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ABSTRACT  

 

Previous research has shown functional mixed-effects models and traditional 

mixed-effects models perform similarly when recovering mean and individual trajectories 

(Fine, Suk, & Grimm, 2019). However, Fine et al. (2019) showed traditional mixed-

effects models were able to more accurately recover the underlying mean curves 

compared to functional mixed-effects models. That project generated data following a 

parametric structure. This paper extended previous work and aimed to compare nonlinear 

mixed-effects models and functional mixed-effects models on their ability to recover 

underlying trajectories which were generated from an inherently nonparametric process. 

This paper introduces readers to nonlinear mixed-effects models and functional mixed-

effects models. A simulation study is then presented where the mean and random effects 

structure of the simulated data were generated using B-splines.  The accuracy of 

recovered curves was examined under various conditions including sample size, number 

of time points per curve, and measurement design. Results showed the functional mixed-

effects models recovered the underlying mean curve more accurately than the nonlinear 

mixed-effects models. In general, the functional mixed-effects models recovered the 

underlying individual curves more accurately than the nonlinear mixed-effects models. 

Progesterone cycle data from Brumback and Rice (1998) were then analyzed to 

demonstrate the utility of both models. Both models were shown to perform similarly 

when analyzing the progesterone data. 
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INTRODUCTION 

A main component of research in the behavioral sciences involves studying 

variables collected across time. One of the goals of this research is to study individual 

and group change over time. The primary analytical approach to analyzing longitudinal 

data is growth curve modeling (McArdle, 1988; Meredith & Tisak, 1990; Raudenbush & 

Bryk, 2002; Singer & Willett, 2003). Growth curve modeling allows researchers to 

describe the underlying change process for each individual, as well as the overall change 

for the sample.  

Traditionally, growth curve models have been estimated in two analytic 

frameworks: structural equation modeling and mixed-effects modeling. Structural 

equation modeling is a regression-based framework that encompasses path models, latent 

variable models, and latent variable path models. Researchers often use structural 

equation models to study outcomes that are not directly observed. Mixed-effects models, 

also referred to as random coefficient models, hierarchal linear models, and multilevel 

models, use fixed and random effects to describe aspects of change. Broadly, mixed-

effects models for longitudinal data allow for the examination of individual change 

trajectories through estimation random effects parameters. The fixed effects parameters 

describe the average trajectory for the sample, and the random effects parameters capture 

how each person deviates from this average trajectory. While structural equation models 

are extremely useful, I focused on the mixed-effects framework for the estimation of 

growth curve models given the ability to directly estimate growth models that follow 

inherently nonlinear functions. 
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Historically, there are two types of mixed-effects models: linear mixed-effects 

models and nonlinear mixed-effects. Both types of models can be used to describe 

trajectories whose rate of change varies over time; however, the distinction between the 

two is how the fixed and random effects enter the model. Linear mixed-effects models 

only contain parameters that enter the model in a linear fashion. These types of models 

can be used to capture nonlinear trajectories via transformations of the timing variable 

(e.g., quadratic growth). Nonlinear mixed-effects models, on the other hand, have 

parameters that enter the model in a nonlinear fashion. Parameters that enter the model in 

a nonlinear fashion are contained in the mathematical function of time (e.g., contained 

within the exponent). These types of models are more flexible and can capture the 

nonlinearity in the data through inherently nonlinear functions, such as exponential 

growth or decline models.  

Grimm, Ram, and Estabrook (2016) outlined two types of nonlinear mixed-effects 

models. First, there are nonlinear models that are nonlinear with respect to the fixed 

effects parameters. These statistical models have at least one fixed effect parameter that 

enters the model in a nonlinear fashion. However, the fixed effects that enter the model in 

a nonlinear fashion do not have an associated random effect since all random effects in 

these models enter the model in a linear fashion. These models have also been referred to 

as conditionally linear models (Blozis & Cudeck, 1999). An example of this kind of 

model would be an exponential growth model where the rate parameter is the same across 

participants. The second class of nonlinear mixed-effects models are nonlinear with 

respect to the random effects. These models are often referred to as fully nonlinear 
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models, and an example of such a model is the exponential growth model where the rate 

parameter varies across participants.  

 Traditionally, growth curve models, including both mixed-effects and structural 

equation models, are specified as parametric models. Parametric models assume the 

functional form of growth is known (e.g., linear, quadratic, exponential; for exceptions 

see Grimm, Steele, Ram, & Nesselroade, 2013) and the functional form is characterized 

by a relatively small number of parameters. The parameters in a parametric model have a 

meaningful interpretation in the context of study (Ram & Grimm, 2007). Parametric 

models work well when there is a priori knowledge about the functional form of growth 

or when there are few repeated assessments. However, they may be too restrictive if there 

is little or no information about the functional form of growth or when there are many 

repeated assessments with a complex change pattern. If this is the case, the researcher can 

specify a nonparametric model (Fitzmaurice, Davidian, Verbeke, & Molenberghs, 2009), 

where the specific functional form of growth is not assumed to be known. Nonparametric 

models allow researchers to describe temporal growth, without imposing any specific 

growth pattern on the data. The term nonparametric can be confusing as some models 

that fall into the nonparametric category have estimated parameters. However, the 

parameters in nonparametric models may not capture the same meaningful aspects of 

change as the parametric models provide (Eilers & Marx, 1996). Instead, the estimated 

parameters in nonparametric models are used to define a curve numerically in such a way 

that the curve can be evaluated at any specific point in time. 

 One such example of a nonparametric growth curve model is the functional 

mixed-effects model. A functional mixed-effects model is the functional extension of the 
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mixed-effects model. Within the functional framework, data are assumed to arise from 

smooth underlying curves that do not hold a specific functional form. Rather than 

constraining the data to follow a predetermined trajectory as in a linear or nonlinear 

mixed-effects model, the trajectory is estimated from the data through smoothing. There 

are several formulations of the functional mixed-effects model, this paper’s focus was on 

the smoothing spline mixed-effects model formulation.  

 Functional mixed-effects models have seen scarce use in the behavioral sciences. 

Fine, Suk, and Grimm (2019) conducted a simulation study investigating how functional 

mixed-effects models compared to linear and nonlinear mixed-effects models when 

analyzing longitudinal data. The functional mixed-effects models performed very 

similarly to the linear and nonlinear mixed-effects models. However, the linear mixed-

effects model estimated the mean and individual curves better than the functional mixed-

effects model, and the nonlinear mixed-effects model estimated the mean curve better 

than the functional mixed-effects model. While the functional mixed-effects model 

estimated the individual curves better than the nonlinear mixed-effects model. The data 

generation process for the mean curves used in this simulation were parametric and the 

same parametric form, with strong starting values, were used in estimating the linear and 

nonlinear mixed-effects models. Therefore, it is not surprising the parametric models 

outperformed the nonparametric functional mixed-effects model.    

 The goal of this dissertation was to continue exposing the behavioral sciences to 

functional mixed-effects models and to extend the work of Fine et al. (2019). This project 

aimed to compare nonlinear and functional mixed-effects models when the data were 

generated from an inherently nonparametric process. More detail on nonlinear and 
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functional mixed-effects models are given in the next sections, followed by a comparison 

of both models. Finally, details and results of the proposed simulation and empirical 

example are presented 

 

NONLINEAR MIXED-EFFECTS MODELS 

Nonlinear mixed-effects models take on the general form 

��� = ����� , 	�
 + ���, (1) 

	� = 
�� + ����, (2) 

where ��� is the outcome variable for person i (� = 1, … , �) at time j (� = 1, … , ��). A 

total of � = ∑ ������  response are observed. The outcome is modeled by some function, 

�(), of the timing variable, ���, and individual specific parameters, 	�. The individual 

specific parameters, 	�, are composed of fixed effects, �, and random effects, ��. The 

fixed effects, �, model aspects of the trajectory that describe all participants. The vector 

� is length (� × 1), meaning there are � fixed effects in the model. The design matrix 
� 
is dimension (�� × �). The random effects, ��, are individual specific deviations from the 

fixed effects. The vector �� is length (� × 1), meaning there are � random effects in the 

model. The design matrix �� is dimension (�� × �). The random effects are assumed to 

follow a normal distribution with mean 0 and covariance matrix  , such that 

�� ~ #$�(%, &) (3) 

where & has dimension (� × �). The individual specific residuals, ���, are also assumed 

to follow a normal distribution with mean 0 and covariance matrix '� 
(�  ~ �(0, '�). (4) 
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The covariance matrix for the level-1 residuals, '�, is often assumed to be diagonal with 

constant variance; however, this assumption can be relaxed. The vector (� has dimension 

(�� × 1) and the covariance matrix '� has dimension (�� × ��).  
 The parameters of a nonlinear mixed-effects model are often estimated using 

maximum likelihood. For ease of presentation, the above vectors and matrices are 

rearranged such that + is (� × 1), ,� is (� × �), - is (�� × 1), ( is (� × 1), and 	 is (� 

× 1). Block diagonal matrices are formed with & (�� × ��), . (� × ��), and ' (� × �). 

Maximum likelihood attempts to solve for the parameters of the model by maximizing 

the likelihood function, which can be written as 

/(�, 0,  ) = 1 �(+|�, �, 0,  )�(�| , 0)3�, (5) 

= 1 4(26)78 |0|�8 9:� �:�8�+ : ;(	)
<0=>�+ : ?(	)
 4(26)78 | |�89:� �:�8�< =>�3� (6) 

= 1 4(26)78 |0|�8 (26)78 | |�89:� �:�8�+ : ?(	)
<0=>�+ : ?(	)
 @ �< =>�3� (7) 

where + is the vector of responses, � is the vector of fixed effects, � is the vector of 

random effects,   is the covariance matrix of random effects, and 0 is the matrix of 

level-1 residuals. /(�, 0,  ) is the likelihood, �(+|�, �, 0,  ) is the conditional 

distribution of the data (+) given the random effects (�) and the parameters of the model 

(�, 0, and  ), and �(�| , 0) is the probability of the random effects (�) given the 

random components (  and 0). In linear mixed-effects models, integrating out the 

random effects is relatively straightforward because the random effects enter the model in 

a linear fashion. In general for nonlinear mixed-effects models, it is impossible to find an 
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analytic solution to the likelihood function in Equation 7 due to the nonlinear fashion that 

the random effects enter the model (Wolfinger & Lin, 1997). 

 

FUNCTIONAL MIXED-EFFECTS MODELS 

Functional mixed-effects models are an extension of the standard mixed-effects 

model. These models contain both fixed and random effects (Searle, Casella, & 

McCulloch, 1992) and are used to analyze data with a nested structure. Their ability to 

model nested structures make them valuable tools for analyzing longitudinal data, where 

observations are nested within persons. Functional mixed-effects models extend the 

linear mixed-effects model by assuming the mean growth curve and person-specific 

deviation curves are represented by nonparametric smooth functions. These smooth 

functions can be constructed using kernel smoothing, regression splines, penalized 

splines, or smoothing splines (Wu & Zhang, 2006). The specific formulation of 

functional mixed-effects model I focused on is the smoothing spline mixed-effects 

models. 

Smoothing spline mixed-effects models are functional mixed-effects models that 

use smoothing splines to construct the underlying curves. In order to define a smoothing 

spline, the definition of a spline is needed. A (A + 1)-th order spline is a continuous 

piecewise polynomial function of degree A, that has continuous derivatives of orders up 

to A − 1 at its knot points C� < ⋯ < CF. There exists so-called natural splines that are 

defined just as splines, but with the additional constraints that outside the knots the 

polynomial is of degree (A − 1)/2. The most common of the natural splines is the cubic 

natural spline. Cubic natural splines are constrained to be linear outside the knot points. 
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Smoothing splines are natural splines that place knot points at all unique time points and 

use a penalty parameter to control overfitting.  

Splines are constructed using a set of basis functions. Basis functions can be 

thought of as an extension of basis vectors from the vector space to the function space. 

There are multiple sets of basis vectors that define each vector space. Every set of basis 

vectors can be used to express any vector within that vector space, with linear 

combinations of the basis vectors. Extending this concept to the function space, there are 

multiple sets of basis functions that define a function space. Functions can be expressed 

via linear combinations of any set of basis functions that define that function space. 

Fourier, wavelets, B-splines, polynomials, and truncated power are some examples of 

types of basis functions. While any set of basis functions can be used to construct 

smoothing splines, truncated power and B-splines are the most common. Technical 

details for B-splines and truncated power splines are provided in Appendix C and 

Appendix D, respectively.  

As mentioned above, smoothing splines are natural splines that place knots at all 

unique time points and use a penalty parameter to control overfitting. Regardless of the 

choice of basis, knots are placed at each unique time point in the data. The penalty 

parameter controls the smoothness of the curve so that the smoothing spline is not over- 

or under-smoothed. A cubic smoothing spline can be obtained by minimizing the 

penalized sum of squares (PSS) 

HII =  JK�� − �L�(��)M8 + N 1 �LOO(�)83�
PQRS

PQTU

�

���
. (8) 
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Here, �L(�) is the cubic smoothing spline fit to the underlying function �(�). �L′′(�) is the 

second derivative of a smooth function �(�), and W X�LOO(�)Y8 3� is a roughness penalty. 

The penalized least squares approach aims to minimize the least squares criterion (i.e., 

sum of squared residuals) with the addition of a roughness penalty term. The first term in 

Equation 8 is the sum of squared residuals measuring the goodness-of-fit to the data. The 

second term is a roughness penalty, which is multiplied by a non-negative smoothing 

parameter N. If �L(�) is a straight line having no curvature, the second derivative (�L′′(�)) 

will be zero over the entire range of �. If �L(�) has a curvature at �, the second derivative 

of this function at � will deviate from 0. The squared second derivative of this function at 

� indicates the roughness of the function at �. Therefore, the integrated squared second 

derivative of this function indicates the overall roughness of �L(�) across the entire range 

of �. The non-negative smoothing parameter N controls the importance of the penalty 

term. When N = 0, the penalty term vanishes and the function �L(�) is estimated in such a 

way that it fits the data as closely as possible. When N = ∞, the penalty term will 

dominate the criterion in Equation 8 and even a tiny amount of curvature in �L(�) will 

yield a huge increase in the criterion. In other words, larger smoothing parameters will 

yield smoother curves.  

 Cubic smoothing splines are widely used because they are simple to construct 

(Green & Silverman, 1994; Wu & Zhang, 2006). By placing knots at each unique time 

point, smoothing splines hold the advantage of not needing to choose how many and 

where knots are placed. A disadvantage of smoothing splines is when the number of 
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unique time points in the data set is large because placing many knots can be 

computationally expensive. 

The smoothing spline formulation of a functional mixed-effects models take the 

form 

��� = [����
 +  \�����
 + ���, (9) 

where ��� is the outcome variable for person i (� = 1, … , �) at time ��� (� = 1, … , ��).  

The outcome for person i at time ��� is modeled as a combination of [����
, a grand mean 

function evaluated at time ���, and \�����
, a person specific deviation function for person 

i evaluated at time ���, indicating how much person i’s growth curve deviates from the 

mean growth curve at time ���. Person-specific curve for person i can be obtained by 

[����
 + ]�����
. The residual, ���, shows how much person i’s observed response 

deviates from their specific trajectory at time ���.  

Equation 9 can be rewritten in matrix notation as 

+� = 
�^ + ��_� + (�, (10) 

where +� and (� are both column vectors of length �� containing the observed responses 

and residuals for person i, respectively. ^ is a column vector containing the values of the 

mean growth curve, [����
, evaluated at all unique time points in the data. _� is a column 

vector containing the values of the person-specific deviation curve, ]�����
, evaluated at 

all unique time points in the data. ,� is an �� by U incidence matrix, where U is equal to 

the number of unique time points. The jth row of this matrix is a 1 by U indicator vector 

indicating which value of the distinct unique time points equals ���. That is, the uth 

element of the indicator vector is 1 if the jth time point, ���, equals the uth unique time 
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point and all the other elements are 0. ^ contains fixed effects and �̀ contains random 

effects. The random effects are assumed to follow multivariate normal distributions, 

�̀~#$�(%, &) and a�~�(0, '�). The covariance matrix for the level-1 residuals, '�, is 

often assumed to be diagonal with constant variance; however, this assumption can be 

relaxed.  

The parameters of the model in Equation 10 can be estimated by minimizing the 

following penalized generalized log likelihood criterion (PGLL; Wu & Zhang, 2006)  

PGLL =  J efg� − ,�^ − .� �̀hi'�:�fg� − ,�^ − .� �̀h�
��� + �̀i&:� �̀

+ log|&| + log |'�|} + Nn^io^ + Np J e �̀io �̀}�
��� , 

(11) 

where the matrix G is the so-called roughness matrix as defined in Green and Silverman 

(1994, p.25, K matrix) and Wu and Zhang (2006, p.55, G matrix). The fixed effects (^), 

random effects ( �̀), and variance components (& and '�) can be obtained by minimizing 

the PGLL criterion using an EM algorithm based on REML (Wu & Zhang, 2006, p.170). 

After obtaining q̂, r̀�, &s , and 's � the estimated fixed effect curve, [̂(�), and the predicted 

random effect curves, ]r�(�), can be obtained at any value of � using a formula given in 

Green and Silverman (1994, Chapter 2.4) or by simple interpolation.  

 Equation 8 for the single smoothing spline contains several similar components to 

Equation 11 for the mixed-effects smoothing spline. The first part of Equation 8, 

∑ K�� − �L�(��)M���� 8
, is a similar structure to fg� − ,�^ − .� �̀h from Equation 11. Both are 

general “observed minus predicted” structures. The last part in Equation 8, 

N W �LOO(�)83�PQRSPQTU , is similar to the last two components in Equation 11, Nn^io^ and 
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Np ∑ e �̀io �̀}���� . All of these terms are used to control the smoothness of the smoothing 

spline.  

 Wu and Zhang (2006) used a model selection approach to determine the 

smoothing parameters Nn and Np. To begin, a grid of Nn and Np values are prespecified. 

At each pair of Nn and Np values, AIC, BIC, or the generalized cross validation (GCV) 

value can be obtained. The pair of  Nn and Np values associated with either the lowest 

AIC, BIC, or GCV are selected as optimal smoothing parameters. 

 

COMPARISON OF NONLINEAR AND FUNCTIONAL MIXED-EFFECTS 

MODELS 

Scarce literature is available explicitly comparing these two methods of mixed-

effects models. This chapter aimed to help fill that gap. A comparison on the structure of 

the models and on the criterions for the estimation of parameters of the models is 

presented, and is concluded with a discussion of the strengths and weakness of each 

model.  

 The nonlinear mixed-effects model (Equations 1 and 2) and the functional mixed-

effects model (Equations 9 and 10) are presented again here for clarity. The nonlinear 

mixed-effects model is 

��� = ����� , 	�
 + ���, (12) 

	� = 
�� + ����, (13) 

and the functional mixed-effects model is 

��� = [����
 +  \�����
 + ���,  

 

(14) 
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+� = 
�^ + ��_� + (�. (15) 

Both of these models handle nested data so each subscript i and j index people (� =
1, … , �) and time (� = 1, … , ��).  Both models assume their random effects and residuals 

arise from a normal distributions with covariance matrices & and '�. Both models have 

residual variance matrices, '�, of dimension (��  ×  ��), where �� is the number of 

observations for person i. The two models differ in terms of their random effects matrix, 

 . In the nonlinear mixed-effects model, this matrix is of size (� ×  �), where � is the 

number of random effects in the model. For the functional mixed-effects model, the 

random effects matrix is of size (Τ ×  Τ), where Τ is the number of knots in the model. 

The residual vectors from both models, of dimension (��  ×  1), represent deviations from 

each person’s predicted trajectory and their observed data.  

Both models utilize fixed and random effects to model average and person 

specific change. The fixed effects in the nonlinear mixed-effects model are contained in 

the (� ×  1) vector �; this vector contains the values of the fixed effect parameters (� 

values in total). The fixed effects in the functional mixed-effects model are contained in 

the dimension (U ×  1) vector ^; this vector contains the values of the mean growth 

curve ([����
) evaluated at all unique time points in the data. The random effects in the 

nonlinear mixed-effects model are contained in the (� ×  1) vector ��; this vector 

contains the values of the random effect parameters (� values in total) for each person. 

The random effects for the functional mixed-effects model are contained in the (U ×  1) 

vector �̀; this vector contains the values of the person-specific deviation curve (]�����
) 

evaluated at all unique time points in the data. In practice, the value of the random effects 

are not estimated in both models. Rather, the random effects are assumed to follow a 
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normal distribution and the variance/covariance matrix of the random effects is estimated 

instead.  

The last components of both models are the matrices 
� and ��. In the nonlinear 

mixed-effects model, these matrices are of dimension (��  ×  �) and (��  ×  �), 

respectively. The first column of these matrices contain a column of ones. For the matrix 


� this column is for the fixed intercept. The matrix �� would also have its first column 

be a column of ones if there is a random intercept to be specified. The rest of the columns 

in these matrices correspond to predictors that have either fixed or random effects. In 

nonlinear mixed-effects models, these matrices are allowed to differ in the number of 

columns. In functional mixed-effects models, the design matrices ,� and .� must be 

identical. These matrices are each an �� by U incidence matrix, where U is equal to the 

number of unique time points. The jth row of this matrix is a 1 by U indicator vector 

indicating which value of the distinct unique time points equals ���. That is, the uth 

element of the indicator vector is 1 if the jth time point, ���, equals the uth unique time 

point and all the other elements are 0. 

 The criterion for the nonlinear mixed-effects model (Equation 7) and the 

functional mixed-effects model (Equation 11) are presented here for clarity. The criterion 

for the nonlinear mixed-effects model is 

= 1 4(26)78 |0|�8 (26)78 | |�89:� �:�8�+ : ?(	)
<0=>�+ : ?(	)
 @ �< =>�3�, (16) 

and the criterion for the functional mixed-effects model is 
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PGLL =  J efg� − ,�^ − .� �̀hi'�:�fg� − ,�^ − .� �̀h�
��� + �̀i&:� �̀

+ log|&| + log |'�|} + Nn^io^ +  Np J e �̀io �̀}�
��� . 

(17) 

It is impossible to find an analytic solution to the likelihood function in Equation 16 due 

to the nonlinear fashion that the random effects enter the model (Wolfinger & Lin, 1997). 

Therefore, approximation methods are needed. With these approximations, maximum 

likelihood estimates can then be obtained. However, the functional mixed-effects model 

does not require any approximations to solve its criterion (Equation 11). The functional 

mixed-effects model can be solved using an EM algorithm that assumes fixed smoothing 

parameters (Wu & Zhang, 2006; Berk, 2012). Smoothing parameters are determined by 

fitting various models with different sets of smoothing parameters and picking the model 

with the lowest AIC, BIC, or generalized cross validation (GCV) value (Wu & Zhang, 

2006).  

 Nonlinear mixed-effects models have advantages over functional mixed-effects 

models. There is more readily available software that has been thoroughly examined to 

estimate nonlinear mixed-effects models (e.g., PROC NLMIXED in SAS, nlme and lme4 

in R). The readily available software and frequency of use make nonlinear mixed-effects 

models more approachable to many researchers. Additionally, in terms of notation, 

nonlinear mixed-effects models are relatively straightforward extensions of linear mixed-

effects models which makes these models more approachable to researchers.  

However, functional mixed-effects models hold several advantages over nonlinear 

mixed-effects models. First, estimation of functional mixed-effects models is more 

straightforward as it does not require approximating integrals that are required when 
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estimating nonlinear mixed-effects models. It is possible to estimate nonlinear mixed-

effects models using alternative estimation routines (e.g., Bayesian), however, maximum 

likelihood is the most common approach. Functional mixed-effects models have their 

biggest strength in that they impose no parametric assumptions on the form of growth of 

the data. These models utilize smoothing to allow the data to show the underlying 

trajectories without forcing the data to follow a predetermined shape, like the nonlinear 

mixed-effects model. Using smoothing techniques is not without its drawbacks, though. 

The selection of number and location of knots and of smoothing parameters is not an 

exact science. The best set of knots and smoothing parameters is often left to the 

interpretation of the analyst.  

There are some major challenges for each of these models. The biggest challenge 

is the estimation of the nonlinear mixed-effects models. These models have difficulty 

converging when the sample size is not adequate, when several random effects present, 

and when poor starting values are provided. There are two big challenges for the 

functional mixed-effects models. First, is picking smoothing parameters. This is a 

nontrivial problem that only has vague guidelines to help in the process of selection. 

There can be multiple sets of smoothing parameters that visually appear to smooth the 

data well. It is often left to the discretion of the analyst to pick what smoothing 

parameters work best. The second major challenge for functional mixed-effects models is 

software. Since this is a relatively novel analytical approach, there are not many 

programs available to use. The software packages that are available have not been as 

thoroughly tested and used like the software packages for nonlinear mixed-effects 

models.   
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Fine et al. (2019) compared linear and nonlinear mixed-effects models to a 

functional mixed-effects model in a simulation study. This simulation involved data 

which were generated from a parametric process. The linear and nonlinear mixed-effects 

models were better at recovering the underlying mean curve. As yet, traditional mixed-

effects models and functional mixed-effects models have not been compared on curve 

recovery when the data generation process is inherently nonparametric. 

 

PROPOSED SIMULATION STUDY 

This project aimed to compare nonlinear and functional mixed-effects models 

when the data were generated from an inherently nonparametric process. The goal was to 

examine which approach could more accurately recover the true underlying curves from 

observed data.  

Data Generation 

Individual curves in each data set were generated following Yao, Mux ller, and 

Wang (2005), such that 

��� = y�����
 +  ��� (18) 

where ��� is the observed response for the ith individual (i = 1, …,n) at the jth time point 

(� = 1, … , ��), y�����
 is the true underlying person-specific curve for individual i 

evaluated at the jth time point for this person, ���; ���  is the measurement error. The 

person-specific curve, y�(�), was generated by 

y�(�) = [(�) + ]�(�), (19) 

where [(�) is the grand mean function and ]�(�) is the person-specific effect function for 

the ith individual. Inserting Equation 18 into Equation 19 yields the following model 
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��� = [����
 + ]�����
 +  ���, (20) 

which is identical to the model given in Equation 9.  

The grand mean function, [(�), was defined using the cubic B-spline basis in 

Figure 1; each colored line represents a different B-spline basis function. The B-splines in 

Figure 1 were weighted with coefficients to form a mean curve similar in structure to the 

data plotted in Figure 2. These data were (log) progesterone cycle data taken across 24 

days from 51 women; each color represents a different woman’s cycle. Figure 3 shows 

the grand mean function formed using the B-splines from Figure 1. This was the true 

mean curve for every simulated dataset in every condition.  

The person-specific effect functions, ]�(�), were generated following  

]�(�) = ∑ z{(�)|�{}{�� , (21) 

where z�(�), z8(�), and z}(�) were defined as three b-spline basis functions of degree 

three with equally spaced knots over [0, 20]. Figure 4 shows a graphical representation of 

these basis functions. The three basis functions have different shapes, which were used to 

create variability in the person-specific deviation curves at different locations of time. 

The first basis function z�(�) (solid black in line Figure 4) has higher values in early 

time points. Therefore, when different individual weights are given to this basis function, 

the individual curves have more variability in early time points and less variability 

toward the later time points. The second basis function z8(�) (dotted black in line Figure 

4) has higher values in middle time points. Therefore, giving different weights to this 

basis function yields more variability in middle time points than earlier or later time 

points. Similarly, the third basis function (dashed black in line Figure 4) has higher 

values in later time points, and we can create more variability in later time points by 
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giving different weights to this third basis function. The three person-specific basis 

function coefficients, |��, |�8, and |�} were independently and identically generated from 

the multivariate normal distribution 

~|��|�8|�}
� ~� ��000� ,  �. 1 0 00 . 6 00 0 1.1��. (22) 

The covariance matrix used to generate the coefficients of these basis functions had 

successively increasing variances from the first to the third (.1, .6, and 1.1). This indicates 

that the person-specific deviation curves were generated to have greater variability as 

time increases, which is common in many longitudinal studies. The measurement errors, 

���, were randomly generated from a normal distribution of a mean of zero and a variance 

of ��8 = .1. 

Simulation Conditions 

This project aimed to compare nonlinear and functional mixed-effects models 

when the data were generated from an inherently nonparametric process. Four factors 

were manipulated: sample size, number of time points per curve, measurement design, 

and model fit. Sample size was varied at three levels: 200, 500, and 1000. Number of 

time points per curve was varied at three levels: 5, 11, and 21. Both of the sets of values 

for the sample size and number of time points per curve were chosen to mimic values 

commonly seen in longitudinal research. There were three levels of measurement design: 

fixed, semi-random, and attrition. In the fixed measurement design condition, each curve 

was observed at the exact same time points. This mimics longitudinal studies where 

observations are collected at predetermined intervals and makes time points common to 

all subjects. An example of this would be every curve is observed at exact times [0, 5, 10, 
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15, 20]. In the semi-random measurement design condition, each curve was observed at 

time zero and time 20, and then could be observed at any increment of .5 from times .5 to 

19.5. For example, in the five time points per curve condition, person A is observed at [0, 

9.5, 11, 17.5, 20] while person B is observed at [0, .5, 2.5, 15, 20]. Every curve was 

observed at time zero and time 20, and then could be observed at any .5 increment 

between .5 and 19.5. Fine et al. (2019) highlighted the importance of collecting data at 

the boundaries of interest. The semi-random measurement design condition allows for 

measurement of end points while also allowing for semi-random assessments where each 

person is observed for the same amount of time. In the attrition measurement design 

condition, each curve was observed at time zero. Half of the curves could be observed at 

any increment of .5 from times .5 to 20. The other half of the curves could be observed at 

any increment of .5 from times .5 to 16. For example, in the five time points per curve 

condition, person A is observed at [0, 9.5, 11, 17.5, 20] while person B is observed at [0, 

.5, 2.5, 10.5, 13]. This mimics the attrition that is commonly seen in longitudinal research 

where some participant are not observed through the end of the study.  

The structure of the semi-random and attrition time points were used for several 

reasons. First, when the number of unique time points was large, estimation of smoothing 

splines becomes computationally demanding when a knot is placed at each unique time 

point. To speed up the computation time, users can specify knots; however, the user is 

now using penalized splines as opposed to smoothing splines (refer to Fine et al. (2019) 

for more details). Semi-random and attrition time points, as defined here, keep the 

maximum number of unique knots to 41. Knots were not pre-specified which allowed for 

the use of smoothing splines and computation was not overly demanding. The reason for 
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this structure for semi-random time points comes from a result found in Fine et al. (2019) 

where curves which were not observed at the boundaries of interest resulted in poorer 

curve recovery. The lack of information at the boundaries resulted in estimated curves 

that deviated from the true underlying curve. Thus, in the semi-random condition, 

boundary information was collected for each curve (i.e., each curve observed at time zero 

and time 20). The same reasoning for the semi-random time point applies to the attrition 

time points. However, this condition each curve was only necessarily observed at one 

boundary point (time zero) to more closely mimic data commonly seen in longitudinal 

research.  

Figure 5 displays the true underlying mean and individual curves, with the 

observed data, from a dataset with 200 people observed at 11 time points with each 

measurement design. Each panels of Figure 5 displays the true underlying individual 

curves in dashed gray, the true grand mean function in black, and the observed data as 

black circles. Each plot highlights the increasing variance in random effects across time; 

the spread of the curves at time zero is much smaller than the spread of the curves at time 

20. Figure 5A shows the true underlying curves for the fixed measurement design; this 

panel highlights how each person was observed at the same points in time. Figure 5B 

shows the true underlying curves for the semi-random measurement design. This panel 

highlights the semi-random measurement design; each curve was observed at time zero 

and time 20, and then randomly in-between at any .5 increment between .5 and 19.5. 

Figure 5C shows the true underlying curves for the attrition measurement design. This 

panel highlights the attrition measurement design condition; curves were more densely 

observed at earlier time points, and become more sparsely observed at later time points. 
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The last factor manipulated was the statistical model used to analyze the data: the 

functional mixed-effects model and the cosine nonlinear mixed-effects model. The 

functional mixed-effects model is defined in Equation 9. The cosine nonlinear mixed-

effects model is defined as 

��� =  β�� + ��� cos X�8����� +  N
Y (23) 

where β�� is a random intercept, β�� is a random amplitude parameter, β8� is a random 

frequency parameter, and N is a fixed phase shift that shifts the curve horizontally. The 

amplitude parameter controls how vertically high the curves go. The frequency parameter 

controls how many cycles the curves complete in a given interval. Ideally, all three 

random effects are estimated and the model converges; however, if the models did not 

converge, random effects would be dropped one at a time until the model converged 

beginning with the random frequency parameter (β8�), followed by the random amplitude 

parameter (β��).  
The generated data do not have a known functional form. The cosine nonlinear 

mixed-effects model in Equation 23 is a functional form that most appropriately mimics 

the grand mean function (Figure 3). The cosine nonlinear mixed-effects model was 

estimated using the nlme package (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 

2018) in R. This package requires the user to specify starting values for each fixed effect 

in the model to be estimated. Potential fixed effects starting values were sampled to 

attempt at capturing the function in Figure 3. The set of fixed effect values that appeared 

to capture the mean trajectory (Figure 3) were 

��� =  1.5 + 1.5 ∙ cos X. 25 ∙ ���� +  10
Y (24) 



  23 

The values in Equation 24 were the starting values used in the simulation study. Figure 6 

shows the function from the set of fixed effects in Equation 24. This curve approximated 

the grand mean function used in the simulation; however, the model did not capture a 

prominent feature of the curve. The grand mean function was relatively flat from time 

zero to roughly time five, while the cosine nonlinear mixed-effects model was curved 

(refer to Figures 3 and 6 for a comparison). This process of needing to select a functional 

form of change for data, even though it does not perfectly map onto the researcher’s data, 

mimics what researchers do in practice. If the researcher wants to impose a functional 

form of growth onto the data, the researcher may need to sacrifice accurately modeling 

some aspects of the data.  

The functional mixed-effects model was estimated using the sme package (Berk, 

2013) in R. As noted in Equation 11, two smoothing parameters were involved in 

estimation - one for the fixed (Nn) and one for random effects (N�). The choice of a 

smoothing parameter can be obtained in several ways, however, as Ramsay and 

Silverman (2005) noted, the selection of smoothing parameters can be subjective and is 

often best decided by examining various options. Berk (2012) introduced an efficient way 

of selecting the smoothing parameters by using Nelder-Mead simplex search algorithm to 

automatize the model comparison process for selecting the smoothing parameters. Berk’s 

method to select smoothing parameters is implemented in the sme package (Berk, 2013). 

The sme package provides various measures that can be used for smoothing parameter 

selection, including AIC, AICc (corrected AIC), BIC, and BICn (BIC for longitudinal 

models with a sample size correction; Berk, 2013). For the simulation, smoothing 
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parameters for each dataset in each condition were chosen using the AIC, which aided 

automation and ensured consistent decisions regarding smoothing were made.  

In sum, this simulation had a total of 54 conditions (3 number of time points x 3 

sample sizes x 3 measurement designs x 2 statistical models); 100 data sets were 

generated per condition. 

Evaluation 

Analysis results were evaluated in the following way. First, to evaluate the 

accuracy of the estimated grand mean function, [(�), a mean square error (MSE) was 

calculated under each conditions. The MSE was defined as 

MSE�[̂(�)
 = ∑ ([̂(��) − [(��))8������ 100  , (25) 

where [̂(��) is the estimated grand mean function for the evaluated at time ��, �� is the sth 

time point out of the 100 equally spaced time points over the range of [0, 20], and [(�) is 

the true grand mean function in Figure 3. In the numerator, the term ∑ ([̂(��) −������
[(��))8, measures how much the estimated grand mean function deviates from the true 

grand mean function across 100 equally spaced time points. Therefore the mean square 

error, MSE�[̂(�)
, measures how much the estimated grand mean function deviates from 

the true grand mean function across 100 equally spaced time points, on average across 

100 data sets. Second, the accuracy of the predicted person-specific trajectories was 

assessed by calculating the average mean square error (AMSE) defined as    

AMSE�yr(�)
 = ∑ ∑ �yr�(��) − y�(��)
8���������� (100)(�)  

(26) 
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where yr�(��) indicates the predicted curve for the ith individual evaluated at the sth time 

point, and y�(��) is the true curve for the ith individual evaluated at the sth time point. 

Similar to MSE�[̂(�)
, a lower value of AMSE�yr(�)
 indicates that the estimated person-

specific trajectories are closer to the true curves, indicating better recovery.  

 In addition to MSE and AMSE values, convergence percentage was reported for 

each dataset in every condition. The number of random effects used in each condition in 

each dataset were also reported. The number of random effects in each condition in each 

dataset could either be three (e.g., random amplitude, frequency, and intercept), two (e.g., 

random amplitude and intercept), or one (e.g., random intercept). 

Hypotheses  

 The functional and the cosine nonlinear mixed-effects models are hypothesized to 

recover the mean curves better (i.e., lower MSE values) as the number of time points per 

curve and the sample size increase. Both models are hypothesized to recover the 

individual curves better (i.e., lower AMSE values) as the number of time points per curve 

increases, but not necessarily as sample size increases. Increasing the sample size does 

not inherently provide more information about a particular individual’s curve. Based off 

results from Fine et al. (2019), the functional mixed-effects model is hypothesized to 

perform best, in terms of MSE and AMSE, with a fixed measurement design. The cosine 

nonlinear mixed-effects model is hypothesized to recover the mean curve better (i.e., 

lower MSE values) with a random measurement design, as more information will be 

available compared to fixed measurement design. Finally, it is hypothesized the 

functional mixed-effects model will recover the individual curves better (i.e., have lower 
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AMSE values) than the cosine nonlinear mixed-effect model. This is because the 

functional mixed-effects model is more flexible in modeling random effects. 

 

SIMULATION RESULTS 

This simulation aimed to compare nonlinear and functional mixed-effects models 

to determine how well each model recovered underlying curves. Sample size, number of 

time points per curve, and measurement design were manipulated and both a nonlinear 

and functional mixed-effects model were fit in each condition. The simulation achieved 

100% convergence for every condition in both models. In the nonlinear mixed-effects 

modeling condition, all three random effects were estimable in every dataset in every 

condition.  

 Broadly, for both models, as the sample size and number of time points per curve 

increased, the mean curves were better recovered (i.e., lower MSE values). Increasing the 

number of time points per curve yielded better recovery for the individual curves (i.e., 

lower AMSE values). The mean curves were more accurately recovered than the 

individual curves, which was evident by lower MSE values compared to AMSE values. 

The MSE and AMSE results of the simulation are presented in Table 1 and 2. 

 In the following paragraphs, details of the fits from the functional and nonlinear 

mixed-effects model are presented. Fitted models from both the functional and nonlinear 

mixed-effects model are presented. Next, the effects of each factor manipulated in the 

simulation are detailed, starting with sample size, the number of time points per curve, 

measurement design. Lastly, a comparison of the estimation results for each model is 

presented.   
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Overview of Model Fit 

 Figures 7, 8, and 9 are model fits of the functional and nonlinear mixed-effects 

models to datasets from conditions with 11 time points per curve, sample size of 200 

curves, and each measurement designs. Figure 7 displays plots for the fixed measurement 

design. Figure 8 displays plots for the semi-random measurement design. Figure 9 

displays plots for the attrition measurement design. In all of these figures, panels A and 

B, are plots of the functional mixed-effects model fits, and panels C and D are plots of 

the cosine nonlinear mixed-effects model fits. Panels A and C are plots of the estimated 

mean (black line) and individual curves (dashed gray lines) fit by either model. Panels B 

and D are plots of a particular individual’s observed data (black dots), that individual’s 

estimated curve (dashed black), and the estimated mean curve (solid black).  

Comparing panels A to panels C, across Figures 7, 8, and 9, highlights the 

difference in model fits. As expected, the cosine nonlinear mixed-effects model forced a 

curvature to the data at the beginning, while the functional mixed-effects model allowed 

the trajectory to be flatter initially. Figures 7B and 7D contain plots of a particular 

individual’s observed data, individual estimated curve, and estimated mean curve for the 

fixed measurement design where each observed data point was at 11 equally spaced 

integers between [0, 20]. This person’s observed data (black dots), and thus their 

estimated curve (dashed black line), were slightly lower than the estimated mean curve 

(solid black line). Figures 8B and 8D contain the same plots for the semi-random 

measurement design where this person was observed at time zero and time 20, and at a 

random set of time points in between. This person’s observed data (black dots) were 

mostly above the estimated mean curve (solid black line). Thus, their estimated curve 
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(dashed black line) was mostly above the estimated mean curve. Figures 9B and 9D 

contain the same plots for the attrition measurement design where this person was 

observed at time zero but was only observed up to time 13. This person’s observed data 

(black dots) was above the estimated mean curve (solid black line) at early time points 

and hovered close to the estimated mean curve at middle time points. In the functional 

mixed-effects model, Figure 9B, this person’s estimated curve (dashed black line) was 

above the estimated mean curve at early time points then closely followed the estimated 

mean curve through the rest of time; however, for the nonlinear mixed-effects model, in 

Figure 9D, this person’s estimated curve (dashed black line) deviated from the estimated 

mean curve at both early and later time points.   

Figures 10, 11, and 12 contain the MSE and AMSE values from the simulation 

and can be used to compare these values from the nonlinear and functional mixed-effects 

models at each sample size level. Figure 10 displays results for the sample size of 200, 

Figure 11 displays results for the sample size of 500, and Figure 12 displays results for 

the sample size of 1,000. These figures are identical in structure. Panels A, B, and C are 

for MSE values, whereas panels D, E, and F are for AMSE values. The dashed line with 

squares correspond to the cosine nonlinear mixed-effects model and the solid line with 

circles correspond to the functional mixed-effects model. Panels A and D display results 

for the fixed measurement design, panels B and E display results for the semi-random 

measurement design, and panels C and F display results for the attrition measurement 

design. 
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The following paragraphs detail the effects of each factor manipulated in the 

simulation. The effect of sample size is discussed first, followed by the number of time 

points per curve, and measurement design. 

Sample Size. For both models, as the sample size increased, the mean curves 

were better recovered (i.e., lower MSE values). This result was intuitive as increasing the 

sample size means more data are present to more accurately recover the mean. These 

results are most clearly seen in Table 1. For example, the last three rows of the first 

column of Table 1 contain MSE values from each sample size for five time points with 

the attrition measurement design fit with a functional mixed-effects model. For sample 

size n = 200, the MSE values is 0.0061, which decreases to a value of 0.0014 for a 

sample size of n = 1,000. These results can also be visualized by comparing 

corresponding lines within corresponding panels in Figure 10, 11, and 12. For example, 

comparing the solid line with the circles in Figure 10A to the same line in Figure 11A. 

Across all conditions, as the sample size increased, the mean curves were better 

recovered. Given the results for the rest of the simulation are the similar across sample 

sizes, remaining results are focused on the sample size of n = 200.  

Number of Time Points per Curve. For both models, as the number of time 

points per curve increased, the mean and individual curves were better recovered (i.e., 

lower MSE and AMSE values). These results are intuitive as increasing the number of 

time points means more information available to more accurately recover the mean 

and/or individual curves. These results are most clearly seen across all panels in Figure 

10 (as well as in Figures 11 and 12). For example, in Figure 10D both the solid and 

dashed lines have decreasing slopes as the number of time points increase. In Figure 10D, 



  30 

the nonlinear mixed-effects model (dashed line with squares) decreased from an AMSE 

value of 0.1048 to 0.0483 when the number of time points per curve and increased from 

five to 21. The decreasing MSE and AMSE values show the mean and individual curves 

were more accurately recovered as the number of time points per curve increased. 

Measurement Design. Generally, the attrition measurement design had the 

highest MSE and AMSE values. This can be seen by comparing the dots/squares in 

Figure 10C to 10B and 10A, and by comparing the dots/squares in Figures 10F compared 

to 10E and 10D (the same comparisons can be made for Figures 11 and 12). The 

dots/squares were higher in the attrition measurement design indicating higher MSE and 

AMSE values than for both the fixed and semi-random measurement designs. For 

example, in Figure 10F, the AMSE value for the functional mixed-effects model (solid 

line with circles) with five time points per curve and attrition measurement design was 

0.1801. The corresponding AMSE value for the semi-random measurement design was 

0.1613 (Figure 10E) and 0.0741 (Figure 10D) for fixed measurement design. This result 

suggests the underlying curves were not recovered as well with the attrition measurement 

design. 

The fixed measurement design had the lowest AMSE values for both the 

nonlinear and functional mixed-effects models, followed by semi-random, and attrition. 

This result can be seen by comparing Figures 10D through 10F. Here, the AMSE value 

for the nonlinear mixed-effects model with five time points per curve and the fixed 

measurement design was 0.1048. The corresponding AMSE value for the semi-random 

measurement design was 0.1184 and for the attrition measurement design was 0.1745. 

This result indicated that both models recovered the underlying mean and individual 
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curves best with the fixed measurement design. It was hypothesized that the functional 

mixed-effects model would recover the underlying individual curves best (i.e., lowest 

AMSE) with a fixed measurement design and this result supported that hypothesis.  

The fixed measurement design had the lowest MSE values for the nonlinear 

mixed-effects models, followed by semi-random, and attrition. This result is found by 

examining Figures 10A through 10C. In these figures, the MSE value for the nonlinear 

mixed-effects model with 21 time points per curve and the fixed measurement design was 

0.0288. The corresponding MSE value for the semi-random measurement design was 

0.0306 and for the attrition measurement design was 0.0417. This results indicated the 

nonlinear mixed-effects model recovered the underlying mean curves better a with a 

fixed measurement design. The nonlinear mixed-effects model was hypothesized to 

recover the mean curve better (i.e., lower MSE values) with a random measurement 

design. This result, instead, showed the fixed measurement design was best. 

The semi-random measurement design, generally, had the lowest MSE values for 

the functional mixed-effects models, followed by the fixed, and attrition designs. This 

result can be found by examining Figures 10A through 10C. That is, the MSE value for 

the functional mixed-effects model with 11 time points per curve and the semi-random 

measurement design is 0.0019, whereas, the corresponding MSE value for the fixed 

measurement design was 0.0020 and for the attrition measurement design was 0.0030. 

This results suggests that the functional mixed-effects model recovered the underlying 

mean curve better with a semi-random measurement design. It was hypothesized that the 

functional mixed-effects model would recover the underlying mean curve best (i.e., 
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lowest MSE) with a fixed measurement design. This result did not support this 

hypothesis; the semi-random measurement design had the lowest MSE values.  

Comparison of Models 

 Across all conditions, the functional mixed-effects models recovered the 

underlying mean curve better than the nonlinear mixed-effects models. This result can be 

seen by comparing the lines with the circles to the lines with the squares in Figures 10A 

through 10C. In these plots, the squares are above the circles, indicating the nonlinear 

mixed-effects models had higher MSE values compared to the functional mixed-effects 

model. For example, in Figure 10B, the nonlinear mixed-effects model had an MSE value 

of 0.0364 for 11 time points and a semi-random measurement design, whereas the 

functional mixed-effects model had an MSE value of 0.0019. This result highlights that 

the underlying mean curve was recovered more poorly using the cosine nonlinear mixed-

effects model compared to a functional mixed-effects model.  

 It was hypothesized that the functional mixed-effects model would recover the 

individual curves better (i.e., have lower AMSE values) compared to the nonlinear 

mixed-effect model. This result was partially supported. There were 27 conditions (3 

number of time points x 3 sample sizes x 3 measurement designs) where both models 

were fit. The functional mixed-effects model recovered the underlying individual curves 

better (i.e., had lower AMSE values) than the nonlinear mixed-effects model in 18 of 27 

conditions. The functional mixed-effects model outperformed the nonlinear mixed-effects 

model with the fixed measurement design (9 conditions), when there was 11 and 21 time 

points per curve with the semi-random measurement design (6 conditions), and when 

there 21 time points per curve with the attrition measurement design (3 conditions). The 
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nonlinear mixed-effects model recovered the underlying individual curves better (i.e., had 

lower AMSE values) than the functional mixed-effects model in 9 of 27 conditions. The 

nonlinear mixed-effects model outperformed the functional mixed-effects model where 

there were five time points per curve with the semi-random measurement design (3 

conditions), and when there were five and 11 time points per curve with the attrition 

measurement design (6 conditions). 

 These results can be seen comparing panels D through F in Figures 10, 11, and 

12. Conditions where the nonlinear mixed-effects model had a higher AMSE value than 

the functional mixed-effects model are plotted with squares above circles. An example of 

this is in Figure 10E at 11 and 21 time points per curve. The squares are above the circles, 

meaning the functional mixed-effects model had lower AMSE values than the nonlinear 

mixed-effects model. Conversely, plots when circles are above the squares depict 

conditions where the functional mixed-effects model had a higher AMSE value than the 

nonlinear mixed-effects model. An example of this is in Figure 10E at five time points 

per curve. 

 

EMPIRICAL EXAMPLE 

 The motivating empirical data for the simulation were progesterone cycle data 

taken from Brumbrack and Rice (1998). Their data were collected as part of continuing 

studies of early pregnancy loss conducted by the Institute for Toxicology and 

Environmental Health at the University of California, Davis in collaboration with the 

Reproductive Epidemiology Section of the California Department of Health Services, 

Berkeley. Their sample comes from patients with healthy reproductive function enrolled 
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in an artificial insemination clinic, where insemination attempts were well-timed for each 

menstrual cycle. As is standard practice in endocrinological research (Yen & Jaffe, 

1991), progesterone profiles were pre-aligned by the day of ovulation, determined by 

serum luteinizing hormone (Brumback & Rice, 1998).  

 This project used a subset of the data from Brumback and Rice (1998). This 

project used a sample of 51 women’s urinary metabolite progesterone measured across 24 

days. Some missing data was present. The minimum number of days a woman’s cycle 

was measured was 15 days; the average number of days measured was roughly 22. These 

data contain 29 nonconceptive and 22 conceptive menstrual cycles. The (log) 

progesterone cycles across both the conceptive and nonconceptive groups were presented 

in Figure 2. These data were analyzed using the functional mixed-effects model presented 

in Equation 9 and the cosine nonlinear mixed-effects model presented in Equation 23.  

 The cosine nonlinear mixed-effects model was fit using the R package nlme. 

Starting values for the fixed effects were specified to be 

��� =  −.5 + 2.5 ∙ cos X. 25 ∙ ���� +  15
Y (27) 

Figure 13 shows the function from the set of fixed effects in Equation 27. This curve 

approximated the hypothesized mean curved for the progesterone cycle data. Note, the 

model in Equation 27 reflects more curvature in early and later time points than is seen in 

the data in Figure 2.  Again, this process of needing to select a functional form of change 

for data, even though it does not perfectly map onto the researcher’s data, mimics what 

researchers do in practice. If the researcher wants to impose a functional form of growth 

onto the data, the researcher may need to sacrifice accurately modeling some aspects of 

the data. Random effects were treated the same as in the simulation. If convergence 
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problems arose, random effects would be dropped one at a time, starting with the random 

frequency, until convergence was reached.  

The functional mixed-effects model was fit using the R package sme. Cycles were 

observed from day -8 to day 15 (day zero is ovulation), and a knot was placed at each 

time point (i.e., each day). The smoothing parameter for the functional mixed-effects 

model was chosen using AIC, just as in the simulation.    

The data were split into two separate datasets. The first dataset contained the 

observations from the odd numbered time points and the second dataset contained the 

observations from the even numbered time points. The functional and nonlinear mixed-

effects model were estimated using the odd numbered time points. The predicted mean 

and individual trajectories from both models were used to examine misfit with the even 

time points. This separation of estimation versus evaluation was done to examine how 

well the model accounted for data that were not used to estimate the model. That is, 

examining how well a model can account for novel data is a better evaluation of the 

adequacy of the model than evaluating how well a model captures data that were used to 

estimate the model’s parameters. Misfit of the mean curve was evaluated using the MSE 

value, calculated for each mixed-effects model as 

MSE�[̂(�)
 = ∑ ([(���) − [̂(��))8�8��� 12  , (28) 

where [(���) is the average of the observed data at a specific even numbered time point, 

[̂(��) is the estimated grand mean function evaluated at time ��, �� is the sth even 

numbered time point out of the 12 equally spaced even numbered time points over the 

range of [-8, 15]. In the numerator, the term ∑ ([(���) − [̂(��))8�8��� , measures how much 
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the estimated grand mean function deviated from the averaged observed data across 12 

equally spaced even numbered time points. Therefore the mean square error, MSE�[̂(�)
, 

measures how much the estimated grand mean function deviated from the mean of the 

observed data across even numbered time points.   

 Second, misfit of the individual curves was examined using the AMSE, which 

will be calculated for each mixed-effects model as    

AMSE�yr(�)
 = ∑ ∑ �y�(��) − yr�(��)
8�8������� 12�  

(29) 

where y�(��) is the observed data for the ith individual evaluated at the sth even 

numbered time point, and yr�(��) is the value from the predicted curve for the ith 

individual evaluated at the sth even numbered time point. Similar to MSE�[̂(�)
, a lower 

value of AMSE�yr(�)
 indicates that the estimated person-specific trajectories were closer 

to the observed data, indicating smaller misfit.  

 

EMPIRICAL EXAMPLE RESULTS 

The progesterone cycle data from Brumback and Rice (1998) contained 89 cycles from 

51 women with 19 of these women being observed for more than one cycle. Analyses 

were conducted on one cycle per woman for a total of 51 cycles. If a woman was 

observed at more than one cycle, the cycle used in the analyses was randomly sampled 

from all of her cycles. These data were then split into data with odd and even numbered 

time points. The data with odd numbered time points were analyzed using a functional 

mixed-effects model and nonlinear mixed-effects model. Both models converged with no 

out of bounds parameter estimates.  
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Overview of Model Fit 

 Figures 14 contains plots of the predicted mean and individual trajectories of the 

functional and nonlinear mixed-effects models estimated using the odd numbered time 

points from the progesterone cycle data. Panels A and B contain plots from the functional 

mixed-effects model, and panels C and D contain plots of the nonlinear mixed-effects 

model fits. Panels A and C contain plots of the estimated mean (black line) and individual 

curves (dashed gray lines), and panels B and D contain the particular individual’s 

observed data (black dots), this individual’s predicted curve (dashed black), and the 

predicted mean curve for the sample (solid black).  

Comparing panel 14A to 14C highlights the differences in the mean and 

individual predicted trajectories. The cosine nonlinear mixed-effects model forced the 

estimated curves to follow a smooth cosine curve, whereas, the functional mixed-effects 

model estimated curves that were mostly flat during the early and later time points, with a 

sharp increase at middle time points. Examining Figures 14B and 14D highlight the 

differences in a predicted trajectory for one particular person. In Figure 14D, the 

observed data at later time points were fairly stable (and potentially increasing); however, 

the predicted trajectory from the cosine nonlinear mixed-effects model began to decline. 

On the other hand, the predicted trajectory from Figure 14B, from the functional mixed-

effects model, appeared to follow the trend seen in the observed data at the later time 

points where there is stability in the observed values.  

Evaluation of MSE and AMSE 

The data were split based on whether the observations were from the odd or even 

numbered time points. The functional mixed-effects model and the cosine nonlinear 
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mixed-effects model were fit to the odd numbered time points. Mean and individual 

predicted trajectories from both models were used to examine misfit with the even 

numbered time points. The MSE value for the functional mixed-effects model was 

1.1573, and the MSE value for the cosine nonlinear mixed-effects model was 1.1655. 

Thus, both models performed similarly in terms of misfit of the mean curve to the even 

time points, with the functional mixed-effects model slightly outperforming the cosine 

nonlinear mixed-effects model. The AMSE value for the functional mixed-effects model 

was 2.2558, and the AMSE value for the cosine nonlinear mixed-effects model was 

2.2768. These AMSE values indicate both models performed similarly in terms of misfit 

of the individual curves to the even time points, with the functional mixed-effects model 

slightly outperforming the cosine nonlinear mixed-effects model. The lower MSE values 

compared to the AMSE values indicate the individual predicted curves had more misfit to 

the even numbered time points than the mean predicted curves. MSE and AMSE values 

from both models were very similar, likely indicating no meaningful difference in the 

models with respect to these two outcomes. 

 

DISCUSSION 

Functional mixed-effects models are a useful tool for analyzing data with a 

nonlinear trajectory. They are particularly useful when the functional form of growth is 

unknown or is too complex for parametric models. This simulation investigated how 

functional and nonlinear mixed-effects models recovered mean and individual trajectories 

when the data were generated from an inherently nonparametric process. Sample size, 

number of time points per curve, and measurement design were manipulated. Results 
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showed as the sample size and number of time points per curve increased, the models 

recovered the underlying mean curve better. As the number of time points per curved 

increased, the models were able to more accurately recover the individual curves. These 

results were expected, as there was more information given to the models about the mean 

and each individual, leading to more accurate recovery of the mean and individual 

curves. Both models recovered the mean curves better than the individual curves. This 

result was expected as there is more information available to estimate a mean than an 

individual’s curve. Generally, the models performed better with the fixed and semi-

random measurement designs. Across all simulation conditions, the functional mixed-

effects model recovered the mean curves more accurately than the nonlinear mixed-

effects model, and the functional mixed-effects model recovered the individual curves 

more accurately than the nonlinear mixed-effects model in roughly two-thirds of the 

simulation conditions. Details of these results are discussed below.  

Both models recovered the individual curves more accurately when data were 

observed at the fixed measurement design. This was expected for the functional mixed-

effects model based off simulation work from Fine et al. (2019). The nonlinear mixed-

effects model recovered the mean curves more accurately when the data were observed at 

the fixed measurement design. This result was unexpected; it was hypothesized the model 

would perform best with the semi-random measurement design as the model would be 

incorporating more information across time. This result likely occurred because the 

residual variances for the nonlinear mixed-effects model were fixed across time. The data 

were generated to have increasing variance across time. It is likely the variability in the 

semi-random time points was just added to the error term, adding to misfit of the model.  
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Generally, both models recovered the mean and individual curves the worst with 

the attrition measurement design. However, the differences between the fixed, semi-

random, and attrition measurement designs were not so drastic that these models should 

not be used by applied researchers who have data that resemble the attrition measurement 

design. The attrition measurement design always results in the least accurately recovered 

individual curves. There were only four conditions where the attrition measurement 

design did not result in the least accurately recovered mean curves. All four of these 

conditions were for the functional mixed-effects model. One condition, with a sample 

size of 1,000 and 21 time points per curve, the mean curve was recovered least accurately 

with the semi-random measurement design; however, this difference was in the fifth 

decimal place and was likely not meaningful. The other three conditions, with five time 

points per curve at each sample size (� = 200, 500, 1000), the fixed measurement design 

resulted in the least accurately recovered mean curves. In these conditions, the curves 

were observed at five arbitrary points in time [0, 5, 10, 15, 20], and therefore had knots 

placed at those time points. It is likely the case the knots placed in the fixed measurement 

design did not capture meaningful areas of nonlinearity on the curve, while the spread of 

knots placed in both the attrition and semi-random measurement designs were able to. 

 The functional mixed-effects model recovered the mean curves more accurately 

with the semi-random measurement design. Previous simulation work suggested the fixed 

measurement deign would be better (Fine et al., 2019). There were three conditions 

where the functional mixed-effects model recovered the mean curve more accurately with 

the fixed measurement design. However, these difference were in the fifth decimal place 

and were likely not meaningful. The measurement design condition was used to mimic 
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different ways data can be collected in applied research (e.g., all participants collected at 

the same time, participants collected at various intervals, and participants collected at 

various intervals but not all the way to the end of the study). While it is useful to gain 

insight on a general ‘best’ ways to collected data, it might be more useful to focus on 

ways to collect data most accurately for different developmental processes. This result 

likely occurred because the semi-random measurement design had observations, and 

therefore knots placed, at important features of the curve. Placing knots on areas of the 

curve where there is nonlinear change seems to be more important than arbitrarily 

collecting data, and therefore placing knots, at uninformed points. Collecting data, and 

therefore placing knots, at meaningful time points needs to be balanced with not placing 

too many knots, especially where there is not data. A delicate balance needs to be struck 

between placing knots at important features of the curve and not placing so many knots 

that the number of knots placed becomes too close to the sample size.  

 The functional mixed-effects models recovered the individual curves more 

accurately than the nonlinear mixed-effects models in two-thirds of the simulation 

conditions. This result was expected as the functional mixed-effects models are more 

flexible in modeling the mean and random effects than the nonlinear mixed-effects 

models. However, in one-third of the conditions, the nonlinear mixed-effects models 

recovered the individual curves better than the functional mixed-effects models. The 

conditions in which this result occurred are conditions where the data did not contain rich 

information (e.g., five time points, attrition measurement design). It was likely the case 

that the flexibility of functional mixed-effects models struggled when the data did not 
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contain ample information, whereas the more rigid structure of the nonlinear mixed-

effects models struggled less in these conditions.  

 The utility of the functional and nonlinear mixed-effects models were 

demonstrated on progesterone cycle data from Brumback and Rice (1998). The functional 

mixed-effects models captured the flatter beginning of the curve and the steep increase in 

the middle. It modeled the end of the curve to be fairly flat. The nonlinear mixed-effects 

models, as expected, imposed the cosine structure to the data and modeled a curvature at 

the beginning and end of the data and a gradual increase in the middle. The progesterone 

data contain two groups of women: conceptive and non-conceptive. The conceptive 

group show in increase in (log) progesterone at the end while the non-conceptive begin to 

decrease back down. Interestingly, it appeared that the functional mixed-effects models 

‘averaged’ those effects and modeled the data as flattening out at the end. Additionally, 

the predicted mean and individual curves in Figure 14A were not as smooth as the curves 

in Figure 14C. The curves from the functional mixed-effects models were under-

smoothed. This is related to the set of smoothing parameters selected by AIC.  

 In sum, functional mixed-effects models were found to be a useful tool for 

analyzing longitudinal data with an unknown nonlinear trajectory with complex 

interindividual differences in the patterns of change. These models are less established in 

the social sciences, but show great promise in their utility. These models are most useful 

when the data do not clearly map onto a parametric form and require flexibility to model 

them. These models are also useful when the random effects structure in a linear or 

nonlinear mixed-effects model is too restrictive. These models can be used in an 

exploratory manner to guide researchers to a proper parametric form to use. Additionally, 
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these models are useful when fitting a parametric model is not providing adequate fit to 

the data and requires a more flexible approach.  

Challenges 

 While functional mixed-effects models show great promise for the social and 

behavioral sciences, there are three nontrivial challenges of the approach. The first 

challenge is deciding the number and location of knots. Ideally, smoothing splines would 

be used which removes the difficulty in deciding where and how many knots to place 

because a knot is automatically placed at each unique time point in the data. The 

smoothness of the curves is controlled by two smoothing parameters. However, the 

approach of using a knot at each unique time point suffers when the number of unique 

time points approaches or exceeds the sample size. The model quickly becomes too 

computationally intensive to be practical or the model may result in poor fit to the data. 

With functional mixed-effects models, the number and location of knots must be 

determined and there is no set guidelines on when there are too many or too few knots. 

However, it seems important for researchers to aim to collect data when individual 

trajectories are nonlinear (i.e., 2nd derivative of the curves is non-zero). However, more 

research needs to be done in this area to provide guidelines to applied researchers.  

 The second area of challenge for functional mixed-effects models is in deciding 

the smoothing parameters. Just as in Fine et al. (2019), this simulation used the AIC to 

pick the set of smoothing parameters. Other approaches can be used to pick the set of 

smoothing parameters, such as BIC or generalized cross validation (GCV). Using this 

hands off approach of allowing AIC to pick the set of smoothing parameters does not 

always result in the set of smoothing parameters that best smooths the curves. This was 
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the case analyzing the progesterone data in the empirical example; the curves were under-

smoothed with the set of smoothing parameters chosen by AIC. Functional mixed-effects 

models are built to be flexible. With this inherent flexibility, the researcher needs to be 

more hands on in deciding the smoothing parameters. The models can be fit with 

smoothing parameters selected using AIC (or BIC, GCV, etc); however, the resulting 

curves should be examined to ensure the curves are not over- or under-smoothed. If the 

curves appear to be over- or under-smoothed, the researcher needs to sample sets of 

smoothing parameter values until the curves no longer appear over- or under-smoothed. 

This is a subjective practice and there is no one ‘right’ way to ensure curves are not over- 

or under-smoothed. 

 The final challenge associated with functional mixed-effects model is software. 

Functional mixed-effects models were fit using the sme package in R (Berk, 2013). This 

package was developed to analyze gene expression data with few time points measured 

over huge numbers of variables. Fine et al. (2019) showed some of the default setting in 

the function might not be optimal for longitudinal data seen in the social sciences.  In this 

dissertation, I followed the changes Fine et al. (2019) used to achieve model fits that 

converged to reasonable solutions. Other researchers may also need to adjust some of the 

default settings to achieve reasonable model fits.  

Nonlinear mixed-effects models have two main challenges: choosing the correct 

functional form and choosing adequate starting values. Choosing the correct functional 

form requires researchers to not only have background knowledge of the developmental 

process under study, but also some knowledge of how to parameterize that change 

process. Choosing adequate starting values is a non-trivial problem. Nonlinear mixed-
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effects models struggle to converge if good strong starting values are not provided. This 

may be a time intensive process of sampling sets of starting values until the model 

converges to an adequate fit.  

Future Directions  

 This simulation used AIC to select the optimal set of smoothing parameters for 

the functional mixed-effects models. Future simulations should investigate other 

likelihood based approaches (e.g., BIC, GCV) to selecting the optimal set of smoothing 

parameters. Future research should also focus on the inclusion of covariates in the 

functional mixed-effects model to account for group differences. 
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Figure 1. Cubic B-spline basis used to define the grand mean function in the simulation. 

Each color represents a different B-spline basis function  
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Figure 2. Progesterone cycle data (the log has been taken) taken across 24 days from 51 

women. 
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Figure 3. The grand mean function used for the simulation. This curve was formed using 

the B-spline from Figure 1. 

 

 

 
Figure 4. Three B-spline basis functions of degree 3 with equally spaced knots over [0, 

20] used to generate the individual trajectories in the simulation.  
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Figure 5. The true underlying mean and individual curves, with the observed data, from a 

dataset with 200 people observed at 11 time points with each measurement design. Each 

panels displays the true underlying individual curves in dashed gray, the true grand mean 

function in black, and the observed data as black circles. Figure 5A shows the true 

underlying curves for the fixed measurement design. Figure 5B shows the true underlying 

curves for the semi-random measurement design. Figure 5C shows the true underlying 

curves for the attrition measurement design.  
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Figure 6. The function from the set of fixed effects in Equation 24 used for the 

simulation study. This is the closest functional form to the grand mean function used in 

the simulation.  
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Figure 7. Model fits of the functional and nonlinear mixed-effects models to datasets 

from conditions with 11 time points per curve, sample size of 200 curves, for the fixed 

measurement designs. The first row (7A and 7B) is plots of the functional mixed-effects 

model fits and the second row (7C and 7D) is plots of the nonlinear mixed-effects model 

fits. The first column (7A and 7C) is plots of the estimated mean (black line) and 

individual curves (dashed gray lines) fit by either model. The second column (7B and 

7D) is plots of a particular individual’s observed data (black dots), that individual’s 

estimated curve (dashed black), and the estimated mean curve (solid black). 
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Figure 8. Model fits of the functional and nonlinear mixed-effects models to datasets 

from conditions with 11 time points per curve, sample size of 200 curves, for the semi-

random measurement designs. The first row (8A and 8B) is plots of the functional mixed-

effects model fits and the second row (8C and 8D) is plots of the nonlinear mixed-effects 

model fits. The first column (8A and 8C) is plots of the estimated mean (black line) and 

individual curves (dashed gray lines) fit by either model. The second column (8B and 

8D) is plots of a particular individual’s observed data (black dots), that individual’s 

estimated curve (dashed black), and the estimated mean curve (solid black). 
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Figure 9. Model fits of the functional and nonlinear mixed-effects models to datasets 

from conditions with 11 time points per curve, sample size of 200 curves, for the attrition 

measurement designs. The first row (9A and 9B) is plots of the functional mixed-effects 

model fits and the second row (9C and 9D) is plots of the nonlinear mixed-effects model 

fits. The first column (9A and 9C) is plots of the estimated mean (black line) and 

individual curves (dashed gray lines) fit by either model. The second column (9B and 

9D) is plots of a particular individual’s observed data (black dots), that individual’s 

estimated curve (dashed black), and the estimated mean curve (solid black). 
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Figure 10. MSE and AMSE values from nonlinear and functional mixed-effects models 

at sample size 200. Panels A, B, and C correspond to MSE values. Panels D, E, and F 

correspond to AMSE values. The dashed line with squares correspond to the nonlinear 

mixed-effects model and the solid line with circles correspond to the functional mixed-

effects model. Panels A and D display results for the fixed measurement design. Panels B 

and E display results for the semi-random measurement design. Panels C and F display 

results for the attrition measurement design.  
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Figure 11. MSE and AMSE values from nonlinear and functional mixed-effects models 

at sample size 500. Panels A, B, and C correspond to MSE values. Panels D, E, and F 

correspond to AMSE values. The dashed line with squares correspond to the nonlinear 

mixed-effects model and the solid line with circles correspond to the functional mixed-

effects model. Panels A and D display results for the fixed measurement design. Panels B 

and E display results for the semi-random measurement design. Panels C and F display 

results for the attrition measurement design.  
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Figure 12. MSE and AMSE values from nonlinear and functional mixed-effects models 

at sample size 1,000. Panels A, B, and C correspond to MSE values. Panels D, E, and F 

correspond to AMSE values. The dashed line with squares correspond to the nonlinear 

mixed-effects model and the solid line with circles correspond to the functional mixed-

effects model. Panels A and D display results for the fixed measurement design. Panels B 

and E display results for the semi-random measurement design. Panels C and F display 

results for the attrition measurement design.  
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Figure 13. The function from the set of fixed effects in Equation 27 used for the 

progesterone cycle data.  
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Figures 14. Plot of model fits of the functional and nonlinear mixed-effects models to the 

odd time points from the progesterone cycle data. In this figures, panels A and B, are 

plots of the functional mixed-effects model fits, and panels C and D are plots of the 

nonlinear mixed-effects model fits. Panels A and C are plots of the estimated mean (black 

line) and individual curves (dashed gray lines) fit by either model. Panels B and D are 

plots of a particular individual’s observed data (black dots), that individual’s estimated 

curve (dashed black), and the estimated mean curve (solid black).  
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Table 1 

MSE values for the functional mixed-effects model (FMEM) and the cosine nonlinear 

mixed-effects model (NMEM) across the simulation conditions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  64 

Table 2 

AMSE values for the functional mixed-effects model (FMEM) and the cosine nonlinear 

mixed-effects model (NMEM) across the simulation conditions. 
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APPENDIX C 

 

 TECHNICAL DETAILS OF B-SPLINES  
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B-splines stands for “basis” splines. B-splines are best utilized for non-periodic data with 

continuous derivatives up to a certain order (Aguilera & Aguilera-Morillo, 2013). They 

are defined recursively. The ith basis function for a B-spline of order # is defined as 

��,�(�) =  �1,   �� C� ≤ � < C�@� 0,   ��ℎ������           
�{,�(�) = � − C�C�@{:� − C� �{:�,�(�) + C�@{ − �C�@{ − C�@� �{:�,�@�(�). 

(C.1) 

where C� is the ith  knot point and t is the time point the spline is being evaluated at. ��,� is 

the ith B-spline of order one (e.g., degree zero). This spline takes a value of one if the 

time point (�) is between the knot points C� and C�@� and takes a value of zero everywhere 

else. Then, �{,�, is the more general B-spline of order # (� = 2, … , #) is defined using 

B-splines of order # − 1 (�{:�,�). The terms 
P:�T�T�Q=>:�T and 

�T�Q:P
�T�Q:�T�> are constants 

multiplied by the B-splines of order # − 1. This paper focuses on cubic B-splines (i.e., 

B-splines of order four) since, in general, cubic splines are the lowest degree spline where 

the knot location cannot be visually detected. This makes cubic splines widely used in 

practice. Since B-splines are defined recursively, cubic B-splines are defined using B-

splines of order one, two, three, and four (i.e., degrees zero, one, two, and three).   

 In addition to deciding on what order B-spline to use, one must determine the 

number and location of knots to use. Technically speaking, splines have knots and 

breakpoints. Breakpoints refer to the increasing sequence of time points where knots are 

located. It is possible to specify multiple knots at one time point. Multiple knots at a 

given time point may be needed when there are abrupt changes in the underlying curve or 

its derivatives (Ramsay & Silverman, 2005). Specifically for B-splines, one must place # 
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knots at each boundary breakpoint. In a cubic B-spline defined over the interval f�,  h, 
this means placing three knots at the first boundary breakpoint (e.g., three knots at time 

�) and placing three knots at the end boundary breakpoint (e.g., three knots at time  ). 

Therefore, technically, knots refer to the sequence of time points at breakpoints. In 

practice, many use the terms interchangeably. 

B-splines require specifying how many knots to use and where to place knots. For 

splines, in general, this is a nontrivial problem and does not have one absolute correct 

method. Specifying knots requires the user to sample various sets of knots and choosing 

which works best. Ramsay and Silverman (2005) suggest placing more knots where the 

curve shows complex variation and less knots where the curve is mildly nonlinear. Two 

commonly used knot selection methods are using equally spaced quantiles of time points 

as knots (Ruppert et al., 2003) or placing knots at equally spaced time points (Eilers & 

Marx, 1996). It is important to not under or over smooth the curves by placing too few or 

too many knots. However, whether the curve is under or over smoothed may be left to the 

interpretation of the user. 

 Figures C.1 through C.12 in Appendix D help demonstrate the recursive 

definition of the B-spline and to show placement of knots (Suk, 2015). As previously 

stated, this paper focuses on cubic B-spline. The following plots will show the definition 

of B-splines of order one, two, three, and four. Figure C.1 shows a time interval from 

f0,1h broken up into three subintervals (e.g., ¡0, �
}¢ , ¡�

} , 8
}¢ , f8

} , 1h). Circled in light blue, 

there are two interior breakpoints at time � = �
} (e.g., £�) and time � = 8

} (e.g., £8). Circled 

in dark blue, there are two boundary breakpoints at time � = 0 (e.g., £�) and time � = 1 
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(e.g., £}). The green dots are the knots placed at each interior breakpoint and the red dots 

are the knots placed at each boundary breakpoint. There is one knot at each interior 

breakpoint (e.g., C¤ and C¥), three knots at the first boundary breakpoint (e.g., C�, C8, C}), 

and three knots at the end boundary breakpoint (e.g., C¦, C§, C¨).  

We can now start to define a B-spline of order 1 (i.e., degree 0) using the first 

equation from Equation C.1: ��,�(�) =  �1,   �� C� ≤ � < C�@� 0,   ��ℎ������          . This equation states a B-

spline of order 1 (e.g., degree 0) will take on a value of one at time � if that value of � is 

greater than or equal to the value of the ith knot (C�) and less than the value of the ith + 1 

knot (C�@�). We begin by defining ��,�(�), the order 1 (e.g., degree 0) B-spline at the � =
1 knot. To do so, we need C� and C8; as Figure C.1 shows, both C� and C8 equal zero and 

correspond with � = 0. Subbing C� = C� = 0, C�@� = C8 = 0, and � = 0 into the first 

equation from Equation C.1 we get: ��,�(�) =  �1,   �� 0 ≤ 0 < 0     0,   ��ℎ������          . Because 0 ≮ 0 the 

first B-spline function becomes ��,�(�) = 0. The same logic applies to the second order 1 

(e.g., degree 0) B-spline. By subbing C� = C8 = 0, C�@� = C} = 0, and � = 0 into the first 

equation from Equation C.1, we see the second B-spline function becomes ��,8(�) = 0 

(again, because � = 0 ≮ C�@� = C} = 0). Making substitutions for C� = C} = 0, C�@� =
C¤ = �

}, and � = 0  ��,}(�) =  ª 1,   �� 0 ≤ 0 < �
}     

0,   ��ℎ������          . In this case, the statement 0 ≤ 0 < �
} 

is true, and thus, the B-spline takes on a value of 1 between ¡0, �
}¢ and takes on a value of 

0 everywhere else. Figure C.2 displays the third B-spline of order 1 (e.g., degree 0). 
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Making substitutions for C� = C¤ = �
}, C�@� = C¥ = 8

}, and � = �
}  ��,¤(�) =

 ª 1,   �� �
} ≤ �

} < 8
}     

0,   ��ℎ������          . In this case, the statement 
�
} ≤ �

} < 8
} is true, and thus, the B-spline 

takes on a value of 1 between ¡ �} , 8
}¢ and takes on a value of 0 everywhere else. Figure 

C.3 displays the fourth B-spline of order 1 (e.g., degree 0).  Making substitutions for C� =
C¥ = 8

}, C�@� = C¦ = 1, and � = 8
}  ��,¥(�) =  ª 1,   �� 8

} ≤ 8
} < 1     

0,   ��ℎ������          . In this case, the 

statement 
8
} ≤ 8

} < 1 is true, and thus, the B-spline takes on a value of 1 between ¡8
} , 1¢ 

and takes on a value of 0 everywhere else. Figure C.4 displays the fifth B-spline of order 

1 (e.g., degree 0).  The last two B-splines, ��,¦ and ��,§, both take on values of zero. This 

occurs in the same way ��,� and ��,8 take on the value of zero. When making the 

substitutions for C� = 1, C�@� = 1, and � = 1, 1 ≮ 1 and thus makes the B-splines take on 

a value of zero everywhere. Figure C.5 shows the order 1 (e.g., degree 0) B-spline basis.  

Now that the B-spline basis of order 1 (e.g., degree 0) has been defined, the B-

spline basis of order 2 (i.e., degree 1) can be defined. The second equation in Equation 

C.1 is used to define B-spline bases of order 2 (i.e., degree 0) and above. Modifying the 

second equation in Equation C.1, making substitutions for �, gives: �8,�(�) =
P:�T�T�«=>:�T �8:�,�(�) + �T�«:P

�T�«:�T�> �8:�,�@�(�) = P:�T�T�>:�T ��,�(�) + �T�«:P
�T�«:�T�> ��,�@�(�) . Again, 

finding the basis involves substitutions for C� and �; it now also involves substituting 

values of ��,�(�). Starting with � = 1, �8,�(�) = P:�T�T�>:�T ��,�(�) + �T�«:P
�T�«:�T�> ��,8(�) =

�:�
�:� 0 + �:�

�:� 0 = 0. So, the first B-spline of order 2 (i.e., degree 1) takes on a value of 0 
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everywhere. For � = 2, �8,8(�) = P:�T�T�>:�T ��,8(�) + �T�«:P
�T�«:�T�> ��,}(�). The first part, 

P:�«�¬:�« ��,8(�), equals zero because the only value ��,8(�) takes on is zero. The second 

part, 
�­:P

�­:�¬ ��,}(�), is primarily used to define the second B-spline basis function of order 

2 (i.e., degree 1). The value of ��,}(�) at C} is 1, and maintains this value until just before 

C¤. At C¤, the value of ��,}(�) is 0. Plugging values of � between C} = 0 < � < C¤ = �
}, in 

�­:P
�­:�¬ ��,}(�) creates the line seen in Figure C.6. For example, substituting � = 0 gives 

>¬:�
>¬:� f1h = 1. Substituting � = �

¦ gives 

>¬:>®>¬:� f1h = .5. Substituting � = �
} gives 

>¬:>¬>¬:� f0h = 0.  

For � = 3, �8,}(�) = P:�T�T�>:�T ��,}(�) + �T�«:P
�T�«:�T�> ��,¤(�) = P:�>¬:� ��,}(�) + «¬:P

«¬:>¬
��,¤(�). 

Now values of  � between 0 < � < 1 will be substituted. Recall, the value of ��,}(�) is 1 

between C} and C¤, and takes on a value of 0 everywhere else. Also recall, the value of 

��,¤(�) is 1 between C¤ and C¥, and takes on a value of 0 everywhere else. Substituting 

� = 0 into 
P:�>¬:� ��,}(�) + «¬:P

«¬:>¬
��,¤(�) = �:�>¬:� f1h + «¬:�

«¬:>¬
f0h = 0. Substituting � = �

¦ into 

P:�>¬:� ��,}(�) + «¬:P
«¬:>¬

��,¤(�) = >®:�
>¬:� f1h + «¬:>®«¬:>¬

f0h =  .5 + 0 = .5. Substituting � = �
} into 

P:�>¬:� ��,}(�) + «¬:P
«¬:>¬

��,¤(�) = >¬:�
>¬:� f0h + «¬:>¬«¬:>¬

f1h = 0 + 1 = 1. Substituting � = �
8 into 

P:�>¬:� ��,}(�) + «¬:P
«¬:>¬

��,¤(�) = >«:�
>¬:� f0h + «¬:>««¬:>¬

f1h = 0 + .5 = .5. Substituting � = 8
} into 

P:�>¬:� ��,}(�) + «¬:P
«¬:>¬

��,¤(�) = «¬:�
>¬:� f0h + «¬:«¬«¬:>¬

f0h = 0. Substituting any values over � ≥ 8
} will 
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yield a value of zero because both ��,}(�) and ��,¤(�) are zero at those values. The third 

B-spline of order 2 (i.e., degree 1) is shown in Figure C.7.  

For � = 4, �8,¤(�) = P:�T�T�>:�T ��,¤(�) + �T�«:P
�T�«:�T�> ��,¥(�) = P:>¬«¬:>¬

��,¤(�) + �:P
�:«¬

��,¥(�). 

Now values of  � between 0 < � < 1 will be substituted. Recall, the value of ��,¤(�) is 1 

between C¤ and C¥, and takes on a value of 0 everywhere else. Also recall, the value of 

��,¥(�) is 1 between C¥ and C¦, and takes on a value of 0 everywhere else. Substituting 

any values over � ≤ �
} will yield a value of zero because both ��,¤(�) and ��,¥(�) are zero 

at those values. Substituting � = �
} into 

P:>¬«¬:>¬
��,¤(�) + �:P

�:«¬
��,¥(�) = >¬:>¬«¬:>¬

f1h + �:>¬�:«¬
f0h = 0. 

Substituting � = �
8 into 

P:>¬«¬:>¬
��,¤(�) + �:P

�:«¬
��,¥(�) = >«:>¬«¬:>¬

f1h + �:>«�:«¬
f0h = .5 + 0 = .5. 

Substituting � = 8
} into

P:>¬«¬:>¬
��,¤(�) + �:P

�:«¬
��,¥(�) = 

«¬:>¬«¬:>¬
f0h + �:«¬�:«¬

f1h = 0 + 1 = 1. 

Substituting � = ¥
¦ into 

P:>¬«¬:>¬
��,¤(�) + �:P

�:«¬
��,¥(�) = ²®:>¬«¬:>¬

f0h + �:²®�:«¬
f1h = 0 + .5 = .5. Lastly, 

substituting � = 1 into 
P:>¬«¬:>¬

��,¤(�) + �:P
�:«¬

��,¥(�) = �:>¬«¬:>¬
f0h + �:�

�:«¬
f1h = 0. The fourth B-

spline of order 2 (i.e., degree 1)  is shown in Figure C.8.  

For � = 5, �8,¥(�) = P:�T�T�>:�T ��,¥(�) + �T�«:P
�T�«:�T�> ��,¦(�). The first part, 

�T�«:P
�T�«:�T�> ��,¦(�), equals zero because the only value ��,¦(�) takes on is zero. The first 

part,
P:�T�T�>:�T ��,¥(�), is primarily used to define the fifth B-spline basis function of order 2 

(i.e., degree 1). Recalling ��,¥(�) is zero everywhere except C¥ = 8
} < � < C¦ = 1, only 
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values of � within this region are needed to define this basis function. Substituting � = 8
} 

into 
P:�T�T�>:�T ��,¥(�) + �T�«:P

�T�«:�T�> ��,¦(�) =  «¬:«¬�:«¬
f1h + �:«¬�:� f0h = 0. Substituting � = ¥

¦ into 

P:�T�T�>:�T ��,¥(�) + �T�«:P
�T�«:�T�> ��,¦(�) =  ²®:«¬�:«¬

f1h + �:²®�:� f0h = .5 +  0 = .5. Substituting � = 1 

into 
P:�T�T�>:�T ��,¥(�) + �T�«:P

�T�«:�T�> ��,¦(�) =  �:«¬�:«¬
f1h + �:�

�:� f0h = 1 + 0 = 1. The fifth B-

spline of order 2 (i.e., degree 1) is shown in Figure C.9.  

The sixth order 2 (i.e., degree 1) B-spline basis function takes on values of zero 

across the range of �. This is because �8,¦(�) = P:�T�T�>:�T ��,¦(�) + �T�«:P
�T�«:�T�> ��,§(�), both 

��,¦(�) and ��,§(�) only take on values of zero. There were seven order 1 (i.e., degree 0) 

B-spline basis functions defined. There are six order 2 (i.e., degree 1) B-spline basis 

functions. Figure C.10 displays the order 2 (i.e., degree 1) B-spline basis. In this plot, the 

second B-spline basis function of order 2 (i.e., degree 1) is in blue, the third is in green, 

the fourth is in red, and the fifth is in teal. The first and sixth all take on values of zero 

and are not plotted. The red dots are the knots. 

The exact same set of steps can be taken to define the quadratic (e.g., order 3) and 

cubic (e.g., order 4) B-spline basis. To define the cubic B-spline, the definitions for the 

order 3 (i.e., degree 2) B-splines would be used. Again, knot values, values of the order 3 

(i.e., degree 2) B-spline basis functions, and values of � would be plugged into the 

equations and solved. The calculations are not included here for either the order 3 or 

order 4 B-spline basis. The order 3 B-spline basis is plotted in Figure C.11. The first B-

spline basis function of order 3 is in blue, the second is in green, the third is in red, the 
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fourth is in teal, and the fifth is in purple. The sixth B-spline basis function only takes on 

values of zero and is not plotted. The cubic (e.g., order 4) B-spline basis is plotted in 

Figure C.12. The first B-spline basis function of order 4 is in black, the second is in red, 

the third is in green, the fourth is in blue, the fifth is in teal, and the sixth is in purple.  
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FIGURES 

 

Figure C.1. This plot shows the subintervals (e.g., ¡0, �
}¢ , ¡�

} , 8
}¢ , f8

} , 1h), interior 

breakpoints (circled in light blue; e.g., £� and £8), boundary breakpoints (circled in dark 

blue; e.g., £� and £}), interior knots (green dots; e.g., C¤ and C¥), and boundary knots (red 

dots; e.g., C�, C8, C} and C¦, C§, C¨)   for defining a cubic B-spline.  

 

 

Figure C.2. This plot shows the third B-spline basis function of order 1 (i.e., degree 0) in 

blue. It takes on a value of 1 between ¡0, �
}¢ and takes on a value of 0 everywhere else. 

The red dots are the knots. 
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Figure C.3. This plot shows the fourth B-spline basis function of order 1 (i.e., degree 0) 

in green. It takes on a value of 1 between ¡�
} , 8

}¢ and takes on a value of 0 everywhere else. 

The red dots are the knots. 

 

 

Figure C.4. This plot shows the fifth B-spline basis function of order 1 (i.e., degree 0) in 

red. It takes on a value of 1 between ¡8
} , 1¢ and takes on a value of 0 everywhere else. The 

red dots are the knots. 
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Figure C.5. This plot shows the order 1 (i.e., degree 0) B-spline basis. The third B-spline 

basis function of order 1 (i.e., degree 0) in blue, the fourth is in green, and the fifth is in 

red. The first, second, sixth, and seventh all take on values of zero and are not plotted. 

The red dots are the knots. 

 

 

Figure C.6. This plot shows the second B-spline basis function of order 2 (i.e., degree 1) 

in black. The red dots are the knots. 
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Figure C.7. This plot shows the third B-spline basis function of order 2 (i.e., degree 1) in 

black. The red dots are the knots. 

 

 

Figure C.8. This plot shows the fourth B-spline basis function of order 2 (i.e., degree 1) 

in black. The red dots are the knots. 
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Figure C.9. This plot shows the fifth B-spline basis function of order 2 (i.e., degree 1) in 

black. The red dots are the knots. 

 

 

Figure C.10. This plot shows the order 2 (i.e., degree 1) B-spline basis. The second B-

spline basis function of order 2 (i.e., degree 1) is in blue, the third is in green, the fourth is 

in red, and the fifth is in teal. The first, sixth, and seventh all take on values of zero and 

are not plotted. The red dots are the knots. 
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Figure C.11. This plot shows the order 3 (i.e., degree 2) B-spline basis. The first B-spline 

basis function of order 3 (i.e., degree 2) is in blue, the second is in green, the third is in 

red, the fourth is in teal, and the fifth is in purple. The sixth B-spline basis function only 

takes on values of zero and is not plotted.  

 

 

 

Figure C.12. This plot shows the order 4 (cubic; i.e., degree 3) B-spline basis. The first 

B-spline basis function of order 4 (cubic; i.e., degree 3) is in black, the second is in red, 

the third is in green, the fourth is in blue, the fifth is in teal, and the sixth is purple. 
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APPENDIX D 

 

TECHNICAL DETAILS FOR TRUNCATED POWER SPLINES 
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The truncated power basis is considered one of the simplest forms of splines. The 

truncated power basis with some set of knots C� < ⋯ < CF is defined as 

1, �, … , �³ , (� − C�)@³ , … , (� − CF)@³ , (D.1) 

where f�h@ is the positive part of a function such that f�h@ = max (0, �) (Wu & Zhang, 

2006). In other words, in order for (� − C�)@³  to be used to create the spline, the value of 

� − C� > 0. Meaning the time point (�) must be larger than the knot point (C�). The phrase 

truncated power comes from these functions being truncated (i.e., forced to zero) to the 

left of the knot. A is the degree of the polynomial used within each subinterval. Typically, 

A is set to three for a cubic fit. The first A + 1 basis functions of the truncated power 

basis (Equation D.1) are polynomials up to degree A and the rest are the truncated power 

functions of degree A (Wu & Zhang, 2006). The truncated power basis has continuous 

derivatives up to A − 1; the cubic truncated power basis has continuous first and second 

derivatives. These basis functions are then multiplied by estimated basis coefficients to 

form the estimated curve.  

 The number of basis functions in the truncated power basis is determined by 

adding the number of knots (Τ) to the degree of the polynomial (A) plus one: Τ + (A +
1). For example, let’s say we want to construct a cubic truncated power basis with two 

knots C� = 1 and C8 = 2. This means the basis would contain the following six (e,g., Τ +
(k + 1) = 2 + (3 + 1) = 6) basis functions: 1, �, �8, �}, (� − C�)@} , (� −  C8)@} . In order to 

construct some curve, x(t), the basis functions (1, �, �8, �}) are used when � < C�, when 

C� ≤ � < C8, (1, �, �8, �}, (� − C�)@} ) are the basis functions used, and when � ≥ C8 

(1, �, �8, �}, (� − C�)@} , (� −  C8)@} ) are used. Figure D.1 shows the six basis functions used 

to define this truncated power basis with knots at C� = 1 and C8 = 2. Time was arbitrarily 
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set to 100 equally spaced values between f0, 3h in order to show smooth lines for the 

basis functions. The first truncated power basis function was left off as it is used for 

defining an intercept and only takes on a value of one. The second truncated power basis 

function (�) is plotted in red. The third truncated power basis function (�8) is plotted in 

green. The fourth truncated power basis function (�}) is plotted in blue. These three basis 

functions span the entire range of time. The fifth truncated power basis function (i.e., 

(� − C�)@} ) is plotted in purple. This basis function only takes on non-zero values after the 

first knot (C� = 1) represented by the vertical dashed black line at Time = 1. The sixth 

and final truncated power basis function (i.e., (� − C8)@} ) is plotted in yellow. This basis 

function only takes on non-zero values after the second knot (C8 = 2) represented by the 

vertical dashed black line at Time = 2.  

 Just as with B-splines, the truncated power basis requires the user to specify the 

number and location of knots. Choice of knots can be specified using the same techniques 

discussed in the preceding section. Simplicity of construction and ease of parameter 

interpretation are two main advantages of using the truncated power basis. Two main 

disadvantages are associated with the truncated power basis. First, the basis matrix can be 

sparse since many (or even all) of the basis functions can be nonzero when evaluated at 

some time point. A sparse matrix can lead to slow computation times. Second, numerical 

precision problems can arise since the functions can grow without bound as time 

increases.  
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FIGURES 

 
Figure D.1. This plot shows the six basis functions used to define this truncated power 

basis with knots at C� = 1 and C8 = 2. The first truncated power basis function was left 

off as it is used for defining an intercept and only takes on a value of 1. The second 

truncated power basis function (�) is plotted in red. The third truncated power basis 

function (�8) is plotted in green. The fourth truncated power basis function (�}) is plotted 

in blue. These three basis functions span the entire range of time. The fifth truncated 

power basis function ((� − C�)@} ) is plotted in purple. This basis function only takes on 

non-zero values after the first knot (C� = 1) represented by the vertical dashed black line 

at Time = 1. The sixth and final truncated power basis function ((� − C8)@} ) is plotted in 

yellow. This basis function only takes on non-zero values after the second knot (C8 = 2) 

represented by the vertical dashed black line at Time = 2.  
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