speech (Divenyi,

Greenberg, & Meyer, 2006). The last three variables were (4) the normalized en-

ergy below 4Hz (EMS E0-4), (5) the normalized energy above 4Hz and up to 10Hz

(EMS E4-10), and (6) the ratio of the energy below 4Hz and that within 4Hz-10Hz

(EMS ratio4) (Liss et al., 2010). They measured rhythm variations at syllable levels.

Figure 5.7 shows an example of the temporal envelopes and the logarithmic power

spectrum from a healthy speaker and an Ataxic speaker who has equal stressed rhyth-

m patterns. From the temporal envelopes (middle), we can see that the left normal

speaker showed prominent variations in duration and intensity, while the right Ataxic

speaker showed less variations. From the power spectrum (bottom), we can see that

the left normal speaker showed a peak around 4Hz and the energy distribution below

and above 4Hz was significantly different, while for the right Ataxic speaker, the peak

was deviated from 4Hz and the energy was uniformly distributed.

Speaking rate. Changes in speaking rate is a critical index in the evaluation of
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Figure 5.6: The Procedures of EMS Feature Extraction.

Figure 5.7: A Comparison of the Envelope Modulations Between a Normal Speaker
(left) and an Ataxic Dysarthric Speaker (right).

speech disorders. In clinical practice, speaking rate is usually measured on reading

speech which has a provided transcripts because the number of syllables are fixed.

To measure speaking rate in spontaneous speech or estimate speaking rate variations

during speech, we need to rely on computational algorithms. Traditional speaking

rate estimation algorithms were usually based on peak detection from the amplitude

modulation of the speech signal, which was heuristic and had issues when applied to

disordered speech. We developed a data-driven speaking rate estimation method using

machine learning (Jiao et al., 2015, 2016). A diagram of speaking rate calculation is

shown in Figure 5.8. For a given speech segment with any length, it extracted acoustic
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features such as EMS and the statistics of MFCC. A recurrent neural network (RNN),

which had been trained on a large dataset with variable speaking rates, was applied

to estimate speaking rates second by second. Besides outputting an overall speaking

rate of the entire speech sample, it also provided speaking rate variations over time

which allowed clinicians and patients to monitor the change of speaking rate while

talking. In our experiment, since our data was from reading task with a fixed number

of syllables per utterance, the speaking rate was estimated by measuring the duration

from speech onsets to offsets. We denote speaking rate as SR in the experiment.

Figure 5.8: Data-Driven Based Speaking Rate Estimation Method.

F0 variations. Pitch variation is related to speech prosody and can be estimated

by the standard deviation of F0 contours. Due to the unstable vocal fold vibrations

of dysarthric speakers, traditional pitch estimation methods are usually unreliable.

In this study, we used an ensemble method by combining three state-of-the-art pitch

estimation methods (Camacho & Harris, 2008; Kasi & Zahorian, 2002; Tan &

Alwan, 2013). F0 contours were extracted using each individual method, and we only

kept and averaged the values where there were agreements (within 10 Hz differences)

among the three methods (Hsu et al., 2017). Speech from people with monopitch

would have a smaller F0 variation than normal speech. We denote F0 variations as

F0 var in the experiment.

Syllable contrast. Studies have shown that listeners rely on syllable contrast to i-
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dentify word boundaries when phonemic information is degraded in dysarthric speech.

In this study, we measure the degree of syllable contrast by the ratio of duration (syll-

Cont dur) and average intensity (syllCont int) of stressed and unstressed syllables.

To obtain the time boundaries of stressed and unstressed syllable nuclei (vowels), we

made use of the forced-alignment output from the GOP extraction steps.

5.2.3 Voice Quality-Related Acoustic Features

In the study of speech disorders, voice quality is usually estimated on speech with

a sustained vowel. In our study, we used the forced-alignment method introduced

in the GOP features to find the time boundaries for all phonemes. We removed the

consonants and concatenated all vowels for each speaker. The following measures

were then calculated on the audio signals with the concatenated vowels using the

voice report function in Praat (Boersma, 2006).

Voice breaks. People with normal voices are able to maintain phonation while

pronouncing vowels. Due to the defected motor control of vocal folds, pathological

voices tend to have more unvoiced frames and voice breaks. Therefore, we measured it

by calculating three variables: the fraction of locally unvoiced frames (voicing uv),the

number of voice breaks (voicing brks), and the degree of voice breaks (voicing dbrks).

We expect that people with dysphonia have more voice breaks than those who do not.

Jitter and shimmer. Jitter and shimmer are two common acoustic features mea-

suring the instability of laryngeal controls. Jitter is defined as the frequency variation

from cycle to cycle in the sound wave (Zwetsch, Fagundes, Russomano, & Scolari,

2006), which is mainly due to the lack of vocal cord control. Shimmer is the variation

in amplitude, which is caused by the reduction of glottal resistance and is correlated

with noise emission and breathiness (Teixeira, Oliveira, & Lopes, 2013). The features

related to jitter include local jitter (jitter abs), local jitter normalized by the average
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period (jitter norm), the relative average perturbation of jitters (jitter rap), the five-

point period perturbation quotient (jitter ppq5), local shimmer (shimmer local), local

shimmer in dB (shimmer localdB), the three-point, five-point and 11-point amplitude

perturbation quotient (shimmer apq3, shimmer apq5, and shimmer apq11).

HNR. The harmonic-to-noise ratio (HNR) is the ratio between periodic and non-

periodic components presented in the speech signal (Murphy & Akande, 2005). It

is related to the ability of the speaker to coordinate source and filter acoustics. The

periodic components arise from the vibration of the vocal cords, and the non-periodic

components come from the glottal noise. A high HNR value is associated with sono-

rant and harmonic voice, while a low HNR indicates an asthenic voice and dysphonia

(Teixeira et al., 2013). HNR features include the HNR calculated by autocorrelation

(HNR auto), the HNR calculate by cross-correlation or the absolute HNR (HNR abs),

and the HNR in dB (HNR dB).

5.3 Multi-Task Learning

Regression analysis is widely used in studying how the variations of a set of pre-

dictors impact the changes in the response variables. Linear regression is a simple,

powerful and interpretable model to help understand this question. However, a tra-

ditional linear regression model assumes the response variables are independent to

each other and estimates coefficients without considering the possible relationship

between the tasks. Multi-task learning (MTL) is a method that assumes the learn-

ing of a desired target may benefit from the learning of several relevant targets so

that they can be jointly trained. When we can identify multiple relevant targets in

a study which may or may not have a common set of features, training the models

simultaneously may help us understand the relationship of the predictors with the

target variables as a whole. Moreover, it has been shown that MTL is potential to
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improve the learning performance than the learning on individual tasks separately.

MTL has been applied in many different fields, such as natural language processing

(Collobert & Weston, 2008), speech recognition (Deng, Hinton, & Kingsbury, 2013),

computer visions (Girshick, 2015), etc.

In our study, the response variables are five perceptual ratings, which are severity,

nasality, vocal quality, articulatory precision, and prosody. It is obvious that these

dimensions are related to each other. For example, when someone is severe, it is

expected that his or her articulation and prosody are both affected. Depending on

the type of neurological disorders the speaker has, degradations in nasality and vocal

quality are also likely to appear. Therefore, it is appropriate to use MTL in the

current study.

MTL methods are different based on the assumptions of the relatedness of the

tasks. For example, when we assume all tasks are related, we can consider using

regularized MTL (Evgeniou & Pontil, 2004), joint feature learning (J. Liu, Ji, &

Ye, 2009; Obozinski, Taskar, & Jordan, 2006), low rank MTL (Ji & Ye, 2009),

alternating structure optimization (ASO) (Ando & Zhang, 2005) and so on. When

the tasks are assumed to distribute in a graph or tree structure, clustered MTL (Jacob,

Vert, & Bach, 2009), network MTL (Yan, Ricci, Subramanian, Lanz, & Sebe, 2013)

and tree MTL (S. Kim & Xing, 2010) can be considered. Some other methods,

such as deep neural networks with shared hidden layers (Ruder, 2017), make no

assumption of the tasks, but lack interpretability. In our study, we assume all tasks

are latently related and we want to seek an interpretable model. Thus, we restricted

our search to the methods based on multiple linear regression.

A standard multiple linear regression model is shown in Equation 5.2, where Xk ∈

Rn×p and ~yk ∈ Rn are the feature matrix and the response variable for the k-th task.

The learning of the model is to estimate an optimal coefficient vector ~θk ∈ Rp to fit
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the given data as well as possible under a certain optimization criterion, such as the

least squares.

~yk = Xk~θk, k = 1, ..., r (5.2)

Multi-task learning is when we have r > 1 response variables. In the setting of

multiple regressions, the r tasks are usually assumed to be “simultaneously sparse”

(Tropp, Gilbert, & Strauss, 2005), where the number of relevant features for each

task is small, and there is a large overlap of these relevant features across different

tasks. Applying it to our study, we developed multiple measures in each perceptual

categories, such as the VSA and articulatory entropy for measuring articulation, and

the EMS and speaking rate for measuring prosody. However, we are uncertain their

importance in predicting perceptual ratings. We expect to see that some features are

identified as more important than others (“sparsity”). Moreover, we also expected to

see the important features across different tasks are largely overlapped because for

motor speech disorders the symptoms in speech usually appear from different aspect-

s as shown in Table 3.2 (“simultaneous”). Therefore, the “simultaneously sparse”

assumption meets our demand.

Under this assumption, block sparsity or group sparsity was proposed in the early

literatures (J. Liu et al., 2009; Obozinski et al., 2006). Here we represent multiple

regression in a format of matrix in Equation 5.3 where Y ∈ Rn×r, X ∈ Rn×p, and

θ ∈ Rp×r. Thus, in the coefficient matrix θ , each column corresponds to a task, and

each row to a feature dimension. Block sparsity is the structure of the coefficient

matrix where each row is either all zero or mostly non-zero, and the number of non-

zero rows is small (See Figure 5.1). To encourage such structure during training, l1/lq

(q > 1) norm regularization is usually used, such as the l1/l∞ norm (Negahban &

Wainwright, 2008; Turlach, Venables, & Wright, 2005) and the l1/l2 norm (Lounici,
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Pontil, Tsybakov, & van de Geer, 2009; Obozinski, Wainwright, & Jordan, 2011).

Y = Xθ (5.3)

The problem of the block sparsity is that the sparsity is strictly shared, which

means that a feature is either important to all tasks or not important to any. It is

not realistic because we expect that each task depends on features specific to itself

although a common set of features can be shared. Moreover, studies have shown

that the l1/lq norms can easily result in the non-sparse rows in the coefficient matrix

taking nearly identical values (Negahban & Wainwright, 2008; Obozinski et al.,

2011). This is an even more strict assumption that not only do the features have to

be exactly the same, but also their importance in prediction.

To solve this problem and make the model more realistic, Jaladi and colleagues

proposed a dirty model (Jalali, Sanghavi, Ruan, & Ravikumar, 2010), where it

decomposed the coefficient matrix into a group sparse matrix (Q in Figure 5.9) cor-

responding to the shared features, and an element sparse matrix (P in Figure 5.9)

corresponding to the task-specific features. It integrated both block sparsity and l1

regularization, and had been shown to outperform each of them. The algorithm of

the dirty model optimization is shown in Equation 5.4.

minP,Q ‖Y −X(P +Q)‖2F + λ1 ‖P‖1,q + λ2 ‖Q‖1 (5.4)

It estimates a sum of two coefficient matrices P and Q with different regularization

for each: encouraging block-structured row-sparsity in P using l1/lq norm and element

sparsity in Q using l1 norm.
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Figure 5.9: An Illustration of the Dirty Model.

Figure 5.10: The Importance of the Acoustic Features in Predicting Different Per-
ceptual Dimensions.

5.4 Experiments and Results

On the 73-speaker dysarthric speech dataset, we extracted the acoustic features

in Table 5.1, and used them as independent variables. The 5-dimension perceptual

ratings were used as dependent variables. Referring to Equation 5.4, X corresponds

to the acoustic features, and Y corresponds to the perceptual ratings. The acoustic
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Figure 5.11: The Correlation Coefficients of the Regression Model Using a Single
Set of Acoustic Features.

features are normalized by Z-score so that the estimated coefficients can be treated

as importance degrees. A MATLAB based multi-task learning toolbox, MALSAR

(Zhou, Chen, & Ye, 2011), was used. We applied the dirty model on the data

and tuned the parameters λ1 and λ2 using cross validation. The group sparsity

matrix P and the element sparsity matrix Q were then estimated. Table 5.2 shows
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the selected acoustic features with non-zero values in P and Q. We can see that in

all the 15 dimensional acoustic features, 13 of them were selected as useful shared

predictors across tasks. Among them, there were 6 features related to articulation,

4 features related to prosody, and 3 features related to voice quality. It is consistent

with our hypothesis that all the three categories of acoustic features are important

in predicating intelligibility, which can be measured as a linear combination of the

multi-dimensional perceptual ratings (De Bodt, Huici, & Van De Heyning, 2002).

For each individual task, different features were selected based on their relevance to

each perceptual dimension.

Suppose ~θk = [θ1, θ2, ..., θp] is the estimated coefficients for the k-th task in Q. The

importance of the 3 sets of acoustic features (articulation, prosody, voice quality)

can be estimated using Equation 5.5, where m = 1, 2, 3 is the index of the acoustic

feature set, Nm is the number of dimensions in the m-th feature set. Table 5.3 shows

the importance values of the 3 acoustic feature sets in predicting the 5 perceptual

dimensions. Based on this, we calculated their relative (normalized by their sum) im-

portance within each task and plot it in Figure 5.10. We can see that when predicting

different perceptual dimensions, the importance of the acoustic features varies. For

example, articulation related features are the most important factor in predicting ar-

ticulatory precision, while it is less important in predicting vocal quality and prosody.

Similarly, prosody related features are more relevant to prosody ratings than the oth-

er dimensions. As for severity, which is a more general dimension, articulation and

prosody related features are equally important along with a slightly less contribution

from features related to voice quality. This result support our hypothesis that the

acoustic features measured from different aspects of speech are most related to their

corresponding perceptual dimensions.

To further check how these 3 sets of acoustic features are related to the 5 perceptual

58



dimensions, we used each of them to predict the perceptual ratings and calculated the

correlation coefficients between the predicted values and the real values. Figure 5.11

shows the result. From the figure, we can see that each individual feature set is the

most correlated with its corresponding perceptual dimension: articulation features

to articulatory precision, prosody features to prosody, and voice quality features to

vocal quality. However, we also notice that by only using the voice quality features,

the correlation coefficients (0.2) are much lower than only using the other two set

of features (0.7), even when predicting vocal quality ratings. It indicates that the

features we are using to measure voice quality, such as jitter, shimmer, and HNR,

are not as reliable as the other features like GOP and EMS. The reason is that

these features were usually measured on sustained phonation instead of continuous

spoken speech as we did in this experiment. Therefore, it implies that a more robust

voice quality feature needs to be developed in the future. However, the correlation

coefficient when predicting perceptual voice quality was still significant (p < 0.05)

although the number was low, which means that we could still claim that those

measures are related to vocal quality.

To examine how well the acoustic features predict perceptual ratings, we used the

leave-one-speaker-out cross validation. To be specific, each time during training, we

left one speaker out, and used the other 72 speakers to train the model and obtained

a coefficient matrix θ. At test phase, we applied each trained model on the left-out

speaker. Table 5.4 shows the correlation coefficient and the mean absolute errors

(MAE) between the predicted and the real perceptual ratings. As a comparison, we

also trained 5 linear regression models with LASSO regularization in the same cross

validation fashion, and presented the result in Table 5.4. From the result, we can see

that the predicted values are strongly correlated to the perceptual ratings with a low

MAE. It indicates that the developed acoustic features are capable of making reliable
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predictions of perceptual ratings. Compared to LASSO based single task learning,

the multi-task learning models achieved a better result, which indicates that it is

beneficial to jointly train these tasks than training them separately.

In addition, we used the acoustic features to predict word accuracy, which was a

general measure of intelligibility, with l1 regularization in a cross-validation fashion.

The predicted results achieved R2 = 0.72 with a significance p < 0.01. This indi-

cates that by using our development acoustic features, we are able to make reliable

predictions of someone’s intelligibility degree only from his/her speech signals.

Importance(m) =

∑Nm

i=1 |θi|
Nm

(5.5)
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Table 5.2: The Selected Features (“yes”) in the Multi-Task Learning Model.

P
Q

Severity Nasality
Vocal

quality

Articulatory

Precision
Prosody

Articulation-

related

features

VSA yes

artEnt yes yes

GOP minV yes yes

GOP minC yes yes yes

GOP minS yes yes

GOP meanV yes yes yes

GOP meanC yes yes

GOP meanS yes

GOP stdV yes

GOP stdC yes yes yes

GOP stdS yes yes yes

Prosody-

related

features

EMS pFreq yes yes yes

EMS pAmp yes

EMS E3-6 yes yes

EMS E0-4 yes

EMS E4-10 yes

EMS ratio4 yes yes

SR yes yes yes yes

F0 var yes yes yes yes

syllCont dur yes

syllCont int yes yes yes

Voice

quality-

related

features

voicing uv yes

voicing brks

voicing dbrks yes

jitter abs yes yes

jitter norm yes yes yes yes

jitter rap yes yes

jitter ppq5 yes yes

shimmer local yes yes

shimmer localdB yes

shimmer apq3 yes yes yes yes yes

shimmer apq5 yes

shimmer apq11 yes

HNR auto

HNR abs yes

HNR dB
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Table 5.3: The Importance of the Three Acoustic Feature Sets to the Five Perceptual
Dimensions.

Severity Nasality Vocal quality
Articulatory

precision
prosody

Articulation-

related

features

0.0160 0.0104 0 0.0426 0.0122

Prosody-

related

features

0.0134 0.0024 0.0286 0.0025 0.0167

Voice quality-

related

features

0.0014 0.0003 0.0240 0.0065 0.0037

Table 5.4: The Correlation Coefficients and the MAEs Between the Predicted and
the Actual Perceptual Ratings for Dirty Model based MTL and Single Task Learning
uisng LASSO.

Multi-task learning

Severity Nasality
Vocal

quality

Articulatory

precision
Prosody Average

Correlation Coefficient 0.807 0.749 0.669 0.820 0.724 0.754

MAE 0.724 0.721 0.822 0.730 0.849 0.769

Single task learning

Correlation Coefficient 0.776 0.769 0.497 0.829 0.792 0.733

MAE 0.732 0.689 0.974 0.720 0.765 0.776
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Chapter 6

THE RELATIONSHIP BETWEEN ACOUSTIC SIGNALS AND LISTENER

ERROR PATTERNS.

6.1 Introduction

In the previous two chapters, we assessed intelligibility from the listener’s per-

spective using the MIP metrics, and quantified information in the acoustic signals

related to intelligibility from the speaker’s aspect. In this chapter, we investigate

the interaction between acoustics and listener error patterns. First, the correlation

between acoustic features and transcript errors measured by MIP and word accuracy

were studied across speakers on the 73-speaker dysarthric speech dataset. Second, we

simulated speech changes within speakers by using different cues, which were slow,

clear, and loud. It resulted in variations in both acoustic features and transcript er-

rors. By investigating the relationship between them, we aim to show how changes in

acoustic signals affect the ways listeners perceive and understand speech, and whether

we can predict intelligibility gains and listener error variations from the changes we

observed in the acoustic signal.

6.2 Data Collection

In this chapter, we used both of the datasets described in Chapter 3: the 73-

speaker dysarthric speech dataset and the healthy speech dataset. Twenty healthy

speakers produced each of the 40 speech samples (phrases) four times under different

conditions, including habitual, slow, clear, and loud. Studies have shown that in the

treatment of dysarthria, patients potentially improved their intelligibility when being
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cued with these prompts (K. Tjaden, Sussman, & Wilding, 2014). Although we did

not aim to investigate which intervention strategy is more effective than others, these

cues were able to trigger changes in speaking styles so that variations can be detected

from the acoustic signals, and therefore, resulting variations in intelligibility.

To induce changes in intelligibility, we embedded the speech signal into background

noise. With the same level of signal to noise ratio (SNR), we were able to compare the

impact of spectral temporal variations in different conditions on intelligibility. The

total number of speech samples was 3,200. We separated them into 80 batches with

each containing 40 samples. In each batch, there were two samples from each of the

20 speakers, and no duplicate phrases existed in any batch.

We collected the transcripts from MTurk. For each batch, we aimed to recruit

10 listeners, but some listeners were not able to complete the tasks for unknown

reasons. As a result, 675 listeners located in the US participated in the experiment.

We filtered the listeners based on their answers to the questionnaire. Details about

the questionnaire have been described in Chapter 3. After filtering, 24,862 transcripts

qualified for our study, with 311 transcripts on average collected for each speaker in

each condition.

6.3 Correlation Between Acoustic Measures and Transcript Errors Across Speakers

On the 73-speaker dysarthric speech dataset, we extracted the MIP metrics, word

accuracy, and 36-dimensional acoustic features in the study of Chapter 4 and Chapter

5. Here we calculated the bivariate Pearson correlations between each of the acoustic

features and the six transcript errors (five MIP metric and word accuracy). Table

6.1 shows the result with ∗ indicating a significance at p < 0.05, and ∗∗ a signifi-

cance at p < 0.01 (highlighted in the table). From the result, we can see that the

absolute values of some acoustic features did not show correlations with intelligibility
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level directly, such as the VSA and F0 variation. It was reasonable because these

two measures could be affected by many speaker-related factors, such as age and

gender (Pettinato, Tuomainen, Granlund, & Hazan, 2016). However, most of the

articulation- and prosody-related features showed significant correlations with word

accuracy and the MIP metrics. The GOP features appeared to be strongly correlated

with all the transcript error metrics. The EMS features and the stressed-unstressed

syllable duration contrast (SyllCont dur) also moderately correlated with them. It is

not surprising that the voice quality metrics did not yield a strong correlation with the

MIP metrics. Several studies have shown that vocal quality has the lowest correlation

with intelligibility among the various perceptual dimensions (De Bodt, Huici, & Van

De Heyning, 2002). For the two types of transcript errors, the GOP features showed

stronger correlations with phoneme errors and IS errors than DW errors. The EM-

S features showed higher correlations with IS errors than phoneme errors, while the

correlation with DW errors was not significant. This is consistent with the hypothesis

that segmental phoneme errors are primarily related to articulation-related features,

while suprasegmental lexical boundary errors can be affected by both articulation-

and prosody-related features. From the table, we also found that the correlation of

the acoustic features with the DW errors was lower than the other transcript errors.

This suggests that the DW errors could be affected by a combination of multiple

acoustic features instead of a single one.

6.4 The Relationship Between Variations in Acoustic Measures and Transcript

Errors Within Speakers

As we discussed in the previous section, variations in the acoustic features across

speakers may not necessarily correlate with the absolute intelligibility scores (word

accuracy). In this section, we study whether changes in the acoustic measures within

65



speakers could predict intelligibility gains or degradations. We triggered variations in

speech signals by asking the same speaker to read the materials in different conditions

(habitual, slow, clear, and loud). In this way, we could learn the particular changes

in which acoustic features may have positive effects on intelligibility gains, and how

the intervention strategies affect variations in individual acoustic features.

6.4.1 Variations in Transcript Errors in Different Speaking Modes

We calculated word accuracy and the MIP metrics for each speaker in the four

conditions from the collected transcripts using the methods described in Chapter

4. Table 6.2 shows the average word accuracy and five MIP metrics over the 20

speakers in each speaking mode. From the table, we can see that on average, the

cued speech show improvement in all metrics. The improvement of slow and clear

conditions compared to habitual is nearly the same, but more improvement is observed

in loud condition. One exception can be found in DW errors where slow cued speech

shows more improvement. We can interpret it as follows. DW errors appear when

the listeners did not detect the word boundary before an unstressed syllable. For

example, it happens when a listener perceives “beside a” as “decided”. It makes

sense that in slow condition, there are fewer liaisons so that listeners could detect

that the unstressed syllable does not belong to the previous word. However, in the

previous subsection, the correlation between speaking rate and DW errors is not

significant. It indicates that although DW errors are related to speaking rate, their

relationship may not be in a linear fashion.

Figure 6.1 shows the word accuracy for each speaker in different speaking condi-

tions. We can see that the three intervention instructions are able to trigger variations

in intelligibility. However, the gains vary greatly from speaker to speaker. For each

speaker, we calculated the gains from habitual to the cued conditions as a percentage
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of increment (positive) or decrement (negative). Table 6.3 shows the mean, standard

deviation, minimum and maximum values in the word accuracy gains. From the re-

sult, we can see that on average there are improvements in the cued conditions, but

the variation is large. For example, in the slow condition, one speaker showed 117.54%

increment compared to his/her habitual speech, while another speaker showed 22.51%

decrement. Previous studies noticed that although slow and loud were two commonly

used treatment strategies to help improve intelligibility, they might not work for all

patients (Fletcher, McAuliffe, Lansford, Sinex, & Liss, 2017b). Here we also no-

tice that speech produced with intervention cues has the potential for intelligibility

improvement, but there are exceptions.

For the MIP, we also calculated the percentage of decrement in each error metric.

Figure 6.2 shows the result. We can see that all the MIP errors decrease in the

cued conditions, but the decrements are different between segmental measures and

suprasegmental measures. For instance, the improvements in phoneme errors are

smaller in the slow condition than the other two conditions. However, the slow cued

speech showed greater improvements in lexical segmentation errors. This is because

“slow” is a direct instruction on rhythm control. Comparing “clear” and “loud”,

the results indicate that “loud” is more effective in improving phoneme recognition

accuracy than “clear” even though “clear” is more related to articulation control.

6.4.2 Variations in Acoustic Measures in Different Speaking Modes

The acoustic measures described in Chapter 5 were calculated from the acoustic

signals for all speakers in the four conditions. Changes from the habitual speech

to the cued speech were calculated as a percentage value similar to what we did in

Section 6.4.1. To have a clearer view, we selected 15 features from the 36 dimensions

as representatives. These features covered all acoustic measures and are more inter-
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pretable than the other dimensions so that they can help us explain the observations

with emphasis. Variations of the 20 speakers in these dimensions are shown in Table

6.4.

For articulation-related measures, we notice that the VSA, and the GOP show

significant improvements in the three cued conditions, but variations in articulation

entropy are less prominent. Comparing between the three intervention strategies,

loud cued speech shows the greatest changes in VSA and articulation entropy mea-

sures, while slow cued speech shows the greatest changes in GOP measures. We can

interpret this finding as that clear and loud cues make the speakers exaggerate artic-

ulations which can be detected by VSA and articulation entropy. However, some of

the exaggerated phonemes may sound unnatural so as to increase the ASR likelihood

measured by GOP. However, the slowed speech makes the speakers have more time

to focus on phoneme pronunciations, which increases the GOP values.

For prosody-related measures, we first notice that the speaking rate decreases in all

three cued conditions with more decrements in the slow cued speech. The variation of

pitch is also larger in the cued conditions than in habitual with more impact from loud

cues. Changes in the EMS features indicate that the three cues are able to increase

fluctuations in envelope modulation, but the slow cue is more efficient. From the two

syllable contrast measures, we notice that only loud cue can increase the contrast

ratio between stressed and unstressed syllables. It indicates that when speaking in a

loud voice, speakers tend to put more energies on stressed syllables than unstressed

ones. Although the slow and clear cues are also able to increase envelope fluctuations,

it does not result in the speakers paying more attention on syllable contrasts.

For voice quality-related measures, we notice that in the three cued conditions, the

speakers show more stable vocal control by having fewer voice breaks, less jitter and

shimmer and more harmonicity. Voice breaks and jitter show the highest decrements
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in the loud condition. We can interpret it as that the air pressure increases greatly

so as to make the vocal fold vibrate in a more stable way. Shimmer and HNR show

more improvements in the slow condition. We suspect that when speaking slowly, the

speakers are prolonging the syllable nuclei more than the transitions.

From Table 6.4, we can see that the standard deviations are large regarding the

corresponding mean values, which indicates that different speakers may display sig-

nificant difference in the changes of acoustic signals even when being cued with the

same instructions. This is similar to what we noticed in the MIP metrics.

6.4.3 The Relationship Between Acoustic Variations and Transcript Error

Variations

Here we investigate the relationship between acoustic variations and the variations

in MIP and word accuracy. We want to answer two questions: (1) changes in which

acoustic features are important in predicting intelligibility gains, and what is their

relative importance; (2) can we use acoustic features to make reliable predictions

of MIP and word accuracy so that we can learn how much the intelligibility (word

accuracy) is expected to change given the observed acoustic variations and in what

way it affects listener strategies (MIP metrics).

To answer these questions, we used multiple linear regression models to fit the

data. The dependent variables were the variations of the acoustic measures in per-

centage from habitual to the three cued conditions. Correspondingly, the independent

variables were the increment in word accuracy and the decrement in the five MIP met-

rics.

The group importance of the three categories of acoustic features, which were

articulation-related, prosody-related, and voice quality-related, were calculated using

Equation 5.5 and plotted in Figure 6.3.
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Table 6.5 shows the five most important predictors and their standardized co-

efficients for the six response variables respectively. From the figure, we can see

that articulation-related features were the most important predictors of phoneme er-

rors. From the table, we can see that changes in GOP features account for the most

variations. This is consistent with our hypothesis that articulation-related acoustic

features are linked closely with segmental phoneme metrics. Among the nine dimen-

sional GOP features, the standard deviation of consonant GOP values is the most

important for predicting phoneme errors. Voice quality-related features also emerge

as important predictors of phoneme error variations. It implies that when the speaker

shows better voice control, the speech signal becomes more harmonic and have fewer

voice breaks which helps listeners perceive phonemes more precisely and continuously.

For predicting variations in the lexical segmentation errors, prosody-related fea-

tures especially the EMS features became more important compared to them in pre-

dicting phoneme errors. This is also consistent with our hypothesis that prosody-

related acoustic features should have a closer relationship with lexical segmentation

strategies than phoneme perception. In addition, articulation-related features, such

as GOPs, also played a critical role in predicting lexical segmentation errors. It indi-

cates that listeners rely on both phonemic and rhythmic cues for lexical segmentation.

The changes in voice quality features were less important in predicting lexical seg-

mentation errors than in predicting phoneme errors with only one shimmer feature

appeared in the five most important predictors.

For predicting word accuracy, the five most important predictors include two GOP

features, two EMS features, and one jitter feature, which indicates that the overall

intelligibility gains is predictable by considering all articulation, prosody, and vocal

quality variations in the acoustic signal, but the former two are more important than

the latter one.
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To examine how well the acoustic changes can predict transcript error changes,

we trained a linear regression model using the dirty model based MTL in a leave-

one-speaker-out fashion. Table 6.6 shows the correlation coefficients and the MAEs

between the predicted and actual changes in word accuracy and MIPs. Figure 6.4

shows the scatter plots and the fitted lines. From the result, we can see that the

predicted values are significantly correlated with the real values, but with a relatively

large MAE. From the scatter plots, we can find some reasons for this finding. First, we

only had 60 training samples (20 speakers in three cued condition), which was small

for model learning. Second, the data was not uniformly distributed. The number of

speakers who showed a moderate changes was larger than those who showed great

or slight changes. Therefore, we noticed a larger prediction error in the region with

fewer training samples. However, for the majority of the speakers, we could make

reasonable predictions with a significant correlation. By having a model like this, we

expect to predict intelligibility gains (e.g., word accuracy improvement) from acoustic

variations. Moreover, by predicting the MIP metrics, we could also interpret such

gains from the perspective of a listener when the transcripts are not available.

6.4.4 Discussion of the Number of Phrases

In this study, there are 80 phrases in the stimuli. For the dysarthric speech dataset,

we collected all 80 phrases from the speakers. However, for the healthy speech dataset

that was used in this chapter, only 40 phrases were collected from each speaker in

each speaking mode. To examine if it is sufficient enough as 80 phrases, and if we

can further reduce the number of phrases, we extracted the MIP metrics and the

acoustic features by using 5, 10, 20, 40, 60 number of phrases and calculated their

correlation coefficients with the measures we extracted from all 80 phrases on the

dysarthric speech dataset. Figure 6.5 shows the result. From the figure, we can

71



see that the measures extracted from reduced phrases have strong correlation with

those extracted from all 80 phrases. Especially, when the number increased to 40, the

benefit of including more phrases became limited. Another thing we noticed from this

experiment was the difference between VSA and articulation entropy. Although they

both measured the general articulation, the articulation entropy was stable (high

correlation) when the number of phrases reduced. However, we were not able to

calculate VSA when the number of phrases was smaller than 20, and the correlation

was lower than the articulation entropy measure when using 20 to 60 phrases. This

indicates that we may replace VSA with articulation entropy especially when the

audio samples are limited.
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Table 6.1: Bivariate Pearson Correlation Between Acoustic Features and Transcript
Error Metrics.

Word

accuracy

phoneme

insertion

Phoneme

deletion

Phoneme

substitution
IS DW

Articulation-

related

features

VSA 0.174 -0.136 -0.154 -0.152 -0.089 -0.217

artEnt .465** -.540** -.559** -.465** -.497** -0.147

GOP minV .726** -.695** -.707** -.697** -.691** -.526**

GOP minC .869** -.871** -.902** -.848** -.880** -.589**

GOP minS .867** -.861** -.886** -.842** -.864** -.603**

GOP meanV .757** -.752** -.757** -.736** -.742** -.506**

GOP meanC .855** -.866** -.928** -.827** -.884** -.568**

GOP meanS .859** -.864** -.907** -.832** -.872** -.579**

GOP stdV -.695** .649** .660** .663** .645** .529**

GOP stdC -.870** .868** .893** .851** .879** .601**

GOP stdS -.860** .842** .856** .835** .842** .617**

Prosody-

related

features

EMS pFreq 0.093 -0.202 -0.208 -0.114 -0.159 0.189

EMS pAmp -.480** .581** .578** .492** .600** 0.080

EMS E3-6 .270* -.368** -.388** -.276* -.412** 0.045

EMS E0-4 -.384** .463** .434** .415** .474** 0.045

EMS E4-10 .384** -.463** -.434** -.415** -.475** -0.045

EMS ratio4 -.422** .503** .477** .451** .519** 0.068

SR .273* -.361** -.320** -.302** -.385** 0.077

F0 var 0.057 -0.073 -0.086 -0.082 -0.071 -0.056

syllCont dur .424** -.430** -.406** -.443** -.469** -.249*

syllCont int 0.008 -0.045 -0.025 -0.006 -0.090 0.037

Voice quality-

related

features

voicing uv -0.155 0.191 0.179 0.140 0.197 -0.100

voicing brks 0.069 -0.111 -0.111 -0.101 -0.088 -0.003

voicing dbrks 0.079 -0.102 -0.110 -0.122 -0.120 -0.024

jitter abs 0.187 -.233* -0.224 -0.226 -.264* -0.011

jitter norm 0.078 -0.123 -0.140 -0.112 -0.182 0.070

jitter rap 0.181 -0.222 -0.223 -0.221 -.272* 0.007

jitter ppq5 0.162 -0.215 -0.210 -0.203 -.251* 0.044

shimmer local 0.095 -0.112 -0.135 -0.127 -0.145 -0.016

shimmer localdB 0.128 -0.154 -0.168 -0.159 -0.180 -0.040

shimmer apq3 0.100 -0.089 -0.122 -0.128 -0.147 -0.061

shimmer apq5 0.111 -0.130 -0.145 -0.146 -0.164 -0.016

shimmer apq11 0.114 -0.163 -0.164 -0.152 -0.167 0.046

HNR auto -0.148 0.164 0.166 0.178 0.170 0.037

HNR abs 0.144 -0.166 -0.163 -0.171 -0.162 -0.028

HNR dB -0.147 0.160 0.153 0.181 0.175 0.043
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Table 6.2: Word Accuracy and MIP Metrics in Different Speaking Modes.

Habitual Slow Clear Loud

Word accuracy 0.41 0.48 0.49 0.53

Phoneme insertion 0.11 0.09 0.09 0.07

Phoneme deletion 0.13 0.11 0.10 0.08

Phoneme substitution 0.17 0.14 0.14 0.12

IS 0.37 0.26 0.26 0.24

DW 0.05 0.02 0.03 0.03

Table 6.3: Gains in Word Accuracy from Habitual to the Cued Conditions.

Mean (%) Std (%) Min (%) Max (%)

From habitual to slow 22.58 34.64 -22.51 117.54

From habitual to clear 24.5 24.6 -19.69 71.39

From habitual to loud 38.05 35.45 -2.7 119.82
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Figure 6.1: Word Accuracy of Individual Speakers in Different Speaking Modes.
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Figure 6.2: Decrements in the MIP Error Metrics from Habitual to the Cued Speech.

Figure 6.3: Group Importance of the Changes in Articulation-, Prosody- and Voice
Quality-Related Acoustic Features for Predicting Changes in MIPs and Word Accu-
racy.
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Table 6.4: Changes in Acoustic Measures from Habitual to the Cued Conditions.

From habitual to slow From habitual to clear From habitual to loud

Mean(%) Std(%) Mean(%) Std(%) Mean(%) Std(%)

VSA 110.26 304.05 138.81 300.45 289.47 459.75

artEnt -8.49 6.29 1.49 10.37 2.42 7.30

GOP meanV 66.09 65.05 38.54 63.15 42.01 49.94

GOP meanC 56.90 68.71 21.66 42.00 8.00 33.53

GOP meanS 62.99 58.95 30.76 51.13 27.33 40.17

EMS pAmp 12.40 8.01 4.78 5.68 1.28 4.88

EMS ratio4 15.47 9.34 6.83 7.23 2.13 7.28

SR -29.95 17.70 -13.83 14.69 -4.51 15.09

F0 var 28.00 61.58 48.57 94.08 54.08 70.61

syllCont dur -10.13 14.78 -6.48 9.49 1.88 9.37

syllCont int -6.81 20.95 -2.52 18.55 9.73 22.13

voicing dbrks -4.37 26.45 -7.60 23.76 -33.60 15.07

jitter norm -21.81 14.99 -19.48 13.38 -32.08 14.49

shimmer localdB -14.17 17.97 -5.56 18.10 -2.10 18.48

HNR dB 8.94 9.05 3.00 8.50 -0.37 10.22
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Table 6.5: The Five Most Important Features and Their Standardized Coefficients
in Predicting Changes in MIPs and Word Accuracy.

Phoneme insertion

GOP stdC GOP minC jitter rap HNR db SR

3.921 -3.427 -1.703 1.48 1.03

Phoneme deletion

GOP stdC GOP minC shimmer local shimmer localdB shimmer apq3

2.543 -2.277 -1.865 1.765 1.485

Phoneme substitution

GOP stdC GOP stdS GOP minV GOP meanS jitter norm

2.04 -2.026 1.224 1.102 1.085

IS

GOP stdC EMS ratio4 GOP minC shimmer local EMS E0-4

4.278 -2.879 -2.748 -2.735 2.683

DW

EMS E0-4 EMS ratio4 shimmer apq5 GOP minV GOP stdV

-8.967 6.736 -3.331 -2.221 2.105

Word accuracy

EMS E0-4 GOP minV GOP stdV EMS ratio4 jitter rap

-2.938 -2.92 2.784 1.551 1.54
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Table 6.6: The Correlation Coefficient and MAEs of between the Predicted Changes
and the Actual Changes in Word Accuracy and MIPs.

Correlation

coefficient
MAE

Word accuracy 0.58 19.71

Phoneme insertion 0.67 7.58

Phoneme deletion 0.65 13.08

Phoneme substitution 0.74 9.62

IS 0.62 11.32

DW 0.43 14.98
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Figure 6.4: Scatter Plots Showing the Predicted Changes (y-axis) and the Actual
Changes (x-axis) in Word Accuracy and MIPs.
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(a) MIP Metrics (b) Articulation-Related Features

(c) Prosody-Related Features (d) Voice Quality-Related Features

Figure 6.5: Correlation Coefficients of the Measures Extracted from Reduced Num-
ber of Phrases with Those Extracted from 80 Phrases.
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Chapter 7

CONCLUSION AND FUTURE WORK

Speech intelligibility is the amount of information that has been successfully trans-

mitted from the speaker to the listener during the speech communication process. The

quality of the information in the acoustic signal is determined by the control of the

speaker’s production system. Different quality of the acoustic information results in

different strategies that listeners use to comprehend speech. Improving speech intel-

ligibility is the central goal of speech pathology. Perceptual measures of intelligibility

suffer from subjective bias. Word accuracy is a traditional objective measure of in-

telligibility calculated from listener transcripts. However, it is not able to reveal the

underlying sources of intelligibility degradation. This study attempts to understand

speech intelligibly on a deeper level. We want to answer not only how much the

intelligibility decreases, but also how the speech challenges listeners’ attempt to un-

derstand it, what characteristics of the speaker make the speech degrade, and what

is the relationship between acoustic information and listening strategies.

To answer those questions, we have proposed to quantify intelligibility from both

listener transcripts and the acoustic signals, and studied their relationship using a

computational model. We assumes that intelligibility degradation is due to phoneme

misperception and incorrect word segmentation, which was caused by the imprecise

articulation and abnormal rhythm patterns of the speaker. When the phonemic cues

in the acoustic signal are less reliable, listeners make use of the more robust rhythmic

cues, such as the stress-unstressed syllable contrasts, to segment acoustic streams in-

to words to facilitate speech comprehension. Based on this, we hypothesize that the

articulatory precision affects the phoneme recognition accuracy, while both the artic-
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ulation and rhythm controls of the speaker affect the listeners’ lexical segmentation

strategies.

To test the hypothesis, we have developed a multidimensional intelligibility profile

(MIP) to measure intelligibility degradations from listener transcripts by using both

segmental phoneme errors and suprasegmental word segmentation errors. From the

acoustic signal, we have developed a comprehensive set of automated measures to

evaluate the speaker’s articulation, prosody/rhythm, and voice quality. We have

triggered acoustic variations within speakers and studied the relationship between

changes observed in acoustic features and those in listening error patterns. The main

findings can be summarized as follows:

1. The five dimensional MIP metrics are a complete representation of speech in-

telligibility. Evidence has been shown in Table 4.6 that when predicting word

accuracy using the three phoneme errors and two LBEs, the model achieved

R2 = 0.97, which means the MIP metrics can explain 97% variations in word

accuracy.

2. The developed acoustic features are significantly related to the perceptual di-

mensions they aim to measure. Evidence has been shown in Figure 5.11 that

when predicting perceptual ratings with their corresponding acoustic features,

the predicted values achieved significant correlation with the actual values.

However, the voice quality-related features showed less reliability than the

articulation- and prosody-related features.

3. It is beneficial to predict multiple perceptual ratings (which are highly correlat-

ed) simultaneously. Evidence has been shown in Table 5.4 that models that are

trained with MTL could make better predictions than those trained separately.

4. The articulation-related acoustic features are important in predicting both phoneme
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errors and lexical segmentation errors, while the prosody-related features are

more important in predicting lexical segmentation errors. This is consistent

with the hypothesis and evidence has been shown in Figure 6.3.

5. We can make reliable predictions of listening errors from changes observed in

acoustic signals. From changes calculated in the acoustic features, we can pre-

dict how each dimension of MIP metrics and word accuracy change within a

speaker. Evidence has been shown in Table 6.6 and Figure 6.4.

In addition to the above findings, we also noticed some results from the experiment

that beyond our hypothesis. First, Figure 6.3 shows that changes in voice quality-

related features are significantly important in predicting changes in phoneme errors

and segmentation errors. This is surprising because previous studies have shown that

voice quality only accounts for a small amount of variations in intelligibility (See

Equation 2.1), although this is not in a within speaker setting. For within speakers,

in a relevant study (Fletcher, McAuliffe, et al., 2017b), one of the experiment results

showed that a speaker’s baseline voice quality was the best determinate of whether one

treatment strategy could be more successful than another. Even though they used a

different set of voice quality measures and did not measure variations from habitual to

the intervention strategies, their findings may suggest the same thing as ours, which

was improving someone’s voice quality may have positive effects on improving speech

intelligibility. Second, from Table 6.5 we found that the GOP of consonants was one

of the most important predictors of phoneme recognition errors. This suggests that

it might be more efficient to focus more on consonant pronunciation than vowels in

clinical practice.

Since this is in the early stage of the study, there are some limitations in the meth-

ods and algorithms and need to be improved in the future work. For example, the
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procedures of recruiting listeners need to be more efficient without or with few col-

lected data being discarded. The algorithms for LBE calculation need to be enhanced

to handle more variant transcripts, such as those with different number of syllables

as the targets. More reliable voice quality-related features need to be developed to

align perceptual ratings better.

Besides the improvement on the current measures, it is also important to refine and

expand the model because intelligibility is a complicated concept and has not been

fully understood. More informal and finer measures need to be extracted to better

quantify intelligibility and assess it from more aspects. For example, we aligned

the target-listener transcripts based on the phonological distance. However, only the

number of errors were counted to measure listeners’ phoneme recognition accuracy. It

would be useful if we could make use of the distance information and develop measure

with higher precision.

In this study, we have developed a computational model to investigate the rela-

tionship between speech intelligibility and speech acoustics. By measuring listening

error patterns, we have understood that intelligibility reduced because the listener

perceived phonemes wrongly and segmented words incorrectly. By measuring acous-

tic signals, we have understood that the speech degraded because the speaker had

difficulties in making clear pronunciations, maintaining normal prosody and rhythm

patterns, and keeping a stable vocal fold vibrations. We expect that a model like this

would provide more useful information to clinicians. It tells them how one patient

is different from another even if they may have the same level of severity. Being

facilitated with this model, the clinicians could develop more personalized treatment

plans for different patients. Moreover, it could also help predict treatment outcomes

given a specific intervention strategy. The patients would be clearer about how it

may help listeners perceive their speech if they could modify it in a certain way.
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PHRASE LIST OF THE STIMULI

96



1. account for who could knock

2. address her meeting time

3. admit the gear beyond

4. advance but sat appeal

5. afraid beneath demand

6. amend estate approach

7. and spoke behind her sin

8. attack became concerned

9. avoid or beat command

10. appear to wait then run

11. assume to catch control

12. attend the trend success

13. award his drain away

14. balance clamp and bottle

15. beside a sunken bat

16. bolder ground from justice

17. bush is chosen after

18. butcher in the middle

19. career despite research

20. cheap control in paper

21. commit such used advice

22. confused but roared again

23. connect the beer device

24. constant willing walker

25. cool the jar in private

26. darker painted baskets

27. define respect instead
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28. distant leaking basement

29. divide across retreat

30. done with finest handle

31. had eaten junk and train

32. embark or take her sheet

33. for coke a great defeat

34. forget the joke below

35. frame her seed to answer

36. functions aim his acid

37. its harmful note abounds

38. hold a page of fortune

39. increase a grade sedate

40. indeed a tax ascent

41. kick a tad above them

42. listen final station

43. mark a single ladder

44. mate denotes a judgment

45. may the same pursed it

46. measure fame with legal

47. mistake delight for heat

48. mode campaign for budget

49. model sad and local

50. narrow seated member

51. her owners arm the phone

52. pain can follow agents

53. perceive sustained supplies

54. pooling pill or cattle
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55. push her equal culture

56. rampant boasting captain

57. remove and name for stake

58. resting older earring

59. rocking modern poster

60. rode the lamp for testing

61. round and bad for carpet

62. rowing farther matters

63. seat for locking runners

64. secure but lease apart

65. signal breakfast pilot

66. sinking rather tundra

67. spackle enter broken

68. or spent sincere aside

69. stable wrist and load it

70. submit his cash report

71. support with dock and cheer

72. target keeping season

73. technique but sent result

74. thinking for the hearing

75. to sort but fear inside

76. transcend almost betrayed

77. unless escape can learn

78. unseen machines agree

79. vital seats with wonder

80. pick a chain for action
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Introduction

The purposes of this form are to provide you (as a prospective research study partic-
ipant) information that may affect your decision as to whether or not to participate
in this research and to record the consent of those who agree to be involved in the
study.

Researchers

Dr. Julie Liss, a Professor in the Department of Speech and Hearing Sciences (College
of Health Solutions) at ASU, and Dr. Visar Berisha, an Assistant Professor in the
Department of Speech & Hearing Sciences and the School of Electrical, Computer,
and Energy Engineering, have invited your participation in a research study.

Study purpose

We are collecting speech transcriptions from people aged 18 and older who have
normal hearing. We will use these transcriptions to help us find out more about the
perception of disordered speech. This step will allow us to devise better strategies for
the treatment of these speech problems.

Description of research study

If you decide to participate, then you will join a study funded by NIH/NIDCD in-
volving research of the perception of disordered speech. Your participation will be
completely online and will last no longer than 1 hour. If you agree to participate,
we ask that you be seated in a quiet room in front of a computer. You will listen
to a series of words and phrases spoken by either individuals with or without speech
disorders in quiet or in background noise and asked to transcribe what you hear.
Research completed based on these transcriptions will provide an understanding of
the impact of dysarthria on communicative function.

Risks

There are no known risks from taking part in this study.

Benefits

Although there may be no direct benefits to you, these transcriptions may improve
our understanding of how dysarthria affects speech. This may, in turn, allow for the
development of better speech therapy treatments.

Confidentiality

All information obtained in this study is strictly confidential unless disclosure is re-
quired by law. The results of this research study may be used in reports, presentations,
and publications, but the researchers will not identify you. Your responses will be
anonymous.
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Withdraw privilege

Your participation in this project is completely voluntary. There is no penalty for
not participating, or for choosing to withdraw from participation at any time. Your
decision will in no way affect your relationship with ASU or your grade in any course.
Should you choose to withdraw from the study, your digital audio-video files will not
be saved and will be discarded electronically.

Costs and payments

The researchers want your decision about participating in the study to be absolutely
voluntary. Yet they recognize that your participation may pose some inconvenience.
You will receive $1-$2 for your participation, paid via Amazon Mechanical Turk.

Voluntary consent

Any questions you have concerning the research study or your participation in the
study, before or after your consent, will be answered by Dr. Julie Liss at (480) 965-
9136. If you have questions about your rights as a subject/participant in this research,
or if you feel you have been placed at risk; you can contact the Chair of the Human
Subjects Institutional Review Board, through the ASU Office of Research Integrity
and Assurance, at 480-965 6788. This form explains the nature, demands, benefits
and any risk of the project. By signing this form you agree knowingly to assume any
risks involved. Remember, your participation is voluntary. You may choose not to
participate or to withdraw your consent and discontinue participation at any time
without penalty or loss of benefit. In signing this consent form, you are not waiving
any legal claims, rights, or remedies. A copy of this consent form will be offered to
you.

By clicking “Agree”, you consent to participate in the above study and indicated
that:

1. you have read the above information

2. you voluntarily agree to participate

3. you are at least 18 years of age

Agree
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