
Interaction Testing, Fault Location, and Anonymous Attribute-Based Authorization

by

Erin Lanus

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2019 by the
Graduate Supervisory Committee:

Charles J. Colbourn, Chair
Gail-Joon Ahn

Douglas C. Montgomery
Violet R. Syrotiuk

ARIZONA STATE UNIVERSITY

May 2019

ABSTRACT

This dissertation studies three classes of combinatorial arrays with practical appli-

cations in testing, measurement, and security. Covering arrays are widely studied in

software and hardware testing to indicate the presence of faulty interactions. Locat-

ing arrays extend covering arrays to achieve identification of the interactions causing

a fault by requiring additional conditions on how interactions are covered in rows.

This dissertation introduces a new class, the anonymizing arrays, to guarantee a de-

gree of anonymity by bounding the probability a particular row is identified by the

interaction presented. Similarities among these arrays lead to common algorithmic

techniques for their construction which this dissertation explores. Differences arising

from their application domains lead to the unique features of each class, requiring

tailoring the techniques to the specifics of each problem.

One contribution of this work is a conditional expectation algorithm to build

covering arrays via an intermediate combinatorial object. Conditional expectation

efficiently finds intermediate-sized arrays that are particularly useful as ingredients

for additional recursive algorithms. A cut-and-paste method creates large arrays from

small ingredients. Performing transformations on the copies makes further improve-

ments by reducing redundancy in the composed arrays and leads to fewer rows.

This work contains the first algorithm for constructing locating arrays for gen-

eral values of d and t. A randomized computational search algorithmic framework

verifies if a candidate array is (d̄, t)-locating by partitioning the search space and

performs random resampling if a candidate fails. Algorithmic parameters determine

which columns to resample and when to add additional rows to the candidate array.

Additionally, analysis is conducted on the performance of the algorithmic parameters

to provide guidance on how to tune parameters to prioritize speed, accuracy, or a

combination of both.

i

This work proposes anonymizing arrays as a class related to covering arrays with

a higher coverage requirement and constraints. The algorithms for covering and lo-

cating arrays are tailored to anonymizing array construction. An additional property,

homogeneity, is introduced to meet the needs of attribute-based authorization. Two

metrics, local and global homogeneity, are designed to compare anonymizing arrays

with the same parameters. Finally, a post-optimization approach reduces the homo-

geneity of an anonymizing array.

ii

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support and seemingly

endless patience of my advisor, Professor Charles Colbourn. His knowledge and

guidance were instrumental to the completion of this research. I am grateful for

his willingness to take a chance on me with my non-traditional background and his

encouragement of my atypical approaches to problems. I could not have asked for a

better mentor, and I hope that I am able to live up to the high standard he has set.

I also thank my dissertation committee - Professor Gail-Joon Ahn, Professor Dou-

glas Montgomery, and Professor Violet Syrotiuk - for many years of advice and feed-

back, contributing to my development as both a student and a researcher. They each

brought expertise in different areas to prompt ideas I would not have considered and,

in doing so, helped shape the direction of this research.

I thank my family for their unwavering encouragement. Last, my research over

the last five years has been supported by a fellowship from the National Physical

Science Consortium.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Interaction Testing . 3

1.2 Fault Location . 10

1.3 Attribute-Based Authorization . 16

2 INTERACTION TESTING . 21

2.1 Sherwood Covering Perfect Hash Family Construction 21

2.1.1 Conditional Expectation (CE) Algorithm 21

2.1.2 Conditional Expectation Bounds . 27

2.2 Recursive Algorithms . 29

2.2.1 Composition (COMP) Algorithm. 29

2.2.2 Affine Composition (AF-COMP) Algorithm 30

2.2.3 Composition Bounds . 32

2.3 Results . 34

2.3.1 Evaluation of CE . 34

2.3.2 Comparison of COMP to CE . 35

2.3.3 Comparison of COMP to AF-COMP . 36

2.3.4 Comparison of Composition Strategies . 36

3 FAULT LOCATION . 41

3.1 Locating Array Construction . 41

3.1.1 Overview . 41

3.1.2 Verification . 43

iv

CHAPTER Page

3.1.3 Repair . 46

3.1.4 Partitioned Search with Column Replacement (PSCR) Al-

gorithm . 50

3.2 Results . 50

3.2.1 Parameter Tuning. 53

3.2.2 Comparison to Higher Strength Constructions 58

3.2.3 Comparison to Mixed-Level Locating Array Constructions . . 62

3.2.4 Constructing from an Ingredient Array . 64

4 ANONYMOUS ATTRIBUTE-BASED AUTHORIZATION 68

4.1 Anonymizing Arrays . 69

4.1.1 Definitions . 69

4.1.2 Constraints . 71

4.1.3 Anonymizing Array Example . 73

4.1.4 Relationship to Covering Arrays . 74

4.1.5 Computing the Anonymity Guarantee . 77

4.2 Anonymizing Array Construction Algorithms . 78

4.2.1 Moser-Tardos-style Column Resampling (MTCR) Algorithm 79

4.2.2 Conditional Expectation Heuristic Search (CEHS) Algorithm 81

4.2.3 Post-optimization for Row Reduction . 87

4.3 Homogeneity in Anonymizing Arrays . 89

4.3.1 Designing Metrics . 89

4.3.2 Homogeneity Definitions . 92

4.3.3 Bounds on Homogeneity . 95

4.3.4 Homogeneity Computation . 98

v

CHAPTER Page

4.3.5 Homogeneity Examples . 99

4.3.6 Homogeneity Post-optimization (HP) Algorithm. 103

4.4 Results . 110

4.4.1 Comparison of MTCR and CEHS Algorithms 110

4.4.2 Comparison to Replicated Mixed-Level Covering Arrays with

Constraints . 114

4.4.3 Comparison to Replicated Covering Arrays without Con-

straints. 120

4.4.4 Evaluation of HP . 124

4.5 κ-Anonymity for Statistical Databases . 127

5 CONCLUSION . 130

5.1 Interaction Testing Conclusions . 130

5.2 Fault Location Conclusions . 132

5.3 Attribute-Based Authorization Conclusions . 133

5.4 Algorithms for t-Restriction Problems . 141

REFERENCES . 143

APPENDIX

A LOCATING ARRAY ADDITIONAL FIGURES . 148

vi

LIST OF TABLES

Table Page

1.1 Computing the
−−−−→
(1, 2, 0) permutation vector, v = 3, t = 3 6

1.2 Noncovering tuple for v = 3, t = 3 with shortened permutation vectors . 8

1.3 Covering tuple for v = 3, t = 3 with shortened permutation vectors 9

1.4 MLA(10; 1, 2, 3, (2, 2, 3)) . 13

1.5 Rows of 2-way interactions in MLA(10; 1, 2, 3, (2, 2, 3)) 13

2.1 Strength three CAs . 35

2.2 Strength four CAs . 35

2.3 Covering arrays constructed by COMP . 36

2.4 Comparison of AF-COMP to COMP by total rows produced (N) and

number of remaining t-sets (R) after composition phase for SCPHF(50m, v, 3) 37

2.5 Comparison of AF-COMP to COMP by number of remaining t-sets

(R) after composition phase for SCPHF(64m, 43, 4) and comparison to

total
(
km
t

)
t-sets . 37

3.1 Blocks for 5× 5× 3× 2× 2 full factorial . 53

3.2 Recommended tunable parameters settings by priority 58

3.3 Rows in smallest LA by algorithm. 64

3.4 LA(2,2,7,4) arrays with the fewest rows built from ingredients 67

4.1 Implicit hard constraints for AA(2, 2, 3, 2) . 72

4.2 Homogeneity scores for the low, medium, and high homogeneity arrays 103

4.3 Low homogeneity array homogeneity scores . 103

4.4 Homogeneity scores for the AA(14; 2, 2, 3, 2) from a 23 full factorial with

the last six rows replicated once . 104

4.5 Homogeneity scores for the AA(14; 2, 2, 3, 2) from a 23 full factorial with

the last row replicated six times . 105

vii

Table Page

4.6 Comparison of homogeneity scores for adding rows to the low homo-

geneity array from a 23 full factorial . 106

4.7 Hard and soft constraints in numerical levels for A 112

4.8 Number of rows produced by MTCR with restricted rows versus MTCR

with unlimited rows for t = 1 . 114

4.9 Number of rows produced by MTCR versus CEHS for t = 2 115

4.10 Sets of hard constraints Ht chosen for 2 ≤ t ≤ 4 . 116

4.11 Comparison of parameters maxGenerations and numChildren 125

4.12 Comparison of fitness using globalHomogeneity versusmaxHomogeneity

. 125

viii

LIST OF FIGURES

Figure Page

1.1 Example SCPHF(2; 5, 32, 3) . 7

2.1 Duplicated columns of the ingredient array in an SCPHF by COMP . . . 30

2.2 Transformed columns in an SCPHF by AF-COMP . 32

2.3 Comparison of composition strategies by size of ingredient and number

of copies for construction of CA(3, 1000, 5) via SCPHFs 39

2.4 Comparison of composition strategies by repeated compositions for

construction of CA(3, 1000, 5) via SCPHFs . 40

3.1 Example of tree 2 in verification step of PSCR . 46

3.2 Zones for constant α = 0.1 . 51

3.3 Zones for adaptive-α , initial α = 0.1 . 51

3.4 Effect of CHO on rows, iterations, and seconds . 55

3.5 Effect of α on rows, iterations, and seconds . 56

3.6 Effect of avoid on rows, iterations, and seconds. 57

3.7 Effect of adaptive-α on rows, iterations, and seconds. 58

3.8 2-way interactions of parameters on response variable rows shown by

the JMP Interaction Profiler . 59

3.9 Rows in LA(1, 2, 50, v) with rows in CA(2, 50, v) and CA(3, 50, v) as

bounds, logarithmic scale . 61

3.10 Rows in LA(1, 2, k, 5) with rows in CA(2, k, 5) and CA(3, k, 5) as bounds,

logarithmic scale . 61

3.11 Rows in LA(2, 1, k, 4) with rows in CA(3, k, 4) as upper bound, loga-

rithmic scale . 62

3.12 Mean rows to seconds in LAs constructed from ingredient arrays 67

4.1 AA(8; 2, 3, 2) with hard constraints . 73

ix

Figure Page

4.2 Array A, an AA(6; 1, 2, 4, (3, 23)) . 74

4.3 Array B, an AA(12; 2, 2, 4, (3, 23)) that is (2, 2)-anonymizing for A 74

4.4 Low homogeneity AA(8; 2, 2, 3, 2) from 23 full factorial 100

4.5 Multi-hypergraph representation of the low homogeneity array 100

4.6 Medium homogeneity AA(8; 2, 2, 3, 2) from 23−1 fractional factorial 101

4.7 Multi-hypergraph representation of the medium homogeneity array 101

4.8 High homogeneity AA(8; 2, 2, 3, 2) with two unique rows and many

replicates . 102

4.9 Multi-hypergraph representation of the high homogeneity array 102

4.10 AA(14; 2, 2, 3, 2) from a 23 full factorial with the last six rows replicated

once . 104

4.11 AA(14; 2, 2, 3, 2) from a 23 full factorial with the last row replicated six

times . 105

4.12 Crossover of credentials between access profiles u and w to decrease

homogeneity . 108

4.13 A in numerical levels, AA(6; 1, 2, 4, (3, 23)) . 112

4.14 C, a (2, 2)-anonymizing array for A built by CEHS, AA(12; 2, 2, 4, (3, 23))

. 113

4.15 D, a (2, 2)-anonymizing array for A built by MTCR, AA(14; 1, 2, 4, (3, 23))

. 113

4.16 Comparison of CEHS versus copy construction of covering arrays to

build anonymizing arrays with hard constraints . 117

x

Figure Page

4.17 Comparison of homogeneity scores for (r, 1)-anonymizing arrays con-

structed by CEHS and copy construction. Top bar is maximum, mid-

point is average, and bottom bar is minimum homogeneity score for

each array. 118

4.18 Comparison of homogeneity scores for (2, 2)-anonymizing arrays con-

structed by CEHS and copy construction when rows are added or

deleted. Top bar is maximum, midpoint is average, and bottom bar is

minimum homogeneity score for each array. 119

4.19 Comparison of CEHS versus copy construction of covering arrays to

build unconstrained anonymizing arrays . 121

4.20 Comparison of homogeneity scores for anonymizing arrays constructed

by CEHS, CAcopy, and CAperm. Top bar is maximum, midpoint is

average, and bottom bar is minimum homogeneity score for each array. 122

4.21 Comparison of homogeneity scores for anonymizing arrays constructed

by CEHS and CAperm when number of rows has been equalized by

appending random rows. Top bar is maximum, midpoint is average,

and bottom bar is minimum homogeneity score for each array. 123

4.22 Reduction in minimum, maximum and global homogeneity scores over

1000 generations with 20 children for AA(62; 3, 2, 19, (51423324)) 126

4.23 Comparison of reduction on arrays made by CAcopy and CEHS 127

A.1 Comparison of effects in 5× 5× 3× 2× 2 full factorial 149

A.2 Effect of CHO on rows by block . 150

A.3 Effect of CHO on iterations by block . 150

A.4 Effect of CHO on seconds by block . 151

xi

Figure Page

A.5 Effect of α on rows by block . 151

A.6 Effect of α on iterations by block . 152

A.7 Effect of α on seconds by block . 152

A.8 JMP Interaction Profiler for iterations . 153

A.9 JMP Interaction Profiler for seconds . 154

xii

Chapter 1

INTRODUCTION

In this dissertation, we explore three problems in two areas within the computer

security domain that appear unrelated, yet are solved by similar techniques due to

their fundamental similarities. Interaction testing and fault location fall within the

testing area of computer security. In an interaction testing scenario, it is required

that interactions of factors up to a specified size are all covered by some test. Fault lo-

cation requires the same coverage of interactions but with the additional requirement

that sets of interactions be covered in different sets of tests to ensure that faulty inter-

actions are distinguishable from non-faulty interactions. Anonymous attribute-based

authorization is a problem within access control. When authorization is conducted

on the basis of attributes instead of by presenting an identity, anonymous authoriza-

tion is possible. That is, a subject can prove that she is authorized to use a resource

without revealing her identity. For anonymous authorization to be meaningful, it

is required that subjects are guaranteed some degree of anonymity. When a set of

attributes of a certain size is presented, the system should not be able to identify the

active subject from a set of other subjects who possess the same attributes.

Fundamentally, these three problems are all t-restrictions. A formal definition is

given in [21]. Less formally, a t-restriction problem can be formulated as an N × k

array with vi symbols in column ci where, for every way to select t of the columns,

the set of demands is satisfied by the rows of the array. Covering arrays are t-

restrictions used in interaction testing. The rows of the covering array represent

tests, the columns represent factors, and the symbols represent factor levels. The

demand for covering arrays is that every t-way interaction appears in some test.

1

Covering perfect hash families can be used to build covering arrays. These are also

t-restrictions where, for every t-set of columns, some row contains a covering tuple.

Locating arrays are extensions of covering arrays with the additional demand that

sets of (at most) d interactions of size (at most) t appear in different sets of rows.

The problem of anonymity in attribute-based authorization can also be formulated as

a t-restriction. To address this problem, we propose a new combinatorial design, an

anonymizing array, that ensures that every credential of size t in the array appears in

either zero or at least r rows. The use of anonymizing arrays for attribute distribution

guarantees that when policies are composed as conjunctions of (at most) t attributes,

an authorized subject is granted access while being identified by the system with

probability not greater than 1
r
.

While the applications are different, each problem can be formulated as a t-

restriction. Therefore, techniques that work for one problem can often be applied

to the others. Specifically, we are interested in efficient computational constructions

for these arrays. That is not to say the same solution works for all three. Each

application has specific features that map to different demands for the t-restriction,

resulting in arrays with different properties. The general technique must be tailored

to the specific problem.

We present the necessary background for interaction testing in § 1.1, fault location

in § 1.2, and anonymous attribute-based authorization in § 1.3. We develop construc-

tions for covering arrays via Sherwood covering perfect hash families in Chapter 2 and

constructions for locating arrays in Chapter 3. Anonymizing arrays are proposed for

the first time, so we develop definitions, metrics for comparing anonymizing arrays,

and algorithms for constructing and improving anonymizing arrays in Chapter 4.

The topic chapters are devoted to the specifics of each t-restriction problem. We

present conclusions from each problem as well as a discussion of their commonalities

2

in Chapter 5.

1.1 Interaction Testing

Testing of software and hardware systems for faults is a major undertaking. In

addition to testing single components, also called factors, some faults may only occur

when a combination of factors are set to specific levels, called an interaction [37]. The

number of interactions grows rapidly as problem parameters increase, and in many

practical scenarios, exhaustive testing of all combinations is not possible [45]. Most

faults are caused by interactions of only a few factors, typically at most four to six,

and testing all t-way combinations of factors is often sufficient [35, 37]. Systematically

testing for failing interactions is the focus of combinatorial testing. Covering arrays

are combinatorial designs used to construct test suites for interaction testing that

ensure every t-way interaction is covered by some test. Yet, the number of tests

in a covering array grows logarithmically in the number of factors [26]. Since each

test incurs a cost and the test combination space can become infeasibly large for

exhaustive testing, the goal in constructing covering arrays is typically to achieve the

desired level of coverage in the fewest tests possible [45].

Formally, a covering array CA(N ; t, k, v) of strength t is an N × k array on v

symbols where every t-way interaction appears in at least one row with t ≤ k. A

t-way interaction is a t-tuple of pairs where the first element of the pair is a column

index and the second element is a symbol. If (c1, ..., ct) with ci ∈ {1, ..., k} is a tuple

of column indices and (σ1, ..., σt) with σi ∈ Σ, |Σ| = v is a tuple of symbols over the

array alphabet Σ, then the tuple {(ci, σi) : 1 ≤ i ≤ t} is a t-way interaction. In other

words, a covering array is an N × k array where every N × t subarray contains each

of the vt t-tuples of v symbols at least once. In the context of interaction testing, the

columns are factors, the symbols are factor levels, the rows are tests, and the covering

3

array itself is a test suite. A covering array ensures that every interaction of up to t

factors appears in some test in the suite.

When factors do not share the same number of levels, the definition can be gen-

eralized to include different levels for each of the factors [27]. A mixed-level covering

array MCA(N ; t, k, (v1, ...vk)) of strength t is an N × k array with vi the number of

levels for factor i where, for every N × t subarray, every combination of the levels for

those factors appears at least once. When several factors j share the same number

of levels vi the exponential notation vji is used. As testing some interactions may be

dangerous, impossible, or not required, constraints may be placed on the covering

array stating that some interactions must not occur.

The application of interaction testing requires that a test suite be explicitly con-

structed, yet covering array construction can be hard. Approaches can be categorized

as random, greedy, heuristic search, and mathematical [45]. Aside from purely ran-

dom construction, few approaches are feasible for constructing covering arrays for

large numbers of factors. Both options for random construction – selecting a fixed

number of rows and constructing an array that is a covering array with high proba-

bility, and choosing rows at random until all interactions are covered – can lead to

many more rows than needed, and the first does not guarantee to result in a covering

array. The computational approaches, greedy and heuristic search, build the array it-

eratively, moving through intermediate arrays or building one piece at a time. Greedy

algorithms typically build one row or one column at a time by seeking to maximize

new coverage. Heuristic search techniques typically begin with a candidate array and

modify the array informed by the particular heuristic until it achieves full coverage.

Mathematical methods use features of the underlying algebra and are categorized as

direct constructions that make the entire array at once and recursive constructions

that build the array from smaller ingredient pieces in a cut-and-paste approach or

4

by column replacement [16]. Mathematical methods may be proven to find covering

arrays within guaranteed bounds or provide smaller arrays than computational ap-

proaches. However, mathematical methods are typically limited to specific parameter

values, such as certain values for factor levels. In contrast, computational approaches

are generally applicable to a wide variety of parameters, but may not find the opti-

mal solution, may not provide guarantees of how good the solution is, and may be

inefficient for large numbers of factors or high strength.

Some approaches combine mathematical and computational methods. Covering

perfect hash families (CPHFs) and Sherwood covering perfect hash families (SCPHFs),

a restriction of CPHFs, are used as ingredients for column replacement via permuta-

tion vectors to construct covering arrays [54], and they provide the best asymptotic

upper bounds on the number of rows for covering arrays and lead to efficient algo-

rithms [50]. The problem of constructing a covering array reduces to the problem of

searching for an SCPHF.

Formally, a perfect hash family PHF(N ; k, v, t) is an N × k array on v symbols for

which every N × t subarray contains at least one row where the t columns all contain

distinct symbols. The t columns are said to be separated by this row. A covering

perfect hash family is a PHF with the additional requirement that the t columns not

only contain distinct symbols, but that the t symbols form a covering tuple.

Let (β
(i)
0 , β

(i)
1 , . . . , β

(i)
t−1) be the base v representation of symbol i ∈ {0, 1, . . . , vt−1}.

A permutation vector
−−−−−−−−−−−→
(h0, h1, . . . , ht−1) is the vt length vector with symbol β

(i)
0 ×h0 +

β
(i)
1 × h1 + . . . + β

(i)
t−1 × ht−1 in position i for 0 ≤ i ≤ vt − 1 with arithmetic in

GF(v). Table 1.1 gives an example of computing the
−−−−→
(1, 2, 0) permutation vector for

v = 3, t = 3. A set of t permutation vectors T = {(h(1)
0 , . . . , h

(1)
t−1), . . . (h

(t)
0 , . . . , h

(t)
t−1)}

is covering if and only if the system of linear equations S = {(h(i)
0 · γ0) + . . .+ (h

(i)
t−1 ·

γt−1) = 0 : 1 ≤ i ≤ t} with unknowns Γ = {γr : 0 ≤ r ≤ t − 1} does not have a

5

Table 1.1: Computing the
−−−−→
(1, 2, 0) permutation vector, v = 3, t = 3

i (β0, β1, β2) β0 × h0 + β1 × h1 + β2 × h2

−−−−→
(1, 2, 0)

0 000 0*1 + 0*2 + 0*0 0
1 100 1*1 + 0*2 + 0*0 1
2 200 2*1 + 0*2 + 0*0 2
3 010 0*1 + 1*2 + 0*0 2
4 110 1*1 + 1*2 + 0*0 0
5 210 2*1 + 1*2 + 0*0 1
6 020 0*1 + 2*2 + 0*0 1
7 120 1*1 + 2*2 + 0*0 2
8 220 2*1 + 2*2 + 0*0 0
...

...
...

...
26 222 2*1 + 2*2 + 2*0 0

non-zero solution. That is, a covering set of t permutation vectors T is one in which

the vt t-tuples appear exactly once. If any t-tuple appears more than once, then at

least one does not appear at all, and T is noncovering.

A covering perfect hash family CPHF(N ; k, vt, t) is an N×k array on vt symbols, v

a prime power, for which every N×t subarray contains a covering tuple in at least one

row. A covering array CA(Nvt; t, k, v) is constructed from the CPHF(N ; k, vt, t) by

replacing each of the symbols in the CPHF with the corresponding vt-length vector of

v symbols. For each of the
(
k
t

)
sets of t columns T , there is some row j of the CPHF

that contains a covering tuple. The covering array contains all vt combinations in the

set of rows that results from the column replacement of row j for T .

As β1 = ... = βt−1 = 0 for the first v entries of every permutation vector, the

symbols in these entries are dependent upon β0 alone. The subspace restriction that

fixes h0 = 1 forces the first v entries of every permutation vector to be the first v

symbols. When a covering array is constructed from a CPHF where every permutation

vector has h0 = 1, then there are N repetitions of the v constant valued rows. N − 1

of these are redundant and can be removed. A shortened permutation vector of length

6

c1 c2 c3 c4 c5

00 10 01 11 20
00 10 20 01 01

Figure 1.1: Example SCPHF(2; 5, 32, 3)

vt−v is obtained by removing the first v entries of a permutation vector where h0 = 1.

For shortened permutation vectors, the definition of covering is modified to exclude

the requirement that the constant t-tuples appear. A Sherwood covering perfect hash

family SCPHF(N ; k, vt−1, t) is an N × k array on vt−1 symbols for which every N × t

subarray contains a covering tuple in at least one row. An SCPHF(N ; k, vt−1, t) is used

to construct a CA(N(vt− v) + v; t, k, v) by replacing each symbol in the SCPHF with

the corresponding shortened permutation vector, and appending v constant rows, one

for each of the symbols in GF(v).

Figure 1.1 gives an example SCPHF(2; 5, 32, 3). Table 1.2 shows the shortened

permutation vectors corresponding to the symbols in columns c1, c2, and c5 of row 1.

The constant rows that are removed as shown in gray. The repeated tuples indicate

that this not a covering tuple. Table 1.3 shows the shortened permutation vectors

for these same columns in row 2 of the SCPHF. Every tuple appears, indicating that

this tuple is covering.

The density algorithm is a greedy one-row-at-a-time computational approach for

searching for PHFs [15]. In this approach, a partial PHF is assumed, and the density

of a partial row is defined as the number of not-yet-separated t-sets of columns a row

is expected to separate if the row were completed uniformly at random. A column in

a partial row that has been assigned a symbol is fixed and one that has not is free. A

partial row is one that has some free columns. The density of a row containing only

free columns can be computed and each time a column is selected to be fixed, there

7

Table 1.2: Noncovering tuple for v = 3, t = 3 with shortened permutation vectors

i
−−→
(00)

−−→
(10)

−−→
(20)

0 0 0 0
1 1 1 1
2 2 2 2
3 0 1 2
4 1 2 0
5 2 0 1
6 0 2 1
7 1 0 2
8 2 1 0
9 0 0 0
10 1 1 1
11 2 2 2
12 0 1 2
13 1 2 0
14 2 0 1
15 0 2 1
16 1 0 2
17 2 1 0
18 0 0 0
19 1 1 1
20 2 2 2
21 0 1 2
22 1 2 0
23 2 0 1
24 0 2 1
25 1 0 2
26 2 1 0

is some choice of symbol for that column that does not reduce the row density. The

algorithm described in [15] goes a step further and chooses the symbol that maximizes

the density. Guaranteeing to do at least as well as the average allows this algorithm

to provide an upper bound on the number of rows for the PHF.

An SCPHF provides a compact representation of a covering array. This covering

array construction reduces the problem to finding an SCPHF and search techniques

here may be more efficient by reducing the search space, allowing for covering ar-

rays of higher strength and larger numbers of symbols and factors to be constructed.

8

Table 1.3: Covering tuple for v = 3, t = 3 with shortened permutation vectors

i
−−→
(00)

−−→
(10)

−−→
(01)

0 0 0 0
1 1 1 1
2 2 2 2
3 0 1 0
4 1 2 1
5 2 0 2
6 0 2 0
7 1 0 1
8 2 1 2
9 0 0 1
10 1 1 2
11 2 2 0
12 0 1 1
13 1 2 2
14 2 0 0
15 0 2 1
16 1 0 2
17 2 1 0
18 0 0 2
19 1 1 0
20 2 2 1
21 0 1 2
22 1 2 0
23 2 0 1
24 0 2 2
25 1 0 0
26 2 1 1

The search technique in [54] uses backtracking on a candidate array initialized with

constraints to reduce the search space and included a number of efficiency improve-

ments. This technique resulted in several new covering arrays that outperformed

arrays constructed by other methods. However, the initialization still exhibits signif-

icant randomness, and the size of the resulting array depends on both the structure

of the initial array and the amount of execution time afforded to backtracking. The

disadvantage of constructing covering arrays from SCPHFs is that it imposes the

restriction that the number of symbols in each column must be a prime power and

9

uniform across the entire array.

1.2 Fault Location

Covering arrays are used to detect the existence of faults involving t or fewer

factors, but they are not guaranteed to indicate the specific interactions causing a

fault. Each interaction is only guaranteed to be present somewhere in the test suite,

but it may be the case that several interactions are present only once and in the same

failing test. In that case, it is not possible to determine which is faulty from the test

results. Consider the problem of testing a system of attribute-based access control

rules [34]. Access control rules in disjunctive normal form are satisfied by sets of

attributes, resulting in a “grant” decision. If no rule is satisfied by a set, a “deny”

decision results. A test is a presentation of a set of attributes to the system which

results in a “grant” or a “deny” decision. Suppose two sets of attributes that satisfy

some rule are both present in the same test and the rule for only one of them fails.

The outcome for the test is still “grant” due to the other set. Therefore, the fault

caused by the failing set is masked by the other set.

To locate the failing set, a “pseudo-exhaustive” method is proposed using a com-

bination of two arrays, GTEST and DTEST [34]. GTEST is constructed to ensure that

every satisfying set of attributes occurs in its own row, separate from any other sat-

isfying set. DTEST is constructed so that every set of attributes up to the strength t

that is not satisfying appears in some row. That is, DTEST is a covering array where

every non-satisfying set of attributes appears and the satisfying sets are constraints.

Each test in GTEST should result in a “grant” and each test in DTEST should result

in a “deny.” Testing the system with both arrays locates a faulty satisfying set, but

failures by non-satisfying sets can still mask each other, requiring additional test-

ing. This example demonstrates the applicability of combinatorial design solutions

10

within the attribute-based access control domain and exhibits the type of solution

desired for fault location. It also shows that an arbitrary covering array alone does

not automatically provide fault location without additional properties.

The first subproblem of fault localization – identifying failure-inducing combina-

tions – is concerned with the same issue of identifying the location of a fault [36]. A

general strategy is to run a set of tests and obtain the pass/fail status, after which one

of several strategies follow: 1) testing each interaction of a failing test separately, 2)

creating classification trees to estimate the likelihood that an interaction is faulty, 3)

generating new sets of tests based on “suspiciousness” of the interactions in the fail-

ing tests. An example of the third scenario is implemented in BEN [24], an approach

that ranks interactions based on suspiciousness of the components of the interaction,

suspiciousness of the interaction itself, and suspiciousness of the environment. New

tests are generated and executed for the most suspicious interactions, and interactions

that appear in new tests that pass are removed from the set of suspicious interac-

tions. This process is repeated iteratively until it reaches a stopping condition. An

approach combining test generation and fault localization iteratively generates and

executes one test at a time, entering a fault localization mode if the test fails, until

the desired coverage is attained [47].

Some testing scenarios are not suited to adaptive testing. If environmental vari-

ables cannot be well controlled, such as in the testbed evaluation of wireless network

conferencing in [52], additional tests run later may introduce uncontrollable sources

of variation. In this case, all tests need to be known in advance, and a complete test

suite designed to locate faults non-adaptively is desirable.

Colbourn and McClary proposed locating arrays as combinatorial objects to lo-

cate faults non-adaptively [20]. Similar to covering arrays, locating arrays have the

additional property that if the set of tests that covers a set of d t-way interactions is

11

identified, no other set of d t-way interactions are tested in exactly the same tests.

A test suite designed from a locating array indicates which interactions are faulty if

there are no more than d faults. Correctly estimating the number of faults expected

to exist is an additional challenge. Locating arrays have practical application, so in

addition to the theoretical work providing mathematical constructions for restricted

cases, explicit constructions that work for a wide variety of problem instances are

needed.

A locating array LA(N ; d, t, k, v) is an N×k array on v symbols. As with covering

arrays, t is the strength. When the number of symbols for each column is not uniform,

a locating array with vi levels for the ith column, i ∈ {1, ..., k}, is a mixed-level locating

array (MLA). The list of symbols (v1, v2, ..., vk) is the type [20] and the exponential

notation vji can be used when j factors all have vi levels.

Let It be the set of all t-way interactions. Let ρ(T) denote the rows in which

interaction T appears, T ∈ It, and define ρ(T) =
⋃
T∈T

ρ(T). An array is (d, t)-

locating if ρ(T1) = ρ(T2) ⇐⇒ T1 = T2 whenever T1, T2 ∈ It and |T1| = |T2| = d. If

an array is (d, t)-locating, the set of rows for every unique set of d t-way interactions

is unique. The definition can be extended to allow for sets of size at most d, denoted

by d̄ and interactions of size at most t, denoted by t̂.

We use the notation LA(d, t, k, v) to describe the class of arrays that are (d, t)-

locating and LA(N ; d, t, k, v) when a particular instance of a locating array is con-

structed with N rows. We use similar notation for covering arrays, e.g. CA(t, k, v),

and CA(N ; t, k, v).

A small example MLA with 10 rows and 3 columns that is (1,2)-locating is in Table

1.4. The rows for each of the interactions are shown in Table 1.5. One can check that

every 2-way interaction appears in a unique set of rows. The MLA is not (2,2)-locating

as ρ({{(c1, 0)(c2, 0)}, {(c2, 0)(c3, 0)}}) = ρ({{(c1, 0)(c2, 0)}, {(c1, 1)(c3, 0)}}) = {2, 7, 8}.

12

Table 1.4: MLA(10; 1, 2, 3, (2, 2, 3))

c1 c2 c3

1 1 1 2
2 0 0 0
3 1 0 2
4 0 1 0
5 1 0 1
6 1 1 1
7 1 0 0
8 0 0 2
9 0 1 2

10 0 1 1

Table 1.5: Rows of 2-way interactions in MLA(10; 1, 2, 3, (2, 2, 3))

c1, c2 c1, c3 c2, c3

00 {2,8} {2,4} {2,7}
10 {3,5,7} {7} {4}
01 {4,9,10} {10} {5}
11 {1,6} {5,6} {6,10}
02 {8,9} {3,8}
12 {1,3} {1,9}

Locating arrays for fault location are fairly new and few techniques have been

explored for their construction. Colbourn and McClary give necessary conditions for

locating arrays to exist, detail relationships between variations of locating arrays and

similar combinatorial objects called detecting arrays, and give a construction for a

(1, t)-locating array from a covering array of strength t+ 1, as well as a construction

for a (d, t)-locating array from a covering array of strength t + d. They prove that

every CA(N ; t+d, k, v) is (d, t)-detecting and every (d, t)-detecting array is (d̄, t)- and

(d, t)-locating.

In these constructions, the higher strength provides a “witness,” a column not

13

involved in the coverage of an interaction but that “separates” instances of the in-

teraction from instances of other interactions involving some of the same columns.

For example, suppose a strength two locating array is derived from a strength three

covering array and includes the subarray below with three columns and two rows.

c0 c1 c2

0 0 0
0 0 1

Symbols in column c2 serve as the witness for the location of (t− 1)-way interac-

tions involving other columns. That is, any interaction containing the 1-way inter-

action {(c2, 0)} cannot have exactly the same rows as the interaction {(c0, 0), (c1, 0)}

as this 2-way interaction also appears with {(c2, 1)} to satisfy coverage for t = 3.

Then ρ({(c2, 0)}) and ρ({(c2, 1)}) are necessarily disjoint. When a (1, t− 1)-locating

array is built from a strength t covering array, however, this may use more rows than

required, as there are v “witnesses” due to the repetition of the lower strength in-

teractions appearing with each of the symbols of the higher strength interaction, not

just the one witness needed. Constructing locating arrays from covering arrays of

higher strength can be useful as a standard for comparison, as discussed in § 3.2.2.

The rest of the available literature consists of bounds and constructions for a re-

stricted number of faults, i.e., a certain value for d. Denote by LAN(d, t, k, v), the

locating array number, the fewest rows for which a (d, t)-locating array can exist. Col-

bourn, Fan, and Horsley determine precisely LAN(1, 1, k, v) [11]. Colbourn and Fan

develop three recursive constructions for (1, 2̄)-locating arrays using (1, 2̄)-locating

array, (1, 1̄)-locating array, and strength three covering array ingredients, all on the

same number of symbols v [17].

Lower bounds for LAN(1, t, k, v) when k ≥ t ≥ 2 and v ≥ 2 are known, as

are optimal constructions (where the number of rows meets the bound) for some

14

infinite series of locating arrays based on design theory principles when the number

of symbols v in the array meets certain restrictions [60]. The lower bound is used as

a starting point to find instances of (1,2)-locating arrays defined by constraints fed

to a SAT solver, and the method is useful when the size of the locating array is quite

small; results are reported for v = 2, k ∈ {2, ..., 25} and v = 3, k ∈ {2, ..., 13} [32].

A greedy one-row-at-a-time algorithm constructs (1,2)-locating arrays by computing

ρ(T) for all
(
k
t

)
vt interactions simultaneously, assigning interactions i and j to the

same equivalence class when ρ(i) = ρ(j), and then repeatedly creating new rows to

distinguish interactions until all equivalence classes contain a single item; results are

reported for v ∈ {2, 5, 10} and k ∈ {5, 10, 15, 20} [43]. A lower bound of 2vt exists for

(2̄, t)-locating arrays and can be met when constructed from orthogonal arrays with

certain defined properties [55].

Locating arrays are proposed as designs for screening experiments to identify

significant effects when the number of design points of the full factorial becomes

infeasible, as locating arrays limit confounding of main effects and interactions up to

strength t by requiring that non-identical sets of interactions do not appear in the

same sets of rows [1, 22]. Due to experimental error, missing or outlier responses,

requiring that interaction sets be separated by more than one test allows location. The

separation distance, δ, between two sets of d t-way interactions is the number of tests

in which interactions from one or the other but not both sets appear. Seidel, Sarkar,

Colbourn, and Syrotiuk implemented conditional expectation, column resampling,

and local optimization algorithms to construct arrays that are (1̄, 2̄)-locating with

δ ≤ 4 [52]. Conditional expectation is too storage and time intensive for large numbers

of factors, and results from conditional expectation are reported only up to type 320.

Comparison against the column resampling and local optimization results for two

mixed-level locating arrays appears in § 3.2.3. We direct interested readers to surveys

15

on the state of locating array research and its applications [12, 13].

Locating arrays have practical application for fault location in combinatorial test-

ing, but no previous approach has proposed to build locating arrays for general values

of d and t, particularly for mixed-level locating arrays.

1.3 Attribute-Based Authorization

Attribute-based access control (ABAC) is a logical access control model wherein

access control decisions are made on the basis of attributes. The National Institute

of Standards and Technology (NIST) defines ABAC as “an access control method

where subject requests to perform operations on objects are granted or denied based

on assigned attributes of the subject, assigned attributes of the object, environment

conditions, and a set of policies that are specified in terms of those attributes and

conditions” [28]. Attributes are characteristics of a subject expressed as name-value

pairs and may be based on the subject’s real-world identity (e.g., name = Martha,

age = 34) or in-system characteristics (e.g., role = administrator). ABAC can be

configured to support policies available under other models of access control such as

discretionary access control, mandatory access control, and role-based access control

(RBAC) [28]. One feature that makes ABAC attractive is that it can be used as

global access control on a heterogeneous system where subsystems are each employing

a different access control model. Similarly, hybrid models have been proposed, such

as adding attributes to RBAC [33].

Unlike other access control models, ABAC is inherently identity-less. Determining

whether a subject is authorized is characteristically done on the basis of the attributes

the subject possesses and does not require knowledge of the identity of the subject.

This may greatly simplify privilege management. Making decisions on the basis of

attributes rather than identities removes the need to update access control lists or

16

capability lists to add or remove privileges related to individual subjects. Policies can

be written dynamically to achieve fine-grained access control without creating roles

for each possible subset of users in advance, resulting in “role explosion” [33]. ABAC

is desirable in systems with a large number or frequently changing set of users.

Attribute-Based Encryption (ABE) is another general attribute-based method.

ABE is first introduced as Fuzzy Identity-Based Encryption (FIBE) where identities

are sets of attributes. In FIBE, if an identity matches on d or more of the attributes

used to encrypt a ciphertext, the private key affiliated with the identity can be used

to decrypt [49]. The access structure employed by FIBE is restricted to a threshold

gate the size of which is fixed at setup time. In Key-Policy ABE, private keys are

access control policies and ciphertexts are encrypted over attributes [25]. A private

key that contains a policy that is satisfied by the attributes of a ciphertext can be used

to decrypt the ciphertext. Conversely, Ciphertext-Policy ABE (CP-ABE) encrypts

ciphertexts with access control policies [3]. A private key that contains attributes

that satisfy the policy can be used to decrypt.

CP-ABE has been proposed to mediate authenticated key exchange [48]. As

a simplified example, suppose the service encrypts a session key in a policy and

broadcasts the message. A subject that has a private key containing attributes that

satisfy the policy is able to decrypt the message and obtain the key. The subject

begins communicating with the service by encrypting messages in the session key. The

service now knows that the subject communicating via the session key is authorized

based on possession of the required attributes to obtain the key.

A feature of attribute-based systems is that they can be used to achieve anony-

mous access control, granting access to authorized subjects and denying access to

unauthorized subjects without knowledge of the identity of the subject. This feature

is natural to systems implementing pure ABAC as “in many models, access requests

17

are not conducted directly by the user but indirectly through a session that may

contain a subset of the user’s attributes” [53]. In some instances, the subject uses

an application that allows the subject to choose which attributes to present to the

system. In others, a credential such as a card preloaded with a subset of attributes

represents the subject to the system. Unless the subject’s identity is used as an

attribute, anonymous access control is a possible byproduct of ABAC.

While often desirable to subjects, anonymity is not always considered to be a

feature due to the potential conflict between anonymity and auditability. Whether

these two goals conflict is dependent upon the definition of auditability for the sys-

tem. One definition of auditability “the ability to easily determine the set of users

who have access to a given resource or the set of resources a given user may have

access to (sometimes referred to as a ‘before the fact audit’)” makes it possible to have

anonymity and auditability [53]. ABAC systems may not be well suited for easily

computing the set of users capable of completing an action given a policy. However,

the ability to compute these sets does not require the system to track the actions per-

formed by subjects. Some systems may make it difficult or impossible to determine

the set depending on how attributes are managed, such as in instances of multiple

attribute-granting authorities or lack of requiring subjects to register their attributes

with the system. Yet, fixing this problem for auditability does not necessitate a loss

of anonymity. In our proposal, all attributes of all subjects are registered with the

system. We can achieve both this definition of auditability and anonymity concur-

rently. If the goal of auditability is to be able to identify the subject who completed

an operation, anonymity against the system and auditability are necessarily at odds.

The purpose of this work is to perform attribute distribution to achieve a specified

degree of anonymity. A dual outcome is that we also show when anonymity of the

specified degree cannot be achieved.

18

Whether anonymity is achieved and even the kind of anonymity intended is typi-

cally dependent upon the ABAC implementation. One approach is to provide certifi-

cates to prove possession of attributes. Still, transactions involving the same certifi-

cates may be linked, the certificates may require the subject’s public key certificate,

or the approach may require sending all certificates for potentially relevant attributes

[2]. The solution in [2] employs cryptographic zero knowledge proofs to allow sub-

jects to prove possession of just the requisite attributes without revealing additional

information. ABE provides another mechanism for anonymous authorization. A sys-

tem employing CP-ABE, LOCATHE, includes a mode in which the subject does not

provide its identity to the system [48]. Instead, the service knows the subject is

authorized based on possession of attributes. The authors of LOCATHE make the

stronger claim that the service cannot uniquely identify the subject.

While attribute-based authorization decisions typically do not require knowledge

of the identity of the subject in order to make an authorization decision, this is not

a guarantee that the identity cannot be deduced. For example, in the LOCATHE

system, the subject must register with the service running LOCATHE to receive a key,

and thus the service knows all of the users in the system as well as their attributes. If a

policy can be composed so that only one subject can satisfy the policy and this policy

is used to encrypt the session key, the service knows with certainty the identity of the

subject communicating with it. “Anonymous ABE” uses hidden credentials which can

be used to retrieve a session key anonymously, but the receiver anonymity is based

on “plausible deniability” due to the fact that anyone can request the message, not

just the intended recipient [31]. Plausible deniability fails if the message is decrypted

to gain a session key used to authenticate or obtain authorization, as this proves that

someone with the correct credentials decrypted the message.

k-anonymous attribute-based access control ensures that if a subject submits a set

19

of attributes to a service, k previous requests with identical attributes are stored with

the service [56]. The protocol involves negotiation between a “credential submitter”

and “policy enforcer.” The “bootstrapping” phase of the protocol builds up the set

of “attribute assertions” that serve as previous requests.

20

Chapter 2

INTERACTION TESTING

Covering arrays are combinatorial designs used to construct test suites for interaction

testing, and they can be constructed from covering perfect hash families (CPHFs)

by column replacement. CPHFs serve as compact representations of covering ar-

rays and lead to efficient search algorithms. Sherwood covering perfect hash families

(SCPHFs) employ a subspace restriction to reduce the number of rows in the final

covering array. Necessary background and definitions for this chapter are provided in

§ 1.1 of the introduction. The contribution of the current work is to develop a greedy

conditional expectation algorithm to efficiently construct intermediate-size covering

arrays via SCPHFs. Additionally, two recursive algorithms that operate on small

to intermediate-size SCPHF ingredients are used to construct larger covering arrays.

This chapter is organized as follows. The conditional expectation algorithm is de-

veloped in § 2.1 and the recursive algorithms are in § 2.2. Results are presented in

§ 2.3.

2.1 Sherwood Covering Perfect Hash Family Construction

2.1.1 Conditional Expectation (CE) Algorithm

In this section, we develop a greedy, one-row-at-a-time conditional expectation

(CE) algorithm to construct SCPHFs inspired by the density algorithm for PHFs

[15]. CE is based on the fact that the number of noncovering tuples can be computed.

That is, nct(v) is the number of distinct, ordered noncovering tuples given t and v.

How to count distinct noncovering tuples is discussed in [54]. For t = 3, nc3(v) is

21

computed exactly given v as nc3(v) = 3!
(
v
3

)
× (v2 + v). For t = 4, an upper bound is

easily computed, nc4(v) < 4!
(
v2

4

)
× (v3 +v2 +v), and a general upper bound on nct(v)

is given for larger t. For the purposes of CE, nct(v) is computed exactly for t and

v by explicitly constructing the list of noncovering tuples. The algorithm repeatedly

checks whether tuples are covering, so precomputation is more time efficient than

computing whether a tuple is covering each time one is checked. The number of

noncovering tuples is smaller than the number of covering tuples, so it is more efficient

to store the list of noncovering tuples. An optimization to reduce the storage for the

noncovering list is discussed towards the end of this section.

The probability of selecting a covering tuple when symbols are chosen uniformly

at random is computable and so is the expected number of previously uncovered t-sets

covered by a random row. The probability of selecting a covering tuple when t of the

vt−1 symbols are chosen at random is

P=
(vt−1)(vt−1 − 1) · · · (vt−1 − t+ 1)− nct(v)

(vt−1)t
.

CE builds an SCPHF one row at a time. Suppose some rows are completed and row

ρ is a new row with all columns free. For a t-set of columns T ⊆ C, |T | = t, write

λ(T) = 0 if there is a covering tuple on T in some completed row; otherwise, write

λ(T) = 1. Write value(ρ) for the number of t-sets covered for the first time by ρ.

Before any columns are fixed, the probability that a particular t-set is covered is P .

Therefore, its expectation is λ(T)P . By linearity of expectation, the expectation of

the sum is the sum of the expectations, so the expected value(ρ) is

E[value(ρ)] =
∑
T⊆C

λ(T)P.

In a partial row, when the symbols in the fixed columns have been chosen to meet

or exceed the expectation, there is always a choice of symbol for a free column that

22

does not reduce the expectation. CE computes the expectation for the symbols of a

free column and selects one that meets or exceeds the expectation. When considering

a free column ci, only columns that are involved in some uncovered t-set with ci

contribute to the expectation for each of the possible symbols examined for ci. These

columns are the remaining neighborhood of ci. Further, when all columns in a t-set are

free, any choice of symbol while fixing the first column in the set results in the same

expectation. Therefore, CE restricts consideration to the partially fixed remaining

neighborhood of ci, Ri, as the remaining neighborhood of column ci excluding t-sets

where all columns are free. Let PT be the probability of selecting a covering tuple

for the t-set T when T contains fixed and free columns. Define value(Ri, ci, σ) =∑
T⊆Ri

λ(T)PT , the expected number of t-sets covered for the first time if ci is fixed

to σ. This allows for local decisions without computing the expectation for the entire

row for every symbol in a free column.

Most of the computation is determining the expected number of t-sets first covered

by fixing a symbol, so improvements in efficiency of implementation made here have

a substantial effect on practical time performance. These include:

1. Standard first row. Rather than using CE search to construct the first row,

a standard first row fixes symbol i mod vt−1 in column ci. Minimizing the

number of repetitions of any one symbol provides reasonable avoidance of non-

covering tuples without requiring any computation when k > vt−1. The use of

a standard first row drastically decreases search time when k is large in practice

and covers a substantial number of t-sets up front, though typically fewer than

the number found by search when k is smaller relative to vt−1.

2. Early exit. As parameters v, t, and k increase, checking every symbol becomes

time prohibitive. A threshold between 0 and 1 inclusive is a tunable parameter,

23

which is used to determine when the algorithm stops with an acceptable symbol.

When value(Ri,ci,σ)
|Ri| ≥ threshold, σ is acceptable. As long as the threshold is at

least P , the bounds hold. Setting threshold = 1 results in finding an optimal

symbol.

3. Choice of column to fix. Given a partial array of strength three, some pair of

columns ci, cj appears together in remaining neighborhoods of other columns

most frequently. Placing the same symbol in ci, cj prevents coverage for all

triples involving them. To avoid this, repeatedly select the most frequently

occurring pair of columns and, if free, fix symbols for these columns in the

usual way. This is followed by repeatedly selecting a free third column, c` so

that ci, cj is in the remaining neighborhood of c` and fixing a symbol in c`. This

optimization is not used in earlier conditional expectation methods. It is not

clear how to apply this to strength four or if the effort spent on this look-ahead

is worth the extra computation as opposed to choosing the next column to fix

sequentially or randomly.

4. Checking tuples for coverage quickly. A tuple that contains a repeated symbol

cannot be covering, so these are identified as noncovering immediately. There

are more distinct covering tuples than distinct noncovering ones, so it is more

efficient to compute and store the distinct noncovering tuples. A list uses the

least storage, but sequential access requires looking at nct(v)
2

tuples on average.

Instead, the tuples are stored in a (vt−1)
t

indicator matrix for direct access, with

an index corresponding to each element in the t-tuple. To reduce the amount

of memory needed by factor of vt−1, distinct noncovering tuples are stored in

a canonical form with the first element as 0. Given a tuple in noncanonical

form, ([h
(1)
1 , . . . , h

(1)
t−1], . . . , [h

(t)
1 , . . . , h

(t)
t−1]), the additive inverse of the first tuple

24

element is added to each tuple element with arithmetic in GF(v) to obtain ([h
(1)
1 −

h
(1)
1 , . . . , h

(1)
t−1−h

(1)
t−1], . . . , [h

(t)
1 −h

(1)
1 , . . . , h

(t)
t−1−h

(1)
t−1]). Because the first element

is always 0 in canonical form, this index is omitted from the lookup array.

This requires that the conversion always maps noncovering to noncovering and

covering to covering, which we prove in Theorem 1.

Theorem 1. The classes of noncovering and covering tuples are closed under arith-

metic when performed component-wise in GF(v).

Proof. The classes of noncovering and covering tuples are closed under addition, sub-

traction, multiplication, and division when performed component-wise in GF(v) as

shown in the following three lemmas.

Lemma 1.1. The classes of noncovering and covering tuples are closed under multi-

plication.

Proof. A set of t shortened permutation vectors T = {(h(1)
1 , . . . , h

(1)
t−1), . . . , (h

(t)
1 , . . . , h

(t)
t−1)}

is covering if and only if the system of linear equations S = {γ0 + (h
(i)
1 · γ1) + . . . +

(h
(i)
t−1 · γt−1) = 0 : 1 ≤ i ≤ t} with unknowns Γ = {γj : 0 ≤ j ≤ t− 1} does not have a

nonzero solution [54]. Define

S(µ0,µ1,...,µt−1) = {µ0 · γ0 + (h
(i)
1 · µ1) · γ1 + . . .+ (h

(i)
t−1 · µt−1) · γt−1 = 0 : 1 ≤ i ≤ t}

T(µ1,...,µt−1) = {(h(1)
1 · µ1, . . . , h

(1)
t−1 · µt−1), . . . , (h

(t)
1 · µ1, . . . , h

(t)
t−1 · µt−1)}

where 0 < µj < v. That is, S(µ0,µ1,...,µt−1) is the system S with each coordinate j of

each equation multiplied by µj, and T(µ1,...,µt−1) is the set of transformed permutation

vectors. Assume that T is covering and suppose that T(µ1,...,µt−1) is noncovering. Then

S(µ0,µ1,...,µt−1) has a solution with an assignment of a nonzero value to some γj ∈ Γ.

Then because S(µ0,µ1,...,µt−1) = {µ0 ·γ0 +(h
(i)
1 · (µ1 ·γ1))+ . . .+(h

(i)
t−1 · (µt−1 ·γt−1)) = 0 :

1 ≤ i ≤ t}, this solution provides a nonzero solution, γjµj, for T . But this contradicts

25

the assumption that T is covering. Therefore, the preimage for a noncovering tuple

transformed by multiplication must be a noncovering tuple.

Now, suppose that T is noncovering, so there is a nonzero solution as an assignment

of values to Γ. Then this same assignment serves as proof of a nonzero solution to

S(µ0,µ1,...,µt−1). Then T(µ1,...,µt−1) must also be noncovering, so the image must be a

noncovering tuple. Then the class of noncovering tuples is closed under multiplication.

For every T and {µj : 0 ≤ j ≤ t−1} defined as above, there is a T(µ1,...,µt−1). Covering

tuples cannot map to noncovering tuples, and noncovering tuples cannot map to

covering tuples, so the class of covering tuples must be closed under multiplication.

Lemma 1.2. The classes of noncovering and covering tuples are closed under addi-

tion.

Proof. Assume T = {(h(1)
1 , . . . , h

(1)
t−1), . . . , (h

(t)
1 , . . . , h

(t)
t−1)} is covering. Then Γ =

{γj = 0 : 0 ≤ j ≤ t− 1} is the only solution. Define for 0 ≤ αj < v and 1 ≤ i ≤ t

T(α1,...,αt−1) = {(h(1)
1 + α1, . . . , h

(1)
t−1 + αt−1), . . . , (h

(t)
1 + α1, . . . , h

(t)
t−1 + αt−1)}

S(α1,...,αt−1) = {γ0 + ((h
(i)
1 + α1) · γ1) + . . .+ ((h

(i)
t−1 + αt−1) · γt−1) = 0}

=

{
t−1∑
j=1

γjαj + γ0 + (h
(i)
1 · γ1) + . . .+ (h

(i)
t−1 · γt−1) = 0

}

Suppose T(α1,...,αt−1) is noncovering, so there is a nonzero solution. Then that assign-

ment to Γ serves as proof of a nonzero solution to the system S ′ = {γ′0 + (h
(i)
1 · γ1) +

. . . + (h
(i)
t−1 · γt−1) = 0 : 1 ≤ i ≤ t} where γ′0 =

∑t−1
j=1 γjαj + γ0. But this contradicts

the assumption that T is covering. Therefore, the preimage for a noncovering tuple

transformed by addition must be a noncovering tuple.

Now, suppose that T is noncovering, so there is a nonzero solution to S ′ as an

assignment of values to Γ. Then this same assignment serves as a nonzero solution

to S(α1,...,αt−1). Then T(α1,...,αt−1) must also be noncovering, so the image must be a

26

noncovering tuple. Then the class of noncovering tuples is closed under addition.

For every T and αj defined as above, there is a T(α1,...,αt−1). Covering tuples cannot

map to noncovering tuples, and noncovering tuples cannot map to covering tuples, so

the class of covering tuples must be closed under addition.

Lemma 1.3. The classes of noncovering and covering tuples are closed under sub-

traction and division.

Proof. Subtraction is defined in the field in terms of addition so that a− b = a+(−b)

where −b is the unique element so that (−b)+b = 0; (−b) is the negative of b. Division

is defined in the field in terms of multiplication so that a/b = a · b−1 where b−1 is

the unique element so that b−1 · b = 1; b−1 is the inverse of b. Since both operations

are defined in terms of operations under which the classes are closed, the classes are

closed under these operations as well.

The CE algorithm is presented in Algorithm 1.

2.1.2 Conditional Expectation Bounds

CE provides an upper bound on the number of rows needed for the SCPHF when

rows are constructed that cover at least as many new t-sets as the average. Let

β = 1− (vt−1)(vt−1 − 1) · · · (vt−1 − t+ 1)− nct(v)

(vt−1)t

=
(vt−1)t − (vt−1)(vt−1 − 1) · · · (vt−1 − t+ 1) + nct(v)

(vt−1)t

be the probability that a particular t-set is not covered in a particular row. Then,

βN is the expected value of the “non-coverage” of a particular t-set after N rows are

randomly created, where β = 1 indicates that it is not covered and β = 0 indicates

that it is covered. There are
(
k
t

)
t-sets to cover, so by linearity of expectation, the

expected value of the “non-coverage” of all t-sets after N rows is
(
k
t

)
βN . Setting this

27

Algorithm 1: Conditional Expectation (CE)

input : k columns, a set of vt−1 symbols Σ, strength t, threshold

output: A, N

begin
Create an empty array A

Set N = 0

Add all
(
k
t

)
t-sets of columns to list L

while |L| > 0 do
Add a row ρ with all columns free to A

for ci in the set of columns do
Make an empty list F

Compute Ri ⊆ L

for T ∈ Ri do

if all cj ∈ T, cj 6= ci are fixed then
Add T to F

for σ ∈ Σ do
Compute value(Ri, ci, σ)

if value(Ri,ci,σ)
|Ri| ≥ threshold then

Set A[ρ][ci] = σ

Break

if ci is free then
Set A[ρ][ci] = maxσ∈Σ(value(Ri, ci, σ))

for T ∈ F do

if T is covering then
Remove T from L

Increment N
Return A, N

28

quantity to be less than 1 (Equation 2.1) and solving for the smallest N for which the

inequality holds gives a bound on the number of SCPHF rows after which all t-sets

are expected to be covered (Equation 2.2). The upper bound in terms of rows in the

covering array after column replacement is in Equation 2.3.(
k

t

)
βN < 1 (2.1)

log
(
k
t

)
log(1

β
)

=
log
(
k
t

)
log (vt−1)t

(vt−1)t−(vt−1)(vt−1−1)···(vt−1−t+1)+nct(v)

< N (2.2)

log
(
k
t

)
log (vt−1)t

(vt−1)t−(vt−1)(vt−1−1)···(vt−1−t+1)+nct(v)

(vt − v) + v < N(vt − v) + v (2.3)

2.2 Recursive Algorithms

In this section, we develop two recursive algorithms, Composition and Affine Com-

position, both of which use an SCPHF(N ; k, vt−1, t) ingredient array to construct an

SCPHF(N +N ′;mk, vt−1, t).

2.2.1 Composition (COMP) Algorithm

In the Composition (COMP) algorithm, m identical copies of the ingredient array

A are placed horizontally to form A′, an N × mk array on vt−1 symbols. All t-

sets located entirely within a subarray are covered as the ingredient is an SCPHF.

Building the remaining list of uncovered t-sets occurring between subarrays does not

require checking whether tuples are noncovering; this is known precisely from the

column indices. The CE algorithm is employed to build the final N ′ rows to cover

the remaining t-sets and complete the SCPHF.

The remaining list is straightforward to compute. Consider each column in A′ as

having an index computed from the subarray ` it is contained in and the column y

29

k

x

y lk+y

(h1,…,ht-1)(h1,…,ht-1)

N
m-10 1 … l …

N’

Figure 2.1: Duplicated columns of the ingredient array in an SCPHF by COMP

from the ingredient of which it is a replicate. The computed index is `k + y. (See

Figure 2.1 for an illustration.) A t-set is covered if and only if the column portion

of the index is distinct for all columns in the t-set. When these are not distinct, two

columns in the t-set correspond to the same column from the ingredient, and identical

columns cannot contain a covering tuple. When all columns of the t-set correspond

to different columns from the ingredient, these must have a covering tuple in some

row as they are covered somewhere in the ingredient.

The advantage of COMP is that it covers a large fraction of the t-sets of columns

quickly with no additional work by using an ingredient array. Another advantage

is that it is useful for comparing the bounds obtained for composition versus direct

construction. COMP is presented in Algorithm 2.

2.2.2 Affine Composition (AF-COMP) Algorithm

The primary disadvantage of COMP is that the duplication caused by the k sets

of m identical columns results in more remaining t-sets than necessary to be covered

by CE. The Affine Composition (AF-COMP) algorithm attempts to avoid identical

columns by applying affine transformations. (See Figure 2.2 for an illustration.) By

Theorem 1, the classes of covering and noncovering tuples are closed under arithmetic

in GF(v), and therefore, applying an affine transformation to an SCPHF yields an-

30

Algorithm 2: Composition (COMP)

input : A an N × k strength t array on vt−1 symbols, m a number of copies

output: A′ an (N +N ′)× km strength t array on vt−1 symbols, N +N ′

begin
Create an empty N ×mk array, A′

for row 0 ≤ x < N do

for subarray index 0 ≤ ` < m do

for column index 0 ≤ y < k do
Set A′[x][`k + y] = A[x][y]

for
(
km
t

)
−
(
k
t

)
mt t-sets T containing at least two columns with the same

column index do
Add T to remaining list

Run CE algorithm on A′ to build the final N ′ rows

Return A, N +N ′

other SCPHF. In fact, the rows of an SCPHF are independent, so a different affine

transformation can be applied to each row within an SCPHF. Given an SCPHF(k, v, t)

with permutation vectors
−−−−−−−−−−→
(h

(i)
1 , . . . , h

(i)
t−1), an affine transformation is a choice of multi-

pliers 1 ≤ µj < v and adders 0 ≤ αj < v, 1 ≤ j ≤ t−1 that results in the permutation

vector
−−−−−−−−−−−−−−−−−−−−−−−−→
(µ1h

(i)
1 + α1, . . . , µt−1h

(i)
t−1 + αt−1). There are v choices for the adder and v− 1

choices for the multiplier, and each pair of choices can be made for the t − 1 coor-

dinates of a permutation vector and N rows of the ingredient. Therefore, a single

ingredient can result in (v(v−1))N(t−1) SCPHFs by affine transformation. Because it

is unclear how to choose the “best” set of affine transformations, AF-COMP selects

them randomly.

Each subarray is still an SCPHF, so t-sets within a subarray are covered. Con-

structing the first ingredient covers
(
k
t

)
t-sets, and by composition, another (m−1)

(
k
t

)
are covered “for free.” However, it is no longer the case that t-sets with distinct in-

dices with respect to the column portion are still covered as closure under affine

31

k

x

y lk+y

(μ1h1+α1,…,μt-1ht-1+αt-1)(h1, …,ht-1)

N
m-10 1 … l …

N’

Figure 2.2: Transformed columns in an SCPHF by AF-COMP

transformation does not hold when different affine transformations are applied. AF-

COMP must check the t-sets between subarrays to compute the remaining list. The

CE algorithm is again employed to build the final N ′ rows and complete the SCPHF.

The AF-COMP algorithm is given in Algorithm 3.

2.2.3 Composition Bounds

When COMP is used,
(
km
t

)
−
(
k
t

)
mt t-sets remain after constructing the copies.

There are
(
km
t

)
total t-sets in the composed array and

(
k
t

)
ways to select t distinct

columns from the original SCPHF withm choices of subarray for each of the t columns.

Recall that the upper bound for the number of rows, Nk, for the ingredient with k

columns is

log
(
k
t

)
log 1

β

=
log
(
k
t

)
log (vt−1)t

(vt−1)t−(vt−1)(vt−1−1)···(vt−1−t+1)+nct(v)

< Nk

Let NCOMP be the number of rows constructed during the run of CE in the COMP

algorithm, with the total number of rows bounded by Nk +NCOMP . Then, an upper

bound on the number of rows added during COMP is the smallest NCOMP for which

log(
(
km
t

)
−
(
k
t

)
mt)

log 1
β

=
log(

(
km
t

)
−
(
k
t

)
mt)

log (vt−1)t

(vt−1)t−(vt−1)(vt−1−1)···(vt−1−t+1)+nct(v)

< NCOMP

holds. When the construction is done entirely by CE, the upper bound is the smallest

32

Algorithm 3: Affine Composition (AF-COMP)

input : A an N × k strength t array on vt−1 symbols, m a number of copies

output: A′ an (N +N ′)× km strength t array on vt−1 symbols, N +N ′

begin
Create an empty N ×mk array, A′

for row 0 ≤ x < N do

for subarray index 0 do

for column index 0 ≤ y < k do
Set A′[x][`k + y] = A[x][y]

for subarray index 1 ≤ ` < m do
Choose a transformation

{{µ1, α1}, · · · , {µt, αt}}, 1 ≤ µ ≤ v, 0 ≤ α ≤ v at random

for column index 0 ≤ y < k do
Set A′[x][`k + y] to the image of A[x][y] under the

transformation

for
(
km
t

)
−
(
k
t

)
m t-sets T containing columns spanning more than one

subarray do

if T is not covered in A′ then
Add T to remaining list

Run CE on A′ to build the final N ′ rows

Return A′, N +N ′

Nkm for

log
(
km
t

)
log 1

β

=
log
(
km
t

)
log (vt−1)t

(vt−1)t−(vt−1)(vt−1−1)···(vt−1−t+1)+nct(v)

< Nkm.

Nk ≤ Nkm and Nk < Nk + NCOMP when m > 1, as expected. An SCPHF with

a multiple of k columns cannot require fewer rows than the SCPHF with k. The

duplication in COMP always results in needing at least one additional row to cover

the t-sets that include at least one column with the same column index.

The relationship between Nk + NCOMP and Nkm is not as clear. Experimentally,

evidence suggests that Nk + NCOMP > Nkm, and this is likely true when k and

m are small. Asymptotically when v and t are fixed, Nkm = O(log((km)t)) and

33

Nk +NCOMP = O(log(kt)) + log((km)t − ktmt). When m is small and k approaches

infinity, both are O(log(kt)).

It is unclear if there is an efficient way to compute a priori how many t-sets

remain after constructing copies in AF-COMP and thus how to compute NAF−COMP .

Closure under affine transformation for the covering and noncovering classes ensure

that no more than
(
km
t

)
−
(
k
t

)
m t-sets remain, but this bound is larger than the one

obtained for COMP. Computing the uncovered t-sets after AF-COMP is problematic

without knowing the tuples in the columns and the transformations applied.

2.3 Results

2.3.1 Evaluation of CE

CE constructed the arrays in Tables 2.1 and 2.2, and these covering arrays im-

prove upon the previously known results for the parameters t, k, and v. Random

Extension is a method to extend an SCPHF by one column. Columns are randomly

generated until one is found that can be appended to an SCPHF(N ; k, v, t) to produce

an SCPHF(N ; k+ 1, v, t) or an iteration limit is reached. CE creates good ingredients

to be further extended by Random Extension (RE), and results from the combined

method CE-RE are published in [19]. For many ranges of values for t = 3, CE-RE

improved upon the best previously known results.

One of the time optimizations, using a standard first row, may cause noncovering

tuples to be placed that are avoided by the CE search method when k is small,

resulting in more rows. The benefit of constructing the first row by CE search is

reduced as k increases, and the standard first row provides significant time savings,

as it takes minimal time to construct, yet covers a large percent of the
(
k
t

)
t-sets of

columns. For strength three, the first row options of standard versus search tend

34

Table 2.1: Strength three CAs

CA(605; 3, 179, 5) CA(725; 3, 375, 5) CA(965; 3, 1518, 5)
CA(1351; 3, 174, 7) CA(2023; 3, 1066, 7) CA(1016; 3, 56, 8)
CA(2024; 3, 228, 8) CA(3032; 3,1550,8) CA(2889; 3, 294, 9)
CA(4329; 3, 1525, 9) CA(5291; 3, 442, 11) CA(8749; 3, 400, 13)
CA(16336; 3,957,16) CA(9809; 3, 65, 17) CA(19601; 3, 765, 17)

CA(13699; 3, 74, 19)

Table 2.2: Strength four CAs

CA(1516; 4, 63, 4) CA(1768; 4, 84, 4) CA(3725; 4, 97, 5)
CA(4345; 4, 125, 5) CA(9583; 4, 56, 7) CA(11977; 4, 72, 7)
CA(14371; 4, 98, 7) CA(16765; 4, 108, 7) CA(26217; 4, 40, 9)

to result in the same number of rows when three rows are needed in the SCPHF.

Experimental support for the algorithmic option of a standard first row is provided

by one example given here. Constructing an SCPHF(120, 53, 4), which becomes a

CA(4345; 4, 120, 5), both options result in the same number of rows, N = 7. They also

have the same number of remaining t-sets after the first row, 1,644,570, which is 20%

of the total 8,214,570 t-sets. The effect on running time is substantial. Construction

of the SCPHF takes 1299.9 minutes when the first row is constructed by search and

263.1 minutes with the standard first row.

2.3.2 Comparison of COMP to CE

The advantages of the composition algorithms are decreased memory and time.

CE requires too much memory to build an SCPHF(5000, v, 3) due to adding all of the t-

sets to the remaining list initially, whereas COMP reduces the storage of the remaining

list to just those t-sets that contain two or more columns with the same column portion

of the index from the ingredient. COMP builds an SCPHF(9; 1000, 52, 3) by making

ten copies of an SCPHF(5; 100, 52, 3) in 38 seconds, 2.7% of the time used by the CE

algorithm, while resulting in just one extra row. At the time this work was conducted

35

Table 2.3: Covering arrays constructed by COMP

Ingredient m SCPHF Covering array

SCPHF(6; 375, 52, 3) 5 SCPHF(8; 1000, 52, 3) CA(965; 3, 1000, 5)
SCPHF(6; 375, 52, 3) 5 SCPHF(9; 1875, 52, 3) CA(1085; 3, 1875, 5)
SCPHF(8; 1000, 52, 3) 5 SCPHF(11; 5000, 52, 3) CA(1325; 3, 5000, 5)
SCPHF(6; 714, 72, 3) 7 SCPHF(9; 4998, 72, 3) CA(3031; 3, 4998, 7)

and prior to the development of CE-RE, COMP found covering arrays that compare

favorably to the best known arrays, including those in Table 2.3.

2.3.3 Comparison of COMP to AF-COMP

Experimental data in Table 2.4 supports the intuition that AF-COMP outper-

forms COMP. In all cases, fewer t-sets remaining after AF-COMP correspond to

fewer rows in the final array and shorter running time for CE to build the final N ′

rows. In general, the improvement increases as problem parameters increase. The

one case where the trend does not hold is m = 2, v = 5. Randomness in the algorithm

likely selected a set of affine transformations that performed better than the cases for

six and ten copies. Table 2.5 shows that the benefit of AF-COMP over both COMP

and directly constructing by CE becomes more significant as t increases. The im-

provement of AF-COMP over COMP is substantial even when the number of copies

m is quite small.

2.3.4 Comparison of Composition Strategies

There are many choices of k and m for composition to achieve an SCPHF with

km columns. Figure 2.3 compares a direct construction by CE for a CA(3,1000,5)

against composition constructions by both COMP and AF-COMP. The notation m×

(k) indicates m copies were made of a k column ingredient. Time, presented in

seconds, includes the time to construct the ingredient with N rows by CE, perform

36

Table 2.4: Comparison of AF-COMP to COMP by total rows produced (N) and
number of remaining t-sets (R) after composition phase for SCPHF(50m, v, 3)

m v COMP(N) AF-COMP(N) COMP(R) AF-COMP(R) % of COMP(R)

2 3 10 8 4900 433 8.84%
6 3 13 11 221500 18096 8.17%

10 3 14 12 1108500 91359 8.24%
2 4 8 7 4900 323 6.59%
6 4 10 8 221500 9886 4.46%

10 4 11 9 1108500 47017 4.24%
2 5 7 6 4900 206 4.20%
6 5 8 7 221500 11599 5.24%

10 5 9 7 1108500 56004 5.05%

Table 2.5: Comparison of AF-COMP to COMP by number of remaining t-sets (R)
after composition phase for SCPHF(64m, 43, 4) and comparison to total

(
km
t

)
t-sets

m COMP(R) AF-COMP(R) % of COMP(R) Total % of Total

2 501984 1398 0.278% 10668000 0.013%
4 12136384 33246 0.274% 174792640 0.019%
6 68434080 191325 0.280% 891881376 0.021%

the composition, and run CE again to produce the final N ′ rows. In all cases, AF-

COMP results in fewer rows and less time than COMP. Additionally, AF-COMP is

much faster than CE and, in two of the three cases, produces a covering array with

the same number of rows as CE.

The performance of COMP on the response variable time shows an interesting

trend. As the size of the ingredient decreases and the number of copies increases, the

time to construct increases. When many copies are made, it is likely that the repeated

structure results in more uncovered t-sets. These must be covered by the second

execution of CE, which is more time intensive. The time savings by constructing

the 50 column ingredient versus the 200 column ingredient does not make up for the

time executing CE on the 1000 column SCPHF. This trend appears to be reflected

in AF-COMP, though substantially reduced. This suggests that to obtain the time

37

0

500

1000

1500

2000

2500

3000

R
ow

s

 965

1325

1085

1325

 965

1205

 965

2990

 231
 110

 395

 108

 758

 143

CE-1
x(

10
00

)

COM
P-5

x(
20

0)

AF-C
OM

P-5
x(

20
0)

COM
P-1

0x
(1

00
)

AF-C
OM

P-1
0x

(1
00

)

COM
P-2

0x
(5

0)

AF-C
OM

P-2
0x

(5
0)

Composition Strategy, m x (N)

0

500

1000

1500

2000

2500

3000
S

ec
on

ds
Time in seconds
Final rows

Figure 2.3: Comparison of composition strategies by size of ingredient and number
of copies for construction of CA(3, 1000, 5) via SCPHFs

benefit of composition, a reasonable strategy is to keep the number of copies small.

For rows, both COMP and AF-COMP produce the fewest rows when the smallest

ingredient and largest number of copies are used. As is often the case, there exists a

tradeoff between time efficiency and accuracy. Then a strategy that prioritizes time

efficiency and accuracy may be to choose k and m to be in the middle.

Instead of performing one large composition, repeated compositions can be per-

formed to build up to the desired km. Figure 2.4 compares different strategies in terms

of the final number of rows and total running time to again create a CA(3,1000,5). For

repeated compositions, the notation `×(m×(k)) indicates m copies were made of a k

column ingredient followed by ` copies of the resulting km column SCPHF. For a third

38

0

200

400

600

800

1000

1200

1400

1600

1800

2000

R
ow

s

1325

1085

1565

1085

1685

1085

231

110

242

115

262

119

COM
P-5

x(
20

0)

AF-C
OM

P-5
x(

20
0)

COM
P-5

x(
5x

(4
0)

)

AF-C
OM

P-5
x(

5x
(4

0)
)

COM
P-5

x(
5x

(5
x(

8)
))

AF-C
OM

P-5
x(

5x
(5

x(
8)

))

Composition Strategy, m x (N)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

S
ec

on
ds

Time in seconds
Final rows

Figure 2.4: Comparison of composition strategies by repeated compositions for
construction of CA(3, 1000, 5) via SCPHFs

composition, the number of copies is placed to the left and the pattern continued.

For COMP, when smaller ingredients are used with repeated compositions, the result

is more time and more rows, suggesting that recursively performing COMP is not

a useful strategy. Recursive AF-COMP suffers from increased time, but again only

marginally, and it does not produce additional rows. It seems likely that the culprit

is the repeated structure in COMP that is compounded by recursive compositions.

AF-COMP reduces the repeated structure through the affine transformations.

39

Chapter 3

FAULT LOCATION

Covering arrays are employed to create test suites for interaction testing as they in-

dicate the presence of a faulty interaction in some test in the suite. Locating arrays

determine the interaction or set of interactions causing the fault when the number of

faults is at most d. The extra property of fault location comes at the cost of more

rows and increased complexity in constructing the array. Necessary background and

definitions for this chapter are provided in § 1.2 of the introduction. The contribu-

tion of this work is to develop an algorithm to construct mixed-level locating arrays

for general d and t and to provide an algorithmic framework to accommodate speed,

measured primarily in seconds but also in iterations of the algorithm, versus accu-

racy, measured in number of rows, i.e., being closer to LAN(d, t, k, v). This chapter

is organized as follows. The Partitioned Search with Column Resampling (PSCR)

construction for locating arrays is presented in § 3.1. Parameter tuning results and

guidance, comparison of PSCR to other constructions, and constructing larger locat-

ing arrays from ingredients using PSCR are explored in § 3.2.

3.1 Locating Array Construction

3.1.1 Overview

The Partitioned Search with Column Resampling (PSCR) algorithm combines

Moser-Tardos-style column resampling with partitioning the search space to only

those sets of interactions that could share the same rows [38]. PSCR constructs arrays

that are (d̄, t)-locating, ensuring that sets of at most d t-way interactions appear in

40

unique sets of rows.

PSCR is inspired by Moser-Tardos resampling [42], but differs in important ways

from the implementation of column resampling for locating arrays in [52]. Moser-

Tardos column resampling for locating array construction begins with a randomly

selected candidate array with the number of rows meeting the Lovász Local Lemma

bound. The interactions of the array are checked in an arbitrary but fixed ordering

until a “bad event” that violates the conditions is found, i.e., two sets of t-way in-

teractions, T1, T2 with |T1| ≤ d, |T2| ≤ d and ρ(T1) = ρ(T2). Call these bad events

collisions. When the first collision is identified, all columns in T1 and T2 are resam-

pled, and checking begins again in the same fixed order. The fixed ordering allows for

an expectation to be computed on the number of resamplings needed to find a solu-

tion in which there are no collisions, and Moser and Tardos prove that the expected

number of resamplings is polynomial in k when d, t, and the numbers of levels are

fixed.

PSCR exploits the fact that not all sets of interactions need to be compared. The

search space is partitioned to systematically “guess” the row that must be in the

set ρ(T1) = ρ(T2) and only sets that include that row are compared. As resamplings

occur, interactions may appear in different rows and so may be compared in a different

order. That is, PSCR is driven by an ordering on rows rather than interactions.

Additionally, PSCR starts with some initial number of rows and adds a new row

when the progress made in reducing the number of collisions drops below a threshold.

Lastly, the number of columns involved in a single collision can be as high as 2dt.

When d and t are not small relative to k, a single resampling can rewrite a large

portion of the array. When the candidate array is close to satisfying the property, this

may introduce more collisions and reverse progress. PSCR takes a more conservative

approach, and the number of columns to resample, either one or t, is tunable.

41

It is unclear if the change in ordering is sufficient to invalidate the assumptions

made and the potential impact on the convergence in the Moser-Tardos method.

In practice, however, PSCR can construct locating arrays with fewer rows than the

Moser-Tardos column resampling method when the algorithmic parameters are cor-

rectly tuned (see § 3.2.3).

3.1.2 Verification

The first step to constructing a locating array is verifying when a candidate array

is (d̄, t)-locating. Given a candidate array, A, any verifier must check that all t-way

interactions are covered in some row (condition 1) and the rows corresponding to a

set of at most d t-way interactions are not the same as those for another set of at

most d t-way interactions (condition 2).

The verifier creates a two-dimensional incidence matrix I where the |It| rows

represent interactions and the N columns represent rows in A. That is, row i of I

represents interaction i in A, and I[i][n] = 1 if and only if n ∈ ρ(i), 1 ≤ n ≤ N . If the

sum of any row is 0, then A does not meet condition 1. For condition 2, the naive

approach is to conduct pairwise comparisons: for each way to choose at most d rows

of I, take the union of the rows and compare this to all other ways to choose at most

d. If any two unions are equal, A is not a locating array.

The number of t-way interactions, |It|, is
∑

i∈T,|T |=t
∏
vi, or

(
k
t

)
vt for uniform v.

Let S be the number of sets of at most d t-way interactions,

S =
d∑
i=1

(
|It|
i

)
.

The number of comparisons that must be made is
(
S
2

)
which can become infeasible

quickly.

Another approach is to build the sets intelligently so that if there are two sets

42

of interactions that share the same rows, they can be found with fewer comparisons.

Assume there is some T 6= T ′ for which ρ(T) = ρ(T ′). Then there is some row

r ∈ ρ(T) such that r has the smallest index, and the search space can be partitioned

into N parts so that not all sets have to be compared, just those for which r is the

minimum element of ρ(T).

To accomplish the partition, interpret the rows of indicator matrix I as binary

numbers for sorting the interactions of A in increasing value of the representation of

ρ(i). Build N trees such that for every interaction set T in tree r, r is the smallest

element of ρ(T). That is, tree r does not include any interaction that appears in a

row of A with index smaller than r. Each node u of the tree stores the following

information: a set of interactions Tu, a set of rows R(u) representing ρ(Tu) from A,

and depth(u) at this node. The root node of tree r, root(r), has the zero vector for

R(r), Tr = ∅, and depth(r) = 0. A node w is added as a child of root(r) for every

interaction i that has r as the smallest element of ρ(i). For example, root(2) has a

child for every interaction i where I[i][2] = 1 and I[i][0] = I[i][1] = 0. The interaction

i is stored as Tw, ρ(i) is stored as R(w), and depth(w) = 1. For node x representing

the addition of interaction j to form the set Tx in tree r with depth(x) < d, add a node

y as a child of x for each interaction ` where index ` < j in the sorted indicator matrix

I. Node y stores Ty = Tx
⋃
{`}, R(y) = R(x)

⋃
ρ(`), and depth(y) = depth(x) + 1.

As tree r is built, for every created node u, add R(u) to a sorted list, Lr. If R(u)

is already in Lr, this is a collision, and R(u) = R(x) for some two nodes, representing

two distinct sets of interactions of size ≤ d, and so A is not a locating array. Once

all collisions are found, the participating interaction sets, Tu and Tx, can be stored in

a table of collisions, and the memory for tree r can be reused to create tree r+ 1 and

memory for list Lr reused for Lr+1. Finding collisions throughout the tree and not

just at the leaf nodes ensures that the locating arrays found are (d̄, t)-locating.

43

This method checks each of the sets of interactions once. Each level 1 (child of a

root) node is unique; the level 1 nodes in tree r are all interactions that have r as the

smallest row in which they appear. These are the
(|It|

1

)
sets. Each successive child

of a node is unique; take a level 1 node and add each of the interactions that have

smaller index in I successively to create each of the level 2 nodes. These are the
(|It|

2

)
sets. This holds true down to the level d nodes.

The naive approach makes pairwise comparisons of all sets of size at most d and

is therefore O(S2). Our approach creates a node for each of the sets once, O(S).

However, in each step, the sorted list Lr is maintained via insertion sort. Operating

on lists of size S
N

on average, the sorted list adds O((S
N

)2) steps for each of the N

trees, or O(S
2

N
) total. Then, our approach is O(S2) as well, but a practical benefit

in running time is from partitioning the space into the N groups. Replacing the

insertion sorted list with a hash table may reduce the running time to O(S).

Figure 3.1 demonstrates how tree 2 is built given the sample indicator matrix, I,

for a candidate locating array with d = 2, h interactions, and four rows. Interactions

b and c have row 2 as their smallest row, so they are added as level 1 nodes. They

are the only such interactions as while interaction h appears in row 2, it also appears

in row 1 and so is processed in tree 1. Interaction a is added to b and interactions b

and a are individually added to interaction c to form level 2 nodes. When inserting

the R values into the sorted list L for each node, collisions are found that involve the

sets {{c}}, {c, b}} and {{b, a}}, {c, a}}. These are added to the collision table C for

processing in the repair step. Up to four trees, one per row of the candidate array A,

are created in this phase of the algorithm. Options that indicate whether to build all

trees before attempting to repair are discussed in the next section.

44

root(2)

0 0 1 1

0 1 0 0

0 1 0 1

1 0 0 0

1 1 0 1

…

1 2 3 4

a
b
c
d

h

depth = 1
T = {b}

R = 0 1 0 0

depth = 1
T = {c}

R = 0 1 0 1

depth = 2
T = {b, a}

R = 0 1 1 1

depth = 2
T = {c, b}

R = 0 1 0 1

depth = 2
T = {c, a}

R = 0 1 1 1

I
0 1 0 0

0 1 0 1

0 1 1 1

L

C
{c},{c,b}
{b,a},{c,a}Indexed by row # of A

Indexed by interaction # of A

Figure 3.1: Example of tree 2 in verification step of PSCR

3.1.3 Repair

If verification fails, an attempt is made to repair the array with column resam-

pling and try verification again. Algorithmic parameters — collision handling option

(CHO), α, adaptive-α, avoid, maxIterations, initialN — can be set to prioritize

speed or accuracy. Given a candidate array with initialN rows, PSCR executes the

following two routines in a loop until it produces a locating array or it meets the

threshold for maximum iterations allowed (maxIterations).

1. Verify coverage (condition 1). If coverage fails, resample a randomly chosen

column for the interaction that fails to appear, and continue this loop of verifi-

cation and resampling until the array satisfies condition 1. In an early version

of the algorithm, all columns for the non-appearing interaction were resampled,

but when k is small relative to t, this appears to cause too much disruption

in the candidate array and can affect accuracy. For large numbers of factors,

resampling all t columns is a viable alternative to increase speed and is less

likely to affect accuracy. Resampling is conducted with a weighted probability

45

on symbols such that the more often a symbol appears in the rows of a column,

the less likely it is to be selected in future rows with a cap of dN
v
e. If the re-

sampling loop has completed vt times without passing, a row is added to the

candidate array. This routine may add more rows than are necessary to achieve

coverage. The parameter avoid set to true prevents adding a row in this sub-

routine if the candidate array has satisfied the coverage condition previously.

When condition 1 is satisfied, proceed to verify condition 2.

2. Verify location (condition 2). This routine includes the verifier from the previous

section. If condition 2 is satisfied, the candidate is a locating array. If not,

collision handling attempts to improve the candidate array. Additionally, if a

threshold is reached for non-progress, a randomly chosen row is added.

Five collision handling options reflect differences in the size of the array to check

before exiting with a collision and how to resample once collisions are found. The

first three options select one interaction implicated in a collision and resample all of

the columns in the interaction. The fourth option instead resamples a single column.

The fifth option drives execution to one of the other options based on conditions of

the candidate.

1. Greedy (CHO = 0). When the first collision is found, exit the verifier. Ran-

domly choose a colliding interaction set T from the set of two colliding interac-

tion sets, randomly choose an interaction T ∈ T , and resample all columns of

T .

2. Random (CHO = 1). Find all collisions, then randomly choose a colliding

interaction set T from the set of all colliding interaction sets, randomly choose

an interaction T ∈ T , and resample all columns of T .

46

3. Interaction (CHO = 2). Find all collisions, then compute the interaction T

involved in the most collisions, and resample all columns of T .

4. Column (CHO = 3). Find all collisions, then resample the single column

involved in the most collisions.

5. Adaptive (CHO = 4). The adaptive option exits the verification phase if the

percentage of colliding interactions is higher than a threshold for the number

of sets checked so far. Let collision rate = colliding interaction sets
interaction sets checked

and completion =

interaction sets checked
S

where S is the number of sets of at most d t-way interactions

as defined in § 3.1.2. This implementation exits early if the inequality

(collision rate) ≥ −0.5(completion) + 0.5

holds. Additionally, the collision handling option executed is based on the per-

centage of interaction sets that are colliding, percentage colliding = colliding interaction sets
S

.

This implementation uses the following boundaries:

1 ≥ (percentage colliding) > 0.25→ CHO = 1

0.25 ≥ (percentage colliding) > 0.05→ CHO = 2

0.05 ≥ (percentage colliding) > 0.00→ CHO = 3

A move is changing A via column resampling. After each move, the algorithm

checks to see if it is making progress, defined as reducing the number of collisions

more than a fixed distance from the mean given by the tunable parameters α and

adaptive-α. The number of collisions found in an iteration is counted and a z-score

for the iteration is computed and compared to the mean of the history, the last 10

recorded collision counts. The collision counts for the first 10 iterations are always

recorded as they seed the history. The algorithm avoids allowing the number of

47

collisions to climb upward in a series of small steps by fixing the history mean to the

lowest mean seen so far; only collision counts with non-positive z-scores are recorded.

Riskier moves, those that produce less favorable z-scores, are allowed towards the

beginning of execution to attempt to avoid getting stuck at a local optimum by using

a measure for time = iteration
maxIterations

in decisions.

It may be difficult or even impossible to create a locating array with the current

number of rows. The threshold for progress is defined by α + 0.25 ∗ time. When

adaptive-α is false, the threshold is simply α; when true, the threshold increases as

time passes. The intention behind adaptive-α is to allow more rows to be added early

in execution, giving the algorithm the most time possible to use these added rows to

find a solution, but to prevent unnecessary rows from being added late in execution.

A z-score falls into one of four zones:

1. Rollback. A move with a z-score of z ≥ 1− time produces many more collisions

than the mean. This move is disallowed and triggers a rollback to the previous

state of A. The gradually decreasing upper limit on acceptable z-scores allows

for riskier moves early in execution but requires moves to make better progress

as time runs out.

2. Allow, add a row. A move may be allowable, but produces a positive z-score

and, therefore, a number of collisions that is greater than the mean. This zone

is defined as 0 < z < 1− time. The number of collisions produced is not added

to the history so that the history mean never increases, and a row is added.

3. Allow, add a row, and record. A move with a non-positive z-score has no more

collisions than average, but it may not be making as much progress as desired.

The threshold is compared to the percentage of the normal distribution to the

left of the z-score; if percent > α, the z-score does not reside in the left tail

48

defined by α, so it is not progressing. A row is added and the number of

collisions is added to the history.

4. Allow and record. If percent ≤ α, the algorithm is progressing, so no new row

is added. The number of collisions is added to the history.

The zones for α = 0.1 when α is constant are depicted in Figure 3.2. When

α = 0.1, a z-score of z = −1.2 is in zone 3, but z = −1.3 is in zone 4. Figure

3.3 illustrates the zones for adaptive-α as the threshold increases proportionally to

time. Setting adaptive-α to true has the result that a move towards the beginning of

execution that results in an added row might not result in an added row towards the

end of execution. For example, near the end of execution, z = −0.3 is in zone 3 and

z = −0.4 is in zone 4, while both are in zone 3 at the beginning.

3.1.4 Partitioned Search with Column Replacement (PSCR) Algorithm

A high level view of PSCR is presented in Algorithm 4.

3.2 Results

In this section, results from PSCR are produced and analyzed along three di-

mensions. The performance of the tunable parameters is analyzed to develop an

algorithmic framework to accommodate accuracy versus speed and provide guidance

on parameter settings. Results from PSCR are compared against constructions from

higher strength covering arrays as well as against reported results for implementa-

tions of column resampling and local optimization. Additionally, using PSCR to build

locating arrays when provided with various ingredient arrays is explored.

49

0.25 0.5 0.75

Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z-
sc

or
e

1-time

Zone 1: rollback to previous A

Zone 2: allow move, add row

 = .1 Zone 3: allow move, add row, record score

Zone 4: allow move, record score

1-time

 = .1

Zone 1: rollback to previous A

Zone 2: allow move, add row

Zone 3: allow move, add row, record score

Zone 4: allow move, record score

Figure 3.2: Zones for constant α = 0.1

0.25 0.5 0.75

Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z-
sc

or
e

1-time

adaptive = .1 + .25 * time

Zone 1: rollback to previous A

Zone 2: allow move, add row

Zone 3: allow move, add row, record score

Zone 4: allow move, record score

Figure 3.3: Zones for adaptive-α , initial α = 0.1

50

Algorithm 4: Partitioned Search with Column Replacement (PSCR)

input : A, d, t, k, v,N,CHO,α, adaptive-α, avoid,maxIterations
output: A, N, seconds, iteration
begin

iteration = 1
resamplings = 0
repeat

Make a copy of A as A′

Create I, |It| ×N boolean matrix
while some interaction does not appear in A do

if (avoid is false OR A never satisfied coverage) AND resamplings
of loop ≥ vt since row added then

add a randomly selected row to A, increment N

for each interaction i ∈ It do
set I[i][j] = 1 ⇐⇒ interaction i appears in row j of A
if the sum of row i in I is 0 then

randomly select and resample one of the columns of
interaction i in A

Sort I
for each column n of I, 1 ≤ n ≤ N do

Create root(n)
for every row index i ≤ N , n the smallest r for which I[i][r] = 1 do

Add child node u to root(n) with Tu = {i}, R(u) = I[i], and
depth(u) = 1

Insert R(u) in list Ln

for level 1 ≤ currDepth < d do
for every node w in level currDepth do

for every row index j ∈ I such that j < index for w do
Add child node x, Tx = Tw

⋃
{j},

R(x) = R(w)
⋃
I[j], depth(x) = depth(w) + 1

if inserting R(x) in Ln causes collision then
add the collision to a set of collisions, Citeration

if CHO=0 then
exit

if Citeration = ∅ then
output A, N, seconds, iteration

else
Compute z-score of Citeration compared to history
Set A = A′ if disallowed
Add a row if not progressing enough
Update history with |Citeration|

Resample columns of A based on CHO, percent colliding
Increment iteration

until iteration = maxIterations
Reached maxIterations without resolving all collisions

51

d t k v maxIterations
1 1 1000 7 600
1 2 25 6 250
1 3 8 4 300
2 1 20 5 500
2 2 5 3 350

Table 3.1: Blocks for 5× 5× 3× 2× 2 full factorial

3.2.1 Parameter Tuning

The following algorithmic parameters are tuned to prioritize speed or accuracy:

collision handling option (CHO) with five levels, α with range (0.0003, 0.5), and two

binary parameters, adaptive-α and avoid. To determine the effect on the number of

rows in the constructed locating array and the time required to construct it, a full

factorial designed experiment is conducted with four replicates with response variables

rows (N), iterations, and seconds. The response variables are converted to z-scores to

make the analysis straightforward over blocks that may have wildly different ranges

for these variables. Three values for α ∈ {0.001, 0.2, 0.4} are selected and blocks are

formed from five assignments of problem parameters as blocks described in Table 3.1.

The tunable parameter maxIterations is highly problem dependent, so it is not

included as a factor in the designed experiment. If maxIterations is set too low,

it is possible that PSCR may not find a locating array before timing out; if set too

high, the time-dependent algorithmic features deciding when to rollback to a previous

state and adaptive-α may never have the intended impact. A reasonable value for the

iterations needed to complete execution for each block is estimated by requiring that

at least 90% of the initial 240 runs in a block complete by successfully constructing

a locating array. Initial run success rates for the blocks range from 0.9-0.98 with a

mean of 0.94. Any runs that do not complete in the maximum iterations allowed are

executed again until a locating array is produced for that parameter setting. Despite

52

this, the effect of choice of maxIterations is confounded with blocks.

Statistical analysis is completed in JMP 14.0.0 separately on each response variable

and for each block [51], as well as running the analysis on the full factorial with blocks

included in the model and without. In all cases, the model included all effects (main

effects and all interactions). Results of the JMP Effect Tests are compared side by

side and any effect that is not significant in any analysis is removed. The comparison

is shown in Figure A.1 in the appendix, and effects that are likely to be real given their

significance and prevalence in the blocks are highlighted. The main effect of blocks

is not significant, but blocks often appear in significant interactions, suggesting that

something about how d, t, k, v or maxIterations are chosen impacts the algorithm.

Main effects CHO and α and the second degree interaction of these are significant

for all response variables, and main effects avoid and adaptive-α may be significant

for iterations and seconds.

The main effect of CHO on each of the response variables as the mean standard-

ized score across all blocks is shown in Figure 3.4. Greedy CHO results in many

more rows than any of the other options, but is also the fastest. For the random,

interaction, and column options, there is a general positive correlation of rows, it-

erations, and seconds, indicating that the longer the algorithm runs, the more rows

are added, with resampling the most involved column producing the fewest rows the

fastest, on average. This is the opposite of what was originally hypothesized; that

is, that the random option is fastest and least accurate. It may be the case that, in

general, the time spent to analyze the collision table and choose a “good” column

to resample is still faster than the time to conduct extra iterations when a less in-

telligent choice is made. This trend is broken for the adaptive option; it produces

only slightly more rows than the other options and takes more iterations, but does

so in substantially less time, reducing the time from the slowest option to the fast

53

0 1 2 3 4

Collision handling options

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

S
co

re

-0.97

0.41
0.32 0.27

-0.04

-0.78

0.23
0.17

0.07

0.32

1.1

-0.25 -0.25

-0.39

-0.2

Rows
Iterations
Seconds

Figure 3.4: Effect of CHO on rows, iterations, and seconds

greedy option by 32.5%. This is mostly expected, but not for the reason hypothe-

sized, which was that the adaptive CHO gets the speed from executing the random

and interaction options and the accuracy from executing the interaction and column

options. The most involved column surprisingly produces the fastest results of the

three middle options, suggesting that the adaptive option is not faster due to using

the random and interaction options, but rather the benefit is from checking less of

the array before aborting to fix some collision. It might be faster as well as more

accurate in the adaptive option to always use the column option while retaining the

ability to exit early when the number of collisions is high relative to the proportion

of array checked.

The effect of CHO on each of the response variables by block is shown in Figures

A.2, A.3, and A.4 in the appendix. The results by block are mostly expected with

the exception that the column option outperforms the adaptive option in seconds for

54

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

S
co

re

0.66

-0.19

-0.47

-0.73

0.03

0.7

-0.6

0.02

0.58

Rows
Iterations
Seconds

Figure 3.5: Effect of α on rows, iterations, and seconds

the LA(1,2,25,6) block, but this trend does not extend to the LA(1,3,8,4) block. The

difference in seconds between the options for the LA(1,3,8,4) block appears to shrink,

but there does not appear to be a trend indicating that as t or even d increase that

the time benefit decreases for the greedy and adaptive options. In both cases, these

results seem likely due to the randomness in the algorithm, and this is likely the

culprit for the Blocks×CHO interaction effect.

The main effect of α on each of the response variables as the mean standardized

score across all blocks is shown in Figure 3.5. Again, the trend is expected; increasing

α results in fewer rows, but requires more iterations and seconds. The effect of α

on the response variables by block are shown in Figures A.5, A.6, and A.7 in the

appendix, and they support this conclusion. The Blocks×Alpha interaction effect is

significant, and the JMP Interaction Profiler for rows in Figure 3.8 suggests that the

effect of α decreases as d and t increase for all response variables. The CHO×Alpha

55

0 1

Avoid

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

S
co

re

0.07

-0.07-0.15

0.15

-0.17

0.17

Rows
Iterations
Seconds

Figure 3.6: Effect of avoid on rows, iterations, and seconds

interaction effect is also significant for the obvious reason that the greedy option

always finds the first collision and aborts to enter the collision handling phase, so the

number of colliding interactions is always 2 until the program terminates with either

2 or 0 colliding interactions. As the z-score for an iteration is always 0.5, the choice

of α has no effect for this CHO. The interaction results for seconds and iterations

demonstrate the same effects and so are included in the appendix.

The effect of avoid, shown in Figure 3.6 is small though probably significant,

particularly for iterations and seconds, but it increases with d and particularly t,

explaining the Blocks×avoid interaction effect. The parameter adaptive-α is not

likely to have a significant effect (see Figure 3.7), as the average effect of adaptive-α

is 9%, 10%, and 7% of the effect of α on rows, iterations, and seconds, respectively.

Setting these parameters to true seems to result in fewer rows and more time. Both

of these results support the algorithmic design choice for these parameters.

56

0 1

Adaptive-

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

S
co

re

0.05

-0.05
-0.07

0.07

-0.04

0.04

Rows
Iterations
Seconds

Figure 3.7: Effect of adaptive-α on rows, iterations, and seconds

Priority CHO α adaptive-α avoid
Speed 0 any 0 0
Accuracy 3 ≥ 0.4 1 1
Both 4 0.2 {0,1} {0,1}

Table 3.2: Recommended tunable parameters settings by priority

Table 3.2 illustrates the recommended algorithmic settings for each priority.

3.2.2 Comparison to Higher Strength Constructions

PSCR successfully produces arrays that are (d̄, t)-locating with fewer rows than

from a strength (t + d) covering array when v > 2. Constructing an LA(1, 2, k, v)

requires at least as many rows as a strength two covering array. In fact, essentially

everything needs to be covered twice, so two times the number of rows in a strength

two covering array provides a reasonable lower bound. A strength three covering

array is a (1,2)-locating array, so this provides an upper bound on the number of

57

-1

-0.5

0

0.5

1

1.5

N

-1

-0.5

0

0.5

1

1.5

N

-1

-0.5

0

0.5

1

1.5

N

-1

-0.5

0

0.5

1

1.5

N

-1

-0.5

0

0.5

1

1.5

N

Blocks

0

12
34

0.001

0.4

0
1

0
1

1,
1,
10

00
,7

1,
2,
25

,6

1,
3,
8,
4

2,
1,
20

,5

2,
2,
5,
3

1,1,1000,7
1,2,25,6
1,3,8,4

2,1,20,52,2,5,3

CHO

0.001

0.4

0
1

0
1

0 1 2 3 4

1,1,1000,7

1,2,25,6
1,3,8,4

2,1,20,5
2,2,5,3

0

12
3

4

Alpha

01

0

1

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

1,1,1000,7
1,2,25,6
1,3,8,42,1,20,52,2,5,3

0

12
3

4

0.001

0.4

adaptive-a

0
1

0 1

1,1,1000,71,2,25,6

1,3,8,4

2,1,20,5
2,2,5,3

0

12
3

4

0.001

0.4

0
1

avoid

0 1

Blocks
CHO

Alpha
adaptive-a

avoid

Figure 3.8: 2-way interactions of parameters on response variable rows shown by
the JMP Interaction Profiler

58

rows. The covering array numbers are obtained from [14].

Figure 3.9 shows the rows for an LA(1, 2, 50, v) as the factor levels vary from

2 ≤ v ≤ 15 with the rows scaled logarithmically. Two sets of results for PSCR are

presented. The first set for v ∈ {2, . . . , 10} is generated with the adaptive option

for collision handling (CHO = 4). The second set for v ∈ {10, . . . , 15} is generated

with the greedy collision option (CHO = 0). Both sets use fixed α = 0.01. These

parameters are chosen to prioritize time efficiency for the larger v values by exiting

after the first collision and a low α value, and to balance time and accuracy by choice

of a low α value alongside the adaptive option for the smaller v values. The result

for v = 10 is computed for both sets to provide an idea of how the sets might differ,

though the difference could be attributed to randomness in the algorithm.

Figure 3.10 shows the number of rows for an LA(1, 2, k, 5) when the number of

factors varies from 10 ≤ k ≤ 640. Once again, the strength two covering array

provides a lower bound and the strength three an upper bound for the number of

rows. Figure 3.11 shows the rows for an LA(2, 1, k, 4) for the same number of factors.

The strength one covering array is not provided as a lower bound as it has exactly v

rows regardless of k. Both data sets are computed with the greedy option (CHO = 0)

and fixed α = 0.01.

In all cases, the algorithm was executed once for each parameter setting and that

value is presented. It is likely that this algorithm constructs locating arrays with fewer

rows by choosing larger values of α or setting the collision handling to resample the

most involved single column. This requires more execution time. Another approach

is to replicate the runs and choose the best result.

59

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v factor levels

0

1

2

3

4

5

6

7

8

9

10

lo
g(

N
 r

ow
s)

Rows in CA(3,50,v)
Rows in LA(1,2,50,v) - CHO=0, =.01
Rows in LA(1,2,50,v) - CHO=4, =.01
2 Rows in CA(2,50,v)

Figure 3.9: Rows in LA(1, 2, 50, v) with rows in CA(2, 50, v) and CA(3, 50, v) as
bounds, logarithmic scale

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

log(k factors)

0

100

200

300

400

500

600

700

N
 r

ow
s

Rows in CA(3,k,5)
Rows in LA(1,2,k,5) - CHO=0, =.01
2 Rows in CA(2,k,5)

Figure 3.10: Rows in LA(1, 2, k, 5) with rows in CA(2, k, 5) and CA(3, k, 5) as
bounds, logarithmic scale

60

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

log(k factors)

0

50

100

150

200

250

300

350

400

450

N
 r

ow
s

Rows in CA(3,k,4)
Rows in LA(2,1,k,4) - CHO=0, =.01

Figure 3.11: Rows in LA(2, 1, k, 4) with rows in CA(3, k, 4) as upper bound,
logarithmic scale

3.2.3 Comparison to Mixed-Level Locating Array Constructions

An additional advantage of PSCR over higher strength covering array construc-

tions is that, while many of the mathematical constructions that produce covering

arrays with fewer rows require a uniform value for all of the factor levels, no mod-

ification is required for PSCR to produce mixed-level locating arrays. We compare

PSCR against results produced for two systems with mixed factor levels by Seidel,

Sarkar, Colbourn, and Syrotiuk [52]. Their goal is to separate interaction effects, and

they use a parameter δ for distance to require that δ rows serve as witness to the

difference between T1 and T2. When δ = 1, this is a locating array by our defini-

tion. Greater distance generally requires more rows, and we are interested in creating

locating arrays with few rows, so we compare to their results for δ = 1.

The smaller MLA from [52], labeled “Testbed” in their paper, has 24 factors with

61

type 59453723 using the exponential notation. We were also interested in seeing how

the number of initial randomly seeded rows and the maximum allowed iterations

affects the result, so we ran a 5 × 3 full factorial design with 5 replicates to build a

LA(1, 2, 24, (59453723)). The initialN was chosen from the set {75, 85, 95, 105, 115}

and maxIterations from {100, 125, 150}. The collision handling option was set to

resample the most involved column (CHO = 3) and α was set to 0.4 with adaptive-α

and avoid both true. The rate of success increased from 0.27 for initialN = 75 to 1

for initialN = 115 and from 0.56 for maxIterations = 100 to 0.68 for both 125 and

150 maxIterations. The smallest locating array, having 110 rows, was produced both

by starting with 85 and 95 rows and allowing 125 and 150 iterations, respectively, and

took 12 and 11 seconds to complete. The average time of successful runs was 11.54

seconds and 11.72 overall. Analysis of the full factorial in JMP found that initialN

was significant for the number of rows produced with p = 0.0007. Both initialN

and maxIterations were significant for iterations, and initialN was significant for

seconds, all with p < 0.0001. As initialN increases, N increases and seconds and

iterations decrease, and as maxIterations increases, the number of iterations used

increases, all as expected.

The larger MLA, “Simulation,” has 75 factors with type 108918475610544639228.

This problem was deemed too large to run as rigorous of a testing scenario as the

smaller case, and the analysis of the smaller case was unsurprising. Through trial

and error, we determined that initializing the array with 250 rows produced locating

arrays with a reasonable number of final rows in an acceptable amount of time. We

set maxIterations to values from {75, 100, 125}, but chose to run 20, 15, and 10

replicates, respectively. The success rate was 0.15 for 75 maxIterations, but 0.20 for

100 and 125, and produced locating arrays with 534 to 554 rows with an average of

542.90. Successful runs used 33 to 96 iterations with an average of 69 and 3526 to

62

Factors PSCR Column Resampling Local Optimization
59453723 110 117 114
108918475610544639228 534 580 532

Table 3.3: Rows in smallest LA by algorithm

7715 seconds with an average of 5297. Allowing more iterations increased the success

rate, but also increased the average size of the array and average time to completion.

It seems straightforward that allowing fewer iterations weeds out locating arrays that

made less progress, producing fewer but better results.

PSCR outperforms the column resampling algorithm on both MLAs and is com-

parable to the local optimization algorithm, both allowed 1000 resamplings [52], as

shown in Table 3.3.

3.2.4 Constructing from an Ingredient Array

Recursive constructions for covering arrays often make use of good small ingredi-

ents that are expanded or composed in some way to produce larger solutions either

with fewer rows than expected or in less time or, ideally, both. PCSR can build

from a candidate array with an arbitrary number of rows and can allow resampling

of the ingredient’s rows or require that they remain untouched. For example, an

LA(d− 1, t, k, v) can be used as an ingredient to build an LA(d, t, k, v). Alternatively,

a strength t covering array can provide the initial coverage, and a strength t′ where

t < t′ < d+ t may be even more powerful.

We construct an LA(2,2,7,4) using the following ingredients (notation from [14]):

1. directly from a randomly seeded one row array as a baseline measure;

2. the strength two covering array with the fewest rows known, CA(21;2,7,4) “sim-

ulated annealing (Cohen)” [10];

63

3. the strength three covering array with the fewest rows known, CA(88;3,7,4)

“Chateauneuf-Kreher NRB” [8];

4. the smallest LA(1,2,7,4) constructed by PSCR, LA(54;1,2,7,4).

As it turns out, the Chateauneuf-Kreher NRB covering array is also an LA(2, 2, 7, 4)

and as such requires no additional rows. This is unexpected and presents a challenge

as that construction does not exist for many cases. To explore the case where an

ingredient with few rows is not readily available, we add one additional ingredient:

5. a strength three covering array, CA(124;3,7,4) “SCPHF Conditional Expectation

(CLS)” [19].

We explore both forbidding and allowing resampling of ingredient array rows,

except in the direct case which does not use an ingredient and the Chateauneuf-

Kreher NRB covering array which is already a locating array. All runs are given 200

iterations with the exception of CA(21;2,7,4) with ingredient resampling forbidden

as it requires 300 iterations to complete. Parameters adaptive-α and avoid are also

set to true, but when ingredient resampling is allowed for CA(21;2,7,4), avoid must

be set to false to complete in any reasonable amount of time. (With so few rows,

if a column is resampled and the candidate array is no longer a covering array, the

algorithm gets stuck at the covering array verification step and may resample millions

of times without again passing the check. By allowing the algorithm to add rows after

the initial covering array verification, it avoids getting stuck, but may add more rows

than in the alternative scenario.) The time reported is just the time in the PSCR

algorithm as the time to build each of the ingredients varies and may not be known to

us in all cases; however, we report that the ingredients LA(1,2,7,4) and CA(124;3,7,4)

from an SCPHF are constructed in less than 1 second.

64

PSCR was executed five times for each combination of ingredient and ingredi-

ent row resampling option. The mean rows plotted against mean seconds for each

ingredient and ingredient resampling option combination are shown in Figure 3.12.

The ten resulting locating arrays with fewest rows are presented in Table 3.4. The

three smallest are constructed from the Chateauneuf-Kreher NRB covering array,

LA(54;1,2,7,4) ingredient row resampling allowed, and directly; the smallest is an ex-

ceptional construction in terms of the small number of rows generated, and the next

two are likely found by good random selections. The last seven are constructed from

the other covering arrays. The CA(21;2,7,4) ingredient row resampling forbidden is

slow to construct, but produces good results probably because it provides the needed

coverage in the ingredient rows. The CA(124;3,7,4) ingredient row resampling allowed

is an order of magnitude faster and likely produces good results by providing a good

estimate of the number of rows for an LA(2,2,7,4) to exist. Surprisingly, with the

exception of the Chateauneuf-Kreher NRB covering array and the CA(124;3,7,4) in-

gredient row resampling forbidden, the row means from all ingredients are extremely

close while the seconds means are not, and the fastest method produces a row mean

that is only 1.002 times larger than the smallest row mean yet is built from an unre-

markable covering array.

65

Table 3.4: LA(2,2,7,4) arrays with the fewest rows built from ingredients

Ingredient Ingredient Rows Iterations Seconds
Resampling

CA(88;3,7,4) — 88 1 20
LA(54;1,2,7,4) Allow 118 103 1980
Direct — 120 124 2534
CA(21;2,7,4) Forbid 122 230 7977
CA(21;2,7,4) Forbid 123 202 6619
CA(124;3,7,4) Allow 124 11 265
CA(124;3,7,4) Allow 124 9 215
CA(124;3,7,4) Allow 124 8 185
CA(21;2,7,4) Forbid 125 185 6574
CA(21;2,7,4) Forbid 126 175 6069

0 1000 2000 3000 4000 5000 6000 7000

seconds

80

90

100

110

120

130

140

150

160

170

180

N
 r

ow
s

(2924.6, 128.2)

(2931.6, 131.6)

(2661.6, 129.4)
(6854.2, 126)

(3187.2, 130.2)

(2082.8, 173.4)

(329, 126.2)

(20, 88)

Direct
LA(54;1,2,7,4) Forbid Resampling
LA(54;1,2,7,4) Allow Resampling
CA(21;2,7,4) Forbid Resampling
CA(21;2,7,4) Allow Resampling
CA(124;3,7,4) Forbid Resampling
CA(124;3,7,4) Allow Resampling
CA(88;3,7,4)

Figure 3.12: Mean rows to seconds in LAs constructed from ingredient arrays

66

Chapter 4

ANONYMOUS ATTRIBUTE-BASED AUTHORIZATION

The concern with claims of anonymity in attribute-based authorization scenarios

based solely on lack of presenting an identity string is detailed in § 1.3 of the in-

troduction, and necessary background for this chapter is presented there. The con-

tribution of this work is to achieve a guaranteed degree of anonymity by requiring

that certain properties of attribute distribution hold given a maximum credential size.

Policies can be considered disjunctions of conjunctions of attribute values with the

most restrictive policy being a single conjunction of many attribute values. Let t be

the largest number of attributes in a single conjunction. We present a new combina-

torial design, an anonymizing array, that ensures that any assignment of values to t

attributes that appears in the array appears at least r times. When an anonymizing

array is used for subjects registered to a system and policies contain conjunctions

of at most t attributes, the system cannot identify the subject using the policy for

authorization with greater than 1
r

probability. This is the first attempt that we are

aware of to address the problem of attribute distribution in systems that rely on the

identity-less nature of attribute-based authorization for anonymity and, furthermore,

to do so using a combinatorial design defined for this purpose.

When the set of subject attributes registered to a system is fixed, an anonymiz-

ing array determines the largest conjunction that can be used while achieving the

anonymity guarantee r or, equivalently, the guarantee achievable for the largest con-

junction. When the set of registered attributes can be appended, anonymizing ar-

rays provide a mechanism to provide higher anonymity guarantees. A key benefit

of anonymizing arrays is that they are implementation independent and can be used

67

to enhance subject anonymity of existing systems employing ABAC or ABE access

control mechanisms. As opposed to k-anonymous ABAC, our model assumes that all

subjects and attributes are known to the system and the anonymity guarantee r is

available immediately.

The rest of the chapter is organized as follows. The definition of our new ob-

ject, an anonymizing array, its relationship to covering arrays, and how to compute

the anonymity guarantee are found in § 4.1. Construction algorithms are proposed

in § 4.2. An additional desirable property of anonymizing arrays and metrics for

comparing two anonymizing arrays with the same parameters are presented in § 4.3.

Algorithmic results are presented in § 4.4. How this problem differs from the body of

work on κ-anonymity in statistical databases is explored in § 4.5.

4.1 Anonymizing Arrays

4.1.1 Definitions

Consider an array with N rows and k columns and each column i for 1 ≤ i ≤ k has

entries from a set of vi symbols. Such an array is (r, t)-anonymous if, when choosing

an N × t subarray, 1 ≤ t ≤ k, each row that appears is repeated at least r times.

Given an N × k array A, an N ′ × k array A′ is (r, t)-anonymizing with respect to A

if A ⊆ A′ and A′ is (r, t)-anonymous. To write the parameters of an anonymizing

array, we use the following notation. In the case of uniform number of symbols in each

column, write AA(N ; r, t, k, v). In the mixed case, list the symbols for each column in

the array as AA(N ; r, t, k, (v1, . . . , vk)) or use exponential notation vji when j columns

share the same number of symbols vi.

Anonymizing arrays are related to covering arrays and this relationship is explored

in § 4.1.4. As with covering arrays and locating arrays, the order of the columns and

68

order of the rows is not important. The rows or columns of the array can be shuffled

to obtain an equivalent array on the same parameters.

Once an anonymizing array is discussed in the context of an attribute-based sys-

tem, we refer to a row as an access profile and columns as attributes with the symbols

in the array as attribute levels (or values). Then, an access profile is an assignment

of values to attributes. The maximum credential size is t and r is the anonymity

guarantee. The anonymity guarantee is trivial when r = 1 as every credential that

appears in an array appears at least once by definition; interesting cases require r > 1.

Attributes with only one level are trivial as every row contains that attribute, so non-

trivial attributes require at least two levels. A consequence of this approach is that

the numbers of attribute levels must be finite. If new levels must be added, the prior

anonymity guarantee may no longer hold.

Access profiles may correspond to a subject or may exist in the system as padding,

“dummy” rows created for the purpose of reaching the anonymity guarantee. Because

padding rows are added to reach a degree of anonymity not provided by the subject

access profiles, care should be taken to construct rows that are not obviously padding.

Access profiles need not be unique.

A user credential is defined in [53] as “sets of typed attributes relating to the

same topic or structure, e.g., an employee credential may contain an age, address,

and salary attribute,” and users may select the subset of attributes activated in a

session. The term credential typically has a stronger connotation than just a random

set of attributes, including some mechanism by which the subject proves possession of

those attributes. This may differ across implementations, from providing a physical

card loaded with exactly that set of attributes to an application that allows the subject

to decide which attributes to provide and which to withhold. Therefore, we use the

term credential generically to mean the set of attributes that are being provided for a

69

given request. Formally, a credential is a tuple of attribute-value pairs. Authorization

decisions are made by the system based on the credential presented rather than the

access profile.

Given a set of attributes, each access profile has exactly one credential that cor-

responds to an assignment of values to those attributes. In context, an array is (r, t)-

anonymous if, for all credentials of t or fewer attributes, there are at least r identical

credentials distributed among the N access profiles. This provides the anonymity

guarantee that, if a subject presents a credential of t or fewer attributes in an access

control scenario, there are at least r − 1 other access profiles corresponding to the

credential. Thus, the system can identify the active subject with not greater than 1
r

probability.

4.1.2 Constraints

Several types of constraints for covering arrays are treated in [6]. Hard constraints

are interactions that cannot appear, while soft constraints are interactions that need

not be covered, but are not illegal. These scenarios also occur in anonymizing arrays

and are important to handle when appending padding rows to an anonymizing array to

reach the anonymity guarantee r. Some attribute assignments may be impossible. For

example, consider employee roles that only exist for a certain facility. One attribute

might represent where the employee is stationed, while another is the employee’s role.

An employee not at facility F may not be assigned role R. This assignment should not

exist in the access profiles provided, and appearance of this combination immediately

identifies the containing access profile as padding. This is a hard constraint. Other

assignments may not be impossible and yet do not appear in the provided anonymizing

array. They can be included in padding rows, but if they are included, they must

appear r times. These are soft constraints. Every credential not specified in a hard

70

Table 4.1: Implicit hard constraints for AA(2, 2, 3, 2)

Hard Constraints Unconstrained Credentials

{(a1,0),(a2,0)} {(a1,1),(a2,0)}
{(a1,0),(a2,1)} {(a1,1),(a2,1)}

{(a1, 0), (a3, 0)}
{(a1, 0), (a3, 1)}
{(a1,1),(a3,0)}
{(a1,1),(a3,1)}
{(a2,0),(a3,0)}
{(a2,0),(a3,1)}
{(a2,1),(a3,0)}
{(a2,1),(a3,1)}

or soft constraint must appear r times.

Hard constraints may give rise to implicit hard constraints that cause there to

be no feasible solution. For example, consider an anonymizing array AA(2, 2, 3, 2)

with attribute levels {0, 1}. If the only constrained credentials are hard constraints

{(a1, 0), (a2, 0)} and {(a1, 0), (a2, 1)}, then any credential containing (a1,0) is implic-

itly constrained. There is no way to assign a level to attribute a2 if attribute a1 has

level 0 without violating the constraints. But any credential not given as a hard or

soft constraint must appear twice, so there is no solution. Table 4.1 enumerates the

unconstrained credentials as those that do not appear in a constraint and shows in

bold the unconstrained credentials that are implicitly constrained by the hard con-

straints. If the implicit constraints are defined as constraints themselves, a solution

without the hard constraints exists and is given in Figure 4.1. If the hard constraints

are instead soft constraints, then a solution also exists, as these credentials can appear

as needed to ensure unconstrained credentials appear, provided they appear twice.

(See Figure 4.4 in § 4.3 for an example).

71

a1 a2 a3

1 1 0 0
2 1 0 0
3 1 0 1
4 1 0 1
5 1 1 0
6 1 1 0
7 1 1 1
8 1 1 1

Figure 4.1: AA(8; 2, 3, 2) with hard constraints

4.1.3 Anonymizing Array Example

Consider a system at a university that has the following attributes and values.

1. Role={faculty, graduate, undergraduate}

2. Job={instructor, grader}

3. Department={CS, EE}

4. Semester={Spring, Fall}

The access profiles provided to the system are in array A (Figure 4.2). The system

requires the hard constraints (faculty,grader) and (undergraduate, instructor). A

also has the soft constraint (graduate,grader). A is (1, 2)-anonymous but not (2, 2)-

anonymous as there is only one access profile with the credential (CS,grader).

Array B is an anonymizing array for A. B is (2, 2)-anonymous. The first six access

profiles of B are A and then six padding rows have been added. Twelve rows are

required, as the largest number of unconstrained credentials for a pair of attributes is

six and each must appear twice. The soft constraint appears in B twice, but another

anonymizing array for A, B′, has the credential (graduate, instructor) in rows 9 and

10 instead.

72

Role Job Department Semester

1 faculty instructor CS Spring
2 faculty instructor EE Fall
3 graduate instructor CS Spring
4 graduate instructor EE Fall
5 undergraduate grader CS Fall
6 undergraduate grader EE Spring

Figure 4.2: Array A, an AA(6; 1, 2, 4, (3, 23))

Role Job Department Semester

1 faculty instructor CS Spring
2 faculty instructor EE Fall
3 graduate instructor CS Spring
4 graduate instructor EE Fall
5 undergraduate grader CS Fall
6 undergraduate grader EE Spring
7 faculty instructor CS Fall
8 faculty instructor EE Spring
9 graduate grader CS Fall

10 graduate grader EE Spring
11 undergraduate grader CS Fall
12 undergraduate grader EE Spring

Figure 4.3: Array B, an AA(12; 2, 2, 4, (3, 23)) that is (2, 2)-anonymizing for A

B is not (3, 2)-anonymous, as the credential (faculty, CS) does not appear at least

three times. It is not (2, 3)-anonymous, as the credential (graduate, grader, Fall)

appears only once. If graduate ∧ grader ∧ Fall is a policy used for an authorization

decision, the access profile in row 9 is uniquely identified.

4.1.4 Relationship to Covering Arrays

Anonymizing arrays are similar to covering arrays with constraints and higher

coverage. The primary difference due to application is in the desired homogeneity

property (see § 4.3), but also in how constraints are treated. For covering arrays, the

73

norm is to define the interactions that must not appear (hard constraints), then to

define the interactions that might appear (soft constraints, possibly further divided

into “don’t care” and “avoid”), and then to derive the interactions that must appear.

For anonymizing arrays, the access profiles provided define the credentials that must

appear (unconstrained credentials). The system specification defines the credentials

that must not appear (hard constraints), and the soft constraints are defined to

be the remaining credentials that are in neither set. Given an anonymizing array

without a supplied set of constraints, it may be impossible to deduce which of the

non-appearing credentials are soft and which are hard constraints. The same difficulty

arises differentiating which of the appearing credentials are soft constraints and which

are unconstrained. Care must be taken when converting between covering arrays and

anonymizing arrays that constraints are categorized correctly.

Many construction algorithms exist for building covering arrays, though few ex-

plicitly include constraint handling or higher coverage requirements. The following

non-exhaustive list of relationships elucidate how to use covering array constructions

to build anonymizing arrays.

Theorem 2. A mixed-level covering array MCAλ(t, k, (v1, . . . , vk)) with hard con-

straint set H is an AA(λ, t, k, (v1, . . . , vk)) with hard constraint set H and all other

credentials appearing.

Proof. Covering arrays are usually described without explicitly specifying λ, the num-

ber of times a t-way interaction is covered, in which case λ = 1 is implied. Every t-way

interaction that appears in the covering array λ times is a credential that appears λ

times in the corresponding anonymizing array. The interactions in H never appear

in the covering array so they never appear in the anonymizing array, as required.

Extending the definition of soft constraints to higher λ for covering arrays does

74

not appear to be addressed in the literature. It seems counterintuitive to require

that if a “don’t care” or even an “avoid” interaction appears once in the covering

array that it must then appear λ times, as this might add more rows to the covering

array than are needed. If soft constraints can appear zero or more times but are not

required to appear λ > 1 times in the covering array, then soft constraints must not

be present in a covering array used as an anonymizing array by Theorem 2. There

must also exist a mapping of soft constraints in the anonymizing array onto either

hard constraints in the covering array if they do not appear or onto unconstrained

interactions if they do.

Theorem 3. If there exists an MCA(t, k, (v1, . . . , vk)) with hard constraint set H and

soft constraint set S, then there exists an AA(r, t, k, (v1, . . . , vk)) with H and S.

Proof. Make r vertical copies of the covering array. No interaction of H appears

in the covering array, so none of these credentials appear in the anonymizing array.

Any interaction of S that appears in the covering array at least once appears in the

anonymizing array at least r times, and the rest never appear. All unconstrained

credentials, C \ {H
⋃
S}, appear at least once in the covering array and at least r

times in the anonymizing array.

Theorem 4. An MCA(t, k, (v1, . . . , vk)), v = minki=1(vi) with no constrained interac-

tions is an AA(v, t− 1, k, (v1, . . . , vk)) with no constrained credentials.

Proof. In the mixed-level covering array without constraints, a (t−1)-way interaction

appears at least vi times, once with each of the vi symbols in the t-th column of the

t-way interaction including those t − 1 columns. Then every (t − 1)-way interaction

appears at least v times where v is the smallest number of symbols for a column in

the covering array. This covering array is then an anonymizing array with r = v.

75

Theorem 5. If there exists a covering array CA(t, k, v) with a set of hard constraints

{(c1, σ1), . . . , (ct−1, σt−1), (cx, σy)} for each column symbol pair (cx, σy) with column

cx ∈ K \ {c1, . . . , ct−1} and σy ∈ Σx, the symbol set of cx, then there exists an

anonymizing array AA(v, t − 1, k, v) with {(c1, σ1), . . . , (ct−1, σt−1)} as a hard con-

straint.

Proof. To guarantee that the constrained credential with t−1 attributes never appears

in the anonymizing array, it must be the case that no t-way interactions of which it is a

subset appeared in the covering array. The coverage for all unconstrained credentials

follows from Theorem 4. To extend the proof to soft constraints, soft constraints

in the anonymizing array must be mapped to unconstrained interactions or to hard

constraints in the covering array.

4.1.5 Computing the Anonymity Guarantee

An inverse relationship exists between t and r so that as the credential size in-

creases, the number of repetitions of the credential in an array must either stay the

same or decrease.

Theorem 6. Given an array A that is (r, t)-anonymous and not (r+1, t)-anonymous,

for every t ≤ t′ ≤ k for which A is (r′, t′)-anonymous, it must be the case that r′ ≤ r.

Proof. Pick the credential c that appears the fewest number of times in A and let r be

the number of times c appears. A is (r, t)-anonymous by definition and is not (r+1, t)-

anonymous. Look at the set of rows in which c appears. Choose any credential c′

that contains c. The rows in which c′ appears must be a subset of the rows in which

c appeared. Then for t′ ≥ t, if A is (r′, t′)-anonymous, then r′ ≤ r.

Corollary 6.1. An array that is (r, t)-anonymous is also (r, t′)-anonymous for every

t′ < t.

76

Proof. Pick any credential, c, of size t. It appears in at least r rows. Pick any t′-subset

of c. It appears in at least these rows.

Given an anonymizing array A and a maximum credential size t, Algorithm 5

computes the maximum r for which A is (r, t)-anonymous. It also serves to check

an anonymizing array. If a hard constraint is found, it returns 0. Recall that soft

constraints may appear zero or at least r times. To compute all pairs r and t for A,

Algorithm 5 can be executed for increasing values of t until it returns r = 1.

Algorithm 5: Compute Anonymity Guarantee

input : A an N × k array, t

output: r

begin

for each of the
(
k
t

)
sets of columns of A do

Scan the N × t subarray of A and store the count of each credential

if a hard constraint has count > 0 then
Return 0

else
Set r to be the smallest non-zero count so far

Return r

4.2 Anonymizing Array Construction Algorithms

In situations where attributes can be assigned to access profiles for the purpose of

anonymous authorization rather than existing as real-world attributes of subjects, as

in key distribution, an anonymizing array is built from scratch. In other situations,

the attributes correspond to immutable properties of the subjects themselves, such

as name or birth year, and so we might be presented with a fixed set of access profiles

and asked to compute the anonymity guarantee or to provide an anonymizing array

to anonymize a set of access profiles to meet a particular guarantee.

We hypothesize that mathematical direct constructions for covering arrays are not

77

particularly useful in building anonymizing arrays due to constraints. Random con-

structions that generate an array that has high probability of satisfying the desired

properties do not work well for covering arrays, and they could be particularly dis-

astrous in access control scenarios where mistakes are expensive. An approach that

generates an anonymizing array with high probability still has a non-zero probability

of failing to have the desired property. Adapting covering array search techniques that

can accommodate constraints to build anonymizing arrays seems more promising.

4.2.1 Moser-Tardos-style Column Resampling (MTCR) Algorithm

A Moser-Tardos-style column resampling algorithm (MTCR) can be used for

anonymizing array construction [42]. Two implementation issues concern how to

handle constraints and how to determine when to add a row if building up from fewer

rows than required, as done in Chapter 3. The column resampling algorithm hits the

iteration limit if hard constraints cause implicit constraints that result in no possible

solution. This is not ideal as the case of no solution cannot be distinguished from

not allowing enough iterations. A better approach is to conduct a feasibility check

first, such as by encoding constraints as a satisfiability problem and utilizing a SAT

solver such as described in [9], and only running the algorithm if a solution exists.

However, determining if a solution exists in the presence of hard constraints is known

in general to be NP-complete [6].

The fastest way to check against constraints, as usual, comes with a storage trade-

off. If T is the set of
(
k
t

)
t-subsets of columns, create a two-dimensional array of

possible credentials
∑

T∈T
∏

i∈T vi. The position of T in colexicographic ordering of

the sets is the rank. Indexing is straightforward by computing the rank and credential

value, and checking each credential against the constraint array is done in constant

time. Unconstrained credentials are indicated by 1, soft constraints by 0, and hard

78

constraints by -1. An alternative is to form a set of lists, one for each rank, and

store each constrained credential in the appropriate list. Credentials have a natural

ordering, so comparing each item in the list against the credential being checked not

just for equality but also for relative ordering allows an exit once the list item exceeds

the credential. When the number of constraints is small, the list provides storage

savings and checking might not incur much more computation time than the array

method. However, as constraints need to be checked for every row of a rank, it is

likely that constant time lookup of the array is worth the extra storage. MTCR is

implemented with the array.

Estimating the number of rows needed is not necessarily straightforward, so one

option is to build up rows until the coverage requirement is met or an iteration limit

is reached. When a set of real access profiles are provided and the algorithm is

executed to add padding rows to reach the anonymity guarantee, the algorithm for-

bids resampling of the provided rows. When starting from scratch, the candidate

array can begin with zero rows or a starting number can be computed by taking

rmax
(k
t)
rank=1(credentials for rank − constraints for rank), and these rows can be ran-

domly populated.

Determining how often to add a row inside the algorithm is challenging. Adding

too quickly may produce more rows than needed while adding too conservatively may

cause the iteration limit to be reached. The number of resamplings conducted since

the last time a row was added can be used to estimate progress. The distinction

between a bad event due to the presence of a constraint and a bad event due to lack

of r coverage of non-constrained credentials needs to be made. Having too few rows

can be a contributing factor to lack of r coverage, but not to presence of a constraint.

In fact, the more rows, the more likely a constraint is to appear somewhere. If the

number of resamplings is only incremented when the resampling is due to lack of

79

coverage, it can be better used to gauge that not enough rows exist to meet the

coverage requirements. A fixed ordering is used by going rank by rank, so it is

expected, though not guaranteed, that if the rank being checked is higher, fewer bad

events still exist in the array than if the rank is lower. The number of resamplings

needed to add a row can then be proportional to the amount of array still left to

check, as rank ∗ threshold, so that rows are added more readily when bad events

are encountered early in checking. The threshold can be chosen as a fixed value or

proportional to the number of subsets of columns or based on the size of the problem.

MTCR is given in Algorithm 6.

4.2.2 Conditional Expectation Heuristic Search (CEHS) Algorithm

An approach that combines ideas from conditional expectation and a heuristic

to avoid constraints can also be used [5, 19]. This greedy algorithm, Conditional

Expectation Heuristic Search (CEHS), builds an anonymizing array row by row. As

with the column resampling approach, CEHS can be used to append padding rows

to a set of access profiles that do not yet meet the anonymity guarantee r. When the

algorithm begins, hard constraints, soft constraints, and unconstrained credentials are

categorized and marked, but once a soft constraint appears in a row, it gets moved to

the unconstrained credential category. This allows the algorithm to not care about

placing soft constraints until they appear, after which they must be covered just like

an unconstrained credential.

Call a credential not yet covered if it is unconstrained and appears fewer than

r times. The expectation for a row is the number of not yet covered credentials

that are covered if the symbols are assigned to columns randomly. A conditional

expectation algorithm operates as follows. Given a partial row with some columns

fixed to symbols and some columns free, randomly select a free column. For the

80

Algorithm 6: Moser-Tardos-style Column Resampling (MTCR)

input : A an N × k array, r, t, V a 1× k array of attribute levels,

numCreds =
∏

i∈T V [i], Constraint a 1× numCreds array with

constraint status of all credentials, maxIterations

output: A or ∅
begin

iteration = 0

numResamplings = 0

repeat
badEventConstraint = badEventCoverage = false

for each of the
(
k
t

)
subsets of t columns, T , AND while no bad events

do
Create Count, a 1× numCreds array

for each credential, c,in the N × t subarray of A with columns

from T do

if Constraint[c] ≥ 0 then
Increment Count[c]

else
badEventConstraint = true

for 1 ≤ c ≤ numCreds do

if Count[c] < r then

if Constraint[c] is 1 for any c then
badEventCoverage = true

Increment numResamplings

if numResamplings ≥ rank ∗ threshold then
Add a row to A and increment N

numResamplings = 0

else if 0 < Count[c] and Constraint[c] is 0 then
badEventConstraint = true

if any bad event then
Resample all t columns of T

if no bad events then
return A

Increment iteration
until iteration is equal to maxIterations

Iteration limit reached without no bad events, so return ∅

81

symbols of that column, choose one that does not reduce the expectation for the row.

That is, if the symbol is placed, at least as many credentials are covered for the row

with the remaining symbols in free columns chosen randomly. Computing the best

symbol for a column based on what has been chosen already, rather than just one

that is at least as good as the expectation, may improve the performance in terms of

coverage for the row.

Given a row with i−1 columns fixed to symbols and the rest free, choose a column

i randomly and consider the vi symbols to place in column i. The best symbol covers

the most credentials that have not yet been covered r times without violating a hard

constraint. Let Ti be the set of
(
k−1
t−1

)
sets of t columns involving i, and CT the set of

possible credentials for a t-set of columns, T . Suppose column i is fixed to symbol σ.

Define

value(i, σ) =
∑
T∈Ti

∑
c∈CT

λ(c)P (c)

where P (c) is the probability of credential c appearing

P (c) =
ways to cover c

ways to fix free columns of T

and λ(c) is related to the coverage status of c. Temporarily ignoring hard constraints,

consider the definition

λ(c) =

1 if c covered fewer than r times,

0 if c covered at least r times or c is a soft constraint.

The expected number of not yet covered credentials newly covered by placing σ in i

is value(i, σ). The best symbol is one that maximizes value(i, σ). Ties can be broken

randomly.

Another option is to prioritize the credentials that have been covered fewer times

82

over those that have been covered more often. Refine the prior definition of λ(c) to

λ(c) =

r−times c covered

r
if c is unconstrained,

0 if c is a soft constraint.

An opportunity to avoid hard constraints is available in two places within CEHS.

The last chance to ensure that a hard constraint is not placed in the array is when

considering t columns with t − 1 columns fixed and one is free. If fixing a symbol

σ in column i causes a violation of a hard constraint, the cost of placing symbol σ

in column i for that credential should be sufficiently high as to outweigh the benefit

gained by covering other credentials that have symbol σ in column i. There are(
k−1
t−1

)
− 1 other t sets involving column i, each with some number of credentials. At

most, a t-set contributes a benefit of 1, because at best only one credential is newly

covered in that row for that t-set of columns. Then the most positive value a symbol

receives from the other credentials is
(
k−1
t−1

)
− 1. Assign λ = −

(
k−1
t−1

)
to forbid placing

a symbol that violates a hard constraint. A positive value(i, σ) is a benefit while a

negative value(i, σ) is a cost.

An algorithm that does not wait until the last chance to avoid the placement of

the hard constraint, but also handles hard constraints when considering symbols for

a t-set in which fewer than t− 1 columns are fixed may have better performance. If

hard constraints simply do not provide benefit, that is λ = 0, there is a risk of placing

symbols in columns fixed earlier that result in eventually denying a symbol σ in col-

umn i while some later unconstrained credential requires σ in i. For example, consider

the case that there is one unconstrained credential left to cover, {(c2, 2), (c3, 3)}, but

{(c1, 1), (c2, 2)} is a hard constraint. (The ? symbol indicates a “don’t care” position.)

c1 c2 c3 status
1 2 ? hard constraint
? 2 3 not yet covered

83

If hard constraints do not incur a cost until they are guaranteed to be placed,

symbol 1 may be placed in column c1 when some other symbol, 0, may provide no

benefit, but may be a better choice because it is not involved in a hard constraint.

When considering c2, symbol 2 is now forbidden and then {(c2, 2), (c3, 3)} is not

covered by the row. If columns are chosen in a fixed order and ties are handled

deterministically, the algorithm runs forever on this sequence of choices. One reason

that ties are broken randomly and the order of columns is chosen randomly is so

that (c1, 0) is eventually chosen with non-zero probability and the search terminates.

However, this might cause more rows to be added than are needed due to relying on

chance. Assigning a low cost to future hard constraint violations drives the search so

that if there is a choice of symbol that costs nothing, it is selected instead and the

future hard constraint is avoided earlier.

Choosing the right cost is important, as many hard constraints acting together

can outweigh the benefit of an unconstrained credential. If {(c1, 1), (c2, 2)} and

{(c1, 1), (c3, 3)} are hard constraints and {(c1, 1), (c4, 4)} is an unconstrained creden-

tial, 1 must be selected in c1 so that {(c1, 1), (c4, 4)} can be covered. The cost of

potential hard constraints must be low enough for 1 to be selected at least r times.

c1 c2 c3 c4 status
1 2 ? ? hard constraint
1 ? 3 ? hard constraint
1 ? ? 4 not yet covered

The cost of a potential hard constraint should drive the algorithm away from

placing symbols that eventually result in a hard constraint when other options are

better, but not to the extent that a required credential cannot be covered. The

absolute value of the highest total cost must be less than the absolute value of the

lowest benefit. The lowest benefit of placing symbol σ in column j occurs when

there is one credential to be covered one remaining time with the highest number of

84

symbols, v = maxki=1(vi). The probability of being placed is lowest when all other

columns in the t-set are still free, assuming j is fixed to σ. Then P (c) = 1
vt−1 and

λ(c) = 1
r
, so the benefit is 1

rvt−1 .

We now compute the highest possible cost. Again, suppose that j is fixed to σ.

As we are considering the case of many potential hard constraints acting against an

uncovered unconstrained credential with lowest benefit, there is one t-set with an

uncovered unconstrained credential. For the highest cost, the other t-sets involving

the column being decided, j, have
(
k−1
t−1

)
− 1 potential hard constraints and one free

column. (If all columns are fixed when considering placing σ in j, any hard constraint

violations are not potential but rather immediate.) For each t-set, let w be the number

of symbols for the free column. There are w credentials with symbols matching the

t − 1 fixed columns, and each is chosen with probability P (c) = 1
w

. The highest

cost occurs when all are hard constraints, ignoring for a moment that this leads to

an infeasible solution, so each t-set contributes at most w 1
w
λ, so the total cost is

(
(
k−1
t−1

)
− 1)λ.

The value of λ must ensure that |(
(
k−1
t−1

)
− 1)λ| < 1

rvt−1 . Set λ = −1

((k−1
t−1)−1)ryt

,

y = maxki=1(vi). When y ≥ v,∣∣∣∣∣
((

k − 1

t− 1

)
− 1

)
−1

(
(
k−1
t−1

)
− 1)ryt

∣∣∣∣∣ =

∣∣∣∣−1

ryt

∣∣∣∣ < ∣∣∣∣ 1

rvt−1

∣∣∣∣ .
The final definition for λ(c) is

λ(c) =

r−times c covered
r

if c is unconstrained,

0 if c is a soft constraint,

−1

((k−1
t−1)−1)ryt

: y = maxki=1(vi) if c is a hard constraint with at least 1 free column,

−
(
k−1
t−1

)
if c is a hard constraint with no free columns.

As with the Moser-Tardos-style algorithm, a feasibility check should be conducted

85

beforehand, as some scenarios can still result in infinite looping. For example, consider

this set of credentials where the number of levels for c2 is 2.

c1 c2 c3 status
1 1 ? hard constraint
? 2 3 hard constraint
1 ? 3 not yet covered

The cost of placing 1 in c1 does not outweigh the benefit as an uncovered credential,

{(c1, 1), (c3, 3)}, still exists. The algorithm is forced to place 2 in c2 so it cannot place

3 in c3. In this case, the order of columns does not matter; it cannot violate a hard

constraint if there is another option so it repeatedly avoids one or the other hard

constraint, never being able to cover the final credential.

Despite all efforts to make good local decisions, the algorithm does not have

complete lookahead. A series of local decisions based on the ordering of columns in

an execution can lead to every symbol option for a column resulting in the placement

of some hard constraint even if there is a solution for the anonymizing array problem.

In this case, the algorithm aborts and can be run again.

The complete CEHS algorithm is given in Algorithm 7.

4.2.3 Post-optimization for Row Reduction

MTCR and CEHS are employed to add padding rows to reach an anonymity guar-

antee, but they may add more rows than necessary. The post-optimization strategy

using necessity analysis [44] naturally extends to attempt to reduce the number of

padding rows by treating the anonymizing array as a covering array of higher λ with

constraints. Though we do not develop the extension fully here, we suggest how it

can be done. Consider the padding rows. Each time a credential appears that is

not yet covered r times, mark all t positions of the credential in the row as neces-

sary. After all
(
k
t

)
credentials are checked, all positions that are not necessary can be

86

Algorithm 7: Conditional Expectation Heuristic Search (CEHS)

input : A an N × k array, V a 1× k array of attribute levels, r, t,

numCreds =
∏

i∈T V [i], Constraint a 1× numCreds array with

constraint status of all credentials

output: A, N

begin
Construct a 1× numCreds array R to hold the remaining coverage of

each credential, c

Set R[c] to the number of remaining appearances required for c

while R[c] > 0 for some c do
Add a row with all columns free

Increment N

while some column is free do
Randomly select a column index i

for each symbol σ ∈ [V [i]] do

for each of the
(
k−1
t−1

)
subsets of columns, T , involving i do

for each of the
∏

j∈T V [j] credentials, c, of T do

P (c) = ways to cover c
ways to fix free columns of T

if P (c) = 1 and c is a hard constraint then

λ(c) = −
(
k−1
t−1

)
else if c is a hard constraint then

λ(c) = −1

((k−1
t−1)−1)ryt

: y = maxki=1(vi)

else

λ(c) = R[c]
r

Add λ(c)P (c) to value(i, σ)

Place symbol σ in column i that maximizes value(i, σ)

for each of the credentials, c, appearing in row N do
Update R[c]

if c is a soft constraint but c appears in the row then
Change Constraint[c] to unconstrained

Set R[c] = r − 1

else if c is a hard constraint then
Return ∅

Return A, N

87

marked ?. If a padding row is composed only of ? symbols, the row can be removed

without reducing the anonymity guarantee. If the randomized algorithm from [44]

is used and entries are chosen at random to replace the ? entries, a check must be

conducted to ensure that hard constraints are not violated in the array, or that if new

soft constraints appear, they appear r times.

4.3 Homogeneity in Anonymizing Arrays

4.3.1 Designing Metrics

In addition to requiring that all credentials appear either zero or at least r times,

we prefer anonymizing arrays that do not contain groups of highly similar access

profiles. If an access profile shares all of its
(
k
t

)
credentials with a group of r − 1

other access profiles, when any of these credentials is used, the system can identify

someone in the group as the subject. Even if no one subject can be identified with

greater than 1
r

probability, this is likely undesirable as it allows access requests using

these credentials to be linked and behavior of the group to be tracked. An anonymiz-

ing array in which access profiles share different credentials with different groups is

preferable to another anonymizing array with the same anonymity guarantee in which

access profiles share credentials with the same groups frequently. Lastly, the size of

the groups matters as well. Tracking the behavior of a group of 2r access profiles that

share all credentials is less targeted to one access profile than tracking the behavior

of a group of r access profiles. An ideal solution captures the interplay of these two

concerns in a single metric.

Consider a multi-hypergraph representation of an anonymizing array. There are

N vertices, one for each of the access profiles. Each vertex has degree
(
k
t

)
, and a

hyperedge represents the credential possessed by the access profile for this t set of

88

attributes connecting all of the access profiles that share this credential. When all

attributes have v levels, there are up to
(
k
t

)
vt edges. (When attributes have mixed

levels, replace vt with
∏t

j=1 vj for each of the
(
k
t

)
sets of attributes. We use constant

v for simplicity in the counting throughout this section, but all of the results extend

naturally.) It is a multigraph as the same vertices can be connected by multiple

hyperedges if the same group shares more than one credential. Our metric, then,

measures the number of edges that connect a vertex to the same set of vertices and

the sizes of those sets.

A clustering coefficient can be described as the measure of neighbors of a vertex

that know each other; if vertex v has m neighbors, the clustering coeffcient is the

fraction of the m(m− 1)/2 possible edges that actually exist between those vertices

[61]. The clustering coefficient describes the tendency of vertices to form cliques.

Consider, however, a scenario where all N access profiles share a universal credential.

This measure masks any other behavior exhibited in the rest of the graph. Addi-

tionally, work to extend this concept to hypergraphs ignores multi-edges, considering

them as a simple edge [23]. The metric must measure how many times a vertex is

connected to a group of vertices, not just how many vertices it is connected to, so the

multi-edges cannot be ignored.

Structural similarity has the same issue; it measures how many neighbors two

vertices have in common, but not how often they have similar neighbors. We can

also think of an anonymizing array as a set of
(
k
t

)
hypergraphs each having copies

of the same N vertices and each graph having up to vt edges. To ask how similar

the neighborhood of a vertex u is across all of the graphs, a similarity score for

neighborhoods is required. This might require counting the number of vertices in

common and making
((k

t)
2

)
comparisons of the neighborhoods between graphs for

each of the N vertices. Defining the similarity score still presents difficulty, as the

89

sets {ui, uj}
⋂
{ui, uj} and {ui, uj, ul, um}

⋂
{ui, uj, up, uq, ur, us} have the same score,

2, under similarity by intersection. For our purposes, the first two neighborhoods are

much more similar than the last two as every vertex that appears in one neighborhood

appears in the other. No well-known graph measure accurately describes the metric

required here.

Diversity is a metric for covering arrays [46] defined as

number of distinct t-way interactions covered

number of opportunities to cover t-way interactions
.

To be a covering array without constraints, the number of t-way interactions covered

must be
(
k
t

)
. Diversity is a measure of how efficiently interactions are covered. An

array that covers all t-way interactions in fewer rows has a higher diversity score.

Then the number of times a particular t-way interaction is covered is ideally close to

one.

For anonymizing arrays, the number of times a credential appears is ideally close

to r. If some credentials appear many more times than r, it is possible that the

anonymity guarantee can be increased if some of the repetitions of those credentials

were replaced with less frequently appearing credentials. Superficially, it seems that

diversity can be extended to anonymizing arrays as

number of distinct t-sized credentials covered at least r times

number of opportunities to cover t-sized credentials
.

Dependence between rows does not matter for covering arrays as these are tests in

a test suite that are executed independently, but dependence between access profiles

does matter for anonymizing arrays. This metric does not capture the preference for

two or more access profiles to not contain many of the same credentials.

Call the neighborhood of a credential the access profiles that share that creden-

tial; this is equivalent to the set of vertices connected by a hyperedge, maintaining

90

multi-edges as unique edges. Computing the neighborhood size for each credential

measures how inclusive or exclusive the credential is, but does not tell us anything

about which access profiles appear together in neighborhoods. Computing the total

number of neighbors for an access profile, all neighbors of the vertex, says something

about how many other access profiles it shares a credential with, but does not detect

when a vertex has many small neighborhoods of the same neighbors and one large

neighborhood shared with everyone versus many diverse neighborhoods. Comput-

ing the number of times a pair of access profiles appear together is also useful, but

again ignores the effect of large versus small neighborhoods. To reiterate, a measure

that includes the number of times access profiles are neighbors and the size of the

neighborhoods is needed, and we propose a solution in the next section.

4.3.2 Homogeneity Definitions

Local homogeneity describes how often an access profile appears in small groups

of similar access profiles. Global homogeneity describes how homogeneous the access

profiles of an anonymizing array are on average. The neighborhood of a credential is

the set of access profiles that possess the credential. The closeness of a pair of access

profiles is a sum of their weight over all credentials, and the weight of a pair of access

profiles on a credential is inversely proportional to the size of the neighborhood of the

credential if the access profiles are in the neighborhood. In other words, two access

profiles that appear together frequently in small neighborhoods are the closest, those

that appear together frequently in large neighborhoods or less frequently in small

neighborhoods are moderately close, and those that never appear together are the

least close. Local homogeneity measures how alike an access profile is to its neighbors

as the average of its non-zero closeness scores. Homogeneity is the inverse of what we

might have called “diversity.” We are interested in having low global homogeneity for

91

the anonymizing array on average, but keeping the maximum local homogeneity below

an acceptable value is important for privacy preservation for individual subjects.

Formally, let U be a set of N access profiles and let C be the set of all credentials.

Define the neighborhood of a credential c ∈ C as ρ(c) = {ui : ui possesses c, ui ∈ U}.

Define the weight of access profiles ui and uj on credential c as

weight(ui, uj, c) =

1
|ρ(c)| ⇐⇒ {ui, uj} ⊆ ρ(c)

0 otherwise

and

closeness(ui, uj) =
∑
c∈C

weight(ui, uj, c).

The neighbors of an access profile ui are the access profiles that are in a neighborhood

of ui’s credentials, so define

neighbors(ui) =

{⋃
c∈C

ρ(c) : ui ∈ ρ(c)

}
.

Then define the local homogeneity metric as

homogeneity(ui) =
1

|neighbors(ui)|
∑

uj∈U ,uj 6=ui

closeness(ui, uj)

and global homogeneity metric as the average local homogeneity,

globalHomogeneity =
1

N

∑
ui∈U

homogeneity(ui).

Considering just the sum of closeness scores without averaging over neighbors can

be misleading. A high homogeneity access profile may have a few high closeness

scores and many zeros, while a low homogeneity access profile may have many low

closeness scores, with the result that the closeness scores of the two access profiles

may be indistinguishable. By taking the average over the number of neighbors, the

average closeness score of each access profile is retrieved and can be compared.

92

An alternative metric to closeness, closeness′, is the count of shared neighbor-

hoods divided by the average neighborhood size, but it is less descriptive. Consider

closeness(ui, uj) = 1
2

+ 1
6

= 4
6
. The alternative metric produces closeness′(ui, uj) =

2
4

= 3
6
. In the latter, all shared neighborhoods weigh equally, whereas in the former,

the size of the neighborhood determines the weight of that neighborhood. The better

metric gives a larger weight when access profiles appear together in small neighbor-

hoods.

Division by |neighbors(ui)| requires every access profile to have at least one neigh-

bor. This is not the same as requiring r > 1 which indicates that every credential has

a neighborhood size of at least 2. Computation of homogeneity scores may still be use-

ful as an interim step in an algorithm when the ideal anonymity guarantee has not yet

been met. An appropriately large value for homogeneity(ui) when |neighbors(ui)| = 0

needs to be determined. Choosing∞ obscures globalHomogeneity and prevents com-

parison of the array on this metric. No score with a valid number of neighbors can

exceed
(
k
t

)
so this is a reasonable value.

The intermediary metric, closeness(ui, uj) is useful for finer granularity of anal-

ysis. Specifically, an access profile with the highest homogeneity possible has N − r

access profiles uj such that closeness(ui, uj) = 0 and r − 1 access profiles u` with

closeness(ui, u`) =
(k
t)
r

. The histogram of closeness scores for a high homogeneity ac-

cess profile is bimodal. Conversely, a low homogeneity access profile has a histogram

of closeness scores with a mode around
(k
t)
N

. It is likely the case that the variance

of high homogeneity is higher than the variance of low homogeneity. This level of

granularity may not be necessary, but retaining closeness scores might be useful when

attributes can be resampled to break high homogeneity by identifying specific access

profiles that are too similar. We use this idea in § 4.3.6.

This level of granularity may not be required, and in this case, computation of the

93

closeness scores can be bypassed by noting that for every credential c of ui with neigh-

borhood |ρ(c)|, |ρ(c)| − 1 neighbors contribute 1
|ρ(c)| to ui’s homogeneity score. This

fact explains why it is important to not include closeness(ui, ui), as doing so reduces

the homogeneity metric to
(k
t)

|neighbors(ui)| for all ui. This is essentially just a measure

of the total number of neighbors for each ui since
(
k
t

)
is fixed for all. A measure of

the number of neighbors cannot indicate whether ui shares every neighborhood with

the same set of neighbors or if it shares different neighborhoods with subsets of its

neighbors. As an example, suppose
(
k
t

)
= 4 and suppose access profile ui shares all

credentials with 8 other access profiles. Then homogeneity(ui) =
4(8) 1

9

8
= 4

9
. Suppose

another access profile uj shares each credential with two other access profiles for a

total of 8 neighbors. Then homogeneity(uj) =
4(2) 1

3

8
= 1

3
. As desired, ui has a higher

homogeneity score as it always appears with the same profiles while uj has a slightly

lower homogeneity score. If closeness(ui, ui) is included, both scores are 4
8
.

4.3.3 Bounds on Homogeneity

An access profile with the largest homogeneity score possible always appears with

the same neighbors in the smallest neighborhoods allowed. Let ui be such an access

profile appearing with the same r − 1 neighbors for each of its credentials. Then

weight(ui, uj, c) = 1
r

for the
(
k
t

)
credentials of ui, and closeness(ui, uj) =

(
k
t

)
1
r

for

r − 1 access profiles uj. Then

homogeneity(ui) ≤
(r − 1)

(
k
t

)
1
r

r − 1
=

(
k
t

)
r

as the average closeness score of ui with each of its r − 1 neighbors, as expected.

A lower bound on the global homogeneity can be computed for the restricted case

where the number of attribute levels is constant, all credentials appear, and N ≤ vk.

The array with the lowest homogeneity in this case has the largest possible neighbor-

94

hood for every credential and an access profile shares each of its credentials with a

different group of neighbors. If every credential has the largest neighborhood possible,

then ∀c |ρ(c)| = r = N
vt

. Each of ui’s credentials has N
vt
− 1 neighbors contributing vt

N
,

so the sum of ui’s closeness scores is
(
k
t

)
(N
vt
− 1)v

t

N
. For ui to always appear in neigh-

borhoods with different neighbors, ui ∈ ρ(ca) ∧ ui ∈ ρ(cb) =⇒ ρ(ca)
⋃
ρ(cb) = {ui}.

Then ui has
(
k
t

)
(N
vt
− 1) neighbors. Then the lower bound is

homogeneity(ui) ≥
(
k
t

)
(N
vt
− 1)v

t

N(
k
t

)
(N
vt
− 1)

=
vt

N

and this is true for every access profile, so it is also the lower bound on the global

homogeneity score. This explains why the global homogeneity score tends to decrease

as N increases. If N ≥ vk, there must be two identical access profiles and then it

cannot be the case that a pair of credentials intersects in only one access profile. The

restrictions for this bound limit its usefulness.

The expected homogeneity score when attributes are assigned uniformly at ran-

dom and there are no constraints can also be computed. The probability of a partic-

ular credential being placed in a t-set of columns is 1
vt

for each access profile, so the

expected neighborhood size of a credential is |ρ(c)| = N
vt

. Each of ui’s credentials c

have |ρ(c)| − 1 neighbors that contribute weight 1
|ρ(c)| , so the expectation of the sum

of closeness score for ui is
(
k
t

) |ρ(c)|−1
|ρ(c)| =

(
k
t

) N
vt
−1
N
vt

.

To compute the expected number of neighbors, when chosen uniformly at random,

an access profile uj is a neighbor of ui if and only if uj has the same symbols as ui in

at least t columns. The probability that uj has the same symbol as ui in exactly one

column with all others different is
(
k
1

)
(1
v
)(v−1

v
)(k−1) =

(
k
1

) (v−1)(k−1)

vk
. The probability

that uj has the same symbols as ui in no more than t− 1 columns is

P =

(t−1)∑
a=0

(
k

a

)
(v − 1)(k−a)

vk
.

95

Then the probability that uj is a neighbor of ui is 1−P . The probability that another

row u` is a neighbor of ui is independent of the probability for uj, so the expected

number of neighbors is

|neighbors(ui)| = (N − 1)

1−
(t−1)∑
a=0

(
k

a

)
(v − 1)(k−a)

vk

 .

Then the expected local homogeneity score is

E[homogeneity(ui)] =

(
k
t

) N
vt
−1
N
vt

(N − 1)
(

1−
∑(t−1)

a=0

(
k
a

)
(v−1)(k−a)

vk

) .
When the number of levels is not constant, the same computation is done by

enumerating the probabilities of matching the symbols in a set of a columns with

all other column symbols different. This method for computing the expectation does

not appear to be useful when the array contains hard constraints, as a constraint

involving t symbols changes the probabilities of subsets of those symbols.

Parameter values relative to other parameters affect the homogeneity. As men-

tioned before, the global homogeneity tends to decrease as N increases. As credentials

grow in size – as t approaches k for fixed N – the number of neighbors expected for an

access profile decreases and therefore the expected homogeneity score increases. That

is, the closer a credential becomes to being a full access profile, the less other access

profiles can be used to obscure the identity of the subject. If an access profile has a

large number of neighbors as t approaches k, this suggests duplication. Specifically,

if an access profile has a neighbor for t = k, then there must be two identical access

profiles. If r > N
vt

, then some credential does not appear, increasing the number of

times the remaining credentials for that set of t attributes appear. When r = N ,

every row is a duplicate. Therefore, the homogeneity score makes the most sense

when r is chosen reasonably and is useful to compare two anonymizing arrays with

the same parameters.

96

4.3.4 Homogeneity Computation

Algorithm 8 computes the local homogeneity of an anonymizing array, A.

Algorithm 8: Compute Homogeneity

input : A an N × k array, v, t

output: Homogeneity a 1×N array

begin

for each of the
(
k
t

)
subsets of t columns do

Create a list ρ(c) for each of the vt credentials, c

for each ui ∈ ρ(c) do

Add |ρ(c)|−1
|ρ(c)| to Homogeneity[ui]

for each uj 6= ui ∈ ρ(c) do
Set neighbors[ui][uj] = true

Count the true values of neighbors[ui] as numNeighbors[ui]

Set Homogeneity[ui] = Homogeneity[ui]
numNeighbors[ui]

The algorithm employs the following storage:

• vt lists with average size N
vt

for a total space of N where the space can be reused

for each of the
(
k
t

)
iterations;

• a 1×N array of doubles to store the homogeneity scores;

• a N ×N array of booleans to store the neighbor status.

The running time is as follows:

• computing the lists for each set of t columns requires one scan through the N×t

subarray, O(N
(
k
t

)
);

• for each of the vt lists, update the value in homogeneity, O(N), and update the

neighbors boolean array, O(N2);

97

• compute the count of neighbors for each of the N access profiles, O(N2).

The entire algorithm is O(N2 +N
(
k
t

)
). It is preferred to eliminate the need to count

the neighbors of ui, but as explained, it is required for our metric, and there does not

appear to be a way to count the neighbors of an access profile without comparing it

to all other access profiles.

4.3.5 Homogeneity Examples

The three anonymizing arrays in the first example (Figures 4.4, 4.6, and 4.8) have

the same parameters N, r, t, k, v. They do not have the same credentials appear-

ing. The minimum, global, and maximum homogeneity scores for each array are in

Table 4.2. The lower bound, expectation, and upper bound are 0.5, 0.75, and 1.5,

respectively. The first, built from a 23 full factorial design, is as diverse as possible

with a different access profile in every row (Figure 4.4). The second is built from

a 23−1 fractional factorial with two replicates where the last four rows are copies of

the first four (Figure 4.6). The third has two replicates of one access profile and six

replicates of another (Figure 4.8).

The first two arrays have a uniform local homogeneity score for every access profile.

The small group in the third array has a much higher homogeneity score than the

large group. Even though the large group contains identical access profiles, it is

not considered to be highly homogeneous, relative to the small group. While the

large group can be tracked, it is anticipated that the impact of tracking to individual

subjects is smaller due to the obscurity provided by the size of the group.

Figures 4.5, 4.7, and 4.9 show the multi-hypergraph representations of these ar-

rays. Access profiles are vertices labeled by the corresponding row index in the array,

and an edge surrounds a set of vertices if the set of access profiles share a credential.

Each vertex has degree three. The number of vertices contained in an edge varies.

98

a1 a2 a3

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

Figure 4.4: Low homogeneity AA(8; 2, 2, 3, 2) from 23 full factorial

1

5

2

6

37

4

8

Figure 4.5: Multi-hypergraph representation of the low homogeneity array

This representation demonstrates the clustering behavior that the homogeneity met-

rics are designed to measure.

Now consider the low homogeneity array from Figure 4.4 and two anonymizing

arrays that have the same credentials appearing and the same parameters r, t, k, v,

but six more rows. The array in Figure 4.10 is constructed by repeating the first six

rows of Figure 4.4. The additional rows provide more neighbors, so each access profile

appears in larger groups, even if they are not uniformly distributed. This reduces the

99

a1 a2 a3

1 1 0 0
2 0 0 1
3 1 1 0
4 0 1 1
5 1 0 0
6 0 0 1
7 1 1 0
8 0 1 1

Figure 4.6: Medium homogeneity AA(8; 2, 2, 3, 2) from 23−1 fractional factorial

1 5 2 6

3 7 4 8

Figure 4.7: Multi-hypergraph representation of the medium homogeneity array

global homogeneity score overall and decreases the local homogeneity scores.

The third anonymizing array, given in Figure 4.11, is created by repeating the

last row of the original array. This provides additional neighbors to some access

profiles, reducing their homogeneity scores, but does not affect others. While the

global homogeneity score is lower, the local homogeneity scores in this array have a

larger range, and some have no improvement over the original array. This suggests

that global homogeneity alone is less useful as a metric than when minimum local

100

a1 a2 a3

1 0 0 0
2 0 0 0
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1

Figure 4.8: High homogeneity AA(8; 2, 2, 3, 2) with two unique rows and many
replicates

5 6

3 4

7 8

1 2

Figure 4.9: Multi-hypergraph representation of the high homogeneity array

101

Table 4.2: Homogeneity scores for the low, medium, and high homogeneity arrays

Array min global max

Low homogeneity 0.500 0.500 0.500
Medium homogeneity 0.583 0.583 0.583
High homogeneity 0.500 0.750 1.500

Table 4.3: Low homogeneity array homogeneity scores

row |neighbors| local homogeneity

1 3 0.500
2 3 0.500
3 3 0.500
4 3 0.500
5 3 0.500
6 3 0.500
7 3 0.500
8 3 0.500

homogeneity and maximum local homogeneity are used alongside the average (global)

homogeneity.

The number of neighbors and local homogeneity scores of each access profile are

given for the arrays in Tables 4.3, 4.4, and 4.5, and the minimum, average, and

maximum local homogeneity scores for each array are given in Table 4.6.

4.3.6 Homogeneity Post-optimization (HP) Algorithm

An anonymizing array instance may not be the least homogeneous instance for a

given set of parameters. The homogeneity of an anonymizing array is described by

the homogeneity scores of all access profiles and, with a lower level of granularity,

the global homogeneity score, possibly supplemented by the minimum and maximum

local homogeneity scores. In this section, we develop a post-optimization strategy

that takes an anonymizing array and attempts to improve its homogeneity.

Necessity analysis works for row reduction when homogeneity is ignored because

102

a1 a2 a3

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1
9 0 0 0
10 1 0 0
11 0 1 0
12 1 1 0
13 0 0 1
14 1 0 1

Figure 4.10: AA(14; 2, 2, 3, 2) from a 23 full factorial with the last six rows
replicated once

Table 4.4: Homogeneity scores for the AA(14; 2, 2, 3, 2) from a 23 full factorial with
the last six rows replicated once

row |neighbors| local homogeneity

1 7 0.321
2 7 0.321
3 6 0.361
4 6 0.361
5 6 0.361
6 6 0.361
7 5 0.367
8 5 0.367
9 7 0.321
10 7 0.321
11 6 0.361
12 6 0.361
13 6 0.361
14 6 0.361

103

a1 a2 a3

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1
9 1 1 1
10 1 1 1
11 1 1 1
12 1 1 1
13 1 1 1
14 1 1 1

Figure 4.11: AA(14; 2, 2, 3, 2) from a 23 full factorial with the last row replicated
six times

Table 4.5: Homogeneity scores for the AA(14; 2, 2, 3, 2) from a 23 full factorial with
the last row replicated six times

row |neighbors| local homogeneity

1 3 0.500
2 3 0.500
3 3 0.500
4 9 0.208
5 3 0.500
6 9 0.208
7 9 0.208
8 9 0.292
9 9 0.292
10 9 0.292
11 9 0.292
12 9 0.292
13 9 0.292
14 9 0.292

104

Table 4.6: Comparison of homogeneity scores for adding rows to the low
homogeneity array from a 23 full factorial

Array min global max

Low homogeneity 0.500 0.500 0.500
Replication of six rows 0.321 0.351 0.367
Replication of one row 0.208 0.333 0.500

credentials are only required to appear r times, thus it operates in a vertical manner

on the array. That is, begin checking at the top of an N × t sub-array and mark the

positions of a row as necessary for any credential appearing in the row that has not yet

appeared r times. Homogeneity has simultaneous vertical and horizontal implications.

That is, it is a measure of in how many credentials (horizontal) access profiles appear

together and how many access profiles (vertical) are in the neighborhoods of the

credentials. It seems unlikely that any strictly top-down or left-right approach is

useful.

High homogeneity occurs when some access profile, u, either shares many of its

credentials with the same access profiles or when the neighborhood sizes of its creden-

tials are small, or a combination of the two. In the multi-hypergraph representation

of an anonymizing array, u has many edges linking it to its neighbors and the edge

degree is small. A post-optimization strategy is to remove u from an edge that it

shares with an access profile v such that closeness(u, v) is large and add an edge

with an access profile w such that closeness(u,w) is small by changing some of u’s

attributes. A purely random approach simply resamples all of u’s attributes, but this

may cause the array to no longer meet the anonymity guarantee.

A targeted approach is to change the attributes so that some of the credentials are

preserved in the modified array, even if they appear in new rows. This is accomplished

by crossover, or swapping credentials between two access profiles, an idea inspired

105

by genetic algorithms. An algorithm for this approach works as follows. Identify a

high homogeneity access profile, u. Scan the closeness scores of u and identify v, the

access profile with the highest closeness score. Scan the weights for each credential

and select the credential c with the largest weight(u, v, c). For this credential, identify

the access profile w for which weight(u,w, c) is smallest, which is zero for any access

profile w that does not have that credential. Swap the attributes of u and w for the

columns of credential c.

This approach has two issues. First, it requires the weight array to be stored

whereas closeness can be computed as sums without the intermediary weight array.

Second, the view at the granularity level of weight does not inform how close u and

w are on other credentials. Suppose u and w are identical in all columns except some

columns of c. Then while u is close to v, w is also close to v. Swapping the attributes

of c in this case is equivalent to swapping the rows of u and w so that u itself may

be less close to v, but the overall homogeneity of the array has not changed. The key

intuition is that crossover should be used to “decouple” u from a clique-like group on

one credential and create a link between that group and an access profile outside the

group while forming a link between u and the group of w.

A simplified example is in Figure 4.12. Suppose cx,i is a credential for the attributes

for the set of columns at rank x having value i. Access profiles u and v share two

credentials and are tightly coupled as are w and z. By swapping the values on

credential cx between u and w, u now shares a credential with z and w shares a

credential with v, decoupling the groups.

Suppose then that we identify u and w such that homogeneity(u) is highest and

closeness(u,w) is lowest. Scanning the weights gives information about shared cre-

dentials so we could choose to swap any credentials c where weight(u,w, c,) = 0. Too

many swaps results in swapping the entire row, and as u and w are chosen to have

106

v u

Cx,1
Cy,1

w z

Cx,2
Cy,2

v u

Cx,1 Cy,1

w z

Cx,2

Cy,2

Swap values of
credential Cx

between u and w

Figure 4.12: Crossover of credentials between access profiles u and w to decrease
homogeneity

the smallest closeness score, they may have no credentials in common. Swapping a

single credential changes up to
(
k
t

)
−
(
k−t
t

)
other credentials, so it seems unlikely that

there is an approach that makes the best decision without considering all possibilities.

Instead, we take an approach that is the middle path between random row resampling

and computationally intensive search.

The strategy is to generate a set of child arrays and choose the most fit child

to become the parent for the next generation. The fitness of an array is its global

homogeneity. For each child of a generation, an access profile u with the highest

homogeneity score is identified and a set S of the s user profiles with the lowest

closeness(u,w) scores are selected with ties broken randomly. A blocksize ≤ t is

deterministically chosen that decreases relative to time, generation
maxGenerations

, and a starting

attribute 1 ≤ start ≤ k is randomly selected. For each of the b k
blocksize

c blocks of at-

tributes starting at start, the decision to swap is made with probability that decreases

in proportion to time and w ∈ S is selected with probability 1
s
. In this implementa-

tion, s = r if there are at least r padding rows; otherwise s is set to the number of

padding rows minus one. Only padding rows are affected by crossover and mutation;

user access profiles are considered immutable. After crossover is completed, the child

is checked to ensure it still meets the anonymity guarantee and no hard constraints

107

appear. If not, it’s deleted. Initially the parent is labeled mostF it, and a child be-

comes mostF it if globalHomogeneity(child) ≤ globalHomogeneity(mostF it). Once

all children have been generated and compared, mostF it becomes the parent for the

next generation. When the parent and a child have the same globalHomogeneity, the

child is preferred to avoid multiple generations without a change to the array. When

no child is more fit than the parent, the next generation begins with the last parent.

As mentioned, swapping one credential changes up to
(
k
t

)
−
(
k−t
t

)
other credentials

in the same access profile. If one of the affected credentials appears very few times in

the array, it might be the case that swapping reduces the appearance of a credential

below r, and it may be the case that a solution cannot be found in the number of

random children allowed in a generation. In this case, the parent is retained for the

next generation. This triggers a mutation round. The intuition behind mutation is

to allow additional appearances of the credential that is eliminated by resampling

to occur elsewhere in the array so that the array is still (r, t)-anonymous. In a

mutation round, an access profile is selected for mutation and each of its symbols are

randomly resampled with probability relative to the number of generations without

progress. The number of rows to mutate and how often to mutate is tunable. In

this implementation, one row is chosen for mutation and the mutationRate increases

by 0.1 for every generation without progress, stopping when mutationRate = 1.0.

Mutation continues until the array again reaches the anonymity guarantee.

It seems likely that the number of rows to mutate should be proportional to the size

of the problem with larger arrays allowed more mutated rows. How to choose the row

to mutate is also an open problem. It seems that the rows that are being affected by

crossover should be avoided as successful mutation increases the appearance elsewhere

of a credential that has been eliminated from those rows. In this implementation, a

row that has a low closeness score with the row with the largest homogeneity score

108

is chosen. A randomly selected row might be more effective at avoiding getting stuck

or there might even be an intelligent choice. Mutating after crossover in the event

that the child does not meet the anonymity guarantee is an option. It is not chosen

at this time for the reason that this increases the chances of getting stuck in a loop.

That is, as implemented, if a child ceases to meet the anonymity guarantee due to a

mutation, the row that has been mutated is the only row modified at this time and

so resampling occurs on this row until a solution is found. As implemented, crossover

may cause coverage lower than r and the worst case is that the child is not selected for

the next generation. If mutation follows crossover, s+ 1 rows have been modified. It

might be the case that mutating one row can not solve the problem and the algorithm

may loop forever. This supports the claim that a “good” way to choose mutation is

still needed.

A number of stopping conditions are possible. The algorithm can be designed

to stop after a given number of iterations, maxGenerations, which is used here.

Alternatively, it can be stopped early if a number of generations have passed without

improvement, if it reaches some given value such as the expectation, or when the

minimum local homogeneity score is equal to the maximum local homogeneity score.

A high-level view of the Homogeneity Post-optimization (HP) algorithm is given in

Algorithm 9.

4.4 Results

4.4.1 Comparison of MTCR and CEHS Algorithms

The most common use expected for an anonymizing array is the case where a set

of access profiles is provided that does not yet meet the desired anonymity guarantee

and an anonymizing array is created with respect to the set. In this case, the CEHS

109

Algorithm 9: Homogeneity Post-optimization (HP)

input : A an N × k array, r, t, levels, maxGenerations, numChildren, s

output: A

begin
Set parent = A

Compute Homogeneity for parent

timeSinceProgress = 0

repeat
mostF it = parent

for 0 ≤ i < numChildren do
Create child a copy of A

Identify u = maxNi (homogeneity(i))

if timeSinceProgress > 0 then
Select a user profile w with the s+ 1 smallest closness(u,w)

Set mutationRate = 0.1timeSinceProgress

repeat
Resample each symbol in w with probability mutationRate

until child has anonymity guarantee r

Identify S, a set of user profiles with the s smallest scores

closeness(u,w), w ∈ S
Randomly select 0 ≤ start < k

Set blockSize = d(1− generation
maxGenerations

)te
for each of b k

blocksize
c columns starting at position start do

Randomly select w with 1
s

probability

Swap w’s symbols in those columns with u’s

Compute r and Homogeneity for child

if child has anonymity guarantee r AND

globalHomogeneity(child) ≤ globalHomogeneity(mostF it) then
Set mostF it = child

if mostF it is parent then
Increment timeSinceProgress

else
Set timeSinceProgress = 0

Set parent = mostF it

until generation < maxGenerations

Set A = parent

Return A

110

c1 c2 c3 c4

1 0 0 0 0
2 0 0 1 1
3 1 0 0 0
4 1 0 1 1
5 2 1 0 1
6 2 1 1 0

Figure 4.13: A in numerical levels, AA(6; 1, 2, 4, (3, 23))

Table 4.7: Hard and soft constraints in numerical levels for A

Hard constraints Soft constraints

{(c0, 0), (c1, 1)} {(c0, 1), (c1, 1)}
{(c0, 2), (c1, 0)}

and MTCR algorithms are used to append padding access profiles.

The anonymizing array example A from section § 4.1.3 represented by a mapping

of attribute values to numerical levels is in Figure 4.13. It is (1, 2)-anonymous. The

(2, 2)-anonymizing arrays, C and D, for the provided set of access profiles constructed

by CEHS and MTCR are in Figure 4.14 and Figure 4.15, respectively. The constraints

are in Table 4.7. MTCR produces an array with two more rows while CEHS finds one

with the minimum number of rows, though randomness in both algorithms produces

arrays with varying numbers of rows in different executions.

In tests, MTCR produces anonymizing arrays with the same number of rows as

CEHS when t = 1 without constraints and the algorithm is restricted to use only

the number of rows produced by CEHS. When it is allowed to add more rows than a

provided bound, it often adds more than needed. This is likely due to implementation

choices regarding when to add rows. The algorithm is run to produce instances

of AA(r, 1, 10, (51423324)) when either N is restricted or unlimited with results in

Table 4.8.

111

c1 c2 c3 c4

1 0 0 0 0
2 0 0 1 1
3 1 0 0 0
4 1 0 1 1
5 2 1 0 1
6 2 1 1 0

7 1 1 0 1
8 1 1 1 0
9 0 0 1 0
10 2 1 1 1
11 0 0 0 1
12 2 1 0 0

Figure 4.14: C, a (2, 2)-anonymizing array for A built by CEHS,
AA(12; 2, 2, 4, (3, 23))

c1 c2 c3 c4

1 0 0 0 0
2 0 0 1 1
3 1 0 0 0
4 1 0 1 1
5 2 1 0 1
6 2 1 1 0

7 0 0 1 1
8 0 0 0 1
9 1 0 1 1
10 2 1 1 0
11 2 1 0 1
12 1 0 0 0
13 0 0 1 0
14 2 1 0 1

Figure 4.15: D, a (2, 2)-anonymizing array for A built by MTCR,
AA(14; 1, 2, 4, (3, 23))

112

Table 4.8: Number of rows produced by MTCR with restricted rows versus MTCR
with unlimited rows for t = 1

r Restricted Unlimited

1 5 9
2 10 13
3 15 17
4 20 25
5 25 29

When t = 2 and MTCR is allowed 106 iterations, in general it requires more rows

than CEHS to find a solution. When t = 2 and one hard constraint is introduced,

MTCR requires approximately twice as many rows. When the number of hard con-

straints is increased to two, MTCR does not complete in 106 iterations for any fixed

number of rows or allowed unlimited rows. When the two constraints are instead

soft constraints, MTCR performs in fewer iterations and rows than for one hard con-

straint. The number of rows produced and iterations required to construct instances

of AA(r, 2, 10, (51423324)) by MTCR and CEHS and with the different numbers and

types of constraints are given in Table 4.9. An execution failing to complete in the

number of iterations allowed is denoted by N =∞.

4.4.2 Comparison to Replicated Mixed-Level Covering Arrays with Constraints

A less frequent scenario for anonymizing array use is when attributes can be as-

signed arbitrarily to subjects, similar to key distribution. In this case, an anonymizing

array may be created “from scratch.” Given the relationship to covering arrays, in

this section, we compare the performance of constructing anonymizing arrays for

r > 1 by CEHS against the copy construction of covering arrays in Theorem 3, and

we compare constrained and unconstrained arrays.

To create a constrained anonymizing array, CEHS is executed for 1 ≤ r ≤

5, 1 ≤ t ≤ 4, and the set of hard constraints Ht (Table 4.10) to construct an

113

Table 4.9: Number of rows produced by MTCR versus CEHS for t = 2

r Algorithm
Number

constraints
Constraint

type
Rows

allowed
Iterations N

1 CEHS 0 none – – 24
1 MTCR 0 none 24 106 ∞
1 MTCR 0 none 36 106 ∞
1 MTCR 0 none 48 735 48
1 MTCR 0 none ∞ 126 59

2 CEHS 0 none – – 43
2 MTCR 0 none 43 106 ∞
2 MTCR 0 none 64 242199 64
2 MTCR 0 none 86 26 86
2 MTCR 0 none ∞ 411 100

1 CEHS 1 hard – – 26
1 MTCR 1 hard 36 106 ∞
1 MTCR 1 hard 48 4441 48
1 MTCR 1 hard ∞ 1228 64

2 CEHS 1 hard – – 41
2 MTCR 1 hard 64 106 ∞
2 MTCR 1 hard 86 6500 86
2 MTCR 1 hard ∞ 10088 93

1 CEHS 2 hard – – 26
1 MTCR 2 hard 36 106 ∞
1 MTCR 2 hard 48 106 ∞
1 MTCR 2 hard ∞ 106 ∞
2 CEHS 2 hard – – 44
2 MTCR 2 hard 64 106 ∞
2 MTCR 2 hard 86 106 ∞
2 MTCR 2 hard ∞ 106 ∞
1 CEHS 2 soft – – 27
1 MTCR 2 soft 48 247 48
1 MTCR 2 soft ∞ 123 57

2 CEHS 2 soft – – 43
2 MTCR 2 soft 86 434 86
2 MTCR 2 soft ∞ 468 90

114

Table 4.10: Sets of hard constraints Ht chosen for 2 ≤ t ≤ 4

H2 H3 H4

{(a1, 0), (a2, 0)} {(a1, 0), (a4, 0), (a7, 0)} {(a1, 0), (a2, 0), (a3, 0), (a4, 0)}
{(a1, 1), (a3, 1)} {(a2, 0), (a5, 0), (a8, 0)} {(a5, 0), (a6, 0), (a7, 0), (a8, 0)}
{(a4, 0), (a7, 0} {(a3, 0), (a6, 0), (a9, 0)} {(a1, 1), (a2, 1), (a9, 1), (a10, 1)}
{(a5, 1), (a8, 1)} {(a1, 1), (a2, 1), (a10, 1)}
{(a6, 2), (a9, 0)}
{(a1, 2), (a10, 1)}

AA(r, t, 10, (51423324)). No constraints are given for t = 1 as this simply reduces

the number of levels by one for that row. The number of rows for this construction

are plotted in Figure 4.22 with closed scatterplot markers and labels indicating t and

“CEHS(r).”

An anonymizing array with r = 1 is equivalent to a mixed-level covering array

with constraints. Each AA(1, t, 10, (51423324)) is a CA(t, 10, (51423324)) with hard

constraintsHt. To build an anonymizing array with anonymity guarantee r, 2 ≤ r ≤ 5

copies are made of each covering array. The number of rows for this construction are

plotted in Figure 4.22 with the open scatterplot markers and labels indicating the

value of t and “CEHS(1)×r.”

When t = 1, the number of rows needed is always r times the maximum number of

levels, and both constructions produce the same number of rows. For t > 1, copying

the covering array r > 1 times always produces more rows than constructing the

anonymizing array by CEHS.

When parameters N, r, t, k, and v are controlled, CEHS likely produces anonymiz-

ing arrays that are less homogeneous than the copy construction method. A challenge

in comparing these methods is that an anonymizing array with more rows is less homo-

geneous than one with fewer rows, in general. Additional rows increase the likelihood

that access profiles have larger credential neighborhoods. When t = 1, the anonymiz-

ing arrays produced by both methods have the same number of rows for all values of r

115

1 2 3 4 5

Anonymity Guarantee r

0

200

400

600

800

1000

1200

1400

1600

1800
N

 r
ow

s
t=4 CEHS(1) r
t=4 CEHS(r)
t=3 CEHS(1) r
t=3 CEHS(r)
t=2 CEHS(1) r
t=2 CEHS(r)
t=1 CEHS(1) r
t=1 CEHS(r)

Figure 4.16: Comparison of CEHS versus copy construction of covering arrays to
build anonymizing arrays with hard constraints

and so provide a good opportunity for comparison. Figure 4.17 depicts the minimum,

average, and maximum local homogeneity as low, middle, and high bars, respectively,

for the two series of anonymizing arrays, AA(r, 1, 10, (51423324)) constructed as de-

scribed. The lines are horizontally offset for readability. The anonymizing arrays

created by CEHS for each value of r always have lower homogeneity scores than the

arrays created by making r copies of the covering array.

To form a second basis for comparison, we add or delete rows from two (2, 2)-

anonymizing arrays constructed in this section. We randomly select 5 rows from

another of the (r, 2)-anonymizing arrays constructed by CEHS and append them to

the AA(43; 2, 2, 10, (51423324)). We then compare the homogeneity scores of the re-

116

1 2 3 4 5

Anonymity Guarantee r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
H

om
og

en
ei

ty
 S

co
re

 (
m

in
im

um
, a

ve
ra

ge
, m

ax
im

um
)

t=1 CEHS(1) r
t=1 CEHS(r)

Figure 4.17: Comparison of homogeneity scores for (r, 1)-anonymizing arrays
constructed by CEHS and copy construction. Top bar is maximum, midpoint is

average, and bottom bar is minimum homogeneity score for each array.

sulting array to the AA(48; 2, 2, 10, (51423324)) created by the copy construction. The

rows are not constructed randomly to ensure that no hard constraints are introduced

into the array. (Note that this method is not without bias due to the pool of rows

from which these rows are selected. This method is an ad-hoc comparison in the

absence of a standardized homogeneity metric that adequately compares arrays with

differing numbers of rows. It is not intended for practical use.) Both have r = 2. We

also remove the last 5 rows from the copy construction array to compare to the CEHS

array. The removal of these rows caused it to drop to anonymity guarantee r = 1,

so we are no longer comparing two anonymizing arrays with exactly the same pa-

117

CEHS(r) CEHS(1) r - CEHS(r)+ CEHS(1) r

0.75

0.8

0.85

0.9

0.95

1

H
om

og
en

ei
ty

 S
co

re
 (

m
in

im
um

, a
ve

ra
ge

, m
ax

im
um

)

Figure 4.18: Comparison of homogeneity scores for (2, 2)-anonymizing arrays
constructed by CEHS and copy construction when rows are added or deleted. Top
bar is maximum, midpoint is average, and bottom bar is minimum homogeneity

score for each array.

rameters. The minimum, average, and maximum local homogeneity scores are shown

in Figure 4.18 with the ‘-/+’ notation indicating that rows were removed/added. In

both comparisons, the CEHS array had a lower global homogeneity score than the

copy construction array. The copy construction array has a larger spread of homo-

geneity scores, so while the local minimum is lower, the local maximum is higher,

suggesting that arrays made by the copy construction provide less anonymity in the

worst case for some subjects.

118

4.4.3 Comparison to Replicated Covering Arrays without Constraints

In Chapter 2, we develop a conditional expectation algorithm to construct SCPHFs

which expand to covering arrays by column replacement. In this section, we use one

covering array found by that method and apply the copy construction and a per-

muted copy construction to make anonymizing arrays. We then compare the copy

construction methods against CEHS.

A set of arrays, AA(245r; r, 3, 10, 5), is constructed by making 1 ≤ r ≤ 10 vertical

copies of a CA(245; 3, 10, 5). Call this method CAcopy. The initial covering array

made by the SCPHF conditional expectation (CE) algorithm has 62 fewer rows, but

the CEHS algorithm produces anonymizing arrays with fewer rows than CE for r ≥ 2

shown in Figure 4.19.

Another method, CAperm, constructs anonymizing arrays with permuted copies.

For each copy i > 1 and for each column j in the copy, choose a random permutation

over the levels of a column, pci,j : v 7→ v. The resulting permuted copy is still a

covering array, so the larger array is (r, t)-anonymous. Consider a row ρ in the original

covering array. In the array made by CAcopy, ρ appears (at least) r times, and this

forms a cluster of rows sharing the same credentials and therefore neighborhoods. In

the array made by CAperm, k independent permutations are applied to the columns

of the ρth row in a copy, so the likelihood that this row closely matches ρ is reduced.

Therefore, we expect the arrays made by CAperm to exhibit lower homogeneity than

direct copies, and this is supported by the results. For all data points, the permuted

arrays have lower average and maximum homogeneity scores, and in all but one data

point, they have lower minimum homogeneity scores.

The arrays created by CEHS have fewer rows than the arrays found by the copy

construction, and here again, the results suggest that increasing N while controlling

119

1 2 3 4 5 6 7 8 9 10

Anonymity Guarantee r

0

500

1000

1500

2000

2500

N
 r

ow
s

CAcopy
CEHS

Figure 4.19: Comparison of CEHS versus copy construction of covering arrays to
build unconstrained anonymizing arrays

the other parameters results in lower homogeneity, making arrays of different sizes

difficult to compare on this metric. The one exception is r = 2 when CEHS has both

fewer rows and lower homogeneity scores. Figure 4.20 gives the minimum, average,

and maximum local homogeneity scores for each constructed array horizontally offset

for readability.

Despite the differences in number of rows, we compare the constructions further.

As CAperm produces the lower homogeneity scores of the two copy constructions,

it is compared against CEHS. As there are no hard constraints to avoid and every

credential appears at least r times, appending randomly generated rows will still re-

sult in an anonymizing array. Therefore, randomly generated rows are appended to

120

1 2 3 4 5 6 7 8 9 10

Anonymity Guarantee r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

H
om

og
en

ei
ty

 S
co

re
 (

m
in

im
um

, a
ve

ra
ge

, m
ax

im
um

)

CAperm,
CAcopy
CEHS

Figure 4.20: Comparison of homogeneity scores for anonymizing arrays
constructed by CEHS, CAcopy, and CAperm. Top bar is maximum, midpoint is

average, and bottom bar is minimum homogeneity score for each array.

whichever array has fewer rows, producing arrays with the same parameters. (As

before, this method is intended for comparison here only in the absence of a stan-

dardized homogeneity metric. Additionally, appending a large number of rows could

produce an anonymizing array with a larger value for r.) The array with fewer rows

is the CEHS array when r > 1 and the CAperm array for r = 1. After the number

of rows has been equalized, in all except one case, CEHS produces arrays with lower

homogeneity scores. The one exception is that CAperm produces an array with lower

maximum homogeneity for r = 10. The homogeneity scores for the equalized arrays

are shown in Figure 4.21.

121

1 2 3 4 5 6 7 8 9 10

Anonymity Guarantee r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
om

og
en

ei
ty

 S
co

re
 (

m
in

im
um

, a
ve

ra
ge

, m
ax

im
um

)

CAperm,
CEHS

Figure 4.21: Comparison of homogeneity scores for anonymizing arrays
constructed by CEHS and CAperm when number of rows has been equalized by

appending random rows. Top bar is maximum, midpoint is average, and bottom bar
is minimum homogeneity score for each array.

This is not to say that CEHS produces arrays with lower homogeneity, though

the evidence for r = 2 suggests that it does. Instead, the claim is that whether the

goal is fewer rows or lower homogeneity, CEHS is tailored to anonymizing arrays and

seems to perform as well or better than the copy construction on covering arrays.

Specifically, CEHS likely produces anonymizing arrays with fewer rows than the copy

construction, especially as r increases. Further, constructing to meet the anonymity

guarantee with CEHS and then appending random rows produces arrays with lower

homogeneity than the permuted copy construction.

122

4.4.4 Evaluation of HP

The Homogeneity Post-optimization algorithm contains a number of tunable pa-

rameters: maxGenerations, blocksize, S, and mutationRate. It is outside the

scope of this work to tune the parameters to provide guidance on the best set-

ting as is done in Chapter 3. Instead, we conduct small experiments to provide

a proof of concept that the algorithm does reduce the homogeneity of a provided

array and to provide support for choices made in algorithm design. The array on

which HP is performed is an AA(62; 3, 2, 10, (51423322)) generated by CEHS with

constraints H2 in Table 4.10. We execute the algorithm once for each combination

of maxGenerations = {100, 500, 1000, 1500} and numChildren = {10, 20}. As one

expects, the trend is that the algorithm produces a result with lower homogeneity

scores when provided more children to choose from and is run for more generations.

A few exceptions are likely due to the randomness of the algorithm. The results are

shown in Table 4.11 where each cell contains a tuple (minimum local homogeneity,

global homogeneity, maximum local homogeneity) for the corresponding combination

of maxGenerations and numChildren. The homogeneity scores for the ingredient

array are (0.628, 0.675, 0.792). An example of the run with maxGenerations = 1000

and numChildren = 20 is in Figure 4.22.

We also compare using maximum local homogeneity for the fitness function in-

stead of global homogeneity for a subset of the previous combinations. These scores

are in Table 4.12. In every case, the maxHomogeneity as the fitness function pro-

duces higher global and maximum local homogeneity scores. In half of the cases,

the minimum local homogeneity score is lower when maxHomogeneity is used. We

conclude that globalHomogeneity is likely the better choice for the fitness function

as it appears to reduce the overall and worst case homogeneity.

123

Table 4.11: Comparison of parameters maxGenerations and numChildren

numChildren
maxGenerations 10 20

100 (0.632, 0.662, 0.689) (0.630, 0.654, 0.682)
500 (0.630, 0.652, 0.672) (0.624, 0.652, 0.668)

1000 (0.621, 0.649, 0.677) (0.620, 0.652, 0.673)
1500 (0.635, 0.657, 0.682) (0.620, 0.651, 0.672)

Table 4.12: Comparison of fitness using globalHomogeneity versus
maxHomogeneity

numChildren
maxGenerations 10 20

globalHomogeneity
100 (0.632, 0.662, 0.689) (0.630, 0.654, 0.682)
500 (0.630, 0.652, 0.672) (0.624, 0.652, 0.668)

maxHomogeneity
100 (0.637, 0.672, 0.695) (0.627, 0.667, 0.688)
500 (0.619, 0.660, 0.677) (0.632, 0.657, 0.677)

All runs reduce the global homogeneity and maximum local homogeneity from the

original array, though a few increase the minimum local homogeneity.

There are scenarios where HP is not able to reduce the homogeneity of the ar-

ray. For example, consider the covering array CA(21; 2, 7, 4) from Chapter 3. An

AA(42; 2, 2, 7, 4) is produced by CAcopy for r = 2. The homogeneity scores are

(0.569, 0.642, 0.735) with an expectation of 0.571. Therefore, this array is more ho-

mogeneous than expected, likely due in part to the replication of rows. However, no

matter how many children or generations are allowed, HP does not produce any child

array with lower homogeneity. An array built by CEHS, AA(45; 2, 2, 7, 4), has only 3

extra rows. The homogeneity scores are (0.452, 0.561, 0.649) with expectation 0.554

and, in just 100 generations with 10 children, HP reduces the scores to (0.442, 0.529,

0.607). When three rows that do not appear in the array made by CAcopy are added

124

0 100 200 300 400 500 600 700 800 900 1000

Generation

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

H
om

og
en

ei
ty

 S
co

re

maximum local homogeneity,
global homogeneity
minimum local homogeneity

Figure 4.22: Reduction in minimum, maximum and global homogeneity scores
over 1000 generations with 20 children for AA(62; 3, 2, 19, (51423324))

to the AA(42; 2, 2, 7, 4), the algorithm makes improvement, though not as rapidly. See

Figure 4.23 for a comparison of the reduction of scores for these two arrays.

It is possible that the covering array is too efficient and the lack of redundant

rows prevents room to move credentials around. Another possibility is that there is

something in the structure of this particular array. When swapping a credential, the

other credentials of the access profile that involve the same rows are “broken.” If

there is not enough redundancy, this can cause some credential to not appear r times

in the array, and mutation is introduced to handle this. However, mutation of a single

row may not be enough and multiple mutations may be needed.

125

0 10 20 30 40 50 60 70 80 90 100

Generation

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

H
om

og
en

ei
ty

 S
co

re

CAcopy maximum local homogeneity,
CAcopy global homogeneity
CAcopy minimum local homogeneity
CEHS maximum local homogeneity,
CEHS global homogeneity
CEHS minimum local homogeneity

Figure 4.23: Comparison of reduction on arrays made by CAcopy and CEHS

4.5 κ-Anonymity for Statistical Databases

There is a large body of work on anonymizing the data in statistical databases

to allow records to be released without revealing sensitive or identifying information

about the individuals corresponding to the records while preventing loss of statistical

value of the aggregate data [59]. The privacy goal is to prevent the use of “quasi-

identifiers” in linking records from the table being released to other databases. If

linking occurs, individuals are re-identified in the released data and a “sensitive at-

tribute” of one or more individuals is disclosed. While anonymizing a set of access

profiles for attribute-based authorization and anonymizing records in a statistical

database both share the goal of providing anonymity up to a set degree, the appli-

126

cations are different and so the techniques tend to be different. In the κ-anonymity

problem, when the anonymized table is released, attacks attempt to determine the

individual associated with a record or some sensitive information about an individual,

such as the likelihood that individual A has attribute B. In our problem, all attributes

of subjects are assumed to be known to the system when subjects register. Instead,

we seek to prevent the system from identifying the subject presenting a credential at

the moment of an access control decision.

In the κ-anonymity literature, k is the anonymity degree, while in the covering

array literature that serves as the basis for creating a combinatorial design to solve the

attribute distribution problem, k is the number of columns in an array. Therefore,

we use k for the columns of an anonymizing array and the number of attributes.

Throughout this section, we use the symbol κ for κ-anonymity to avoid confusion.

An anonymizing array satisfies the property of “κ-anonymity” in [58] where every

t-set of attributes is a “quasi-identifier” and r = κ. A relaxation of κ-anonymity,

(κ, `)-anonymity is defined for statistical databases when κ-anonymity causes ex-

cessive information loss and is equivalent to our definition of (r, t)-anonymous [57].

The primary methods for κ- and (κ, `)-anonymity are generalization, replacing an

attribute value with a less specific value based on the semantics of the domain of the

attribute, and suppression, not releasing a value at all. These are applicable to the

issue of anonymizing potentially sensitive data from a statistical database. For the

κ-anonymity generalization methods to be useful in the attribute-based authorization

domain, there must exist a “domain generalization hierarchy” among values of an at-

tribute. For example, “Ph.D. student” and “Masters student” might be generalized

to “graduate student” and possibly further generalized to “student.” Symbol fusing,

or mapping two symbols of a column of an array into one, is an operation used in

covering arrays that is similar to generalization and might be useful when attribute

127

values do not have a hierarchy. It is not clear when these techniques are applicable

in access control scenarios as attributes are not typically mutable.

The `-diversity principle is a set of properties for databases satisfying κ-anonymity

that requires that “sensitive values” within an “equivalence class” of a quasi-identifier,

what we refer to as the neighborhood of a credential, appear not too frequently

[39]. The purpose of `-diversity is to protect against probabilistic inference attacks.

This has a similar purpose as our homogeneity metrics, but homogeneity measures

relationships between access profiles rather than counting the appearance of certain

attribute values. It is not clear if `-diversity is a useful metric for anonymizing arrays.

When an entire row is treated as a quasi-identifier, κ-anonymity requires that κ

identical rows exist. The computational complexity of achieving κ-anonymity of a

matrix with N rows by suppression, replacing attribute values with ?, is given in [4].

In their work, input (output) homogeneity is the number of different input (output)

rows. In our problem, we require r identical credentials, but we prefer that entire

access profiles not be identical. Identical access profiles lead to high homogeneity,

which is undesirable in attribute-based authorization as it may lead to tracking of a

group of access profiles. This is similar to our problem when a credential is an entire

row, t = k. It is not clear if their results generalize to our problem when t < k and

where the sets of attributes we seek to anonymize overlap necessarily.

128

Chapter 5

CONCLUSION

5.1 Interaction Testing Conclusions

In Chapter 2, we develop three algorithms for Sherwood Covering Perfect Hash

Family (SCPHF) construction. We combine a greedy algorithm, Conditional Expec-

tation (CE), with a recursive column replacement approach to build covering arrays

via Sherwood covering perfect hash families. CE is a greedy algorithm that repeat-

edly chooses a symbol that is as good as the expectation for a row. When choosing

a symbol for a column, it only considers the uncovered t-sets involving that column

with at least one fixed symbol. CE finds useful new intermediate-sized SCPHFs and,

by column replacement, covering arrays. Additionally, the SCPHFs found by the CE

algorithm serve as good ingredients for the Random Extension (RE) algorithm in [19]

and our recursive algorithms. The combination of CE-RE has been shown to produce

SCPHFs that expand to covering arrays with the fewest rows known for some problem

parameters.

Composition is a viable cut-and-paste recursive technique for building larger arrays

from small ingredients and allows us to construct covering arrays for numbers of

factors that are infeasible by direct construction, though it often results in more

rows. The first algorithm, Composition (COMP), makes m copies of an ingredient

SCPHF to form an SCPHF with km columns. Its efficiency results from covering a

large fraction of the
(
km
t

)
t-sets and leaving only those t-sets that have more than

one copy of a column from the ingredient. CE is executed to cover the t-sets that

remain. Affine Composition (AF-COMP) reduces the occurrences of exact copies of

129

columns of the ingredient appearing in the composed SCPHF by applying an affine

transformation to each row of each subarray. In practice, it is substantially faster

than COMP and produces SCPHFs that compare favorably in number of rows to

CE.

AF-COMP is possible because the classes of noncovering and covering tuples are

closed under arithmetic, rows of the SCPHF are independent, and the same affine

transformation is applied to all columns of a row of a subarray. Therefore, each sub-

array of the composed AF-COMP is guaranteed to be an SCPHF. Another benefit

of AF-COMP is that it retains subspace restrictions that are used to form redundant

rows in the SCPHF [18]. That is, an SCPHF constructed with a subspace restriction

produces another SCPHF with the same restriction after AF-COMP. The redundant

rows can then be removed from the composed SCPHF in a similar manner as short-

ened permutation vectors.

An affine transformation involves a choice of adder and multiplier for each co-

ordinate of a permutation vector. This results in (v(v − 1))N(t−1) possible affine

transformations. Currently, AF-COMP selects transformations randomly, but some

choices of transformations may be better than others conditional on the transforma-

tions chosen for previous subarrays. An open problem is to determine a strategy for

choosing good sets of affine transformations. Without knowledge of the permutation

vectors in an ingredient SCPHF and the affine transformations chosen, at best we can

guarantee that AF-COMP covers
(
k
t

)
m of the

(
km
t

)
t-sets in the composition phase,

less than what is guaranteed by COMP, yet AF-COMP covers substantially more in

practice. A conditional expectation approach to choose the affine transformation that

results in the fewest uncovered t-sets appears to require extensive computation [18].

A second open problem is to determine if there is a better bound for the number of

t-sets covered by AF-COMP or if the expected number can be computed. Another

130

direction is to examine if a restriction on the affine transformations chosen can lead

to a computation of the expectation of the number of uncovered t-sets. This would

be useful as the number of t-sets to cover leads to an upper bound on the expected

number of rows.

5.2 Fault Location Conclusions

In Chapter 3, we develop the Partitioned Search with Column Replacement (PSCR)

algorithm. PSCR includes the first locating array verifier for an arbitrary number of

faults and builds locating arrays that are, in general, better than the higher strength

covering array construction when v > 2. As it does not rely on an underlying math-

ematical structure, it can be applied to any number of symbols (provided that d < v

due to the locating array definition) and is demonstrated to be competitive with other

available search techniques for mixed-level locating arrays (MLAs). PSCR includes

options to prioritize speed, accuracy, or a combination of both for a particular set of

problem parameters, and guidance on how to set the parameters has been provided.

PSCR can build a locating array from an ingredient array without disturbing the

initial rows to provide a set of required tests that must be present in the final test

suite. PSCR is both a useful tool to construct locating arrays for testing purposes

and a beneficial research resource for verifying locating array candidates made by

other constructions.

The running time of the algorithm may be improved by replacing the insertion

sorted list with a hash table, which requires examining the kind of hash function that

is useful here and ensuring that collisions in the sense that we have defined them can

be differentiated from hash function collisions. Based on the results of our testing,

the algorithm can be streamlined with CHO options 1 and 2 removed. The adaptive

option should be rewritten to use only the column option along with a tunable early

131

exit based on the ratio of collisions found to the amount of the array checked. The

ingredient build feature may be useful for testing other construction theories such as

vertically stacking copies of a strength t covering array and allowing resampling only

on the redundant copies. It remains to be seen how the ingredient building approaches

compare as the number of columns grows, especially as this relates to whether the

ingredient rows should be retained or allowed to be resampled.

A practical issue with the locating array definition occurs when d ≥ vi for some

column i [40]. In this case, some interactions are necessarily not locatable and thus

a locating array cannot exist, but location of the remaining interactions is possible;

relaxing the requirements yields partial location. Similarly, a constraint is an interac-

tion that cannot be tested. Constrained locating arrays (CLAs) are introduced in [30],

and satisfiability-based approaches have been used to generate CLAs with a focus on

(1,2)-locating [29]. For locating arrays, the presence of constraints may prevent other

interactions from being locatable. A comprehensive solution for handling constraints

might be useful to also accommodate partial location.

5.3 Attribute-Based Authorization Conclusions

Access control decisions made on the basis of attributes afford the opportunity for

anonymous authorization, but do not guarantee it when the distribution of attributes

allows for the composition of policies that one or few subjects possess the credentials

to satisfy. In Chapter 4, we propose anonymizing arrays as a mechanism for attribute

distribution so that if credentials are restricted to t or fewer attributes, subjects

cannot be identified with greater than 1
r

probability. We provide an algorithm that

computes r given an anonymizing array and maximum credential size t.

Anonymizing arrays are related to covering arrays with constraints and higher

λ. We prove several theorems that explain this relationship and provide insight on

132

when and how a covering array extends to an anonymizing array. Many mathemat-

ical methods for building covering arrays restrict the parameters allowed and fail to

handle constraints, but computational approaches for covering array construction are

often adaptable for building anonymizing arrays. We develop two algorithms, Moser-

Tardos-style Column Resampling (MTCR) and Conditional Expectation Heuristic

Search (CEHS), that build anonymizing arrays either from scratch or to add padding

rows to a given set of access profiles to achieve the anonymity guarantee. Both algo-

rithms handle constraints. CEHS provides better performance in terms of number of

rows produced than MTCR in most cases. While CEHS may have cases that abort

due to failing to avoid a hard constraint in a particular execution, we found no cases

where CEHS fails to terminate or where it cannot find a solution given more than one

run when a solution exists. The conflicting goals of having r coverage and avoiding

hard constraints makes MTCR a poor choice for this problem. The more rows it

is given to work with, the more likely each credential is repeated r times, but this

also increases the likelihood of a hard constraint appearing in the array. Finding

a solution even in “small” instances may require billions of iterations, while CEHS

builds an array for the same case in one to two seconds. We also compare CEHS to

a construction that makes copies of a covering array. For t > 1, r > 1, CEHS always

produces arrays with fewer rows than the copy construction in our tests.

We additionally provide metrics, local and global homogeneity, to compare two

anonymizing arrays on the same parameters, and we provide an algorithm to com-

pute homogeneity scores. The homogeneity metrics are useful to determine progress

while mutating an anonymizing array or when comparing two anonymizing arrays

with the same parameters, but the inverse correlation between rows and homogeneity

makes them difficult to use for arrays of different sizes. A standardized metric that

is independent of the number of rows is needed. We compare CEHS and the copy

133

construction on homogeneity. A random permutation is selected for each column of

each copy of the array built from copies of a covering array. We show that CEHS

produces arrays with lower homogeneity when the number of rows are equalized by

adding random rows to the array with fewer rows, even when the copies are permuted.

We also develop an algorithm, Homogeneity Post-optimization (HP), that reduces the

homogeneity of an array by swapping credentials between access profiles that have

low closeness scores to break up groups of access profiles that share many credentials.

Our model assumes that all attributes are known to the system and are issued by

the same authority, thus any set of t attributes constitutes a credential. In real world

scenarios, it may be the case that different attributes are issued by different authorities

[7]. The implementation of a credential – a card preloaded with attribute values, a

certificate proving possession, or a private key in Ciphertext-Policy Attribute-Based

Encryption (CP-ABE) – may dictate that only attributes from the same authority

appear together in a credential. That is, their attribute sets are disjoint. Anonymizing

arrays are (r, t)-anonymous for any t-set of attributes. Anonymizing arrays cover all

of the potential credentials, but in a multi-authority case, this may be unnecessary.

This is not the same as a hard constraint; the attributes from two authorities can and

likely do appear in the same access profile, but we do not need to provide r repetitions

of credentials that cross boundaries of different authorities as they are never used in

a policy. One solution here is to add an additional type of soft constraint, “don’t

care,” that does not require those credentials to appear exactly zero or r times.

The set system nature of anonymizing arrays is best suited when attribute levels

are categorical. When attribute levels are numerical, such as age, and a policy can

be created, such as age > 30, it is not clear how best to extend anonymizing arrays

to work in this case. One solution is to create attributes that are age ranges, such as

age = {[20, 29], [30, 39], [40, 49], . . .} and then list policies again in disjunctive normal

134

form, e.g., [30, 39]∨ [40, 49]. Another solution is to enumerate all possible acceptable

ages as attribute levels. This works when the levels are discrete, but not when they

are continuous.

We might ask whether an anonymizing array can be used with an access control

list or capability list. Access control lists are mappings of subjects to permissions

with one access control list per object, while capability lists are mappings of objects

to permissions with one capability list per subject. In both cases, identity of the

subject is required in order to determine whether the requested permission should be

granted. In our approach, the identity-less nature of attribute-based access control

(ABAC) is necessary though not sufficient to achieve anonymity. If there is some

scenario where it is required that the subject present her identity, then this is not an

application where anonymizing arrays are appropriate.

An open problem for ABAC is how to achieve separation of duties or requiring

more than one subject to complete sensitive tasks to reduce the risk of error and fraud

[53]. In role-based access control (RBAC), static separation of duties can be achieved

by defining two mutually exclusive roles and restricting a subject from being assigned

both roles required for the task. As the notion of roles can be supported in ABAC

by attribute distribution and policy engineering, we hypothesize that separation of

duties can be achieved in ABAC by defining one rule for each “role” and requiring

that the two rules contain at least one attribute in common but with different values.

Suppose R1, R2 are rules and a1 = 1 is an attribute a1 with value 1. Then the set

of rules R1 : a1 = 1 ∧ a2 = 2, R2 : a1 = 0 ∧ a3 = 3 require two different subjects

because one access profile cannot have both a1 = 1 and a1 = 0 simultaneously if

attributes can take on a single value. If attributes can be assigned sets of values,

we can modify our approach depending on the implementation of the system, such

as R1 : a1 = 1 ∧ a1 6= 0 ∧ a2 = 2, etc., or we could attempt to use a Chinese

135

Wall-like approach and devise policies that state that if the subject has presented

one attribute to obtain one permission, she may not present a conflicting attribute

for a mutually exclusive permission in the same session. Attribute distribution and

policy engineering for ABAC together may provide a rich environment in which to

find solutions for other open problems.

A problem for most access control systems is least privilege or only allowing the

permissions necessary to complete the job functions of the subject. There is a natural

parallel with the trade-off between greater privileges and greater privacy. As a subject

presents more attributes, the risk of being identified increases; as proven, there is an

inverse relationship between t and r. Therefore, the subject desires to present the

fewest attributes that allow access. One approach is to require credentials composed

of more attributes in order to acquire greater privileges. That is, a system guarantees

a degree of anonymity r for credential size t to grant minimum privileges. A tiered

structure may be devised so that a lower degree of anonymity r − q is guaranteed

when the subject presents more attributes t+s, but the subject also receives increased

privileges.

When padding is added to reach a given anonymity guarantee, the preference is to

add as few access profiles as possible as maintaining the anonymizing array requires

storage and searching a large array can create computational efficiency challenges.

In this work, we develop two algorithms to add rows to a partial anonymizing array.

A bound on how many rows are needed to complete a partial anonymizing array is

an open problem. In the worst case, when t = k and each of the N access profiles

already in the array is unique, N(r−1) replicates are required to be (r, t)-anonymous.

When t is smaller than k, we expect to need fewer than r− 1 replicates of each of the

original N access profiles, even if each access profile is unique, due to some t-subset

agreement by the original access profiles. Pick one of the
(
k
t

)
subsets of columns, T ,

136

for some access profile. The probability that T agrees in all t positions with some

other arbitrary access profile is 1
vt

. By linearity of expectation, the number of access

profiles that agree with this one on T is (N − 1)(1
vt

). For fixed N , when t is small,

we expect a larger number of agreements and as t approaches k, we expect a smaller

number. If (r−1) ≤ (N−1)(1
vt

), no additional rows are expected for T to be repeated

r times. Of course, T is only one of the
(
k
t

)
interactions for one access profile, but

the expected value of agreement is the same for all of them. Then we expect to add

(r − 1) − (N − 1)(1
vt

) replicates of each access profile on average, and we need at

most (r − 1) − minc∈C(c) where C is the set of
(
k
t

)
vt credentials. A credential may

not need all of the replicated rows in order to appear r times. Once it has reached

r repetitions, the places in which it appears after this row in the array can be used

to replicate credentials of the same t-set for other access profiles. Suppose the first

t-subset of attributes for access profile i already has r replicates, and access profile j

is only missing replicates for these positions. Merging the replicates together using

the first t positions of i’s duplicates for the values needed for j instead reduces the

number of added rows. A construction algorithm exploiting “don’t care” positions

may be useful for constructing anonymizing arrays with fewer rows.

Maintenance of access profiles when subjects leave the system is an open problem.

Ideally, the access profile is deleted, but that could cause some credentials to appear

fewer than r times. The simplest option is to leave the access profile in place as

a padding row, but this could result in a larger anonymizing array than necessary.

Another approach might be to modify the access profile to one that best balances

the array. For example, the attributes that are required for meeting the anonymity

guarantee are kept and others are replaced by the attributes that are most likely

to be needed if some other access profile is deleted, such as those that appear the

fewest times in the array. An algorithm for anonymizing array maintenance that

137

prevents retaining too many padding rows and post-optimization for row reduction

via necessity analysis seems like a reasonable starting point.

Locating arrays are designed to locate the interactions participating in failures

rather than simply indicating that a test is failing. Anonymizing arrays are designed

so that you can not locate the specific access profile that is being used for an access

control decision. Superficially, these seem to be dual concepts, but it does not appear

to be the case that an anonymizing array is equivalent to an “anti-locating array.” We

use the term interaction synonymously with the term credential in order to discuss

both types of arrays. In a locating array, the goal is to facilitate the location of inter-

actions, so as rows are added, we attempt to place previously correlated interactions

into different rows to distinguish them. This array is also (r, t)-anonymous, where

r is the number of appearances of the least frequently appearing interaction, and r

grows as we increase the replication of interactions. In an anti-locating array, if we

were to propose such a thing, the goal is to prevent location of interactions, so as

rows are added, we continue to place correlated interactions together into the same

rows. This array is also (r, t)-anonymous, where r is the number of appearances of

the least frequently appearing interaction, and r grows as we increase the replication

of interactions. There does not seem to be a difference between locating arrays and

anti-locating arrays in how they relate to the simple definition of anonymizing arrays.

Where they do differ is in the homogeneity of the anonymizing array. In a locating

array, an interaction appears with many other interactions. If it always appears with

the same interactions, they share the same set of rows. Conversely, in an anti-locating

array, an interaction may appear frequently, but with few other interactions, forming

a small neighborhood so that interactions cannot be distinguished in terms of their

rows. That is not to say that an anonymizing array is simply a locating array, as

we can fall short of location and yet still achieve our objective of anonymity, but

138

that techniques to build locating arrays may be good for building low homogeneity

anonymizing arrays and vice versa. An open problem is if an (r, t)-anonymous array

with no constrained credentials is constructed while prioritizing low homogeneity, are

there cases where it is guaranteed to be (d, t′)-locating?

An idea from the experimental design literature that appears to be similar to

anonymizing is aliasing. Two or more effects that have the property that the same

linear combination of observations is used to estimate their effects are aliases, and

this renders it impossible to differentiate between them [41]. In a design table, the

observations are rows, factors are columns, and effects are interactions of varying

sizes. Aliasing is another way to describe when interactions appear together in the

same rows. The more a set of interactions appears together, the more strongly they

are aliased. Aliasing seems desirable for anonymity — to not be able to tell things

apart — but instead the reverse appears to be true. In the design literature, aliasing

primarily occurs in fractional factorial designs. As rows are added, the preference

is for rows that have not been seen already, as repeated rows cannot result in de-

aliasing. Then as the number of rows increases, aliasing decreases, and repetition

of interactions increases. This suggests an inverse relationship between aliasing and

anonymity, which is not surprising because aliasing is a relationship between columns

while anonymity is achieved by a relationship between rows. There is a relationship

between how to choose rows to break aliasing and how to choose rows for location.

In both cases, the goal is to break up correlations between sets of columns. It seems

likely that designs with low aliasing could correspond to anonymizing arrays with low

homogeneity, but this has yet to be confirmed.

139

5.4 Algorithms for t-Restriction Problems

From a macroscopic view, the testing problems seem to have nothing in common

with attribute-based authorization, but when examined at a finer degree of granular-

ity, commonalities become apparent. For testing, the consideration is at first ensuring

that the coverage demands for t-way interactions are satisfied in the test suite. When

the goal is to not just detect presence of faults but to identify the faulty interactions,

distinguishing t-way interactions is added to the coverage demand. To guarantee

anonymity in attribute-based authorization, the demand is for coverage of the sets of

t-sized credentials to be either zero or r. A locating array is a covering array and an

anonymizing array is a covering array of higher λ with constraints.

Due to the commonalities in the problem structure, techniques are adaptable

from one problem to the next. The conditional expectation algorithm developed for

SCPHFs provides a useful building block for constructing anonymizing arrays. The

computation for the best symbol is adapted to accommodate the higher coverage

and a heuristic that applies a cost relative to the probability of a future event is

added to avoid the placement of constraints. The cut-and-paste recursive algorithms,

COMP and AF-COMP, have parallels in the copy construction and permuted copy

constructions that can be used to create anonymizing arrays from covering array

ingredients. PSCR is inspired by the Moser-Tardos algorithm for building covering

arrays, and PSCR can build a locating array from a covering array ingredient.

Yet from a microscopic view, these are still unique problems. The Moser-Tardos

style column resampling that is effective for locating arrays does not perform well

in the presence of constraints, so it proves to be not very useful for constructing

anonymizing arrays. The diversity metric for covering arrays is not useful for com-

paring anonymizing arrays on their tendency to form small, tight-knit groups of access

140

profiles, requiring the development of the homogeneity metrics which are specific to

anonymizing arrays. And while obscurity seems to be the opposite of locatability, it

does not seem to be the case that an anonymizing array is somehow the opposite of

a locating array.

Our final conclusion is that t-restriction problems may appear in disguise, but

formalizing a t-restriction problem as such allows for ideas that have been proven

useful for interaction testing and fault location to be applied in a seemingly unrelated

area. These ideas can then be tailored to the specific problem at hand. We need not

stop there for inspiration. Practices from design of experiments prove to be useful for

tuning algorithmic parameters and basic concepts from genetic algorithms provide a

post-optimization method for improving the homogeneity of anonymizing arrays.

141

REFERENCES

[1] A. N. Aldaco, C. J. Colbourn, and V. R. Syrotiuk, “Locating arrays: A new
experimental design for screening complex engineered systems,” ACM SIGOPS
Operating Systems Review, vol. 49, no. 1, pp. 31–40, Jan. 2015.

[2] M. Backes, J. Camenisch, and D. Sommer, “Anonymous yet accountable access
control,” in Proceedings of the 2005 ACM workshop on Privacy in the electronic
society. ACM, 2005, pp. 40–46.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based
encryption,” in 2007 IEEE Symposium on Security and Privacy (SP ’07). IEEE,
May 2007, pp. 321–334.

[4] R. Bredereck, A. Nichterlein, R. Niedermeier, and G. Philip, “The effect of homo-
geneity on the computational complexity of combinatorial data anonymization,”
Data Mining and Knowledge Discovery, vol. 28, no. 1, pp. 65–91, 2014.

[5] R. C. Bryce and C. J. Colbourn, “A density-based greedy algorithm for higher
strength covering arrays,” Software Testing, Verification and Reliability, vol. 19,
no. 1, pp. 37–53, 2009.

[6] ——, “Prioritized interaction testing for pair-wise coverage with seeding and
constraints,” Information and Software Technology, vol. 48, no. 10, pp. 960 –
970, 2006.

[7] M. Chase, “Multi-authority attribute based encryption,” in Theory of Cryptog-
raphy, S. P. Vadhan, Ed. Berlin, Heidelberg: Springer, 2007, pp. 515–534.

[8] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher, “Covering arrays of
strength three,” Designs, Codes and Cryptography, vol. 16, no. 3, pp. 235–242,
May 1999.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test suites for
highly-configurable systems in the presence of constraints: A greedy approach,”
IEEE Transactions on Software Engineering, vol. 34, no. 5, pp. 633–650, Sep.
2008.

[10] M. B. Cohen, “Designing test suites for software interaction testing,” Ph.D.
dissertation, The University of Auckland, 2004.

[11] C. J. Colbourn, B. Fan, and D. Horsley, “Disjoint spread systems and fault
location,” SIAM Journal on Discrete Mathematics, vol. 30, no. 4, pp. 2011–2026,
2016.

[12] C. J. Colbourn and V. R. Syrotiuk, “Coverage, location, detection, and mea-
surement,” in 2016 IEEE Ninth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Apr. 2016, pp. 19–25.

142

[13] ——, “On a combinatorial framework for fault characterization,” Mathematics
in Computer Science, vol. 12, no. 4, pp. 429–451, Dec. 2018.

[14] C. J. Colbourn. Covering array tables for t=2,3,4,5,6. [Online]. Available:
http://www.public.asu.edu/∼ccolbou/src/tabby/catable.html

[15] ——, “Constructing perfect hash families using a greedy algorithm,” in Coding
and Cryptology, Y. Li, S. Ling, H. Niederreiter, H. Wang, C. Xing, and S. Zhang,
Eds. Singapore: World Scientific, 2008, pp. 109–118.

[16] ——, “Covering arrays and hash families.” in Information Security, Coding
Theory and Related Combinatorics : Information Coding and Combinatorics,
D. Crnkovič and V. Tonchev, Eds. Amsterdam: IOS Press, 2011, pp. 99–135.

[17] C. J. Colbourn and B. Fan, “Locating one pairwise interaction: Three recur-
sive constructions,” Journal of Algebra Combinatorics Discrete Structures and
Applications, vol. 3, no. 3, pp. 127–134, 2016.

[18] C. J. Colbourn and E. Lanus, “Subspace restrictions and affine composition for
covering perfect hash families,” Art of Discrete and Applied Mathematics, vol. 1,
no. 2, pp. 1–19, 2018.

[19] C. J. Colbourn, E. Lanus, and K. Sarkar, “Asymptotic and constructive meth-
ods for covering perfect hash families and covering arrays,” Designs, Codes and
Cryptography, vol. 86, no. 4, pp. 907–937, Apr 2018.

[20] C. J. Colbourn and D. W. McClary, “Locating and detecting arrays for interac-
tion faults,” Journal of Combinatorial Optimization, vol. 15, no. 1, pp. 17–48,
Jan. 2008.

[21] C. J. Colbourn and P. Nayeri, “Randomized post-optimization for t-restrictions,”
in Information Theory, Combinatorics, and Search Theory, H. Aydinian, F. Ci-
calese, and C. Deppe, Eds., vol. 7777. Berlin, Heidelberg: Springer, 2013, pp.
597–608.

[22] R. Compton, M. T. Mehari, C. J. Colbourn, E. D. Poorter, and V. R. Syrotiuk,
“Screening interacting factors in a wireless network testbed using locating ar-
rays,” in 2016 IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), Apr. 2016, pp. 650–655.

[23] E. Estrada and J. A. Rodriguez-Velazquez, “Complex networks as hypergraphs,”
arXiv preprint physics/0505137, 2005.

[24] L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker, “Identifying
failure-inducing combinations in a combinatorial test set,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation, Apr.
2012, pp. 370–379.

143

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

[25] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for
fine-grained access control of encrypted data,” in Proceedings of the 13th ACM
Conference on Computer and Communications Security. New York, NY, USA:
ACM, 2006, pp. 89–98.

[26] A. Hartman, “Software and hardware testing using combinatorial covering
suites,” in Graph Theory, Combinatorics and Algorithms: Interdisciplinary Ap-
plications, M. C. Golumbic and I. B.-A. Hartman, Eds. Boston, MA: Springer
US, 2005, pp. 237–266.

[27] A. Hartman and L. Raskin, “Problems and algorithms for covering arrays,” Dis-
crete Mathematics, vol. 284, no. 1, pp. 149–156, 2004.

[28] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell,
A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide to attribute based
access control (abac) definition and considerations (draft),” NIST special publi-
cation, vol. 800, no. 162, 2013.

[29] H. Jin, T. Kitamura, E. Choi, and T. Tsuchiya, “A satisfiability-based approach
to generation of constrained locating arrays,” in 2018 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW),
Apr. 2018, pp. 285–294.

[30] H. Jin and T. Tsuchiya, “Constrained locating arrays for combinatorial interac-
tion testing,” arXiv preprint arXiv:1801.06041, 2017.

[31] A. Kapadia, P. P. Tsang, and S. W. Smith, “Attribute-based publishing with
hidden credentials and hidden policies.” in NDSS, vol. 7. Citeseer, 2007, pp.
179–192.

[32] T. Konishi, H. Kojima, H. Nakagawa, and T. Tsuchiya, “Finding minimum
locating arrays using a SAT solver,” in 2017 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), Mar. 2017,
pp. 276–277.

[33] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-based access
control,” Computer, vol. 43, no. 6, pp. 79–81, June 2010.

[34] D. R. Kuhn, V. Hu, D. F. Ferraiolo, R. N. Kacker, and Y. Lei, “Pseudo-
exhaustive testing of attribute based access control rules,” in 2016 IEEE Ninth
International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), Apr. 2016, pp. 51–58.

[35] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions and
implications for software testing,” IEEE Transactions on Software Engineering,
vol. 30, no. 6, pp. 418–421, June 2004.

[36] D. R. Kuhn, R. Bryce, F. Duan, L. S. Ghandehari, Y. Lei, and R. N. Kacker,
“Combinatorial testing: Theory and practice,” in Advances in Computers,
A. Memon, Ed. Elsevier, 2015, vol. 99, ch. 1, pp. 1 – 66.

144

[37] D. R. Kuhn, R. N. Kacker, and Y. Lei, NIST Special Publication 800-142. Prac-
tical combinatorial testing. National Institute of Standards & Technology, 2010.

[38] E. Lanus, C. J. Colbourn, and D. C. Montgomery, “Partitioned search with col-
umn resampling for locating array construction,” in 2019 IEEE International
Conference on Software Testing, Verification and Validation Workshops, to ap-
pear.

[39] A. Machanavajjhala, M. Venkitasubramaniam, D. Kifer, and J. Gehrke, “` -
diversity: Privacy beyond κ -anonymity,” in 22nd International Conference on
Data Engineering (ICDE’06)(ICDE), 2006.

[40] C. Mart́ınez, L. Moura, D. Panario, and B. Stevens, “Locating errors using ELAs,
covering arrays, and adaptive testing algorithms,” SIAM Journal on Discrete
Mathematics, vol. 23, no. 4, pp. 1776–24, 2009.

[41] D. C. Montgomery, Design and analysis of experiments, 8th ed. Hoboken, NJ:
John Wiley & Sons, Inc., 2013.

[42] R. A. Moser and G. Tardos, “A constructive proof of the general Lovász local
lemma,” Journal of the ACM, vol. 57, no. 2, pp. 11:1–11:15, Feb. 2010.

[43] T. Nagamoto, H. Kojima, H. Nakagawa, and T. Tsuchiya, “Locating a faulty
interaction in pair-wise testing,” in 2014 IEEE 20th Pacific Rim International
Symposium on Dependable Computing, Nov. 2014, pp. 155–156.

[44] P. Nayeri, “Post-optimization: Necessity analysis for combinatorial arrays,”
Ph.D. dissertation, Arizona State University, 2011.

[45] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Computing
Surveys (CSUR), vol. 43, no. 2, pp. 1–29, 2011.

[46] C. Nie, H. Wu, X. Niu, F.-C. Kuo, H. Leung, and C. J. Colbourn, “Combinatorial
testing, random testing, and adaptive random testing for detecting interaction
triggered failures,” Information and Software Technology, vol. 62, no. 1, pp. 198–
213, 2015.

[47] X. Niu, C. Nie, H. K. Leung, Y. Lei, X. Wang, J. Xu, and Y. Wang, “An
interleaving approach to combinatorial testing and failure-inducing interaction
identification,” IEEE Transactions on Software Engineering, pp. 1–33, 2018.

[48] M. Portnoi and C.-C. Shen, “Location-enhanced authenticated key exchange,” in
2016 International Conference on Computing, Networking and Communications
(ICNC). IEEE, 2016, pp. 1–5.

[49] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2005, pp. 457–473.

[50] K. Sarkar, “Covering arrays: Algorithms and asymptotics,” Ph.D. dissertation,
Arizona State University, 2016.

145

[51] JMP R© statistical software from SAS, version 14.0.0. SAS. [Online]. Available:
https://www.jmp.com

[52] S. A. Seidel, K. Sarkar, C. J. Colbourn, and V. R. Syrotiuk, “Separating inter-
action effects using locating and detecting arrays,” in Combinatorial Algorithms,
C. Iliopoulos, H. W. Leong, and W.-K. Sung, Eds. Cham: Springer International
Publishing, 2018, pp. 349–360.

[53] D. Servos and S. L. Osborn, “Current research and open problems in attribute-
based access control,” ACM Computing Surveys, vol. 49, no. 4, pp. 65:1–65:45,
Feb. 2017.

[54] G. B. Sherwood, S. S. Martirosyan, and C. J. Colbourn, “Covering arrays of
higher strength from permutation vectors,” Journal of Combinatorial Designs,
vol. 14, no. 3, pp. 202–213, 2006.

[55] C. Shi, Y. Tang, and J. Yin, “Optimal locating arrays for at most two faults,”
Science China Mathematics, vol. 55, no. 1, pp. 197–206, Jan. 2012.

[56] A. Squicciarini, A. Trombetta, A. Bhargav-Spantzel, and E. Bertino, “k-
anonymous attribute-based access control,” in International Conference on In-
formation and Computer Security (ICICS’07), 2007.

[57] K. Stokes, “On computational anonymity,” in International Conference on Pri-
vacy in Statistical Databases. Springer, 2012, pp. 336–347.

[58] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and
suppression,” International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 10, no. 05, pp. 571–588, 2002.

[59] ——, “k-anonymity: A model for protecting privacy,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 05, pp. 557–
570, 2002.

[60] Y. Tang, C. J. Colbourn, and J. Yin, “Optimality and constructions of locating
arrays,” Journal of Statistical Theory and Practice, vol. 6, no. 1, pp. 20–29, 2012.

[61] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,”
Nature, vol. 393, no. 6684, pp. 440–442, June 1998.

146

https://www.jmp.com

APPENDIX A

LOCATING ARRAY ADDITIONAL FIGURES

147

Figure A.1: Comparison of effects in 5× 5× 3× 2× 2 full factorial

148

0 1 2 3 4

Collision Handling Options

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

R
ow

s
(N

)

1,1,1000,7
1,2,25,6
1,3,8,4
2,1,20,5
2,2,5,3
Pooled

Figure A.2: Effect of CHO on rows by block

0 1 2 3 4

Collision Handling Options

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

Ite
ra

tio
ns

1,1,1000,7
1,2,25,6
1,3,8,4
2,1,20,5
2,2,5,3
Pooled

Figure A.3: Effect of CHO on iterations by block

149

0 1 2 3 4

Collision Handling Options

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

S
ec

on
ds

1,1,1000,7
1,2,25,6
1,3,8,4
2,1,20,5
2,2,5,3
Pooled

Figure A.4: Effect of CHO on seconds by block

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Alpha

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

R
ow

s
(N

)

1,1,1000,7
1,2,25,6
1,3,8,4
2,1,20,5
2,2,5,3
Pooled

Figure A.5: Effect of α on rows by block

150

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Alpha

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

Ite
ra

tio
ns

1,1,1000,7
1,2,25,6
1,3,8,4
2,1,20,5
2,2,5,3
Pooled

Figure A.6: Effect of α on iterations by block

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Alpha

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n
S

ta
nd

ar
di

ze
d

S
ec

on
ds

1,1,1000,7
1,2,25,6
1,3,8,4
2,1,20,5
2,2,5,3
Pooled

Figure A.7: Effect of α on seconds by block

151

Figure A.8: JMP Interaction Profiler for iterations

152

Figure A.9: JMP Interaction Profiler for seconds

153

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Interaction Testing
	1.2 Fault Location
	1.3 Attribute-Based Authorization

	2
	2.1 Sherwood Covering Perfect Hash Family Construction
	2.1.1 Conditional Expectation (CE) Algorithm
	2.1.2 Conditional Expectation Bounds

	2.2 Recursive Algorithms
	2.2.1 Composition (COMP) Algorithm
	2.2.2 Affine Composition (AF-COMP) Algorithm
	2.2.3 Composition Bounds

	2.3 Results
	2.3.1 Evaluation of CE
	2.3.2 Comparison of COMP to CE
	2.3.3 Comparison of COMP to AF-COMP
	2.3.4 Comparison of Composition Strategies

	3
	3.1 Locating Array Construction
	3.1.1 Overview
	3.1.2 Verification
	3.1.3 Repair
	3.1.4 Partitioned Search with Column Replacement (PSCR) Algorithm

	3.2 Results
	3.2.1 Parameter Tuning
	3.2.2 Comparison to Higher Strength Constructions
	3.2.3 Comparison to Mixed-Level Locating Array Constructions
	3.2.4 Constructing from an Ingredient Array

	4
	4.1 Anonymizing Arrays
	4.1.1 Definitions
	4.1.2 Constraints
	4.1.3 Anonymizing Array Example
	4.1.4 Relationship to Covering Arrays
	4.1.5 Computing the Anonymity Guarantee

	4.2 Anonymizing Array Construction Algorithms
	4.2.1 Moser-Tardos-style Column Resampling (MTCR) Algorithm
	4.2.2 Conditional Expectation Heuristic Search (CEHS) Algorithm
	4.2.3 Post-optimization for Row Reduction

	4.3 Homogeneity in Anonymizing Arrays
	4.3.1 Designing Metrics
	4.3.2 Homogeneity Definitions
	4.3.3 Bounds on Homogeneity
	4.3.4 Homogeneity Computation
	4.3.5 Homogeneity Examples
	4.3.6 Homogeneity Post-optimization (HP) Algorithm

	4.4 Results
	4.4.1 Comparison of MTCR and CEHS Algorithms
	4.4.2 Comparison to Replicated Mixed-Level Covering Arrays with Constraints
	4.4.3 Comparison to Replicated Covering Arrays without Constraints
	4.4.4 Evaluation of HP

	4.5 -Anonymity for Statistical Databases

	5
	5.1 Interaction Testing Conclusions
	5.2 Fault Location Conclusions
	5.3 Attribute-Based Authorization Conclusions
	5.4 Algorithms for t-Restriction Problems
	REFERENCES
	A

