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ABSTRACT

Autonomic closure is a new general methodology for subgrid closures in large eddy sim-

ulations that circumvents the need to specify fixed closure models, and instead allows a fully-

adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation

itself determines the optimal relation at each point and time between any subgrid term and the

variables in the simulation, through the solution of a local system identification problem. It is

based on highly generalized representations of subgrid terms having degrees of freedom that

are determined dynamically at each point and time in the simulation. This can be regarded as

a very high-dimensional generalization of the dynamic approach used with some traditional

prescribed closure models, or as a type of “data-driven” turbulence closure in which machine-

learning methods are used with internal training data obtained at a test-filter scale at each point

and time in the simulation to discover the local closure representation.

In this study, a priori tests were performed to develop accurate and efficient implemen-

tations of autonomic closure based on particular generalized representations and parameters

associated with the local system identification of the turbulence state. These included the rel-

ative number of training points and bounding box size, which impact computational cost and

generalizability of coefficients in the representation from the test scale to the LES scale. The

focus was on studying impacts of these factors on the resulting accuracy and efficiency of au-

tonomic closure for the subgrid stress. Particular attention was paid to the associated subgrid

production field, including its structural features in which large forward and backward energy

transfer are concentrated.

More than five orders of magnitude reduction in computational cost of autonomic closure

was achieved in this study with essentially no loss of accuracy, primarily by using efficient

frame-invariant forms for generalized representations that greatly reduce the number of degrees

of freedom. The recommended form is a 28-coefficient representation that provides subgrid

stress and production fields that are far more accurate in terms of structure and statistics than

are traditional prescribed closure models.
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Chapter 1

INTRODUCTION

Large eddy simulation (LES) is being increasingly applied to complex flows [1–11] as the

increasing availability of computing power and its decreasing cost make the computational

burden of LES more acceptable. At the same time, there have been technical advances in the

underlying methodology, such as modern wall treatments [12–15], that are further reducing the

computational cost of LES to acceptable levels. These developments are making multiphysics

large eddy simulations of complex flows increasingly practical [1], in which the simulations

address not only the underlying turbulent flow but also include numerous other coupled phys-

ical processes, such as transport of conserved scalars [16–19], droplet and particle dynamics

[20–23], phase changes [22, 23], reacting species [24–26], heat transfer [24–26], and other

phenomena.

Each physical process introduces governing equations, such as equations for conservation

of mass, momentum, energy, and scalars, expressed as a combination of linear and nonlinear

terms in the velocity field u(x, t) and various scalar fields φ(x, t). Due to the spatial filtering

inherent in LES, each nonlinear term in these equations creates an associated subgrid term

when the equations are written in the corresponding resolved fields ũ(x, t) and φ̃(x, t). Each

of these subgrid terms must be related to the resolved fields to obtain a closed set of equations.

Closure of subgrid terms has traditionally been done by means of prescribed subgrid models

[27–33] that typically involve substantial ad hoc treatments. Errors introduced by these models

can be important contributors to the overall error in results from large eddy simulations [10,

34–38]. For this reason, developing a general method that provides accurate subgrid closures

for large eddy simulations has been a central focus area of turbulence research over the past

several decades.

1



1.1 Filtered Equations and Resulting Subgrid Terms

In general, any governing equation can be written as a sum of linear terms L(u, φ) and

nonlinear terms N(u, φ) as

L(u, φ) +N(u, φ) = 0 (1.1)

Applying a suitable spatial filter (̃ ) [29, 39–41] having characteristic length scale ∆̃ then gives

the corresponding governing equation in the resolved fields ũ(x, t) and φ̃(x, t) as

L(ũ, φ̃) +N(ũ, φ̃) = −
[
Ñ(u, φ)−N(ũ, φ̃)

]
, (1.2)

where the right side in (1.2) are subgrid terms that appear because the linearity of L(u, φ) al-

lows L̃(u, φ) = L(ũ, φ̃) while the nonlinearity of N(u, φ) leads to Ñ(u, φ) ̸= N(ũ, φ̃). All

such subgrid terms must be dealt with in a way that provides a closed set of governing equa-

tions in the resolved variables ũ and φ̃. To date, such closure has been achieved by introducing

prescribed subgrid models based on various approximations that relate subgrid terms to param-

eters that are obtainable from the resolved variables. Many such prescribed subgrid models

have been proposed for subgrid terms in LES [27–34, 42–57]. Errors from these prescribed

models, as revealed for instance in a priori tests, can be substantial even for subgrid terms that

are fundamental to LES, such as the subgrid stress [27–30, 52–54].

1.2 Filtered Transport Equations and Their Subgrid Terms

For example, of particular relevance for multi-physics simulations involving fluid flows

are governing transport equations for the conservation of mass, momentum, and various con-

served scalars φ. For clarity taking the density and fluid transport properties to be constant,

the resulting filtered forms of these transport equations can respectively be written as

∂ũi

∂xi

= 0 (1.3a)

∂ũi

∂t
+

∂

∂xj

ũiũj = −1

ρ

∂p̃

∂xi

+ ν
∂2ũi

∂xj∂xj

− ∂

∂xj

[
ũiuj − ũiũj

]
(1.3b)

∂φ̃

∂t
+

∂

∂xj

ũjφ̃ = Dφ
∂2φ̃

∂xj∂xj

− ∂

∂xj

[
ũiφ− ũiφ̃

]
(1.3c)
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where the subgrid terms are indicated by square brackets.

Since the mass conservation equation is strictly linear, the effect of the filter produces no

subgrid terms in the resulting filtered mass conservation equation in (1.3a). However, the non-

linear advection term in both the momentum and scalar transport equations leads to a subgrid

term in each corresponding filtered transport equation in in (1.3b,c). In themomentum equation

the resulting subgrid term is called the subgrid stress tensor – it accounts for the momentum

exchange between the resolved and subgrid scales in the simulation. In the scalar transport

equation the resulting subgrid term is called the subgrid scalar flux vector – it accounts for

scalar transport between the resolved and subgrid scales in the simulation. The modeling of

these and similar subgrid terms that arise in a wide rnge of multi-physics large eddy simulations

has been a focus of fluid dynamics research for at least the past 40 years.

1.3 Example: The Subgrid Stress

Taking the subgrid stress as an example, in the original momentum equation the nonlinear

product uiuj in the advection term ∂(uiuj)/∂xj leads via (1.2) to the subgrid stress in the

resolved-scale momentum equation of the form

[
Ñ(u)−N(ũ)

]
= ũiuj − ũiũj ≡ τij. (1.4)

Widely used models for the subgrid stress τij include the basic Smagorinsky model [42], the

dynamic Smagorinsky model [27, 46–49], the scale-similarity model [27, 43–45], and mixed

models that combine a scale similarity model with a dissipative model [50–57]. All of these

produce substantial errors in their representation of τij(x, t), as has been shown in a priori

tests [10, 27–30, 34]. The accuracy with which any such subgrid model represents τij(x, t)

from the resolved variables ũ(x, t) and p̃(x, t) determines how accurately it accounts for the

detailed space- and time-varying momentum exchange and associated kinetic energy exchange

between the resolved and subgrid scales in a simulation.

If simulating the flow field were the only objective, then continued reliance on such tradi-

tional prescribed subgrid stress models might be acceptable, since the filter scale ∆̃ could sim-
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ply be made sufficiently small (albeit at greater computational cost) so that errors introduced

by inaccuracies from the τij(x, t) model would not substantially affect much larger scales of

the flow. However, LES is increasingly being used to simulate not only the flow field ũ(x, t),

but also other physical processes occurring in the flow, many of which depend strongly on the

smallest scales in the resolved flow field, such as diffusion-limited chemical reactions [2–5,

24–26] and droplet/particle transport and agglomeration [6, 7, 20–23]. In such cases, errors

introduced at the smallest resolved scales from a substantially inaccurate τij model can cre-

ate large errors throughout the resolved fields of primary interest. Achieving high fidelity in

such multiphysics simulations may therefore require new approaches for representing subgrid

terms, including the subgrid stress, that are substantially more accurate than current prescribed

subgrid modeling approaches.

It will be shown here that a recently proposed alternative approach [58, 59] to subgrid clo-

sure, referred to as “autonomic closure”, can be implemented in computationally efficient ways

to enable representation of subgrid fields with significantly greater accuracy across all resolved

scales than is possible with traditional prescribed subgrid closure models. Figure 1 shows typi-

cal results from a priori tests of an implementation [59] of autonomic closure, comparing true

subgrid stress fields τij(x, t) and associated subgrid kinetic energy production fieldsP (x, t) to

the corresponding results from autonomic closure. The implementation of autonomic closure

in Figure 1, while undeniably accurate, is however far too computationally costly for practical

use. This dissertation describes autonomic closure in detail and identifies specific implemen-

tations that retain comparable accuracy in τij(x, t) and P (x, t) as seen in Figure 1, even near

the smallest resolved scales, but unlike the implementation in Ref. [59] are computationally

efficient enough for practical use in large eddy simulations.
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Figure 1. Typical a priori test of autonomic closure, showing (a) true subgrid stress field
τij(x, t) and (c) true subgrid production field P (x, t) compared to corresponding results
from implementation of autonomic closure [59] for (b) subgrid stress field τFij (x, t) and
(d) subgrid production field PF(x, t).

1.4 Subgrid Stress Closures and LES Energetics

With regard to resolved-scale energetics and computational stability, even more important

than the subgrid stress itself is the corresponding subgrid kinetic energy production field

P (x, t) = −τijS̃ij, (1.5)

where S̃ij is the resolved strain rate tensor, since this determines both the accuracy of energy

exchange between the resolved and subgrid scales and the computational stability of the simu-

lation itself. It is known from a priori tests [10, 27–30, 52–54, 60] that true P (x, t) fields in

turbulent flows are highly intermittent, consisting of widely varying values that can be locally

positive or negative, with magnitudes of P in highly concentrated regions far exceeding the
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true average subgrid dissipation rate ⟨P (x, t)⟩ ≡ ϵ. Large positive P values concentrated in

these regions correspond to local instantaneous kinetic energy transfer from the resolved scales

into the subgrid scales (“forward scatter”), while negative values give the local rate of energy

transfer from subgrid scales into the resolved scales (“backscatter”).

Such large magnitudes of forward and backward scatter in P (x, t) can be seen for exam-

ple in Figure 1c, which shows the strong spatial intermittency that is characteristic of subgrid

production fields. Large positive (red) and large negative (blue) P values are clustered in rel-

atively compact regions that occupy a small fraction of the domain in which the most intense

forward and backward scatter are concentrated. For a τij(x, t) closure to accurately represent

the precise space- and time-varying exchange of momentum and energy between resolved and

subgrid scales, including near the smallest scales, it must allow forward and backward scatter

in P (x, t) while providing the correct statistical distribution of P values and accurately repre-

senting the highly intermittent regions in which large positive and negative P (x, t) values are

concentrated.

1.5 Forward/Backward Scatter in P (x, t) and LES “Blowup”

Some τij models that allow for backscatter can induce instability in a simulation if their

resulting P (x, t) fields are insufficiently accurate [27, 29, 40, 50–57]. This can occur if the

average subgrid dissipation rate ⟨P (x, t)⟩ is too low relative to the true average rate ϵ of energy

transfer into the subgrid scales. For this reason, scale-similarity models and other models are

often combined with a purely dissipative model to give a sufficiently large average subgrid

dissipation rate to maintain computational stability. However, even when the average subgrid

dissipation rate is sufficiently large, a subgrid model could still induce instability if it produces

incorrectly large local values of backscatter, or if the regions in which large values of backscat-

ter are concentrated occur in the wrong locations or at the wrong times, or persist for too long.

At the same time, the τij(x, t) closure must also produce the correct values of forward scatter

in the correct locations at the correct times and for the correct durations. Remarkably little is
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known, even today, about the precise dynamics that lead to sudden local exponential “blowup”

in the kinetic energy at one or more points in a large eddy simulation.

Subgrid models that are purely dissipative, such as the basic Smagorinsky model [42],

ensure stability but are unable to accurately represent the detailed momentum and energy

exchange between resolved and subgrid scales in a simulation [27–30, 42]. The dynamic

Smagorinsky model [27, 46–49] and various scale similarity models [27, 43–45] include

backscatter to increase simulation fidelity, especially near the smallest resolved scales. How-

ever, some of these models produce insufficiently large ⟨P (x, t)⟩ to maintain computational

stability, and others may lead to instability if the modeled backscatter is too strong or appears

at the wrong locations or the wrong times [35–37, 48]. For this reason, some of these models

introduce backscatter limiters and other ad hoc adjustments to increase subgrid dissipation in

order to ensure stable simulations.

Yet it is tautological that if a τij closure exactly produces the complete details of the true

τij(x, t) and P (x, t) fields in a priori tests, then in the absence of numerical errors from the

LES code [35-38] the closure will be stable despite the required large backscatter. Presumably

a τij closure can be less than perfect in this respect and still maintain stability. However, beyond

the requirement that ⟨P (x, t)⟩ = ϵ , relatively little is known about how accurately the subgrid

stress τij(x, t)must be represented to avoid backscatter instability while providing high fidelity

in the detailed momentum and energy transfer even near the smallest scales of a simulation.

Although backscatter may be needed to achieve simulation accuracy in all resolved scales,

the presence of backscatter alone is meaningless unless the backscattered energy is introduced

in about the right places and the right times, and at the right magnitudes and for the right

durations. Due to the highly intermittent nature ofP (x, t) fields, as seen in Figure 1c, it may not

be possible in an a priori sense to have exact point-by-point agreement between the true subgrid

production field and that resulting from a closure for the subgrid stress. However, the subgrid

production field from a subgrid stress closure should nevertheless be structurally similar to the

true subgrid production field, having large values of forward and backward scatter concentrated
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in regions at the same locations and of the same size and shape as in the trueP (x, t) field. With

the ergodic hypothesis this also ensures that the closure will produce concentrations of forward

and backward scatter at the correct times and for the correct durations.

Based on these considerations, it is expected that accuracy across all resolved scales can be

achieved while maintaining computational stability if the following three conditions are met:

1. The τij closure should produceP (x, t) fields that, in a priori tests, provide a sufficiently

large average subgrid dissipation rate, namely ⟨P (x, t)⟩ ≥ ϵ, and should ideally give

⟨P (x, t)⟩ = ϵ.

2. Resulting P (x, t) fields from the τij closure should produce similar statistical distri-

butions of positive and negative values (forward and backward scatter) as do the true

P (x, t) fields.

3. P (x, t) fields from the τij closure should be structurally similar to the trueP (x, t) fields

in a priori tests, with large magnitudes of forward and backward scatter concentrated in

regions at the right spatial locations and of the right size and shape, despite the highly

intermittent nature of P (x, t) preventing the two fields from being exactly identical on

a point-by-point basis.

Although a priori tests of P (x, t) alone cannot determine if a closure will provide stable sim-

ulations, such tests are the most direct way to assess the accuracy at all resolved scales in the

subgrid stress fields τij and the associated subgrid production fields from a given closure. Im-

plementing a closure in an LES code for a posteriori tests introduces additional effects from

the code that can obscure insights into the underlying accuracy of the subgrid closure [27]. For

these reasons, a priori tests are used here to assess the accuracy of various implementations of

autonomic closure in representing τij and P (x, t) fields. For implementations that are found

to be accurate in these tests, subsequent a posteriori tests can be conducted to determine their

stability when implemented in an LES code.
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Particular attention is paid here not only to the resulting statistical distributions of forward

and backward scatter in P (x, t), but also to the detailed spatial structure of regions in which

large magnitudes of forward and backward scatter are concentrated. Results in the following

sections show that efficient implementations of autonomic closure can represent momentum

and energy exchange between resolved and subgrid scales, across essentially all resolved scales,

far more accurately than do traditional prescribed subgrid closure models.

1.6 A New Approach: Autonomic Closure

An entirely different approach to subgrid closures, termed “autonomic closure”, was re-

cently proposed [58, 59] to circumvent the need to specify a particular fixed parametric closure

relation, and instead allow a fully-adaptive self-optimizing closure methodology. The closure

is autonomic in the sense that the simulation itself determines the optimal relation at each point

and time between any subgrid term and the primitive variables in the simulation, through the so-

lution of a local system identification problem. The closure can be nonparametric in the sense

that a generalized representation for the subgrid term is formulated in the resolved primitive

variables of the simulation, rather than in parameters formed from them that are presumed to be

appropriate, or it can be parametric in the sense that the generalized representation is in terms

of various parameters that can be formed from the primitive variables. In both cases, the re-

sulting large number of degrees of freedom in the generalized representation allows autonomic

closure to freely adapt to widely varying local turbulence conditions via high-dimensional sys-

tem identification of the local degree of nonlinearity, nonlocality, nonequilibrium, and other

characteristics [61, 62] of the turbulence state at each point and time in the simulation.

Autonomic closure can be regarded as a high-dimensional generalization of the dynamic

approach used with various traditional prescribed closure models [27, 46, 47]. Viewed another

way it can be regarded as a type of “data-driven” turbulence closure [63–71], in which machine-

learning methods are used with available prior data to discover a closure model rather than

prescribe one. However, unlike other data-driven approaches, the training data in autonomic

closure is obtained internally at a test-filter scale at each point and time in the simulation it-
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self, rather than being provided separately from prior simulations or experiments. Importantly,

autonomic closure is not a closure model; instead it is a closure methodology that enables

essentially model-free “on the fly” closure of any subgrid term.

The need in fully dynamic implementations of autonomic closure to solve a local system

identification problem at each point and time in a simulation can make its computational cost

far higher than that of traditional prescribed closure models. That is certainly the case when

the number of degrees of freedom in the generalized representation of the subgrid terms is

large; e.g., the implementation in Ref. [59] involved nearly 6000 degrees of freedom in its

generalized representation. Some additional computational cost is acceptable in order to gain

the increased accuracy in fields such as τij(x, t) and P (x, t) that autonomic closure provides,

as seen in Figure 1, since subgrid stress evaluation is typically only a small fraction of the total

computational cost of a simulation. However, for the implementation in Ref. [59] the subgrid

stress evaluation wasO(104) more costly than for traditional prescribed closure models. This

cost must be reduced by several orders of magnitude, as has been done in the present study, to

make autonomic closure practical for LES.

1.7 Present Study

The cost of autonomic closure can be controlled by varying the number of degrees of

freedom in the underlying nonparametric relation and by other choices in its implementation,

though these choices can affect the accuracy of the resulting τij and P (x, t) fields. Therefore

the main issue addressed in the present study is whether there are implementations of auto-

nomic closure that are efficient enough to be practical for LES while retaining the accuracy

in τij and P (x, t) seen in Figure 1 from the computationally costly implementation in Ref.

[59]. To address this, results are presented from a priori tests that quantify the effects of var-

ious implementation choices in autonomic closure. In particular, comparisons are presented

of autonomically determined τij and P (x, t) fields with corresponding true subgrid stress and

subgrid production fields to find implementations that are both efficient and accurate.

Of key interest is whether large forward and backward scatter in the production fields from
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such efficient implementations of autonomic closure remain at the right magnitudes in regions

at the right locations and having the right sizes and shapes. To evaluate this, metrics are de-

veloped and applied that quantify how the resulting spatial support on which large production

values are concentrated compares with corresponding true P (x, t) fields. From this highly ef-

ficient implementations of autonomic closure are identified that remain nearly as accurate as

that in Ref. [59] but at computational costs that are O(105) smaller. These implementations

are accurate and efficient enough for practical use in large eddy simulations, allowing future a

posteriori testing of this new closure methodology.

1.7.1 Objectives

The present study seeks to develop accurate and efficient implementations of autonomic

closure that are sufficient to allow this new general closuremethodology to be practically imple-

mented in large eddy simulations. In particular, it seeks to identify generalized representations

for the subgrid stress that are far more computationally efficient than that used in Refs. [58, 59],

while retaining essentially the same accuracy that was obtained in these early implementations

of autonomic closure.

Specifically, this study first examines efficiencies that are available within the original

series-based generalized representation of the subgrid stress tensor in terms of velocities and

pressures in the simulation [58, 59]. It identifies effective simplifications both in the series

representation itself and in how the series representation can be implemented within the auto-

nomic closure methodology. Reductions of several orders of magnitude in the computational

cost of autonomic closure, with essentially no loss of accuracy, will be seen to be possible

through these simplifications of the original series-based representation.

The study then goes further by using key concepts from “representation theory” to consider

generalized frame-invariant representations for the subgrid stress tensor. The resulting repre-

sentations will be seen to offer even far greater efficiencies in the autonomic closure methodol-

ogy than was possible with simplifications of the original non-frame-invariant series represen-

tation. Reductions of up to five orders of magnitude in the computational cost of autonomic
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closure will be seen to be possible with certain of these frame-invariant tensor representations,

with essentially no loss in accuracy.

Two types of frame-invariant generalized representations are investigated here. The first

type expresses the subgrid stress directly in terms of frame-invariant outer products of the ve-

locities available in the simulation. This has certain similarities to the original truncated series

representations in Refs. [58, 59], but it is a provably complete representation that does not

require any truncation, and is far more compact that the original series representations. The

second type seeks an even more compact representation in terms of frame-invariant combi-

nations of the strain rate tensor, the rotation rate tensor, and gradients of these tensors. In

principle, these representations contain precisely the same “amount” of information as do the

frame-invariant representations in terms of outer products of the velocities. However, because

they are even more compact they provide correspondingly fewer degrees of freedom across

which the autonomic closure methodology can optimize the local stress representation, which

can lead to reductions in the accuracy of the results.

In general, throughout this work it is this interplay between efficiency and accuracy that

is central to determining the most “accurate and efficient” generalized representation and its

implementation within the autonomic closure methodology. The present study identifies such

a recommended “best” generalized representation and implementation, and shows that the re-

sulting accuracy in representing the subgrid stress fields and the subgrid production field is

far higher than any traditional prescribed closure model. Moreover, this representation and its

implementation are shown to be efficient enough to be used in practical large eddy simulations.

1.7.2 Organization of the Dissertation

Analyses, results, and conclusions that address the objectives of this study are organized

in this dissertation as follows.

• Chapter 2 first provides a detailed description of the autonomic closure methodology

and various choices that can be made in implementing it.
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• Chapter 3 then develops a set of suitable metrics that are used throughout this study

to assess the accuracy of various implementations of autonomic closure as well as of

traditional prescribed closure models. These include metrics for quantifying the scale-

dependent structure of support-density fields on which large positive and negative values

of P (x, t) are concentrated.

• Chapter 4 then applies these metrics to quantify the accuracy and efficiency of vari-

ous implementations of nonparametric series-based generalized representations in au-

tonomic closure, and identifies the series-based implementation that provides the best

balance of accuracy and efficiency.

• Chapter 5 then uses representation theory to consider all possible frame-invariant gener-

alized representations for the subgrid stress, including those formed nonparametrically

in terms of the resolved-scale velocities and those that are formed parametrically in terms

of derived quantities such as the strain rate tensor, the rotation rate tensor, and their gra-

dients.

• Chapter 6 then uses the samemetrics to assess the accuracy and efficiency of these frame-

invariant generalized representations. It then identifies the “best” representation and its

associated implementation, and compares results from this most accurate and efficient

implementation of autonomic closure with results from traditional prescribed closure

models.

• Chapter 7 then summarizes major conclusions from this study and discusses their im-

plications for achieving computational efficiency and accuracy across essentially all re-

solved scales in multi-physics large eddy simulations via static or dynamic implementa-

tions of autonomic closure.
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Chapter 2

THE AUTONOMIC CLOSURE METHODOLOGY

This chapter presents a complete description of the autonomic closure methodology [58,

59] and the implementation choices within it that affect its accuracy and computational cost.

2.1 Traditional Prescribed Closure Models vs. Autonomic Closure

Traditional prescribed closure models represent a subgrid term in a predefined way in terms

of specified parameters, such as the resolved strain rate S̃ij , based on theoretical or other con-

siderations, often with one or more model constants allowed to vary locally via a dynami-

cal procedure [27, 46, 47]. In contrast, autonomic closure as proposed in Refs. [58, 59] is

based on a highly generalized nonparametric representation of subgrid terms using only the

primitive variables in a simulation. This generalized nonparametric representation may have

O(102 − 104) degrees of freedom that are determined dynamically at every point x and time

t in the simulation. Such a highly generalized representation in the primitive-variable values

on a local set S of stencil points around each space-time point (x, t) removes the need for a

predefined parametric model. Doing so allows far greater adaptability of the subgrid closure to

the local turbulence state than is possible even with dynamical forms of traditional prescribed

closure models.

2.2 Generalized Representations at the Test and LES Scales

Here the autonomic closuremethodology is applied to the subgrid stress τij(x, t). Although

the methodology can be generalized to multi-time stencils [58, 59], the present study considers

a time-local implementation. An underlying general nonparametric representation Fij for the

local subgrid stress τij can then be expressed in the primitive variables ũ and p̃ as

τij(x) ≈ τFij (x) ≡ Fij

[
ũ(x+ x′), p̃(x+ x′) ∀ x′ ∈ S̃

]
, (2.1)
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where S̃ is a set of points x′ that define a stencil (here 3×3×3 ) with separation ∆̃ on the LES

grid, as shown in Figure 2. Equation (2.1) is a general nonparametric relation between the local

subgrid stresses τij ≡ ũiuj − ũiũj and the resolved-scale variables ũ and p̃ on the LES grid.

Fij in (2.1) should ideally reflect the local turbulence state at x, including nonlinear, nonlocal,

nonequilibrium and other effects that determine how the local τij(x) can be best obtained from

the resolved-scale values ũ and p̃ at the stencil points S̃ centered on x.

Analogous to the subgrid stresses τij , we consider local test stresses Tij ≡ ̂̃uiũj − ̂̃ui
̂̃uj

[27–29, 39, 40, 46–54], which can be obtained from the resolved velocities ũ by applying a

test filter (̂ ) having a larger length scale ∆̂ = α∆̃. If Fij reflects the local turbulence state at

x then, in the same way that τij is related to the resolved-scale variables ũ and p̃ on the set S̃

of LES-scale stencil points centered on x with separation ∆̃, so also should Tij be related to

the test-scale variables ̂̃u and ̂̃p on the corresponding set Ŝ of test-scale stencil points centered

on x with separation ∆̂. In other words, analogous to (2.1), this requires

Tij(x) ≈ T F
ij (x) ≡ Fij

[̂̃u(x+ x′), ̂̃p(x+ x′) ∀ x′ ∈ Ŝ
]
, (2.2)

where the stencil Ŝ is the same as stencil S̃ but is defined on the test-scale grid, as shown in

Figure 2.

The central idea in autonomic closure is that at each point x and time t, the known test

stress value Tij(x) and the known surrounding test-scale variables ̂̃u and ̂̃p on the stencil Ŝ
in (2.2) can be used to obtain information about the local form of Fij(x). Repeating this at

multiple training points within a bounding box centered on x allows Fij(x) to be determined

sufficiently accurately that it can be generalized, in a machine learning sense, from the test

scale to the LES scale. The resulting Fij(x) is then used to determine τij(x) via (2.1) from the

surrounding variables ũ and p̃ on the stencil S̃ centered on x. The relation in (2.1) and (2.2)

has a sufficient number N of degrees of freedom that it is free to adapt to the local turbulence

state at x to make TF
ij ≈ Tij , and thereby make τFij ≈ τij .

It is in this way that autonomic closure accesses internal training data within the simulation,

namely the test stresses within a bounding box centered on x, to discover the local connection
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Figure 2. Stencils Ŝ and S̃ each centered on point-of-interest x (red dot); (a) test-grid
stencil Ŝ on which hij is determined, (b) LES-grid stencil S̃ on which resulting hij is
used to evaluate τFij (x)

Fij(x) between the local test stress Tij(x) and the local test-scale primitive variables ̂̃u and ̂̃p.
It then uses this Fij(x) to evaluate the local subgrid stress τij(x) from the local resolved-scale

primitive variables ũ and p̃. In effect the simulation itself provides the training data, which are

used to solve the local, nonlinear, nonparametric system identification problem that discovers

the local connection between the subgrid stress and the resolved-scale primitive variables.

Galilean invariance is enforced by subtracting the velocity at the stencil center point from

the velocities on the stencil. Fij in (2.1) and (2.2) could be represented in a form that explicitly

imposes the tensor invariance and realizability properties of τij , as is done in Chapter 5. For

example, Fij could be represented in the tensor integrity basis [67, 68, 72–74] for the strain

rate and rotation rate tensors, S̃ij and R̃ij , which is the basis for many prescribed subgrid stress

models. However, that presumes that τij depends only on combinations of these two tensors,

whereas the nonparametric formulation in (2.1) in the primitive variables ũ and p̃ makes no

such assumption. Instead, as is common in many machine learning methods [67, 68], the

tensor invariance and realizability properties are inherent in the training dataTij , which informs

the learned Fij in (2.2) and thereby implicitly communicates these properties to τij in (2.1).

Results will be shown in Chapter 4 demonstrating that τij(x, t) andPij(x, t) from a non-frame-
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invariance preserving generalized representation Fij in the autonomic closure methodology

are far more accurate than those from common traditional prescribed closures that explicitly

enforce tensor frame-invariance properties.

2.3 Formulation of the Optimization Problem

Although any sufficiently general form forFij could be used in (2.1) and (2.2), the first part

of this study chooses a Volterra-like series [75] in u and p, as in Refs. [58, 59], namely the sum

of all products of all orders of all variables at all points on the stencil, including all possible

multi-point multi-variable products at each order. Such a representation is highly general. Even

if truncated after second order with a 3× 3× 3 stencil, Fij for each ij consists of N = 5995

zeroth- , first-, and second-order products of u and p in (2.1) and (2.2), each having a separate

coefficient h(k)
ij with k = 1, . . . , N , where N is the number of degrees of freedom in Fij .

This set of coefficients for each ij is thus an N -length column vector denoted hij . To gain

computational efficiency, Fij could be truncated at lower orders, or restricted to single-point

products, or limited only to the velocities u on the stencil. Even if Fij is truncated after first

order and limited to single-point velocities on a 3 × 3 × 3 stencil, it still contains N = 82

first-order terms in the u components for each ij, and thus has far more degrees of freedom

than do dynamic versions of traditional prescribed closure models.

With such a series for Fij , the stress value τij at the stencil center point x can be written

from (2.1) as

τij(x) ≈ τFij (x) = Ṽhij, (2.3)

where Ṽ is the N -length array containing the known values of all products of all orders of

ũ and p̃ in Fij at all points x + x′ on the stencil S̃ . If hij is known then the value of τij at

the stencil center point x can be obtained from (2.3). To determine hij , (2.2) can be similarly

written as Tij ≈ T F
ij = V̂hij, where V̂ is the N -length array containing the known values

of all products of all orders of the test-filtered primitive variables ̂̃u and ̂̃p in Fij at all points

x+x′ on the stencil Ŝ, and where the test stress value Tij at the stencil center point x is known.
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Repeating this with the stencil Ŝ centered at each ofM training points within a local bounding

box around the point x, in which variations in the turbulence state embodied in Fij are taken

to be negligible, then V̂ becomes an M × N matrix. With Tij denoting the corresponding

M -length column vector consisting of the known Tij values at theM training points, we then

have for each ij

Tij(x) ≈ T F
ij (x) = V̂hij. (2.4)

The size of the bounding box, typically extending along homogeneous directions, determines

the maximum number of available training points within it. The chosen number M of train-

ing points and the bounding box volume VB determine the relative training point spacing

(VB/M)1/3 , which together with M determines how much effectively independent informa-

tion is being used to characterize the local turbulence state via Fij , or equivalently via hij ,

within the bounding box around the point x. The choice of bounding box size and the number

of training points M are part of any implementation of autonomic closure. Regardless of the

M andN values, since the vectorTij and the matrix V̂ are known, the system in (2.4) may be

solved by any number of means. The present study uses a damped least-squares solution [59]

of the form

hij =

(
V̂T V̂ + λI

)−1

V̂TTij. (2.5)

where λ is the damping coefficient. WhenM/N ≫ 1 the value of λ is unimportant and is set

to λ = 10−3 ; whenM/N ≤ O(1) then λ is set to λ = 10−1. Once the coefficients hij at x

have been determined via (2.5), they are used in (2.3) to evaluate at x.

Note the resulting local hij is used only once to evaluate τij(x, t) at the bounding box

center point x for the current time t. A new set of coefficients hij is obtained for each (x, t) in

the simulation. As a result, autonomic closure does not provide a fixed set of coefficients hij

and thus does not provide a closure model for τij . Instead, it is the autonomic methodology

itself that is the closure for τij(x, t).
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2.4 Implementation Choices in Autonomic Closure

Implementing autonomic closure involves choices of Fij , N , M , and VB that impact the

generalizability of hij , in a machine learning sense, from the test scale to the LES scale, and

also determine the computational cost of this closure methodology. For example, the imple-

mentation in Ref. [59] used a second-order, non-colocated, velocity-pressure series for Fij ,

which provided a large number (N = 5995) of coefficients hij in Fij , and also used the largest

possible bounding box, which allowed a large number (M = 15, 625) of training points to

determine hij . Results from that implementation verified that autonomic closure produces

subgrid stress fields τFij (x, t) and subgrid production fields P F (x, t) ≡ −τFij S̃ij that represent

the true τij(x, t) and P (x, t) fields over essentially all resolved scales far more accurately than

do existing prescribed closure models, such as the dynamic Smagorinsky model [59]. However

while the implementation in Ref. [59] is accurate, as can be seen in Fig. 1, it is too computation-

ally costly in comparison with traditional prescribed closure models to serve as a widely-usable

alternative closure for practical applications of LES. Therefore, in the following sections this

study evaluates the effects of various implementation choices on the accuracy and computa-

tional cost of autonomic closure. Specifically, this study considers specific combinations of

the following key implementation choices:

• local vs. nonlocal forms based on the bounding box volume VB = (n∆̂)3

• velocity-only vs. velocity-pressure series representations Fij

• colocated vs. non-colocated products on the stencils S̃ and Ŝ

• first-order vs. second-order series representations Fij

• varying numbers N of coefficients hij

• varying numbersM of training points

• varying training point spacing (VB/M)1/3

These allow implementations ranging from (1) a large, second-order, velocity-pressure,

non-colocated, nonlocal formulation with M/N ≫ 1, which provides a large number N of
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degrees of freedom inFij but is computational costly, to (2) a minimal first-order, velocity-only,

colocated, local formulation withM/N ≪ 1 , which has the lowest computational cost but can

be expected to be less accurate. The main objective is to determine which implementations of

autonomic closure provide high accuracy in τij(x, t) and P (x, t) at acceptable computational

cost.

2.5 Anticipated Effects of Implementation Choices

It can be expected that various combinations of these implementation choices will affect

both the accuracy and efficiency of the resulting implementation of autonomic closure. For in-

stance, because velocities at distant points affect local pressure values on the stencil, a velocity-

pressure implementation adds nonlocality beyond the stencil points in Fij and also increases

the number N of degrees of freedom in Fij . Both effects can increase generalizability of the

resulting hij from the test scale to the LES scale, but at increased computational cost over

a velocity-only formulation. Similarly, including non-colocated products of the stencil-point

variables or increasing the truncation order of the series for Fij increase N and introduce ad-

ditional physical information in Fij , but at an increased computational cost that may not be

merited. Larger numbers M of training points should also lead to increased accuracy, but

for any bounding box volume VB the spacing (VB/M)1/3 between training points becomes

smaller asM increases, thus providing relatively less additional independent training informa-

tion to determine Fij while increasing the computational cost. These expectations suggest a

non-trivial tradeoff between N ,M , and VB .

It can also be expected that large bounding box volumes VB , which allow larger numbers

M of widely-spaced (and thus more independent) training points, will provide greater accuracy.

However, large bounding boxes may contain substantially different turbulence states, and thus

the training points will lead to coefficients hij that pertain, in part, to turbulence states other

than that at the point of interest x. Smaller bounding boxes give a more-local implementation

that ensures training points are relevant to the local turbulence state at x, but inherently limit

the number of available training points and their relative independence. This suggests that the
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most accurate implementation may involve a tradeoff between increased locality via smaller

bounding boxes and increased training information via larger bounding boxes.

In the following chapters, this study develops and applies quantitative assessment metrics

to determine implementations of autonomic closure that provide accurate and efficient results

for the τij(x, t) fields, and particularly in the corresponding P (x, t) fields, yet do so at com-

putational costs that are sufficiently low to enable practical use of autonomic closure in large

eddy simulations.
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Chapter 3

METRICS TO ASSESS ACCURACY OF AUTONOMIC CLOSURE

A priori tests are used in this study to assess the relative accuracy and computational cost of

various implementations of autonomic closure. Although a priori tests alone cannot demon-

strate that a subgrid closure will provide stable computations when implemented in an LES

code, such tests are the most direct way of assessing the accuracy of any closure approach in

representing subgrid stress fields τij(x, t) and subgrid production fields P (x, t). The present

assessments are thus essential for understanding the accuracy and computational cost of vari-

ous implementations of autonomic closure, to enable later a posteriori tests of implementations

that are found here to be both accurate and efficient.

To achieve such quantitative assessments of the accuracy of various implementations of

autonomic closure, this study develops metrics to assess the accuracy of any implementation

of autonomic closure. As noted in Section 1.2, in highly intermittent fields such as the subgrid

production P (x, t) it may not be possible to have precise point-by-point agreement between

the true field and that resulting from a subgrid stress closure. However a closure should (i) pro-

duceP (x, t) fields that are structurally similar to the corresponding true production fields, with

large values of forward and backward scatter concentrated in regions at the same locations and

of the same size and shape, (ii) produce similar statistical distributions of positive and negative

values as in the true P (x, t) fields, and (iii) produce ⟨P (x, t)⟩ ≥ ε, where ε is the true subgrid

production rate. Therefore, in addition to comparing average values and statistical distributions

of τij and P from autonomic closure to corresponding results from the true subgrid stress and

production fields, this study develops metrics to quantitatively compare the scale-dependent

support-density fields on which large positive and negative subgrid production values are con-

centrated in the true P (x, t) fields and in P F (x, t) from autonomic closure. These provide
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sensitive measures of how well any closure for τij represents the detailed spatial structure of

regions in which large forward and backward scatter occur in the subgrid production field.

3.1 Pseudo-LES Fields, Test Fields, and Resulting Stress Fields

Direct numerical simulation (DNS) data from a 10243 simulation of homogeneous isotropic

turbulence at Reλ = 433 from the Johns Hopkins Turbulence Database [76, 77] were used for

these a priori assessments. Velocity ui(x, t) and pressure p(x, t) fields were first projected on

a 2563 grid having regular grid spacing∆, on which all results are displayed. A spectrally sharp

filter with cutoff at k∆̃ = 40, well within the inertial range, was applied to produce pseudo-LES

fields ũi(x, t) and p̃i(x, t) on the 2563 display grid. This grid accommodates wavenumbers

up to k∆ = 128, allowing the nonlinear product fields ũiũj(x, t), which have wavenumbers

up to 2k∆̃ = 80, to be represented without aliasing. The true subgrid stress fields τij(x, t) =

ũiuj − ũiũj were then constructed on the same 2563 display grid. A second spectrally sharp

test filter with cutoff at k∆̃ = 20, providing test-to-LES filter ratio α ≡ ∆̂/∆̃ = 2, produced

test fields ̂̃ui(x, t) and ̂̃p(x, t) on the same 2563 display grid. This grid allows the product
fields ̂̃ui

̂̃uj(x, t), which contain wavenumbers up to 2k∆̃ = 40, to also be represented without

aliasing. The test stress fields Tij(x, t) = ̂̃uiũj − ̂̃ui
̂̃uj were then constructed on the 2563

display grid.

The test stress fields Tij(x, t) and the test-filtered velocity ̂̃ui(x, t) and pressure ̂̃p(x, t)
fields are the only inputs needed for the autonomic closure methodology in Section 2.1. To

determine τij at any point x on the display grid, since ∆̂/∆ = k∆/k∆̂ = 128/20 = 6 the

local test-scale grid consisted of every sixth point along each direction on the 2563 display grid

within the specified bounding box volume centered on x. Due to periodicity of the underlying

DNS data, the largest possible bounding box size n3 spans the entire test field domain, thus

n3 = 2563/63 = 443. At the other extreme, the smallest bounding box accommodates just

one training point centered on the 3× 3× 3 test-grid stencil Ŝ, thus n3 = 33. For each ofM

equally spaced training points in the bounding box, the values of ̂̃ui and ̂̃p at each point on the
test-grid stencil Ŝ centered on that training point provide the inputs for one row of the matrix
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Figure 3. Typical subgrid production field P (x, t), showing (a) true field, (b) result
from autonomic closure, (c) true support-density field G(x, t), and (d) corresponding
support-density field from autonomic closure.

V̂ in (2.4), and the test stress value Tij at that training point is the corresponding component of

theTij vector. For each ij pair the resultingM ×N system in (2.4) is then solved via (2.5) to

determine the coefficients hij at x, which then provide τFij via (2.3) from the values of ũ and

p̃ at each point on the LES-grid stencil S̃ centered on x.

3.2 Statistical Comparisons of τij(x, t) and P (x, t)

For each implementation in Section 3.1 the resulting subgrid stress fields τFij (x, t) and pro-

duction fields P F (x, t) ≡ −τFij S̃ij from autonomic closure are compared with the correspond-

ing true stress and production fields τFij (x, t) and P (x, t) ≡ −τijS̃ij . These comparisons in-

clude probability densities of stresses and production to assess if the implementation produces
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Figure 4. Subgrid production fields P (x, t) (leftmost column) and associated support-
density fields G(x, t) filtered at successive scale ratios ∆Γ/∆̃, showing (top row) true
production field and (bottom row) result from autonomic closure.

similar distributions of positive and negative values as in the true τFij (x, t) and P (x, t) fields.

This study also compares the average subgrid production ⟨P F ⟩ from each implementation to

the true value ε.

However, probability densities only give the distributions of magnitudes in these fields, but

provide no information about the spatial structure of the true fields and those from autonomic

closure. To determine whether large magnitudes of forward and backward scatter in the subgrid

production fields P F (x, t) are concentrated in regions at the same spatial locations and of

the same size and shape as in the true P (x, t) fields, support-density fields for the subgrid

production are obtained as described in Sections 3.3 and 3.4. These are then used to obtain

the scale-dependent metrics M1 and M2 described in Section 3.5 that quantify how closely

spatial structures in which large forward and backward scatter are concentrated in P F (x, t)

from autonomic closure compare with those in the true subgrid production fields P (x, t) .

3.3 Support Fields for the Subgrid Production P (x, t)

Figure 3a,b show a typical comparison of the subgrid production field P F (x, t) from auto-

nomic closure with the corresponding true field P (x, t). Probability densities of subgrid stress

and production are used in Chapter 4 to compare magnitudes in these fields. However Fig. 3

also shows structural similarities inP (x, t) andP F (x, t), even in many of the detailed features
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of these fields, including regions where large positive and negative values of P are clustered.

Of central importance, large magnitudes inP F (x, t) in Fig. 3b are clustered in regions at about

the same locations and of about the same size and shape as those in P (x, t) in Figure 3a.

However, despite the clear similarities in Figure 3a,b in the location, size, and shape of

regions where large magnitudes of subgrid production are concentrated, the precise point-by-

point rms differences betweenP (x, t) andP F (x, t), scaled byP ′
rms, are nevertheless ofO(1).

This is due to the strong intermittency in these fields, which leads to large rms differences

even if the two fields appear nearly identical at all but the smallest scales. Metrics other than

the simple rms difference are needed that can quantify the spatial structure of these fields,

focusing on the regions in which large productionmagnitudes are concentrated. Such structural

metrics should not primarily address the production values themselves, since these are already

compared in the probability densities of P and P F , but should focus on the structure of the

spatial support on which large production values are concentrated.

The support of a field is the subset of the domain on which the field values are non-zero.

This study defines the support on which large magnitudes of the subgrid production fields

P (x, t) and P F (x, t) are concentrated, by thresholding the absolute value of each field at a

fixed fraction γ of P ′
rms . This defines Σ(x, t) as either zero or one, depending on whether

the absolute value of the subgrid production is below or above the threshold. Points where

Σ = 1 are on the support of large production magnitudes and those where Σ = 0 are off the

support. Thresholding Σ at γ = 0.75 provides clear identification of the sensible support on

which large magnitudes of the subgrid production fields are concentrated.

3.4 Subgrid Production Support-Density Fields G(x, t)

The support for each of the subgrid production fields can be separated into different scales

to allow scale-by-scale comparisons of P (x, t) and P F (x, t) . From the support Σ(x, t) we

define the corresponding support-density field G(x, t) as

G(x, t) ≡
∫
V

Σ(x′, t)Γ∆(|x− x′|)x′, (3.1)
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where Γ∆(|x − x′|) is a convolution filter kernel with filter length scale ∆Γ . This study

uses standard Gaussian filters for Γ∆ in (3.1). Whereas the support Σ(x, t) is a discontinuous

binary-valued field, the support-densityG(x, t) is a continuous real-valued field to which stan-

dard error measures can be applied. Figures 3c,d show the support-density fields G(x, t) and

GF (x, t) corresponding to P (x, t) and P F (x, t) in Figures 3a,b. It is apparent that these G

fields accurately identify the locations, sizes, and shapes of the regions in which large subgrid

production values are concentrated.

Successive filter length scales ∆Γ in (3.1) allow scale-dependent structure in the support-

density fields to be determined. Comparisons at the same filter scale between true production

support-density fields and those obtained from the closure allow quantitative assessment of

scale-by-scale agreement in these fields. Figure 4 shows an example of such scale-dependent

comparisons of the support-density fields G(x, t) and GF (x, t) for the subgrid production

fields P (x, t) and P F (x, t) in Figure 3 at successive scale ratios∆Γ/∆̃ .

3.5 Support-Density MetricsM1 andM2

From support-density fieldsG(x, t) andGF (x, t) for P (x, t) and P F (x, t) as in Figure 4,

this study uses two metrics to quantitatively compare their spatial structure. At any scale-ratio

∆Γ/∆̃ these metrics are defined as

M1 ≡
⟨G′(x, t)G′F (x, t)⟩V

⟨G′(x, t)⟩1/2V ⟨G′F (x, t)⟩1/2V

and M2 ≡

√√√√⟨
[
G(x, t)−GF (x, t)

]2⟩V
⟨
[
G(x, t)

]2⟩V (3.2)

where M1 is the correlation between the support-density fields G′(x, t) and G′F (x, t), with

G′ ≡ G−⟨G⟩V , andM2 is the normalized rms difference betweenG(x, t) andGF (x, t). The

volume averages are over the entire domain. NoteM1 → 1 as the two support-density fields

become perfectly correlated, andM2 → 0 as the two support-density fields become identical.

The variations in M1 and M2 with scale-ratio ∆Γ/∆̃ allow quantitative comparisons of the

spatial support-densities on which the true production field P (x, t) and its associated P F (x, t)

from the τij closure are concentrated.
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3.6 Computational Time Scaling

This study also evaluates the computational time for each implementation of autonomic

closure. Only the time associated with the subgrid stress evaluation is considered; all other

factors are independent of the choice of closure. In autonomic closure there are seven steps

that contribute to the computational time, due to operations needed to:

1. Build the V̂ matrix in Eq. (2.4) from the N degrees of freedom in Fij for each of the

M training points; since V̂ is an M × N matrix, the operations count should scale as

M ·N .

2. Multiply V̂
⊺
V̂ in Eq. (2.5); since V̂ and V̂

⊺
are, respectively,M×N andN×M matrices,

the operations count should scale as N2 ·M .

3. Compute the inverse (V̂
⊺
V̂+ λI)−1 in Eq. (2.5); since (V̂

⊺
V̂+ λI) is anN2 matrix, the

operations count should scale as N3.

4. Multiply V̂
⊺
Tij in Eq. (2.5); since V̂

⊺
is anN×M matrix andTij is anM -length column

vector, the operations count should scale asM ·N .

5. Multiply (V̂
⊺
V̂+ λI)−1 by V̂

⊺
Tij; since (V̂

⊺
V̂+ λI)−1 is anN2 matrix and V̂

⊺
Tij is an

N -length column vector, the operations count should scale as N2.

6. Build the Ṽmatrix in Eq. (2.3) from theN degrees of freedom inFij; since Ṽ is a 1×N

array, the operations count should scale as N .

7. Compute τij from hij and Ṽ via Eq. (2.3); since hij and Ṽ are, respectively, N × 1 and

1×N arrays, the operations count should scale as N .

Since N is common to all operations counts, the total count is driven by steps 2 and 3,

regardless how large or small M is relative to N . The total operations count then scales as

N2 ·M +N3, so the computational time T should scale as

T ∼ N3
[
1 + (M/N)

]
(3.3)
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This suggests that there may be little reduction in total computational cost from using

M ≪ N training points, which, in turn, might suggest using all training points available

in the bounding box. However, there is diminishing benefit from increasingM once the train-

ing point spacing (VB/M)1/3 has become so small that little additional independent training

information is being gained.
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Table 1. Implementations of autonomic closure considered in Chapter 4, showing case
number and code, number N of degrees-of-freedom in Fij , relative bounding box size
n3 , number M of training points in bounding box, number of training points per
degree-of-freedom M/N , relative training point spacing, computational time, and ra-
tio of autonomic and true average subgrid dissipation. Case codes: First character N:
non-colocated, C: collocated; Second character L: local, G: nonlocal; Third character 1:
first-order, 2: second-order; Primes: velocity-pressure cases; DS = dynamic Smagorin-
sky model, BD = Bardina scale similarity model; + from (4.1), actual times 10-20X
longer due to memory management for large matrix operations.

Case Code N n3 = VB

∆̂3
M M/N (VB/M)1/3

∆̂
t(s) ⟨PF ⟩

⟨P ⟩

1a CL14 82 73 328 4.0 1.0 45 1.18
1b CL14’ 109 83 436 4.0 1.1 95 0.99
2a CL18 82 93 656 8.0 1.0 85 1.15
2b CL18’ 109 103 872 8.0 1.0 152 1.13
3a CL24 244 103 976 4.0 1.0 624 1.08
3b CL24’ 379 123 1516 4.0 1.0 2530 1.00
4a CL28 244 133 1952 8.0 1.0 1186 1.06

5a NG2 3403 443 17576 5.2 1.7 130, 821+ 1.19
5b NG2’ 5995 443 17576 2.9 1.7 261, 543+ 1.23
6a CG24 244 443 976 4.0 4.4 624 1.04
6b CG28 244 443 1952 8.0 3.5 1186 0.99

7a CL1(3) 82 33 27 0.2 1.1 15 0.68
7b CL2(3) 244 33 27 0.07 1.1 114 0.68
8a CL1(5) 82 53 64 0.9 1.2 18 0.54
8b CL2(5) 244 53 64 0.3 1.2 130 0.88

DS – – – – – – 70 1.05
BD – – – – – – 33 -1.19
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Chapter 4

PERFORMANCE OF SERIES-BASED REPRESENTATIONS

This chapter applies the metrics developed in Chapter 3 to assess the accuracy and effi-

ciency of series-based representations for Fij , of the type discussed in Chapter 2, for various

combinations of the implementation choices discussed in Sections 2.4 and 2.5. It then uses

those results to determine which implementation of such a series-based representation of auto-

nomic closure provides the greatest accuracy and efficiency in representing subgrid terms such

as the subgrid stress τij(x, t) and the associated subgrid production P (x, t).

Table 1 lists relevant parameters discussed in Section 2.4 for each of the series-based imple-

mentations of autonomic closure considered in this chapter. Together these allow a systematic

assessment of the effects of various implementation choices on the performance of autonomic

closure. Cases are grouped into three categories. The first category (Cases 1a-4b in Table 1)

primarily examines effects of series truncation order, inclusion of pressure, and the relative

training ratio M/N , while the bounding box size n3 and the number M of training points

vary as needed to obtain these M/N values. The second (Cases 5a-6b) primarily examines

effects of colocated and non-colocated implementations, with and without pressure, keeping

the bounding box at its largest possible size and the relative training ratioM/N roughly com-

parable to the first category. The third category (Cases 7a-8b) primarily examines highly local

implementations and series truncation order, with relative training ratiosM/N necessarily low

due to the small bounding box sizes.

Figures 6-12 present results from these tests of autonomic closure in homogeneous isotropic

turbulence. Each figure shows typical comparisons of the resulting normal and shear stress

components τFij (x, t) with the corresponding true fields τij(x, t), and comparisons of the cor-

responding subgrid production fields P F (x, t) and P (x, t).
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4.1 Computational Times

The resulting single-core computational time for each implementation of autonomic clo-

sure is given in Table 1. This study used standard LAPACK routines that take advantage of

symmetry to speed the inversion in (2.5). As noted in Section 3.6, the computational cost

for autonomic closure is determined primarily by the time needed to multiply V̂
⊺
V̂, which is

expected to scale as N2 · M , and the time needed to compute the inverse in (2.5) for the co-

efficients hij , which is expected to scale as N3. In comparison, the time for all other steps in

Section 3.6 should be negligible. This suggests that the computational times in Table 1 would

be expected to scale as

T ∼ N3
[
1 + (M/N)

]
. (4.1)

It is apparent in Figure 5 that (4.1) provides reasonable scaling of T over nearly six orders of

magnitude, and it can therefore be used to understand how the implementation parameters N

andM affect the computational time.

Note it is only whenM/N ≫ 1 that the numberM of training points significantly affects

the computational time, and whenM/N ≪ 1 the computational time simply scales as N3. It

will be seen in Section 4.5 that maintaining the high accuracy available via autonomic closure

requires M/N ≈ O(4), with little benefit gained from increasing M/N beyond this. As a

result, from (4.1) the computational time for such implementations of autonomic closure scales

roughly as T ∼ M ·N2.

4.2 Local vs. Nonlocal Representations

As noted in Section 2.4, large bounding boxes allow for larger numbersM of widely spaced

(and thus more independent) training points, which provide more information for determining

Fij via hij . However, increasingly larger bounding boxes contain increasingly different local

turbulence states than that which applies at the bounding box center point x, and thus yield

coefficientshij that are influenced by states other than that atx. On the other hand, increasingly

smaller bounding boxes provide a more-local implementation that assures training points are
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Figure 5. Scaling of computational time T for autonomic closure with number N of
degrees of freedom in Fij and number M of training points in V̂ in (2.4) and (2.5),
showing theoretical scaling vs. actual computational time for cases in Table.1

relevant to the local turbulence state at x, but they inherently limit the numberM of available

training points and their relative independence.

To understand the performance of local (small n3) and nonlocal (large n3) implementa-

tions of autonomic closure, Figure 13 shows probability densities of a typical subgrid stress

component τij and the subgrid production P , and the scale-dependent support-density metrics

M1 andM2 comparing the accuracy in the support-densities of the subgrid production fields.

The red curves show the performance of local implementations (Cases 3a vs 4a in Table 1)

and the blue curves are from nonlocal implementations (Cases 6a vs 6b). Cases 3a and 6a

have the same numberM/N of training points per degree of freedom, as do Cases 4a and 6b,

and all these cases are second-order velocity-only implementations, so these comparisons are

indicative of the effects of local versus nonlocal implementations.

In Figure 13 it is apparent in bothM1 andM2 that the local implementations give more ac-

curate results for the support on which large magnitudes of subgrid production are concentrated

than do the nonlocal implementations. Support-density correlations M1 for the local imple-

mentations are as high as 98% and rms errors M2 decrease to less than 2.3% at the largest

scale-ratio, while for the nonlocal implementations the correlations M1 only reach 94% and
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rms errorsM2 decrease only to 4%. The pdfs in Figure 13 show that, for the sameM/N value,

the local implementations give better representation of τij and P , especially in the tails that cor-

respond to large magnitudes, than do the corresponding nonlocal implementations. Moreover,

note in Section 3.1 that the computational cost is the same for Cases 3a and 6a, and for Cases

4a and 6b, sinceM/N is the same for each pair, as discussed in Section 4.1. We conclude that,

all other factors being the same, local implementations are more accurate than nonlocal ones.
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Figure 6 (a). Typical normal subgrid stress fields τij(x, t), i = j

35



128 256

12
8

25
6

 

0

 

-0.1

+0.1

Figure 6 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j
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Figure 6 (c). Corresponding subgrid production fields P (x, t).

Figure 6. Local vs nonlocal implementations. Typical comparison of true fields (left)
and autonomic closure, case 5a (right), showing (a) normal subgrid stresses, (b) shear
subgrid stress, and (c) subgrid production P (x, t)
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Figure 7 (a). Typical normal subgrid stress fields τij(x, t), i = j
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Figure 7 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j
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Figure 7 (c). Corresponding subgrid production fields P (x, t).

Figure 7. Local vs Nonlocal implementations. Typical comparison of true fields (left)
and autonomic closure, case 6a (right), showing (a) normal subgrid stresses, (b) shear
subgrid stress, and (c) subgrid production P (x, t)
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Figure 8 (a). Typical normal subgrid stress fields τij(x, t), i = j
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Figure 8 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j
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Figure 8 (c). Corresponding subgrid production fields P (x, t).

Figure 8. Velocity-pressure vs Velocity-only implementations. Typical comparison of
true fields (left) and autonomic closure, case 4a (right), showing (a) normal subgrid
stresses, (b) shear subgrid stress, and (c) subgrid production P (x, t)
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Figure 9 (a). Typical normal subgrid stress fields τij(x, t), i = j
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Figure 9 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j
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Figure 9 (c). Corresponding subgrid production fields P (x, t).

Figure 9. Velocity-pressure vs Velocity-only implementations. Typical comparison of
true fields (left) and autonomic closure, case 5b (right), showing (a) normal subgrid
stresses, (b) shear subgrid stress, and (c) subgrid production P (x, t)
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Figure 10 (a). Typical normal subgrid stress fields τij(x, t), i = j
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Figure 10 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j
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Figure 10 (c). Corresponding subgrid production fields P (x, t).

Figure 10. First-order vs second-order implementations. Typical comparison of true
fields (left) and autonomic closure, case 1a (right), showing (a) normal subgrid stresses,
(b) shear subgrid stress, and (c) subgrid production P (x, t)
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Figure 11 (a). Typical normal subgrid stress fields τij(x, t), i = j
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Figure 11 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j

51



128 256

12
8

25
6

 

0

 

-1

+1

Figure 11 (c). Corresponding subgrid production fields P (x, t).

Figure 11. First-order vs second-order implementations. Typical comparison of true
fields (left) and autonomic closure, case 1b (right), showing (a) normal subgrid stresses,
(b) shear subgrid stress, and (c) subgrid production P (x, t)
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Figure 12 (a). Typical normal subgrid stress fields τij(x, t), i = j
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Figure 12 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j
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Figure 12 (c). Corresponding subgrid production fields P (x, t).

Figure 12. Typical comparison of (left column) true subgrid stress component field
τij(x, t) and subgrid production field P (x, t) with (right column) results from recom-
mended implementation (Case 3a) of autonomic closure; Accuracy is comparable to
Figure 1 but at nearly 500X lower computational cost.
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Figure 13. Comparison of nonlocal (blue) and local (red) implementations of autonomic
closure; (top) pdfs of (left) typical subgrid stress component τ12 and (right) subgrid pro-
duction P versus (black) exact results, and (bottom)M1 andM2 variations with scale
ratio∆Γ/∆̃ for subgrid production field.

Figure 13 shows relatively little difference in accuracy between the two local implementa-

tions (Cases 3a and 4a) or between the two nonlocal implementations (Cases 6a and 6b). Since

each pair differs primarily in its M/N value, there apparently is little benefit in autonomic

closure from increasing the number of training points per degree of freedom fromM/N = 4

toM/N = 8. Additionally, the greater separation (VB/M)1/3 between training points in the

nonlocal implementations (Cases 6a and 6b) compared to that in the local implementations also

appears to provide little benefit. These effects will be examined in greater detail in Section 4.5.

4.3 Velocity-Pressure vs. Velocity-Only Representations

The series used here for Fij in (5) and (6) consists of all possible products up to second or-

der among the variables on a 3×3×3 stencil, including all multi-variable products. When only
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single-point products are included, then Fij has N = 379 degrees of freedom for a velocity-

pressure implementation and N = 244 for a velocity-only implementation. As noted in Sec-

tion 2.4, including pressure increases nonlocal effects in the nonparametric representation Fij

beyond the nonlocality available from the velocities on the stencil. At the same time, a velocity-

pressure formulation also increases the number of degrees of freedom N .

Figure 14 compares several velocity-pressure implementations with corresponding

velocity-only implementations (Cases 1a vs 1b, 2a vs 2b, 3a vs 3b, 4a vs 4b, and 5a vs

5b). Each pair has the same number M/N of training points per degree of freedom, and in

each pair the case number ending in “b” includes pressure. In the M1 and M2 results, it

can be seen that for first-order implementations (N = 82 or 109) there is some improvement

when pressure is included, but for second-order implementations (N = 244 or 379) there is

essentially negligible benefit from including pressure. This indicates that the improvement

seen in first-order implementations when including pressure is not so much due to the addition

of nonlocal effects from the pressure itself, but instead largely due to the greater numberN of

degrees of freedom in Fij when an additional stencil variable is included.

A velocity-pressure implementation does however lead to greater computational cost over

the corresponding velocity-only implementation. As seen in Section 3.1, including pressure

typically raises the computational cost by a factor of 2-4. Including pressure may thus be

justified for first-order implementations, where the additional degrees of freedom provide some

benefit, but not for second-order implementations, where N is already large enough that a

further increase in the number of degrees of freedom provides negligible benefits.

Additionally, note in Section 3.1 that noncolocated implementations (Cases 5a and 5b)

lead to a large increase in N , and thereby to a large increase in computational time T , but

Figure 14 shows that they produce only very little improvement inM1 andM2 or in the pdfs

of τij or P . The best colocated implementations perform nearly as well, and do so at far lower

computational cost.
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Figure 14. Comparison of velocity-pressure (blue) vs. velocity-only (red) implementa-
tions of autonomic closure; (top) pdfs of (left) typical subgrid stress component τ12 and
(right) subgrid production P versus (black) exact results, and (bottom) M1 and M2

variation in (11a,b) with scale ratio∆Γ/∆̃.

4.4 First-Order vs. Second-Order Representations

Section 3.1 and (4.1) show there is a substantial increase in computational cost from the

increase inN when second-order terms are included in the series forFij in (2.1) and (2.2). This

can be seen by comparing the computational times in Table 1 for Cases 1a vs 3a, Cases 1b vs

3b, Cases 2a vs 4a, and Cases 2b vs 4b. Each pair has the same numberM/N of training points

per degree-of-freedom. Including second-order terms is seen to increase computational cost

by a factor of 14-30 over the cost for a corresponding first-order implementation, consistent

with the scaling in (4.1).

Figure 15 compares the performance of first-order and second-order implementations via

pdfs of the subgrid stress and production, and the support-density metrics M1 and M2 for
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Figure 15. Comparison of second-order (blue) vs. first-order (red) implementations of
autonomic closure; (top) pdfs of (left) typical subgrid stress component τ12 and (right)
subgrid production P versus (black) exact results, and (bottom)M1 andM2 variation
in (11a,b) with scale ratio∆Γ/∆̃.

the subgrid production fields. It is evident in the pdfs of τij and P and in M1 and M2 that

the second-order (blue) implementations give more accurate results for τij and P than do first-

order (red) implementations. Part of the benefit from second-order implementations is simply

due to the greater number N of degrees of freedom in Fij when second-order terms are re-

tained, consistent with results found in Section 4.3. However, having seen in Section 4.3 that

including pressure in a second-order implementation provides negligible benefit, it is apparent

that the advantage of these second-order implementations over the corresponding first-order

implementations can be understood solely in terms of the velocities on the stencil.

Specifically, the velocities in a first-order implementation restrict Fij to sums and differ-

ences of velocity values on the 3× 3× 3 stencil. These can account for parametric quantities
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Figure 16. Effect of number of training points per degree of freedom in implementations
of autonomic closure with M/N ≤ 1 (blue) and M/N ≫ 1 (red); (top) pdfs of (left)
typical subgrid stress component τ12 and (right) subgrid production P versus (black)
exact results, and (bottom)M1 andM2 variation in (11a,b) with scale ratio∆Γ/∆̃ for
subgrid production support-density fields.

such as the strain rate Sij and rotation rateRij components, as well as their gradients∇Sij and

∇Rij , all of which alone are only first-order in the velocity components on the stencil. Thus

even a first-order velocity-only implementation allows this larger set of parametric quantities

to be implicitly represented in Fij than do traditional closures that assume τij to depend only

on Sij and Rij , with the coefficients hij at each point x determining the relative contributions

from each quantity.

A second-order implementation allows an even larger set of such parametric quantities, in-

cluding tensor products of Sij , Rij , ∇Sij and ∇Rij , to be implicitly represented in Fij . It is

this large set of possible tensor products that makes an explicit tensor invariance-preserving

parametric formulation of Fij more difficult to implement than is the primitive variable formu-
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lation in (2.1) and (2.2), for which tensor invariance properties are instead implicitly inherited

in Fij from the test-stress training data, which intrinsically satisfies these properties. Results

in Section 4.6 and Section 4.9 show that the present primitive-variable formulation produces

far more accurate results for τij(x, t) and P (x, t) than do traditional prescribed closure models

that explicitly enforce the tensor invariance properties of the subgrid stress.

4.5 Effect of Number of Training Points and Their Separation

As noted in Section 2.4, both the number of training points and their relative independence

might be expected to affect the amount of information available in the V̂ matrix to determine

the N degrees of freedom in Fij , and thereby increase its generalizability from the test scale

to the LES scale. In general, large numbers M of training points and increased separation

(VB/M)1/3 between them could thus lead to improved accuracy in τij(x, t) and the associated

P (x, t). However, simply increasing both M and (VB/M)1/3 simultaneously by making the

bounding box volume VB large was shown in Section 4.2 to be ineffective, since the resulting

less-local implementation then causes V̂ to contain training points that are not relevant to the

turbulence state at the bounding box center point x. On the other hand, reducing VB inherently

limits the number of available training points and their relative separation.

This study next examines the effect of the number M/N of training points per degree of

freedom in Fij . Figure 16 compares the performance of implementations with M/N ≤ 1 to

those having M/N ≫ 1. In general, cases having M/N ≫ 1 (red) outperform those with

M/N ≤ 1 (blue). However, it can be seen that there is no apparent benefit from increasing

M/N above about 4. For instance, Cases 3a and 4a have nearly identical performance, as do

Cases 1a and 2a, even thoughM/N in each pair are 4.0 and 8.0, respectively. The same can be

seen in comparing Cases 6a and 7a in Figure 14. Cases 7a and 8a in Figure 16 also have nearly

identical performance, even though theirM/N values differ by a factor of four. These results

indicate that, as long as M/N is sufficiently larger than one (e.g., M/N ≥ 4), other aspects

of autonomic closure including the locality gained by making the bounding box volume n3

61



smaller and allowing for second-order terms in Fij have more effect on the resulting accuracy

than does the number of training points per degree of freedom.

Since the number M of training points does not have a primary effect on the resulting

accuracy, it may be expected that the spacing between training points, which characterizes their

relative independence, also will not have a primary effect. This is supported by comparing the

relative training point spacing values (VB/M)1/3 in Section 3.1. For most of these cases, the

training point spacing relative to the test-scale grid spacing ∆̂ does not vary widely, ranging

from 1.0-1.2, yet the performance of these implementations varies widely. Cases 6a and 6b,

which have spacings roughly 3-4 times larger, show performance no better than many other

cases having far smaller training point separation. It is concluded that training point separation

by itself does not have a controlling effect on the performance of autonomic closure, as long

as the bounding box volume VB is small enough to provide a local implementation, as noted

in Section 4.2.

4.6 Average Subgrid Dissipation Rates

The pdfs of subgrid production in Figs.13b, 14b, 15b, and 16b show that the P F (x, t)

fields contain large positive and negative values, which combine to produce the average subgrid

production rate ⟨P F ⟩. For each implementation of autonomic closure in Table 1, the resulting

subgrid production fields P F (x, t) were averaged to obtain ⟨P F ⟩, and the corresponding true

subgrid production fields P (x, t) were averaged to obtain ⟨P ⟩ ≡ ε. The resulting ratio of

autonomic-to-true average subgrid production ⟨P F ⟩ /ε for each implementation is shown in

Table 1. Since ε > 0 , when ⟨P F ⟩/ε > 0 then ⟨P F ⟩ > 0, which corresponds to a net average

rate of energy transfer from the resolved scales into the subgrid scales. This can be seen in

Table 1 to be the case for all these implementations of autonomic closure.

For cases in Table 1 that produce ⟨P F ⟩/ε ≥ 1, the closure implementation on average

transfers energy out of the resolved scales at a rate equal to or higher than the true subgrid

dissipation rate ε. As noted in Section 1.2 this is necessary (but not sufficient) for any closure

to maintain computational stability. Most implementations of autonomic closure can be seen in
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Table 1 to meet this requirement, with the most obvious exceptions being Cases 7a,b and 8a,b,

which all have very small bounding boxes that cause M/N ≤ 1. Those cases still produce

net transfer of energy out of the resolved scales, but at a rate that is far lower than the true

subgrid dissipation rate ε. Implementations that produce ⟨P F ⟩/ε slightly larger than one are

desired since they produce net average transfer of energy out of the resolved scales at a rate

just slightly higher than the true subgrid dissipation rate ε. As a result such implementations

meet the minimum requirement for computational stability while avoiding an excessively large

average subgrid production rate that could lead to reduced fidelity in a simulation.

4.7 Results from Highly-Sheared Homogeneous Turbulence

All results presented up to this point in the dissertation regarding the accuracy of subgrid

stress fields and subgrid production fields obtained from autonomic closure have been from

a priori tests based on DNS data for homogeneous isotropic turbulence (HIT). Importantly,

there are no assumptions in the autonomic closure methodology that depend in any way on the

local state of the turbulence or the particular type of turbulent flow in which this new closure

methodology is applied. The only requirement is that the relation between the test stresses Tij

and the test-filtered variables in (2.1) must be the same as that between the subgrid stresses τij

and the LES-filtered variables in (2.2). This should be valid when both the test-filter scale and

the LES-filter scale are in the scale-similar inertial range, regardless of the local turbulence

state or the particular turbulent flow.

To verify this, in this section results from autonomic closure are presented for subgrid stress

fields and subgrid production fields obtained via a priori tests based on DNS data for homo-

geneous sheared turbulence (HST). These tests are based on a highly sheared turbulence case,

corresponding to a dimensionless mean shear rate S∗ ≡ (Sk/ϵ) = 8.8. This is typical of

the peak mean shear values in the log layer of turbulent boundary layers at moderately high

Reynolds numbers. It produces a highly anisotropic turbulent flow, with the anisotropy mag-

nitude and the resulting two-dimensional anisotropy state shown in the turbulent state triangle

in Fig. 17.
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Figure 17. Two-dimensional anisotropy state, IIIa = 0.2686 and -IIa = 0.7876, (marked
in black) characterize highly anisotropic flows (S∗ = 8.8), typically found in the log-
layer (y+ ∼ 100) of turbulent boundary layers at moderately high Re.

The DNS data were generated with a code developed by Prof. J. Schumacher at TU-

Ilmenau specifically for simulations of homogeneous sheared turbulence. This code uses the

usual periodic boundary conditions on the front/back and left/right sides of the domain, but

uses slip boundary conditions on the bottom/top surfaces to overcome the large-scale periodic

“bursting” cycle that otherwise can make such simulations become unstable. The effects of the

slip conditions on the bottom/top surfaces are largely confined near these surfaces, allowing

highly sheared homogeneous turbulence to be produced near the center of the domain. The

present a priori test results were obtained from DNS data planes at the center of the domain.

These DNS data planes were processed for a priori testing in exactly the same way as was

done for tests with homogeneous isotropic turbulence elsewhere in this dissertation. Indeed,

autonomic closure not only requires no knowledge about the mean shear rate, the local turbu-

lence state, or the type of turbulent flow in which it is applied, it does not even have any way

of incorporating such information.

The sameFij representation is used (Case 3a) that was found in the previous section to give
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accurate and efficient results in a priori tests with homogeneous isotropic turbulence. Figures

18-20 present results from these tests of autonomic closure in highly-sheared homogeneous

turbulence. Typical comparisons of the resulting normal and shear stress components τFij (x, t)

with the corresponding true fields τij(x, t) are shown in Figure 18a and Figure 18b, respec-

tively, and comparisons for the corresponding subgrid production fields P F (x, t) and P (x, t)

are shown in Figure 18c. The agreement between the true fields and those obtained from auto-

nomic closure is seen to be similar to what was seen in previous comparisons for homogeneous

isotropic turbulence.

Corresponding comparisons of the probability density of subgrid production are shown

in Figure 19, where again the agreement can be seen to be similar to what was seen in the

comparisons for homogeneous isotropic turbulence.

The subgrid production support-density metrics M1 and M2 are shown in Figure 20,

where the blue curves from these tests in highly sheared homogeneous turbulence are com-

pared with the earlier results from tests in homogeneous isotropic turbulence. It is apparent

that autonomic closure represents the regions of large positive and negative subgrid produc-

tion with similar accuracy for this highly sheared turbulence test case as it did for the isotropic

turbulence test case.
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Figure 18 (a). Typical normal subgrid stress fields τij(x, t), i = j
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Figure 18 (b). Typical shear subgrid stress fields τij(x, t), i ̸= j
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Figure 18 (c). Corresponding subgrid production fields P (x, t).

Figure 18. Results for highly sheared homogeneous turbulence, showing typical compar-
isons of true fields (left) and autonomic closure (Case 3a) (right) for (a) normal stresses,
(b) shear stress, and (c) subgrid production P (x, t)
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Figure 19. Results for highly-sheared turbulence, showing comparisons of pdfs from
true production fields (black) with production fields from autonomic closure (red) and
from the dynamic Smagorinsky model (blue).
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Figure 20. M1 (left) andM2 (right) metrics for the production fields from the HIT and
the HST cases are near-identical, indicating that the autonomic closure retains structural
similarity broadly across the entire spectrum of turbulent flows.

4.8 Recommended Series-Based Representation

Based on the results in Sections 4.1 to 4.7, the most accurate and efficient implementation

of autonomic closure among the cases in Section 3.1 is Case 3a. This is a relatively local,

second-order, velocity-only, colocated implementation that has been found here to be nearly as

accurate as that in Ref. [59] (Case 5b), but at a computational cost that is O(103) smaller.

Typical subgrid stress fields τFij (x, t) and subgrid production fields P F (x, t) from Case

3a are compared in Figure 12 to corresponding true fields τij(x, t) and P (x, t). Of particular

importance from the perspective of resolved-scale energetics and computational stability, it is

apparent by comparing Figure 12c and Figure 12d that this implementation preserves the struc-

tural similarities in P (x, t) and P F (x, t) nearly as well as did the far more computationally

costly implementation in Figure 1 (Case 5b). Large positive and negative values in P F (x, t)

in Figure 12d are clustered in regions at essentially the same locations and of the same size and

shape as in P (x, t) in Figure 12c.

Figure 21 compares PDFs of the subgrid stress fields τFij (x, t) from Case 3a with corre-

sponding results for the true fields τij(x, t). It is apparent that this implementation of auto-

nomic closure accurately produces nearly all aspects of these probability distributions, includ-
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ing the tails of these distributions. Figure 22 similarly compares the probability density for the

subgrid production fields P F (x, t) from Case 3a with the corresponding distribution for the

true fields P (x, t). It is again apparent that this implementation of autonomic closure accu-

rately produces the probability distribution of subgrid production values, including the tails of

the distribution that correspond to large positive values (forward) and negative values (back-

ward) scatter in the subgrid production fields. Also, Figures 13 to 16 show that Case 3a pro-

vides the most accurate representation of spatial structure in the subgrid production fields, as

quantified byM1 andM2, among computationally efficient implementations in Section 3.1.

Moreover, Table 1 shows the average subgrid production from Case 3a to be ⟨P F ⟩ ≈

1.08ε, indicating that this implementation transfers energy out of the resolved scales at a net

average rate just slightly higher than the true average subgrid dissipation rate ε. As a result, this

implementation satisfies the minimum requirement for computational stability while avoiding

an excessively large average subgrid production rate that could negatively impact fidelity when

implemented in a large eddy simulation.

Based on the average subgrid production rate in Table 1 and on the statistical and struc-

tural comparisons of τFij (x, t) and P F (x, t) with τij(x, t) and P (x, t) in Figures 13 to 22, the

recommended implementation of autonomic closure (Case 3a) satisfies the criteria noted in

Section 1.2 for any subgrid closure to be accurate across essentially all resolved scales and to

potentially provide computational stability in a simulation. This implementation of autonomic

closure is accurate and efficient enough for practical use in large eddy simulations, allowing

future aposteriori tests to assess its stability when used in an LES code.

4.9 Comparison with Traditional Closure Models

From the preceding sections, the most accurate and efficient implementations of autonomic

closure are those based on relatively local, second-order, velocity-only, colocated formulations.

Among these, Case 3a was seen in Figures 13 to 22 and Table 1 to give the best results for

subgrid stress fields τij(x, t) and subgrid production fields P (x, t) ≡ −τijS̃ij across essen-
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Figure 21. Comparison of probability densities for subgrid stress component fields
τij(x, t) from a priori tests of autonomic closure, showing resulting distributions for
true subgrid stress fields (black) and from recommended implementation (Case 3a) of
autonomic closure (red).
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Figure 22. Comparison of probability densities for subgrid production fieldP (x, t) from
a priori tests of autonomic closure, showing results for true subgrid production fields
(black) and from recommended implementation (Case 3a) of autonomic closure (red).

tially all resolved scales. This section now compares its performance with that of the dynamic

Smagorinsky model [27, 46–59] and the Bardina scale similarity model [43–45]. The former is

the most widely used subgrid model for τij(x, t) in LES, and the latter is the basis for various

mixed models [50–57] in which it is typically combined with the Smagorinsky model.

Figure 23 shows typical results comparing the true subgrid stress and production fields

τij(x, t) and P (x, t) with τFij (x, t) and P F (x, t) from this implementation of autonomic clo-

sure, and with τDS
ij (x, t) and PDS(x, t) from the dynamic Smagorinsky (DS) model and

τBD
ij (x, t) and PBD(x, t) from the Bardina scale similarity (BD) model. All results are for

the same spectrally sharp LES-scale and test-scale filters and the same test-to-LES filter scale

ratio α ≡ ∆̂/∆̃ = 2 as used throughout. It is apparent in Figure 23 that the results from

autonomic closure compare with the true subgrid stress and production fields far better than

do the results from either implementation of these two traditional closure models. While the

Bardina scale similarity model produces stress fields τBD
ij (x, t) that show some of the detailed

features in the true τij(x, t) fields, when contracted with the resolved strain rate tensor in (1.5)

the resulting subgrid production field PBD(x, t) compares relatively poorly with the true pro-
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duction field P (x, t). In comparing subgrid production fields in Figure 23, it is particularly

noteworthy that the locations, sizes, and shapes of regions in which large magnitudes of sub-

grid production are clustered in P F (x, t) from autonomic closure agree far better with those

in the true P (x, t) field than do corresponding results from either of the traditional models.
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Figure 23 (a). Typical subgrid stress fields τ11(x, t).
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Figure 23 (b). Typical subgrid stress fields τ12(x, t).
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Figure 23 (c). Typical subgrid stress fields τ13(x, t).
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Figure 23 (d). Typical subgrid stress fields τ22(x, t).
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Figure 23 (e). Typical subgrid stress fields τ23(x, t).
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Figure 23 (f). Typical subgrid stress fields τ33(x, t).
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Figure 23 (g). Corresponding subgrid production fields P (x, t).

Figure 23. Typical comparison of autonomic closure and traditional prescribed closure
models, showing (Figure 23a to Figure 23g) typical subgrid stress τij(x, t) and (Fig-
ure 23b) subgrid production P (x, t); (a) true fields, (b) results from autonomic closure
(Case 3a), (c) results from dynamic Smagorinsky (DS) model, and (d) results from Bar-
dina scale-similarity (BD) model; all are for same scale ratio α ≡ ∆Γ/∆̃ = 2.
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Figure 24. Typical comparison of autonomic closure and traditional prescribed closure
models, showing (top) pdfs of typical subgrid stress component τij and subgrid produc-
tionP , and (bottom)M1 andM2 variation with scale ratio∆Γ/∆̃ for subgrid production
support-density fields; true fields (black), autonomic closure (blue), dynamic Smagorin-
sky model (red dashed), Bardina scale-similarity model (red dotted); all are for same
scale ratio α ≡ ∆Γ/∆̃ = 2.

Figure 24a,b show comparisons of resulting probability densities of the subgrid stress and

subgrid production from each of these subgrid closures. It is apparent that the statistical dis-

tributions from autonomic closure match the true distributions very closely. Additionally, Fig-

ure 24c,d show the support-density metricsM1 andM2 comparing the spatial support on which

large positive and negative values of subgrid production are concentrated in Figure 23. It is

apparent in Figure 24, and consistent with the visual comparisons in Figure 23, that the spatial

structure of the support-density on which large values of positive and negative subgrid produc-

tion values are concentrated in P F (x, t) from autonomic closure agrees far better with the true
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subgrid production field P (x, t) than do the corresponding results PDS(x, t) and PBD(x, t)

from the dynamic Smagorinsky and Bardina scale similarity models.

Note in Table 1 that the average subgrid production ⟨P F ⟩ from autonomic closure closely

matches the true value ε, corresponding to average energy transfer from the resolved scales

into the subgrid scales at a rate just slightly higher than ε. By comparison, ⟨PBD⟩ from the

Bardina scale similarity model is seen in Table 1 to have the opposite sign, and thus on average

transfers energy into the resolved scales. This is consistent with the widely reported observa-

tion that the scale similarity model leads to unstable simulations unless it is coupled with an

added dissipative model to ensure net average energy transfer out of the resolved scales. Ta-

ble 1 shows that ⟨PDS⟩ from the dynamic Smagorinsky model has the correct sign and thus on

average transfers energy out of the resolved scales. However, Figure 23 shows that PDS(x, t)

compares very poorly to the true P (x, t) field, with large positive and negative values of sub-

grid production being highly overrepresented, and with regions in which large forward and

backward scatter are seen in PDS(x, t) poorly matching those in the true field P (x, t). These

factors likely contribute to the widely reported need for limiters, added dissipation, or other ad

hoc treatments to keep the dynamic Smagorinsky model computationally stable.

In contrast, autonomic closure produces τFij (x, t) and P F (x, t) in Figures 12 and 23 that

closelymatch even detailed features in the true fields τij(x, t) andP (x, t), and thus also closely

match the stress and production statistics in Figures 21, 22 and 24, and lead to ⟨P F ⟩ that closely

matches the true value ε in Table 1. Collectively, these factors suggest it may be possible for

this Case 3a implementation of autonomic closure to be stable without the need for limiters,

added dissipation, or other ad hoc treatments when implemented in large eddy simulations,

though this can only be assessed via future aposteriori tests.

Note also in Table 1 that the computational time for this Case 3a implementation of au-

tonomic closure is only about an order of magnitude larger than that needed to evaluate the

dynamic Smagorinsky model or the Bardina scale similarity model. Since the computational

time for subgrid stress evaluation is typically only a small fraction of the total computational

79



time needed for LES, the Case 3a implementation of autonomic closure should be efficient

enough for use in practical large eddy simulations.
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Chapter 5

INVARIANT REPRESENTATIONS IN AUTONOMIC CLOSURE

In Chapters 2-4, autonomic closure was implemented using a local series representation of

the subgrid terms in the values of the primitive variables of a large eddy simulation. For the

subgrid stress these are the values of the velocity components and pressure at the 27 points on

the 3× 3× 3 stencil. Translational invariance was enforced by subtracting the stencil center-

point velocity from the velocities at all the stencil points, thus in effect retaining only velocity

gradients on the stencil. To keep the number of terms in this series manageable, the series

was truncated after second-order terms. Furthermore, keeping pressure values in this series

was shown to provide negligible benefit when second-order terms are retained in the series.

This led to a second-order velocity-only representation as a 244-term series for each of the six

unique components of the subgrid stress. Autonomic closure then determines the optimal local

coefficients for each of these 6 × 244 terms.

Although this truncated series representation for τij was found in Chapter 4 to provide

remarkably accurate results, the truncation is undeniably arbitrary and likely to be less compu-

tationally efficient than a more “appropriate” representation based on a frame-invariant form

for τij . Such an “appropriate” representation is one involving only terms that preserve the

tensor invariance properties of τij , specifically the rank, symmetry, rotation, and reflection in-

variance of rank-2 symmetric tensors. This chapter develops such representations for τij , which

then are evaluated in Chapter 6 to identify the most accurate and efficient implementation for

autonomic closure.

5.1 Frame-Invariant Representation Theory

Representation theory formally provides the most general representation of any given quan-

tity, such as the subgrid stress tensor τij , in terms of any set of other quantities, such as the veloc-

ities um and pressures pm on the stencil, that preserves a given set of imposed constraints that
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the representation must satisfy. With regard to the generalized representation Fij for the sub-

grid stress τij in autonomic closure, these constraints consist of the rank, symmetry, rotation,

and reflection invariance of rank-2 symmetric tensors. Translational invariance is enforced

separately as described at the beginning of this chapter. Symmetry simply requires Fij = Fji.

However, invariance under frame rotation and reflection places a far larger set of less obvious

constraints on the representation.

With regard to frame rotation and reflection invariance, for any proper orthogonal tensor

Q (i.e., QikQkj = δij with det Q = 1) that rotates Cartesian coordinate frame x into a new

Cartesian frame x′ as xi = Qijxj , the stress tensors in the two frames must be related as τ ′ij =

Qik τkl Q
T
lj , so that the scalar invariants I = τii, II = τijτji, and III = τijτjkτki are the same

in both coordinate frames. The stress tensor is then said to be “frame invariant”; specifically, in

an n-dimensional Cartesian space it satisfies the symmetry, rotation, and reflection properties

associated with the special orthogonal group SO(n). Any tensorally-correct representation Fij

for τij must preserve these symmetry, rotation, and reflection properties.

In Chapters 2-4 these frame-invariance properties were only indirectly (and weakly) incor-

porated in autonomic closure, by training the solution for the series coefficients on test-scale

stresses that inherently satisfy these same invariance properties. In principle, these invariance

properties could be directly enforced by using an alternative representation for Fij in which

each term satisfies these frame-invariance properties. As shown in the following sections, such

an approach can lead to a finite series representation of τij consisting of a smaller number of

terms that does not require truncation. Moreover, this finite series representation can be “com-

plete” in the sense that it contains all possible tensorally-correct combinations of an assumed

set of quantities that τij can depend on. Such a complete frame-invariant representation would

presumably be the most accurate and efficient formulation of autonomic closure.

5.2 Invariant Representations of τij in the Stencil Velocities um

Smith (1971) provides a general formulation for the complete tensor basis needed to rep-

resent any symmetric rank-two tensor in terms of any number of vectors and rank-two tensors.
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Further, Pennisi and Trovato (1987) have shown that the tensor basis set resulting from Smith’s

general formulation is minimal, meaning there is no smaller tensor basis set that can give a

complete frame-invariant representation of the symmetric rank-two tensor.

It is thus possible from Smith’s general formulation to obtain a complete and minimal

tensor polynomial representation for τ in terms of the velocities um on the 3 × 3 × 3 stencil.

This section uses this approach to determine a frame-invariant representation of the symmetric

rank-two stress tensor τ in terms of the m = 1, 2, . . . , P = 27 stencil-point velocity vectors

um of the form τij = Fij(um), meaning a representation that preserves the rank, symmetry,

rotation and reflection properties of τij .

Following Smith (1971; Eq. 4.5), any such rank-two symmetric tensor τ can be represented

in a complete and minimal tensor polynomial in terms of any number P of vectors um as

τ = c0I+
P∑

m=1

cm(um ⊗ um) +
P∑

m=1

P∑
n=m+1

cmn(um ⊗ un + un ⊗ um), (5.1)

where ⊗ denotes the “dyadic product” (or “outer product”, or “tensor product”) defined for

any two vectors a = (a1, a2, a3) and b = (b1, b2, b3) as

a⊗ b =


a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 . (5.2)

Unlike in the earlier series representations in Chapters 2-4, note that all six independent com-

ponents of τ in (5.1) have the same set of coefficients c, so that (5.1) preserves all invariants

of τ in any coordinate frame. In contrast, the earlier ad hoc series representations were not

invariant-preserving and had separate coefficients for each ij-component of τij .

Since in (5.1) theum are the velocities at each of the 27 stencil points, the symmetric dyadic

products in that representation are simply all possible frame-invariance-preserving combina-

tions of all second-order products (colocated and non-colocated) of the velocity components.

The first sum gives the 27 colocated velocity products, which include both square (i = j) and

non-square (i ̸= j) terms. The second sum gives the (272 − 27)/2 = 351 non-colocated
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velocity products; note how the dyadic products in this term are constructed to preserve the

ij-symmetry of τ .

Strictly speaking, representation theory dictates that the scalar-valued coefficients c in (5.1)

can, at most, be functions of all scalar invariants that can be formed from the set of vectors um.

From Smith (1971; Eq. 2.41), for a representation involving only the vectors um, the only

such scalar invariants are Iαα ≡ uα · uα and Iαβ ≡ uα · uβ where α = 1, 2, . . . , P and

β > α. In principle, one could try to somehow discover how each of the c’s in (5.1) depend

on the P scalar invariants Iαα and the (P 2 − P )/2 scalar invariants Iαβ , and if successful in

doing so would have arrived at the only possible tensorally-correct representation of the form

τij = Fij(um). However, the whole point of autonomic closure is precisely to avoid a need

to propose models for coefficients c = f(I11, . . . , IPP , I12, . . . , IP−1P ) in representations for

τ , and to instead use tools of optimization and machine learning to autonomically discover the

best values for these coefficients at each point and time in a simulation.

Returning to (5.2), it might be tempting to discard the term c0I by arguing that the definition

of τ , namely

τ = ũ⊗ u− ũ⊗ ũ or equivalently τij ≡ ũiuj − ũiũj, (5.3)

requires τ = 0 when u ≡ 0. One might thus consider forcing c0 ≡ 0 to ensure (5.1) satisfies

this requirement. However, recall from above that c0 is in principle a scalar-valued function

f of the scalar invariants uα · uα and uα · uβ , so when all the uα,β ≡ 0 then these scalar

invariants are all zero, in which case it is possible (even likely) that c0 = f(0, . . . 0) = 0. This

then allows c0 = 0 when u ≡ 0 and thereby satisfies τ = 0 when u ≡ 0 even when the c0I

term in (5.1) is retained. Furthermore, when u ̸= 0we may expect c0 ̸= 0, in which case again

the c0I term in (5.1) must be retained. Thus in all cases, the c0I term in (5.1) must be retained.

Only when τ in (5.1) is the deviatoric stress should c0 ≡ 0.

Note that, since the c’s in (5.1) are the same for all six independent components of τ , there

are only 1+27+351 = 379 coefficients involved in the entire representation of τ , even though

(5.1) includes all possible invariance-preserving non-colocated velocity products. The original
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series was not invariance-preserving, and required 6×3403 = 20, 418 coefficients to represent

the entire tensor τ . If only colocated velocity products were retained in the original series it

required 6 × 244 = 1464 coefficients, whereas in (5.1) including only colocated velocity

products amounts to omitting the final term, which leaves just 1 + 27 = 28 coefficients that

must be found to completely represent τ .

The generalized representation in (5.1) has several advantages over the original truncated

ad hoc series representations in Chapters 2-4, including:

• Unlike the ad hoc representations, (5.1) is tensorally correct in that it represents the en-

tire tensor τ as a single polynomial in which each term is a rank-two tensor that preserves

the symmetry, rotation and reflection properties of τ .

• While the ad hoc series representation required truncation after second-order terms to be

practically implementable, (5.1) is a complete representation of τ in terms of the stencil

velocities um. It involves no truncation; representation theory limits it terms no higher

than second-order in the velocities um.

• Galilean (translation) invariance is satisfied by (5.1) when the stencil velocities um are

understood to have the stencil center-point velocity subtracted from them, so that the um

denote the resulting velocity differences. This also causes the resulting um at the stencil

center point to be zero, thereby reducing P from 27 to 26 independent velocity vectors.

That in turn reduces the number of coefficients in (5.1) to 1+26+(262−26)/2 = 352,

and if only colocated velocity products are included then the number of coefficients is

only 1 + 26 = 27.

• The representation in (5.1) involves a far smaller numberN of degrees-of-freedom (i.e.,

coefficients ci) than did the original series, and thus would allow far faster “on-the-fly”

implementations of autonomic closure in an LES code. Specifically, it involves a factor

of 20, 418/379 = 54 fewer degrees-of-freedomN in its representation of τ than did the

truncated series in the components of um. Since the computational burden of autonomic
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closure scales as N3[1 + M/N ], with N > M this reduction in N should reduce the

computational time by a factor of 543 = 150, 000 relative to the original truncated series.

• From the reduced number of degrees-of-freedom N needed in (5.1) to represent τ , far

fewer training points should be needed to determine these coefficients while keeping the

relative training ratio N/M the same as in Chapter 4. Beyond the resulting reduction

in computational cost, this should allow an even smaller bounding box than was needed

for the Case 3a implementation from Chapter 4, and thus should allow a more local (and

thereby a more accurate) closure.

• Beyond the reduction in N , further gains in efficiency result from the fact that a frame-

invariant representation as in (5.1) involves only a single set of coefficients, whereas

the original ad hoc series representation required a separate set of coefficients for each

components of τij . Specifically, the ad hoc series representation required 6 × N coef-

ficients to determine τij , whereas a frame-invariant representation requires only 1×N

coefficients.

• Since a frame-invariant representation reduces the number of coefficients from 6 × N

to 1×N , each of theM training points provides six sets of training data, one from each

of the six independent components of Tij . Thus theM training point locations provide

a total ofM ′ = 6M training data sets. The minimum required training data per degree-

of-freedom is thenM ′/N ≈ O(4), allowing fewer training points and thereby smaller

bounding boxes to be used, which provide further increases in efficiency and accuracy.

5.3 Invariant Representations of τij in S,R,∇S, and∇R

This section uses the general formulation of Smith (1971) to obtain a complete andminimal

representation of the symmetric subgrid stress tensor τij in terms of the strain and rotation rate

tensors S andR and rank-two products up to second order of their gradients∇S and∇R. In

particular, Smith’s framework guarantees that the resulting tensor polynomial representation

will satisfy the rank, symmetry, rotation, and reflection properties of τij . Moreover, Smith’s
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formulation was shown by Pennisi et al. (1987) to be minimal, thus there is no smaller number

of symmetric basis tensors that can form a complete polynomial representation of τij .

Unlike other invariance-preserving general representations for the subgrid stress, which

typically assume that τij depends only on the strain rate tensor S ≡ Sij , or only on the strain

rate and rotation rate tensors S andR ≡ Rij , in autonomic closure the relative velocities on a

3 × 3 × 3 stencil provide not only the strain and rotation rate tensors S and R but also their

gradients∇S ≡ ∂Sij/∂xk and∇R ≡ ∂Rij/∂xk. This allows an even far more general tensor

invariant formulation for τij than has previously been obtained [72, 83, 85, 86].

The resulting complete and minimal representation will be seen to consist of 1570 tensor

terms that each involve products up to fourth order in the underlying rank-two tensors Mi

and Wp, each of which in turn involve products up to second order in S, R, ∇S and ∇R.

Since the strain and rotation rate tensors S andR, and gradients∇S and∇R, are linear in the

components of the velocities um at the m = 1, 2, . . . , P = 27 points on the local 3 × 3 × 3

stencil, each term in this frame-invariant representation ultimately involves products up to

eighth order in these velocity components. Based on the observation in Chapter 4 that velocity

products no higher than second order are needed to obtain accurate representations for τij , the

frame-invariant representation developed in this section will also be truncated at this order,

5.3.1 Invariance-Preserving Tensor Representations of τij

5.3.1.1 Linear representations in S

The most widely used models assume that the turbulent stress depends only linearly on the

resolved strain rate tensor Sij and the identity tensor δij . There are only two independent ten-

sors that can be formed from Sij and δij that are linear in Sij and preserve the rank, symmetry,

rotation, and reflection properties of τij , namely

m(0) = Skkδij (5.4a)

m(1) = Sij (5.4b)
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The most general representation for the subgrid stress must then be a linear combination of

these two invariance-preserving tensorsm(α) where α = 0, 1, and thus can be written as

τij =
1∑

α=0

cαm
(α) = c0Skkδij + c1Sij, (5.5)

where the coefficients c0 and c1 are scalars and so can be functions only of the four invariance-

preserving scalars that can be formed from S̃ij and δij , namely cα = fα(I0, I1, I2, I3) where

I0 = tr(I) = δii (5.6a)

I1 = tr(S) = Sii (5.6b)

I2 = tr(S2) = SijSij (5.6c)

I3 = tr(S3) = SijSjkSki. (5.6d)

Equation (5.5) can be equivalently written for the deviatoric stress τ devij ≡ (τij − τkkδij/3)

and the deviatoric strain rate Sdev
ij ≡ (Sij − Skkδij/3), for which Sdev

kk ≡ 0. In that case

m(0) ≡ 0, so analogous to (5.5) the most general representation is

τ devij =
1∑

α=0

cαm
(α) = c1S

dev
ij , (5.7)

where c1 (generally called the “subgrid viscosity” and denoted νsgs) can depend only on the

four scalar invariants I0, I1, I2, I3 in (5.6). The invariance-preserving form for τij in (5.5), or

equivalently in (5.7), is the basis of so-called linear subgrid-scale models, since they assume

the subgrid stress to be linearly related to the strain rate tensor, with various linear models differ-

ing only in their choice of how the coefficient νsgs depends on the scalar invariants I0, I1, I2, I3.

However, for the purposes of this study the equivalent form in (5.5) is more useful, since it

shows how this most general linear representation of τij can be obtained from tensor invari-

ance, under the assumption that τij depends only on Sij and δij , based on the corresponding

tensor basesm(α).

5.3.1.2 Nonlinear representations in S and R

Similarly, there are “nonlinear” models that allow τij to depend not only on the strain rate

tensor Sij and the identity tensor δij , but also on the rotation rate tensor Rij . Such models
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represent τij in a complete set of tensor bases m(α) obtained from combinations of Sij , Rij ,

and δij that preserve the rank, symmetry, translation, and rotation properties of τij . For instance,

Lumley (1970), Pope (1974), Lund & Novikov (1992), and Gatski & Speziale (1993) propose

an 11-element set of invariance-preserving tensors that can be formed from Sij , Rij , and δij ,

namely

m(0) = I = δij (5.8a)

m(1) = S = S̃ij (5.8b)

m(2) = S2 = S̃ikS̃kj (5.8c)

m(3) = R2 = R̃ikR̃kj (5.8d)

m(4) = SR−RS = S̃ikR̃kj − R̃ikS̃kj (5.8e)

m(5) = S2R−RS2 = S̃ikS̃klR̃lj − R̃ikS̃klS̃lj (5.8f)

m(6) = SR2 +R2S = S̃ikS̃klR̃lj + R̃ikS̃klS̃lj (5.8g)

m(7) = S2R2 +R2S2 = S̃ikS̃klR̃lmR̃mj + R̃ikR̃klS̃lmS̃mj (5.8h)

m(8) = SRS2 − S2RS = S̃ikR̃klS̃lmS̃mj − S̃ikS̃klR̃lmS̃mj (5.8i)

m(9) = RSR2 −R2SR = R̃ikS̃klR̃lmR̃mj − R̃ikR̃klS̃lmR̃mj (5.8j)

m(10) = RS2R2 −R2S2R = R̃ikS̃klS̃lmR̃mnR̃nj − R̃ikR̃klS̃lmS̃mnR̃nj (5.8k)

Note that (5.8a-k) involve no matrix powers higher than two; i.e., S2 and R2 appear, but

neither S3 nor R3 nor any higher-order matrix powers appear. This is a result of the Cayley-

Hamilton theorem for any square matrixA, which relates its matrix powers of order three (A3)

and higher to linear combinations of lower matrix powers. It is this fact that limits the complete

set of such invariance-preserving tensorsm(α) to the finite number of independent tensors in

(5.8).

Thus, if it is assumed that τij depends only on Sij , Rij , and δij , then analogous to (5.5)

the most general representation must be a linear sum of these invariance-preserving tensors,
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namely

τij =
10∑
α=0

cαm
(α), (5.9)

where the coefficients cα = f(I0, . . . , I6) can only be functions of the seven unique indepen-

dent invariance-preserving scalar invariants that can be formed from Sij , Rij , and δij , namely

I0 = tr(I) = δii (5.10a)

I1 = tr(S2) = SijSij (5.10b)

I2 = tr(R2) = RijRij (5.10c)

I3 = tr(S3) = SikSklSli (5.10d)

I4 = tr(SR2) = SikRklRli (5.10e)

I5 = tr(S2R2) = SikSklRlmRmi (5.10f)

I6 = tr(S2R2SR) = SikSklRlmRmnSnoRoi (5.10g)

Equation (5.9), with (5.8) and (5.10), is a complete general tensor polynomial in Sij , Rij , and

δii that preserves the rank, symmetry, rotation, and reflection properties of τij . Under the

assumption that τij depends only on S, R and I, all valid representations of the stress tensor

τij must be expressible as in (5.9).

Lund&Novikov (1992) further showed that, under the additional assumption that the strain

rate S is not in an axisymmetric state (i.e., when S does not have repeated eigenvalues) and

when the vorticity vector obtained fromR is not aligned with any of the strain rate eigenvectors,

then the number of independent m(α) in (5.9) is reduced from eleven to six, and the number

of independent scalar invariants in (5.10a-g) is reduced from seven to five.

5.3.2 Toward the Most-General Frame-Invariant Representation

In principle, the subgrid stress in autonomic closure can be represented by the invariance-

preserving series in (5.9) in terms of the tensor basesm(α) in (5.8). The coefficients cα would

then be determined locally via the autonomic closure methodology, rather than from a pre-

scribed model that relates the coefficients to the seven scalar invariants Iα in (5.9). Doing this
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would allow implementing autonomic closure with a representation having far fewer coeffi-

cients than the 244-term series representation in the primitive variables identified in Chapter

4, which should be more computationally efficient (though evaluating the m(α) to build the

V̂ matrix may consume part of the reduction in computational time). More important, such a

formulation will no longer be based on an arbitrarily truncated series, but instead will be based

on the most general complete series representation (under the assumption that τij depends only

on Sij , Rij , and δij) that is consistent with the tensor properties of the subgrid stress.

Note the representation in (5.9) with m(α) from (5.8) involves products of velocity com-

ponents up to 5th order (via m(10)). That representation in m(α) is the most general tensor

polynomial that preserves all rank, symmetry, rotation, and reflection invariance properties of

τij under the assumption that τij depends only on Sij , Rij , and δij .

The frame-invariant representation in (5.9) could be implemented via autonomic closure,

and would thereby allow the coefficients cα to vary point-to-point in response to changes in

the local turbulence state, independent of any assumed model for how the coefficients might

depend on the scalar invariants I0, . . . , I6. However, Lund & Novikov (1992) and Doronina

et al (2018) showed that even when these coefficients are allowed to vary freely, there is little

improvement obtained over a constant-coefficient implementation of (5.9). They conclude

that the subgrid stress tensor must depend on more than just Sij , Rij , and δij and that such

additional parametric dependence must be included to substantially improve modeling of the

subgrid stress tensor τij .

Indeed, in autonomic closure the velocity component values on the 3×3×3 stencil, relative

to the corresponding values at the stencil center point, provide not only the strain and rotation

rate tensors S ≡ Sij and R ≡ Rij , but also their gradients ∇S ≡ ∂Sij/∂xk and ∇R ≡

∂Rij/∂xk. In fact, that is all the information that is contained in the velocity component

values on the 3×3×3 stencil when translation invariance is enforced by subtracting the stencil-

center velocity. Thus, it must be possible to formulate autonomic closure even more generally,

and more compactly, as the sum over the complete invariance-preserving set of tensor bases,
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analogous tom(α) in (5.8), that can be formed from S,R,∇S,∇R, and Iwhile preserving the

rank, symmetry, translation and rotation properties of τij . It is such a complete tensor invariant

formulation of autonomic closure that is pursued here.

5.3.3 Frame-Invariant Combinations of I, S,R,∇S and∇R

This section uses combinations of powers of the following tensors that are available in

autonomic closure, namely

I ≡ δii (5.11a)

S ≡ Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(5.11b)

R ≡ Rij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
(5.11c)

∇S = ∂Sij/∂xk (5.11d)

∇R = ∂Rij/∂xk (5.11e)

which provide the most general complete invariance-preserving tensor basis for representing

τij under the assumption that the subgrid stress depends only on S,R,∇S,∇R, and I.

5.3.3.1 Complete set of rank-2 tensor polynomial bases

The subgrid stress τij , which is to be expressed as a polynomial function of the tensors

in (5.10), is of rank-2. While S and R are rank-2 tensors, ∇S and ∇R are rank-3 tensors

and, due to the lack of an equivalent of the Cayley-Hamilton theorem for rank-3 tensors, there

is no general frame-invariant formulation of a tensor polynomial for a rank-2 tensor in terms

of a combination of rank-2 and rank-3 tensors. However Smith (1971), Pennisi and Trovato

(1987), Zheng (1994), and Itskov (2007) provide a general formulation for expressing any rank-

2 tensor B in the complete and minimal frame-invariant tensor polynomial basis that can be

formed from any finite set of rank-2 tensorsAk, where k = 1, 2, . . . , N .

Specifically, each of the N tensors Ak is first separated into its symmetric and anti-

symmetric parts as

symmetric part: Mi ≡
1

2

(
Ak +AT

k

)
i = 1, 2, . . . ,m ≤ N (5.12a)
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anti-symmetric part: Wp ≡
1

2

(
Ak −AT

k

)
p = 1, 2, . . . , w ≤ N (5.12b)

Similarly,B = f(Ak) is separated into symmetric and anti-symmetric parts as

symmetric part: BS ≡ 1

2

(
B+BT

)
(5.13a)

anti-symmetric part: BA ≡ 1

2

(
B−BT

)
(5.13b)

from whichB can then be reconstructed asB = BS +BA . Following Smith (1971), Pennisi

and Trovato (1987), and Itskov (2007), the symmetric part BS can be a function only of the

following invariant symmetric rank-2 tensor polynomial bases

m
(0)
S = I (5.14a)

m
(1,i)
S = Mi (5.14b)

m
(2,i)
S = M2

i (5.14c)

m
(3,ij)
S = MiMj +MjMi (5.14d)

m
(4,ij)
S = M2

iMj +MjM
2
i (5.14e)

m
(5,ij)
S = MiM

2
j +M2

jMi (5.14f)

m
(6,p)
S = W2

p (5.14g)

m
(7,pq)
S = WpWq −WqWp (5.14h)

m
(8,pq)
S = W2

pWq −WqW
2
p (5.14i)

m
(9,pq)
S = WpW

2
q −W2

qWp (5.14j)

m
(10,ip)
S = MiWp −WpMi (5.14k)

m
(11,ip)
S = WpMiWp (5.14l)

m
(12,ip)
S = M2

iWp −WpM
2
i (5.14m)

m
(13,ip)
S = WpMiW

2
p −W2

pMiWp (5.14n)

for all i < j = 1, 2, . . . ,m and all p < q = 1, 2, . . . , w. Similarly, the anti-symmetric part

BA can be a function only of the following invariant rank-2 anti-symmetric tensor polynomial

93



bases

m
(1,i)
A = Wp (5.15a)

m
(2,pq)
A = WpWq −WqWp (5.15b)

m
(3,ij)
A = MiMj −MjMi (5.15c)

m
(4,ij)
A = M2

iMj −MjM
2
i (5.15d)

m
(5,ij)
A = MiM

2
j −M2

jMi (5.15e)

m
(6,ij)
A = MiMjM

2
i −M2

iMjMi (5.15f)

m
(7,ij)
A = MjMiM

2
j −M2

jMiMj (5.15g)

m
(8,ijk)
A = MiMjMk +MjMkMi +MkMiMj

−MjMiMk −MiMkMj −MkMjMi (5.15h)

m
(9,ip)
A = MiWp +WpMi (5.15i)

m
(10,ip)
A = MiW

2
p −W2

pMi (5.15j)

for all i < j = 1, 2, . . . ,m and all p < q = 1, 2, . . . , w.

Smith (1971) asserts the symmetric and anti-symmetric tensor polynomial bases in (5.14a-

n) and (5.15a-j) to be complete, meaning that any BS and BA can be written as a linear sum

of the corresponding polynomial terms m(α)
S and m

(α)
A , each weighted by a corresponding

coefficient. However, a complete tensor polynomial basis is not minimal if it is reducible to

an even smaller basis set that suffices to represent any rank-2 polynomialB. This arises from

the fact that there may be tensor polynomial relations among various terms in the basis set

that allow the number of tensor products in the basis set to be further reduced. Such relations

are generally called Rivlin identities, and they result from the generalized Cayley-Hamilton

theorem

An
k − I

(1)
A A

(n−1)
k + I

(2)
A A

(n−2)
k + . . .+ (−1)nI

(n)
A I = 0 (5.16)

where the I(i)A are scalar invariants ofA defined as I(1)A = tr(A), 2I(2)A = tr(A)2 − tr(A2),

…, nI = det(A). By differentiating (5.16) repeatedly with respect to A, numerous Rivlin
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identities can be generated in the form of relations among tensor products of various orders.

The set of possible Rivlin identities is very large, making it difficult to prove that a given

tensor polynomial basis set is minimal.

Pennisi & Trovato (1987) first proved the irreducibility of Smith’s (1971) tensor bases in

(5.14) and (5.15), thereby establishing these as a complete and minimal basis. Prior to that, a

number of rank-2 tensor polynomial bases had been proposed that were complete but were not

minimal. Zemach (1998) discusses completeness and minimality of tensor polynomial bases,

and Itskov (2007) uses modern tensor notation and algebra to more clearly derive the complete

and minimal bases in (5.13) and (5.14). Even complete and minimal bases may not appear

unique, since Rivlin identities may allow terms in one basis to be expressed equivalently but

differently in another basis. The minimality of a basis simply means that there is no other basis

that can be complete and have a smaller number of basis tensorsm(k).

5.3.3.2 The tensor basis in (5.13) and (5.14) is minimal

This section shows that the tensor polynomial basis in (5.8), which has been widely used for

representing the turbulent stress tensor τij , is not minimal. To do this, the complete andminimal

tensor bases in (5.13) and (5.14) are applied to the special case considered in Section 5.3.1.2,

for which τij is taken to depend only on S and R. In that case, in (5.12a,b) Mi ≡ M1 = S

andWp ≡ W1 = R , and (5.14) then shows that the complete andminimal symmetric tensor

basis for τij as

m
(0)
S = I m

(10)
S = SR−RS

m
(1)
S = S m

(11)
S = RSR

m
(2)
S = S2 m

(12)
S = S2R−RS2

m
(6)
S = R2 m

(13)
S = RSR2 −R2SR

(5.17)

with all other m(k)
S ≡ 0. These should be equivalent to (5.8a-k) if both tensor bases are

complete and minimal. However, even then they need not appear identical, since there may be

Rivlin identities that allow them to be rearranged into identical forms.
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The abovem(k)
S for k = 0, 1, 2, 6, 10, 12, and 13 are indeed identical to (5.8a), (5.8b), (5.8c),

(5.8d), (5.8e), (5.8f), and (5.8j). However, in (5.8a-k) there is no obvious equivalent to the

m
(11)
S term above, nor are there terms above that appear obviously equivalent to (5.8g), (5.8i),

or (5.8k). There may be Rivlin identities that allow (5.8g), (5.8i), or (5.8k) to be constructed

from the eight symmetric basis tensors m(k)
S above. However, since the above basis set m(k)

S

involves just eight tensors, while the basis set m(k) in (5.8a-k) involves ten tensors, the basis

set in (5.8a-k) cannot be minimal.

In fluid dynamics, the basis in (5.8a-k) was first introduced by Lumley (1970) and then

adopted, with minor corrections, by Pope (1975). Lund & Novikov (1992) and Gatski &

Speziale (1993) adopted Pope’s (1975) basis. However Pope appears not to have been aware

that his basis is not minimal, and to have been unaware of the more general complete basis for-

mulation by Smith (1971) in (5.14a-n) and (5.15a-j). Later, Pennisi & Torvato (1987) proved

that Smith’s bases are minimal. Even today, it is not widely known in the fluid dynamics com-

munity that (5.8) is not a minimal basis, and that by contrast the eight symmetric basis tensors

m
(k)
S listed above are a complete and minimal basis for representing τij solely in terms of S

andR.

5.3.3.3 Tensor elements Ak in terms of S, R, ∇S and ∇R.

Taking B ≡ Bij as the subgrid stress τij , which is symmetric, only the symmetric tensor

polynomial basis in (5.14a-n) is needed in a tensor polynomial representation of τij . S and

R are respectively symmetric and anti-symmetric rank-2 tensors, and thus can be included

directly in the set of tensorsAk in Section 5.3.3.1. Thus

A1 = S (5.18a)

A2 = R (5.18b)

However,∇S and∇R are rank-3 tensors and, since there does not appear to be a general

formulation of a rank-2 tensor polynomial in terms of rank-2 and rank-3 tensors, this study
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chooses to form rank-2 tensors from ∇S and ∇R, and include these in the set of tensors in

Section II.A. To do this, consider tensor contractions of the form of∇Sα,∇Rβ , and∇Sγ∇Rδ.

5.3.3.3.1 Rank-2 contractions involving only∇Sα

Since ∇S is a rank-3 tensor, this section determines the powers α that contract ∇Sα to a

rank-2 tensor. For any α,∇Sα involves 3α indices, so two of these must be the free indices i

and j, and the remaining indices must be repeated in integer m pairs. Thus allowable values of

α > 1must satisfy 3α−2 = 2m for integerm ≥ 1, which is the case only for α = 2, 4, 6, . . ..

For α = 2 there are eight possible tensor products of the form∇S2, namely

∂Skk

∂xi

∂Sll

∂xj

,
∂Skl

∂xi

∂Skl

∂xj

,
∂Sik

∂xk

∂Slj

∂xl

,
∂Sik

∂xl

∂Slj

∂xk

∂Sik

∂xk

∂Sll

∂xj

,
∂Sik

∂xl

∂Skl

∂xj

,
∂Skk

∂xi

∂Slj

∂xl

,
∂Skl

∂xi

∂Skj

∂xl

(5.19)

For each of α = 4, 6, . . . there are far larger numbers of tensor products of the form∇Sα

that can form rank-2 symmetric tensors. Many of these may be reducible via the equivalent of

Rivlin identities among them, though for rank-3 tensors there appears to be no equivalent of

the Cayley-Hamilton theorem from which to obtain such identities. Such an approach could

potentially lead to aminimal tensor polynomial basis set. However, while there are efficiencies

gained from a tensor representation in a minimal basis, there is no loss of generality if a non-

minimal basis is used. Moreover, lacking the equivalent of a Cayley-Hamilton theorem for

rank-3 tensors leaves open the question of whether it is even possible for there to be a finite set

of tensor products∇Sα that can form rank-2 symmetric tensors.

Thus, while including these higher-power tensor products∇Sα forα > 2may be necessary

to obtain a complete tensor polynomial basis set, even if only the ∇S2 products are included

in the representation of τij they will allow effects of ∇S to be reflected in the subgrid stress

– though in less than a fully complete way. The complete set of unique second-order rank-2

contractions∇S2 consists of

A3 =
∂Skk

∂xi

∂Sll

∂xj

(5.20a)
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A4 =
∂Skl

∂xi

∂Skl

∂xj

(5.20b)

A5 =
∂Sik

∂xk

∂Slj

∂xl

(5.20c)

A6 =
∂Sik

∂xl

∂Slj

∂xk

(5.20d)

A7 =
∂Sik

∂xk

∂Sll

∂xj

(5.20e)

A8 =
∂Sik

∂xl

∂Skl

∂xj

(5.20f)

A9 =
∂Skk

∂xi

∂Slj

∂xl

(5.20g)

A10 =
∂Skl

∂xi

∂Skj

∂xl

(5.20h)

5.3.3.3.2 Rank-2 contractions involving only∇Rβ

Because in Section 5.3.3.1 the tensorsAk are identified without regard to their symmetry,

since∇R is a rank-3 tensor (like∇S) it is possible by direct analogy with the rank-2 contrac-

tions∇S2 in (5.20a-h) to write corresponding rank-2 contractions∇R2. However, due to the

anti-symmetry ofR it is always the case thatRkk ≡ 0, even when Skk ̸= 0, and this eliminates

three of the eight corresponding contractions∇R2, leaving only

A11 =
∂Rkl

∂xi

∂Rkl

∂xj

(5.21a)

A12 =
∂Rik

∂xk

∂Rlj

∂xl

(5.21b)

A13 =
∂Rik

∂xl

∂Rlj

∂xk

(5.21c)

A14 =
∂Rik

∂xl

∂Rkl

∂xj

(5.21d)

A15 =
∂Rkl

∂xi

∂Rkj

∂xl

(5.21e)

5.3.3.3.3 Rank-2 contractions involving∇Sγ∇Rδ

Similarly, because∇S and∇R are both rank-3 tensors it is again possible by direct analogy

with the rank-2 contractions in (5.20a-h) to write corresponding second-order rank-2 mixed

contractions ∇S∇R. As above, contractions involving Rkk are eliminated since in all cases
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Rkk ≡ 0, but in this case this eliminates only two of the eight contractions. Additionally, the

symmetry of S and the anti-symmetry of R require SklRkl ≡ 0 , but due to resulting chain-

rule terms this does not eliminate any of the remaining six contractions. Thus, retaining only

second-order rank-2 mixed contractions∇S∇R leaves

A16 =
∂Skl

∂xi

∂Rkl

∂xj

(5.22a)

A17 =
∂Sik

∂xk

∂Rlj

∂xl

(5.22b)

A18 =
∂Sik

∂xl

∂Rlj

∂xk

(5.22c)

A19 =
∂Sik

∂xl

∂Rkl

∂xj

(5.22d)

A20 =
∂Skk

∂xi

∂Rlj

∂xl

(5.22e)

A21 =
∂Skl

∂xi

∂Rkj

∂xl

(5.22f)

5.3.3.4 Symmetric and antisymmetric tensors Mk and Wk

Next, the symmetric and anti-symmetric parts of each of the tensor elementsAk in (5.18),

(5.20), (5.21), and (5.22) are formed via (5.12a,b). Some of the resulting symmetric partsMk

are duplicates upon addition in (5.12a), and thus are listed only once, and some of the resulting

anti-symmetric partsWk are zero upon subtraction in (5.12b). The resulting unique symmetric

parts are

M1 = Sij (5.23a)

M2 =
∂Skk

∂xi

∂Sll

∂xj

(5.23b)

M3 =
∂Skl

∂xi

∂Skl

∂xj

(5.23c)

M4 =
∂Sik

∂xk

∂Slj

∂xl

(5.23d)

M5 =
∂Sik

∂xl

∂Slj

∂xk

(5.23e)

M6 =
1

2

(
∂Sik

∂xk

∂Sll

∂xj

+
∂Sll

∂xj

∂Sik

∂xk

)
(5.23f)

M7 =
1

2

(
∂Sik

∂xl

∂Skl

∂xj

+
∂Skl

∂xi

∂Sjk

∂xl

)
(5.23g)
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M8 =
∂Rkl

∂xi

∂Rkl

∂xj

(5.23h)

M9 =
∂Rik

∂xk

∂Rlj

∂xl

(5.23i)

M10 =
∂Rik

∂xk

∂Rlj

∂xl

(5.23j)

M11 =
1

2

(
∂Rik

∂xl

∂Rkl

∂xj

+
∂Rkl

∂xi

∂Rjk

∂xl

)
(5.23k)

M12 =
1

2

(
∂Sik

∂xk

∂Rlj

∂xl

+
∂Rli

∂xl

∂Sjk

∂xk

)
(5.23l)

M13 =
1

2

(
∂Sik

∂xl

∂Rlj

∂xk

+
∂Rli

∂xk

∂Sjk

∂xl

)
(5.23m)

M14 =
1

2

(
∂Skk

∂xi

∂Rlj

∂xl

+
∂Rli

∂xl

∂Skk

∂xj

)
(5.23n)

M15 =
1

2

(
∂Skl

∂xi

∂Rkj

∂xl

+
∂Rki

∂xl

∂Skl

∂xj

)
(5.23o)

Thus there are m = 15 symmetric parts that can be formed from the tensor elements Ak in

(5.19)-(5.21). Similarly, the resulting unique non-zero anti-symmetric parts are

W1 = Rij (5.24a)

W2 =
1

2

(
∂Sik

∂xk

∂Sll

∂xj

− ∂Sll

∂xi

∂Sjk

∂xk

)
(5.24b)

W3 =
1

2

(
∂Sik

∂xl

∂Skl

∂xj

− ∂Skl

∂xi

∂Sjk

∂xl

)
(5.24c)

W4 =
1

2

(
∂Skk

∂xi

∂Slj

∂xl

− ∂Sli

∂xl

∂Skk

∂xj

)
(5.24d)

W5 =
1

2

(
∂Rik

∂xl

∂Rkl

∂xj

− ∂Rkl

∂xi

∂Rjk

∂xl

)
(5.24e)

W6 =
1

2

(
∂Rkl

∂xi

∂Rkj

∂xl

− ∂Rki

∂xl

∂Rkl

∂xj

)
(5.24f)

W7 =
1

2

(
∂Skl

∂xi

∂Rkl

∂xj

− ∂Rkl

∂xi

∂Skl

∂xj

)
(5.24g)

W8 =
1

2

(
∂Sik

∂xk

∂Rlj

∂xl

− ∂Rli

∂xl

∂Sjk

∂xk

)
(5.24h)

W9 =
1

2

(
∂Sik

∂xl

∂Rlj

∂xk

− ∂Rli

∂xk

∂Sjk

∂xl

)
(5.24i)

W10 =
1

2

(
∂Sik

∂xl

∂Rkl

∂xj

− ∂Rkl

∂xi

∂Sjk

∂xl

)
(5.24j)
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W11 =
1

2

(
∂Skk

∂xi

∂Rlj

∂xl

− ∂Rli

∂xl

∂Skk

∂xj

)
(5.24k)

W12 =
1

2

(
∂Skl

∂xi

∂Rkj

∂xl

− ∂Rki

∂xl

∂Skl

∂xj

)
(5.24l)

Thus there are w = 12 anti-symmetric parts that can be formed from the tensor elementsAk in

(5.19)-(5.21).

5.3.3.5 Symmetric rank-2 tensor polynomial basis m(i)
S

Following Section 5.3.3.1, any symmetric rank-2 tensor can be expressed as a polynomial

in the invariant symmetric rank-2 tensor polynomial basism(k)
S given in (5.14a-n). These are

based on the second-order symmetric tensors Mi for i = 1, 2, . . . , 15 in (5.22), and on the

second-order anti-symmetric tensorsWp for p = 1, 2, . . . , 12 in (5.23). The resulting number

ofm(k)
S is large. For instance, the first fewm

(k,α)
S for k = 0, 1, 2, 3, ..., 13 are given by

k = 0 m
(0)
S = I (5.25a)

k = 1 m
(1,1)
S = M1 (5.25b)

m
(1,2)
S = M2 (5.25c)

...

m
(1,15)
S = M15 (5.25d)

k = 2 m
(2,1)
S = M2

1 (5.25e)

m
(2,2)
S = M2

2 (5.25f)

...

m
(2,15)
S = M2

15 (5.25g)

k = 3 m
(3,1)
S = M1M2 +M2M1 (5.25h)

m
(3,2)
S = M1M3 +M3M1 (5.25i)

m
(3,3)
S = M1M4 +M4M1 (5.25j)
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...

m
(3,14)
S = M1M15 +M15M1 (5.25k)

m
(3,15)
S = M2M3 +M3M2 (5.25l)

m
(3,16)
S = M2M4 +M4M2 (5.25m)

m
(3,17)
S = M2M5 +M5M2 (5.25n)

...

m
(3,30)
S = M2M15 +M15M2 (5.25o)

...

m
(3,108)
S = M14M15 +M15M14 (5.25p)

It is easy to determine how many m
(k,α)
S there are, given that i < j = 1, 2, . . . , 15 and

p < q = 1, 2, . . . , 12. Specifically

m
(0)
S : 1 (5.26a)

m
(1,α)
S : 15 (5.26b)

m
(2,α)
S : 15 (5.26c)

m
(3,α)
S : (152 − 15)/2 = 105 (5.26d)

m
(4,α)
S : (152 − 15)/2 = 105 (5.26e)

m
(5,α)
S : (152 − 15)/2 = 105 (5.26f)

m
(6,α)
S : 12 (5.26g)

m
(7,α)
S : (122 − 12)/2 = 66 (5.26h)

m
(8,α)
S : (122 − 12)/2 = 66 (5.26i)

m
(9,α)
S : (122 − 12)/2 = 66 (5.26j)

m
(10,α)
S : 15 · 12 = 180 (5.26k)

m
(11,α)
S : 15 · 12 = 180 (5.26l)

m
(12,α)
S : 15 · 12 = 180 (5.26m)
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m
(13,α)
S : 15 · 12 = 180 (5.26n)

Thus the total number of invariant symmetric rank-2 tensor polynomial bases m(k)
S in (5.14a-

n) is 1276, and a complete frame-invariant representation for τij in autonomic closure would

therefore involve determining a total of 1276 coefficients.

In an “on-the-fly” implementation of autonomic closure these coefficients would need to be

determined at each point and time, which is likely to be unacceptably burdensome from a com-

putational perspective. Alternatively, in a “static” implementation of autonomic closure these

1570 coefficients need to be determined just once, in advance of the simulation itself, and can

then be utilized without excessive computational burden in a simulation. In both cases, how-

ever, the larger computational burden may come from the large number of tensor component

multiplications required to calculate them(k)
S in (5.14a-n) via theMi in (5.23a-r) and theWp

(5.24a-l).

5.3.3.6 Incompressible case: Deviatoric basis m(i)
S

For incompressible flow, which can be formulated in the deviatoric stress and deviatoric

strain rate, many of the m(k)
S in (5.13) and (5.25) are zero, allowing considerable reduction

in the total number of coefficients. In that case Sii = 0, so it is possible to work in the

deviatoric strain rate Sdev, for which Sdev
ii ≡ 0, and in the deviatoric stress τ dev, for which

τ dev ≡ 0 and thusm(0)
S in (5.14a) and (5.26a) does not appear, as was seen in going from (5.5)

to (5.9). The deviatoric stress τ dev can then be formulated in terms of Sdev, R, ∇Sdev, and

∇R, which is equivalent to using the results above but enforcing Sii ≡ 0 and droppingm(0)
S .

As a result, several of theMi andWp in (5.22) and (5.23) are zero, which reduces the number

of polynomial basesm(k)
S .

Specifically,M2 in (5.23b),M6 in (5.23f), andM14 in (5.23q) are all zero, as areW2 in

(5.24b),W4 in (5.24d), andW11 in (5.24k). This leaves a total of 12 non-zeroMi and 9 non-

zero Wp. Then, with i < j = 1, 2, . . . , 12 and all p < q = 1, 2, . . . , 9, following the same
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procedure as in (5.26a-n) the total number of invariant symmetric rank-2 tensor polynomial

basesm(k)
S in (5.14a-n) for the incompressible case is 784.

5.3.4 Second-Order Truncation of the Complete Tensor Basis

The invariant symmetric rank-2 tensor polynomial basis m(α)
S for α = 0, 1, . . . , 1275 in

(5.14) is complete under the assumption that τij depends on I, S,R,∇S2,∇R2, and∇S∇R.

Thus all representations of τij that satisfy the invariance properties of a symmetric rank-2 tensor

can be written as a tensor polynomial

τij =
1275∑
α=0

cαm
(α)
S . (5.27)

In (5.27), from (5.13) with (5.22) and (5.23) note that

• m
(1,i)
S contains terms up to first order in Mi and thereby up to second order in the

velocity components ui.

• m
(2,i)
S , m(3,ij)

S , m(6,p)
S , m(7,pq)

S , and m
(10,ip)
S contain second-order products of Mi and

Wp, and thus terms up to fourth order in the velocity components ui.

• m
(4,ij)
S , m(5,ij)

S , m(8,pq)
S , m(9,ip)

S , m(11,ip)
S and m

(12,ip)
S contain third-order products of

Mi andWp, and thus terms up to sixth order in the velocity components ui.

• m
(13,ip)
S contains fourth-order tensor products of Mi and Wp, and thus terms up to

eighth order in the velocity components ui.

• There are no terms in this complete and minimal tensor representation of τij involving

terms above eighth order in the velocity components ui.

Chapter 4 shows that truncating a series representation to only retain velocity products

up to second order is sufficient to obtain excellent representation of the subgrid stress and

the associated subgrid production, regardless whether the second-order products include non-

colocated or only colocated stencil points. Anticipating that at least comparable accuracy will

be obtained if (5.27) is similarly truncated to retain at most second-order products of velocities,

it is necessary to determine where velocity products of various orders appear in each of the

tensor basesm(α)
S .
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The strain rate S in (5.11b) and rotation rate R in (5.11c) are each linear in the velocity

components ui , and thereforeM1 in (5.23a) andW1 in (5.24a) are each linear in the velocities.

The remainingMi in (5.23b-r) andWp in (5.24b-l) all involve rank-2 contractions of the forms

∇S2,∇R2, and∇S∇R, and therefore are second-order in the velocity components ui. From

these, the order of the velocity products in each of the tensor bases m(α)
S in (5.14a-n) can be

readily determined.

• Zeroth-order velocity products appear only inm(0)
S ≡ I.

• First-order velocity products appear only inm(1)
S , since only M1 andW1 are linear in

the velocities, andM1 appears linearly inm
(1)
S whileW1 enters only via tensor products

of second order or higher in (5.14g-n).

• Second-order velocity products are present only inm(1)
S for i > 1, inm(2)

S for i = 1, in

m
(6)
S for p = 1, and inm(10)

S for i = p = 1.

• All other terms in (5.26) are of order three or higher in the velocity components.

Thus, the tensor representation in (5.27) can be truncated to retain all terms that are up to

second-order in the velocities, while preserving frame invariance, as

τij = c0I+ c1m
(1,1)
S︸ ︷︷ ︸
S

+
15∑
α=2

c1,αm
(1,α)
S︸ ︷︷ ︸

∇S2,∇R2,∇S∇R

+ c16m
(2,1)
S︸ ︷︷ ︸

S2

+ c17m
(6,1)
S︸ ︷︷ ︸

R2

+ c18m
(10,1)
S︸ ︷︷ ︸

(SR−RS)

(5.28)

The four non-gradient terms in (5.28) can be expressed directly in S andR as indicated above,

and from (5.14b) m(1,α)
S in the gradient terms is simply equal to M(α) in (5.23b-r), allowing

(5.28) to be written as

τij = c0I+ c1S+ c16S
2 + c17R

2 + c18(SR−RS)

+
7∑

α=2

cαM(α)︸ ︷︷ ︸
∇S2

+
11∑
α=8

cαM(α)︸ ︷︷ ︸
∇R2

+
15∑

α=12

cαM(α)︸ ︷︷ ︸
∇S∇R

(5.29)

Equation (5.29) withM(α) in (5.23b-r) is the most general frame-invariant tensor represen-

tation for τij (under the assumption that the stress depends only on I, S, R, ∇S2, ∇R2, and
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∇S∇R) that is complete up to second order in the velocity components ui. It involves only

19 coefficients.

These 19 terms include all multi-point second-order velocity products, which in a velocity-

only series representation required 3403 terms. This complete frame-invariant tensor formula-

tion of autonomic closure uses all of the information available in the velocities on a 3× 3× 3

stencil, and does so with the smallest possible number of terms, while ensuring frame invari-

ance. The reduction in the number of terms greatly reduces the computational burden of solv-

ing the over-determined linear system for the unknown coefficients, however this comes at the

expense of having to compute a substantial number of matrix productsM(α) via (5.23b-r).

A further advantage of (5.29), beyond the reduction in the number of coefficients that must

be obtained via the autonomic closure (either in an “on-the-fly” implementation or in a “static”

implementation), is the fact that this representation is the only possible “tensorally correct and

complete” representation up to second order in the velocities. As a result, unlike the ad hoc

series representation in Chapters 2-4, the tensorally correct and complete representation in

(5.27) and (5.29) should have universal coefficients if τij can be represented by I, S,R,∇S2,

∇R2, and ∇S∇R. This could allow a 1276-term static implementation, or even a 19-term

static implementation, to be even more accurate than a dynamic implementation of the earlier

series representation, andmay even allow a static implementation to be as accurate as a far more

computationally burdensome “on-the-fly” implementation. The frame-invariant representation

in (5.29) may even be sufficiently computationally efficient to allow fully dynamic “on-the-fly”

implementation of autonomic closure.

It is readily apparent that truncations of (5.27) analogous to (5.29) that retain terms of

higher order in a similarly “tensorally correct and complete” form can be obtained via the

same procedure used in this section.
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Chapter 6

PERFORMANCE OF INVARIANT REPRESENTATIONS

This chapter applies the metrics developed in Chapter 3 to assess the accuracy and effi-

ciency of frame-invariant generalized representations for Fij in autonomic closure, of the type

developed in Chapter 5. These include nonparametric representations expressed directly in the

primitive variables of the simulation, such as the stencil velocities um, and parametric repre-

sentations expressed in tensor quantities derived from the stencil velocities such as S,R,∇S,

and∇R. It then uses those results to determine which frame-invariant representation in auto-

nomic closure can provide the greatest accuracy and efficiency in representing subgrid terms

such as the subgrid stress τij(x, t) and the associated subgrid production P (x, t).

6.1 Frame-Invariant Representations for Fij

This chapter evaluates the following five frame-invariant generalized representations for

Fij obtained from the results in Chapter 4, specifically:

• Case 10: This is the full velocity-based representation in Equation (5.1) obtained from

application of the Smith (1971) general representation theory to express τij in terms of

the complete set ofm = 1, 2, ..., P = 27 stencil velocities um. Thus

τ = c0I+
P∑

m=1

cm(um ⊗ um) +
P∑

m=1

P∑
n=m+1

cmn(um ⊗ un + un ⊗ um). (6.1)

Since it retains the colocated velocity products in the first sum and the non-colocated

velocity products in the second sum, it involves N = 1 + 27 + (272 − 27)/2 = 379

coefficients. Galilean-invariance is enforced by subtracting the stencil center-point ve-

locity from all the stencil velocities, which in principle allows the number of independent

coefficients to be reduced to 352, however here the full set of 379 coefficients is retained.

(This is herein also referred to as the “Smith-UN” form.)
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• Case 11: This is the same as Case 10, but omits the non-colocated velocity products in

the second sum in Equation (6.1), justified by the observation in Chapter 4 that including

non-colocated velocity products provided no apparent increase in accuracy. Thus

τ = c0I+
P∑

m=1

cm(um ⊗ um). (6.2)

It therefore involves N = 1 + 26 = 27 coefficients. (This is herein also referred to as

the “Smith-UC” form.)

• Case 20: This is the full invariant representation in Equation (5.28), from application of

the Smith (1971) general representation theory to express τij in terms of S,R,∇S, and

∇R, with truncation of all terms involving velocity products of orders higher than two.

Thus, as in Equation (5.29),

τij = c0I+ c1S+ c16S
2 + c17R

2 + c18(SR−RS)

+
7∑

α=2

cαM(α)︸ ︷︷ ︸
∇S2

+
11∑
α=8

cαM(α)︸ ︷︷ ︸
∇R2

+
15∑

α=12

cαM(α)︸ ︷︷ ︸
∇S∇R

(6.3)

This representation involves 19 coefficients. (It is herein also referred to as the “Smith-

19” form.)

• Case 21: This is the frame-invariant representation in Equation (5.9) and Equation (5.8),

originally proposed by Lumley (1970) and Pope (1974), based on the assumption that

τij can be expressed solely in terms of S andR. Thus

τij = c0I+ c1S+ c2S
2 + c3R

2 + c4(SR−RS)

+ c5(S
2R−RS2) + c6(SR

2 −R2S) + c7(S
2R2 −R2S2)

+ c8(SRS2 − S2RS) + c9(RSR2 −R2SR) + c10(RS2R2 −R2S2R)

(6.4)

As noted in Section 5.3.3.2, this representation is complete but not minimal. It involves

11 coefficients. (This is herein also referred to as the “Pope-11” form.)
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• Case 22: This is the frame-invariant representation in (5.1), from application of the

Smith (1971) general representation theory on the assumption that τij can be expressed

solely in terms of S andR. Thus

τij = c0I+ c1S+ c2S
2 + c3R

2 + c4(SR−RS)

+ c5(RSR) + c6(S
2R−RS2) + c7(RSR2 −R2SR)

(6.5)

Since this was obtained in Section 5.3.3 from the Smith (1971) general representation

theory, unlike Case 21 it is both complete and minimal. It involves only 8 coefficients.

(This is herein also referred to as the “ASU-8” form.)

• Case 23: This is the same as Case 22, but retains only products up to second-order in

the velocities, from the observation in Chapter 4 that including non-colocated velocity

products provided no apparent increase in accuracy. Thus

τij = c0I+ c1S+ c2S
2 + c3R

2 + c4(SR−RS) (6.6)

This representation involves five coefficients. (It is herein also referred to as the “Smith-

5” form.)

6.2 Error-Free Differentiation and Multiplication

Cases 20, 21, 22, and 23 in Section 6.1 all involve differentiation of velocities to determine

the strain rate tensor S, rotation rate tensor R, and their gradients ∇S and ∇R. Errors intro-

duced by discrete derivative approximations involved in obtaining these quantities would then

be conflated with errors that result from autonomic closure based on these frame-invariant rep-

resentations. This could thereby potentially obscure the insights being sought in this Chapter

regarding the fundamental accuracy that is attainable when these frame-invariant generalized

representations are used in autonomic closure. For this reason, in this study all derivatives

were computed in the spectral domain, where multiplication by ikj allows exact evaluation of

the derivative ∂/∂xj . This spectral differentiation ensured that S, R, ∇S, and ∇R were all

obtained without any differentiation error.

109



Additionally, Cases 10, 11, 20, 21, 22, and 23 in Section 6.1 all involve products of ve-

locities or velocity gradients. For Cases 10, 11, 20 and 23 these products extend only up to

2nd-order, but for Cases 21 and 22 they extend up to 5th-order. Aliasing errors introduced by

each order of multiplication, especially for the higher-order products, would thus be conflated

with errors that result from autonomic closure based on these frame-invariant representations.

Aswith differentiation errors, such aliasing errors could thereby potentially obscure the insights

being sought in this Chapter regarding the fundamental accuracy that is attainable when these

frame-invariant generalized representations are used in autonomic closure. For this reason,

in this study all such products were evaluated by first zero-padding each field in the spectral

domain to the extent needed so that, when these fields were then inverse Fourier-transformed

into the physical domain and multiplied to evaluate these products, the resulting products were

completely free of any aliasing errors. Thus for any product of order n, for each field involved

in that product this required zero-padding the field in the spectral domain by a factor of 2n−1.

For example, for 5th-order products the spectral domain was extended along each ki direction

by a factor of 16 and zero-padded before transforming the fields into the physical domain for

multiplication. The resulting complete alias-free multiplication ensured that all terms in each

of these frame-invariant representations could be evaluated without any aliasing errors.

The combined use of spectral differentiation and fully alias-free multiplication in principle

allows the present study to unequivocally determine the fundamental accuracy that is attainable

when these frame-invariant generalized representations are used in autonomic closure.

6.3 Specific Implementations of Invariant Representations

Table 2 lists the relevant parameters discussed in Section 2.4 for each implementation of au-

tonomic closure based on the frame-invariant representations considered in this chapter. These

include the number of degrees-of-freedomN , the bounding box size n3, the numberM of train-

ing point locations, the training point spacing relative to the test-filter length scale, the effective

number M ′ = 6M of training data sets, the effective numberM ′/N of training data sets per

degree-of-freedom, and the single-core computational time needed for autonomic closure to
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Table 2. Frame-invariant implementations of autonomic closure considered in Chapter 5,
showing code, number N of degrees-of-freedom in Fij , relative bounding box size n3,
number M of training points in bounding box, relative training point spacing, number
M ′ of training data in bounding box, number of training data per degree-of-freedom
M ′/N , and computational time

Case Code N n3 = VB

∆̂3
M (VB/M)1/3

∆̂
M ′ M ′/N t(s)

10 Smith-UN 379 73 343 1.0 2058 5.4 2591
11 Smith-UC 28 33 27 1.0 162 5.8 4.0

20 Smith-19 20 33 27 1.0 162 8.3 5.6
21 Pope-11 11 33 27 1.0 162 14.7 3.8
22 ASU-8 8 33 27 1.0 162 20.3 2.8
23 Smith-5 5 33 27 1.0 162 32.4 2.2

determine the subgrid stress field. The cases are listed in order of decreasing number N of

degrees-of-freedom in their underlying generalized representation Fij .

Note that all these implementations haveM ′/N ≥ O(4), which was found in Chapter 4 to

provide sufficient training that further increases in the effective numberM ′ of training data sets

provided no added benefit. Note also that, since these frame-invariant representations involve

just 1×N coefficients rather than 6×N as was the case for the ad hoc series representations

in Chapter 4, this together with the smaller numberN of degrees-of-freedom in these represen-

tations allows the use of far smaller bounding boxes than was the case in Chapter 4. That in

turn allows a far more local determination of the coefficients, which thereby are more able to

reflect the local turbulence state at the center of the bounding box where the stresses are being

evaluated.
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Figure 25. Scaled timings of frame-invariant implementations

6.4 Resulting Computational Times

The single-core computational time for each of these frame-invariant implementations of

autonomic closure is given in Section 6.3. These computational times are compared in Fig-

ure 25 with the N3[1 + M/N ] scaling identified in Section 3.6. This scaling again agrees

well with the observed computational times, though as might be expected the proportionality

constant is different for these frame-invariant representations than for the ad hoc series-based

representations in Chapter 4. As expected Cases 20-23, which involve calculating S and R

and are indicated by the red symbols in Figure 25, show a slightly different scaling than do the

velocity-based representations indicated by the black symbols, which require no such overhead

calculations of these tensor quantities. This is especially true for Case 20, which additionally

requires calculating products of∇S and∇R.

6.5 Resulting Performance of Frame-Invariant Representations

Figures 26-28 compare typical results from a priori tests, analogous to those described in

Section 3.1, for each the frame-invariant representations in Table 2. These figures also show

results obtained with the recommended series-based representation from Chapter 4 (Case 3a in

Table 1, termed “CL24”), as well as the corresponding true fields to allow comparisons. Figures
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26 shows results for a typical normal stress component field τ11(x, t), Figure 27 shows results

for a typical corresponding shear stress component field τ12(x, t), and Figure 28 shows results

for the corresponding subgrid production field P (x, t). In each figure, the top left panel is the

true field, and the remaining panels are grouped into the velocity-based representations (CL24

and Cases 10 and 11) in the upper half of the figure, and the tensor-based representations (Cases

20-23) in the lower half of the figure.

In comparing among these results, it is immediately apparent that the velocity-based repre-

sentations in the upper half of each figure agree far better with the true field than do any of the

tensor-based representations in the lower half of each figure. Among the three velocity-based

representations, the 6× 244-coefficient ad hoc series representation “CL24” in the upper right

panel most accurately reproduces the true fields, but it is computationally burdensome. Of par-

ticular interest are the results from the frame-invariant velocity-based representation “Smith-

UC” (Case 11), which retains only the colocated velocity products in Equation (5.1) and thus

involves just 1× 28 coefficients. It can be seen to reproduce the true fields nearly as accurately

as does CL24, but at a dramatically lower computational cost. Furthermore, in agreement with

the results from Chapter 4, “Smith-UN” (Case 10) which includes the non-colocated velocity

products, performs no better than “Smith-UC”.
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Figure 26. Comparison of (a) true stress fields τ11 and those computed by (b) CL24, (c)
Smith-UN, (d) Smith-UC, (e) Smith-20, (f) Pope-11, (g) ASU-8, and (h) Smith-5.
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Figure 27. Comparison of (a) true stress fields τ12 and those computed by (b) CL24, (c)
Smith-UN, (d) Smith-UC, (e) Smith-20, (f) Pope-11, (g) ASU-8, and (h) Smith-5.
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Figure 28. Comparison of (a) true production fields and those computed by (b) CL24,
(c) Smith-UN, (d) Smith-UC, (e) Smith-20, (f) Pope-11, (g) ASU-8, and (h) Smith-5.
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The tensor-based frame-invariant representations in the lower half of each of these figures

(Cases 20-23, which involve S, R, ∇S and ∇R) can be seen to reproduce the true fields

far less accurately than do any of the velocity-based representations in the upper half. This

was surprising, since many of these representations retain higher-order products of the stencil

velocities, via the various tensor contractions involved in their underlying representations, than

do the second-order velocity products in “CL24” (Case 3a), “Smith-UN” (Case 10), and “Smith-

UC” (Case 11).

The reasons for this cannot be due to differentiation errors introduced by the required ve-

locity gradients, since as noted in Section 6.2 spectral differentiation was used in these tests

precisely to avoid any such differentiation errors. The poor performance of Cases 20-23 also

cannot be due to aliasing errors introduced by the products (which range from 2nd-order to 5th-

order) involved in these representations, since as noted in Section 6.2 extensive zero-padding

was used to completely avoid any aliasing in any of these products. For these reasons it was

surprising that the tensor-based frame-invariant representations in the lower half of Figures

26-28 performed as poorly as can be seen in those results.

6.6 Eigenvalue Distributions in the Generalized Representations

This section examines the linear algebra involved in the matrix inversion that is used to

solve the optimization problem for the coefficients in each of the generalized representations
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Fij , namely each of the cases listed in Table 1 and Table 2. The damped least-squares optimiza-

tion used throughout this work obtains the coefficients from the test stresses Tij via an inverse

solution of the general form

hij =

(
V̂T V̂ + λI

)−1

V̂TTij. (6.7)

It is only the V̂matrix that differs from one generalized representation to another. The different

representations thereby produce different structures in thismatrix, which in turn producewidely

varying differences in the structure of the corresponding (V̂T V̂ + λI) matrix, the inverse of

which must be computed.

This can be seen in Figures 30-36, which show these matrix structures and the correspond-

ing eigenvalue distributions for the three velocity-based representations in CL24, Smith-UC,

and Smith-UN, as well as the four tensor-based representations in Smith-5, ASU-8, Pope-11,

and Smith-19. In each figure, the upper left panel shows the logarithmic magnitude of the

entries in theM ×N dimensionalV matrix, and the upper right panel shows the logarithmic

magnitudes in the corresponding (V̂T V̂ + λI) matrix. Comparing the range of magnitudes

in the (V̂T V̂ + λI) matrix in the upper right panel of each figure, it is apparent that the three

velocity-based representations have a much narrow range of magnitudes than do the tensor-

based representations. For the tensor-based representations in Figures 33-36, these magnitudes

typically span 18-20 orders of magnitude (though for the ASU-8 representation the span is only

about 5 orders of magnitude). In contrast, for the velocity-based representations in Figures 30-

32 the magnitudes span a far narrower range, making accurate inversion more readily possible.

Notably the span is by far smallest for the Smith-UC representation (Case 11), which was seen

in Figures 26-28 to perform very well.

These observations are most directly reflected in the lower part of each of Figures 30-36,

which show the eigenvalue distributions for the (V̂T V̂ + λI) matrix that must be inverted in

each of these representations. In particular, for the tensor-based representations the eigenvalues

typically span from 102 − 105, and in the case of Smith-19 in Figure 36 they are as large as

108. In all of these cases, the eigenvalues are far removed fromO(1), indicating that accurate
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inversion of the (V̂T V̂+λI)would at a minimum require preconditioning, andmay be difficult

to obtain even with preconditioning.

In contrast, the eigenvalue distributions in Figures 30-32 for the velocity-based representa-

tions show that these are more readily able to allow accurate inversion, since the spectral radii

of most of the eigenvalues satisfy |λi| ≤ 1. In particular, for the 28-term Smith-UC (Case

11) representation the eigenvalues are generally distributed within 10−1 ≤ λi ≤ 101, which

should allow accurate inversion even without extensive preconditioning.

In the present study, standard LAPACK routines were used to obtain the inverse (V̂T V̂ +

λI)−1, which make use of basic preconditioning methods but do not include more recently

developed advanced preconditioning methods of the type that are beginning to be introduced

in linear algebra packages from Intel and others. The results in this section and those in Sec-

tion 6.5 suggest that the limited accuracy obtained with the tensor-based frame-invariant rep-

resentations developed and tested in this study is due to these limitations in the accuracy with

which the inverse can be computed. Indeed, the trends seen in the relative accuracy of the

results in Figures 26-28 is consistent with the observation in this section with regard to the

suitability of their respective (V̂T V̂ + λI) matrices for accurate inversion.
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Figure 30 (b). Eigenvalue (λi) distribution for CL24.

Figure 30. Inverse system for CL24.
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Figure 32. Inverse system for SmithUN.
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Figure 33. Inverse system for Smith5.
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Figure 34. Inverse system for ASU8.
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This leaves open the possibility that more advanced preconditioning methods could allow

highly efficient representations such as ASU-8 (Case 22) and even Smith-5 (Case 23), which

respectively involve just 5 and 8 coefficients, to be accurately implemented in autonomic clo-

sure. Investigation of such advanced preconditioning methods was beyond the scope of this

study, but is an obvious area of research that could provide even greater accuracy and efficiency

in autonomic closure.

6.7 Recommended Frame-Invariant Representation

Based on the results in Chapter 4 and those in this Chapter 6, the 1×28-coefficient velocity-

based frame-invariant representation in Equation (6.2) is recommended as the most accurate

and efficient representation for the subgrid stress in autonomic closure. Due to the small num-

ber of coefficients involved, its efficiency is such that it can be implemented in a fully dynamic

“on-the-fly” manner in large eddy simulations that are based on autonomic closure. Based on

these results, it can be expected that for other subgrid terms in large eddy simulations, similar

frame-invariant generalized representations expressed directly in the primitive variables of the

simulation may provide comparable accuracy and efficiency.
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Chapter 7

CONCLUSIONS AND IMPLICATIONS FOR LES

7.1 Summary

Autonomic closure, originally proposed in Refs. [58, 59], is a new general methodology for

subgrid closures that circumvents the need to specify a particular fixed closure model, and in-

stead allows a fully-adaptive self-optimizing closure methodology. The closure is autonomic

in the sense that the simulation itself determines the optimal relation at each point and time

between any subgrid term and the primitive variables in the simulation, through the solution

of a local system identification problem. It is based on highly generalized representations of

subgrid terms, and solution of a local system identification problem to find the representation

that best connects the local subgrid term to the local primitive variables. These generalized

representations have a substantial number of degrees of freedom that are determined dynam-

ically at each point x and time t in the simulation. This eliminates the need for a traditional

predefined closure model, and allows autonomic closure to freely adapt to widely varying de-

grees of nonlinearity, nonlocality, nonequilibrium, and other characteristics in the turbulence

state at each point and time in the simulation. Importantly, autonomic closure involves no

explicit external length scale, such as the LES or test filter length scales that appear in most

traditional prescribed closure models such as the widely-used basic and dynamic versions of

the Smagorinsky model and nearly all other subgrid models. Indeed autonomic closure is not a

closure model; instead it is a closure methodology that enables essentially model-free closure

of any subgrid term.

Autonomic closure can be regarded as a high-dimensional generalization of the dynamic

approach used with various traditional prescribed closure models. It can also be regarded as

a type of “data-driven” turbulence closure, in which machine-learning methods are used with

available data to discover a closure model rather than prescribe one. However unlike other data-
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drivenmodels, which use external training data obtained from prior simulations or experiments,

autonomic closure is based on internal training data obtained at each point and time at a test-

filter scale in the simulation. It then generalizes the resulting local generalized representation,

in a machine learning sense, from the test-filter scale to the LES scale.

In this study, a priori tests were performed to develop accurate and efficient implemen-

tations of autonomic closure based on choices for the generalized representations Fij and pa-

rameters associated with the local system identification of the turbulence state. These included

the relative number of training points and the bounding box size, which can impact the gener-

alizability of coefficients in the representation from the test scale to the LES scale, and also

affect the computational cost of this closure methodology. The main focus has been on study-

ing the impacts of these factors on the resulting accuracy and efficiency of autonomic closure

for the subgrid stress τij(x, t). Particular attention has been paid in this study to the associ-

ated subgrid production P (x, t) = −τijS̃ij , including the extent to which autonomic closure

can correctly produce the same structural features in which large magnitudes of forward and

backward scatter concentrated in the true P (x, t) fields.

7.2 Major Conclusions from This Study

1. A reduction of more than five orders of magnitude in the computational cost of auto-

nomic closure was obtained in this study compared to Refs. [58, 59], with essentially no

loss of accuracy in the resulting subgrid stress and production fields. This was primarily

achieved by using more efficient generalized representations, including forms that lever-

age the frame-invariance properties of the subgrid stress to greatly reduce the number of

degrees of freedom in this representation.

2. The general formulation of Smith (1971) for a complete and minimal tensor basis in

any polynomial representation of any symmetric rank-two tensor in terms of any num-

ber of vectors and tensors was used in this study to obtain highly compact generalized

representations for use in autonomic closure. This included a general representation for
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the subgrid stress in terms of S, R, ∇S and ∇R. For a representation involving only

S, R, the resulting tensor basis is smaller than the previously assumed minimal basis

proposed by Lumley (1970) and Pope (1974).

3. The subgrid production support-density fieldG(x, t)was developed as ameans for quan-

tifying where highly intermittent large positive and negative values of the subgrid pro-

duction are concentrated across all scales of the simulation, and metrics M1 and M2

were developed to allow quantitative assessments of the structural similarity in two such

highly intermittent fields. These metrics can be used in a priori tests to effectively com-

pare the detailed spatial structure of the subgrid production from any closure model with

the true production field.

4. Even when using the highly efficient generalized representations Fij developed in this

study, the subgrid production fields P F (x, t) obtained from autonomic closure are seen

to be accurate in nearly all details of their spatial structure when compared with the

corresponding true fields P (x, t).

5. The accuracy of the subgrid stress fields τFij (x, t) and the associated subgrid production

fieldsP F (x, t) obtained from these accurate and efficient implementations of autonomic

closure far exceeds the accuracy with which these fields are represented by traditional

prescribed closure models, including the dynamic Smagorinsky model and the Bardina

model. This applies also to subgrid stress and production statistics obtained from these

fields.

6. There are no assumptions in the autonomic closure methodology that depend in any way

on the local state of the turbulence or the particular type of turbulent flow in which this

closure methodology is applied. The only requirement is that the relation between the

test stresses Tij and the test-filtered variables in (2.1) must be the same as that between

the subgrid stresses τij and the LES-filtered variables in (2.2); this should be valid when

both the test-filter scale and the LES-filter scale are in the scale-similar inertial range.
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7. Consequently, autonomic closure was found in this study to perform equally well in

tests based on highly sheared homogeneous turbulence as it did in tests with isotropic

turbulence.

8. Based on the results obtained in Chapters 4 and 6, the recommended form for the gen-

eralized representation of the subgrid stress in autonomic closure is the 28-coefficient

frame-invariant velocity-based formulation denoted as Case 11 (Smith-UC) in Table 2.

This form for Fij , and the small bounding box sizes that it enables, provides subgrid

stress and production fields that are essentially as accurate as far more complex and

computationally costly representations.

9. Even more compact generalized representations, including Cases 22 and 23 in Table 2,

which respectively involve just 8 and 5 coefficients, may allow even greater accuracy and

efficiency, though their spectral radii require levels of preconditioning that were beyond

the scope of this study. While this is an obvious area for future research, the present study

has identified representations that are sufficiently accurate and efficient for practical

multi-physics large eddy simulations, where the accuracy provided by autonomic closure

across essentially all resolved scales can be particularly important.
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