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ABSTRACT

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intel-

ligence (AI) that is concerned with representing knowledge in a form that computer

systems can utilize to solve complex problems. Answer Set Programming (ASP),

based on the stable model semantics, is a widely-used KR framework that facilitates

elegant and efficient representations for many problem domains that require complex

reasoning.

However, while ASP is effective on deterministic problem domains, it is not suit-

able for applications involving quantitative uncertainty, for example, those that re-

quire probabilistic reasoning. Furthermore, it is hard to utilize information that can

be statistically induced from data with ASP problem modeling.

This dissertation presents the language LPMLN, which is a probabilistic extension

of the stable model semantics with the concept of weighted rules, inspired by Markov

Logic. An LPMLN program defines a probability distribution over “soft” stable models,

which may not satisfy all rules, but the more rules with the bigger weights they satisfy,

the bigger their probabilities. LPMLN takes advantage of both ASP and Markov Logic

in a single framework, allowing representation of problems that require both logical

and probabilistic reasoning in an intuitive and elaboration tolerant way.

This dissertation establishes formal relations between LPMLN and several other

formalisms, discusses inference and weight learning algorithms under LPMLN, and

presents systems implementing the algorithms. LPMLN systems can be used to com-

pute other languages translatable into LPMLN. The advantage of LPMLN for prob-

abilistic reasoning is illustrated by a probabilistic extension of the action language

BC+, called pBC+, defined as a high-level notation of LPMLN for describing transition

systems. Various probabilistic reasoning about transition systems, especially prob-

abilistic diagnosis, can be modeled in pBC+ and computed using LPMLN systems.
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pBC+ is further extended with the notion of utility, through a decision-theoretic ex-

tension of LPMLN, and related with Markov Decision Process (MDP) in terms of policy

optimization problems. pBC+ can be used to represent (PO)MDP in a succinct and

elaboration tolerant way, which enables planning with (PO)MDP algorithms in action

domains whose description requires rich KR constructs, such as recursive definitions

and indirect effects of actions.
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Chapter 1

INTRODUCTION

Knowledge Representation (KR) is one of the prominent approaches to Artificial

Intelligence (AI). It solves problems in AI by creating representations of the problem

domain in a form that can facilitate automated reasoning about the problem do-

main. Once the representation is created, the solutions of the problem can be derived

automatically from the semantics of the underlying formalism.

Answer Set Programming (ASP) is a widely-used KR framework that can facil-

itate compact and intuitive representations for many problem domains that require

commonsense reasoning. The problem domain is encoded as an answer set program,

so that the “answer sets” of the program, which can be found automatically by ASP

solvers, correspond to the solutions of the problem. The nonmonotonicity of the

underlying semantics of ASP, the stable model semantics, enables various types of

reasoning including defeasible reasoning, causal reasoning, diagnostic reasoning, etc.,

many of which are hard to be modeled with SAT based logic formalisms. Useful

knowledge representation constructs and efficient solvers allow ASP to handle vari-

ous combinatorial search and commonsense reasoning problems in knowledge intensive

domains elegantly and efficiently.

However, difficulty remains when it comes to domains with quantitative uncer-

tainty, for example, reasoning tasks that involve probabilistic inference. The fact

that ASP does not distinguish answer sets that are more likely to be true limits its

application domains. Furthermore, due to the “crisp” nature of the stable model

semantics, it is hard to utilize information that can be statistically induced from data

with ASP problem modeling, since data is noisy in most real-world situations.

1



On the other hand, Markov Logic (Domingos and Lowd (2009)) is a prominent

approach in Statistical Relational Learning (SRL), aimed at combining probabilistic

graphical models and logic. The idea is to assign machine-learnable weights to logic

formulas, so that a model of the logic theory does not have to satisfy all formulas, and

the weight scheme induces a probability distribution over all models. However, since

Markov Logic is based on standard first-order semantics, it is weak for commonsense

reasoning. For example, causality and inductive definitions are hard to be succinctly

represented with Markov Logic.

To overcome the difficulty in modeling quantitative uncertainty with ASP, we

propose the language LPMLN, which is a probabilistic extension of ASP that combines

the advantages of ASP and Markov Logic in a single framework. In LPMLN, we

introduce the notion of weighted rules under the stable model semantics, following

the log-linear models of Markov Logic. LPMLN allows representations of commonsense

reasoning problems that require both logical and probabilistic reasoning in an intuitive

and elaboration tolerant way. Furthermore, thanks to its close relation to Markov

Logic, some learning methods developed for Markov Logic can be adapted for LPMLN

learning, in this way bringing machine learning algorithms in the context of a KR

formalism.

The relation between LPMLN and Markov Logic is analogous to the known rela-

tionship between ASP and SAT, in that the former follows the stable model semantics

and the latter follows a standard SAT semantics. The relationship between LPMLN

and ASP is analogous to the relationship between Markov Logic and SAT, in that the

former is a weighted extension of the latter. Figure 1.1 summarizes the relationships

between ASP, Markov Logic, SAT and LPMLN.

In this dissertation, we define the syntax and semantics of LPMLN, and discuss

its formal relations to other formalisms such as ASP, Markov Logic, ProbLog, P-

2



Figure 1.1: The Relation between ASP, Markov Logic, SAT and LPMLN

log and Pearl’s Causal Model (PCM). Based on the relationships, we implemented

two systems lpmln2asp and lpmln2mln for LPMLN inference. The LPMLN inference

systems can be used to compute other languages that are translatable into LPMLN. We

present the LPMLN weight learning system and illustrate how we can learn weights for

probabilistic extensions of knowledge-rich domains that involve reachability analysis

and reasoning about action dynamics, where ASP has been useful in the deterministic

case.

To illustrate LPMLN’s capability of reasoning in action domains, we present a

probabilistic extension of the action language BC+, called pBC+, which is a high-

level notation of LPMLN for describing transition systems. We show how probabilistic

reasoning about dynamic domains, such as prediction and postdiction, as well as

probabilistic diagnosis, can be modeled in the probabilistic language and computed

using LPMLN inference and learning system.

In many probabilistic decision problems, the goal is to find a decision choice that

yields the maximum expected utility. We extend LPMLN with the notion of utility,

resulting in Decision-Theoretic LPMLN (DT-LPMLN). based on DT-LPMLN, we intro-

duce the notion of utility in pBC+, and further define the policy optimization problem

in the context of pBC+. We show that the policy optimization problem in terms of

pBC+ coincide with that of Markov Decision Process (MDP). We demonstrate that

pBC+ can be used to represent (PO)MDP in a succinct and elaboration tolerant way,
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Figure 1.2: Dissertation Outline

which enables planning with (PO)MDP algorithms in action domains whose descrip-

tion requires rich KR constructs, such as recursive definitions and indirect effects of

actions.

In these initial works on LPMLN, our focus is on defining the language, studying

its theoretical properties and exploring its expressivity. Computational efficiency is

not the focus of this dissertation and the systems presented here are prototypical.

Improving the efficiency of the systems and conducting empirical study of LPMLN

in real-world applications are important future works. Figure 1.2 summarizes the

contributions from this dissertation and indicates where each contribution is presented

in this dissertation.

The rest of this dissertation is organized as follows: Chapter 2 reviews necessary

background information, including the stable model semantics and Markov Logic.

Chapter 3 defines the syntax and semantics of language LPMLN. Chapter 4 discusses

the formal relationship between LPMLN and related formalisms. In Chapter 5 and

4



Chapter 6 we discuss inference and learning methods for LPMLN, respectively. Chapter

7 presents the action language pBC+ defined in terms of LPMLN. Chapter 8 presents

the decision-theoretic extension of LPMLN. Based on the decision-theoretic extension,

Chapter 9 presents an extension of pBC+ where policy optimization problem can be

defined, and relates it with Markov Decision Process. We conclude in Chapter 10

with prospective contributions.
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Chapter 2

BACKGROUND

Throughout this paper, we assume a first-order signature σ that has finitely many

Herbrand interpretations.

2.1 Stable Model Semantics

A rule over σ is of the form

A1; . . . ;Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An, not not An+1, . . . , not not Ap

(2.1)

(0 ≤ k ≤ m ≤ n ≤ p) where all Ai are atoms of σ possibly containing object variables.

We write {A1}ch ← Body to denote the rule A1 ← Body , not not A1. This expression

is called a “choice rule” in ASP.

We will often identify (2.1) with the implication:

A1 ∨ · · · ∨ Ak ← Ak+1∧. . .∧Am∧¬Am+1∧. . .∧¬An∧¬¬An+1∧. . .∧¬¬Ap .

(2.2)

A logic program is a finite set of rules. A logic program is called ground if it

contains no variables.

We say that an Herbrand interpretation I is a model of a ground program Π if

I satisfies all implications (2.2) in Π. Such models can be divided into two groups:

“stable” and “non-stable” models, which are distinguished as follows. The reduct of

Π relative to I, denoted ΠI , consists of “A1 ∨ · · · ∨ Ak ← Ak+1 ∧ · · · ∧ Am” for

all rules (2.2) in Π such that I |= ¬Am+1 ∧ · · · ∧ ¬An ∧ ¬¬An+1 ∧ · · · ∧ ¬¬Ap. The

Herbrand interpretation I is called a (deterministic) stable model of Π (denoted by
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I |=SM Π) if I is a minimal Herbrand model of ΠI . (Minimality is in terms of set

inclusion. We identify an Herbrand interpretation with the set of atoms that are true

in it.) For example, the stable models of the program

P ← Q Q← P P ← not R R← not P (2.3)

are {P,Q} and {R}. The reduct relative to {P,Q} is {P ← Q. Q ← P. P.}, for

which {P,Q} is the minimal model; the reduct relative to {R} is {P ← Q. Q← P. R.},

for which {R} is the minimal model.

The definition is extended to any non-ground program Π by identifying it with

grσ[Π], the ground program obtained from Π by replacing every variable with every

ground term of σ.

The semantics is extended to allow some useful constructs, such as aggregates and

abstract constraints (e.g., Niemelä and Simons (2000); Faber et al. (2004); Ferraris

(2005); Son et al. (2006); Pelov et al. (2007)), which are proved to be useful in many

KR domains.

2.2 Weak Constraints

Weak constraint (Buccafurri et al. (2000); Calimeri et al. (2012)) is a simple ex-

tension of answer set programs for expressing quantitative preference among answer

sets. It is a part of ASP Core 2 language and has turned out to be useful in many

practical applications. It is implemented in standard ASP solvers such as clingo and

dlv. In Section 4.1.3, we will show that LPMLN programs can be turned into ASP

programs with weak constraints. In this section, we review the syntax and semantics

of weak constraints.

A weak constraint has the form

:∼ F [Weight @ Level ]
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where F is a conjunction of literals, Weight is a real number, and Level is a nonneg-

ative integer.

Let Π be a program Π1 ∪ Π2, where Π1 is an answer set program that does not

contain weak constraints, and Π2 is a set of ground weak constraints. We call I a

stable model of Π if it is a stable model of Π1. For every stable model I of Π and any

nonnegative integer l, the penalty of I at level l, denoted by PenaltyΠ(I, l), is defined

as ∑
:∼ F [w@l]∈Π2,

I|=F

w.

For any two stable models I and I ′ of Π, we say I is dominated by I ′ if

• there is some nonnegative integer l such that PenaltyΠ(I ′, l) < PenaltyΠ(I, l)

and

• for all integers k > l, PenaltyΠ(I ′, k) = PenaltyΠ(I, k).

A stable model of Π is called optimal if it is not dominated by another stable model

of Π.

The input language of clingo allows non-ground weak constraints that contain

tuples of terms.

2.3 Markov Logic

The following is a review of Markov Logic from Richardson and Domingos (2006).

A Markov Logic Network (MLN) L of signature σ is a finite set of pairs 〈F,w〉 (also

written as a “weighted formula” w : F ), where F is a first-order formula of σ and w

is either a real number or a symbol α denoting the “infinite weight.” We say that L

is ground if its formulas contain no variables.

We first define the semantics for ground MLNs. For any ground MLN L of signa-

ture σ and any Herbrand interpretation I of σ, we define LI to be the set of formulas
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in L that are satisfied by I. The weight of an interpretation I under L, denoted

WL(I), is defined as

WL(I) = exp

( ∑
w:F ∈ L
F ∈ LI

w

)
. (2.4)

The probability of I under L, denoted PL(I), is defined as

PL(I) = lim
α→∞

WL(I)∑
J∈PW WL(J)

,

where PW (“Possible Worlds”) is the set of all Herbrand interpretations of σ. We

say that I is a model of L if PL(I) 6= 0.

The basic idea of MLNs is to allow formulas to be soft constrained, where a

model does not have to satisfy all formulas, but is associated with the weight that is

contributed by the satisfied formulas. For every interpretation (i.e., possible world) I,

there is a unique maximal subset of formulas in the MLN that I satisfies, which is

LI , and the weight of I is obtained from the weights of those “contributing” formulas

in LI . An interpretation that does not satisfy certain formulas receives “penalties”

because such formulas do not contribute to the weight of that interpretation.

The definition is extended to any non-ground MLN by identifying it with its

ground instance. Any MLN L of signature σ can be identified with the ground MLN,

denoted grσ[L], by turning each formula in L into a set of ground formulas as described

in (Richardson and Domingos, 2006, Table II). The weight of each ground formula in

grσ[L] is the same as the weight of the formula in L from which the ground formula

is obtained. For non-ground MLN, (2.4) can be written as

WL(I) = exp

( ∑
wi:Fi ∈ L

wimi(I)

)

where mi(I) is the number of ground instances of wi : Fi in LI .
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2.4 Markov Decision Process

Markov Decision Process (MDP) provides a mathematical framework for modeling

sequential decision making in domains where the effects of actions can be stochastic.

In Chapter 9, we will relate the probabilistic action language pBC+, which is defined

in terms of LPMLN, to MDP, showing that the finite horizon policy optimization

problem under pBC+ and MDP coincide, and pBC+ can be used to represent MDP

in a succinct and elaboration tolerant way.

A Markov Decision Process (MDP) M is a tuple 〈S,A, T,R〉 where (i) S is a set

of states; (ii) A is a set of actions; (iii) T : S × A × S → [0, 1] defines transition

probabilities; (iv) R : S × A× S → R is the reward function.

2.4.1 Finite Horizon Policy Optimization

Given a nonnegative integer m as the maximum timestamp, and a history

〈s0, a0, s1, . . . , sm−1, am−1, sm〉

such that each si ∈ S (i ∈ {0, . . . ,m}) and each ai ∈ A (i ∈ {0, . . . ,m− 1}), the total

reward of the history under MDP M is defined as

RM(〈s0, a0, s1, . . . , sm−1, am−1, sm〉) =
m−1∑
i=0

R(si, ai, si+1).

The probability of 〈s0, a0, s1, . . . , sm−1, am−1, sm〉 under MDP M is defined as

PM(〈s0, a0, s1, . . . , sm−1, am−1, sm〉) =
m−1∏
i=0

T (si, ai, si+1).

A non-stationary policy π : S × ST 7→ A is a function from S × ST to A, where

ST = {0, . . . ,m − 1}. Given an initial state s0, the expected total reward of a non-
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stationary policy π under MDP M is

ERM (π, s0) = E
〈s1,...,sm〉:

si ∈ S for i ∈ {1, . . . ,m}

[RM (〈s0, π(s0, 0), s1, . . . , sm−1, π(sm−1,m− 1), sm〉)]

=
∑

〈s1,...,sm〉:
si ∈ S for i ∈ {1, . . . ,m}

(m−1∑
i=0

R(si, π(si, i), si+1)
)
×
(m−1∏
i=0

T (si, π(si, i), si+1)
)
.

The finite horizon policy optimization problem is to find a non-stationary policy π

that maximizes its expected total reward, given an initial state s0, i.e., argmax
π

ERM(π, s0).

2.4.2 Infinite Horizon Policy Optimization

Policy optimization with the infinite horizon is defined similar to the finite horizon,

except that a discount rate for the reward is introduced, and the policy is stationary,

i.e., no need to mention time steps (ST). Given an infinite sequence of states and

actions 〈s0, a0, s1, a1, . . . 〉, such that each si ∈ S and each ai ∈ A (i ∈ {0, . . . }), and

a discount factor γ ∈ [0, 1], the discounted total reward of the sequence under MDP

M is defined as

RM(〈s0, a0, s1, a1, . . . 〉) =
∞∑
i=0

γi+1R(si, ai, si+1).

Various algorithms for MDP policy optimization have been developed, such as

value iteration (Bellman (1957)) for an exact solution, and Q-learning (Watkins

(1989)) for approximate solutions.
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Chapter 3

LANGUAGE LPMLN

3.1 Syntax

The syntax of LPMLN defines a set of weighted rules, which can be viewed as

a special case of the syntax of MLNs by identifying rules with implications. More

precisely, an LPMLN program Π is a finite set of pairs 〈R,w〉 (also written as a weighted

rule w : R), where R is a rule of the form (2.1) and w is either a real number, or a

symbol α for the “infinite weight”, in which case we call the rule “hard rule”.

We say that an LPMLN program is ground if its rules contain no variables. We

identify any LPMLN program Π of signature σ with a ground LPMLN program grσ[Π],

whose rules are obtained from the rules of Π by replacing every variable with every

ground term of σ. The weight of a ground rule in grσ[Π] is the same as the weight of

the rule in Π from which the ground rule is obtained.

We define Π to be the logic program obtained from Π by disregarding weights,

i.e., Π = {R | w : R ∈ Π}. We also use Πsoft and Πhard to denote the subset of Π

that consists of non-hard rules and hard rules, respectively.

3.2 Semantics

For any ground LPMLN program Π of signature σ and any Herbrand interpretation

I of σ, we define ΠI to be the set of rules in Π which are satisfied by I. As in

Markov Logic, the weight of the interpretation is obtained from the weights of those
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“contributing” rules. The weight of I, denoted WΠ(I), is defined as

WΠ(I) =


exp

( ∑
w:R ∈ ΠI

w

)
if I is a stable model of ΠI ;

0 otherwise.

(3.1)

The probability of I under Π, denoted PΠ(I), is defined as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈PW WΠ(J)

,

where PW is the set of all Herbrand interpretations of σ. We say that I is a (proba-

bilistic) stable model of Π if PΠ(I) 6= 0. We use SM[Π] to denote the set of interpre-

tations I of Π such that I is a (deterministic) stable model of ΠI . Similar to MLN,

the definition is extended to any non-ground LPMLN program by identifying it with

its ground instance. For non-ground LPMLN, (3.1) can be written as

WΠ(I) =


exp

( ∑
wi:Fi ∈ Π

wimi(I)

)
if I is a stable model of ΠI ;

0 otherwise

(3.2)

where mi(I) is the number of ground instances of wi : Fi in ΠI .

The intuition here is similar to that of Markov Logic. For each possible world I,

we try to find a maximal subset (possibly empty) of Π for which I is a stable model

(under the standard stable model semantics). In other words, the LPMLN semantics

is similar to the MLN semantics except that the possible worlds are the stable models

of some maximal subset of Π, and the probability distribution is over these stable

models. Unlike MLNs, such a subset may not necessarily exist, which means that

no subset can account for the stability of the model. In that case, the weight of the

interpretation is assigned 0. In the other case (when such a subset exists), it does

not seem obvious if there is a unique maximal subset that accounts for the stability

of I. Nevertheless, it follows from the following proposition that this is indeed the

case, and that the unique maximal subset is exactly ΠI .
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Proposition 1. For any logic program Π and any subset Π′ of Π, if I is a stable

model of Π′ and I satisfies Π, then I is a stable model of Π as well.

The proposition tells us that if I is a stable model of a program, adding more rules

to this program does not affect that I is a stable model of the resulting program as

long as I satisfies the rules added. On the other hand, it is clear that I is no longer

a stable model if I does not satisfy at least one of the rules added.

Consider an LPMLN program Π, whose deterministic part Π is the same as (2.3).

1 : P ← Q (r1) 1 : Q← P (r2) 2 : P ← not R (r3) 3 : R← not P. (r4)

The weight and the probability of each interpretation are shown in the following

table, where Z is e2 + e6 + 2e7.

I ΠI PrΠ[I]

∅ {r1, r2} e2/Z

{P} {r1, r3, r4} e6/Z

{Q} {r2} 0

{R} {r1, r2, r3, r4} e7/Z

{P,Q} {r1, r2, r3, r4} e7/Z

{Q,R} {r2, r3, r4} 0

{P,R} {r1, r3, r4} 0

{P,Q,R} {r1, r2, r3, r4} 0

The (deterministic) stable models {P,Q} and {R} of Π are the (probabilistic)

stable models of Π with the highest probability. In addition, Π has two other (proba-

bilistic) stable models, which do not satisfy some rules in Π and is thus less probable.

It is easy to observe the following facts.
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Proposition 2. For any LPMLN program Π, (i) every (probabilistic) stable model of

Π is an (MLN) model of Π; (ii) every stable model of Π is a (probabilistic) stable

model of Π.

In each item, the reverse direction does not hold as the example above illustrates.

Fierens et al. (2013) remark that “Markov Logic has the drawback that it cannot

express (non-ground) inductive definitions.” This is not the case for LPMLN as the

following example illustrates. The example also shows how the Generate-Define-Test

way of organizing rules in ASP can be applied to LPMLN.

Example 1. Consider a probabilistic variant of the Hamiltonian Cycle Problem, in

which the presence of directed edges is probabilistic (which may be statistically induced

from data). We are interested in the probabilities of potential Hamiltonian cycles,

which are induced by the probabilities of the edges that participate in forming the

cycle. This problem can be modeled by the following LPMLN representation:

% input data

w1 : Edge(1, 2)

w2 : Edge(2, 3)

. . .

% generate

α : {In(x, y)}ch ← Edge(x, y)

% define

α : R(x)← In(1, x)

α : R(y)← R(x), In(x, y)

% test

α : ← In(x, y1), In(x, y2) (y1 6= y2)

α : ← In(x1, y), In(x2, y) (x1 6= x2)

α : ← not R(x),Vertex (x)

(In(x, y) means that the edge (x, y) is in the Hamiltonian cycle; R(x) means that

x is reachable from the initial vertex 1). All the hard rules are those that are familiar

from standard ASP as given in Lifschitz (2008), which illustrates that LPMLN is a

natural extension of standard ASP.

The weight scheme of LPMLN provides a simple but effective way to resolve certain
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inconsistencies in ASP programs.

Example 2. For example, consider the simple ASP knowledge base KB1:

Bird(x) ← ResidentBird(x)

Bird(x) ← MigratoryBird(x)

← ResidentBird(x),MigratoryBird(x).

One data source KB2 (possibly acquired by some information extraction module) says

that Jo is a ResidentBird:

ResidentBird(Jo)

while another data source KB3 states that Jo is a MigratoryBird:

MigratoryBird(Jo).

The data about Jo is actually inconsistent w.r.t. KB1, so under the (deterministic)

stable model semantics, the combined knowledge base KB = KB1 ∪KB2 ∪KB3 is not

so meaningful. On the other hand, it is still intuitive to conclude that Jo is likely a

Bird, and may be a ResidentBird or a MigratoryBird. Such reasoning is supported

in LPMLN, as follows.

Viewing rules from KB1, KB2 and KB3 as LPMLN rules yields

KB1 α : Bird(x)← ResidentBird(x) (r1)

α : Bird(x)← MigratoryBird(x) (r2)

α : ← ResidentBird(x),MigratoryBird(x) (r3)

KB2 α : ResidentBird(Jo) (r4)

KB3 α : MigratoryBird(Jo) (r5)

Assuming that the Herbrand universe is {Jo}, the following table shows the weight

and the probability of each interpretation.
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I ΠI WΠ(I) PΠ(I)

∅ {r1, r2, r3} e3α 0

{R(Jo)} {r2, r3, r4} e3α 0

{M(Jo)} {r1, r3, r5} e3α 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r4} e4α 1
3

{M(Jo), B(Jo)} {r1, r2, r3, r5} e4α 1
3

{R(Jo),M(Jo)} {r4, r5} e2α 0

{R(Jo),M(Jo), B(Jo)} {r1, r2, r4, r5} e4α 1
3

(The weight of I = {Bird(Jo)} is 0 because I is not a stable model of ΠI .) Thus we

can check that

• P (Bird(Jo)) = 1
3

+ 1
3

+ 1
3

= 1.

• P (Bird(Jo) | ResidentBird(Jo)) = 1.

• P (ResidentBird(Jo) | Bird(Jo)) = 2
3
.

Instead of α, one can assign different certainty levels to the additional knowledge

bases, such as

KB ′2 2 : ResidentBird(Jo) (r4′)

KB ′3 1 : MigratoryBird(Jo) (r5′)

Then the table changes as follows.
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I ΠI WΠ(I) PΠ(I)

∅ {r1, r2, r3} e3α e0

e2+e1+e0

{R(Jo)} {r2, r3, r
′
4} e2α+2 0

{M(Jo)} {r1, r3, r
′
5} e2α+1 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r
′
4} e3α+2 e2

e2+e1+e0

{M(Jo), B(Jo)} {r1, r2, r3, r
′
5} e3α+1 e1

e2+e1+e0

{R(Jo),M(Jo)} {r′4, r′5} e3 0

{R(Jo),M(Jo), B(Jo)} {r1, r2, r
′
4, r
′
5} e2α+3 0

P (Bird(Jo)) = (e2 +e1)/(e2 +e1 +e0) = 0.67+0.24, so it becomes less certain, though

it is still very likely that we can conclude that Jo is a Bird.

Notice that the weight changes not only affect the probability, but also the stable

models (having non-zero probabilities) themselves: Instead of {R(Jo),M(Jo), B(Jo)},

the empty set is a stable model of the new program.

Assigning a different certainty level to each rule affects the probability associated

with each stable model, representing how certain we can derive the stable model

from the knowledge base. This could be useful as more incoming data reinforces the

certainty levels of the information.

Conditional probability under Π is defined as usual. For propositions A and B,

PΠ(A | B) =

∑
I∈SM [Π],I�A∧B

PΠ(I)∑
I∈SM [Π],I�B

PΠ(I)
.

In (3.1), the weight assigned to each stable model can be regarded as a “reward”:

the more rules are true in deriving the stable model, the larger weight is assigned

to it. It is possible to reformulate the definition of weight in a “penalty” based

way. More precisely, the penalty based weight of an interpretation I is defined as
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the exponentiated negative sum of the weights of the rules that are not satisfied by I

(when I is a stable model of ΠI). Let

W pnt
Π (I) =


exp

(
−

∑
w:R ∈ Π and I 6|=R

w

)
if I ∈ SM[Π];

0 otherwise

(3.3)

and

P pnt
Π (I) = lim

α→∞

W pnt
Π (I)∑

J∈SM [Π]

W pnt
Π (J)

.

Let TWΠ be the sum of weights of all rules in Π, i.e.,

TWΠ = exp

( ∑
w:R∈Π

w

)
.

The following theorem tells us that the LPMLN semantics can be reformulated using

the concept of a penalty-based weight.

Theorem 1. For any LPMLN program Π and any interpretation I,

WΠ(I) = TWΠ ×W pnt
Π (I) and PΠ(I) = P pnt

Π (I).

Similarly, for non-ground LPMLN, (3.3) can be written as

WΠ(I) =


exp

( ∑
wi:Fi ∈ Π

− wini(I)

)
if I is a stable model of ΠI ;

0 otherwise

(3.4)

where ni(I) is the number of ground instance of wi : Fi in Π \ ΠI .

Although the penalty-based reformulation appears to be more complicated, it has

a few desirable features. One of them is that adding a trivial rule does not affect the

weight of an interpretation, which is not the case with the original definition. More

importantly, this reformulation leads to a better translation of LPMLN programs into

answer set programs as we discuss in Section 4.1.3.
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Often we are interested in stable models that satisfy all hard rules (hard rules

encode definite knowledge), in which case the probabilities of stable models can be

computed from the weights of the soft rules only, as described below.

Let SM′[Π] be the set

{I | I is a stable model of ΠI that satisfy Πhard },

and let

W ′
Π(I) =


exp

( ∑
w:R ∈ (Πsoft)I

w

)
if I ∈ SM′[Π];

0 otherwise,

(3.5)

P ′Π(I) =
W ′

Π(I)∑
J∈SM ′[Π] W

′
Π(J)

.

Notice the absence of lim
α→∞

in the definition of P ′Π[I]. Also, unlike PΠ(I), SM′[Π] may

be empty, in which case P ′Π(I) is not defined. Otherwise, the following proposition

tells us that the probability of an interpretation can be computed by considering the

weights of the soft rules only.

Proposition 3. If SM′[Π] is not empty, for every interpretation I, P ′Π(I) coincides

with PΠ(I).

It follows from this proposition that if SM′[Π] is not empty, then every stable

model of Π (with non-zero probability) should satisfy all hard rules in Π.

3.3 Multi-Valued Probabilistic Programs

We introduce a simple fragment of LPMLN, called multi-valued probabilistic pro-

grams. It allows us to represent probability more naturally. For simplicity of the

presentation, we will assume a propositional signature. An extension to first-order

signatures is straightforward.
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We assume that the propositional signature σ is constructed from “constants” and

their “values.” A constant c is a symbol that is associated with a finite set Dom(c),

called the domain. The signature σ is constructed from a finite set of constants,

consisting of atoms c= v 1 for every constant c and every element v in Dom(c). If

the domain of c is {f, t} then we say that c is Boolean, and abbreviate c=t as c and

c= f as ∼c.

We assume that constants are divided into probabilistic constants and regular

constants. A multi-valued probabilistic program Π is a tuple 〈PF ,Π〉, where

• PF contains probabilistic constant declarations of the following form:

p1 : c=v1 | · · · | pn : c=vn (3.6)

one for each probabilistic constant c, where {v1, . . . , vn} = Dom(c), vi 6= vj,

0 ≤ p1, . . . , pn ≤ 1 and
∑n

i=1 pi = 1. We use MΠ(c = vi) to denote pi. In other

words, PF describes the probability distribution over each “random variable” c.

• Π is a set of rules of the form (2.1) such that no Ai among A1, . . . , Ak is a

probabilistic constant.

The semantics of such a program Π is defined as a shorthand for LPMLN program

T (Π) of the same signature as follows.

• For each probabilistic constant declaration (3.6), T (Π) contains, for each i =

1, . . . , n, (i) ln(pi) : c=vi if 0 < pi < 1; (ii) α : c=vi if pi = 1; (iii) α : ← c=vi

if pi = 0.

1Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in

first-order logic.
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• For each rule in Π of form (2.1), T (Π) contains

α : A1; . . . ;Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An,

not not An+1, . . . , not not Ap

• For each constant c, T (Π) contains the uniqueness of value constraints

α : ⊥ ← c=v1 ∧ c = v2 (3.7)

for all v1, v2 ∈ Dom(c) such that v1 6= v2. For each probabilistic constant c,

T (Π) also contains the existence of value constraint

α : ⊥ ← ¬
∨

v∈Dom(c)

c=v . (3.8)

This means that a regular constant may be undefined (i.e., have no values

associated with it), while a probabilistic constant is always associated with

some value.

Example 3. The multi-valued probabilistic program

0.25 : Outcome=6 | 0.15 : Outcome=5

| 0.15 : Outcome=4 | 0.15 : Outcome=3

| 0.15 : Outcome=2 | 0.15 : Outcome=1

Win← Outcome=6.

is understood as shorthand for the LPMLN program

ln(0.25) : Outcome=6

ln(0.15) : Outcome= i (i = 1, . . . , 5)

α : Win← Outcome=6

α : ⊥ ← Outcome= i ∧Outcome=j (i 6= j)

α : ⊥ ← ¬
∨
i=1,...6Outcome= i.
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We say an interpretation of Π is consistent if it satisfies the hard rules (3.7)

for every constant and (3.8) for every probabilistic constant. For any consistent

interpretation I, we define the set TC (I) (“Total Choice”) to be

{c = v | c is a probabilistic constant such that c = v ∈ I}

and define

SM′′[Π] = {I | I is consistent

and is a stable model of Π ∪ TC (I)}.

For any interpretation I, we define

W ′′
Π(I) =


∏

c=v ∈ TC(I)

MΠ(c = v) if I ∈ SM′′[Π]

0 otherwise

and

P ′′Π(I) =
W ′′

Π(I)∑
J∈SM ′′[Π] W

′′
Π(J)

.

The following proposition tells us that the probability of an interpretation can be

computed from the probabilities assigned to probabilistic atoms.

Proposition 4. For any multi-valued probabilistic program Π such that each pi in

(3.6) is positive for every probabilistic constant c, if SM′′[Π] is not empty, then for

any interpretation I, P ′′Π(I) coincides with PT (Π)(I).

3.4 Proofs

3.4.1 Proof of Proposition 1

We use I |=SM Π to denote “the interpretation I is a (deterministic) stable model

of the program Π”.
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The proof of Proposition 1 uses the following theorem, which is a special case of

Theorem 2 in Lee and Meng (2011). Given an ASP program Π of signature σ and a

subset Y of σ, we use LFΠ(Y ) to denote the loop formula of Y for Π.

Theorem 2. Let Π be a program of a finite first-order signature σ with no function

constants of positive arity, and let I be an interpretation of σ that satisfies Π. The

following conditions are equivalent to each other:

(a) I |=SM Π;

(b) for every nonempty finite subset Y of atoms formed from constants in σ, I

satisfies LFΠ(Y );

(c) for every finite loop Y of Π, I satisfies LFΠ(Y ).

Proposition 1 For any logic program Π and any subset Π′ of Π, if I is a stable

model of Π′ and I satisfies Π, then I is a stable model of Π as well.

Proof. For any subset L of σ, since I is a stable model of Π′, by Theorem 2, I satisfies

LFΠ′(L), that is, I satisfies L∧ → ESΠ′(L). It can be seen that the disjunctive terms

in ESΠ′(L) is a subset of the disjunctive terms in ESΠ(L), and thus ESΠ′(L) entails

ESΠ(L). So I satisfies L∧ → ESΠ(L), which is LFΠ(L), and since in addition we

have I � Π, I is a stable model of Π.

3.4.2 Proof of Proposition 2

Proposition 2 For any LPMLN program Π, (i) every (probabilistic) stable model

of Π is an (MLN) model of Π; (ii) every stable model of Π is a (probabilistic) stable

model of Π.

Proof. (i) For any interpretation I, let WMLN
Π (I) denote the weight of I under Π

under MLN semantics. It can be easily see that when I is a stable model of ΠI , we
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have

WMLN
Π (I) = WΠ(I).

so if I is a (probabilistic) stable model of Π, then I is an (MLN) model of Π.

(ii) If I is a stable model of Π, then ΠI = Π and clearly I is a stable model of ΠI .

So WΠ(I) 6= 0. Since I satisfies all hard rules in Π, PΠ(I) 6= 0.

3.4.3 Proof of Theorem 1

Theorem 1 For any LPMLN program Π and any interpretation I,

WΠ(I) = TWΠ ×W pnt
Π (I) and PΠ(I) = P pnt

Π (I).

Proof. We first show that WΠ(I) = TWΠ×W pnt
Π (I). This is obvious when I /∈ SM[Π].

When I ∈ SM[Π], we have

WΠ(I) = exp

( ∑
w : F ∈ Π and I |= F

w

)

= exp

( ∑
w:F∈Π

w −
∑

w : F ∈ Π and I 6|= F

w)

= exp

( ∑
w:F∈Π

w

)
· exp

(
−

∑
w : F ∈ Π and I 6|= F

w

)

= TWΠ · exp
(
−

∑
w : F ∈ Π and I 6|= F

w

)
= TWΠ ×W pnt

Π (I).
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Consequently,

PΠ(I) =
WΠ(I)∑
JWΠ(J)

=
TWΠ ·W pnt

Π (I)∑
J TWΠ ·W pnt

Π (J)

=
W pnt

Π (I)∑
JW

pnt
Π (J)

· TWΠ

TWΠ

=
W pnt

Π (I)∑
JW

pnt
Π (J)

= P pnt
Π (I).

3.4.4 Proof of Proposition 3

Proposition 3 If SM′[Π] is not empty, for every interpretation I, P ′Π(I) coincides

with PΠ(I).

Proof. For any interpretation I, by definition, we have

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM [Π] WΠ(J)

= lim
α→∞

WΠ(I)∑
J�SMΠJ

exp(
∑

w:F∈ΠJ
w)
.

By definition, if an interpretation I belongs to SM′ [Π], then I satisfies Πhard and

I is a stable model of ΠI .

• Suppose I ∈ SM′ [Π], which implies that I satisfies Πhard and is a stable model

of ΠI . Then we have

PΠ(I) = lim
α→∞

exp(
∑

w:F∈ΠI
w)∑

J�SMΠJ
exp(

∑
w:F∈ΠJ

w)
.
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Splitting the denominator into two parts: those J ’s that satisfy Πhard and those

that do not, and extracting the weights of formulas in Πhard, we have

PΠ(I) = lim
α→∞

exp(|Πhard| · α) · exp(
∑

w:F∈ΠI\Πhard w)

HSAT +HUNSAT
.

where

HSAT = exp(|Πhard| · α) ·
∑

J�SMΠJ :J�Πhard

exp(
∑

w:F∈ΠJ\Πhard
w)

is the sum of the weights from interpretation J ’s that satisfies Πhard, and

HUNSAT =
∑

J�SMΠJ :J2Πhard

exp(|Πhard ∩ ΠJ | · α) · exp(
∑

w:F∈ΠJ\Πhard
w)

is the sum of the weights from interpretation J ’s that do not satisfy Πhard.

We divide both the numerator and the denominator by exp(|Πhard| · α).

PΠ(I) = lim
α→∞

exp(
∑

w:F∈ΠI\Πhard w)
HSAT

exp(|Πhard|·α)
+ HUNSAT

exp(|Πhard|·α)

where

HSAT

exp(|Πhard| · α)
=

∑
J�SMΠJ :J�Πhard

exp(
∑

w:F∈ΠJ\Πhard
w)

and

HUNSAT

exp(|Πhard| · α)

=
∑

J�SMΠJ :J2Πhard

exp(|Πhard ∩ ΠJ | · α)

exp(|Πhard| · α)
· exp(

∑
w:F∈ΠJ\Πhard

w)

For J 2 Πhard, we note |Πhard ∩ ΠJ | ≤ |Πhard| − 1, so

PΠ(I) =
exp(

∑
w:F∈ΠI\Πhard w)∑

J�SMΠJ :J�Πhard
exp(

∑
w:F∈ΠJ\Πhard w)

= P ′Π(I).
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• Suppose I /∈ SM′ [Π], which implies that I does not satisfy Πhard or is not a

stable model of ΠI . Let K be any interpretation in SM′ [Π]. By definition, K

satisfies Πhard and K is a stable model of ΠK .

– Suppose I is not a stable model of ΠI . Then by definition, WΠ(I) =

W ′
Π(I) = 0, and thus PΠ(I) = P ′Π(I) = 0.

– Suppose I is a stable model of ΠI but I does not satisfy Πhard.

PΠ(I) = lim
α→∞

exp(
∑

w:F∈ΠI
w)∑

J�SMΠJ
exp(

∑
w:F∈ΠJ

w)
.

Since K satisfies Πhard, we have Πhard ⊆ ΠK . By assumption we have that

K is a stable model of ΠK . We split the denominator into K and the other

interpretations, which gives

PΠ(I) = lim
α→∞

exp(
∑

w:F∈ΠI
w)

exp(
∑

w:F∈ΠK
w) +

∑
J 6=K:J�SMΠJ

exp(
∑

w:F∈ΠJ
w)
.

Extracting weights from the formulas in Πhard, we have

PΠ(I) = lim
α→∞

exp(|Πhard ∩ΠI | · α) · exp(
∑
w:F∈ΠI\Πhard w)

exp(|Πhard| · α) · exp(
∑
w:F∈ΠK\Πhard w) +

∑
J 6=K:J�SMΠJ

exp(
∑
w:F∈ΠJ

w)

≤ lim
α→∞

exp(|Πhard ∩ΠI | · α) · exp(
∑
w:F∈ΠI\Πhard w)

exp(|Πhard| · α) · exp(
∑
w:F∈ΠK\Πhard w)

.

Since I does not satisfy Πhard, we have |Πhard ∩ ΠI | ≤ |Πhard| − 1, and

thus

PΠ(I) ≤ lim
α→∞

exp(|Πhard ∩ ΠI | · α) · exp(
∑

w:F∈ΠI\Πhard w)

exp(|Πhard| · α) · exp(
∑

w:F∈ΠK\Πhard w)
= 0 = P ′Π(I).

3.4.5 Proof of Proposition 4

Given a multi-valued probabilistic LPMLN program Π = 〈PF,Π〉, we use σpf (Π)

to denote the set of all probabilistic constants in Π. It can be seen that, if we
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have MΠ(c = v) > 0 for all constants c and v ∈ Dom(c), then given a consistent

interpretation I, we have T (Π)hard = UEC ∪ Π ∪ SINGLE, where

UEC = {⊥ ← c = v1 ∧ c = v2 | c is a constants of σ and v1, v2 ∈ Dom(c), v1 6= v2}∪⊥ ← ¬ ∨
v∈Dom(c)

c = v | c ∈ σpf (Π)

 ,

and

SINGLE = {c = v |MΠ(c = v) = 1} ,

and (T (Π)soft)I = TC(I) \ SINGLE.

Lemma 1. For any multi-valued probabilistic program Π = 〈PF,Π〉, for which

SM ′′ [Π] is not empty and MΠ(c = v) > 0 for all constants c and v ∈ Dom(c), and

any interpretation I, I belongs to SM′ [T (Π)] if and only if I belongs to SM ′′ [Π].

Proof. It can be seen that

T (Π)hard ∪ (T (Π)soft)I

= Π ∪ UEC ∪ SINGLE ∪ (TC(I) \ SINGLE).

(⇒) Suppose I belongs to SM′ [T (Π)]. By definition, I satisfies T (Π)hard, which

contains UEC. Obviously since I satisfies UEC, I is consistent. For those c =

v ∈ SINGLE, it must be the case that Dom(c) = {v}. In this case, we have

c = v ∈ I since I is consistent. So SINGLE ⊆ TC(I) and thus SINGLE∪ (TC(I)\

SINGLE) = TC(I). So we have

T (Π)hard ∪ (T (Π)soft)I

=Π ∪ UEC ∪ TC(I).

and since I is a stable model of T (Π)hard ∪ (T (Π)soft)I , I is a stable model of Π ∪

UEC ∪ TC(I). It follows that I is a stable model of Π ∪ TC(I) since UEC contains

constraints only. Since in addition we have I is consistent, I belongs to SM ′′ [Π].
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(⇐) Suppose I belongs to SM ′′ [Π]. By definition, I is consistent, and I is a stable

model of Π∪TC(I). Clearly I satisfies UEC since I is consistent. Since UEC contains

constraints only, I is a stable model Π∪TC(I)∪UEC. For those c = v ∈ SINGLE,

it must be the case that Dom(c) = {v}. In this case, we have c = v ∈ I since I

is consistent. So SINGLE ⊆ TC(I) and thus SINGLE ∪ (TC(I) \ SINGLE) =

TC(I). So we have

Π ∪ UEC ∪ TC(I)

= Π ∪ UEC ∪ SINGLE ∪ (TC(I) \ SINGLE)

= T (Π)hard ∪ (T (Π)soft)I

So I is a stable model of T (Π)hard ∪ (T (Π)soft)I , and by definition I belongs to

SM′ [T (Π)].

The following proposition establishes a useful property.

Proposition 5. Given an LPMLN program Π such that SM ′ [Π] is not empty, and an

interpretation I, the following three statements are equivalent:

1. I is a stable model of Π;

2. I ∈ SM ′ [Π];

3. P ′Π(I) > 0.

Lemma 2. For any multi-valued probabilistic program Π = 〈PF,Π〉, for which

SM ′′ [Π] is not empty and MΠ(c = v) > 0 for all constants c and v ∈ Dom(c),

and any interpretation I, I is a stable model of T (Π) if and only if I ∈ SM ′′ [Π].
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Proof. By Lemma 1, I belongs to SM′ [T (Π)] if and only if I belong to SM ′′ [Π]. By

Proposition 5, I is a stable model of T (Π) if and only if I ∈ SM′ [T (Π)]. So I is a

stable model of T (Π) if and only if I ∈ SM ′′ [Π].

Lemma 2 does not hold when MΠ(c = v) = 0 for some constant c and v ∈ Dom(c).

Example 4. Consider the following multi-valued probabilistic LPMLN Π:

1 : c = 1 | 0 : c = 2

p

which translates into

α : c = 1

α : ⊥ ← c = 2

α : p.

The interpretation I = {c = 2, p} belongs to the set SM ′′ [Π]. However, it is not a

stable model of T (Π), since one hard rule is violated.

Proposition 4 For any multi-valued probabilistic program Π such that each pi in

(3.6) is positive for every probabilistic constant c, if SM′′[Π] is not empty, then for

any interpretation I, P ′′Π(I) coincides with PT (Π)(I).

Proof. • Suppose I ∈ SM ′′ [Π]. By Lemma 1, we have I ∈ SM′ [Π]. By Proposi-
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tion 3, we have

PT (Π)(I) = P ′T (Π)(I)

=
W ′
T (Π)(I)∑

J∈SM ′[T (Π)] W
′
T (Π)(J)

=
exp(

∑
w:R∈T (Π)I

w)∑
J∈SM ′[T (Π)] exp(

∑
w:R∈T (Π)J

w)

=

∏
w:R∈T (Π)I

exp(w)∑
J∈SM ′[T (Π)]

∏
w:R∈T (Π)J

exp(w)

=

∏
c ∈ σpf (Π) and cI = vMΠ(c = v)∑

J∈SM ′[T (Π)]

∏
c ∈ σpf (Π) and cJ = vMΠ(c = v)

= P ′′Π(I)

• Suppose I /∈ SM ′′ [Π]. By Lemma 2, I is not a stable model of T (Π), so

PT (Π)(I) = 0. On the other hand, P ′′Π(I) = 0 since W ′′
Π(I) = 0.
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Chapter 4

RELATION TO OTHER FORMALISMS

LPMLN is a middle-ground language that connects to many other formalisms in KR

and SRL. In this section, we discuss the formal relation between LPMLN and ASP,

Markov Logic, ProbLog, P-log and Pearl’s Causal Model (PCM). We show that these

languages can be translated into LPMLN, which means that all these seemingly very

different formalisms are indeed related, and, practically, we can use an LPMLN imple-

mentations to compute these languages.

4.1 Relation to ASP

4.1.1 Turning ASP into LPMLN

Any logic program under the stable model semantics can be turned into an LPMLN

program by assigning the infinite weight to every rule. That is, for any logic program

Π = {R1, . . . , Rn}, the corresponding LPMLN program PΠ is {α : R1, . . . , α : Rn}.

Theorem 3. For any logic program Π, the (deterministic) stable models of Π are

exactly the (probabilistic) stable models of PΠ whose weight is ekα, where k is the

number of all (ground) rules in Π. If Π has at least one stable model, then all stable

models of PΠ have the same probability, and are thus the stable models of Π as well.

Note that when the ASP program Π is inconsistent, it does not have any (deter-

ministic) stable model. However, the LPMLN program PΠ can still have (probabilistic)

stable models, as example 2 indicates.
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4.1.2 Weak Constraints and LPMLN

The idea of softening rules in LPMLN is similar to the idea of weak constraints in

ASP, which is used for certain optimization problems. In this section, we show that

ASP programs with weak constraints can be translated into LPMLN programs.

Since levels can be compiled into weights (Buccafurri et al. (2000)), we consider

weak constraints of the form

:∼ Body [Weight ] (4.1)

where Weight is a positive integer. We assume all weak constraints are grounded. The

penalty of a stable model is defined as the sum of the weights of all weak constraints

whose bodies are satisfied by the stable model.

Such a program can be turned into an LPMLN program as follows. Each weak

constraint (4.1) is turned into

−w : ⊥ ← ¬Body .

The standard ASP rules are identified with hard rules in LPMLN. For example, the

program with weak constraints

a ∨ b :∼ a [1]

c← b :∼ b [1]

:∼ c [1]

is turned into

α : a ∨ b −1 : ⊥ ← ¬a

α : c← b −1 : ⊥ ← ¬b

−1 : ⊥ ← ¬c.

The LPMLN program has two stable models: {a} with the normalized weight e−1

e−1+e−2

and {b, c} with the normalized weight e−2

e−1+e−2 . The former, with the larger normalized

weight, is the stable model of the original program containing the weak constraints.
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Proposition 6. For any program with weak constraints that has a stable model, its

stable models are the same as the stable models of the corresponding LPMLN program

with the highest normalized weight.

4.1.3 Turning LPMLN into ASP with Weak Constraints

In the paper by Balai and Gelfond (2016), it is shown that LPMLN programs can be

turned into P-log. In this section, we show that using a similar translation, it is even

possible to turn LPMLN programs into answer set programs with weak constraints.

We turn each (possibly non-ground) rule

wi : Head i(x)← Body i(x)

in an LPMLN program Π, where i is the index of the rule and x is the list of global

variables in the rule, into ASP rules

sat(i, wi,x) ← Headi(x)

sat(i, wi,x) ← not Bodyi(x)

Headi(x) ← Bodyi(x), not not sat(i, wi,x)

:∼ sat(i, wi,x). [−w′i@l, i,x]

(4.2)

where (i) w′i = 1 and l = 1 if wi is α; and (ii) w′i = wi and l = 0 otherwise.1

Intuitively, a ground sat atom is true if the corresponding ground rule obtained

from the original program is true. For each true sat atom, a weak constraint imposes

on the stable model the opposite of the weight as a penalty, which can be viewed as

imposing the weight as a reward.

By lpmln2asprwd(Π) we denote the resulting ASP program containing weak con-

straints. The following theorem states the correctness of the translation.

1clingo restricts the weights in weak constraints to be integers only. To implement the transla-

tion using clingo, we need to turn w′i into an integer by multiplying some factor.
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Theorem 4. For any LPMLN program Π, there is a 1-1 correspondence φ between

SM[Π] and the set of stable models of lpmln2asprwd(Π), where

φ(I) = I∪{sat(i, wi, c) | wi : Head i(c)← Body i(c) in grσ[Π], I |= Body i(c)→ Head i(c)}.

Furthermore,

WΠ(I) = exp

( ∑
sat(i,wi,c)∈φ(I)

wi

)
. (4.3)

Also, φ is a 1-1 correspondence between the most probable stable models of Π and the

optimal stable models of lpmln2asprwd(Π).

While the translation is simple and modular, there are a few problems with using

this translation to compute LPMLN using ASP solvers. First, the translation does

not necessarily yield a program that is acceptable in clingo and requires a further

translation. In particular, the first and the second rules of (4.2) may not be in the

syntax of clingo. (The third rule contains double negations, which are allowed in

clingo from version 4.) Second, more importantly, when we translate non-ground

LPMLN rules into the input language of ASP solvers, the first and the second rules

of (4.2) may be unsafe, so clingo cannot ground the program. We now introduce

an alternative translation that avoids these problems by basing on the penalty-based

concept of weights.

Based on the reformulation of LPMLN weight (3.3), we introduce another transla-

tion that turns LPMLN programs into ASP programs. The translation ensures that

a safe LPMLN program is always turned into a safe ASP program, and the resulting

program is readily acceptable as an input to clingo.2

We define the translation lpmln2asppnt(Π) by translating each (possibly non-ground)

2An LPMLN program Π is safe if its unweighted program Π is safe as defined by Calimeri et al.

(2012).
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rule

wi : Head i(x)← Body i(x)

in an LPMLN program Π, where i is the index of the rule and x is the list of global

variables in the rule, into ASP rules

unsat(i, wi,x) ← Bodyi(x), not Headi(x)

Headi(x) ← Bodyi(x), not unsat(i, wi,x)

:∼ unsat(i, wi,x). [w′i@l, i,x]

(4.4)

where (i) w′i = 1 and l = 1 if wi is α; and (ii) w′i = wi and l = 0 otherwise.3

Intuitively, the first rule of (4.4) makes atom unsat(i, wi,x) true when the i-th

rule in the original program is not satisfied. In that case, the second rule is not

effective, and wi is imposed on the penalty of the stable model. On the other hand, if

the i-th rule is satisfied, atom unsat(i, wi,x) is false, the rule Head i(x) ← Body i(x)

is effective, and the penalty is not imposed.

The following theorem is an extension of Corollary 2 by Lee and Yang (2017) to

allow non-ground programs and to consider the correspondence between all stable

models, not only the most probable ones.

Theorem 5. For any LPMLN program Π, there is a 1-1 correspondence φ between

SM[Π] and the set of stable models of lpmln2asppnt(Π), where

φ(I) = I∪{unsat(i, wi, c) | wi : Head i(c)← Body i(c) in grσ[Π], I 6|= Body i(c)→ Head i(c)}.

Furthermore,

W pnt
Π (I) = exp

(
−

∑
unsat(i,wi,c)∈φ(I)

wi

)
. (4.5)

Also, φ is a 1-1 correspondence between the most probable stable models of Π and the

optimal stable models of lpmln2asppnt(Π).

3In the case Head i is a disjunction l1; . . . , ln, expression not Head i stands for not l1, . . . , not ln.
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Theorem 5, in conjunction with Theorem 1, provides a way to compute the proba-

bility of a stable model of an LPMLN program by examining the unsat atoms satisfied

by the corresponding stable model of the translated ASP program.

4.2 Relation to Markov Logic

4.2.1 Embedding MLNs in LPMLN

MLNs can be easily embedded in LPMLN. More precisely, any MLN L whose

formulas have the form (2.2) can be turned into an LPMLN program ΠL so that the

models of L coincide with the stable models of ΠL, keeping the same probability

distribution.

LPMLN program ΠL is obtained from L by adding

w : {A}ch

for every ground atom A of σ and any weight w. The effect of adding such a rule is

to exempt A from minimization under the stable model semantics.

Theorem 6. For any MLN L whose formulas have the form (2.2), L and ΠL have

the same probability distribution over all interpretations, and consequently, the models

of L and the stable models of ΠL coincide.

The rule form restriction imposed in Theorem 6 is not essential. For any MLN

L containing arbitrary formulas, one can turn the formulas in clausal normal form

as described in Richardson and Domingos (2006), and further turn that into the rule

form. For instance, P ∨Q ∨ ¬R is turned into P ∨Q← R.

4.2.2 Turning LPMLN into MLNs

It is known that the stable models of a logic program coincide with the models

of a logic program plus all its loop formulas. This allows us to compute the stable
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models using SAT solvers. The method can be extended to LPMLN so that their

stable models along with the probability distribution can be computed using existing

implementations of MLNs, such as Alchemy 4 and Tuffy. 5

We refer the reader to Ferraris et al. (2006) for the definitions of a loop L and a

loop formula LF Π(L) for program Π consisting of rules of the form (2.1)

The following theorem tells us how the stable model semantics can be reduced to

the standard propositional logic semantics, via the concept of loop formulas.

Theorem 7. (Ferraris et al. (2006)) Let Π be a ground logic program, and let X be

a set of ground atoms. A model X of Π is a stable model of Π iff, for every loop L

of Π, X satisfies LF Π(L).

For instance, program (2.3) has loops {P}, {Q}, {R}, {P,Q}, and the correspond-

ing disjunctive loop formulas are

P → Q ∨ ¬R

R → ¬P

Q → P

P ∧Q → ¬R.

(4.6)

The stable models {P,Q}, {R} of (2.3) are exactly the models of (2.3) that sat-

isfy (4.6).

We extend Theorem 7 to turn LPMLN programs Π into MLN programs. We define

LΠ to be the union of Π and {α : LF Π(L) | L is a loop of Π}.

Theorem 8. For any LPMLN program Π such that

{R | α :R ∈ Π} ∪ {LFΠ(L) | L is a loop of Π}
4http://alchemy.cs.washington.edu
5http://i.stanford.edu/hazy/hazy/tuffy
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is satisfiable, Π and LΠ have the same probability distribution over all interpretations,

and consequently, the stable models of Π and the models of LΠ coincide.

In general, it is known that the number of loop formulas blows up (Lifschitz and

Razborov (2006)). As LPMLN is a generalization of logic programs under the stable

model semantics, this blow-up is unavoidable in the context of LPMLN as well. This

calls for a better computational method such as the incremental addition of loop

formulas as in assat (Lin and Zhao (2004)).

In the special case when the program is tight (that is, its dependency graph is

acyclic), the size of loop formulas is linear in the size of input programs (Lee (2005)).

In this case, loop formulas coincide with completion.

We define the completion of Π, denoted Comp(Π), to be the MLN which is the

union of Π and the hard formula

α : A→
∨

w:A1∨···∨Ak←Body∈ Π

A∈{A1,...,Ak}

(
Body ∧

∧
A′∈{A1,...,Ak}\{A}

¬A′
)

for each ground atom A.

This is a straightforward extension of the completion from Lee and Lifschitz (2003)

by simply assigning the infinite weight α to the completion formulas.

Theorem 9. For any tight LPMLN program Π such that SM′[Π] is not empty, Π

(under the LPMLN semantics) and Comp(Π) (under the MLN semantics) have the

same probability distribution over all interpretations.

Theorem 9 is a special case of Theorem 8.

4.3 Relation to ProbLog

ProbLog is a well-developed probabilistic logic programming language that is

based on the distribution semantics by Sato (1995). It is closely related to LPMLN.
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In this section, we show that LPMLN is a proper generalization of ProbLog.

4.3.1 Review: ProbLog

We review the version of ProbLog from Fierens et al. (2013). As before, we identify

a non-ground ProbLog program with its ground instance. So for simplicity we restrict

attention to ground ProbLog programs.

In ProbLog, ground atoms over σ are divided into two groups: probabilistic atoms

and derived atoms. A (ground) ProbLog program P is a tuple 〈PF ,Π〉, where

• PF is a set of ground probabilistic facts of the form pr :: a, where pr is a real

number in [0, 1], and a is a probabilistic atom, and

• Π is a set of ground rules of the form (2.1) such that k = 1 and p = n, and the

head does not contain a probabilistic atom.

Probabilistic atoms act as random variables and are assumed to be independent

from each other. A total choice C is any subset of the probabilistic atoms. The

probability of a total choice C = {a1, . . . , am} under P, denoted PP(C), is defined as

pr(a1)× · · · × pr(am)× (1−pr(b1))× · · · × (1−pr(bn)),

where b1, . . . , bn are the probabilistic atoms not belonging to C, and each of pr(ai)

and pr(bj) is the probability assigned to ai and bj according to the set PF of ground

probabilistic atoms.

The ProbLog semantics is only well-defined for programs P = 〈PF ,Π〉 such that

C ∪Π has a “total” (two-valued) well-founded model for each possible total choice C.

Given such P, for each interpretation I, PP(I) is defined as PP(C) if there exists a

total choice C such that I is the total well-founded model of C ∪Π, and 0 otherwise
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4.3.2 Embedding ProbLog in LPMLN

Given a ProbLog program P = 〈PF ,Π〉, we construct the corresponding LPMLN

program ΠP as follows:

• For each probabilistic fact pr :: a in P, LPMLN program ΠP contains (i) ln(pr) : a

and ln(1− pr) : ← a if 0 < pr < 1; (ii) α : a if pr = 1; (iii) α : ← a if pr = 0;

• For each rule R ∈ Π, ΠP contains α : R. In other words, R is identified with a

hard rule in ΠP.

Theorem 10. Any (well-defined) ProbLog program P and its LPMLN representation

ΠP have the same probability distribution over all interpretations.

Syntactically, LPMLN allows more general rules than ProbLog, such as disjunctions

in the head, as well as the empty head and double negations in the body. Further,

LPMLN allows rules to be weighted as well as facts, and do not distinguish between

probabilistic facts and derived atoms. Semantically, ProbLog is only well-defined

when each total choice leads to a unique well-founded model, while LPMLN handles

multiple stable models in a flexible way similar to the way MLNs handle multiple

models.

On the other hand, Theorem 10 justifies using an implementation of ProbLog 6

to compute a fragment of LPMLN.

4.4 Relation to Pearl’s Causal Model

Both answer set programs and Probabilistic Causal Models (PCM) allow for rep-

resenting causality, Baral and Hunsaker (2007) has shown how PCM can be embedded

in P-log, a probabilistic extension of answer set programs. In this section, we follow

6http://dtai.cs.kuleuven.be/problog
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a similar approach and show that PCM can be embedded in LPMLN. This result

can be viewed as a generalization of the result from Bochman and Lifschitz (2015),

and it illustrates that LPMLN is a natural probabilistic extension of answer set pro-

grams. While Baral and Hunsaker (2007) did not report any experiments, we show

in Section 5.4.2 that PCM can be executed through an implementation of LPMLN.

4.4.1 Review: Pearls’ Probabilistic Causal Model

In this section, we review Pearl’s Probabilistic Causal Model.

Notation: We use capital letters (e.g., X, Y , Z, U , V ) for (lists of) atoms and

lower case letters (x, y, z, u, v) for generic symbols for specific (lists of) truth values

taken by the corresponding (lists of) atoms. We often write x to denote X = x.

As usual, a propositional formula is constructed from atoms, t, f, and propositional

connectives, ¬, ∧, ∨, →.

Definition 1 (structural theory). Assume that the set of propositional atoms is par-

titioned into a set of of exogenous atoms U and a set of endogenous atoms V =

{V1, . . . , Vn}. A Boolean structural theory is 〈U, V, F 〉, where F is a set of equations

Vi = Fi, one for each endogenous atom Vi, and Fi is a propositional formula.

Definition 2 (causal diagram). The causal diagram of a Boolean structural theory

〈U, V, F 〉 is the directed graph whose vertices are the atoms in U ∪ V and an edge

goes from Vj to Vi if there is an equation Vi = Fi in the structural theory such that

Vj occurs in Fi. We say that the structural theory is acyclic if its causal diagram is

acyclic.

For any interpretation I and J of U ∪ V , we say that J 6=V I if J and I agree on

all atoms in U and do not agree on some atoms in V .
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Definition 3 (solution). Given a Boolean causal theory 〈U, V, F 〉, a solution (or a

causal world) I is any interpretation of U ∪ V such that

• I satisfies the equivalences Vi ↔ Fi for all equations Vi = Fi in F , and

• no other interpretation J such that J 6=V I satisfies all such equivalences Vi ↔

Fi.

Definition 4 (causal model). A (Boolean) causal model 〈U, V, F 〉 is an acyclic

Boolean structural theory that has a unique solution for each realization (i.e., truth

assignment) of U ; in other words, each truth assignment of U has a unique expansion

to U ∪ V that is a solution.

Definition 5 (probabilistic causal model). A Probabilistic (Boolean) Structural The-

ory is a pair

〈〈U, V, F 〉, P (U)〉 (4.7)

where 〈U, V, F 〉 is a Boolean structural theory, and P (U) is a probability distribution

over U . We assume that exogenous atoms are independent of each other. A Prob-

abilisitic (Boolean) Causal Model (PCM) is a probabilistic structural theory (4.7)

such that 〈U, V, F 〉 is a causal model. The solutions of PCM (4.7) are the solutions

of 〈U, V, F 〉. The probability of a solution I under the PCM M, denoted PM(I), is

defined as P (U = IU), where IU is a restriction of I over U .

Given a PCM M = 〈〈U, V, F 〉, P (U)〉, for any subset Y of V , we will write YM(u) to

denote the truth assignment of Y in the solution of M induced by u. The probability

of Y = y is defined as

PM(Y = y) =
∑
{u |YM(u)=y} P (u).

For any subset Y , Z of V , PM(Y = y | Z = z) is defined as

PM(Y = y | Z = z) =
∑
{u | YM(u) = y and ZM(u) = z} P (u)∑

{u |ZM(u)=z} P (u)
.
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Example 5. Consider, for example, the causal model MFS for the Firing Squad

example from Section 7.1.2 of Pearl (2000):

MFS :

C = U

A = C ∨W

B = C

D = A ∨B

There is a probability p that the court has ordered the execution; rifleman A has

a probability q of pulling the trigger out of nervousness. The causal model has four

solutions for each realization of U and W . (Wf is shorthand for W = f . Others are

similar. )

Solutions Probability

{Wf , Uf , Cf , Af , Bf , Df} (1−p)(1−q)

{Wt, Uf , Cf , At, Bf , Dt} (1−p)q

{Ut,Wf , Ct, At, Bt, Dt} p(1−q)

{Ut,Wt, Ct, At, Bt, Dt} pq

Various queries involving probabilistic inference can be answered following the se-

mantics. The following are some examples:

1. Prediction Given that the court did not order the execution, what is probability

that the prisoner is dead?
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According to the definition, we have

PMFS (D = True | U = False)

=

∑
{u,w|D(u,w)=True and U(u,w)=False} PMFS (U = u,W = w)∑

{u,w|U(u,w)=False} PMFS (U = u,W = w)

=
PMFS (U = False,W = True)

PMFS (U = False,W = True) + PMFS (U = False,W = False)

=
(1− p)q

(1− p)q + (1− p)(1− q)

=q.

2. Abduction Given that the prisoner is dead, what is the probability that the

court has ordered the execution?

According to the definition, we have

PMFS (U = True | D = True)

=

∑
{u,w|U(u,w)=True and D(u,w)=True} PMFS (U = u,W = w)∑

{u,w|D(u,w)=True} PMFS (U = u,W = w)

=
PMFS (U = True,W = True) + PMFS (U = True,W = False)

PMFS (U = True,W = True) + PMFS (U = True,W = False) + PMFS (U = False,W = True)

=
pq + p(1− q)

pq + p(1− q) + (1− p)q

=
p

1− (1− p)(1− q)

3. Transduction Given that rifleman A has shot, what is the probability that

rifleman B shot as well?
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According to the definition, we have

PMFS (B = True | A = True)

=

∑
{u,w|B(u,w)=True and A(u,w)=True} PMFS (U = u,W = w)∑

{u,w|A(u,w)=True} PMFS (U = u,W = w)

=
PMFS (U = True,W = True) + PMFS (U = True,W = False)

PMFS (U = True,W = True) + PMFS (U = False,W = True) + P (U = True,W = False)

=
pq + p(1− q)

pq + (1− p)q + p(1− q)

=
p

1− (1− p)(1− q)

4. Action Given that the captain did not signal the execution, what is the proba-

bility that the prisoner is dead if rifleman A decided to shoot?

According to the definition, we have

PMFS (DA=True = True | C = False)

=

∑
{u,w|DA=True(u,w)=True and C(u,w)=False} PMFS (U = u,W = w)∑

{u,w|C(u,w)=False} PMFS (U = u,W = w)

=
PMFS (U = False,W = True) + PMFS (U = False,W = False)

PMFS (U = False,W = True) + PMFS (U = False,W = False)

=1

5. Counterfactual Given that the prisoner is dead, what is the probability that

the prisoner were not dead when A did not shoot?

According to the definition, we have

PMFS (DA=False = False | D = True)

=

∑
{u,w|DA=False(u,w)=False and D(u,w)=True} PMFS (U = u,W = w)∑

{u,w|D(u,w)=True} PMFS (U = u,W = w)

=
PMFS (U = False,W = True)

PMFS (U = True,W = True) + PMFS (U = True,W = False) + PMFS (U = False,W = True)

=
(1− p)q

pq + p(1− q) + (1− p)q

=
(1− p)q

1− (1− p)(1− q)
.
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4.4.2 Embedding Pearl’s Probabilistic Causal Model in LPMLN

Since causal models assume propositional formulas, it is convenient to discuss the

result by first extending the syntax of LPMLN to weighted propositional formulas,

that is of the form w : F where F is a propositional formula and w is either a real

number or a symbol α. We refer the reader to Ferraris (2005) for the definition of a

stable model for propositional formulas. Extending LPMLN to this general syntax is

straightforward, which we skip due to lack of space.

Given a probabilistic causal model M = 〈〈U, V, F 〉, P 〉, we construct the corre-

sponding LPMLN ΠM as follows. For simplicity, we assume that every variable in

U ∪ V has Boolean domain, and all the functions in F involve only the logical oper-

ators ∧ and ¬. ΠM contains the following atoms in the signature:

• an atom Ui for each exogenous variable Ui ∈ U ;

• atoms of the form Vi(w) where w ∈ {actual, counterfactual}, for each endoge-

nous variable Vi ∈ V ;

• atoms of the form Do(valVi , w) where w ∈ {actual, counterfactual} and val ∈

{True, False}, for each endogenous variable Vi ∈ V .

ΠM contains the following rules:

• rules

ln(P (Ui = True)) : Ui

and

ln(P (Ui = False)) : ← Ui

for all exogenous variable Ui ∈ U ;
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• a rule

α : Vi(w)← fi(w),¬Do(TrueVi , w),¬Do(FalseVi , w)

for every function Fi in F , of the form Vi = fi, where Vi ∈ V and fi is a Boolean

function on U ∪ V \ {Vi}. By fi(w) we denote the Boolean formula obtained

from fi by replacing every endogenous variable Vi by Vi(w);

• a rule

α : Vi(w)← Do(TrueVi , w)

for every Vi ∈ V .

Theorem 11. Given any Y ⊆ V and variable assignments X = x, Y = y, Z = z,

the probability defined by PCM, PM(YX=x = y | Z = z), is equal to the following

probability defined by LPMLN semantics,

PM(YX=x = y | Z = z) = PΠM(Do(X = x, counterfactual) ∧ Y (counterfacutual) = y | Z(actual) = z)

=

∑
I�Do(X=x,counterfactual)∧Y (counterfacutual)=y∧Z(actual)=z P (I)∑

I�Z(actual)=z P (I)

where Do(X = x, counterfactual) is an abbreviation of

Do(x1X1
, counterfactual) ∧ · · · ∧Do(xnXn , counterfactual)

for X = 〈X1, . . . , Xn〉 and x = 〈x1, . . . , xn〉, and similarly V (w) = v where V is Y

or Z, v is y or z and w is actual or counterfactual is an abbreviation of

V1(w) = v1 ∧ · · · ∧ Vn(w) = vn

for V = 〈V1, . . . , Vn〉 and v = 〈v1, . . . , vn〉.

Example 6. The PCM MFS in Example 5 corresponds to the following LPMLN pro-
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gram Π(MFS) (w ∈ {actual, counterfactual})

ln(p) : U

ln(1− p) : ← U

ln(q) : W

ln(1− q) : ← W

α : C(w)← U ∧ ¬Do(TrueC , w) ∧Do(FalseC , w)

α : A(w)← C(w) ∧ ¬Do(TrueA, w) ∧Do(FalseA, w)

α : B(w)← C(w) ∧ ¬Do(TrueB, w) ∧Do(FalseB, w)

α : D(w)← A(w) ∧ ¬Do(TrueD, w) ∧Do(FalseD, w)

α : D(w)← B(w) ∧ ¬Do(TrueD, w) ∧Do(FalseD, w)

α : A(w)← W ∧ ¬Do(TrueA, w) ∧Do(FalseA, w)

α : C(w)← Do(TrueC , w)

α : A(w)← Do(TrueA, w)

α : B(w)← Do(TrueB, w)

α : D(w)← Do(TrueD, w)

One can check that for the example queries listed in Example 5, under Π(MFS) we have

• Prediction

PMFS (D = True | U = False)

=PΠ(MFS)
(D(counterfactual) = True | U = False)

=q.
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• Abduction

PMFS (U = True | D = True)

=PΠ(MFS)
(U = True | D(actual) = True)

=
p

1− (1− p)(1− q)
.

• Transduction

PMFS (B = True | A = True)

=PΠ(MFS)
(B(counterfactual) = True | A(actual) = True)

=
p

1− (1− p)(1− q)
.

• Action

PMFS (DA=True = True | C = False)

=PΠ(MFS)
(Do(TrueA, counterfactual) ∧D(counterfactual) = True | C(actual) = False)

=1.

• Counterfactal

PMFS (DA=False = False | D = True)

=PΠ(MFS)
(Do(FalseA, counterfactual) ∧D(counterfacutual) = False | D(actual) = True)

=
(1− p)q

1− (1− p)(1− q)
.

4.5 Relation to P-log

Similar to LPMLN, P-log (Baral et al. (2004)) is another probabilistic program-

ming language whose logical foundation is the stable model semantics. Like LPMLN,

it adopts the stable model semantics as the logic component. However, P-log uses
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Causal Bayesian Networks as the underlying probabilistic graphical model. P-log is

distinct from other earlier work in that it allows for expressing probabilistic nonmono-

tonicity, the ability of the reasoner to change its probabilistic model as a result of

new information. However, inference in the implementation of P-log is not scalable

as it has to enumerate all stable models.

The following reviews the results from Lee and Wang (2016), which embeds a

fragment of P-log in LPMLN. For an embedding of complete P-log in LPMLN, please

refer to Lee and Yang (2017). The other direction, i.e., turning LPMLN into P-log

turns out to be also possible, as shown by Balai and Gelfond (2016).

4.5.1 Simple P-log

In this section, we define a fragment of P-log, which we call simple P-log.

Syntax

Let σ be a multi-valued propositional signature as defined in Section 3.3. A simple

P-log program Π is a tuple

Π = 〈R, S, P,Obs, Act〉 (4.8)

where

• R is a set of normal rules of the form

A← B1, . . . , Bm, not Bm+1, . . . , not Bn. (4.9)

Here and after we assume A,B1, . . . , Bn are atoms from σ (0 ≤ m ≤ n).

• S is a set of random selection rules of the form

[r] random(c)← B1, . . . , Bm, not Bm+1, . . . , not Bn (4.10)

where r is an identifier and c is a constant.
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• P is a set of probability atoms (pr-atoms) of the form

prr(c=v | B1, . . . , Bm, not Bm+1, . . . , not Bn) = p

where r is the identifier of some random selection rule in S, c is a constant, and

v ∈ Dom(c), and p ∈ [0, 1].

• Obs is a set of atomic facts of the form Obs(c= v) where c is a constant and

v ∈ Dom(c).

• Act is a set of atomic facts of the form Do(c = v) where c is a constant and

v ∈ Dom(c).

Example 7. We use the following simple P-log program as our main example (d ∈

{D1, D2}, y ∈ {1, . . . 6}):

Owner(D1)=Mike

Owner(D2)=John

Even(d)← Roll(d)=y, y mod 2 = 0

∼Even(d)← not Even(d)

[r(d)] random(Roll(d))

pr(Roll(d)=6 | Owner(d)=Mike) = 1
4
.

Semantics

Given a simple P-log program Π of the form (4.8), a (standard) ASP program τ(Π)

with the multi-valued signature σ′ is constructed as follows:

• σ′ contains all atoms in σ, and atom Intervene(c)=t (abbreviated as Intervene(c))

for every constant c of σ; the domain of Intervene(c) is {t}.

• τ(Π) contains all rules in R.
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• For each random selection rule of the form (4.10) with Dom(c) = {v1, . . . , vn},

τ(Π) contains the following rules:

c=v1; . . . ; c=vn ←

B1, . . . , Bm, not Bm+1, . . . , not Bn, not Intervene(c).

• τ(Π) contains all atomic facts in Obs and Act .

• For every atom c=v in σ,

← Obs(c=v), not c=v.

• For every atom c=v in σ, τ(Π) contains

c=v ← Do(c=v)

Intervene(c)← Do(c=v).

Example 7 continued The following is τ(Π) for the simple P-log program Π in

Example 7 (x ∈ {Mike, John}, b ∈ {t, f}):

Owner(D1)=Mike

Owner(D2)=John

Even(d)← Roll(d)=y, y mod 2 = 0

∼Even(d)← not Even(d)

Roll(d)=1; Roll(d)=2; Roll(d)=3; Roll(d)=4;

Roll(d)=5; Roll(d)=6← not Intervene(Roll(d))

← Obs(Owner(d)=x), not Owner(d)=x

← Obs(Even(d)=b), not Even(d)=b

← Obs(Roll(d)=y), not Roll(d)=y
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Owner(d)=x← Do(Owner(d)=x)

Even(d)=b← Do(Even(d)=b)

Roll(d)=y ← Do(Roll(d)=y)

Intervene(Owner(d))← Do(Owner(d)=x)

Intervene(Even(d))← Do(Even(d)=b)

Intervene(Roll(d))← Do(Roll(d)=y).

The stable models of τ(Π) are called the possible worlds of Π, and denoted by

ω(Π). For an interpretation W and an atom c=v, we say c=v is possible in W with

respect to Π if Π contains a random selection rule for c

[r] random(c)← B,

where B is a set of atoms possibly preceded with not , and W satisfies B. We say r

is applied in W if W |= B.

We say that a pr-atom prr(c = v | B) = p is applied in W if W |= B and r is

applied in W .

As in Baral et al. (2009), we assume that simple P-log programs Π satisfy the

following conditions:

• Unique random selection rule For any constant c, program Π contains at

most one random selection rule for c that is applied in W .

• Unique probability assignment If Π contains a random selection rule r for

constant c that is applied in W , then, for any two different probability atoms

prr(c=v1 | B′) = p1

prr(c=v2 | B′′) = p2

in Π that are applied in W , we have v1 6= v2 and B′ = B′′.
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Given a simple P-log program Π, a possible world W ∈ ω(Π) and a constant c for

which c=v is possible in W , we first define the following notations:

• Since c= v is possible in W , by the unique random selection rule assumption,

it follows that there is exactly one random selection rule r for constant c that

is applied in W . Let rW,c denote this random selection rule. By the unique

probability assignment assumption, if there are pr-atoms of the form prrW,c(c=

v | B) that are applied in W , all B in those pr-atoms should be the same. We

denote this B by BW,c. Define PRW (c) as

{prrW,c(c=v | BW,c) = p ∈ Π | v ∈ Dom(c)}.

if W 6|= Intervene(c) and ∅ otherwise.

• Define AVW (c) as

{
v | prrW,c(c=v | BW,c) = p ∈ PRW (c)

}
.

• For each v ∈ AVW (c), define the assigned probability of c=v w.r.t. W , denoted

by apW (c=v), as the value p for which prrW,c(c=v | BW,c) = p ∈ PRW (c).

• Define the default probability for c w.r.t. W , denoted by dpW (c), as

dpW (c) =
1−

∑
v∈AVW (c) apW (c=v)

|Dom(c) \ AVW (c)|
.

For every possible world W ∈ ω(Π) and every atom c=v possible in W , the causal

probability P (W, c=v) is defined as follows:

P (W, c=v) =


apW (c=v) if v ∈ AVW (c)

dpW (c) otherwise.

56



The unnormalized probability of a possible world W , denoted by µ̂Π(W ), is defined

as

µ̂Π(W ) =
∏

c=v∈W and
c=v is possible in W

P (W, c=v).

Assuming Π has at least one possible world with nonzero unnormalized probability,

the normalized probability of W , denoted by µΠ(W ), is defined as

µΠ(W ) =
µ̂Π(W )∑

Wi∈ω(Π) µ̂Π(Wi)
.

Given a simple P-log program Π and a formula A, the probability of A with respect

to Π is defined as

PΠ(A) =
∑

W is a possible world of Π that satisfies A

µΠ(W ).

We say Π is consistent if Π has at least one possible world.

Example 7 continued Given the possible worldW = {Owner(D1)=Mike,Owner(D2)=

John,Roll(D1) = 6, Roll(D2) = 3,Even(D1)}, the probability of Roll(D1) = 6 is

P (W,Roll(D1) = 6) = 0.25, the probability of Roll(D2) = 3 is 1
6
. The unnormal-

ized probability of W , i.e., µ̂(W ) = P (W,Roll(D1) = 6) · P (W,Roll(D2) = 3) = 1
24

.

The main differences between simple P-log and P-log are as follows.

• The unique probability assignment assumption in P-log is more general: it does

not require the part B′ = B′′. However, all the examples in Baral et al. (2009)

satisfy our stronger unique probability assignment assumption.

• P-log allows a more general random selection rule of the form

[r] random(c : {x : P (x)})← B′.

Among the examples in Baral et al. (2009), only the “Monty Hall Problem”

encoding and the “Moving Robot Problem” encoding use “dynamic range {x :
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Example Parameter plog1 plog2
Alchemy

(default)

Alchemy

(maxstep = 5000)

Ndice = 2 0.00s+ 0.00sa 0.00s+ 0.00sb 0.02s+ 0.21sc 0.02s+ 0.96s

Ndice = 7 1.93s+ 31.37s 0.00s+ 1.24s 0.13s+ 0.73s 0.12s+ 3.39s

dice Ndice = 8 12.66s+ 223.02s 0.00s+ 6.41s 0.16s+ 0.84s 0.16s+ 3.86s

Ndice = 9 timeout 0.00s+ 48.62s 0.19s+ 0.95s 0.19s+ 4.37s

Ndice = 10 timeout timeout 0.23s+ 1.06s 0.24s+ 4.88s

Ndice = 100 timeout timeout 19.64s+ 16.34s 19.55s+ 76.18s

maxstep = 5 0.00s+ 0.00s segment fault 2.34s+ 2.54s 2.3s+ 11.75s

maxstep = 10 0.37s+ 4.86s segment fault 4.78s+ 5.24s 4.74s+ 24.34s

robot maxstep = 12 3.65 + 51.76s segment fault 5.72s+ 6.34s 5.75s+ 29.46s

maxstep = 13 11.68s+ 168.15s segment fault 6.2s+ 6.89s 6.2s+ 31.96s

maxstep = 15 timeout segment fault 7.18s+ 7.99s 7.34s+ 37.67s

maxstep = 20 timeout segment fault 9.68s+ 10.78s 9.74s+ 50.04s

Table 4.1: Performance Comparison between Two Ways to Compute Simple P-log Pro-
grams

asmodels answer set finding time + probability computing time
bpartial grounding time + probability computing time
cmrf creating time + sampling time

P (x)}” in random selection rules and cannot be represented as simple P-log

programs.

4.5.2 Turning Simple P-log into Multi-Valued Probabilistic Programs

The main idea of the syntactic translation is to introduce auxiliary probabilistic

constants for encoding the assigned probability and the default probability.

Given a simple P-log program Π, a constant c, a set of literals B,7 and a random

selection rule [r] random(c) ← B′ in Π, we first introduce several notations, which

7A literal is either an atom A or its negation not A.
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resemble the ones used for defining the P-log semantics.

• We define PRB,r(c) as

{prr(c=v | B) = p ∈ Π | v ∈ Dom(c)}

if Act in Π does not contain Do(c=v′) for any v′ ∈ Dom(c) and ∅ otherwise.

• We define AVB,r(c) as

{v | prr(c=v | B) = p ∈ PRB,r(c)} .

• For each v ∈ AVB,r(c), we define the assigned probability of c= v w.r.t. B, r,

denoted by apB,r(c=v), as the value p for which prr(c=v | B) = p ∈ PRB,r(c).

• We define the default probability for c w.r.t. B and r, denoted by dpB,r(c), as

dpB,r(c) =
1−

∑
v∈AVB,r(c) apB,r(c=v)

|Dom(c) \ AVB,r(c)|
.

• For each c ∈ v, define its causal probability w.r.t. B and r, denoted by P (B, r, c=

v), as

P (B, r, c=v) =


apB,r(c=v) if v ∈ AVB,r(c)

dpB,r(c) otherwise.

Now we translate Π into the corresponding multi-valued probabilistic program

ΠLPMLN

as follows:

• The signature of ΠLPMLN

is

σ′ ∪ {pf cB,r=v | PRB,r(c) 6= ∅ and v ∈ Dom(c)}

∪ {pf c�,r=v | r is a random selection rule of Π for c

and v ∈ Dom(c)}

∪ {Assigned r=t | r is a random selection rule of Π}.
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• ΠLPMLN

contains all rules in τ(Π).

• For any constant c, any random selection rule r for c, and any set B of literals

such that PRB,r(c) 6= ∅, include in ΠLPMLN

:

– the probabilistic constant declaration:

P (B, r, c=v1) : pf cB,r=v1 | . . .

| P (B, r, c=vn) : pf cB,r=vn

for each probabilistic constant pf cB,r of the signature, where {v1, . . . , vn} =

Dom(c). The constant pf cB,r is used for representing the probability distri-

bution for c when condition B holds in the experiment represented by r.

– the rules

c=v ← B,B′, pf cB,r=v, not Intervene(c). (4.11)

for all v ∈ Dom(c), where B′ is the body of the random selection rule r.

These rules assign v to c when the assigned probability distribution applies

to c=v.

– the rule

Assigned r ← B,B′, not Intervene(c)

whereB′ is the body of the random selection rule r (we abbreviate Assigned r=

t as Assigned r). Assigned r becomes true when any pr-atoms for c related

to r is applied.

• For any constant c and any random selection rule r for c, include in ΠLPMLN

:

– the probabilistic constant declaration

1

|Dom(c)|
: pf c�,r=v1 | · · · |

1

|Dom(c)|
: pf c�,r=vn
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for each probabilistic constant pf c�,r of the signature, where {v1, . . . , vn} =

Dom(c). The constant pf c�,r is used for representing the default probability

distribution for c when there is no applicable pr-atom.

– the rules

c=v ← B′, pf c�,r=v, not Assigned r.

for all v ∈ Dom(c), where B′ is the body of the random selection rule r.

These rules assign v to c when the uniform distribution applies to c=v.

Example 7 continued The simple P-log program Π in Example 7 can be turned

into the following multi-valued probabilistic program. In addition to τ(Π) we have

0.25 : pf
Roll(d)
O(d)=M,r(d) =6 | 0.15 : pf

Roll(d)
O(d)=M,r(d) =5 |

0.15 : pf
Roll(d)
O(d)=M,r(d) =4 | 0.15 : pf

Roll(d)
O(d)=M,r(d) =3 |

0.15 : pf
Roll(d)
O(d)=M,r(d) =2 | 0.15 : pf

Roll(d)
O(d)=M,r(d) =1

1
6 : pf

Roll(d)
�,r(d) =6 | 1

6 : pf
Roll(d)
�,r(d) =5 | 1

6 : pf
Roll(d)
�,r(d) =4 |

1
6 : pf

Roll(d)
�,r(d) =3 | 1

6 : pf
Roll(d)
�,r(d) =2 | 1

6 : pf
Roll(d)
�,r(d) =1

Roll(d)=x← Owner(d)=Mike, pf
Roll(d)
O(d)=M,r(d) =x,

not Intervene(Roll(d))

Assignedr(d) ← Owner(d)=Mike,not Intervene(Roll(d))

Roll(d)=x← pf
Roll(d)
�,r(d) =x,not Assignedr(d).

Theorem 12. For any consistent simple P-log program Π of signature σ and any

possible world W of Π, we construct a formula FW as follows.

FW = (
∧
c=v∈W c=v)∧

(
∧

c, v :
c = v is possible in W ,

W |= c = v and PRW (c) 6= ∅

pf cBW,c,rW,c =v)

∧(
∧

c, v :
c = v is possible in W ,

W |= c = v and PRW (c) = ∅

pf c�,rW,c =v)
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We have

µΠ(W ) = P
ΠLPMLN (FW ),

and, for any proposition A of signature σ,

PΠ(A) = P
ΠLPMLN (A).

Example 7 continued For the possible world

W = {Roll(D1)=6,Roll(D2)=3,Even(D1),∼Even(D2),

Owner(D1)=Mike,Owner(D2)=John},

FW is

Roll(D1)=6 ∧ Roll(D2)=3 ∧ Even(D1)∧ ∼Even(D2)

∧ Owner(D1)=Mike ∧Owner(D2)=John

∧ pfRoll(D1)
O(D1)=M,r=6 ∧ pfRoll(D2)

�,r =3.

It can be seen that µ̂Π(W ) = 1
4
× 1

6
= P

ΠLPMLN (FW ).

The embedding tells us that the exact inference in simple P-log is no harder than

the one in LPMLN.

4.6 Other Related Work

Sato’s distribution semantics (Sato (1995)) defines probability distributions over

truth assignments on a set of independent “choice atoms” , which further derive fully

specified possible worlds through logic programs. Problog (De Raedt and Kimmig

(2015)) is one formalism with the distribution semantics. Other examples include

PRISM (Sato and Kameya (1997)), Poole’s Independent Choice Logic (ICL; Poole

(1997)) Logic Programs with Annotated Disjunction (LPAD; Vennekens et al. (2004)),

etc. They are defined with differences in the syntax and semantics of their logic

component. PRISM requires the rules in the logic program to be definite clauses;

Poole’s ICL allows arbitrary acyclic logic programs; LPAD has the choice atoms
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introduced together with rules in the logic programs by associating an annotation

with each disjunctive term, specifying the probability of the disjunctive term; ProbLog

adopts definite clauses with well-founded semantics8.

The result that ProbLog can be viewed as a special case of LPMLN can be extended

to embed Logic Programs with Annotated Disjunctions (LPAD) in LPMLN based on

the fact that any LPAD program can be further turned into a ProbLog program by

eliminating disjunctions in the heads (Gutmann, 2011, Section 3.3).

It is known that LPAD is related to several other languages. In Vennekens et al.

(2004), it is shown that Poole’s ICL (Poole (1997)) can be viewed as LPAD, and that

acyclic LPAD programs can be turned into ICL. This indirectly tells us how ICL is

related to LPMLN.

CP-logic (Vennekens et al. (2009)) is a probabilistic extension of FO(ID) (Denecker

and Ternovska (2007)). It is shown in Vennekens et al. (2006), that CP-logic “almost

completely coincides” with LPAD.

PrASP (Nickles and Mileo (2014)) is a recent language similar to LPMLN in that the

probability distribution is obtained from the annotations of the formulas. However,

in PrASP, the annotations of formulas are explicitly probabilities of the annotated

formulas, whereas in LPMLN the probabilities of rules need to be derived from the

weights in a computationally expensive way. An LPMLN program specify exactly

one probability distribution over stable models, while in PrASP, there can be none

or multiple probability distributions satisfying the marginal probabilities of formulas

specified by a program. There are also other probabilistic extensions of stable model

semantics such as Ng and Subrahmanian (1994) and Saad and Pontelli (2005).

Similar to LPMLN, log-linear description logics (Niepert et al. (2011)) follow the

weight scheme of log-linear models in the context of description logics.

8An extension of ProbLog, called cProbLogFierens et al. (2012), allows constraints.
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4.7 Proofs

4.7.1 Proof of Theorem 3

Theorem 3 For any logic program Π, the (deterministic) stable models of Π are

exactly the (probabilistic) stable models of PΠ whose weight is ekα, where k is the

number of all (ground) rules in Π. If Π has at least one stable model, then all stable

models of PΠ have the same probability, and are thus the stable models of Π as well.

Proof. We notice that (PΠ)hard = Π. We first show that an interpretation I is a stable

model of Π if and only if it is a stable model of PΠ whose weight is ekα. Suppose I

is a stable model of Π. Then I is a stable model of (PΠ)hard. Obviously (PΠ)hard is

(PΠ)I . So the weight of I is ekα. Suppose I is a stable model of PΠ whose weight is

ekα. Then I satisfies all the rules in PΠ, since all rules in PΠ contribute to its weight,

and I is a stable model of (PΠ)I = (PΠ)hard, which is equivalent to Π. So I is a stable

model of Π.

Now suppose Π has at least one stable model. It follows that (PΠ)hard has some

stable model.

• Suppose I is not a stable model of Π.

– Suppose I does not satisfy Π. Then I 2 (PΠ)hard. By Proposition 3,

PPΠ
(I) = 0, and consequently I is not a stable model of PΠ.

– Suppose I satisfies Π. Then (PΠ)I = Π and I is not a stable model of

(PΠ)I . By definition, WPΠ
(I) = 0 and consequently PPΠ

(I) = 0, which

means that I is not a stable model of PΠ.
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• Suppose I is a stable model of Π. Then I � (PΠ)hard, (PΠ)I = Π and I is a

stable model of (PΠ)I .

By Proposition 3,

PPΠ
(I) =

exp(
∑

w:F∈(PΠ)I\(PΠ)hard w)∑
J�SM (PΠ)J :J�(PΠ)hard

exp(
∑

w:F∈(PΠ)J\(PΠ)hard
w)

=
exp(0)∑

J�SM (PΠ)J :J�(PΠ)hard
exp(

∑
w:F∈(PΠ)J\(PΠ)hard

w)
.

It can be seen that “J �SM (PΠ)J : J � (PΠ)hard” is equivalent to “J is a stable

model of Π”, since (PΠ)hard = Π. Furthermore, since Π \ (PΠ)hard = ∅, we have

exp(
∑

w:F∈(PΠ)J\(PΠ)hard
w) = exp(0) for all J �SM PJ : J � (PΠ)hard. So

PPΠ
(I) =

exp(0)∑
J�SMΠ exp(0)

=
1

k

where k is the number of stable models of Π.

4.7.2 Proof of Proposition 6

Proof. Firstly, it is easy to see that the second and third conditions are equivalent.

We notice that exp(x) > 0 for all x ∈ (−∞,+∞). So it can be seen from the definition

that W ′
Π(I) > 0 if and only if I ∈ SM ′ [Π], and consequently P ′Π(I) > 0 if and only

if I ∈ SM ′ [Π].

Secondly, by Proposition 3, we know that P ′Π(I) is equivalent to PΠ(I). By def-

inition, the first condition is equivalent to “PΠ(I) > 0”. So we have that the first

condition is equivalent to the third condition.

Proposition 5 does not hold if we replace “SM ′ [Π]” by “SM [Π]”.
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Example 8. Consider the following LPMLN program Π:

(r1) α : p

(r2) 1 : q

and the interpretation I = {q}. I belongs to SM [Π] since I is a stable model of ΠI ,

which contains r2 only. However, PΠ(I) = 0 since I does not satisfy the hard rule r1.

On the other hand, I does not belong to SM ′ [Π].

To facilitate the proof of Proposition 6, we introduce a formal definition of ASP

programs with weak constraints, as follows.

An ASP program with weak constraints is a pair

〈Π,CONSTR〉,

where Π is a set of standard ASP rules of the form (2.1), and CONSTR is a set of

weak constraints C of the following form

:∼ Body [Weight ], (4.12)

where Weight is a positive integer, and Body is a set of literals. We will refer to

Body by Body(C), and Weight by Weight(C). The penalty that I receives, denoted

as Penalty(I), is defined as

Penalty(I) =
∑

C∈CONSTR:I�Body(C)

Weight(C).

The stable models of an ASP program with weak constraints 〈Π,CONSTR〉 are the

elements of the following set

{I | I |=SM Π and there does not exists J 6= I such that

J |=SM Π and Penalty(J) < Penalty(I)}.
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By 〈Π,CONSTR〉LPMLN

we denote the following LPMLN program:

{α : R | R ∈ Π} ∪ {−Weight(C) : ⊥ ← Body(C) | C ∈ CONSTR} .

For any interpretation K, let CONSTRK denote the following set:

{⊥ ← Body(C) | C ∈ CONSTR, K � ¬Body(C)}

Lemma 3. For any program with weak constraints 〈Π,CONSTR〉 that has a stable

model, an interpretation I is a stable model of Π if and only if I is a stable model of

〈Π,CONSTR〉LPMLN

.

Proof. (⇒) Since CONSTRI consists of constraints only, we can derive from the fact

that I is a stable model of Π that I is a stable model of Π ∪ CONSTRI , which is

(〈Π,CONSTR〉LPMLN

)hard∪((〈Π,CONSTR〉LPMLN

)soft)I . So I ∈ SM ′
[
〈Π,CONSTR〉LPMLN

]
and by Proposition 5, I is a stable model of 〈Π,CONSTR〉LPMLN

.

(⇐) Consider any stable model I of 〈Π,CONSTR〉LPMLN

. By Proposition 5, I ∈

SM ′
[
〈Π,CONSTR〉LPMLN

]
. This means I is a stable model of (〈Π,CONSTR〉LPMLN

)hard∪

((〈Π,CONSTR〉LPMLN

)soft)I , which is equivalent to Π∪CONSTRI . Since CONSTRI

contains constraints only, I is a stable model of Π.

Proposition 6 For any program with weak constraints that has a stable model, its

stable models are the same as the stable models of the corresponding LPMLN program

with the highest normalized weight.

Proof. (⇒) For any program with weak constraints 〈Π,CONSTR〉 that has a stable

model, let I be any one of its stable models. Since I is a stable model of 〈Π,CONSTR〉,

by definition, we have:
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1. I |=SM Π;

2. There does not exist J 6= I such that J |=SM Π and Penalty(J) < Penalty(I).

From the first condition, by Lemma 3, it follows that I is a stable model of 〈Π,CONSTR〉LPMLN

.

Now we show that there does not exist any J 6= I such that J is a stable model

of 〈Π,CONSTR〉LPMLN

and P
〈Π,CONSTR〉LPMLN (J) > P

〈Π,CONSTR〉LPMLN (I). Assume,

for the sake of contradiction, that such J exists. Then J must be a stable model of

Π by Lemma 3. Since P
〈Π,CONSTR〉LPMLN (J) > P

〈Π,CONSTR〉LPMLN (I), due to how we

translate 〈Π,CONSTR〉 to 〈Π,CONSTR〉LPMLN

, Penalty(J) < Penalty(I), which is

a contradiction to the second condition. So such J does not exist.

So I is a stable model of 〈Π,CONSTR〉LPMLN

with the highest normalized weight.

(⇐) Let I be any stable model of 〈Π,CONSTR〉LPMLN

with the highest normalized

weight.

• I |=SM Π: Since I is a stable model of 〈Π,CONSTR〉LPMLN

, by Lemma 3, I is

a stable model of Π.

• There does not exist any J s.t. J |=SM Π and Penalty(J) < Penalty(I):

Suppose, to the contrary, that there exists such J . By Lemma 3, J is a stable

model of 〈Π,CONSTR〉LPMLN

. Since Penalty(J) < Penalty(I), P
〈Π,CONSTR〉LPMLN (J) >

P
〈Π,CONSTR〉LPMLN (I). This is a contradiction to the fact that I is a stable model

of 〈Π,CONSTR〉LPMLN

with the highest normalized weight. So there cannot

exist such J .

In conclusion, I is a stable model of 〈Π,CONSTR〉.
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4.7.3 Proof of Theorem 4 and Theorem 5

We divide the ground program obtained from lpmln2asprwd(Π) into three parts:

SAT (Π) ∪ORIGIN(Π) ∪WC(Π)

where

SAT (Π) ={sat(i, wi, c)← Head i(c) | wi : Head i(c)← Body i(c) ∈ Gr(Π)} ∪

{sat(i, wi, c)← not Body i(c) | wi : Head i(c)← Body i(c) ∈ Gr(Π)}

ORIGIN(Π) =

{Head i(c)← Body i(c), not not sat(i, wi, c) | wi : Head i(c)← Body i(c) ∈ Gr(Π)}

and

WC(Π) = {:∼ sat(i, wi, c). [−wi@l, i, c] | wi : Head i(c)← Body i(c) ∈ Gr(Π)}

Lemma 4. For any LPMLN program Π,

φ(I) = I∪{sat(i, wi, c) | wi : Head i(c)← Body i(c) ∈ Gr(Π), I |= Head i(c)← Body i(c)}

is a 1-1 correspondence between SM[Π] and the stable models of SAT (Π)∪ORIGIN(Π).

Proof. Let σ be the signature of Π, and let σsat be the set

{sat(i, wi, c) | wi : Head i(c)← Body i(c) ∈ Gr(Π)}.

It can be seen that

• each strongly connected component of the dependency graph of SAT (Π) ∪

ORIGIN(Π) w.r.t. σ ∪ σsat is a subset of σ or a subset of σsat;

• no atom in σsat has a strictly positive occurrence in ORIGIN(Π);
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• no atom in σ has a strictly positive occurrence in SAT (Π).

Thus, according to the splitting theorem, φ(I) is a stable model of SAT (Π)∪ORIGIN(Π)

if and only if φ(I) is a stable model of SAT (Π) w.r.t. σsat and is a stable model of

ORIGIN(Π) w.r.t. σ.

First, assuming that I belongs to SM[Π], we will prove that φ(I) is a stable model

of SAT (Π) ∪ORIGIN(Π). Let I be a member of SM[Π].

• φ(I) is a stable model of SAT (Π) w.r.t. σsat. By the definition of φ,

sat(i, wi, c) ∈ φ(I) if and only if I |= Head i(c) ← Body i(c), in which case

either I |= Head i(c) or I 6|= Body i(c). This means

φ(I) |= SAT (Π)∪

{sat(i, wi, c)→ Head i(c) ∨ ¬Body i(c) | wi : Head i(c)← Body i(c) ∈ Gr(Π)},

which is the completion of SAT (Π). It is obvious that SAT (Π) is tight on σsat.

So φ(I) is a stable model of SAT (Π) w.r.t. σsat.

• φ(I) is a stable model of ORIGIN(Π) w.r.t. σ. It is clear that φ(I) satisfies

ORIGIN(Π). Assume for the sake of contradiction that there is an interpre-

tation J ⊂ φ(I) such that J and φ(I) agree on σsat and J |= ORIGIN(Π)φ(I).

Then

J |= Head i(c)φ(I) ← Body i(c)φ(I), (not not sat(i, wi, c))φ(I)

for every rule

Head i(c)← Body i(c), not not sat(i, wi, c)

in ORIGIN(Π). Since φ(I) satisfies SAT (Π), it follows that for every rule

Head i(c)← Body i(c) satisfied by φ(I), we have (not not sat(i, wi, c))φ(I) = >

so that J |= Head i(c)φ(I) ← Body i(c)φ(I), or equivalently, J |= Head i(c)I ←

Body i(c)I , which contradicts that I is a stable model of ΠI .
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Consequently, by the splitting theorem, φ(I) is a stable model of SAT (Π) ∪

ORIGIN(Π).

Next, assuming φ(I) is a stable model of SAT (Π) ∪ ORIGIN(Π), we will prove

that I belongs to SM[Π].

Let φ(I) be a stable model of SAT (Π) ∪ ORIGIN(Π). By the splitting theo-

rem, φ(I) is a stable model of SAT (Π) w.r.t. σsat and φ(I) is a stable model of

ORIGIN(Π) w.r.t. σ.

It is clear that I |= ΠI .

Assume for the sake of contradiction that there is an interpretation J ⊂ I such

that J |= (ΠI)
I . Take any rule

(Head i(c))φ(I) ← (Body i(c))φ(I), (not not sat(i, wi, c))φ(I) (4.13)

in (ORIGIN(Π))φ(I).

Case 1: φ(I) 6|= sat(i, wi, c). Clearly, J |= (4.13).

Case 2: φ(I) |= sat(i, wi, c). Since Head i(c) and Body i(c) do not contain sat predi-

cates, (4.13) is equivalent to

(Head i(c))I ← (Body i(c))I . (4.14)

Since φ(I) is a stable model of SAT (Π) w.r.t. σsat, we have φ(I) |= Head i(c) ←

Body i(c), or equivalently, I |= Head i(c)← Body i(c). So, Head i(c)← Body i(c) ∈ ΠI ,

and Head i(c)I ← Body i(c)I ∈ (ΠI)
I . Since J |= (ΠI)

I , it follows that J |= (4.13) as

well.

Since J ⊂ φ(I), φ(I) is not a stable model of ORIGIN(Π) w.r.t. σ, which

contradicts the assumption that it is. Thus we conclude that I is a stable model

of ΠI , i.e., I belongs to SM[Π].
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Theorem 4 For any LPMLN program Π, there is a 1-1 correspondence φ between

SM[Π] and the set of stable models of lpmln2asprwd(Π), where

φ(I) = I∪{sat(i, wi, c) | wi : Head i(c)← Body i(c) in Gr(Π), I |= Body i(c)→ Head i(c)}.

Furthermore,

WΠ(I) = exp

( ∑
sat(i,wi,c)∈φ(I)

wi

)
.

Also, φ is a 1-1 correspondence between the most probable stable models of Π and

the optimal stable models of lpmln2asprwd(Π).

Proof. By Lemma 4, φ is a 1-1 correspondence between SM[Π] and the set of stable

models of lpmln2asprwd(Π).

The fact

WΠ(I) = exp

( ∑
sat(i,wi,c)∈φ(I)

wi

)
. (4.15)

can be easily seen from how φ(I) is defined.

It remains to show that φ is a 1-1 correspondence between the most probable stable

models of Π and the optimal stable models of lpmln2asprwd(Π). For any interpretation

I of lpmln2asprwd(Π), we use PenaltyΠ(I, l) to denote the total penalty it receives at

level l defined by weak constraints:

PenaltyΠ(I, l) =
∑

:∼sat(i,wi,c).[−w′i@l,i,c]∈WC(Π),
I|=sat(i,wi,c)

−wi

Let φ(I) be a stable model of lpmln2asprwd(Π). By Lemma 4, I ∈ SM[Π]. So it is
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sufficient to prove

I ∈ argmax
J :J∈ argmax

K:K∈SM [Π]
W

Πhard (K)

WΠsoft(J)

iff (4.16)

φ(I) ∈ argmin
J ′:J ′∈ argmin

K′:K
′ is a stable model of

lpmln2asprwd(Π)

Penalty
lpmln2asprwd(Π)

(K′,1)

Penaltylpmln2asprwd(Π)(J
′, 0).

This is true because (we abbreviate Headi(c)← Bodyi(c) as Fi(c))

I ∈ argmax
J : J∈ argmax

K: K∈SM[Π]
W

Πhard (K)

WΠsoft(J)

iff (by Lemma 4 and definition)

φ(I) ∈ argmax
J ′: J ′∈ argmax

K′: K′ is a stable model of
lpmln2asprwd(Π)

exp
( ∑
α:Fi(c) ∈ (Πhard)K′

α
) exp( ∑

wi:Fi(c) ∈ (Πsoft)J′

wi

)

iff

φ(I) ∈ argmax
J ′: J ′∈ argmax

K′: K′ is a stable model of
lpmln2asprwd(Π)

exp
( ∑
α:Fi(c) ∈ Πhard,K′|=Fi(c)

1
) exp( ∑

wi:Fi(c) ∈ Πsoft,J ′|=Fi(c)

wi

)

iff

φ(I) ∈ argmin
J ′: J ′∈ argmin

K′: K′ is a stable model of
lpmln2asprwd(Π)

( ∑
α:Fi(c) ∈ Πhard,K′|=Fi(c)

−1
) ( ∑

wi:Fi(c) ∈ Πsoft,J ′|=Fi(c)

−wi
)

iff

φ(I) ∈ argmin

J ′: J ′∈ argmin
K′: K′ is a stable model of

lpmln2asprwd(Π)

( ∑
:∼sat(i,wi,c).[−1@1,i,c]

∈ lpmln2asprwd(Π),
K′|=sat(i,wi,c)

−1

)( ∑
:∼sat(i,wi,c).[−wi@0,i,c]

∈lpmln2asprwd(Π),
J ′|=sat(i,wi,c)

−wi
)

iff

φ(I) ∈ argmin
J ′: J ′∈ argmin

K′: K′ is a stable model of
lpmln2asprwd(Π)

Penalty
lpmln2asprwd(Π)

(K′,1)

Penaltylpmln2asprwd(Π)(J
′, 0).
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Theorem 5 can be proven similarly to Theorem 4.

4.7.4 Proof of Theorem 6 and Theorem 8

Given a signature σ, we use At(σ) to denote the set of all ground atoms that can

be constructed from symbols in σ.

Theorem 6 Any MLN L and its LPMLN representation ΠL have the same probability

distribution over all interpretations.

Proof. We show that for any interpretation I, PL(I) = PΠL(I). For a set of atoms p,

let Choice(p) denote the set of weighted rules
⋃
p∈p {w : p← not not p}.

PL(I) = lim
α→∞

WL(I)∑
J∈PW WL(J)

= lim
α→∞

exp(
∑

w:F∈LI w)∑
J∈PW exp(

∑
w:F∈LJ w)

.

Multiplying the weight of every interpretation by exp(|At(σ)| · w), we have

PL(I) = lim
α→∞

exp(|At(σ)| · w) · exp(
∑

w:F∈LI w)∑
J∈PW exp(|At(σ)| · w) · exp(

∑
w:F∈LJ w)

= lim
α→∞

exp(
∑

w:F∈LI∪Choice(At(σ))w)∑
J∈PW exp(

∑
w:F∈LJ∪Choice(At(σ))w)

.

Clearly Choice(At(σ)) is a set of tautologies, and it can be seen from the con-

struction of ΠL that (ΠL)K = LK ∪Choice(At(σ)) for any interpretation K. So

PL(I) = lim
α→∞

exp(
∑

w:F∈(ΠL)I
w)∑

J∈PW exp(
∑

w:F∈(ΠL)J
w)
.
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By Theorem 2 in Ferraris et al. (2011), for any interpretation K, the stable models

of (ΠL)K are exactly the models of LK . Since K itself is a model of LK , K is a stable

model of (ΠL)K . So

PL(I) = lim
α→∞

WΠL(I)∑
J∈SM [Π] WΠL(J)

= PΠL(I).

For a (deterministic) logic program Π, we use LFΠ to denote the set

{LFΠ(L) | L is a loop of Π}

.

Lemma 5. For any LPMLN program Π and any interpretation I of the underlying

signature σ, I � LFΠ if and only if I � LFΠI
.

Proof. (⇒) Suppose I � LFΠ. Consider any subset K of σ. There are two possible

cases:

• I 2 K∧. In this case, K∧ → ESΠI
(K) is trivially satisfied by I.

• I � K∧. Since I � LFΠ, by Theorem 2, we have

K∧ →
∨

A∩K 6=∅
A←B∧N∈Π
B∩K=∅

(B ∧N ∧
∧

b∈A\K

¬b)

is satisfied by I. Consider the rules which contribute to the external support

for K in Π, i.e., A ← B ∧N ∈ Π such that A ∩K 6= ∅ and B ∩K = ∅. Since
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A∩K 6= ∅ and I � K∧, we get I � A∨. So all these rules are satisfied by I and

thus they all belong to ΠI , which means

∨
A∩K 6=∅

A←B∧N∈Π
B∩K=∅

(B ∧N ∧
∧

b∈A\K

¬b) =
∨

A∩K 6=∅
A←B∧N∈ΠI
B∩K=∅

(B ∧N ∧
∧

b∈A\K

¬b).

So

K∧ →
∨

A∩K 6=∅
A←B∧N∈ΠI
B∩K=∅

(B ∧N ∧
∧

b∈A\K

¬b)

i.e.,

K∧ → ESΠI
(K)

is satisfied by I.

In conclusion, I satisfies K∧ → ESΠI
(K) for all subsets K of σ. By Theorem 2,

I � LFΠI
.

(⇐) (The reasoning is similar to the proof of Proposition 1) Suppose I satisfies

LFΠI
. For all subsets L of σ, since I � LFΠI

, by Theorem 2, I � L∧ → ESΠI
(L).

Since ΠI ⊆ Π, it can be seen that the disjunctive terms in ESΠI
(L) is a subset of

the disjunctive terms in ESΠ(L), and thus ESΠI
(L) entails ESΠ(L). So I � L∧ →

ESΠ(L). So I � LFΠ.

Lemma 6. Let L be an MLN, and let Lhard be the hard formulas in L. Let Lhard

be the set of formulas obtained from Lhard by dropping all weights. When Lhard is

satisfiable,

• if I satisfies Lhard,

PL(I) =
exp(

∑
w:F∈LI\Lhard w)∑

J∈PW :J |=Lhard exp(
∑

w:F ∈ LJ\Lhard w)
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• otherwise, PL(I) = 0.9

Proof. For any interpretation I, by definition, we have

PL(I) = lim
α→∞

WL(I)∑
J∈PW WL(J)

= lim
α→∞

WL(I)∑
J∈PW exp(

∑
w:F∈LJ w)

.

• Suppose I satisfies Lhard. We have

PL(I) = lim
α→∞

exp(
∑

w:F∈LI w)∑
J∈PW exp(

∑
w:F∈LJ w)

.

Splitting the denominator into two parts: those J that satisfy Lhard and those

that do not, and extracting the weight of formulas in Lhard, we have

PL(I) = lim
α→∞

exp(|Lhard| · α) · exp(
∑

w:F∈LI\Lhard w)

HSAT +HUNSAT
.

where

HSAT = exp(|Lhard| · α) ·
∑

J�Lhard

exp(
∑

w:F∈LJ\Lhard
w)

are weights from those J ’s that satisfy Lhard, and

HUNSAT =
∑

J2Lhard

exp(|Lhard ∩ LJ | · α) · exp(
∑

w:F∈LJ\Lhard
w)

are weights from those J ’s that do not satisfy Lhard.

We divide both the numerator and the denominator by exp(|Lhard| · α).

PL(I) = lim
α→∞

exp(
∑

w:F∈LI\Lhard w)
HSAT

exp(|Lhard|·α)
+ HUNSAT

exp(|Lhard|·α)

9This proposition does not hold when Lhard is not satisfiable. For example, consider L =

{α : p, α :← p} and I = {p}. I 2 Lhard but PP(I) = exp(α)
exp(α)+exp(α) = 0.5.
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where

HSAT

exp(|Lhard| · α)
=

∑
J�Lhard

exp(
∑

w:F∈LJ\Lhard
w)

and

HUNSAT

exp(|Lhard| · α)

=

∑
J2Lhard exp(|L

hard ∩ LJ | · α) · exp(
∑

w:F∈LJ\Lhard w)

exp(|Lhard| · α)

=
∑

J2Lhard

exp(|Lhard ∩ LJ | · α)

exp(|Lhard| · α)
· exp(

∑
w:F∈LJ\Lhard

w).

For J 2 Lhard, we have |Lhard ∩ LJ | ≤ |Lhard| − 1, so

PL(I) =
exp(

∑
w:F∈LI\Lhard w)∑

J�Lhard exp(
∑

w:F∈LJ\Lhard w)
.

• Suppose I does not satisfy Lhard. Since Lhard is satisfiable, there is at least one

interpretation that satisfies Lhard. Let K denote any such interpretation. We

have

PL(I) = lim
α→∞

exp(
∑

w:F∈LI w)∑
J∈PW exp(

∑
w:F∈LJ w)

.

Splitting the denominator into K and the other interpretations, we have

PL(I) = lim
α→∞

exp(
∑

w:F∈LI w)

exp(
∑

w:F∈LK w) +
∑

J 6=K exp(
∑

w:F∈LJ w)
.

Extracting the weight from formulas in Lhard, we have

PL(I) = lim
α→∞

exp(|Lhard ∩ LI | · α) · exp(
∑

w:F∈LI\Lhard w)

exp(|Lhard| · α) · exp(
∑

w:F∈LK\Lhard w) +
∑

J 6=K exp(
∑

w:F∈LJ w)

≤ lim
α→∞

exp(|Lhard ∩ LI | · α) · exp(
∑

w:F∈LI\Lhard w)

exp(|Lhard| · α) · exp(
∑

w:F∈LK\Lhard w)
.
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Since I does not satisfy Lhard, |Lhard ∩ LI | ≤ |Lhard| − 1, and thus

PL(I) ≤ lim
α→∞

exp(|Lhard ∩ LI | · α) · exp(
∑

w:F∈LI\Lhard w)

exp(|Lhard| · α) · exp(
∑

w:F∈LK\Lhard w)
= 0.

For any LPMLN program Π, define MLN program LΠ to be the union of Π and{
α : LFΠ(L) | L is a loop of Π

}
.

Lemma 7. For any LPMLN program Π and any interpretation I, if I ∈ SM ′ [Π], then

I � LFΠ.

Proof. Suppose I ∈ SM ′ [Π], then I |=SM Πhard ∪ (Πsoft)I , which implies I |=SM ΠI ,

and further implies I � LFΠI
. By Lemma 5, I � LFΠ.

Theorem 8 For any LPMLN program Π such that SM ′ [Π] is not empty, Π and LΠ

have the same probability distribution over all interpretations, and consequently, the

stable models of Π and the models of LΠ coincide.

Proof. We will show that PΠ(I) = PLΠ
(I) for all interpretations I. Since SM ′ [Π] is

not empty, by Lemma 7, there exists at least one interpretation J such that J � LFΠ.

• Suppose I is a stable model of ΠI . By definition,

PLΠ
(I) = lim

α→∞

exp(
∑

ri∈(LΠ)I
wi)∑

J∈PW exp(
∑

ri∈(LΠ)J
wi)

.

Splitting the denominator into interpretations that satisfy LFΠ and those that

do not, we get

PLΠ
(I) = lim

α→∞

exp(
∑

ri∈(LΠ)I
wi)∑

J�LFΠ
exp(

∑
ri∈(LΠ)J

wi) +
∑

J2LFΠ
exp(

∑
ri∈(LΠ)J

wi)
.
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Extracting the weights from the formulas in LFΠ, we get

PLΠ
(I) = lim

α→∞

exp(|LF
Π
| · α) · exp(

∑
ri∈(LΠ)I\LFΠ

wi)∑
J�LF

Π
exp(|LF

Π
| · α) · exp(

∑
ri∈(LΠ)J\LFΠ

wi) +
∑
J2LF

Π
exp(|(LΠ)J ∩ LFΠ

| · α) · exp(
∑
ri∈(LΠ)J\LFΠ

wi)
.

Dividing both the numerator and the denominator by exp(|LFΠ| · α), we have

PLΠ
(I) = lim

α→∞

exp(
∑
ri∈(LΠ)I\LFΠ

wi)

∑
J�LF

Π
exp(

∑
ri∈(LΠ)J\LFΠ

wi) +
∑
J2LF

Π

exp(|(LΠ)J∩LFΠ
|·α)

exp(|LF
Π
|·α)

· exp(
∑
ri∈(LΠ)J\LFΠ

wi)

.

For those J that do not satisfy LFΠ, |(LΠ)J ∩ LFΠ| ≤ |LFΠ| − 1. So

lim
α→∞

exp(|(LΠ)J ∩ LFΠ| · α)

exp(|LFΠ| · α)
= 0

. Consequently

PLΠ
(I) =

exp(
∑

ri∈(LΠ)I\LFΠ
wi)∑

J�LFΠ
exp(

∑
ri∈(LPi)J\LFΠ

wi)
.

From the construction of LΠ it can be easily seen that (LΠ)K \ LFΠ = ΠK for

all interpretations K. So

PLΠ
(I) =

exp(
∑

ri∈ΠI
wi)∑

J�LFΠ
exp(

∑
ri∈ΠJ

wi)
.

By Lemma 5, for any J � LFΠ, we have J � LFΠJ
and thus J is a stable model

of ΠJ . So

PLΠ
(I) =

exp(
∑

ri∈ΠI
wi)∑

J�SMΠJ
exp(

∑
ri∈ΠJ

wi)

=
WΠ(I)∑

J∈SM [Π] WΠ(J)

= PΠ(I).

• Suppose I is not a stable model of ΠI . Then PΠ(I) = 0. On the other hand,

since I � ΠI by definition, it must be the case that I 2 LFΠI
. By Lemma

5, I 2 LFΠ. So there is at least one subset L of σ such that I 2 LFΠ(L).

Clearly α : LFΠ(L) ∈ LΠ and LFΠ(L) ∈ (LΠ)hard. So I 2 (LΠ)hard. From the
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construction of LΠ we can see that (LΠ)hard = Πhard∪LFΠ. Since SM ′ [Π] is not

empty, there is at least one interpretation J such that J |=SM Πhard ∪ (Πsoft)J .

This interpretation J satisfies LF
Πhard∪(Πsoft)J

. By Lemma 7, J satisfies LFΠ. So

J satisfies Πhard∪LFΠ and thus (LΠ)hard is satisfiable. By Lemma 6, PLΠ
(I) = 0.

4.7.5 Proof of Theorem 10

In this section and the next section, we write
∑

x f(x), where f is some function

over a Boolean variable, as a shorthand of∑
x∈{true,false}

f(x),

and write ∑
x1,...,xm

f(x1, . . . , xm)

as a shorthand of ∑
x1

∑
x2

· · ·
∑
xm

f(x1, . . . , xm).

Given a ProbLog program P, let PAP denote the set of all probabilistic atoms in

P. We say a subset TC of PAP is the total choice of an interpretation I if for all

p ∈ TC, I � p and for all q ∈ PAP \ TC, I 2 q.

Lemma 8. For any ProbLog program P,∑
TC⊆PAP

PrP(TC) = 1.

Proof. Suppose PAP = {a1, a2, . . . , ak}.∑
TC⊆PAP

PrP(TC)

=
∑

TC⊆PAP

(
∏
ai∈TC

pi ·
∏

aj∈PAP\TC

(1− pj)).
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Let pi(x) where x ∈ {t, f} be defined as

pi(x) =


pi if x = t

1− pi if x = f

.

Clearly
∑

a pi(a) = 1 for any i ∈ {1, . . . , k}.
∑

TC⊆PAP
PrP(TC) can be rewritten as

∑
TC⊆PAP

PrP(TC)

=
∑

a1,a2,...,ak

pi(ai) · · · · · pi(ai)

where a1, a2, . . . , ak are Boolean variables representing whether or not ai ∈ TC, i.e.,

ai = t if ai ∈ TC, ai = f otherwise. Rearranging the equation we have

∑
C⊆PAP

PrP [C]

=
∑
a1

p1(a1)
∑
a2

p2(a2) ·
∑
ak

pk(ak)

=1.

Theorem 13. When a (deterministic) program Π has a total well-founded model,

then this model is also the single stable model of Π.

Proof. Proven in Van Gelder et al. (1991).

Lemma 9. Let P = 〈PF,Π〉 be any ProbLog program that does not contain any

probabilistic atom for which the probability is 0 or 1. P and its LPMLN representation

ΠP have the same probability distribution over all interpretations.

Proof. Since P is a well-defined ProbLog program, for all TC ⊆ PAP, TC ∪ Π has

one total well-founded model. Let TC(I) denote the total choice of I.
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• Suppose I is the total well-founded model of TC(I) ∪ Π. According to the

definition,

PP(I) = PrP(TC(I))

=
∏

ai∈TC(I)

pi ·
∏

bj∈PAP\TC(I)

(1− pj).

By Theorem 13, I is also the unique stable model of TC(I)∪Π. It can be seen

that I is the only stable model of TC(I)∪Π∪{← p | p /∈ TC(I)}, which is (ΠP)I .

Clearly (ΠP)hard = Π ⊆ (ΠP)I and consequently I |=SM (ΠP)hard ∪ (ΠP)softI . By

Proposition 3,

PΠP(I) =
exp(

∑
Fi∈(ΠP)I\(ΠP)hard

wi)∑
J∈SM ′[ΠP] exp(

∑
Fi∈(ΠP)J\(ΠP)hard

wi)

=
exp(

∑
ai∈PAP:I�ai

ln(pi) +
∑

ai∈PAP:I2ai ln(1− pi))∑
J∈SM ′[ΠP] exp(

∑
ai∈PAP:J�ai

ln(pi) +
∑

ai∈PAP:J2ai ln(1− pi))

=

∏
ai∈TC(I) pi

∏
ai /∈TC(I)(1− pi)∑

J∈SM ′[ΠP]

∏
ai∈TC(J) pi

∏
ai /∈TC(J)(1− pi)

.

Clearly for every J such that J ∈ SM ′ [ΠP], there is a total choice TC(J). And

since the ProbLog program P is well-defined, for every total choice TC ′ there is

a total well-founded model of TC ′ ∪ Π. By Theorem 13, this means for every

total choice C there is a unique stable model of C ∪Π. It can be seen that this

stable model is also the unique stable model of TC ′∪Π∪{¬p | p /∈ TC(I)}. So

PΠP(I) =

∏
ai∈TC(I) pi

∏
ai /∈TC(I)(1− pi)∑

TC′⊆PAP

∏
ai∈TC′ pi

∏
ai /∈TC′(1− pi)

=

∏
ai∈TC(I) pi

∏
ai /∈TC(I)(1− pi)∑

TC′⊆PAP
PrP(TC ′)

.
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By Lemma 8, the denominator equals 1, so

PΠP(I) =
∏

ai∈TC(I)

pi
∏

ai /∈TC(I)

(1− pi)

= PP(I).

• Suppose I is not the total well-founded model of TC(I) ∪ Π. Then PP(I) = 0.

Since P is well-defined. The total well-founded model J of TC(I)∪Π exists and

by Theorem 13, J is also the unique stable model of TC(I)∪Π. It must be the

case that I 6= J and thus I cannot be a stable model of TC(I) ∪ Π. There are

following two cases:

– Suppose I 2 TC(I) ∪ Π. Since TC(I) is the total choice of I, I � TC(I).

It follows that I 2 Π, i.e., there is at least one rule F ∈ Π such that

I 2 F . According to the definition, α : F ∈ (ΠP)hard. By Proposition 3,

PΠP(I) = 0.

– Suppose I � TC(I) ∪ Π but I is not a stable model of TC(I) ∪ Π. By

Theorem 2, it follows that there must be at least one loop L of Π such that

I � L∧ but I 2 ESTC(I)∪Π(L). It can be seen that

(ΠP)I = TC(I) ∪ Π ∪ {← p | p /∈ TC(I)} .

It can be seen that ES(ΠP)I (L) = ESTC(I)∪Π(L). It follows that I 2SM P′I .

So WΠP(I) = 0 and thus PΠP(I) = 0.

Theorem 10 Any (well-defined) ProbLog program P and its LPMLN representation

ΠP have the same probability distribution over all interpretations.
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Proof. We first convert P = 〈PF,Π〉 into a ProbLog program that does not contain

any probabilistic atom for which the probability is 0 or 1 as follows.

• For each probabilistic atom p such that pr(p) = 0:

– Remove all the rules in Π where p occurs in the body positively (i.e., as

the literal p);

– Remove all the literals not p that occurs in Π.

• For each probabilistic atom q such that pr(q) = 1:

– Remove all the literals p that occurs in Π;

– Remove all the rules in Π where p occurs in the body negatively (i.e., as

the literal not p).

Let T (P) denote the program obtained from P as above. Clearly T (P) specifies

the same probability distribution as P, if we restrict attention to atoms other than

those atoms for which the probability is 0 or 1. By Lemma 9, T (P) and its LPMLN

representation ΠT (P) have the same probability distribution over all interpretations.

From the construction of T (P), it can be seen that ΠP specifies the same probability

distribution as ΠT (P) if we restrict attention to atoms other than those atoms for

which the probability is 0 or 1. Also it is clearly that those atoms in P for which the

probability is 0 or 1 have exactly the same constant truth values as these atoms in

T (P). So P and its LPMLN representation ΠP have the same probability distribution

over all interpretations.

4.7.6 Proof of Theorem 11

Lemma 10. Let L be an MLN, and let Lα = {F | α : F ∈ L}. When Lα is satisfiable,
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• if I satisfies Lα,

PrL[I] =
exp(

∑
(w:F )∈L : F ∈ LI\Lα w)∑

J∈PW :J |=Lα exp(
∑

(w:F )∈L : F ∈ LJ\Lα w)

• otherwise, PrL[I] = 0.10

Proof. For any interpretation I, by definition, we have

PrL [I] = lim
α→∞

WL(I)∑
J∈PW WL(J)

= lim
α→∞

WL(I)∑
J∈PW exp(

∑
Fi∈LJ wi)

• Suppose I satisfies Lα. We have

PrL [I] = lim
α→∞

exp(
∑

Fi∈LI wi)∑
J∈PW exp(

∑
Fi∈LJ wi)

.

Splitting the denominator into two parts: those J that satisfies Lα and those
that do not, and extracting the weight of formulas in Lα, we have

PrL [I] = lim
α→∞

exp(|Lα| · α) · exp(
∑
Fi∈LI\Lα

wi)

exp(|Lα| · α) ·
∑
J�Lα exp(

∑
Fi∈LJ\Lα

wi) +
∑
J2Lα exp(|Lα ∩ LJ | · α) · exp(

∑
Fi∈LJ\Lα

wi)
.

We divide both the numerator and the denominator by exp(|Lα| · α).

PrL [I] = lim
α→∞

exp(
∑

Fi∈LI\Lα wi)∑
J�Lα exp(

∑
Fi∈LJ\Lα wi) +

∑
J2Lα exp(|Lα∩LJ |·α)·exp(

∑
Fi∈LJ\Lα

wi)

exp(|Lα|·α)

= lim
α→∞

exp(
∑

Fi∈LI\Lα wi)∑
J�Lα exp(

∑
Fi∈LJ\Lα wi) +

∑
J2Lα

exp(|Lα∩LJ |·α)
exp(|Lα|·α)

· exp(
∑

Fi∈LJ\Lα wi)
.

For J 2 Lα, |Lα ∩ LJ | ≤ |Lα| − 1, so

PrL [I] =
exp(

∑
wi:Fi∈L:Fi∈LI\Lα wi)∑

J�Lα exp(
∑

wi:Fi∈L:Fi∈LJ\Lα wi)
.

10This proposition does not hold when Lα is not satisfiable. For example, consider L =

{α : p, α :← p} and I = {p}. I 2 Lα but PrP [I] = exp(α)
exp(α)+exp(α) = 0.5.
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• Suppose I does not satisfy Lα. Since Lα is satisfiable, there is at least one

interpretation that satisfies Lα. Let K denote any such interpretation. We

have

PrL [I] = lim
α→∞

exp(
∑

Fi∈LI wi)∑
J∈PW exp(

∑
Fi∈LJ wi)

.

Splitting the denominator into K and the other interpretations, we have

PrL [I] = lim
α→∞

exp(
∑

Fi∈LI wi)

exp(
∑

Fi∈LK wi) +
∑

J 6=K exp(
∑

Fi∈LJ wi)
.

Extracting the weight from formulas in Lα, we have

PrL [I] = lim
α→∞

exp(|Lα ∩ LI | · α) · exp(
∑

Fi∈LI\Lα wi)

exp(|Lα| · α) · exp(
∑

Fi∈LK wi) +
∑

J 6=K exp(
∑

Fi∈LJ wi)

≤ lim
α→∞

exp(|Lα ∩ LI | · α) · exp(
∑

Fi∈LI\Lα wi)

exp(|Lα| · α) · exp(
∑

Fi∈LK wi)
.

Since I does not satisfy Lα, |Lα ∩ LI | ≤ |Lα| − 1, and thus

PrL [I] ≤ lim
α→∞

exp(|Lα ∩ LI | · α) · exp(
∑

Fi∈LI\Lα wi)

exp(|Lα| · α) · exp(
∑

Fi∈LK wi)
= 0.

Lemma 11. The solution of a probabilistic causal model M = 〈〈U, V, F 〉, P (U)〉 are

identical to the models of Comp(ΠM) and their probability distributions coincide.

Proof. First, we notice from the construction of ΠM from M and the construction of

Comp(ΠM) from ΠM that

Comp(ΠM) = {ln(P (Ui = t)) : Ui, ln(P (Ui = f)) : ← Ui | Ui ∈ U}∪

{α : Vi ← Fi | Vi = Fi ∈ F}∪

{α : Vi → Fi | Vi = Fi ∈ F}∪

{α : Ui → > | Ui ∈ U} .
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• (From a solution of M to a model of Comp(ΠM)) Consider an interpretation I of

U∪V which is a solution of M. By definition, I satisfies Vi ↔ Fi for all equations

Vi = Fi in F . It follows that I satisfies Comp(ΠM)α. By Lemma 10, I receives

nonzero probability, which means I is a model of Comp(ΠM). Furthermore, the

probability of I under Comp(ΠM) is

PrComp(ΠM) [I] =
exp(

∑
(w:F )∈Comp(ΠM):F∈Comp(ΠM)I\Comp(ΠM)α

w)∑
J∈PW :J�Comp(ΠM)α

exp(
∑

(w:F )∈Comp(ΠM):F∈Comp(ΠM)J\Comp(ΠM)α
w)

=
exp(

∑
I�Ui

ln(P (Ui=t))+
∑
I2Ui

ln(P (Ui=f)))∑
J∈PW :J�Comp(ΠM)α

exp(
∑

(w:F )∈Comp(ΠM):F∈Comp(ΠM)J\Comp(ΠM)α
w)

Since M is a probabilistic causal model, the valuation of endogenous atoms

are uniquely determined by the valuation of exogenous atoms, and for every

valuation of exogenous atoms there exists a valuation of endogenous atoms.

Also it can be seen that there are 2|U | interpretations of Comp(ΠM) that satisfy

Comp(ΠM)α, corresponding to all possible valuations of atoms in U . So the

denominator can be further rewritten as

PrComp(ΠM) [I] =
exp(

∑
I�Ui

ln(P (Ui=t))+
∑
I2Ui

ln(P (Ui=f)))∑
J∈PW :J�Comp(ΠM)α

exp(
∑
J�Ui

ln(P (Ui=t))+
∑
J2Ui

ln(P (Ui=f)))

=
∏
I�Ui

P (Ui=t)·
∏
I2Ui

P (Ui=f)∑
J∈PW :J�Comp(ΠM)α

∏
J�Ui

P (Ui=t)·
∏
J2Ui

P (Ui=f)

=
∏
I�Ui

P (Ui=t)·
∏
I2Ui

P (Ui=f)

1

= P (U = IU)

= PM(I).

• (From a model of Comp(ΠM) to a solution of M) Consider a model I of Comp(ΠM).

By Proposition 4 (in the technical appendix), I satisfies Comp(ΠM)α, which

means I satisfies all the equivalence Vi ↔ Fi for all equation Vi = Fi in F .

Since M is a probabilistic causal model, it must be the case that no other inter-

pretation J such that J 6=V I satisfies all such equivalences. So I is a solution

of M. As shown in the first bullet, the probability of I under Comp(ΠM) is

PrComp(ΠM) [I] = P (U = IU)
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which coincides with the probability of I under M.

Proposition 7. The solutions of a probabilistic causal model M are identical to the

stable models of ΠM and their probability distributions coincide.

Proof. Since M is a probabilistic causal model, for ΠM the following conditions hold

• Comp(ΠM)α is satisfiable, and

• Π is tight.

By Theorem 9, the stable model of ΠM are identical to the models of Comp(ΠM)

and their probability distributions coincide; by Lemma 11, the solutions of M are

identical to the models of Comp(ΠM) and their probability distributions coincide. In

conclusion, the solutions of M are identical to the stable models of ΠM and their

probability distributions coincide.

We say two MLN programs are equivalent to each other if they have the same

probability distribution over possible worlds.

Lemma 12. For any MLN program L, when Lα is satisfiable, Lα can be replaced by

any set L′α of hard formulas that is classically equivalent to Lα without changing the

models and probability distribution.11

Proof. Let L′ denote the MLN program obtained by replacing Lα with L′α. Consider

any interpretation I of the underlying signature.

11This lemma does not hold when Lα is not satisfiable. For example, L1 = {α : p, α : ¬p} and

L2 = {α : p ∧ ¬p} has different probability distributions over possible worlds.
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• Suppose I satisfies Lα. By Lemma 10, we have

PrL [I] =
exp(

∑
(wi:Fi)∈L:Fi∈LI\Lα wi)∑

J∈PW :J |=Lα exp(
∑

(wi:Fi)∈L:Fi∈LJ\Lα wi)

Since L \ Lα = L′ \ L′α and Lα is equivalent to L′α, we have

PrL [I] =
exp(

∑
(wi:Fi)∈L′:Fi∈L′I\L′α

wi)∑
J∈PW :J |=L′α

exp(
∑

(wi:Fi)∈L′:Fi∈L′J\L′α
wi)

= PrL′ [I] .

• Suppose I does not satisfy Lα. Since Lα is equivalent to L′α, I does not satisfy

L′α. By Proposition 4 (in the technical appendix), we have PrL [I] = PrL′ [I] =

0.

Theorem 11 Given any Y ⊆ V and variable assignments X = x, Y = y, Z = z,

the probability defined by PCM, PM(YX=x = y | Z = z), is equal to the following

probability defined by LPMLN semantics,

PM(YX=x = y | Z = z) = PΠM(Do(X = x, counterfactual) ∧ Y (counterfacutual) = y | Z(actual) = z)

=

∑
I�Do(X=x,counterfactual)∧Y (counterfacutual)=y∧Z(actual)=z P (I)∑

I�Z(actual)=z P (I)

where Do(X = x, counterfactual) is an abbreviation of

Do(x1X1
, counterfactual) ∧ · · · ∧Do(xnXn , counterfactual)

for X = 〈X1, . . . , Xn〉 and x = 〈x1, . . . , xn〉, and similarly V (w) = v where V is Y or

Z, v is y or z and w is actual or counterfactual is an abbreviation of

V1(w) = v1 ∧ · · · ∧ Vn(w) = vn

for V = 〈V1, . . . , Vn〉 and v = 〈v1, . . . , vn〉.
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Proof. By the assumption that submodels are causal models, and from the construc-

tion of Πtwin
M ∪Do(X = x), it can be seen that for Πtwin

M ∪Do(X = x) the following

conditions hold

• Comp(Πtwin
M ∪Do(X = x))α is satisfiable, and

• Πtwin
M ∪Do(X = x) is tight.

Thus by Theorem 9 we have that that stable models of Πtwin
M ∪Do(X = x) are iden-

tical to the models of Comp(Πtwin
M ∪Do(X = x)) and their probability distributions

coincide. It can be seen that

Comp(Πtwin
M ∪Do(X = x)) =

{ln(P (Ui = t)) : Ui, ln(P (Ui = f)) : ← Ui | Ui ∈ U}∪

{α : Ui → > | Ui ∈ U}∪

{α : Vi ← Fi | Vi ∈ V }∪

{α : Vi → Fi | Vi ∈ V }∪

{α : V ∗i ← F ∗i ∧ ¬ Do(Vi = t) ∧ ¬ Do(Vi = f) | Vi ∈ V }∪

{α : V ∗i ← Do(Vi = t) | Vi ∈ V }∪

{α : Do(Xi = xi) | Xi ∈ X, xi ∈ x}∪

{α : V ∗i → (F ∗i ∧ ¬ Do(Vi = t) ∧ ¬ Do(Vi = f)) ∨Do(Vi = t) | Vi ∈ V }

{α : V ∗i ← F ∗i ∧ ¬ Do(Vi = t) ∧ ¬ Do(Vi = f) | Vi ∈ V }∪

{α : Do(Xi = xi)→ ⊥ | Xi ∈ V , xi ∈ {t, f} and Xi = xi is not mentioned in X = x} .

where Comp(Πtwin
M ∪ Do(X = x))α is classically equivalent to the following set of

formulas (where the connection between atoms of the form V ∗i and Do predicates are
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eliminated)

{α : Ui → > | Ui ∈ U}∪

{α : Vi ← Fi | Vi = Fi ∈ F}∪

{α : Vi → Fi | Vi = Fi ∈ F}∪

{α : V ∗i ← F ∗i | Vi /∈ X}∪

{α : V ∗i → F ∗i | Vi /∈ X}∪

{α : V ∗i ← > | Vi = Xi for some Xi ∈ X and xi = t}∪

{α : V ∗i → > | Vi = Xi for some Xi ∈ X and xi = t}∪

{α : V ∗i → ⊥ | Vi = Xi for some Xi ∈ X and xi = f}∪

{α : Do(Xi = xi) | Xi ∈ X, xi ∈ x}∪

{α : Do(Xi = xi)→ ⊥ | Xi ∈ V , xi ∈ {t, f} and Xi = xi is not mentioned in X = x} .

By Lemma 12, Comp(Πtwin
M ∪Do(X = x)) is equivalent to the following MLN program

{ln(P (Ui = t)) : Ui, ln(P (Ui = f)) : ← Ui | Ui ∈ U}∪

{α : Ui → > | Ui ∈ U}∪

{α : Vi ← Fi | Vi = Fi ∈ F}∪

{α : Vi → Fi | Vi = Fi ∈ F}∪

{α : V ∗i ← F ∗i | Vi /∈ X}∪

{α : V ∗i → F ∗i | Vi /∈ X}∪

{α : V ∗i ← > | Vi = Xi for some Xi ∈ X and xi = t}∪

{α : V ∗i → > | Vi = Xi for some Xi ∈ X and xi = t}∪

{α : V ∗i → ⊥ | Vi = Xi for some Xi ∈ X and xi = f}∪

{α : Do(Xi = xi) | Xi ∈ X, xi ∈ x}∪

{α : Do(Xi = xi)→ ⊥ | Xi ∈ V , xi ∈ {t, f} and Xi = xi is not mentioned in X = x} .
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which can be viewed as the completion of the following LPMLN program

{ln(P (Ui = t)) : Ui, ln(P (Ui = f)) : ← Ui | Ui ∈ U}∪

{α : Vi ← Fi | Vi = Fi ∈ F}∪

{α : V ∗i ← F ∗i ,¬ Do(Vi = t),¬ Do(Vi = f) | Vi /∈ X}∪

{α : V ∗i | Vi = Xi for some Xi ∈ X and xi = t}∪

{α : Do(Xi = xi) | Xi ∈ X, xi ∈ x}∪

{α : ← Do(Xi = xi) | Xi ∈ V , xi ∈ {t, f} and Xi = xi is not mentioned in X = x}

which can be further viewed as the corresponding LPMLN program of the following

PCM instance

Mtwin
X=x = 〈〈U, V ∪ V ∗ ∪ {Do(Xi = xi) | Xi ∈ X, xi ∈ x} ,

F ∪ F ∗ ∪ {Do(Xi = xi) = > | Xi ∈ X, xi ∈ x}∪

{Do(Xi = xi) = > | Xi ∈ V , xi ∈ {t, f} and Xi = xi is not mentioned in X = x}〉,

P (U)〉

where V ∗ = {V ∗i | Vi ∈ V }, and

F ∗ = {V ∗i = F ∗i | V ∗i /∈ X} ∪ {X∗i = xi | X∗i ∈ X} .

By Proposition 7, we have

PrΠM,X=x∪Do(X=x)[Y
∗ = y | Z = z] = PMtwin

X=x
(Y ∗ = y | Z = z)

=

∑{
u|Y ∗

Mtwin
X=x

(u)=y and ZMtwin
X=x

(u)=z

} P (u)

∑{
u|ZMtwin

X=x
(u)=z

} P (u)

It can be seen from the definition of Mtwin
X=x that{

u | Y ∗Mtwin
X=x

(u) = y and ZMtwin
X=x

(u) = z
}

= {u | YMX=x
(u) = y and ZM(u) = z}

and {
u | ZMtwin

X=x
(u) = z

}
= {u | ZM(u) = z} .
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So we have

PrΠM,X=x∪Do(X=x)[Y
∗ = y | Z = z] =

∑
{u|YMX=x

(u)=y and ZM(u)=z} P (u)∑
{u|ZM(u)=z} P (u)

= PM(YMX=x
= y | Z = z)

4.7.7 Proof of Theorem 12

It can be easily seen from the definition of P (B, r, c = v) and the definition of

P (W, c = v) that the following two lemmas hold:

Lemma 13. For any simple P-log program Π, any possible world W of Π, any con-

stant c and any v ∈ Dom(c) such that c = v is possible in W , we have

P (W, c = v) = P (BW,c, rW,c, c = v)

Lemma 14. For any simple P-log program Π, any possible world W of Π, any con-

stant c and any v ∈ Dom(c) such that c = v is possible in W , we have

PRW (c) = PRBW,c,rW,c(c).

Furthermore, the following corollary can be derived:

Corollary 1. For any simple P-log program Π, any possible world W of Π, any

constant c and any v ∈ Dom(c) such that c = v is possible in W and W � c = v, we

have

• If PRW (c) 6= ∅, then

P (W, c = v) = M
ΠLPMLN (pf cBW,c,rW,c = v);

• If PRW (c) = ∅, then

P (W, c = v) = M
ΠLPMLN (pf c�,rW,c = v).
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For any interpretation I of Π, we define the set SMΠ(I) of stable models of ΠLPMLN

as follows:

SMΠ(I) =
{
J | J is a (probabilistic) stable model of ΠLPMLN

such that J � FI
}
.12

The proof of the next lemma uses a restricted version of the splitting theorem in

Ferraris et al. (2009), which is reformulated as follows:

Theorem 14. Let Π1, Π2 be two finite ground programs where rules are of the form

(2.1), and p, q be disjoint tuples of distinct atoms. If

• Each strongly connected component of the dependency graph of Π1 ∪ Π2 w.r.t.

p ∪ q is a subset of p or a subset of q.

• No atom in p has a strictly positive occurrence in Π2, and

• No atom in q has a strictly positive occurrence in Π1.

then an interpretation I of Π1∪Π2 is a stable model of Π1∪Π2 relative to p∪q if and

only if I is a stable model of Π1 relative to p and I is a stable model of Π2 relative to

q.

Lemma 15. Given a simple P-log program Π and a possible world I of Π, let

AIRREΠ(I) denote the set of all assignments of the constants in the set

IRREΠ(I) = σpf (ΠLPMLN

)\
{
pf c�,rI,c |

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) = ∅

}
\
{
pf cBI,c,rI,c |

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) 6= ∅

}
.

.

There is a 1-1 correspondence between SMΠ(I) and AIRREΠ(I).

12The formula FI is defined in Theorem 12.
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Proof. We use σ to refer to the signature of τ(Π), and σ′ to refer to the signature of

ΠLPMLN

. We construct the 1-1 correspondence as follows.

Given an element J in SMΠ(I), i.e., a stable model of ΠLPMLN

which satisfies FI ,

due to the UEC constraint for constants in IRREΠ(I), SMΠ(I) must assign some

value to all constants in IRREΠ(I) to be a stable model. We extract the assignment

of atoms in IRREΠ(I) from J to obtain the corresponding element in AIRREΠ(I).

Given any arbitrary assignment of constants in IRREΠ(I), we extend this assign-

ment by assigning the constants in σ(ΠLPMLN

) \ IRREΠ(I) in the following way, to

obtain the corresponding element J in SMΠ(I):

• For all c = v ∈ I, set cJ = v.

• For all constants of the form pf c�,rI,c , where c ∈ σ, cI = v, c = v is possible in I

and PRI(c) = ∅, set (pf c�,rI,c)
J = v, and set (AssignedrI,c)

J to be undefined.

• For all constants of the form pf cBI,c,rI,c , where c ∈ σ, cI = v, c = v is possible in

I and PRI(c) 6= ∅, set (pf cBI,c,rI,c)
J = v, and set (AssignedrI,c)

J = t.

The above construction of J guarantees that J satisfies (ΠLPMLN

)hard and FI . Next

we show that J is a stable model of ΠLPMLN

:

We split rules in ΠLPMLN

J into two subsets ΠLPMLN

J,1 and ΠLPMLN

J,2 as follows:

• ΠLPMLN

J,1 contains all rules in τ(Π), and rules of the following forms:

1. c = v ← B,B′, pf cB′,r = v, not intervene(c), where c is a constant of

σ, v ∈ Dom(c), B is the body of some random selection rule r of the

form [r] random(c) ← B, and B′ appears in some pr-atom of the form

pr(c = v | B′) = p where p ∈ [0, 1];
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2. c = v ← B, pf c�,r = v, not Assignedr, not intervene(c), where c is a con-

stant of σ, v ∈ Dom(c), and B is the body of some random selection rule

r of the form [r] random(c)← B;

• ΠLPMLN

J,2 is ΠLPMLN

J \ ΠLPMLN

J,1

It can be seen that no atom in σ has a strictly positive occurrence in ΠLPMLN

J,2 , and

no atom in σ′ \σ (Atoms of the form “Assignedr” and “pf c,r”) has a strictly positive

occurrence in ΠLPMLN

J,1 . Furthermore, the construction of ΠLPMLN

guarantees that all

loops of size greater than one involves atoms in σ only. So each strongly connected

component of the dependency graph of ΠLPMLN

J w.r.t. σ′ is a subset of σ or a subset

of σ′ \ σ. By Theorem 14, it suffices to show that J is a stable model of ΠLPMLN

J,1

relative to σ and J is a stable model of ΠLPMLN

J,2 relative to σ′ \ σ.

• J is a stable model of ΠLPMLN

J,1 relative to σ: Since I is a stable model of

τ(Π) relative to σ, J is a stable model of τ(Π) relative to σ. It can be easily

seen from the construction of J that J � ΠLPMLN

J,1 . Since τ(Π) is a subset of

ΠLPMLN

J,1 , by Proposition 1, J is a stable model of ΠLPMLN

J,1 relative to σ.

• J is a stable model of ΠLPMLN

J,2 relative to σ′ \σ: It can be easily seen from

the construction of J that J � ΠLPMLN

J,2 . Also as we discussed earlier, all loops

of size greater than one do not involve atoms in σ′\σ. So it suffices to show that

the loop formula of each loop consisting of a single atom in σ′ \ σ is satisfied by

J . σ′ \ σ contains two types of atoms: 1) atoms of the form Assignedr, where

r is some random selection rule, and 2) atoms of the form pf c,r = v, where c is

a constant of σ, is � or B such that pr(c = v′ | B) = p is a pr-atom in Π,

v ∈ Dom(c), and r is a random selection rule of the form [r] random(c)← B′.

– Consider atoms of the form 1). These atoms appear and only appear at
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the head of rules of the form

Assignedr ← B,B′, not Intervene(c).

where c is the atom associated with the random selection rule r, B′ is

the body of the random selection rule r, and B occurs in some pr-atom

pr(c = v | B) = p. The body of this rule involves atoms in σ only. The con-

struction of J sets Assignedr to be true only when PRI(c) 6= ∅, which im-

plies Assignedr is true in J only when J satisfies not Intervene(c), B and

B′. Note that B, not Intervene(c) does not contain Assignedr. So clearly

B,B′not Intervene(c) is a one disjunctive term in ES
ΠLPMLN ({Assignedr}).

So Assignedr → ES
ΠLPMLN ({Assignedr}) is satisfied.

– Consider atoms of the form 2). Each of these atoms appears and only

appears as an atomic fact in ΠLPMLN

J,2 . So the loop formulas for these

atoms are of the form pf c,r = v → >. Clearly these formulas are satisfied

by J .

So J must be a stable model of ΠLPMLN

J,2 relative to σ′ \ σ.

Lemma 16. For any simple P-log program Π and any possible world I of Π, we have

µ̂Π(I) =
∑

J :J∈SMΠ(I)

W ′′

ΠLPMLN (J).
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Proof.

µ̂Π(I) =
∏

c = v, I :
c = v is possible in I

and I � c = v

P (I, c = v)

=
∏

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) 6= ∅

P (I, c = v)×
∏

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) = ∅

P (I, c = v)

(Corollary 1) =
∏

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) 6= ∅

M
ΠLPMLN (pf cBI,c,rI,c = v)×

∏
c = v, I :

c = v is possible in I,
I � c = v

and PRI(c) = ∅

M
ΠLPMLN (pf c�,rI,c = v)

=
∏

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) 6= ∅

M
ΠLPMLN (pf cBI,c,rI,c = v)×

∏
c = v, I :

c = v is possible in I,
I � c = v

and PRI(c) = ∅

M
ΠLPMLN (pf c�,rI,c = v)×

∏
pf:

pf ∈ σpf (ΠLPMLN
) \

{
pfc�,rI,c

|
c = v, I :

c = v is possible in I,
I � c = v

and PRI (c) = ∅

}
\{

pfcBI,c,rI,c
|

c = v, I :
c = v is possible in I,

I � c = v
and PRI (c) 6= ∅

}

∑
v:v∈Dom(pf)

M
ΠLPMLN (pf = v)

Consider interpretations in the set SMΠ(I). By Lemma 15, there is a 1-1 cor-

respondence between those interpretations and assignments to constants in the set

σpf (ΠLPMLN

) \
{
pf c�,rI,c |

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) = ∅

}
\
{
pf cBI,c,rI,c |

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) 6= ∅

}
. Further-

more, for each of those interpretations J , W ′′(J) is precisely the product of the

probability assigned to constants in σpf (ΠLPMLN

). Since the third term of the last

equation above ranges over all assignments to constants in the set σpf (ΠLPMLN

) \
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{
pf c�,rI,c |

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) = ∅

}
\
{
pf cBI,c,rI,c |

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) 6= ∅

}
, we have

µ̂Π(I) =
∏

c = v, I :
c = v is possible in I,

I � c = v
and PRI(c) 6= ∅

M
ΠLPMLN (pf cBI,c,rI,c = v)×

∏
c = v, I :

c = v is possible in I,
I � c = v

and PRI(c) = ∅

M
ΠLPMLN (pf c�,rI,c = v)×

∑
J:J∈SMΠ(I)

∏
pf:

pf ∈ σpf (ΠLPMLN
) \

{
pfc�,rI,c

|
c = v, I :

c = v is possible in I,
I � c = v

and PRI (c) = ∅

}
\{

pfcBI,c,rI,c
|

c = v, I :
c = v is possible in I,

I � c = v
and PRI (c) 6= ∅

}

M
ΠLPMLN (pf = pfJ)

=
∑

J:J∈SMΠ(I)

[ ∏
pf:

pf ∈ σpf (ΠLPMLN
) \

{
pfc�,rI,c

|
c = v, I :

c = v is possible in I,
I � c = v

and PRI (c) = ∅

}
\{

pfcBI,c,rI,c
|

c = v, I :
c = v is possible in I,

I � c = v
and PRI (c) 6= ∅

}

M
ΠLPMLN (pf = pfJ)×

∏
c = v, I :

c = v is possible in I,
I � c = v

and PRI(c) 6= ∅

M
ΠLPMLN (pf cBI,c,rI,c = v)×

∏
c = v, I :

c = v is possible in I,
I � c = v

and PRI(c) = ∅

M
ΠLPMLN (pf c�,rI,c = v)

]

=
∑

J:J∈SMΠ(I)

∏
c = v ∈ σpf (ΠLPMLN

) and cJ = v

M
ΠLPMLN (c = v)

=
∑

J:J∈SMΠ(I)

W ′′
ΠLPMLN (J).

Lemma 17. Given a consistent simple P-log program Π of signature σ, for every

stable model J of ΠLPMLN

(whose signature is denoted by σ′), J ’s restriction on σ is

a possible world of Π.

Proof. We construct J ’s restriction on σ by defining cI = cJ for all c ∈ σ.

• Clearly J ∈ SMΠ(I).

• Now we show that I is a possible world of Π. Since Π is consistent, τ(Π) is

satisfiable, and thus J � τ(Π) (Otherwise J would not be a stable model of

ΠLPMLN

according to Proposition 3). Since J � τ(Π), we get I � τ(Π). To
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see that I is a stable model of ΠLPMLN

, we consider the loop formula L∧ →

ESτ(Π)(L) for any loop of L of τ(Π) such that I � L∧. L is a loop of ΠLPMLN

J

as well since J � τ(Π), and it is satisfied by J since I ⊆ J . Since J is a stable

model of ΠLPMLN

J , we have

J � ES
ΠLPMLN

J

(L),

i.e.,

J �
∨

A∩L6=∅

A←B∧N∈ΠLPMLN

J
B∩L=∅

(B ∧N ∧
∧

b∈A\L

¬b).

Consider the following two cases:

– L contains only atoms that are not possible in I. Since those atoms do

not occur in the head of any rules in ΠLPMLN

\ τ(Π), those rules do not

contribute in ES
ΠLPMLN

J

(L). So ES
ΠLPMLN

J

(L) = ESτ(Π)(L) in this case.

Since τ(Π) involves atoms in σ only, and I and J agree on atoms in σ, we

have

I � ESτ(Π)(L).

– L contains some atoms that are possible in I. In this case, since J �

ES
ΠLPMLN

J

(L), there must be at least one rule A← B∧N ∈ ΠLPMLN

J such

that A ∩ L 6= ∅, B ∩ L = ∅ and J � B ∧N ∧
∧
b∈A\L ¬b. There are again

two possible cases:

∗ A← B ∧N ∈ τ(Π). In this case, since τ(Π) involves atoms in σ only,

and I and J agree on atoms in σ, we have I � B∧N∧
∧
b∈A\L ¬b. Since

this rule contributes to ESτ(Π)(L) as well, we have I � ESτ(Π)(L).
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∗ A ← B ∧N /∈ τ(Π). According to the construction of ΠLPMLN

, A ←

B ∧N must be of one of the following two forms:

c = v ← B′, pf c�,r = v, not Assignedr

or

c = v ← B′′, B′, pf cB,r = v, not Intervene(c)

where c = v is some atom possible in I, r is the random selection rule

of the form

[r] random(c)← B′,

and B′′ is the body of some pr-atom related to c and r. In either case,

J satisfies B′, which involves atoms in σ only. So I satisfies B′ as well.

Consider the following rule in τ(Π):

c = v1; . . . ; c = vn ← B′, not Intervene(c). (4.17)

There are two possible cases:

· J does not satisfy Intervene(c). In this case, (4.17) is satisfied by

J , and clearly

c = v1; . . . ; c = vn ← B′, not Intervene(c) ∈
{
A← B ∧N |

A∩L6=∅
A←B∧N∈τ(Π)

B∩L=∅

}
.

So one disjunctive term ofESτ(Π)(L) is satisfied by I. So ESτ(Π)(L)

is satisfied by I.

· J satisfies Intervene(c). In this case, for J to be a stable model

of ΠLPMLN

, there must be a rule of the following form

Intervene(c)← Do(c = v)
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in τ(Π), where c = v ∈ J and c = v ∈ I, whose body is satisfied

by J , which means the following rule

c = v ← Do(c = v)

in τ(Π) is satisfied by J . Clearly

c = v ← Do(c = v) ∈
{
A← B ∧N |

A∩L6=∅
A←B∧N∈τ(Π)

B∩L=∅

}
.

So one disjunctive term ofESτ(Π)(L) is satisfied by I. So ESτ(Π)(L)

is satisfied by I.

So I satisfies ESτ(Π)(L) for all loops L of τ(Π). Consequently, I is a stable

model of τ(Π), and thus I is a possible world of Π.

So I is a stable model of τ(Π), and thus a possible world of Π.

Theorem 12 For any consistent simple P-log program Π of signature σ and any

possible world W of Π, we construct a formula FW as follows.

FW = (
∧
c=v∈W c = v)∧

(
∧

c, v :
c = v is possible in W ,

W |= c = v and PRW (c) 6= ∅

pf cBI,c,rI,c = v)

∧(
∧

c, v :
c = v is possible in W ,

W |= c = v and PRW (c) = ∅

pf c�,rI,c = v)

We have

µΠ(W ) = P
ΠLPMLN (FW ).

For any proposition A of signature σ,

PΠ(A) = P
ΠLPMLN (A).
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Proof. We first show

∑
W is a possible world of Π

µ̂Π(W ) =
∑

J∈SM ′′
[
ΠLPMLN

]W ′′

ΠLPMLN (J)

i.e., the normalization factor of µ̂ is the normalization factor of W ′′

ΠLPMLN .

By Lemma 16 we have,

∑
W is a possible world of Π

µ̂Π(W ) =
∑

W is a possible world of Π

∑
J∈SMΠ(W )

W ′′

ΠLPMLN (J)

(4.18)

By Lemma 17, for every stable model J of ΠLPMLN

, there exists a possible world W

of Π such that J ∈ SMΠ(W ). So we can enumerate all stable models of ΠLPMLN

by

enumerating all possible worlds W of Π and enumerating all elements in SMΠ(W )

for each W , and thus the right-hand side of (4.18) can be rewritten as

∑
J is a stable model of ΠLPMLN

W ′′

ΠLPMLN (J).

By Lemma 2, an interpretation J is a stable model of ΠLPMLN

if and only if

J ∈ SM ′′
[
ΠLPMLN

]
. So the right-hand side of (4.18) can be further rewritten as

∑
J∈SM ′′

[
ΠLPMLN

]W ′′

ΠLPMLN (J).
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Thus we have

µΠ(W ) =
µ̂Π(W )∑

W is a possible world of Π µ̂(W )

=
µ̂Π(W )∑

J∈SM ′′
[
ΠLPMLN

]W ′′

ΠLPMLN (J)

(By Lemma 16) =

∑
J∈SMΠ[W ] W

′′

ΠLPMLN (J)∑
J∈SM ′′

[
ΠLPMLN

]W ′′

ΠLPMLN (J)

=
∑

J∈SMΠ[W ]

W ′′

ΠLPMLN (J)∑
J∈SM ′′

[
ΠLPMLN

]W ′′

ΠLPMLN (J)

=
∑

J∈SMΠ[W ]

P ′′
ΠLPMLN (J)

For those interpretations J that do not belong to SMΠ [W ] but satisfy FW , it must

be the case that J is not a stable model of ΠLPMLN

. By Lemma 2, P ′′
ΠLPMLN (J) = 0.

So we have

µΠ(W ) =
∑

J ∈ SMΠ [W ] and J � FW

P ′′
ΠLPMLN (J) +

∑
J /∈ SMΠ [W ] and J � FW

P ′′
ΠLPMLN (J)

=
∑
J�FW

P ′′
ΠLPMLN (J) (4.19)

and consequently by Theorem 4,

µΠ(W ) =
∑
J�FW

P
ΠLPMLN (J)

= P
ΠLPMLN (FW ). (4.20)

According to the definition,

PΠ(F ) =
∑

W is a possible world of Π that satisfies F

µΠ(W ).
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Using the above result (4.20), we have

PΠ(F ) =
∑

W is a possible world of Π that satisfies F

P
ΠLPMLN (FW )

=
∑

W is a possible world of Π that satisfies F

∑
W∈SMΠ(W )

P
ΠLPMLN (W ).

The right-hand side of the last equation is the sum of the probabilities of a collection

of stable models of ΠLPMLN

. Clearly all those stable models of ΠLPMLN

satisfies F

since they are all from some SMΠ(W ) for some possible world W of Π that satisfies

F . Furthermore, given any stable model J of ΠLPMLN

that satisfies F , by lemma

17, there exists a possible world W of Π such that J ∈ SMΠ(W ). Since W and J

agree on all atoms in σ(Π) and J � F , W � F . So the probability of J is counted in

the right-hand side of the above equation. Finally, obviously no two stable models of

ΠLPMLN

are counted twice. Hence, the right-hand side can be rewritten as

P
ΠLPMLN (F ),

and thus we have

PΠ(F ) = P
ΠLPMLN (F ).
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Chapter 5

LPMLN INFERENCE

As we mentioned in Chapter 4, LPMLN can be embedded in ASP with weak constraints

and Markov Logic. Following this result, we have implemented two systems to com-

pute LPMLN. our systems, lpmln2asp 1.0 and lpmln2mln 1.0, compute LPMLN by

translating LPMLN programs into ASP programs and MLN programs, resp., In this

chapter, we will go over each of these two systems.

Figure 5.1: LPMLN System Architecture

Figure 5.1 shows the overview of the implementations. Each of the input languages

of lpmln2asp 1.0 and lpmln2asp 1.0 adopts the syntax of the target language that

it is translated into. More precisely, the input language of lpmln2asp 1.0 is identical

to the input language of clingo except that weights are prepended to soft rules. The

input language of lpmln2mln 1.0 adopts the syntax of input language of alchemy

with minor modifications, such as using <= instead of =>. This is intended for the

users who are already experienced with clingo and alchemy.

The systems are publicly available at http://reasoning.eas.asu.edu/lpmln/,

107



Figure 5.2: Architecture of System lpmln2asp 1.0

along with the user manual and examples. We refer the reader to the system homepage

for more details.

5.1 System lpmln2asp 1.0

System lpmln2asp 1.0 is an implementation of LPMLN based on the result in

Section 4.1.3 using clingo v4.5. It can be used for computing the probabilities

of stable models, marginal/conditional probability of a query, as well as the most

probable stable models.

In the input language of lpmln2asp 1.0, a soft rule is written in the form

wi Head i ← Body i (5.1)

where wi is a real number in decimal notation, and Head i ← Body i is a clingo rule. A

hard rule is written without weights and is identical to a clingo rule. For instance,

the “Bird” example from Section 3.2 can be represented in the input language of

lpmln2asp 1.0 as follows. The first three rules represent definite knowledge while

the last two rules represent uncertain knowledge with different confidence levels.

% bird.lpmln

bird(X) :- residentbird(X).

bird(X) :- migratorybird(X).

:- residentbird(X), migratorybird(X).

2 residentbird(jo).
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1 migratorybird(jo).

The basic command line syntax of executing lpmln2asp 1.0 is

lpmln2asp -i <input file> [-r <output file>] [-e <evidence file>]

[-q <query predicates>] [-hr] [-all] [-clingo "<clingo options>"]

which follows the alchemy command line syntax.

The mode of computation is determined by the options provided to lpmln2asp

1.0. By default, the system finds a most probable stable model of lpmln2asppnt(Π)

(MAP estimate) by leveraging clingo’s built-in optimization method for weak con-

straints.

For computing marginal probability, lpmln2asp 1.0 utilizes clingo’s interface

with Python. When clingo enumerates each stable model of lpmln2asppnt(Π), the

computation is interrupted by the probability computation module, a Python program

which records the stable model as well as its penalty specified in the unsat atoms true

in the stable model. Once all the stable models are generated, the control returns

to the module, which sums up the recorded penalties to compute the normalization

constant as well as the probability of each stable model. The probabilities of query

atoms (specified by the option -q) are also calculated by adding the probabilities of

the stable models that contain the query atoms. For instance, the probability of a

query atom residentbird(jo) is
∑

I|=residentbird(jo)

P (I). The option -all instructs

the system to display all stable models and their probabilities.

For conditional probability, the evidence file <evidence file> is specified by the

option -e. The file may contain any clingo rules, but usually they are constraints,

i.e., rules with the empty head. The main difference from the marginal probability

computation is that clingo computes lpmln2asppnt(Π)∪ <evidence file> instead

of lpmln2asppnt(Π).

Below we illustrate how to use the system for various inferences.
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MAP (Maximum A Posteriori) inference: The command line to use is

lpmln2asp -i <input file>

By default, lpmln2asp 1.0 computes MAP inference. For example, lpmln2asp -i bird. lpmln

returns

residentbird(jo) bird(jo) unsat(5,"1.000000")

Optimization: 1000

OPTIMUM FOUND

Marginal probability of all stable models: The command line to use is

lpmln2asp -i <input file> -all

For example, lpmln2asp -i bird. lpmln -all outputs

Answer: 1

residentbird(jo) bird(jo)

unsat(5,"1.000000")

Optimization: 1000

Answer: 2

unsat(4,"2.000000") unsat(5,"1.000000")

Optimization: 3000

Answer: 3

unsat(4,"2.000000") bird(jo)

migratorybird(jo)

Optimization: 2000

Probability of Answer 1 : 0.665240955775

Probability of Answer 2 : 0.0900305731704

Probability of Answer 3 : 0.244728471055

Marginal probability of query atoms: The command line to use is

lpmln2asp -i <input file> -q <query predicates>
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This mode calculates the marginal probability of the atoms whose predicates are spec-

ified by -q option. For example, lpmln2asp -i birds .lp -q residentbird outputs

residentbird(jo) 0.665240955775

Conditional probability of query given evidence: The command line to use is

lpmln2asp -i <input file> -q <query predicates> -e <evidence file>

This mode computes the conditional probability of a query given the evidence speci-

fied in the < evidence file>. For example,

lpmln2asp -i birds.lp -q residentbird -e evid.db

where evid.db contains

:- not bird(jo).

outputs the conditional probability P (residentbird(X) | bird(jo)):

residentbird(jo) 0.73105857863

Debugging ASP Programs: The command line to use is

lpmln2asp -i <input file> -hr -all

By default, lpmln2asp 1.0 does not translate hard rules and pass them to clingo

as is. The option -hr instructs the system to translate hard rules as well. According

to Proposition 2 by Lee and Wang (2016), as long as the LPMLN program has a

probabilistic stable model that satisfies all hard rules, the simpler translation that

does not translate hard rules gives the same result as the full translation and is more

computationally efficient. Since in many cases hard rules represent definite knowledge

that should not be violated, this is desirable.

On the other hand, translating hard rules could be relevant in some other cases,

such as debugging an answer set program by finding which rules cause inconsis-

tency. For example, consider a clingo input program bird.lp, that is similar to
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bird.lpmln but drops the weights in the last two rules. clingo finds no stable mod-

els for this program. However, if we invoke lpmln2asp 1.0 on the same program

as

lpmln2asp -i bird.lp -hr

the output of lpmln2asp 1.0 shows three probabilistic stable models, each of which

shows a way to resolve the inconsistency by ignoring the minimal number of the rules.

For instance, one of them is {bird(jo), residentbird(jo)}, which disregards the

last rule. The other two are similar.

Note that the probability computation involves enumerating all stable models so

that it can be much more computationally expensive than the default MAP inference.

On the other hand, the computation is exact, so compared to an approximate infer-

ence, the “gold standard” result is easy to understand. Also, the conditional prob-

ability is more effectively computed than the marginal probability because clingo

effectively prunes many answer sets that do not satisfy the constraints specified in

the evidence file.

5.1.1 Computing MLN with lpmln2asp 1.0

A typical example in the MLN literature is a social network domain that describes

how smokers influence other people, which can be represented in LPMLN as follows.

We assume three people alice, bob, and carol, and assume that alice is a smoker,

alice influences bob, bob influences carol, and nothing else is known.

w : smoke(x) ∧ influence(x, y)→ smoke(y)

α : smoke(alice) α : influence(alice, bob) α : influence(bob, carol).

(5.2)

(w is a positive number.) One may expect bob is less likely a smoker than alice, and

carol is less likely a smoker than bob.
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Indeed, the program above defines the following distribution (we omit the influence

relation, which has a fixed interpretation.)

Possible World Weight

{smoke(alice),¬smoke(bob),¬smoke(carol)} k · e8w

{smoke(alice), smoke(bob),¬smoke(carol)} k · e8w

{smoke(bob),¬smoke(alice), smoke(carol)} 0

{smoke(alice), smoke(bob), smoke(carol)} k · e9w

where k = e3α. The normalization constant is the sum of all the weights: k · e9w +

2k · e8w. This means P (smoke(alice)) = 1 and

P (smoke(bob)) = lim
α→∞

k · e8w + k · e9w

k · e9w + 2k · e8w
> P (smoke(carol)) = lim

α→∞

k · e9w

k · e9w + 2k · e8w
.

The result can be verified by lpmln2asp 1.0. For w = 1, the input program

smoke.lpmln is

1 smoke(Y) :- smoke(X), influence(X, Y).

smoke(alice). influence(alice, bob). influence(bob, carol).

Executing lpmln2asp -i smoke.lpmln -q smoke outputs

smoke(alice) 1.00000000000000

smoke(bob) 0.788058442382915

smoke(carol) 0.576116884765829

as expected.

On the other hand, if (5.2) is understood under the MLN semantics (assuming

influence relation is fixed as before), similar to above, one can compute

P (smoke(bob)) =
e8w + e9w

3e8w + e9w
= P (smoke(carol)).

In other words, the degraded probability along the transitive relation does not hold

under the MLN semantics. This is related to the fact that Markov logic cannot

express the concept of transitive closure correctly as it inherits the FOL semantics.
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Figure 5.3: Architecture of System lpmln2mln 1.0

According to Theorem 6, MLN can be easily embedded in LPMLN by adding a

choice rule for each atom with an arbitrary weight, similar to the way propositional

logic can be embedded in ASP using choice rules. Consequently, it is possible to use

system lpmln2asp 1.0 to compute MLN, which is essentially using an ASP solver to

compute MLN.

Let smoke.mln be the resulting program. Executing lpmln2asp -i smoke.mln

-q smoke outputs

smoke(alice) 1.0 smoke(bob) 0.650244590946 smoke(carol) 0.650244590946

which agrees with the computation above.

5.2 System lpmln2mln 1.0

System lpmln2mln 1.0 is an implementation of LPMLN based on the result in

Section 4.2.2 using alchemy (v2.0), tuffy (v0.3) and rockit (v0.5).

The basic command line syntax of executing lpmln2mln 1.0 is

lpmln2mln -i <input file> -r <output file> -q <query predicates>

[-e <evidence file>]

[-tuffy| -rockit| -alchemy] [-mln "<options for mln solvers>"]

which is similar to the command of executing lpmln2asp 1.0.

The syntax of the input language of lpmln2mln 1.0 follows that of alchemy,

114



except that it uses a rule form. For example, consider again “Bird” example in Section

3.2. In the input language of lpmln2mln 1.0, it is encoded as

entity={Jo}

Bird(entity)

MigratoryBird(entity)

ResidentBird(entity)

Bird(x) <= ResidentBird(x).

Bird(x) <= MigratoryBird(x).

<= ResidentBird(x) ^ MigratoryBird(x).

2 ResidentBird(Jo)

1 MigratoryBird(Jo)

Executing

lpmln2mln -i bird.lpmln -r out -q Bird,ResidentBird,MigratoryBird

gives

Bird(Jo) 0.90296 ResidentBird(Jo) 0.667983 MigratoryBird(Jo) 0.235026

(When no MLN solver is specified in the command line, alchemy is called by default.)

5.3 Comparison between Two LPMLN Implementations

When the domain is small, our experience is that it is much more convenient to

work with lpmln2asp 1.0 because it supports many useful ASP constructs and its

exact computation yields outputs that are easier to understand. Once we make sure

the program is correct and we do not need advanced ASP constructs nor recursive

definitions, we may use lpmln2mln 1.0 for more scalable inference.

We report the running time statistics for both lpmln2asp 1.0 and lpmln2mln

1.0 on the example of finding a maximal “relaxed clique” in a graph, where the goal

is to select as many nodes as possible while a penalty is assigned for each pair of

disconnected nodes. The penalty assigned to disconnected nodes and the reward

given to each node included in the subgraph define how much “relaxed” the clique is.
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The lpmln2asp 1.0 encoding of the relaxed clique example is

{in(X)} :- node(X).

disconnected(X, Y) :- in(X), in(Y), not edge(X, Y).

5 :- not in(X), node(X).

5 :- disconnected(X, Y).

The lpmln2mln 1.0 encoding of the relaxed clique example is

{In(x)} <= Node(x).

Disconnected(x, y) <= In(x) ^ In(y) ^ !Edge(x, y).

5 <= !In(x) ^ Node(x)

5 <= Disconnected(x, y)

We use a Python script to generate random graphs with each edge generated

with a fixed probability p. We experiment with p = 0.5, 0.8, 0.9, 1 and different

numbers of nodes. For each problem instance, we perform MAP inference to find a

Figure 5.4: Running Statistics on Finding Relaxed Clique
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maximal relaxed clique with both lpmln2asp 1.0 and lpmln2mln 1.0. The timeout

is 20 minutes. The experiments were performed on a machine powered by 4 Intel(R)

Core(TM) i5-2400 CPU with OS Ubuntu 14.04.5 LTS and 8G memory.

Figure 5.4 shows running statistics of utilizing different underlying solvers. For

lpmln2asp 1.0, grounding finishes almost instantly for all problem instances that we

tested. We plot how solving times vary according to the number of nodes for different

edge generation probabilities (top left graph). Roughly, solving time increases as the

number of nodes increases. However, there is no clear correlation between solving

time and the edge probability (i.e., the density of the graph). For p = 0.5, the

lpmln2asp 1.0 system first times out when #Nodes = 50, while for both p = 0.8

and p = 0.9, it first times out when #Node = 100. On the other hand, when

#Node = 20, solving time roughly increases as the edge probability increases except

for p = 0.5. The running time is sensitive to particular problem instances, due to the

exact optimization algorithm CDNL-OPT Gebser et al. (2011) used by clingo, which

only terminates when a true optimal solution is found. The non-deterministic nature

of CDNL-OPT also brings randomness on the path through which an optimal solution

is found, which makes the running time differ even among similar-sized problem

instances, while in general, as the size of the graph increases, the search space gets

larger, thus the solving time increases.

For lpmln2mln 1.0 with alchemy (bottom left and bottom right), grounding

(MRF creating time) becomes the bottleneck. It increases much faster than solving

time, and times out first when #Nodes = 500. Again, the running time increases as

the number of nodes increases. On the other hand, unlike lpmln2asp 1.0, alchemy

uses MaxWalkSAT for MAP inference, which allows a suboptimal solution to be

returned. The approximate nature of the method allows relatively consistent running

times for different problem instances, as long as parameters such as the maximum
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number of iterations/tries are fixed among all experiments. The running times are

not also much affected by the edge probability.

In general, lpmln2mln 1.0 can be more scalable via parameter setting, while

lpmln2asp 1.0 grants better solution quality. lpmln2mln 1.0 with tuffy shows a

similar behavior as lpmln2mln 1.0 with alchemy.

5.4 Using LPMLN Systems to Compute Other Languages

5.4.1 Computing ProbLog

As discussed in Section 4.3, ProbLog can be viewed as a special case of the LPMLN

language, in which soft rules are atomic facts only. System problog2 implements a

native inference and learning algorithm which converts probabilistic inference prob-

lems into weighted model counting problems and then solves with knowledge com-

pilation methods Fierens et al. (2013). We compare the performance of lpmln2asp

1.0 with that of problog2 on ProbLog input programs. We encode the problem of

reachability in a probabilistic graph in both languages, and perform MAP inference

(“given that there is a path between two nodes, what is the most likely graph?”)

as well as marginal probability computation (“given two particular nodes, what is

the probability that there exists a path between them?”). We use a Python script

to generate edges with probabilities randomly assigned. For the probabilistic facts

p :: edge(n1, n2) (0 < p < 1) in problog2, we write ln(p/(1 − p)) : edge(n1, n2) for

lpmln2asp 1.0,

which makes the probability of the edge being true to be p and being false to be

1− p.

The path relation is defined in the input language of lpmln2asp 1.0 as

path(X,Y) :- edge(X,Y).
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Figure 5.5: Running Statistics on Reachability in a Probabilistic Graph

path(X,Y) :- path(X,Z), path(Z, Y), Y != Z.

and in the input language of problog2 as

path(X,Y) :- edge(X,Y).

path(X,Y) :- path(X,Z), path(Z,Y), Y \== Z.

Figure 5.5 shows the running time of each experiment. lpmln2asp 1.0 outper-

forms problog2 with the default setting (exact inference) in both MAP inference

and marginal probability computation. However, both systems’ marginal probability

computations are not scalable because they enumerate all models. Using a sampling-

based inference instead, problog2 is able to handle marginal probability computa-

tion more effectively (the MAP inference in problog2 is exact inference only). In

general, compared to running on tight programs, problog2 is slow for non-tight

programs such as the program we use here. A possible reason is that it has to convert

the input program, combined with the query, into weighted Boolean formulas, which

is expensive for non-tight programs.
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5.4.2 Reasoning about Probabilistic Causal Model

Section 4.4.2 has shown how to represent Pearl’s probabilistic causal model by

LPMLN. Due to the acyclicity assumption on the causality, the LPMLN representation

is tight, so we can use either implementation of LPMLN to compute probabilistic

queries on a PCM. (Related to this, Appendix A of Lee et al. (2017) shows how

Bayesian networks can be represented in LPMLN.)

Consider Example 5 again, We illustrate how we use LPMLN systems to compute

the counterfactual query “Given that the prisoner is dead, what is the probability

that the prisoner would be alive if Rifleman A had not shot?” According to Pearl

(2000), the answer is (1−p)q
1−(1−p)(1−q) .

Theorem 4 from the paper by Lee et al. (2015) states that the counterfactual

reasoning in PCM can be reduced to LPMLN computation. The translation of PCM

into LPMLN in Section 4.4 by Lee et al. (2015) can be represented in the input language

of lpmln2asp 1.0 as follows, where as, bs, cs, ds are nodes in the twin network, a1

means that a is true; a0 means that a is false; other atoms are defined similarly. Let

p = 0.7 and q = 0.2.

@log(0.7/0.3) u.

@log(0.2/0.8) w.

c :- u.

a :- c.

a :- w.

b :- c.

d :- a.

d :- b.

cs :- u, not do(c1), not do(c0).

as :- cs, not do(a1), not do(a0).

as :- w, not do(a1), not do(a0).

bs :- cs, not do(b1), not do(b0).

ds :- as, not do(d1), not do(d0).

ds :- bs, not do(d1), not do(d0).
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cs :- do(c1).

as :- do(a1).

bs :- do(b1).

ds :- do(d1).

To represent the counterfactual query, the evidence file contains:

do(a0).

:- not d.

Note the different ways that intervention (do(a0)) and observation (d) are encoded.

With the command lpmln2asp -i pcm.lp -r out -e evid.db -q ds we ob-

tain ds 0.921047297896, which means there is a 8% chance that the prisoner would

be alive.

The other queries mentioned in Example 6, i.e., prediction, abduction, transduc-

tion, action, can be similarly automated with lpmln2asp 1.0.

5.5 Related Work

Computing marginal/conditional probabilities typically involves summing up vari-

able assignments that satisfy the query. While enumerating all variable assignments

is an intractable task, there are various ways to make this process more efficient.

Fierens et al. (2013) computes marginal and conditional probabilities under Problog

programs by converting the program together with the query into weighted Boolean

formulas and then turn the inference problem into weighted model counting problems,

which are then solved by knowledge compilation techniques. In particular, Fierens

et al. (2013) compiles Problog programs into deterministic-Decomposable Negation

Normal Form (d-DNNF) circuits. Vlasselaer et al. (2014), instead, compiles Problog

programs into Sentential Decision Diagrams (SDD), which yields better performance

in inference tasks.
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Bellodi et al. (2014) have lifted the inference method for probabilistic graphical

model,variable elimination, to first-order level, thus able to utilize the underlying

regularity of the ground programs, resulting in inference processes whose time com-

plexity does not depend on the size of ground instances. Similarly, Singla and Domin-

gos (2008) introduced lifted belief propagation for Markov Logic and Mihalkova and

Richardson (2009) exploit frequent repeated structures and cluster similar query liter-

als to speed up inference. There are also approximate inference algorithms which get

around enumerating all possible variable assignments by sampling a representative

subset of variable assignments. Various sampling methods have been developed for

inference on Markov logic networks. Theoretically, MCMC sampling can be designed

for sampling possible worlds of a Markov logic network, such as Gibbs sampling-

Domingos and Lowd (2009). However, performance of those algorithms is generally

not great in the presence of deterministic or near-deterministic dependencies. To

address this problem, Poon and Domingos (2006) proposed the sampling algorithm

MC-SAT, which is a slice MCMC algorithm that combines MCMC sampling with

satisfiability checking. Possible worlds are sampled from slices, which are determined

by subprograms sampled from the whole program. In Chapter 6, we will present

a sampling algorithm for sampling LPMLN stable model, called MC-ASP, adapted

from MC-SAT. MC-ASP can be easily used to perform sampling-based inference for

LPMLN.

Shterionov et al. (2010) computes the probability of queries by sampling assign-

ments on probabilistic atoms in a hierarchical way, with the hierarchy obtained from

DNF formulas converted from the program together with the query.

For Most Probable Explanation (MPE) inference, one widely used algorithm is

MaxWalkSAT (3.1, Domingos and Lowd (2009)). MaxWalkSAT repeatedly picking

an unsatisfied clause at random and flipping the truth value of one atom in the clause.
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With a predefined probability, the choice on the atom alternate between 1) a random

atom, and 2) the atom that maximize the weighted sum of satisfied clauses, if flipped.

This alternation prevent the search from beings stuck at local optimum.

Nickles (2018) have established sampling methods for PrASP (Nickles and Mileo

(2014)) that can be used for inference. As mentioned in Section 4.6, in PrASP, the

weights of rules are explicitly probabilities. The sampling methods need to either first

explicitly find out a distribution over possible worlds that satisfies the probabilities of

rules, and then sample according to the distribution, or generate samples directly but

in a way that implicitly reflect the probability distribution. Nickles (2018) presents

MCMC based sampling methods for the first approach and simulated annealing and

a modified CDNL (Conflict-Driven Nogood Learning; Gebser et al. (2012)) algorithm

for the second approach.
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Chapter 6

LPMLN WEIGHT LEARNING

In all the above example LPMLN programs, rule weights are manually specified by

the user. This can be done for simple programs, however a systematic assignment of

weights for a complex program could be challenging. A desirable way to address this

problem is to learn the weights from the observed data. In this section, we discuss

weight learning algorithms for LPMLN.

Weight learning in LPMLN is formulated as to find the weights of the rules in

the LPMLN program such that the likelihood of the observed data according to the

LPMLN semantics is maximized. In LPMLN, due to the requirement of a stable model,

deterministic dependencies are often. Poon and Domingos [2006] noted that determin-

istic dependencies break the support of a probability distribution into disconnected

regions, making it difficult to design ergodic Markov chains for MCMC inference,

which motivated them to develop a new algorithm called MC-SAT. We adapt that

algorithm to LPMLN, which we call MC-ASP. Unlike MC-SAT, MC-ASP utilizes ASP

solvers for MCMC sampling. Learning in LPMLN is in accordance with the stable

model semantics, so the learned programs can be used for probabilistic extensions of

knowledge-rich domains that involve reachability analysis and reasoning about dy-

namic domains, for which Markov Logic is not readily applicable.

Throughout this section, we consider only LPMLN programs whose stable models

do not violate hard rules, i.e, LPMLN programs Π such that SM ′[Π] is not empty. We

further reformulate (3.5) in a penalty-based style, and allowing the program Π to be
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non-ground:

W ′
Π(I) =


exp

(
−

∑
wi:Ri ∈ Πsoft

wini(I)

)
if I ∈ SM[Π];

0 otherwise,

where ni(I) is the number of ground instances of Ri that is not satisfied by I. Due

to Proposition 3, under our assumption that SM ′[Π] is not empty, the probability of

any interpretation I can be computed as

PΠ(I) =
W ′

Π(I)∑
J∈SM[Π]

W ′
Π(J)

.

In this section, we use the above equationa of weight and probability.

6.0.1 General Problem Statement

A parameterized LPMLN program Π̂ is defined similarly to an LPMLN program Π

except that non-α weights (i.e., “soft” weights) are replaced with distinct parameters

to be learned. By Π̂(w), where w is a list of real numbers whose length is the same as

the number of soft rules, we denote the LPMLN program obtained from Π̂ by replacing

the parameters with w. The weight learning task for a parameterized LPMLN program

is to find the MLE (Maximum likelihood Estimation) of the parameters as in Markov

Logic. Formally, given a parameterized LPMLN program Π̂ and a ground formula O

(often in the form of conjunctions of literals) called observation or training data, the

LPMLN parameter learning task is to find the values w of parameters such that the

probability of O under the LPMLN program Π is maximized. In other words, the

learning task is to find

argmax
w

PΠ̂(w)(O). (6.1)
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6.0.2 Gradient Method for Learning Weights From a Complete Stable Model

Same as in Markov Logic, there is no closed form solution for (6.1) but the gradient

ascent method can be applied to find the optimal weights in an iterative manner.

We first compute the gradient. Given a (non-ground) LPMLN program Π whose

SM[Π] is non-empty and given a stable model I of Π, the base-e logarithm of PΠ(I),

lnPΠ(I), is

−
∑

wi:Ri∈Πsoft

wini(I)− ln
∑

J∈SM [Π]

exp
(
−

∑
wi:Ri∈Πsoft

wini(J)
)
.

The partial derivative of lnPΠ(I) w.r.t. wi(6= α) is

∂lnPΠ(I)

∂wi
= −ni(I) +

∑
J∈SM [Π]

exp(−
∑

wi:Ri∈Πsoft

wini(J))ni(J)∑
K∈SM [Π]

exp(−
∑

wi:Ri∈Πsoft

wini(K))

= −ni(I) +
∑

J∈SM [Π]

( exp(−
∑

wi:Ri∈Πsoft

wini(J))∑
K∈SM [Π]

exp(−
∑

wi:Ri∈Πsoft

wini(K))

)
ni(J)

= −ni(I) +
∑

J∈SM [Π]

PΠ(J)ni(J) = −ni(I) + E
J∈SM [Π]

[ni(J)]

where E
J∈SM [Π]

[ni(J)] =
∑

J∈SM [Π]

PΠ(J)ni(J) is the expected number of false ground

rules obtained from Ri.

Since the log-likelihood above is a concave function of the weights, any local

maximum is a global maximum, and maximizing PΠ(I) can be done by the standard

gradient ascent method by updating each weight wi by wi+λ·(−ni(I)+ E
J∈SM [Π]

[ni(J)])

until it converges.1

However, similar to Markov Logic, computing E
J∈SM [Π]

[ni(J)] is intractable (Richard-

son and Domingos (2006)). In the next section, we turn to an MCMC sampling

1Note that although any local maximum is a global maximum for the log-likelihood function,

there can be multiple combinations of weights that achieve the maximum probability of the training

data.
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method to find its approximate value.

6.0.3 Sampling Method: MC-ASP

The following is an MCMC algorithm for LPMLN, which adapts the algorithm MC-

SAT for Markov Logic Poon and Domingos (2006) by considering the penalty-based

reformulation and by using an ASP solver instead of a SAT solver for sampling.

Algorithm 1 MC-ASP

Input: An LPMLN program Π whose soft rules’ weights are non-positive and a positive

integer N .

Output: Samples I1, . . . , IN

1. Choose a (probabilistic) stable model I0 of Π.

2. Repeat the following for j = 1, . . . , N

(a) M ← ∅;

(b) For each ground instance of each rule wi : Ri ∈ Πsoft that is false in Ij−1,

add the ground instance to M with probability 1− ewi ;

(c) Randomly choose a (probabilistic) stable model Ij of Π that satisfies no

rules in M .

When all the weights wi of soft rules are non-positive, 1 − ewi (at step (b)) is in

the range [0, 1) and thus it validly represents a probability. At each iteration, the

sample is chosen from stable models of Π, and consequently, it must satisfy all hard

rules. For soft rules, the higher its weight, the less likely that it will be included in

M , and thus less likely to be not satisfied by the sample generated from M .

The following theorem states that MC-ASP satisfies the MCMC criteria of ergod-

icity and detailed balance, which justifies the soundness of the algorithm.
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Theorem 15. The Markov chain generated by MC-ASP satisfies ergodicity and de-

tailed balance.2

Steps 1 and 2(c) of the algorithm require finding a probabilistic stable model of

LPMLN, which can be computed by system lpmln2asp (see Section 5.1). System

lpmln2asp turns an LPMLN program Π into lpmln2asppnt(Π) and calls ASP solver

clingo to find the stable models of lpmln2asppnt(Π), which coincide with the proba-

bilistic stable models of Π. The weight of a stable model can be computed from the

weights recorded in unsat atoms that are true in the stable model.

Step 2(c) also requires a uniform sampler for answer sets, which can be computed

by xorro (Gebser et al. (2016)).

Algorithm 2 is a weight learning algorithm for LPMLN based on gradient ascent

using MC-ASP (Algorithm 1) for collecting samples. Step 2(b) of MC-ASP requires

that wi be non-positive in order for 1− ewi to represent a probability. Unlike in the

Markov Logic setting, converting positive weights into non-positive weights cannot

be done in LPMLN simply by replacing w : F with −w : ¬F , due to the difference in

the FOL and the stable model semantics. Algorithm 2 converts Π into an equivalent

program Πneg whose rules’ weights are non-positive, before calling MC-ASP. The

following theorem justifies the soundness of this method.3

Theorem 16. When SM[Π] is not empty, the program Πneg specifies the same prob-

ability distribution as the program Π.4

2A Markov chain is ergodic if there is a number m such that any state can be reached from any

other state in any number of steps greater than or equal to m.

Detailed balance means PΠ(X)Q(X → Y ) = PΠ(Y )Q(Y → X) for any samples X and Y , where

Q(X → Y ) denotes the probability that the next sample is Y given that the current sample is X.
3Note that Πneg is only used in MC-ASP. The output of Algorithm 2 may have positive weights.
4Non-emptiness of SM[Π] implies that every probabilistic stable model of Π satisfies all hard rules

in Π.
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Algorithm 2 Algorithm for learning weights using lpmln2asp

Input: Π: A parameterized LPMLN program in the input language of lpmln2asp; O: A stable

model represented as a set of constraints (that is, ← not A is in O if a ground atom A is true; ← A

is in O if A is not true); δ: a fixed real number to be used for the terminating condition.

Output: Π with learned weights.

Process:

1. Initialize the weights of soft rules R1, . . . , Rm with some initial weights w0.

2. Repeat the following for j = 1, . . . until max{|wji − w
j−1
i | : i = 1, . . . ,m} < δ:

(a) Compute the stable model of Π∪O using lpmln2asp (see below); for each soft rule Ri,

compute ni(O) by counting unsat atoms whose first argument is i (i is a rule index).

(b) Create Πneg by replacing each soft rule Ri of the form w : H(x) ← B(x) in Π where

w > 0 with

0 : H(x)← B(x),

α : neg(i,x)← B(x), not H(x),

−w : ← not neg(i,x).

(c) Run MC-ASP on Πneg to collect a set S of sample stable models.

(d) For each soft rule Ri, approximate
∑

J∈SM [Π]

PΠ(J)ni(J) with
∑
J∈S

ni(J)/|S|, where ni is

obtained from counting the number of unsat atoms whose first argument is i.

(e) For each i ∈ {1, . . . ,m},

wj+1
i ← wji + λ · (−ni(O) +

∑
J∈S

ni(J)/|S|).

6.1 Extensions

The base case learning in the previous section assumes that the training data

is a single stable model and is a complete interpretation. This section extends the

framework in a few ways.
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6.1.1 Learning from Multiple Stable Models

The method described in the previous section allows only one stable model to be

used as the training data. Now, suppose we have multiple stable models I1, . . . , Im

as the training data. For example, consider the parameterized program Π̂coin that

describes a coin, which may or may not land in the head when it is flipped,

α : {flip}

w : head← flip

(the first rule is a choice rule) and three stable models as the training data: I1 =

{flip}, I2 = {flip}, I3 = {flip, head} (the absence of head in the answer set is

understood as landing in tail), indicating that {flip, head} has a frequency of 1
3
, and

{flip} has a frequency of 2
3
. Intuitively, the more we observe the head, the larger the

weight of the second rule. Clearly, learning w from only one of I1, I2, I3 won’t result

in a weight that captures all the three stable models: learning from each of I1 or I2

results in the value of w too small for {flip, head} to have a frequency of 1
3

while

learning from I3 results in the value of w too large for {flip} to have a frequency of

2
3
.

To utilize the information from multiple stable models, one natural idea is to

maximize the joint probability of all the stable models in the training data, which is

the product of their probabilities, i.e.,

P (I1, . . . , Im) =
∏

j∈{1,...,m}

PΠ(Ij).

The partial derivative of lnP (I1, . . . , Im) w.r.t. wi(6= α) is

∂lnP (I1, . . . , Im)

∂wi
=

∑
j∈{1,...,m}

(
− ni(Ij) + E

J∈SM [Π]
[ni(J)]

)
.
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In other words, the gradient of the log probability is simply the sum of the gradients

of the probability of each stable model in the training data. To update Algorithm 2

to reflect this, we simply repeat step 2(a) to compute ni(Ik) for each k ∈ {1, . . . ,m},
and at step 2(e) update wi as follows:

wj+1
i ← wji + λ ·

(
−

∑
k∈{1,...,m}

ni(Ik) +m ·
∑

J∈SM [Π]

PΠ(J)ni(J)
)
.

Alternatively, learning from multiple stable models can be reduced to learning

from a single stable model by introducing one more argument k to every predicate,

which represents the index of a stable model in the training data, and rewriting the

data to include the index.

Formally, given an LPMLN program Π and a set of its stable models I1, . . . , Im,

let Πm be an LPMLN program obtained from Π by appending one more argument k

to the list of arguments of every predicate that occurs in Π, where k is a schematic

variable that ranges over {1, . . . ,m}. Let

I =
⋃

i∈{1,...,m}

{p(t, i) | p(t) ∈ Ii}. (6.2)

The following theorem asserts that the weights of the rules in Π that are learned

from the multiple stable models I1, . . . , Im are identical to the weights of the rules

in Πm that are learned from the single stable model I that conjoins {I1, . . . , Im} as

in (6.2).

Theorem 17. For any parameterized LPMLN program Π̂, its stable models I1, . . . , Im

and I as defined as in (6.2), we have

argmax
w

PΠ̂m(w)(I) = argmax
w

∏
i∈{1,...,m}

PΠ̂(w)(Ii).
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Example 9. For the program Π̂coin, to learn from the three stable models I1, I2, and

I3 defined before, we consider the program Π̂3
coin

α : {flip(k)}.

w : head(k)← flip(k).

(k ∈ {1, 2, 3}) and combine I1, I2, I3 into one stable model I = {flip(1), f lip(2), f lip(3), head(3)}.

The weight w in Π̂3
coin learned from the single data I is identical to the weight w in

Π̂coin learned from the three stable models I1, I2, I3.

6.1.2 Learning in the Presence of Noisy Data

So far, we assumed that the data I1, . . . , Im are (probabilistic) stable models of

the parameterized LPMLN program. Otherwise, the joint probability would be zero

regardless of any weights assigned to the soft rules, and the partial derivative of

lnP (I1, . . . , Im) is undefined. However, data gathered from the real world could be

noisy, so some data Ii may not necessarily be a stable model. Even then, we still

want to learn from the other “correct” instances. We may drop them in the pre-

processing to learning but this could be computationally expensive if the data is

huge. Alternatively, we may mitigate the influence of the noisy data by introducing

so-called “noise atoms” as follows.

Example 10. Consider again the program Π̂m
coin. Suppose one of the interpretations

Ii in the training data is {head(i)}. The interpretation is not a stable model of Π̂m
coin.
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We obtain Π̂m
noisecoin by modifying Π̂m

coin to allow for the noisy atom n(k) as follows.

α : {flip(k)}.

w : head(k)← flip(k).

α : head(k)← n(k).

−u : n(k).

Here, u is a positive number that is “sufficiently” larger than w. {head(i), n(i)}

is a stable model of Π̂m
noisecoin, so that the combined training data I is still a stable

model, and thus a meaningful weight w for Π̂m
noisecoin can still be learned, given that

other “correct” instances Ij (j 6= i) dominate in the learning process (as for the noisy

example, the corresponding stable model gets a low weight due to the weight assigned

to n(i) but not 0).

Furthermore, with the same value of w, the larger u becomes, the closer the prob-

ability distribution defined by Π̂m
noisecoin approximates the one defined by Π̂m

coin, so the

value of w learned under Π̂m
noisecoin approximates the value of w learned under Π̂m

coin

where the noisy data is dropped.

6.1.3 Learning from Incomplete Interpretations

In the previous sections, we assume that the training data is given as a (complete)

interpretation, i.e., for each atom it specifies whether it is true or false. In this section,

we discuss the general case when the training data is given as a partial interpretation,

which omits to specify some atoms to be true or false, or more generally when the

training data is in the form of a formula that more than one stable model may satisfy.

Given a non-ground LPMLN program Π such that SM′[Π] is not empty and given
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a ground formula O as the training data, we have

PΠ(O) =

∑
I|=O,I∈SM [Π] WΠ(I)∑
J∈SM[Π] WΠ(J)

.

The partial derivative of lnPΠ(O) w.r.t. wi (6= α) turns out to be

∂lnPΠ(O)

∂wi
= − E

I|=O,I∈SM [Π]
[ni(I)] + E

J∈SM [Π]
[ni(J)].

It is straightforward to extend Algorithm 2 to reflect the extension. Computing

the approximate value of the first term − E
I|=O,I∈SM [Π]

[ni(I)] can be done by sampling

on Πneg ∪O.

6.2 LPMLN Weight Learning via Translations to Other Languages

This section considers two fragments of LPMLN, for which the parameter learning

task reduces to the same tasks for Markov Logic and ProbLog.

6.2.1 Tight LPMLN Program: Reduction to MLN Weight Learning

By Theorem 9, any tight LPMLN program can be translated into a Markov Logic

Network (MLN) by adding completion formulas Erdem and Lifschitz (2003) with the

weight α. This means that the weight learning for a tight LPMLN program can be

reduced to the weight learning for an MLN.

Given a tight LPMLN program Π = 〈R,W〉 and one (not necessarily complete)

interpretation E as the training data, the MLN Comp(Π) is obtained by adding

completion formulas with weight α to Π.

The following theorem tells us that the weight assignment that maximizes the

probability of the training data under LPMLN programs is identical to the weight

assignment that maximizes the probability of the same training data under an MLN

Comp(Π).
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Theorem 18. Let L be the Markov Logic Network Comp(Π) and let E be a ground

formula (as the training data). When SM[Π] is not empty,

argmax
w

PΠ̂(w)(E) = argmax
w

PL̂(w)(E).

(L̂ is a parameterized MLN obtained from L.)

Thus we may learn the weights of a tight LPMLN program using the existing

implementations of Markov Logic, such as alchemy and tuffy.

6.2.2 Coherent LPMLN Program: Reduction to Parameter Learning in ProbLog

For another special class of LPMLN programs, weight learning can be reduced to

weight learning in ProbLog (Fierens et al. (2013)).

We say an LPMLN program Π is simple if all soft rules in Π are of the form

w : A

where A is an atom, and no atoms occurring in the soft rules occur in the head of a

hard rule.

We say a simple LPMLN program Π is k-coherent (k > 0) if, for any truth assign-

ment to atoms that occur in Πsoft, there are exactly k probabilistic stable models of

Π that satisfies the truth assignment. We also apply the notion of k-coherency when

Π is parameterized.

Without loss of generality, we assume that no atom occurs more than once in

Πsoft. (If one atom A occurs in multiple rules w1 : A, . . . , wn : A, these rules can

be combined into w1 + · · · + wn : A.) A k-coherent LPMLN program Π can thus

be identified with the tuple 〈PF,Πhard,w〉, where PF = (pf1, . . . , pfm) is a list of

(possibly non-ground) atoms that occur as soft rules in Π, Πhard is a set of hard rules

in Π, and w = (w1, . . . , wm) is the list of soft rule’s weights, where wi is the weight

of pfi.

135



A ProbLog program can be viewed as a tuple 〈PF,R,pr〉 where PF is a list of

atoms called probabilistic facts, R is a set of rules such that no atom that occurs in

PF occurs in the head of any rule in R, and pr is a list (p1, . . . , p|PF |), where each pi

is the probability of probabilistic atom pfi ∈ PF . A parameterized ProbLog program

is similarly defined, where pr is a list of parameters to be learned.

Given a list of probabilities pr = (p1, . . . , pn), we construct a list of weights

wpr = (w1, . . . , wn) as follows:

wi = ln(
pi

1− pi
) (6.3)

for i ∈ {1, . . . n}.

The following theorem asserts that weight learning on a 1-coherent LPMLN pro-

gram can be done by weight learning on its corresponding ProbLog program.

Theorem 19. For any 1-coherent parameterized LPMLN program 〈PF, P,w〉 and any

interpretation T (as the training data), we have

w = argmax
w

P〈PF,P,w〉(T )

if and only if

w = wpr and pr = argmax
pr

P〈PF,P,pr〉(T ).

According to the theorem, to learn the weights of a 1-coherent LPMLN program, we

can simply construct the corresponding ProbLog program, perform ProbLog weight

learning, and then turn the learned probabilities into LPMLN weights according to

(6.3).

As we will see in Chapter 7, k-coherent programs are useful for describing dy-

namic domains. Intuitively, each probabilistic choice leads to the same number of

histories. For such a k-coherent LPMLN program, weight learning given a complete

136



interpretation as the training data can be done by simply counting true and false

ground instances of soft atomic facts in the given interpretation.

For an interpretation I and ci ∈ PF , let mi(I) and ni(I) be the numbers of ground

instances of ci that is true in I and false in I, respectively.

Theorem 20. For any k-coherent parameterized LPMLN program 〈PF,Πhard,w〉, and

any (complete) interpretation I (as the training data), we have

argmax
w

P〈PF,Πhard,w〉(I;w) =
(
ln
m1(I)

n1(I)
, . . . , ln

m|PF |(I)

n|PF |(I)

)
.

6.3 Implementation and Examples

We implemented Algorithm 2 and its extensions described above using clingo,

lpmln2asp, and a near-uniform answer set sampler xorro . The implementa-

tion lpmln-learn is available at https://github.com/ywng485/lpmln-learning

together with a manual and some examples. In this section, we show how the im-

plementation allows for learning weights in LPMLN from the data enabling learning

parameters in knowledge-rich domains.

For all the experiments in this section, δ is set to be 0.001. λ is fixed to 0.1 and

50 samples are generated for each call of MC-ASP. The parameters for xorro are

manually tuned to achieve the best performance for each specific example.

6.3.1 Learning Certainty Degrees of Hypotheses

The LPMLN weight learning algorithm can be used to learn the certainty degree

of a hypothesis from the data. For example, consider a person A carrying a certain

virus contacting a group of people. The virus spreads among them as people contact

each other. We use the following ASP facts to specify that A carries the virus and

how people contacted each other:

carries_virus("A").
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contact("A", "B"). contact("B", "C"). ...

Consider two hypotheses that a person carrying the virus may cause him to have

a certain disease, and the virus may spread by contact. The hypotheses can be

represented in the input language of lpmln-learn by the following rules, where

w(1) and w(2) are parameters to be learned:

@w(1) has_disease(X) :- carries_virus(X).

@w(2) carries_virus(Y) :- contact(X, Y),

carries_virus(X).

The parameterized LPMLN program consists of these two rules and the facts about

contact relation. The training data specifies whether each person carries the virus

and has the disease, for example:

:- not carries_virus("E"). :- carries_virus("H").

...

:- not has_disease("A"). :- has_disease("H").

The learned weights tell us how certain the data support the hypotheses. Note

that the program models the transitive closure of the carries_virus relation, which

is not properly done if the program is viewed as an MLN.5 Learning under the MLN

semantics results in weights that associate unreasonably high probabilities to people

carrying virus even if they were not contacted by people with virus.

For example, consider the following graph

5That is, identifying the rule H ← B with a formula in first-order logic B → H.
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where A is the person who initially carries the virus, triangle-shaped nodes represent

people who carry virus in the evidence, and the edges denote the contact relation.

The cluster consisting of E, F, and G has no contact with the cluster consisting of A,

B, C, and D. The following table shows the probability of each person carrying the

virus, which is derived from the weights learned in accordance with Markov Logic

and LPMLN, respectively. We use alchemy for the weight learning in Markov Logic.

Person MLN LPMLN carries virus

(ground truth)

B 0.823968 0.6226904833 Y

C 0.813969 0.6226904833 Y

D 0.818968 0.6226904833 N

E 0.688981 0 N

F 0.680982 0 N

G 0.680982 0 N

As can be seen from the table, under MLN, each of E, F, G has a high probability

of carrying the virus, which is unintuitive.

6.3.2 Learning Probabilistic Graphs from Reachability

Consider an (unstable) communication network such as the one in Figure 6.1,

where each node represents a signal station that sends and receives signals. A station

may fail, making it impossible for signals to go through the station. The following
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LPMLN rules define the connectivity between two stations X and Y in session T.

connected(X,Y,T) :- edge(X,Y), not fail(X,T),

not fail(Y,T).

connected(X,Y,T) :- connected(X,Z,T), connected(Z,Y,T).

A specific network can be defined by specifying edge relations, such as edge (1,2) .

Suppose we have data showing the connectivity between stations in several sessions.

Based on the data, we could make decisions such as which path is most reliable to

send a signal between the two stations. Under the LPMLN framework, this can be done

by learning the weights representing the failure rate of each station. For the network

in Figure 6.1, we write the following rules whose weights w(i) are to be learned:

@w(1) fail(1, T). ... @w(10) fail(10, T).

Figure 6.1: Example Communication Network

Here T is the auxiliary argument to allow learning from multiple training exam-

ples, as described in Section 6.1.1. The training example contains constraints either

:- not connected (X,Y) for known connected stations X and Y or :- connected (X,Y)

for known disconnected stations X and Y. Since the training data is incomplete in

specifying the connectivity between the stations, we use the extension of Algorithm 2

described in Section 6.1.3. The failure rates of the stations can be obtained from the

learned weights as ew(i)

e0+ew(i)
.

We execute learning on graphs with 10, 12, . . . , 18, 20 nodes, where the graph with
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Figure 6.2: Convergence Behavior of Failure Rate Learning

10 nodes is shown in Figure 6.1. We add 1, 2, . . . , 5 layers of 2 nodes between Node

1 and Node 2, 4 to obtain the other graphs, where there is an edge between every

node in one layer and every node in the previous and next layer. Figure 6.2 shows the

convergence behavior over time in terms of the sum of the absolute values of gradients

of all weights. Running time is mostly spent by the uniform sampler for answer sets.

The experiments are performed on a machine with 4 Intel(R) Core(TM) i5-2400 CPU

with OS Ubuntu 14.04.5 LTS and 8 GB memory.

Figure 6.2 shows that convergence takes longer as the number of nodes increases,

which is not surprising. Note that the current implementation is not very efficient.

Even for graphs with 10−20 nodes, it takes 1500−2000 seconds to obtain a reasonable

convergence. The computation bottleneck lies in the uniform sampler used in Step

2(c) of Algorithm 1 whereas creating Πneg and turning LPMLN programs into ASP

programs are done instantly. The uniform sampler that we use, xorro, follows

Algorithm 2 in Gomes et al. (2007). It uses a fixed number of random XOR constraints

to prune out a subset of stable models, and randomly select one remaining stable
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model to return. The process of solving for all stable models after applying XOR

constraints can be very time-consuming.

In this example, it is essential that the samples are generated by an ASP solver

because information about node failing needs to be correctly derived from the con-

nectivity, which involves reasoning about the transitive closure.

As Theorem 19 indicates, this weight learning task can alternatively be done

through ProbLog weight learning. We use problog,6 an implementation of ProbLog.

The performance of problog on weight learning depends on the tightness of the

input program. We observed that for many tight programs, problog appears to have

better scalability than our prototype lpmln-learn. However, problog system does

not show a consistent performance on non-tight programs, such as the encoding of

the network example above, possibly due to the fact that it has to convert the input

program into weighted Boolean formulas, which is expensive for non-tight programs.7

We can identify many graph instances of the network failure example where our

prototype system outperforms problog, as the density of the graph gets higher.

For example, consider the graph in Figure 6.1. With the nodes fixed, as we add

more edges to make the graph denser, we eventually hit a point when problog does

not return a result within a reasonable time limit. Below is the statistics of several

instances.

The input files to problog consist of two parts: edge lists and the part that

defines the node failure rates and connectivity. The latter is different for the second

column and the third column in the table. For the second column it is the same as

the input to lpmln-learn:

6https://dtai.cs.kuleuven.be/problog/
7The difference appears to be analogous to the different approaches to handling non-tight pro-

grams by answer set solvers, e.g., the translation-based approach such as assat and cmodels and

the native approach such as clingo.
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# Edges lpmln-learn ProbLog problog
(with modified program)

10 351.237s 2.565s 0.846s

14 476.656s 2.854s 0.833s

15 740.656s > 20 min 0.957s

20 484.348s > 20 min 76.143s

40 304.407s > 20 min 26.642s

t(_)::fail(1). ... t(_)::fail(10).

connected(X, Y):- edge(X, Y), not fail(X), not fail(Y).

connected(X, Y):- connected(X, Z), connected(Z, Y).

For the third column, we rewrite the rules to make the Boolean formula conversion

easier for problog. The input program is:8

t(_)::fail(1). ... t(_)::fail(10).

aux(X, Y) :- edge(X, Y), not fail(X), not fail(Y).

connected(X, Y) :- aux(X, Y).

connected(X, Y) :- connected(X, Z), aux(Z, Y).

Although all graph instances have some cycles in the graph, the difference between

the instance with 14 edges and 15 edges is the addition of one cycle. Even with the

slight change in the graph, the performance of problog becomes significantly slower.

6.3.3 Learning Parameters for Abductive Reasoning about Actions

One of the successful applications of answer set programming is modeling dynamic

domains. LPMLN can be used for extending the modeling to allow uncertainty. In

Chapter 7, a high-level action language pBC+ is defined as a shorthand notation for

LPMLN. The language allows for probabilistic diagnoses in action domains: given the

8This was suggested by Angelika Kimmig (personal communication)

143



action description and the histories where an abnormal behavior occurs, how to find

the reason for the failure? There, the probabilities are specified by the user. This

can be enhanced by learning the probability of the failure from the example histories

using lpmln-learn.9 In this section, we show how LPMLN weight learning can be

used for learning parameters for abductive reasoning in action domains. Due to the

self-containment of the paper, instead of showing pBC+ descriptions, we show its

counterpart in LPMLN.

Consider the robot domain described in Iwan (2002): a robot located in a building

with 2 rooms r1 and r2 and a book that can be picked up. The robot can move to

rooms, pick up the book, and put down the book. Sometimes actions may fail: the

robot may fail to enter the room, may fail to pick up the book, and may drop the book

when it has the book. The domain can be modeled using answer set programs, e.g.,

Lifschitz and Turner (1999). We illustrate how such a description can be enhanced

to allow abnormalities, and how the LPMLN weight learning method can learn the

probabilities of the abnormalities given a set of actions and their effects.

We introduce the predicate Ab(i) to represent that some abnormality occurred

at step i, and the predicate Ab(AbnormalityName, i) to represent that a specific

abnormality AbnormalityName occurred at step i. The occurrences of specific ab-

normalities are controlled by probabilistic fact atoms and their preconditions. For

example,

w1 : Pf 1(i)

α : Ab(EnterFailed , i)← Pf 1(i), Ab(i).

defines that the abnormality EnterFailed occurs with probability ew1

ew1+1
(controlled

9ProbLog could not be used in place of LPMLN here because it has the requirement that every

total choice leads to exactly one well founded model, and consequently does not support choice rules,

which has been used in the formalization of the robot example in this section.
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by the weighted atomic fact Pf 1(i), which is introduced to represent the probability

of the occurrence of EnterFailed) at time step i if there is some abnormality at time

step i. Similarly we have

w2 : Pf 2(i)

α : Ab(DropBook , i)← Pf 2(i), Ab(i).

w3 : Pf 3(i)

α : Ab(PickupFailed , i)← Pf 3(i), Ab(i).

When we describe the effect of actions, we need to specify “no abnormality” as

part of the precondition of the effect: The location of the robot changes to room r if

it goes to room r unless abnormality EnterFailed occurs:

α : LocRobot(r, i+ 1)← Goto(r, i), not Ab(EnterFailed , i).

The location of the book is the same as the location of the robot if the robot has the

book:

α : LocBook(r, i)← LocRobot(r, i),HasBook(T, i).

The robot has the book if it is at the same location as the book and it picks up the

book, unless abnormality PickupFailed occurs:

α : HasBook(t, i+ 1)← PickupBook(t, i),

LocRobot(r, i),LocBook(r, i), not Ab(PickupFailed , i).

The robot loses the book if it puts down the book:

α : HasBook(f, i+ 1)← PutdownBook(t, i).

The robot loses the book if abnormality DropBook occurs:

α : HasBook(f, i+ 1)← Ab(DropBook, i).
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The commonsense law of inertia for each fluent is specified by the following hard rules:

α : {LocRobot(r, i+ 1)} ← LocRobot(r, i), astep(i).

α : {LocBook(r, i+ 1)} ← LocBook(r, i), astep(i).

α : {HasBook(b, i+ 1)} ← HasBook(b, i), astep(i).

For the lack of space, we skip the rules specifying the uniqueness and existence of flu-

ents and actions, rules specifying that no two actions can occur at the same timestep,

and rules specifying that the initial state and actions are exogenous.

We add the hard rule

α : Ab(i)← astep(i)

to enable abnormalities for each timestep i.

To use multiple action histories as the training data, we use the method from

Section 6.1.1 and introduce an extra argument to every predicate, that represents the

action history ID.

We then provide a list of 12 transitions as the training data. For example, the

first transition (ID =1) tells us that the robot performed goto action to room r2,

which failed.

:- not loc_robot("r1",0,1). :- not loc_book("r2",0,1).

:- not hasBook("f",0,1). :- not goto("r2",0,1).

:- not loc_robot("r1",1,1).

Among the training data, enter failed occurred 1 time out of 4 attempts,

pickup failed occurred 2 times out of 4 attempts, and drop book occurred 1 time

out of 4 attempts. The transitions are partially observed data in the sense that they

specify only some of the fluents and actions; other facts about fluents, actions and

abnormalities have to be inferred.
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Note that this program is (|A| + 1)-coherent, where |A| is the number of actions

(i.e., Goto, PickupBook and DropBook) and 1 is for no actions. We execute gradient

ascent learning with 50 learning iterations and 50 sampling iterations for each learning

iteration. The weights learned are

Rule 1: -1.084 Rule 2: -1.064 Rule 3: -0.068

The probability of each abnormality can be computed from the weights as follows:

P (enter failed) =
exp(−1.084)

exp(−1.084) + 1
≈ 0.253

P (drop book) =
exp(−1.064)

exp(−1.064) + 1
≈ 0.257

P (pickup failed) =
exp(−0.068)

exp(−0.068) + 1
≈ 0.483

The learned weights of pf atoms indicate the probability of the action failure when

some abnormal situation ab(I, ID) happens. This allows us to perform probabilistic

diagnostic reasoning in which parameters are learned from the histories of actions.

For example, suppose the robot and the book were initially at r1. The robot executed

the following actions to deliver the book from r1 to r2: pick up the book; go to r2;

put down the book. However, after the execution, it observes that the book is not at

r2. What was the problem?

Executing system lpmln2asp on this encoding tells us that the most probable

reason is that the robot fails at picking up the book. However, if we add that the

robot itself is also not at r2, then lpmln2asp computes the most probable stable

model to be the one that has the robot failed at entering r2.

6.4 Related Work

Parameter learning (with full or partial observability) is usually formulated as

maximizing the probability of the given training evidence. For Markov logic networks,
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this optimization problem does not have a closed-form solution, however the log-

likelihood of the training evidence is provably a concave function, and thus standard

gradient ascent can be used to find the global optimum (Domingos and Lowd (2009)).

On the other hand, Khot et al. (2015) is a method that learns weight and structure

(formulas) of MLN programs at the same time. The MLNs learned are predictive

models that can predict the truth value of groundings of a set of target predicates.

The structure and weights of an MLN is represented as a regression tree that fits

the training examples . The problem of learning structure and weights of an MLN

program is thus turned into a series of relational regression problem.

For ProbLog, with full observability, the optimal probability annotation of atoms

can be found by simply counting the frequency of the atoms in the training evi-

dence. With partial observability, there is also no closed-form solution to maximizing

the probability of the training evidence. In this setting, EM algorithm is used to

iteratively update the parameters (Fierens et al. (2013)).

Sometimes the training evidence is marginal/conditional probability of certain

atom, i.e., result of a query, in which case the setting is query-based learning, and

the learning problem is formulated as minimizing the difference between the given

probabilities of queries (target probabilities) and the probabilities of queries computed

from the program. As an example, Gutmann et al. (2008) minimizes the mean squares

difference between the actual probabilities and target probabilities.
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6.5 Proofs

6.5.1 Proof of Theorem 15

Lemma 18. For any LPMLN program Π and a probabilistic stable model I of Π, we

have

PΠ(I) =

exp(
∑

w:R∈Πsoft
I

w)

Z

where

Z =
∑

J is a stable model of Π

exp(
∑

w:R∈Πsoft
J

w)

Proof. Let k be the maximum number of hard rules in Π that any interpretation can

satisfy. For any interpretation J , we use J �SM Π as an abbreviation of “J is a

probabilistic stable model of Π”.

By definition we have

PΠ(I) = lim
α→∞

exp(
∑

w:R∈ΠI

w)∑
J�SMΠ

exp(
∑

w:R∈ΠJ

w)

Splitting the denominator into two parts: those J ’s that satify k hard rules in Π and

those that satisfy less hard rules, and extracting the weights of k hard rules, kα, we

have

PΠ(I) = lim
α→∞

exp(
∑

w:R∈ΠI

w)

exp(kα)
∑

J�SMΠ
|Πhard
J |=k

exp(
∑

w:R∈Πsoft
J

w) +
∑

J�SMΠ
|Πhard
J |<k

exp(|Πhard
J | · α)exp(

∑
w:R∈Πsoft

J

w)

Let k′ denote the number of hard rules that I satisfy. We have

PΠ(I) = lim
α→∞

exp(k′α)exp(
∑

w:R∈Πsoft
I

w)

exp(kα)
∑

J�SMΠ
|Πhard
J |=k

exp(
∑

w:R∈Πsoft
J

w) +
∑

J�SMΠ
|Πhard
J |<k

exp(|Πhard
J | · α)exp(

∑
w:R∈Πsoft

J

w)
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Dividing both the numerator and the denominator by exp(kα), we get

PΠ(I) = lim
α→∞

exp(k′α)
exp(kα)

exp(
∑

w:R∈Πsoft
I

w)∑
J�SMΠ
|Πhard
J |=k

exp(
∑

w:R∈Πsoft
J

w) + 1
exp(kα)

∑
J�SMΠ
|Πhard
J |<k

exp(|Πhard
J | · α)exp(

∑
w:R∈Πsoft

J

w)

We argue that k′ = k: Since k is the maximum number of hard rules an interpretation

can satisfy, k′ ≤ k; Suppose k′ < k. Then the above expression evaluates to 0,

contradicting the fact that I is a probabilistic stable model of Π. Following the same

argument, it can be seen that any stable model of Π satisfy k hard rules. So k′ = k,

and thus we have

PΠ(I) = lim
α→∞

exp(
∑

w:R∈Πsoft
I

w)∑
J�SMΠ
|Πhard
J |=k

exp(
∑

w:R∈Πsoft
J

w) + 1
exp(kα)

∑
J�SMΠ
|Πhard
J |<k

exp(|Πhard
J | · α)exp(

∑
w:R∈Πsoft

J

w)

= lim
α→∞

exp(
∑

w:R∈Πsoft
I

w)

∑
J�SMΠ
|Πhard
J |=k

exp(
∑

w:R∈Πsoft
J

w) +
∑

J�SMΠ
|Πhard
J |<k

exp(|Πhard
J |·α)

exp(kα)
exp(

∑
w:R∈Πsoft

J

w)

For those J that satisfy less than k hard rules, exp(|Πhard|)
exp(kα)

≤ k − 1, so we have

PΠ(I) =

exp(
∑

w:R∈Πsoft
I

w)∑
J�SMΠ
|Πhard
J |=k

exp(
∑

w:R∈Πsoft
J

w)

Since all stable model of Π satisfy k hard rules, we have

PΠ(I) =

exp(
∑

w:R∈Πsoft
I

w)∑
J�SMΠ

exp(
∑

w:R∈Πsoft
J

w)
.

Theorem 15 The Markov chain generated by MC-ASP satisfies ergodicity and

detailed balance.
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Proof. Ergodicity Firstly, for any subset M of rules generated at step 2 in Algorithm

1, the previous sample Ij−1 is always a stable model that satisifies no rules in M ,

which means at least one sample can be produced at any sampling step. Secondly,

it is always possible that M is an empty set. All stable models of Π are possible to

be selected when M is empty set. Thus every stable model is reachable from every

stable model.

Detailed Balance For any (probabilistic) stable models X and Y of Π, let

Q(X → Y ) denote the transition probability from X to Y (i.e., the probability that

the next sample is Y given that the current sample is X), and let let Q(X →M Y )

denote the transition probability from X to Y through a particular subset of rules as

the set M at step 2 in Algorithm 1. Let QM(X) be the probability of choosing X from

M . To show PΠ(X)Q(X → Y ) = PΠ(Y )Q(Y → X), we prove a stronger equation

PΠ(X)Q(X →M Y ) = PΠ(Y )Q(Y →M X) for any M ⊆ (Π
soft\Πsoft

X )∩(Π
soft\Πsoft

Y ).

By Lemma 18, we have

P (X) =
1

Z

∏
Ri∈Πsoft\Πsoft

X

e−wi

and

Q(X →M Y ) =
∏

Ri∈(Πsoft\Πsoft
X )\M

ewi ·
∏
Ri∈M

(1− ewi) ·QM(Y ).

Consequently we have

P (X)Q(X →M Y )

=
1

Z

∏
Ri∈Πsoft\Πsoft

X

e−wi ·
∏

Ri∈(Πsoft\Πsoft
X )\M

ewi ·
∏
Ri∈M

(1− ewi) ·QM(Y )

=
1

Z
·
∏
Ri∈M

e−wi ·
∏
Ri∈M

(1− ewi) ·QM(Y ).

It can be seen that QM(X) = QM(Y ) as any stable model of Π that satisfies M is
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drawn with the same probability. So we have

P (X)Q(X →M Y )

=
1

Z
·
∏
Ri∈M

e−wi ·
∏
Ri∈M

(1− ewi) ·QM(X)

=
1

Z

∏
Ri∈Πsoft

Y

e−wi ·
∏

Ri∈Πsoft
Y \M

ewi ·
∏
Ri∈M

(1− ewi) ·QM(Y )

=P (Y )Q(Y →M X).

6.5.2 Proof of Theorem 16

Lemma 19. Assume SM′[Π] is not empty. For any interpretation I of Π,

neg(I) = I ∪ {neg(i,x) | I 2 H(x)← B(x), wi : H(x)← B(x) ∈ Π}

is a 1− 1 correspondence between SM[Π] and SM[Πneg].

Proof. We divide the ground program obtained from Πneg into three parts:

ORIGIN(Π) ∪NEGDEF (Π) ∪NEG(Π)

where

ORIGIN(Π) ={w : H(x)← B(x) | w : H(x)← B(x) ∈ Π, w ≤ 0}∪

{0 : H(x)← B(x) | w : H(x)← B(x) ∈ Π, w > 0},

NEGDEF (Π) = {α : neg(i,x)← B(x), not H(x) | w : H(x)← B(x) ∈ Π, w > 0}

and

NEG(Π) = {−w : ← not neg(i,x) | wi : Ri ∈ Π, w > 0}.

Let σ be the signature of Π, and σneg be the set

{neg(i, c) | w : H(c)← B(c) ∈ Gr(Π), w > 0}.
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For any interpretation I of Π, consider Πneg
neg(I). From the construction of neg(I),

we have

Πneg
neg(I) = ORIGIN(Π)I ∪NEGDEF (Π)neg(I) ∪NEG(Π)neg(I)

It can be seen that

• each strongly connected component of the dependency graph of ORIGIN(Π)I∪

NEGDEF (Π)neg(I) ∪NEG(Π)neg(I) w.r.t. σ ∪ σneg is a subset of σ or a subset

of σneg;

• no atom in σneg has a strictly positive occurrence in ORIGIN(Π)I ;

• no atom in σ has a strictly positive occurrence inNEGDEF (Π)neg(I)∪NEG(Π)neg(I)

Thus, according to the splitting theorem, neg(I) is a stable model of Πneg(neg(I)) if

and only if neg(I) is a stable model of ORIGIN(Π)I w.r.t. σ and is a stable model

of NEGDEF (Π)neg(I) ∪NEG(Π)neg(I) w.r.t. σneg.

Suppose I is a probabilistic stable model of Π. We will show that neg(I) is a

stable model of Πneg(neg(I)).

• neg(I) is a stable model of ORIGIN(Π)I w.r.t. σ. By definition, I is a

stable model of ΠI . Since ORIGIN(Π)I = ΠI and I and neg(I) agrees on σ,

neg(I) is a stable model of ORIGIN(Π)I w.r.t. σ.

• neg(I) is a stable model of NEGDEF (Π)neg(I) ∪NEG(Π)neg(I) w.r.t. σneg.

Clearly, neg(I) satisfies NEGDEF (Π)neg(I) ∪ NEG(Π)neg(I). From the con-

struction of neg(I), neg(I) satisfies neg(i,x) only if neg(I) does not satisfy

H(x)← B(x). This means neg(I) satisfies

neg(i, c)→ B(c), not H(c)
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for all rules H(c)← B(c) in Π. This is the completion of NEGDEF (Π)neg(I)∪

NEG(Π)neg(I) w.r.t. σneg. Obviously NEGDEF (Π)neg(I) ∪ NEG(Π)neg(I) is

tight. So neg(I) is a stable model of NEGDEF (Π)neg(I) ∪NEG(Π)neg(I) w.r.t.

σneg.

Suppose J is a probabilistic stable model of Πneg. By definition, J is a stable model

of Πneg(neg(I)). By the splitting theorem, J is a stable model of ORIGIN(Π)I w.r.t.

σ. Let I be the interpretation of Π obtained by dropping atoms in σneg from J . Since

ORIGIN(Π)I = ΠI and I agrees with J on σ, I is a stable model of ΠI , and thus is

a stable model of Π.

Theorem 16 When SM[Π] is not empty, the program Πneg specifies the same

probability distribution as the program Π.

Proof. We show that PΠneg(neg(I)) = PΠ(I) for all interpretations I.

By Lemma 19, since neg(I) defines a 1−1 correspondence between the probabilistic

stable models of Π and Πneg, when I is not a probabilistic stable model of Π, neg(I) is

not a probabilistic stable model of Πneg, and vice versa. So PΠ(I) = PΠneg(neg(I)) = 0.

For any program Π, we use nΠ,i(I) to denote the number of ground instances of

rule i that is satisfies by I, mΠ,i(I) to denote the number of ground instances of rule

i that is not satisfied by I, and NΠ,i to denote the total number of ground instances

of rule i.
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When I is a probabilistic stable model of Π, we have

W ′Π(I)

= exp(
∑

wi:Ri∈Πsoft

winΠ,i(I))

= (Splitting rules into the ones whose weights are positive and

the ones whose weights are non-positive)

exp(
∑

wi:Ri∈Πsoft,wi>0

winΠ,i(I)) · exp(
∑

wi:Ri∈Πsoft,wi≤0

winΠ,i(I)).

W ′Πneg (neg(I))

= exp(
∑

wi:Ri∈(Πneg)soft

winΠneg,i(neg(I)))

= (Splitting rules into the ones whose weights are positive and

the ones whose weights are non-positive)

exp(
∑

wi:Ri∈Πsoft,wi≤0

winΠ,i(I)) · exp(
∑

wi:Ri∈Πsoft,wi>0

−wimΠ,i(I))

=
exp(

∑
wi:Ri∈Πsoft,wi>0 wiNΠ,i) · exp(

∑
wi:Ri∈Πsoft,wi≤0 winΠ,i) · exp(

∑
wi:Ri∈Πsoft,wi>0−winΠ,i(I))

exp(
∑
wi:Ri∈Πsoft,wi>0 wiNΠ,i)

=
exp(

∑
wi:Ri∈Πsoft,wi>0 wiNΠ,i) · exp(

∑
wi:Ri∈Πsoft,wi>0−winΠ,i(I)) · exp(

∑
wi:Ri∈Πsoft,wi≤0 winΠ,i)

exp(
∑
wi:Ri∈Πsoft,wi>0 wiNΠ,i)

=
1

exp(
∑
wi:Ri∈Πsoft,wi>0 wiNΠ,i)

exp(
∑

wi:Ri∈Πsoft,wi>0

winΠ,i(I)) · exp(
∑

wi:Ri∈Πsoft,wi≤0

winΠ,i(I))

∝ W ′Π(I).

Consequently, we have

P ′Π(I) = P ′Πneg(neg(I)).

Since SM′[Π] is not empty, by Proposition 2 in Lee and Wang (2016), we have

PΠ(I) = PΠneg(neg(I)).
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6.5.3 Proof of Theorem 17

Theorem 17 For any parameterized LPMLN program Π̂, its stable models I1, . . . , Im

and I as defined as in (6.2), we have

argmax
w

PΠ̂m(w)(I) = argmax
w

∏
i∈{1,...,m}

PΠ̂(w)(Ii).

Proof. For any weight vector w, we show

PΠ̂m(w)(D) =
∏

i∈{1,...,m}

PΠ̂(w)(Di)

by induction. For any integer 1 ≤ u ≤ m, we use Du to denote the interpretation

Du = {p(x, j) | p(x, j) ∈ D, j ≤ u}

Note that Dm = D.

Base Case: Suppose m = 1. It is trivial that we have

PΠ̂1(w)(D
1) =

∏
i∈{1}

PΠ̂(w)(Di)

For m > 1, as I.H., we assume

PΠ̂m−1(w)(D
m−1) =

∏
i∈{1,...,m−1}

PΠ̂(w)(Di)

We divide Π̂m(w) into two disjoint subsets:

Π̂m(w) = Π̂m−1(w) ∪ Π̂(w)[x = m]

where Π̂[x = m](w) is the program obtained from Π̂(w) by appending one more

argument whose value is m to the list of argument of every occurrence of every

predicate in Π̂(w). Clearly, the intersection between the set of atoms that occur in
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gr(Π̂m−1(w)) and that occur gr(Π̂(w)[x = m]) is empty. According to Definition 12

in Wang et al. (2018), gr(Π̂m(w)) is independently divisible and gr(Π̂m−1(w)) and

gr(Π̂(w)[x = m]) are independent programs w.r.t. gr(Π̂m(w)).

By Corollary 3 in Wang et al. (2018), we have

PΠ̂m(w)(D
m) = PΠ̂m−1(w)(D

m−1) · PΠ̂(w)[x=m](D
m \Dm−1)

= PΠ̂m−1(w)(D
m−1) · PΠ̂(w)[x=m](Dm)

By I.H., we have

PΠ̂m(w)(D
m) =

∏
i∈{1,...,m−1}

PΠ̂(w)(Di) · PΠ̂(w)[x=m](Dm)

=
∏

i∈{1,...,m}

PΠ̂(w)(Di).

6.5.4 Proof of Theorem 18

Theorem 18 Let L be the Markov Logic Network Comp(Π) and let E be a ground

formula (as the training data). When SM[Π] is not empty,

argmax
w

PΠ̂(w)(E) = argmax
w

PL̂(w)(E).

(L̂ is a parameterized Markov Logic Network obtained from L.)

Proof. Easily follows from Theorem 8.

6.5.5 Proof of Theorem 19 and Theorem 20

Lemma 20. For any 1-coherent LPMLN program 〈PF, P,w〉, we have

P〈PF,P,w〉(I) = P〈PF,P,pr〉(I)

for any interpretation I and w = wpr
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Proof. Similar to the proof of Theorem 10.

Theorem 19 For any 1-coherent parameterized LPMLN program 〈PF, P,w〉 and

any interpretation T (as the training data), we have

w = argmax
w

P〈PF,P,w〉(T )

if and only if

w = wpr and pr = argmax
pr

P〈PF,P,pr〉(T ).

Proof. Easily follows from Lemma 20.

Proposition 8. For any k-coherent LPMLN program Π = 〈PF,Πhard,w〉 and any

interpretation I, we have

PΠ(I) =
1

k ·
∏

pfj∈PF
(1 + ewj)

WΠ(I).

Proof. We show that the normalization factor is constant k ·
∏

pfj∈PF
(1 + ewj), i.e.,

∑
I is an interpretation of Π

WΠ(I) = k ·
∏

pfj∈PF

(1 + ewj).

Let pf1, . . . , pfm ∈ PF be the soft atoms. Let TCΠ be the set of all truth assignments
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to atoms in PF .

∑
I is an interpretation of Π

WΠ(I)

=
∑

I∈SM [Π]

WΠ(I)

=
∑

tc∈TCΠ

k ·
∏
tc�pfi

exp(wi) ·
∏
tc2pfj

exp(0)

=k
∑

tc∈TCΠ

·
∏
tc�pfi

exp(wi) ·
∏
tc2pfj

exp(0)

=k · (ew1

∏
tc∈TCΠ
tc�pfi
i 6=1

ewi ·
∏

tc∈TCΠ
tc2pfi
i6=1

e0 + e0
∏

tc∈TCΠ
tc�pfi
i 6=1

ewi ·
∏

tc∈TCΠ
tc2pfi
i 6=1

e0)

=k · (ew2 · (ew1

∏
tc∈TCΠ
tc�pfi
i6=1
i6=2

ewi ·
∏

tc∈TCΠ
tc2pfi
i 6=1
i 6=2

e0 + e0
∏

tc∈TCΠ
tc�pfi
i6=1
i6=2

ewi ·
∏

tc∈TCΠ
tc2pfi
i 6=1
i 6=2

e0)+

e0 · (ew1

∏
tc∈TCΠ
tc�pfi
i 6=1
i 6=2

ewi ·
∏

tc∈TCΠ
tc2pfi
i 6=1
i 6=2

e0 + e0
∏

tc∈TCΠ
tc�pfi
i 6=1
i 6=2

ewi ·
∏

tc∈TCΠ
tc2pfi
i 6=1
i 6=2

e0))

= . . .

=k · (
∑

p1∈{ew1 ,1}

p1 . . .
∑

p2∈{ew2 ,1}

p2

∑
pm−1∈{ewm−1 ,1}

pm−1 · (ewm + 1))

=k · (ewm + 1)(
∑

p1∈{ew1 ,1}

p1 . . .
∑

p2∈{ew2 ,1}

p2

∑
pm−1∈{ewm−1 ,1}

pm−1)

=k · (ewm + 1)(ewm−1 + 1)(
∑

p1∈{ew1 ,1}

p1 . . .
∑

p2∈{ew2 ,1}

p2

∑
pm−2∈{ewm−2 ,1}

pm−1)

= . . .

=k ·
∏

pfj∈PF

(1 + ewj ).

Proposition 9. For any k-coherent LPMLN program Π = 〈PF,Πhard,w〉 and any
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interpretation I, we have

PrΠ(I) =



1
k

∏
ci∈PF

PrΠ(c)mi(I) · (1− PrΠ(ci))
ni(I)

if I is a stable model of Π

0 otherwise

Proof. Easily proven from Proposition 12.

Proposition 10. For any k-coherent LPMLN program Π = 〈PF,Πhard,w〉, we have

PrΠ(pfi) =
exp(wi)

exp(wi) + 1

for any pfi ∈ PF and the corresponding weight wi.

Proof. By Proposition 12 we have

PrΠ(pfi)

=
∑

I is a stable model of Π
I�pfi

∏
I�pfj ,pfj∈PF

ewj ·
∏

I2pfj ,pfj∈PF
e0

k ·
∏

pfj∈PF
(1 + ewj)

=
ewi

ewi + 1
·

∑
I is a stable model of Π

I�pfi

∏
I�pfj ,pfj∈PF,j 6=i

ewj ·
∏

I2pfj ,pfj∈PF
e0

k ·
∏

pfj∈PF
j 6=i

(1 + ewj)

=
ewi

ewi + 1
· k

∑
I is a truth assignment to PF \ {pfi}

∏
I�pfj ,pfj∈PF,j 6=i

ewj ·
∏

I2pfj ,pfj∈PF
e0

k ·
∏

pfj∈PF
j 6=i

(1 + ewj)

=
ewi

ewi + 1
·

∑
I is a truth assignment to PF \ {pfi}

(
∏

I�pfj ,pfj∈PF,j 6=i
ewj ·

∏
I2pfj ,pfj∈PF

e0)∏
pfj∈PF
j 6=i

(1 + ewj)

=
ewi

ewi + 1
· 1

=
ewi

ewi + 1
.
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Theorem 20 For any k-coherent parameterized LPMLN program 〈PF,Πhard,w〉,

and an interpretation T as the training data, we have

argmax
w

P〈PF,Πhard,w〉(T ; w) = (ln
m1(T )

n1(T )
, . . . , ln

m|PF |(T )

n|PF |(T )
).

Proof. We have

P〈PF,Πhard,w〉(T ; w)

=(Proposition 9)

1

k

∏
ci∈PF

PrΠ(c)mi(I) · (1− PrΠ(ci))
ni(I)

=(Proposition 14)

1

k

∏
ci∈PF

(
exp(wi)

exp(wi) + 1
)mi(I) · (1− exp(wi)

exp(wi) + 1
)ni(I)

lnP〈PF,Πhard,w〉(T ; w)

=ln
1

k
+
∑
ci∈PF

mi(I)(wi − ln(exp(wi) + 1))+

ni(I)(ln1− ln(exp(wi + 1))

Since P〈PF,Πhard,w〉(T ; w) is concave w.r.t. wi ∈ w, the value of wi that maximizes

P〈PF,Πhard,w〉(T ; w) can be obtained by solving

∂lnP〈PF,Πhard,w〉(T ; w)

∂wi
= 0.

For any wj ∈ w, we have

∂lnP〈PF,Πhard,w〉(T ; w)

∂wj

=mj(I)(1− exp(wj)

exp(wj) + 1
)− nj(I)

exp(wj)

exp(wj) + 1
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∂lnP〈PF,Πhard,w〉(T ; w)

∂wi
= 0

is equivalent to

mj(I)(1− exp(wj)

exp(wj) + 1
) = nj(I)

exp(wj)

exp(wj) + 1

⇐⇒
ewj

ewj + 1
=

mj

mj + nj

⇐⇒

wj = ln
mj

nj

So we have

argmaxP〈PF,Πhard,w〉(T ; w) = (ln
m1

n1

, . . . , ln
m|PF |
n|PF |

).

162



Chapter 7

PROBABILISTIC ACTION LANGUAGE pBC+

One of the successful applications of ASP is in conveniently representing transition

systems and reasoning about paths in them. However, such a representation does

not distinguish which path is more probable than others. By augmenting the known

ASP representations of transition systems with weights, LPMLN semantics gives an

intuitive encoding of probabilistic transition systems. Just like action languages such

as BC+ can be defined in terms of translation to ASP programs, in this section, we

show that a probabilistic extension of BC+, called pBC+ can be defined in terms of

translation to LPMLN programs. We will also illustrate that probabilistic reasoning

about transition systems, such as prediction and postdiction, as well as probabilistic

diagnosis for dynamic domains, can be modeled in pBC+ and computed by LPMLN

solvers such as lpmln2asp and lpmln2mln.

7.1 Syntax of pBC+

We assume a propositional signature σ as defined in Section 3.3. We further as-

sume that the signature of an action description is divided into four groups: fluent

constants, action constants, pf (probability fact) constants and initpf (initial probabil-

ity fact) constants. Fluent constants are further divided into regular and statically

determined. The domain of every action constant is Boolean. A fluent formula is a

formula such that all constants occurring in it are fluent constants.

The following definition of pBC+ is based on the definition of BC+ language from

Babb and Lee (2015).
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A static law is an expression of the form

caused F if G (7.1)

where F and G are fluent formulas.

A fluent dynamic law is an expression of the form

caused F if G after H (7.2)

where F and G are fluent formulas and H is a formula, provided that F does not

contain statically determined fluent constants andH does not contain initpf constants.

A pf constant declaration is an expression of the form

caused c = {v1 : p1, . . . , vn : pn} (7.3)

where c is a pf constant with domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n}1,

and p1 + · · ·+ pn = 1. In other words, (7.3) describes the probability distribution of

c.

An initpf constant declaration is an expression of the form (7.3) where c is an

initpf constant.

An initial static law is an expression of the form

initially F if G (7.4)

where F is a fluent constant and G is a formula that contains neither action constants

nor pf constants.

1We require 0 < pi < 1 for each i ∈ {1, . . . , n} for the sake of simplicity. On the other hand, if

pi = 0 or pi = 1 for some i, that means either vi can be removed from the domain of c or there

is not really a need to introduce c as a pf constant. So this assumption does not really sacrifice

expressivity.
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A causal law is a static law, a fluent dynamic law, a pf constant declaration, an

initpf constant declaration, or an initial static law. An action description is a finite

set of causal laws.

We use σfl to denote the set of fluent constants, σact to denote the set of action

constants, σpf to denote the set of pf constants, and σinitpf to denote the set of initpf

constants. For any signature σ′ and any i ∈ {0, . . . ,m}, we use i : σ′ to denote the

set {i : a | a ∈ σ′}.

By i : F we denote the result of inserting i : in front of every occurrence of every

constant in formula F . This notation is straightforwardly extended when F is a set

of formulas.

Example 11. The following is an action description in pBC+ for the transition

system shown in Figure 7.1, P is a Boolean regular fluent constant, and A is an

action constant. Action A toggles the value of P with probability 0.8. Initially, P is

true with probability 0.6 and false with probability 0.4. We call this action description

PSD. (x is a schematic variable that ranges over {t, f}.)

caused P if > after ∼P ∧ A ∧ Pf ,

caused ∼P if > after P ∧ A ∧ Pf ,

caused {P}ch if > after P,

caused {∼P}ch if > after ∼P,

caused Pf = {t : 0.8, f : 0.2},

caused InitP = {t : 0.6, f : 0.4},

initially P = x if InitP = x.

7.2 Semantics of pBC+

Given a non-negative integer m denoting the maximum length of histories, the

semantics of an action description D in pBC+ is defined by a reduction to multi-

valued probabilistic program Tr(D,m), which is the union of two subprograms Dm

and Dinit as defined below.
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P = t P = f

A: 0.8

A: 0.8

~A: 1; A: 0.2 ~A: 1; A: 0.2

Figure 7.1: A Transition System with Probabilistic Transitions

For an action description D of a signature σ, we define a sequence of multi-valued

probabilistic program D0, D1, . . . , so that the stable models of Dm can be identified

with the paths in the transition system described by D. The signature σm of Dm

consists of atoms of the form i : c = v such that

• for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),

• for each action constant or pf constant c of D, i ∈ {0, . . . ,m − 1} and v ∈

Dom(c).

For x ∈ {act, f l, pf}, we use σxm to denote the subset of σm

{i : c = v | i : c = v ∈ σm and c ∈ σx}.

For i ∈ {0, . . . ,m}, we use i : σx to denote the subset of σxm

{i : c = v | i : c = v ∈ σxm}.

We define Dm to be the multi-valued probabilistic program 〈PF,Π〉, where Π is

the conjunction of

i : F ← i : G (7.5)

for every static law (7.1) in D and every i ∈ {0, . . . ,m},

i+1 : F ← (i+1 : G) ∧ (i : H) (7.6)
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for every fluent dynamic law (7.2) in D and every i ∈ {0, . . . ,m− 1},

{0:c = v}ch (7.7)

for every regular fluent constant c and every v ∈ Dom(c),

{i : c = t}ch, {i : c = f}ch (7.8)

for every action constant c, and PF consists of

p1 :: i : pf = v1 | · · · | pn :: i : pf = vn (7.9)

(i = 0, . . . ,m − 1) for each pf constant declaration (7.3) in D that describes the

probability distribution of pf .

In addition, we define the program Dinit, whose signature is 0 : σinitpf ∪ 0 : σfl.

Dinit is the multi-valued probabilistic program

Dinit = 〈PF init,Πinit〉

where Πinit consists of the rule

⊥ ← ¬(0 :F ) ∧ 0:G

for each initial static law (7.4), and PF init consists of

p1 :: 0 :pf = v1 | . . . | pn :: 0 :pf = vn

for each initpf constant declaration (7.3).

We define Tr(D,m) to be the union of the two multi-valued probabilistic program

〈PF ∪ PF init,Π ∪ Πinit〉.

Example 12. For the action description PSD in Example 11, PSD init is the following

multi-valued probabilistic program (x ∈ {t, f}):

0.6 :: 0 :InitP | 0.4 :: 0 :∼InitP

⊥ ← ¬(0 :P =x) ∧ 0 : InitP =x.
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and PSDm is the following multi-valued probabilistic program (i is a schematic variable

that ranges over {1, . . . ,m− 1}):

0.8 :: i : Pf | 0.2 :: i :∼Pf

i+1 : P ← i :∼P ∧ i : A ∧ i : Pf

i+1 :∼P ← i : P ∧ i : A ∧ i : Pf

{i+1 : P}ch ← i : P

{i+1 :∼P}ch ← i :∼P

{i : A}ch

{i :∼A}ch

{0:P}ch

{0:∼P}ch

For any LPMLN program Π of signature σ and a value assignment I to a subset

σ′ of σ, we say I is a residual (probabilistic) stable model of Π if there exists a value

assignment J to σ \ σ′ such that I ∪ J is a (probabilistic) stable model of Π.

For any value assignment I to constants in σ, by i :I we denote the value assign-

ment to constants in i :σ so that i :I |= (i :c) = v iff I |= c = v.

We define a state as an interpretation Ifl of σfl such that 0 : Ifl is a residual

(probabilistic) stable model of D0. A transition of D is a triple 〈s, e, s′〉 where s and

s′ are interpretations of σfl and e is a an interpretation of σact such that 0 :s∪0:e∪1 : s′

is a residual stable model of D1. A pf-transition of D is a pair (〈s, e, s′〉, pf), where

pf is a value assignment to σpf such that 0 :s ∪ 0 :e ∪ 1 : s′ ∪ 0 :pf is a stable model

of D1.

A probabilistic transition system T (D) represented by a probabilistic action de-

scription D is a labeled directed graph such that the vertices are the states of D, and

the edges are obtained from the transitions of D: for every transition 〈s, e, s′〉 of D,

an edge labeled e : p goes from s to s′, where p = PrDm(1 :s′ | 0:s, 0:e). The number

p is called the transition probability of 〈s, e, s′〉 .

The soundness of the definition of a probabilistic transition system relies on the

following proposition.
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Proposition 11. For any transition 〈s, e, s′〉, s and s′ are states.

We make the following simplifying assumptions on action descriptions:

1. No Concurrency: For all transitions 〈s, e, s′〉, we have e(a) = t for at most

one a ∈ σact;

2. Nondeterministic Transitions are Controlled by pf constants: For any

state s, any value assignment e of σact such that at most one action is true,

and any value assignment pf of σpf , there exists exactly one state s′ such that

(〈s, e, s′〉, pf) is a pf-transition;

3. Nondeterminism on Initial States are Controlled by Initpf constants:

Given any assignment pfinit of σinitpf , there exists exactly one assignment fl of

σfl such that 0 :pfinit ∪ 0:fl is a stable model of Dinit ∪D0.

For any state s, any value assignment e of σact such that at most one action is

true, and any value assignment pf of σpf , we use φ(s, e, pf) to denote the state s′

such that (〈s, a, s′〉, pf) is a pf-transition (According to Assumption 2, such s′ must be

unique). For any interpretation I, i ∈ {0, . . . ,m} and any subset σ′ of σ, we use I|i:σ′

to denote the value assignment of I to atoms in i : σ′. Given any value assignment

TC of 0 :σinitpf ∪σpfm and a value assignment A of σactm , we construct an interpretation

ITC∪A of Tr(D,m) that satisfies TC ∪ A as follows:

• For all atoms p in σpfm ∪ 0:σinitpf , we have ITC∪A(p) = TC(p);

• For all atoms p in σactm , we have ITC∪A(p) = A(p);

• (ITC∪A)|0:σfl is the assignment such that (ITC∪A)|0:σfl∪0:σinitpf is a stable model

of Dinit ∪D0.
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• For each i ∈ {1, . . . ,m},

(ITC∪A)|i:σfl = φ((ITC∪A)|(i−1):σfl , (ITC∪A)|(i−1):σact , (ITC∪A)|(i−1):σpf ).

By Assumptions 2 and 3, the above construction produces a unique interpretation.

It can be seen that in the multi-valued probabilistic program Tr(D,m) translated

from D, the probabilistic constants are 0 : σinitpf ∪ σpfm . We thus call the value

assignment of an interpretation I on 0 : σinitpf ∪ σpfm the total choice of I. The

following theorem asserts that the probability of a stable model under Tr(D,m) can

be computed by simply dividing the probability of the total choice associated with

the stable model by the number of choice of actions.

Theorem 21. For any value assignment TC of 0:σinitpf ∪σpfm and any value assign-

ment A of σactm , there exists exactly one stable model ITC∪A of Tr(D,m) that satisfies

TC ∪ A, and the probability of ITC∪A is

PrTr(D,m)(ITC∪A) =

∏
c=v∈TC

M(c = v)

(|σact|+ 1)m
.

The following theorem tells us that the conditional probability of transiting from

a state s to another state s′ with action e remains the same for all timesteps, i.e.,

the conditional probability of i+1 : s′ given i : s and i : e correctly represents the

transition probability from s to s′ via e in the transition system.

Theorem 22. For any state s and s′, and action e, we have

PrTr(D,m)(i+1:s′ | i : s, i : e) = PrTr(D,m)(j+1:s′ | j : s, j : e)

for any i, j ∈ {0, . . . ,m− 1} such that PrTr(D,m)(i : s) > 0 and PrTr(D,m)(j : s) > 0.

For every subset Xm of σm \ σpfm , let X i(i < m) be the triple consisting of

• the set consisting of atoms A such that i : A belongs to Xm and A ∈ σfl;
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• the set consisting of atoms A such that i : A belongs to Xm and A ∈ σact;

• the set consisting of atoms A such that i+1:A belongs to Xm and A ∈ σfl.

Let p(X i) be the transition probability of X i, s0 is the interpretation of σfl0 defined

by X0, and ei be the interpretations of i : σact defined by X i.

Since the transition probability remains the same, the probability of a path given

a sequence of actions can be computed from the probabilities of transitions.

Corollary 2. For every m ≥ 1, Xm is a residual (probabilistic) stable model of

Tr(D,m) iff X0, . . . , Xm−1 are transitions of D and 0 : s0 is a residual stable model

of Dinit. Furthermore,

PrTr(D,m)(Xm | 0:e0, . . . ,m− 1:em−1) = p(X0)× · · · × p(Xm)× PrTr(D,m)(0 :s0).

Example 13. Consider the simple transition system with probabilistic effects in Ex-

ample 11. Suppose a is executed twice. What is the probability that P remains true

the whole time? With Corollary 2 this can be computed as follows:

Pr(2 : P = t, 1:P = t, 0:P = t | 0:A = t, 1:A = t)

= p(〈P = t, A = t, P = t〉) · p(〈P = t, A = t, P = t〉) · PrTr(D,m)(0 :P = t)

= 0.2× 0.2× 0.6 = 0.024.

7.3 pBC+ Action Descriptions and Probabilistic Reasoning

In this section, we illustrate how the probabilistic extension of the reasoning tasks

discussed in Giunchiglia et al. (2004), i.e., prediction, postdiction and planning, can

be represented in pBC+ and automatically computed using lpmln2asp (see Section

5.1). Consider the following probabilistic variation of the well-known Yale Shooting

Problem: There are two (deaf) turkeys: a fat turkey and a slim turkey. Shooting at

a turkey may fail to kill the turkey. Normally, shooting at the slim turkey has 0.6
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chance to kill it, and shooting at the fat turkey has 0.9 chance. However, when a

turkey is dead, the other turkey becomes alert, which decreases the success probability

of shooting. For the slim turkey, the probability drops to 0.3, whereas for the fat

turkey, the probability drops to 0.7.

The example can be modeled in pBC+ as follows. First, we declare the constants:

Notation: t range over {SlimTurkey ,FatTurkey}.

Regular fluent constants: Domains:

Alive(t), Loaded Boolean

Statically determined fluent constants: Domains:

Alert(t) Boolean

Action constants: Domains:

Load , Fire(t) Boolean

Pf constants: Domains:

Pf Killed(t), Pf Killed Alert(t) Boolean

InitPf constants:

Init Alive(t), Init Loaded Boolean

Next, we state the causal laws. The effect of loading the gun is described by

caused Loaded if > after Load .

To describe the effect of shooting at a turkey, we declare the following probability

distributions on the result of shooting at each turkey when it is not alert and when

it is alert, respectively:

caused Pf Killed(SlimTurkey) = {t : 0.6, f : 0.4},

caused Pf Killed(FatTurkey) = {t : 0.9, f : 0.1},

caused Pf Killed Alert(SlimTurkey) = {t : 0.3, f : 0.7},

caused Pf Killed Alert(FatTurkey) = {t : 0.7, f : 0.3}.

172



The effect of shooting at a turkey is described as

caused ∼Alive(t) if > after Loaded ∧ Fire(t)∧ ∼Alert(t) ∧ Pf Killed(t),

caused ∼Alive(t) if > after Loaded ∧ Fire(t) ∧ Alert(t) ∧ Pf Killed Alert(t),

caused ∼Loaded if > after Fire(t).

A dead turkey causes the other turkey to be alert:

default ∼Alert(t),

caused Alert(t1) if ∼Alive(t2) ∧ Alive(t1) ∧ t1 6= t2.

(default F stands for caused {F}ch Babb and Lee (2015)).

The fluents Alive and Loaded observe the commonsense law of inertia:

caused {Alive(t)}ch if > after Alive(t),

caused {∼Alive(t)}ch if > after ∼Alive(t),

caused {Loaded}ch if > after Loaded ,

caused {∼Loaded}ch if > after ∼Loaded .

We ensure no concurrent actions are allowed by stating

caused ⊥ after a1 ∧ a2

for every pair of action constants a1, a2 such that a1 6= a2.

Finally, we state that the initial values of all fluents are uniformly random (b is a

schematic variable that ranges over {t, f}):

caused Init Alive(t) = {t : 0.5, f : 0.5},

caused Init Loaded = {t : 0.5, f : 0.5},

initially Alive(t) = b if Init Alive(t) = b,

initially Loaded = b if Init Loaded = b.
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We translate the action description into an LPMLN program and use lpmln2asp

to answer various queries about transition systems, such as prediction, postdiction

and planning queries.

Prediction For a prediction query, we are given a sequence of actions and observa-

tions that occurred in the past, and we are interested in the probability of a certain

proposition describing the result of the history, or the most probable result of the

history. Formally, we are interested in the conditional probability

PrTr(D,m)(Result | Act,Obs)

or the MAP state

argmax
Result

PrTr(D,m)(Result | Act,Obs)

where Result is a proposition describing a possible outcome, Act is a set of facts of

the form i : a or i :∼a for a ∈ σact, and Obs is a set of facts of the form i : c = v for

c ∈ σfl and v ∈ Dom(c).

In the Yale shooting example, such a query could be “given that only the fat

turkey is alive and the gun is loaded at the beginning, what is the probability that

the fat turkey died after shooting is executed?” To answer this query, we manually

translate the action description above into the input language of lpmln2asp and add

the following action and observation as constraints:

:- not alive(slimTurkey, f, 0).

:- not alive(fatTurkey, t, 0).

:- not loaded(t, 0).

:- not fire(fatTurkey, t, 0).

Executing the command

lpmln2asp -i yale-shooting.lpmln -q alive
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yields

alive(fatTurkey, f, 1) 0.700000449318

Postdiction In the case of postdiction, we infer a condition about the initial state

given the history. Formally, we are interested in the conditional probability

PrTr(D,m)(Initial State | Act,Obs)

or the MAP state

argmax
Initial State

PrTr(D,m)(Initial State | Act,Obs)

where Initial State is a proposition about the initial state; Act and Obs are defined

as above.

In the Yale shooting example, such a query could be “given that the slim turkey

was alive and the gun was loaded at the beginning, the person shot at the slim turkey

and it died, what is the probability that the fat turkey was alive at the beginning?”

Formalizing the query and executing the command

lpmln2asp -i yale-shooting.lpmln -q alive

yields

alive(fatTurkey, t, 0) 0.666661211973

7.4 Diagnosis in Probabilistic Action Domains

One interesting type of reasoning tasks in action domains is diagnosis, where

we observe a sequence of actions that fails to achieve some expected outcome and we

would like to know possible explanations for the failure. Furthermore, in a probabilis-

tic setting, we could also be interested in the probability of each possible explanation.

In this section, we discuss how diagnosis can be automated in pBC+ as probabilistic

abduction and we illustrate the method through an example.

175



We define the following new constructs to allow probabilistic diagnosis in action

domains. Note that those constructs are simply syntactic sugars that do not change

the actual expressivity of the language.

• We introduce a subclass of regular fluent constants called abnormal fluents.

• When the action domain contains at least one abnormal fluent, we introduce a

special statically determined fluent constant ab with Boolean domain, and we

add

default ∼ab.

• We introduce the expression

caused ab F if G after H

where F and G are fluent formulas and H is a formula, provided that F does not

contain statically determined constants and H does not contain initpf constants.

This expression is treated as an abbreviation of

caused F if ab ∧G after H.

Once we have defined abnormalities and how they affect the system, we can use

caused ab

to enable taking abnormalities into account in reasoning.

The robot example introduced in Section 6.3.3 can be modeled in pBC+ as follows.

We first introduce the following constants:

Notation: r range over {R1,R2}.

Regular fluent constants: Domains:
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LocRobot , LocBook {R1,R2}

HasBook Boolean

Abnormal fluent constants: Domains:

EnterFailed , DropBook , PickupFailed Boolean

Action constants: Domains:

Goto(r), PickUpBook , PutdownBook Boolean

Pf constants: Domains:

Pf EnterFailed , Pf PickupFailed , Pf DropBook Boolean

Initpf constants: Domains:

Init LocRobot , Init LocBook {R1,R2}

Init HasBook Boolean

The action Goto(r) causes the location of the robot to be at r unless the abnormality

EnterFailed occurs:

caused LocRobot =r after Goto(r) ∧ ¬EnterFailed .

Similarly, the following causal laws describe the effect of the actions PickupBook and

PutdownBook :

caused HasBook if LocRobot = LocBook after PickUpBook ∧ ¬PickUpFailed

caused ∼HasBook after PutdownBook .

If the robot has the book, then the book has the same location as the robot:

caused LocBook = r if LocRobot = r ∧ HasBook .

The abnormality DropBook causes the robot to not have the book:

caused ∼HasBook if DropBook .
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The fluents LocBook, LocRobot and HasBook observe the commonsense law of iner-

tia:

caused {LocBook = r}ch after LocBook = r caused {LocRobot = r}ch after LocRobot = r

caused {HasBook = b}ch after LocBook = b.

The abnormality EnterFailed has 0.2 chance to occur when the action Goto is exe-

cuted:

caused {∼EnterFailed}ch if ∼EnterFailed caused Pf EnterFailed = {t : 0.2, f : 0.8}

caused ab EnterFailed if > after pf EnterFailed ∧Goto(r).

Similarly, the following causal laws describe the condition and probabilities for the

abnormalities PickupFailed and DropBook to occur:

caused {∼PickupFailed}ch if ∼PickupFailed caused Pf PickupFailed = {t : 0.3, f : 0.7}

caused ab PickupFailed if > after Pf PickupFailed ∧ PickupBook ,

caused {∼DropBook}ch if ∼DropBook caused Pf DropBook = {t : 0.1, f : 0.9}

caused ab DropBook if > after Pf DropBook ∧ HasBook .

We ensure no concurrent actions are allowed by stating

caused ⊥ after a1 ∧ a2

for every pair of action constants a1, a2 such that a1 6= a2. Initially, it is uniformly

random where the robot and the book is and whether the robot has the book:

caused Init LocRobot = {R1 : 0.5, R2 : 0.5}

caused Init LocBook = {R1 : 0.5, R2 : 0.5}

caused Init HasBook = {t : 0.5, f : 0.5},

initially LocRobot = r if Init LocRobot = r

initially LocBook = r if Init LocBook = r

initially HasBook = b if Init HasBook = b.

No abnormalities are possible at the initial state:
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initially ⊥ if EnterFailed, initially ⊥ if PickupFailed , initially ⊥ if DropBook.

We add caused ab to the action description to take abnormalities into account in

reasoning and translate the action description into LPMLN program.

Executing lpmln2asp -i robot. lpmln yields

pickupBook("t",0) ab("pickup_failed","t",1) goto("r2","t",1) putdownBook("t",2)

which suggests that the robot fails at picking up the book.

Suppose that the robot has observed that the book was in its hand after it picked

up the book. We expand the action history with

:- not hasBook("t", 1).

Now the most probable stable model becomes

pickupBook("t",0) goto("r2","t",1) ab("drop_book","t",2) putdownBook("t",2)

suggesting that robot accidentally dropped the book.

On the other hand, if the robot further observed that itself was not at r2 after

the execution

:- locRobot("r2", 3).

Then the most probable stable model becomes

pickupBook("t",0) goto("r2","t",1) ab("enter_failed","t",2) putdownBook("t",2)

suggesting that the robot failed at entering r2.

7.5 Related Work

There exist various formalisms for reasoning in probabilistic action domains. PC+

(Eiter and Lukasiewicz (2003)) is a generalization of the action language C+ that al-

lows for expressing probabilistic information. The syntax of PC+ is similar to pBC+,

as both the languages are extensions of C+. PC+ expresses probabilistic transition
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of states through so-called context variables, which are similar to pf constants in

pBC+, in that they are both exogenous variables associated with predefined proba-

bility distributions. In pBC+, in order to achieve meaningful probability computed

through LPMLN, assumptions such as all actions have to be always executable and

nondeterminism can only be caused by pf constants, have to be made. In contrast,

PC+ does not impose such semantic restrictions, and allows for expressing qualitative

and quantitative uncertainty about actions by referring to the sequence of “belief”

states—possible sets of states together with probabilistic information.

On the other hand, the semantics is highly complex and there is no implementa-

tion of PC+ as far as we know. Zhu (2012) defined a probabilistic action language

called NB, which is an extension of the (deterministic) action language B. NB can

be translated into P-log (Baral et al. (2004)) and since there exists a system for com-

puting P-log, reasoning in NB action descriptions can be automated. Like pBC+ and

PC+, probabilistic transitions are expressed through dynamic causal laws with ran-

dom variables associated with predefined probability distribution. In NB, however,

these random variables are hidden from the action description and are only visible in

the translated P-log representation. One difference between NB and pBC+ is that

in NB a dynamic causal law must be associated with an action and thus can only

be used to represent probabilistic effect of actions, while in pBC+, a fluent dynamic

law can have no action constant occurring in it. This means state transition with-

out actions or time step change cannot be expressed directly in NB. Like pBC+, in

order to translate NB into executable low-level logic programming languages, some

semantical assumptions have to be made in NB. The assumptions made in NB are

very similar to the ones made in pBC+.

Probabilistic action domains, especially in terms of probabilistic effects of ac-

tions, can be formalized as Markov Decision Process (MDP). The language pro-
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posed in Baral et al. (2002) aims at facilitating elaboration tolerant representations

of MDPs. The syntax is similar to pBC+. The semantics is more complex as it allows

preconditions of actions and imposes less semantical assumption. The concept of un-

known variables associated with probability distributions is similar to pf constants in

our setting. There is, as far as we know, no implementation of the language. There

is no discussion about probabilistic diagnosis in the context of the language. PPDDL

Younes and Littman (2004) is a probabilistic extension of the planning definition

language PDDL. Like NB, the nondeterminism that PPDDL considers is only the

probabilistic effect of actions. The semantics of PPDDL is defined in terms of MDP.

There are also probabilistic extensions of the Event Calculus such as D’Asaro et al.

(2017) and Skarlatidis et al. (2011).

In the above formalisms, the problem of probabilistic diagnosis is only discussed

in Zhu (2012). Balduccini and Gelfond (2003) and Baral et al. (2000) studied the

problem of diagnosis. However, they are focused on diagnosis in deterministic and

static domains. Iwan (2002) has proposed a method for diagnosis in action domains

with situation calculus. Again, the diagnosis considered there does not involve any

probabilistic measure.

Compared to the formalisms mentioned here, the unique advantages of pBC+ in-

clude its executability through LPMLN systems, its support for probabilistic diagnosis,

and the possibility of parameter learning in actions domains.

7.6 Proofs

7.6.1 Proof of Proposition 11

Proposition 11 For any transition 〈s, e, s′〉, s and s′ are states.

Proof. To show that s and s′ are states, we show that 0 : s and 0 : s′ are stable
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models of D0. We use I0 as an abbreviation of 0 : s ∪ 0 : e ∪ 1 : s′ ∪ 0 : pf . By

definition of a transition, we know that 0 : s ∪ 0 : e ∪ 1 : s′ is a residual stable model

of D1, i.e., there exists an assignment pf to σpf such that 0 : s ∪ 0 : e ∪ 1 : s′ ∪ 0 : pf

is a stable model of D1. By definition of a probabilistic stable model, this means

0 : s ∪ 0 : e ∪ 1 : s′ ∪ 0 : pf is a (deterministic) stable model of

SD(0) ∪ FD(0) ∪ PF (0)I0 ∪ UEC ∪ EXG. (7.10)

0 : s is a stable model of D0: We split (7.10) into two disjoint subsets

SD(0)

and

SD(1) ∪ FD(0) ∪ PF (0)I0 ∪ UEC ∪ EXG.

It can be seen that SD(0) is negative on 0 : σact∪0 : σpf∪1 : σfl and SD(1)∪FD(0)∪

PF (0)I0 ∪UEC ∪EXG is negative on 0 : σfl. Every strongly connected components

of (7.10) is either a subset of 0 : σfl or a subset of 0 : σact ∪ 0 : σpf ∪ 1 : σfl. By

the splitting theorem, we have that 0 : s is stable model of SD(0) w.r.t. 0 : σfl and

0 : e ∪ 1 : s′ ∪ 0 : pf is a stable model of SD(1) ∪ FD(0) ∪ PF (0)I0 ∪ UEC ∪ EXG

w.r.t. 0 : σact ∪ 0 : σpf ∪ 1 : σfl. Since D0 = SD(0), s′ is a stable model of D0.

0 : s′ is a stable model of D0: We further divide the set of fluents into the set

σr of regular fluents and the set σsd of statically determined fluents. From the above

reasoning, we know that 0 : e ∪ 1 : s′ ∪ 0 : pf is a stable model of

SD(1) ∪ FD(0) ∪ PF (0)I0 ∪ UEC ∪ EXG

w.r.t. 0 : σact ∪ 0 : σpf ∪ 1 : σfl, i.e. 0 : σact ∪ 0 : σpf ∪ 1 : σr ∪ 1 : σsd, . By Theorem

2 in Ferraris et al. (2009), we have that 0 : e ∪ 1 : s′ ∪ 0 : pf is a stable model of

SD(1) ∪ FD(0) ∪ PF (0)I0 ∪ UEC ∪ EXG
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w.r.t. 1 : σsd. Since FD(0), PF (0), UEC and EXG are negative on 1 : σsd, this

implies 0 : e ∪ 1 : s′ ∪ 0 : pf is a stable model of SD(1) w.r.t. 1 : σsd. Since SD(1)

does not mention any atom in 0 : e ∪ 0 : pf , we have that 1 : s′ is a stable model of

SD(1) w.r.t. 1 : σsd. Let (1 : σr)ch denote the set of rules of the form (7.7) for each

c ∈ σr. The above implies that 1 : s′ is a stable model of SD(1) ∪ (1 : σr)ch w.r.t.

1 : σsd ∪ 1 : σr = 1 : σfl. Changing all the timesteps from 1 to 0, we obtain that 0 : s′

is a stable model of SD(0) ∪ (0 : σr)ch = D0 w.r.t. 0 : σfl.

7.6.2 Proof of Theorem 21

Proposition 12. For any multi-valued probabilistic program Π for which every total

choice leads to n(n > 0) stable models and any interpretation I, we have

P ′′Π(I) =
1

n
W ′′

Π(I).

Proof. We show that the normalization factor is constant n, i.e.,

∑
I is an interpretation of Π

W ′′
Π(I) = n.

Let pf1, . . . , pfm be the probabilistic constants in Π, and vi,1, . . . , vi,ki , each associated

with probability pi,1, . . . , pi,ki resp. be the values of pfi (i ∈ {1, . . . ,m}). Let TCΠ be

the set of all assignments to probabilistic constants in Π.
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∑
I is an interpretation of Π

W ′′
Π(I)

=
∑

I∈SM ′′[Π]

W ′′
Π(I)

=
∑

tc∈TCΠ

n ·
∏

c=v∈tc

MΠ(c = v)

=n
∑

tc∈TCΠ

∏
c=v∈tc

MΠ(c = v)

=n · (p1,1

∑
tc∈TCΠ

tc(pf1)=v1,1

∏
c=v∈tc
c 6=pf1

MΠ(c = v) + · · ·+ p1,k1

∑
tc∈TCΠ

tc(pf1)=v1,k1

∏
c=v∈tc
c 6=pf1

MΠ(c = v))

=n · (
∑

i1∈{1,...,k1}

p1,i1

∑
tc∈TCΠ

tc(pf1)=v1,i1

∏
c=v∈tc
c 6=pf1

MΠ(c = v))

=n · (
∑

i2∈{1,...,k2}

p2,i2

∑
i1∈{1,...,k1}

p1,i1

∑
tc∈TCΠ

tc(pf1)=v1,i1
tcpf2=v2,i2

∏
c=v∈tc
c6=pf1
c 6=pf2

MΠ(c = v))

=n · (
∑

im−1∈{1,...,km−1}

pm,im . . .
∑

i2∈{1,...,k2}

p2,i2

∑
i1∈{1,...,k1}

p1,i1

∑
tc∈TCΠ

tc(pf1)=v1,i1
tc(pf2)=v2,i2...

tc(pfm−1)=vm−1,im

∏
c=v∈tc
c 6=pf1
c 6=pf2
...

c 6=pfm−1

MΠ(c = v))

=n · (
∑

im−1∈{1,...,km−1}

pm,im . . .
∑

i2∈{1,...,k2}

p2,i2

∑
i1∈{1,...,k1}

p1,i1(MΠ(pfm = vm,1) + · · ·+MΠ(pfm = vm,km)))

=n · (
∑

im−1∈{1,...,km−1}

pm,im . . .
∑

i2∈{1,...,k2}

p2,i2

∑
i1∈{1,...,k1}

p1,i11)

=n · (1)

=n.
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For i′ ∈ {0, . . . ,m}, we use SD(i′) to denote the set of all rules of the form (7.5)

in Dm where i = i′, and for i′ ∈ {0, . . . ,m− 1}, we use FD(i′) to denote the set of all

rules of the form (7.6) in Dm where i = i′. Furthermore, according to Lee and Wang

(2016), a pf constant declaration (7.9) is translated into

ln(pj) : (i : pf) = vj (7.11)

for each j ∈ {1, . . . , n} and i ∈ {1, . . . ,m − 1}. For any i ∈ {0, . . . ,m − 1}, and

any assignment to σpf , we use PF (i) to denote the set of weighted rules (7.11) in

Dm where pf is an pf constant, and PF (i)TC to denote the subset of PF (i) that TC

satisfies.

Also, from the definition of multi-valued probabilistic programs (3.3), Dm contains

α : ⊥ ← c = v1 ∧ c = v2 (7.12)

and

α : ⊥ ← ¬
∨

v∈Dom(c)

c = v (7.13)

for all constants c and v1, v2 ∈ Dom(c) such that v1 6= v2. We use UEC to denote

the set of rules of the form (7.12) or (7.13), and EXG to denote the set of rules of

the form (7.8) and (7.7), disregarding their weights.

Lemma 21. Let (〈s, a, s′〉, pf) be a pf-transition of D. We have that 0 : s∪ 0 : a∪ 0 :

pf ∪ 1 : s′ is a (deterministic) stable model of SD(1) ∪ FD(0) ∪ PF (0)0:pf ∪ UEC

w.r.t. 0 : σact ∪ 0 : σpf ∪ 1 : σfl.

Proof. By definition of pf-transition, we have that I is a deterministic stable model

of

SD(0) ∪ SD(1) ∪ FD(0) ∪ PF (0)I ∪ UEC. (7.14)
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We split (7.14) into SD(0) and the rest

SD(1) ∪ FD(0) ∪ PF (0)I ∪ UEC.

It can be seen that SD(0) is negative on 0 : σact ∪ 0 : σpf ∪ 1 : σfl and SD(1) ∪

FD(0) ∪ PF (0)I ∪ UEC is negative on 0 : σfl. Each strongly connected components

of (7.14) is either a subset of 0 : σfl or a subset of 0 : σact ∪ 0 : σpf ∪ 1 : σfl.

By the splitting theorem, we have that 0 : s∪0 : a∪0 : pf∪1 : s′ is a (deterministic)

stable model of SD(1) ∪ FD(0) ∪ PF (0)0:pf ∪ UEC w.r.t. 0 : σact ∪ 0 : σpf ∪ 1 : σfl.

For any set of constants C, a of C is a function that maps each element c in C to a

unique element in Dom(c). We say an interpretation I of the propositional signature

constructed from C (as described in Section 3.3) satisfies a value assignment V of C

if for all c ∈ C, (c = v)I = t if and only if V (c) = v.

Theorem 21 Given any value assignment TC of constants in σpfm ∪ 0 : σinitpf and a

value assignment A of constants of σactm , ITC∪A is the only stable model of Tr(D,m)

that satisfies TC ∪ A, and the probability of ITC∪A is

PrTr(D,m)(ITC∪A) =

∏
c=v∈TC

M(c = v)

(|σact|+ 1)m
.

Proof. We first show that ITC∪A is the only stable model of Tr(D,m) that satisfies

TC ∪ A. Clearly ITC∪A � TC ∪ A. We use I iTC∪A for i ∈ {0, 1, . . . ,m− 1} to denote

the following subset of ITC∪A:

(ITC∪A)|i:σfl ∪ (ITC∪A)|i:σact ∪ (ITC∪A)|i+1:σfl ∪ (ITC∪A)|i:σpf .

For any i, j ∈ {0, . . . ,m} such that i < j and any signature σ′, we use i..j : σ′ to

denote i : σ′ ∪ · · · ∪ j : σ′.
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• We show that ITC∪A, i.e., (ITC∪A)|0:σinitpf ∪ I0
TC∪A ∪ · · · ∪ Im−1

TC∪A is a prob-

abilistic stable model of Tr(D,m) by induction: Let ITC∪A(n) denote

(ITC∪A)|0:σinitpf ∪ I0
TC∪A ∪ · · · ∪ In−1

TC∪A

Base Case: when m = 1, consider ITC∪A(1), i.e, (ITC∪A)|0:σinitpf ∪ I0
TC∪A.

Tr(D, 1)ITC∪A(1)

is the ASP program

(Dinit)ITC∪A(1)∪

SD(0) ∪ SD(1)∪

FD(0)∪

PF (0)TC ∪ UEC.

Since

(〈(ITC∪A)|0:σfl , (ITC∪A)|0:σact , (ITC∪A)|1:σfl〉, (ITC∪A)|0:σpf )

is a pf-transition, by Lemma 21, ITC∪A(1) is a deterministic stable model of

SD(1) ∪ FD(0) ∪ PF (0)TC ∪ UEC w.r.t. 0 : σact ∪ 0 : σpf ∪ 1 : σfl.

On the other hand, from the construction of ITC∪A, ITC∪A(1) is a deterministic

stable model of (Dinit)(ITC∪A) ∪ SD(0) w.r.t. 0 : σfl ∪ 0 : σinitpf .

It can be seen that SD(1)∪FD(0)∪PF (0)TC ∪UEC is negative on 0 : σfl∪0 :

σinitpf and (Dinit)(ITC∪A) ∪ SD(0) is negative on 0 : σact ∪ 0 : σpf ∪ 1 : σfl. Each

strongly component of the dependency graph of (Tr(D,m))ITC∪A(1) is either a

subset of 0 : σfl ∪ 0 : σinitpf or a subset of 0 : σact ∪ 0 : σpf ∪ 1 : σfl.

Applying the splitting theorem, we have that ITC∪A(1) is a deterministic sta-

ble model of (Tr(D,m))ITC∪A(1) and thus is a probabilistic stable model of

Tr(D,m), since it does not violate any hard rules.
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For m > 1, consider ITC∪A(m).

(Tr(D,m))ITC∪A(m) = (Dinit)ITC∪A(m)∪ (7.15)

SD(0) ∪ · · · ∪ SD(m)∪

FD(0) ∪ · · · ∪ FD(m− 1)∪

PF (0)TC ∪ · · · ∪ PF (m− 1)TC ∪ UEC

Clearly we have

– each strongly connected component of the dependency graph of (7.15) is

either a subset of 0 : σinitpf ∪0..(m−1) : σfl∪0..(m−2) : σact∪0..(m−2) :

σpf or a subset of m : σfl ∪m− 1 : σact ∪m− 1 : σpf ;

–

(Tr(D,m− 1))ITC∪A(m) = (Dinit)ITC∪A(m)∪

SD(0) ∪ · · · ∪ SD(m− 1)∪

FD(0) ∪ · · · ∪ FD(m− 2)∪

PF (0)TC ∪ · · · ∪ PF (m− 2)TC ∪ UEC ∪ EXG

is negative on m : σfl ∪m− 1 : σact ∪m− 1 : σpf ;

–

(Tr(D,m) \ Tr(D,m− 1))ITC∪A(m) =

SD(m)∪

FD(m− 1)∪

PF (m− 1)TC

is negative on 0 : σinitpf ∪ 0..m− 1 : σfl ∪ 0..m− 2 : σact ∪ 0..m− 2 : σpf .

188



By I.H., ITC∪A(m − 1) is a probabilistic stable model of Tr(D,m − 1), which

implies ITC∪A(m) is a (deterministic) stable model of

(Tr(D,m− 1))ITC∪A(m)

w.r.t. 0 : σinitpf ∪ 0..m− 1 : σfl ∪ 0..m− 2 : σact ∪ 0..m− 2 : σpf . The fact that

ITC∪A(m) is a (deterministic) stable model of

(Tr(D,m) \ Tr(D,m− 1))ITC∪A(m)

w.r.t. m : σfl ∪ m − 1 : σact ∪ m − 1 : σpf can be seen from Lemma 21 and

replacing timesteps m and m− 1 with 1 and 0 resp.

Thus, ITC∪A(m) is a stable model of Tr(D,m).

• There does not exist more than one stable models of Tr(D,m) that

satisfies TC ∪ A. Suppose, to the contrary, that there exists I 6= ITC∪A that

satisfies TC ∪ A and I is also a stable model of Tr(D,m). Since I and ITC∪A

agree on TC ∪ A, they can differ only on the value assignment of constants in

σfl. Let i : fl be any one of the constants such that I(i : fl) 6= ITC∪A(i : fl)

and there does not exist any j : fl′ with j ≤ i and I(j : fl′) 6= ITC∪A(j : fl′).

By definition, the assumption that I is a probabilistic stable model of Tr(D,m)

means I is a (deterministic) stable model of

Tr(D,m)I = DinitI∪

SD(0) ∪ · · · ∪ SD(m)∪

FD(0) ∪ · · · ∪ FD(m− 1)∪

PF (0)TC ∪ · · · ∪ PF (m− 1)TC∪

UEC ∪ EXG
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which, by the splitting theorem, implies that I is a stable model of

(Dinit)I∪

SD(0) ∪ · · · ∪ SD(i− 1) ∪ SD(i+ 1) ∪ · · · ∪ SD(m)∪

FD(0) ∪ · · · ∪ FD(i− 2) ∪ FD(i) ∪ . . . FD(m− 1)∪

PF (0)TC ∪ · · · ∪ PF (i− 2)TC ∪ PF (i)TC ∪ · · · ∪ PF (m− 1)TC∪

INITTC ∪ UEC ∪ EXG

w.r.t. σinitpf ∪ 0..(i − 1) : σfl ∪ (i + 1)..m : σfl ∪ 0..(i − 2) : σact ∪ i..(m − 1) :

σact ∪ 0..(i− 2) : σpf ∪ i..(m− 1) : σpf , and I is a stable model of

SD(i) ∪ FD(i− 1) ∪ PF (i− 1)TC

w.r.t. i : σfl ∪ i− 1 : σact ∪ i− 1 : σpf . Changing the timesteps, this means

0 : I|i−1:σfl , 0 : I|i−1:σact , 1 : I|i:σfl , 0 : I|i−1:σpf

is a stable model of

SD(1) ∪ FD(0) ∪ PF (0)TC ∪ UEC ∪ EXG

w.r.t. 1 : σfl ∪ 0 : σact ∪ 0 : σpf . On the other hand, clearly, 0 : I|i−1:σfl , 0 :

I|i−1:σact , 1 : I|i:σfl , 0 : I|i−1:σpf also satisfies SD(0). Due to the existence of

EXG, we have

0 : I|i−1:σfl , 0 : I|i−1:σact , 1 : I|i:σfl , 0 : I|i−1:σpf

is a stable model of

SD(0) ∪ SD(1) ∪ FD(0) ∪ PF (0)TC ∪ UEC ∪ EXG = D1

The above implies that (〈I|i−1:σfl , I|i−1:σact , I|i:σfl〉, I|i−1:σpf ) is also a pf-transition

in addition to

(〈(ITC∪A)|i−1:σfl , (ITC∪A)|i−1:σact , (ITC∪A)|i:σfl〉, (ITC∪A)|i−1:σpf ),
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which contradict our assumption 2.

Consequently, in Tr(D,m), since there are (|σact| + 1)m different assignments of

σact under Assumption 1, every total choice leads to (|σact| + 1)m stable models. By

Theorem 12, we have

PrTr(D,m)(ITC∪A) =

∏
c=v∈TC

M(c = v)

(|σact|+ 1)m
.

7.6.3 Proof of Theorem 22 and Corollary 2

For a multi-valued probabilistic program Π, a total choice of Π is a value assign-

ment to probabilistic constants in Π. For any interpretation I, of a multi-valued

probabilistic program, that satisfies uniqueness and existence constraints for all con-

stants, the total choice of I, denoted TC(I), is the function that maps each proba-

bilistic constant c to the value v such that c = v ∈ I. We say a total choice tc leads

to an interpretation I if I satisfies tc.

In the following proofs, we sometimes identify a value assignment A with the set

{c = v | A(c) = v}.

Proposition 13. For any multi-valued probabilistic program Π = 〈PF,Π〉 such that

every total choice leads to the same number of stable models, we have

PrΠ(c = v) = MΠ(c = v)

for any probabilistic constant c and v ∈ Dom(c).

Proof. Let n be the number of stable models that each total choices leads to. By
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Proposition 12 we have

PrΠ(c = v)

=
∑

I is a stable model of Π
I�c=v

∏
c′=v′∈TC(I)

MΠ(c′ = v′)

n

=MΠ(c = v) · 1

n
·

∑
I is a stable model of Π

I�c=v

∏
c′=v′∈TC(I)

c′ 6=c

MΠ(c′ = v′)

=MΠ(c = v) · 1

n
· n

∑
v′∈Dom(c1)

MΠ(c1 = v′) . . .
∑

v′∈Dom(cn)

MΠ(cn = v′)

=MΠ(c = v) · 1

n
· n · 1

=MΠ(c = v)

Proposition 14. For any multi-valued probabilistic program Π = 〈PF,Π〉 such that

every total choice leads to the same number of stable models, and any value assignment

ppf of a subset P of probabilistic constants in Π, we have

PrΠ(
∧

pf=v∈ppf

pf = v) =
∏

pf=v∈ppf

PrΠ(pf = v).

Proof. Let n denote the number of stable models each total choice leads to. By
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Proposition 12 we have

PrΠ(
∧

ppf(pf)=v

pf = v)

=
∑

I is a stable model of Π
I�

∧
ppf(pf)=v

pf=v

W
′′
Π(I)

n

=
∑

I is a stable model of Π
I�

∧
ppf(pf)=v

pf=v

∏
c=v∈TC(I)

MΠ(c = v)

n

=
∑

I is a stable model of Π
I�

∧
ppf(pf)=v

pf=v

∏
ppf(pf)=v

MΠ(pf = v) ·
∏

c=v∈TC(I)\ppf
MΠ(c = v)

n

=
∏

ppf(pf)=v

MΠ(pf = v) · 1

n

∑
I is a stable model of Π

I�
∧

ppf(pf)=v

pf=v

∏
c=v∈TC(I)\ppf

MΠ(c = v)

We use C to denote the set of all constants in Π. Let C \ P = {c1, . . . , cn}. Since

every total choice leads to the same number of stable models, we have

1

n

∑
I is a stable model of Π

I�
∧

pf=v∈ppf
pf=v

∏
c=v∈TC(I)\ppf

MΠ(c = v)

=
1

n

∑
TC is a value assignment of C \ P

n ·
∏

TC(c)=v

MΠ(c = v)

=
1

n
· n

∑
v∈Dom(c1)

MΠ(c1 = v) . . .
∑

v∈Dom(cn)

MΠ(cn = v)

=1.
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Consequently by Proposition 13 we have

PrΠ(
∧

pf=v∈ppf

pf = v)

=
∏

pf=v∈ppf

MΠ(pf = v) · 1

n

∑
I is a stable model of Π

I�
∧

pf=v∈ppf
pf=v

∏
c=v∈TC(I)\ppf

MΠ(c = v)

=
∏

pf=v∈ppf

MΠ(pf = v) · 1

=
∏

pf=v∈ppf

PrΠ(pf = v).

Theorem 22 For any state s and s′, and action e, we have

PrTr(D,m)(i+ 1 : s′ | i : s, i : e) = PrTr(D,m)(j + 1 : s′ | j : s, j : e)

for any i, j ∈ {0, . . . ,m− 1} such that PrTr(D,m)(i : s) 6= 0 and PrTr(D,m)(j : s) 6= 0.

Proof. For any k ∈ {0, . . . ,m− 1} such that PrTr(D,m)(k : s) 6= 0, we show that

PrTr(D,m)(k + 1 : s′ | k : s, k : e) = PrDm(1 : s′ | 0 : s, 0 : e).

Firstly, since Tr(D,m) satisfies the condition that every total choice leads to the

same number of stable models, by Proposition 13, we have

PrTr(D,m)(i : pf = v) = MTr(D,m)(i : pf = v)

= MDm(i : pf = v) (7.16)

for any pf constant pf and v ∈ Dom(pf) and any i ∈ {0, . . . ,m− 1}.

Secondly, from Theorem 21, it can be seen that for any (probabilistic) stable

model I of Tr(D,m), (〈I|i:σfl , I|i:σact , I|i+1:σfl〉, I|i:σpf ) is always a pf-transition: the

contrary would imply that for some stable model I of Tr(D,m), there does not exist
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any assignment TC ∪ A on pf constants and action constants such that I = ITC∪A,

which contradicts Theorem 21. Under Assumption 2, this implies

PrTr(D,m)(k + 1 : s′ | k : s, k : e, k : pf) =


1 if (〈s, a, s′〉, pf) is a pf-transition

0 otherwise

and thus

PrTr(D,m)(k + 1 : s′ | k : s, k : e, k : pf) = PrDm(1 : s′ | 0 : s, 0 : e, 0 : pf) (7.17)

for all assignments pf to σpf .

From (7.16) and (7.17), and by Proposition 14, we have

PrTr(D,m)(k + 1 : s′ | k : s, k : e)

= {Law of Total Probability}

=
∑

pf is any value assignment to σpf

PrTr(D,m)(k + 1 : s′ | k : s, k : e, k : pf) · PrTr(D,m)(k : pf)

=
∑

pf is any value assignment to σpf

PrTr(D,m)(k + 1 : s′ | k : s, k : e, k : pf)·

(
∏
c∈σpf

PrTr(D,m)(k : c = pf(c)))

= {Proposition 14 and (7.16)}

=
∑

pf is any value assignment to σpf

PrTr(D,m)(k + 1 : s′ | k : s, k : e, k : pf)·

(
∏
c∈σpf

MDm(k : c = pf(c)))

= {From (7.17)}

=
∑

pf is any value assignment to σpf

PrDm(1 : s′ | 0 : s, 0 : e, 0 : pf) · (
∏
c∈σpf

MDm(0 : c = pf(c)))

= PrDm(1 : s′ | 0 : s, 0 : e)
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Corollary 2 For every m ≥ 1, Xm is a residual (probabilistic) stable model of

Tr(D,m) iff X0, . . . , Xm−1 are transitions of D and 0 : s0 is a residual stable model

of Dinit. Furthermore,

PrTr(D,m)(Xm | 0:e0, . . . ,m− 1:em−1) = p(X0)× · · · × p(Xm)× PrTr(D,m)(0 :s0).

Proof. By Theorem 21, an interpretation I is a (probabilistic) stable model of Tr(D,m)

iff I0, . . . , Im−1 are pf-transitions and (ITC∪A)|0:σfl ∪ (ITC∪A)|σinitpf is a residual sta-

ble model of Dinit ∪ PF0(D). From the definition of transition and pf-transition, it

follows that Xm is a residual (probabilistic) stable model of Dm iff X0, . . . , Xm−1 are

transitions of D and 0 : s0 is a residual stable model of Dinit.

Furthermore, we have

PrTr(D,m)(Xm | 0 : e0, . . . , 0 : em−1)

= PrTr(D,m)(m : sm | m− 1 : sm−1,m− 1 : em−1)·

· · · · PrTr(D,m)(2 : s2 | 1 : s1, 1 : e1)·

PrTr(D,m)(1 : s1 | 0 : s0, 0 : e0) ∪ PrTr(D,m)(0 : s0)

We have

PrTr(D,m)(Xm | s0, e0, . . . , em−1)

= {By Theorem 22}

= PrDm(1 : sm | 0 : sm−1, 0 : em−1) · · · · · PrDm(1 : s2 | 0 : s1, 0 : e1)·

PrDm(1 : s1 | 0 : s0, 0 : e0) · PrTr(D,m)(0 : s0)

= PrDm(1 : s1 | 0 : s0, 0 : e0) · PrDm(1 : s2 | 0 : s1, 0 : e1) · · · · ·

PrDm(1 : sm | 0 : sm−1, 0 : em−1) · PrTr(D,m)(0 : s0)

= p(X1)× · · · × p(Xm)× PrTr(D,m)(0 : s0).
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Chapter 8

DECISION-THEORETIC LPMLN

Many problems in AI are about how to make decisions that maximize the agent’s

utility. In this section, we define an extension of LPMLN to address this type of

decision problems. This extension, called DT-LPMLN (“Decision-Theretic LPMLN”),

associates a utlity measure to each probabilistic stable model, in addition to the

probability measure as defined before. We define decision evaluation and decision

optimization problems under DT-LPMLN framework, illustrating how decision prob-

lems involving probabilistic reasoning can be modeled in DT-LPMLN. We will also

present an algorithm for decision optimization problem, adapted from the well-known

MAXWalkSAT algorithm for finding most probable truth assignments. In Chapter 9,

we will show how this extension of LPMLN leads to an extension of action language

pBC+ that can model sequential decision problems.

8.1 Extending LPMLN for Decision Theory

We extend the syntax and semantics of LPMLN for DT-LPMLN by introducing

atoms of the form

utility(u, t) (8.1)

where u is a real number, and t is an arbitrary list of terms. These atoms can only

occur in the head of hard rules of the form

α : utility(u, t)← Body (8.2)

where Body is a list of literals. We call these rules utility rules.
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The weight and the probability of an interpretation are defined the same as in

LPMLN. The utility of an interpretation I under Π is defined as

UΠ(I) =
∑

utility(u,t)∈I

u.

Given a proposition A, the expected utility of A is defined as

E[UΠ(A)] =
∑
I|=A

UΠ(I)× PΠ(I | A). (8.3)

A DT-LPMLN program is a pair 〈Π, Dec〉 where Π is an LPMLN program with

a propositional signature σ (including utility atoms) and Dec is a subset of σ

consisting of decision atoms. We consider two reasoning tasks on DT-LPMLN.

• Evaluating a Decision. Given a propositional formula e (“evidence”) and a

truth assignment dec of decision atoms Dec, represented as a conjunction of

literals over atoms in Dec, compute the expected utility of decision dec in the

presence of evidence e, i.e., compute

E[UΠ(dec ∧ e)] =
∑

I|=dec∧e

UΠ(I)× PΠ(I | dec ∧ e).

• Finding a Decision with Maximum Expected Utility (MEU). Given a

propositional formula e (“evidence”), find the truth assignment dec on Dec such

that the expected utility of dec in the presence of e is maximized, i.e., compute

argmax
dec : dec is a truth assignment on Dec

E[UΠ(dec ∧ e)]. (8.4)

8.2 MaxWalkSAT based MEU Approximiation

Algorithm 3 is an approximate algorithm based on MaxWalkSAT for solving the

MEU problem. For any truth assignment X on a set σ of atoms and an atom v ∈ σ,

we use X |v to denote the truth assignment on σ obtained from X by flipping the

truth value of v.
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8.3 Using DT-LPMLN to Solve Decision Problems

We use the following example to illustrate how DT-LPMLN can be used to solve

decision problems.

Example 14. Consider a directed graph G representing a social network: (i) each

vertex v ∈ V (G) represents a person; each edge (v1, v2) represents that v1 influences

v2; (ii) each edge e = (v1, v2) is associated with a probability pe representing the

probability of the influence; (iii) each vertex v is associated with a cost cv, representing

the cost of marketing the product to v; (iv) each person who buys the product yields a

reward of r.

The goal is to choose a subset U of vertices as marketing targets so as to maximize

the expected profit. The problem can be represented as a DT-LPMLN program Πmarket

as follows:

α : buy(v)← marketTo(v).

α : buy(v2)← buy(v1), influence(v1, v2).

α : utility(r, v)← buy(v).

with the graph instance represented as follows:

• for each edge e = (v1, v2), we introduce a probabilistic fact ln( pe
1−pe ) : influence(v1, v2);

• for each vertex v ∈ V (G), we introduce the following rule:

α : utility(−cv, v)← marketTo(v).

For simplicity, we assume that marketing to a person 100% guarantees that the

person buys the product. This assumption can be removed easily by changing the first

rule to a soft rule.
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Figure 8.1: Running Statistics of Algorithm 3 on Marketing Domain

The MEU solution of DT-LPMLN program (Πmarket, {marketTo(v) | v ∈ V (G)})

corresponds to the subset U of vertices that maximizes the expected profit.
For example, consider the directed graph on the

right, where each edge e is labeled by pe and each

vertex v is labeled by cv. Suppose the reward for

each person buying the product is 10. There are

26 = 64 different truth assignments on decision

atoms, corresponding to 64 choices of marketing

targets. The best decision is to market to Alice

only, which yields the expected utility of 17.96.

We implemented Algorithm 3 and report in Figure 8.1 its performance on the

domain described in Example 14. We generate networks with 10, 12, . . . , 20 people

and randomly generated edges, and use Algorithm 3 with MC-ASP as the underlying

sampling methods for approximating expected utilities, DT-problog with exact

mode and DT-problog with approximate mode resp., to find the optimal set of

marketing targets. The graphs contain directed cycles. For Algorithm 3, 50 stable

models are sampled to approximate each expected utility, p is set to be 0.5, mt is

set to be 10, and mf is set to be 10. The experiments were performed on a machine

powered by 4 Intel(R) Core(TM) i5-2400 CPU with OS Ubuntu 14.04.5 LTS and 8G

memory.
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8.4 Related Work

Nath and Domingos (2009) have introduced a decision-theoretic extension of

Markov Logic, as a framework for relational decision theory based on Markov logic,

where each clause is associated not only with a weight, but also a utility. Similar to

DT-LPMLN, each possible world is also associated with a utility, which is defined as

the sum of utility of the clauses that the possible world satisfies. The MEU Problem is

defined and computed with MAXWalkSAT base algorithm in a similar way. Despite

the similarity in how the two frameworks are defined, the underlying stable model se-

mantics of DT-LPMLN allows more compact representations of decision problems that

require defeasible reasoning, causal reasoning, recursive definition, etc. For example,

example 14 cannot be easily modeled with decision-theoretic MLN since it requires

reasoning about transitive closure of relations.

Van den Broeck et al. (2010) introduce DT-Problog, which is a decision-theoretic

extension of ProbLog. DT-Problog identify a set of atoms as decision atoms, which

are special probabilistic facts whose probabilities are not assigned by the program but

by a strategy. Utilities are assigned to arbitrary literals, from which the utility of a

strategy is derived, as the expected total utility where the random variables are de-

cision atoms, whose probabilities are defined by the strategy. The MEU problem is

defined as finding a strategy (i.e., a probability distribution over truth assignment on

decision facts) that maximizes the expected total utility.
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Algorithm 3 MaxWalkSAT for Maximizing Expected Utility
Input:

1. (Π, A): A DT-LPMLN program;

2. E: a proposition in constraint form as the evidence;

3. mt: the maximum number of tries;

4. mf : the maximum number of flips;

5. p: probability of taking a random step.

Output: soln: a truth assignment on A

Process:

1. soln← null;

2. utility ← −∞;

3. For i← 1 to mt:

(a) X ← a random soft stable model of Π ∪ E, found by lpmln2asp;

(b) soln′ ← truth assignment of X on A;

(c) utility′ ← E[UΠ(soln′)];

(d) For j ← 1 to mf :

i. If Uniform(0, 1) < p:

vf ← a randomly chosen decision atom;

else:

A. For each atom v in A:

DeltaCost(v)← E[UΠ(soln′ ∧ E)]− E[UΠ(soln′ |v ∧E)];

B. vf ← argmin
v:soln |v is a partial stable model of Π

DeltaCost(v);

ii. If DeltaCost(vf ) < 0:

A. soln′ ← soln′ |vf ;

B. utility′ ← utility′ −DeltaCost(vf ).

(e) If utility′ > utility:

i. utility ← utility′;

ii. soln← soln′;

4. Return soln
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Chapter 9

POLICY OPTIMIZATION AND RELATION TO (PARTIALLY OBSERVABLE)

MARKOV DECISION PROCESS

In Chapter 7, we introduced the action language pBC+, which can model action

domains with probabilistic transitions. One important computational task in such

domain is the planning task. Since actions may have stochastic effects, planning

requires, rather than to find a sequence of actions that leads to a goal, to find an

optimal policy, that states which actions to execute in each state to achieve the

maximum expected utility.

In this section, we extend pBC+ with the notion of utility, and define policy

optimization problems in that language, in this way addressing planning problems

in probabilistic action domains. The extension is defined as a high-level notation for

DT-LPMLN. It turns out that the semantics of pBC+ can also be directly defined in

terms of Markov Decision Process (MDP), which in turn allows us to define MDP

in a succinct and elaboration tolerant way. The result is theoretically interesting

as it formally relates action languages to MDP despite their different origins, and

furthermore justifies the semantics of the extended pBC+ in terms of MDP. It is also

computationally interesting because it allows for applying a number of algorithms

developed for MDP to computing pBC+ action descriptions. Based on this idea,

we design the system pbcplus2mdp, which turns a pBC+ action description into

the input language of an MDP solver, and leverage MDP solving to find an optimal

policy for the pBC+ action description. Finally, we show that it is straightforward to

extend pBC+ to represent Partially Observable Markov Decision Process (POMDP).
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9.1 pBC+ with Utility

We extend pBC+ by introducing the following expression called utility law that

assigns a reward to transitions:

reward v if F after G (9.1)

where v is a real number representing the reward, F is a formula that contains fluent

constants only, and G is a formula that contains fluent constants and action constants

only (no pf, no initpf constants). We extend the signature of Tr(D,m) with a set of

atoms of the form (8.1). We turn a utility law of the form (9.1) into the LPMLN rule

α : utility(v, i+ 1, id) ← (i+ 1 : F ) ∧ (i : G) (9.2)

where id is a unique number assigned to this (ground) LPMLN rule and i ∈ {0, . . . ,m−

1}.

Given a nonnegative integer m denoting the maximum timestamp, a pBC+ action

description D with utility over multi-valued propositional signature σ is defined as a

high-level representation of the DT-LPMLN program (Tr(D,m), σactm ).

We extend the definition of a probabilistic transition system as follows: A prob-

abilistic transition system T (D) represented by a probabilistic action description

D is a labeled directed graph such that the vertices are the states of D, and the

edges are obtained from the transitions of D: for every transition 〈s, e, s′〉 of D, an

edge labeled e : p, u goes from s to s′, where p = PrD1(1 : s′ | 0 : s ∧ 0 : e) and

u = E[UD1(0 : s ∧ 0 : e ∧ 1 : s′)]. The number p is called the transition probability of

〈s, e, s′〉, denoted by p(s, e, s′), and the number u is called the transition reward of

〈s, e, s′〉, denoted by u(s, e, s′).

Example 15. The following action description Dsimple describes a simple probabilis-

tic action domain with two Boolean fluents P , Q, and two actions A and B. A causes
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P to be true with probability 0.8, and if P is true, then B causes Q to be true with

probability 0.7. The agent receives the reward 10 if P and Q become true for the first

time (after then, it remains in the state {P,Q} as it is an absorbing state).

A causes P if Pf 1

B causes Q if P ∧ Pf 2

inertial P,Q

constraint ¬(Q∧ ∼P )

caused Pf 1 = {t : 0.8, f : 0.2}

caused Pf 2 = {t : 0.7, f : 0.3}

reward 10 if P ∧Q after ¬(P ∧Q)

caused InitP = {t : 0.6, f : 0.4}

initially P = x if InitP = x

caused InitQ = {t : 0.5, f : 0.5}

initially Q if InitQ ∧ P

initially ∼Q if ∼P.

The transition system T (Dsimple) is as follows:

9.2 Policy Optimization and Relation with Markov Decision Process

Given a pBC+ action description D, we use S to denote the set of states, i.e, the

set of interpretations Ifl of σfl such that 0 : Ifl is a residual (probabilistic) stable

model of D0. We use A to denote the set of interpretations Iact of σact such that

0 : Iact is a residual (probabilistic) stable model of D1. Since we assume at most one

action is executed each time step, each element in A makes either only one action or

none to be true.

A (non-stationary) policy π (in pBC+) is a function

π : S× {0, . . . ,m− 1} 7→ A
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that maps a state and a time step to an action (including doing nothing). By

〈s0, s1 . . . , sm〉t (each si ∈ S) we denote the formula 0 : s0 ∧ 1 : s1 · · · ∧m : sm, and by

〈s0, a0, s1 . . . , sm−1, am−1, sm〉t (each si ∈ S and each ai ∈ A) the formula

0:s0 ∧ 0:a0 ∧ 1:s1 ∧ · · · ∧m− 1:am−1 ∧m :sm.

For any i ∈ {0, . . . ,m} and s ∈ S, we write i : s as an abbreviation of the formula∧
fl∈σfl

i : fl = s(fl); for any i ∈ {0, . . . ,m − 1} and a ∈ A, we write i : a as an

abbreviation of the formula
∧

act∈σact
i :act = a(act).

We say a state s is consistent with Dinit if there exists at least one probabilistic

stable model I of Dinit such that I |= 0 : s. The Policy Optimization problem is to

find a policy π that maximizes the expected utility starting from s0, i.e., π with

argmax
π is a policy

E[UTr(Π,m)(Cπ,m ∪ 〈s0〉t)]

where Cπ,m is the following formula representing policy π:

∧
s∈S, π(s,i)=a, i∈{0,...,m}

i :s→ i :a .

We define the total reward of a history 〈s0, a0, s1, . . . , sm〉 under action description

D as

RD(〈s0, a0, s1, . . . , sm〉) = E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)].

Although it is defined as an expectation, the following proposition tells us that

any stable model X of Tr(D,m) such that X |= 〈s0, a0, s1, . . . , sm〉 has the same

utility, and consequently, the expected utility of 〈s0, a0, s1, . . . , sm〉 is the same as the

utility of any single stable model that satisfies the history.

206



Proposition 15. For any two stable models X1, X2 of Tr(D,m) that satisfy a history

〈s0, a0, s1, a1, . . . , am−1, sm〉, we have

UTr(D,m)(X1) = UTr(D,m)(X2) = E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)].

It can be seen that the expected utility of π can be computed from the expected

utility from all possible state sequences.

Proposition 16. Given any initial state s0 that is consistent with Dinit, for any

non-stationary policy π, we have

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)] =∑
〈s1,...,sm〉:si∈S

RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉)× PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m).

Definition 6. For a pBC+ action description D, let M(D) be the MDP 〈S,A, T,R〉

where

• the state set S is S;

• the action set A is A;

• transition probability T is defined as T (s, a, s′) = PD1(1 : s′ | 0 : s ∧ 0 : a);

• reward function R is defined as R(s, a, s′) = E[UD1(0 : s ∧ 0 : a ∧ 1 : s′)].

We show that the policy optimization problem for a pBC+ action description D

can be reduced to policy optimization problem for M(D) for the finite horizon. The

following theorem tells us that for any history following a non-stationary policy, its

total reward and probability under D defined under the pBC+ semantics coincide

with those under the corresponding MDP M(D).

Theorem 23. Given an initial state s0 ∈ S that is consistent with Dinit, for any

non-stationary policy π and any finite state sequence 〈s0, s1, . . . , sm−1, sm〉 such that

each si in S (i ∈ {0, . . . ,m}), we have
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• RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉) = RM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉)

• PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m) = PM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉).

It follows that the policy optimization problem for pBC+ action descriptions and

the same problem for MDP with finite horizon coincide.

Theorem 24. For any nonnegative integer m and an initial state s0 ∈ S that is

consistent with Dinit, we have

argmax
π is a non-stationary policy

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)] = argmax
π is a non-stationary policy

ERM(D)(π, s0).

Theorem 24 justifies using an implementation of DT-LPMLN to compute optimal

policies of MDP M(D) as well as using an MDP solver to compute optimal policies

of the pBC+ descriptions. Furthermore the theorems above allow us to check the

properties of MDP M(D) by using formal properties of LPMLN, such as whether a

certain state is reachable in a given number of steps.

9.3 pBC+ as a High-Level Representation Language of MDP

An action description consists of causal laws in a human-readable form describing

the action domain in a compact and high-level way, whereas it is non-trivial to describe

an MDP instance directly from the domain description in English. The result in

the previous section shows how to construct an MDP instance M(D) for a pBC+

action description D so that the solution to the policy optimization problem of D

coincide with that of MDP M(D). In that sense, pBC+ can be viewed as a high-level

representation language for MDP.

As its semantics is defined in terms of LPMLN, pBC+ inherits the nonmonotonicity

of the stable model semantics to be able to compactly represent recursive definitions

or transitive closure. The static laws in pBC+ can prune out invalid states to ensure
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that only meaningful value combinations of fluents will be given to MDP as states,

thus reducing the size of state space at the MDP level.

We illustrate the advantage of using pBC+ action descriptions as high-level rep-

resentations of MDP with an example.

Example 16. Robot and Blocks There are two rooms R1, R2, and three blocks

B1, B2, B3 that are originally located in R1. A robot can stack one block on top of

another block if the two blocks are in the same room. The robot can also move a

block to a different room, resulting in all blocks on top of it also moving if successful

(with probability p). Each moving action has a cost of 1. What is the best way to

move all blocks to R2?

The example can be represented in pBC+ as follows. x, x1, x2 range over B1, B2,

B3; r, r1, r2 ranges over R1, R2. TopClear(x), Above(x1, x2), and GoalNotAchieved

are Boolean statically determined fluent constants; In(x) is a regular fluent constant

with Domain {R1, R2}, and OnTopOf (x1, x2) is a Boolean regular fluent constant.

MoveTo(x, r) and StackOn(x1, x2) are action constants and Pf Move is a Boolean pf

constant. In this example, we make the goal state absorbing, i.e., when all the blocks

are already in R2, then all actions have no effect.

Moving block x to room r causes x to be in r with probability p:

MoveTo(x, r) causes In(x) = r if Pf Move ∧GoalNotAchieved

caused Pf Move = {t : p, f : 1− p}.

Successfully Moving a block x1 to a room r2 causes x1 to be no longer underneath the

block x2 that x1 was underneath in the previous step, if r2 is different from where x2

is:

MoveTo(x1, r2) causes ∼OnTopOf (x1, x2)

if Pf Move ∧ In(x1) = r1 ∧OnTopOf (x1, x2) ∧GoalNotAchieved (r1 6= r2).
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Stacking a block x1 on another block x2 causes x1 to be on top of x2, if the top of x2

is clear, and x1 and x2 are at the same location:

StackOn(x1, x2) causes OnTopOf (x1, x2)

if TopClear(x2) ∧ At(x1) = r ∧ At(x2) = r ∧GoalNotAchieved (x1 6= x2).

Stacking a block x1 on another block x2 causes x1 to be no longer on top of the block

x where x1 was originally on top of:

StackOn(x1, x2) causes ∼OnTopOf (x1, x) if TopClear(x2) ∧ At(x1) = r ∧ At(x2) = r∧

OnTopOf (x1, x) ∧GoalNotAchieved (x2 6= x, x1 6= x2).

Two different blocks cannot be on top of the same block, and a block cannot be on

top of two different blocks:

constraint ¬(OnTopOf (x1, x) ∧OnTopOf (x2, x)) (x1 6= x2)

constraint ¬(OnTopOf (x, x1) ∧OnTopOf (x, x2)) (x1 6= x2).

By default, the top of a block x is clear. It is not clear if there is another block x1

that is on top of it:

default TopClear(x)

caused ∼TopClear(x) if OnTopOf (x1, x).

The relationAbove between two blocks is the transitive closure of the relationOnTopOf :

A block x1 is above another block x2 if x1 is on top of x2, or there is another block x

such that x1 is above x and x is above x2:

caused Above(x1, x2) if OnTopOf (x1, x2)

caused Above(x1, x2) if Above(x1, x) ∧ Above(x, x2).

One block cannot be above itself; Two blocks cannot be above each other:

caused ⊥ if Above(x1, x2) ∧ Above(x2, x1).
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If a block x1 is above another block x2, then x1 has the same location as x2:

caused At(x1) = r if Above(x1, x2) ∧ At(x2) = r. (9.3)

Each moving action has a cost of 1:

reward − 1 if > after MoveTo(x, r).

Achieving the goal when the goal is not previously achieved yields a reward of 10:

reward 10 if ∼GoalNotAchieved after GoalNotAchieved .

The goal is not achieved if there exists a block x that is not at R2. It is achieved

otherwise:

caused GoalNotAchieved if At(x) = r (r 6= L2)

default ∼GoalNotAchieved .

At(x) and OnTopOf (x1, x2) are inertial:

inertial At(x),OnTopOf (x1, x2).

Finally, we add a1 ∧ a2 causes ⊥ for each distinct pair of ground action constants

a1 and a2, to ensure that at most one action can occur each time step.

It can be seen that stacking all blocks together and moving them at once would

be the best strategy to move them to L2.

In Example 16, many value combinations of fluents do not lead to a valid state,

such as

{OnTopOf (B1, B2),OnTopOf (B2, B1), ...}

where the two blocks B1 and B2 are on top of each other. Moreover, the fluents

TopClear(x) and Above(x1, x2) are completely dependent on the value of the other

fluents. There would be 23+3×3+3+3×3 = 224 states if we define a state as any value
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Figure 9.1: Running Statistics of pbcplus2mdp System

combination of fluents. On the other hand, the static laws in the above action de-

scriptions reduce the number of states to only (13 + 9)× 2 = 44.1

Furthermore, in this example, Above(x, y) needs to be defined as a transitive

closure of OnTopOf(x, y), so that the effects of StackOn(x1, x2) can be defined in

terms of the (inferred) spatial relation of blocks. Also, the static law (9.3) defines an

indirect effect of MoveTo(x, r).

We implemented the prototype system pbcplus2mdp, which takes an action de-

scription D and time horizon m as input, and finds an optimal policy by constructing

the corresponding MDP M(D) and utilizing MDP policy optimization algorithms

as blackbox. We use mdptoolbox2 as our underlying MDP solver. The current

system uses lpmln2asp (see Chapter 5.1) for exact inference to find states, actions,

transition probabilities, and transition rewards. The system is publicly available at

https://github.com/ywang485/pbcplus2mdp, along with several examples.

We measure the scalability of our system pbcplus2mdp on Example 16. Figure

9.1 shows the running statistics of finding the optimal policy for different number of

blocks. For all of the running instances, maximum time horizon is set to be 10, as in

all of the instances, the smallest number of steps in a shortest possible action sequence

achieving the goal is less than 10. The experiments are performed on a machine with

4 Intel(R) Core(TM) i5-2400 CPU with OS Ubuntu 14.04.5 LTS and 8 GB memory.

1This number can be verified by counting all possible configurations of 3 blocks with 2 locations.
2https://pymdptoolbox.readthedocs.io
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As can be seen from the table, the running time increases exponentially as the

number of blocks increases. This is not surprising since the size of the search space

increases exponentially as the number of blocks increases. The bottleneck is the

LPMLN inference system, as it needs to enumerate every stable model to generate the

set of states, the set of actions, and transition probabilities and rewards. The time

spent on MDP solving is negligible.

System pbcplus2mdp supports planning with infinite horizon. However, it should

be noted that the semantics of an action description with infinite time horizon in terms

of DT-LPMLN is not yet well established. In this case, the action description is only

viewed as a high-level representation of an MDP.

9.4 Extending pBC+ for representing POMDP

It is straightforward to extend pBC+ so that it can be used as a high-level repre-

sentation of Partially Observable Markov Decision Processes (POMDPs), which can

be defined as a tuple

〈S,A, T,R,Ω, O〉

where

• S is a set of states;

• A is a set of actions;

• T : S × A× S → [0, 1] are transition probabilities;

• R : S × A× S → R are rewards;

• Ω is a set of observations;

• O : S × A× Ω→ [0, 1] are observation probabilities.
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We extend pBC+ by introducing a new type of constants, called observation con-

stants, and a new type of causal law called observation dynamic law. An observation

dynamic law is of the form

observe F if G after H (9.4)

where F contains observation constants only, G contains fluent constants only, and H

contains action constants and/or pf constants only. Observation constants can only

occur in observation dynamic laws. An observation dynamic law of the form (9.4) is

translated into the following LPMLN rule:

α : (i+ 1:F )← (i+ 1:G) ∧ (i :H)

For each observation constant obs, a special value NA (“Not Applicable”) must

be an element of Dom(obs). For each observation constant in obs ∈ σobs and c ∈

Dom(obs), we include the following LPMLN rule in Dm to indicate that the initial

value of each observation constant is exogenous:

α : {0 : obs = c}ch.

and we include the following LPMLN rule in Dm to indicate that by default, the value

of obs is NA:

α : {i : obs = NA}ch.

for i ∈ {1, . . . ,m}.

We use σobs to denote the set of observation constants. The signature σm of Dm

is now extended with σobsm .

For more flexible representations, we introduce special type of fluent constant

called rigid fluent constant, which intuitively represent fluents whose values do not

change over time steps. A rigid static law is an expression of the form

caused F if G (9.5)
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where F and G contain rigid fluent constants only. Since the values of rigid fluent

constants do not change over time steps, for any rigid fluent constant c and i ∈

{0, . . . ,m}, we identify i : c with c. A rigid static law (9.5) is translated into LPMLN

rule

α : F ← G

in Dm. We then extend pf constant declaration as

caused c = {v1 : p1, . . . , vn : pn} if F (9.6)

where c is a pf constant with domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n},∑
i∈{1,...,n}

pi = 1 and F contains rigid fluent constants only. A pf constant declara-

tion (9.6) is translated into LPMLN rules

ln(pi) : (i : c) = vj ← F (9.7)

for j ∈ {0, . . . ,m− 1}. We define an expression of the form

caused c = {v1 : p1, . . . , vn : pn} unless c

where c is a rigid fluent constant, as an abbreviation of

caused c = {v1 : p1, . . . , vn : pn} if ∼ c

default ∼ c

We make the following assumption:

4. Rigid Constants Take Same Value over All Stable Models: for

any rigid constant c, there exists v ∈ Dom(c) such that I � c = v for all

stable model I of Dm.

in addition to Assumption 1∼3 listed in Section 7.2. Under this assumption, the body

F in (9.7) evaluates to either t or f for all stable models of Dm, meaning that either
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(9.7) can be removed from Dm, or F can be removed from the body of (9.7). We

thus identify Dm as the LPMLN program with such simplification performed, which is

a k-coherent LPMLN program.

A pBC+ action description D defines a POMDP M(D):

〈S,A, P,R,Ω, O〉

where

• state set S is S;

• action set A is A;

• transition probabilities P are defined as P (s, a, s′) = PD1(1 : s′ | 0 : s, 0 : a);

• reward function R is defined as R(s, a, s′) = E[UD1(0 : s, 0 : a, 1 : s′)];

• observation set Ω is the set of interpretations obs on σobs such that 0 : obs is a

residual stable model of D0;

• observation probabilities O are defined as O(o, s, a) = PD1(1 : o | 1 : s, 0 : a) for

all s ∈ S and o ∈ Ω.

Example 17. Two Tigers Example Consider a variation of the well-known tiger

example with 2 tigers: there are three doors. There are two tigers behind two of

the doors, and prize behind the other door. The agent does not know which object

is behind which door. The agent can open any one of the three doors. The agent

can also listen to get a better idea of where the tiger is. Listening yields the correct

information about where each of the two tigers are with probability 0.85. This example

can be represented with this extension of pBC+ as follows:
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Notation: l, l1, l2, l3 range over Left, Middle, Right, y ranges over Tiger1, Tiger2

Observation constant: Domains:

TigerPositionObserved(y) {Left, Middle, Right, NA}

Regular fluent constants: Domains:

TigerPosition(y) {Left, Middle, Right}

Action constants: Domains:

Listen Boolean

OpenDoor(l) Boolean

Pf constants: Domains:

Pf Listen Boolean

Pf FailedListen(y) {Left, Middle, Right}

A reward of 10 is obtained for opening the door with no tiger behind.

reward 10 if TigerPosition(Tiger1) = l1 ∧ TigerPosition(Tiger2) = l2 after OpenDoor(l3)

(l1 6= l3, l2 6= l3).

A penalty of 100 is imposed for opening a door with tiger behind.

reward − 100 if TigerPosition(y) = l after OpenDoor(l).

Executing the action Listen has a small penalty of 1.

reward − 1 if > after Listen.

Two tigers cannot be at the same position.

caused ⊥ if TigerPosition(Tiger1) = l ∧ TigerPosition(Tiger2) = l.

Successful listening reveals the positions of the two tigers.

observe TigerPositionObserved(y) = l if TigerPosition(y) = l after Listen ∧ Pf Listen.
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Failed listening yield a random position for each tiger.

caused Pf FailedListen(y) = {Left :
1

3
, Middke :

1

3
, Right :

1

3
},

observe TigerPositionObserved(y) = l if > after Listen∧ ∼ Pf Listen ∧ Pf FailedListen(y) = l.

The positions of tigers observe the commonsense law of inertia.

inertial TigerPosition(y).

The action Listen has a success rate of 0.85.

caused Pf Listen = {t : 0.85, f : 0.15}.

Various elaborations on this example can be easily achieved by changing a small part

of the pBC+ action description. For example, adding or removing tigers and doors

requires simply adding or removing elements to/from the domains of the relevant

constants, whereas such elaboration would require a complete reconstruction of transi-

tion/reward/observation matrices at POMDP level. This elaboration tolerance enables

construction and solving of dynamic POMDPs.

We implemented the prototype system pbcplus2pomdp, which takes an action

description D as input, and output the POMDP M(D) in a standard format (.pomdp)

that can be used as input to systems such as APPL3. The current system uses

lpmln2asp (see Section 5.1) for exact inference to find states, actions, transition

probabilities, observation probabilities and transition rewards. The system is pub-

licly available at https://github.com/ywang485/pbcplus2pomdp, along with several

examples.

We report the performance of the system on tiger example with increased number

of tigers4 in Figure 9.2.

3http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
4The number of doors is always number of tigers plus 1.
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Figure 9.2: Running Statistics of pbcplus2pomdp System

9.5 pBC+ as a Elaboration Tolerant Representation of POMDP

Consider the shopping request identification example from Zhang and Stone (2015):

a delivery robot is responsible for buying an item i and deliver i to person p in room

r. The robot needs to ask questions to figure out what i, p, r are. There are two

types of questions that the robot can ask:

• Which-Questions: questions about what the item/person/room is, for example,

“which item it is?”

• Confirmation-Questions: questions to confirm whether a(n) item/person/room

is the requested one, for example, “is the requested item coffee?”

The speech recognition system is noisy, so the answer can be wrongly recognized.

The robot can execute a deliver action, which has an item i′, person p′ and room

r′ as arguments. A reward is obtained with deliver action, determined by to what

extent i′, p′ and r′ matches i, p and r.

This example can be represented in pBC+ as follows. For simplicity, we as-

sume a small domain where Item = {Coffee, Coke, Cookies, Burger}, Person =

{Alice, Bob, Carol}, Room = {R1, R2, R3}.

Notation: i, i′ range over Item, p, p′ ranges over Person, r, r′ ranges over Room,

c ranges over {Yes, No}

Observation constant: Domains:
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ObsItem Item ∪ {NA}

ObsPerson Person ∪ {NA}

ObsRoom Room ∪ {NA}

ObsYesOrNo {Yes, No, NA}

Regular fluent constants: Domains:

ItemRequested Item

PersonRequested Person

RoomRequested Room

Terminated Boolean

Action constants: Domains:

AskWhichItem Boolean

AskWhichPerson Boolean

AskWhichRoom Boolean

Ask2ConfirmItem(i) Boolean

Ask2ConfirmPerson(p) Boolean

Ask2ConfirmRoom(r) Boolean

Deliver(i, p, r) Boolean

Pf constants: Domains:

Pf AnswerWhichItem(i) Item

Pf AnswerWhichPerson(p) Person

Pf AnswerWhichRoom(r) Room

Pf AnswerConsistentConfirm {Yes, No}

Pf AnswerInconsistentConfirm {Yes, No}
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The action Deliver causes the entering of the terminal state.

caused Terminated if >after Deliver(i, p, r).

Upon execution of Deliver action with a correct room, correct person and correct

item will each yield a reward of 10; Execution of Deliver action with a wrong room

will result in a penalty of 10.

reward 10 if RoomRequested = r ∧ PersonRequested = p

after Deliver(i, p, r)∧ ∼ Terminated ,

reward 10 if RoomRequested = r ∧ ItemRequested = i

after Deliver(i, p, r)∧ ∼ Terminated

reward − 10 if RoomRequested = r

after Deliver(i, p, r′)∧ ∼ Terminated ∧ r 6= r′.

Asking “which item” question when the actual item being requested is i returns

a random item i′ as observation, according to the probability distribution defined by
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pf constant Pf AnswerWhichItem(i),

observe ObsItem = i′ if ItemRequested = i∧ ∼ Terminated

after AskWhichItem ∧ Pf AnswerWhichItem(i) = i′,

caused Pf AnswerWhichItem(Coffee) = (9.8)

{Coffee : 0.7, Coke : 0.1, Cookies : 0.1, Burger : 0.1},

caused Pf AnswerWhichItem(Coke) = (9.9)

{Coffee : 0.1, Coke : 0.7, Cookies : 0.1, Burger : 0.1},

caused Pf AnswerWhichItem(Cookies) = (9.10)

{Coffee : 0.1, Coke : 0.1, Cookies : 0.7, Burger : 0.1},

caused Pf AnswerWhichItem(Burger) = (9.11)

{Coffee : 0.1, Coke : 0.1, Cookies : 0.1, Burger : 0.7},

similar for asking “which person” and “which room” questions.

observe ObsPerson = p′ if PersonRequested = p∧ ∼ Terminated

after AskPerson ∧ Pf AnswerWhichPerson(p) = p′,

caused Pf AnswerWhichPerson(Alice) = {Alice : 0.8, Bob : 0.1, Carol : 0.1},

caused Pf AnswerWhichPerson(Bob) = {Alice : 0.1, Bob : 0.8, Carol : 0.1},

caused Pf AnswerWhichPerson(Carol) = {Alice : 0.1, Bob : 0.1, Carol : 0.8},

observe ObsRoom = r′ if PersonRequested = r∧ ∼ Terminated

after AskPerson ∧ Pf AnswerWhichPerson(r) = r′,

caused Pf AnswerWhichRoom(R1) = {R1 : 0.8, R2 : 0.1, R3 : 0.1},

caused Pf AnswerWhichRoom(R2) = {R1 : 0.1, R2 : 0.8, R3 : 0.1},

caused Pf AnswerWhichRoom(R3) = {R1 : 0.1, R2 : 0.1, R3 : 0.8}.
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Asking “is the item i” question when the actual item being requested is indeed i

returns “yes” or “no” as observation, according to the probability distribution defined

by pf constant Pf AnswerConsistentConfirm,

observe ObsYesOrNo = c if ItemRequested = i∧ ∼ Terminated

after Ask2ConfirmItem(i) ∧ Pf AnswerConsistentConfirm = c

caused Pf AnswerConsistentConfirm = {Yes : 0.8, No : 0.2}.

Asking “is the item i” question when the actual item being requested is a different

item i′ returns “yes” or “no” as observation, according to the probability distribution

defined by pf constant Pf AnswerInconsistentConfirm,

observe ObsYesOrNo = c if ItemRequested = i∧ ∼ Terminated

after Ask2ConfirmItem(i′) ∧ Pf AnswerInconsistentConfirm = c ∧ i 6= i′,

caused Pf AnswerInconsistentConfirm = {Yes : 0.2, No : 0.8}.

The effects of asking “is the person p” or “is the room r” questions are defined

similarly.

observe ObsYesOrNo = c if PersonRequested = p∧ ∼ Terminated

after Ask2ConfirmPerson(p) ∧ Pf AnswerConsistentConfirm = c,

observe ObsYesOrNo = c if PersonRequested = p∧ ∼ Terminated

after Ask2ConfirmPerson(p′) ∧ Pf AnswerInconsistentConfirm = c ∧ p 6= p′,

observe ObsYesOrNo = c if RoomRequested = r∧ ∼ Terminated

after Ask2ConfirmRoom(r) ∧ Pf AnswerConsistentConfirm = c,

observe ObsYesOrNo = c if RoomRequested = r∧ ∼ Terminated

after Ask2ConfirmRoom(r′) ∧ Pf AnswerInconsistentConfirm = c ∧ r 6= r′.
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We illustrate that the above pBC+ action description is elaboration tolerant

through the following elaborations.

Elaboration 1: Unavailable items When an item is unavailable, we can simply

remove that item from the domains of relevant constants. For example, suppose Coke

is not available, then we simply need to replace (9.8) - (9.11) with

caused Pf ItemAnswer(Coffee) = {Coffee : 0.78, Cookies : 0.11, Burger : 0.11},

caused Pf ItemAnswer(Cookies) = {Coffee : 0.11, Cookies : 0.78, Burger : 0.11},

caused Pf ItemAnswer(Burger) = {Coffee : 0.11, Cookies : 0.11, Burger : 0.78}

Elaboration 2: Reflect personal preference in reward function We use

a rigid fluent interchangeable(p, i1, i2) with domain [−10, 10] to represent how much

two items i1, i2 are interchangeable according to the person p. For example

caused interchangeable(Alice, Coffee, Coke) = 5,

caused interchangeable(Alice, Coffee, Cookies) = 1,

caused interchangeable(Alice, Coffee, Burger) = −3

says that for Alice, bringing coke when she orders coffee still yields half of the reward,

bring cookies when she orders coffee yields only 10% of the reward, and bringing

burger when she orders coffee would yield a penalty which is 30% of the reward had

the delivery been correct.

Then we add

reward x if ItemRequested = i ∧ interchangeable(p, i, i′) = x∧

PersonRequested(p) ∧ RoomRequested(r) after Deliver(i′, p, r)

Elaboration 3: Changing Perception Model The speech recognition system

may have different accuracy depending on the environment. For example, when there
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is loud background noise, its accuracy could drop. In this case, we can simply plug in

different probability distribution for the relevant pf constant, controlled by auxiliary

constants indicating the situation. We introduce a rigid fluent called Noise, then we

replace (9.8) - (9.11) with

caused Pf AnswerWhichItem(Coffee) =

{Coffee : 0.7, Coke : 0.1, Cookies : 0.1, Burger : 0.1} unless ab

caused Pf AnswerWhichItem(Coke) =

{Coffee : 0.1, Coke : 0.7, Cookies : 0.1, Burger : 0.1} unless ab

caused Pf AnswerWhichItem(Cookies) =

{Coffee : 0.1, Coke : 0.1, Cookies : 0.7, Burger : 0.1} unless ab

caused Pf AnswerWhichItem(Burger) =

{Coffee : 0.1, Coke : 0.1, Cookies : 0.1, Burger : 0.7} unless ab

to make them defeasible. We then define the probability distribution to override the

original ones when there is loud background noise.

caused Pf AnswerWhichItem(Coffee) =

{Coffee : 0.4, Coke : 0.2, Cookies : 0.2, Burger : 0.2} if Noise,

caused Pf AnswerWhichItem(Coke) =

{Coffee : 0.2, Coke : 0.4, Cookies : 0.2, Burger : 0.2} if Noise,

caused Pf AnswerWhichItem(Cookies) =

{Coffee : 0.2, Coke : 0.2, Cookies : 0.4, Burger : 0.2} if Noise,

caused Pf AnswerWhichItem(Burger) =

{Coffee : 0.2, Coke : 0.2, Cookies : 0.2, Burger : 0.4} if Noise.
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We add

caused ab if Noise.

to indicate that by default there is no background noise. When the robot agent

detects that there is background noise, we add

caused Noise

to the action description to update the generated POMDP to incorporate the new

speech recognition probabilities.

9.6 Related Work

There have been quite a few studies and attempts in defining factored repre-

sentations of (PO)MDP, with feature-based state descriptions and more compact,

human-readable action definitions. PPDDL (Younes and Littman (2004)) extends

PDDL with constructs for describing probabilistic effects of actions and reward from

state transitions. One limitation of PPDDL is the lack of static causal laws, which

prohibits PPDDL from expressing recursive definitions or transitive closure. This

may yield a large state space to explore as discussed in Section 9.3.

RDDL (Relational Dynamic Influence Diagram Language) (Sanner (2010)) im-

proves the expressivity of PPDDL in modeling stochastic planning domains by al-

lowing concurrent actions, continuous values of fluents, state constraints, etc. The

semantics is defined in terms of lifted dynamic Bayes network extended with influ-

ence graph. A lifted planner can utilize the first-order representation and potentially

achieve better performance. Still, indirect effects are hard to be represented in RDDL.

Zhang and Stone (2015) adopt ASP and P-Log (Baral et al. (2009)) to perform

high-level symbolic reasoning, which, respectively produce a refined set of states and
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a refined probability distribution over states that are then fed to POMDP solvers for

low-level planning. The refined sets of states and probability distribution over states

take into account commonsense knowledge about the domain, and thus improves the

quality of a plan and reduces computation needed at the POMDP level. Yang et al.

(2018) adopts the (deterministic) action description language BC for high-level repre-

sentations of the action domain, which defines high-level actions that can be treated

as deterministic. Each action in the generated high-level plan is then mapped into

more detailed low-level policies, which takes in stochastic effects of low-level actions

into account. Similarly, Sridharan et al. (2015) introduce a framework with plan-

ning in a coarse-resolution transition model and a fine-resolution transition model.

Action language ALd is used for defining the two levels of transition models. The

fine-resolution transition model is further turned into a POMDP for detailed planning

with stochastic effects of actions and transition rewards. While a pBC+ action de-

scription can fully capture all aspects of (PO)MDP including transition probabilities

and rewards, the ALd action description only provides states, actions and transi-

tions with no quantitative information. Leonetti et al. (2016), on the other hand,

use symbolic reasoners such as ASP to reduce the search space for reinforcement

learning based planning methods by generating partial policies from planning results

generated by the symbolic reasoner. The exploration of the low-level RL module is

constrained by actions that satisfy the partial policy.

Another related work is Ferreira et al. (2017), which combines ASP and reinforce-

ment learning by using action language BC+ as a meta-level description of MDP. The

BC+ action descriptions define non-stationary MDPs in the sense that the states and

actions can change with new situations occurring in the environment. The algorithm

ASP(RL) proposed in this work iteratively calls ASP solver to obtain states and ac-

tions for the RL methods to learn transition probabilities and rewards, and update the
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BC+ action description with changes in the environment found by the RL methods,

in this way finding optimal policy for a non-stationary MDP with the search space

reduced by ASP. The work is similar to ours in that ASP-based high-level logical

description is used to generate states and actions for MDP, but the difference is that

we use an extension of BC+ that expresses transition probabilities and rewards.

Although pBC+ facilitates compact representations of (PO)MDPs, the planning

systems presented here, pbcplus2(po)mdp, translate pBC+ action descriptions into

ground (PO)MDPs, which could cause exponential blow-up in the size of the low-

level (PO)MDP descriptions, as well as the sensitivity of (PO)MDP solving to ground

size. It is worth noting that there are a few relational representations of (PO)MDPs

that support lifted solving algorithms whose computation efficiency is not affected

by ground size. For example, Sanner (2008) presents a first-order representation

of (PO)MDPs based on situation calculus, where actions with stochastic effects are

decomposed into a collection of deterministic actions corresponding to all possible

outcomes of the original stochastic action, and every time the stochastic action is ex-

ecuted, “Nature” chooses one of its corresponding deterministic actions according to

a probability distribution specified by a case statement - a mapping from first-order

formulas to values. Case statements are also used for specifying reward functions and

observation probabilities. Operations on case statements are defined for evaluating

combinations of case statements at a first-order level. Lifted planning algorithms for

(PO)MDPs represented in this way are then proposed, such as factored symbolic dy-

namic programming. A closely related first-order representation of (PO)MDPs that

facilitates lifted solving algorithms is First-Order Decision Diagram (FODD, Wang

et al. (2008)), which essentially uses labeled rooted directed acyclic graphs to represent

case statements, used for representing stochastic effects of actions, reward functions

and observation functions. Normal forms of FODDs, operations that turn arbitrary
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FODDs into normal forms, as well as algorithms for combining FODDs, are introduced

for efficient computation of case statements, and thus first-order (PO)MDP defined

through case statements. Srivastava et al. (2014) proposed another first-order repre-

sentation of (PO)MDP based on open-universe probability model BLOG (Milch et al.

(2007)), called DT-BLOG. DT-BLOG can model open-universe (PO)MDPs where

there can be uncertainty over the existence and identity of objects.

It would be interesting to investigate whether pBC+ action descriptions can be

turned into lifted representations of (PO)MDPs mentioned above, so as to utilize

lifted (PO)MDP solving methods. We leave this as future work.

There are also modal logic based approach to formalizing action domains such as

Moore (1984) and Morgenstern (1986), which consider very general settings where

multi-agents and epistemic states of agents can be (at least partially) modeled.

9.7 Proofs of Proposition 15, Proposition 16, Theorem 23 and Theorem 24

It can be easily seen that Theorem 21, 22 and Corollary 2 still hold with the

extension of pBC+ with utility law.

We write 〈a0, a1 . . . , am−1〉t (each ai ∈ A) to denote the formula 0:a0 ∧ 1:a1 · · · ∧

m − 1 : am−1. The following lemma tells us that any action sequence has the same

probability under Tr(D,m).

Lemma 22. For any pBC+ action description D and any action sequence 〈a0, a1, . . . , am−1〉t,

we have

PTr(D,m)(〈a0, a1, . . . , am−1〉) =
1

(|σact|+ 1)m
.
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Proof.

PTr(D,m)(〈a0, a1, . . . , am−1〉t)

=
∑

I�〈a0,a1,...,am−1〉t
I is a stable models of Tr(D,m)

PTr(D,m)(I)

= (In Tr(D,m) every total choice leads to (|σact|+ 1)m stable models.

By Proposition 2 in Lee and Wang (2018), )∑
I�〈a0,a1,...,am−1〉t

I is a stable models of Tr(D,m)

WTr(D,m)(I)

(|σact|+ 1)m

=

∑
tc∈TCTr(D,m)

∏
c=v∈tc

MΠ(c = v)

(|σact|+ 1)m

= (Derivations same as in the proof of Proposition 12)

1

(|σact|+ 1)m

The following lemma states that given any action sequence, the probabilities of

all possible state sequences sum up to 1.

Lemma 23. For any pBC+ action description D and any action sequence 〈a0, a1, . . . , am−1〉,

we have ∑
s0,...,sm:si∈S

PTr(D,m)(〈s0, . . . , sm〉t | 〈a0, a1, . . . , am−1〉t) = 1.
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Proof.

∑
s0,...,sm:si∈S

PTr(D,m)(〈s0, . . . , sm〉t | 〈a0, a1, . . . , am−1〉t)

= (By Corollary 2)∑
s0,...,sm:si∈S

∏
i∈{0,...,m−1}

p(si, ai, si+1)

=
∑
s0∈S

(p(s0) ·
∑

s1,...,sm:si∈S

∏
i∈{1,...,m−1}

p(si, ai, si+1))

=
∑
s0∈S

(p(s0) ·
∑
s1∈S

(p(s0, a0, s1) ·
∑

s2,...,sm:si∈S

∏
i∈{2,...,m−1}

p(si, ai, si+1)))

=
∑
s0∈S

(p(s0) ·
∑
s1∈S

(p(s0, a0, s1) · · · · ·
∑
sm∈S

p(sm−1, ai, sm) . . . ))

= 1.

The following proposition tells us that the probability of any state sequence con-

ditioned on the constraint representation of a policy π coincide with the probability

of the state sequence conditioned on the action sequence specified by π w.r.t. the

state sequence.

Proposition 17. For any pBC+ action description D, state sequence 〈s0, s1, . . . , sm〉,

and a non-stationary policy π, we have

PTr(D,m)(〈s0, s1, . . . , sm〉t | Cπ,m) =

PTr(D,m)(〈s0, s1, . . . , sm〉t | 0:π(s0, 0) ∧ · · · ∧m− 1:π(sm − 1,m− 1))
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Proof.

PTr(D,m)(〈s0, s1, . . . , sm〉t | Cπ,m)

=
PTr(D,m)(0 :s0 ∧ 1:s1 ∧ · · · ∧m :sm ∧ Cπ,m)

PTr(D,m)(Cπ,m)

=
PTr(D,m)(0 :s0 ∧ 0:π(s0, 0), 1:s1 ∧ · · · ∧m− 1:π(sm−1,m− 1) ∧m :sm)

PTr(D,m)(Cπ,m)

=
PTr(D,m)(0 :π(s0, 0) ∧ 1:s1 ∧ · · · ∧m− 1:π(sm−1,m− 1) ∧m :sm | 0:s0) · PTr(D,m)(0 :s0)∑

s′0,...,s
′
m:s′i∈S

PTr(D,m)(0 :s′0 ∧ 0:π(s′0, 0), 1:s′1 ∧ · · · ∧m− 1:π(s′m−1,m− 1) ∧m :s′m)
.

We use k(s0, . . . , sm) as an abbreviation of

PTr(D,m)(0 :π(s0, 0) ∧ · · · ∧m− 1:π(sm−1,m− 1)).

We have

PTr(D,m)(〈s0, s1, . . . , sm〉t | Cπ,m)

=
PTr(D,m)(1 :s1 ∧ · · · ∧m :sm | 0:s0 ∧ 0:π(s0, 0) ∧m− 1:π(sm−1,m− 1)) · PTr(D,m)(0 :s0) · k(s0, . . . , sm)∑

s′0,...,s
′
m:s′i∈S

PTr(D,m)(1 :s′1 ∧ · · · ∧m :s′m | 0:s′0 ∧ 0:π(s′0, 0) ∧ · · · ∧m− 1:π(s′m−1,m− 1)) · PTr(D,m)(0 :s′0) · k(s′0, . . . , s
′
m)

= (By Lemma 22, for any s0, . . . , sm(si ∈ S), we have k(s0, . . . , sm) = (|σact|+ 1)m)

PTr(D,m)(1 :s1 ∧ · · · ∧m :sm | 0 : s0 ∧ 0 : π(s0, 0) ∧m− 1 : π(sm−1,m− 1)) · PTr(D,m)(0 : s0) · 1
(|σact|+1)m∑

s′0,...,s
′
m:s′i∈S

PTr(D,m)(1 :s′1 ∧ · · · ∧m :s′m | 0:s′0 ∧ 0:π(s′0, 0) ∧ · · · ∧m− 1:π(s′m−1,m− 1)) · PTr(D,m)(0 :s′0) · 1
(|σact|+1)m

=
PTr(D,m)(1 :s1 ∧ · · · ∧m :sm | 0:s0 ∧ 0:π(s0, 0) ∧m− 1:π(sm−1,m− 1)) · PTr(D,m)(0 : s0)∑

s′0,...,s
′
m:s′i∈S

PTr(D,m)(1 :s′1 ∧ · · · ∧m :s′m | 0:s′0 ∧ 0:π(s′0, 0) ∧ · · · ∧m− 1:π(s′m−1,m− 1)) · PTr(D,m)(0 :s′0)

= (By Lemma 23, the denominator equals 1)

PTr(D,m)(1 :s1 ∧ · · · ∧m :sm | 0:s0 ∧ 0:π(s0, 0) ∧m− 1:π(sm−1,m− 1)) · PTr(D,m)(0 :s0)

= PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈π(s0, 0), . . . , π(sm − 1,m− 1)〉t)

The following proposition tells us that the expected utility of an action and state

sequence can be computed by summing up the expected utility from each transition.

Proposition 18. For any pBC+ action description D and a history 〈s0, a0, s1, . . . , am−1, sm〉,

such that there exists at least one stable model of Tr(D,m) that satisfies 〈s0, a0, s1, . . . , am−1, sm〉,

we have

E[UTr(D,m)(〈s0, a0, s1, . . . , sm−1, am−1, sm〉t)] =
∑

i∈{0,...,m−1}

u(si, ai, si+1).
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Proof. Let X be any stable model of Tr(D,m) that satisfies 〈s0, a0, s1, . . . , sm−1, sm〉t.

By Proposition 15, we have

E[UTr(D,m)(〈s0, a0, s1, . . . , sm−1, sm〉t)]

= UTr(D,m)(X)

=
∑

i∈{0,...,m−1}

(
∑

utility(v,i,x)←(i+1:F )∧(i:G)∈Tr(D,m)
X satisfies (i+ 1 : F ) ∧ (i : G)

v)

=
∑

i∈{0,...,m−1}

(
∑

utility(v,0,x)←(1:F )∧(0:G)∈Tr(D,m)
0 :Xi satisfies (1 : F ) ∧ (0 : G)

v)

=
∑

i∈{0,...,m−1}

UTr(D,1)(0 :X i)

= ( By Proposition 15)∑
i∈{0,...,m−1}

E[UTr(D,1)(0 : si, 0 : ai, 1 : si+1)]

=
∑

i∈{0,...,m−1}

u(si, ai, si+1).

The following proposition tells us that, for any states and actions sequence, any

stable model of Tr(D,m) that satisfies the sequence has the same utility. Conse-

quently, the expected utility of the sequence can be computed by looking at any

single stable model that satisfies the sequence.

Proposition 15 For any two stable models X1, X2 of Tr(D,m) that satisfy a

particular states and actions sequence 〈s0, a0, s1, a1, . . . , am−1, sm〉, we have

UTr(D,m)(X1) = UTr(D,m)(X2) = E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)].

Proof. Since both X1 and X2 both satisfy 〈s0, a0, s1, a1, . . . , am−1, sm〉t, X1 and X2

agree on truth assignment on σactm ∪ σflm . Notice that atom of the form utility(v, t)
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in Tr(D,m) occurs only of the form (9.2), and only atom in σactm ∪ σflm occurs in the

body of rules of the form (9.2).

• Suppose an atom utility(v, t) is in X1. Then the body B of at least one rule

of the form (9.2) with utility(v, t) in its head in Tr(D,m) is satisfied by X1.

B must be satisfied by X2 as well, and thus utility(v, t) is in X2 as well.

• Suppose an atom utility(v, t), is not in X1. Then, assume, to the contrary,

that utility(v, t) is in X2, then by the same reasoning process above in the

first bullet, utility(v, t) should be in X1 as well, which is a contradiction. So

utility(v, t) is also not in X2.

So X1 and X2 agree on truth assignment on all atoms of the form utility(v, t), and

consequently we have UTr(D,m)(X1) = UTr(D,m)(X2), as well as

E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)]

=
∑

I�〈s0,a0,s1,...,am−1,sm〉t
PTr(D,m)(I | 〈s0, a0, s1, . . . , am−1, sm〉t) · UTr(D,m)(I)

= UTr(D,m)(X1) ·
∑

I�〈s0,a0,s1,...,am−1,sm〉t
PTr(D,m)(I | 〈s0, a0, s1, . . . , am−1, sm〉t)

= (The second term equals 1)

UTr(D,m)(X1).

Proposition 16 Given any initial state s0 that is consistent with Dinit, for any

policy π, we have

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)] =∑
〈s1,...,sm〉:si∈S

RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉)× PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m).
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Proof. We have

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)]

=
∑

I�0:s0∧Cπ,m

PTr(D,m)(I | 0:s0 ∧ Cπ,m) · UTr(D,m)(I)

=
∑

I�0:s0∧Cπ,m
I is a stable model of Tr(D,m)

PTr(D,m)(I | 0:s0 ∧ Cπ,m) · UTr(D,m)(I)

= (We partition stable models I according to their truth assignment on σflm)∑
〈s1,...,sm〉:si∈S

∑
I�〈0:s0,1:s1,...,m:sm〉t∧Cπ,m
I is a stable model of Tr(D,m)

PTr(D,m)(I | 0:s0 ∧ Cπ,m) · UTr(D,m)(I)

= (Since I � 〈s0, s1, . . . , sm〉t ∧ Cπ,m implies I � 〈s0, π(s0, 0), s1, . . . , sm〉t, by Proposition 15 we have)∑
〈s1,...,sm〉:si∈S

∑
I�〈s0,s1,...,sm〉t∧Cπ,m

I is a stable model of Tr(D,m)

PTr(D,m)(I | 0:s0 ∧ Cπ,m) · E[UTr(D,m)(〈s0, π(s0, 0), s1, . . . , sm〉t)]

=
∑

〈s1,...,sm〉:si∈S

PrTr(D,m)(〈s0, s1, . . . , sm〉t | 0:s0 ∧ Cπ,m) · E[UTr(D,m)(〈s0, π(s0, 0), s1, . . . , sm〉t)]

=
∑

〈s1,...,sm〉:si∈S

PrTr(D,m)(〈s0, s1, . . . , sm〉t | 0:s0 ∧ Cπ,m) · E[UTr(D,m)(〈s0, s1, . . . , sm〉t ∧ Cπ,m)]

=
∑

〈s1,...,sm〉:si∈S

RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉)× PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m).

Theorem 23 Given an initial state s0 ∈ S that is consistent with Dinit, for any

policy π and any finite state sequence 〈s0, s1, . . . , sm−1, sm〉 such that each si in S (i ∈

{0, . . . ,m}), we have

• RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉) = RM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉)

• PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m) = PM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉).
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Proof. We have

RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉)

= E[UTr(D,m)(〈s0, s1, . . . , sm〉t ∧ Cπ,m)]

= (By Proposition 18)∑
i∈{0,...,m−1}

u(si, π(si, i), si+1)

=
∑

i∈{0,...,m−1}

R(si, π(si, i), si+1)

= RM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉)

and

PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m)

= (By Proposition 17)

PrTr(D,m)(〈s0, s1, . . . , sm〉 | s0 ∧ 0:π(s0, 0) ∧ · · · ∧m− 1:π(sm−1,m− 1))

= (By Corollary 2)∏
i∈{0,...,m−1}

p(〈si, π(si, i), si+1〉)

= PM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉)

Theorem 24 For any nonnegative integer m and an initial state s0 ∈ S that is

consistent with Dinit, we have

argmax
π is a policy

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)] = argmax
π

ERM(D)(π, s0).

Proof. We show that for any non-stationary policy π,

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)] = ERM(D)(π, s0).
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We have

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)]

= (By Proposition 16)∑
〈s1,...,sm〉:si∈S

RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉)× PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m).

= (By Theorem 23)∑
〈s1,...,sm〉:si∈S

RM(D)(〈s0, π(s0, 0) . . . , π(sm−1,m− 1), sm〉)·

PM(D)(〈s0, π(s0, 0) . . . , π(sm−1,m− 1), sm〉)

= ERM(D)(π, s0).
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Chapter 10

CONCLUSION

Building intelligent agents in many real-world domains requires both complex

reasoning (such as defeasible reasoning, causal reasoning, diagnostic reasoning etc.)

and probabilistic inference, as well as the ability to utilize knowledge from human

exports and learn from data statistically. Answer Set Programming has well addressed

the problem of complex reasoning with the nonmonotonicity of the stable model

semantics and allows easy representation of human knowledge. However, the crispy

nature of the semantics brought difficulties in probabilistic reasoning and utilizing

statistical information from data.

This research proposes the language LPMLN, which introduces weighted logic rules

under the stable model semantics, to extend ASP for probabilistic reasoning and sta-

tistical learning. LPMLN is a novel combination of ASP and the SRL formalism

Markov Logic. It provides versatile methods to overcome the deterministic nature of

the stable model semantics, such as resolving inconsistencies in answer set programs,

ranking stable models, associating probability to stable models, and applying statis-

tical inference to computing weighted stable models. It brings the learning aspect

from Markov Logic to the answer set programming setting. LPMLN is also related to

many other formalisms in SRL. As a middle-ground language, it helps understand

the relation between those languages, and an LPMLN system can be used to compute

those languages.

The prototype LPMLN systems presented in this dissertation, which automated

LPMLN inference and weight learning, serve as a proof-of-concept of our reasoning

and learning framework. Thanks to the sophisticated answer set optimization al-
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gorithms implemented in clingo, lpmln2asp system has a decent performance on

MAP inference. However, as can be seen from a few experiments, the current system

is not very scalable on marginal/conditional probability computation as well as weight

learning. We expect incorporating advancements in both ASP and SRL will result

in a more mature system that achieves better performance. For example, knowledge

compilation techniques that turn logic programs into canonical representations, such

as Sentential Decision Diagrams (SDD)(Vlasselaer et al. (2014)), where inference can

be performed significantly faster. This was evidenced by similar approach on other

probabilistic programming languages (see Section 5.5).

Here, we summarize the major contributions of the thesis and some directions for

future work.

10.1 Summary of Contributions

We summarize the contributions of this thesis as follows:

• We defined language LPMLN, and studied its theoretical properties.

• We established the formal relationships between LPMLN and some

other formalisms in KR and SRL, including ASP with weak constraints,

Markov Logic, ProbLog, Pearl’s Probabilistic Causal Model, and P-log.

• We developed LPMLN inference algorithms, and implemented them as sys-

tems lpmln2asp and lpmln2mln. System lpmln2asp translates LPMLN pro-

grams into the input language of answer set solver CLINGO, and using weak

constraints and stable model enumeration, it can compute most probable sta-

ble models as well as exact conditional and marginal probabilities. System

lpmln2mln translates LPMLN programs into the input language of Markov

Logic solvers, such as Alchemy, Tuffy, and Rockit, and allows for per-
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forming approximate probabilistic inference on LPMLN programs.

• We developed LPMLN weight learning algorithms and implemented them

as prototype system lpmln-learn. We illustrated through examples that

learning in LPMLN is in accordance with the stable model semantics, thereby it

learns parameters for probabilistic extensions of knowledge-rich domains where

answer set programming has shown to be useful but limited to the determinis-

tic case, such as reachability analysis and reasoning about actions in dynamic

domains.

• We defined the action language pBC+ as a high-level notion of LPMLN,

for modeling stochastic action domains. We showed how probabilistic

reasoning about transition systems, such as prediction, postdiction, and plan-

ning problems, as well as probabilistic diagnosis for dynamic domains, can be

modeled in pBC+ and computed using an implementation of LPMLN.

• We defined DT-LPMLN, which is a decision theoretical extension of

LPMLN. We defined reasoning tasks in DT-LPMLN and presented algorithms for

the tasks.

• We extended pBC+ with the notion of utility, defined policy optimiza-

tion problem under pBC+, and formally related policy optimization

problem under pBC+ with that under Markov Decision Process. The

result showed that pBC+ policy optimization problems can be computed with

MDP solvers.

• We implemented systems pbcplus2(po)mdp, which turns LPMLN trans-

lations of pBC+ action descriptions into (PO)MDP instances. The

systems allow for representing (PO)MDP in a succinct and elaboration tolerant
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way as well as leveraging an MDP solver to compute a pBC+ action description.

10.2 Future Directions

A few interesting directions for future work include:

• Develop more efficient inference/learning algorithms incorporating ad-

vancements in both ASP and SRL, such as SDD based weighted model count-

ing. As we mentioned before, this thesis focuses on exploring the expressiv-

ity of LPMLN, and the current prototype systems are not yet very scalable on

marginal/conditional probability computation as well as weight learning. For

LPMLN to be applicable to real-world applications, dedicated research on more

efficient inference/learning algorithms will be necessary.

• Develop systems for inference in DT-LPMLN. In Chapter 8, we defined the

inference tasks on a DT-LPMLN program and presented algorithms for them.

An implementation of DT-LPMLN is yet to be developed.

• Develop LPMLN structure learning algorithms that automatically con-

struct LPMLN rules that fit the training data. The problem of structure

learning in LPMLN is about either generating an LPMLN program from scratch,

or correcting a hand-crafted LPMLN program, so that the program best fits the

training data given. This will facilitate a fully data-driven way of LPMLN mod-

eling. We expect insights can be gained from Inductive Logic Programming

(ILP) and MLN structure learning.

• Develop a pBC+ compiler that automates the translation from pBC+ to

LPMLN. Currently, the action language pBC+ can be executable only through

manual translation to LPMLN. It is desirable to have a compiler that automates
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this translation, so that the user can directly write pBC+ action descriptions

and does not need to worry about the translation detail.

• Conduct empirical study of LPMLN inference and learning on real-

world applications. LPMLN can be applied to problem domains that require

both logical and probabilistic reasoning, both human knowledge and statistical

information from data. Such domains include probabilistic extensions of combi-

natorial search problems, network modeling, diagnosis in stochastic transition

systems, etc. Empirical study on these domains will be necessary to evaluate a

LPMLN framework.
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