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ABSTRACT

In the realm of network science, many topics can be abstracted as graph problems,

such as routing, connectivity enhancement, resource/frequency allocation and so on.

Though most of them are NP-hard to solve, heuristics as well as approximation algo-

rithms are proposed to achieve reasonably good results. Accordingly, this dissertation

studies graph related problems encountered in real applications. Two problems stud-

ied in this dissertation are derived from wireless network, two more problems studied

are under scenarios of FIWI and optical network, one more problem is in Radio-

Frequency Identification (RFID) domain and the last problem is inspired by satellite

deployment.

The objective of most of relay nodes placement problems, is to place the fewest

number of relay nodes in the deployment area so that the network, formed by the

sensors and the relay nodes, is connected. Under the fixed budget scenario, the ex-

pense involved in procuring the minimum number of relay nodes to make the network

connected, may exceed the budget. In this dissertation, we study a family of problems

whose goal is to design a network with “maximal connectedness” or “minimal discon-

nectedness”, subject to a fixed budget constraint. Apart from “connectivity”, we also

study relay node problem in which degree constraint is considered. The balance of

reducing the degree of the network while maximizing communication forms the basis

of our d-degree minimum arrangement(d-MA) problem. In this dissertation, we look

at several approaches to solving the generalized d-MA problem where we embed a

graph onto a subgraph of a given degree.

In recent years, considerable research has been conducted on optical and FIWI

networks. Utilizing a recently proposed concept “candidate trees” in optical network,

this dissertation studies counting problem on complete graphs. Closed form expres-

sions are given for certain cases and a polynomial counting algorithm for general
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cases is also presented. Routing plays a major role in FiWi networks. Accordingly

to a novel path length metric which emphasizes on “heaviest edge”, this dissertation

proposes a polynomial algorithm on single path computation. NP-completeness proof

as well as approximation algorithm are presented for multi-path routing.

Radio-frequency identification (RFID) technology is extensively used at present

for identification and tracking of a multitude of objects. In many configurations,

simultaneous activation of two readers may cause a “reader collision” when tags are

present in the intersection of the sensing ranges of both readers. This dissertation ad-

dresses slotted time access for Readers and tries to provide a collision-free scheduling

scheme while minimizing total reading time.

Finally, this dissertation studies a monitoring problem on the surface of the earth

for significant environmental, social/political and extreme events using satellites as

sensors. It is assumed that the impact of a significant event spills into neighboring

regions and there will be corresponding indicators. Careful deployment of sensors,

utilizing “Identifying Codes”, can ensure that even though the number of deployed

sensors is fewer than the number of regions, it may be possible to uniquely identify

the region where the event has taken place.
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Chapter 1

INTRODUCTION

Many applications in real world can be formed as networks. Modern technologies

ranging from wireless communication to Internet, social networks to satellites systems

- all are networked. Graph theory is a powerful tool to analysis and solve abstract

models and our daily life benefits from effort of computer science researchers. Al-

though extensive research has been done on topics like routing, resource allocation,

connectivity enhancement and so on. There are still a lot of more new areas we never

explored. This requires us to have a in-depth understanding of nature of networks

and motivates us a long march to unstudied problems. This dissertation focuses on

graph theoretical problems in network design, more specially, we focus on wireless

network on two-dimensional plane and optical FiWi network.

The two-dimensional plane is the most essential and commonly used model in

wireless network. Especially for sensor networks, real applications are often under two

dimensional scenarios. Due to low power of sensors, transmission restriction is always

considered and therefore many research has focused on sensor/relay nodes placement

or communication protocols. However, to best of our knowledge, few of them took

account for budget limitation. In real world, budget is in fact the priority and we

usually conduct work under limited resource. In this dissertation, we study a very

common but easily ignored problem: how to place relay nodes given the location of

sensors under certain budget. This problem is attractive not only because it involves

graph connectivity, but also because we need to make tradeoff towards our objective

since not all requirement can be fulfilled. More specially, we point out 3 possible

objectives and give approximation or inapproximatebility for each one.
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Apart from connectivity, degree of graph is also a consideration when budget or

computation power is limited. For instance, a router which serves as relay node usual-

ly has connection limitation. If the number of device connected to the router exceeds

certain value. The quality of communication is very likely to be affected. Therefore,

it is of our interest to consider the following problem: given a network/graph, how to

choose subset of edges such that the degree of every node is no larger than a given

integer d while some objective, like total distance or total weight, is minimized. When

d = 2, it becomes the classic Minimum Linear Arrangement(MLA) problem. Though

extensive research has been done on MLA, there have been no developments into

versions of the problem involving degree higher than 2. In this dissertation, we will

look at several approaches to solve the generalized d-degree minimum arrangement

(d-MA) problem where we embed a graph onto a subgraph of a given degree.

In recent years, Elastic Optical Networks (EON) attracts a large amount of at-

tention of research. One of key challenges that appears in EON study is the need to

distribute large volumes of data to many users at the same time in an efficient and

cost-effective way. Due to recent research, it is found that one of the most efficient

approach for optimizing multicast flows is based on using pre-generated “candidate

tree”, where each tree represents a steiner tree given all source and destination ter-

minals while other nodes are optional. Clearly, we should handle “candidate tree”

generation problem. A very nature question would be “how many candidate trees

can be generated?”, therefore in this dissertation, we study the case where the topol-

ogy is a complete graph with n nodes and p of them are target nodes. We gave an

counting algorithm for general cases, and show closed form expression when p = 2

and 3. Moreover, we provide an steiner tree generating algorithm.

Though significant progress has been made on the design of advanced FiWi net-

work architectures as well as access techniques and routing protocols/algorithms over

2



the last few years. It is still challenging how to design routing algorithms for the

wireless front end only or for both the wireless and optical domains of FiWi ac-

cess networks. A large number of wireless, integrated opticalwireless, multipath, and

energy-aware routing algorithms were proposed. Among them, Frank Aurzada etc in-

vented a new unified analytical framework to allow capacity and delay evaluations of a

wide range of FiWi network routing algorithms and provide important design guide-

lines for novel FiWi network routing algorithms that leverage the different unique

characteristics of disparate optical fiber and wireless technologies [3]. In their work,

they considered a new path length metric involving “heaviest edge” and achieved

good result in simulation. To better facilitate this novel metric, in this dissertation,

we gave the solution to compute shortest path under new metric and study multi-path

problem which is not presented previously.

Apart from exploring problems in wireless and optical network, this dissertation

also explores resource allocation techniques in cyber-physical systems, specifically in

Radio-Frequency IDentification (RFID) systems. RFID systems extensively use read-

ers and tags for identification of objects with unique identifiers and are required to

allow readers fast and accurate access to tags available in the environment. Reader

and Tag type devices are utilized in the Radio-Frequency IDentification technology

for identification and tracking of objects. A tag can be read by a reader when the

tag is within the readers sensing range. However, when tags are present in the in-

tersection area of the sensing ranges of two or more readers, simultaneous activation

of the readers may cause reader collision. In order to ensure collision-free reading,

a scheduling scheme is needed to read tags in the shortest possible time. We study

this scheduling problem in a stationary setting and the reader minimization problem

in a mobile setting. We show that the optimal schedule construction problem is NP-

complete and provide a heuristic algorithm that we evaluate our techniques through

3



simulation.

For application of identification code on events monitoring, as Earth is almost a

sphere, we use a soccer ball (a sphere) as a model. From the model, we construct a

Soccer Ball Graph (SBG), and show that the SBG has at least 26 sets of Identifying

Codes of cardinality ten, implying that there are at least 26 different ways to deploy

ten satellites to monitor the Earth. Finally, we also show that the size of the minimum

Identifying Code for the SBG is at least nine.

The remainder of this dissertation dissertation is organized as follows: Chapter 2

presents the budget constraint problem in relay node placement with approximation

algorithm. In Chapter 4, a brief overview of the concept “candidate trees” is outlined

and some computation results are given. The (d-MA) problem is studied in Chapter 3.

The path computation problem in FiWi networks using new metric is addressed in 5.

Reader Scheduling in RFID system is discussed in Chapter 6 and identification code

monitoring problem is address in Chapter 7. Finally, in Chapter 8 this dissertation

is concluded, and possible extensions of the presented work is outlined.
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Chapter 2

RELAY NODE PLACEMENT UNDER BUDGET CONSTRAINT

2.1 Introduction

The relay node placement problem, because of its importance in wireless sensor

networks, has been studied fairly extensively in the last few years [40, 30, 36, 51, 62,

23, 44, 5, 37, 32, 41]. The problem has been studied in several different scenarios.

In one scenario, a number of sensors (nodes) have been placed in a deployment area

and the objective is to place the fewest number of relay nodes in the deployment area

such that (i) each sensor node is within the communication range of at least one relay

node and (ii) the network formed by the relay nodes is connected. This is a two tiered

network model where the relay nodes serve as cluster heads (or higher tier nodes)

to form a connected network topology for delivery of data collected by the sensors

(lower tier nodes). Relay node placement problems have also been studied with a

single tier network model, where each sensor node is not required to be in direct

contact with a relay node, as they have the capability of forwarding packets received

from other sensor nodes. In a single tier network model, data collected at a sensor

node is delivered to the data collection point by multiple hops through other sensor

and relay nodes. In this chapter, we focus our attention to the single tier network

model where a set of sensor nodes have already been placed in the deployment area,

and the goal is to place at most a specified number of relay nodes to realize a certain

objective. The objective most often is to place as few relay nodes in the deployment

area as possible so that the resulting network comprising of sensor and relay nodes

is connected. As the deployment of relay nodes involves cost, it may not be possible
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to acquire and deploy the number relay nodes necessary to make the entire network

connected, particularly when one has to operate under a fixed budget. Although in

this scenario, one has to give up the idea of having a network connecting all the sensor

nodes, one would still like to have a network with high level of “connectedness”. In

a recent paper [43], we introduced the notion of “connectedness” in a disconnected

graph and provided two metrics to measure it. The first metric to measure connect-

edness of a disconnected graph presented in [43] is the size of the largest connected

component of the graph. We argue that a larger size of the largest connected com-

ponent in a disconnected graph is an indicator of a higher degree of connectedness of

the graph.The second metric to measure connectedness of a disconnected graph is the

number of connected components of the graph. In a manner similar to the size of the

largest connected component, we argue that a lower number of connected components

in a disconnected graph is also an indicator of a higher degree of connectedness of the

graph.

The problem scenario studied in this chapter is depicted diagrammatically in Fig

2.1. By communication range, we refer to the upper bound on transmission range.

Consider a set of twenty three sensor nodes (shown as blue circles) deployed as

shown in Fig. 2.1a. Since the mathematical abstraction of the relay node placemen-

t problem corresponds to the Geometric Steiner Tree Problem [39], and the terms

Steiner Points and terminal points are used in the abstraction, where the Steiner

Points and terminal points correspond to the locations of the relay and sensor nodes

respectively. In this chapter we have used the terms “sensor nodes” and “terminal

points” interchangeably. In Fig. 2.1a there are three clusters - the first one with

ten terminal points, the second one with eight, while the third with five. The intra-
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(a) Deployment of terminal points (b) Optimal solution for Budget of 2

(c) Optimal solution for objective 1,

but not for objective 2

(d) Optimal solution for both

objectives 1 and 2

Figure 2.1: Figure showing variation in placing relay nodes for different objectives

and budget constraints

cluster distances are within the communication range, whereas the inter-cluster ones

are not. Suppose that the maximum inter cluster distance is less than twice the com-

munication range, and as such only one relay node is sufficient for connecting any two

clusters. If we have the option of placing two relay nodes (shown as red squares), then

under both metrics of connectedness, the placement of relay nodes as shown in Fig.

2.1b is an optimal solution. However, if we have a budget for only one relay node, the

solution shown in Fig. 2.1c is an optimal solution under budget constraint according

to the first metric of connectedness. This is true as there are exactly two connected
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components which is the best that can be achieved with only one relay node. How-

ever, in this solution, the largest connected component has only thirteen nodes and

is not optimal according to the second metric. Fig. 2.1d shows the placement of the

relay node which is optimal under budget constraint for the second metric, having

the largest connected component with eighteen terminal points. It may be noted that

this placement also results in an optimal solution under budget constraint according

to the first metric.

Expanding on the concept of “connectedness of a disconnected graph” introduced

in [43], this chapter introduces two additionalmetrics to measure “connectedness” of a

disconnected graph. The third metric is the size of the smallest connected component

of the graph. We argue that a larger size of the smallest connected component can

also be viewed as an indicator of a higher degree of connectedness of the graph. It

may be noted that two important attributes of a disconnected graph are the size

and the number of components. Among the three metrics, the first and the third

takes into account only to the size (largest and smallest) and the second takes into

account only the number of components. As one can argue that a metric to measure

connectedness of a disconnected graph that pays attention only to the size or to

the number of connected components is myopic and a non-myopic metric to measure

connectedness of a disconnected graph should take into account, both the size and the

number of connected components simultaneously. To address this issue, in section 2.7

we propose a fourth metric to measure the “connectedness” of a disconnected graph

that takes into account both the size as well as the number of connected components.

In this chapter, we first show that the network design problems whose goal is to

achieve maximal “connectedness” in a disconnected graph using the first three metrics

are NP-complete. We present (i) an approximation algorithm with a performance

bound of 1
10

for the first metric and (ii) inapproximability results for the second and
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the third metrics. In addition, we present future direction of our research on this

topic. Although resource constrained version of relay node placement problems have

been studied in literature [44, 5, 37], to the best of our knowledge, a formal treatment

of the study of the “connectedness” of a disconnected graph has not been undertaken

earlier.

2.2 Related Works

The relay node placement problem in wireless sensor networks has been studied ex-

tensively in the last few years [40, 36, 51, 62, 44, 5, 37, 39]. Most of the studies can be

categorized in the following way: (i) single-tiered network versus two-tiered network

[39, 45], (ii) 1-connected network versus k-connected network (k ≥ 2) [39, 27], (iii)

homogeneous transmission range of nodes versus heterogeneous transmission range of

nodes [39, 40, 23], (iv) location (for placement of relay nodes) unconstrained problem

versus location constrained problem [39, 44].

Lin and Xue introduced the Steiner Minimum Tree with Minimum Number of Steiner

Points and Bounded Edge Length problem (SMT-MSPBEL) in [39]. This problem

is exactly the same as the placement of the fewest number of relay nodes in the de-

ployment area, so that the network formed by the sensor and the relay nodes are

connected. They proved that the SMT-MSPBEL problem is NP-hard and presented

an approximation algorithm with a performance bound of 5. Later Chen et al. in

[10] proved that the Lin-Xue algorithm is actually a 4-approximation algorithm. In

addition, they also presented a 3-approximation algorithm for this problem. Cheng

et. al. in [11] presented another 3-approximation algorithm for the with faster exe-

cution time.

The relay node placement problem studied in [39] was conducted with respect to a

single-tiered network. Pan et al. in [45] studied a two-tiered network model where
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the sensor nodes are grouped into clusters, where each sensor node in a cluster is

within the communication range of it’s clusterhead, which is a relay node. In this

model, the sensor nodes transmit sensed data to the clusterhead, which relays it to

the data collection point, with multiple hops through other relay nodes. In recent

times, several authors have focused their attention on study of both single tier and

two tier networks [62, 40].

The relay node placement problem studied in [39] had the goal of making the network

formed by the sensors and relay nodes connected (i.e., 1-connected). Bredin et. al.

in [27] generalized the relay node placement problem with a goal of designing a k-

connected network where k > 1. They presented polynomial time O(1)-approximation

algorithm for the problem. For a special case, when k = 2, Kashyap et al. presented

a 10-approximation algorithm in [1].

The transmission range of sensor and relay nodes were assumed to be homogeneous

(identical) in [39]. Follow up research on this topic introduced heterogeneity of trans-

mission range at two levels. The first level of heterogeneity was introduced in [40]

where transmission range of the sensor and the relay nodes were different. They

proved its NP-hardness of the problem and presented a 7-approximation algorithm for

the case where connectivity k = 1. Zhang et al. in [62] presented a 14-approximation

algorithm for case where k = 2. The second level of heterogeneity was introduced in

[23] where different sensor nodes were allowed to have different transmission ranges.

They present approximation algorithms for scenarios where unidirectional or bidirec-

tional paths connect the sensor and relay nodes.

The relay node placement problem, studied in [39] can be viewed as unconstrained

location problem in the sense that there were no constraints on the locations where

the relay nodes can be placed. In the constrained version of the problem studied in
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[44], the relay nodes can only be placed in the pre-defined set of candidate locations.

In this setting they study two problems. The goal of these two problems is to deploy

the minimum number of relay nodes to ensure that each sensor node is connected

through a bidirectional path to one/two base stations respectively. The analyze the

computational complexity of the problems and present a framework of polynomial

time O(1)-approximation algorithms.

The authors in [5] considered a deployment budget and studied the tradeoff between

the network throughput, the deployment budget, and overall system coverage. The

issues arising out of relay node deployment budget was also considered by Li et. al.

in [37]. They study the problem of deployment of road side units (RSUs) to improve

overall network performance in a vehicular ad-hoc network environment. The objec-

tive of their study is to find optimal locations for RSUs that maximizes the number

of vehicles that can receive message from the RSUs, subject to the budget and delay

constraints.

Although resource constrained version of relay node placement problems has been

studied in literature [44, 5, 37], to the best of our knowledge, aside from our own

investigation in [43], the study of connectedness of a disconnected graph has not be

undertaken earlier.

2.3 Problem Formulation

As discussed earlier, the goal of this study is to design sensor networks with a high

degree of connectedness even when operating in an environment where the number

of available relay nodes is less than the number of relay nodes necessary to make all

the sensor nodes connected. As a first step in this direction, we formalize the notion
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of connectedness in three different ways. Accordingly, we have three well defined

problems and formal statements of these three problems are provided below. The

input to the sensor network design problem is: (i) the locations of a set of sensor nodes

(terminal points) P = {p1, p2, . . . , pn} in the Euclidean plane, (ii) the communication

range R of the sensor nodes, and (iii) a budget B on the number of relay nodes that

can be placed in the deployment area. From the set of points P and communication

range R, we construct a graphG = (V,E) in the following way: Corresponding to each

point pi ∈ P we create a node vi ∈ V and two nodes vi and vj have an edge ei,j ∈ E if

the distance between the corresponding points pi and pj is at most R. It may be noted

that the graph G = (V,E) so constructed may be disconnected (i.e., it might comprise

of a number of connected components). The purpose of deploying the relay nodes is

to make the augmented graph, G′ = (V ′, E ′), (comprising of sensor and relay nodes)

connected. Suppose that m relay nodes are deployed at points Q = {q1, q2, . . . , qm}.
Corresponding to every point qi ∈ Q there is a node vi ∈ V ′−V and there is an edge

between two nodes vi and vj in V ′ if the distance between the corresponding points

is at most R. With unlimited budget B, sufficient number of relay nodes can be

deployed to ensure that the graph G′ = (V ′, E ′) is connected. However, if the budget

is smaller than the minimum number of relay nodes necessary to make the graph

G′ = (V ′, E ′) connected, this goal will be unachievable. However, in this scenario

also, one would like to have the graph G′ = (V ′, E ′) as much connected as possible.

This gives rise to a connectedness maximization problem. The goal of creating the

graph G′ = (V ′, E ′) with maximal connectedness or least disconnectedness can be

achieved by (i) deploying the relay nodes in a fashion that maximizes the size of the

largest connected components of G′ = (V ′, E ′), or (ii) deploying the relay nodes in a

fashion that maximizes the size of the smallest connected components of G′ = (V ′, E ′),

or (iii) deploying the relay nodes in a fashion that minimizes the number of connected
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components of G′ = (V ′, E ′). We refer to (i) as Budget Constrained Relay node

Placement for Maximizing the size of the Largest Connected Component (BCRP-

MLCC) problem, (ii) as Budget Constrained Relay node Placement for Maximizing

the size of the Smallest Connected Component (BCRP-MSCC) problem and (iii) as

Budget Constrained Relay node Placement for Minimizing the Number of Connected

Components (BCRP-MNCC) problem.

Next, we provide formal definitions of the three problems:

Given the locations of n sensor nodes in the Euclidean plane P = {p1, p2, . . . , pn},
transmission range R and a budget B on the number of relay nodes that can be

deployed, is it possible to find a set of points Q = {q1, q2, . . . , qm}, where m ≤ B, in

the same plane where relay nodes can be deployed, so that:

(i) BCRP-MLCC Problem: the size of the largest connected component in the graph

G′ = (V ′, E ′) corresponding to the point set P and Q is at least X, for a pre-specified

value X? (The graph construction rule from the point set P and Q is described earlier

in the section).

(ii) BCRP-MSCC Problem: the size of the smallest connected component, of the

graph G′ = (V ′, E ′) corresponding to the point set P and Q is at least Y , for a pre-

specified value Y ?

(iii) BCRP-MNCC Problem: the number of connected components in the graph

G′ = (V ′, E ′) corresponding to the point set P and Q is at most Z, for a pre-specified

value Z?

2.4 Problem Solution

The unconstrained version of the relay node placement problem is known as the

Steiner Tree Problem with Minimum Number of Steiner Points with Bounded Edge

13



Length (STP-MSPBEL) and was studied in [39].

STP-MSPBEL Problem: Given a set of n terminals points (location of sensor nodes)

P = {p1, p2, ..., pn} in the Euclidean plane, and positive constants R and B, is there

a tree T spanning a point set Q ⊇ P such that each edge in the tree has a length no

greater than R and the number of points in Q \ P , called Steiner points is at most

B?

The authors in [39] have shown that the STP-MSPBEL is NP-complete. As the

STP-MSBEL problem is a special case of both BCRP-MNCC and BCRP-MLCC

problems, and STP-MSBEL is NP-complete, we can conclude that all three problems

we study are NP-complete.

2.4.1 BCRP-MLCC

In this subsection, we first present an approximation algorithm for BCRP-MLCC

with a constant factor 1
10

performance guarantee. As our approximation algorithm is

based on one approximation algorithm for the K Minimum Spanning Tree (K-MST)

problem, first we describe the K-MST problem.

Minimum K-Spanning Tree Problem (K-MST) : Given a graph G = (V,E), real

numbers K, B, and a weight function w : E → N, is there a spanning tree T of G of

at least K nodes, so that
∑

e∈T w(e) ≤ B.

The K-MST problem is NP-hard [18]. The approximation algorithm for the K-

MST problem provided by Garg in [18] guarantees a performance bound of 2. We

will present this algorithm and make use of it for developing an approximation al-

gorithm for BCRP-MLCC problem. It may be recalled that an instance of the

BCRP-MLCC is specified by the locations of a set of sensor nodes (terminal points)
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P = {p1, p2, . . . , pn} in the Euclidean plane. Consider a complete weighted graph

G = (V,E) constructed from the set of points P where each node vi ∈ V corresponds

to a point pi ∈ P and weight on the edge w(vi, vj) between the nodes vi and vj is

set equal to (�d(pi, pj)/R�− 1), where d(pi, pj) is the Euclidean distance between the

points pi and pj and R is the transmission range of the sensors. We then apply the

following algorithm on the constructed graph G = (V,E), |V | = n.

Algorithm 1 Approximation Algorithm for BCRP-MLCC

1: for i = n to 1 do

2: Set K = i and apply Garg’s algorithm to find the spanning tree T

3: if weight(T ) ≤ B then return T

4: end if

5: end for

We denote P ′ as the vertex set from resulting tree T and AppSol = |P ′|. Each

node of P ′ corresponds to a point pi ∈ P , and very naturally we have P ′ ⊂ P .

An edge in T connecting nodes pi and pj corresponds to an straight line segment

Ipi,pj between points pi and pj. As our goal is to have a deployment of relay nodes,

we then show how to place them on T . Denote all relay nodes as Q′. We want to

insert relay nodes on edges of T so that every edge is subdivided into small pieces.

In more detail, for any straight segment Iu,v, relay nodes are placed at distance R

(transmission range) apart starting from one, w.l.o.g. say u, to the other one v. It

is easily verifiable that every edge needs �d(pi, pj)/R� − 1 relay nodes. As required,

|Q′| ≤ B, where B is the budget for the number of relay nodes. Thus, we obtain

a new tree TAppSol formed by node set P ′ ∪ Q′ and layout of TAppSol is our desired

connected component.
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We will refer to one optimal solution of the BCRP-MLCC problem as TOptSol

which is also a tree-style layout after deployment of relay nods. Similarly, TOptSol

can be viewed as point set P ′′ ∪ Q′′, where P ′′ ⊂ P and OptSol = |P ′′| ≥ |P ′|. In

addition, budget constraint is satisfied, i.e., |Q′′| ≤ B. Without loss of generality, we

can assume that TOptSol is the optimal solution which uses the fewest number of relay

nodes. The following lemma was established in [39].

(a) Layout of TAppSol with B = 1 (b) Layout of TOptSol with B = 1

Figure 2.2: Example of layout of TAppSol and TOptSol.

Lemma 1. There exists a shortest length optimal Steiner tree for STP-MSPBEL such

that every Steiner point has degree at most five.

Proof. Please refer to [39] for proof.

The Lemma States that the optimal solution to STP-MSBEL, denoted asOptST-

P, has a layout on a two dimensional plane such that every Steiner point has degree

at most five. Very naturally, it is true for any connected component if the graph

cannot be connected. Since we consider the largest connect component, according to

Lemma 1, the tree TOptSol formed by P ′′ ∪ Q′′ also has a layout in two dimensional

plane such that no qi ∈ Q′′ has degree greater than five. Layout of such a tree is

shown in Figure 3.
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Figure 2.3: Layout of TOptSol whose relay nodes have degree no more than 5

Definition: Generalized Depth First Search (GDFS): This is almost the same as

Depth First Search [12], we maintain a sequence of the order when a node is traversed.

However, a node is again enumerated when coming back from one of its neighbors

and going to the next one. It implies a node may appear multiple times in the final

resulting sequence.

One possible sequence generated by the GDFS on TOptSol layout shown in Figure

2.3 starting from the p1 is as following: p1, q1, p2, q1, p3, q1, p4, q1, p5, q2, p6, q2, p7, q6, p10,

q6, p11, q6, p12, q6, p7, q3, q4, q5, p13, q5, p14, q5, p15, q5, p16, q5, q4, q3, p7, q2, p8, q2, p9, q2, p5, q1,

p1. Some nodes appear multiple times because it is still counted when going back-

wards.

W.l.o.g, we refer terminal points as p − type points and relay nodes as q − type

points.

Lemma 2. The number of occurrences of any q− type point in the sequence produced

by GDFS on TOptSol is at most five.
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Proof. In Lemma 1 it was established that every Steiner point has degree at most five.

Since the q − type points are equivalent to Steiner points, by the property of DFS,

we will not encounter such nodes more than 5 times, hence the claim follows.

Definition: Logical Hamiltonian Path: Given a connected graph G = (V,E), a Log-

ical Hamiltonian Path, LHP = v1, v2, ..., vn is a permutation of vertices, such that

e(vi, vi+1) is an edge of LHP and corresponds to a path from vi to vi+1 in G.

Given a TOptSol and its layout, define cost(P ) be the number of relay nodes on P

if P is a path in TOptSol. Then cost(LHP ) =
∑

e∈LHP cost(e). We have the following

lemma:

Lemma 3. If TOptSol contains B relay nodes, there is an LHP s.t. cost(LHP ) ≤ 5B

and we can construct a corresponding graph C∗ with at most 5B relay nodes while

using straight segments between terminal points.

Proof. Without loss of generality, we say there are n terminal points in TOptSol.

First we do GDFS on TOptSol and let seq be the corresponding sequence. We con-

struct a LHP = {p∗1, p∗2, ..., p∗n} of TOptSol such that p∗i is a terminal point and p∗i ’s order

is determined by its first appearance in seq, i.e., for i < j, p∗i ’s first appearance is ahead

of p∗j ’s. One possible LHP of Figure 3 could be {p1, p2, p3, p4, p5, p6, p7, p10, p11, p12,
p13, p14, p15, p16, p8, p9}. We say two nodes (u, v) are directly connected, if u can reach

v via only relay nodes in TOptSol. Otherwise, (u, v) are indirectly connected. As an

example in Figure 3, (p1, p2) are directly connected while (p16, p8) are indirectly con-

nected. We then construct desired C∗ from LHP.

Let Pu,v be the path from u to v on TOptSol, and Iu,v be the straight segment be-

tween u and v. Since we study 2-dimensional scenario, straight segment is the short-

est distance between any two points, Iu,v uses fewest relay nodes to connect (u, v),
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i.e., �d(u, v)� − 1 ≤ cost(Pu,v). Hence, if (p∗i , p
∗
i+1) are directly connected, we ad-

d Ip∗i ,p∗i+1
to C∗. Otherwise, (p∗i , p

∗
i+1) are indirectly connected. We may assume

Pp∗i ,p
∗
i+1

= {p∗i , x1, x2, ...xk, p
∗
i+1}, where xi are other terminal points and their order

is obtained from seq. For example, if we consider Pp16,p8 , then it is {p16, p7, p8}. By

property of DFS, every two consecutive terminals are directly connected. From above

argument, we have cost(Pp∗i ,p
∗
i+1

) = cost(Pp∗i ,x1) +
∑

cost(Pxi,xi+1
) + cost(Pxk,p

∗
i+1

) ≥
�d(p∗i , x1)�−1+

∑
(�d(xi, xi+1)�−1)+�d(xk, p

∗
i+1)�−1. Clearly, we add Ip∗i,x1 , Ixk,p

∗
i+1

and all Ixi,xi+1
to C∗ in this case. Here we should notice, by replacing path with s-

traight segments, the total length may increase, however, we use other terminal points

as intermediate nodes and they do not count as budget. In addition, though not ex-

plicitly mentioned, we always use Pp∗i ,p
∗
i+1

as edge e(p∗i , p
∗
i+1) of LHP. We call LHP

“logical” because it is not exactly a hamiltonian path though it traverses every node

at least once.

Following the two rules above until p∗n is considered, we eventually obtain C∗. It

is easy to check, we would not use more relay nodes than those appearing in seq.

By lemma 2, we claim relay nodes required in C∗ is no more than cost(LHP ) and

cost(LHP ) ≤ 5B.

Figure 2.4 shows one desired LHP and corresponding C∗ from TOptSol in figure

2.3. We use dash lines in 2.4a since LHP is not a real path and “edges” only stand

for logical order and cost. While in 2.4b, edges are solid lines because they represent

real intervals. We note here, we use the same label of relay nodes from TOptSol such

that it gives us a direct impression how each edge is constructed and how relay nodes

repeat. For example, (p1, p2) are directly connected via q1. Therefore, it does not

take more than one node linking p1 and p2 using straight interval. And we draw a q1

on Ip1,p2 to indicate that. Similarly, (p5, p6) are directly connected via q2. Hence we
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(a) Structure of LHP

(b) Layout of C∗

Figure 2.4: Examples of LHP and C∗

draw q2 on Ip5,p6 to show another “propagation” of q2. On the other hand, (p12, p13)

are indirectly connected, thus we draw two segments Ip12,p7 and Ip7,p13 in C∗ with

repetition of relay nodes. While reflecting in 2.4a, p12 has a logical edge to p13 using

at most 4 relay noes. One may notice that C∗ is not necessary a tree, but it must

contain a spanning tree.

In the following we give an algorithm that finds a subpath of the logical path LHP

which contains at least n
10

number of p − type points and costs at most B
2
. It may

be recalled that LHP is a permutation of n terminal points with costs at most 5B.

Again, without loss of generality, we assume that the p points on the path LHP are
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numbered sequentially from p∗1 to p∗n.

Algorithm 2 Algorithm to find a subpath, P ′, of LHP that contains at least n
10

p

points and costs at most B
2
.

1: S = ∅ (S is a set of p points that will be in the subpath)

2: i = 1

3: Total Cost = 0

4: for i = 1 to n− 1 do

5: S = S ∪ {pi}
6: if |S| ≥ n

10
then return S

7: end if

8: if Total Cost+ cost(e(p∗i , p
∗
i+1)) ≤ B

2
then

9: Total Cost = Total Cost+ cost(e(p∗i , p
∗
i+1))

10: else

11: S = ∅
12: Total Cost = 0

13: end if

14: end for

15: S = S ∪ {p∗n} return S

Lemma 4. There exists a subpath, P ′, of LHP, that includes at least n
10

p − type

points and whose cost is at most B
2
(n is the total number of p points).

Proof. Consider Algorithm 2 below. The algorithm attempts to construct such sub-

path P ′ by sequentially scanning terminal points {p∗1, . . . , p∗n} on the logical path LHP,
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by adding one point at a time to the set S, starting from the point p∗1. If at any point

of time, it finds a set S such that |S| ≥ n
10

and the cost of current set S is at most

B
2
, it returns that set and the algorithm terminates. On the other hand, if current

cost exceeds threshold B
2
, but |S| < n

10
, it discards this set and resets Total Cost to

zero. Since the total cost of LHP is at most 5B and it contains n terminal points,

this resetting can take place at most nine times and we have at most 10 disjoint sets,

each set forms a subpath with cost no more than B
2
. By Pigeon Hole principle, one

of these 10 sets contains at least n
10

p− type points and hence we obtain desired P ′.

Here we should notice, from p∗i to p∗i+1, there could be other terminal nodes(for exam-

ple from p16 to p8, p7 is also included). However, it does not decrease the cardinality

of set S and the lemma still holds.

Now we present Garg’s algorithm for K −MST problem.

Definition: Garg’s algorithm: Given a weighted graph G = (V,E) and number k,

the algorithm finds a subgraph with exactly k vertices, and the total cost is at most

2 times the optimal.

Lemma 5. Given TOptSol, let GV be the complete graph using P ′ as vertices set and all

straight segments between any two terminals as edge set. If we set k = n
10

(n = |P ′|)
and run Garg’s algorithm on GV , it returns a subgraph(tree) with total cost at most

B.

Proof. This proof is quite intuitive. By Lemma 4 we know there exists a subpath,

P ′, which includes at least n
10

terminal points and whose cost is at most B
2
. From

proof of Lemma 3, P ′ corresponds to a subgraph of C∗, say C ′, whose cost is no more

than cost of P ′ and with the same vertex set. Since we use only straight segment to

construct C∗, both C∗ and C ′ are subgraphs of GV . By the guaranteed 2 performance
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bound of Garg’s algorithm we must find one Spanning Tree with cost at most B (for

the fact spanning tree of C ′ is such a candidate). Hence the lemma follows.

Theorem 1. Algorithm 1 is a 1
10
-approximation algorithm, i.e., AppSol

OptSol
≥ 1

10
.

Proof. From Lemma 5, we know that with cost B, Algorithm 1 will be able to find

a Spanning Tree with at least k ≥ OptSol
10

nodes. By enumerating value of k in

decreasing order, we must find a feasible tree and AppSol ≥ k. Hence the theorem

holds. Garg′s algorithm runs in O(mn4 log n) time, and our Algorithm 1’s running

time is O(mn5 log n).

2.4.2 BCRP-MSCC

In this part, we show inapproximability of BCRP-MSCC.

Theorem 2. There is no polynomial-time approximation algorithm for BCRP-MSCC

with approximation better than 1
2
unless P = NP.

Proof. Suppose there exists such approximation algorithm. W.l.o.g, we may assume

we are given n terminal points and their locations. If n is a even number, let (a, b) be

the coordinate of a point with minimum a value, we can add one more sensor node

with coordinate (a−R, b). It is easy to check that we do not need to spend any budget

to connect the new node and it does not bring any benefit for connectivity. Hence,

we can always assume n is an odd number. Now, we set Y (the size of the smallest

component) to be n and run the approximation algorithm on this instance, we obtain

the size of the smallest component, say app. Again, we have two scenarios: 1) If the

algorithm says app ≤ �n
2

, let opt be the optimal solution, then by our assumption

app
opt
≥ 1

2
=> opt ≤ app ∗ 2 < n. If all terminals can be connected using extra steiner

points, the size of the minimum component is n. Hence in this scenario, we know that

23



it is impossible to link all terminals under given budget. 2) Otherwise, the algorithm

says app > �n
2

. We should notice that if the graph is disconnected, there are at

least 2 components. By pigeon hole principle, the size of minimum components is

at most �n
2

. Hence if app > �n

2

, it implies the graph can be connected. In either

way, we have a confident YES/NO answer to STP-MSPBEL problem, therefore unless

P = NP , there is no approximation better than 1
2
.

2.4.3 BCRP-MNCC

In this part, we show inapproximability of BCRP-MNCC.

Theorem 3. There is no polynomial-time approximation algorithm for BCRP-MNCC

within approximation 2− ε for any ε > 0, unless P = NP.

Proof. We use contradiction again. Suppose there is such an approximation algorithm

so that it will not generate more than 2−ε times the optimal number. We then run this

algorithm on a given instance by setting Z = 1, here Z is the number of components.

If the algorithm returns only one component, we know that there is a deployment

connecting all sensor nodes. Otherwise, the algorithm returns at least 2 components.

Since we assume approximation ratio is at most 2 − ε. The optimal solution has at

least 2
2−ε components. As the number of components must an integer and 2

2−ε > 1,

there are at least 2 components in optimal solution which implies with current budget

it is impossible to connect the graph. In either case, we can give a confident YES/NO

answer to STP-MSPBEL problem. Hence, unless P = NP, there is no polynomial-

time approximation algorithm for BCRP-MNCC within approximation 2− ε for any

ε > 0.
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2.5 Mathematical Programming Formulation

In this section we provide a mathematical programming formulation for the prob-

lem to find the optimal solution. Since our problem is NP-hard in terms of complexity

we expect that the instance sizes for which we would be able to find optimal solution

in a reasonable amount of time are limited. Our decision variables are the locations

of relay nodes and our objective function is to maximize connectivity of the network

based the size of the largest connected component. An idea to improve the com-

putation is to reduce the solution space. We have reduced the search space to the

rectangle with vertices (xmin, ymin), (xmax, ymin), (xmin, ymax), (xmax, ymax) such that

xmin and xmax are the minimum and maximum x-coordinate of the sensors and ymin

and ymax are the minimum and maximum y-coordinate of the sensors.

2.5.1 Formulation

Sets:

S: set of all existing sensor nodes.

K: set of relay nodes.

N : set of entire nodes, such that N = S ∪K.

Parameters:

xi: x coordinate of the sensor node i in Euclidean plane.

yi: y coordinate of the sensor node i in Euclidean plane.

aij: binary parameter, which is equal to one if distance between two sensor nodes i

and j is less than or equal to R and zero otherwise.

xmin: minimum value of xi, such that i ∈ S.

xmax: maximum value of xi, such that i ∈ S.
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(a) 6 and 8 sensor nodes
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(b) 10 and 12 sensor nodes

Figure 2.5: Results of experimental evaluation of the approximation algorithm

ymin: minimum value of yi, such that i ∈ S.

ymax: maximum value of yi, such that i ∈ S.

R: transmission range for sensors and relays

M : a very large number

Variables:

wi: x coordinate of relay node i in Euclidean plane.

zj: y coordinate of relay node j in Euclidean plane.
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dij: Euclidean distance between two nodes i and j, such that i ∈ N and j ∈ K.

a′ij: binary variable, which is equal to one if distance between two nodes i and j is

less than or equal to R and zero otherwise, such that i ∈ N and j ∈ K.

cij: binary variable, which is equal to one if nodes i and j are connected and zero

otherwise, such that i, j ∈ N .

bikj: binary variable, which is equal to one if the distance between nodes i and k is

less than or equal to R and nodes k and j are connected to each other, and zero

otherwise, such that i, j, k ∈ N .

G: Size of the largest connected component in the network graph.

αi: Binary auxiliary variable to find the size of the largest connected component,

where i ∈ S

Model:

max(G) (2.1)

Subject to:

wi ≤ xmax ∀i ∈ K (1)

xmin ≤ wi ∀i ∈ K (2)

zi ≤ ymax ∀i ∈ K (3)

ymin ≤ zi ∀i ∈ K (4)

d2ij = (wi − wj)
2 + (zi − zj)

2, ∀ i, j ∈ K (5)

d2ij = (xi − wj)
2 + (yi − zj)

2, ∀ i ∈ S, j ∈ K (6)

dij − (1− a′ij)M ≤ R, ∀ i ∈ N, j ∈ K (7)

cij ≤
∑

k∈N bikj + aij, ∀ i, j ∈ S (8)

cij ≤
∑

k∈N bikj + a′ij, ∀i ∈ N, j ∈ K (9)

bikj ≤ aikckj, ∀ i, k ∈ S, j ∈ N (10)
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bikj ≤ a′ikckj, ∀ i, j ∈ N, k ∈ K (11)

bikj ≤
∑

l∈S bklj(1− ail) +
∑

l∈K bklj(1− a′il) + akj, ∀ i, j, k ∈ S (12)

bikj ≤
∑

l∈K bklj(1− a′il) +
∑

l∈S bklj(1− ail) + a′kj, ∀ i ∈ S, k ∈ N, j ∈ K (13)

bikj ≤
∑

l∈K bklj(1− a′il) +
∑

l∈S bklj(1− a′li) + a′kj, ∀ i, j ∈ K, k ∈ N (14)

bikj ≤
∑

l∈K bklj(1− a′il) +
∑

l∈S bklj(1− ail) + a′jk, ∀ i ∈ S, k ∈ K, j ∈ S (15)

bikj ≤
∑

l∈K bklj(1− a′il) +
∑

l∈S bklj(1− a′il) + akj, ∀ i ∈ K, k ∈ S, j ∈ S (16)

G =
∑

i∈S(αi

∑
j∈S cij), (17)

∑
i∈S αi = 1, (18)

Objective function of this model is to maximize the size of the largest connected

component. Constraints (1)-(4) refer to the fact that the optimal location of the re-

lay nodes must be in the space between the sensor nodes. The reason to consider this

is to reduce the search space of the problem. In constraints (5) and (6), Euclidean

distance between two relay nodes and the one between a sensor and a relay node are

computed, respectively. Constraint (7) forces a′ij to become zero when the distance

between node i and relay j is greater than R. Constraints (8) and (9) say that nodes

i and j are connected if either i and j are at a distance less than or equal to R from

each other or there is at least one node that connects i and j as an intermediate node

and that node is at a distance less than or equal to R from node i. Constraints (10)

and (11) are used to define the binary variable bikj. Constraints (13)-(16) show that

if nodes i and j are connected using an intermediate node k, this node must be either

at a distance less than or equal to R from node j or there is at least one other node

out of range of i which connects node k and node j. Constraint (17) finds size of the

largest connected component using auxiliary variable αi. Constraint (18) indicates

that only one of the values of αi can be one.
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2.5.2 Linearization

The proposed mathematical model is nonlinear. In order to increase the efficien-

cy and decrease running time we have linearized the model and transformed it to a

MILP model. Constraints (1), (2), (3), (4), (7), (8), (9) and (18) are already linear.

Constraints (10) to (17) are simply linearized using McCormick Envelope method

since the only nonlinear part is the multiplication of two binary variables.

Constraints (5) and (6) are in the form of Euclidean norm inequalities. Using lin-

earization method introduced in [4] we define n directions from origin with length one

equally dividing the Euclidean plane. Consider the inner product of distance vector

between two nodes and each of these directions. If the inequality holds for all of these

inner products then it would also hold for the Euclidean distance with an error which

is dependent on n. The value of n should be large enough such that the distance

approximation does not interfere with optimality of the solution, but it should not be

arbitrarily large since it will add constraints to our MILP and increase the running

time.

2.6 Experimental Results

In this section we present our experimental results on the efficacy of our approx-

imation algorithm. Using the mathematical programming formulation presented in

Section 2.5, we compute the optimal solution and compare the results obtained from

the Algorithm 1 given in Section 6.4. For our experiments, we have used synthetic

random data with 6, 8, 10, 12 sensor nodes in a 5× 10 deployment area, varying the

number of the relay nodes from 1 to 5. It may be noted that experimental results

with a larger number of sensor nodes, or larger number of relay nodes could not be

provided as the time to compute the optimal solutions using the formulation given
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in Section 2.5 turned out to be unacceptably high. We have computed the optimal

solution using CPLEX solver for AMPL on a Intel Core i7 machine with 8GB RAM

and 2.3 GHz processor. The approximation algorithm was also executed on the same

machine. We have plotted the ratio between the approximate and the optimal solu-

tions for the problem in Figure 2.5. It may be noted that although our analysis in

Section 6.4 shows that the ratio between the approximate to optimal solutions could

not be any lower than 0.1, in our experiments this ratio was never any lower than

0.4. Also, the computation time for the approximate solution was only a fraction of

the time required for finding the optimal solution.

2.7 Future Direction

It may be noted that while BCRP-MLCC/BCRP-MSCC problems focus only on

the size of the largest/smallest connected component while ignoring the number of

components, the BCRP-MNCC problem focuses only on the number of connected

components while ignoring the size of these components. One can argue all these

three metrics are myopic in nature as they pay attention either only to the size of the

largest/smallest component or to the number of components, two key attributes of a

disconnected graph. To address this concern, we propose a fourth metric to measure

the “connectedness” of a disconnected graph that takes into account both the size as

well as the number of connected components. In the following we define the metric.

Every disconnected graph comprises of a number of components of differing sizes.

It might comprise of one component of size n, where n is the number of nodes of the

graph, or n components of size one, or any other distribution in between. Accordingly,

any graph can be described by the frequency distribution of its component sizes.

We define Ci as the number of connected components of size i in G = (V,E), 0 ≤
Ci ≤ n, ∀i, 1 ≤ i ≤ n (as shown in Table 2.1). A Component Frequency Distribution
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Frequency Distribution of Connected Components in G = (V,E)

Ci = Number of connected components of size i, n = |V |
G = (V,E), C Cn Cn−1 Cn−2 · · · C2 C1

G1 = (V1, E1), C1 xn xn−1 xn−2 · · · x2 x1

G2 = (V2, E2), C2 yn yn−1 yn−2 · · · y2 y1

Table 2.1: Component Frequency Distribution Table

Vector (CFDV) C is defined as a vector of size n where the i-th entry of the vector

specifies the number of connected components of the graph G = (V,E). The weight

of a CFDV C is defined as follows: w(C) = Σn
i=1Ci.(n+ 1)i−1. It may be noted w(C)

takes into account both the size and the number of components of the graph, with

larger components being assigned with higher weights than the smaller components.

We define the “disconnectivity” of a graph G = (V,E), δ(G), with CFDV C as δ(G) =

1/w(C). Example: Consider two graphs G1 = (V1, E1) and G2 = (V2, E2) each with 6

nodes. The CFDVs of G1 and G2 (C1 and C2) are given as [0, 0, 1, 0, 0, 2] and [0, 0, 0,

2, 0, 0] respectively, implying that G1 comprises of one component of size 4 and two

components of size 1, while G2 comprises of two components of size 3. With these

parameter values, w(C1) is 345 and w(C2) is 198 which in turn determines δ(G1) =

0.002899 and δ(G2) = 0.005051. As the value of δ(G1) is smaller than δ(G2), it implies

that G1 is less disconnected (or, more connected) than G2. It may be noted that we

arrive at this conclusion, because we chose to give higher weights to components

with a larger size. The optimization problem using this metric is referred to as the

Budget Constrained Relay node Placement for Minimum Disconnectivity (BCRP-MD)

problem. Next, we provide a formal definition of the BCRP-MD problem.

BCRP-MD Problem: Given the locations of n sensor nodes in the Euclidean plane
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P = {p1, p2, . . . , pn}, transmission range R and a budget B on the number of relay

nodes that can be deployed, is it possible to find a set of points Q = {q1, q2, . . . , qm},
where m ≤ B, in the same plane where relay nodes can be deployed, so that the

disconnectivity, δ(G′), of the graph G′ = (V ′, E ′) corresponding to the point set P

and Q is at most D, for a pre-specified value D?

It is true that the two key attributes of a disconnected graph (size and number

of components) could have been combined in ways other than the one proposed here,

w(C) = Σn
i=1Ci.(n+ 1)i−1. However, this way of combining the two attributes has the

advantage that, just as given the Component Frequency Distribution Vector (CFDV)

C, one can easily compute the “disconnectivity” δ(G), given δ(G) and n, the number

of nodes in G, one can easily recompute the CFDV of G.
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Chapter 3

APPROACHES TO MINIMUM D-DEGREE ARRANGEMENT

3.1 Introduction

Many systems in the world such as cellular networks, the post service, or trans-

portation pathways can be modeled as networks or graphs. The practical applications

of graph algorithms generally seek to achieve some goal while minimizing some cost

such as money or distance. An application of our problem can be seen in overlay net-

works in telecommunications. An overlay network is a virtual network that is built

on top of another network. It is a logical network where the links between nodes rep-

resent the physical paths connecting the nodes in the underlying infrastructure. The

underlying physical network may be incomplete, but as long as it is connected, we can

build a complete overlay network on top of it. Since some nodes may be overloaded

by traffic, we can reduce the strain on the overlay network by limiting the communi-

cation between nodes. Some edges, however, may have more importance than others

so we must be careful about our selection of which nodes are allowed to communicate

with each other. The balance of reducing the degree of the network while maximizing

communication forms the basis of our d-degree minimum arrangement problem.

3.1.1 Previous Work

The minimum linear arrangement problem is known to be NP-hard. Rao and

Richa [47] presented an approximation ratio of O(log n) in 2004. Since then, Charikar,

Hajiaghayi, Karloff, and Rao [6] and independently, Feige and Lee [17] lowered the

approximation ratio to O(
√
log n log log n). The problem of graph embedding in

33



d-dimensions was studied by Even, Naor, Rao, and Schieber [16], who obtainted

an approximation guarantee of O(log n log log n) by applying their spreading metric

framework. Later, Charikar, Makarychev, and Makarychev [7] presented a divide-

and-conquer approach to lower the approximation ratio to O(
√
log n). However, no

work has been done in the direction of the d-degree minimum arrangement problem.

3.1.2 Problem Description

MLA

Our problem can be seen as a variation of the minimum linear arrangement prob-

lem, which can be defined in the context of our problem as the following: Given

an undirected, unweighted graph G = (V,E) where the edges represent a set P

of communication request pairs, produce a complete graph G′ on V the using the

shortest-path metric on G. Then find a subgraph of degree at most two in G′ - which

may be a path, a cycle, or a collection of cycles and paths - that minimizes the sum

of the shortest-path distances between all node pairs in P . Figure 3.1 depicts the

construction of G′ from a graph G.
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(a) G = (V,E)

(b) Complete graph G′ constructed from V (G) with shortest-path metric

Figure 3.1: Minimum linear arrangement setup

An alternative definition for the MLA problem is as follows: Given an undirected,

unweighted graph, produce a linear ordering (permutation) of the nodes such that

the sum of the cost of the edges in the ordering is minimized. The cost of an edge

(u, v) in the input graph is defined to be equal to the difference of the positions of

u and v given by the permutation of the nodes. Each edge in the input represents a

request between the pair of edge nodes (i.e, for communication or a path).

Figure 3.2 depicts an example of a graph G and a possible linear ordering of its

nodes. The cost of the request (B,F ) in this ordering is given by |Pos(F )−Pos(B)| =
6− 2 = 4. The total cost of this ordering is given by:

∑

∀(u,v)∈E
|Pos(u)− Pos(v)|

The weighted version of the problem uses the same setup but defines a weight

associated with each edge or request pair. The cost for a pair of nodes is then
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(a) G = (V,E)

(b) Linear ordering of V (G)

Figure 3.2: Example of a linear arrangement

modified to be the distance between the nodes on the permutation multiplied by the

weight of the edge in the input graph G.

∑

∀(u,v)∈E
(|Pos(u)− Pos(v)| ∗ w(u, v))

d-degree minimum arrangement

Our project focuses on the generalized version of the first definition of the MLA

problem where we are looking for a subgraph is a graph with degree at most d,

instead of 2, in the complete graph constructed on the shortest-path metric. The cost

of a request in our representation is defined as the sum of the weights of the edges in

the shortest path between the two nodes in our solution subgraph.

Our problem can be more formally described as the following: Given a complete,

undirected graph G = (V,E) that satisfies triangular inequality and a set of pair of

nodes P = {(x1, y1), . . . , (xp, yp)} such that xi, yi ∈ V , find a subgraph G′ = (V,E ′)

of max degree at most d such that the sum of the costs of the shortest (xi, yi)-paths
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in G′, over all (xi, yi) ∈ P , is minimum.

min
∑

(s,t)

C(s→ t) ∀(s, t) ∈ P

min
∑

(s,t)

⎛

⎝
∑

(u,v)∈s→t

w(u, v)

⎞

⎠ ∀(s, t) ∈ P

Where s→ t denotes the shortest-distance path between s and t in G′ and C(s→
t) denotes the cost of that path according to the definition of d-degree minimum

arrangement.

3.1.3 Integer Linear Program

Our problem can be formulated as an integer linear programming problem as

follows. The variable xs,t
u,v is an indicator variable determining whether edge (u, v) ∈ E

is used in the selected (s, t)-shortest path in G′. The subscripts s, t represent every

(s, t) pair and u, v represent the edge uv in that direction.

The following represents the constraints representing flow conservation.

∑

(s,v)∈E
xs,t
s,v −

∑

(u,s)∈E
xs,t
u,s = 1

∑

(u,v)∈E
xs,t
u,v −

∑

(v,p)∈E
xs,t
v,p = 0 for all v ∈ V \ {s, t}

∑

(u,t)∈E
xs,t
u,t −

∑

(t,v)∈E
xs,t
t,v = 1

xs,t
u,v ∈ {0, 1}
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The outgoing flow from the source node and the incoming flow to the sink node

must be 1. The change in flow in every other node along the path must be 0 to

maintain flow conservation.

The cost of each path can be calculated as the following.

Cs,t =
∑

(u,v)∈E
xs,t
u,v ∗ w(u, v) for all (s,t)

The goal of the algorithm is to minimize the sum of the costs for every (s, t) pair

in P.

∑

∀(s,t)∈P
Cs,t

The degree constraint can be represented using the indicator variable ye dependent

on whether or not the edge e has been selected by some (s, t) path.

yu,v ≥ xs,t
u,v for all (s,t)

yv,u ≥ xs,t
u,v for all (s,t)

The degree constraint can then be formulated as the following.

∑

u:(u,v)∈E
yu,v ≤ d for all v ∈ V
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3.2 Project Work

3.2.1 Approaches

The minimum linear arrangement problem is NP-hard, implying that an efficient,

polynomial-time algorithm for solving it has not been discovered. While this does

not immediately imply that the d-MA problem, for d > 2, is NP-hard, it provides

good indication that this is probably the case. Hence, our goal for the multi-degree

MLA problem was to find an efficient heuristic and then compare the results of our

algorithm to the respective optimal solutions output by the ILP.

Top-Down Pruning

An initial approach to the multi-degree MLA problem was the idea of a greedy, top-

down pruning algorithm. The inspiration for this approach came from the idea of

the decreasing number of neural links in the brain as humans age. There may be

specific connections that are crucial and others that can be removed. We can model

the neural map of the brain at the start as a complete graph where connections are

gradually removed. This led to the hypothesis about the existence of an efficient

algorithm that takes a dense graph as input and produces a sparse graph fulfilling

some criteria - such as minimizing distances between certain vertices - as output.

This algorithm would start with the complete graph and remove edges according to

a heuristic, until a subgraph satisfying the degree constraint remained. For the top-

down approach we first considered a simple heuristic that minimizes the sum of the

cost of all requests given and the weights of all edges remaining in the graph. The

heuristic can be expressed as
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min

⎛

⎝
∑

(u,v)∈P
CH(u, v) +

∑

e∈H
we

⎞

⎠

where H is a subgraph of G. In the context of an algorithm, we would consider

all edges where both vertices have degree larger than the required degree and choose

the edge that minimizes the above sum when removed. This can be expressed as the

following where e is the edge in consideration:

mine∈H

⎧
⎨

⎩

∑

(u,v)∈P
CH\{e}(u, v) +

∑

e′∈H\{e}
we′

⎫
⎬

⎭

Let e be the edge that minimizes the formula above. Then e would be a good

candidate to be removed from the graph. An algorithmic representation is given by

the following.

Algorithm 3 d-LA Algorithm

1: procedure Greedy Top-Down d-MA

2: Initially H = G

3: while ∃v ∈ V with deg(v) > d do

4: Let E ′ = {(u, v) such that deg(u) > d and deg(v) > d}
5: Pick e ∈ E ′ s.t. e minimizes

∑
(u,v)∈P CH\{e}(u, v) +

∑
e′∈H\{e}we′

6: Let H = H\e
7: end while

8: end procedure

This algorithm, however, has a high chance of failing to terminate. It would fail

if there is only one vertex left with higher degree, as shown in Figure 3.3. Suppose

the degree constraint is 2 for this given problem. The gray node represents the node

that violates the degree.
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Figure 3.3: Bad structure for top-down algorithm

To avoid this, we modified the algorithm and added a second phase where it can

choose to remove any edge with only one node of a higher degree to produce a solution

of degree d or less. This algorithm still experienced problems when it produced a

structure in which the only possible edges that it could choose would disconnect the

graph and result in infinite in cost for certain requests. If the algorithm did not

remove these edges, however, the solution would violate the degree constraint. Figure

3.4 shows some examples of bad structures that could be produced by the algorithm.

The left figure represents a portion of a larger graph where all three edges depicted

are cut-edges. Since the middle node has degree 3, one of its edges must be removed

resulting in a disconnected graph. The right figure represents a possible graph where

there is no possible way to remove enough edges while keeping the graph connected.

Figure 3.4: Bad structures for top-down algorithm

Thus, we considered the following variation for pruning. Instead of allowing the

algorithm to select any edge of a higher degree, we tried to remove edges in perfect

matchings to keep all vertices at roughly the same degree. Figure 3.5 shows an

example of reducing a graph from degree 3 to degree 2 by removing a matching.
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Figure 3.5: Example of removing a matching from a graph

There are problems in this approach as well since it is not possible to guarantee

that perfect matchings exist at every point in the algorithm. Figure 3.6 shows an

example of the algorithm failing when trying to remove a matching. Since the algo-

rithm selects one edge on every iteration by greedy principles, it does not globally

know whether the edge that it selects is part of a matching or not. As a result, the

algorithm will fail if it reaches a point where the only possible edges it can select do

not exist.

Figure 3.6: Example of bad matching

Since there were many factors to consider in controlling the structure of the so-

lution, we shifted our focus away from the idea of pruning and instead considered a

bottom-up growing approach.

Bottom-Up Growing

For our growing approach we considered a greedy, bottom-up heuristic that started

with an empty edge set and added edges on every iteration. We defined the cost of

this edge set as the sum of the costs of all request pairs. The cost of the empty edge set
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initially sums up to infinity due to the lack of connections between the pairs. During

each iteration of the algorithm, we would first consider edges whose vertices have

the lowest degree. We would choose to include the edge that maximally decreased

the cost of the edge set until we are forced to consider the next highest degree. We

continue adding edges in this manner until either the solution set reaches the degree

limit or until the cost can no longer be minimized. The algorithm for this greedy

heuristic is as follows.
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Algorithm 4 d-MA Algorithm

1: procedure Greedy Bottom-Up d-MA

2: currentSmallestCost←∞
3: currentDegree← 0

4: edgeSet← ∅
5: while currentDegree < d do

6: for all edge e = (x, y) in E such that degree of x, y < d do

7: currentCost =
∑

(s,t)∈P (CedgeSet∪e(s, t))

8: if currentCost < currentSmallestCost then

9: currentSmallestCost← currentCost

10: bestEdge← e

11: end if

12: end for

13: if bestEdge �= null then

14: edgeSet = edgeSet ∪ bestEdge

15: else

16: currentDegree = currentDegree+ 1

17: end if

18: end whilereturn edgeSet

19: end procedure
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3.2.2 Upper Bound

Figure 3.7: A complete (d− 1)-ary tree (where d = 4 in this case).

For the sake of simplicity, we will only consider uniform graphs in this section.

Let P be the set of the required pairs and d > 2. For a P of any size, construct

an arbitrary complete (d − 1)-ary tree T containing all the nodes in V . We want to

embed the nodes of G into T and use the edges of T to connect the pairs in P . Simply

put, we want to construct a solution with the structure of T . The height of T is

log(d−1) n

The length of a (u, v)-path in T is less than or equal to twice the height of the

tree. Let Pu,v represent the path connecting u and v in T . Therefore, the summation

across all pairs in P becomes

∑

(u,v)∈P
length(Pu,v) ≤ 2|P | log(d−1) n

The cost for using an any (d− 1)-ary tree is

O(|P | log(d−1) n)
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3.2.3 Optimal Structure for |P | = Θ(n2)

If the set of required communication pairs consists of all pairs of nodes, the optimal

solution will consist of a complete d-ary tree.

Lower Bound for |P | = Θ(n2)

Since there are |P | requests, the contribution of each request in the final solution is

at least 1. Then the cost of the final solution is at least equal or greater than the size

of P . Thus the trivial lower bound of the solution is:

Ω(|P |)

If |P | = Θ(n2), then the lower bound is approximately n ∗ (n− 1)/2 = Ω(n2).

To achieve a tighter lower bound, for each node u, construct a tree rooted at u by

putting the maximum number of nodes as close to u as possible on every level. This

tree optimizes the distances from u to all other nodes, since running a breadth-first

search would produce the same structure. The number of nodes on every level i edges

away from u can be expressed as:

x∑

i=1

(d− 1)i

Where x ≈ �logd−1 n
 represents the number of levels in the tree.

Therefore, the sum of the lengths of all paths from every other node to u can be

represented by:

∑

v∈V
length(Pu,v) =

logd−1 n∑

i=1

(d− 1)i ∗ i

Where (d− 1)i represents the number of v ∈ V such that the length of Pu,v is i.

46



Consider orienting the tree rooted at u with the u at the top and each successive

layer one level below the previous. This tree has a height of �logd−1 n
 ≤ logd−1 n

levels. Select the bottom half of the tree, resulting in
logd−1 n

2
levels. Each level in the

bottom half has more nodes than each corresponding level in the top half, so therefore

there are at least n
2
nodes in the bottom

logd−1 n

2
levels.

The sum of the length of the paths from the nodes in these bottom
logd−1 n

2
levels,

denoted V ∗, is represented by:

∑

v∈V ∗
length(Pu,v) ≥ n

2
∗ logd−1 n

2

= Ω(n logd−1 n)

This is the lower bound for any particular u appearing in a pair in the set P .

If the problem requires all pairs, then we can calculate the total lower bound by

constructing a u-rooted tree for all nodes u ∈ V . Therefore, the lower bound would

become:

Ω(n2 logd−1 n)

Optimal Bound

When the problem requires one to connect close to all pairs of nodes, i.e. when

|P | = Θ(n2), the upper bound shown in section 3.2.2, would become:

O(|P | logd−1 n)

= O(n2 logd−1 n)

Therefore, when the problem requires a large number of pairs, the upper bound

and the lower bound are the same. The d− 1-ary tree structure gives the the optimal
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bound on the runtime as:

Θ(n2 logd−1 n)

3.3 Results

3.3.1 Comparison of Heuristic to Optimal Solution

Figure 3.8 shows simulation results for small graphs of sizes from 10 to 12 nodes

with various numbers of pairs for d = 2. It compares the solutions from the bottom-

up heuristic against the optimal solution from the ILP. On several occasions the

heuristic achieved the same optimal result as the ILP. The margin of error of the

heuristic varies between 0 and approximately 25%. Figure 3.9 shows a graph of the

average and standard deviation of error from Figure 3.8 grouped by number of nodes

and number of pairs.

Nodes Pairs ILP Heuristic Error
10 10 398 398 0
10 10 274 316 0.153284672
10 10 331 339 0.024169184
10 10 21495 21495 0
10 25 23791 26813 0.127022824
10 25 75779 99236 0.309544861
10 25 113294 116243 0.026029622
10 25 106434 115360 0.083864179
12 12 329 329 0
12 12 264 270 0.022727273
12 12 252 252 0
12 12 366 436 0.191256831
12 30 104334 129645 0.242595894
12 30 99263 122077 0.229833876
12 30 79786 91198 0.143032612
12 30 102774 129042 0.255589935

Figure 3.8: Results of graphs with 10-12 nodes
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Figure 3.9: Average and standard deviation of error for Figure 3.8

Figure 3.10 shows a sample of the simulation results for larger graphs of 15 to

20 nodes with various numbers of pairs for d = 3. Since the ILP cannot run on a

large number of variables efficiently, we relaxed the conditions to allow non-integer

solutions. As a result, the difference between the heuristic and the relaxed ILP

solutions increases. The relaxed ILP solutions are denoted by the LP column. Since

it is difficult to determine the difference between the optimal integer solution and

the relaxed solution, the actual margin of error of the heuristic is unknown. Figure

3.11 shows a graph of the average and standard deviation of error of the results from

Figure 3.10 and 2 other samples - a total of 4 samples for each node-pair combination

- grouped by number of nodes and number of pairs.
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Nodes Pairs LP Heuristic Error
15 30 47053.41121 112929 1.40001728
15 30 50710.66667 91303 0.800469329
15 50 86671.97321 209402 1.416028991
15 50 95753.04 232574 1.428894164
20 20 399.2262443 856 1.144147616
20 20 365.4089669 773 1.115437961
20 50 88186.66765 244006 1.766926186
20 50 84747.77304 215811 1.546509392
20 75 160702.3242 370268 1.304061263
20 75 93458.45749 264180 1.826710467
20 100 172613.3825 531166 2.077200575
20 100 296368.8627 634956 1.142451789

Figure 3.10: Sample of results of graphs with 15-20 nodes
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Figure 3.11: Average and standard deviation of error for Figure 3.10

3.3.2 Comparison of Heuristic to Arbitrary Tree

Figure 3.12 shows simulation results for the heuristic against variations of the

(d − 1)-ary tree for graphs of 10 to 20 nodes and a small number of pairs for d = 3.

The variations are constructed as follows: The random tree column represents the
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solution from a (d−1)-ary tree that was constructed arbitrarily during the simulation.

The complete tree was constructed from adding shortcut edges wherever possible to

the random tree until the degree limit was reached for the maximum number of

nodes in hopes of decreasing the cost. The sorted tree column represents a saturated

(d − 1)-ary tree that was constructed by sorting the nodes by the number of times

they appear in P , and then constructing the tree such that the nodes that appear the

most are placed closest to the top in an attempt to reduce cost to the nodes that are

most commonly used. In general, the heuristic performs better than the sorted tree,

which performs better than the complete tree. Figure 3.13 is a visual representation

of the average performance of the various algorithms from Figure 3.12.

Nodes Pairs Heuristic Random Tree Complete Tree Sorted Tree
10 25 40 60 46 51
10 25 39 81 56 47
12 30 49 87 63 59
12 30 52 94 74 65
15 50 100 181 141 137
15 50 99 176 128 139
20 100 228 393 316 346
20 100 228 404 327 277

Figure 3.12: Results of uniform graphs with 10-20 nodes
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Figure 3.13: Performance of algorithms in Figure 3.12

Figure 3.14 shows simulation results for the heuristic against the (d− 1)-ary tree

for larger graphs of 30 to 70 nodes and all pairs for varying degrees. Since the problem

requires all pairs, there is no difference between the sorted tree and the complete tree.

The heuristic again performs better than both the random (d− 1)-ary tree as well as

the complete tree. Since the complete tree outperforms the random tree is all cases,

the difference column is calculated from only the error from the complete tree to the

heuristic. The difference varies between approximately 40 to 60 percent and generally

increases with node size and degree. Figure 3.15 graphs the error from Figure 3.14

grouped by node size across increasing degree.
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Nodes Degree Heuristic Random Tree Complete Tree Difference
30 3 1270 2134 1845 0.452755906
30 4 1014 1722 1541 0.519723866
30 5 898 1543 1256 0.398663697
30 6 810 1397 1195 0.475308642
50 3 4364 7397 6619 0.516727773
50 4 3355 5842 5086 0.515946349
50 5 2944 5119 4549 0.54517663
50 6 2693 4658 4100 0.522465652
70 3 9575 16620 15067 0.573577023
70 4 7345 12672 11528 0.569503063
70 5 6316 11095 10207 0.616054465
70 6 5822 10238 9455 0.624012367

Figure 3.14: Results of uniform graphs with 30-70 nodes
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Figure 3.15: Difference from Figure 3.14 grouped by number of nodes

3.4 Other Variations

In the problem definition, we described our input as the complete graph derived

from another graph using the shortest-path metric. For completeness, will show in

this section how our heuristic performs poorly if the graph G′ is not complete or it it

does not satisfy triangle inequality.
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(a) A non-complete graph G.

(b) Two possible solutions for MLA on G.

Figure 3.16: Solutions on incomplete graph

3.4.1 Incompleteness

Let Figure 3.16 (a) be an example of an incomplete graph. Suppose we are solving

the MLA problem for this graph given the constraints that d = 2 and P = (x, y) for

all pairs x, y ∈ V . Figure 3.16 (b) shows the only two possible solutions for our

example. For the solution subgraph to satisfy both the pair and degree constraints,

four edges must be selected from the outermost layer of the graph. The edge (B,C)

with the minimum weight cannot be selected.

Figure 3.17 shows an example of our algorithm failing on this incomplete graph.

Since our algorithm uses a greedy heuristic, it will select (B,C) as the first edge and
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Figure 3.17: Example of heuristic failing on degree constraint.

will not be able to connect all pairs due to the degree constraint. There is no way to

connect (A,C), (C,E), and (C,D) while keeping node C at a degree of 2.

3.4.2 Arbitrary Edge Lengths

Figure 3.18 shows an example of our algorithm performing poorly on a graph

with arbitrary edge lengths. The graph in figure 4 is constructed from the graph in

Figure 1 by adding some exponentially large edges represented by a length of 2N .

As in Figure 3, our algorithm will first select (B,C) to include in the final edge set.

The algorithm is then forced to accept at least one of the ”bad” edges, either (A,E),

(A,D), or (D,E) to connect all pairs while maintaining the degree constraint. As a

result, the magnitude of the difference between the solution of our algorithm and the

optimal solution is exponential. This exponential difference between solutions can be

avoided if all edge lengths satisfied the triangle inequality property as given in our

problem definition.
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Figure 3.18: Example of heuristic’s poor performance in a non-metric scenario.

3.5 Conclusion

We have shown that when |P | = Θ(n2), a complete (d − 1)-ary tree gives an

asymptotically optimal solution. Through the simulations, however, it seems the

greedy heuristic still outperforms the tree structure even on graphs with a large P .

One reason for this difference may be due to the algorithmic construction process of

the complete (d−1)-ary tree in simulations, as it added some edges that were selected

randomly onto the random (d− 1)-ary tree. Those shortcut edges that were selected

may not have been the best choices for the tree. Since the heuristic greedily chooses

every edge, it is reasonable for the solution of the heuristic to outperform that of the

complete tree even when they both contain the same number of edges. As shown by

the simulation results, the optimal bound on the solution is an asymptotic optimal

bound; it does not guarantee the exact optimal solution given a specific problem.

Future work may include revising the method for adding extra edges in the complete

(d−1)-ary tree to improve upon the cost of its solutions. We can also run simulations

with larger graph sizes to determine the threshold for the performance of the (d− 1)-

ary tree construction. We can vary the size of P to determine the ratio of performance

of the (d− 1)-ary tree to the heuristic for smaller sizes of P . Additionally, computing
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an accurate lower bound for the tree construction would also provide more context

for the comparisons.
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Chapter 4

ON MINIMAL STEINER TREES IN A COMPLETE GRAPH

4.1 Introduction

In a number of networking problems one needs to find multiple paths between

a source-destination node pair or multiple trees spanning all the nodes of the net-

work. Accordingly a number of algorithms for generating k shortest paths between

a specified source-destination node pair or k best spanning trees connecting all the

nodes of a network are known [15]. An underlying assumption in these algorithms

is that k is at most equal to the number of paths that exists between a specified

source-destination node pair, or k is at most equal to the number of spanning trees

that exists in the graph. Cayley’s formula provides the number of labeled Spanning

Trees of a complete graph [56]. As such if one wants to generate k spanning trees it

can easily be checked if that will be feasible. However, to the best of our knowledge

no such formula exists for (i) the number of paths between a source-destination node

pair in a complete graph, and (ii) the number of Steiner Trees with p terminal nodes

in a complete graph of n nodes.

To model multicasting in Elastic Optical Networks (EON), Walkowiak et. al. in

[59] have developed the notion of candidate trees, which is basically a set of Steiner

trees that originate at the source node and include all the receiver nodes. In this set-

ting one needs to generate k-shortest Steiner trees for solving optimization problems

in EONs, both in static and dynamic environment. As there is no counter-part of

Cayley’s formula for Steiner Trees, the effort to generate k-shortest Steiner trees is

bound to fail if k is greater than the number of Steiner Trees with p terminal nodes
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in a complete graph of n nodes.

We undertook this study with a goal to find the counter-part of Cayley’s formula

for Steiner Trees, i.e., a function ST (n, p) which provides the number of Steiner trees

in a complete graph with n nodes and the cardinality of the set of terminal nodes is

p. Although we didn’t completely reach our goal, we believe that we made significant

progress in that direction. Specifically, we (i) found a closed form expression for

ST (n, p) when p = 2 and p = 3 (In other words, we reached our goal of finding

the counter part of Cayley’s formula for Steiner trees when the cardinality of the set

of terminal nodes is 2 or 3), (ii) developed two formulations, one recursive and one

non-recursive that provides the number of Steiner trees in a complete graph with n

nodes and p terminal nodes, (ii) developed (based of one of the formulations in (ii)),

an algorithm that not only computes the number of Steiner trees in a complete graph

with n nodes and p terminal nodes, but also generates all those Steiner trees. In the

following sections we present (i), (ii) and (iii).

It may be noted that although a counter-part of Cayley formula for Steiner Tree

is not known, there are algorithms to generate all Steiner Trees of a given graph

[13, 25]. Obviously, the number of Steiner Trees can be computed by enumerating all

the Steiner Trees. However, as the number of Steiner Trees can be very large, the

complexity of such algorithms in general is quite high. For example, the complexities

of computation of finding the number of Steiner Trees in a graph as is given in [25]

are O(n32n−p) and O(nm +m3p), where n,m, p are the number of nodes, edges and

terminal nodes of the graph respectively. While both of these algorithms are of

exponential time complexity, the complexity of finding the number of Steiner Trees

in a complete graph with n nodes and p terminal nodes using Algorithm 1 presented

in this chapter is O(np). Douardo et.al. in [13] have provided an algorithm for

generating all the Steiner Trees. Their algorithm produces the first Steiner Tree in
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polynomial time and all subsequent trees are produced with O(n) delay [13]. As the

number of Steiner Trees in a complete graph can be exponential, if this algorithm is

used to compute the number of Steiner Trees in a complete graph with n nodes and

p terminal nodes, the complexity of this algorithm will also be exponential.

4.2 Computation of ST (n, p) when p = 2

As indicated earlier, in many networking applications one needs to find k (shortest)

paths between a source-destination node pair. However, to the best of our knowledge

there is not known simple expression that provides the number of distinct paths that

exist between a pair of nodes in a complete graph with n nodes. The expression

ST (n, p) when p = 2 presented here provides that number.

Theorem 4.

ST (n, 2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if n = 2

�(n− 2)!e
 if n > 2

Proof. When n = 2, it is trivial to see that ST (n, 2) = 1. For any tree with n > 2

nodes has at least 2 leaves. As all leaves in a Steiner Tree must be terminal nodes,

and when the number of terminal nodes p = 2, these are are only two leaves of the

tree. The internal nodes of the tree are non-terminal nodes and in this case the tree

is a chain. The number of internal (i.e., non-terminal) nodes can vary from 0 to n−2.

In order to compute ST (n, 2), we need to account for all these possibilities for the

number of internal nodes. Suppose that the number of internal nodes (i.e., nodes

with degree 2) is t. There are
(
n−2
t

)
options for the selection of the internal nodes and

for each option, there are t! permutations of their positions in the chain. Accordingly,

we have
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ST (n, 2) =
n−2∑

t=0

(
n− 2

t

)

· t! =
n−2∑

t=0

(n− 2)!

t! · (n− 2− t)!
· t!

=
n−2∑

t=0

(n− 2)!

(n− 2− t)!
= (n− 2)!

n−2∑

t=0

1

t!

= (n− 2)!
∞∑

t=0

1

t!
− (n− 2)!

∞∑

t=n−1

1

t!

(4.1)

Using identity

e =
∞∑

t=0

1

t!

we have

ST (n, 2) = (n− 2)!e− (n− 2)!
∞∑

t=n−1

1

t!

. Since ST (n, 2) is an integer, it suffices to show (n− 2)!
∑∞

t=n−1
1
t!
< 1.

(n− 2)!
∞∑

t=n−1

1

t!
=

∞∑

t=n−1

1

(n− 1) · n · ... · t <
∞∑

t=1

1

2t
= 1 (4.2)

Accordingly, we have ST (n, 2) = �(n− 2)!e


We will use
∑n

x=0
n!
x!

very often in the following content, thus we denote g(n) =

∑n
x=0

n!
x!
. From above computation, we have g(n) = 1 if n = 0 and g(n) = �n!e
 for

n ≥ 1.
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4.3 Computation of ST (n, p) when p = 3

It was noted in the previous section that when p = 2, the structure of the Steiner

Tree is a chain. When p = 3, we can have two different possibilities: (i) one of the

three terminal nodes is an internal node of the tree, (ii) none of the three terminal

nodes is an internal node of the tree. In case (i) the Steiner tree will be made up

of two chains, connecting the two terminal nodes that are leaves to the one terminal

node which is an internal node of the tree. In case (ii)the Steiner tree will be made

up of three chains, connecting the three terminal nodes that are leaves to the one

non-terminal node that serves as the center of a Star structured Steiner tree. As

a result, the total number of Steiner trees when p = 3 is equal to the sum of the

number of Steiner trees that are created in case (i) and the number of Steiner trees

that are created in case (ii). We compute the number of Steiner trees in these two

cases separately.

4.3.1 Computation of ST (n, 3) when the Steiner tree has a two chain structure

In this case, one of the terminal nodes is an internal node. There are
(
3
1

)
options

for the selection of the terminal node that will be an internal node. Suppose that the

number of non-terminal internal nodes is t, 0 ≤ t ≤ n−3. There are
(
n−3
t

)
options for

the selection of these internal nodes. Out of these t nodes, p nodes can be chosen in
(
t
p

)
to form the first chain and the remaining (t−p) nodes can form the second chain.

The nodes in the first chain can be permuted in p! different ways and the nodes in

the second chain can be permuted in (t − p)! different ways. By summing over all

values of t from 0 to n− 3, we obtain the number of Steiner trees for case (i). Thus

ST (n, 3)case (i) =

(
3

1

) n−3∑

t=0

t∑

p=0

(
n− 3

t

)(
t

p

)

p!(t− p)!
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After simplification

ST (n, 3)case (i) = 3m!

[
m∑

t=0

t

(m− t)!
+

m∑

t=0

1

(m− t)!

]

where m = n− 3.

4.3.2 Computation of ST (n, 3) when the Steiner tree has a star structure

In this case, none of the three terminal nodes is an internal node. One of the

remaining (n− 3) nodes serves as the center of the star. There are
(
n−3
1

)
options for

the selection of the non-terminal node that will serve as the center of the star. The

structure of the Steiner Tree in this case is composed of three chains, where each chain

is a path from a terminal node to the center node. The nodes that appear on these

chains are non-terminal nodes. Suppose that the number of non-terminal internal

nodes that appear on these three chains (exclude the non-terminal node which is the

center of teh star structure) is t, 0 ≤ t ≤ n − 4. There are
(
n−4
t

)
options for the

selection of these internal nodes. Out of these t nodes, r nodes can be chosen in
(
t
r

)

to form the first chain and the remaining (t − r) nodes can form the second chain.

The nodes in the first chain can be permuted in t! different ways and the nodes in the

second chain can be permuted in (t− r)! different ways. By summing over all values

of t from 0 to n− 3, we obtain the number of Steiner trees for case (i). Thus

ST (n, 3)case (ii) =
n−4∑

t=0

t∑

p=0

t−p∑

q=0

(
n− 3

1

)(
n− 4

t

)(
t

p

)(
t− p

q

)

p!q!(t− p− q)!

After simplification

ST (n, 3)case (ii) =
1

2
(m′ + 1)!

[
m′
∑

t=0

t2

(m′ − t)!
+ 3

m′
∑

t=0

t

(m′ − t)!
+ 2

m′
∑

t=0

1

(m′ − t)!

]

where m′ = n− 4.
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In order to compute ST (n, 3)case (i) and ST (n, 3)case (ii), we need to know the

values of
∑r

t=0
t2

(r−t)! ,
∑r

t=0
t

(r−t)! and
∑r

t=0
1

(r−t)! and set r = m for computation of

ST (n, 3)case (i) and r = m′ for ST (n, 3)case (ii). The computation of these values are

presented in the Appendix section.

4.3.3 Computation of ST (n, 3)

ST (n, 3) = ST (n, 3)case (i) + ST (n, 3)case (ii)

= 3m!

[
m∑

t=0

t

(m− t)!
+

m∑

t=0

1

(m− t)!

]

+

1

2
(m′ + 1)!

[
m′
∑

t=0

t2

(m′ − t)!
+ 3

m′
∑

t=0

t

(m′ − t)!
+ 2

m′
∑

t=0

1

(m′ − t)!

]

where m = m′ + 1 = n− 3.

4.3.4 Computation of
∑r

t=0
1

(r−t)!

In section 4.2 we have shown that
∑n−2

t=0
(n−2)!

(n−2−t)! = g(n− 2). Replacing (n− 2) by

r, we have
∑r

t=0
r!

(r−t)! = g(r), or
∑r

t=0
1

(r−t)! =
g(r)
r!

4.3.5 Computation of
∑r

t=0
t

(r−t)!

r∑

t=0

r!t

(r − t)!
=

r∑

t=0

r!

t!
(r − t) = rg(r)−

r∑

t=0

r!t

t!

r∑

t=0

r!t

t!
=

r∑

t=0

r!

(t− 1)!
=

r−1∑

t=0

r!

t!
= g(r)− 1

Easy to see, we also have:

r−1∑

t=0

r!

t!
= rg(r − 1)
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Hence,

r∑

t=0

t

(r − t)!
=

1

r!
(rg(r)− g(r) + 1)

4.3.6 Computation of
∑r

t=0
t2

(r−t)!

r∑

t=0

r!

(r − t)!
t2 =

r∑

t=0

r!

t!
(r − t)2

=
r∑

t=0

r!

t!
(r2 − 2rt+ t2)

= r2g(r)− 2r(g(r)− 1) +
r∑

r=0

r!

t!
t2

(4.3)

r∑

t=0

r!

t!
t2 =

r∑

t=0

r!

(t− 1)!
t

=
r−1∑

t=0

r!

t!
t+

r−1∑

t=0

r!

t!

= r(g(r − 1)− 1) + rg(r − 1)

= 2rg(r − 1)− r

= 2g(r)− r − 2

(4.4)

Thus,
∑r

t=0
t2

(r−t)! =
1
r!
[r2g(r)− 2rg(r) + 2g(r) + r − 2]

Theorem 5.

ST (n, 3) = 3(n− 2)g(n− 2) +
n− 3

2
[(n2 − 10n+ 13)g(n− 4) + n− 3] + 3

4.4 Computation of ST (n, p) when 4 ≤ p ≤ n

In this section, we provide an algorithm to find the total number of minimal

Steiner trees with n nodes and p terminal nodes. The algorithm is based on Prüfer
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sequence [56] associated with a tree. If the nodes of a tree is numbered from 1 to n,

the Prüfer sequence associated with tree is a unique sequence integers of size n − 2.

The leaf nodes of the tree do not appear in the sequence while each interior node

appears at least once.

Cayley’s formula that provides the number of spanning trees in a complete graph

with n nodes as nn−2 can be derived using the Prüfer sequence. A Steiner tree of a

graph is defined to be a tree that connects the set of specified terminal or required

nodes in the graph. We will refer to a Steiner tree as a minimal Steiner tree if removal

of any node of the tree fails to connect the set of specified terminal nodes. We assume

that the nodes of the complete graph is labeled from 1 to n and a size of the specified

set of terminal nodes is p. Suppose that a minimal Steiner tree connecting the set of p

terminals has t nodes and k leaves, where t ≥ p and 2 ≤ k ≤ p. The size of the Prüfer

sequence corresponding to this tree is t− 2 and the the elements of the sequence are

the labels of the internal nodes of the tree. It may be noted that for any t, p ≤ t ≤ n

there are
(
n−p
t−p

)
ways of selecting the non-terminal nodes. In addition, there are

(
p
k

)

ways to select leaf nodes. Next we focus on the number of different Prüfer sequences

that can be generated from the Steiner trees, subject to the constraints stated earlier.

Clearly, it is a surjection from t− 2 positions to t− k indices.

After obtaining the size, next we need to consider the configuration of the Prüfer

sequence. Clearly, it is a surjection from t − 2 positions to t − k integers (labels

on the nodes). Let T (n,m) be the total number of surjections from n positions to

m integers, then T (n,m) = m!S(n,m),where S(n,m) is the Stirling number of the

second kind, which provides the number of different ways of partitioning n elements

into m nonempty sets. Finally, let ST (n, p) represent the total number of minimal

Steiner trees of a graph with n nodes and p terminals. From the arguments above,

we have
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ST (n, p) =
n∑

t=p

(
n− p

t− p

) p∑

k=2

(
p

k

)

T (t− 2, t− k)

=
n∑

t=p

(
n− p

t− p

) p∑

k=2

(
p

k

)

(t− k)!S(t− 2, t− k)

(4.5)

We can efficiently compute S(n,m) efficiently by using the recurrence relation

S(n,m) = mS(n− 1,m) + S(n− 1,m− 1).

In the following we provide the algorithm for computing ST (n, p),

Computational complexity of the algorithm is O(np).

4.5 Prüfer Sequence Generating Algorithm

It may be noted that Algorithm 1 only computes the number of minimal Steiner

trees in a complete graph with n nodes and p terminals. In most of the applications,

such as the one needed in Elastic Optical Networks, one need to know not only the

number of Steiner trees that exist, but also a way to compute these trees. Accordingly,

we also provide an algorithm for generating all Prüfer Sequences corresponding to the

minimal Steiner Trees.

Once we have the Prüfer Sequence, the corresponding minimal Steiner tree can

easily be generated following the algorithm given in [56]. W.l.o.g, we label the termi-

nal nodes from 1 to p. Similar to Algorithm 1, we enumerate the number of nodes, t,

as well as the number of leaves, k, among p terminals. Then, we partition t− 2 into

t− k non-empty groups and generate all permutations of such t− k groups. For any

partition, we consider elements in each group forming a string. After that, we can sort

groups lexicographically based on their representation strings. Next, we generate all

permutations of interior node labels and match each node label to the corresponding

position in the group.
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Algorithm 5 Algorithm for computing the number of minimal Steiner trees with n

nodes and p terminals

1: S(0, 0) = 1

2: for t = 1 to n do

3: for k = 1 to p do

4: S(t, k) = k · S(t− 1, k) + S(t− 1, k − 1)

5: end for

6: end for

7: for t = 1 to n do

8: for k = 1 to p do

9: T (t, k) = k! · S(t, k)
10: end for

11: end for

12: for t = p to n do

13: for k = 2 to p do

14: ST (n, p)+ =
(
n−p
t−p

) · (p
k

) · T (t− 2, t− k)

15: end for

16: end for

17: return ST (n, p)
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Algorithm 6 Algorithm for generating all Prüfer Sequences

1: result set = ∅
2: for t = p to n do

3: for k = 2 to p do

4: choose p − k numbers from [1,p] and choose t − p numbers from [p+1,n],

let the set be U = {u1, u2, ..., ut−k}.
5: for each partition of {1,2,...,t-2} into t-k groups do

6: sort partition group lexicographically, let gi stands for group at i− th

position.

7: for each permutation of U do

8: Let A be a sequence of length t− 2.

9: for i = 1 to t− k do

10: for each pos in gi do

11: set Apos = ui.

12: end for

13: end for

14: result set = result set ∪ A

15: end for

16: end for

17: end for

18: end for

19: return result set
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It takes O(n) to generate each Prüfer Sequence and it takes O(n) to convert one

Prüfer Sequence to a Steiner tree.
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Chapter 5

ON SHORTEST SINGLE/MULTIPLE PATH COMPUTATION PROBLEMS IN

FIBER-WIRELESS (FIWI) ACCESS NETWORKS

5.1 Introduction

Path computation problems are arguably one of the most well studied family of

problems in communication networks. In most of these problems, one or more weight

is associated with a link representing, among other things, the cost, delay or the

reliability of that link. The objective most often is to find a least weighted path (or

“shortest path”) between a specified source-destination node pair. In most of these

problems, if a link l is a part of a path P , then the contribution of the link l on the

“length” of the path P depends only on the weight w(l) of the link l, and is oblivious

of the weights of the links traversed before or after traversing the link l on the path

P . However, in a recent paper on optical-wireless FiWi network [3], the authors have

proposed a path length metric, where the contribution of the link l on the “length” of

the path P depends not only on its own weight w(l), but also on the weights of all the

links of the path P . As the authors of [3] do not present any algorithm for computing

the shortest path between the source-destination node pair using this new metric,

we present a polynomial time algorithm for this problem in this chapter. This result

is interesting because of the nature of new metric proposed in [3], one key property

on which the shortest path algorithm due to Dijkstra is based, that is, subpath of

a shortest path is shortest, is no longer valid. We show that even without this key

property, not only it is possible to compute the shortest path in polynomial time

using the new metric, it is also possible to compute the shortest path in polynomial
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time, with a variation of the metric proposed in [3].

The rest of the chapter is organized as follows. In section 5.3, we present the

path length metric proposed for the FiWi network in [3] and a variation of it. In

section 5.4 we provide algorithms for computing the shortest path using these two

metrics. As multi-path routing offers significant advantage over single path routing

[50, 42, 60, 38], we also consider the problem of computation of a pair of node disjoint

paths between a source-destination node pair using the metric proposed in [3]. We

show that while the single path computation problem can be solved in polynomial

time in all these cases, the disjoint path computation problem is NP-complete. The

contribution of the chapter are as follows;

• Polynomial time algorithm for single path routing (metric 1) in FiWi networks

• Polynomial time algorithm for single path routing (metric 2) in FiWi networks

• NP-completeness proof of disjoint path routing (metric 1) in FiWi networks

• Optimal solution for disjoint path routing (metric 1) in FiWi networks using

Integer Linear Programming

• One approximation algorithm for disjoint path routing in FiWi networks with

an approximation bound of 4 and computation complexity O((n+m)log n)

• One approximation algorithm for disjoint path routing in FiWi networks with

an approximation bound of 2 and computation complexity O(m(n+m)log n)
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• Experimental evaluation results of the approximation algorithm for disjoint path

routing in FiWi networks

5.2 Related Work

The Fiber-Wirelss (FiWi) network is a hybrid access network resulting from the

convergence of optical access networks such as Passive Optical Networks (PONs) and

wireless access networks such as Wireless Mesh Networks (WMNs) capable of pro-

viding low cost, high bandwidth last mile access. Because it provides an attractive

way of integrating optical and wireless technology, Fiber-Wireless (FiWi) networks

have received considerable attention in the research community in the last few years

[20, 19, 64, 63, 3, 60, 38]. The minimum interference routing algorithm for the Fi-

Wi environment was first proposed in [63]. In this algorithm the path length was

measured in terms of the number of hops in the wireless part of the FiWi network.

The rationale for this choice was that the maximum throughput of the wireless part

is typically much smaller than the throughput of the optical part, and hence mini-

mization of the wireless hop count should lead to maximizing the throughout of the

FiWi network. However, the authors of [3] noted that minimization of the wireless

hop count does not always lead to throughput maximization. Accordingly, the path

length metric proposed by them in [3] pays considerable importance to the traffic

intensity at a generic FiWi network node. The results presented in this chapter are

motivated by the path length metric proposed in [3].

5.3 Problem Formulation

In the classical path problem, each edge e ∈ E of the graph G = (V,E), has a

weight w(e) associated with it and if there is a path P from the node v0 to vk in the
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graph G = (V,E)

v0
w1→ v1

w2→ v2
w3→ v3 . . .

wk→ vk

then the path length or the distance between the nodes v0 and vk is given by

w(Pv0,vk) = w1 + w2 + · · ·+ wk

However, in the path length metric proposed in [3] for optical-wireless FiWi net-

works [20, 19, 64], the contribution of ei to the path length computation depends not

only on the weight wi, but also on the weights of the other edges that constitute the

path. In the following section, we discuss this metric and a variation of it. We also

also formulate the multipath computation problem using this metric.

The Optimized FiWi Routing Algorithm (OFRA) proposed in [3] computes the

“length” (or weight) of a path P from v0 to vk using the following metric

w′(Pv0,vk) = min
P

(
∑

∀u∈P
(wu) + max

∀u∈P
(wu)

)

where wu represents the traffic intensity at a generic FiWi network node u, which

may be an optical node in the fiber backhaul or a wireless node in wireless mesh

front-end. In order to compute shortest path using this metric, in our formulation,

instead of associating a traffic intensity “weight” (wu) with nodes, we associate them

with edges. This can easily be achieved by replacing the node u with weight wu with

two nodes u1 and u2, connecting them with an edge (u1, u2) and assigning the weight

wu on this edge. In this scenario, if there is a path P from the node v0 to vk in the

graph G = (V,E)

v0
w1→ v1

w2→ v2
w3→ . . .

wk→ vk

then the path length between the nodes v0 and vk is given by
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w+(Pv0,vk) = w1 + w2 + . . .+ wk + max(w1, w2, . . . wk)

=
k∑

i=1

wi + maxki=1wi

In the second metric, the length a path Pv0,vk : v0→v1→v2→ . . .→vk, between the

nodes v0 and vk is given by

w̄(Pv0,vk) =
k∑

i=1

wi + CNT (Pv0,vk) ∗ max(w1, w2, . . . wk)

=
k∑

i=1

wi + CNT (Pv0,vk) ∗ maxki=1wi

where CNT (Pv0,vk) is the count of the number of times max (w1, w2, . . . wk) ap-

pears on the path Pv0,vk . We study the shortest path computation problems in FiWi

networks using the above metrics and provide polynomial time algorithms for solution

in subsections IV-A and IV-B.

If wmax = max(w1, w2, . . . wk), we refer to the corresponding edge (link) as emax.

If there are multiple edges having the weight of wmax, we arbitrarily choose any one

of them as emax. It may be noted that both the metrics have an interesting property

in that in both cases, the contribution of an edge e on the path length computation

depends not only on the edge e but also on every other edge on the path. This is so,

because if the edge e happens to be emax, contribution of this edge in computation of

w+(Pv0,vk) and w̄(Pv0,vk) will be 2 ∗ w(e) and CNT (Pv0,vk) ∗ w(e) respectively. If e is

not emax, then its contribution will be w(e) for both the metrics.

As multipath routing provides an opportunity for higher throughput, lower delay,

and better load balancing and resilience, its use have been proposed in fiber net-

works [50], wireless networks [42] and recently in integrated fiber-wireless networks
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[60, 38]. Accordingly, we study the problem of computing a pair of edge disjoint paths

between a source-destination node pair s and d, such that the length of the longer

path (path length computation using the first metric) is shortest among all edge dis-

joint path pairs between the nodes s and d. In subsection IV-C we prove that this

problem is NP-complete, in subsection IV-D, we provide an optimal solution for the

problem using integer linear programming, in subsections IV-E and IV-F we provide

two approximation algorithms for the problem with a performance bound of 4 and 2

respectively, and in subsection IV-F we provide results of experimental evaluation of

the approximation algorithms.

5.4 Path Problems in FiWi Networks

In this section, we present (i) two different algorithms for shortest path compu-

tation using two different metrics, (ii) NP-completeness proof for the disjoint path

problem, (iii) two approximation algorithms for the disjoint path problem, and (iv)

experimental evaluation results of the approximation algorithms.

It may be noted that, in both metrics w+(Pv0,vk) and w̄(Pv0,vk), we call an edge

e ∈ Pv0,vk crucial, if w(e) = maxk
i=1w(e

′), ∀e′ ∈ Pv0,vk .

5.4.1 Shortest Path Computation using Metric 1

It may be recalled that the path length metric used in this case is the follow-

ing: w+(Pv0,vk) =
∑k

i=1 wi + maxki=1wi. If the path length metric was given as

w(Pv0,vk) =
∑k

i=1 wi, algorithms due to Dijkstra and Bellman-Ford could have been

used to compute the shortest path between a source-destination node pair. One im-

portant property of the path length metric that is exploited by Dijkstra’s algorithm

is that “subpath of a shortest path is shortest”. However, the new path length metric

∑k
i=1 wi + maxki=1wi does not have this property. We illustrate this with the example
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below.

Consider two paths P1 and P2 from the node v0 to v3 in the graph G = (V,E),

where P1 : v0
w1→ v1

w2→ v2
w3→ v3 and P2 : v0

w4→ v4
w5→ v2

w3→ v3. If w1 = 0.25, w2 =

5, w3 = 4.75, w4 = 2, w5 = 4, the length of the path P1, PL1 = w1 + w2 + w3 +

max(w1, w2, w3) = 0.25+ 5+ 4.75+ max(0.25, 5, 4.75) = 15 and the length of the path

P2, PL2 = w4 + w5 + w6 + max(w4, w5.w6) = 2 + 4 + 4.75 + max(2, 4, 4.75) = 15.5.

Although P1 is shortest path in this scenario, the length of its subpath v0
w1→ v1

w2→ v2

is 0.25 + 5 + max (0.25, 5) = 10.25, which is greater than the length of a subpath

of P2 v0
w4→ v4

w5→ v2 2 + 4 + max (2, 4) = 10, demonstrating that the assertion that

“subpath of a shortest path is shortest” no longer holds in this path length metric.

As the assertion “subpath of a shortest path is shortest” no longer holds in this

path length metric, we cannot use the standard shortest path algorithm due to Di-

jkstra in this case. However, we show that we can still compute the shortest path

between a source-destination node pair in polynomial time by repeated application

of the Dijkstra’s algorithm. The algorithm is described next.

For a given graph G = (V,E), w.l.o.g, we assume |V | = n and |E| = m. Define

Ge as subgraph of G by deleting edges whose weight is greater than w(e).

Also, as Dijkstra’s algorithm does, we need to maintain distance vector. We define

distv be distance (length of shortest path) from s to v, Πv be predecessor of v and

maxedgev be weight of the crucial edge from s to v via the shortest path, ansv be

optimal solution (length) from s to v.

Different Ge can be treated as different layers of the G. For any path P , we

define the function e∗(P ) as the crucial edge along P . It is easy to observe that if

Pd is the optimal path from s to node d then w(Pd) =
∑

e∈P w(e) and w+(Pd) =

w(Pd) + w(e∗(Pd)). It may be noted that henceforth, we shorten Ps,d to Pd, because

we consider that the source is fixed while the destination d is variable.
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Algorithm 7 Modified Dijkstra’s Algorithm

1: Initialize ansv =∞ for for all v ∈ V

2: sort all edges according to w(e) in ascending order

3: for i = 1 to m do

4: Initialize distv =∞,Πv = nil, maxedgev = 0 for all v ∈ V

5: dists = 0

6: Q = the set of all nodes in graph

7: while Q is not empty do

8: u = Extract-Min(Q)

9: for each neighbor v of u do

10: if eu,v ∈ E(Gei) then

11: t = MAX {maxedgeu , w(eu,v)}
12: if distu + w(eu,v) < distv then

13: distv = distu + w(eu,v)

14: maxedgev = t

15: Πv = u

16: else if distu + w(eu,v) == distv then

17: if maxedgev > t then

18: maxedgev = t

19: Πv = u

20: end if

21: end if

22: end if

23: end for

24: end while
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Algorithm 8 Modified Dijkstra’s Algorithm

25: for each node v do

26: ansv = min{ansv, distv +maxedgev}
27: end for

28: end for

Lemma 1. w(Pd) is minimum in Ge∗(Pd).

Proof. It is obvious that Pd still exists in Ge∗(Pd), since edges on Pd are not abandoned.

Suppose Pd is not shortest, then there must be another path Pd′ s.t. w(P
′
d) < w(Pd).

Noting that the crucial edge on P ′d, namely e′, is no longer than e∗(Pd) since they both

belong to Ge∗(Pd). Hence w+(P ′d) = w(P ′d) + w(e′) < w(Pd) + w(e∗(Pd)) = w+(Pd),

contradicting Pd is optimal.

Lemma 2. Modified Dijkstra’s Algorithm (MDA) computes shortest path while keep-

ing the crucial edge as short as possible in every iteration.

Proof. Line 4 to 24 works similar to the standard Dijkstra’s algorithm does. Besides,

when updating distance, MDA also updates the crucial edge to guarantee that it lies

on the path and when there is a tie, MDA will choose the edge with the smaller

weight.

Theorem 1. Modified Dijkstra’s Algorithm computes optimal solution for every node

v in O(m(n+m)logn) time.

Proof. Lemma 1 indicates for any node v ∈ V , optimal solution can be obtained by

enumerating all possible crucial edges e∗(Pv) and computing shortest path on Ge∗(Pv).

By sorting all edges in nondecreasing order, every subgraph Ge∗(Pv) is considered and

it is shown in lemma 2, MDA correctly computes shortest path for every node v

in every Ge∗(Pv). Then optimal solution is obtained by examining all shortest path
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using the w() metric plus the corresponding crucial edge. Dijkstra’s algorithm runs

O((n+m)logn) time when using binary heap, hence MDA runs in O(m(n+m)logn)

time when considering all layers.

5.4.2 Shortest Path Computation using Metric 2

Given a path P , let e∗(P ) be the crucial edge along the P and CNT (P ) be the

number of occurrence of such edge. Now our objective becomes to find a path Q,

such that w̄(P ) =
∑

e∈Q w(e) + CNT (Q) ∗ w(e∗(Q)) is minimum.

The layering technique can also be used in this problem. However, shortest path

under a ceratin layer may not become a valid candidate for optimal solution. Here,

we introduce a dynamic programming algorithm that can solve the problem optimally

in O(n2m2) time.

Input is a weighted graph G = (V,E), |V | = n, |E| = m with a specified source

node s. In this chapter, we only consider nonnegative edge weight. As shown before,

we use Ge to represent the residue graph by deleting edges longer than e in G. Differ-

ent from MDA1, in order to consider the number of crucial edges, distv is replaced

by an array dist0v, dist
1
v, ....dist

n
v . One can think distcv be the shortest distance from s

to v by going through exactly c crucial edges and possibly some shorter edges. Simi-

larly, we replace Πv by Πc
v, 0 ≤ c ≤ n. Each Πc

v records predecessor of v for the path

corresponding to distcv. Lastly, ansv is used as optimal solution from s to v.

Lemma 3. If Pv is the best path from s to v, i.e., w̄(Pv) is minimum among all s-v

path, then Pv is computed in Ge∗(Pv) and dist
CNT (Pv)
v = w(Pv).

Proof. By definition, Pv exists in Ge∗(Pv) and CNT (Pv) ≥ 1, here we call an edge

e crucial if w(e) = w(e∗(Pv)). Noting w̄(Pv) = w(Pv) + CNT (Pv) ∗ w(e∗(Pv)), in

one hand if we treat CNT (Pv) as a fixed number, then we need to keep w(Pv) as
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Algorithm 9 Maxedge Shortest Path Algorithm

1: Initialize ansv =∞ for for all v ∈ V

2: sort all edges according to w(e) in ascending order, say e1, e2, ..., em after sorting

3: for i = 1 to m do

4: Initialize distcv =∞,Πc
v = nil for all v ∈ V and all 0 ≤ c ≤ n

5: dist0s = 0

6: for j = 1 to n− 1 do

7: for k = 0 to j do

8: for every node v ∈ V do

9: if distkv =∞ then

10: continue

11: end if

12: for every neighbor u of v do

13: if w(eu,v) > w(ei) then

14: continue

15: else if w(eu,v) == w(e∗) then

16: if distkv + w(eu,v) < distk+1
u then

17: distk+1
u = distkv + w(eu,v)

18: Πk+1
u = v

19: end if

20: else

21: if distkv + w(eu,v) < distku then

22: distku = distkv + w(eu,v)

23: Πk
u = v

24: end if

25: end if
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Algorithm 10 Maxedge Shortest Path Algorithm

26: end for

27: end for

28: end for

29: end for

30: for i = 1 to n− 1 do

31: ansv = min{ansv, distiv + i ∗ w(ei)}
32: end for

33: end for

small as possible. Inspired by idea of bellman-ford algorithm, we can achieve it by

enumerating |Pv|, i.e., number of edges on Pv. On the other hand, we need to keep

tracking number of crucial edges as well. Hence, distcv is adopted to maintain such

information, superscript c reflects exact number of crucial edges. From line 12 to line

25, distcv is updated either when it comes from a neighbor who has already witnessed

c crucial edges or it comes from a neighbor with c − 1 crucial edges and the edge

between is crucial. In either case, node v gets a path, say P ′, with exact c crucial

edges on it and w(P ) is minimum. At last, Pv can be selected by enumerating number

of crucial edges and that is what line 30 to 32 does.

Lemma 4. Maxedge Shortest Path Algorithm(MSPA) runs in O(n2m) time for each

Ge.

Proof. We can apply similar analysis of bellman-ford algorithm. However, we need to

update distcv array, it takes extra O(n) time for every node v in every iteration when

enumerating |Pv|. Hence, total running time is O(n2m).

Theorem 2. MSPA computes optimal path for every v ∈ V in O(n2m2) time.
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Proof. By Lemma 3, if Pv is obtained when computing Ge∗Pv . Then, by considering

all possible Ge∗ , we could get Pv in one of these layering. It takes O(m) to generate

all Ge∗ , by Lemma 4, MSPA runs in v ∈ V in O(n2m2) time.

5.4.3 Computational Complexity of Disjoint Path Problem

In this section, we study edge disjoint path in optical wireless network. By re-

duction from well known Min-Max 2-Path Problem, i.e., min-max 2 edge disjoint

path problem under normal length measurement, we show it is also NP-complete if

we try to minimize the longer path when w+ length is applied. Then we give an ILP

formulation to solve this problem optimally. At last, we provide two approximation

algorithm, one with approximation ratio 4, running time O((m + n)logn), the other

one with approximation ratio 2 while running time is O(m(m+ n)logn).

Min-Max 2 Disjoint Path Problem (MinMax2PP)

Instance: An undirected graph G = (V,E) with a positive weight w(e) associated

with each edge e ∈ E, a source node s ∈ V , a destination node t ∈ V , and a positive

number X.

Question: Does there exist a pair of edge disjoint paths P1 and P2 from s to d in G

such that w(P1) ≤ w(P2) ≤ X?

The MinMax2PP problem is shown to be NP-complete in [35]. With a smal-

l modification, we show NP-completeness still holds if w+ length measurement is

adopted.

Min-Max 2 Disjoint Path Problem in Optical Wireless Networks (Min-

Max2OWFN)
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Instance: An undirected graph G = (V,E) with a positive weight w(e) associated

with each edge e ∈ E, a source node s ∈ V , a destination node t ∈ V , and a positive

number X.

Question: Does there exist a pair of edge disjoint paths P ′1 and P ′2 from s to t in G

such that w+(P ′1) ≤ w+(P ′2) ≤ X ′?

Theorem 3. The MinMax2OWFN is NP-complete

Proof. Evidently, MinMax2OWFN is in NP class, given two edge joint path P ′1

and P ′2, we can check if w+(P ′1) ≤ w+(P ′2) ≤ X ′ in polynomial time.

We then transfer from MinMax2PP to MinMax2OWFN. Let graph G =

(V,E) with source node s , destination t and an integer X be an instance of Min-

Max2PP, we construct an instance G’ of MinMax2OWFN in following way.

1. Create an identical graph G′ with same nodes and edges in G.

2. Add one node s0 to G′.

3. Create two parallel edges e01, e02 between s0 and s, w(e01) = w(e02) = maxe∈G(E) w(e)

4. Choose s0 to the source node in G′ and t to be the destination.

5. Set X ′ = X + 2w(e01)

Easy to see, the construction takes polynomial time.

Now we need to show a instance of MinMax2OWFN have two edge disjoint

paths from s0 to t with length at most X ′ if and only if the corresponding instance

have two edge disjoint paths from s to t with length at most X.

Suppose there are two edge disjoint paths P ′1 and P ′2 from s0 to t in G′, such

that w+(P ′1) ≤ w+(P ′2) ≤ X ′. By the way we construct G′, P ′1 and P ′2 must go

through e01 and e02. W.l.o.g. we say e01 ∈ P ′1 and e02 ∈ P ′2. Since w(e01) = w(e02) =
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maxe∈E(G′){w(e)}, therefore e01 and e02 are the crucial edge on P ′1 and P ′2 respectively.

Hence, P ′1 − e01 and P ′2 − e02 are two edge disjoint path in G, with length no greater

than X ′ − 2w(e01) = X.

Conversely, now suppose P1 and P2 are two edge joint path in G satisfying w(P1) ≤
w(P2) ≤ X. Follow the same argument above, P1 + e01 and P2 + e02 are two desired

paths, with length not exceeding X + 2w(e01) = X ′.

5.4.4 Optimal Solution for the Disjoint Path Problem

Here, we give an ILP formulation for MinMax2OWFN.
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ILP for MinMax2OWFN

min MP

s.t.

∑

(i,j)∈E
fi,j,1 −

∑

(j,i)∈E
fj,i,1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 i = s

− 1 i = t

0 otherwise

∑

(i,j)∈E
fi,j,2 −

∑

(j,i)∈E
fj,i,2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 i = s

− 1 i = t

0 otherwise

fi,j,1 + fi,j,2 ≤ 1 ∀(i, j) ∈ E

w1 ≥ fi,j,1 ∗ w(i, j) ∀(i, j) ∈ E

w2 ≥ fi,j,2 ∗ w(i, j) ∀(i, j) ∈ E

MP ≥ w1 +
∑

(i,j)∈E
fi,j,1 ∗ w(i, j)

MP ≥ w2 +
∑

(i,j)∈E
fi,j,2 ∗ w(i, j)

fi,j,1 = {0, 1}, fi,j,2 = {0, 1} ∀(i, j) ∈ E

The following is a brief description of this ILP formulation. The first two equation

represent flow constraint as normal shortest path problem does. fi,j,1 = 1 indicates

path P1 goes through edge (i, j), and 0 otherwise. So it is with fi,j,2 and path P2.

Constraint 3 ensures two edges are disjoint, since fi,j,1 and fi,j,2 cannot both be 1 at

the same time. w1, w2 act as the weights of the crucial edges on P1 and P2 respectively.

Finally, we define MP to be the maximum of w+(P1) and w+(P2) and therefore try
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to minimize it.

5.4.5 Approximation Algorithm for the Disjoint Path Problem, with

approximation factor 4

Next we propose a 4-approximation algorithm which runs in O((n+m)logn) time.

Given G = (V,E) with source s and destination t, the idea of approximation

algorithm is to find two disjoint P1 and P2 such that w(P1) + w(P2) is minimized.

Such P1 and P2 can be found either using min cost max flow algorithm or the algorithm

due to Suurballe presented in [54]. And we need to show both w+(P1) and w+(P2)

are at most four times of the optimal solution.

Algorithm 11 MinMax2OWFN Approximation Algorithm 1 (MAA1)

1: Run Suuraballe’s algorithm on G, denote P1, P2 be two resulting path.

2: Compute w+(P1) and w+(P2).

3: Output max{w+(P1), w
+(P2)}.

Lemma 5. For any path P , w+(P ) ≤ 2w(P ).

Proof. By definition, w+(P ) = w(P ) + w(e∗(P )). Since w(e∗(P )) ≤ w(P ), then

w+(P ) ≤ 2 ∗ w(P ).

Lemma 6. If P1 and P2 are two edge joint path from s to t such that w(P1) +w(P2)

is minimum, then w+(P1) and w+(P2) are at most four times of the optimal solution.

Proof. Say opt is the optimal value of aMinMax2OWFN instance andQ1,Q2 are two

s− t edge disjoint path in one optimal solution. W.l.o.g, we may suppose w+(P1) ≥
w+(P2) and w+(Q1) ≥ w+(Q2). Let w(P1) + w(P2) = p and w(Q1) + w(Q2) = q, by

assumption, p ≤ q. Also, we have w+(P1) = w(P1) + e∗(P1) ≤ 2p, opt = w+(Q1) =

w(Q1) + e∗(Q1) >
q
2
. Hence, w+(P2)

opt
≤ w+(P1)

opt
< 2p

q/2
≤ 4
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Theorem 4. MMA1 is a 4-approximation algorithm running in O((n+m)logn) time

and 4 is a tight bound.

Proof. By Lemma 5 and 6, MMA1 has approximation ratio at most 4.Then we show

MMA1 has approximation at least 4 for certain cases. Consider the following graph.

Figure 5.1: Tightness for ratio 4

Easy to check, P1 = {s → t}, P2 = {s → r → t} are two edge disjoint path with

minimum length 2k + 2, w+(P1) = 4k > w+(P2) = 3. However, let Q1 = {s→ u1 →
u2 → ... → uk−1 → uk → r → t}, Q2 = {s → r → v1 → v2 → ... → vk−1 → vk → t},
then w(Q1) + w(Q2) = 2k + 4 while w+(Q1) = w+(Q2) = k + 3. w+(P1)

w+Q1
= 4k

k+3
≈ 4

when k is sufficiently large. Hence, 4 is a tight bound for MMA1.

We need O((n + m)logn) time running Suuraballe’s algorithm and O(n) time

computing w+(P1) and w+(P2). Therefore total running time is O((n+m)logn).

5.4.6 Approximation Algorithm for the Disjoint Path Problem, with

approximation factor 2

If we do not apply layering technique in MMA1 and instead we consider all Ge of

G, we can have a better approximation ratio.

88



Algorithm 12 MinMax2OWFN Approximation Algorithm 2(MAA2)

1: set ans =∞
2: for every Ge of G do

3: Run Suuraballe’s algorithm on Ge, denote P1, P2 be two resulting path.

4: Compute w+(P1) and w+(P2).

5: ans = min{ans, max{w+(P1), w
+(P2)}}.

6: end for

7: Output ans.

SayQ1, Q2 are two disjoint paths in one optimal solution. Let e′ = max{e∗(Q1), e
∗(Q2)}

and P1, P2 be the resulting paths when computing layer Ge′ ; w.l.o.g, we may assume

w(P1) > w(P2). Also, let anse′ = max{w+(P1), w+(P2)}.

Lemma 7. anse′ < 2max{w+(Q1), w+(Q2)}.

Proof. Noting that w(e∗(P1)) ≤ w(e′) and w(e∗(P2)) ≤ w(e′) since they both belong

to Ge′ . Then anse′ ≤ w(P1) + w(e′). It suffices to show w(P1)+w(e′)
max{w+(Q1), w+(Q2)} < 2. We

prove it by contradiction. Suppose w(P1)+w(e′)
max{w+(Q1), w+(Q2)} ≥ 2, then

w(P1) + w(e′) ≥ w+(Q1) + w+(Q2)

Which follows,

w(P1) + w(e′) ≥ w(Q1) + w(e∗(Q1)) + w(Q2) + w(e∗(Q2))

By definition, e′ is one of e∗(Q1), e
∗(Q2). Hence,

w(P1) > w(Q1) + w(Q2)

It is impossible since w(P1) + w(P2) is minimum in layer Ge′ .
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Theorem 5. MMA2 is a 2-approximation algorithm running in O(m(n + m)logn)

time and 2 is a tight bound.

Proof. By Lemma7, in one of the layer, we guarantee to have a 2-approximation

solution. Since we take minimum outcome among all layers, the final result is no

worse than twice of the optimal solution. Now we need to show there exists certain

case, such that MMA2 is no good than twice of the optimal solution. Consider the

following graph

Figure 5.2: Tightness for ratio 2

There is only one layer, and P1 = {s → x1 → x2 → ... → x2k−1 → x2k → t},
P2 = {s→ r → t} are two edge disjoint path with minimum length 2k+3, w+(P1) =

2k + 2 > w+(P2) = 3. However, set Q1 = {s → u1 → u2 → ... → uk−1 → uk → r →
t}, Q2 = {s→ r → v1 → v2 → ...→ vk−1 → vk → t}, then w(Q1) + w(Q2) = 2k + 4

while w+(Q1) = w+(Q2) = k + 3. w+(P1)
w+Q1

= 2k+2
k+3

≈ 2 when k is sufficiently large.

Hence, 2 is a tight bound for MMA2.

Finally, it is easy to see running time is O(m(n+m)logn).
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5.4.7 Experimental Results for the Disjoint Path Problem

In this section, we present the results of simulations for comparing the perfor-

mance of our approximation algorithms with the optimal solution. The simulation

experiments have been carried out on the ARPANET topology (as shown in Fig 5.3

with nodes and links shown in black) which has twenty nodes and thirty two links.

The weights of the links have been randomly generated and lie in the range of two

and twelve (as shown in red in Fig 5.3) and we consider the graph to be undirect-

ed. The results of the comparison is presented in Table 5.1. We have compared the

lengths of the longer of the two edge disjoint paths computed by the optimal and

the approximate solutions for seventeen different source-destination pairs. It may be

noted that for almost 65% of the cases, the approximate algorithm obtains the opti-

mal solution. In the remaining cases, the approximate solution lies with a factor of

1.2 of the optimal solution. Thus, even though the approximation ratio in the worst

case is proven to be 4, in practical cases, it is within 1.2. From these experimental

results, we can conclude that the approximation algorithm produces optimal or near

optimal solutions in majority of the cases. It may be noted that the two approxi-

mation algorithms perform in a similar fashion in the ARPANET graph, however,

as proven theoretically, the two approximation algorithms differ in their worst case

approximation ratio.
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Figure 5.3: The ARPANET graph with 20 nodes and 32 links

S node D node Opt Sol Approx Sol 1 Approx Ratio 1 Approx Sol 2 Approx Ratio 2

14 2 47 55 1.17 55 1.17

18 8 46 46 1 46 1

1 6 28 28 1 28 1

18 4 50 58 1.16 57 1.14

20 3 40 40 1 40 1

10 3 27 27 1 27 1

1 11 35 35 1 35 1

14 6 50 52 1.04 52 1.04

20 7 38 38 1 38 1

10 5 36 38 1.05 38 1.05

18 12 22 22 1 22 1

1 20 46 52 1.13 52 1.13

20 13 26 26 1 26 1

14 19 29 29 1 29 1

10 17 36 36 1 36 1

20 16 29 29 1 29 1

5 11 40 48 1.2 48 1.2

Table 5.1: Comparison of the Approximate solutions with the Optimal solution for

the ARPANET graph
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In addition, we also conducted experiment on German topology as shown in 5.4.

50 cites(nodes) are included in the topology with given x, y coordinates in 5.2 . Edges

weights are computed based on their geo-location and we also treated it as an un-

directed graph. We choose 20 different source and destination pairs. For each one,

we computed optimal solution as well as approximation results. The results of the

comparison is presented in Table 5.3. For most of cases, our approximation results

achieve the optimal solution.

Figure 5.4: The German topology with 50 nodes and 88 links
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Name ID x y Name ID x y

Aachen 0 0.0 1279.66 Kassel 25 669.42 1107.84

Augsburg 1 937.58 2002.36 Kempten 26 825.69 2178.31

Bayreuth 2 1070.69 1530.58 Kiel 27 787.1 143.05

Berlin 3 1417.94 732.46 Koblenz 28 285.52 1389.03

Bielefeld 4 474.58 883.82 Koeln 29 160.12 1224.66

Braunschweig 5 870.06 808.35 Konstanz 30 605.76 2195.51

Bremen 6 542.1 544.14 Leipzig 31 1223.1 1101.67

Bremerhaven 7 490.01 405.25 Magdeburg 32 1080.34 852.42

Chemnitz 8 1329.2 1255.24 Mannheim 33 472.65 1661.85

Darmstadt 9 503.51 1542.56 Muenchen 34 1066.83 2054.49

Dortmund 10 272.01 1049.07 Muenster 35 300.95 905.76

Dresden 11 1483.53 1197.08 Norden 36 225.71 385.76

Duesseldorf 12 140.83 1129.43 Nuremberg 37 962.66 1638.07

Erfurt 13 964.59 1212.41 Oldenburg 38 418.63 544.14

Essen 14 189.06 1064.56 Osnabruck 39 383.91 808.35

Flensburg 15 657.85 0.0 Passau 40 1431.45 1932.55

Frankfurt 16 515.09 1473.53 Regensburg 41 1167.15 1806.65

Freiburg 17 339.53 2103.57 Saarbrucken 42 190.99 1738.86

Fulda 18 704.15 1340.53 Schwerin 43 1043.68 402.0

Giessen 19 507.37 1337.49 Siegen 44 383.91 1233.84

Greifswald 20 1419.87 225.53 Stuttgart 45 590.33 1882.9

Hamburg 21 762.02 395.5 Trier 46 123.47 1584.42

Hannover 22 709.94 776.78 Ulm 47 762.02 1982.03

Kaiserslautern 23 329.89 1679.65 Wesel 48 63.66 1086.22

Karlsruhe 24 457.21 1803.71 Wurzburg 49 758.17 1575.46

Table 5.2: City info in German topology
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S node D node Opt Sol Approx Sol 1 Approx Ratio 1 Approx Sol 2 Approx Ratio 2

9 14 1190 1190 1.0 1190 1

24 44 946 946 1.0 946 1

17 34 1311 1311 1.0 1311 1

19 43 1829 1829 1.0 1829 1

8 9 1966 1966 1.0 1966 1

5 31 1380 1380 1.0 1380 1

46 49 1297 1297 1.0 1297 1

31 32 1274 1274 1.0 1274 1

0 13 1925 1925 1.0 1925 1

37 45 1371 1371 1.0 1371 1

20 48 2783 2783 1.0 2783 1

12 32 1865 1865 1.0 1865 1

3 7 1992 1992 1.0 1992 1

5 24 1820 1842 1.01 1820 1

18 32 1533 1533 1.0 1533 1

2 13 1199 1199 1.0 1199 1

3 45 2336 2336 1.0 2336 1

2 27 2335 2335 1.0 2335 1

17 22 2358 2368 1.004 2358 1

1 36 2937 2937 1.0 2937 1

Table 5.3: Comparison of the Approximate solutions with the Optimal solution for

the German topology
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Chapter 6

READER SCHEDULING FOR TAG ACCESS IN RFID SYSTEMS

6.1 Introduction

Radio Frequency Identification (RFID) systems, comprising of readers and tags,

are used extensively for identification of objects with unique identifiers. In order to

support complex needs of RFID dependent business sectors, such as Supply Chain

Management and Transportation, a RFID system is expected to allow readers fast

and accurate access to tags available in the environment. However, simultaneous

transmissions by multiple readers and tags in close proximity may cause signal in-

terference and hinder accurate reading. Such interference can be divided into three

classes : tag-to-tag, reader-to-tag, and reader-to-reader. To overcome these hindrances

and achieve interference-free operation, development of conflict resolution techniques

are essential. Accordingly, several conflict resolution techniques have been developed.

However, most of these techniques are developed for resolving tag-to-tag collision,

instead of reader-to-reader collision.

In this chapter we study the optimal schedule construction problem to avoid

reader-to-reader collision. We formalize the optimal schedule construction problem

for RFID readers as computation of interval chromatic number [52] of a RFID-conflict

graph (a generalized version of Unit Disk Graphs), and prove that the problem is NP-

complete. We provide a centralized and a distributed approximation algorithm for

the problem with a guaranteed performance bound.

The rest of the chapter is organized as follows: In Section 6.2 we outline the

related work in this domain. In Section 6.3 we formally define the problem and
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in Section 6.4 we show that the scheduling problem is NP-complete and provide a

heuristic algorithms for the problem. Finally, in Section 6.6 we present the results of

our experiments.

6.2 Related Work

Reader-reader anti-collision protocols from the literature are of several kinds.

Some, like HiQ-learning [24] use a hierarchical architecture to provide an online learn-

ing of collision patterns of readers and assign frequencies to the readers over time.

Others, such as [26, 28] apply a carrier sense multiple access (CSMA) based algorithms

to detect collisions. Centralized solutions [49] use an iterative procedure. A reader

is allocated a color in an order determined by the number of neighboring readers al-

ready colored, choosing at each step, the color with the smallest index. In Distributed

Color Selection (DCS) [58], each reader randomly selects a time slot in a frame for

transmission. The Variable-Maximum DCS (VDCS, or colorwave) [57] allows adjust-

ment of the maximum number of colors. In [14], mobile readers communicate with

a centralized server which grants service to readers for tag identification on a first-

come-first-served basis. [22] proposed an Adaptive Color based Reader Anti-collision

Scheduling algorithm for 13.56 MHz RFID technology where every reader is assigned

a set of colors that allows it to read tags during a specific time slot within a time

frame. [55] also studied the slotted access model to improve the read throughput of a

multi-reader RFID system by extending a centralized algorithm to a distributed one

that operates without location information of other readers.

Our model differs from the slotted access model as we assume a reader can read only

one tag per time unit. Also, a reader fails to read any nearby tags if there is a reader

collision, i.e. a tag is present in the sensing range of two active readers.
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6.3 Problem Formulation

The inputs for the RFID scheduling problem are the locations of the readers and

the tags in the deployment area. Suppose that there are n readers located in points

{p1, . . . , pn} and m tags located in points {q1, . . . , qm}. If the deployment area is a

two dimensional space, then each point pi (or qi) is specified by its x, y co-ordinates

(xi, yi). We formulate the RFID scheduling problem as computation of the Interval

Chromatic Number of a RFID Graph.

Definition: Interval Chromatic Number (ICN): An interval coloring of a weighted

graph maps each node v to an interval of size w(v) such that intervals of adjacent

nodes do not intersect. The size of a coloring is the size of the union of these intervals.

The minimum possible size of an interval coloring of a given weighted graph is its

interval chromatic number [52].

We draw a circle of radius r, with each point pi, 1 ≤ i ≤ n as the center, where r

is the sensing range of the readers. Corresponding to every point pi in the problem

instance, we create a node vi in the graph G = (V,E), and two nodes share an

edge if the intersection area of the sensing circles of the corresponding points pi and

pj covers at least one tag. Since G is constructed from an instance of the RFID

problem, we will refer to it as a RFID Graph (RFIDG). It can be seen that RFIDGs

are a generalization of the UDG (when r = 1).

As a reader needs to be turned on for t × Ntag consecutive time units to ensure

that all tags in its sensing range is read, for each node vi ∈ V we assign a weight

wi = t × Ni, where Ni is the number of tags available in the reader’s sensing range.

This way of assigning weights may be considered somewhat inefficient as the tags that

belong to the intersection area of the sensing range of multiple readers will be read

by multiple readers. However, such duplication can be avoided if the readers have
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sophisticated electronics to determine which tag is being read by which reader, this is

currently unavailable in today’s commodity RFID readers. Accordingly, we use this

weight assignment rule to ensure that no tag is left unread.

We can now view the optimal schedule construction problem for the RFID problem

as the Interval Coloring problem of the corresponding RFID graph. We associate

colors to readers as communication tokens. A single color stands for a unit of time.

To ensure that every reader i successfully accesses all tags in its sensing range, i has

to be allocated Ni colors.

Incompatibility rule: Two readers are incompatible if there is a tag in the intersection

area of their sensing range.

Optimal Schedule Construction Problem (OSCP):

GIVEN: Two sets of points P = {p1, . . . , pn} (locations of readers) andQ = {q1, . . . , qm}
(locations of tags), the sensing range r, from which the RFID Graph G = (V,E) can

be constructed, where V is the set of nodes corresponding to the set of readers, and

for every pair of nodes {u, v} ∈ V there exists an edge (u, v) ∈ E if the readers

represented by the nodes (u, v) are incompatible.

QUESTION: Is it possible to assign an interval I(vi) of size |I(vi)| = wi to each node

vi in V , such that the total span of all the intervals does not exceed some predefined

value B (∪i|Ii| < B), and ∀i, jIi ∩ Ij = ∅ ? A schedule is said to be “optimal” if the

total span all the intervals is the smallest.

From our discussion, Optimal Schedule Construction Problem (OSCP) for a RFID

system is equivalent to the ICN computation problem of the corresponding RFID

graph.
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6.4 Heuristic Algorithms and Analysis

We firstly prove that the OSCP is NP-complete. We then provide a heuristic

algorithm and analyze it to establish a performance bound. Finally, we provide

a distributed implementation of our algorithm. As the solution to the OSCP is

equivalent to the computation of ICN of a RFID graph, our algorithm essentially

computes the ICN of a RFIDG. Note that UDG is a special case of RFIDG. We prove

that the result produced by this algorithm will be bounded by a factor of max(3, 2+k)

of the optimal solution for UDG, and max(3α, 2+k) of the optimal solution for RFIDG,

where k and α are parameters determined by reader and tag density respectively. For

our application we expect k ≤ 5 and α ≤ 5, and later in this section we explain why

we expect the two parameters to satisfy these two bounds.

Theorem 6. The OSCP is NP-complete.

Proof. If we consider a case of the OSCP where weight w(vi) of every node vi is 1,

and the intersection area of every pair of circles associated with the readers has a tag,

OSCP becomes equivalent to the computation of the Chromatic Number of a Unit

Disk Graph, a known NP-complete problem [46].

Notations:

N(vk) : Set of vk’s neighbors, ie nodes sharing an edge in G with vk.

N l(vk) (resp. N r(vk)) : Left (resp. right) neighbors of vk : vi ∈ N(vk) s.t. xi < xk

(resp (xi > xk)).

|I(vi)| = wi: Length of I(vi), where wi is the weight of vi

L(I(vi)): Left end point of I(vi) on the Interval Line.

R(I(vi)): Right end point of I(vi) on the Interval Line.

Definition: Lexicographic Ordering: The Lexicographic Ordering of a set of points

in a plane is the ordering induced by their (x, y) coordinates. The points are ordered
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by the increasing values of their x coordinates and in case of a tie, are ordered by the

increasing values of their y coordinates [46].

Definition: Least Indexed Coloring (LIC): LIC scheme assigns an interval I(vi) to

each node vi, such that L(I(vi)) is as small as possible, without violating any stated

constraint.

Our interval coloring uses the LIC scheme on lexicographic ordering of the nodes.

Centralized and distributed algorithms for computation of ICN are summed up in

Algo. 13 and 14 resp.

Algorithm 13 Centralized ICN Algorithm for RFIDG/UDG

1: Arrange the nodes (readers) in Lexicographic Ordering

2: Sequentially apply LIC on the nodes till each node is assigned an interval of size

equal to its weight with no overlap with intervals of adjacent nodes.

Algorithm 14 Distributed ICN Algorithm for RFIDG/UDG

(executed independently by each node vi in the graph)

1: vi broadcasts xi, yi and Ni

2: while vi is not assigned color do

3: if Every node in N l(vi) has assigned colors then

4: vi chooses I(vi) such that |I(vi)| = Ni, ∀vj ∈ N l(vi), I(vi) ∩ I(vj) = ∅ and

L(I(vi)) is the smallest.

5: vi broadcasts I(vi)

6: end if

7: end while

For the distributed version of the coloring algorithm we assume that the readers

are aware of their own position as well as the positions of its neighbors and the location
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of the tags in its sensing range. As discussed earlier, each reader vi must be assigned

a set of wi consecutive colors to ensure that every tag is read. To do so, we rely on

[46] which proposes a 3-approximated lexicographic order coloring. To illustrate it,

let us consider the conflict graph represented on Fig. 6.1b. Nodes represent readers

with the number of colors they should have. Each reader vi collects the position of its

neighbors and their colors. As readers are aware of their own position and positions of

their neighbors in the deployment area, they can determine the “lexicographic order”

(i.e. F , H, E, I, A, G, D, C and B in Fig. 6.1b). Each reader will assign a set of

colors to itself, only after all its left neighbors have assigned colors to themselves. In

Fig. 6.1b, reader G will wait till readers I and A are colored. Reader B waits for D,

G and C, but H and E chooses independently as soon as F is colored as they do not

share an edge. F has no left neighbors, thus it chooses first and takes the smallest

set of 5 colors, i.e. colors 1, 2, 3, 4, 5 (as shown on Fig.6.1c). Readers H and E

follow by respectively assigning colors 6-8 and 6-11, and so on. B cannot take colors

between 2-14, nor 21-28 as they have already been selected by readers G, C and D.

Although colors 14-21 are available in the left neighborhood of reader B, it cannot

utilize these colors as it requires 9 consecutive colors. It thus assigns colors 28-37.

Finally, G assigns itself colors 2-6 as reader I is already using colors 0-2. It may be

noted that in this example, the centralized and distributed algorithms provide the

same solution.

Analysis of Algorithm

The input of both algorithms, are the locations of the readers (nodes) and the weights

assigned to the nodes. In the following sections, we first analyze the performance of

our algorithms for a special case of RFID graphs, known as Unit Disk Graphs (UDG).

In UDGs every pair of readers has at least one tag present in the intersection area of
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(c) Interval assignment

Figure 6.1: (a) Readers (points) in the deployment area and their sensing range, (b)

UDG graph constructed from the problem instance in Fig. 6.1a, (c) Interval

assignment for the problem instance in Fig. 6.1a

the circles associated with the nodes.

Part I: Analysis of Algorithm for Unit Disk Graphs

Our interval coloring algorithm uses the LIC scheme on lexicographic ordering of

the nodes.If R(I(vi)) ≥ R(I(vj))∀1 ≤ j ≤ n then the node vi is called a critical node.

Suppose that vk is a critical node when algorithm A is applied on an instance of

the RFID scheduling problem. In this case, RA(I(vk)) is the solution to the instance

of the interval coloring problem using algorithm A. We will refer to RA(I(vk)) as

Approximate Interval Chromatic Number and denote it by AICN . As per the interval

layout shown in Fig. 6.1c, the critical node is vk = B.

Intervals I(v1), I(v2), . . . , I(vk−1) associated with nodes v1, v2, . . . , vk−1 are mapped

on the Interval Line before the interval I(vk). For this reason, LA(I(vk)) may be

greater than zero as some of the nodes in the set {v1, v2, . . . , vk−1} may be adjacent

to vk in G and the intervals associated with these sets of nodes cannot overlap with

the interval I(vk).

If vl and vr are two nodes in N(vk), such that LA(I(vl)) ≤ LA(I(vj)), and
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(b) Segment Span

Figure 6.2: (a) Left side neighbors of the critical node vk, (b) Span of the three

segments associated with the critical node vk

RA(I(vr)) ≥ RA(I(vj)), , the interval between LA(I(vl)) and RA(I(vr)) will be re-

ferred to as the span of N(vk) with algorithm A, and will be denoted by SpA(N(vk)).

The length of the span is the difference between LA(I(vl)) and RA(I(vr)) and is de-

noted by |SpA(N(vk))|. In Fig. 6.1c SpA(N(vk)) is from 2 to 28, of length of the

span |SpA(N(vk))| = 26.

It may be recalled that as our graph is a UDG, the nodes v1, . . . , vn correspond to

points pi, . . . , pn on a two dimensional plane. Suppose that we draw a semi-circle of

unit radius around the point pk corresponding to the node vk (as shown in Fig. 6.2a),

and divide the semi-circle into three 60 degree segments, S1, . . . , S3, as shown in Fig.

6.2a. We denote by N i(vk) the subset of N(vk), comprised of nodes corresponding

to points in Si, ∀1 ≤ i ≤ 3. Due to the construction rule of a UDG, the nodes

corresponding to the points that belong to segment Si, 1 ≤ i ≤ 3 form a clique with the

node vk in G = (V,E). As such, AICN ≥ |Sp(N i(vk),A)|, ∀i, 1 ≤ i ≤ 3. Although

Sp(N i(vk),A) and Sp(N j(vk),A), j �= i, need not be non-overlapping, in the worst
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case scenario |SpA(N(vk))| may be as large as
∑3

i=1 |SpA(N i(vk))|. The maximum

value of |SpA(N(vk))|, denoted by Max SpA(N(vk)), can be
∑3

i=1 |SpA(N i(vk))|. As
points (nodes) that belong to segment Si, 1 ≤ i ≤ 3 form a clique with the node vk

in G, the minimum value of |SpA(N(vk))|, denoted by Min SpA(N(vk)), has to be

at least max1≤i≤3
[∑

u∈N i(vk)
|I(u)|

]
.

It may be recalled that {v1, v2, . . . , vk−1} were assigned intervals on the Interval

Line before the critical node vk. We will denote the set {v1, v2, . . . , vk−1} by Vk−1.

Thus, the set of nodes in Vk−1 that are not adjacent to the node vk is given by

(called non-neighbors of vk, NN(vk)), NN(vk) = Vk−1 \ N(vk). In the example of

Fig. 6.1a, the set NN(vk) = {A,E, F,H, I}, where vk = B. When the nodes in the

set NN(vk) are assigned intervals on the Interval Line by the algorithm A, some of

these intervals may have overlap with the interval span of the neighbors of vk, i.e.,

Sp(N(vk),A). However, there may be some nodes in NN(vk) whose assigned inter-

vals may not have any overlap with the Sp(N(vk),A). We will refer to this subset

of NN(vk) as non-overlapping non-neighbor of vk and denote it by NO NN(vk). In

the example of Fig. 6.1a, the set NO NN(vk) = {I}. The span of non-overlapping

non-neighbors of vk, Sp(NO NN(vk),A) can be at most |I(vk)|, as otherwise I(vk)

can be assigned space in the interval line covered by the Sp(NO NN(vk),A), as

such an assignment will not violate the non-overlapping requirement for adjacent

nodes. The ICN will have three non-overlapping intervals on the Interval Line corre-

sponding to Sp(NO NN(vk),A), Sp(N(vk),A) and I(vk). As such, we can conclude

that AICN ≤ Max Sp(NO NN(vk),A) + Max Sp(N(vk),A) + |I(vk)|. As the

maximum value of Sp(N(vk),A) is
∑3

i=1 |Sp(N i(vk),A)| and the maximum value of

Sp(NO NN(vk),A) is |I(vk)|, it follows that:

AICN ≤
3∑

i=1

|SpA(N i(vk))|+ 2|I(vk)| (6.1)
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As nodes in N i(vk) form a clique with vk, any optimal solution to the Interval Chro-

matic Number of UDG (OICN) must be at least as large as:

OICN ≥ max
1≤i≤3

⎡

⎣
∑

u∈N i(vk)

|I(u)|
⎤

⎦+ |I(vk)| (6.2)

Next, we examine the relationship between
∑3

i=1 |Sp(N i(vk),A)| and
max1≤i≤3

[∑
u∈N i(vk)

|I(u)|
]
.

For any instance of the problem, the diagram of Sp(N(vk)) will have the form

shown in Fig. 6.2b. Suppose the number of nodes in the segments S1, S2, S3 are

K1, K2, K3. In that case Sp1, Sp2, Sp3 will have K1, K2, K3 intervals with possibly

gaps between them as shown in Fig. 6.2b. Suppose that the weights of nodes in

Si, 1 ≤ i ≤ 3 are wi,1, wi,2, . . . , wi,Ki
. If we draw vertical lines through the left and

right end points of every interval, the lines will intersect the Interval Line at most at

2
∑3

j=1 Kj points and divide the Interval Line into at most 2
∑3

j=1 Ki + 1 sub-intervals.

The sub-intervals are divided into three disjoint groups – w-type, g-type and (w+g)-

type, depending on whether they include only w, g, or w and g type of parts from

the spans Spi. Examples of w-type, g-type and (w+g)-type are shown in Fig. 6.2b.

The total space occupied on the Interval Line by w and (w+g) type sub-intervals is

at most:
∑3

i=1

∑Ki

j=1 wi,j =
∑3

i=1

[∑
u∈N i(vk)

|I(u)|
]
. The size of g-type sub-interval

can be at most |I(vk)| as otherwise, the critical node interval I(vk) could have been

inserted in the gap. The number of g-type sub-intervals can be at most half of the

total number of sub-intervals on the Interval Line. As noted earlier, there could be

at most 2K + 1 sub-intervals and as such, the number of g-type sub-intervals can be

at most K ′ = �(2K + 1)/2� = K + 1. Consequently:

3∑

i=1

|SpA(N i(vk))| ≤
3∑

i=1

⎡

⎣
∑

u∈N i(vk)

|I(u)|
⎤

⎦+ (K + 1)|I(vk)|
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Thus, from Equation (6.1), we have:

AICN ≤
3∑

i=1

⎡

⎣
∑

u∈N i(vk)

|I(u)|
⎤

⎦+ (K + 1)|I(vk)|+ 2|I(vk)|, or

AICN ≤
3∑

i=1

⎡

⎣
∑

u∈N i(vk)

|I(u)|
⎤

⎦+ (K + 3)|I(vk)| (6.3)

Using Equations (6.2) and (6.3), we have:

AICN

OICN
≤

∑3
i=1

[∑
u∈N i(vk)

|I(u)|
]
+ (K + 3)|I(vk)|

max1≤i≤3
[∑

u∈N i(vk)
|I(u)|

]
+ |I(vk)|

, or

AICN

OICN
≤ max(3α, (K + 3)) (6.4)

In the RFID application domain, it is unlikely that reader density will be high. If

there are no more than five readers within a semi-circle of radius equal to the sensing

range of a reader, then K ≤ 5. In this case AICN
OICN

≤ 8.

Part II: Analysis of Algorithm for RFID Graphs

In Part I, we established that AICN
OICN

≤ max(3, (K + 3)) for Unit Disk graphs. In

Part II, we extend that result to RFID graphs, a generalized version of the UDG. In

a UDG, if the circles corresponding to points pi and pj intersect, then corresponding

nodes vi and vj share an edge in G. In RFIDG, if the circles corresponding to points

pi and pj intersect, then corresponding nodes vi and vj share an edge if and only if

their sensing intersection area contains at least one tag. Unlike the UDG case, the

nodes that belong to each N i(vk), 1 ≤ i ≤ 3 may no longer form a clique and we can

no longer claim that Equation (6.2) holds true. However, if we assume that at least

a fraction of the nodes in each N i(vk), 1 ≤ i ≤ 3 form a clique and the sum of the

weights of the nodes in the clique is at least a fraction ( 1
α
, α > 1), of the sum of the

weights of all nodes in each segment, we have:

OICN ≥ max
1≤i≤3

⎡

⎣
∑

u∈N i(vk)

|I(u)|
α

⎤

⎦+ |I(vk)| (6.5)
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Thus, from Equations (6.3) and (6.5), it follows: AICN
OICN

≤ max(3α, (K + 3)).

In case of UDG we assume reader density determines that K ≤ 5. In case of

RFIDG, if we assume that the tag density is such that the sum of the weights of the

nodes in segments S1, S2 and S3 is at least 20% of the sum of the weights of all nodes

in segments S1, S2 and S3 respectively, (i.e. α ≤ 5), we have AICN
OICN

≤ 15.

6.5 Approximation Algorithms and Analysis

In this chapter, we propose an approximation algorithm with constant approxi-

mation ratio. In order to achieve it, we need to firstly divide the network into small

grids.

Let G be the layout of one instance of RFIDG. W.l.o.g, we assume there m readers

and n tags. For every reader ri, denote its coordinate as (rix, r
i
y). Similarly, for every

tag ti ∈ G, denote its coordinate as (tix, t
i
y). Let xl = min∀xi

xi, i.e., the leftmost

x−coordinate. Similarly, let yb = min∀yi yi, i.e., the undermost y − coordinate. We

then divide the whole layout into 1× 1 grids according to the following algorithm:

Let w(gridi,j) =
∑

vk∈gridi,j w(vk), we have the following lemma.

Lemma 6.

OICN ≥ w(gridi,j)

for all grids obtained from 15

Proof. By the rule we divide G, each grid is a square of unit side length. Hence if vi

and vj are within the same grid, their distance is at most
√
2. Reader-reader collision

will occur if I(vi) and I(vj) intersect. All nodes Since each grid is a square of unit

side length, nodes in the same grid are within each other’s sensing range and thus

forming a clique.

Next, we define a cell as a collection of nearby grids. More specifically, gridi,j
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Algorithm 15 Grids Dividing Algorithm for RFIDG/UDG

1: compute xl, yb

2: GRIDS = ∅
3: for all vi ∈ G do

4: i = �xi − xl

5: j = �yi − yb

6: if gridi,j /∈ GRIDS then

7: gridi,j = ∅
8: GRIDS = GRIDS ∪ gridi,j

9: end if

10: gridi,j = gridi,j ∪ vi

11: end for

and gridi′,j′ belong to the same cell if and only if �i/3
 = �i′/3
 and �j/3
 = �j′/3
.
For instance, grid5,7 and grid3,6 belong to the same cell while grid5,7 and grid6,7 are

not. Easy to see,

6.6 Experimental Results

As primarily experiments, we implemented the distributed and centralized col-

oring algorithms and compared them to the optimal solution using WSNet [21], an

event-driven simulator for large scale Wireless Sensor Networks. As to fairly evalu-

ate the performance under various network scenarios, we considered a dense RFID

system where 10 readers were randomly deployed with uniform distribution on a

square network of dimension 100m × 100m. We set the reader-to-tag communica-

tion and sensing range to 10m, and set the reader-to-reader communication range

to 20m. For each of the 100 simulations per scenario, we computed the optimal so-

lution and recorded the difference between the optimal and our algorithm’s result.
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Figure 6.3: Avg. % deviation of approx. schedule from the optimal.

Fig. 6.3 presents the average percentage deviation from the optimal solution for each

scenario in terms of efficiency. As we can observe, the centralized protocol achieves

performances close to the optimal and the more readers, the closer to the centralized

approach our distributed solution is. These first results let us expect interesting be-

havior in terms of throughput and fairness (evaluation left for future work), especially

in presence of high tag mobility.
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Chapter 7

ON UPPER AND LOWER BOUNDS OF IDENTIFYING CODE SET FOR

SOCCER BALL GRAPH WITH APPLICATION TO SATELLITE

DEPLOYMENT

7.1 Introduction

In this chapter, we study an event monitoring problem with satellites as sensors.

The events that we focus on may be environmental (drought/famine), social/political

(social unrest/war) or extreme events (earthquakes/tsunamis). Such events take place

in regions on the surface of the earth, where a region may be a continent, a country,

or a set of neighboring countries. The sensors that we envisage for monitoring such

events are satellites placed in orbits surrounding the earth. A satellite constellation

that can be deployed for such monitoring purposes is shown in Fig. 7.1a. Examples of

such constellations include the Global Positioning System (GPS) for navigation, the

Iridium and Globalstar satellite telephony, and the Disaster Monitoring Constellation

(DMC) for remote sensing. In particular, DMC is designed to provide earth imaging

for disaster relief and was used extensively to monitor the impact of the Indian Ocean

Tsunami in December 2004, Hurricane Katrina in August 2005, and several other

floods, fires and disasters. The problem that we address in this chapter is directly

relevant to the services being provided by organizations such as the DMC.
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(a) Satellite Constellation Covering Earth

(b) A Truncated Icosahedron

(c) Graph with Identifying Code Set {v1, v2, v3, v4}

Figure 7.1: Satellites as sensors and soccer ball as a model of planet earth

For Earth’s spherical structure, we use a soccer ball as a model of the planet

Earth. In technical terms, a standard soccer ball is a truncated icosahedron with 12

pentagonal and 20 hexagonal patches [31] (shown in Fig. 7.1b as black and white

patches). We associate a patch on the surface of the ball with a region on the surface

of the Earth. Accordingly, in our model, the surface of the Earth is partitioned

112



into 32 regions. We assume that the coverage area of a satellite corresponds to a

patch (region) and events are confined to a region. With such a framework, it is

clear that with 32 satellites (one per region), all the 32 regions can be effectively

monitored. However, if we assume that the impact of an event in one region will spill

into its neighboring regions, and as such there will be indicators of such events in

neighboring regions, then a significantly lower number of satellites may be sufficient

for effective monitoring of all the regions. As an example of impact of an event spilling

over to neighboring regions, one can think of a situation where war breaking out in

one region can trigger an exodus of refugees to the neighboring regions. As these

sensors are expensive, one would like to deploy as few sensors as possible, subject

to the constraint that all the regions can be effectively monitored. In the following,

we discuss Identifying Codes [29] that can be utilized for this purpose. In particular,

we will show that ten satellites are sufficient to effectively monitor 32 regions in the

sense that, if an event breaks out in a region, that region can be uniquely identified.

In fact there exists 26 different ways of deploying ten satellites that will achieve the

effective monitoring task. Moreover, we will establish that the effective monitoring

task cannot be accomplished by deployment of fewer than nine satellites.

In this chapter we have assumed that the regions have only two different regular

shapes - hexagons and pentagons. This assumption may appear to be too restrictive,

in the sense that in reality, regions on the surface of the earth may have irregu-

lar shapes. As our analysis is based on the structure of the graph (the SBG graph

construction rule from the regions is described in section 7.2), as long as the graph

structure arising out of irregular shaped regions remains the same as the structure

of the SBG, the shape of the regions (whether regular or irregular, only hexago-

nal/pentagonal or some other contours) are irrelevant.

The notion of Identifying Codes [29] has been established as a useful concept for
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optimizing sensor deployment in multiple domains. In this chapter, we use Identifying

Code of the simplest form and define it as follows. A vertex set V ′ of a graph G =

(V,E) is defined as the Identifying Code Set (ICS) for the vertex set V , if for all

v ∈ V , N+[v] ∩ V ′ is unique where, N+[v] = v ∪ N(v) and N(v) represents the set

of nodes adjacent to v in G = (V,E). The Minimum Identifying Code Set (MICS)

problem is to find the Identifying Code Set of smallest cardinality. The vertices of

the set V ′ may be viewed as alphabets of the code, and the string made up with the

alphabets of N+[v] may be viewed as the unique “code” for the node v. For instance,

Consider the graph G = (V,E) shown in Fig. 7.1c. In this graph V ′ = {v1, v2, v3, v4}
is an ICS as it can be seen from Table 7.1 that N+[v] ∩ V ′ is unique for all vi ∈ V .

N+[v1] ∩ V ′ = {v1} N+[v2] ∩ V ′ = {v2}
N+[v3] ∩ V ′ = {v3} N+[v4] ∩ V ′ = {v4}

N+[v5] ∩ V ′ = {v1, v2} N+[v6] ∩ V ′ = {v1, v3}
N+[v7] ∩ V ′ = {v1, v4} N+[v8] ∩ V ′ = {v2, v3}
N+[v9] ∩ V ′ = {v2, v4} N+[v10] ∩ V ′ = {v3, v4}

Table 7.1: N+[v] ∩ V ′ results for all v ∈ V for the graph in Fig. 7.1c

From the soccer ball, we construct a graph (referred to as a Soccer Ball Graph,

SBG) where each of the 32 regions is represented as a node and two nodes have an

edge between them if the corresponding regions share a boundary. The construction

rules for the SBG are given in section 7.2 and a two dimension layout of the SBG

is shown in Fig. 7.2. We establish that the upper and lower bounds of the MICS

problem for the SBG are ten and nine respectively. Furthermore, we also establish

that there exist at least 26 different Identifying Code Sets of size ten in the SBG.

In the last few years a number of researchers have studied Identifying Codes and

its applications in sensor network domains. Karpovsky et. al. [29] introduced the

114



concept of Identifying Codes in [29] and provided results for Identifying Codes for

graphs with specific topologies, such as binary cubes and trees. Using Identifying

Codes, Laifenfeld et. al. studied covering problems in [33] and joint monitoring and

routing in wireless sensor networks in [34]. Ray et. al. in [48] generalized the concept

of Identifying Codes, to incorporate robustness properties to deal with faults in sensor

networks. Charon et. al. in [8, 9], studied complexity issues related to computation of

minimum Identifying Codes for graph and showed that in several types of graph, the

problem is NP-hard. Approximation algorithms for computation of Identifying Codes

for some special types of graphs are presented in [61, 53]. Auger in [2] show that the

problem can be solved in linear time if the graph happend to be a tree, but even

for a planar graph the problem remains NP-complete. Topological and combinatorial

properties of soccer balls have been studied extensively in [31].

7.2 Problem Formulation

A Soccer Ball Graph (SBG) G = (V,E) is defined in the following way. The

graph comprises of 32 nodes and 90 edges. The 32 nodes correspond to 32 patches

(20 hexagonal and 12 pentagonal) of the soccer ball and two nodes in the graph

have an edge between them if the corresponding patches share a boundary. A graph

can have different layouts on a two dimensional plane. We show one layout of the

SBG in Fig. 7.2 where the nodes are labeled using a set of rules. The soccer ball,

placed on a two dimensional plane (as shown in Fig. 7.2 (a)), has a pentagonal patch

on top. There are five hexagonal patches adjacent to this pentagonal patch. We

consider a layering scheme, where the node corresponding to pentagonal patch on

top is in Layer 1 (L1), the six nodes corresponding to six hexagonal patches adjacent

to the pentagonal patch on top are in Layer 2 (L2) and so on. Following this layering

scheme, all 32 nodes can be assigned to six layers, L1 through L6, as shown in Fig.
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(a) Nodes corresponding to the patches on the soccer

(b) Soccer Ball Graph

Figure 7.2: Soccer Ball and the corresponding graph

7.2 (b). In this scheme, one node is assigned to L1, five nodes to L2, ten nodes

to L3, ten nodes to L4, five nodes to L5, and one node to L6. There is only one

pentagonal node in layers L1 and L6 and we refer to these two nodes as P1,1 and

P6,1 respectively. There are five hexagonal nodes in layers L2 and L5 and we refer

to these nodes as H2,i, 1 ≤ i ≤ 5 and H5,i, 1 ≤ i ≤ 6 respectively. There are five

hexagonal and five pentagonal nodes in layers L3 and L4 and we refer to these nodes
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as Hi,j, i = 4, 5, 1 ≤ j ≤ 5 and Pi,j, i = 4, 5, 1 ≤ j ≤ 5 respectively. The vertex set V

of the SBG, is divided into two subsets, P (for Pentagon) and H (for Hexagon), with

12 and 20 members respectively.

It may be noted from Fig. 7.2, that P -type nodes appear only on layers 1, 3, 4

and 6 and H-type nodes appear only on layers 2, 3, 4 and 5. The SBG G = (V,E) =

((P ∪H), E) is formally defined as follows:

P = {P1,1} ∪ {Pi,j, 3 ≤ i ≤ 4, 1 ≤ j ≤ 5} ∪ {P6,1} and

H = {Hi,j, 2 ≤ i ≤ 5, 1 ≤ j ≤ 5}
The edge set E is divided into 17 subsets, i.e., E = ∪17

i=1Ei. Each subset is defined

in Table 7.2.

With the formal definition of the SBG complete, it may be observed that the

problem of determining the fewest number of satellites necessary to uniquely identify

the region (among 32 regions) where a significant event has taken place is equivalent

to computation of the Minimum Identifying Code Set problem for the SBG.

Graph Coloring with Seepage (GCS) Problem: The MICS computation problem

can be viewed as a novel variation of the classical Graph Coloring problem. We will

refer to this version as the Graph Coloring with Seepage (GCS) problem. In the

classical graph coloring problem, when a color is assigned (or injected) to a node,

only that node is colored. The goal of the classical graph coloring problem to use as

few distinct colors as possible such that (i) every node receives a color, and (ii) no

two adjacent nodes of the graph have the same color. In the GCS problem, when a

color is assigned (or injected) to a node, not only that node receives the color, but

also the color seeps into all the adjoining nodes. As a node vi may be adjacent to two

other nodes vj and vk in the graph, if the color red is injected to vj, not only vj will

become red, but also vi will become red as it is adjacent to vj. Now if the color blue
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SBG Edge Construction

E1 = {(P1,1, H2,j), 1 ≤ j ≤ 5}
E2 = {(P6,1, H5,j), 1 ≤ j ≤ 5}

E3 = {(Hi,j, Hi,(j+1)mod 5), i = 2, i = 5, 1 ≤ j ≤ 5}
E4 = {(Hi,j, Pi,j), i = 3, 1 ≤ j ≤ 5}

E5 = {(Pi,j, Hi,(j+1)mod 5), i = 3, 1 ≤ j ≤ 5}
E6 = {(Hi,j, Pi,(j+1)mod 5), i = 4, 1 ≤ j ≤ 5}

E7 = {(Pi,j, Hi,j), i = 4, 1 ≤ j ≤ 5}
E8 = {(H2,j, H3,j), 1 ≤ j ≤ 5}

E9 = {(H2,j, P3,(j−1)mod 5), 1 ≤ j ≤ 5}
E10 = {(H2,j, P3,j), 1 ≤ j ≤ 5}
E11 = {(H3,j, P4,j), 1 ≤ j ≤ 5}

E12 = {(H3,j, H4,(j−1)mod 5), 1 ≤ j ≤ 5}
E13 = {(H3,j, H4,j), 1 ≤ j ≤ 5}
E14 = {(P3,j, H4,j), 1 ≤ j ≤ 5}
E15 = {(H4,j, H5,j), 1 ≤ j ≤ 5}
E16 = {(P4,j, H5,j), 1 ≤ j ≤ 5}

E17 = {(P4,j, H5,(j−1)mod 5), 1 ≤ j ≤ 5}

Table 7.2: 17 subsets of the edge set E of the SBG graph G = (V,E) = ((P ∪H), E)
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is injected to vk, not only vk will become blue, but also the color blue will seep in to

vi as it is adjacent to vk. Since vi was already colored red (due to seepage from vj),

after color seepage from vk, it’s color will be a combination of red and blue. At this

point all three nodes vi, vj and vk have a color and all of them have distinct colors

(red, blue and the combination of the two). The color assigned to a node may be due

to, (i) only injection to that node, (ii) only seepage from other adjoining nodes and

(iii) a combination of injection and seepage. The colors injected at the nodes will be

referred to as atomic colors. The colors formed by the combination of two or more

atomic colors are referred to as composite colors. The colors injected at the nodes

(atomic colors) are all unique. The goal of the GCS problem is to inject colors to as

few nodes as possible, such that (i) every node receives a color, and (ii) no two nodes

of the graph have the same color.

Suppose that the node set V ′ is an ICS of a graph G = (V,E) and |V ′| = p. In

this case if p distinct colors are injected to V ′ (one distinct atomic color to one node

of V ′ ), then as by the definition of ICS for all v ∈ V , if N+(v) ∩ V ′ is unique, all

nodes of G = (V,E) will have a unique color (either atomic or composite). Thus

computation of MICS is equivalent to solving the GCS problem.

7.3 Upper Bound of MICS of SBG

In this section, we first show that MICS of the SBG is at most 10 and there exists

at least 26 ICS of size ten.

Theorem 7. The MICS of SBG is at most ten.

Proof. Inject colorsA,B,C,D,E to the nodesH2,j, 1 ≤ j ≤ 5 and colorsE,F,G,H, I, J

to the nodes H5,j, 1 ≤ j ≤ 5. Injection of 10 different colors at these 10 nodes, will

cause color seepage to all other nodes of SBG. The color seepage will be constrained
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Node: Color Node: Color Node: Color Node: Color

P1,1: ABCDE H2,1: A
∗BE H2,2: AB

∗C H2,3: BC∗D

H2,4: CD∗E H2,5: DE∗A H3,1: A P3,1: AB

H3,2: B P3,2: BC H3,3 : C P3,3: CD

H3,4: D P3,4: DE H3,5 : E P3,5: AE

P4,1: JF H4,1: F P4,2 : FG H4,2: G

P4,3: GH H4,3: H P4,4 : HI H4,4: I

P4,5: IJ H4,5: J H5,1: JF
∗G H5,2: FG∗H

H5,3: GH∗I H5,4: HI∗J H5,5: IJ
∗F P6,1: FGHIJ

Table 7.3: Color assignment at nodes after seepage in the SBG

by the topological structure of the SBG. It may be verified that because of the con-

straint imposed by the SBG structure, and the fact that seepage takes place only to

the neighbors of the node where a color is injected, the 32 nodes of the SBG will have

the color assignment shown in Table 7.3. In the entries of Table 7.3, H2,1 : A∗BE

implies that the color A was injected at the node H2,1 and the colors B and E seeped

into the node H2,1, from the adjacent nodes H2,2 and H2,5 respectively, where the

colors B and E were injected. In general, if an alphabet A through E (representing

distinct colors), appears with a * as a part of a string attached to a node (such as

H2,1), it implies that the color was injected at that node. On the other hand, if an

alphabet appears without a * as a part of a string attached to a node, it implies that

the color seeped into that node from one of the neighboring nodes. It may be verified

that the color assignment to the nodes, as shown in Table 7.3 is unique (i.e, no two

nodes have the same color or strings assigned to them).

Theorem 8. At least 26 distinct ICSs of size ten exist for SBG.
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Proof. The 26 different ways in which ten colors can be injected into ten nodes of

the SBG such that every node of the SBG receives a unique color can be divided into

four classes.

• Class I: Inject colors A,B,C,D,E to the nodes H2,j, 1 ≤ j ≤ 5 and colors

E,F,G,H, I, J to the nodes H5,j, 1 ≤ j ≤ 5. As shown in Table 7.3, such an in-

jection ensures that each of the 32 nodes of the SBG receives a unique color. It may

be observed that the node set where the colors are injected in this Class all have de-

gree six, corresponding to hexagonal patches on the surface of the soccer ball. Only

one ICS of the 26, belongs to Class I. It may be noted that as the nodes where colors

are being injected correspond to the regions where satellites are being deployed, a

permutation of the color set A,B,C,D,E is not important here because if either col-

or A or B is injected at node H2,1, it implies that one satellite is deployed to monitor

the region represented by node H2,1.

• Class II: The node set where the colors injected are in this Class is made up of six

nodes of degree five (corresponding to the pentagonal patches of the soccer ball) and

four nodes of degree six (corresponding to the hexagonal patches of the soccer ball).

This Class can be subdivided into two sub-classes and we will refer to them as Class

II-A and Class II-B respectively. As seen in Fig. 7.2, the SBG graph is somewhat

symmetric in the sense that the layers 4, 5 and 6 are close to being mirror images

of layers 1, 2 and 3. Because of this symmetry, the Class II-A color injections are

mirror images of the Class II-B color injection. Accordingly, in this section we will

focus our discussion primarily on Class II-A, as color injection for class II-B be can be

obtained easily from color injection in Class IIA. We introduce the notion of a motif,

and by motif we imply a set of either P-type (degree five) or H-type (degree six)
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nodes. It will be clear from further discussion that the Class II-A solutions comprise

of one P-type motif and one H-type motif. These two motifs complement each other

to produce a solution together. The motif-pairs can be slid along the structure of the

SBG to produce a set of five solutions that make up the Class II-A. The five solutions

that make up the Class II-B can be constructed in a similar fashion.

Node Color

P1,1 P c
1,1

H2,j P c
1,1P

c
3,j

H2,(j+1)mod 5 P c
1,1P

c
3,jP

c
3,(j+1)mod 5

H2,(j+2)mod 5 P c
1,1P

c
3,(j+1)mod 5

H2,(j+3)mod 5 P c
1,1H

c
3,(j+3)mod 5

H2,(j+4)mod 5 P c
1,1H

c
3,(j+4)mod 5

H3,j P c
3,jP

c
4,j

P3,j P c
3,j

H3,(j+1)mod 5 P c
3,jP

c
3,(j+1)mod 5P

c
4,(j+1)mod 5

P3,(j+1)mod 5 P c
3,(j+1)mod 5

H3,(j+2)mod 5 P c
3,(j+1)mod 5P

c
4,(j+2)mod 5

P3,(j+2)mod 5 Hc
3,(j+3)mod 5

H3,(j+3)mod 5 Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5

P3,(j+3)mod 5 Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5H

c
3,(j+4)mod 5H5,(j+3)mod 5

H3,(j+4)mod 5 Hc
3,(j+4)mod 5H

c
4,(j+3)mod 5

P3,(j+4)mod 5 Hc
4,(j+4)mod 5

P4,j P c
4,j

H4,j P c
3,jP

c
4,jP

c
4,(j+1)mod 5

P4,(j+1)mod 5 P c
4,(j+1)mod 5

H4,(j+1)mod 5 P c
3,(j+1)mod 5P

c
4,(j+1)mod 5P

c
4,(j+2)mod 5
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P4,(j+2)mod 5 P c
4,(j+2)mod 5

H4,(j+2)mod 5 P c
4,(j+2)mod 5H

c
3,(j+3)mod 5

P4,(j+3)mod 5 Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5H

c
5,(j+3)mod 5

H4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
3,(j+3)mod 5H

c
3,(j+4)mod 5H

c
5,(j+3)mod 5

P4,(j+4)mod 5 Hc
4,(j+4)mod 5H

c
3,(j+3)mod 5H

c
5,(j+3)mod 5

H4,(j+4)mod 5 P c
4,jH

c
4,(j+4)mod 5

H5,j P c
4,jP

c
4,(j+1)mod 5

H5,(j+1)mod 5 P c
4,(j+1)mod 5P

c
4,(j+2)mod 5

H5,(j+2)mod 5 P c
4,(j+2)mod 5H

c
5,(j+3)mod 5

Hc
5,(j+3)mod 5 Hc

4,(j+3)mod 5

H5,(j+4)mod 5 P c
4,jH

c
5,(j+3)mod 5

P6,1 Hc
5,(j+3)mod 5

Table 7.4: Node versus Color assignment for Class II-A ICS

Color Node

Hc
3,(j+3)mod 5 P3,(j+2)mod 5

Hc
4,(j+4)mod 5 P3,(j+4)mod 5

Hc
5,(j+3)mod 5 P6,1

Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5 H3,(j+3)mod 5

Hc
3,(j+4)mod 5H

c
4,(j+3)mod 5 H3,(j+4)mod 5

Hc
5,(j+3)mod 5H

c
4,(j+3)mod 5 H5,(j+3)mod 5

Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5H

c
3,(j+4)mod 5 P3,(j+3)mod 5

Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5H

c
5,(j+3)mod 5 P4,(j+3)mod 5

Hc
4,(j+4)mod 5H

c
3,(j+3)mod 5H

c
5,(j+3)mod 5 P4,(j+4)mod 5

Hc
4,(j+3)mod 5H

c
3,(j+3)mod 5H

c
3,(j+4)mod 5H

c
5,(j+3)mod 5 H4,(j+3)mod 5

Hc
3,(j+3)mod 5P

c
1,1 H2,(j+3)mod 5
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Hc
3,(j+4)mod 5P

c
1,1 H2,(j+4)mod 5

Hc
3,(j+3)mod 5P

c
4,(j+2)mod 5 H4,(j+2)mod 5

Hc
4,(j+4)mod 5P

c
4,j H4,(j+4)mod 5

Hc
5,(j+3)mod 5P

c
4,(j+2)mod 5 H5,(j+2)mod 5

Hc
5,(j+3)mod 5P

c
4,j H5,(j+4)mod 5

P c
1,1 P1,1

P c
3,j P3,j

P c
3,(j+1)mod 5 P3,(j+1)mod 5

P c
4,(j+1)mod 5 P4,(j+1)mod 5

P c
4,(j+2)mod 5 P4,(j+2)mod 5

P c
1,1P

c
3,j H2,j

P c
1,1P

c
3,(j+1)mod 5 H2,(j+2)mod 5

P c
3,jP

c
4,j H3,j

P c
3,(j+1)mod 5P

c
4,(j+2)mod 5 H3,(j+2)mod 5

P c
4,jP

c
4,(j+1)mod 5 H5,j

P c
4,(j+1)mod 5P

c
4,(j+2)mod 5 H5,(j+1)mod 5

P c
1,1P

c
3,jP

c
3,(j+1)mod 5 H2,(j+1)mod 5

P c
3,jP

c
3,(j+1)mod 5P

c
4,(j+1)mod 5 H3,(j+1)mod 5

P c
3,jP

c
4,jP

c
4,(j+1)mod 5 H4,j

P c
3,(j+1)mod 5P

c
4,(j+1)mod 5P

c
4,(j+2)mod 5 H4,(j+1)mod 5

Table 7.5: Color versus Node assignment for Class II-A ICS

For the ICS that belong to Class II, the P-type motif is made up of the set of six

nodes {P1,1, P3,j, P3,(j+1)mod 5, P4,j, P4,(j+1)mod 5, P4,(j+2)mod 5}. The H-type motif that

complements the P-type motif is made up of the set of four nodes {H3,(j+3)mod 5,

H3,(j+4)mod 5, H4,(j+3)mod 5, H5,(j+3)mod 5}. One complete solution (i.e., ICS) is ob-
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tained by choosing a value of j, 1 ≤ j ≤ 5. The Fig. 7.3 (a) and (b) shows the

solutions with j = 1 and j = 2 respectively. As shown in Fig. 7.3, changing the index

j from 1 to 2, has the effect of sliding the motif along the structure of the SBG. By

changing j from 1 through 5 (i.e., sliding the motif 5 times), 5 different ICS can be

computed. The colors that will be associated with the nodes of the SBG, if they are

injected at the motif nodes, are shown in Table 7.3. The first column of the table

indicates the node and the second column provides the color assigned to that node.

For example, in row 3 of Table 7.3, the node H2,(j+1)mod 5 receives the colors injected

at motif nodes P1,1, P3,j, P3,(j+1)mod 5 and is denoted by P c
1,1P

c
3,jP

c
3,(j+1)mod 5. It may

be verified that every node of the SBG has a color associated with it and no two nodes

have the same color assignment. For ease of verification, we have presented another

Table 7.3 which may be viewed as an “inverse” of Table 7.3, in the sense that, the

first column provides the color assigned to a node and the second column represents

the corresponding node. As the color associated with a node may be viewed as a

string P c
1,1P

c
3,jP

c
3,(j+1)mod 5, we have presented them in the lexicographic order. The

verification of the fact that every node of SBG receives a unique color is much simpler

now, as one has to verify only among similar strings (made up of H only, P only or

combination of H and P) of same length.

• Class III: As in Class II, the Class III ICS is made up of six nodes of degree five

and four nodes of degree six. Moreover, this Class also can be subdivided into two

sub-classes and we will refer to them as Class III-A and Class III-B respectively. In

this section we will restrict our discussion on Class III-A, as color injection for Class

III-B can be obtained as a mirror image of Class III-A. It will be clear from further

discussion that, as in Class II, the Class III solutions also comprise of one P-type

motif and one H-type motif and they complement each other to produce a solution

together. As in Class II, the motif-pairs can be slid along the structure of the SBG to

125



produce a set of five solutions that make up the Class III-A. The five solutions that

make up the Class III-B can be constructed in a similar fashion.

Color Node

P1,1 P c
1,1

H2,j P c
1,1P

c
3,jP

c
3,(j+4)mod 5

H2,(j+1)mod 5 P c
1,1P

c
3,jP

c
3,(j+1)mod 5

H2,(j+2)mod 5 P c
1,1P

c
3,(j+1)mod 5P

c
3,(j+2)mod 5

H2,(j+3)mod 5 P c
1,1P

c
3,(j+2)mod 5

H2,(j+4)mod 5 P c
1,1P

c
3,(j+4)mod 5

H3,j P c
3,jP

c
3,(j+4)mod 5

P3,j P c
3,j

H3,(j+1)mod 5 P c
3,jP

c
3,(j+1)mod 5P

c
4,(j+1)mod 5

P3,(j+1)mod 5 P c
3,(j+1)mod 5

H3,(j+2)mod 5 P c
3,(j+1)mod 5P

c
3,(j+2)mod 5

P3,(j+2)mod 5 P c
3,(j+2)mod 5

H3,(j+3)mod 5 P c
3,(j+2)mod 5H

c
4,(j+3)mod 5

P3,(j+3)mod 5 Hc
4,(j+3)mod 5

H3,(j+4)mod 5 Hc
4,(j+3)mod 5P

c
3,(j+4)mod 5

P3,(j+4)mod 5 P c
3,(j+4)mod 5

P4,j Hc
5,(j+4)mod 5

H4,j P c
4,(j+1)mod 5P

c
3,j

H4,(j+1)mod 5 P c
4,(j+1)mod 5P

c
3,(j+1)mod 5

P4,(j+1)mod 5 P c
4,(j+1)mod 5

P4,(j+2)mod 5 Hc
5,(j+2)mod 5

H4,(j+2)mod 5 P c
3,(j+2)mod 5H

c
5,(j+2)mod 5

P4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+2)mod 5H

c
5,(j+3)mod 5
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H4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+3)mod 5

P4,(j+4)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+3)mod 5H

c
5,(j+4)mod 5

H4,(j+4)mod 5 P c
3,(j+4)mod 5H

c
5,(j+4)mod 5

H5,j Hc
5,(j+4)mod 5P

c
4,(j+1)mod 5

H5,(j+1)mod 5 Hc
5,(j+2)mod 5P

c
4,(j+1)mod 5

H5,(j+2)mod 5 Hc
5,(j+2)mod 5H

c
5,(j+3)mod 5

H5,(j+3)mod 5 Hc
5,(j+3)mod 5H

c
5,(j+4)mod 5H

c
5,(j+2)mod 5H

c
4,(j+3)mod 5

H5,(j+4)mod 5 Hc
5,(j+4)mod 5H

c
5,(j+3)mod 5

P6,1 Hc
5,(j+2)mod 5H

c
5,(j+3)mod 5H

c
5,(j+4)mod 5

Table 7.6: Node versus Color assignment for Class III-A ICS

Hehe, The P-type motif is made up of the set of six nodes {P1,1, P3,j, P3,(j+1)mod 5,

P3,(j+2)mod 5, P3,(j+4)mod 5, P4,(j+1)mod 5}. As shown in Fig. 7.4a, changing the index j

from 1 to 5, has the effect of sliding the motif along the structure of the SBG. The

H-type motif that complements the P-type motif is made up of the set of four nodes

{H4,(j+3)mod 5, H5,(j+2)mod 5, H5,(j+3)mod 5, H5,(j+4)mod 5}.
One complete solution is obtained by choosing a value of j, 1 ≤ j ≤ 5. By moving

the P-type and H-type motifs in tandem by changing the value of the index from 1

to 5, five different solutions can be obtained. The colors that will be associated with

the nodes of the SBG, if the they are injected at the motif nodes, are shown in Table

7.6. As in the case of Class II, we present an “inverse” of Table 7.6 (Table 7.7), for

the purpose of verification that every node of the SBG has a unique color.

Color Node

P1,1 P c
1,1

H2,j P c
1,1P

c
3,jP

c
3,(j+4)mod 5
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H2,(j+1)mod 5 P c
1,1P

c
3,jP

c
3,(j+1)mod 5

H2,(j+2)mod 5 P c
1,1P

c
3,(j+1)mod 5P

c
3,(j+2)mod 5

H2,(j+3)mod 5 P c
1,1P

c
3,(j+2)mod 5

H2,(j+4)mod 5 P c
1,1P

c
3,(j+4)mod 5

H3,j P c
3,jP

c
3,(j+4)mod 5

P3,j P c
3,j

H3,(j+1)mod 5 P c
3,jP

c
3,(j+1)mod 5P

c
4,(j+1)mod 5

P3,(j+1)mod 5 P c
3,(j+1)mod 5

H3,(j+2)mod 5 P c
3,(j+1)mod 5P

c
3,(j+2)mod 5

P3,(j+2)mod 5 P c
3,(j+2)mod 5

H3,(j+3)mod 5 P c
3,(j+2)mod 5H

c
4,(j+3)mod 5

P3,(j+3)mod 5 Hc
4,(j+3)mod 5

H3,(j+4)mod 5 Hc
4,(j+3)mod 5P

c
3,(j+4)mod 5

P3,(j+4)mod 5 P c
3,(j+4)mod 5

P4,j Hc
5,(j+4)mod 5

H4,j P c
4,(j+1)mod 5P

c
3,j

P4,(j+1)mod 5 P c
4,(j+1)mod 5

H4,(j+1)mod 5 P c
4,(j+1)mod 5P

c
3,(j+1)mod 5

P4,(j+2)mod 5 Hc
5,(j+2)mod 5

H4,(j+2)mod 5 P c
3,(j+2)mod 5H

c
5,(j+2)mod 5

P4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+2)mod 5H

c
5,(j+3)mod 5

H4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+3)mod 5

P4,(j+4)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+3)mod 5H

c
5,(j+4)mod 5

H4,(j+4)mod 5 P c
3,(j+4)mod 5H

c
5,(j+4)mod 5

H5,j Hc
5,(j+4)mod 5P

c
4,(j+1)mod 5

H5,(j+1)mod 5 Hc
5,(j+2)mod 5P

c
4,(j+1)mod 5
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H5,(j+2)mod 5 Hc
5,(j+2)mod 5H

c
5,(j+3)mod 5

H5,(j+3)mod 5 Hc
5,(j+3)mod 5H

c
5,(j+4)mod 5H

c
5,(j+2)mod 5H

c
4,(j+3)mod 5

H5,(j+4)mod 5 Hc
5,(j+4)mod 5H

c
5,(j+3)mod 5

P6,1 Hc
5,(j+2)mod 5H

c
5,(j+3)mod 5H

c
5,(j+4)mod 5

Table 7.7: Color versus Node assignment for Class III-A ICS

• Class IV: As in Class I, the Class IV ICS are made up of 10 nodes of degree six

(i.e., the nodes corresponding to hexagonal patches). This Class comprises of five ICS

and cannot be subdivided like in Classes II and III.

This class comprises of two H-type motifs made up of five hexagonal nodes each.

The first motif comprises of {H2,(j+1)mod 5, H2,(j+2)mod 5, H3,(j+1)mod 5, H3,(j+2)mod 5,

H4,(j+1)mod 5}. The other motif comprises of {H3,(j+4)mod 5, H4,(j+3)mod 5, H4,(j+4)mod 5,

H5,(j+3)mod 5, H5,(j+4)mod 5}. As shown in Fig. 7.4b, changing the index j from 1 to

5, has the effect of sliding the motif along the structure of the SBG. One complete

solution is obtained by choosing a value of j, 1 ≤ j ≤ 5. By moving two H-type

motifs in tandem, changing the value of the index from 1 to 5, five different solutions

can be obtained. The colors that will be associated with the nodes of the SBG, if

the they are injected at the motif nodes, are shown in Table 7.8. As in the case of

Classes II and III, we present an “inverse” of Table 7.8 (Table 7.9) for the purpose of

verification that every node of the SBG has a unique color.

Color Node

P1,1 Hc
2,(j+1)mod 5H

c
2,(j+2)mod 5

H2,j Hc
2,(j+1)mod 5

H2,(j+1)mod 5 Hc
2,(j+1)mod 5H

c
3,(j+1)mod 5H

c
2,(j+2)mod 5

H2,(j+2)mod 5 Hc
2,(j+1)mod 5H

c
2,(j+2)mod 5H

c
3,(j+2)mod 5

129



H2,(j+3)mod 5 Hc
2,(j+2)mod 5

H2,(j+4)mod 5 Hc
3,(j+4)mod 5

H3,j Hc
4,(j+4)mod 5

P3,j Hc
2,(j+1)mod 5H

c
3,(j+1)mod 5

H3,(j+1)mod 5 Hc
3,(j+1)mod 5H

c
2,(j+1)mod 5H

c
4,(j+1)mod 5

P3,(j+1)mod 5 Hc
2,(j+1)mod 5H

c
2,(j+2)mod 5H

c
3,(j+1)mod 5

H3,(j+2)mod 5 Hc
2,(j+2)mod 5H

c
3,(j+2)mod 5H

c
4,(j+1)mod 5

P3,(j+2)mod 5 Hc
2,(j+2)mod 5H

c
3,(j+2)mod 5

H3,(j+3)mod 5 Hc
4,(j+3)mod 5

P3,(j+3)mod 5 Hc
3,(j+4)mod 5H

c
4,(j+3)mod 5

H3,(j+4)mod 5 Hc
4,(j+3)mod 5H

c
3,(j+4)mod 5P

c
4,(j+4)mod 5

P3,(j+4)mod 5 P c
3,(j+4)mod 5

P4,j P c
4,j

H4,j Hc
3,(j+1)mod 5P

c
4,j

P4,(j+1)mod 5 Hc
3,(j+1)mod 5H

c
4,(j+1)mod 5H

c
5,(j+1)mod 5

H4,(j+1)mod 5 Hc
3,(j+1)mod 5H

c
3,(j+2)mod 5H

c
4,(j+1)mod 5H

c
5,(j+1)mod 5

P4,(j+2)mod 5 Hc
3,(j+2)mod 5H

c
4,(j+1)mod 5H

c
5,(j+1)mod 5

H4,(j+2)mod 5 Hc
3,(j+2)mod 5P

c
4,(j+3)mod 5

P4,(j+4)mod 5 P c
4,(j+4)mod 5

P4,(j+3)mod 5 P c
4,(j+3)mod 5

H4,(j+3)mod 5 P c
3,(j+3)mod 5P

c
4,(j+3)mod 5P

c
4,(j+4)mod 5

H4,(j+4)mod 5 P c
3,(j+4)mod 5P

c
4,(j+4)mod 5P

c
4,j

H5,j H∗
5,(j+1)mod 5P

c
4,j

H5,(j+1)mod 5 Hc
4,(j+1)mod 5H

c
5,(j+1)mod 5

H5,(j+2)mod 5 Hc
5,(j+1)mod 5P

c
4,(j+3)mod 5

H5,(j+3)mod 5 P c
4,(j+3)mod 5P

c
4,(j+4)mod 5
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H5,(j+4)mod 5 P c
4,(j+4)mod 5P

c
4,j

P6,1 Hc
5,(j+1)mod 5

Table 7.8: Node versus Color assignment for Class IV-A ICS

Color Node

Hc
2,(j+1)mod 5 H2,j

Hc
2,(j+2)mod 5 H2,(j+3)mod 5

Hc
3,(j+4)mod 5 H2,(j+4)mod 5

Hc
4,(j+4)mod 5 H3,j

Hc
4,(j+3)mod 5 H3,(j+3)mod 5

Hc
5,(j+1)mod 5 P6,1

Hc
2,(j+1)mod 5H

c
2,(j+2)mod 5 P1,1

Hc
2,(j+1)mod 5H

c
3,(j+1)mod 5 P3,j

Hc
2,(j+2)mod 5H

c
3,(j+2)mod 5 P3,(j+2)mod 5

Hc
3,(j+4)mod 5H

c
4,(j+3)mod 5 P3,(j+3)mod 5

Hc
4,(j+1)mod 5H

c
5,(j+1)mod 5 H5,(j+1)mod 5

Hc
2,(j+1)mod 5H

c
3,(j+1)mod 5H

c
2,(j+2)mod 5 H2,(j+1)mod 5

Hc
2,(j+1)mod 5H

c
2,(j+2)mod 5H

c
3,(j+2)mod 5 H2,(j+2)mod 5

Hc
3,(j+1)mod 5H

c
2,(j+1)mod 5H

c
4,(j+1)mod 5 H3,(j+1)mod 5

Hc
2,(j+2)mod 5H

c
3,(j+2)mod 5H

c
4,(j+1)mod 5 H3,(j+2)mod 5

Hc
3,(j+1)mod 5H

c
4,(j+1)mod 5H

c
5,(j+1)mod 5 P4,(j+1)mod 5

Hc
3,(j+2)mod 5H

c
4,(j+1)mod 5H

c
5,(j+1)mod 5 P4,(j+2)mod 5

Hc
3,(j+1)mod 5H

c
3,(j+2)mod 5H

c
4,(j+1)mod 5 H4,(j+1)mod 5

Hc
2,(j+1)mod 5H

c
2,(j+2)mod 5H

c
3,(j+1)mod 5H

c
3,(j+2)mod 5 P3,(j+1)mod 5

Hc
3,(j+1)mod 5P

c
4,j H4,j

Hc
3,(j+2)mod 5P

c
4,(j+3)mod 5 H4,(j+2)mod 5
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Hc
5,(j+1)mod 5P

c
4,j H5,j

Hc
5,(j+1)mod 5P

c
4,(j+3)mod 5 H5,(j+2)mod 5

Hc
4,(j+3)mod 5H

c
3,(j+4)mod 5P

c
4,(j+4)mod 5 H3,(j+4)mod 5

P c
3,(j+4)mod 5 P3,(j+4)mod 5

P c
4,j P4,j

P c
4,(j+3)mod 5 P4,(j+3)mod 5

P c
4,(j+4)mod 5 P4,(j+4)mod 5

P c
4,(j+3)mod 5P

c
4,(j+4)mod 5 H5,(j+3)mod 5

P c
4,(j+4)mod 5P

c
4,j H5,(j+4)mod 5

P c
3,(j+3)mod 5P

c
4,(j+3)mod 5P

c
4,(j+4)mod 5 H4,(j+3)mod 5

P c
3,(j+4)mod 5P

c
4,(j+4)mod 5P

c
4,j H4,(j+4)mod 5

Table 7.9: Color versus Node assignment for Class IV-A ICS

This concludes proof of Theorem 2.

7.4 Lower Bound of MICS of SBG

In Fig. 7.2, we have provided a layered representation of the SBG, where 32 nodes

of the SBG is placed in six layers, indicated by L1 through L6. The layers L1 through

L3 constitute the top half of the SBG and the layers L4 through L6 constitute the

bottom half. As the two halves are symmetric, similar argument can be applied to

both of them.

Lemma 7. A MICS must select at least four nodes from each half. In other words,

at least four distinct colors need to be injected in each half.

Proof. We provide arguments for the top half of the SBG, and we first show that at
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least three distinct colors are necessary to ensure that each node in top half receives

a distinct color (either through injection, seepage or combination of the two). Let’s

consider layers L1 and L2. No matter which nodes in bottom half are injected with

colors, these colors will not seep into the nodes in L1 and L2 (colors seep only to

adjacent nodes), coloring in bottom half nodes will not affect the colors associated

with nodes in L1 or L2. Since L1 and L2 have six nodes, six distinct colors need to

be associated with them. It can be easily verified that in the SBG, in order to ensure

distinct colors to each one of the six nodes in L1 and L2, at least three colors must be

injected to three nodes in the top half. Clearly at least three nodes must be selected

from each half so that nodes in L1, L2, L5 and L6 receive distinct colors. With

injection of three colors, up to 23 − 1 = 7 colors (excluding an empty combination)

can be generated.

Next we show that three colors are not sufficient to color L1 and L2. WLOG, we

use alphabets {A,B,C} to represent three colors. As mentioned above, seven distinct

colors can be generated with these three colors (three primary and four composite),

{A,B,C,AB,AC,BC,ABC}. Simple counting shows that each alphabet (color) ap-

pears exactly 4 times. Suppose there is a proper injection using A,B,C that ensures

all nodes in L1 and L2 received distinct colors. Since seven distinct colors can be gen-

erated with three primary colors, and L1 and L2 has only six nodes, it implies that

one of the seven colors (primary or composite) is not used while coloring the nodes of

L1 and L2. This implies that at least one of the alphabets A,B,C is appearing three

times instead of four in the alphabet strings (representing colors) associated with the

nodes of L1 and L2. WLOG we assume that color A is appearing three times. There

are four possible locations for injection of color A in the top half of the SBG,

1. A is injected on L1, i.e., at P1,1. A would then appear at all nodes in L1 and

L2, making its appearance six times, contradicting the assumption.
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2. A is injected on L2, i.e., one of H2,i(1 ≤ i ≤ 5) nodes. Thus, A appears four

times (three nodes in L2 and one node in L1) contradicting the assumption.

3. A is injected on one of the hexagonal nodes L3, i.e., one of the H3,i, 1 ≤ i ≤ 5.

Since H3,i has only one neighbor in on L1 and L2 (H2,i), in this case A will

appear only on one node in L2, making its appearance one time, contradicting

the assumption.

4. A is injected on one of the pentagonal nodes L3, i.e., one of the P3,i, 1 ≤ i ≤ 5.

Since P3,i has only two neighbors in on L1 and L2 (H2,(i−1)mod 5 and H2,i), in

this case A will appear only on two nodes in L2, making its appearance two

times, contradicting the assumption.

As there is no location for injection of A, we can conclude that three colors are

inadequate to ensure that all nodes in L1 and L2 receive a unique color. Similar

arguments can be made for coloring of nodes in L5 and L6. Therefore the lower

bound of MICS for the SBG must be at least 4 + 4 = 8.

Lemma 8. MICS of the SBG is at least nine.

Proof. In the GCS problem, each node is assigned a color, which may be a primary

or a composite color. A primary color is indicated by one alphabet and a composite

color by a string of alphabets. The number of alphabets that appear in a string

determines the length of that string. We establish the lemma by providing arguments

based on the sum of the length of strings associated with all 32 nodes of the SBG.

We will refer to the sum of the length of strings associated with each one of the 32

nodes of the SBG as “total string length”.

We use the term “valid injection” to imply an injection of colors to the nodes that

ensures that all 32 nodes of the SBG receive a distinct color. Suppose, there exists
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more than one valid injection using eight colors. Among the set of all valid injections,

we consider the one whose total string length is minimum. The lower bound of the

total string length for a valid injection with eight colors is 56. This is true, as with

eight injected colors, at most eight nodes of the SBG can have associated strings of

length one, and the remaining 24 nodes must have strings of length at least two. Thus

the lower bound on the string length must be 8× 1 + 24× 2 = 56. The upper bound

on the total string length with injection of at most eight colors is also 56. This is

true for the following reason. If a color is injected on a hexagonal node, then it will

appear seven times (six neighbors and the node itself). Similarly for a pentagonal

node, the color will appear six times. Therefore, the upper bound of total string

length is 7 × 8 = 56. It may be noted that the total string length is 56 if and only

if all colors are injected on hexagonal nodes. However, it is impossible to achieve a

valid injection by injecting eight colors only on hexagonal nodes. Consider the top

half of SBG. In order to color nodes on L1, at least one color, say A, must be injected

on one node on L2. WLOG, we assume that A is injected on H2,i, 1 ≤ i ≤ 5. We

consider two scenarios:

1. No other color is injected at the nodes on L2. In this case, the other colors are

injected at three hexagonal nodes on L3. Because of injection of A at H2,i, after

seepage, all six adjacent nodes, P1,1, H2,(i−1)mod 5, H2,(i+1)mod 5,

H3,(i−1)mod 5, P3,i, H3,i, will have color A. In order to ensure that all these nodes

have distinct colors, colors must be injected on H3,(i−1)mod 5, H3,i,

H3,(i+1)mod 5. However, in such an injection, the nodes

H2,(i+2)mod 5 andH2,(i+3)mod 5 will not receive any color, making such an injection

invalid.

2. One or more colors are injected at the nodes on L2. Suppose a different color B

135



is injected at a node different from H2,i. Due to the SBG topology, no matter

which node on L2 is injected with B, one node on L2 and the node on L1 must

have color AB after seepage. In order to ensure distinct colors on these two

nodes, a third color C must be injected on another node. After injection of C,

one of the two nodes that had the color AB before injection of C, will have the

color AB and the other will have ABC. However, if one node has a string of

length three, the lower bound of the total string length can longer be 56. It has

to be at least 57, thus exceeding the upper bound (56), that is possible with

injection of at most eight colors.

Theorem 9. The lower bound of MICS of the SBG is at least nine i.e., eight colors

are insufficient to ensure that all nodes of the SBG receive a distinct color.

Proof. Follows from Lemmas 1 and 2.

7.5 Conclusion

We have studied an event monitoring problem with satellites as sensors and a

soccer ball as a model of the planet Earth. We have provided upper and lower bound

of the MICS problem where the difference between the bounds is just one, implying

that our solution is close to being optimal.
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(a) Class IIA Motif Assignment I

(b) Class IIA Motif Assignment II (Assignment I shifted one position to the right)

Figure 7.3: Examples of Color Assignments using Motif IIA
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(a) Class IIIA Motif Assignment

(b) Class IV Motif Assignment

Figure 7.4: Examples of Color Assignments using Motifs IIIA and IV
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Chapter 8

CONCLUSION AND FUTURE WORK

Firstly, in this dissertation, an overview of the existing literature on wireless relay

node placement was presented. The dissertation also pointed out that few research

considered budget limitation while it is very common in real world and practical appli-

cations. Hence, the dissertation presented three new problems: (i)Budget Constrained

Relay node Placement for Maximizing the size of the Largest Connected Component

(BCRP-MLCC) problem, (ii) Budget Constrained Relay node Placement for Maximiz-

ing the size of the Smallest Connected Component (BCRP-MSCC) problem and (iii)

Budget Constrained Relay node Placement for Minimizing the Number of Connected

Components (BCRP-MNCC) problem. The dissertation gave an 1
10
− approximation

algorithm for (i) and showed inapproximatebility for (ii) and (iii). Linearized MILP

was included and experiments were conducted on both approximation algorithm and

MILP.

Secondly, this dissertation considers a generalized d − degree minimum arrange-

ment problem in graph embedding. An asymptotically optimal (d − 1)-ary tree tree

construction is given for uniform graphs and two greedy approaches are presented for

general graphs. Experiments and simulations are implemented to compare heuristic

result again optimal solution obtained by ILP.

Thirdly, this dissertation introduced an new concept of “candidate trees” in Elastic

Optical Network. An computational scheme for counting the number of different

candidate trees on complete graphs is given. In detail, two closed form expressions

that provide the number of Steiner Trees of a complete graph with two or three

terminal nodes respectively were presented. For the cases, where the number of
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terminal nodes is at least four, an efficient O(np) algorithm that computes the number

of Steiner Trees of a complete graph with n nodes and p terminal nodes was given.

Moreover, a candidate tree generation algorithm was also attached.

Fourthly, he dissertation studied path computation problem in FiWi networks.

Based on the new framework focusing on “heaviest edge”, an polynomial algorithm

which solved single path computation was given. Moreover, mult-ipath problem was

also considered. NP-compleness proof as well approximation analysis were present-

ed in this dissertation. The efficacy and guaranteed performance of approximation

algorithm was evaluated using the power and communication network infrastructure

data of ARPANET network.

Moreover, except for analysis of wireless sensor network and FiWi network, the

dissertation also studied scheduling problems in cyber-physical systems. Specifically,

the Optimal Schedule Construction Problem (OSCP) in a RFID system was formu-

lated and solution techniques were proposed. Though a heuristic is proposed in this

dissertation, there is still some improvement that can be done in in extension to this

work:

Last but not the least, this dissertation uses concept of identification code to

better assistant event and disaster supervision. By modeling earth as a soccer ball

surface, this dissertation provides schemes to place at most 10 satellites to cover the

whole planet. Theoretical lower bound is also established by analysis.

Apart from the preliminary work discussed in this dissertation, some of the future

work that can be performed in extension to this work is outlined below: Gender

assignment problem in wireless network

The frequency-division duplex (FDD) nodes use two separate frequency bands (sepa-

rated by a guard band) for transmission and reception, thus enabling the full-duplex
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(FD) communication. On the other hand, the use of directional FDD nodes in mul-

tihop wireless network offers the advantages of larger transmission range, better link

reliability, and spatial reuse, resulting in a much higher throughput and superior

interference mitigation. However, the multihop FDD communication partitions the

nodes in two classes (or genders) wherein the nodes of the same class (or gender) in

a neighborhood cannot communicate with each other. This can seriously impact the

availability of neighboring nodes for communication, and lead to disconnected nodes

(or regions) in the network. In a simple way, we can think this scenario as assigning

gender to each node and two nodes can communicate with each other if and only if

they are within transmission range and have different genders. So, as a new direction

of research in this dissertation, I propose the following two variations of gender assign-

ment problems in wireless networks: (i) minimize the number of edges disabled due

to gender assignment, (ii) maximize the number of nodes such after assigning gender

there is no conflict. The goal of the study would be to analyze the computational

complexity for both variations of the problem. If the variations can be solved in poly-

nomial time, the goal would be to provide polynomial optimal algorithms. Otherwise,

the goal would be to prove that the variations are NP-complete, and thereafter to

provide approximation algorithms or proof of hardness of approximation.

Upper and Lower Bounds of Choice Number for Successful Channel Assignment in

Cellular Networks

A cellular network is often modeled as a graph and the channel assignment problem

is formulated as a coloring problem of the graph. Cellular graphs are used to model

hexagonal cell structure of a cellular network. Assuming a 2− band buffering system

where the interference does not extend beyond two cells away from the call originating

cell, we study a version of the channel assignment problem in cellular graphs that been
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studied only minimally. In this version, each node has a fixed set of frequency channels

where only a subset of which may be available at a given time for communication (as

other channels may be busy). Assuming that only a subset of frequency channels are

available for communication at each node, we try to determine the size of the smallest

set of free channels in a node that will guarantee that each node of the cellular graph

can be assigned a channel (from its own set of free channels) that will be interference

free in a two band buffering system. The mathematical abstraction of this problem

is known as the Choice Number computation problem and is closely related to List

Coloring problem in Graph Theory. In previous research, we establish lower and

upper bound -(8, 10), on the choice number of a 2 − band buffering system. One

may notice that, the bound is not tight. Thus it is of our interest to have a better

understanding on cellular network and achieve a tight bound, i.e., the exact choice

number for 2− band buffering system.
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