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ABSTRACT  

With improvements in technology, intensive longitudinal studies that permit the 

investigation of daily and weekly cycles in behavior have increased exponentially over 

the past few decades. Traditionally, when data have been collected on two variables over 

time, multivariate time series approaches that remove trends, cycles, and serial 

dependency have been used. These analyses permit the study of the relationship between 

random shocks (perturbations) in the presumed causal series and changes in the outcome 

series, but do not permit the study of the relationships between cycles. Liu and West 

(2016) proposed a multilevel approach that permitted the study of potential between 

subject relationships between features of the cycles in two series (e.g., amplitude). 

However, I show that the application of the Liu and West approach is restricted to a small 

set of features and types of relationships between the series. Several authors (e.g., Boker 

& Graham, 1998) proposed a connected mass-spring model that appears to permit 

modeling of more general cyclic relationships. I showed that the undamped connected 

mass-spring model is also limited and may be unidentified. To test the severity of the 

restrictions of the motion trajectories producible by the undamped connected mass-spring 

model I mathematically derived their connection to the force equations of the undamped 

connected mass-spring system. The mathematical solution describes the domain of the 

trajectory pairs that are producible by the undamped connected mass-spring model. The 

set of producible trajectory pairs is highly restricted, and this restriction sets major 

limitations on the application of the connected mass-spring model to psychological data. I 

used a simulation to demonstrate that even if a pair of psychological time-varying 
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variables behaved exactly like two masses in an undamped connected mass-spring 

system, the connected mass-spring model would not yield adequate parameter estimates. 

My simulation probed the performance of the connected mass-spring model as a function 

of several aspects of data quality including number of subjects, series length, sampling 

rate relative to the cycle, and measurement error in the data. The findings can be 

extended to damped and nonlinear connected mass-spring systems.  
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    Chapter 1 

INTRODUCTION 

For much of the history of psychology, researchers did not emphasize the 

importance of temporal processes underlying behavior. This longstanding neglect of the 

temporal aspect of psychological variables is understandable given the previous lack of 

technology available for the repeated assessment of behavior in everyday life (Trull & 

Ebner-Premier, 2013). Fortunately, since the 1990s technological developments have 

introduced devices like smartphones, activity trackers, smart watches, and PDAs 

(personal digital assistants) that permit intensive assessment of our daily lives. This 

technology, known as ambulatory assessment, dramatically improved our ability to 

collect intensive longitudinal data, permitting researchers “to study individuals (1) in 

their natural settings, (2) in real-time (or close to real-time), and (3) on repeated 

occasions” (Conner & Mehl, 2015). Ambulatory assessment guarantees ecological 

validity because it is embedded into individuals’ daily lives and environments. Such 

assessment prevents distortions that may occur due to unrealistic laboratory settings (e.g. 

White, Schulman, McCabe, & Dey, 1989; Wilhelm & Grossman, 2010). Real-time 

measurement also minimizes cognitive bias resulting from the reconstruction of events in 

memory.  

The number of ambulatory assessment studies in psychology has been rising 

exponentially since 1985 (Hamaker & Wichers, 2017; Mehl & Conner, 2012; Trull & 

Ebner-Priemer, 2013). These studies have produced two structures of data that have been 

previously uncommon in psychology. First are studies of single individuals with a large 
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number of observations over time (e.g., 50, 100, 1000, or more). Second are studies with 

a moderate to large number of observations in which data are collected on many 

participants (e.g., 100 or more). These new data structures require the use of statistical 

techniques that can address within-individual time series data. 

Traditionally, time series data have been analyzed using multivariate 

(concomitant) time series analysis of the data for single individuals (Box, Jenkins, 

Reinsel, & Ljung, 2015; Hamilton, 1994; Lutkepohl, 2005). Data are collected at equally 

spaced observations on two variables, X and Y. X is typically treated as the presumed 

causal variable and Y is treated as the presumed outcome variable. Trends and cycles are 

removed from the X series (and possibly separately from the Y series) so that the series 

will become stationary (the series will have the same mean and variance over time). Time 

series data typically have a property known as serial dependency in which the 

observations at Xt and Xt+d may have a non-zero correlation, where d is the time delay 

between the two observations. This serial dependency is removed from the series through 

a transformation so that the standard errors of statistical tests will be proper. Following 

these transformations, the two series are correlated at the same time point t or with the 

observations in Y series lagged a fixed time delay d (e.g., 1 day) to examine relationships 

that take place over time. In the Box and Jenkins (1976) procedure, the trends and cycles 

are only removed from the X series. In the more conservative Haugh and Box (1977) 

procedure, the trends and cycles are removed from both the X and Y series. These 

procedures provide good estimates of the effects of random shocks (perturbations) of the 

X-series on the Y-series. However, in the traditional multivariate time series approach, the 
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cycles in the X-series and the cycles in the Y-series are treated as a confounder that needs 

to be removed from the data. However, little attention has been given in the traditional 

approach to the possibility that the cycles in the X-series may have a relationship to the 

cycles in the Y-series.  

Within the individual time series area, less attention has been given to statistical 

methods that permit the investigation of cycles (Chow, Hamaker, Fujita, & Boker, 2009; 

Liu & West, 2016). In temporal data, cycles are series of measurements that reoccur 

periodically in the same magnitude order. In the behavioral sciences, cycles have been 

shown to occur in predictable patterns over fixed periods of time. Some examples include 

daily mood cycles (Rusting & Larsen, 1998), weekly cycles in sense of autonomy (Ryan, 

Bernstein, & Brown, 2010), monthly mate preference cycles in women (Wood, Kressel, 

Joshi, & Louie, 2014), seasonal affective disorder (Johansson et al., 2003), and circannual 

cycles in sex hormone rhythms (Assenmacher & Jallageas, 1980). Much of the intensive 

longitudinal data collected in clinical, health, personality, and social psychology has been 

in the form of daily reports.  

Daily data in psychological studies often contain weekly cycles (Brown & 

Moskowitz, 1998; Larsen & Kasimatis, 1990; Ruscher, 2017). Human functioning has 

been shown to attune to two types of weekly cycles: (a) socially constructed calendar 

weekly cycles, and (b) circaseptan biological rhythms (e.g., Campbell, 1986; Halberg, 

1983; Haus, Lakatua, Swoyer, & Sackett-Lundeen, 1983; Hilderbrandt & Geyer, 1984; 

Levi & Halberg, 1982). Psychologists tend to be concerned only with the calendar week 

cycles that characterize the lives of workers and students in industrial societies. Even 
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people who do not work or study may still follow weekly cycles because they adjust their 

lives to the community in which they live, which tends to follow consistent weekly 

schedules. Synchronized weekly cycles have been observed in mood (Cranford et al., 

2006), arousal (McFarlane, Martin, & Williams, 1988), vitality (Sheldon, Ryan, & Reis, 

1996), alcohol consumption (Studer et al., 2014), agreeableness, dominance, and 

submissiveness (Brown & Moscowitz, 1998), and sense of hurriedness, temperature and 

blood pressure (Tuomisto et al., 2006). 

Although commonly synchronized among people, weekly cycles are not 

manifested identically within all people. Individuals have been shown to differ in their 

degree of entrainment to weekly cycles. For instance, Larsen and Kasimatis (1990) found 

that extraverts’ day-to-day moods were less associated with 7-day cycles than introverts’. 

People have also been found to differ in the functional form of their cycles, typically 

reflected in the day of the week when a certain variable reaches its peak or trough. For 

example, Ram et al. (2005) found that for most people positive affect peaks on Saturdays, 

but that the day of the peak also varies from person to person. Similarly, Rossi and Rossi 

(1977) found that most men’s positive affect peaked on Fridays, whereas most women’s 

positive affect peaked on Saturdays. In the so called “blue Monday” phenomenon, 

negative affect was found to peak on Monday in some studies (e.g., Larsen & Kasimatis, 

1990; Stone, Schneider, & Harter, 2012), whereas other studies found that negative affect 

was maximal at midweek (e.g., McFarlane, Martin, & Williams, 1988; Rossi & Rossi, 

1977). 
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Another complexity attached to cyclical data is the units of time do not have a 

fully hierarchical structure. Although months are nested within years, days within 

months, hours within days, and minutes within hours, weeks are not nested inside of 

larger measurement units. This peculiarity of weekly cycles presents potential data 

analytic complexities when monthly, quarterly or yearly cycles are present in the data as 

the larger units of time do not represent simple multiples of weeks. Statistical techniques 

for modeling such cases have received little development, even though cyclic 

combinations of this kind may occur in our everyday lives. An important example is 

women’s biological menstrual cycles, which are individually phased and thus 

unsynchronized across women. Rossi and Rossi (1977) have shown that women’s weekly 

cycles combine with their biological menstrual cycles in terms of mood, emotional 

stability, desire for solitude, social group preference and physiological sensations. 

Attempts to compare men’s and women’s weekly cycles can be compromised by the 

complex pattern of confounding.  

Even if a weekly or longer time cycle is theoretically of little interest with respect 

to a particular study topic, it still can be advantageous to model and remove the influence 

of the cycle. Ignoring a cycle creates the possibility of bias in the cross-correlation 

between the outcome and predictor series (Liu & West, 2016). Suppose a researcher is 

attempting to determine the relationship between daily diet and attention paid to 

significant others. In many households diet quality may be lower on weekdays and higher 

on weekends. Similarly, attention paid to significant others may be lower on weekdays 

and higher on weekends. Hence, if weekly cycles are ignored, a spurious positive 
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relationship between diet quality and attention paid to significant others will be detected 

in the data. In reality, a true causal relationship does not exist, but rather is produced in 

the data by a third variable of no theoretical interest to the researcher. Regular work hours 

can leave minimal time for both nutrition planning and relationship nurturing on 

weekdays, and hence contribute to the relationship between the two variables. Whenever 

the cyclical weekly structure affects two variables in the same direction, true positive 

relationships will be inflated, true negative relationships will be diminished, and non-

existent true relationships may become spuriously existent and positive. In contrast, when 

the cyclical weekly structure affects the two variables in the opposite direction (e.g., 

stress is high on workdays and low on weekends, whereas alcohol consumption is low on 

weekdays and high on weekends), existing negative relationships may be inflated, 

existing positive relationships will be diminished, and non-existent relationships will 

become spuriously negative. Therefore, in order to ensure that the relationship between 

two time-dependent variables will be minimally biased, relevant cycles should be 

detected and controlled for in the analyses. Although many other issues related to 

everyday experience data, such as trends and serial dependency, have been largely 

addressed and resolved, methodological tools for modeling of cycles are in an earlier 

stage of development. 

One important exception, which is applicable to cycle detection, is spectral 

analysis (e.g., Kagan, Reznick, & Snidman, 1987; Kirsch, Silva, Comey, & Reed, 1995; 

Larsen & Kasimatis, 1990; Warner, 1998). Spectral analysis is a statistical technique that 

decomposes sequenced data into sinusoidal waves of different amplitude and cycle 
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length. Spectral analysis helps to determine whether there are any cyclic patterns in the 

data, how many cyclic patterns exist, and what frequency or period they follow. In 

publications, spectral analysis is typically represented as a spectral density function (or 

power spectrum), which contains the average squared amplitude of the sinusoids plotted 

against ordered values of either the frequencies or periods. The higher the power (Y 

value) corresponding to a certain frequency or period, the larger proportion of variance in 

the series accounted for by the period (cycle length), and the more stable the cyclical 

component is that is associated with the particular frequency/period across the series. For 

instance, if weekly cycles were present in the daily time series, we would expect to see a 

peak at the period of 7 days, or at the frequency of about .143 (frequency is inverse of 

period, 1/7 ≈.143). This method is available and is completely automated in standard 

statistical programs for time series data, leading to its popularity among psychologists.  

Traditional Approaches to Controlling for and Modeling Cycles 

When cycles are detected in single-subject data, they are traditionally analyzed 

using classical time-series methods (Box & Jenkins, 1976; Haugh & Box, 1977; 

Koopmans, 1995; Warner, 1998). The influence of cycles can be removed or modeled in 

time series involving a second variable. Once the influence of cycles is removed within 

each time series, contemporaneous or lagged relationships between two variables can be 

studied by investigating the relationships between the residuals of one variable (the 

predictor series) and the observed values of another variable (Box & Jenkins, 1976). 

Alternatively, the influence of cycles can be removed from both series or relationships 

between the two series can be investigated by studying the relationships between the 
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residuals of the two variables (Haugh & Box, 1977). The following four methods have 

been used in psychology to address cyclic patterns at the single subject time series 

(within-person) level in aggregated time series analyzed using the multilevel or SEM 

framework.  

Differencing 

When the period of the cycle is known (e.g. weekly), a new variable can be 

created by subtracting the observed measure at each time point from an observed measure 

at a corresponding time point in the next cycle. For example, if the cycle length is 7 days, 

a new transformed variable can be calculated by subtracting each Monday’s observed 

value, from the next Monday’s observed value, each Tuesday’s value from the following 

Tuesday’s value, and so forth, i.e. Ytrans(t+7) = Yt+7 – Yt (McCleary & Hay, 1980), where 

Ytrans(t+7) is the transformed variable and Yt is the observation on day t. The transformed 

variable is analyzed instead of the original variable, removing the impact of the weekly 

cycles. Some issues associated with this method include (a) the new variable is undefined 

for the first cycle of the series, so that the number of time points available for analysis is 

reduced, and (b) the potential introduction of serial dependency in some datasets, leading 

to biased standard errors (Judd & Kenny, 1981). Of importance, differencing removes 

cycles from the series, prohibiting the analysis of their potential effects.  

Dummy variables 

Dummy variables can be added to the regression equation to account for different 

segments of the cycle of interest. For instance, to account for weekly cycles six dummy 
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variables can be added to the regression equation to account for each day of the week 

(with the 7th day serving as the reference day), or a single dummy variable can be added 

to distinguish weekdays from weekends (Liu & West, 2016). Although this method 

usually provides a good model fit, it can be challenging to interpret as all of the 

coefficients are estimated with respect to the reference variable. This challenge can 

become overwhelming with longer cycles, denser dummy variables (e.g. a dummy 

variable scheme to account for each hour of the day would require 23 dummy variables), 

or more individualized cycles (e.g. additional between-individual variables). Thus, 

dummy variables can result in a cumbersome model that uses up an unreasonable number 

of degrees of freedom. Modeling the effects of multiple cycles, such as a women’s 

monthly cycle and a weekly cycle is not plausible with dummy variables.  

Sinusoid function model 

Sine and/or cosine functions potentially provide a more efficient way of detecting 

and approximating consistent cycles. The basic model that incorporates cycles into a 

linear regression model can be written as 

                     Yt = b0 + R[cos(ωt + φ)] + εt,                                                       (1) 

where Yt is an observation for a single subject at time t (where t = 0 to T), R is the 

oscillation amplitude, ω = 2π/τ is frequency of oscillations in radians where τ is their 

period in units of t, b0 is the intercept of the time series, φ is the phase shift of the cycle or 

distance in radians from position at time 0 to the first positive peak, and εt is a residual 

value at time t. 

Equivalently, equation (1) may be written in the following form: 
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                     Yt = b0 + b1 sin(ωt) + b2 cos(ωt) + εt,                                            (2) 

where b0 is again the intercept, b1 and b2 are the regression coefficients associated with 

the sine and cosine components, respectively, and εt is a residual value at time t. The 

oscillation amplitude R, and phase shift φ are now functions of the coefficients b1 and b2 

that can be expressed respectively as  

R = √𝑏1
2+ 𝑏2

2
              (3)                                            φ = tan -1 (

−𝑏1

𝑏2
)                       (4) 

Although parsimonious and convenient, this modeling technique has several 

limitations. First, not all functional forms of cycles can be represented. Equation (1) only 

addresses cycles that are symmetric. That is, the first half of the cycle has to be of 

identical length to the second half of the cycle, with the mean time series value always 

being crossed in the middle of the cycle. Moreover, the shape of the first half of the cycle, 

or where the peak of the cycle is, has to be identical to that of the second half of the 

cycle, where the trough is. Finally, the peaks and troughs can only be of one precise 

shape, which is defined and restricted by the sinusoid function, its frequency, and 

amplitude. These three properties are incompatible with a wide range of psychological 

data. For example, weekly cycles have been shown to generate a significant weekday 

versus weekend effect for numerous variables (Cranford et al., 2006; Larsen & 

Kasimatis, 1990; Reid, Towell, & Golding, 2000; Reis, Sheldon, Gable, Roscoe, & Ryan, 

2000; Ryan et al., 2010; Ruscher, 2017; Sheldon, Ryan, & Reis, 1996; Stone, Hedges, 

Neale, & Satin, 1985), which is not fully compatible with the cycle being symmetrical 

around half its length (3.5 days). Second, having identically shaped peaks and troughs 

implies that people tend to respond to the opposite extremes of the cycle in exactly the 
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same way. For instance, it seems unlikely that the pattern of return to baseline from a 

highly stressful state would be the mirror image of the return to baseline from a highly 

serene state. Finally, most variables will not produce sinusoidally shaped peaks and 

troughs that will coincide with the specific peak width dictated by the amplitude and 

frequency of the oscillations. That is, subjects cannot dwell at the extremes, have 

transient flashes of extremes, or enter and exit the extremes asymmetrically because it is 

outside of the sinusoidal definition. 

Seasonal trigonometric model 

The seasonal trigonometric model from econometrics resolves many of the major 

problems of the simple sinusoid function model, but it is rarely used in psychology. 

Bowerman, O’Connell, and Koehler (2004) define a seasonal trigonometric model that 

allows for the modeling of more complex seasonal patterns: 

Yt = b0 + b1 sin(ωt) + b2 cos(ωt) + b3 sin(2ωt) + b4 cos(2ωt) + εt,                           (5) 

where all the terms are the same as in the original sinusoid model, except for the 

additional sine and cosine components that have frequency that is twice the frequency of 

the dominant cycle. This seasonal trigonometric model permits the representation of 

symmetric and asymmetric cycles of many forms. Unlike the original sinusoid function 

model, it allows the mean value of the time series to be crossed at points other than the 

midpoint of the cycle. It allows one side of the cycle to be more extensive than the other, 

which is often more appropriate for modeling weekly cycles. However, several 

limitations related to the potential shapes of the peaks still remain. The shape of the peaks 
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does not have to be identical to that of troughs, but these shapes are still strictly 

determined by the amplitude, the frequency, and the sinusoidal nature of the function.   

An Alternative Approach: The Single Mass-Spring Oscillator Model 

The single mass-spring model was originally proposed in physics to describe 

time-dependent physical systems (Boker & Graham, 1998; Butner, Amazeen, & Mulvey, 

2005; Hessler, Finan, & Amazeen, 2013). It has been introduced in psychology for the 

purpose of capturing the periodic dynamics of change in psychological processes. Unlike 

the sinusoid and dummy variable based models, mass-spring models can capture the 

frequency of the oscillating process without any prior knowledge about the structure of 

the process. Moreover, the single mass-spring model is designed to capture damping, if it 

is stable over time. For example, this model allowed Finan et al. (2010) to examine the 

decrease in the amplitude of fluctuations in chronic pain prediction accuracy with 

increased experience. The single mass-spring model can also potentially represent 

fluctuations whose form deviates from that of a classical sinusoid function. This can be 

accomplished by the addition of nonlinear escapement terms, which will be discussed in 

more depth at the end of this section. Mass-spring models are also associated with the 

visual representation of oscillation in a phase portrait, where position, or the value of a 

variable at a time point, is plotted against the velocity of the position change. Phase 

portraits can aid in detection of escapements that allow some energy to enter or escape 

the cycle, altering its general shape and amplitude (Abraham & Shaw, 1992). Finally, the 

single mass-spring model allows examination of how parameters representing damping, 

amplitude, and the form of fluctuation vary based on individual differences. 
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In this approach, derivatives are used to describe the rate of change of one 

variable with regard to time. For instance, if a person runs on a straight track and 

periodically records his/her position at that point in time, the person’s rate of change in 

position with respect to time (a.k.a., velocity) can be calculated. To do that, the person’s 

displacement over the time period is divided by the amount of elapsed time: v1 = (p2 –

p1)/(t2 – t1), where p1 and p2 are position of the person at time 1 and time 2 respectively, t1 

and t2 are time 1 and time 2, and v1 refers to velocity at the first chosen time interval. 

Furthermore, the person’s acceleration, the change in velocity over time, can be 

calculated. To estimate acceleration, the person’s rate of change in velocity is divided by 

the amount of time that passed between the two velocity estimates. Two velocity 

estimates are needed for this calculation: one estimate at an arbitrary time interval, and 

the second at a consecutive time interval. The amount of time elapsed between the two 

velocity estimates is estimated by subtracting the time in the middle of the first interval 

from the time in the middle of the second interval. If the first velocity estimate is such as 

defined above (v1), and the second velocity estimate is v2 = (p3 – p2)/(t3 – t2), where p2 and 

t2 are the same as in the equation of v1, p3 is the position of the person at some arbitrary 

but fixed time 3, and t3 is time 3, the acceleration can be calculated with ai = (v2 – v1)/(t2.5 

– t1.5), where ai represents acceleration at time interval i, t2.5 is time at the midpoint of the 

time interval between time 2 and time 3, and t1.5 is time at the midpoint of the time 

interval between time 1 and time 2. Mathematically, if the person’s position on the Y-axis 

is plotted against time on the X-axis, the result is a displacement trajectory, where the 
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first derivative represents the instantaneous linear slope of the trajectory at a given point, 

and the second derivative is a function of the acceleration at that given point.   

The original expression, first derivative, and second derivative, respectively, 

represent the position/displacement, velocity, and acceleration. These three variables are 

needed for mass-spring/oscillator models. Position or displacement in the model can be a 

measure of any variable of interest, e.g., positive affect, alcohol consumption, or feeling 

of social acceptance. Following detrending, the first and second derivatives are then 

usually calculated by the method of local linear approximation (LLA; Boker, 2001; 

Boker & Graham, 1998). LLA is a generalization of the calculations described in the 

example above. LLA is the simplest reasonable technique for approximating local 

derivatives in non-continuous functions. The approximation of the first derivative is 

calculated by averaging the two slopes that surround the point of interest: 

                               
𝑑𝑥(𝑡)

𝑑𝑡
 ≈  

𝑥(𝑡+𝜏)− 𝑥(𝑡−𝜏)

2𝜏∆𝑡
 ,                                                                       (6) 

where t is a time point at which the approximation is being estimated, ∆t is the time 

interval between equally spaced observations, and τ is a selected time lag between the 

measures in units of ∆t. As ∆t approaches 0, the estimate approaches the true derivative 

of the function. 

Local linear approximation of the second derivative can be similarly calculated by  

                           
𝑑2𝑥(𝑡)

𝑑𝑡2
 ≈  

𝑥(𝑡+𝜏)− 2𝑥(𝑡) + 𝑥(𝑡−𝜏)

𝜏2∆𝑡2
.                    (7) 

The original expressions, first, and second derivatives of the variable of interest are then 

combined with linear motion coefficients to emulate the motion of a stably oscillating 

physical system. The two simplest physical systems that exhibit behavior of the kind are 
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a pendulum and a mass-spring. The physical basis of the second order oscillator model 

will be delineated in my thesis in terms of the mass-spring motion. All of the statements 

that I will make in relation to the physical basis of the oscillator model can be easily 

translated to the laws of motion of a pendulum or a pair of connected pendula. These 

physical systems are commonly used to illustrate the mass spring model as a 

representation for cyclical behavior in psychology.  

A mass-spring oscillator consists of a weight attached to a spring fixed to a rigid 

wall at one end.  

 

Figure 1. A single mass-spring oscillator system.  

In an ideal, perfectly frictionless system, when the weight is displaced from its 

equilibrium position, it oscillates toward and away from the wall forever. In contrast, if 

there is friction between the mass and the surface, a decreasing oscillation amplitude will 

occur until the equilibrium position is reached. The force equation of the one-mass 

oscillator is a single 2nd order differential equation that is elaborated from Newton’s 

second law of motion, which applies to unbalanced mechanical systems. The force 

equation states that exerted force equals to mass times acceleration (F = ma), where 

acceleration is the second derivative of position/displacement from the equilibrium (x) 

with respect to time (a = d2x/dt2 = x’’). Whenever the weight is displaced from the 
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equilibrium, the compressed or stretched spring exerts a force that is opposite, and 

typically directly proportional to the displacement x (Hooke’s law): 

                                     Fspring = - kx ,          (8) 

where k is a spring constant, or stiffness of the spring. The higher the stiffness, the more 

resistant to deformation the spring is, and the faster it will return to the equilibrium. The 

negative sign in (8) represents the opposing nature of the force.  

Another force that is present in most mechanical systems is friction. It is modeled 

as a term proportionate to velocity: 

                                    Ffriction = -b 
𝑑𝑥

𝑑𝑡
 = - bx’,        (9) 

where b is the damping coefficient, which represents intensity of the resistance of the 

surface to the movement of the mass, and x’ represents the first derivative of x with 

respect to time. The negative sign in equation (9), as in the previous formula, reflects the 

opposing nature of the force.  

The total equation representing the system (elaborated from the Newton’s 2nd law) 

is: 

               F =  Fspring +  Ffriction  =   - kx - bx’ = mx’’ = ma,                                           (10) 

where x’’ represents the second derivative of x with respect to time. 

In psychology, mass-spring models have been typically used in a slightly different 

form that eliminates the explicit notion of mass from the formula, and which contains 

coefficients that relate more directly to the motion trajectory of the oscillations rather 

than the purely physical characteristics of the system. The motion trajectory is of 
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sinusoidal nature and is represented by Figure 2: 

 

Figure 2. Motion trajectory of an undamped mass-spring oscillator. Adapted from Nagle, 

Saff & Snider (2010). 

 

Equation (10) can be rearranged into: 

                                                    
𝑑2𝑥

𝑑𝑡2
 = – ω2 𝑥 – 2ζω

𝑑𝑥

𝑑𝑡
 ,                                              (11) 

where ω is angular frequency (equal to √𝑘 𝑚⁄  radians/second, or √𝑘 𝑚⁄ /2𝜋 

periods/second), and ζ is damping ratio (equal to 
𝑏

2√𝑚𝑘
 ). The ω represents the frequency 

of the oscillations produced by the system in radians. To get the preferred frequency units 

used in the behavioral sciences, periods per time unit, ω has to be divided by 2𝜋 

(perimeter of a unit circle in radians). Higher ω values indicate higher oscillation 

frequency. The damping ratio, ζ, represents the dissipation or gain in energy that is 

manifested in a constant increase or decrease in the amplitude of the fluctuations (see 

Figure 3). When ζ > 0, the magnitude of the oscillation amplitude decreases; when ζ < 0, 
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Figure 3. The effect of the damping ratio on the oscillations produced by the mass-spring 

oscillator ("Damping ratio," n.d.). 

 

it increases; and when ζ = 0, the fluctuation amplitude remains constant (no damping). 

The shape of the motion trajectory of the mass over time is of sinusoidal nature, unless 

the system is critically damped (ζ = 1) or overdamped (ζ > 1, see Figure 3), in which case 

the motion trajectory is represented by a decaying exponential with no oscillation.  

In order to capture fluctuations of different shapes, nonlinear terms, also called 

nonlinear escapements, can be added to the equation (Abraham & Shaw, 1992; Beek, 

Schmidt, Morris, Sim, & Turvey, 1995; Butner et al., 2005; Finan et al., 2012; Hessler et 

al., 2013). They represent influences on the system by some external process or object. 

Such external influences are potentially relevant to psychological processes because they 

are never isolated from other factors. A physical example of such an external influence 

would be the working of the grandfather clock: its pendulum never stops moving because 

the mechanism of the clock consistently injects energy at a certain point of its swing (see 
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Hessler et al., 2013). This influx of pulses of energy produces sudden changes in the 

amplitude and velocity of the oscillation, which makes the process nonlinear. In general, 

addition of any nonlinear term(s) to the mass spring model turns it into a nonlinear 

model. 

There are four classical nonlinear terms that can be added to the mass spring 

model: two conservative and two nonconservative. The two conservative terms, Duffing 

and π-mix odd series, model the changes in the oscillatory cycles without affecting the 

overall energy of the system. They alter the motion trajectory of the oscillator while the 

sum of potential energy stored in the springs and kinetic energy of the moving masses 

remains the same at all times as it would be without the nonlinear terms. In contrast, the 

two nonconservative terms, Rayleigh and Van der Pol, capture cyclic shapes that require 

alterations in the system’s total energy: positive values of the terms signify energy 

injection, whereas negative values signify energy removal. The four nonlinear terms are 

of higher order and are described by the cubed displacement (Duffing, δ), squared 

velocity multiplied by displacement (π-mix odd series, μ), cubed velocity (Rayleigh, ρ), 

and velocity multiplied by squared displacement (Van der Pol, ν). The 2nd order oscillator 

model with all four nonlinear terms included is presented in equation (12): 

                 
𝑑2𝑥

𝑑𝑡2
 = – ω2 𝑥 – 2ζω

𝑑𝑥

𝑑𝑡
  + δx3 + μ[

𝑑𝑥

𝑑𝑡
]
2

x + ρ[
𝑑𝑥

𝑑𝑡
]
3

+ ν[
𝑑𝑥

𝑑𝑡
]x2.                             (12) 

In equation (12), δ, μ, ρ, and ν are coefficients that correspond to the Duffing, π-mix odd 

series, Rayleigh, and Van der Pol nonlinear terms, respectively, and x is displacement 

from the equilibrium point, or deviation of the variable score from its mean value across 

the time series. It is extremely rare, however, for all the nonlinear terms to be needed in 
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the model. Usually only one or at most two terms suffice to describe the irregular shape 

of the oscillation trajectory. In physical and biological sciences the need for the particular 

nonlinear terms can often be determined from the theory of the physical processes 

modeled (e.g., Beek & Beek, 1988; Beek et al., 1995). In behavioral sciences, however, 

such theories are currently rare likely due to the recency of researchers’ interest in the 

cyclic changes over time. Behavioral scientists tend to add nonlinear terms into the mass-

spring model arbitrarily, retaining those that attain statistical significance or reach a 

desired effect size. Hypotheses are offered post hoc to explain the results of the fitted 

model (e.g., Finan et al., 2012). 

Both the original linear oscillator model, and the extended nonlinear oscillator 

model can be written in the form of a regression equation, respectively: 

𝑥(𝑡)
′′  = 𝑏1𝑥(𝑡) + 𝑏2𝑥(𝑡)

′ + 𝑒(𝑡),                   (13) 

𝑥(𝑡)
′′  = 𝑏1𝑥(𝑡) + 𝑏2𝑥(𝑡)

′  + 𝑏3
 𝑥(𝑡)
3 + 𝑏4[𝑥(𝑡)

′ ]2𝑥(𝑡) + 𝑏5[𝑥(𝑡)
′ ]3+ 𝑏6𝑥(𝑡)

′ 𝑥(𝑡)
2  + 𝑒(𝑡).             (14) 

In equations (13) and (14),  𝑏1 = – ω2, 𝑏2 = –  2ζω, 𝑏3 = δ,  𝑏4 =  μ, 𝑏5 =  ρ, 𝑏6 = ν, and 

𝑒(𝑡) is the residual at time t.           

Although estimated as a part of a simple regression equation, the terms have 

different interpretations from those in standard regression models. Rather than resulting 

in a linear functional form, the equation estimates the parameters of a periodic function 

that is likely to be produced by the motion of a mass-spring oscillator given some initial 

conditions. Some possible resulting functions are shown in Figure 4, panels a and b. 
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Figure 4a. Motion trajectories and phase portraits of undamped and damped mass-

springs. 
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Figure 4b.5Motion trajectories and phase portraits of undamped Rayleigh and Van der 

Pol oscillators. (Note: Duffing and π-mix odd series oscillators are not plotted because 

they do not alter the shape of the movement trajectory, only the frequency with which it is 

traversed.) 

Single mass-spring oscillator models have typically been used in psychology to 

examine self-regulation. Typical questions the model was designed to answer were: (a) 

what is the baseline fluctuation frequency in different individuals, and (b) how is the 

model affected by internal self-regulation and external influences (e.g., Chow, Ram, 

Boker, Fujita, & Clore, 2005; Boker & Graham, 1998). 
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Connected Mass-Spring Oscillator Model 

The single oscillator model, while suitable for modeling psychological 

rhythmicities for a single variable, needs to be extended (e.g., Boker & Graham, 1998; 

Butner et al., 2005; Hessler et al., 2013) to account for the oscillatory processes of two 

variables. The oscillatory processes of the two variables may be related, which is termed 

coupling. There are numerous psychological variables whose oscillatory change is 

coupled with the oscillatory change of at least one other variable. For instance, daily 

fluctuation in alcohol consumption has been shown to be related to the daily change in 

reported stress (Armeli, Carney, Tennen, Affleck, & O’Neil., 2000). Changes in reports 

of chronic pain have been shown to be related to reports of insomnia (Smith & 

Haythorntwaite, 2004; Kelly, Blake, Power, O’Keeffe, & Fullen, 2011), stress (Davis, 

Zautra, & Smith, 2004), and depression symptoms (Wilson et al., 2002). Changes in 

reported intimacy and disclosure in wives has been shown to be related to the reported 

intimacy and disclosure of their husbands (Boker & Laurenceau, 2007). 

The coupled oscillator model can be described in terms of a physical system 

consisting of a mass-spring system with two weights that are each attached to a spring 

that is fixed to a wall and a spring that connects them to each other (see Figure 5). Both 

masses are free to move, therefore, the system can produce a variety of periodic and 

quasiperiodic motion trajectories given different initial displacement and velocity  
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Figure 5.6 Coupled mass-spring system with fixed ends (adapted from Nagle, Saff, & 

Snider, 2010). 

 

conditions. Since the system is comprised of two masses, the coupled oscillator model 

can be represented by the system of two 2nd order differential equations. These 

differential equations originate from Newton’s second law of motion and Hooke’s law. 

The simplest coupled oscillator model assumes no effects of friction or of gravity. If 

Newton’s second law is applied to each of the weights in a coupled mass spring system, 

equations (15a) and (15b) result. 

                    
𝐹1  =  𝑚1𝑎1  =  𝑚1x’’                                                                                       (15a)
𝐹2  =  𝑚2𝑎2  =  𝑚2y’’                                                                                       (15b)

                               

The total force of the first freely moving weight is equal to the product of its mass 

and acceleration, the second derivative of its displacement with respect to time. The total 

force of the second weight is equal to the product of its mass and its acceleration, the 

second derivative of its displacement with respect to time. Finally, the forces generated 

by the movement of springs (Hooke’s law) need to be considered. For the left weight, 

consider the force of the spring that attaches it to the wall. As in the case of the single 

mass-spring model, this force can be written as: 

F1 spring1 = -k1x,         (16) 

where  F1 spring1 refers to the force that acts on the first mass due to the first spring (see 

Figure 5), k1 is the stiffness of the first/leftmost spring. The formula describes the 
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opposing force produced by the spring when it is stretched or compressed, which is 

directly proportional to the displacement (Hooke’s law). The second force, F1 spring2, acts 

on the first mass due to the second/middle spring that attaches the left weight to the right 

one. This force pulls the left weight proportionally to the displacement of the middle 

spring from its natural length (y – x): 

                               F1 spring2= k2 (y – x).       (17) 

That is, if the middle spring is stretched (y – x > 0), it will pull the left weight to the right, 

away from its wall, in the positive direction. If the middle spring is compressed  

(y – x < 0), it will push the left weight to the left, towards its wall, in the negative 

direction. 

Considering now the second/right weight, it will be: 

                             F2 spring3 = -k3y    (18),                        F2 spring2= k2 (x – y)       (19). 

Finally, considering the left and right weights together, the system can be defined by  

{
𝐹1  =  𝑚1𝑎1  =  𝑚1x’’
𝐹2  =  𝑚2𝑎2  =  𝑚2y’’

  →    {
𝐹1_𝑠𝑝𝑟𝑖𝑛𝑔1 + 𝐹1_𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝑚1x’’

𝐹2_𝑠𝑝𝑟𝑖𝑛𝑔3 + 𝐹2_𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝑚2y’’
  →   

{
 𝑚1x

′′ = − 𝑘1𝑥 + 𝑘2(𝑦 − 𝑥)  

𝑚2y
′′ = − 𝑘3𝑦 + 𝑘2(𝑥 − 𝑦)

        (20) 

and then rearranged into  

{
  
𝑑2𝑥

𝑑𝑡2
 = – 𝜔1

2 𝑥 + 𝜅1(y − x)  

  
𝑑2𝑦

𝑑𝑡2
 = – 𝜔2

2 𝑦 + 𝜅2(x − y) 
.       (21) 

In equation set (21), 𝜔1 is the natural angular frequency of the first mass  

( = √𝑘1 𝑚1⁄ /2𝜋 periods/s), 𝜔2 is the natural angular frequency of the second mass  
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( = √𝑘3 𝑚2⁄ /2𝜋 periods/s), 𝜅1 is the coupling coefficient that describes the influence of 

the displacement of the right mass on the movement of the left mass (= 𝑘2 𝑚1⁄ ), and 𝜅2 is 

the coupling coefficient that describes the influence of the displacement of the left mass 

on the movement of the right mass (= 𝑘2 𝑚2⁄ ). Since there are two coupling coefficients, 

and they can vary from each other, the influence of one weight on the other and vice 

versa can be asymmetric. In the physical model, the asymmetry comes from the different 

mass of the weights. If one weight is 1 kg and the other 1 g, the heavier weight will have 

much more influence on the lighter weight than vice versa. In the case of psychological 

variables, such a result would imply that there is a bidirectional causal relationship 

between two variables with, for instance, daily stress influencing mood more than mood 

influencing daily stress.  

Illustrations of motion trajectories produced by the movement of the coupled 

mass-springs are depicted in Figure 6. In addition to the dependence on the physical 

parameters of the system, motion trajectories also depend on the initial conditions (initial 

position and velocity) of the masses. Both pairs of trajectories depicted in Figure 6 are 

periodic and symmetric. However, asymmetric and quasiperiodic trajectory pairs can also 
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Figure 6.7Motion trajectories produced by a coupled mass-spring oscillator with two 

identical masses and three identical springs, but different initial conditions (taken from 

Nagle, Saff, & Snider, 2010).  

 

be produced. An example of a quasiperiodic pattern in the context of weekly cycles in 

two variables would occur if similar, but slightly different trajectories were observed 

from week to week. These weekly trajectory changes represent carryover effects from the 

interaction of the two variables during the previous week.  

The basic coupled oscillator model considered above is the simplest version, in 

which only the position of the two masses is considered. Researchers in psychology have 

also suggested extensions of the coupled oscillator model that include friction in the 

definition of displacement of both individual masses, but not in their coupling terms (see 

model 22; Butner et al., 2005), and that include friction in the definition of displacement 

of both individual masses, and in their coupling terms (see model 23; Boker & Graham, 

1998). The addition of the nonlinear terms to all three types of coupled models, 

represented by equation systems (21), (22), and (23), has also been suggested as an 
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option in the literature (e.g. Butner et al., 2005; Boker & Graham, 1998; Hessler et al., 

2013). 

{
  
𝑑2𝑥

𝑑𝑡2
 = – 𝜔1

2 𝑥 –  2ζω1
𝑑𝑥

𝑑𝑡
  +  𝜅1(y − x)  

  
𝑑2𝑦

𝑑𝑡2
 = – 𝜔2

2 𝑦 –  2ζω2
𝑑𝑦

𝑑𝑡
  +  𝜅2(x − y) 

      (22)            

 {
  
𝑑2𝑥

𝑑𝑡2
 = (– 𝜔1

2 𝑥 –  2ζω1
𝑑𝑥

𝑑𝑡
)   + 𝜅1(– 𝜔2

2 𝑦 –  2ζω2
𝑑𝑦

𝑑𝑡
)  

  
𝑑2𝑦

𝑑𝑡2
 = (– 𝜔2

2 𝑦 –  2ζω2
𝑑𝑦

𝑑𝑡
)   +  𝜅2(– 𝜔1

2 𝑥 –  2ζω1
𝑑𝑥

𝑑𝑡
)

                 (23) 

Statistical Estimation of Oscillator Models 

Two closely related statistical methods for the estimation of the parameters in the 

mass-spring oscillator models, especially the coupled ones, have been proposed: 

multilevel models (Butner, Amazen, & Mulvey, 2005; Hessler, Finan, & Amazeen, 2013) 

and structural equation models (Boker & Graham, 1998; Boker et al., 2008; Chow et al., 

2005). In my thesis I focus on the multilevel approach. Multilevel models permit 

partitioning the data to separately represent both intra- and inter-individual effects. If 

connected oscillator models operate in ways that psychology researchers claim they do, 

the multilevel approach can represent potential individual differences in intra-individual 

oscillatory processes when data are available for multiple participants. The multilevel 

approach can represent each of the effects as either fixed or random, which means that 

oscillation frequencies, damping rates and the presence/absence and level of nonlinear 

escapements can be modeled as stable (fixed) across individuals, or varying for different 

individuals with an assumed underlying normal distribution. Furthermore, nonlinear 

escapements as well as other predictor or moderator variables, if they are theoretically 

relevant, can be added to either level of the multilevel model.  
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Returning to the simple undamped single oscillator model originally presented in 

equation (11), this model can be estimated as a multilevel model as follows: 

                                      
𝑑2𝑥𝑡𝑖

𝑑𝑡2
 = η𝑖𝑥𝑡𝑖 + 𝜑𝑖

𝑑𝑥𝑡𝑖

𝑑𝑡
 + 𝑒𝑡𝑖,    Level 1               (24) 

where ηi = – ωi
2 or the negative squared angular frequency for person i, and 𝜑 i = – 2ζiωi 

or negative product of the damping ratio and angular frequency for person i. The 

displacement, first (velocity), and second (acceleration) derivatives of variable x are 

typically calculated by using the local linear approximation method described above. 

Note that x now has the subscript t that identifies the time at which the observation was 

made and the subscript i that identifies the individual on whom the observations were 

made. Note also that an additional term 𝑒𝑡𝑖 is included reflecting the error of prediction. 

𝑒𝑡𝑖 is assumed to be normally distributed with mean 0, and a common variance across 

individuals of 𝜎2, ~ 𝑁(0, 𝜎2). 

At level 2 of the multilevel model, potential random effects can be represented as: 

                                         η𝑖 = 𝛾1 + 𝑢1𝑖  

                                         𝜑𝑖 = 𝛾2 + 𝑢2𝑖.            Level 2              (25) 

In equation (25), 𝛾1 and 𝛾2 represent the mean negative squared angular frequency across 

individuals and the mean damping (– 2ζiωi) across individuals, respectively. 𝑢1 represents 

the interindividual variation in 𝛾1 and 𝑢2 represents the interindividual variation in 𝛾2. 𝑢1 

and 𝑢2 are assumed to have a bivariate normal distribution with means 0, variances 𝜏0, 

𝜏1, and covariance 𝜏01. The level 1 equation can be extended to include nonlinear and 

other terms that have not been utilized in the psychological literature, but that may make 
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sense on a mechanical level for the model underlying system (Boker & Graham, 1998; 

Butner et al., 2005). 

Extending the multilevel approach to the coupled oscillator model, a three level 

multilevel model is needed in the general case in which there are random effects (Butner 

et al. 2005). The 1st level equation (corrected version1 of the equation 8 in Butner et al., 

2005) in any case would be:             

               
𝑑2𝑥𝑝𝑖𝑡

𝑑𝑡2
 = β1𝑖𝑡(𝐷1𝑝𝑖𝑡) + β2𝑖𝑡(𝐷2𝑝𝑖𝑡) + 𝑟𝑝𝑖𝑡 .      Level 1                        (26) 

In equation (26),  
𝑑2𝑥𝑝𝑖𝑡

𝑑𝑡2
  represents the acceleration of the variable (mass) p in individual 

i at time t. β1𝑖𝑡 is the random slope for indicator variable 𝐷1𝑝𝑖𝑡, which is also the 

acceleration of mass 1 at time t in individual i. β2𝑖𝑡 is the random slope for indicator 

variable 𝐷2𝑝𝑖𝑡, which is the acceleration of mass 2 at time t in individual i. Given that 

this is a no intercept model, 𝐷1𝑝𝑖𝑡 is an indicator variable that is coded 1 if the data point 

belongs to the differential definition of the first variable/mass, analogous to the first 

equation in the equation system 21 (p=1), and 0 if it belongs to the definition of the 

                                                           
1 In the Level 1 equation (26) a subscript p that refers to the process equation number was added to the 

error coefficient (𝑟𝑖𝑗  in Butner et al., 2005, where i refers to time) as the vector length and, accordingly, the 

subscript structure of the level-1 outcome variable and the level-1 error term in a multilevel model must 

align (Raudenbush & Bryk, 2002). In the Level 1 equation (26) and Level 2 equations (27) and (28), a 

subscript t that refers to time was added to the random slope coefficients (β1𝑗 and β2𝑗 in Butner et al., 2005, 

where subscript j refers to individual) and the error coefficients (𝑒1𝑗 and 𝑒2𝑗in Butner et al., 2005) as the 

Level 2 outcome variable vector length and, accordingly, the subscript structure must align with those of 

the error terms and predictor variables in the level 2 equations (Raudenbush & Bryk, 2002). Based on the 

same justification, subscripts i and t that refer to individual and time, respectively, were added to the 

predictor variables that represent displacement and velocity in Level 2 equations (27) and (28), (disp1 , 

disp2, vel1, vel2 in Butner et al., 2005). All the corrections were made in accordance with the authors’ 

intentions expressed in the text surrounding the corrected models. 
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second variable/mass, analogous to the second equation in the equation system 21 (p=2). 

𝑟𝑝𝑖𝑡 is the level 1 error term for individual i at time t, again assumed to be ~ 𝑁(0, 𝜎2). 

The 2nd level of the multilevel model then contains the two equations that describe 

the motion of the two masses/variables. The simplest coupled mass-spring model without 

any damping, that includes a coupling term that depends solely on displacement, such as 

described by the equation system (21), would be defined at level 2 of the connected mass-

spring multilevel model by 

                β1𝑖𝑡 = η1𝑥1𝑖𝑡 + 𝜅1(𝑥2𝑖𝑡 − 𝑥1𝑖𝑡) + 𝑒1𝑖𝑡      Level 2 

                β2𝑖𝑡 = η2𝑥2𝑖𝑡 + 𝜅2(𝑥1𝑖𝑡 − 𝑥2𝑖𝑡) + 𝑒2𝑖𝑡.                (27) 

In Equation set (27), 𝜂1 and 𝜂2 represent the mean negative squared angular frequency 

across individuals and time points of mass/variable 1, and mass/variable 2, respectively. 

𝜅1 and 𝜅2 represent the mean coupling influence across individuals and time points of 

mass/variable 2 on mass/variable 1, and mass/variable 1 on mass/variable 2, respectively. 

𝑒1𝑖𝑡 represents the interindividual residual variation in the force estimate of the first mass, 

and 𝑒2𝑖𝑡 represents the interindividual residual variation in the force estimate of the 

second mass. 𝑒1𝑖𝑡 and 𝑒2𝑖𝑡 are assumed to have a bivariate normal distribution with means 

0, variances 𝜏0, 𝜏1, and covariance 𝜏01. 

Butner et al. (2005) suggest that damping terms and nonlinear terms can be added 

to the level 2 equations, if needed. For example, if both masses/variables are known to 

oscillate over time with a decrease in amplitude, and an irregularity in motion that 

resembles the one produced by the inclusion of the π-mix odd series term, level 2 of the 

connected mass-spring model would be defined by 
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              β1𝑖𝑡 = η1𝑥1𝑖𝑡 + 𝜑1
𝑑𝑥1𝑖𝑡

𝑑𝑡
 + 𝜇1 [

𝑑𝑥1𝑖𝑡

𝑑𝑡
]
2

𝑥1𝑖𝑡 + 𝜅1(𝑥2𝑖𝑡 − 𝑥1𝑖𝑡) + 𝑒1𝑖𝑡      Level 2 

              β2𝑖𝑡 = η2𝑥2𝑖𝑡 + 𝜑2
𝑑𝑥2𝑖𝑡

𝑑𝑡
 +  𝜇2 [

𝑑𝑥2𝑖𝑡

𝑑𝑡
]
2

𝑥2𝑖𝑡 + 𝜅2(𝑥1𝑖𝑡 − 𝑥2𝑖𝑡) + 𝑒2𝑖𝑡.               (28) 

In equation set (28), 𝜑1 and 𝜑2 represent the mean damping (– 2ζω) across individuals 

and time points of mass/variable 1, and mass/variable 2, respectively, and 𝜇1 and 𝜇2 

represent the mean π-mix odd series term across individuals and time points in 

mass/variable 1, and mass/variable 2, respectively. 

Finally, if any of the coefficients vary across individuals, level 3 terms can be 

added to define them the same way as it was done in equation (25). For instance, if in the 

model whose level 2 is defined by equation set (27) the coupling varies across 

individuals, they could be defined in the level 3 as 

                                         𝜅1 = 𝜃1 + 𝑣1𝑖 

                                         𝜅2 = 𝜃2 + 𝑣2𝑖 .                                 Level 3                        (29) 

In equation (29),  𝜃1 and θ2 represent the mean coupling influence across individuals of 

mass/variable 2 on mass/variable 1, and mass/variable 1 on mass/variable 2, respectively. 

𝑣1𝑖 and 𝑣2𝑖 represent the interindividual variation in the coupling terms 𝜅1 and κ2, 

respectively. 𝑣1 and 𝑣2 are assumed to have a bivariate normal distribution with means 0, 

variances 𝜏0, 𝜏1, and covariance 𝜏01. 

Connection of Motion Trajectories to the Existent Psychological Models 

Although the mass-spring oscillator model coefficients describe the properties of 

the physical system, the motion trajectory of the masses is a function that directly 

describes the behavior of the masses (or variables of interest) over time, given certain 



 
 

33 
 

initial conditions. The motion trajectory (see Figures 2 and 6 for illustrations) is a 

function that approximates the distribution of the data points of the time series with the 

X-axis representing time and Y-axis being the position of the mass, or, in a psychological 

context, the magnitude of the score on the variable. The motion trajectory of a classical 

mass-spring system has a sinusoidal functional form. When inserted into a regression 

equation, it can model cyclic behaviors of variables together with their cyclic 

relationships. The traditional sinusoid model and seasonal trigonometric model from time 

series analysis discussed above are equivalent to the motion trajectories of two specific 

mass-spring systems. The sinusoid model corresponds to the trajectory produced by an 

undamped single mass-spring system with ω of the mass-spring system equal to the ω in 

the sinusoid model (Equation 2). The seasonal trigonometric model corresponds to the 

motion trajectory of one mass of a connected mass-spring system, with ω1 and ω2 of the 

force equations equal to the ω in the seasonal model, and the sum of the coupling 

coefficients κ1 + κ2 = 3ω2.  

This analysis implies that the sinusoid model models a variable over time that is 

isolated from other variables and has no cyclic relations with them. When it is used in a 

multilevel model as suggested in Liu and West (2016) to model cycles in both the 

predictor and the outcome variable, cycles are modeled separately in the predictor and the 

outcome variable. A sinusoidal form is chosen by the researchers separately for each 

variable without any consideration of how the cycling pattern of the predictor variable 

might be affecting the cycling of the outcome variable and vice versa. If the cycles 

interact, then the linear relationships detected between the predictor variables and the 
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outcome will be inaccurate. A physical analogy of this would be attempting to model the 

motion of the two masses in the undamped connected mass-spring system with two 

separate single mass-spring oscillators. Motion trajectories of each of the masses in the 

undamped connected mass-spring system consist of a combination of two different 

frequencies, which, if not nested within each other, can produce cyclic patterns that vary 

within each period. Motion trajectories of the masses in single undamped mass-spring 

systems consist of symmetric sinusoids of one set frequency that are identical within each 

period. Therefore, modeling trajectories of the masses from an undamped connected 

mass-spring system with the trajectory patterns expected from two distinct single mass-

spring systems would yield inaccurate estimates due to model misspecification. A very 

simplified abstract visual example for a pair of cycles without a cyclic interaction, and for 

a pair of cycles with a cyclic interaction is depicted in Figure 7. 

 

Figure 7.8Hypothetical phase portraits of two processes that cycle independently 

(without interaction) versus two cycles whose cycling interacts, with position on the x-

axis and velocity on the y-axis. 

Some features of cyclic interactions that are uncommon in linear relationships 

include: 1) cyclic interactions being able to produce patterns that vary over time; 2) 

interacting cycles typically having asymmetric bidirectional relationships; 3) interacting 
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cyclic variables influencing each other’s position, velocity, and acceleration over time; 4) 

interacting cyclic variables influencing the amplitudes of each other’s position 

fluctuations over time; 5) interacting cycles producing alterations in the frequencies of 

both cycles. 

Below I present four hypothetical examples of cyclic interactions between time-

dependent self-reported stress and alcohol consumption. 

1. Drinking potentially slows down individuals’ reaction times, and consequently 

reduces the acceleration of their stress level to its peak values. Alcohol consumption 

impairs information processing and slows down reaction times (Maylor & Rabbitt, 1993). 

When exposed to a stressful event, an individual who has consumed a significant amount 

of alcohol might take longer to process the situation and develop a different reaction to it 

than he/she would in a sober state. In terms of the motion trajectory of stress, when the 

consumed alcohol is taking effect, the stress level upon the exposure to the stressful event 

might be escalating to the peak more slowly than it would in a sober state.  

2. Drinking potentially intensifies individuals’ perception of stress and serenity 

(lack of stress), increasing the amplitudes of the self-reported stress fluctuations at the 

peaks and troughs of the cycle. That is, in addition to altering acceleration of stress to its 

peaks, the amount of consumed alcohol might as well change the height of the peaks. For 

instance, an individual who has been physically pushed might take it more seriously if 

intoxicated, creating a higher perceived level of stress for himself/herself.  

3. Drinking potentially increases the time dwelling at the extremes of stress and 

lack of stress, making self-reported stress oscillations flatter around the peaks and 
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troughs. Intoxicated individuals tend to have slower reaction times and cognitive 

processing, which is likely to impede and delay their transition between mental states, 

such as the transition from a high stress to a low stress state. Hence, changes in drinking 

might change the form of the oscillations in stress.  

4. Extended periods of high stress might, in turn, increase the frequency of 

excessive drinking periods. People tend to seek out alcoholic beverages to temporarily 

relieve the discomfort produced by stressful experiences. It is possible that when stressful 

events are experienced especially intensely and for longer periods of time, the individual 

may tend to consume alcohol more frequently to reduce stress. In conjunction with the 

first three examples, such an effect would produce a causal asymmetrical bidirectional 

relationship between reported stress and alcohol consumption.  

Using models with separate non-interacting cycles, such as the classic sinusoid 

model (that only represents symmetric cycles), limits the patterns of relationships 

between two cycles that can be represented. The seasonal trigonometric model is more 

flexible mathematically, but requires that the coupling coefficients κ1 and κ2 sum to 

3𝜔2 (= 3𝜔1
2 = 3𝜔2

2), allowing only for a very narrow subset of possible relationships, 

and currently provides no theoretical justification for this restriction. For instance, if we 

are dealing with 7-day cycles, ω = 
2𝜋

7
 ≈ √0.8, and κ1 + κ2 =  3𝜔2 ≈ 3*0.8=2.4, which 

means that the cyclic relationship between two time series will be detected correctly by 

the model only if their coupling coefficients sum to 2.4, a very specific restriction that is 

highly unlikely to be met with real data. These considerations imply that none of the 

phenomena of the sort described above can be adequately represented. 
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An Alternative Approach: Connected Mass-Spring Models 

By representing any psychological time series data that are expected to be cyclical 

as connected mass-spring models (e.g., Hessler et al., 2013; Boker & Graham, 1998), 

researchers make an assumption that any pair of trajectories can be represented by the 

connected mass-spring system. If this were the case, researchers could use a two-stage 

approach to represent undamped cyclic time series data together with their cyclic 

interactions and linear trends. The first stage would be to input the position and 

acceleration of the two detrended time dependent potentially cycling variables into a 

multilevel connected mass-spring model (Butner et al., 2005). This model permits 

estimation of the major/natural frequencies of the two fluctuating variables, as well as 

their coupling terms on the within-individual (Level 1 equation) level. In the second step, 

the system of the two differential force equations that describe the connected mass-spring 

model need to be solved for x(t) and y(t), which represent position over time for the first 

mass/variable and the second mass/variable, respectively. The solutions of a model 

without friction/damping terms will be a sum of imaginary exponents of e. When split 

into sine and cosine components by Euler’s formula (𝑒𝜃𝑖𝑡 = cos 𝜃𝑡 + i sin 𝜃𝑡) and 

projected onto the real plane, they will result into general definitions of motion 

trajectories of the two masses/variables from the connected mass-spring model with the 

major frequencies and coupling terms detected in the first step. The resulting equations 

will be of a form similar to the seasonal trigonometric model in that each trajectory will 

consist of two pairs of sine and cosine functions with two different frequencies. When the 

natural angular frequencies of the two masses/variables are equal, the first a pair of sine 



 
 

38 
 

and cosine functions will represent the major frequencies of the masses/variables, and the 

second pair of sine and cosine functions will represent the secondary frequencies 

produced by the cyclic interaction. When the natural angular frequencies of the two 

masses/variables are unequal, the two frequencies will have a more complex meaning and 

composition. Each of the trigonometric terms will have a coefficient that is free to vary 

and is dependent on the initial position and velocity of the two masses. Some of the sine 

and cosine components will have additional coefficients composed of the angular 

frequencies and/or the coupling coefficients of the corresponding model. The connection 

between the system parameters estimated by the connected mass-spring model and the 

motion trajectories simplifies to have a convenient universal general solution that can be 

directly input into the sinusoid regression or multilevel model without additional 

calculation. Thus, this process of estimating coupling coefficients through the multilevel 

connected mass-spring model, and solving for x(t) and y(t) turns them into a model 

analogous to the seasonal trigonometric model, but without the restriction that the 

coupling coefficients sum to 3ω2.  

The connected mass-spring model can potentially address all of the limitations of 

the sinusoid model and the seasonal trigonometric model. The model can potentially 

detect cycles together with their relationships and model them in a familiar and 

convenient sinusoid form and be successfully estimated using a hierarchical linear model. 

The major frequencies of the cyclic variables can (a) be estimated using an exploratory 

approach through inputting time series data into the multilevel connected mass-spring 

model, or (b) alternatively, if theory exists that specifies the major frequencies, they can 
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be specified in the connected mass-spring model. The coupling terms and their translation 

to the motion trajectories will determine the directional causal influence of one cyclic 

variable on the other (and vice versa) allowing us to detect and explain complicated 

relationships, as were exemplified earlier in the example using alcohol consumption and 

stress. Finally, cyclic effects can be modeled and/or removed together with their cyclic 

relationships, preventing model misspecification that might arise in the existing cyclic 

models due to the neglect of potential cyclic relationships. 

Given that Boker, Butner, Amazeen, Hessler, Finan and others are correct about 

the implied assumption that trajectories produced by the connected mass-spring system 

can represent the majority of the possible cyclical patterns of psychological variables, the 

two-stage model delineated above should provide a general representation of the 

relationships between cycles in two time series. But, does the coupled mass-spring model 

provide a fully adequate representation or does it have its own limitations? 

Critique of the Connected Mass-Spring Model Approach 

The connected mass-spring system, as depicted in Figure 5, is a closed system 

(Cook & Campbell, 1979) that obeys a set of strict laws of mechanics. Since each of the 

laws adds restrictions to the motion trajectory of the masses (variables), the connected 

mass-spring system may be too physically restricted to be able to represent the full range 

of possible combinations of paired cyclic trajectories. 

One physical law that applies to any closed mechanical system, including the 

basic coupled mass-spring system (without nonlinear escapements), is the law of 

conservation of energy. This law states that the total energy of a closed system is 
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conserved over time. In case of the isolated mass-spring system, this property means that 

the kinetic and potential energies of the system fluctuate, but that their sum must remain 

constant at all times. Kinetic energy (EK), also termed the energy of motion, is contained 

in moving objects that have mass. In mass-spring systems, kinetic energy is contained in 

the moving weights, and can be calculated with equation (30), where m is the mass of the 

weight and v is its movement velocity. Potential energy (EP) is the stored energy of an 

object that is produced by its relative position to other objects or parts of the system. To 

illustrate, when a bowstring is pulled back, a bow stores potential energy due to its 

position. When the arrow is released, potential energy of the bow is converted into kinetic 

energy, and transmitted to the arrow that is propelled into motion. In the mass-spring 

system, potential energy is contained in the springs that are either stretched or 

compressed. The potential energy of each individual spring can be calculated by using 

Equation (31), where k stands for the stiffness of the spring, and x is displacement or 

deformation of the spring. 

                                𝐸𝐾 = 
𝑚𝑣2

2
     (30)                       𝐸𝑃 = 

𝑘𝑥2

2
     (31) 

 

 

Figure 8.9Kinetic and potential energy distribution in the connected mass-spring system. 
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Suppose we have two cyclically oscillating time dependent variables, both of which 

fluctuate synchronously producing a pattern described by the simplest form (see Figure 9) 

of the seasonal trigonometric model, i.e. sin(ωt) + cos(ωt) + sin(2ωt) + cos(2ωt). Such a  

 

Figure 9.10Motion trajectories of a hypothetical connected mass-spring system that 

coincide with the function sin(ωt) + cos(ωt) + sin(2ωt) + cos(2ωt). 

motion trajectory combination is possible with two psychological variables. Now, if this 

motion trajectory combination is producible by the connected mass-spring system, it must 

obey the law of conservation of energy. In terms of the physics of the system, the sum of 

all potential and kinetic energies of the system has to be equal at all times. To simplify 

the case, consider two time points, one at the first peak of the trajectories (t1), and the 

second at the second peak of the trajectories (t2, see Figure 9), and compare the sum of 

energies at these two time points. If this trajectory combination is producible by the 
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system, equation (32) should be true given the closed system property. 

                            𝐸𝑃1(𝑡1) + 𝐸𝑃2(𝑡1) + 𝐸𝑃3(𝑡1) + 𝐸𝐾1(𝑡1) + 𝐸𝐾2(𝑡1) =  

                                       𝐸𝑃1(𝑡2) + 𝐸𝑃2(𝑡2) + 𝐸𝑃3(𝑡2) + 𝐸𝐾1(𝑡2) + 𝐸𝐾2(𝑡2).          (32) 

Recall that the trajectories in this example are synchronous, which means that 

they move perfectly in accord with each other, implying that the distance between the 

two masses never changes. Consequently, the middle spring is never stretched or 

compressed. Under these conditions it will store no potential energy:         

               𝐸𝑃2(𝑡1) =  𝐸𝑃2(𝑡2) = 0                  (33) 

To further simplify equation (32), consider the kinetic energy terms. Since we 

chose t1 and t2 at the peaks of the trajectories, that is, when the masses change their 

direction of movement, velocity at these two time points is 0. Velocity can be visualized 

as the slope of the tangent line to the trajectories at t1 and t2 (see Figure 9). Hence, from 

the definition of kinetic energy:        

          𝐸𝐾1(𝑡1) =  𝐸𝐾2(𝑡1) = 𝐸𝐾1(𝑡2) =  𝐸𝐾2(𝑡2) = 0                  (34) 

We are left with: 

                                             𝐸𝑃1(𝑡1) + 𝐸𝑃3(𝑡1) =  𝐸𝑃1(𝑡2) + 𝐸𝑃3(𝑡2)                               (35) 

After plugging in the definitions of potential spring energy (see Equation 31) and 

multiplying by 2 we get the following result: 

                              𝑘1 ∗ 𝑥(𝑡1)
2 + 𝑘3 ∗ 𝑥(𝑡1)

2 = 𝑘1 ∗  𝑥(𝑡2)
2 + 𝑘3 ∗ 𝑥(𝑡2)

2,        (36) 

where 𝑘1 and 𝑘3 are stiffness of the side springs (see Figure 8 and Figure 9), and x is 

displacement of the masses from the equilibrium x = 0 (see Figure 9). Since movement of 

the two masses is identical, their displacement is also identical at all time points, and 
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hence can be marked with the same letter for simplicity. Now we rearrange (36) into: 

                                           (𝑘1 + 𝑘3) ∗ 𝑥(𝑡1)
2 = (𝑘1 + 𝑘3) ∗ 𝑥(𝑡2)

2,                     (37) 

and since stiffness of the side springs cannot be negative, and is obviously not 0, we 

divide both sides by 𝑘1 + 𝑘3 and end up with: 

                                      𝑥(𝑡1)
2 = 𝑥(𝑡2)

2      (38)     →          |𝑥(𝑡1)| = |𝑥(𝑡2)|        (39)      

The final equation (39) states that the displacement magnitude of the masses at t1 and t2 is 

the same, which cannot be true (see Figure 9) and therefore proves by contradiction that 

the defined pair of motion trajectories is not producible by the connected mass-spring 

system. This analysis suggests that the connected mass-spring model may not be 

identified. A unique solution for the coefficients may not exist. 

The key problem is this: If the trajectory pair is not in the range of the physical 

possibility of the mass-spring system, then there simply is no unique matching set of 

connected mass-spring model parameters to accommodate it. Unless there are a pair of 

trajectories that are producible by the coupled mass-spring system and are which very 

close to the improducible pair, the frequency coefficients (𝜔1
2, 𝜔2

2) detected by the 

connected mass-spring model will be biased, whereas the coupling coefficients (𝜅1, 𝜅2) 

would be expected to be arbitrary. This results in three possibilities, which I describe 

below. 

1) The demonstrated pair of improducible trajectories is a special case. Such 

trajectory combinations can be expected to be very rare, and will have no material 

detrimental effect on the functionality of the connected mass-spring model. In this case, 

the non-damped connected mass-spring model will be applicable to virtually any 



 
 

44 
 

psychological variable pair that cycles over time. If this were the case, the two-stage 

model proposed above would be fully functional in the psychological context and could 

be successfully used to model or remove cyclic behaviors of psychological variables 

together with their bivariate cyclic relationships.  

2)   There is a subset of improducible trajectory pairs that limit the application of 

the non-damped connected mass-spring model, and therefore the proposed two-stage 

approach. However, it could potentially be overcome by easy fixes, such as coupling 

coefficient scaling. 

3) The number of trajectory pairs producible by the non-damped connected mass-

spring system is very restricted, and cannot accommodate the majority of cyclic 

trajectory pairs present in psychological data. None of the connected mass-spring models 

(undamped and, without loss of generality, damped) proposed in the literature cited above 

will be suitable for usage with psychological data, as they do not have a unique solution 

(underidentified). Connected mass-spring model coefficients reported in the published 

literature will not be trustworthy.  

The purpose of my master’s thesis was to find evidence for one of the three 

scenarios above, and to demonstrate my findings through analytic work, and through 

simulation. 
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                   Chapter 2 

METHOD 

Analytic work 

I mathematically defined the restrictions that apply to the pairs of movement 

trajectories of the classical connected mass-spring system with no damping, no nonlinear 

escapements, and with a set natural angular frequency of both masses that corresponds to 

a weekly cycle. The findings/conclusions, without loss of generality, logically extend to 

any other pairs of natural angular frequencies, and to models with damping and nonlinear 

escapements. If the basic model is underidentified, the more complex models will also be 

underidentified. No additional information will be available with which to estimate the 

additional parameters. 

To solve this problem, I used the elimination method for 2 × 2 differential 

systems with constant coefficients (Nagle, Saff & Snider, 2010, p. 263) to find the 

general solution of the system. Because the motion trajectories of an undamped mass-

spring model are composed of nonfading cyclic components (on average, there is no 

decrease in the amplitude of fluctuations over time), the general solution is composed of 

imaginary exponentials of e. Imaginary exponentials of e were decomposed into the sums 

and of sines and cosines by the Euler’s formula (𝑒𝜃𝑖𝑡 = cos 𝜃𝑡 + i sin 𝜃𝑡), and projected 

onto the real plane by removing the imaginary coefficients. This approach resulted in 

general definitions of the motion trajectories of the two connected masses with their 

elements defined in terms of the natural angular frequencies of the mass spring system 

(ω1, ω2), the coupling terms of the connected mass-spring system (κ1, κ2), and the initial 
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condition dependent coefficients (C1, C2, C3, C4). General definitions of the two motion 

trajectories allowed visualization of the general pattern of their relationship and the 

restrictions on their relationships.  

Simulation Study 

The simulation study estimated parameters of motion trajectories producible by 

the undamped connected mass-spring system with equal major frequencies (see equation 

set 40 below). The trajectories of the two masses in the undamped connected mass-spring 

model with equal natural angular frequencies (the two side springs having the same 

stiffness to mass ratio, 
𝑘1

𝑚1
= 

𝑘2

𝑚2
, and thus having the same natural frequency), according 

to the results of my analytic work (see Appendix A for derivation), follow: 

{
𝑦(𝑡) = 𝐶1 cos(𝜔1𝑡) +  𝐶2 sin(𝜔1𝑡) +  𝐶3 cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) + 𝐶4 sin (√𝜔1
2 + 𝜅1 + 𝜅2𝑡)  

𝑥(𝑡) =  𝐶1 cos(𝜔1𝑡) + 𝐶2 sin(𝜔1𝑡) − 𝐶3
𝜅1

𝜅2
cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) − 𝐶4
𝜅1

𝜅2
sin (√𝜔1

2 + 𝜅1 + 𝜅2𝑡)  
(40) 

In the equation system represented in the Equation set (40), 𝑡 stands for time, 𝑥(𝑡) 

represents position over time of mass 1, 𝑦(𝑡) represents position over time of mass 2, 

𝜔1 represents the angular frequency of the side springs, √𝜔1
2 + 𝜅1 + 𝜅2  =

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 represents angular frequency of the middle spring, and 𝜅1 and 𝜅2 are coupling 

coefficients. 𝜅1 represents the influence of mass 2 on mass 1, and 𝜅2 represents the 

influence of mass 1 on the mass 2.  𝐶1, 𝐶2 , 𝐶3, 𝐶4 are coefficients that depend on the 

initial conditions (initial position and velocity of the masses). 

Equation system (40) was used to generate pairs of trajectories that, according to 

my analytic work, are producible by the connected mass-spring system, and therefore 
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should be properly represented by the multilevel connected mass-spring model. Pairs of 

trajectories were generated for each individual. Uncorrelated residuals were generated 

and added at each time point within each individual within each trajectory. Acceleration 

values of the position trajectories were calculated using the local linear approximation 

method (Boker, 2001; Boker & Graham, 1998).  

The multilevel connected mass-spring model defined in the equation set (41) 

below was then be applied to the generated data.  

   
𝑑2𝑥𝑚𝑖𝑡

𝑑𝑡2
 = β1𝑖𝑡(𝐷1𝑚𝑖𝑡) + β2𝑖𝑡(𝐷2𝑚𝑖𝑡) + 𝑟𝑚𝑖𝑡 .      Level 1              

           β1𝑖𝑡 = η1𝑥1𝑖𝑡 + 𝜅1(𝑥2𝑖𝑡 − 𝑥1𝑖𝑡) + 𝑒1𝑖𝑡      Level 2                                  (41) 

                      β2𝑖𝑡 = η2𝑥2𝑖𝑡 + 𝜅2(𝑥1𝑖𝑡 − 𝑥2𝑖𝑡) + 𝑒2𝑖𝑡 .             

 

In equation set (41), 𝑥𝑚𝑖𝑡 represents position of mass m in subject i at time t, and 
𝑑2𝑥𝑚𝑖𝑡

𝑑𝑡2
 

represents the 2nd derivative of the position of mass m in subject i at time t (or 

acceleration of mass m in subject i at time t). 𝐷1𝑚𝑖𝑡 is an indicator variable coded 1 when 

m=1, and coded 0 when m=2, whereas 𝐷2𝑚𝑖𝑡 is an indicator variable coded 0 when m=1, 

and coded 1 when m=2. β1𝑖𝑡 is the random slope for indicator variable 𝐷1𝑚𝑖𝑡, which is 

also acceleration of mass 1 at time t in individual i. β2𝑖𝑡 is the random slope for indicator 

variable 𝐷2𝑚𝑖𝑡, which is also acceleration of mass 2 at time t in individual i. 𝜂1 and 𝜂2 

represent the mean negative squared angular frequency across individuals and time points 

of mass 1, and mass 2, respectively. 𝜅1 and 𝜅2 represent the mean coupling influence 

across individuals and time points of mass 2 on mass 1, and mass 1 on mass 2, 

respectively. 𝑟𝑚𝑖𝑡 is the level 1 error term for mass m individual i at time t, assumed to be 

~ 𝑁(0, 𝜎2). 𝑒1𝑖𝑡 represents the variation in the force estimate of mass 1 across individuals 



 
 

48 
 

and time points, and 𝑒2𝑖𝑡 represents the residual variation in the force estimate of mass 2 

across individuals and time points. 𝑒1𝑖𝑡 and 𝑒2𝑖𝑡 are assumed to have a bivariate normal 

distribution with means 0, variances 𝜏0, 𝜏1, and covariance 𝜏01. 

The multilevel connected mass-spring model implemented in SAS estimated (a) 

the mean negative squared angular frequency of the left-most spring (𝜔1 in equation x(t)), 

(b) the mean negative squared angular frequency of the right-most spring (𝜔1 in equation 

y(t)), (c) 𝜅1 and (d) 𝜅2, together with their standard errors. I evaluated the bias of the 

estimates of 𝜔1, 𝜔2, 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 ( = √𝜔1
2 + 𝜅1 + 𝜅2) , 𝜅1, 𝜅2, and 𝜅1/𝜅2 by calculating 

the relative parameter bias, where 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
 . Values of 

parameter bias which did not exceed 10 percent were considered adequate (Muthén & 

Muthén, 2002). 

a) Angular Frequency Values: Primary 

The precise sets of values that were tested in my simulation are: 

              𝜔1 =  
2𝜋

7
,   
2𝜋

14
,   
2𝜋

35
,   
2𝜋

70
 ;  

The primary angular frequency values presented above represent the theoretical 

fluctuation frequencies generated by the side springs. They are equivalent to the 

fluctuation frequency of each of the two independent mass-springs that would be 

produced by removing the middle spring of the connected mass-spring system. In this 

simulation study, they also determine the sampling frequency2 of the generated 

                                                           
2 Having sampling rate as an independent manipulated variable, separate from the theoretical frequency 𝜔1 

would be redundant. For instance, having a sampling rate of 7 measures per cycle where the theoretical 

major frequency 𝜔1 is 
2𝜋

7
, and having a sampling rate of 7 measures per cycle where the theoretical major 



 
 

49 
 

trajectories x(t) and y(t). The first frequency, 7 measures per cycle, is equivalent to 7 

daily diary measures in the data with expected weekly cycles. The second frequency, 14 

measures per cycle, is equivalent to two equally spaced daily measures in the data with 

expected weekly cycles. Analogously, the third frequency represents 5 measures, and the 

fourth frequency 10 measures per day in the same context. The findings can be 

generalized to any major frequencies and sampling rates that are in the range of the listed 

values. According to my pilot simulation, lower frequencies are too sparse for the cycles 

to be detected correctly by the multilevel connected mass-spring model, whereas higher 

frequencies produce acceleration terms that are overly sensitive to error (more discussion 

on that below).  

b) Angular Frequency Values: Secondary 

             𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  

  When 𝜔1 =  
2𝜋

7
 : 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =  

2𝜋

3.5
 , 
2𝜋

4
 ,

2𝜋

5
 , 
2𝜋

6
 ;  

              When 𝜔1 =  
2𝜋

14
 : 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =  

2𝜋

4
 , 
2𝜋

7
 ,

2𝜋

10
 , 
2𝜋

13
 ;  

              When 𝜔1 =  
2𝜋

35
 : 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =  

2𝜋

4
 , 
2𝜋

10
 ,

2𝜋

17.5
 , 
2𝜋

25
 ,
2𝜋

34
 ; 

              When 𝜔1 =  
2𝜋

70
 : 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =  

2𝜋

4
 , 
2𝜋

20
 ,

2𝜋

35
 , 
2𝜋

50
 ,
2𝜋

69
 . 

 Secondary frequency values represent the angular frequency of the middle spring. 

Equations (40) constrain the sum 𝜅1 + 𝜅2 to a fixed value because √𝜔1
2 + 𝜅1 + 𝜅2 =

 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦. The secondary frequency values are presented above in the same format as 

                                                           

frequency 𝜔1 is 
2𝜋

70
 would yield identical results. The two sampling rates represent the same pattern, but are 

measured on a different time scale (Δt, which does not affect model estimates). 
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the major frequencies 𝜔1. Given that 𝜔1 represents both the theoretical major frequency 

and the sampling frequency, the numeric values in the denominator of 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 

represent the length of the secondary cycle in terms of the equally spaced observation 

points as well as the number of observation points per each secondary cycle (e.g., 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 
2𝜋

4
 means that the secondary cycle is completed after 4 observations, and 

that there are 4 observations per each full secondary cycle). For instance, in the case 

where 𝜔1 =  
2𝜋

7
 and  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =  

2𝜋

4
 ,  the following x(t) and y(t) trajectories (with some 

fixed 𝐶1, 𝐶2 , 𝐶3, 𝐶4 and 
𝜅1

𝜅2
 ) will be generated: 

{
𝑥(𝑡) = 𝐶1 cos (

2𝜋

7
𝑡) + 𝐶2 sin (

2𝜋

7
𝑡) + 𝐶3 cos (

2𝜋

4
𝑡) + 𝐶4 sin (

2𝜋

4
𝑡)  

𝑦(𝑡) =  𝐶1 cos (
2𝜋

7
𝑡) + 𝐶2 sin (

2𝜋

7
𝑡) − 𝐶3

𝜅1

𝜅2
cos (

2𝜋

4
𝑡) − 𝐶4

𝜅1

𝜅2
sin (

2𝜋

4
𝑡)     

     

and sampled at the rate of 7 equally spaced measurements per cycle, where the cycle 

length is 2π radians. 

All the selected 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 values were larger than the corresponding 𝜔1 values 

as the impact of the middle spring cannot physically generate secondary frequencies that 

are lower than the major frequencies. In mathematical terms, 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

√𝜔1
2 + 𝜅1 + 𝜅2 > 𝜔1  because  𝜅1 =

𝑘𝑚𝑖𝑑𝑑𝑙𝑒

𝑚1
 and 𝜅2 =

𝑘𝑚𝑖𝑑𝑑𝑙𝑒

𝑚2
  with the 𝑘𝑚𝑖𝑑𝑑𝑙𝑒 (stiffness 

of the middle spring), 𝑚1 (mass of the left weight) and 𝑚2 (mass of the right weight). 

These values will always be positive because stiffness and mass cannot be negative or 

zero in the classical mechanics of the mass-spring system. The lowest secondary 

frequency in case of each 𝜔1 was chosen to be the value that is closest to the minimal 
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boundary value (i.e. 1𝜔1), with 2π in the numerator (to maintain the standard format) and 

a whole number in the denominator (for convenience).  

The frequency of the secondary cyclic component, 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, is always higher 

than the major frequency 𝜔1. According to my pilot simulation, in order to avoid 

empirical underidentification, at the very least 4 equally spaced observations are needed 

per each cyclic component. For that reason, the highest secondary frequency in case of 

each 𝜔1 (except for 𝜔1 = 
2𝜋

7
 ) was selected to be 

2𝜋

4
. In case of 𝜔1 = 

2𝜋

7
, a higher 

secondary frequency, 
2𝜋

3.5
 , was also tested because together with 𝜔1 = 

2𝜋

7
  it corresponds 

to the frequency composition of the seasonal trigonometric model (𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 2𝜔1), 

which is of interest. A secondary frequency that together with the corresponding 𝜔1 

proportionally corresponds to the seasonal trigonometric model was included among the 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 values for each 𝜔1. 

The rest of the values were selected to be easily interpretable (whole numbers in 

the denominator) and approximately equally spaced between the set boundaries of 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 values given the four selected major frequencies 𝜔1. 

c) Coupling Ratios 

          1.  𝜅1/𝜅2 =  1/100,   1/40,   1/10,    1/2,    1;                  0 < 𝜅1/𝜅2 ≤ 1 

           2.  𝜅1/𝜅2 =  𝑚2/𝑚1 = 2/1 = 2                                             𝜅1/𝜅2 > 1  

                𝜅1/𝜅2 =  𝑚2/𝑚1 = 10/1 = 10 
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                𝜔1 =  
2𝜋

70
 ;  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =  

2𝜋

20
 ;  n = 50 ;  series length = 7 cycles ; 

                 
𝜎𝑒𝑟𝑟𝑜𝑟
2

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝜎𝑒𝑟𝑟𝑜𝑟

2   =    0.0000002;    𝑝1 = 1,  𝑝2 = −10,  𝑣1 = 10,  𝑣2 = −1  

The majority of coupling ratios 𝜅1/𝜅2 were bounded by 0 < 𝜅1/𝜅2 ≤ 1. The 

minimum boundary of 0 comes from the aforementioned equalities 𝜅1 = 
𝑘𝑚𝑖𝑑𝑑𝑙𝑒

𝑚1
 and 

𝜅2 = 
𝑘𝑚𝑖𝑑𝑑𝑙𝑒

𝑚2
.  Redefining the coupling ratio in terms of stiffness and mass gives  𝜅1/𝜅2 = 

𝑘𝑚𝑖𝑑𝑑𝑙𝑒

𝑚1
 : 
𝑘𝑚𝑖𝑑𝑑𝑙𝑒

𝑚2
 = 

𝑚2

𝑚1
. In classical mechanics mass cannot be negative and hence,  𝜅1/𝜅2 

≥ 0. Having mass being 0 would undermine the physical structure of the connected mass-

spring system, and hence, 𝜅1/𝜅2 > 0. The upper boundary excluded cases where 𝑚2 > 

𝑚1. Setting this boundary eliminates the consideration of identical systems to those that 

are spanned by the 𝜅1/𝜅2 between 0 and 1, but with 𝑚2 and 𝑚1 exchanged. 

               By looking at the equation system of 𝑥(𝑡) and 𝑦(𝑡), and knowing that 𝑥(𝑡)  

{
 
 

 
 𝑦(𝑡) = 𝐶1 cos(𝜔1𝑡) + 𝐶2 sin(𝜔1𝑡) + 𝐶3 cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) + 𝐶4 sin (√𝜔1
2 + 𝜅1 + 𝜅2𝑡)             

𝑥(𝑡) =  𝐶1 cos(𝜔1𝑡) +  𝐶2 sin(𝜔1𝑡) −  𝐶3
𝜅1
𝜅2
cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) − 𝐶4
𝜅1
𝜅2
sin (√𝜔1

2 + 𝜅1 + 𝜅2𝑡)     

     

always represents the trajectory of 𝑚1, whereas 𝑦(𝑡) always represents the trajectory of 

𝑚2, at first glance one might argue that given the structure of the last two terms of the 

equations, 𝑚2 and 𝑚1 cannot produce identical (but reversed) motion trajectory pairs 

when exchanged. However, this apparent result occurs only because the initial condition 

dependent coefficients (𝐶1, 𝐶2 , 𝐶3, 𝐶4) were represented here by single coefficients for 

simplicity. The 𝐶1, 𝐶2 , 𝐶3, 𝐶4 values in terms of other coefficients were derived by 

solving  𝑝1 = 𝑥(0),  𝑝2 = 𝑦(0),  𝑣1 = 𝑥′(0),  𝑣2 = 𝑦′(0) in a single equation system. The 
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derivation shows that 𝐶1 to 𝐶4 can be fully expressed in terms of initial position (𝑝1, 𝑝2),  

𝐶1 =
𝑣2+ 

𝜅2
𝜅1
𝑣1

𝜔1 (1+ 
𝜅2
𝜅1
) 
       𝐶2 =  

𝑝2+ 
𝜅2
𝜅1
 𝑝1

1+ 
𝜅2
𝜅1
 

      𝐶3 =
𝑣2−𝑣1

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 (1+ 
𝜅1
𝜅2
) 
      𝐶4 =

𝑝2−𝑝1

1+ 
𝜅1
𝜅2
 
       (42)     

𝐶1 =
𝑣2+ 

𝑚1
𝑚2
𝑣1

𝜔1 (1+ 
𝑚1
𝑚2
) 
     𝐶2 =  

𝑝2+ 
𝑚1
𝑚2
 𝑝1

1+ 
𝑚1
𝑚2
 

       𝐶3 =
𝑣2−𝑣1

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 (1+ 
𝑚2
𝑚1
) 
      𝐶4 =

𝑝2−𝑝1

1+ 
𝑚2
𝑚1
 
     (43)     

initial velocity (𝑣1,𝑣2), primary and secondary frequencies, and either the coupling ratio 

(Equation set 42), or the mass ratio (Equation set 43). In this form, it becomes evident 

that exchanging 𝑚2 and 𝑚1, exchanging initial position and initial velocity terms, and 

setting them to their additive inverses (i.e,  𝑝1 = − 𝑝2,  𝑝2 = − 𝑝1,  𝑣1 = − 𝑣2;   𝑣2 =

 − 𝑣1) will yield identical motion trajectories to those produced by the initial system, but 

reversed and mirror reflected (i.e. the mirror image of x(t) of the initial system will equal 

y(t) of the rearranged system, and the mirror image of y(t) of the initial system will equal 

x(t) of the rearranged system).  

              I included two 𝜅1/𝜅2 values larger than 1 (together with a fixed set of other 

coefficients) to test my statements about the consequences of exchanging of 𝑚2 and  𝑚1. 

More precisely, to test whether the trajectory pairs produced with 𝜅1/𝜅2 = 2/1 , and 

𝜅1/𝜅2 = 10/1 are the mirror images of exchanged x(t) and y(t) of the systems where 

𝜅1/𝜅2 = 1/2 and 𝜅1/𝜅2 = 1/10, respectively. All the other parameters (except for 

𝐶1, 𝐶2 , 𝐶3, 𝐶4) were fixed, and 𝐶1, 𝐶2 , 𝐶3, 𝐶4 were adjusted in accordance with the changes 

in initial position and velocity proposed above. The set of fixed parameters (𝜔1, 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, n, series length, 
𝜎𝑒𝑟𝑟𝑜𝑟
2

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝜎𝑒𝑟𝑟𝑜𝑟

2 ) were selected so that, according to the pilot 

simulation, the parameters of the corresponding connected mass-spring system could be 
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detected correctly by the multilevel model. The set of initial position and velocity values 

was chosen from the manipulated sets of initial condition values (see next section) such 

that initial position and velocity values would be different for mass 1 and mass 2, and 

have the highest predicted convergence rate based on the pilot simulation (set 8). The 

initial position and velocity values from this set were exchanged, and set to their additive 

inverses, as discussed above (i.e,  𝑝1 = − 𝑝2,  𝑝2 = − 𝑝1,  𝑣1 = − 𝑣2;   𝑣2 = − 𝑣1). If 

the position values of the two masses are the same, the fourth term of the motion 

trajectories (see equations sets 42 and 43) is cancelled out. If the velocity values of the 

two masses are the same, the third term of the motion trajectories cancels out. Testing 

conditions where all four trajectory equation terms were present permitted the 

simultaneous examination of all four motion trajectory terms.  

              The highest 𝜅1/𝜅2 value in the 0 < 𝜅1/𝜅2 ≤ 1 range was chosen to coincide with 

the upper boundary of 1, where the two coupling terms (and, equivalently, the two 

masses) are equal. The lowest 𝜅1/𝜅2 value (1/100) in the 0 < 𝜅1/𝜅2 ≤ 1 range was 

chosen to be close to the lower boundary and represents the case where one coupling 

coefficient is 100 times stronger than the other. The 𝜅1/𝜅2 values between the two 

extremes were chosen to be easily interpretable and representative of the range of the 

values between the extremes.  

d) Initial Position and Velocity:  𝒑𝟏,  𝒑𝟐,  𝒗𝟏,  𝒗𝟐         

 The ten conditions below represent different sets of values for the initial position 

and velocity of each mass. The state of the system that is represented by each condition is 

described below the list of conditions. The choice of initial values for the position and 
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velocity of each mass were subject to the constraints of equation sets (42) and (43). A 

variety of values were chosen to represent the performance of the system given a range of 

initial values.                                    

1.       𝑝1 = 𝑝2     𝑣1 =  𝑣2 = 0     →     𝑝1 = 10,  𝑝2 = 10,  𝑣1 = 0,  𝑣2 = 0 

2.       𝑝1 = 𝑝2 = 0       𝑣1 =  𝑣2 > 0    →     𝑝1 = 0,  𝑝2 = 0,  𝑣1 = 10,  𝑣2 = 10 

3.       𝑝1 = 𝑝2 > 0       𝑣1 =  𝑣2 < 0    →     𝑝1 = 1,  𝑝2 = 1,  𝑣1 = −1,  𝑣2 = −1 

4.        𝑝1 > 0   𝑝2 > 0       𝑣1 =  𝑣2 > 0    →     𝑝1 = 1,  𝑝2 = 10,  𝑣1 = 5,  𝑣2 = 5 

5.        𝑝1 < 0    𝑝2 > 0     𝑣1 > 0    𝑣2 < 0    →    𝑝1 = −10,  𝑝2 = 1,  𝑣1 = 10,  𝑣2 = −1 

6.        𝑝1 > 0    𝑝2 < 0     𝑣1 < 0    𝑣2 > 0     →     𝑝1 = 1,  𝑝2 = −10,  𝑣1 = −1,  𝑣2 = 10 

7.        𝑝1 < 0    𝑝2 > 0     𝑣1 < 0    𝑣2 > 0     →     𝑝1 = −1,  𝑝2 = 10,  𝑣1 = −10,  𝑣2 = 1 

8.        𝑝1 > 0    𝑝2 < 0     𝑣1 > 0    𝑣2 < 0    →     𝑝1 = 10,  𝑝2 = −1,  𝑣1 = 1,  𝑣2 = −10 

9.       𝑝1 > 0    𝑝2 > 0     𝑣1 < 0    𝑣2 > 0    →     𝑝1 = 10,  𝑝2 = 10,  𝑣1 = −10,  𝑣2 = 10 

10.     𝑝1 > 0    𝑝2 > 0     𝑣1 > 0    𝑣2 < 0     →      𝑝1 = 5,  𝑝2 = 5,  𝑣1 = 1,  𝑣2 = −10 

The ten combinations of initial conditions presented above correspond to ten 

different major cases of initial position and velocity parings that produce different types 

of motion patterns. The exact initial position and/or velocity values were chosen to be 

equal in the first four and the last two combinations in order to test the motion trajectory 

pairs where the third (4), the fourth (9, 10), or both the third and the fourth (1, 2, 3) terms 

of x(t) and y(t) are 0, as 𝐶3 =
𝑣2−𝑣1

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 (1+ 
𝜅1
𝜅2
) 
 and 𝐶4 =

𝑝2−𝑝1

1+ 
𝜅1
𝜅2
 
 (see Equations 42 and 43). 

The condition where all the initial position and velocity values are equal to 0 yields a 

motionless system and was not considered. 
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The first initial position and velocity value combination represents the case where 

both masses are pulled away from their equilibrium by an equal distance in the same 

direction and then released. The second combination represents the case where both 

masses are positioned at their equilibria, and then pushed in the same direction inducing 

the same initial velocity in both masses. The third combination represents both masses 

being pulled away from their equilibria by an equal distance towards the right wall and 

then pushed towards the left wall (in the direction in which both would move if released 

freely) with equal initial velocity. The fourth combination represents both masses being 

pulled away from their equilibria towards the right wall and then pushed towards the right 

wall (in the opposite direction from the one they would move if released freely) with 

equal initial velocity. The fifth combination represents an instance where both masses are 

pulled to the sides and then pushed towards the center of the system (in the direction in 

which they would move if released freely). The sixth combination represents an instance 

where both masses are pulled towards the center of the system and then pushed to the 

sides (in the direction in which they would move if released freely). The seventh 

combination represents the two masses being pulled to the sides and then pushed to the 

sides (against the direction in which they would move if released freely). The eighth 

combination represents an instance where the two masses are pulled towards the center of 

the system and then pushed towards the center of the system (against the direction in 

which they would move if released freely). The ninth combination is an instance where 

the two masses are pulled to the right, and then the left mass is pushed to the left (in the 

direction in which it would move if released freely), whereas the right mass is pushed to 
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the right (against the direction in which it would move if released freely). The tenth 

combination represents an instance where the two masses are pulled to the right side, and 

then the left mass is pushed to the right (against the direction in which it would move if 

released freely), whereas the right mass is pushed to the left (against the direction in 

which it would move if released freely). All the cases presented above are possible in 

psychological data, they represent a relatively comprehensive set of the possible 

trajectory pattern types producible by the connected mass-spring system.  

               As mentioned above, the initial position and/or velocity values were chosen to 

be equal in the first four combinations in order to test the motion trajectory pairs where 

the third, the fourth, or both the third and the fourth terms of x(t) and y(t) are 0. 

Furthermore, the numeric values that satisfy the ten conditions described above were 

selected in a way that allowed testing of whether the magnitudes of initial position and 

velocity values have an effect on the adequacy of the parameter estimates. Each initial 

value combination defined above was assigned one magnitude pattern (corresponding 

initial value combination number is in parentheses): 

• All values small   (3.) 

• All values large    (9.) 

• Zero position values, large velocity values   (2.) 

• Large position values, zero velocity values   (1.) 

• Contrasting position values, equal medium velocity values   (4.) 

• Equal medium position values, contrasting velocity values   (10.) 
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• Contrasting position values, contrasting velocity values  

with low 𝑝1,  𝑣1 and high 𝑝2,  𝑣2   (6.) 

• Contrasting position values, contrasting velocity values  

with low 𝑝2, 𝑣2,  and high  𝑝1, 𝑣1   (5.) 

• Contrasting position values, contrasting velocity values  

with low 𝑝1, 𝑣2,  and high  𝑣1, 𝑝2   (7.) 

• Contrasting position values, contrasting velocity values  

with low 𝑣1, 𝑝2,  and high  𝑝1, 𝑣2   (8.) 

               Zero values indicate the absence of the term, low values indicate values with 

magnitude of 1, medium values correspond to the magnitude of 5, and large values 

indicate values with magnitude of 10. Whole numbers between 0 and 10 were chosen for 

simplicity. They do not carry any fixed meaning in terms of psychological variables: Any 

psychological variable that fluctuates over time can be scaled to have initial position and 

velocity between 0 and 10. Initial position and velocity values can be changed by scaling 

the oscillation amplitude of a variable, and/or Δt. 

             Each of the 10 initial value combinations were used to calculate 𝐶1, 𝐶2 , 𝐶3, 𝐶4 by 

using equation set (41). Calculated 𝐶1, 𝐶2 , 𝐶3, 𝐶4 values were used in combination with 

all the other manipulated variables to generate motion trajectories x(t) and y(t). 

e) Sample Size 

             n = 50;   
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According to the pilot simulation, when all the other manipulated variables are 

held constant, the mean estimates of the parameters of interest do not change across 

sample sizes (in terms of the number of subjects) that are common in daily diary studies 

in psychology (n = 15 to 150). Variation in n affects only the standard error of the 

estimates. A larger number of subjects results in smaller standard errors. As the main 

purpose of this simulation was to test whether the generated motion trajectories are being 

linked by the multilevel model to the set of parameters that define the corresponding 

physical system that produced them, varying n to explore standard errors would provide 

no meaningful information. Hence, n is fixed at the value of 50, which is a common 

number of subjects in daily diary studies and, according to the pilot simulation, produces 

reasonable standard error patterns. 

f)  Series length  

7 full cycles; 

Variation in series length in terms of the number of traversed cycles affects 

parameter estimates analogously to the variation in sample size n. According to the pilot 

simulation, when all other manipulated variables are held constant, the mean estimates of 

the parameters of interest remain the same across series lengths that are common in daily 

diary studies in psychology (3 to 15 full cycles). Variation in series length affects only 

the standard error of the estimates, with longer series resulting in smaller standard errors. 

For the same reasons as sample size above, series length was held constant in this 

simulation study at the value of 7 full cycles, a value that is representative of several 
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daily diary studies. According to the pilot simulation, having 7 full cycles produces 

reasonable standard error patterns. 

g) Error Magnitude 

𝜎𝑒𝑟𝑟𝑜𝑟
2

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝜎𝑒𝑟𝑟𝑜𝑟

2 ∗ 100% = 0.00002% , 10% , where 

               𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2  is the variance of the x(t) or y(t) trajectory generated without error for 

each individual, and 𝜎𝑒𝑟𝑟𝑜𝑟
2  is the variance of the normal distribution that the residual 

terms are generated from for each individual at each time point. 10% error corresponds to 

reliability of .90 since reliability =  
𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝜎𝑒𝑟𝑟𝑜𝑟

2   (the variance due to the signal is 

equivalent to the true score variance). 

Generated error magnitudes are listed above in terms of the proportion of the error 

variance to the total variance of the generated position values (x(t) and y(t)). According to 

the pilot simulation, the error variance proportion of 0.00002% should yield adequate 

estimates for all the sets of manipulated parameter values. This observation assumes that 

no problems of identification exist. Error variance proportion of 10%, according to the 

pilot simulation, was expected to yield inadequate parameter estimates for all the sets of 

manipulated parameter values. In addition, error variance proportion of 10% relates to 

psychological measurement as it reflects high reliability (ρxx  = .90) of a questionnaire.  

Design 

All the listed manipulated variable values, except for those that were listed 

together with their own specific combinations of the remaining manipulated variable 
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values, were combined in a factorial structure. This resulted in a general 18 

(combinations of ω1 and ω2) × 5 (coupling ratios, 𝜅1/𝜅2) × 10 (initial position and 

velocity combinations) × 2 (error magnitudes) design. The factorial design was 

supplemented with the examination of 2 additional special conditions, coupling ratios >  

Evaluation 

As described in parts e) and f), the mean estimates of the parameters of interest 

remain constant across different sample sizes and series lengths that are common in daily 

diary studies in psychology. Based on the pilot simulation, taking the mean of 30 

parameter estimate sets appeared to be sufficient to achieve stable estimates, so 30 

replications of each possible combination of the manipulated parameters listed above 

were generated. The parameters of the connected mass-spring system that produced them 

were estimated in the multilevel connected mass-spring model defined above.  

The multilevel connected mass-spring model implemented in SAS estimated the 

mean negative squared angular frequency of the left-most spring (𝜔1 in equation x(t)), the 

mean negative squared angular frequency of the right-most spring (𝜔1 in equation y(t)), 

𝜅1 and 𝜅2, together with the standard errors of each parameter. I evaluated the relative 

bias of the means of 𝜔1, 𝜔2,  √𝜔1
2 + 𝜅1 + 𝜅2  = 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  , 𝜅1, 𝜅2, and 𝜅1/𝜅2 across 

the 30 simulated replications of each manipulated parameter set by calculating the mean 

parameter bias (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛 𝑏𝑖𝑎𝑠 =  
𝑚𝑒𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑡𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒

𝑡𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒
) . I 

considered estimates whose mean parameter bias did not exceed 10 percent to be 

adequate (a criterion suggested in Muthén & Muthén, 2002). 
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Expected Results 

             It was not expected that all the trajectory pairs generated in accordance with the 

Equation system (40) would be detected by the multilevel SAS model correctly.  

1.  With higher density of the measures, acceleration terms become very small 

and overly susceptible to distortions due to the error in the position trajectories. Higher 

density of the time series implies smaller steps in time between the measures. Smaller 

steps in time between the measures imply smaller changes in velocity for each step. 

Smaller changes in velocity per step imply a smaller magnitude of acceleration for each 

step. Since acceleration terms are derived from the position trajectories, errors that are 

negligible in the context of position can potentially lead the estimate of acceleration to be 

very unreliable. This pattern also depends on the ratio 𝜅1/𝜅2. If one coupling coefficient 

is very small relative to the other, the amplitude of its position trajectory will be small. 

Accordingly, the acceleration magnitudes of the corresponding mass will be small, and 

susceptible to distortions due to measurement error in the measure of position trajectory 

(x(t) or y(t)). Thus, it is reasonable to expect that there is a range of combinations of 

frequencies (𝜔1 and 𝜔2), error rates (
𝜎𝑒𝑟𝑟𝑜𝑟
2

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝜎𝑒𝑟𝑟𝑜𝑟

2   ), and coupling ratios (𝜅1/𝜅2) that 

separates trajectory pairs whose parameters are accurately estimated by the multilevel 

model, and trajectory pairs whose parameters are not estimated accurately by the 

multilevel model due to the noise in the acceleration terms. 

2. With lower density of measurement, the number of the potential theoretical 

trajectories that accommodate the observed data increases, increasing the number of 

parameter combinations that would be expected to yield good model fit. When the 
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measures have a low sampling rate, multiple potential continuous time series models can 

be constructed that could potentially coincide with those measures. If any of those 

continuous time series trajectory pairs could theoretically be produced by the connected 

mass-spring system, they can potentially be detected by the multilevel model. The sparser 

the measures, the higher the likelihood of the existence of multiple continuous time series 

that can be producible by a connected mass-spring system, and the more likely that the 

multilevel model will detect a set of parameters that define a system other than the one 

that was used to generate the measures. For instance, if the theoretical trajectories have 

small cyclical fluctuations between sparse empirical measurements, the multilevel model 

would be likely to detect the parameters of a system that produces trajectories with 

smooth connections instead of fluctuations, in turn neglecting the secondary frequency. 
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Chapter 3 

RESULTS 

Checks on Adequacy of Solutions 

Solution Quality 

 All (100%) of the replications yielded SAS warning messages that included 

“NOTE: Estimated G matrix is not positive definite. NOTE: Asymptotic variance matrix 

of covariance parameter estimates has been found to be singular and a generalized 

inverse was used. Covariance parameters with zero variance do not contribute to degrees 

of freedom computed by DDFM=SATTERTH.” They reflect an error in the definition of 

the multilevel connected mass-spring model presented in Butner et al. (2005). However, 

they do not undermine the quality of the fixed effect estimates of the model that are of 

interest in this study.  

 To model the connected mass-spring system Butner et al. (2005) use a 

multivariate multilevel model, wherein Level-2 contains two equations that define the 

connected mass-spring system, and Level-1 rearranges the data related to these two 

equations into a univariate form using indicator variables. Such a model contains only 

one actual hierarchical level (Level 2), whereas Level 1 is present just for the variable 

arrangement into the univariate form, and contains the same equations as Level 2, one at 

a time, depending on the values of the indicator variables. Given such a structure of the 

multivariate multilevel model, the error term(s) can be estimated either at Level 1, or at 

Level 2, but not both, as they would be identical and inestimable (for example, see Ryu, 
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West, & Sousa, 2012). In the Butner et al. (2005) model3 (see Equation set 44 below), 

however, error terms are present at both levels. Under such circumstances, when 

subscript m is equal to 1, the combined multilevel equation is presented in Equation (45), 

   
𝑑2𝑥𝑚𝑖𝑡

𝑑𝑡2
 = β1𝑖𝑡(𝐷1𝑚𝑖𝑡) + β2𝑖𝑡(𝐷2𝑚𝑖𝑡) + 𝑟𝑚𝑖𝑡 .    Level 1              

           β1𝑖𝑡 = η1𝑥1𝑖𝑡 + 𝜅1(𝑥2𝑖𝑡 − 𝑥1𝑖𝑡) + 𝑒1𝑖𝑡                 Level 2                        (44) 

                      β2𝑖𝑡 = η2𝑥2𝑖𝑡 + 𝜅2(𝑥1𝑖𝑡 − 𝑥2𝑖𝑡) + 𝑒2𝑖𝑡 .     

and when subscript m is equal to 2, the combined multilevel equation is presented in 

Equation (46). Now technically, there are 4 error terms at the same hierarchical level 

(𝑒1𝑖𝑡, 𝑒2𝑖𝑡, 𝑟1𝑖𝑡, 𝑟2𝑖𝑡) being estimated in the system of 2 equations (45 and 46). 4 unknowns 

           
𝑑2𝑥1𝑖𝑡

𝑑𝑡2
=  η1𝑥1𝑖𝑡 + 𝜅1(𝑥2𝑖𝑡 − 𝑥1𝑖𝑡) + 𝑒1𝑖𝑡 + 𝑟1𝑖𝑡                                  (45) 

            
𝑑2𝑥2𝑖𝑡

𝑑𝑡2
=  η2𝑥2𝑖𝑡 + 𝜅2(𝑥1𝑖𝑡 − 𝑥2𝑖𝑡) + 𝑒2𝑖𝑡 + 𝑟2𝑖𝑡                         (46) 

cannot be estimated from 2 equations, regardless of whether the covariance term between 

𝑒1𝑖𝑡 and 𝑒2𝑖𝑡 is estimated or not (which Butner et al., 2005, find of importance).  

SAS warnings reflect the issue by stating that the “asymptotic variance matrix of 

covariance parameter estimates has been found to be singular” and the “Estimated G 

matrix is not positive definite.” To permit estimation of the model, SAS PROC MIXED 

automatically sets one of the three error variance components to 0 and estimates the 

remaining model. As a result, the model misspecification in the Butner et al. (2005) 

                                                           
3 The corrected Butner et al. (2005) model with variable subscripts corrected to be consistent with the 

standard multilevel model notation of Raudenbush and Bryk (2001). The corrections were previously 

explained in the text. The original error term subscripts presented in Butner et al. were retained.  
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model is automatically corrected by the program, and correct fixed model estimates are 

produced.  

As a check on the adequacy of the fixed effect estimates in the models that I ran 

in this simulation, I reran subsets of models across different manipulated parameter sets 

with the error term present in the Level 1 of the model (𝑟𝑚𝑖𝑡), and Level 2 error terms 

(𝑒1𝑖𝑡 and 𝑒2𝑖𝑡) absent from the model. Such a model formulation would be expected to 

produce no SAS warnings and yield identical fixed effect estimates to the originally 

defined model, as 𝑒1𝑖𝑡 and 𝑒2𝑖𝑡 are uncorrelated in my simulation. All the conditions (50) 

across different manipulated parameter sets that I reestimated in this way yielded fixed 

parameter estimates identical to those that were produced by the original model and 

evoked no SAS warnings.  

If researchers wanted to define the multivariate multilevel connected mass-spring 

model in SAS PROC MIXED correctly from the start by removing the Level 1 residual 

term (which would be necessary if the covariance between the level 2 error terms was 

present), they could use a repeated / subject = time(subject) type=un 

statement instead of the random d1 d2 / subject = time(subject) 

type=un statement. I reexamined multiple conditions across different manipulated 

parameter sets with this replacement, and in all cases the fixed model estimates were 

identical to the ones estimated in the original model that produced SAS warnings. In an 

analogous model, Ryu et al. (2012) fixed Level 1 residual variance to a very small 

number to circumvent this issue. 
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Convergence 

In the 0.00002% error variance conditions, 279 of the 27,000 replications did not 

converge.  236 of the non-converged replications occurred in the sampling 

frequency/major frequency of 
2𝜋

70
 . The remaining 43 nonconverged replications were 

spread out across the other sampling/major frequencies with 24 instances at 
2𝜋

35
, 10 

instances at 
2𝜋

14
 , and 9 instances at 

2𝜋

7
.  Nonconvergence tended to be more likely when 

there were extreme secondary frequencies (
2𝜋

4
 and 

2𝜋

69
), initial value sets in which both 

velocity terms were large in magnitude (sets 2 and 9). In the 10% error variance 

conditions, all of the 27,000 replications converged. All the nonconverged replications in 

the 0.000002% error variance conditions were regenerated until a total of 27,000 

converged replications in the condition were achieved.   

Relative Bias  

 I evaluated the relative bias of the means of the estimates of (a) 𝜔1, (b) 𝜔2 , (c) 

𝜅1, (d) 𝜅2, (e) 𝜅1/𝜅2, and (f) √𝜔1
2 + 𝜅1 + 𝜅2  = 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦  across the 30 simulated 

replications of each manipulated parameter set. In the connected mass-spring system, I 

studied the population values of 𝜔1 (= 
𝑘1

𝑚1
) for the mass of the first spring and 𝜔2 (= 

𝑘2

𝑚2
) 

for the mass of the second spring were set equal. I used the mean estimate of 𝜔1 and 𝜔2 

in computing the relative bias of 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 (f). The true parameter values of 𝜅1 and 𝜅2 

were fully defined by the remaining manipulated variables and were calculated by  

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦
2  − 𝜔1

2

1+ 
1

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜

  and 
𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦
2  − 𝜔1

2

1+ 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜
, respectively. Relative bias was calculated as:  
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 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
𝑚𝑒𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑡𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒

𝑡𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒
 . Following Muthén and Muthén 

(2002), I considered any parameter having more than 10% relative bias to be 

unacceptable.  

In Tables 1 to 4, I report a summary of the percentage of replications that satisfied 

the 10% bias criterion for each of the manipulated conditions in the study. In the Tables, 

in addition to the six parameters of interest (a) to (f) identified above, I include columns 

(g) and (h). Column (g) contains assessment of the approximate equality of the 𝜔1 and 

𝜔2 estimates. Approximate equality of the estimates is considered to be satisfied if an 𝜔2 

estimate is within ±10% of the corresponding 𝜔1 estimate. Column (h) indicates whether 

all seven parameters (a)-(h) met the criterion of acceptable relative bias (<10%). 

Breakdown of Adequate Estimates by Condition for 0.00002% Error Rate 

Manipulated Conditions for Major Frequencies 𝝎𝟏 and 𝝎𝟐 

 

Table 1. Proportion of adequate estimates by manipulated value of major frequency 𝜔1 

/sampling frequency.  

  (a) (b) (c) (d) (e) (f) (g) (h)  

𝝎𝟏 𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

2π/70 0.98 0.98 0.488 0.532 0.7 0.544 0.984 0.488  

2π/35 0.98 0.98 0.54 0.544 0.736 0.544 0.984 0.54  

2π/14 0.98 0.98 0.51 0.51 0.74 0.51 0.985 0.51  
2π/7 0.98 0.98 0 0.005 0.74 0.17 0.985 0  

          
          

As shown in Table 1, major frequencies 𝜔1 and 𝜔2 were detected adequately in 

98% of replications across all the manipulated major frequencies/sampling frequencies. 

The estimated 𝜔1 and 𝜔2 were approximately equal in close to all cases (> 98%) across 

all the manipulated major frequencies/sampling frequencies. Individual coupling terms 
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(𝜅1 and 𝜅2) were detected correctly in approximately 52% of the cases with manipulated 

major frequencies between 
2𝜋

14
  and 

2𝜋

70
 (higher sampling rates). When the manipulated 

major frequency was equal to 
2𝜋

7
, 𝜅1 and 𝜅2 estimates were virtually never accurate (< 

1%). Coupling ratio 𝜅1/𝜅2 estimates were consistently adequate across all the 

manipulated major frequencies at a similar rate of about 73%. Estimates of secondary 

frequencies were adequate at an approximate rate of 53% across the manipulated major 

frequency values between 
2𝜋

14
  and 

2𝜋

70
. When the manipulated major frequency was equal 

to 
2𝜋

7
, estimates of secondary frequencies were acceptable in 17% of the cases. The entire 

set of the estimated parameters was detected correctly in about 52% of cases with 

manipulated major frequencies between 
2𝜋

14
  and 

2𝜋

70
 (higher sampling rates), and in 0% of 

cases with the manipulated major frequency of 
2𝜋

7
 (lowest sampling rate).  
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Manipulated Conditions for Secondary Frequency 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚  

Table 2. Proportion of adequate estimates by manipulated value of secondary frequency  

𝜔𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚 in combination with the corresponding major frequency. 

    (a) (b) (c) (d) (e) (f) (g) (h)  
𝝎𝟏 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

2π/70 2π/4 0.98 0.98 0 0 0.74 0 1 0  
2π/70 2π/20 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/70 2π/35 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/70 2π/50 0.98 0.98 0.66 0.68 0.72 0.68 0.98 0.66  
2π/70 2π/69 0.98 0.98 0.42 0.62 0.56 0.68 0.98 0.42  
2π/35 2π/4 0.98 0.98 0 0 0.74 0 1 0  
2π/35 2π/10 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/35 2π/17.5 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/35 2π/25 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/35 2π/34 0.98 0.98 0.66 0.68 0.72 0.68 0.98 0.66  
2π/14 2π/4 0.98 0.98 0 0 0.74 0 1 0  
2π/14 2π/7 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/14 2π/10 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/14 2π/13 0.98 0.98 0.68 0.68 0.74 0.68 0.98 0.68  
2π/7 2π/3.5 0.98 0.98 0 0.02 0.74 0 0.98 0  
2π/7 2π/4 0.98 0.98 0 0 0.74 0 1 0  
2π/7 2π/5 0.98 0.98 0 0 0.74 0 0.98 0  
2π/7 2π/6 0.98 0.98 0 0 0.74 0.68 0.98 0  

  

 

 

          

 

 

  

As shown in Table 2, major frequencies 𝜔1 and 𝜔2 were detected adequately in 

98% of replications across all the manipulated secondary frequencies in combination with 

all the manipulated major frequencies/sampling frequencies. Estimated 𝜔1 and 𝜔2 were 

approximately equal in virtually all of the cases (98%) across all the manipulated 

secondary frequencies/sampling frequencies with the exception of 
2𝜋

4
, which produced 

equal 𝜔1 and 𝜔2 estimates in 100% of the cases. Individual coupling terms (𝜅1 and 𝜅2) 

were detected correctly in approximately 68% of cases across all the primary and 

secondary frequency combinations with the exception of the fastest secondary frequency 
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of 
2𝜋

4
 and the fastest major frequency of 

2𝜋

7
, where estimate adequacy rate was 0%, and 

the frequency combination of 
2𝜋

70
 and 

2𝜋

69
, where estimate adequacy rate was 42% and 62% 

for 𝜅1 and 𝜅2, respectively. Coupling ratio 𝜅1/𝜅2 estimates were consistently adequate 

across all the manipulated primary and secondary frequency combinations at the rate of 

74%, except for the low major frequency combinations with the lowest secondary 

frequencies, 
2𝜋

70
 with 

2𝜋

69
, 
2𝜋

70
 with 

2𝜋

50
, and 

2𝜋

35
 with 

2𝜋

34
, where estimate adequacy rates were 

56%, 72%, and 72%, respectively. Secondary frequency estimates were adequate at the 

rate of 68% across all the manipulated primary and secondary frequency combinations, 

where manipulated secondary frequencies were lower than 
2𝜋

6
. When manipulated 

secondary frequencies were faster than 
2𝜋

6
, 0% of the secondary frequency estimates were 

accurate. The entire set of the estimated parameters was detected correctly in 68% of 

cases with manipulated major frequencies between 
2𝜋

70
 and 

2𝜋

14
 in combination with 

manipulated secondary frequencies between 
2𝜋

35
 and 

2𝜋

7
. In cases with manipulated primary 

and secondary frequency combinations of 
2𝜋

70
 with 

2𝜋

69
, 
2𝜋

70
 with 

2𝜋

50
, and 

2𝜋

35
 with 

2𝜋

34
, the 

estimates of adequacy rates were 66%, 42%, and 66%, respectively. In the remaining 

cases, with secondary frequency of 
2𝜋

4
 or primary frequency of 

2𝜋

7
, the entire set of model 

parameters was never estimated correctly.  
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Manipulated Conditions for Coupling Ratio 𝜿𝟏/𝜿𝟐 

Table 3. Proportion of adequate estimates by manipulated value of coupling ratio 𝜅1/𝜅2. 

  (a) (b) (c) (d) (e) (f) (g) (h)  

𝜿𝟏/𝜿𝟐 𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

1/100 1.00 1.00 0.39 0.42 0.67 0.47 1.00 0.39  

1/40 1.00 1.00 0.41 0.42 0.68 0.47 1.00 0.41  

1/10 0.90 0.90 0.36 0.37 0.59 0.40 0.92 0.36  

1/2 1.00 1.00 0.42 0.43 0.70 0.47 1.00 0.42  

1 1.00 1.00 0.42 0.42 1.00 0.47 1.00 0.42  

          

As shown in Table 3, major frequencies 𝜔1 and 𝜔2 , as well as their approximate 

equality were estimated adequately in 100% of replications across all the manipulated 

coupling ratios except for 
𝜅1

𝜅2
= 1/10, where the adequacy rate was around 90%. 

Secondary frequencies were detected accurately in 40% of replications with the 

manipulated coupling ratio of 1/10, and in 47% of cases across all the remaining 

manipulated coupling ratios. Estimated coupling ratio approximately coincided with the 

theoretical one in 100% of cases when the manipulated coupling ratio was equal to 1, in 

approximately 68% of cases when the manipulated coupling ratio was equal to 1/2, 1/40 

or 1/100, and in 59% of cases when the manipulated coupling ratio was 1/10. 𝜅2 was 

detected adequately in 37% of replications with the manipulated coupling ratio of 1/10, 

and in approximately 42% of cases across all the remaining manipulated coupling ratios. 

𝜅1 estimates were adequate in approximately 41.5% of cases when manipulated coupling 

ratios were 1/40, 1/2, or 1, in 39% of cases when manipulated coupling ratio was equal to 

1/100, and in 36% of cases when the manipulated coupling ratio was 1/10. Adequacy 

rates of the entire set of the estimated parameters were identical to the 𝜅1 adequacy rates.  

 



 
 

73 
 

Manipulated Conditions for Initial Value Sets  

Table 4. Proportion of adequate estimates by initial value sets (1 through 10). 

Initial Value Set 
(p1,p2,v1,v2)  

(a) (b) (c) (d) (e) (f) (g) (h)  

𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

 1. (10,10,0,0) 1.00 1.00 0.00 0.00 0.20 0.00 1.00 0.00  

 2. (0,0,10,10)     1.00 1.00 0.00 0.00 0.20 0.00 1.00 0.00  

      3. (1,1,-1,-1) 1.00 1.00 0.00 0.00 0.20 0.00 1.00 0.00  

      4. (1,10,5,5) 1.00 1.00 0.53 0.60 0.94 0.67 1.00 0.53  

    5.  (-10,1,10,-1) 1.00 1.00 0.60 0.61 0.99 0.67 1.00 0.60  

    6.  (1,-10,-1,10) 0.80 0.80 0.47 0.48 0.79 0.53 0.84 0.47  

      7.  (-1,10,-10,1) 1.00 1.00 0.60 0.61 0.99 0.67 1.00 0.60  

    8.  (10,-1,1,-10) 1.00 1.00 0.61 0.61 1.00 0.67 1.00 0.61  

9. (10,10,-10,10) 1.00 1.00 0.57 0.61 0.97 0.67 1.00 0.57  

     10. (5,5,1,-10) 1.00 1.00 0.61 0.61 1.00 0.67 1.00 0.61  

          
Note.  p1 = initial position of mass 1, p2 = initial position of mass 2, v1 = initial 

velocity of mass 1, and v2 = initial velocity of mass 2. 

 

 

As shown in Table 4, major frequencies 𝜔1 and 𝜔2 , as well as their approximate 

equality were estimated adequately in 100% of replications across all the initial value sets 

except 6, where the adequacy rate was around 80%. Initial value sets 1, 2, and 3 did not 

yield any other adequate estimates except for the 20% adequacy rate of the estimated 

coupling ratio. Initial value sets 4, 5, 7, 8, 9, and 10 yielded adequate estimates of 𝜅1, 𝜅2, 

𝜅1/𝜅2, 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, and the entire model (Whole) in approximately 58%, 61%, 98%, 

67%, and 58% of cases, respectively, with initial value sets 4 and 9 having slightly lower 

rates than the sets 5, 7, 8, and 10. These estimate adequacy rates were about 15% for the 

initial value set 6.  
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Adequate Estimates for 0.00002% Error Rate  

 In total, 882 replications out of 900 (98%) yielded adequate 𝜔1 and 𝜔2, estimates. 

In 886 cases (98.4%) out of 900 they were adequately detected to be equal. 408 

replications out of 900 (45.3%) yielded adequate 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, estimates. 359 replications 

out of 900 (39.9%) yielded adequate 𝜅1 estimates, and 372 replications out of 900 

(41.3%) yielded adequate 𝜅2 estimates. 655 replications out of 900 (72.8%) yielded 

adequate 𝜅1/𝜅2 ratio estimates. 359 replications out of 900 (39.9%) yielded adequate 

estimates for all model parameters (Whole). 288 (32%) replications did not yield 

adequate estimates for the whole model parameter set due to selected parameter values 

combining into multiple trajectory coefficients of zero, 350 (38.9%) replications due to 

empirical underidentification caused by undersampling, and 15 (1.7%) replications due to 

oversensitivity of acceleration terms due to high density of observations, with some of the 

replications having overlapping causes for nonconvergence.  

 0% of the parameter sets with initial value sets 1, 2, and 3 produced adequate 

whole model estimates, and 0% of the parameter sets with initial value set 6. together 

with 𝜅1/𝜅2 ratio of 1/10 produced adequate whole model estimates. The initial value 

pattern in those conditions completely cancelled out either primary or secondary 

frequency from the trajectory equations. Then, due to the statistical structure of the 

connected mass-spring model, which requires both frequencies to be present in the 

trajectories to detect the two coupling coefficients, the adequate detection of all the 

parameters is impossible (see Discussion chapter). If the delineated parameter sets that 

produce single frequency motion trajectories are removed, and only parameter 



 
 

75 
 

combinations that produce trajectories with both, primary and secondary frequencies 

present in them are considered, then the estimate adequacy pattern would look like the 

one in Table 5. 

Table 5. Proportion of adequate estimates by manipulated value of secondary frequency 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 in combination with the corresponding major frequency with single frequency 

trajectories producing parameter sets removed. 

     (a) (b) (c) (d) (e) (f) (g) (h)  

 𝝎𝟏 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

 2π/70 2π/4 1 1 0 0 1 0 1 0  

 2π/70 2π/20 1 1 1 1 1 1 1 1  

 2π/70 2π/35 1 1 1 1 1 1 1 1  

 2π/70 2π/50 1 1 0.97 1 0.97 1 1 0.97  

 2π/70 2π/69 1 1 0.62 0.91 0.74 1 1 0.62  

 2π/35 2π/4 1 1 0 0 1 0 1 0  

 2π/35 2π/10 1 1 1 1 1 1 1 1  

 2π/35 2π/17.5 1 1 1 1 1 1 1 1  

 2π/35 2π/25 1 1 1 1 1 1 1 1  

 2π/35 2π/34 1 1 0.97 1 0.97 1 1 0.97  

 
2π/14 2π/4 1 1 0 0 1 0 1 0  

 2π/14 2π/7 1 1 1 1 1 1 1 1  

 2π/14 2π/10 1 1 1 1 1 1 1 1  

 2π/14 2π/13 1 1 1 1 1 1 1 1  

 
2π/7 2π/3.5 1 1 0 0 1 0 1 0  

 2π/7 2π/4 1 1 0 0 1 0 1 0  

 2π/7 2π/5 1 1 0 0 1 0 1 0  

 2π/7 2π/6 1 1 0 0 1 1 1 0  

            
 With the single frequency trajectories producing parameter sets removed 

(parameter sets that include initial value sets 1, 2, 3, or a combination of initial value set 6 

with a coupling ratio of 0.1), the remaining parameter estimate adequacy pattern becomes 
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interpretable (Table 5). As predicted, whole parameter sets were fully adequate (Whole = 

1) unless:  

a) The sampling rate was too low with 𝜔1 =
2𝜋

7
 , which corresponds to 7 

observations per full cycle, and/or 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 <
2𝜋

7
 , which corresponds to fewer 

than 7 observations per secondary cyclic component. Under those conditions the 

coupling coefficients, and in turn the whole model parameter set were never 

estimated adequately (Whole = 0). 

b) The sampling rate was high (𝜔1 =
2π

70
, i.e. 70 observations per full cycle with 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =
2π

69
 𝑜𝑟 

2π

50
, i.e. 69 or 50 observations per secondary cyclic 

component, and 𝜔1 =
2π

35
 with 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2π

34
) in combination with small 𝜅1 

and/or 𝜅2 values that emerge from the small difference between 𝜔1 and 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 (as √𝜔1
2 + 𝜅1 + 𝜅2  = 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 → 𝜅1 + 𝜅2 = 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

2 − 𝜔1
2), 

small coupling ratio (e.g. 𝜅1/𝜅2 = 1/100) and/or cancellation of one of the 

secondary frequency representing motion trajectory terms due to the set of initial 

conditions (see Discussion section). In particular, combinations of 𝜔1 = 
2𝜋

70
 , 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 
2𝜋

50
 , 
𝜅1

𝜅2
 = 1/100, initial value set 4 (p1=1, p2=10, v1=5, v2=5), and 𝜔1 

= 
2𝜋

35
 , 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

34
 , 
𝜅1

𝜅2
 = 1/100, initial value set 4 (p1=1, p2=10, v1=5, v2=5) 

did not yield adequate 𝜅1 estimates, and consequently whole model estimates. 13 

replications that did not yield adequate whole model estimates with 𝜔1 = 
2𝜋

70
  and 
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𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 
2𝜋

69
 were found in combination with all the coupling ratios and 

multiple initial value sets.  

Summary for 0.00002% Error Rate 

In general, parameter sets that had all their parameters estimated adequately had 

following features: 

1) Had both, primary and secondary frequency represented in the motion trajectories 

(i.e. the set of initial conditions did not produce 𝐶1 = 0 and 𝐶2 = 0, or 𝐶3 = 0 and 

𝐶4 = 0). 

2) Had primary frequencies 𝜔1 = 
2𝜋

14
, 
2𝜋

35
 or 

2𝜋

70
, which corresponds to the sampling 

rate of 14, 35, and 70 observations per full cycle. 

3) Had secondary frequencies 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = [ 
2𝜋

50
 ,

2𝜋

7
 ], which corresponds to the 

sampling rate of 7 through 50 observations per secondary cyclic component. 

The remaining parameter sets did not yield adequate estimates of all parameters 

due to: a) selected parameter values combining into multiple trajectory coefficients of 

zero (initial value sets 1, 2, and 3, and 6 with 
𝜅1

𝜅2
=

1

10
 ); b) empirical underidentification 

caused by undersampling (𝜔1 =
2𝜋

7
 , and/or 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 <

2𝜋

7
 ); c) oversensitivity of 

acceleration terms due to high density of observations (𝜔1 =
2π

70
 with 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2π

69
 ) . 
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Breakdown of Adequate Estimates by Condition for 10% Error Rate  

In Tables 5 to 8, I report a summary of the percentage of replications that satisfied 

the 10% bias criterion for each of the manipulated conditions in the study. 

Manipulated Conditions for Major Frequencies 𝝎𝟏 and 𝝎𝟐 

Table 6. Proportion of adequate estimates by manipulated value of major frequency 

𝜔1/sampling frequency. 

  (a) (b) (c) (d) (e) (f) (g) (h)  
𝝎𝟏 𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

2π/70 0 0 0.032 0.004 0.2 0 0.576 0  

2π/35 0 0 0.032 0.008 0.208 0.004 0.588 0  

2π/14 0 0.015 0.07 0.115 0.24 0.015 0.725 0  

2π/7 0.98 0.96 0.06 0.045 0.36 0.235 0.925 0.015  

          

 As shown in Table 6, manipulated major frequencies of 
2𝜋

70
 and 

2𝜋

35
, which 

correspond to the sampling rates of 70 and 35 observations per cycle, respectively, 

yielded adequate parameter estimates in virtually 0% of cases, except for the coupling 

ratio estimates, which were estimated adequately in about 20% of cases. Although 

individual primary frequencies 𝜔1 and 𝜔2 were never detected correctly with the 

manipulated major frequencies of 
2𝜋

70
 and 

2𝜋

35
, they were correctly estimated to be 

approximately equal in about 58% of cases.  

Manipulated major frequency condition of 
2𝜋

14
 in most cases yielded slightly higher 

parameter estimates, with 𝜔2 being detected adequately at the rate of 1.5%, 𝜅1 at the rate 

of 7%, 𝜅2  at the rate of 11.5%, 𝜅1/𝜅2 ratio at the rate of 24%, and 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 1.5%. 
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However, the estimates in these conditions never correctly reproduced 𝜔1; consequently, 

in no replication was the entire set of model parameters (h) detected correctly.  

Manipulated major frequency condition of 
2𝜋

7
 generated adequate estimates of 𝜔1, 

𝜔2 and their equality in most cases (98%, 96%, and 92.5%, respectively). Coupling ratio 

estimates and secondary frequency estimates yielded adequate estimates in 36% of cases, 

and 23.5% of the cases, respectively.  These rates were higher than in the rest of the 

manipulated major frequencies/sampling rate conditions. The remaining estimates, 𝜅1, 𝜅2 

and the combined adequacy of the entire model were as low as in other manipulated 

major frequency conditions, with the whole set of model parameters being adequate in 

only 1.5% of cases. 
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Manipulated Conditions for Secondary Frequency 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚  

Table 7. Proportion of adequate estimates by manipulated value of secondary frequency 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 in combination with the corresponding major frequency. 

    (a) (b) (c) (d) (e) (f) (g) (h)  

𝝎𝟏 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

2π/70 2π/4 0 0 0.16 0 0.2 0 1 0  

2π/70 2π/20 0 0 0 0 0.22 0 0.46 0  

2π/70 2π/35 0 0 0 0.02 0.28 0 0.54 0  

2π/70 2π/50 0 0 0 0 0.18 0 0.48 0  

2π/70 2π/69 0 0 0 0 0.12 0 0.4 0  

2π/35 2π/4 0 0 0.14 0 0.2 0 1 0  

2π/35 2π/10 0 0 0 0.02 0.24 0 0.46 0  

2π/35 2π/17.5 0 0 0.02 0.02 0.28 0 0.52 0  

2π/35 2π/25 0 0 0 0 0.22 0 0.44 0  

2π/35 2π/34 0 0 0 0 0.1 0.02 0.52 0  
2π/14 2π/4 0 0 0.04 0 0.28 0 1 0  
2π/14 2π/7 0 0 0.16 0.34 0.3 0.06 0.58 0  
2π/14 2π/10 0 0 0.08 0.08 0.28 0 0.56 0  
2π/14 2π/13 0 0.06 0 0.04 0.1 0 0.76 0  
2π/7 2π/3.5 0.98 0.98 0.04 0.02 0.38 0 0.98 0  
2π/7 2π/4 0.98 0.98 0.12 0 0.38 0 1 0  
2π/7 2π/5 0.98 0.94 0.02 0 0.36 0.62 0.96 0  
2π/7 2π/6 0.98 0.94 0.06 0.16 0.32 0.32 0.76 0.06  

           
The entire set of model parameters was estimated correctly only in 3 cases out of 

900; all of these cases included the manipulated primary and secondary frequency 

combination 
2𝜋

7
 with 

2𝜋

6
. As shown in Table 6, 𝜔1 and 𝜔2 were adequately estimated in 

most cases (~97%) with the manipulated primary frequency of  
2𝜋

7
. In case of all the 

remaining manipulated frequency combinations, 𝜔1 and 𝜔2 estimates were almost never 

adequately estimated (~0%). The criterion for the equality of 𝜔1 and 𝜔2 was satisfied in 
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approximately 50% of the replications, with the exception of the manipulated secondary 

frequency of 
2𝜋

4
, which yielded adequate equality estimates in 100% of the replications. 

The manipulated frequency combinations of 
2𝜋

14
 with 

2𝜋

13
, and 

2𝜋

7
 with 

2𝜋

6
, also yielded 

adequate estimates in 76% of the cases, and the manipulated frequency combinations of 

2𝜋

7
 with 

2𝜋

3.5
, and 

2𝜋

7
 with 

2𝜋

5
, which produced equal primary frequency estimates in 

approximately 97% of the cases. 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 was detected adequately in 62% of the 

replications with the manipulated frequency combination of 
2𝜋

7
 with 

2𝜋

5
, in 32% of cases 

with the manipulated frequency combination of 
2𝜋

7
 with 

2𝜋

6
, and in close to 0% of the 

replications in the remaining manipulated frequency combinations. 𝜅1 and 𝜅2 estimates 

were adequate in a very low proportion of replications across all the manipulated 

frequency combinations except of 
2𝜋

14
 with 

2𝜋

7
, in which case they were adequate at higher 

rates of 16% and 32%, respectively. Coupling ratio estimates were adequate in ~20% of 

cases across all the major frequencies higher than 
2𝜋

7
. In case of manipulated major 

frequency of 
2𝜋

7
 it was estimated correctly in ~35% of cases.  
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Manipulated Conditions for Coupling Ratio 𝜿𝟏/𝜿𝟐 

Table 8. Proportion of adequate estimates by manipulated value of coupling ratio 𝜅1/𝜅2. 

  (a) (b) (c) (d) (e) (f) (g) (h)  

𝜿𝟏/𝜿𝟐 𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

1/100 0.22 0.23 0.01 0.02 0.04 0.03 0.59 0.00  

1/40 0.22 0.22 0.01 0.04 0.03 0.04 0.59 0.00  

1/10 0.20 0.21 0.07 0.03 0.02 0.04 0.62 0.00  

1/2 0.22 0.21 0.10 0.05 0.24 0.08 0.72 0.01  

1 0.22 0.22 0.05 0.05 0.90 0.09 0.93 0.01  

          
The entire set of model parameters was estimated correctly only in 3 out of 900 

replications, with 2 of the successful replications occurring with the manipulated 

coupling ratio of 1/2 and 1 occurring with the manipulated coupling ratio of 1. As shown 

in Table 8, primary frequency estimates 𝜔1 and 𝜔2 were detected adequately in 

approximately 22% of cases across all the manipulated coupling ratios, with the 

manipulated coupling ratio of 1/10 producing slightly lower rates of adequate estimates 

of both 𝜔1 and 𝜔2. The approximate equality of the estimated primary frequencies was 

satisfied in approximately 60% of the replications with the manipulated coupling ratios of 

1/100, 1/40, and1/10, in approximately 72% of the replications with the coupling ratio of 

½, and in 93% of cases with the manipulated coupling ratio of 1. As the two coupling 

coefficients became more similar, the adequacy of the estimates increased. Adequacy 

rates of the estimates of the individual coupling coefficients as well as adequacy rates of 

the estimates of the secondary frequency were very low (ranging from 1% to 10%). The 

higher adequacy rates occurred at the higher manipulated coupling ratios. The estimated 

coupling ratios were adequate in approximately 3% of the replications across the 
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manipulated coupling ratios of 1/100, 1/40, and 1/10. With the manipulated coupling 

ratio of ½, the estimated coupling ratio adequacy rose to 24%, and with the manipulated 

coupling ratio of 1 the estimated coupling ratio was adequate at the rate of 90%. 

 

Manipulated Conditions for Initial Value Sets 

 
Table 9. Proportion of adequate estimates by initial value sets (1 through 10). 

Initial Value Set 
(p1,p2,v1,v2)  

(a) (b) (c) (d) (e) (f) (g) (h)  

𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 𝜿𝟏/𝜿𝟐 𝝎𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚   𝝎𝟏 = 𝝎𝟐 Whole  

1. (10,10,0,0) 0.22 0.22 0.01 0.00 0.20 0.00 1.00 0.00  

2. (0,0,10,10)     0.22 0.22 0.01 0.00 0.20 0.00 1.00 0.00  

3. (1,1,-1,-1) 0.22 0.22 0.01 0.00 0.20 0.00 1.00 0.00  

4. (1,10,5,5) 0.22 0.26 0.01 0.03 0.21 0.09 0.52 0.00  

5. (-10,1,10,-1) 0.22 0.22 0.07 0.04 0.20 0.08 0.57 0.01  

6. (1,-10,-1,10) 0.18 0.13 0.06 0.07 0.37 0.06 0.46 0.00  

7. (-1,10,-10,1) 0.22 0.22 0.06 0.04 0.21 0.08 0.57 0.00  

8. (10,-1,1,-10) 0.22 0.22 0.09 0.08 0.28 0.09 0.56 0.00  

9. (10,10,-10,10) 0.22 0.22 0.04 0.04 0.30 0.09 0.64 0.01  

10. (5,5,1,-10) 0.22 0.22 0.11 0.08 0.30 0.09 0.59 0.01  

Note.  p1 = initial position of mass 1, p2 = initial position of mass 2, v1 = initial 

velocity of mass 1, and v2 = initial velocity of mass 2. 

 
The entire set of model parameters was detected correctly in only 3 replications 

out of 900, with one of them with initial value set 5, one with the initial value set 9, and 

one with the initial value set 10. 𝜔1 and 𝜔2 were estimated correctly in approximately 

22% of the replications across all of the initial value sets, except for the initial value set 7, 

where estimate adequacy rates were lower, at 18% and 13%, respectively. Approximate 

equality of the two major frequencies was detected correctly in 100% of cases across 

initial value sets 1, 2, and 3, in 64% of cases with the initial value set 9, in approximately 

55% of cases across initial values sets 4,5,7,8, and 10, and in 46% of cases with the initial 
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value set 6. Initial value sets 1, 2, and 3 produced identical estimate adequacy rates for all 

the estimated parameters, with 𝜅2 and 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 never being detected correctly, 𝜅1 

detected adequately in 1% of cases and coupling ratio detected adequately in 20% of the 

cases. In all of the remaining initial value set conditions, individual coupling coefficients 

as well as 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 were rarely detected adequately: adequacy rates ranged from 1% to 

11%. The coupling ratio was detected correctly in approximately 20.5% of cases with 

initial value sets 3, 4, 5, and 7, in 28% of cases with the initial value set 8, in 30% of 

cases with initial value sets 9 and 10, and in 37% of cases with the initial value set 6.  

Summary for 0.10% Error Rate Conditions 

With an error rate of 10%, only in 3 replications out of 900 was the entire set of 

mass-spring system parameters detected correctly. Such an outcome was consistent with 

the pilot simulation. Statistical theory also leads to the expectation that the 10% error rate 

in position values will generate highly biased acceleration values, and in turn biased 

parameter estimates.  

The three replications that yielded all model parameter estimates adequate were:  

1. 𝜔1 = 
2𝜋

7
 , 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

6
 , 
𝜅1

𝜅2
 = 

1

2
 , initial value set 5 (p1 = -10, p2 = 1, v1 = 10, 

v2 = -1); 

2. 𝜔1 = 
2𝜋

7
 , 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

6
 , 
𝜅1

𝜅2
 = 

1

2
 , initial value set 9 (p1 = 10, p2 = 10, v1 = -10, 

v2 = 10); 

3. 𝜔1 = 
2𝜋

7
 , 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

6
 , 
𝜅1

𝜅2
 = 1 , initial value set 10 (p1 = 5, p2 = 5, v1 = 1, v2 

= -10). 
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Although all three of them share the same primary and secondary frequency, they 

did not form a single coherent cluster in the space of the remaining manipulated 

parameter values. In addition, replications with these parameter sets did not yield 

adequate whole model parameter estimates with the error rate of 0.00002%. Thus, it is 

most likely that the adequacy of these three particular cases emerged as a result of a 

serendipitous combination of manipulated parameters, together with a beneficial 

systematic interpretation of the distorted acceleration terms by the statistical structure of 

the connected mass-spring model. Hence, to sum up, as was predicted, the error rate that 

is common in psychology (10%, comparable to reliability = .90), yields estimates that are 

profoundly affected by the error of measurement. With such an error rate, the undamped 

connected mass-spring model cannot recover the parameters of the underlying physical 

system adequately even when the motion trajectories inserted into the model are 

producible by the connected mass-spring system. 

Auxiliary Question: Coupling ratio 𝜿𝟏/𝜿𝟐 < 1 versus 𝜿𝟏/𝜿𝟐 > 1 

 All the coupling ratios in the factorial design delineated above contained 𝜅1 lower 

than or equal to 𝜅2. The reverse pattern of the coupling coefficients (i.e. 𝜅1 higher than 

𝜅2) was not considered, as exchanging 𝜅1 and 𝜅2 along with exchanging initial position 

and initial velocity terms, and setting them to their additive inverses (i.e,  𝑝1 =

 − 𝑝2,  𝑝2 = − 𝑝1,  𝑣1 = − 𝑣2;   𝑣2 = − 𝑣1) should yield identical motion trajectories to 

those produced by the initial system, but reversed and mirror reflected (i.e. the mirror 

image of x(t) of the initial system will equal y(t) of the rearranged system, and the mirror 

image of y(t) of the initial system will equal x(t) of the rearranged system). If this is 
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correct, multilevel connected mass-spring model estimates of the original and the 

reversed case should yield identical set of parameter estimates, but with 𝜔1 and 𝜔2 

estimates reversed, and 𝜅1 and 𝜅2 estimates reversed.  

 With a fixed manipulated value set of 𝜔1 =  
2𝜋

70
 ,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =  

2𝜋

20
 ,  n = 50 ,  

series length = 7 cycles , 
𝜎𝑒𝑟𝑟𝑜𝑟
2

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝜎𝑒𝑟𝑟𝑜𝑟

2   =    0.0000002, and initial value set 8, motion 

trajectories with two pairs of coupling rates were generated and estimated in the 

multilevel connected mass-spring model. The estimates are shown in Table 10.  

Table 10. Main parameter estimates with coupling ratio reversed. 

𝜿𝟏/𝜿𝟐 𝝎𝟏 𝝎𝟐 𝜿𝟏 𝜿𝟐 
 

1/2  0.0897  0.0897  0.0299  0.0599  
2/1  0.0897  0.0897  0.0599  0.0299  

1/10  0.0897  0.0897  0.0082  0.0817  
10/1  0.0897  0.0897  0.0817  0.0082  

      
  The model converged in 100% of cases across all replications and yielded 

adequate estimates of all parameters. As predicted, exchanging coupling terms (together 

with the pairs of initial values) produced identical, but exchanged parameter estimates in 

both pairs of cases (see Table 10).  
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Chapter 4 

DISCUSSION 

Although estimate adequacy rates may appear to be distributed quite randomly 

across Tables 1 through 4, the manipulated parameter sets that produced inadequate 

estimates are quite systematic and predictable. Some of these sets yielded inadequate 

parameter estimates due to the cancellation of the motion trajectory terms as a result of 

specific manipulated values combining into 0 coefficients. Manipulated parameter sets 

that included conditions with low number of observations per each cyclic component 

yielded estimates that were undermined by empirical underidentification resulting from 

undersampling. Another cluster of inadequate estimates stemmed from the high sampling 

rate conditions yielding imprecise estimates of acceleration terms.  

Motion Trajectory Term Cancellation due to Manipulated Values Combining into 0 

Coefficients 

Initial value sets 1, 2, and 3. Initial value sets 1, 2, and 3 did not yield a single 

adequate coupling term or secondary frequency estimate, although the primary frequency 

related estimates, 𝜔1, 𝜔2 , and 𝜔1= 𝜔2 , were all accurate in 100% of cases. Initial value 

combinations 1, 2, and 3 were purposefully selected to have their pairs of initial positions 

and initial velocities to be equal, i.e. p1=p2 and v1=v2. Both initial position and initial 

velocity terms being equal results in the third and the fourth terms of the trajectory 

equations being equal to zero. When 3rd and 4th terms are not present, there are no 

remaining terms that represent the second frequency, so they are cancelled out (see 
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Figure 10 for illustration). In addition, the remaining terms do not contain any individual 

coupling terms (𝜅1 or 𝜅2), only their ratio. Hence, the resulting motion trajectories do not 

 
Figure 10.11Cancellation of secondary frequency representing motion trajectory terms in 

case of equal initial position and initial velocity terms. 

 

include terms that represent the secondary frequency or individual coupling value 

magnitudes. Moreover, as it is apparent from the illustration in Figure 10, the x(t) and y(t) 

trajectories are identical. In the multilevel connected mass-spring model 𝜅1 and 𝜅2 are 

estimated as the regression coefficients of the difference between the position values of 

the two masses at each time point (see Figure 11). When the two position trajectories are 

identical, the difference between them is just the difference between the error terms at 

each time point. Accordingly, for initial value sets 1-3 SAS PROC MIXED produces a 

warning that states that “A linear combination of covariance parameters is confounded  
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Figure 11.12Effect of the cancellation of the secondary frequency terms from the 

motion trajectories on statistical structure of multilevel connected mass-spring model. 

 

with the residual variance.” As a consequence, under the circumstances where initial 

position and initial velocity pairs are equal, individual coupling terms cannot be 

estimated correctly. The secondary frequency that is estimated by √𝜔1
2 + 𝜅1 + 𝜅2 cannot 

be detected accurately either, as it needs both the 𝜅1 and 𝜅2 estimates to be correct in 

order to yield adequate estimates. In conclusion, the connected mass-spring model cannot 

be used when the two time-varying variables of interest have the same starting value 

positions along with the equal initial rate of change. By definition, this includes any cases 

where two variables are oscillating over time in an identical manner. This result reflects a 

boundary condition for the mass-spring model. 

 Initial value set 6 ( 𝑝1 = 1,  𝑝2 = −10,  𝑣1 = −1,  𝑣2 = 10) in combination with 

the manipulated coupling ratio 
𝜅1

𝜅2
 = 1/10 never produced adequate estimates of 𝜔1, 𝜔2, 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, 𝜅1, or 
𝜅1

𝜅2
 . This occurs due to the combination of the initial position and 

initial velocity values present in initial value set 6 producing zero 𝐶1 and 𝐶2 coefficients 
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when combined with the coupling ratio of 1/10 (see Figure 12). Hence, such an initial 

value and coupling ratio combination cancels out both terms that represent the primary  

 

Figure 12.13Cancellation of primary frequency representing motion trajectory terms in 

case of initial value set 6 in combination with the coupling ratio of 1/10. 

frequency in the trajectory equations 𝑥(𝑡) and 𝑦(𝑡). Therefore, the primary frequency is 

nonexistent in the motion of the two masses (see Figure 12), and is impossible to detect 

from such generated trajectories. More precisely, the absence of the primary frequency 

representing terms renders both regression predictor pairs in the Level 2 of the multilevel 

model collinear, which can be seen in Figure 13 below.  
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Figure 13.14Effect of the cancellation of the primary frequency terms from the motion 

trajectories on statistical structure of multilevel connected mass-spring model. 

Since the two pairs of regression predictors are collinear, they are confounded 

with the error variance and cannot yield correct model estimates. This is confirmed by the 

SAS PROC MIXED warning that “A linear combination of covariance parameters is 

confounded with the residual variance.” Therefore, the connected mass-spring model is 

not applicable when initial position and velocity values of two time varying variables 

combine with their coupling ratio in a way that 𝑣2 + 
𝜅2

𝜅1
𝑣1 = 0 and 𝑝2 + 

𝜅2

𝜅1
 𝑝1 = 0. This 

also means that whenever the two time varying variables are oscillating completely in 

phase, multilevel connected mass-spring model will not yield correct estimates. 

Empirical Underidentification due to Undersampling 

Primary frequency of  
2𝜋

7
. The primary frequency of 

2𝜋

7
 (sampling rate of 7 equally 

spaced observations per cycle) never yielded adequate estimates for the entire set of 
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connected mass-spring model parameters. Such an outcome was expected: The pilot 

simulation indicated that 7 equally spaced observations per cycle would yield data that 

are too sparse to accurately capture a trajectory pattern of two interacting cycles. As was 

presented above, with lower density of measurement, the number of the potential 

theoretical trajectories that accommodate the observed data increases, increasing the 

number of parameter combinations that would be expected to yield good model fit. When 

the measures have a low sampling rate, multiple potential continuous time series models 

can be constructed that could potentially represent those measures. If any of those 

continuous time series trajectory pairs could theoretically be produced by the connected 

mass-spring system, they can potentially be detected by the multilevel model. The sparser 

the measures, the higher the likelihood of the existence of multiple continuous time series 

that can be potentially produced by a connected mass-spring system. Consequently, the 

likelihood increases that the multilevel model will detect a set of parameters that define a 

system other than the one that was used to generate the data. For instance, if the 

theoretical trajectories have small cyclical fluctuations between sparse empirical 

measurements, the multilevel model would be likely to detect the parameters of a system 

that produces trajectories with smooth connections instead of fluctuations, failing to 

detect the secondary frequency. This example approximately coincides with the adequacy 

pattern produced by the sampling frequency of 7 measures per cycle (manipulated 𝜔1 = 

2𝜋

7
). When the initial value and coupling ratio combinations did not cancel out an entire 

frequency from the motion trajectories, the primary frequencies 𝜔1 and 𝜔2 were detected 

adequately in 100% of cases with the manipulated 𝜔1 = 
2𝜋

7
.  In contrast, the coupling 



 
 

93 
 

terms 𝜅1 and 𝜅2 were always underestimated so that the detected secondary frequency 

was always underestimated. An illustration of this process with  𝜔1 = 
2𝜋

7
 and 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 

= 
2𝜋

2
 is presented in Figure 14 (a high 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 was chosen to produce a clear 

illustration; lower secondary frequencies produce patterns that are less visually 

discernable).  

 

Figure 14.15Comparison of the empirical, theoretical, and multilevel connected mass-

spring model detected motion trajectories with 𝜔1 = 
2𝜋

7
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

2
 , and 

𝜅1

𝜅2
= 0.9. 

The orange line represents motion of mass 1, which is defined by x(t) in the Equation set 

(40). The blue line represents motion of mass 2, which is defined by y(t) in the Equation 

set (40). a) Empirical time series of the motion trajectories with 7 equally spaced 

observations per cycle joined by straight lines; b) Theoretical time series of the motion 

trajectories; c) Motion trajectories produced by the system detected by the multilevel 

connected mass-spring model from the empirical time series, given the same set of initial 

values. The X-axis represents time units proportional to the measurement occasions. 
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 The results of this simulation demonstrate that increasing sampling frequency 

resolves the issue. For instance, the manipulated frequency combination of 𝜔1 = 
2𝜋

7
 and 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 
2𝜋

3.5
  differs from the manipulated frequency combination of 𝜔1 = 

2𝜋

70
 and  

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 
2𝜋

35
 only in its sampling rate, which is 10 times higher in the second case. 

However, the rate of the entire model estimate adequacy increases from 0% to 100% 

(after exclusion of the inestimable initial value sets discussed above) by introducing this 

change. The major frequency of 
2𝜋

7
 was added to the simulation only for the reason of its 

applicability in daily diary studies (7 daily measures per weekly cycle). It was not 

expected to produce adequate estimates. 

  Manipulated parameter sets with 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 > 
2𝜋

7
  did not produce any 

adequate 𝜅1, 𝜅2, 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 estimates in combination with any manipulated major 

frequencies/sampling rates. Four observations per secondary cyclic component are not 

sufficient for accurately capturing the full amplitude of the secondary fluctuations as the 

peaks are usually skipped over with such a sparse sampling rate. As a result, 𝜅1 and 𝜅2 

cannot be estimated adequately, which also renders the 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 inadequate, as it 

contains both 𝜅1 and 𝜅2 in its mathematical definition. 
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Oversensitivity of Acceleration Terms due to High Density of Observations together 

with Low Coupling Values 

           The manipulated frequency combination of 𝜔1 = 
2𝜋

70
 and  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

69
 did not 

always yield adequate estimates of all model parameters. This problem occurred due to 

acceleration terms being very small and substantially affected by the error in the position 

trajectories. As was delineated in the Method section, with higher density of the 

measures, acceleration terms become very small and highly imprecise estimates occur 

due to the error in the position trajectories. Higher density of the time series implies 

smaller steps in time between the measures. Smaller steps in time between the measures 

imply smaller changes in velocity for each step. Smaller changes in velocity per step 

imply a smaller magnitude of acceleration for each step. Since acceleration terms are 

derived from the position trajectories, errors that are negligible in the context of position 

can become magnified and be extraordinarily unreliable in the context of estimating 

acceleration. The combination of 𝜔1 = 
2𝜋

70
  caused issues specifically with 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

69
 

because 
2𝜋

69
 is extremely close to the 𝜔1 = 

2𝜋

70
 value. Since √𝜔1

2 + 𝜅1 + 𝜅2  =

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 → 𝜅1 + 𝜅2 = 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦
2 − 𝜔1

2, the similarity of these two frequency values 

causes true values of 𝜅1and 𝜅2 to be extremely small. In the case with the coupling ratio 

of 1/100,  𝜅1 is as low as 0.000002. In combination with the increased sensitivity of the 

acceleration terms to the error in the position terms, it is not surprising that such small 

magnitudes of the coupling terms were not detected accurately in some cases. When I 

regenerated all the manipulated value sets with 𝜔1 = 
2𝜋

70
  and 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

69
 that did not 
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yield all the model estimates correct with a substantially decreased (but unrealistic in 

practice) error rate of 0.00000002% (instead of 0.00002%), all the parameter estimates 

across all the cases were adequate. Thus, the inadequate parameter estimates in case of 

𝜔1 = 
2𝜋

70
  with 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

69
 must have been caused by the increased sensitivity to 

error. 

Coupling coefficient 𝜅1 was detected inadequately in case of these two 

manipulated parameter combinations: 

1.  𝜔1 = 
2𝜋

70
 , 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

50
 , 
𝜅1

𝜅2
 = 

1

100
 , initial value set 4 (p1 = 1, p2 = 10, v1 = 5, 

v2 = 5); 

2.   𝜔1 = 
2𝜋

35
 , 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 

2𝜋

34
 , 
𝜅1

𝜅2
 = 

1

100
 , initial value set 4 (p1 = 1, p2 = 10, v1 = 5, 

v2 = 5); 

Since initial value set 4 contains two equal initial velocities, the third term of both motion 

trajectories cancels out. Plugging the remaining manipulated values into the motion 

trajectory equations in case of 1) yields: 

  x(t) = 55.7 sin𝜔1𝑡  + 1.09 cos 𝜔1𝑡 – 0.089 cos 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑡          (47) 

             y(t) = 55.7 sin𝜔1𝑡  + 1.09 cos 𝜔1𝑡 + 8.91 cos 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑡 

Case 2) yields the same x(t) and y(t) equations with an exception of  𝐶1 = 27.85 instead of 

55.7. The coefficient of the secondary frequency term in Equation set (47), -0.089, is very 

low in comparison to the combination of the two coefficients of the primary frequency 

terms. As a result, it is more difficult to discriminate this term from the error, which, in 

case of 𝜔1 = 
2𝜋

70
  and 

2𝜋

35
 (sampling rate of 70 and 35 observations per cycle), becomes 
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sufficiently large in the acceleration terms that serve as an outcome variable. Moreover, 

very low secondary frequencies, such as 
2𝜋

50
 and 

2𝜋

34
 considered here, in combination with 

the fixed secondary frequency amplitude that is as low as 0.089 are barely detectable as 

they generate very stretched out fluctuations. To illustrate, 
2𝜋

50
 will be represented in the 

motion trajectory x(t) by oscillations that complete a full cycle after 50 observations, with 

the maximum amplitude of 0.089 displacement units, that is intertwined with the major 

frequency fluctuations and error. Then, acceleration values that represent change in 

velocity between each pair of neighboring time points due to the influence of the second 

mass will be miniscule.  

 In the case of other initial value combinations (that were not discussed above as 

dysfunctional), the same primary and secondary frequency combinations with the 

manipulated coupling ratio of 1/100 yielded adequate estimates because the second 

secondary frequency representing coefficient (𝐶3) was not cancelled out. 𝐶3 contains 

𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 in its denominator (see Equation set 42), which significantly boosts the 𝐶3 

estimate, and, in turn, the secondary frequency amplitude when secondary frequencies are 

as low as 
2𝜋

50
 and 

2𝜋

34
. 

 When I regenerated the two manipulated value sets 1) and 2) with a decreased 

error rate of 0.00000002% (instead of 0.00002%), all the parameter estimates were 

adequate. Thus, the inadequate parameter estimates in this case must indeed have been 

associated with the increased sensitivity to error. 
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                                                  Chapter 5 

                                    CONCLUSION 

            This thesis considered the performance of dynamic models that represent two 

undamped time-varying variables. These variables followed motion trajectories of two 

masses that coexist in the same undamped connected mass-spring system with equal 

natural angular frequencies. This thesis investigated the cyclical forms that the data that 

represents these variables could take and yield adequate estimates of the multilevel 

connected mass-spring model, defined as falling within 10% of the true parameter values 

of the system. First, as the simulation results indicated, the error rate should be extremely 

low. In the simulation, even when the error rate was only 0.00002% of the total variance 

of individual trajectories, several cases emerged where the error rate had to be decreased 

to 0.00000002% to provide adequate parameter estimates. The 10% error rate 

(comparable to reliability = .90, a high value for self-report measures) yielded only .1% 

of the parameter sets that met the criterion for adequate estimation. Those .1% of the 

solutions appeared to be spurious, as they did not yield adequate estimates in the smaller 

0.00002% error condition. I selected the 0.00002% error rate for the simulation because it 

was the largest error rate that I tested in the pilot simulation that yielded adequate 

estimates for all parameters with the frequencies of interest. When the error rate was 

increased above 0.00002%, parameter estimate adequacy dropped exponentially, with the 

majority of estimates becoming inadequate at an error rate of about 2%. Hence, in order 

to achieve adequate connected mass-spring model estimates, the proportion of the error 

variance to the total variance should be a minimum of 0.0000002; the 10% error rate that 
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is commonly deemed high reliability with self-report measures in psychology would 

certainly not yield adequate estimates of the set of parameters. It is possible that filtering 

or smoothing might improve the performance of the connected mass spring models, but 

these approaches have received little attention in psychological literature. A further issue 

is that my simulation assumed that all individuals have the same underlying signal and 

there is no between individual variance. If this were not the case, a further increase in the 

rate of inadequate solutions would be introduced.  

Second, the signal of each of the time-varying variables should contain exactly 

two frequencies, and the two frequencies must be the same across the two variables. As 

the simulation results have shown, when the primary frequency terms were completely 

cancelled out by in initial value sets 1., 2., and 3., 0% of the parameter sets were 

estimated adequately. Similarly, when secondary frequency terms were completely 

cancelled out by the combination of initial value set 6 along with the coupling ratio of 

1/10, 0% of the parameter sets were estimated adequately. Hence, whenever only one 

frequency was present in the signal of each of the time varying variables, even when the 

trajectories of the signals were theoretically producible by the connected mass-spring 

system, the connected mass-spring model in unable to estimate the parameters of that 

system adequately. This result also means that the trajectory pairs cannot be (a) 

completely in phase and (b) cannot be collinear:  Given the mathematical structure of x(t) 

and y(t), such instances are producible by the connected mass-spring system only then 

they contain a single frequency. If more than 2 frequencies are present in the signal of the 

time varying variables, they will be treated as noise by the connected mass-spring model. 
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The connected mass-spring model by its design is expected to detect a trajectory 

pair that is producible by a connected mass-spring system and to estimate the physical 

parameters of the connected mass-spring system that produced that trajectory pair. The 

classical connected mass-spring system is capable of producing only single or double-

frequency motion trajectories, whether 𝜔1 = 𝜔2 or 𝜔1 ≠ 𝜔2. In other words, single or 

double-frequency motion trajectories are expected whether the natural angular 

frequencies of the two side components of the system (the left most spring with the left 

mass, and the right most spring with the right mass) are equal or not (See Appendix B for 

the mathematical definition of the general motion trajectories with 𝜔1 ≠ 𝜔2). Hence, 

whether the two time-varying variables being examined are expected to be entrained to 

the cycles of the same or of different length, the connected mass-spring model will 

attempt to approximate the trajectories with double frequency sinusoidal curves, under 

the assumption that the time series for both variables are comprised of the same pair of 

frequencies. This result comes from the mathematical definition of the motion trajectories 

producible by the connected mass-spring model (see Equation set 40 for cases with 𝜔1 =

𝜔2, and Appendix B for cases with 𝜔1 ≠ 𝜔2). If the trajectories of the time varying 

variables contain any other frequency components in addition to the two described above, 

these components will be treated as error by the connected mass-spring model. Since the 

connected mass-spring model cannot handle more than a miniscule amount of error, 

additional frequencies in the signal of the two time-varying variables would produce 

inadequate parameter estimates.  If the cyclic two-frequency interaction of the two 



 
 

101 
 

variables of interest cannot be isolated from other variables that might be affecting either 

of the cycles, the connected mass-spring model will not estimate the parameters properly.  

The simulation results indicated that single frequency trajectories were generated 

when the initial position and initial velocity pairs were both equal (i.e. p1=p2 and v1=v2). 

When they are equal, they cancel out the secondary frequency terms and yield identical 

x(t) and y(t) single frequency motion trajectories. That renders the coupling coefficient 

undetectable since it is a function of the difference between x(t) and y(t), which is in this 

case is 0 or error. It might appear that this limitation implies that, in order for the 

connected mass-spring model to work properly, it is necessary for the two time varying 

variables to have different starting positions or/and different starting velocities. This is 

not the case. In an undamped connected mass-spring system, initial conditions describe 

the state of the physical system at time 0. The state of the motion trajectories at time 0 

need not be the same. As delineated in Appendix C, an undamped connected mass-spring 

system with equal major frequencies repeats its initial conditions every least common 

multiplier or LCM (denominator of 𝜔1, denominator of 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦; for the repetition 

pattern when 𝜔1 ≠ 𝜔2 , see Appendix B). The multilevel connected mass-spring model, 

by design, is capable of detecting the underlying physical system regardless of 

where/when the initial conditions occur in the measured trajectories. In practice, it is 

extremely unlikely that the first measurement occasion of the time-varying variables will 

coincide with the initial conditions of the system at time 0. Hence, this limitation only 

indicates that if the trajectories contain only the primary frequency or are identical to 

each other, then the coupling terms of the underlying system will be inestimable. 
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Another limitation whose true interpretation might differ from the one suggested 

by its first impression is the minimum number of observations per secondary cyclic 

component required to prevent undersampling. The simulation demonstrated that when 

error variance constitutes 0.00002% of the total individual trajectory variance, a 

minimum number of 7 equally spaced observations per secondary cyclic component was 

required to achieve adequate estimates of all parameters. The lowest number of 

observations per full cycle that yielded adequate estimates of all parameters was 14. 

These findings lead to the following conclusion: As long as there are at least 7 

observations per secondary cyclic component and at least 14 observations per full cycle, 

the parameter estimates will not be undermined by empirical undersampling. In practice, 

the lengths of the two cyclic components may be hypothesized or may be a priori 

unknowns to be estimated from the data. The major frequencies that represent the length 

of full cycle are more likely to be known from theoretical knowledge about the variables 

(e.g., weekly cycles), whereas secondary frequencies, which emerge as a consequence of 

the interaction of the two variables, are far less likely to be known, particularly for cyclic 

relationships that have not been extensively studied. Thus, the length of the secondary 

cyclic component will typically be unknown when the multilevel connected mass-spring 

model is used by researchers. Given that there should be at least 7 observations per 

potential secondary cyclic component, the researcher should attempt to assure that a 

sufficient number of observations is collected. However, the full range of secondary 

frequencies that two interacting time varying psychological variables can produce has no 

upper bound, i.e. the secondary frequency can be as high as lim
𝑇→0+

2𝜋

𝑇
= ∞, where T 



 
 

103 
 

represents period). Hence, a sampling design that would accommodate all potential 

secondary frequencies is impossible.  As a practical recommendation that would 

accommodate the majority of secondary frequencies, a very high sampling rate could be 

considered when feasible. For instance, a researcher might believe that it is extremely 

unlikely that the interaction of two variables of interest that follow a biweekly cycle 

would generate a secondary frequency that is more than 50 times higher than that of the 

major frequency (full cycle). In such a case, the minimum number of observations 

required per full cycle of two weeks would be 350 (7 observations multiplied by 50 

secondary cyclic components per full cycle).  

Very high sampling rates would also require the error rate to be considerably 

lower than the 0.00002% rate that was used in the simulation. The present simulation was 

limited to the maximum of 70 observations per full cycle, and even with this sampling 

rate several cases emerged where the error rate had to be decreased to 0.00000002% to 

provide adequate parameter estimates. As discussed in the Method section, as the 

sampling rate increases, the error rate in the measurement of position that will produce 

imprecise acceleration values becomes smaller. Thus, in cases in which the number of 

observations per full cycle exceeds 70, it should be expected that even the smaller (tiny) 

error rate of 0.00002% would produce inadequate parameter estimates.  

In summary, in order for two time-varying detrended psychological variables 

whose fluctuations do not fade over time to have their cycles and their cyclic relationship 

detected adequately by the connected mass-spring model, their measures would need to 

meet the following criteria: 
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a)    contain essentially no error; 

b) comprise trajectories which each contain exactly 2 interacting frequencies, 

with the two frequencies being the same in both trajectories, and with no 

traces or influences of any other frequencies or variables; 

c)     contain a large number of observations per full cycle. 
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                                                        Chapter 6 

                                             FUTURE DIRECTIONS 

              The conclusions presented in this thesis apply to modeling two detrended time-

varying variables that are entrained to cycles of same length with an undamped connected 

mass-spring model. The key feature of the present simulation study is that all of the data 

were generated to be consistent with the motion trajectories producible by the connected 

mass-spring system with equal natural angular frequencies (𝜔1 = 𝜔2) represented by 

Equation set (40). The generated variable trajectories represented those produced by this 

connected mass-spring system to which a tiny (.0000002) or small (.10) random error 

was added. Thus, the simulated data provided optimal conditions for studying the ability 

of the estimators to recapture the parameters of the true data generating model. However, 

the range of trajectory pairs that can be described by Equation set (40) is extremely 

limited in comparison to the range of all possible sinusoidal trajectory pairs that two 

psychological variables potentially could produce over time. In order for two 

psychological processes to produce trajectories that exactly follow Equation set (40), they 

would need to strictly obey all the laws of mechanics followed by the connected mass-

spring model. Even under these conditions, the ability of the estimates to adequately 

represent the data generating process was limited in the .0000002 error condition and 

unacceptable in the .10 error condition, a condition which characterizes highly reliable 

self-report measures. Further, human psychological processes are very unlikely to be 

restricted by the laws of classical mechanics. Therefore, they are unlikely to always 

follow the trajectories produced by the mass-spring models defined by Equation set (40).   
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Future work should further investigate the domains of trajectory pairs that can be 

potentially studied using the connected mass-spring model. I plan to extend my present 

work on connected mass-spring models to new cases with equal natural angular 

frequencies (𝜔1 = 𝜔2) as well as cases with unequal natural angular frequencies (𝜔1 ≠

𝜔2) mathematically and graphically. I also plan to conduct a simulation study to examine 

the performance of the connected mass-spring model under conditions when the 

trajectories generated by two time-varying variables are theoretically not producible by 

the connected mass-spring system. Since such trajectories do not have a corresponding 

set of system parameters that can potentially be detected, they can provide information 

about the likelihood of potential false positive solutions. Otherwise stated, any parameter 

estimates produced by this model will be describing a connected mass-spring system that 

is not capable of reproducing the inputted trajectories under any initial conditions. Taken 

together with my present simulation study, these future studies will help define the 

domains under which estimates produced by mass-spring models represent versus do not 

represent the underlying dynamic processes. Finally, damped connected mass-spring 

systems, nonlinear connected mass-spring systems, and connected mass-spring systems 

with external forces should be defined, solved, and examined in studies to define their 

domain and determine their limitations.  
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APPENDIX A 

MATHEMATICAL SOLUTION OF THE UNDAMPED CONNECTED                  

MASS-SPRING SYSTEM WITH EQUAL NATURAL FREQUENCIES 
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Solving the connected mass-spring oscillator system involves solving the system 

of the two force equations of the moving masses, which are expressed in terms of two 2nd 

order differential equations. The notation that will be used for derivatives in my solution 

will be either the classical one – 𝑥′(𝑡) =  
𝑑𝑥

𝑑𝑡
= 

𝑑

𝑑𝑡
𝑥, or a commonly used simplified 

notation where differentiation operator 
𝑑

𝑑𝑡
 is replaced with the symbol D. Second 

derivatives in terms of this notation will be: 𝑥′′(𝑡) =  
𝑑2𝑥

𝑑𝑡2
= 

𝑑

𝑑𝑡

𝑑

𝑑𝑡
𝑥 = 𝐷2𝑥. A 2nd order 

differential equation, such as  𝑥′′ + 4𝑥′ + 3𝑥 = 0 can then be expressed in terms of the D 

notation as 

𝐷2𝑥 + 4𝐷𝑥 + 3𝑥 = (𝐷2 + 4𝐷 + 3)[𝑥] = (𝐷 + 3)(𝐷 + 1)[𝑥] 

                                                                                       = (𝐷 + 1)(𝐷 + 3)[𝑥] = 0. 

As is visible from the set of expressions, this notation is convenient because expressions 

of the form 𝑎𝐷2 + 𝑏𝐷 + 𝑐 can be treated as if they were ordinary polynomials in D, as 

long as a, b and c are constants (for examples, see Nagle, Saff, & and Snider, 2010, pg. 

264 -267).  

I will use the D notation to implement the elimination method for 2 × 2 

differential systems with constant coefficients (Nagle, Saff & Snider, 2017, p. 263-270). 

It is used to find a general solution to the system of the form 

{
𝐿1[𝑥] + 𝐿2[𝑦] =  𝑓1
𝐿3[𝑥] + 𝐿4[𝑦] =  𝑓2

 , 

where L1, L2, L3, and L4 are linear differential operators with constant coefficients 

(polynomials in D), and f1 and f2 are some functions of t (time), or constants. Given the 

properties of D polynomials with constant coefficients, the L operators commute, e.g., 
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L1L3 = L3 L1. Therefore, we can eliminate variables in a basic algebraic way. Variable y 

can be eliminated as follows: 

                                                 (𝐿1𝐿4 − 𝐿2𝐿3)[𝑥] =  𝐿4[𝑓1] − 𝐿2[𝑓2] .     (1) 

Similarly, variable x is eliminated by 

                                                        (𝐿1𝐿4 − 𝐿2𝐿3)[𝑦] =  𝐿1[𝑓2] − 𝐿3[𝑓1] .     (2) 

If differential operator 𝐿1𝐿4 − 𝐿2𝐿3 is of order n, then a general solution for equation (1) 

will contain n arbitrary constants; and analogously, a general solution for equation (2) 

will also contain n arbitrary constants, making 2n arbitrary constants in total. However, 

only n of these constants are independent, with the remaining n being expressions that are 

dependent on the first n. The two general solutions to equations (1) and (2) expressed in 

terms of the n independent constants are called a general solution to the system (Nagle, 

Saff, & Snider, 2017, p. 267).  

As an example, consider a simple system of first order differential equations that 

are similar in their form to the ones describing a mass-spring system with 2 masses. 

Suppose the following equation system given: 

                                                                     {
  
𝑑𝑥

𝑑𝑡
= 𝑥 − 4𝑦

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑦

 ,  (1) 

which we then rearrange into 

  {
 𝑥 − 𝑥′ − 4𝑦 = 0

𝑥 + 𝑦 − 𝑦′ = 0
.   (2) 

Now the equations are easy to express in terms of operator D: 

                                                                     {
 (1 − 𝐷)[𝑥] − 4𝑦 = 0

𝑥 + (1 − 𝐷)[𝑦] = 0
 .    (3)          
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Then we use equation (2) to eliminate x with 𝐿1 = 1 − 𝐷, 𝐿2 = −4, 𝐿3 = 1, 𝐿4 = 1 − 𝐷,

𝐿1[𝑓2] = (1 − 𝐷)[0] = 0, and 𝐿3[𝑓1] = 1[0] = 0. 

(1 − 𝐷)(1 − 𝐷) − (−4)(1) = 0 − 0           (4) 

 

                                                      𝐷2 − 2𝐷 + 5 = 0                                    (5) 

The corresponding characteristic equation is 

                                            𝑟2 − 2𝑟 + 5 = (𝑟 − 1 + 2𝑖)(𝑟 − 1 − 2𝑖) = 0 .        (6) 

(If a review of characteristic equations is needed, please see Nagle, Saff, & Snider, 2010, 

Section 4.2.) So the roots of the characteristic equation are 𝑟 = 1 ± 2𝑖. Thus, the general 

solution for y is 

                                                          𝑦 =  𝑐1𝑒
𝑡 cos 2𝑡 + 𝑐2𝑒

𝑡 sin 2𝑡  .                (7) 

(If a review of how to get from a characteristic/auxiliary equation to the general solution 

is needed, please see Nagle, Saff, & Snider, 2010, Sections 4.2 & 4.3.) To get the general 

solution for x, we solve the second equation from the equation system (2) for x by 

substitution.                     𝑥 = 𝑦′ − 𝑦                                     

              =  𝑐1𝑒
𝑡(cos 2𝑡 − 2 sin 2𝑡) + 𝑐2𝑒

𝑡(sin 2𝑡 + 2 cos 2𝑡) − 𝑐1𝑒
𝑡 cos 2𝑡 −

 𝑐2𝑒
𝑡 sin 2𝑡  

              =  2𝑐2𝑒
𝑡 cos 2𝑡 − 2𝑐1𝑒

𝑡 sin 2𝑡  

Hence, the final general solution to the system is 

𝑥(𝑡) = 2𝑐2𝑒
𝑡 cos 2𝑡 − 2𝑐1𝑒

𝑡 sin 2𝑡 

                                                𝑦(𝑡) =  𝑐1𝑒
𝑡 cos 2𝑡 + 𝑐2𝑒

𝑡 sin 2𝑡 . 
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Solution of the Undamped Connected Mass-Spring System with Equal Natural Angular 

Frequencies 

Following Newton’s and Hook’s laws, the force equations that define the system 

are: 

{
 𝑚1

𝑑2𝑥

𝑑𝑡2
= − 𝑘1𝑥 + 𝑘2(𝑦 − 𝑥)  

𝑚2
𝑑2𝑦

𝑑𝑡2
= − 𝑘3𝑦 + 𝑘2(𝑥 − 𝑦)

. 

This can be rearranged into: 

{

𝑑2𝑥

𝑑𝑡2
+ (

𝑘1

 𝑚1
+

𝑘2

 𝑚1
)𝑥 −

𝑘2

 𝑚1
𝑦 = 0  

𝑑2𝑦

𝑑𝑡2
+ (

𝑘3

 𝑚1
+

𝑘2

 𝑚2
)𝑦 −

𝑘2

 𝑚2
𝑥 = 0

. 

Now it can be expressed in terms of operator D: 

{
 𝐷2 + (

𝑘1

 𝑚1
+

𝑘2

 𝑚1
)[𝑥]  −

𝑘2

 𝑚1
𝑦 = 0  

−
𝑘2

 𝑚2
𝑥 + (𝐷2 + (

𝑘3

 𝑚1
+

𝑘2

 𝑚2
))[𝑦] = 0

. 

Since natural angular frequencies are known to be equal, it follows that 
𝑘1

 𝑚1
=

𝑘3

 𝑚1
 =  𝜔1

2  = 𝜔2
2. The remaining two stiffness to mass proportions can also be defined as 

𝑘2

 𝑚1
= 𝜅1 and 

𝑘2

 𝑚2
= 𝜅2. Replacing the stiffness to mass proportions by angular velocities 

and coupling coefficients yields: 

{
 𝐷2 + (𝜔1

2 + 𝜅1)[𝑥]  − 𝜅1𝑦 = 0  

−𝜅2𝑥 + (𝐷
2 + (𝜔1

2 + 𝜅2))[𝑦] = 0
. 

Now, multiplying the first row by 𝜅2, the second row by (𝐷2 + (𝜔1
2 + 𝜅1)), and 

adding them up gives: 
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[(𝐷2 + (𝜔1
2 + 𝜅1))(𝐷

2 + (𝜔1
2 + 𝜅2)) − 𝜅1𝜅2][𝑦] = 0. 

Multiplying the terms inside the parentheses results in a 4th degree differential 

equation: 

[𝐷4 + (2𝜔1
2 + 𝜅1 + 𝜅2)𝐷

2 + (𝜔1
4 + 𝜔1

2𝜅1 + 𝜔1
2𝜅2)][𝑦] = 0. 

This equation can be split into two 2nd degree differential equations: 

[(𝐷2 + 𝜔1
2)(𝐷2 + (𝜔1

2 + 𝜅1 + 𝜅2))][𝑦] = 0. 

Hence, the roots of the auxiliary equation are: 

𝑟1,2 = ±𝜔1𝑖  and  𝑟3,4 = ±√𝜔1
2 + 𝜅1 + 𝜅2𝑖 . 

Using Euler’s formula, it follows that: 

𝑒𝑖𝜔1𝑡 = cos(𝜔1𝑡) +  𝑖 sin(𝜔1𝑡)   and 

 𝑒
𝑖√𝜔1

2+𝜅1+𝜅2𝑡
 = cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) + 𝑖 sin (√𝜔1
2 + 𝜅1 + 𝜅2𝑡)  are the 

complex-valued solutions to the 4th degree differential equation. Projecting them onto the 

real plane results in a real-valued solution: 

𝑦(𝑡) = 𝐶1 cos(𝜔1𝑡) + 𝐶2 sin(𝜔1𝑡) + 𝐶3 cos (√𝜔1
2 + 𝜅1 + 𝜅2𝑡) + 𝐶4 sin(√𝜔1

2 + 𝜅1 + 𝜅2𝑡) ,  

where 𝐶1, 𝐶2 , 𝐶3, 𝐶4 are coefficients that are free to vary, but depend on the initial 

conditions. 

Since the solution for y(t) is now obtained, the solution for x(t) can be achieved 

by defining x(t) in terms of y(t), and plugging in the relevant expressions. From the initial 

force equations x can be defined in terms of y in the following way: 
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𝑥 =
1

𝜅2

𝑑2𝑦

𝑑𝑡2
+ ( 

𝜔1
2

𝜅2
+ 1)𝑦. 

               
𝑑2𝑦

𝑑𝑡2
 can be easily obtained by taking a second derivative of the y(t) solution with 

respect to time. Doing so results in: 

𝑑2𝑦

𝑑𝑡2
= − 𝜔1

2𝐶1 cos(𝜔1𝑡) − 𝜔1
2𝐶2 sin(𝜔1𝑡) 

− (𝜔1
2 + 𝜅1 + 𝜅2)𝐶3 cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) 

− (𝜔1
2 + 𝜅1 + 𝜅2)𝐶4 sin (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) . 

The remaining terms in the expression of x in terms of y are all known. Plugging 

them in and simplifying the result yields: 

𝑥(𝑡) =  𝐶1 cos(𝜔1𝑡) + 𝐶2 sin(𝜔1𝑡) − 𝐶3
𝜅1
𝜅2
cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) − 𝐶4
𝜅1
𝜅2
sin (√𝜔1

2 + 𝜅1 + 𝜅2𝑡)  . 

Thus, the general solution to the force equation system that defines the undamped 

connected mass-spring system with equal natural angular frequencies is: 

{
 
 

 
 𝑦(𝑡) = 𝐶1 cos(𝜔1𝑡) +  𝐶2 sin(𝜔1𝑡) +  𝐶3 cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) + 𝐶4 sin (√𝜔1
2 + 𝜅1 + 𝜅2𝑡)  

𝑥(𝑡) =  𝐶1 cos(𝜔1𝑡) + 𝐶2 sin(𝜔1𝑡) −  𝐶3
𝜅1
𝜅2
cos (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) − 𝐶4
𝜅1
𝜅2
sin (√𝜔1

2 + 𝜅1 + 𝜅2𝑡) .
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APPENDIX B 

MATHEMATICAL SOLUTION OF THE UNDAMPED CONNECTED                 

MASS-SPRING SYSTEM WITH UNEQUAL NATURAL FREQUENCIES 
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The motion trajectories of the two masses that belong to the undamped connected 

mass-spring system with unequal natural angular frequencies are: 

{
 𝑦(𝑡) = 𝐶1 cos(𝑔𝑡) + 𝐶2 sin(𝑔𝑡) + 𝐶3 cos(ℎ𝑡) + 𝐶4 sin(ℎ𝑡)                                                            

𝑥(𝑡) =  𝐶1
𝜔2
2+𝜅2−𝑔

2

𝜅2
cos(𝑔𝑡) + 𝐶2

𝜔2
2+𝜅2−𝑔

2

𝜅2
sin(𝑔𝑡) + 𝐶3

𝜔2
2+𝜅2−ℎ

2

𝜅2
cos(ℎ𝑡) +  𝐶4

𝜔2
2+𝜅2−ℎ

2

𝜅2
sin(ℎ𝑡) ,   

  

where 

𝑔 = 0.70711√(𝜔1
2 +𝜔2

2 + 𝜅1 + 𝜅2)  − √(𝜔1
2 +𝜔2

2 + 𝜅1 + 𝜅2)
2  −  4(𝜅1𝜔2

2 + 𝜅2𝜔1
2 +𝜔1

2𝜔2
2), 

ℎ = 0.70711√(𝜔1
2 +𝜔2

2 + 𝜅1 + 𝜅2)  + √(𝜔1
2 +𝜔2

2 + 𝜅1 + 𝜅2)
2  −  4(𝜅1𝜔2

2 + 𝜅2𝜔1
2 +𝜔1

2𝜔2
2), 

and initial conditions of the system are periodically revisited every LCM(g,h) 

measurement units. 

 The solution is always real as the expressions contained under the square roots 

in g and h cannot be negative. Given that 𝜅1 =
𝑘2

 𝑚1
,  𝜅2 =

𝑘2

 𝑚2
, 𝜔1

2 =
𝑘1

 𝑚1
, and 𝜔1

2 =
𝑘1

 𝑚1
, 

and that stiffness of the springs (𝑘𝑖) and mass of the weights (𝑚𝑖) cannot be negative or 

zero in classical connected mass-spring systems, the following inequalities are true: 

1. (𝜔1
2 + 𝜔2

2 + 𝜅1 + 𝜅2)
2  −  4(𝜅1𝜔2

2 + 𝜅2𝜔1
2 + 𝜔1

2𝜔2
2)  

= (−𝜔1
2 + 𝜔2

2 − 𝜅1 + 𝜅2)
2 + 4𝜅1𝜅2 > 0 ; 

2. (𝜔1
2 + 𝜔2

2 + 𝜅1 + 𝜅2)  −  √(𝜔1
2 +𝜔2

2 + 𝜅1 + 𝜅2)2  −  4(𝜅1𝜔2
2 + 𝜅2𝜔1

2 + 𝜔1
2𝜔2

2) 

> 0 

                 𝜔1
2 + 𝜔2

2 + 𝜅1 + 𝜅2 > √(𝜔1
2 + 𝜔2

2 + 𝜅1 + 𝜅2)
2  −  4(𝜅1𝜔2

2 + 𝜅2𝜔1
2 + 𝜔1

2𝜔2
2) 

                (𝜔1
2 + 𝜔2

2 + 𝜅1 + 𝜅2)
2 > (𝜔1

2 + 𝜔2
2 + 𝜅1 + 𝜅2)

2  −  4(𝜅1𝜔2
2 + 𝜅2𝜔1

2 + 𝜔1
2𝜔2

2)  

            0 >  − 4(𝜅1𝜔2
2 + 𝜅2𝜔1

2 + 𝜔1
2𝜔2

2)  

            0 >  − 4. 
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APPENDIX C 

SUPPLEMENTAL DISCUSSION AND ILLUSTRATION OF UNDAMPED 

CONNECTED MASS-SPRING MODEL WITH EQUAL NATURAL ANGULAR 

FREQUENCIES 
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The system that is considered in this work is closed. Hence, the amount of energy 

that is induced into the system by the initial position (∝ initial potential energy, where ∝ 

represents proportional to) and initial velocity (∝ initial kinetic energy) of the masses 

cannot dissipate, as the sum of all the energies in the system at each point in time must be 

equal. This implies that the initial conditions will be approximately revisited periodically. 

The precise values of the initial conditions will also be revisited every least common 

multiplier or LCM (denominator of 𝜔1, denominator of 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) measurement 

occasions, which is evident from the structure of the equations in Equation set 40. 

Moreover, the exact same oscillation pattern will repeat after every LCM (denominator of 

𝜔1, denominator of 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) measurement occasions. For instance, an equivalent of 

the seasonal trigonometric model with 𝜔1 =
2𝜋

14
, and 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋

7
 will have the same 

fluctuation pattern repeated each LCM (14, 7) = 14 measurement occasions. If the 

measurement units considered are days, and, accordingly, the major cycle of interest is a 

biweekly cycle, then each biweekly period will contain an identical fluctuation pattern, 

and the initial values will be revisited every two weeks (see Figures 15 and 16 for an 

illustration, and Figures 18 and 20 for an analogous example with the major cycle being 

weekly). In case of 𝜔1 =
2𝜋

14
, and 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋

10
, the same fluctuation pattern will be 

repeated and the initial values will be revisited every LCM (14,10) = 70 days (see Figure 

17 for an illustration, and Figure 22 for an analogous example with the major cycle being 

weekly). The closer the LCM is to the 𝜔1 denominator, the more stable are the 

fluctuation pattern and the corresponding attractor are (see Figures 19, 21, and 23). 
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Figure 15.16Comparison of the empirical, theoretical, and multilevel connected mass-

spring model detected motion trajectories with 𝜔1 =
2𝜋

14
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋

7
,  
𝜅1

𝜅2
 = 

1

2
, and 

initial value set 9.The orange line represents motion of mass 1, which is defined by x(t) in 

Equation set (40). The blue line represents motion of mass 2, which is defined by y(t) in 

Equation set (40). a) Empirical time series of the motion trajectories with 14 equally 

spaced observations per cycle joined by straight lines; b) Theoretical time series of the 

motion trajectories; c) Motion trajectories produced by the system detected by the 

multilevel connected mass-spring model from the empirical time series, given the same 

set of initial values. The entire set of estimated system parameters was considered 

adequate. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur). 
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Figure 16.17Comparison of the empirical, theoretical, and multilevel connected mass-

spring model detected motion trajectories with 𝜔1 =
2𝜋

14
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋

7
,  
𝜅1

𝜅2
 = 

1

2
, and 

initial value set 6. The orange line represents motion of mass 1, which is defined by x(t) 

in Equation set (40). The blue line represents motion of mass 2, which is defined by y(t) 

in Equation set (40). a) Empirical time series of the motion trajectories with 14 equally 

spaced observations per cycle joined by straight lines; b) Theoretical time series of the 

motion trajectories; c) Motion trajectories produced by the system detected by the 

multilevel connected mass-spring model from the empirical time series, given the same 

set of initial values. The entire set of estimated system parameters was considered 

adequate. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur).  
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Figure 17.18Comparison of the empirical, theoretical, and multilevel connected mass-

spring model detected motion trajectories with 𝜔1 =
2𝜋

14
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋

10
,  
𝜅1

𝜅2
 = 

1

2
, and 

initial value set 9. The orange line represents motion of mass 1, which is defined by x(t) 

in Equation set (40). The blue line represents motion of mass 2, which is defined by y(t) 

in Equation set (40). a) Empirical time series of the motion trajectories with 14 equally 

spaced observations per cycle joined by straight lines; b) Theoretical time series of the 

motion trajectories; c) Motion trajectories produced by the system detected by the 

multilevel connected mass-spring model from the empirical time series, given the same 

set of initial values. The entire set of estimated system parameters was considered 

adequate. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur). 
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Figure 18.19Comparison of the empirical, theoretical, and multilevel connected mass-

spring model detected motion trajectories with 𝜔1 =
2𝜋

7
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋
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𝜅2
 = 

1

2
 , and 

initial value set 9. The orange line represents motion of mass 1, which is defined by x(t) 

in Equation set (40). The blue line represents motion of mass 2, which is defined by y(t) 

in Equation set (40). a) Empirical time series of the motion trajectories with 7 equally 

spaced observations per cycle joined by straight lines; b) Theoretical time series of the 

motion trajectories; c) Motion trajectories produced by the system detected by the 

multilevel connected mass-spring model from the empirical time series, given the same 

set of initial values. The entire set of estimated system parameters was considered 

inadequate. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur). 
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Figure 19.203D phase portraits of the movement of mass 1, which corresponds to the 

trajectory x(t) (orange line in Time vs Displacement plots), and mass 2, which 

corresponds to the trajectory y(t) (blue line in Time vs Displacement plots), in a 

connected mass-spring system with 𝜔1 =
2𝜋

7
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =
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3.5
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, initial value set 9, 

and τ=13. 

 

Figure 20.21Comparison of the empirical, theoretical, and multilevel connected mass-

spring model detected motion trajectories with 𝜔1 =
2𝜋
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initial value set 6. The orange line represents motion of mass 1, which is defined by x(t) 

in Equation set (40). The blue line represents motion of mass 2, which is defined by y(t) 

in Equation set (40). a) Empirical time series of the motion trajectories with 7 equally 

spaced observations per cycle joined by straight lines; b) Theoretical time series of the 

motion trajectories; c) Motion trajectories produced by the system detected by the 

multilevel connected mass-spring model from the empirical time series, given the same 

set of initial values. The entire set of estimated system parameters was considered 

inadequate. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur). 

 

 

Figure 21.223D phase portraits of the movement of mass 1, which corresponds to the 

trajectory x(t) (orange line in Time vs Displacement plots), and mass 2, which 

corresponds to the trajectory y(t) (blue line in Time vs Displacement plots), in a 

connected mass-spring system with 𝜔1 =
2𝜋

7
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋

3.5
,  
𝜅1

𝜅2
 = 

1

2
, initial value set 6, 

and τ=9. 
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Figure 22.23Comparison of the empirical, theoretical, and multilevel connected mass-

spring model detected motion trajectories with 𝜔1 =
2𝜋

7
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 , and 

initial value set 9. The orange line represents motion of mass 1, which is defined by x(t) 

in Equation set (40). The blue line represents motion of mass 2, which is defined by y(t) 

in Equation set (40). a) Empirical time series of the motion trajectories with 7 equally 

spaced observations per cycle joined by straight lines; b) Theoretical time series of the 

motion trajectories; c) Motion trajectories produced by the system detected by the 

multilevel connected mass-spring model from the empirical time series, given the same 

set of initial values. The entire set of estimated system parameters was considered 

inadequate. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur). 
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Figure 23.243D phase portraits of the movement of mass 1, which corresponds to the 

trajectory x(t) (orange line in Time vs Displacement plots), and mass 2, which 

corresponds to the trajectory y(t) (blue line in Time vs Displacement plots), in a 

connected mass-spring system with 𝜔1 =
2𝜋

7
,  𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =

2𝜋

5
,  
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𝜅2
 = 

1

2
, initial value set 9, 

and τ=13.  

 

 It can be seen in Figures 15 through 23 that different sets of initial conditions 

produce different motion trajectories. The multilevel connected mass-spring model is 

designed to detect the parameters of the underlying physical system that produced the 

imputed trajectories, regardless of the initial conditions. Thus, for instance, the trajectory 

pair depicted in Figures 18-19 is expected to yield identical parameter estimates to the 

trajectory pair pictured in Figures 20-21 despite the evident difference in their shape and 

amplitude. In order to visually inspect the adequacy of the system parameter set estimated 

by the multilevel model, trajectories of the connected mass-spring system with the 

estimated parameters were reproduced under the same initial conditions as the original 

system that produced the imputed trajectories (pictured in section c) of Figures 15-18, 20, 

and 22). They were visually compared to the original trajectory pair that was analyzed by 

the model (pictured in sections a) and b) of Figures 15-18, 20, and 22). As can be seen in 

Figures 18, 20, and 22, when all parameter estimates were adequate, they comprised a 

system that under the same initial conditions as the original system, produced highly 

similar trajectories to those of the original system (i.e., c) highly similar to b)). In 

contrast, as can be seen in Figures 15-17, when some parameter estimates were not 

adequate, they described a system that under the same initial conditions as the original 

system produced trajectories that were only somewhat similar to those of the original 

system (i.e., c) only somewhat similar to b)). 
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In addition to the multilevel connected mass-spring model detecting the same 

underlying physical system regardless of the initial conditions, by its design, it should 

also be capable of detecting the same physical system regardless of where/when the 

initial conditions occur in the measured trajectories. That is, the same underlying physical 

system parameters should be detected whether the initial values are present at the first 

measurement occasion, whether they are present in the middle, or at any other point of 

the measured piece of trajectories. Since, as explained above, any set of initial conditions 

in a closed connected mass-spring system will be revisited at some point, it guarantees 

that initial conditions can occur at any measurement occasion with no discontinuity. The 

pilot study confirmed this phenomenon by producing either identical or virtually identical 

parameter estimates under identical conditions, but with different initial value location on 

the measured time scale.   

The simulation presented in this work had all the initial conditions located at the 

center of the trajectories (marked with a vertical dash-line in Figures 15-18, 20, and 22). 

Such a location choice was based on two reasons. First, it was the most efficient choice in 

terms of the simulation programming. Second, if the results follow the mathematical 

predictions and justifications, then they demonstrate once again that the initial conditions 

do not have to coincide with the first measurement occasion in order for the connected 

mass-spring model to correctly detect the underlying physical system. Thus, all 

theoretical explanations and predictions made in this thesis are applicable regardless of 

the initial value placement on the measured time scale. 

In Figures 15, 17, 18 and 22, where the initial value set is 9 (𝑝1 = 10, 𝑝2 =

10, 𝑣1 = −10, 𝑣2 = 10), the initial position of both masses is 10. Accordingly, all the 

orange and blue lines in all the trajectory types (a, b, and c) of the listed figures have a 

displacement value of 10 at the dashed line. 𝑣1, or velocity of mass 1, is negative 10, 

whereas 𝑣2, or velocity of mass 2 is positive 10. Hence, when the motion trajectories are 

set to have the initial value set 9, the orange trajectory that belongs to mass 1, and the 

blue trajectory that belongs to mass 2 should have steep and similar slopes that go in 

opposite directions with the orange one going down (negative velocity), and the blue one 

going up (positive velocity) at the dashed line. The slopes around the dashed line (where 

the x-axis component of the slope is in units of measurement occasions), that represent 

initial velocity, are not exactly -10 and 10, as whenever time exceeds 0, potential energy 

stored in the springs starts turning into kinetic energy, which directly contributes to the 

velocity of the masses. Mass 1’s initial position is away from its wall (the spring that 

connects it to the wall is stretched), and its initial velocity is directed towards its wall (in 

the direction the mass would move if released with initial velocity 0). As the spring 

attached to the wall contracts, it produces kinetic energy that is directed to the same 

direction as the initial velocity. Hence, the two components add up, giving a steeper slope 

than just the initial velocity itself. Analogously, the initial position of mass 2 is located 

closer to its wall than its resting position. Hence, the corresponding spring attached to the 

right wall is compressed. When time exceeds 0, the spring attempts to expand, which 
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produces kinetic energy in the direction away from the right wall, which is opposite to the 

initial velocity of the mass 2. Therefore, the initial slope/velocity of the blue trajectory is 

attenuated. The resting length of the middle spring is not changed by the initial position 

of the masses and hence it does not contribute to the velocities of the masses around time 

0. As one can see, the explicated pattern is present in the theoretical (parts b) and detected 

(parts c) trajectory pairs, and approximately present in the case of empirical time series 

trajectories (parts a). That is, in figures that represent trajectories with initial value set 9, 

the orange trajectory has a negative slope at the dashed line, while the blue trajectory has 

a positive slope of a similar magnitude, but with the orange slope being steeper than the 

blue one.  

As explained above, the identical components of the trajectories together with the 

initial conditions repeat themselves each 14 measurement units in Figure 15 (e.g., 

trajectories in a) and b) at time 5 are identical to the trajectories at time 12, as there are 2 

observations per time unit plotted). Analogously, identical components are repeated each 

70 measurement occasions in Figure 17 (the initial values are not repeated in the 

presented segment, as they are outside of it), each 7 measurement units in Figure 18 (e.g., 

the trajectories in a) and b) at time 10 are identical to the trajectories at time 17), and each 

35 measurement units in Figure 22 (e.g., the trajectories in a) and b) at time 5 are 

identical to the trajectories at time 40). Accordingly, the attractors in Figure 19 that 

represent 3D phase portraits of the theoretical trajectories in Figure 18 are very stable, 

representing a single cyclic pattern in the 3D space. This result reflects the fact that each 

major cycle (defined by 𝜔1) is repeated identically throughout the generated time series. 

Similarly, the attractors in Figure 23 that represent 3D phase portraits of the theoretical 

trajectories in Figure 22, contain 5 differently shaped spiraled cycles, which reflect the 

fact that each major cycle (of frequency 𝜔1 =
2𝜋

7
) is repeated identically with a lag of 5 

full cycles (35 measurement occasions) throughout the generated time series. Hence, 

there are 5 differently shaped cycles that are repeated throughout the generated (and 

infinite) time series. 

Similarly, in Figures 16 and 20, where the initial value set is 6 (𝑝1 = 1, 𝑝2 =

−10, 𝑣1 = −1, 𝑣2 = 10), the initial position of mass 1 is 1, and the initial position of 

mass 2 is -10. Accordingly, all the orange lines in all the trajectory types (a, b and c) in 

the two figures have a displacement value of 1, and all the blue lines have a displacement 

value of -10 at the dashed line. The slopes of the trajectories (where the x-axis component 

of the slope is in units of measurement occasions) right after the dashed line are slightly 

steeper than the ones indicated in the initial conditions (-1 and 10). This increase emerges 

as the initial positions of both masses are away from their corresponding walls, which 

causes the side springs to stretch. When time exceeds 0, the potential energy stored in the 

stretched side springs gradually turns into kinetic energy directed towards the walls, 

which coincides with the direction of the initial velocities, and therefore positively 

contributes to the magnitude of the velocity of the masses. Moreover, the middle spring is 

compressed at time zero. Therefore, when the masses are released, the potential energy 
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stored in it turns into kinetic energy that is directed to the sides, additionally pushing both 

masses towards their walls and contributing to the magnitude of the velocities.   

The frequency of repetition of identical trajectory components, including initial 

values, is identical to the ones with the initial value set 9, given that all the other 

parameters are equal (i.e. repetition frequency is the same in Figures 15 and 15, and 

Figures 18 and 20). Accordingly, the attractor in Figure 17 that represents a 3D phase 

portrait of the theoretical trajectories in Figure 20, same as the attractor in Figure 19 that 

represents the phase portrait of theoretical trajectories in Figure 18, contains a stable 

single cycle pattern. However, this time with a much more prominent secondary cycle 

frequency, 𝜔𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 =
2𝜋

3.5
, reflecting component that looks like a loop inside of the 

bigger cycle. The stable single cycle pattern reflects that each major cycle (defined by 

𝜔1) is repeated identically throughout the generated time series, i.e. there is a single cycle 

shape that is repeated over and over in each mass 1 trajectory and mass 2 trajectory.  

The initial values that comprise initial value dependent coefficients (𝐶1, 𝐶2, 𝐶3, 𝐶4, 

which precede all the sine and cosine components of the equations of the trajectories) are 

directly related to the amplitudes of the trajectories. If all the initial values were increased 

10 times, the trajectories would maintain the same shape structures, but would be 

stretched 10 times along the y-axis (i.e., the amplitude increases 10 times). See Figure 22 

for the original plot, and Figure 24 for the plot of the trajectories with all initial values 

increased 10 times. Analogously, if all the initial values were decreased 10 times, the 

trajectories would maintain the same shape structures, but would be compressed 10 times 

along the y-axis (i.e. the amplitude decreases 10 times). See Figure 22 for the original 

plot, and Figure 25 for the plot of the trajectories with all initial values decreased 10 

times.  

 

 

Figure 24.25The empirical and theoretical connected mass-spring model motion 

trajectories with 𝜔1 =
2𝜋
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10. The orange line represents motion of mass 1, which is defined by x(t) in Equation set 

(40). The blue line represents motion of mass 2, which is defined by y(t) in Equation set 

(40). a) Empirical time series of the motion trajectories with 7 equally spaced 

observations per cycle joined by straight lines; b) Theoretical time series of the motion 

trajectories. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur). 

 

Figure 25.26The empirical and theoretical connected mass-spring model motion 

trajectories with 𝜔1 =
2𝜋
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10.The orange line represents motion of mass 1, which is defined by x(t) in Equation set 

(40). The blue line represents motion of mass 2, which is defined by y(t) in Equation set 

(40). a) Empirical time series of the motion trajectories with 7 equally spaced 

observations per cycle joined by straight lines; b) Theoretical time series of the motion 

trajectories. The X-axis represents time units proportional to the measurement occasions. 

The dashed line marks time zero of the physical system (where the initial values occur). 

 If all the initial values were increased an infinite number of times, the change in 

the motion trajectories would be analogous. That is, in the classical connected mass-

spring system defined in this thesis there is no point where the behavior of the masses 

would suddenly change because of physical limitations. The defined system will never 

reflect masses colliding with the walls or with each other. The defined system does not 

contain any elements that would restrict the length, the elasticity, or the cross-section area 

of the springs. The only parameter of the spring that is defined in the classical mass-

spring models is stiffness (𝑘). It is known that stiffness, 𝑘 =  
𝐴𝐸

𝑙
, where 𝐴 represents 

cross-section area, 𝐸 represents the modulus of elasticity, and 𝑙 represents length of the 

spring. Since stiffness, 𝑘, is the only parameter in this formula that is fixed, the 

interaction of the other 3 parameters can vary without restriction. This means that 

whatever stiffness of the spring, its length might always be assumed to be as large as 
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needed for the masses to not collide with each other and with the walls. In theory, 𝐴 and 

𝐸 can be as large as infinity, allowing the length to be 𝑙 = 𝐴𝐸 / 𝑘 = ∞/ 𝑘 = ∞. In order for 

the connected mass-spring system to reflect certain physical restrictions, they would have 

to be explicitly defined in the force equations. In the connected mass-spring system 

whose force equation construction was explicitly delineated in the introduction, no such 

element was introduced, and therefore, the system behavior detected and produced by the 

model discussed in this thesis follows an assumption that the distance between the two 

masses and the walls is always enough to avoid collisions.  

 

 


