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ABSTRACT 

 As the junction between the head and the trunk, the neck functions in providing 

head stability during behaviors like feeding to facilitating head mobility during behavior 

like grooming and predator vigilance. Despite its importance to these vital behaviors, its 

form and function remain poorly understood. Fossil hominin cervical vertebrae preserve 

a striking diversity in form despite the commitment to orthograde bipedality. Do these 

differences in cervical vertebral form correspond to functional variations among our 

recent ancestors? This dissertation attempts to understand 1) how does the neck function 

in head stability and mobility 2) how do these functions relate to cervical vertebral form. 

Kinematic and passive range of motion studies were conducted in several species of 

primate to obtain measures of function which were subsequently related to skeletal form.  

 Results show that cervical vertebral morphology does not significantly covary 

with differences in joint mobility. Rather, they implicate the critical role of ligaments and 

muscles in facilitating head mobility. Results of the kinematics study show that the neck 

plays a role in maintaining head stability during locomotion. However, the kinematic 

data do not significantly correlate with morphological variation among primate species. 

Given the negative results of the extant morphological analyses, it is difficult to apply 

them to the fossil record. As such, the functional significance of the disparate 

morphologies found in the hominin fossil record remain ambiguous. 
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Chapter 1 Introduction 
The neck is the junction between the head and trunk. As such, it transmits 

mechanical loads from the head to the trunk, allows for a mobile visual field, and acts as 

a conduit for vessels and nerves, as well as a home for digestive and respiratory organs. 

One of the primary functions of the neck is to help maintain a stable head, which is 

essential during locomotion because visual and vestibulocochlear inputs are required for 

efficient navigation through complex environments (Dunbar et al., 2008). Despite its 

manifest importance, the relationship between primate vertebral form and neck function 

is understudied. The morphology of the cervical vertebrae should be adapted to their 

function. The loads experienced are often higher in the postcrania during locomotion 

than during other behaviors (Preuschoft, 2004). Therefore, variation primate cervical 

vertebral form should theoretically reflect differences in locomotor and postural 

behaviors. Primates, as a whole, practice a large range of locomotor modes and postural 

repertoires. As such, exploring the diversity in their neck function can give insight into 

how the spine may be adapted those functions. The aim of this research is to understand 

how cervical vertebral form is adapted to providing head stability and facilitating 

mobility during locomotion and its implications for locomotor evolution within 

hominins.   

The head and neck are traditionally modeled as a bow and string with the neck 

muscles supporting vertebral position through tension (Slijper, 1946). Under this model, 

species with more pronograde necks (those whose necks are habitually positioned more 

perpendicular to the force of gravity) require greater support than those with more 

orthograde necks (which are more aligned with the gravity vector). To maintain 

pronograde postural function, either the muscular effort must be larger, or the muscle 

force vectors must be oriented in a more mechanically advantageous direction. The shift 
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to orthograde bipedality affects the gravitational loading of the spine and, therefore, how 

the neck maintains the position of the head. Therefore, differences in posture should 

affect the form cervical vertebral column (Shapiro, 1991; Nalley and Grider-Potter, 2015). 

While this bow-and-string model is informative it neglects the dynamic manner in which 

head stability is maintained during habitual locomotion. The neck’s maintenance of head 

stability should also influence vertebral morphology. 

During locomotion, the neck controls head balance, which is vital for a stable field of 

vision. Efficient locomotion requires visual stability in order to see and respond to 

substrate variation (Assaiante and Amblard, 1993; Dunbar et al., 2008). Axial movement 

during locomotion varies among species and among locomotor modes (Dunbar, 2004b; 

Hirasaki and Kumakura, 2004; Dunbar et al., 2008; Xiang et al., 2008). Primates also 

normally adjust their visual fields to reflect the orientation of the substrate, or 

suprastrate (Strait and Ross, 1999; Hirasaki and Kumakura, 2004; Stevens and Heesy, 

2013). Because the movement of the trunk differs between locomotor modes and the 

position of the head varies with substrate position, how the neck maintains head stability 

should also vary. In turn, the spine should be adapted to maintaining that stability 

during locomotion.  

Very few studies have attempted to relate primate cervical vertebral form to function 

(Schultz, 1942, 1961; Toerien, 1961; Ankel, 1972; Gommery, 2000; Aiello and Dean, 

2002; Manfreda et al., 2006; Parks, 2012; Gómez-Olivencia et al., 2013; Nalley, 2013; 

Meyer et al., 2018). Several of these studies have proposed hypotheses about the effects 

of cervical form in balance of the head or in locomotor function (Schultz, 1961; Toerien, 

1961; Ankel, 1972; Aiello and Dean, 2002; Gommery, 2006). These have not been 

empirically tested. Others have been hindered by their use of broad locomotor 

categories, such as ‘quadruped’ (Manfreda et al., 2006; Parks, 2012; Nalley, 2013), to 
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classify cervical function rather. These broad locomotor categories are problematic in 

that they do not reflect the nuances of actual locomotion. Overall, there are many gaps in 

understanding the functional morphology of the cervical vertebrae that require further 

investigation.  

To establish form-function relationships, the many functions of the head-neck 

complex must be explored. Neck postural data during locomotion have been collected 

from a variety of primate species (Strait and Ross, 1999). Strait and Ross (1999) 

measured the external inclination of the neck in the sagittal plane during mid-stance or 

mid-swing (see Fig. 1.1). Though this study includes a diverse array of primate species, 

the zoo animals used were unshaven. The presence of fur likely introduced a large 

amount of error into their data. This measure also omits the variation in flexion-

extension across the gait cycle and excludes lateral flexion and rotation. The neck 

functions in all three planes and in order to understand postural stability of the head, 

neck motion needs to be understood in three dimensions. Despite these limitations, 

these data have used to successfully establish form-function relationships in the cervical 

spine (Nalley and Grider-Potter, 2015, 2017). Absolute head and neck range of motion 

(ROM) has also been quantified in only four species of non-human primates (Graf et al., 

1995). These data are sparse in their quantity of subjects and in their number of primate 

species. A greater breadth and depth of taxonomic sampling would allow functional 

relationships to be elucidated. 
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Figure 1.1: Strait and Ross’s (1999) measure of neck inclination during mid-stance/mid-

swing is the angle (blue) between the neck (red) relative to the vertical line of gravity (yellow) in 

Lemur catta (left) and Homo sapiens (right). 

Previous research has linked cervical form to neck locomotor function (Nalley and 

Grider-Potter, 2015, 2017). The primitive morphology found in early hominins likely 

indicates functional differences among these species. In particular, Australopithecus 

vertebral specimens show long spinous processes, small centra, and curved 

atlantooccipital joint (Nalley, 2013). These morphologies are associated with more 

pronograde neck postures in extant primates (Nalley and Grider-Potter, 2015, 2017). 

Even later Homo does not possess the same pattern as modern Homo sapiens of large 

centra, small, bifurcated spinous processes and flat atlantooccipital joints(Lordkipanidze 

et al., 2007; Gómez-Olivencia et al., 2013). These variations likely demonstrate not only 
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differences in function, but also the piecemeal manner in which the hominin skeleton 

adapted to bipedal locomotion. 

The goal of this dissertation is to understand how craniocervical form is adapted to 

maintaining head stability during locomotion. Once understood, these relationships will 

be applied to fossil specimens in order to illuminate the evolution of the spine in 

primates. Biomechanical principles will be used to create specific sets of predictions 

relating form and function of the head and neck in a diverse group of primate taxa. Neck 

function will be assessed through kinematic studies and radiographic imaging by 

measuring both range of head and neck motion during frequent modes of locomotion 

and maximum ROM respectively. Craniocervical form will be measured using 3D surface 

scans. These data will be used to elucidate the relationships between form and function 

in extant species. Results of such a study are applicable to the mammalian clade as a 

whole as the cervical column is understudied in most taxa but will be immediately 

applied to the problem of how the hominin neck evolved in response to the advent of 

habitual bipedality. 

1.1 Basicranial Form and Function 

Numerous synapomorphies separate primates from other mammals, including larger 

brains, decreased facial length, and convergent orbits (Preuschoft et al., 2002), all of 

which should affect head stability and its maintenance. Unlike most other primates, 

Homo sapiens possess an anteriorly positioned foramen magnum (see Russo and Kirk, 

2013 for review). Historically, the anterior position and ventral orientation of the 

foramen magnum is potentially related to orthograde posture and balancing the head on 

an erect spinal column (Schultz, 1942); however, little empirical evidence demonstrates 

the function of that relationship (Russo and Kirk, 2013, 2017). Recent research suggests 
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that both the advent of bipedal locomotion as well as increased brain size influence the 

position and orientation of the foramen magnum (Spoor, 1997; Strait and Ross, 1999; 

Lieberman et al., 2000; Bastir et al., 2010; Kimbel and Rak, 2010; Russo and Kirk, 

2013). Both Spoor (1997) and Bastir (2010) showed that increased brain size is 

correlated with stronger basicranial flexion (i.e.  flexion between basion, sella, and the 

foramen caecum) and a more inferiorly inclined foramen magnum. However, foramen 

magnum angulation is thought to be a product of brain size rather than basicranial 

flexion (Lieberman et al., 2000; Bastir et al., 2010). It is important to note that neck 

posture, as measured by Strait and Ross (1999), is not related to foramen magnum 

angulation (Strait, 1998). The exact relationship between the location and orientation of 

the foramen magnum and inclination of the cervical spine is unknown.  

Despite this gap in knowledge, we know that changes in hominin foramen magnum 

position affects the mechanics of balancing the head on the neck and trunk (Demes, 

1985). In combination with an enlarged braincase and retracted face, the alteration of the 

craniocervical junction causes the cranium’s center of gravity to be shifted further 

towards the middle of the head (Demes, 1985; Kapandji, 2008). The anterior location of 

the foramen magnum requires nuchal musculature to pull the cranium ventrally and 

caudally rather than dorsally and caudally in more posterior condition (Fig. 1.2; Demes, 

1985). The head has been modeled as a first class lever, with the fulcrum at the occipital 

condyles. The repositioning of the foramen magnum brings the head’s center of gravity 

closer to the fulcrum, creating a mechanical environment where balancing the head 

requires little muscular effort. 
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Figure 1.2 Differences in forces at the craniocervical junction in a human (left) and chimpanzee 

(right). Balance of the head is dependent upon orientation of the center of gravity, position and 

orientation of the foramen magnum, and neck posture. Taken from Lieberman (2011). 

Angulation of the nuchal plane should also influence how the head is balance. Nuchal 

muscles maintain equilibrium through balancing the pre-condylar weight of the skull. 

The manner in which the head is balanced is affected by direction and magnitude of 

nuchal forces (Demes, 1985). In Pan troglodytes, and presumably most mammalian 

quadrupeds, the nuchal plane is inclined posteroinferiorly while it is directed inferiorly 

in humans (Nevell and Wood, 2008). Increasing the distance between the 

atlantooccipital joint (the fulcrum) and the site of muscular insertion lengthens the lever 

arm thereby decreasing the required muscular effort (Strait and Ross, 1999; Preuschoft 

and Witzel, 2002).  

Muscles with greater cross-sectional area are capable of producing larger forces 

(Brand et al., 1986) and muscles with greater cross-sectional area are correlated with 

larger skeletal areas for attachment (Dean, 1985). Kunimatsu (1992) explored the size of 
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primate nuchal plane area, finding that all primates within his sample, with the 

exemption of humans, had relatively similar nuchal plane areas. This exception is likely 

because the human head has a center of gravity almost directly superior to its spinal 

support, causing spinal compression rather than bending (Slijper, 1946; Aiello and Dean, 

2002; Kapandji, 2008). Due to the more balanced relationship between the head and 

spinal column, large neck muscles are superfluous in species with orthograde neck 

postures. The reduction in nuchal musculature present in humans is also presumed in 

fossil hominins (as measured by dimensions of the nuchal plane of the occipital bone, for 

example) (Kunimatsu, 1992), possibly indicating the presence of neck orthogrady as 

early as Australopithecus.  

1.2 Upper Cervical Spine Form and Function 

The goal of this section is to review what is known about mammalian cervical 

vertebral form and how it is influenced by function. The eutherian cervical spine is 

predominately composed of seven vertebrae. The overwhelming majority of 

investigations into the biomechanics of the cervical spine pertain to the human neck, 

though few non-human mammalian studies do exist within anthropological and 

veterinary literature (Slijper, 1946; Fleagle, 1977; Penning and Badoux, 1987; Vidal et al., 

1988; Milne, 1991; Gál, 1993a; b; Graf et al., 1995; Keshner and Delp, 1997; Cullinane et 

al., 1998; Strait and Ross, 1999; Choi et al., 2003b; a; Lu et al., 2005; Rhodin, 2008; 

Sheng et al., 2010; Pierce et al., 2011; Farshadmanesh et al., 2013). The upper cervical 

spine (C0-C2) is functionally and anatomically distinct from the lower cervical spine, Fig. 

1.3 (White and Panjabi, 1990; Kapandji, 2008). The atlas is an unusual vertebra in that it 

lacks a weight-bearing vertebral body, which has been incorporated into the axis as the 

dens (Jenkins, 1969). Anterior and posterior arches connect the articular facets and 

possess a circular odontoid facet anteriorly and a small spinous process posteriorly. The 
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occiput (C0), atlas (C1), and axis (C2) tend to couple, or move as a group, during lateral 

bending and axial rotation (White and Panjabi, 1990). This pattern also occurs between 

C2-C5, C5-T1, T1-T4, and T4-T8 (White and Panjabi, 1990), highlighting the importance 

of considering these vertebrae as skeletal units, or parts of an integrated whole.  

 

Figure 1.3 Human cervical vertebrae including A) the atlas or C1, B) the axis or C2, and C) a 

typical lower cervical vertebra C3-C7. Adapted from Gray’s Anatomy (1918). 

Recently, Villamil (2018) concluded a study of morphological integration in the 

hominoid cervical column. Her results show several interesting patterns of integration 

and evolvability in the cervical metrics of Homo, Pan, and Hylobates. C1 is both highly 

integrated with other craniocervical elements and highly evolvable; this means its 

morphology covaries with the morphology of the other cervical vertebrae but also 

responds to natural selection most rapidly in comparison to other cervical levels 

(Villamil, 2018). This result implicates C1 as the most valuable for functional analyses in 

both extant and fossil species. Her results also demonstrate distinct units of integration 

including C0-C1, C2, C3-C4-C5, and C6-C7. She also hypothesizes that the small degree 

of integration found within C2 and C7 may be due to the transitional nature of these 

vertebrae from upper to lower cervical column and from cervical to thoracic or perhaps 

the differences in forces experienced at these levels. These patterns are similar to the 

functional groups observed by (White and Panjabi, 1990). 
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In mammals, the occipital’s articulation with the cervical spine occurs between the 

paired occipital condyles (C0) and the concave superior articular facets of the atlas (C1). 

The paired articulations are more or less symmetrical and act together as a unit during 

motion.  In humans, this joint allows for 25-30o  of flexion-extension and 3-4o of lateral 

flexion (Bogduk and Mercer, 2000; Kapandji, 2008). Slight rotation at the 

atlantooccipital joint is possible through ipsilateral translation and contralateral lateral 

flexion, but only in conjunction with atlantoaxial rotation (White and Panjabi, 1990; 

Mercer and Bogduk, 2001; Kapandji, 2008). Flexion of the atlantooccipital joint is 

inhibited by contact between the anterior aspect of the foramen magnum and the dens of 

the axis while the tectorial membranes and alar ligaments restrict extension and lateral 

flexion, respectively (see Fig. 1.4). In addition, these joints are also stabilized by their 

joint capsules (White and Panjabi, 1990).  

                

Graf and colleagues (1995) conducted one of the few joint-motion studies that 

included non-human mammals. Using radiographs and dissections, they determined 

that non-primate quadrupeds (Lepus, Felis, and Cavia) have atlantooccipital joints with 

Figure 1.4: Ligaments of the cervical spine, taken from (Crosby, 2006). 
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passive ranges of motion averaging between 92-106o of flexion-extension. The two 

macaque species used in the study, M. fascicularis and M mulatta, have disparate 

atlantooccipital flexion-extension ranges of only 1.5o and 32o, respectively, with Saimiri 

falling in between them at 19o ±15o (Graf et al., 1995). Humans, in comparison, have ~25-

30o of flexion-extension at the atlantooccipital joint (White and Panjabi, 1990; Panjabi et 

al., 1991). The human atlantoaxial joint has a range of flexion-extension of 20o and can 

rotate 40o; its lateral flexion is negligible (White and Panjabi, 1990; Mercer and Bogduk, 

2001; Kapandji, 2008). Graf and colleagues (Graf et al., 1995) showed that the flexion-

extensions range of motion of Macaca is between 1-3o while that of Saimiri is 16o. The 

range of flexion-extension for cats and rabbits is roughly 20o and guinea pig is greatest at 

39o (Graf et al., 1995). Domestic dogs range from 15-35o in flexion (Penning and Badoux, 

1987). 

Do these differences in range of motion relate to cervical vertebral form? It is difficult 

to draw general conclusions about the relationship between mammalian cervical form 

and cervical function from a study of very few individuals from a scatter of mammalian 

species. Aiello and Dean (2002) suggested that the concavity of the atlantooccipital joint 

reflects range of motion, but Manfreda and colleagues (2006) indicated that joint 

curvature may correlate with locomotor mode. In a geometric morphometric study, 

Manfreda et al. (2006) correlated atlas morphology to locomotor categories and body 

size. Their analyses show some differences in overall atlas shape based on the type of 

habitual locomotion. The articular facet angle in nine species of primate varies between 

the curved facets (109o) in Papio and Ateles and the flatter facets (145o) of Homo 

sapiens. However, this variation in curvature fails to correlate with locomotor mode 

frequencies. Nalley and Grider-Potter (2017) have also investigated the function of 

atlantooccipital joint curvature. They related the curvature to Strait and Ross’ (1999) 
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measure of neck posture during locomotion. Specifically, they found that the 

atlantooccipital joint tends to be more curved in species with more pronograde neck 

postures (Grider-Potter and Hallgren, 2013; Nalley and Grider-Potter, 2017). 

Other aspects of atlas morphology are also functionally relevant. Within primates, 

the posterior arch becomes more robust with increasing body size (Manfreda et al., 

2006). In addition, other dimensions of the anterior and posterior arches and transverse 

process length have an isometric relationship with body and head size. This increase in 

robusticity is likely related to the relative increase in size of nuchal muscles as well as the 

increased forces associated with supporting a heavier head (Nalley and Grider-Potter, 

2017). It is important to note, however, that body mass affects the locomotor repertoire 

of an animal. For example, smaller-bodied primates tend to locomote above branch 

while larger-bodied primates locomote below branch (Doran, 1993, 1997; McGraw, 

1998). Therefore, these observed changes could relate to locomotor or postural 

differences inherent in large or small-bodied primates. For example, The transverse 

processes also become inclined more cranially with increasing body mass in primates 

(Manfreda et al., 2006). 

The vertebral arteries pass through the transverse processes via the transverse 

foramina ubiquitously present in C1-C6 and thus, the morphology of these structures 

likely influences arterial function. Though arteries are elastic, arterial blood flow between 

the human atlas and axis significantly diminishes after 30o of rotation contralaterally and 

45o ipsilaterally (White and Panjabi, 1990). Notably, Tarsius can rotate its head 180o on 

its trunk. Ankel-Simons and Simons (2003) attribute this ability to the unusual coronal 

orientation of its zygapophyseal joints. Looking outside Mammalia, owls also have 

extreme degrees of axial rotation and they possess several anatomical adaptations to 

accommodate this behavior (Kok-Mercado et al., 2013). Their transverse foramina, for 
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example, are roughly ten times larger than the vertebral artery passing through them. 

Additionally, their carotid arteries anastomose in the hypophyseal fossa above the 

sphenoid allowing significant collateral flow from the unobstructed vertebral artery, 

preventing the cessation of blood flow during extreme rotation (Kok-Mercado et al., 

2013). Tarsiers show similar adaptations: their C1 foramen is relatively larger and their 

vertebral arteries have much smaller cross-sectional areas throughout the cervical 

column (Nalley and Grider-Potter, 2015; Nalley et al., 2019). 

The atlantoaxial joint is composed of two paired zygapophyseal joints and the medial 

dens facet. The zygapophyseal joints are slightly convex dorsoventrally, and are 

stabilized by the articular capsules, which are elastic in order to facilitate ranges of 

motion (White and Panjabi, 1990; Mercer and Bogduk, 2001; Kapandji, 2008). The dens 

is anchored to the anterior arch by the transverse ligament of the atlas which runs 

between its left and right tubercles. Superiorly, the apical ligament of the dens attaches 

to the ventral aspect of the foramen magnum (Jenkins, 1969; White and Panjabi, 1990; 

Mercer and Bogduk, 2001; Kapandji, 2008). Its elastic nature implies that it may not 

significantly aid in stability (White and Panjabi, 1990). The alar ligaments run between 

the dorsolateral surface of the dens and the medial portion of the occipital condyle. 

These ligaments serve to limit rotation (Jenkins, 1969; White and Panjabi, 1990; Mercer 

and Bogduk, 2001; Kapandji, 2008).  

Many of the morphologies found in the axis correlate with both body size as well as 

Strait and Ross’s (1999) measure of neck inclination. Dimensions of the C2’s pedicle and 

lamina are strongly and isometrically correlated with skull geometric mean to the 

exclusion of neck inclination. The C2 spinous process length also does not correlate with 

neck inclination as it does in the lower cervical levels (Nalley and Grider-Potter, 2015, 

2017). Perhaps this result is not surprising given that few nuchal muscles attach to the 
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spinous process or laminae of the axis. Axis spinous process length does, however, have a 

positively allometric relationship with body mass. Both the angle of the dens and the 

angle of the superior articular facets correlate with neck inclination. As the neck becomes 

increasingly vertical, the dens becomes more dorsally inclined. This angle results in the 

neutral orientation of the C0 and C1 to be more dorsally oriented, which better supports 

the head by positioning it over the neck. As neck posture becomes more horizontal, the 

articular facets become more caudally oriented. The flatter facet found in primates with 

more orthograde necks may be an adaptation to withstanding the increased compressive 

forces of gravity (Nalley and Grider-Potter, 2017).  

1.3 Lower Cervical Spine Form and Function 

 Eutherian lower cervical vertebrae comprise two components: the centrum and 

the neural arch (Fig. 1.3). This composition is highly conserved within the mammalian 

clade, unlike other vertebrates. The exception to this conservation is the presence of 

uncinate processes on the cranial aspect of the centrum, which are found in the 

occasional marsupial, some rodents, and most primates (Hall, 1965). The raised sides of 

the centrum form a saddle-shape joint unique to cervical vertebrae. In humans, uncinate 

processes project most markedly in C3-C5 and sequentially decrease in height from C6-

T1 (Milne, 1991). These uncinate processes inhibit true lateral flexion, instead 

necessitating rotation and extension at the joint to laterally flex the neck (Kapandji, 

2008). Within primates, the great apes have the largest uncinate processes (Toerien, 

1961; Hall, 1965). In humans, width of the vertebral body and laminae has been shown to 

increase from C2 to C7 (Gaughran, 1954; Milne, 1991). Facet width and vertebral body 

size are also thought to play a role in resistance to lateral flexion (Milne, 1991)or the 

ability to bear greater load in more orthograde postures (Cartmill and Brown, 2014).  
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Between adjacent vertebral bodies are the intervertebral discs. These structures resist 

compressive forces and permit movement. Bending forces that likely occur in the 

pronograde are counteracted by the tension produced by the vertebral ligaments in order 

to maintain posture (Slijper, 1946; Jenkins, 1969; Putz, 1992; Preuschoft and Gunther, 

2012). Discs have three major components: the central nucleus pulposus, the 

surrounding annulus fibrosis, and the cartilaginous end plates. The nucleus pulposus is 

gelatinous and contains 70-90% water (White and Panjabi, 1990; Mercer and Bogduk, 

2001; Kapandji, 2008). Between these structures and the vertebral body lies the 

cartilaginous end plate adhering the layers to each other (White and Panjabi, 1990; 

Mercer and Bogduk, 2001; Kapandji, 2008). Dissection of macaque spines revealed that 

the craniocaudal height of the nucleus pulposus increases caudally (Longo et al., 2006). 

However, in humans the nucleus pulposus is thickest in the lumbar region but thinnest 

in the thoracic region (Cramer, 2013). This variation in thickness is unexpected. Axial 

loading increases caudally in orthograde postures due to body mass (Boszczyk et al., 

2001; Cartmill and Brown, 2014). Thus, one would expect thickness to increase caudally 

in order to combat increased axial loading. Further study is required to understand how 

the thoracic region is compensating for relatively thin discs. Gál (1993a) found that the 

nucleus pulposus varies in position within mammals and is typically located slightly 

dorsal to the center of the vertebral body. In humans, the cervical nucleus pulposus is 

located centrally while its more dorsal in the lumbar region. Peripherally, the concentric 

layers of the annulus fibrosus are composed of obliquely alternating fibers. The annulus 

fibrosis is thickened ventrally in terrestrial mammals, likely indicating a habitual loading 

regime (Gál, 1993a).  

 The neural arches are predominately sites of muscular attachment and often act 

as bony levers (White and Panjabi, 1990; Mercer and Bogduk, 2001; Kapandji, 2008). 
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Because of their function, the neural arch structures are of particular interest to 

functional morphological studies. The pedicles are struts connecting the centrum to the 

neural arch. As struts, they are thought to transmit compressive loads between the 

neural arches and the vertebral bodies, especially when the pedicles are oriented parallel 

to the line of gravity (Pal and Routal, 1986). Because of this, their cross-section areas 

increase from the first thoracic vertebra to the last (Shapiro, 1993a) and cross-sectional 

area positively scale with body mass (Shapiro, 1993a; Nalley, 2013).  

 The transverse processes are also largely sites of muscular attachment, 

particularly for muscles that laterally flex the neck. In the mid-cervical column, the 

transverse processes have an anterior root and a posterior root surrounding the 

transverse foramina. The anterior root of the transverse process branches from the root 

of the pedicle. The anterior root of the C3 transverse process is oriented at a 60o angle 

from the sagittal plane and a 15o angle from a transverse plane in humans (Kapandji, 

2008). Soricid, or shrew, transverse processes are more craniocaudally oriented in C3 

and progressively become more ventrodosally inclined in C7 within the cervical column 

(Gaughran, 1954). It is likely that this orientation is associated with the direction of the 

force vectors of the muscles attached to it (Slijper, 1946; Shapiro, 1995; Pierce et al., 

2011), and thus, variation in orientation should reflect functional differences. The 

posterior root of the transverse process originates from the pillar of the articular facets. 

The two roots are bridged by superiorly concave groove on top of which lies the spinal 

nerve. Both the posterior and anterior roots contain tubercles that serve as attachment 

sites for the scalene muscles (Kapandji, 2008). In most primates, C2-C7 possess 

transverse foramina through which the vertebral arteries pass. This foramen is 

occasionally bipartite primates. In a small percentage of human C2 (3-5%), the 

transverse foramen is incomplete, or open. This anomaly is not known to occur in other 
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primates. The lack of transverse foramen is much more common in C7, especially in 

humans (Rios et al., 2014). The presence of the anterior root of the transverse process at 

C7 seems to vary phylogenetically; it is absent in strepsirrhines, possessed by few 

platyrrhines, and habitually present in catarrhines (Rios et al., 2014).  

 Immediately posterolateral to the pedicle is the pillar of the articular facets. 

Human cranial and caudal articular (zygapophyseal) facets on the pillar are angled at 

between 30°-50° relative to the ventral vertebral body margin. The facets become 

increasingly more dorsal as they approach the cervicothoracic border (Harrison et al., 

2005). The orientation of these zygaphophyseal joints affects their ranges of motion 

(Slijper, 1946; Milne, 1991; Russo, 2010; Pierce et al., 2011). It has been suggested that 

the more cranial orientation of upper cervical articular facets is associated with larger 

ranges of motion within the joints of C1 and C2 (Milne, 1991), but empirical studies do 

not suggest a significant craniocaudal gradient in range of motion (White and Panjabi, 

1990; Mercer and Bogduk, 2001; Kapandji, 2008). This pattern of increasingly dorsal 

facets holds true for most, if not all, primates (Toerien, 1961).  

Variations in articular facet orientation do not appear to affect the degree cervical 

lordosis, at least in humans (Harrison et al., 2005). Gommery (2000) posits that the 

orientation of the superior articular facets of the axis significantly contribute to a lordotic 

cervical spine. This lordosis is thought to increase spinal flexibility and its capacity for 

shock absorption (White and Panjabi, 1990; Mercer and Bogduk, 2001; Kapandji, 2008). 

The caudal articular facet of a cranial vertebra abuts the cranial articular facet of the 

caudally adjacent vertebra. A capsular ligament unites these articular facets to form a 

zygophophyeal joint and is generally looser in the cervical region than the thoracolumbar 

portion of the spine (White and Panjabi, 1990; Mercer and Bogduk, 2001; Kapandji, 

2008). These joints also transmit loads through the vertebral column (Pal and Routal, 



 

 18 

1986; White and Panjabi, 1990; Shapiro, 1993a). The orientation of these joints 

throughout the spine reflects the types of motion that can be accommodated and how 

much load they can dissipate (because the load must be normal to the joint surface). The 

craniodorsal positioning of cervical articular facets facilitates flexion-extension, lateral 

flexion, and axial rotation (Milne, 1991; Kapandji, 2008). Whereas the dorsoventral 

orientation of the thoracic facets generally facilitates lateral flexion and rotation and the 

mediolateral orientation lumbar facets restricts much of the motion to flexion-extension 

(White and Panjabi, 1990; Kapandji, 2008). 

Human C4-C5 and C5-C6 zygopophyseal joints generally have large ranges of 

motion: 20° of flexion-extension, 10° of lateral flexion, and 7° of axial rotation (White 

and Panjabi, 1990; Bogduk and Mercer, 2000; Mercer and Bogduk, 2001; Kapandji, 

2008). Though each zygophphyseal joint has its own average range of motion, one joint 

rarely, if ever, moves in isolation. As previously discussed, the spine can be functionally 

subdivided into motion segments: C0-C2, C2-C5, C5-T1, and T1-T4. During human 

lateral flexion and rotation, these segments tend to move as a unit (White and Panjabi, 

1990; Mercer and Bogduk, 2001; Kapandji, 2008). These motion segments are 

important because they indicate the that the greatest ranges of lateral flexion and 

rotation should be found in the C2, C5, and T1 joints. During flexion the cranial vertebra 

translates ventrally and angles cranially, leaving a gap on the dorsal side of the joint. The 

posterior longitudinal ligament runs along the dorsal surface of the vertebral bodies, 

within the vertebral canal. This position allows the ligament to impede cervical flexion. 

Conversely, extension occurs predominately through caudal angular motion and slight 

dorsal translation, creating a gap at the ventral portion of the joint surface. Extension is 

inhibited by both the anterior longitudinal ligament. Collision of the spinous process of 

the superiorly adjacent vertebra has also been shown to inhibit extension in the lower 
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cervical spine (Kapandji, 2008). Most agree that lateral flexion and axial rotation are 

coupled (White and Panjabi, 1990; Mercer and Bogduk, 2001; Kapandji, 2008). There is 

debate to whether the orientation of the articular facets (Milne, 1991; Kapandji, 2008) or 

the uncinate processes (Mercer and Bogduk, 2001) restrict pure lateral flexion and 

rotation. 

Medial to the articular pillars, forming the dorsal margin of the bony vertebral canal, 

are the laminae, to which many of the neck muscles attach. These plank-like structures 

serve as attachment sites for the ligamenta flava, which occupy the area between 

adjacent laminae. This ligament has a resting tension which slightly compresses the 

intervertebral disc, potentially offering stability (White and Panjabi, 1990). It also 

functions in resisting flexion and rotation (Putz, 1992; Kapandji, 2008). The laminae 

meet medially where the spinous process originates. In humans, the spinous process is 

bifurcated in C3-C6 with interspinous ligaments running between them, with which the 

supraspinous ligament is continuous. The interspinous ligaments appear particularly 

elastic in monkeys in comparison to humans (Slijper, 1946). This is of interest because 

musculo-ligamentous variation among primate spines is relatively understudied. If little 

significant differences are found between skeletal form and function, then soft tissues are 

the next avenue to explore. 

It is likely that the inclination and length of the spinous process is indicative of the 

magnitude and direction of the forces produced by associated nuchal muscles. Most 

primate spinous processes tend to lengthen from C3 to C7, within an individual. Apes 

tend to have relatively longer spinous processes than other primates (Toerien, 1961; 

Shapiro, 1993a). Additionally, the inclination of the spinous process relative to the 

ventral surface of the vertebral body tends to about perpendicular. More cranial 

inclinations are seen Gorilla, Macaca, and Papio. Notably, Homo and Alouatta exhibit 
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the most cranially inclined cervical spinous processes (Toerien, 1961). Toerien (1961) has 

also observed a rough correlation between the changes in spinous processes inclination 

and articular facet orientation within a vertebral column, but more recent, empirical 

studies have yet to be conducted. 

The nuchal ligament runs craniocaudally from the external occipital protuberance 

and crest along the cervical spinous process and terminates at the seventh cervical 

vertebra in humans−the first thoracic in ungulate and canids (White and Panjabi, 1990; 

Mercer and Bogduk, 2003; Konig and Liebich, 2006; Lieberman, 2011). The nuchal 

ligament does not appear to be present in non-human primates. Old World monkeys 

have a midline raphe that seems to be less robust than the human ligament (Choi, 

Keshner, and Peterson 2003a, unpublished dissections). Histologically, however, the 

human nuchal ligament is much more raphe-like than the robust ligament found in 

ungulates (Johnson et al., 2000; Mercer and Bogduk, 2003). In humans, the nuchal 

ligament serves as an attachment site for cranial trapezius, rhomboid minor, splenius 

capitis, and serratus posterior superior. This ligament is thick and elastic; it largely 

functions in maintaining head stability and is likely important during rapid locomotion 

(Rhodin, 2008; Lieberman, 2011). Takeshita and colleagues (2004) conducted an 

empirical study using human cadaveric spines. By resecting the nuchal ligament, they 

found that cervical spines exhibited larger ranges of flexion and decreased stiffness, 

indicating that the ligament provides stability to the cervical spine during flexion 

(Takeshita et al., 2004). The ligament’s evolution within the hominin lineage could be 

related to maintaining head stability during running. If this is the case, reduced flexion 

may simply be a by-product of selection for the nuchal ligament. To the exclusion of 

humans, apes lack a well-developed nuchal ligament (Lieberman, 2011). Its absence in 

most mammals suggests independent evolution within Homo, Ungulata, and Canidae 
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(Slijper, 1946) but whether it is an adaptation to reducing head movement during 

locomotion in all these taxa is unclear.  

1.4 Maintenance of Head Stability during Locomotion 

 Maintaining balanced, relatively immobile head (i.e. head stability) is a crucial 

component of locomotion as the head houses the organs involved in spatial orientation, 

navigation, and whole-body balance. Primates also normally adjust their visual fields to 

reflect the orientation of the substrate, or suprastrate (Strait and Ross, 1999; Hirasaki 

and Kumakura, 2004; Stevens and Heesy, 2013). The maintenance of head posture is 

related to vertebral form (Nalley, 2013). Somewhat simplistically, the head has been 

modeled as a lever with the atlantooccipital joint as the fulcrum (Demes, 1985). The force 

of the neck muscles, the weight of the head, and the lengths of both the moment and load 

arms affect balance of the head. Decreasing the length of the face can shorten the load 

arm while moving the atlantooccipital joint rostrally moves the head’s center of mass 

closer to the fulcrum, creating a scenario where the head is balanced with relatively little 

muscular force (Fig. 1.2). While load arm length is important to understanding head 

balance, head center of mass is also useful. Within the first class lever model, the closer 

the center of mass is to the fulcrum, the less muscular effort is needed to maintain 

balance. 

Under this head-balancing model, taxa with more projecting faces (longer load arms) 

require greater torque to maintain head balance (Demes, 1985; Jaanusson, 1987; Nalley, 

2013). Research suggests that cervical vertebral morphology is adapted to maintaining 

balance of a head in more prognathic species. For example, greater laminar cross-

sectional area is likely an adaptation to increased bending loads associated with larger 

muscle forces. Longer spinous processes lengthen the moment arm, thereby increasing 
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the mechanical advantage. Longer spinous processes may also increase the area available 

for muscular attachment, potentially increasing the muscular cross-sectional area 

(Nalley, 2013; Nalley and Grider-Potter, 2015). Other adaptations to increased muscular 

effort, such as a greater craniovertebral area for muscular attachment, should also be 

found in more pronograde species but this hypothesis has yet to be tested.  

This traditional head-balancing model fails to take into account the effects 

differences in posture or locomotion may have on head balance. Slijper (1946) modeled 

the cervical spine as a bow and string. The vertebral column acts as the bow, with 

vertebral positions maintained through the tension of the string (the muscles and 

ligaments). The amount of tension required differs between orthograde and pronograde 

primates. Orthograde primates require less muscular effort to maintain head balance 

than pronograde primates because neck muscles are advantageously oriented to 

counteract the vertical force of gravity. Human heads are unique among primates in that 

they are aided by the nuchal ligament, which helps maintain balance with little muscular 

effort. In pronograde primates, the cervical spine is oriented perpendicular to the force 

of gravity. This position is less mechanically advantageous than the orthograde 

condition; it requires greater muscular force to maintain the appropriate orientation of 

the head. Thus, both facial projection and posture should influence the muscular effort 

needed to maintain head stability. This, in turn, will affect basicranial and cervical 

vertebral morphology.  

Using this biomechanical model, Nalley and Grider-Potter (2015, 2017) found 

correlations between Strait and Ross’s (1999) measure of neck posture and cervical 

vertebral morphology. As previously discussed, Strait and Ross (1999) measured the 

dorsal inclination of the superficial neck during locomotion in several species of primate. 

These data are valuable in that they provide a quantified measure of neck function 
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during locomotion. Nalley and Grider-Potter (2015, 2017) found that spinous process are 

relatively longer in primate species with more pronograde neck postures. In addition, 

more pronograde species tend to have laminae with greater cross-sectional areas. We 

conclude that longer spinous processes offer greater mechanical advantage to the nuchal 

muscles and more robust laminae better resist higher muscular loads. More pronograde 

postures require greater muscular effort to maintain and, thus, the cervical spine shows 

adaptations to mitigating those forces. In addition, the study found that articular facets 

are more coronally oriented in species with more pronograde neck postures. It is possible 

that this orientation functions in load transmission along the neural arch. This 

relationship, however, was only significant in C4 and C7.  There was also a significant 

relationship between vertebral body height and posture. More pronograde species tend 

to have taller vertebral bodies, which could aid in lordosis formation or  

In addition to the morphology and orientation of the head and neck, the 

thoracolumbar spine should also affect how head stability is maintained. Previous 

research has variation among the movement of the head and trunk in primates (Dunbar, 

2004a; Hirasaki and Kumakura, 2004; Dunbar et al., 2008; Xiang et al., 2008; 

Thompson, 2016). Because the movement of the trunk differs between primates 

(Dunbar, 2004a; Dunbar et al., 2008; Xiang et al., 2008) and the position of the head 

varies with substrate position (Strait and Ross, 1999; Stevens and Heesy, 2007), how the 

neck maintains head stability should covary. In turn, the cervical spine should be 

adapted to maintaining a relatively immobile, balanced head during locomotion. As 

primates are highly variable in the postural habits and locomotor modes, they are the 

ideal subjects to test this hypothesis. The function of the neck during locomotion is 

poorly understood. Elucidating its function in extant primates and relating that function 
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to the morphology of the cervical vertebrae will allow us to retrodict the neck function 

and its evolution in fossil hominins. 

1.5 Fossil Primate Vertebral Morphology 

 Most early hominin vertebrae are described as ape-like rather than Homo-like 

(Coroner and Latimer, 1991; Gommery, 2000; Kikuchi et al., 2012). Many cervical 

elements are rarely pictured or described in the literature making superficial evaluation 

of morphology and preservation difficult. For example, ASI-VP-2 from  Australopithecus 

anamensis (White et al., 2006), DIK-1-1 Australopithecus afarensis (Alemseged et al., 

2006), SKW 3342 and KNM-ER 164c from Homo sp. (Day and Leakey, 1974; Susman et 

al., 2001), and several specimens from Homo antecessor (Carretero et al., 1999) have 

been reported in the literature have yet to be described or published with an informative 

photograph.  

 Several Australopithecus cervical vertebrae are well known in the literature: A.L. 

333-83, A.L. 333-101, A.L. 333-106, SK 4776 and SKW 854. The atlas belonging to 

Australopithecus afarensis, A.L. 333-83, preserves the right articular facets, lateral 

mass, and a fragment of the posterior arch and dates to ~3.2mya. Notably, the 

atlantooccipital joint has a highly curved, apelike morphology (Coroner and Latimer, 

1991; Gommery, 1996; Aiello and Dean, 2002) which could potentially indicate a more 

pronograde neck posture (Nalley and Grider-Potter, 2017). A more pronograde neck 

posture is unexpected in hominins because it is assumed that neck orthogrady likely co-

evolved with trunk orthogrady and bipedal locomotion. The implications of the curved 

atlantooccipital joint present a puzzle. Axes A.L. 333-101 and SKW 854, A. afarensis 

from Hadar and A. robustus from Swartkrans respectively, are somewhat damaged. The 

fossil atlantooccipital joints are more curved than humans but are flatter than 
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chimpanzees, with that of A.L. 333-101 falling within the lower range of variation for 

humans (Gommery, 2006). The 2mya SK 4776 from A. robustus is likely C3 or C4 and 

seems to be most similar to Pan. A.L. 333-106 is most likely the sixth cervical vertebra 

morphologically most similar to Pan with a long spinous process and large cross-

sectional area of the spinous process (Nalley, 2013). 

 Recently, field work at Woranso-Mille, Ethiopia recovered a nearly complete (C2-

C7) australopith cervical column (Meyer, 2016) dating to ~3.5mya (Haile-Selassie et al., 

2016). Overall, the KSD-VP-1/1 vertebrae show a mixture of human-like and ape-like 

morphologies. In particular, the vertebral bodies of the lower levels are absolutely larger 

than both the human and the slightly younger A.L. 333 material. Their whole-vertebra 

geometric means are more similar to that of Gorilla (Meyer, 2016). This is unexpected 

because as a weight-bearing structure vertebral body size correlates strongly with body 

mass and Australopithecus was much smaller than extant Gorilla. However, vertebral 

canal area, another variable strongly correlated with body mass (MacLarnon, 1995), is 

more similar to humans than it is to gorillas and chimpanzees. Relative centrum height 

of the australopith specimens is more similar to humans than to the great apes, unlike 

the C6, A.L. 333-101. The vertebral bodies also possess wedging in similar degrees to that 

found in other hominoids (Meyer, 2016) but intervertebral discs likely play a greater role 

in creating cervical lordosis than bony morphology (Johnson and Shapiro, 1998) and 

thus reconstructing cervical lordosis in fossil species is difficult. In addition, these 

vertebrae preserve low, human-like uncinate processes. These low margins potentially 

facilitated ranges of rotation and lateral flexion greater than that found in other great 

apes (Meyer, 2016) but cervical ROM has not been measured in non-human apes.  

 Four cervical specimens of Australopithecus sediba dating to ~2mya have also 

been recently described by Meyer and colleagues (Meyer et al., 2017). The overall size is 
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smaller than humans both absolutely and relative to the reconstructed body mass. It is 

difficult to interpret the implications of such a result given the combination of the 

subadult and adult specimen in both the vertebral analyses as well as the body size 

reconstruction. The spinous processes appear shorter than chimpanzees, the facets are 

angled acutely (relative to midline), and uncinate processes are tall and sharp, and the 

anterior tubercle of the transverse process is robust (Meyer et al., 2017). Similar to other 

hominin specimens, A. sediba preserves a mosaic morphology of ape-like and human-

like features, suggesting differences in cervical function. Following Nalley and Grider-

Potter (2015), one could interpret the short spinous processes and vertebral bodies as 

evidence of orthograde posture. Incorporating these fossils into a broader data set could 

further elucidate behaviors of extinct species. 

1.6 Research Goals 

This dissertation aims to build upon previous work to elucidate many of the 

numerous functions of the neck, understand how these functions influence vertebral 

morphology, and retrodict those functions within the hominin lineage. Specifically, it 

explores 1) maximum ranges of motion of the primate head and neck and 2) locomotor 

kinematics of the head, neck, and trunk and their influence on vertebral form. Why does 

human cervical morphology diverge so significantly from that of other primates? If the 

neck has a significant locomotor function, then can we attribute this divergence to the 

advent orthograde posture necessitate by the reliance on habitual bipedality? If, on the 

other hand, facilitating head mobility is a driving selective force on cervical form, then 

can variation in cervical morphology be attributed to intervertebral ranges of motion. 

The following chapters of this dissertation test the hypothesis that head stability and 

head mobility both influence cervical form. This hypothesis is tested using two specific 
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aspects of neck function in primates: passive range of motion (i.e. facilitating head 

mobility) and locomotor kinematics (i.e. maintaining head locomotor stability). The first 

study investigates the relationship between maximum ranges of head and neck motion 

and cervical morphology. After establishing these baseline maximum ranges of motion 

(ROM), the second study will attempt to understand the influence of range of axial 

motion during habitual locomotion on cervical morphology. 

Vertebrae may be adapted to the most frequent modes of locomotion as they are the 

most consistent loads the bones must withstand. It is also possible that the vertebrae are 

adapted to rare but critical loading regimes associated with activities such as predator 

vigilance that require full ranges of motion. Here, both the habitual ROMs associated 

with locomotion as well as the behaviorally rarer maximum ROMs will be quantified. It 

is expected that the species will not use its maximum ROM during locomotion but that 

there will be greater absolute mobility in species that rely on that particular ROM during 

locomotion (e.g., if a gibbon relies on significant degrees if rotation during locomotion 

will also have a large range of maximum rotation) in order to prevent soft tissue damage 

or joint dislocation. Vertebral morphology is likely a compromise between many 

different functions. Balancing the head is likely just as important, if not more so, as 

allowing head mobility. As such, morphologies affecting head balance will also be tested. 

Overall, this dissertation attempts to understand the functional influences on vertebral 

form in the hopes of shedding light on anomalous shape of human cervical vertebrae and 

their evolution within the hominin fossil record. 

1.7 Hypothesis and Predictions 

This dissertation is divided into two distinct studies that test how the degree to which 

the vertebral shape is influenced by facilitating head mobility and providing head 
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stability. The first study tests the degree to which cervical vertebrae are adapted to 

facilitating or inhibiting maximum ranges of motion. For example, protruding bony 

processes can offer greater mechanical advantage but could potentially collide in 

maximal positions. From this hypothesis stem several predictions: 

P1a: Spinous processes physically inhibit extension (Kapandji, 2008). Therefore, I 

predict that spinous processes will be shorter in vertebral levels with greater maximum 

ranges of extension (see Fig. 1.5). 

 

Figure 1.5 Long vertebral processes (red, A) should collide at maximum ranges of motion, 

inhibiting range of motion but short vertebral processes will not, Predictions 1a and 1b 

P1b: Transverse processes will be both shorter and more cranially inclined in 

vertebral levels with greater ranges of lateral flexion. Long transverse processes should 

physically inhibit lateral movement, but more cranially oriented processes should 

provide greater mechanical advantage for the lateral flexors of the neck (see Fig. 1.5). 

P1c: Uncinate processes are known to physically inhibit lateral flexion (Kapandji, 

2008). Thus, vertebrae with taller, more medially-oriented uncinate processes will have 

smaller ranges of lateral flexion (see Fig. 1.6). 
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Figure 1.6 Tall uncinate processes (red, A) should inhibit large ranges of lateral flexion in 

comparison to shorter processes, Prediction 1c. 

P1d: Relatively larger joint surfaces should be associated with an increased the range 

of motion at those joints. Thus, cranio-caudally taller articular facets should facilitate 

greater ranges of flexion (see Fig. 1.7). 

 

Figure 1.7 Craniocaudally shorter articular facets facilitate lesser ranges of flexion (red, A) 

in comparison to taller facets, Prediction 1d. 
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P1e: Craniocaudally short vertebrae decrease the overall displacement of the 

vertebral column (Ward, 1993; Breit and Künzel, 2004). Therefore, the range of whole-

neck flexion-extension will be greater in species with craniocaudally taller vertebral 

bodies (see Fig. 1.8). 

 

Figure 1.8 After Ward (1993), craniocaudally tall vertebral bodies (B), should facilitate 

large ranges of flexion-extension in comparison to shorter vertebral bodies. 

P1f: Greater curvature in ‘female’ joint surfaces (e.g., acetabulum and lunate bone) 

should be associated with increased range of motion and multidirectional loading 

(Hamrick, 1996; Aiello and Dean, 2002). Therefore, greater curvature in the caudal 

portion of the atlantooccipital joint (i.e. smaller angular relationship between the ventral 

and dorsal aspects of the facet) should correspond to larger ranges of flexion-extension 

at that joint (see Fig. 1.9). 

These predictions will be tested by comparing morphological measurements of 

cervical vertebrae and to their joint ranges of motion. 
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Figure 1.9 Joint curvature should correlate with habitual, normal loading of the joint 

surface, and therefore, the range of motion the joint can accommodate. Large curvature (B) 

should be associated with large range of motion, Prediction 1f. 

 The goal of the second study is to understand the locomotor function of the neck 

and how that function influences cervical vertebral morphology. Specifically, how does 

the neck function in maintaining head balance.  

P2a: Trunk kinematics vary among species during locomotion. In order to maintain 

head stability, variation in trunk kinematics will, in turn, affect neck kinematics. 

Therefore, trunk movement during a stride will correlate with neck movement, but not 

head movement. 

P2b: Trunk kinematics varies among species during locomotion. In order to 

maintain head stability, this variation will, in turn, affect neck kinematics. Therefore, 

trunk movement during a stride will correlate with neck movement, but not head 

movement. 

P2c: If head stability is the goal and the neck’s function is to counteract the 

movements of the trunk in order to maintain that stability, then there should be a 

proximodistal decrease in locomotor range of motion in each axial segment (i.e., 

head<C3<C5<C7<T1) in all species regardless of locomotor mode. 
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P2d: Trunk kinematics varies among species. Therefore, head-neck angular 

kinematics should covary with trunk angular kinematics. As locomotor trunk range of 

motion increases, so should neck range of motion in order to counteract the movement 

of the trunk and maintain head stability. 

 These predictions will be assessed using axial kinematic data collected from four 

species of lemur during their primary modes of locomotion (see Table 2.6). 

 The second set of predictions will also be tested using locomotor range of motion 

in order to understand the degree to which cervical vertebral morphology is adapted to 

facilitating ranges of motion during locomotion. By incorporating both maximum and 

locomotor ranges of motion, I will compare how both rare (but potentially vital) and 

frequent behaviors shape vertebral morphology. This hypothesis will be tested using the 

same set of predictions as the passive ROM study (e.g. P1a=P3a) with the addition of 

another: 

P3g: Articular facets will be oriented more cranially (i.e. more parallel with the 

cranial surface of the vertebral body) in species with larger ranges of rotation. The effects 

of articular facet orientation on ROM are known within the human vertebral column 

(White and Panjabi, 1990). A cranially oriented facet, like that found in the joint between 

C1 and C2, facilitates larger rotational ROM while a facet that is oriented parallel with 

the dorsal surface allow larger ranges of rotation. As it is difficult to measure rotation 

using radiographs (Graf et al., 1995), this prediction cannot be tested with maximum 

intervertebral rotation. 

These predictions will be tested using the kinematic data of axial segments during 

habitual locomotion from four species of lemur and comparing it to cervical morphology. 

If both maximum and locomotor ROM are significantly correlated with the strength of 
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each influences will be compared using AIC values gather from the statistical models. 

These hypotheses will be rejected if no significant correlations are found between 

cervical form and neck function, at a significance level of p>0.05. Particular attention 

will be paid to the pattern of significance. For example, if only one vertebral level 

correlates with a specific functional measure, the results will be interpreted with greater 

caution than a correlation that is found in all vertebral levels. If locomotor ROM 

predictions are supported but ROM predictions are rejected (or vice versa) then the I 

would conclude that habitual loading regimes more strongly influence vertebral form 

than rarer behaviors. If both locomotor and maximum ROM predictions are rejected, 

future investigations into muscle and ligament morphology and properties would likely 

prove beneficial as it is possible that soft tissues more strongly influence vertebral ROM 

than skeletal morphology. If both ROM and head balancing predictions are supported, 

then corrected Akaike Information Criterion (AICc) values will be calculated for each 

analysis and used to determine what function the morphology best predicts. AICc values 

are commonly used to determine which model best fits the data. Significant results will 

then be used to interpret the morphology found in fossil primate specimens. 
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Chapter 2 Materials and Methods 

2.1 Morphological data 

To test these hypotheses, both morphological and functional data were collected. 

Morphological data were collected from 676 vertebral specimens (C1-T1) of 15 primate 

species housed at the American Museum of Natural History (New York, New York), 

National Museum of Natural History (Washington DC), Muséum national de’Histoire 

naturelle (Paris, France), and Field Museum of Natural History (Chicago, IL) (see Table 

2.1 for complete list). Taxa were chosen in order to complement the functional data 

collected for this study as well as those available from the literature. Chosen species 

encompass the diverse range locomotor repertoires, and postural habits found in extant 

primates. Maturity of individuals was determined based on the fusion of annular rings; 

only adult specimens were used in the analyses. Because all functional data came from 

captive individuals, no attention was paid to the geographic origin of the specimens. 

Table 2.1 Species used in the morphological analyses and the number of individuals 

Species n 
Lemur catta 7 
Eulemur mongoz 6 
Varecia variegata 9 
Propithecus verreauxi 9 
Otolemur crassicaudatus 8 
Macaca fascicularis 7 
Macaca fuscata 2 
Macaca mulatta 15 
Sapajus apella 8 
Saimiri sciureus 9 
Hylobates lar 8 
Pan troglodytes 13 
Homo sapiens 6 
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Morphometric data were collected from surface scans of skeletal museum specimens 

using an Einscan 3Ds (Shining 3D) white-light scanner. This scanner was chosen for 

both its economy and accuracy (<0.05mm). Landmarks were taken from these three-

dimensional surface scans using the Rhinoceros (McNeel & Associates) CAD software. 

Landmarks of interest were placed on scans and lengths measured between these 

landmarks (see Fig. 2.1, Table 2.2). These data were complemented by digitized 3D 

coordinate data collected from skeletal specimens using a Microscribe digitizer 

(Immersion Corp.). The landmarks were then used to measure the morphologies of 

interest (see Fig. 2.1, Table 2.3). In some cases, mostly C6, the vertebrae have both 

posterior and anterior transverse processes. In this case, the anterior transverse process 

was used for analysis because it is almost universally the longer and more robust of the 

two. Measurements were taken from the left side unless absent or degraded; then, the 

right side was used.  
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Table 2.2 Description of skeletal landmarks digitized for morphological analyses. 

Landmark Level Description 

1 C1-T1 

Dorsal-most extent of the spinous process; In the case of 
bifurcated spinous processes, the point was taken on each 
bifurcation and the midpoint between the two used 

2 C1-T1 
Cranial-most aspect of the lamina, midway between the 
articular pillar and spinous process 

3 C1-T1 
Dorsal-most aspect of the lamina, midway between the 
articular pillar and spinous process 

4 C1-T1 
Caudal-most aspect of the lamina, midway between the 
articular pillar and spinous process 

5 C1-T1 
Ventral-most aspect of the lamina, midway between the 
articular pillar and spinous process 

6 C1-T1 Cranial-most aspect of the transverse process 
7 C1-T1 Lateral-most aspect of the transverse process 
8 C1-T1 Dorsal-most extent of the vertebral canal 
9 C1-T1 Ventral-most extent of the vertebral canal 

10 C1-T1 Lateral-most extent of the vertebral canal, bilateral 

11 C1-T1 
Cranial-most extent of the joint surface of the superior 
articular facet 

12 C1-T1 
Caudal-most extent of the joint surface of the superior 
articular facet 

13 C2-T1 Cranioventral-most extent of the vertebral body 
14 C2-T1 Caudoventral-most extent of the vertebral body 

15 C3-T1 
Points along the margin of the cranial plateau of the vertebral 
body, excluding uncinate processes 

16 C3-T1 Cranial-most extent of the uncinate process 
17 C2 Cranial-most extent of the dens, or odontoid process 

18 C1 
Ventral-most extent of the joint surface of the superior 
articular facet 

19 C1 
Point of greatest curvature between the two aspect of the 
superior articular facet 

20 C1 
Dorsal-most extent of the joint surface of the superior 
articular facet 
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Figure 2.1 Landmarks taken from vertebral specimens. C1 (left), C2 (center), and lower 

cervical (C4, right) of Lemur catta.  See Table 2.2 for description. Colors correspond to linear 

measurements taken (see Figure 2.2). 

 Angular measurements were taken relative to the plane created by 8-12 points 

along the margins of the cranial surface of the vertebral body for C3-T1. Because C2 lacks 

this cranial surface, its angular measurements were taken relative to a line between the 

inferior-most and superior-most aspect of the vertebral body on the ventral surface at 

midline. The atlas lacks a centrum entirely; thus, only the angular relationship between 

the two aspects of the superior articular facet was measured (see Fig. 2.2, Table 2.3).  
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Figure 2.2 Variables measured from skeletal material. Linear measurements calculated 

based on distances between landmarks. Angular measurements calculated between vertebral 

body plane (C3-T1), VBH line (C2), and relative to itself (C1, superior articular facet). 

 

Table 2.3 Morphological variables measured from the skeletal landmarks and their 

abbreviations. 

Measurement Abbreviation Description 

Vertebral Body 
Plane VBP 

Plane created from points (Point 15) along the 
margin of the cranial aspect of the vertebral 
body 

Spinous Process 
Length SPL 

Maximum length of the spinous process; 
distance between Point 1 and Point 8 

Spinous Process 
Angle SPA 

Craniocaudal orientation of the spinous 
process; angle between the SPL line and VBP 
(C3-T1) or VBH (C2) 

Lamina Height LH 
Maximum height of the lamina; distance 
between Point 2 and Point 4 

Lamina Width LW 
Maximum width of the lamina; distance 
between Point 3 and Point 5 
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Transverse 
Process Length TPL 

Maximum length of the transverse process; 
distance between Point 6 and Point 7 

Transverse 
Process Angle TPA 

Craniocaudal orientation of the transverse 
process; angle between the TPL line and VBP 
(C3-T1) or VBH (C2) 

Canal Length CL 
Maximum length of canal at midline; distance 
between Point 8 and Point 9 

Canal Width CW 
Maximum width of vertebral canal; distance 
between Points 10 bilaterally 

Superior 
Articular Facet 
Height SAFH 

Maximum height of the superior articular 
facet; distance between Point 11 and Point 12 

Superior 
Articular Facet 
Angle SAFA 

Craniocaudal orientation of the transverse 
process; angle between the SAFH line and the 
VBP (C3-T1), VBH (C2), or itself (C1) 

Vertebral Body 
Height VBH 

Maximum height of the ventral aspect of the 
vertebral body; distance between Point 13 and 
Point 14 

Uncinate Process 
Height UH 

Maximum height of the uncinate process; 
distance beteen Point 16 and the nearest Point 
15 

Dens Height DH 
Maximum height of the dens; distance between 
Point 13 and Point 17 

 

2.2 Maximum Range of Motion 

 Maximum intervertebral passive ranges of motion data were measured from 

seven primate species (n=18) at three institutions. Following methods approved by 

Institutional Animal Care and Use Committees (Protocol# A141-16-06), individuals were 

anesthetized. They were gently, but firmly moved into their maximum ranges of flexion, 

extension, and lateral flexion, held in place with sand bags, and radiographed. Because 

the anesthesia mask often prohibited the chin from touching the chest, it was 

momentarily removed for positioning and exposure during maximum flexion. To be able 

to separate flexion and extension, a neutral posture was also radiographed. This neutral 

posture was achieved by orienting the neck parallel to the trunk and allowing the head to 

fall naturally. The Duke Lemur Center (DLC) possesses a digital x-ray machine and thus 

the strepsirrhine images are higher quality than those of the gibbon (Osaka University) 
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or chimpanzees (Stony Brook University) were taken on traditional film and scanned. In 

addition, the chimpanzee radiographs were taken by Dr. Nathan Thompson (Department 

of Anatomy, New York Institute of Technology College of Osteopathic Medicine) and do 

not include a neutral posture or lateral flexion.  

 

Figure 2.3 Varecia variegata (Kizzy) radiographs of neutral posture (left) and extension 

(right) overlain at T2. Images were imported into ImageJ to measure the angles between lines. 

 To measure range of motion in the sagittal plane, maximum flexion and 

extension radiographs were overlain with the neutral posture at T2. Lines were drawn 

along the articular pillars, which are quite dense and thus easily visible. Angles were 

taken between the same vertebrae in these different positions using ImageJ (Wayne 
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Rasband) to obtain intervertebral ranges of motion. The neutral position in the coronal 

plane was assumed to be at midline. Thus, angles were measured between vertebrae at 

maximum lateral flexion (see Fig. 2.3).   

Limited range of motion data are also available in the literature. Human ROM is well 

established and taken from White and Panjabi (1990). As discussed in the Chapter 1, 

Graf and colleagues (1995) have measure intervertebral ranges of motion in four species 

of primate: Sapajus apella, Macaca mulatta, Macaca fascicularis, and Saimiri scuireus. 

These data were also taken from radiographs of anesthetized animals and, with the 

exception of the C0-C1 joint, appear equivalent to the data collected for this thesis. Due 

to the logistical difficulty and expense of irradiating captive primates (including 

humans), these published data were included in the analyses. See Table 2.4 for a 

complete list.  

Table 2.4  Species used for range of motion analyses and their number of individuals. Graf 

et al. did not report sex or number of individuals per species. They report ten primate 

individuals total and one individual of Sapajus apella. Therefore, the other species must be 

between 2-4. 

Species n Source 
Sapajus apella 1 Graf et al. 1995 
Macaca mulatta ~3 Graf et al. 1995 
Macaca fascicularis ~3 Graf et al. 1995 
Saimiri sciureus ~3 Graf et al. 1995 
Eulemur mongoz 3 Duke Lemur Center 
Lemur catta 3 Duke Lemur Center 
Propithecus verreauxi 3 Duke Lemur Center 
Otolemur crassicaudatus 1 Duke Lemur Center 
Varecia variegata 3 Duke Lemur Center 
Hylobates lar 1 Osaka University 
Pan troglodytes 2 Stony Brook University 
Homo sapiens White and Panjabi, 1990 
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 Phylogenetic generalized least squares (PGLS) regression was used to test for 

correlations between vertebral morphology and intervertebral ROM. Most morphological 

variables of interest should affect range of motion of the more cranial intervertebral 

joint. For example, the uncinate processes of C3 should influence the range of lateral 

flexion in the C2-C3 joint. Thus, all morphological variables were tested against their 

cranial joint’s ROM with the exception of spinous process length and angle, which should 

more strongly correlate with the inferior joint. Although some variables (e.g. vertebral 

body height) have no reason to more strongly influence either superior or inferior joint, 

they were regressed against the superior joint for consistency. Linear measurements 

were size adjusted using the square root of vertebral canal area, which is known to 

strongly correlate with body mass (MacLarnon, 1996). In addition, the relationship 

between canal area and species mean body mass (Smith and Jungers, 1997) was 

confirmed within the sample used for this dissertation. Phylogenetic generalized least 

squares regressions demonstrate aa strongly significant relationship for all vertebral 

level and both sexes (see Fig 2.4, Table 2.5). In addition, this has been used to scale 

primate cervical vertebrae in other studies (Nalley, 2013). This allowed the dimensions 

to be scaled per vertebral specimen rather than relying on species averages. In addition, 

these values were logarithmically transformed prior to analysis in order to comply with 

parametric assumptions. Consensus trees used in the analyses were downloaded from 

10ktrees.nunn-lab.org (Arnold et al., 2010). Analyses were conducted in R using the 

packages ape (Paradis et al., 2018), geiger (Harmon et al., 2015) and caper (Orme et al., 

2013). 
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Figure 2.4 Relationship between cervical canal area and species means of body mass within 

this sample. PGLS analyses were conducted per level for each sex. Figure shows all levels and 

both sexes. 
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Table 2.5: Results of the PGLS regressions of species means of body mass on canal area for 

each cervical level. 

Y X Level Lambda Adj. r2 p 
Square Root 
Canal Area 

Cube Root 
Body Mass C1 male 0 0.987 0.0004 

Square Root 
Canal Area 

Cube Root 
Body Mass C2 male 0 0.977 0.0001 

Square Root 
Canal Area 

Cube Root 
Body Mass C3 male 0 0.954 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C4 male 0 0.948 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C5 male 0 0.945 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C6 male 0 0.965 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C7 male 0 0.940 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C1 female 1 0.996 0.0013 

Square Root 
Canal Area 

Cube Root 
Body Mass C2 female 0 0.990 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C3 female 0.252 0.918 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C4 female 0.552 0.960 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C5 female 0.216 0.968 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C6 female 0.309 0.952 0.0000 

Square Root 
Canal Area 

Cube Root 
Body Mass C7 female 1 0.779 0.0023 
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2.3 Kinematics: Locomotor Range of Motion 

 Kinematic data focus on four species of lemur: Varecia variegata, Lemur catta, 

Eulemur mongoz, and Propithecus verreauxi (n=12, see Table 2.4). Strepsirrhines are 

well-suited to investigate the relationship between cervical form and function because 

they practice a diversity of locomotor modes and postural repertoires. This diversity 

offers a natural experiment on locomotor diversity within a single clade. By confining the 

sample to lemurs, we are minimizing the potentially confounding effects of significant 

differences in cranial morphology and phylogenetic distance. More importantly, these 

species are readily available for kinematic research at the Duke Lemur Center. Ethics 

committee approval was obtained prior to data collection.  

While under anesthesia for radiographic data collection, individuals were shaved and 

marked with permanent marker at palpable craniocervical landmarks (see Fig. 2.5). 

Figure 2.5 Axial landmarks used in the kinematics study (Eulemur mongoz, Oscar). 
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Three-dimensional kinematics requires at least three landmarks to define xyz coordinate 

systems. The head segment was defined by bilateral tragion and bilateral lateral canthus 

landmarks. The cervical column was divided into three sections: upper (C1 spinous 

process, C1 transverse process, C3 spinous process), middle (C3 spinous process, C5 

transverse process, and C5 spinous process), and lower (C5 spinous process, C7 spinous 

process, and C7 transverse process). The upper trunk segment was defined by: T1 

spinous process, T5 spinous process, and the lateral-most aspect of rib 5 landmarks. The 

left side of the body was arbitrarily chosen for transverse process and rib landmarks. 

These sections correspond to functional division of the vertebral column found in the 

human spine (White and Panjabi, 1990).  

Kinematic data were collected in the experimental space at the Duke Lemur Center. 

Individuals were brought from their enclosures and manually restrained while I re-

highlighted the landmarks using white, non-toxic paint pens because the permanent 

marker, though visible, was often faded.  

Substrates were constructed with the assistance of David Brewer, the research 

technician at Duke Lemur Center. He and the lemur center staff are experienced 

conducting locomotor experiments and are familiar with the habits and capabilities of 

their animals. Thus, both their expertise as well as previously published naturalistic 

studies were relied upon to construct locomotor substrates to achieve the desired mode 

of locomotion. In addition, Drs. Angel Zeininger and Daniel Schmitt were immensely 

helpful and advised in all aspects of the experiments.  

At most, six cameras (GoPro Hero4, GoPro Inc., borrowed from the Animal 

Locomotion Lab at Duke University) were used to capture locomotor bouts. Each was 

modified with a BackBone Rib Cage (Ribcage, v1.0; Back-Bone, Ottawa, ON) in order to 
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eliminate the distortion inherent in the default fish-eye lens. These cameras were placed 

at strategic locations in order to best capture landmarks from at least two angles. The 

species’ most frequent mode of locomotion was used for the experiment (see Table 2.6). 

If the neck is adapted to providing head stability during locomotion, then the most 

frequent modes should give the strongest morphological signal. 

Table 2.6 Species used in the kinematics study and their most frequent mode of locomotion. 

Species n 
Primary mode of 
locomotion Frequency Source 

Propithecus 
verreauxi 3 

Vertical clinging and leaping 
(VCL) 68% 

Gebo, 
1987 

Eulemur 
mongoz 3 Horizontal leaping 37% 

Gebo, 
1987 

Varecia 
variegata 3 Arboreal Quadrupedalism 35% 

Gebo, 
1987 

Lemur catta 3 Terrestrial Quadrupedalism 51% 
Gebo, 
1987 

 

Terrestrial quadrupedalism (Lemur catta): The experimental room is floored with 

plastic tiles adhered to a wooden base. Although this substrate doesn’t occur naturally, 

the plastic allows for easy cleaning and, therefore, prevention of disease transfer. In 

addition, all individuals included in this study are accustomed to the room and its 

flooring. To confine mediolateral movement, a wooden board adhered to cinderblocks 

acted as the substrate. The measurement space was placed in the middle such that the 

individual had at least one gait cycle prior to entering it. Five cameras were placed 

anteriorly, laterally, and superiorly to best capture axial landmarks from multiple views 

(see Fig. 2.6a). Video recordings were taken at 120f/s, 720p to best capture the speed of 

locomotion at the highest possible quality.  
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Figure 2.6 Terrestrial Quadrupedalism experimental setup; A wooden substrate (black) was 

adhered to cinderblocks .2m above the floor with a measurement space (red) in the center, to 

scale. Camera #1 was placed 2.3m above the substrate at a 90o angle (i.e. looking straight 

down). Camera #2 (distance not to scale) was placed 1.25m outside the enclosure level with the 

measurement space to capture a sagittal view. Camera #3 (distance not to scale) was placed 

1.35m outside the enclosure 1.3m above the substrate, 30o from the vertical. Cameras #4 and #5 

were placed 30o from the direction of motion, level with the substrate.The size measurement 

space reliably allowed for one half of a gait cycle. Although the traditional time frame of 

kinematic analysis is one entire gait cycle, the markers were too small to differentiate when the 

size of the space was increased to accommodate a full gait cycle. Because axial markers lie in the 

midline, we can assume the second half of the gait cycle will be the mirror image of the first half. 

To combat this, only trials which began with left forelimb touchdown were used for analysis. 

Arboreal quadrupedalism (Varecia variegata): Arboreal and terrestrial 

quadrupedalism were quite similar in their experimental setups. Individuals walked 

between two raised platforms along a wooden pole. The same measurement space was 

again placed in the middle of the pole and cameras were placed in similar positions (see 

Fig. 2.7). Videos were recorded at 120f/s, 720p.  
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Figure 2.7 Arboreal locomotion setup; a 3.2cm diameter wooden pole was placed between 

two platforms 45cm above the floor. Platforms and pole were weighted with cinderblocks to 

create a stable substrate. Camera #1 was placed 2.1m above the substrate at a 90o angle. 

Camera #2 (distance not to scale) was placed 1.25 outside the enclosure level with the 

measurement space. Camera #3 (distance not to scale) was placed 1.35m outside the enclosure 

1m above the substrate, 30o from the vertical. Cameras #4 and #5 were placed 30o from the 

direction of motion, level with the substrate. 

Horizontal leaping (Eulemur mongoz): Two raised platforms were placed 0.75m 

apart. This distance was chosen because it is easily accomplished by the individuals, so to 

not tire them out or encourage them to jump down to the floor then up to the second 

platform. It is also not close enough to where they can bridge the gap with forelimbs and 

hindlimbs on either side. This distance has also been used in previous lemur kinematic 

studies (Demes et al., 1995). The size of the measurement space was increased in order to 

accommodate this distance (see Fig. 2.8). In addition, videos were recorded at a higher 

frame rate (240f/s) and, thus, lower quality (WVGA). One complete gait cycle was 

analyzed for this mode of locomotion beginning with right forelimb take-off and ending 

with hindlimb touchdown.  
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Figure 2.8 Horizontal leaping setup; two 0.45m tall platforms were placed 0.75m apart and 

weighted with cinderblocks. Camera #1 was placed 2.1m above the substrate at a 90o angle. 

Camera #2 (distance not to scale) was placed 1.21m outside the enclosure level with the 

measurement space. Camera #3 (distance not to scale) was placed 1.37m outside the enclosure 

1m above the substrate, 10o from the vertical. Camera #4 was placed 30o from the direction of 

motion, level with the substrate. Camera #5 (distance not to scale) was mounted 0.77m above 

the platforms and angled inferiorly 20o. 

Vertical clinging and leaping (Propithecus verreauxi): Two PVC poles were placed 

1m apart. This distance was chosen because it was easily accomplished by subjects with 

minimal reliance on the floor as an intermediate between the two (see Fig. 2.9). The gait 

cycle was defined by right forelimb release to right forelimb touchdown. Videos were 
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recorded at 240f/s, WVGA. 

 

Figure 2.9 Vertical clinging and leaping setup, camera distances not to scale; 1.65m tall, 

6cm diameter PVC pipes were bolted to the 0.45m platforms and stabilized with cinderblocks. 

Camera #1 was mounted 2.7m above the floor looking straight down. Camera #2 was placed in 

lateral view 2m from the measurement space. Camera #3 was placed 2m from the measurement 

space and oriented 10o inferiorly. Camera #4 was placed 1.35m from the floor, 1.5m from the 

measurement space, and directed 30o from line of motion. Camera #5 was mounted 1.55m from 

the floor, 1.5m from the measurement space, and oriented 10o inferiorly. Cameras #6 and #7 

were mounted 2.1m from the floor, 1.65m from the measurement space, and oriented 20o 

inferiorly. 

In all modes of locomotion, substrates were weighted such that compliance was 

minimal. All but one subject had previously been used for locomotor studies in the 

research room and have been trained with whistles. They were enticed with food rewards 

with the trainer holding the reward at the end of the substrate at roughly eye level if 

reluctant. Otherwise, the treat was not shown until they completed the pass. With this 

behavior, I hoped to minimize any artificial head postures resulting from the animal 

focusing on the treat. 
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Landmark Processing and Analysis: The Matlab (The Mathworks, Inc.) package, DLT 

data viewer (Hedrick, 2008), was used to obtain three-dimensional movement from the 

two-dimensional videos. Objects of known dimensions (Zometool) were built and placed 

in the experimental spaces before and after subjects’ trials and filmed with cameras in 

position. These objects were used to calibrate the measurement space using the program. 

After calibration, landmarks were hand digitized per gait cycle (or half gait cycle) per 

frame for each camera and trial. At least five trials per individual, per mode of 

locomotion were digitized. Three-dimensional motion of each landmark was then 

exported.  

With the assistance of Dr. Matt O’Neill (Department of Anatomy, Midwestern 

University), the Matlab package Kinemat (Reinschmidt and van den Bogert, 1997) was 

tailored to the data and used to create coordinate systems for each body segment. The 

angular motion (i.e., cardan angles) of each axial coordinate system was calculated 

relative to both the global coordinate system and the adjacent, proximal coordinate 

system (e.g. motion of the head in space and relative to the C3 segment was calculated). 

Both relative measures are important as the former allows us to understand the 

locomotor movement of the axial skeleton and the latter how much of that motion is 

dependent upon trunk movement. Data were then smoothed with a low-pass 

Butterworth filter in accordance with suggested industry standards (Winter et al., 1974) 

with a cutoff frequency of 6Hz depending upon which visually seemed to best suit the 

data. 

2.4 Statistical Analyses 

These angular data (i.e., cardan angles) for head-neck-trunk segments for each frame 

from each trial were used to test Prediction 2a and 2b. The angular data were then used 
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to calculate locomotor range of motion (maximum-minimum) for each segment (head, 

C3, C5, C7, T1, neck, and trunk) for each trial. These trial ranges of motion were used to 

test the Predictions 2c and 2d.  

Kinematic and kinematic-morphology predictions were tested linear mixed-effect 

models (LMM) in R. LMMs were used because it allowed me to control for 1) the 

variation in speed between trials and locomotor modes, 2) variations in sex of the 

individuals, as well as 3) repeatedly measuring the same individual. In addition, LMM 

avoids issue with multiple testing (see Peres-Neto, 1999 and Lane, 2013 for review) and 

issues with uneven sample sizes (a problem inherent in ANOVA). The motion of each 

axial segment was analyzed with the morphology of the motion of the origin of its 

coordinate system. For example, the neck segment is defined by C1 and C7 spinous 

processes and C7 transverse process landmarks and, therefore, the neck was statistically 

compared to C7 morphology. However, it is important to note that this type of analysis 

does not allow for the control of non-independence among the data due to phylogenetic 

relationships. Thus, the hope is that focusing on one clade (strepsirrhines) reduces any 

confounding results phylogeny may have. 
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Chapter 3 Influences of passive range of motion on cervical 
vertebral form 

The goal of this thesis is to understand the various functional influences on cervical 

vertebral form. This chapter specifically investigates the effects of passive, intervertebral 

range of motion (ROM) has on bony morphology. To test Predictions 1-5, passive, 

intervertebral range of motion data were collected from radiographs of living primate 

specimens and morphological measurements collected from skeletal specimens (see 

Tables 3.1 and 3.2). In the cases of mixed sex samples (i.e. strepsirrhines), no significant 

differences were found between male and female morphology (relative to vertebral canal 

area) or intervertebral ranges of motion. In the case of range of motion data from the 

literature, sex was not specified. In these instances, sexes were pooled for analysis. Range 

of motion predictions were tested for each intervertebral joint using phylogenetic 

generalized least squares (PGLS) regression (see Chapter 2 for details). Thus, the 

strength of the support for the hypothesis will be analyzed not only through which test 

are significant, but how many vertebral levels demonstrate significance. For example, 

significant relationships between ROM and morphology in five out of seven cervical 

levels demonstrates much greater support than significant relationships in only two 

cervical levels. If there is a biological relationship between morphology and range of 

motion, it should hold true for multiple vertebral levels. This method has been previously 

used in vertebral functional morphological analyses (Nalley and Grider-Potter, 2015, 

2017). In addition, the potential error (Type I) associated with multiple comparisons was 

corrected for using false discovery rate (FDR). Because these types of analyses 

(Bonferroni etc.) can increase Type II error, the tables report both the raw p-values as 

well FDR-corrected p-values. The p-values were only adjusted within each prediction 

(e.g. lateral flexion v. transverse process length) because each set of analyses is 



 

 55 

independent. It would also create an unreasonably low p-value to correct for each 

analysis separately, regardless of prediction or vertebral level. 

3.1 Results and Discussion 

Spinous Process Length and Angle 

P1a: Spinous processes are known to physically inhibit extension (Kapandji, 2008). I 

expect spinous processes to be shorter and more cranially oriented in vertebral levels 

with greater maximum degrees of extension. 

 Results of the PGLS analyses comparing spinous process lengths (SPL) and 

angles (SPA) are reported in Table 3.1. Significant, negative correlations between SPL 

and intervertebral range of extension were found in the C5-6 and C7-T1 joints (Fig. 3.1). 

In both these joints, range of extension decreases with increasing process length. These 

results are only significant C7-T1, and approaches significance in C5-C6, which isn’t 

terribly surprising. Spinous processes tend to become longer in more inferior cervical 

levels and it is likely that there is a length threshold for inhibiting extension. Spinous 

process angle does not significantly correlate with range of extension (Table 3.1). 

Anecdotally, spinous processes only appear to collide during extension in the 

chimpanzee. Given these mixed results, I conclude that, overall, this prediction is weakly 

supported for spinous process length (but not angle), and only after a certain length 

threshold is reached.  
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Table 3.1 Results of the PGLS analyses for range of motion and skeletal morphology. 

Significant correlations in bold (p<0.05) and those approaching significance italicized 

(0.1>p>0.05). 

Joint Motion Morph λ Slope Adj. r2 p Adj. p 
C1-C2 Extension SPL 0 0.008 -0.136 0.838 0.838 
C2-C3 Extension SPL 0 0.006 -0.111 0.667 0.838 
C3-C4 Extension SPL 0 -0.008 -0.086 0.656 0.838 
C4-C5 Extension SPL 0 0.010 -0.076 0.599 0.838 
C5-C6 Extension SPL 0 -0.351 0.368 0.028 0.099 
C6-C7 Extension SPL 0.122 0.012 -0.052 0.494 0.838 
C7-T1 Extension SPL 0 -0.039 0.606 0.005 0.034 
C2-C3 Extension SPA 0 2.694 -0.035 0.420 0.627 
C3-C4 Extension SPA 0 -0.552 -0.090 0.627 0.627 
C4-C5 Extension SPA 1 -0.968 0.031 0.289 0.627 
C5-C6 Extension SPA 0 0.614 -0.068 0.533 0.627 
C6-C7 Extension SPA 1 -1.304 0.241 0.085 0.324 
C7-T1 Extension SPA 1 0.801 0.220 0.114 0.302 
C0-C1 Lateral Flexion TPL 0.435 0.010 -0.200 0.970 0.970 
C1-C2 Lateral Flexion TPL 0 0.078 0.213 0.166 0.221 
C2-C3 Lateral Flexion TPL 0 -0.247 0.061 0.291 0.110 
C3-C4 Lateral Flexion TPL 1 -0.303 0.606 0.024 0.064 
C4-C5 Lateral Flexion TPL 0.974 -0.226 0.421 0.068 0.110 
C5-C6 Lateral Flexion TPL 1 -0.460 0.682 0.014 0.055 
C6-C7 Lateral Flexion TPL 1 -0.493 0.709 0.011 0.055 
C7-T1 Lateral Flexion TPL 1 0.093 -0.236 0.843 0.844 
C1-C2 Lateral Flexion TPA 0 0.093 -0.199 0.961 0.678 
C2-C3 Lateral Flexion TPA 0 7.964 0.470 0.054 0.125 
C3-C4 Lateral Flexion TPA 0 -2.813 0.050 0.303 0.425 
C4-C5 Lateral Flexion TPA 0.932 -3.119 0.778 0.005 0.069 
C5-C6 Lateral Flexion TPA 0 -6.273 0.521 0.041 0.125 
C6-C7 Lateral Flexion TPA 1 -3.499 0.321 0.108 0.425 
C7-T1 Lateral Flexion TPA 0 2.424 -0.186 0.666 0.678 
C2-C3 Lateral Flexion UH 0 0.081 -0.128 0.595 0.821 
C3-C4 Lateral Flexion UH 0 0.045 -0.167 0.722 0.821 
C4-C5 Lateral Flexion UH 0 0.051 -0.158 0.688 0.821 
C5-C6 Lateral Flexion UH 0 -0.039 -0.187 0.821 0.821 
C6-C7 Lateral Flexion UH 0 -0.092 -0.159 0.691 0.821 
C7-T1 Lateral Flexion UH 0 -0.057 -0.306 0.817 0.821 
C0-C1 Flexion SAFH 0 0.027 0.786 0.920 0.920 
C1-C2 Flexion SAFH 0 0.003 -0.151 0.783 0.895 
C2-C3 Flexion SAFH 0 0.006 -0.034 0.004 0.030 
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C3-C4 Flexion SAFH 0.281 0.023 0.310 0.064 0.170 
C4-C5 Flexion SAFH 0 0.014 0.599 0.010 0.038 
C5-C6 Flexion SAFH 0.33 0.008 0.018 0.313 0.603 
C6-C7 Flexion SAFH 0.487 0.006 -0.011 0.385 0.603 
C7-T1 Flexion SAFH 0 -0.015 -0.060 0.453 0.603 
C2-C3 Pitch VBH 0 0.028 -0.156 0.680 0.877 
C3-C4 Pitch VBH 0 0.109 0.646 0.010 0.069 
C4-C5 Pitch VBH 0 0.039 0.003 0.345 0.877 
C5-C6 Pitch VBH 0 -0.022 -0.126 0.752 0.877 
C6-C7 Pitch VBH 0 0.027 -0.015 0.379 0.877 
C7-T1 Pitch VBH 0 -0.013 -0.169 0.730 0.877 
C0-C7 Sum (Pitch) Sum (VBH) 0 -0.001 -0.198 0.938 0.920 
C0-C1 Pitch SAFA 0 -0.222 -0.200 0.673 0.673 

 

 

Figure 3.1 PGLS results of Spinous Process Length (SPL) on flexion per vertebral level. 

Significant results (C7-T1) and those approaching significance (C5-C6) are colored and 

insignificant results are shades of grey. 
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 Nalley and Grider-Potter (2015) also found that neck inclination (as measured by 

Strait and Ross (1999)) also strongly correlates with spinous process length in C3-C7 

vertebrae. From these analyses, we concluded that longer spinous processes are found in 

primates with more horizontal neck postures in order to increase the mechanical 

advantage of the nuchal musculature. These correlations were significant (with high 

correlation coefficients) across all levels. This indicates that neck posture may more 

strongly influence cervical morphology than ROM, but additional analyses incorporating 

both functional variables would be able to further elucidate the relative influence of each 

function. 

Transverse Process Length and Angle 

P1b: Transverse processes will be shorter and more cranially oriented in vertebral 

levels with greater ranges of lateral flexion. Long transverse processes should physically 

inhibit lateral movement, but more cranially oriented processes should provide greater 

mechanical advantage. 

 The C6 typically has anterior and posterior roots of the transverse processes. 

Both processes are also occasionally present in C5 and C7 levels as well. In the case of C5 

and C6, the anterior process was used for analysis because it is always longer and more 

robust, whereas the reverse is true for C7. The longer process was used for analysis 

because if one is going to more strongly inhibit or facilitate range of motion, it should be 

the longer of the two. The longer one is more likely to collide with adjacent vertebrae 

than the shorter one.  
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Figure 3.2 PGLS results of Transverse Process Length (TPL) on lateral flexion per vertebral 

level. Results approaching significance (C3-C4, C5-C6, and C6-C7) are colored and insignificant 

results are shades of grey. 

  Results demonstrate that, contrary to predictions, longer transverse processes 

actually facilitate greater ranges of lateral flexion in three intervertebral joints (C3-C4, 

C5-C6 and C6-C7, see Figure 3.2). Even though this result only approaches significance 

at these levels, it potentially indicates that in the lower cervical vertebrae, longer 

transverse processes offer greater mechanical advantage during ipsilateral lateral flexion. 

This measure of motion is passive, meaning the muscles aren’t active. However, in order 

to provide greater ranges of lateral flexion via muscle action, the joints need to be able to 

accommodate that motion.  
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 Transverse process angle is also weakly correlated with degree of lateral flexion 

(Table 3.1, Figure 3.3). This relationship is significant for C4-C5 joint. The more caudal 

joints seem to support the predictions: the transverse processes become more cranially 

oriented with increasing ranges of lateral flexion. Overall the results do not strongly 

support this prediction.  

 

Figure 3.3 PGLS results of Transverse Process Angle (TPA) on lateral flexion per vertebral 

level. Significant results (C4-C5 and C5-C6) and those approaching significance (C2-C3) are 

colored and insignificant results are shades of grey. 
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Uncinate Process Height 

P1c: Uncinate processes create a U-shape which is thought to stabilize the joint. 

Therefore, craniocaudally taller uncinate processes should restrict the range of lateral 

flexion. 

 Results of the PGLS regressions demonstrate no significant correlations between 

lateral flexion and uncinate process height or angle (Table 3.1). Thus, this prediction is 

not supported. It is likely that the intervertebral discs and associated ligaments restrict 

motion to a greater degree than bony morphology. 

 Meyer and colleagues (2018) recently published an analysis of uncinate process 

morphology in primates. The results indicate that uncinate process height is negatively 

allometric, larger primates tending to have much less prominent processes than do 

smaller-bodied species. Unsurprisingly, morphology does not correlate with locomotor 

category. Further work using methods such as x-ray reconstruction of moving 

morphology (XROMM) could further elucidate the role of the uncinate processes in a 

comparative sample, because it would allow us to see the exact pattern of motion 

between vertebrae during lateral flexion and rotation. 

Superior Articular Facet Height 

P1d: Relatively large joint surface areas should increase the range of motion. 

Therefore, craniocaudally taller facets should correlate with increased ranges of flexion. 

 Results show that C2-C3 and C4-C5 joint ranges of motion are significantly 

positively correlated with articular facet height. This indicates that increasing facet 

height in these two joint increases range of flexion (see Table 3.1, Figure 3.4). Overall, 

this prediction is weakly supported.  
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 Nalley and Grider-Potter (2015, 2017) observed a significant influence of neck 

posture on articular facet orientation but did not investigate its influence on height. 

Specifically, they found that more coronal orientations were common in more 

pronograde species, but only at the C4 and C7 vertebral levels. They concluded that these 

orientations might offer greater resistance to displacement in these taxa. It is likely that 

both these variables are important functional influences on vertebral form. 

 

Figure 3.4 PGLS results of Superior Articular Facet Height (SAFH) on flexion per vertebral 

level. The results approaching significance (C4-C5) are colored and insignificant results are 

shades of grey. 
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Cervical Column Height 

P1e: A taller column should increase its overall angular displacement. Thus, range of 

whole-neck flexion-extension will be greater in species with craniocaudally taller cervical 

columns.  

 To test this prediction skeletal measures of vertebral body heights (C2-C7) were 

summed and compared to the summed range of motion for total range of head and neck 

motion in addition to the intervertebral correlations. Results demonstrate no significant 

correlation between column height and range of flexion-extension, and only one 

vertebral level, C3-C4, is approaching significance and positively correlated with range of 

motion (Figure 3.5, Table 3.1). It may be that intervertebral discs and their associated 

ligaments more strongly constrain vertebral motion.  
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Figure 3.5 PGLS results of Vertebral Body Height (VBH) on flexion-extension. Results 

approaching significance (C3-C4) are colored and insignificant results are shades of grey. 
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longer vertebral bodies offer greater area for force dissipation, thereby more efficiently 

resisting the bending moments associated with more pronograde postures. 

Atlantooccipital Joint Curvature 

P1f: Larger curvature of the atlantooccipital joint facilitates greater range of flexion-

extension.  

 Regression results indicate that the curvature is not related to range of flexion-

extension in the atlantooccipital joint. This is contrary to the hypothesis put forth by 

Aiello and Dean (2002) for the atlantooccipital joint . 

 Previous analyses conducted by Nalley and Grider-Potter (2017) have shown 

significant correlations between atlantooccipital joint curvature and neck posture. 

However, this relationship is largely driven by changes in the ventral aspect of the facet. 

The ventral aspect becomes oriented more dorsally in more pronograde species (Grider-

Potter, 2013). It is possible that this orientation better protects the joint from 

multidirectional forces and increasing curvature is not adapted to any particular increase 

in ROM. The results of this study demonstrate that this variation does not affect joint 

range of motion. Hamrick's (1996) study on primate carpals suggests that joint curvature 

reflects habitual loading patterns. A relatively flat facet (e.g., the tibial plateau) is 

adapted to dissipating unidirectional loads whereas a more curved joint (e.g., the 

acetabulum) may habitually dissipate loads from many directions. Stability in multiple 

directions may not be as important in more orthograde species whose atlantooccipital 

joints largely combat unidirectional compression.   
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3.2 Discussion 

Skeletal inhibition of motion 

 Overall, these results do not strongly support the hypothesis that vertebral 

morphology is correlated with intervertebral range of motion. Some vertebral levels show 

significant correlations between ROM and morphology; however, no correlation is 

significant across all vertebral levels. Longer spinous processes appear to inhibit range of 

extension in the lower vertebral levels. This isn’t surprising because spinous processes 

tend to be longer in the lower levels, and thus, these lower levels pass the threshold 

needed to inhibit motion. Anecdotally, the middle and lower spinous processes only 

appear to touch bone-to-bone in the radiographs taken from P. troglodytes, which also 

have relatively longer spinous processes. It is likely that spinous processes in the upper 

cervical levels are too short in the species included here to inhibit range of extension.  

It’s also important to note that these variables tested are isolated; meaning, they 

don’t take into account how the morphologies might influence each other. For example, 

both the length of the transverse process and angle of the transverse process influence 

the range of motion in tandem (e.g. a more coronally oriented process may allow for a 

longer process without inhibiting motion). In addition, the inhibition of motion is likely 

influenced by the length of the transverse process and height of the vertebral body in 

tandem; the transverse process can be longer when the vertebral body is craniocaudally 

taller. Future work should investigate these variables in tandem in order to understand 

their collective influences on range of motion. 

 Contrary to the prediction, longer transverse processes seem to facilitate greater 

ranges of lateral flexion rather than inhibiting it. Longer processes move the muscular 

action further from the joint center, thereby creating greater mechanical advantage: less 
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muscular force is required to laterally flex in species with longer transverse processes. 

Although these ranges of motion are passive (i.e. muscles are inactive), the range of 

motion should still be large, so that the muscles can facilitate the lateral neck flexors (e.g. 

the scalenes, spinalis capitis, iliocostalis cervicis, and longissimus cervicis) originate on 

these processes in humans, this result could be explained in terms of increasing 

mechanical advantage of these muscles. These results further indicate that skeletal 

morphology does not strongly correlate with motion motion.  

 Uncinate process height demonstrated no correlation with range of lateral 

flexion. Spinal fusion is commonly practiced in the medical field to inhibit motion at 

particular vertebral joints. Research has demonstrated that when a vertebral joint is 

fused, the superior joint often exhibits an increased range of motion and concomitant 

disc degeneration (Chow et al., 1996; Kumar et al., 2001; Eck et al., 2002; Hilibrand and 

Robbins, 2004; Rohlmann et al., 2006). Cleary, the fibrocartilaginous annulus fibrosis 

plays a critical role in providing joint stability. What, then, is the role of an uncinate 

process? It is possible that it inhibits range of rotation, rather than lateral flexion. It is 

commonly cited in the literature that the uncinate processes require humans to extend 

and laterally flex their cervical vertebrae in order to accomplish neck rotation. It may 

also be that hard tissues only inhibits motion if soft tissue degenerates or fails. 

 Recently, Manafzadeh and Padian (2018) conducted a study investigating the 

degree to which ligaments restrain hip mobility in quail in an effort to retrodict hip 

posture in fossil ornithodirans. They obtained an osteological measure of hip ROM by 

overlaying 3D scans of the hip and femur and eliminating those overlays in which bones 

touched or the joint was dislocated. Ligamentous ROM was measured through 

manipulating dissected specimens and manipulating them in front of an x-ray 

reconstruction of moving morphology (XROMM) system. They then mapped the 
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ligamentous point cloud of possible osteological and ligamentous positions and found 

that ligaments restrict bony movement to 5.28% of the morphospace. This immense 

reduction in ROM underscores the function of ligaments: to provide joint stability.  

Coupled with the results of this study, it would appear that skeletal morphology rarely 

provides a bony stop for range of motion and, therefore, should not be used to 

reconstruct ROM in fossil taxa.  
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Chapter 4 Axial kinematics and neck function during 
locomotion 

The overarching goal of this dissertation is to understand the functional relationships 

of vertebral morphology. However, this chapter is dedicated to understanding how the 

neck functions during locomotion. One must first recognize function before 

understanding the relationship between form and function. This study tests the 

hypothesis that the locomotor function of the neck is to maintain head stability. To test 

this hypothesis, kinematic data were collected using videos taken from four species of 

strepsirrhines (Eulemur mongoz, Lemur catta, Propithecus verreauxi, and Varecia 

variegata) during their primary modes of locomotion: horizontal leaping, terrestrial 

quadrupedalism, vertical clinging and leaping, and arboreal quadrupedalism respectively 

(Gebo, 1987; Table 2.6; see Table 4.1 for average range of motion of each body segment 

relative to the global coordinate system and Chapter 2 for description of methods).  

These data were collected in order to test the hypothesis that the neck functions to 

maintain head stability by counteracting the movements of the trunk during locomotion. 

From this hypothesis stem several predictions: a) trunk kinematics varies due to 

locomotor mode, b) trunk movement influences neck movement, but not head 

movement, during locomotion , c) there is a proximodistal increase in locomotor range of 

motion of each axial segment, and d) neck range of motion increases with increases 

trunk range of motion during locomotion (see Chapter 2). These predictions were tested 

using linear mixed models in order to incorporate differences in speed as a fixed effect as 

well as repeatedly measuring the same individual and species. Depending on the 

prediction, models used: 1) cardan angles for head-neck-trunk segments across trials 

within the global coordinate system, 2) range of motion (max angle-min angle) of the 

head-neck-trunk segment for each trial within the global coordinate system, or 3) range 
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of motion (max cardan angle-min cardan angle) of the head and vertebral segments (C3, 

C5, C7, and T1) for each trial within the global coordinate system (see Chapter 2 for 

details). Cardan angles are the angular motions of pitch (rotation in the sagittal plane), 

roll (rotation in the quadruped transverse plane), and yaw (rotation in the quadruped 

frontal plane). Speed was calculated using the distance traveled by the tragion landmark 

and divided by the time of the gait cycle. Speed was included as a fixed effect in all 

models. These kinematic data were then correlated with morphometric data using in 

order to understand how locomotor range of motion influences cervical vertebral 

morphology. In light of the results of these analyses, additional linear mixed models were 

conducted in order to understand the variation in morphology across the sample. 

 

 

Figure 4.1 Directions of angular motion in an orthograde sifaka and pronograde ring-tailed 

lemur. 
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4.1 Results-Kinematics 

Trunk Kinematics vs. Species 

P2a: Trunk kinematics varies among primate species during their primary mode of 

locomotion. 

 Linear mixed models were conducted using both cardan angles of the trunk 

during each frame of each trial as well as the resulting range of angular motion per trial. 

Both sets of kinematic data demonstrate significant differences in trunk motion among 

species. Both Eulemur and Propithecus experience larger ranges of pitch and yaw during 

leaping than do Lemur and Varecia during quadrupedalism (see Table 4.2). Variation in 

trunk yaw across the gait cycle does not seem to be vary due to species (p=0.135), but the 

range of yaw does (p=0.011). Intuitively, this result makes sense: a sifakas’ trunk during 

vertical clinging and leaping should move differently than a ring-tailed lemur’s during 

terrestrial quadrupedalism. Given that it has been demonstrated that trunk motion 

varies among species, I can now use it as the basis for subsequent predictions.  

Table 4.2 Results of the linear mixed models among both global segment angles and global 

segment range of motion. Significant correlations in bold (p<0.05). 

Y: Segment 
Angle or ROM X X2 Random Effects r2 pX pX2 

Trunk Yaw Species Speed Indv (Trial (Frame ) ) 0.104 0.135 0.563 
Trunk Roll Species Speed Indv (Trial (Frame ) ) 0.601 0.000 0.313 
Trunk Pitch Species Speed Indv (Trial (Frame ) ) 0.243 0.011 0.546 
Trunk Yaw 
ROM Species Speed Indv (Trial (Frame ) ) 0.330 0.011 0.533 
Trunk Roll ROM Species Speed Indv (Trial (Frame ) ) 0.334 0.011 0.544 
Trunk Pitch 
ROM Species Speed Indv (Trial (Frame ) ) 0.510 0.014 0.558 
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Table 4.3 Prediction 2b results of the linear mixed models. Significant correlations in bold 

(p<0.05). 

Y X1 X2 Random Effects r2 pX PX2 

Head Yaw Trunk Yaw Speed Species(Individual (Trial)) 0.099 0.000 0.317 
Head Roll Trunk Roll Speed Species(Individual (Trial)) 0.008 0.000 0.022 
Head Pitch Trunk Pitch Speed Species(Individual (Trial)) 0.054 0.276 0.338 
Head Yaw Neck Yaw Speed Species(Individual (Trial)) 0.065 0.583 0.216 
Head Roll Neck Roll Speed Species(Individual (Trial)) 0.002 0.388 0.845 
Head Pitch Neck Pitch Speed Species(Individual (Trial)) 0.076 0.000 0.213 
Neck Yaw Trunk Yaw Speed Species(Individual (Trial)) 0.260 0.000 0.006 
Neck Roll Trunk Roll Speed Species(Individual (Trial)) 0.320 0.000 0.000 
Neck Pitch Trunk Pitch Speed Species(Individual (Trial)) 0.424 0.000 0.023 
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Figure 4.2 Trunk range of pitch (a), roll 

(b), and yaw (c) during primary mode of 

locomotion in four species of lemur: 

Eulemur mongoz, Lemur catta, 

Propithecus verreauxi, and Varecia 

variegata. 
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Trunk vs. Neck Kinematics 

P2b: In order to maintain head stability, variation in trunk kinematics will, in turn, 

affect neck kinematics. Therefore, trunk movement during a stride will predict neck 

movement, but not head movement. 

 The data demonstrate variation in how the axial segments move with and 

opposite each other during locomotion. These linear mixed models were conducted by 

correlating cardan angles of the head, neck, and trunk in the global coordinate system 

per frame of each trial (see Table 4.3 for model specifics). Trunk movement does predict 

a significant, but minute amount of head yaw or roll during a gait cycle (r2yaw=0.099 and 

r2roll=0.008, p<0.001, see Table 4.3). However, trunk pitch significantly predicts head 

pitch, contrary to the predictions (ppitch=0.2761). Conversely, neck yaw and roll does not 

predict head yaw or roll (pyaw=0.5825, proll=0.3877) but does weakly predict head pitch 

(r2pitch=0.076, ppitch<0.001).  

The neck and trunk are much more highly correlated with each other than the head 

and trunk (r2yaw=0.260, r2roll=0.320, r2pitch=0.424, p<0.001). This implies that during 

locomotion the head pitches with the neck but rolls and yaws with the trunk. As a whole, 

these correlations indicate that trunk movement influences neck movement but also 

weakly influences head movement. 
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Figure 4.3 Representative pitch of the head, neck, and trunk segments across the gait cycle. 

Statistical analyses demonstrated variation in angular motion due to speed and thus, 

representative trials are depicted rather than averages. 
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Figure 4.4 Representative roll of the head, neck, and trunk segments across the gait cycle. 
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Figure 4.5 Representative yaw of the head, neck, and trunk segments across the gait cycle. 

 

Segmental Stability 

P2c: If head stability is the goal and the neck’s function is to counteract the 

movements of the trunk in order to maintain that stability, then there should be a 

proximodistal decrease in locomotor range of motion in each axial segment (i.e. 

Head<C3<C5<C7<T1). 
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To test this prediction, models incorporated the ranges of motion of each vertebral 

segment across one trial. The vertebral segment data demonstrate unbelievably large 

ranges of motion during locomotion (see Table 4.1). In many cases these locomotor 

ranges of motion are larger than the passive range of motion found at those segments, 

which leads be to believe that these data are not accurate. It is possible that 

methodological error in the vertebral segment data are confounding the results. 

Specifically, skin artifact likely plays a role in this error, see discussion below. Thus, the 

analyses were also conducted using segment ranges of motion but found no difference in 

significance. Results demonstrate very little support for this prediction: models for 

movement in all planes are not significant (pyaw=0.094, proll=0.438, ppitch=0.493, see 

Table 4.4). Post-hoc analyses show only one significant difference: C3-C7 yaw (see Table 

4.5 and Figure 4.6).  This result is surprising. If head stability is an important aspect of 

locomotion, then the neck should act to minimize its motion.  
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Table 4.4 Prediction 2c linear mixed model results for the vertebral segments (head, C3, C5, 

C7, and T1) as well as the axial segments (head, neck, trunk). Significant correlations in bold 

(p<0.05) and those approaching significance italicized (0.1>p>0.05). 

Y: ROM X X2 Random Effects r2 pX pX2 
Yaw Vertebral Segment Speed Individual ( Trial ) 0.07 0.09 0.19 
Roll Vertebral Segment Speed Individual ( Trial ) 0.04 0.44 0.27 
Pitch Vertebral Segment Speed Individual ( Trial ) 0.03 0.49 0.42 
Yaw Whole Segment Speed Individual ( Trial ) 0.14 0.41 0.00 
Roll Whole Segment Speed Individual ( Trial ) 0.07 0.15 0.07 
Pitch Whole Segment Speed Individual ( Trial ) 0.20 0.35 0.00 

 

 

Table 4.5 Post-hoc results (Tukey HSD) for prediction 2c testing for differences among levels, p-

values corrected using Bonferroni’s method. Significant correlation in bold (p<0.05). 

 Head-C3 Head-C5 Head-C7 Head-T1 C3-C5 C3-C7 C3-T1 C5-C7 C5-T1 C7-T1 
Yaw 0.42 1.00 0.80 1.00 0.27 0.04 0.31 0.95 1.00 0.88 
Roll 0.94 1.00 0.84 0.94 0.95 1.00 0.56 0.85 0.95 0.37 
Pitch 0.93 0.98 0.85 1.00 0.68 0.38 0.84 0.99 1.00 0.93 
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Figure 4.6 Species variation in 

locomotor ranges of pitch (a), 

roll (b), and yaw (c). No 

significant differences were 

found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 82 

Species-specific kinematics 

P2d: As locomotor trunk range of motion increases, so should neck range of motion 

in order to counteract the movement of the trunk. 

 Models were conducted using head-neck-trunk segment ranges of motion per 

trial to test this prediction. No significant results were found among species, but results 

for roll and pitch approach significance (proll=0.051, ppitch=0.080, see Table 4.6). Post-

hoc analyses show an interesting pattern of significance differences: Eulemur has 

significantly different pitch than Lemur (p=0.0195) or Varecia (p=0.0224), but not 

Propithecus. While Varecia has significantly different ranges of roll than Lemur or and 

Eulemur, see Table 4.7 and Figure 4.5a-c. This grouping is likely influenced by their 

locomotor modes: Eulemur and Propithecus group together as leapers in their high 

degrees of flexion-extension.  

 

Table 4.6 Prediction 2d results of the linear mixed models. Significant correlations in bold 

(p<0.05). 

Y: ROM X X2 Random Effects r2 pX pX2 

Yaw Species Speed Individual ( Trial ) 0.1490 0.4284 0.0004 
Roll Species Speed Individual ( Trial ) 0.1155 0.0509 0.1177 
Pitch Species Speed Individual ( Trial ) 0.2541 0.0802 0.0001 
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Table 4.7 Post-hoc test results (Tukey HSD) testing for significant differences between 

species, p-values corrected using Bonferroni’s method. Significant correlations in bold (p<0.05) 

and those approaching significance italicized (0.1>p>0.05). 

 Em-Lc Em-Pv Em-Vv Lc-Pv Lc-Vv Pv-Vv 
Yaw 0.6510 0.4220 0.3350 0.4690 0.4560 0.3220 
Roll 0.3714 0.3004 0.0572 0.2734 0.0600 0.1061 
Pitch 0.0195 0.6122 0.0224 0.1242 0.9979 0.1306 
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Figure 4.7  Species 

differences in ranges of pitch 

(a), roll (b), and yaw (c) 

within one gait cycle. 

Significant differences were 

found between Eulemur and 

Lemur as well as Eulemur and 

Varecia. 
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4.2 Results-Morphology 

The results of the kinematic analyses demonstrate that the intervertebral kinematics 

had too much methodological error to be considered realistic (see Section 4.1). Thus, it is 

difficult to apply locomotor ranges of motion to each vertebral level. Instead, head-neck-

trunk segment motion (yaw, pitch, and roll) was applied to C1, C7, and T5 morphology 

respectively (see Table 4.8). In the case of sifakas, who are habitually orthograde, yaw 

and roll were switched such that yaw corresponds to lateral flexion and roll corresponds 

to axial rotation in all species (see Figure 4.8). Linear mixed models were used to 

correlate average segment range of motion per species to vertebral morphology in order 

to test the hypothesis that locomotor range of motion influences vertebral morphology, 

see Chapter 2: P1a-g. Linear mixed models were chosen in order to avoid issues with 

multiple comparison. However, these analyses ignore potential similarity within the data 

due to close phylogenetic relationships. 

 

Figure 4.8 Directions of anatomical motion in an orthograde sifakas (left) and pronograde 

ring-tailed lemur (right). 
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As a whole, the results of the linear mixed models demonstrate very little support for 

these predictions (see Table 4.8). The only significant result is that of transverse process 

length and locomotor range of lateral flexion. Contrary to predictions, transverse process 

length increases with decreasing range of lateral flexion. However, this contrary result 

was also found for maximum range of motion (Table 3.1). Thus, it is unlikely that 

transverse processes hinder movement during locomotor range of motion but not 

maximum range of motion. The results of the kinematic analyses demonstrate no 

significant differences in range of head and neck motion among species (see Table 4.4); 

meaning, there is no difference in head and neck locomotor function within the sample. 

Because there is no difference in function, it becomes difficult to relate any 

morphological differences to that function. Therefore, both the results of the kinematics 

analyses and the morphological analyses indicate that range of motion during the 

primary mode of locomotion does not influence vertebral morphology. Given the 

negative results of these analyses, what can we say about the influences on 

morphological variation within these four species?  

Additional analyses were subsequently conducted to understand how morphology 

varies among species. To assess the morphological variation among species, linear mixed 

models were conducted to understand differences in specific morphological variables at 

each vertebral level among species (e.g. the differences among species’ spinous process 

lengths per vertebral level). These analyses were chosen in order to account for any 

potential variation due to sex as well as to avoid issues associated with uneven sample 

sizes and multiple comparisons. Results of these analyses show some interesting 

patterns of variation (see Table 4.9, 4.10 and Figure 4.9 and 4.10). Varecia has 

significantly longer spinous processes than Lemur and Eulemur, but not Propithecus. 

Varecia also has significantly longer transverse processes than all other species. Longer 
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processes are thought to offer greater mechanical advantage for the nuchal musculature 

by increasing the distance from the joint center of rotation as well as offering greater 

area for muscular attachment, potentially increasing the muscle PCSA. 

Table 4.8 Prediction 3 descriptions and results. 

Prediction Description Model Result 

3a 

Range of extension is smaller in 
species with relatively larger spinous 
processes 

log(spl/sqrt(ca))~pitch 
+ 1|level/species n.s. 

3b 

Range of lateral flexion is smaller in 
species with longer transverse 
processes 

log(tpl/sqrt(ca))~roll + 
1|level/species) p=0.02 

3c 

Range of lateral flexion will decrease 
with increasing uncinate process 
height 

Unable to test in C1, 
C7, and T5 - 

3d 

Range of flexion should be larger in 
species with craniocaudally taller 
articular facets 

log(safh/sqrt(ca)) ~ 
pitch + 1|level/Species n.s. 

3e 

Range of flexion-extension should be 
larger in species with taller vertebral 
bodies 

log(sum(vbl/sqrt(ca))) 
~ neck pitch + 
1|level/Species n.s. 

3f 

Range of flexion-extension should be 
larger in species with more curved 
atlantooccipital joints 

safa (c1) ~ head pitch + 
1|level/Species n.s. 

3g 

Range of rotation should be larger in 
species with more cranially-oriented 
articular facets 

safa (c7t5) ~ (neck, 
trunk) yaw + 
1|level/Species n.s. 

 

Table 4.9 Results of the linear mixed models testing for morphological variations among 

species. Significant correlations in bold (p<0.05). 

Morphology X Random r2 pX 
SPL Species Level (Species (ID)) 0.024 0.015 
TPL Species Level (Species (ID)) 0.203 0.001 
SAFH Species Level (Species (ID)) 0.238 0.001 
UH Species Level (Species (ID)) 0.0936551 0.0335 
VBH Species Level (Species (ID)) 0.213 0.001 
SAFA Species Level (Species (ID)) 0.005 0.021 
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Table 4.10 Post-hoc results (Tukey HSD) of the linear mixed models testing for 

morphological differences between species, p-values reflect Bonferroni corrections. Significant 

correlations in bold (p<0.05). 

Species Em-Lc Em-Pv Em-Vv Lc-Pv Lc-Vv Pv-Vv 
SPL 0.975 0.242 0.007 0.462 0.025 0.535 
TPL 0.999 0.844 0.000 0.893 0.000 0.000 
SAFH 0.996 0.001 0.001 0.001 0.001 0.326 
UH 0.252 0.005 0.027 0.368 0.697 0.963 
VBH 0.000 0.000 0.000 0.413 0.480 0.998 
SAFA 0.758 0.370 0.439 0.910 0.047 0.007 
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Figure 4.9 Results of the linear mixed models demonstrate significant differences between 

Varecia and Lemur and Varecia and Eulemur in relative spinous process length within each 

vertebral level. 



 

 90 

 

Figure 4.1 Results of the linear mixed models demonstrate significant differences between 

Varecia and all other species in relative transverse process length at each vertebral level. 

Eulemur and Lemur have significantly smaller articular facets than Propithecus and 

Varecia. Larger articular facets are thought to transmit higher loads (Parr et al., 2011; 

Yapuncich and Boyer, 2014). Eulemur also has significantly smaller uncinate processes 

than both Varecia and Propithecus (see Figures 4.11 and 4.12). Taller uncinate processes 

have been purported to offer greater neck stability (Kotani et al., 1998), however the 

results of Chapter 3 do not lend support to this hypothesis. 



 

 91 

 

Figure 4.2 Results of the linear mixed models demonstrate Eulemur and Lemur have 

significantly shorter articular facets than do Propithecus and Varecia with vertebral levels. 
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Figure 4.3 Eulemur possesses significantly shorter uncinate processes than both Propithecus 

and Varecia. 

Eulemur also has shorter vertebral bodies than the other species. Longer vertebral 

bodies could offer greater resistance to bending moments in more pronograde species 

(see Fig. 4.13). Longer bodies are also thought to increase range of whole spine motion; 

however, no support was found for this hypothesis (see Chapter 3). Varecia has more 

cranially oriented articular facets than both Lemur and Propithecus (see Fig. 4.14). 
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Figure 4.4 Eulemur has significantly shorter vertebral bodies than the other species. 
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Figure 4.5 Varecia has more coronally oriented facets per vertebral level than both Lemur 

and Propithecus. 
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4.3 Discussion 

Speed 

 Speed was a fixed effect in all of these analyses (see Tables 4.2-4.4 and 4.6). If the 

purpose of head stability during locomotion is to navigate through a complex 

environment, stability should increase with speed because the need to react to a more 

quickly to changing substrate should also increase. However, speed did not demonstrate 

a consistent pattern of significance within the models (see Tables 4.2-4.4 and 4.6). Thus, 

post-hoc analyses were conducted specifically testing the effects of speed on segmental 

motion across the gait cycles (see Table 4.11, Fig 4.8a-d). These results demonstrate that 

speed predicts range of motion of the neck (in all planes) as well as trunk pitch. These 

results are similar to that found in the literature: there is a significant increase in trunk 

pitch with increasing speed, but head pitch is unaffected (see Table 4.12 and discussion 

below).  

Table 4.11 Effects of speed on locomotor segment range of motion. Significant correlations 

in bold (p<0.05). 

Y: ROM X Random Effects r2 pX 
Head Yaw Speed Species (Individual) 0.071281 0.1709 
Head Roll Speed Species (Individual) 2.64E-05 0.9855 
Head Pitch Speed Species (Individual) 0.01773 0.599 
Neck Yaw Speed Species (Individual) 0.35734 9.00E-04 
Neck Roll Speed Species (Individual) 0.222221 0.0073 
Neck Pitch Speed Species (Individual) 0.27027 0.0231 
Trunk Yaw Speed Species (Individual) 0.109576 0.1257 
Trunk Roll Speed Species (Individual) 0.061382 0.2879 
Trunk Pitch Speed Species (Individual) 0.481145 1.00E-04 
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Figure 4.6 Speed significantly predict neck range of pitch (a), roll (b), and yaw (c) as well as 

trunk pitch (d), but species also (locomotor mode) demonstrate differences in speed. 

Dunbar and colleagues (2008) conducted a kinematic study of sagittal-plane motion 

of the horse head, neck, and trunk during walking, trotting, and cantering. Their data 

demonstrate that the head during walking and cantering has a similar range of head 

pitch (9o and 10o respectively) as well as trunk pitch (6o and 8o respectively), see Table 

4.12. Vertical translation was also analyzed for these trials. Their analyses demonstrate 
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that there is an inverse relationship between vertical translation and head pitch: when 

the head translates superiorly, it also angles inferiorly. The effect of this relationship is 

likely to maintain a steady gaze. The similarity in head pitch between walking and 

cantering would seem to indicate, at least in horses, that speed has little effect. However, 

there is a large increase in vertical translation of the head between walking (12cm) and 

cantering (23cm) (Dunbar et al., 2008). Given the relationship between translation and 

angular movement, it would seem that there is a decrease angular movement relative to 

head displacement. Because head displacement increases during cantering, this increase 

in head angular stability could potentially decrease gaze stability, contrary to the 

hypothesis tested in this chapter.  

However, more recent research has suggested that ungulates possess different head-

neck kinematics than other mammals (Loscher et al., 2016). Loscher et al. (2016) have 

shown that long-necked ungulates time their head movements in order to decrease 

energy expenditure. Short-necked primates (cercopithecids) and felids moved their head 

and trunk together during locomotion. However, the heads of long-neck ungulates are 

out of phase with the trunk. They appear to time the oscillations of the head and neck 

such that the greatest force is being transmitted during the single support phase. This 

timing likely decreases the change in center of mass, thereby decreasing energy 

expenditure (Loscher et al., 2016). These results imply that mechanisms of head stability 

may be derived in ungulates, in comparison to primates, and that Dunbar et al.’s (2008) 

results may not be directly applicable to primates. 

 



 98 

Ta
bl

e 
4.

12
 R

an
ge

s o
f s

eg
m

en
t m

ot
io

n 
du

ri
ng

 o
ne

 g
ai

t c
yc

le
, a

da
pt

ed
 fr

om
 D

un
ba

r (
20

08
). 

 D
is

pl
ac

em
en

t 
Pi

tc
h 

An
gl

e 
 

 
 

 
 

Ve
rt

ic
al

 
Tr

an
sla

tio
n 

 
 

Sp
ee

d 
Sl

ow
 

 
 

Fa
st

 
 

 
Sl

ow
 

 
Fa

st
 

Se
gm

en
t 

H
ea

d 
N

ec
k 

Tr
un

k 
H

ea
d 

N
ec

k 
Tr

un
k 

H
ea

d 
Tr

un
k 

H
ea

d 

H
or

se
1  

9 
(+

/-
4)

 
10

 (+
/-

3)
 

6 
(+

/-
2)

 
10

 (+
/-

4)
 

 
8 

(+
/-

1)
 

12
 (+

/-
4)

 
10

(+
/-

2)
 

23
(+

/-
5)

 

G
ir

af
fe

2  
 

4 
(+

/-
1)

 
 

 
 

 
 

 
 

La
ng

ur
1  

17
(+

/-
5)

 
 

10
 (+

/-
3)

 
15

 (+
/-

2)
 

 
42

 (+
/-

4)
 

7 
(+

/-
2)

 
 

19
 (+

/-
4)

 

V
er

ve
t1  

15
(+

/-
7)

 
 

6 
(+

/2
) 

 
 

14
 (+

/-
7)

 
 

 
 

M
ac

aq
ue

1  
13

 (+
/-

4)
 

 
13

 (+
/-

3)
 

13
 (+

/-
3)

 
 

30
 (+

/-
8)

 
7 

(+
/-

2)
 

 
11

 (+
/-

5)
 

M
ac

aq
ue

3  
5 

(+
/-

2)
 

 
7 

(+
/-

2)
 

 
 

 
 

 
 

G
ib

bo
n4  

4(
+/

-1
) 

 
 

 
 

 
2 

(+
/-

1)
 

 
 

Ch
im

pa
nz

ee
5  

12
 (+

/-
5)

 
 

 
17

 (+
/-

7)
 

 
 

 
 

 
H

um
an

6  
12

 (+
/-

3)
 

18
 (+

/-
4)

 
7 

(+
/-

2)
 

 
 

 
 

 
 

H
um

an
7  

9 
(+

/-
3)

 
 

 
14

 (+
/-

4)
 

 
 

5-
9 

 
7-

16
 

Eu
le

m
ur

 
 

 
 

53
(+

/-
23

) 
20

 (+
/-

8)
 

29
(+

/-
19

) 
 

 
 

Le
m

ur
 

21
(+

/-
13

) 
13

 (+
/-

5)
 

11
 (+

/-
7)

 
 

 
 

 
 

 
Pr

op
it

he
cu

s 
 

 
 

17
 (+

/-
9)

 
54

(+
/-

17
) 

36
(+

/-
23

) 
 

 
 

V
ar

ec
ia

 
10

 (+
/-

5)
 

23
(+

/-
17

) 
13

(+
/-

12
) 

 
 

 
 

 
 

 1 D
un

ba
r 2

00
8,

 2 B
as

u 
et

 a
l. 

20
19

, 3 X
ia

ng
 2

00
8,

 4 H
ir

as
ak

i a
nd

 K
um

ak
ur

a 
20

04
, 5 T

ho
m

so
n 

20
16

, 6 C
ro

m
w

el
l 2

00
1,

 7 P
oz

zo
 19

90
 

 



 99 

However, Dunbar conducted similar studies on several species of cercopithecids 

(Dunbar, 2004a; b). The primate head and trunk kinematics show a pattern similar to 

horses: there is little difference in range of pitch between speeds, but an increase in 

vertical displacement. Unlike horses, non-human primates increase trunk pitch with 

increasing speed (see Table 4.12). This increase in trunk pitch likely results in the 

increased vertical displacement of the head. In their analysis of macaque 

quadrupedalism, Xiang et al. (2008) found a slight decrease in head yaw with increasing 

speed (0.4-1.0m/s) but not pitch or roll. The authors noted that trial-specific head yaw 

tended to be larger trunk yaw and both head roll and pitch was smaller than that of the 

trunk. These patterns were not subjected to statistical analyses, however. 

Pozzo and colleagues (1990) also investigated head stabilization during locomotion 

in humans both in lit and unlit conditions They found that both angular pitch and 

vertical displacement of the head increases with locomotor speed. However, the effects of 

speed were diminished in the darkness trials (Pozzo et al., 1990). This likely indicates 

that maintaining gaze stability is an underlying influence on angular head movements 

during locomotion. 

Pozzo et al.’s (1990) human results, Dunbar’s  (2004a; b) results, and Xiang et al.’s 

(2008) results seem to contradict each other. Pozzo et al.’s (1990) humans increase head 

pitch with faster speeds, Xiang and colleagues’ (2008) macaques decrease head yaw with 

increasing speed, speed doesn’t seem to affect Dunbar’s (2004a; b) Old World monkey 

head pitch. The results of this dissertation show that speed doesn’t predict head motion 

in any plane (see Table 4.11). The lemur kinematic data, however, do show that neck 

motion increases with speed as well as trunk pitch. Increases in trunk pitch were also 

demonstrated in Dunbar’s data set, see Table 4.12. The data presented in this 

dissertation, however, are not ideally suited to test the effects of speed because 
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locomotor mode seems to influence speed. For example, leaping (horizontal and vertical) 

trials are much faster than the quadrupedal trials. Body size can also affect speed as well 

as the kinematics used to attain faster locomotion (Gatesy and Biewener, 1991). Speed 

was self-selected in all trials as well; therefore, differences between individuals is also 

confounding. Additional, treadmill-based experiments within one mode of locomotion 

would better facilitate our understanding the kinematic effects of speed. 

Literature values and data accuracy 

 Very little has been published on the locomotor kinematics of the primate neck, 

so it is difficult to ground the results of this dissertation in existing literature. However, 

we can compare axial segment pitch for the few species that have been studied (see Table 

4.12). Overall the head data seem comparable. The ranges of variation exhibited by 

Lemur, Propithecus, and Varecia appear similar to that of other primate species: ~10-

20o of pitch. However, head pitch in Eulemur is higher than all other values (53o +/- 

23o). Horizontal leaping involves a fair amount of whole-body flexion-extension, which 

could explain these outlying results. Literature neck pitch values are only available for 

human walking and so there is only one value to compare, rather than a pattern among 

species. Ranges of pitch overlap for all species except Propithecus, which has a much 

greater range of neck pitch than the other speices (54o +/- 17o). However, as a whole, 

lemur trunk pitch appears to mirror data found in the literature: faster modes of 

locomotion (e.g. leaping) have larger ranges of pitch than slower one (i.e. walking). The 

trunk values for Eulemur and Propithecus (29o and 36o respectively), seem to match 

those found in langurs and macaques locomoting at fast speeds while those of Lemur 

and Varecia (11o and 13o, respectively) are similar to langurs and macaques walking at 

slow speeds (see Table 4.12).  
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Leaping is a dynamic mode of locomotion and thus one would expect large ranges of 

segment motion. Given the data, it appears that Eulemur has much greater pitch in its 

head than its neck during locomotion, while Propithecus has a much greater range in its 

neck than its head. This may indicate species- or locomotor-specific strategies in 

mitigating trunk motion and maintaining gaze stability. Eulemur has a much greater 

range of passive motion than Propithecus at the atlantooccipital joint (61o vs. 26o, see 

Table 6.2). It is likely that this difference in range of passive motion influences the 

locomotor kinematics. This difference in range of motion does not seem to be reflected in 

skeletal morphology (see Fig. 4.14). Because Eulemur’s craniovertebral junction can 

accommodate such a large range of pitch, the head moves much more than the neck 

during leaping. It is possible that in order to maintain gaze and balance, other 

anatomical variations compensate, such as increased eye range of motion or larger 

semicircular canals. 

In comparison with the literature values, however, the standard deviations for my 

values tend to be much higher (100-30o) than previous studies (1o-10o), see Table 4.12. 

This brings into question sources of variation in the data both inherent in the head-neck 

complex as well as that due to methodological error. It is possible that movement of the 

axial skeleton during locomotion is less stereotyped than the appendicular skeleton; 

meaning, it is inherently variable.  

It could also be that the variability is due to methodological error. The minimal data 

available from the literature hint that the noise in this dataset is more likely due to error. 

Specifically, it is possible that the error in the data come from skin-motion artifacts, or 

the non-congruency of skin motion and skeletal motion. These artifacts are common 

sources of error for any kinematic analysis that relies on superficial markers and has 

been well-studied in human lower limbs (reviewed in Peters et al., 2010; Fukui et al., 
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2016). These error tend to increase with increasing soft tissue coverage of the bone 

(Taylor et al., 2005). Analysis comparing skeletal movement to that of dermal markers 

has recently demonstrated that that the human lower cervical spine (C6) is more 

vulnerable to error during flexion-extension while the upper cervical spine (C2) has 

greater error in lateral flexion (Wang et al., 2016). These data suggest that soft tissue 

artifact plays a role in the error found in these data. Future work should focus on 

methods, such as XROMM (X-ray motion of moving morphology) in order to 

satisfactorily understand intervertebral locomotor kinematics.  

 The kinematics of the vertebral segments seem much more prone to error than 

that between head, neck, and trunk segments (see Table 4.1). They have much larger 

ranges of motion and much larger standard deviations. These errors are so large that the 

render the vertebral motion data suspect. For example, the pitch of the neck in Eulemur 

averages 19.9o +/- 8.4o (see Table 4.1). This is a reasonable value, comparable to those of 

other segments found in the literature. However, the average range of pitch for the C5 

segment is 50.4o +/- 32o , far exceeding the both range of motion for the entire neck as 

well as the passive range of motion for the C3-C4 and C4-C5 joints combined. The same 

is true for the motion of many vertebral segments. This error could be due to several 

factors, but soft tissue artifact likely plays a role.  

For this study, gaze is a particular concern for head range of motion. Lemurs were 

enticed with food rewards to walk through the measurement space. An effort was made 

by the handlers to position the food at roughly eye level. However, this position may have 

affected head range of motion. In particular, Lemur, head roll and yaw seem high (see 

Figs. 4.4 and 4.5). This larger range of motion could be the result of looking at the food 

or the handler.  
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It may also be error in digitizing. Markers were occasionally difficult to see and 

sometimes obscured by fur; this is especially true of the C1 spinous process marker. In 

addition, the DLTdv Matlab package that was used to digitize the videos creates 

confidence intervals around the digitized point. These intervals often overlapped 

between adjacent landmarks due to the low magnification of the image. Camera zoom 

could have been increased for the experiments. However, increased zoom would have 

sacrificed the percentage of stride available for digitization. Overall, these sources of 

error lead me to believe that the kinematics of the vertebral segments do not reflect 

reality and, therefore, cannot be used for subsequent analyses. It also calls into question 

the results of the analyses used to test the predictions P2c and P2d that were obtained 

using vertebral segment motion. Only the results using head, neck, and trunk segment 

motion should be considered. Attention in future analyses will be focused on the 

kinematics and range of motion of the head, neck, and trunk segments. 

Further kinematic analyses 

 Axial translation is likely an important factor in rotation movement. Several 

works have previously demonstrated the importance of including translation when 

considering head rotational motion (Pozzo et al., 1990; Hirasaki and Kumakura, 2004; 

Xiang et al., 2008; Thompson, 2016). This is especially true of leaping behaviors. In the 

videos, it appears as the individual reaches the peak of its leap, the head and neck are 

angled downward in order to maintain visual contact with their landing point (or the 

food reward being held by the handler).  

Future work should explore the influence of appendicular kinematics on axial 

kinematics. Locomotor speed, for example, affects stride length and stride frequency. 

Perhaps the effects of speed on neck and trunk movement (see Table 4.12) are 
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consequences of stride differences. It is also important to consider the timing of the limb 

kinematics. Loscher and colleagues (2016) demonstrated in ungulates, timing of the 

support can affect the energetics of axial kinematics. In addition, a diagonal sequence 

gait was used in both arboreal and terrestrial quadrupedal trials (see Fig. 4.4). It would 

be beneficial to compare the axial kinematics between diagonal and lateral sequence 

gaits. It could be that gait sequence affects center of mass position, and therefore 

influences head-neck-trunk ranges of motion during locomotion. Future work will 

investigate these questions both within this dataset as well as through new experiments. 

Neck function 

 Results for the vertebral segments exhibit far too much error to be confidently 

used for analysis. Instead, I will focus on the results using the head-neck-trunk segment 

data in order to understand how the neck’s locomotor function can be applied to 

vertebral morphology. Overall, the data indicate minimal species-specific differences in 

locomotor kinematics. However, it is difficult to discern the distinction between species 

and locomotor mode because each species practices a different primary mode of 

locomotion. This decision was by design because the ultimate goal of this dissertation is 

to understand how different locomotor modes may affect vertebral morphology. 

However, all these species practice more than one mode of locomotion. The experiments 

conducted here relied on the assumption that habitual loading influences vertebral 

morphology. However, behaviors which are rare but important (and produce much 

higher loads) should also influence vertebral morphology. Future work will explore 

intraspecific locomotor variation and the relative influences of species and locomotor 

mode on axial kinematics.  
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 Results indicate that trunk motion varies among species (Table 4.2) and that 

trunk motion significantly predicts neck motion (Table 4.3). This implies that axial 

segments may be under different biomechanical constraints during different modes of 

locomotion and these constraints should influence vertebral form.  

Morphological variation 

 The range of motion in the neck during locomotion does not vary significantly 

within this sample. Thus, it is unlikely to correlate with any morphological variation 

among these species. It is possible that function does not vary enough in the sample to 

give a strong signal. Meaning, that the neck balances the head in similar ways regardless 

of locomotor mode. Lemurs, in particular, are capable of locomoting a variety of different 

ways. All species practice varying frequencies of leaping, climbing, and quadrupedalism 

(Gebo, 1987). It may be that vertebral morphology is adapted to dissipating many 

different kinds of forces from a variety of locomotor and postural modes. Large forces 

occur during locomotion and should, therefore, most strongly influence skeletal 

morphology (Preuschoft, 2004).  

It may be that the locomotor signal is lost within the noise of other functional 

influences on cervical vertebral morphology. The neck functions during many other 

behaviors, such as feeding and foraging, grooming, predator vigilance, etc. All of these 

behaviors are likely under selective pressures and, thus, so is the vertebral morphology 

required to accomplish these behaviors. It is possible that vertebral morphology is 

generalized in order to function many different ways.  

 Some of the morphological variables appear to separate out based on body size 

despite the size-adjustment. Craniocaudal vertebral body height, for example, is 

significantly smaller in Eulemur in comparison to the other species, which also has the 
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smallest body mass of the sample (Figure 4.13). In comparison to the larger Propithecus 

and Varecia, the smaller Eulemur and Lemur have craniocaudally shorter articular 

facets (see Figure 4.11). These indicate that these morphologies may not scale 

isometrically with body mass. Perhaps, larger species require greater stability via 

relatively larger joint surfaces or craniocaudally taller vertebral bodies. 

The lack of correlation between locomotor range of motion and skeletal morphology 

may indicate locomotor neck function more strongly influences soft tissue morphology 

rather than bony vertebral shape. For example, spinous process length doesn’t correlate 

with range of extension. Instead of increasing the mechanical advantage of the nuchal 

musculature by increasing spinous process length, the cross-sectional area of the 

muscles could increase. 
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Chapter 5 Discussion 

5.1 Summary of Results 

As the junction between the head and the trunk, the neck serves many different 

functions. The primary functions investigated in this dissertation were head-neck 

mobility and head-neck stability during locomotion. The hypothesis that vertebral 

morphology influences head-neck mobility was tested using intervertebral joint ranges of 

motion collected from radiographs. Regression results indicate little support for the 

predictions, see Table 3.1. Therefore, I conclude that ligaments and muscle offer greater 

stability to the joints than skeletal anatomy.  

To understand how locomotion influences cervical vertebral morphology, I first 

tested the hypothesis that the neck functions in providing head stability during 

locomotion. This hypothesis was tested by collection axial kinematic data from four 

species of lemur during the species’ primary mode of locomotion. The methods used 

provided values too coarse to satisfactorily gauge intervertebral kinematics and ranges of 

motion during locomotion. Analyses using axial segments (head, neck, and trunk) 

demonstrated that the locomotor mode influence trunk movement and that the 

movement of the trunk predicts neck movement in all planes as well as head roll and 

yaw, but neck pitch predicts head pitch. These results imply that the neck has a 

significant locomotor function. The last hypothesis attempted to understand the 

influence of locomotor axial kinematics on vertebral morphology. Due to the coarseness 

of the intervertebral results, however, axial segment ranges of motion could only be 

applied to C1, C7, and T5. These analyses, unsurprisingly, did not produce significant 

results. Thus, additional post-hoc analyses were conducted trying to understand how 

vertebral morphology varied between species. Results showed significant variations 

among species in all vertebral measurements. These significant differences appear to be 
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influenced by body size, despite the data being size adjusted. It is likely that these 

morphological variables do not scale isometrically. 

5.2 Neck Function 

The neck originates with the advent of terrestrial tetrapods (see Ericsson et al., 2013 

for review). A neck decouples the head from the trunk. This decoupling has led to a 

variety of exaptations; although it may not have evolved for the express purpose of 

grooming or feeding, the neck plays an important role in those behaviors. The neck’s 

function in feeding has been well-documented in reptiles (Summers et al., 1998; Jones et 

al., 2009; Taylor et al., 2011; Snively et al., 2014), but also of note in mammals (Dumont, 

1999; Anton et al., 2003; Salesa et al., 2005; Van Valkenburgh, 2006; Simmons and 

Altwegg, 2010). The neck’s function in feeding behaviors is understudied in primates, 

but primates are known to manipulate objects with their head and neck (e.g. Torigoe, 

1985) and anecdotally involve the neck in feeding behaviors (e.g. bark stripping or 

fruit/nut peeling). The neck is also useful in other behaviors such as grooming 

(Richmond et al., 1992) or predator vigilance. Behaviors like grooming and vigilance 

should, theoretically, select for large ranges of motion, potentially facilitating head-neck 

instability. Although the neck functions in these behaviors, I find it unlikely that they 

strongly select for cervical vertebral morphology within the hominin lineage. Becoming 

bipedal freed the hands from their locomotor function and, in turn, facilitated the 

increased manual dexterity (Kivell, 2015) for functions like feeding and grooming. It is 

more likely that the morphological differences found among fossil hominins (see Nalley, 

2013 for review) stem from posture or locomotor selective pressures. 

By decoupling the head from the trunk during locomotion the head is no longer 

required to move strictly in concert with the trunk. Separating the head from the pectoral 
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girdle allowed for head stability during locomotor tasks and head mobility for behaviors 

such as predation, feeding, and grooming. Work on salamanders has demonstrated that 

the neck muscles are much more active during terrestrial locomotion than in aquatic 

locomotion (Frölich and Biewener, 1992). These data lend support to the idea that the 

neck originally evolved for balancing the head during locomotion. The link between 

terrestrial locomotion and neck evolution is further supported by the presence of cervical 

fusion (syncervical vertebrae) in cetaceans, especially those that swim in the open ocean 

rather than shallow waters (e.g. river dolphins). It is likely that this fusion functions in 

stabilizing the neck for hydrodynamic swimming (Vanburen and Evans, 2017). 

Syncervical vertebrae found in ricochetal rodents (as well as shortened cervical 

vertebrae) are also thought to limit head motion during locomotion but the functional 

advantage of this has not been demonstrated (Vanburen and Evans, 2017). The presence 

of syncervical vertebrae in ricochetal rodents is counterintuitive to the hypothesis that 

neck mobility aids in head balance; this warrants further study. 

Strait and Ross (1999) measured the average inclination of the neck during mid-

stance or mid-swing in a wide sample of primates. There is no correlation between this 

measure of neck posture and the mode of locomotion in which it was collected. The 

values during quadrupedal locomotion, for example, range from 48o to 108o from the 

vertical line of gravity. However, species with locomotor modes requiring orthograde 

trunk postures (brachiation, suspension, bipedalism) tend to have more orthograde 

necks (18o -50o from vertical). This variation implies that neck function differs among 

modes of locomotion, but further research is required to understand the correlation 

between postural variation and locomotor function. Furthermore, locomotion places 

much higher loads on the skeleton than other behaviors (Preuschoft, 2004), such as 

grooming, and, therefore, should have greater influence on postcranial form. 
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If the neck functions to counteract movements of the trunk, then what variation is 

present among trunk motion due to locomotor mode? According to the results of this 

thesis research, range of whole-trunk pitch does not seem to exceed 20o normal walking 

of large-bodied mammals (see Table 4.12). However, these ranges are much larger 

during faster modes of locomotion both in the dataset collected for this dissertation as 

well as those collected by Dunbar et al. (2008). The results of this dissertation 

demonstrate cautious support for the hypothesis that speed influences axial kinematics. 

Speed is a significant predictor of range of trunk pitch and all ranges of neck motion (see 

Table 4.11). But because speed was self-selected by the animal locomoting, an 

experiment controlling for both locomotor mode and speed would better be able to 

understand the relationship between speed and axial kinematics. 

 Very few studies have investigated neck kinematics during locomotion. Data are 

available for horses (Dunbar et al., 2008) and giraffes (Basu et al., 2019), but work by 

Loscher and colleagues (2016) suggest that ungulates have derived locomotor head-neck 

kinematics and, therefore, might not be useful for describing the general mammalian 

condition. Cromwell et al. (2001) studied movement of the human head, neck, and trunk 

in the sagittal plane during bipedal walking. The trunk, defined by landmarks at the 

lumbosacral and cervicothoracic junctions, demonstrated the least angular motion and 

the neck had the greatest range of motion, see Table 4.12 for (Cromwell et al., 2001) 

Their results further reveal that the neck acts in opposition to the trunk. As the trunk 

extends during double limb support, the head and neck flex. They conclude that this 

oppositional movement allows for continued head balance and gaze stabilization.  

 Results of this thesis exhibit a similar pattern: the neck and the trunk move 

opposite each other. Statistical analyses demonstrate that trunk motion predicts neck 

motion in all planes of movement: yaw, pitch, and roll. Neck pitch also predicts head 
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pitch while trunk roll and yaw predict head roll and yaw, see Table 4.3. Visual inspection 

of the data do not reveal as clear a pattern as Cromwell and colleagues’ (2001) study, see 

Table 4.12. The neck and trunk appear to oppose each other in pitch, likely in order to 

stabilize the head. In roll, the neck appears intermediate between the head and trunk; it 

moves with neither. During quadrupedal trials, the neck and trunk move together in yaw.  

The strepsirrhine ranges of motion also tell a complex story. The human neck ranges 

of motion are almost three times greater than those of the trunk, see Table 4.12 

(Cromwell et al., 2001). This pattern is seen in both Propithecus VCL and Varecia 

arboreal quadrupedalism. For Lemur and Eulemur, however, the greatest range of 

motion is in the head. This could indicate differences in mechanisms of head 

stabilization. However, vertebral morphology does not statistically correlate with these 

differences. Perhaps those species have different semicircular canal morphology or larger 

eye range of motion or there are differences in muscular morphology. 

The semicircular canals have historically been associated with locomotion because 

they function in both the vestibulo-ocular reflex (VOR) and the vestibulo-collic reflex 

(VCR), the reflexes stabilizing the eyes and head respectively. Both reflexes are 

important aspects of head and gaze stabilization. The neural mechanisms of the VOR are 

well understood: as fluid moves within the canal it activates the cranial nerves that 

control ocular muscles, but the pathway for the VCR still remains nebulous but should 

act to stabilize the head in space via neck musculature (Goldberg and Cullen, 2011). 

Experimental work has demonstrated that these reflexes are vital in maintaining stability 

during involuntary head movements, but usually don’t operate during  voluntary head 

and eye movements (Pozzo et al., 1989; Hirasaki et al., 1999; Goldberg and Cullen, 2011). 

In comparison to birds, the mammalian VCR is relatively weak but the converse is true of 

the VOR (Goldberg and Cullen, 2011). It seems that mammals stabilize gaze by 
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stabilizing the eyes and birds stabilize gaze by stabilizing the head (Goldberg and Cullen, 

2011). Whether this difference is due to phylogenetic inertia or selection on whole-head 

stability isn’t understood but the dichotomy exemplifies the importance of gaze stability 

during involuntary movements. 

Regardless of which reflex is employed, the semicircular canals clearly function in 

locomotion in stabilizing the eyes and head. Research has linked larger canals to 

increased locomotor agility (Spoor et al., 2007) and more recently canal orthogonality to 

rotational head angular velocity during locomotion (Malinzak et al., 2012). Malinzak and 

colleagues (2012) found a significant, inverse correlation between the angular 

relationship between semicircular canals and the magnitude of the angular velocity of 

the head during locomotion. When compared to head and neck pitch, semicircular canal 

size and orientation does not seem to be correlated with axial movement during the 

primary mode of locomotion within the sample, see Table 5.1. Lemur and Eulemur have 

larger semicircular canals than Propithecus or Varecia. It is possible the larger canal size 

allows for smaller neck movements (and, therefore, larger head movements) during 

locomotion but further research on a greater number of taxa would be required to 

satisfactorily answer this question. This thesis only included one mode of locomotion. 

Malinzak suggests semicircular canals morphology could be adapted to high-risk 

locomotor behaviors. It is very unlikely that the slow-paced quadrupedal locomotion of 

Lemur and Varecia is the riskiest behavior in which they engage. Thus, it might also be 

useful to study head-neck motion in a variety of locomotor modes both common and rare 

(but risky). 
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Table 5.1 Head-neck kinematic values and semicircular canal morphology. Data taken from 

1Spoor et al. (2007) and 2Malinzak et al. (2012). 

Species Mode Head Pitch Neck Pitch 
Canal 
Radius1 

Agility 
score1 90var2 

Angular 
Velocity2 

Eulemur  HL 45 (+/-24) 20 (+/-8) 0.196 medium 77.9 78 

Lemur  TQ 26 (+/-12) 13 (+/-5) 0.161 medium 52.6 94 

Propithecus VCL 29 (+/-26) 54 (+/-17) 0.149 fast 27.7 124 

Varecia  AQ 9 (+/-5) 23 (+/-17) 0.145 medium 55.6 56 
 

Habitual posture during locomotion could be important for proper function of the 

vestibulo-collic reflex. Differences in head, neck and trunk postures have been shown 

affect the timing and activation of neck musculature (Thomson et al., 1996; McCluskey 

and Cullen, 2007; Corneil et al., 2013). These differences in muscular activation, in turn, 

affect the how the vestibulo-collic reflex operates. It is likely that these postures fall 

within the ideal range for muscular activation. Strait and Ross’s (1999) dataset included 

several platyrrhine species under different modes of locomotion. The intraspecific 

difference between these modes is minimal (<20o). It could be that the VCR operates in 

an ideal postural range and that range explains the variation in neck posture despite 

similar modes of locomotion. 

Differences in ocular mobility could also explain the smaller neck ROM, in 

comparison to head ROM, found in Lemur and Eulemur. Larger ocular ranges of motion 

could compensate for larger head movements. The human eye can move 89o in 

adduction-abduction, elevate 28o, depress 47o, and 7o in both intorsion and extorsion 

(Kushner and Kraft, 1983; Shin et al., 2016). Comparative data are not available for non-

human primates, but future work should investigate the differences in primate eye 

function and anatomy and its bearing on the VOR and VCR.  
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Proprioception could also play a role in these large head movements. All individuals 

were locomoting on stable, stiff substrates. They habituated to the space and substrates 

prior to data collection. It is possible that substrate compliance affects head mechanics. 

Compliant substrates have been shown to affect limb and trunk kinematics in primates. 

As a whole, these studies demonstrate that primates tend to reduce whole-body center of 

mass when locomoting on less stable substrates (Demes et al., 1995; Young, 2008; 

Channon et al., 2011; Young et al., 2016). Kinematic differences due to substrate 

compliance should also affect the head and neck. If the lemurs are on a stiff, familiar 

substrate, head stability may be less important. They do not need to look where they are 

going because they know where the substrate in relation to their bodies.  

The results of this dissertation, coupled with previously conducted research, 

demonstrate that the neck has an important locomotor function: to facilitate head 

balance and gaze stability. The influence this function has on morphology, however, is 

more ambiguous.  

5.3 Functional Influences on Vertebral Morphology 

 This dissertation aimed to understand the relative influences of both passive and 

locomotor range of motion on vertebral morphology. As a whole, the results demonstrate 

little support for either hypothesis. It is more likely that ligamentous anatomy constrains 

passive range of motion. The human spinal ligaments and their contributions to spinal 

stability are well described in the medical literature (reviewed in White and Panjabi, 

1990; Jaumard et al., 2011). For example, intraspecific analysis has indicated that 

intervertebral discs with smaller areas offer greater mobility (Natarajan and Andersson, 

1999). However, comparative data on morphological, histological and mechanical 

differences in mammalian spinal ligaments are quite limited (Little et al., 1981), but see 
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Long et al.'s (1997) study in dolphins. Given the negative results of this dissertation 

research, it is difficult to apply them to the fossil record, but we can attempt to apply 

what is already known about functional morphology of the spine. 

 Other attempts have been made to reconstruct joint range of motion in fossil 

specimens (Hutson and Hutson, 2012; Hammond, 2013; Kambic et al., 2017; 

Manafzadeh and Padian, 2018) and they similarly conclude the important of soft tissue 

in providing joint stability. Discussed previously, was the study conducted by 

Manafzadeh and Padian (2018) which found incredible expansion in avian hip ROM 

after ligamentous removal. They, and others, also highlight the necessity of studying 

range of motion in three-dimensions (Kambic et al., 2017; Manafzadeh and Padian, 

2018). A species rarely moves in one plane at a time. This is especially true of the neck: 

the uncinate processes purportedly require lateral flexion and extension in order to 

accomplish joint rotation (Kapandji, 2008). The 3D morphospace of possible 

movements could inform the study of cervical vertebral morphology and its potential 

effects on range of motion. The head and neck rarely move in one plane (e.g. flexion-

extension). Rather, movement is often three-dimensional. For example, the potential 

range of rotation likely differs between maximum flexion and neutral postures.  If both 

passive and locomotor range of motion fail to impart a functional signal, then what can 

we say about the vertebral morphology found within fossil hominoids? 

 The vertebral body is the primary weight-bearing vertebral structure. However, 

in humans, it has been demonstrated that cervical neural arch bears as much as 36% of 

the compressive loads applied to them (Pal and Sherk, 1988). It would be informative to 

conduct similar experiment on a range of species and loading regimes, especially 

applying tensile loads to primates with more pronograde neck postures. Because the 

vertebral body functions significantly in weight-bearing, its dimensions are highly 
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correlated with body mass (Rose, 1975; Shapiro, 1993b; Shapiro and Simons, 2002; 

Nakatsukasa and Hirose, 2003; Chen et al., 2005; Cotter, 2011; Nalley and Grider-

Potter, 2015). In the lower vertebral levels, expansion of vertebral body diameter has 

been associated with increased compressive loading in orthograde trunk postures (Rose, 

1975; Shapiro and Simons, 2002; Chen et al., 2005). The cervical vertebrae, however, do 

not show a correlation between neck orthogrady and centrum surface expansion. 

Instead, they demonstrate a significant link between pronograde posture and 

craniocaudally longer vertebral bodies (Nalley and Grider-Potter, 2015). It is likely that 

vertebral bodies experience greater bending moments in more pronograde postures and, 

therefore, increasing length increases the area over which to distribute these loads. Work 

across mammals by Arnold et al. (2017) has revealed that cervical body length has a 

negatively allometric relationship with body mass and they reason that stouter vertebrae 

can better accommodate the larger forces associated with increasing body mass. Similar 

results have been demonstrated for primate lumbar vertebrae (Shapiro and Simons, 

2002). Centrum length was also analyzed in this dissertation as a correlate of range of 

flexion-extension with minimal success. It is likely that the relative size of the 

intervertebral discs is also an important factor in flexion-extension movement (Breit and 

Künzel, 2004). 

Uncinate processes are also important as they are thought to offer joint stability. This 

hypothesis is logical: a U-shaped joint  and supported by human research (Kapandji, 

2008), the analyses conducted as a part of this dissertation found no relationship 

between relative uncinate height and passive range of lateral flexion. Uncinate height 

and “roundness” has also been shown to be highly correlated with body size (Meyer et 

al., 2018). Uncinate processes are relatively taller in smaller primates (Meyer et al., 

2018). The functional significance of this pattern is not clear.  
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 The spinous process has received much attention in investigations of functional 

morphology because it is the attachment site of the head-neck extensors. Longer, more 

caudally oriented processes are thought to provide greater mechanical advantage to the 

nuchal musculature because they extend the moment arm of the neck extensors further 

from the joint’s center of rotation (Shapiro, 1993b; Nalley and Grider-Potter, 2015). 

Spinous process length has been shown to scale with positive allometry, potentially 

indicating the necessity for relatively greater muscular output to maintain stability in 

larger animals (Shapiro and Simons, 2002; Arnold et al., 2016). In addition, Nalley and 

Grider-Potter (2015) established a significant correlation between relative spinous 

process length and neck posture. Species with have more pronograde neck postures 

during locomotion have relatively longer spinous processes. This is likely due to the need 

for greater force needed to balance the head in more pronograde neck postures (Nalley 

and Grider-Potter, 2015). This dissertation provided little evidence longer spinous 

processes result in either reduced ranges of extension through skeletal inhibition of 

motion or increased ranges of flexion by lengthening the moment arm. 

 The cross-sectional area of the neural arch (i.e. pedicles, laminae, processes) is 

also of interest. Relatively larger cross-section area should offer increased resistance to 

deformation under loading (reviewed in Lieberman et al., 2004). Increased pedicle 

dimensions are found in the lower lumbar vertebrae of more orthograde primate taxa 

(Shapiro, 1993a), likely in response to greater compressive loading. The cross-sectional 

area of cervical laminae was found to correlate with neck inclination in C4 and C5, as 

well, but no other neural arch area correlations proved significant in the primate cervical 

spine (Nalley and Grider-Potter, 2015).  

 Morphology of the articular facets should also affect the motion and loading 

patterns that occurs between intervertebral joints. The angle of the facets within the 
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spinal column varies: lumbar facets are positioned medially to limit rotation, thoracic 

facets are oriented ventro-dorsally to limit lateral flexion, and cervical facets are angled 

cranially in order to facilitate greater freedom of motion (Kapandji, 2008). Despite these 

known, gross differences in facet orientation and range of motion, no interspecific 

correlation between the two was found in primate cervical vertebrae in this dissertation. 

Neck posture, however, has been shown to correlate with facet orientation. More 

orthograde primates possess more coronally oriented facets. This is likely an adaptation 

to increasing compressive forces associated with neck orthogrady (Nalley and Grider-

Potter, 2015). In addition, pronograde primates tend to have much greater curvature of 

the atlantooccipital joint, possibly to combat increased multidirectional loading 

(Hamrick, 1996; Grider-Potter and Hallgren, 2013; Nalley and Grider-Potter, 2017). 

Results of this dissertation also demonstrate little support for the prediction that 

increased joint size equates to increased ranges of motion. This is likely due to stability 

offered by the joint capsular ligaments. Articular facet size has been implicated in 

habitual loading patterns (Breit and Kunzel, 2002; Meyer, 2016). Given that the articular 

pillars can dissipate up to 1/3 of vertebral loading, it is possible that articular facet size 

correlates with habitual posture. One would expect joint surface size to increase with the 

large compressive loads associated with orthograde neck posture. 

5.4 Implications for fossil hominin species 

This research attempted understand the functional influences on cervical vertebral 

form in order to retrodict the behaviors of extinct species. The vertebrae of fossil 

hominins are particularly puzzling as they preserve human-like and ape-like 

morphologies. If form follows function, this implies concomitant human-like and ape-
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like functions. Specimens from several species of hominin have been described in the 

literature. 

Australopithecus afarensis 

A C1, C2, and C6 from Hadar (Lovejoy et al., 1982), as well as the mostly complete 

column (C2-C7) from Woranso-Mille (Meyer, 2016) have been unearthed. Relative 

vertebral body height of the specimens is similar to that found in modern Homo sapiens 

and shorter than that found in Pan, but not outside the values found in hylobatids 

(Nalley, 2013; Meyer, 2016). The Hadar C6 (A.L. 333-106) possesses a long, robust 

spinous process, similar to that found in Pan, more robust laminae than humans (but 

not apes), and taller articular facets. No spinous processes are preserved from the KSD-

VP 1/1 series. However, the laminae are more robust than in modern humans. The lower 

cervical articular facets of the KSD-VP 1/1 vertebrae are oriented more obliquely (relative 

to midline) than in modern humans but the facets have similar relative heights.  

A partial atlas of A. afarensis has been recovered, A.L. 333-83 (Lovejoy et al., 1982). 

Similar to that found in more pronograde species, the atlantooccipital joint is highly 

curved. Highly curved joints should offer greater stability under multidirectional loading 

(Hamrick, 1996), e.g. different head-neck postures. The axes from Hadar and Woranso-

Mille also present disparate morphologies. The Hadar specimen, A.L. 333-101, preserves 

articular facets that are flat (similar to humans) and a dens that lacks the dorsal 

inclination found in some non-human primates. The articular facet orientation is 

potentially a response to increased compressive loading associated with orthogrady 

(Gommery, 2006). In contrast, the KSD-VP 1/1 C2 has highly angled superior articular 

facets, similar to that found in New World monkeys, but lacks a dens (Meyer, 2016). This 

variation is surprising. The Hadar specimen has significant taphonomic damage to the 
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articular facets, which could explain the variation in this specific variable. As a whole, 

however, the apparently incongruent morphologies between the A.L. 333-101 and KSD-

VP 1/1 specimens are cause for concern. The linear measurements from KSD-VP 1/1 are 

not scaled with a consistent measure of size, which could be obfuscating a pattern, but 

this wouldn’t account for disparities in angular measurements. Future work should 

investigate the intraspecific variation found in ape cervical morphology and if these 

specimens fall outside the expected range of variation within one species. 

The robusticity of the spinous process imply that like great apes, A. afarensis 

benefitted from increased force output of the nuchal musculature. Similarly, the 

morphologies indicate adaptations to habitually large, multidirectional loading of the 

cervical spine (e.g. robust laminae and spinous processes, curved atlantooccipital joint). 

Therefore, it is likely that A. afarensis’ neck posture was not as orthograde as that of 

modern humans.  

Australopithecus sediba 

 Several cervical vertebrae of A. sediba have been discovered: a C3 and C7 from a 

subadult MH1 and a C3 and C6 from the adult MH2 (Berger et al., 2010). They have 

subsequently been analyzed by (Meyer et al., 2017). Both individuals are absolutely 

smaller than modern humans in vertebral body and canal dimensions. According to the 

analyses conducted by Meyer et al. (2017), articular facet height does not fall outside the 

range of human values but is angled much more acutely relative to midline. This 

angulation is similar to that found in extant apes as well as A.L. 333-106 (but not KSD-

VP 1/1). The relative spinous process lengths of MH2 are not significantly different from 

humans. All relative linear values are not significantly different in Meyer et al.'s (2017) 

analyses, with the exception of uncinate ‘roundness’ and a ratio of centrum to neural 
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arch mass in C3, but not C6. In addition, the spinous processes of C6 are much more 

inferiorly inclined than in anatomically modern humans, which could offer nuchal 

musculature greater mechanical advantage during extension.  The articular facets appear 

more coronally oriented, in comparison to humans, which could indicate greater 

compression in the articular pillars. Additionally, Meyer et al. (2017) show that in 

comparison to humans, A. sediba has a more robust, inferiorly inclined transverse 

process as well as more vertical uncinate processes. The transverse process robusticity 

could, according to the results of this dissertation, relate to increased mechanical 

advantage of the lateral neck flexors. Overall, these morphologies appear very similar to 

that of H. sapiens, which may indicate similarities in head balance mechanisms and neck 

posture. However, additional measurements (such as lamina cross-sectional area and 

articular facet angle in the sagittal plane) would further elucidate the functional 

implications of the preserved morphology. 

Homo erectus 

 Two subadult cervical specimens from Dmanisi, C2 and C3, are described in the 

literature (Meyer, 2005). Meyer (2005) reported absolute values. For purposes of 

comparison, I scale his data to vertebral canal area and compared to species ranges from 

Nalley (2013), which were previously scaled to vertebral canal area. The C2 preserves 

laminae with relative thickness just outside the range of adult human variation. Its 

spinous process is relatively long, similar to that found in Gorilla and Pongo. Given that 

this specimen is immature, it is likely that these values would be on the lower end of the 

species values. The articular facets are oriented 53o from the plane of the vertebral body. 

Its uncinate processes are short and angled (unlike those found in the A. sediba 

specimens). The relative thickness of the lamina is slightly thinner than the human and 

chimpanzee values found for adult C3. The relative height of the vertebral body falls 
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within the range of the extant H. sapiens. Its pedicles are absolutely shorter than both 

the adult and subadult specimens from Malapa (Meyer, 2005; Meyer et al., 2017). These 

specimens, although immature, reveal an interesting pattern. Despite lacking annular 

ring fusion, the C2 is more robust. However, the C3 appears more gracile. Cranial 

vertebrae reach maturity earlier than more caudal vertebrae (Scheuer and Black, 2000; 

Altan et al., 2012). Thus, these differences could be due to ontogeny: C2 is at a later stage 

of maturation than C3. The robusticity found C2 would seem to indicate greater loading 

associated with pronograde postures. However, it is difficult to partition functional 

variation from ontogentic variation in these subadult specimens. 

 A subadult C7 attributed to Homo erectus, KNM-WT 15000r, has also been 

described in the literature (Brown et al., 1985; Latimer and Ward, 1993). Its annular 

rings are also unfused. The vertebral body of the specimen is craniocaudally shorter than 

that of Homo sapiens but does not differ significantly in any other linear metric (Nalley, 

2013; Meyer et al., 2018). However, this could also be attributed to its immaturity.  

Homo neanderthalensis 

 Many more cervical vertebral specimens of Neanderthals have been found which 

allows for both greater statistical power as well as an improved understanding of 

variation within the extinct species. Neanderthal cervical vertebral morphology and its 

implications was reviewed by (Gómez-Olivencia et al., 2013). They conducted their 

analyses using raw measurements. At all levels, dorsoventral diameter of the vertebral 

canal is not significantly different from that of humans, but the transverse diameter of 

the canal is significantly larger. Correcting for body size would improve the comparisons 

made here. Their analyses show that Neanderthals have significantly longer, and more 

horizontally oriented spinous processes as well as thicker laminae, in comparison to 
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modern humans in the lower cervical vertebrae (C5-C7). The ventral aspect of the 

vertebral body is significantly short in all levels. The uncinate processes do not differ in 

height, nor do the pedicle dimensions. The robusticity of the vertebrae is expected in 

Neanderthals, who are a robust species in many other aspects. The robusticity of the 

neural arch is likely an adaptation to creating and transmitting high muscular loads. It 

may be that the robust skull found in Neanderthals requires and equally robust neck to 

balance it.  

5.5 Future Directions 

 The results of this research show that both passive and locomotor range of 

motion have little influence on cervical vertebral morphology. Very few functional 

influences on cervical vertebral morphology have been identified. Analyses testing the 

influences of locomotor mode on cervical morphology have had mixed success in 

previous studies (Manfreda et al., 2006; Nalley, 2013; Arlegi et al., 2017; Meyer et al., 

2018; Villamil, 2018), but most are unsatisfactory in that they use of categorial variables. 

These categories often ignore or reduces critical, explanatory variation. Quadrupedalism, 

for example, encompasses a range of neck inclinations (Strait and Ross, 1999), positional 

behaviors, and locomotor behaviors (Hunt et al., 1996). This category obscures 

meaningful behavioral variation found within it. This dissertation attempted, in part, to 

quantify locomotor variation in neck function via axial kinematics rather than relying on 

broad, often meaningless, categories. Results demonstrate that the neck is an active 

participant in locomotion. Locomotor behavior should, consequently, be reflected in 

vertebral morphology. However, methodological issues prevented intervertebral 

kinematics from being successfully applied to vertebral morphology. Future work would 

benefit from more refined methods of skeletal kinematic data collection (i.e. XROMM). 

It is also important to collect data from a variety of locomotor modes, especially those 
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that are rare but induce high loads or are potentially risky. This will facilitate 

understanding species-specific vs. locomotion-specific behaviors of the axial skeleton. 

Kinematic analyses would also benefit from a more controlled study of speed. 

Understanding the influence of soft-tissue anatomy on cervical morphology is a large gap 

in the literature. This gap is overly apparent in the discussion of passive range of motion 

and its inhibitors. Detailed studies of muscular and ligamentous morphology and 

histology would greatly benefit our understanding of neck form and function.  

This dissertation quantified the locomotor function of the primate neck: to balance 

the head and counteract the movements of the trunk. This is a critical step towards 

understanding the neck’s myriad of functions and how they influence its form. Although 

this measure of locomotor function did not correlate with skeletal morphology, habitual 

neck posture during locomotion has previously been shown to influence it (Nalley and 

Grider-Potter, 2015, 2017). Future work would benefit from furthering our 

understanding of axial kinematics in a variety of species and their numerous modes of 

locomotion and other behaviors (e.g. feeding). In understanding this, we may shed light 

on the selective pressures that shape the disparate vertebral morphologies found in the 

hominin fossil record. 
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APPENDIX  A 

DATA TABLES



 

 

 

Table 0.1 Species averages of morphological measurements 

Species Level CA SPL SAFH ATPL PTPL UH VBVH SPA SAFA ATPA PTPA 
S. apella C1 108.19 1.72 5.71 4.82 

    
161.28 

  

E. mongoz C1 81.52 
 

4.29 7.00 
    

153.93 
  

H. sapiens C1 450.03 7.51 17.20 13.23 
    

126.36 
  

H. lar C1 136.37 2.85 6.36 6.19 
    

139.89 
  

L. catta C1 69.18 
 

5.22 7.11 
    

163.05 
  

M. mulatta C1 175.54 2.85 5.19 5.62 
    

143.78 
  

O. crassicaudatus C1 28.78 1.78 4.57 4.48 
    

149.37 
  

P. verreauxi C1 86.52 
 

5.24 9.13 
    

153.82 
  

S. sciureus C1 54.41 
 

2.70 4.86 
    

160.83 
  

V. variegata C1 86.19 1.71 8.20 9.43 
    

159.28 
  

S. apella C2 55.01 6.55 5.61 5.58 
 

5.29 7.85 88.24 59.02 66.96 
 

E. mongoz C2 34.95 4.86 4.53 5.19 
 

3.28 
 

135.54 20.21 97.20 112.30 
H. sapiens C2 445.23 15.78 16.27 9.57 

 
15.55 17.18 117.16 53.82 131.42 113.00 

H. lar C2 90.33 7.78 6.83 6.04 
 

5.12 11.43 107.80 26.03 103.91 131.75 
L. catta C2 39.83 6.11 4.62 5.10 

 
4.39 6.68 111.61 32.09 86.40 120.78 

M. mulatta C2 79.67 9.03 6.93 5.51 
 

6.34 9.43 107.82 47.52 50.01 69.28 
O. crassicaudatus C2 30.74 4.85 2.82 3.24 

 
3.40 6.88 134.79 26.64 94.96 93.88 

P. verreauxi C2 42.00 7.11 5.45 6.82 
 

4.80 8.92 115.30 27.23 90.22 
 

S. sciureus C2 30.69 3.64 4.15 4.15 
 

2.78 
 

175.69 27.11 54.43 
 

V. variegata C2 52.37 6.49 5.50 7.74 
 

5.79 6.56 101.21 25.10 128.39 96.04 
S. apella C3 86.62 5.10 4.10 7.01 

 
2.37 5.20 130.11 59.44 131.78 128.39 

E. mongoz C3 36.72 3.57 3.67 5.96 
 

1.10 7.62 140.15 31.80 135.06 112.45 
H. sapiens C3 411.82 12.13 10.72 12.32 6.47 5.24 14.16 121.76 52.62 125.61 115.90 
H. lar C3 82.66 6.01 5.45 6.45 

 
3.41 8.94 111.17 33.95 118.68 103.77 

L. catta C3 39.11 3.56 3.84 6.80 
 

1.68 9.14 125.26 29.97 61.59 129.91 
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M. fascicularis C3 72.26 5.99 4.69 5.30 5.08 3.58 
 

137.93 27.56 140.60 141.61 
M. mulatta C3 83.07 6.80 5.94 7.04 5.30 3.94 6.97 126.78 23.48 103.67 99.52 
O. crassicaudatus C3 35.71 2.08 2.63 3.73 

 
1.10 8.19 120.63 31.24 130.78 98.42 

P. troglodytes C3 89.83 19.72 8.54 8.90 6.36 5.30 
 

140.14 26.80 135.20 149.11 
P. verreauxi C3 39.89 4.42 4.58 7.49 

 
2.08 10.20 135.75 31.50 102.39 

 

S. sciureus C3 75.28 2.41 2.69 4.88 
 

1.60 5.59 147.24 30.52 134.10 134.08 
V. variegata C3 43.08 5.44 4.88 13.25 

 
2.44 8.75 107.95 26.49 39.90 92.12 

C. apella C4 93.63 5.54 4.40 6.06 4.44 2.34 4.87 126.17 78.09 121.24 129.97 
E. mongoz C4 34.04 3.41 4.08 6.28 5.73 1.52 7.02 130.04 15.88 109.67 131.00 
H. sapiens C4 389.44 14.17 12.05 10.67 6.25 4.93 14.33 130.27 50.27 112.26 101.66 
H. lar C4 893.14 7.49 5.55 7.35 3.94 3.39 7.89 117.60 29.91 141.50 136.72 
L. catta C4 41.45 3.59 4.32 5.98 

 
1.58 8.07 103.68 29.76 80.72 

 

M. fascicularis C4 83.52 5.67 4.84 5.79 2.88 3.40 
 

126.16 29.64 135.96 137.23 
M. mulatta C4 93.53 6.37 6.00 5.93 4.63 3.96 7.20 125.89 30.13 122.64 106.73 
O. crassicaudatus C4 30.79 1.91 2.72 3.50 

 
1.15 7.53 130.73 28.62 149.82 101.25 

P. troglodytes C4 109.20 23.87 8.70 8.97 7.22 5.28 
 

133.62 26.01 139.86 144.45 
P. verreauxi C4 40.62 4.11 4.82 7.79 

 
2.04 10.30 128.69 29.35 77.77 

 

V. variegata C4 46.02 5.82 5.14 9.22 1.71 2.30 9.10 99.17 28.97 36.31 87.62 
S. apella C5 89.47 6.12 4.24 3.92 4.11 2.47 4.90 126.96 61.80 85.70 123.10 
E. mongoz C5 37.27 3.43 4.18 5.62 2.76 1.22 6.37 146.75 21.45 83.85 114.94 
H. sapiens C5 410.77 16.85 11.74 9.61 7.44 5.40 11.84 128.84 52.86 99.63 117.67 
H. lar C5 101.20 8.23 6.08 5.80 3.75 3.28 8.45 111.68 35.87 141.63 128.84 
L. catta C5 39.46 3.64 3.97 6.26 4.21 1.59 7.56 112.29 27.46 110.81 114.42 
M. fascicularis C5 59.52 6.69 4.91 3.97 3.93 3.10 

 
135.89 12.74 112.23 130.34 

M. mulatta C5 94.20 7.41 5.67 4.31 5.03 3.53 6.42 127.20 29.46 115.85 111.46 
O. crassicaudatus C5 34.86 1.75 2.63 2.95 1.17 0.97 7.37 124.42 29.06 131.44 94.13 
P. troglodytes C5 111.93 26.33 8.57 7.38 7.07 5.16 

 
137.47 25.23 123.90 146.26 

P. verreauxi C5 41.53 5.75 4.82 7.03 4.54 2.10 9.56 143.73 23.69 112.27 
 

S. sciureus C5 69.05 3.41 2.85 3.32 2.85 1.41 4.20 140.54 29.66 135.17 140.62 
V. variegata C5 53.47 5.33 5.37 9.01 5.14 2.33 7.92 124.70 28.33 39.11 70.80 
S. apella C6 86.50 8.02 4.15 9.25 4.14 2.36 5.35 121.89 41.90 126.68 123.90 
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E. mongoz C6 37.59 4.06 4.25 8.39 2.29 1.22 6.27 132.52 29.44 126.16 113.82 
H. sapiens C6 421.16 21.89 12.05 10.13 7.12 5.23 13.46 128.65 43.57 125.09 104.54 
H. lar C6 93.16 9.66 5.77 6.79 3.19 3.16 7.38 114.66 25.96 147.55 129.71 
L. catta C6 40.08 4.36 4.04 7.70 3.39 1.44 8.89 119.12 30.89 62.35 122.22 
M. fascicularis C6 55.73 8.01 4.65 7.04 4.16 3.05 

 
147.09 23.75 103.16 119.12 

M. mulatta C6 96.41 8.60 5.63 8.66 5.18 3.82 7.34 126.18 28.91 118.59 113.25 
O. crassicaudatus C6 31.45 2.08 3.06 4.84 1.56 0.93 7.02 128.23 30.86 128.23 91.14 
P. troglodytes C6 123.70 28.13 9.02 8.79 6.45 5.50 

 
128.79 26.79 129.43 136.59 

P. verreauxi C6 41.82 9.58 5.11 10.45 3.49 1.75 8.77 145.57 24.83 115.90 
 

S. sciureus C6 43.03 4.33 2.66 5.69 2.46 1.23 4.51 140.43 19.55 120.33 
 

V. variegata C6 63.13 6.42 5.34 10.75 4.68 1.67 8.34 117.56 38.37 89.54 79.68 
S. apella C7 93.09 11.51 4.15 4.80 5.07 1.96 5.38 116.72 66.52 147.14 118.15 
E. mongoz C7 31.92 5.91 3.85 

 
4.60 1.17 6.11 139.78 24.16 141.53 122.66 

H. sapiens C7 320.93 29.82 11.41 10.62 11.90 5.79 11.23 128.96 55.32 121.35 111.78 
H. lar C7 96.20 11.94 5.20 5.39 5.38 3.12 7.70 110.08 35.42 140.99 123.14 
L. catta C7 37.26 7.03 3.83 

 
5.74 1.25 7.89 133.52 28.08 82.35 100.82 

M. fascicularis C7 54.29 9.04 4.27 4.34 6.16 3.33 
 

141.14 29.50 120.18 128.71 
M. mulatta C7 84.41 10.37 5.47 

 
6.71 3.47 6.17 127.61 27.42 119.97 110.44 

O. crassicaudatus C7 27.64 2.27 2.96 
 

2.46 0.76 7.36 122.41 28.09 125.54 108.02 
P. troglodytes C7 140.75 29.09 8.91 

 
10.65 6.23 

 
131.89 24.56 141.99 151.62 

P. verreauxi C7 39.48 9.98 5.17 4.82 4.37 1.60 8.38 154.90 21.23 129.81   
S. sciureus C7 4097.57 5.92 2.55 

 
2.98 1.26 4.71 127.56 28.87 125.04 129.71 

V. variegata C7 50.87 9.07 5.03 
 

5.89 1.35 7.79 110.94 29.79 27.19 88.02 
S. apella T1 35.34 12.99 3.77 

 
4.94 

 
6.25 117.66 80.04 

 
94.36 

E. mongoz T1 27.31 8.65 3.17 
 

4.84 
 

5.94 129.76 34.60 102.65 117.36 
H. sapiens T1 384.88 32.03 12.50 

 
19.71 5.02 16.31 128.19 52.14 109.05 107.04 

H. lar T1 67.11 12.57 5.61 
 

6.84 1.23 7.82 131.37 18.99 
 

96.07 
L. catta T1 36.23 9.56 3.06 

 
5.16 1.14 8.63 128.98 29.02 61.95 115.09 

M. mulatta T1 72.69 17.25 4.51 
 

8.35 3.38 7.19 124.32 37.58 38.48 92.21 
O. crassicaudatus T1 27.42 7.28 2.52 

 
4.65 1.06 7.67 128.27 33.23 138.46 105.56 

P. verreauxi T1 33.56 9.92 4.47 
 

4.84 1.16 7.61 144.25 33.24 109.77 
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S. sciureus T1 23.76 7.57 2.26 
 

3.37 
 

4.79 
    

V. variegata T1 44.08 11.41 4.36 
 

6.79 0.71 7.86 120.93 34.83 31.35 98.65 
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Table 0.2 Ranges of intervertebral motion. 

Species Joint Source Extension Flexion Flexion-Extension Lateral Flexion 
Sapajus apella C0-C1 Graf et al. 1995 107.50    
Eulemur mongoz C0-C1 Duke Lemur Center 35.44 25.94 61.38 7.12 
Homo sapiens C0-C1 White and Panjabi, 1990 12.40 14.40 26.80 5.00 
Hylobates lar C0-C1 Osaka University 11.61 3.18 14.79 6.25 
Lemur catta C0-C1 Duke Lemur Center 8.94 16.82 25.76 8.14 
Macaca mulatta C0-C1 Graf et al. 1995 137.00 105.00 242.00  
Macaca mulatta C0-C1 Graf et al. 1995 119.30 118.00 237.30  
Otolemur 
crassicaudatus C0-C1 Duke Lemur Center 5.72 13.04 7.33 3.47 
Propithecus verreauxi C0-C1 Duke Lemur Center 9.51 19.33 27.22 2.57 
Pan troglodytes C0-C1 Stony Brook University  8.76  
Saimiri sciureus C0-C1 Graf et al. 1995 116.40 106.70 223.10  
Varecia variegata C0-C1 Duke Lemur Center 34.40 21.67 56.07 2.71 
Sapajus apella C1-C2 Graf et al. 1995 0.00    
Eulemur mongoz C1-C2 Duke Lemur Center 4.32 14.36 18.69 22.82 
Homo sapiens C1-C2 White and Panjabi, 1990 10.50 12.70 23.20 5.00 
Hylobates lar C1-C2 Osaka University 8.91 4.77 13.68 4.90 
Lemur catta C1-C2 Duke Lemur Center 8.23 16.70 24.93 28.20 
Macaca mulatta C1-C2 Graf et al. 1995 3.00 0.00 3.00  
Macaca fascicularis C1-C2 Graf et al. 1995 7.00 5.30 12.30  
Otolemur 
crassicaudatus C1-C2 Duke Lemur Center 7.08 8.79 1.71 16.26 
Propithecus verreauxi C1-C2 Duke Lemur Center 8.50 11.03 18.35 11.51 
Pan troglodytes C1-C2 Stony Brook University  16.07  
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Saimiri sciureus C1-C2 Graf et al. 1995 222.20 3.30 225.50  
Varecia variegata C1-C2 Duke Lemur Center 4.76 2.77 7.52 28.44 
Sapajus apella C2-C3 Graf et al. 1995 0.00    
Eulemur mongoz C2-C3 Duke Lemur Center 8.50 5.13 13.63 7.33 
Homo sapiens C2-C3 White and Panjabi, 1990 2.00 7.00 9.00 10.00 
Hylobates lar C2-C3 Osaka University 11.91 7.02 18.93 11.72 
Lemur catta C2-C3 Duke Lemur Center 8.58 5.47 14.05 6.71 
Macaca mulatta C2-C3 Graf et al. 1995 4.00 20.00 24.00  
Macaca fascicularis C2-C3 Graf et al. 1995 16.00 8.30 24.30  
Otolemur 
crassicaudatus C2-C3 Duke Lemur Center 7.63 18.14 25.76 7.33 
Propithecus verreauxi C2-C3 Duke Lemur Center 8.60 6.57 15.17 11.35 
Pan troglodytes C2-C3 Stony Brook University  1.65  
Saimiri sciureus C2-C3 Graf et al. 1995 3.60 0.70 4.30  
Varecia variegata C2-C3 Duke Lemur Center 7.47 9.19 16.67 5.18 
Sapajus apella C3-C4 Graf et al. 1995 1.50    
Eulemur mongoz C3-C4 Duke Lemur Center 5.17 2.92 8.10 5.83 
Homo sapiens C3-C4 White and Panjabi, 1990 4.00 10.00 14.00 11.00 
Hylobates lar C3-C4 Osaka University 11.17 8.74 19.91 2.64 
Lemur catta C3-C4 Duke Lemur Center 7.14 7.60 14.74 7.31 
Macaca mulatta C3-C4 Graf et al. 1995 10.00 4.00 14.00  
Macaca fascicularis C3-C4 Graf et al. 1995 8.00 5.00 13.00  
Otolemur 
crassicaudatus C3-C4 Duke Lemur Center 13.38 3.74 17.12  
Propithecus verreauxi C3-C4 Duke Lemur Center 19.57 6.83 26.39 10.15 
Pan troglodytes C3-C4 Stony Brook University  10.81  
Saimiri sciureus C3-C4 Graf et al. 1995 8.60 4.70 13.30  
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Varecia variegata C3-C4 Duke Lemur Center 8.17 13.27 21.44 7.09 
Sapajus apella C4-C5 Graf et al. 1995 0.00    
Eulemur mongoz C4-C5 Duke Lemur Center 9.20 7.83 17.02 5.11 
Homo sapiens C4-C5 White and Panjabi, 1990 9.00 3.00 12.00 11.00 
Hylobates lar C4-C5 Osaka University 17.50 0.07 17.57 1.66 
Lemur catta C4-C5 Duke Lemur Center 10.85 10.17 21.01 5.48 
Macaca mulatta C4-C5 Graf et al. 1995 13.00 5.00 18.00  
Macaca fascicularis C4-C5 Graf et al. 1995 11.30 0.00 11.30  
Otolemur 
crassicaudatus C4-C5 Duke Lemur Center 13.38 3.74 17.12 9.29 
Propithecus verreauxi C4-C5 Duke Lemur Center 10.61 7.72 18.33 7.42 
Pan troglodytes C4-C5 Stony Brook University  19.27  
Saimiri sciureus C4-C5 Graf et al. 1995 11.20 3.70 14.90  
Varecia variegata C4-C5 Duke Lemur Center 15.99 20.01 36.00 9.68 
Sapajus apella C5-C6 Graf et al. 1995 2.50    
Eulemur mongoz C5-C6 Duke Lemur Center 17.51 3.23 20.74 5.70 
Homo sapiens C5-C6 White and Panjabi, 1990 3.00 15.00 18.00 8.00 
Hylobates lar C5-C6 Osaka University 9.10 6.14 15.24 1.70 
Lemur catta C5-C6 Duke Lemur Center 17.55 6.47 24.02 6.56 
Macaca mulatta C5-C6 Graf et al. 1995 16.00 0.00 16.00  
Macaca fascicularis C5-C6 Graf et al. 1995 8.60 0.00 8.60  
Otolemur 
crassicaudatus C5-C6 Duke Lemur Center 15.46 -3.12 12.34 3.39 
Propithecus verreauxi C5-C6 Duke Lemur Center 11.62 9.21 20.83 6.51 
Pan troglodytes C5-C6 Stony Brook University  23.90  
Saimiri sciureus C5-C6 Graf et al. 1995 12.00 3.70 15.70  
Varecia variegata C5-C6 Duke Lemur Center 11.39 9.87 21.25 5.92 
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Sapajus apella C6-C7 Graf et al. 1995 20.50    
Eulemur mongoz C6-C7 Duke Lemur Center 15.98 4.72 20.70 5.08 
Homo sapiens C6-C7 White and Panjabi, 1990 10.00 9.00 19.00 7.00 
Hylobates lar C6-C7 Osaka University 11.64 27.15 38.79 1.74 
Lemur catta C6-C7 Duke Lemur Center 23.45 6.84 30.29 4.82 
Macaca mulatta C6-C7 Graf et al. 1995 22.00 0.00 22.00  
Macaca fascicularis C6-C7 Graf et al. 1995 16.70 0.00 16.70  
Otolemur 
crassicaudatus C6-C7 Duke Lemur Center 1.26 10.65 9.39 5.26 
Propithecus verreauxi C6-C7 Duke Lemur Center 15.62 6.65 22.27 4.34 
Pan troglodytes C6-C7 Stony Brook University  14.06  
Saimiri sciureus C6-C7 Graf et al. 1995 19.00 3.00 22.00  
Varecia variegata C6-C7 Duke Lemur Center 17.95 13.57 31.53 5.88 
Sapajus apella C7-T1 Graf et al. 1995 6.50    
Eulemur mongoz C7-T1 Duke Lemur Center 19.33 6.64 25.96 4.14 
Homo sapiens C7-T1 White and Panjabi, 1990 6.00 4.00 10.00 4.00 
Hylobates lar C7-T1 Osaka University   2.25 
Lemur catta C7-T1 Duke Lemur Center 14.15 9.17 23.33 3.84 
Macaca mulatta C7-T1 Graf et al. 1995 10.00 0.00 10.00  
Macaca fascicularis C7-T1 Graf et al. 1995 21.30  21.30  
Otolemur 
crassicaudatus C7-T1 Duke Lemur Center 26.57 2.47 29.04 4.16 
Propithecus verreauxi C7-T1 Duke Lemur Center 14.52 3.51 18.03 6.17 
Saimiri sciureus C7-T1 Graf et al. 1995 22.60 3.00 25.60  
Varecia variegata C7-T1 Duke Lemur Center 13.47 14.97 28.44 4.11 
Eulemur mongoz C0-C7 Duke Lemur Center 115.45 70.76 186.21 63.12 
Homo sapiens C0-C7 White and Panjabi, 1990 56.90 75.10 132.00 61.00 
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Hylobates lar C0-C7 Osaka University 81.84 57.07 138.91 32.86 
Lemur catta C0-C7 Duke Lemur Center 98.88 79.25 178.13 71.06 
Otolemur 
crassicaudatus C0-C7 Duke Lemur Center 90.47 57.45 119.81 58.44 
Propithecus verreauxi C0-C7 Duke Lemur Center 98.54 70.85 166.58 60.00 
Varecia variegata C0-C7 Duke Lemur Center 113.60 105.32 218.92 69.00 
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APPENDIX B 

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE APPROVAL 
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