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ABSTRACT

I study the problem of locating Relay nodes (RN) to improve the connectivity of a set

of already deployed sensor nodes (SN) in a Wireless Sensor Network (WSN). This is

known as the Relay Node Placement Problem (RNPP). In this problem, one or more

nodes called Base Stations (BS) serve as the collection point of all the information

captured by SNs. SNs have limited transmission range and hence signals are trans-

mitted from the SNs to the BS through multi-hop routing. As a result, the WSN

is said to be connected if there exists a path for from each SN to the BS through

which signals can be hopped. The communication range of each node is modeled

with a disk of known radius such that two nodes are said to communicate if their

communication disks overlap. The goal is to locate a given number of RNs anywhere

in the continuous space of the WSN to maximize the number of SNs connected (i.e.,

maximize the network connectivity). To solve this problem, I propose an integer

programming based approach that iteratively approximates the Euclidean distance

needed to enforce sensor communication. This is achieved through a cutting-plane

approach with a polynomial-time separation algorithm that identifies distance viola-

tions. I illustrate the use of my algorithm on large-scale instances of up to 75 nodes

which can be solved in less than 60 minutes. The proposed method shows solutions

times many times faster than an alternative nonlinear formulation.
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Chapter 1

INTRODUCTION

1.1 Background

Advances in sensor design, information and wireless technologies have resulted

in the rise of Wireless Sensor Networks (WSNs). WSNs collect information on the

physical conditions of an environment and transmit wirelessly from sensor to sensor

until the data reaches a Base Station(BS) for processing. Sensors must be strategically

dispersed in th surveyed area to capture the information of interest. WSNs have

been developing at a rapid pace and new applications for this technology are being

discovered constantly. Some of the uses of WSNs are in environmental monitoring

(Gao et al. (2011)), civil infrastructure protection (Saint (2013)), precision agriculture

(Mitralexis and Goumopoulos (2015)), health care (Dishongh and McGrath (2010)),

toxic gas detection(Rademacher et al. (2015)), fire detection(Hariyawan et al. (2013))

and supply chain management(Wang et al. (2015)).

WSNs deploy multiple sensors, sometimes thousands or more, in the space of

interest. Once deployed, they are required to continue sensing for the lifetime of the

network without maintenance. These networks often operate under severe restrictions

on factors such as battery life, sensing range, data storage, and size. The energy

consumption of these sensors can be divided into two categories ; energy for sensing

and energy for transmission of the collected data back to the BS. The energy required

for transmission is directly proportional to the square of the distance between the

two communicating nodes (Ponnusamy (2014)). This means that the sensor’s battery

capacity must be very high for it to transmit over longer distances. To mitigate this
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problem, WSNs use Relay Nodes (RNs) placed within a certain distance to these

sensors to collect their signals and transmit the data back to the BS. Relay nodes do

not spend battery sensing data and are solely used for signal transmission. This gives

them a higher communication range compared to the sensors. Signals are usually

transmitted using multi-hop wireless configurations that use both sensors and relays.

This approach decreases the energy dissipation of the sensor nodes, so that the lifetime

of the networks is increased. Because the cost of relays typically range from tens to

hundreds of dollars, minimizing the number of additional relays required to completely

connect or increase the connectivity of a sensor network is an important aspect of the

WSN design.

In this research, we propose an exact optimization approach for locating a given

number of RNs in a multi-hop WSN to maximize the network connectivity. This

problem is known as the Relay Node Placement Problem (RNPP) and is proven to

be NP-Hard (Suomela (2006)). The key features of the problem studied in this thesis

are the following.

• The location of each sensor and base station is known beforehand.

• The communication range of sensors and relays is known. We assume that the

communication range is the same across sensors. Relays may have a different

range than sensors, but identical between them.

• Relay nodes can be located anywhere in continuous space without any candidate

locations.

• A sensor is said to be connected if there is a sequence of sensors and relays that

allow information transmission back to the BS using multiple hops. In other

words, relay placement must ensure that there exits at least one path for every

connected SN to the BS.
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• The objective is to locate a given number of relays to maximize the number of

connected sensors.

Although we focus on maximizing connectivity, our proposed solution using only

one BS can be expanded to calculate the minimum number of relays required to

establish full connectivity. Our methods can easily be adapted for WSNs with multiple

BSs.

1.2 Related Work

The RNPP problem is a well-studied problem in the literature. The common

approach to solve this problem is by using approximation algorithms because of the

properties of the subsequent communication graph. The RNPP is related to the

Steiner tree problem (STP) (Gondran and Minoux (1984)), which is an NP-Hard

problem that has been studied extensively (Robins and Zelikovsky (2000), Arora

(1996)). RNPP was studied as The Steiner Tree Problem with Minimum Number of

Steiner Points and Bounded Edge Length (STP-MSPBEL) by Lin and Xue (1999).

They were the first to show that the problem is NP-Hard and proposed a polynomial

time 5-opt approximation algorithm for the problem. Sapre and Mini (2018) provide

nature-inspired approximation algorithms to locate RNs. The RNPP problem for

connectivity and survivability was studied by Misra et al. (2010). They proposed an

approximation algorithm for the same while considering the communication range as

the edge bound length. A version of the RNPP with a constraint on the maximum

number of hops allowed for each signal(delay), called the Delay Constrained RNPP

(DCRNPP) was studied by Bhattacharya and Kumar (2010). They presented a local

search based greedy heuristic to provide an approximate solution for the problem.

The solutions obtained by these methods are not exact and cannot guarantee opti-

mality.
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Exact methods to solve the RNPP or any of its versions are less common. In

Cheng et al. (2008), the authors formulate an optimization problem based on the

Steiner Minimum Tree with minimum number of Steiner points to solve the RNPP.

The authors in Bari et al. (2007) propose an exact method to solve the RNPP using a

set of potential positions situated on a hypothetical grid. Nigam and Agarwal (2014)

propose an exact method to solve the DCRNPP using candidate locations for the

relays. These solution methods reduce the size of the problem by limiting the loca-

tions of the relays to pre-determined sites, ignoring the possibility of locating relays

in the continuous space containing the WSN. A non-linear formulation for the RNPP

in continuous space (RNPPCS) is given in Zhou et al. (2018) where the author uses a

mathematical model with Euclidean norm to solve the problem exactly. The results

from this formulation are used to measure the performance of a suggested algorithm.

The instance sizes solvable by this formulation are very limited due to the non-linear

nature of the constraints. The formulation works for WSNs containing upto 12 sen-

sors and 5 relays. To the best of our knowledge, there is no exact algorithm in the

literature that solves the RNPPCS for reasonable size instances in polynomial time.

This paper provides a mixed-integer programming based polynomial-time cutting-

plane algorithm that iteratively approximates the Euclidean distance needed to en-

force sensor communication in order to solve the RNPPCS. We also propose several

enhancements to the formulation to improve the algorithm’s performance. With the

help of computational experiments on several randomly generated test instances of

various features, we demonstrate that the proposed algorithm is able to optimally

solve problem instances of size up to 75 sensors and 50 relays within reasonable CPU

time.
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The remainder of the paper is organized as follows. In Chapter 2, we present

the approximation technique used to linearize the Euclidean distance between nodes

for use in our formulation. In Chapter 3, we introduce notation and provide the

mixed-integer mathematical formulation for RNPPCS. In Chapter 4, we describe the

algorithm used to solve the RNPPCS and discuss and analyze our experimental results

in Chapter 5. Finally, we present our final remarks and some directions for future

work in Chapter 6.
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Chapter 2

PRELIMINARIES

For continuous location problems, the most widely used distance measure is the

Euclidean, denoted by ‖ · ‖. For any two locations with coordinates x and y, the

Euclidean distance between them is given by ‖x − y‖. In the context of RNPPCS,

we use the Euclidean distance to model the communication between sensors. For

instance, two sensors with coordinates x1 and x2, communicate with each other if

‖x1−x2‖ ≤ 2r where r is the transmission radius of each sensor. Since the Euclidean

distance function is quadratic, it renders the problem non-linear. Mixed-integer non-

linear problems often times do not scale well in problem sizes when compared to linear

problems. To overcome the non-linear complexity of RNPPCS, we solve it by lineariz-

ing the Euclidean distance inequalities using the method suggested in Camino et al.

(2016). This linearization returns an approximate distance between any two nodes

which is used to measure connectivity in the network. Although this approxima-

tion by itself would merely produce sub-optimal solutions, our proposed solution uses

successive approximations to obtain a solution that satisfies the Euclidean distance

constraint.

2.1 Euclidean Norm Linearization

We define nu vectors in the Euclidean plane whose angles with respect to a hor-

izontal line range in the continuous domain [0, 2π]. For a given nu ∈ N such that

nu ≥ 3, and for all l ∈ {1, ..., nu} = U , we denote the x and y coordinates of vl vector

by
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xul
yul

 =

cos

(
2(l − 1)π

nu

)
sin

(
2(l − 1)π

nu

)
 ∈ R2 (1)

Given the definition in (1), we have that ‖vl‖ = 1, ∀l ∈ U (2). These nu unit vec-

tors provide a regular discretization of the unit circle with each nu vectors having an

angle
2π

nu
with its neighboring vectors. An example with nu = 8 is given in Figure 2.1.

Figure 2.1: Linearization of the Euclidean Plane Using Unit Vectors

Let 〈· | ·〉 denote the inner product. For RNPPCS, two nodes can communicate

only if they are within a certain distance from each other. Consider two arbitrary

locations given by the vectors x1 and x2. From Camino et al. (2016), we have that

〈x1 − x2 | vl〉 ≤ d, ∀l ∈ U ⇒ ‖x1 − x2‖ ≤
d

cos (π/nu)
(3)
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As nu increases, the difference

∣∣∣∣d− d

cos (π/nu)

∣∣∣∣ reduces and the approximation

tends to the actual Euclidean distance between the two locations. The value of nu

should be large enough such that the distance approximation is reasonably accurate,

but it should not be arbitrarily large since it will require a large number of conditions

in (3). In Figure 2.2, the regular nu-sided polygon P represents the feasible region

of all vectors whose approximated length is less than or equal to one unit from the

origin.

Figure 2.2: Feasible Region Given by the Regular Polygon P
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Chapter 3

MATHEMATICAL PROGRAMMING FORMULATION

In this chapter we describe a mixed-integer linear programming formulation for

RNPPCS. In our formulation, we have a set S for SNs. The BS is considered as

node 1 in S. The x and y coordinates of each element in S are inputted as known

parameters xsi and ysi , ∀i ∈ S. Parameter n is the number of available RNs which

allows us to define the set of relay nodes as K = {1, ..., n}. Set U is a set of nu

distinct vectors such that ‖ul‖ = 1,∀l ∈ U , whose x and y components are given by

xul and xul , ∀l ∈ U . The unit vectors are pre-calculated based on the results from

chapter 2, for a given value of nu. The communication ranges for SNs and RNs are

given by rs and rk , ∀s ∈ S and k ∈ K, respectively. The range denotes the maximum

distance an SN or RN can communicate with any other node. The range essentially

describes a circle with center at the location of each SN and RN and radius rs and rk,

respectively. Figure 3.1 shows an example for the communication range for a sensor

where the red diamond(�) denotes the sensor’s location.

Figure 3.1: Communication Range of a Sensor
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Two nodes are capable of communicating signals if their communication circles

overlap as shown in Figure 3.2 where the black star (?) denotes the location of a relay

node.

Figure 3.2: Example for Communicating Nodes

Binary parameter pst equals 1 if SNs s and t ∈ S, s 6= t, are within communica-

tion range of each other. Parameters x and x are the pre-calculated lower and upper

bounds for the x coordinates of the relays. Likewise, y and y are the bounds on the

y coordinates of the relays. We also denote a parameter with a large positive value

by M = max
i,j∈S
‖xi − xj‖.

We employ five different sets of decision variables in RNPPCS. Variables xrk and

yrk are the x and y coordinates for relay k ∈ K. They are continuous and bounded

by their pre-calculated bounds. To model communication between SNs and RNs, we

use the binary variable wik, which is equal to 1 if sensor i communicates with relay k.

For communication between RNs, we use binary variable zkl which equals 1 if relays

k and l communicate, for l > k. Connectivity is captured by the binary decision

variable qs for each s ∈ S. If a path between s and the BS exists, then qs is equal to

10



1, and is 0 otherwise. We use continuous variables λsk to express the location of relay

k ∈ K as the convex combination of sensors s ∈ S. To enforce connectivity, we use

a directed graph G = (N,A) where N = S ∪K and A = {(i, j)|i, j ∈ N, i 6= j}. We

use a continuous variable fij to capture flow between nodes i and j. Flow only exists

between two nodes if they are within communication range of each other. Table 3.1

summarizes the notation of RNPPCS.

Table 3.1: Notation

Category Notation Definition

Set S Set of all SNs ∪ BS

P Set of SNs

K Set of RNs

U Set of unit vectors for distance approximation

Parameter ns Number of sensors including the base station

nk Number of relay nodes

nu Number of unit vectors

rk Communication range (radius) of relays

rs Communication range (radius) of sensors

xsi x coordinate of sensor i ∈ S

ysi y coordinate of sensor i ∈ S

aij Euclidean distance between node i and j, ∀i, j ∈ N

xul x-component of unit vector l ∈ U

yul y-component of unit vector l ∈ U

pst pre-processed binary parameter, 1 if sensor s and t are

11



Table 3.1 continued from previous page

Category Notation Definition

within communication range of each other, 0 otherwise

x minimum value of all x coordinates of sensors

x maximum value of all x coordinates of sensors

y minimum value of all y coordinates of sensors

y maximum value of all y coordinates of sensors

Variable xrk x coordinate of relay k ∈ K

yrk y coordinate of relay k ∈ K

wsk binary variable, 1 if sensor s ∈ S and relay k ∈ K are

within communication range of each other, 0 otherwise

zkl binary variable, 1 if relay k ∈ K and l ∈ K are

within communication range of each other, 0 otherwise

qs binary variable, 1 if sensor s ∈ P is connected to the sink,

0 otherwise

fij flow between node i ∈ S ∪K and node j ∈ N ∪K

λij convex multiplier for sensor i ∈ S and relay k ∈ K

12



3.1 Model

Using the previous notation, RNPPCS is defined as:

max
∑
s∈P

qs (4)

Subject to:

(xrk − xsi )xul + (yrk − ysi ) yul ≤ rk + rs +M (1− wsk) , ∀l ∈ U, k ∈ K, i ∈ S (5)

(xrk − xrl )xul + (yrk − yrl ) yul ≤ 2rk +M (1− zkl) , ∀l ∈ U, (k, l) ∈ K : l > k (6)∑
s∈P :p1s=1

f1s +
∑
k∈K

f1k =
∑
s∈P

qs (7)∑
t∈P :pst=1

fst +
∑
k∈K

fsk −
∑

t∈P :pts=1

fts −
∑
k∈K

fks = −qs , ∀s ∈ P (8)∑
s∈P

fks +
∑
l∈K

fkl −
∑
s∈S

fsk −
∑
l∈K

flk = 0 , ∀k ∈ K (9)

fsk ≤ |P |wsk , ∀s ∈ S, k ∈ K (10)

fks ≤ |P |wsk , ∀s ∈ S, k ∈ K (11)

fkl ≤ |P |zkl , ∀(k, l) ∈ K : l > k (12)

flk ≤ |P |zkl , ∀(k, l) ∈ K : l > k (13)

fst ≤ |P |pst , ∀s ∈ S, t ∈ P (14)

x ≤ xrk ≤ x , ∀k ∈ K (15)

y ≤ yrk ≤ y , ∀k ∈ K (16)

xrk, y
r
k ∈ R , ∀k ∈ K (17)

wsk ∈ {0, 1} , ∀s ∈ S, k ∈ K (18)

zkl ∈ {0, 1} , ∀(k, l) ∈ K : l > k (19)

qs ∈ {0, 1} , ∀s ∈ S (20)

fij ≥ 0 , ∀(i, j) ∈ A (21)

The model uses a maximum flow network structure to connect as many sensors

as possible. Equation (4) is the objective function and it aims to maximize the sum

of the binary variables qs. That is, it maximizes the number of SNs connected to BS.

13



The maximum value for the objective function would be equal to |P |. Constraints (5)

approximate the distance between each sensor and relay using the inner product. The

binary variable wsk is equal to 1 if the two nodes are within rk + rs units of distance

from each other, and is 0 otherwise. Constraints (6) approximate the distance between

each pair or relays using the inner product. The binary variable zkl is equal to 1 if

the two relays are within 2rk units of distance from each other, and is 0 otherwise.

Constraint (7) is the flow balance constraint for BS where the maximum flow out of

the BS is equal to
∑
s∈N

qs. Constraints (8) are the flow balance constraints for all

SNs, which are treated as demand nodes with a demand of −qs. Constraints (9) are

the flow balance constraints for RNs. The RNs are treated as transshipment nodes.

Constraints (10) and (11) allow flow between sensor s and relay k only if they are

within communication range. Constraints (12) and (13) are similar but for relay-

relay communication. Constraint (14) enforces the same condition between sensors.

Constraints (15) and (16) specify the upper and lower bounds on the coordinates of

each relay based on the maximum and minimum values of the sensors. Additionally,

(17), (18), (19), (20) and (21) are the variable type constraints.

3.2 Model Enhancements

To enhance the performance of our formulation, we added various constraints

that help reduce the feasible region in the linear relaxation and may help converge to

optimality quicker. The basis for these constraints lies in the behavior of the linear

relaxation of the model in (4) - (21).

3.2.1 Valid Inequalities

qs ≤
∑
k∈K

wsk , ∀s ∈ S :
∑
t∈S

pst = 0 (22)

Constraints (22) imply that any sensor s that is not within communication range

14



of any other sensor, can only be connected to the network (qs = 1) if it is connected

to at least one relay, i.e., wsk = 1, exists for at least one k ∈ K

wsk + wtk ≤ 1 , ∀k ∈ K, (s, t) ∈ S : ast > 2(rk + rs) (23)

Constraints (23) imply that no two sensors that are at a distance greater than

2(rk + rs) can be connected to the same relay. This can be seen by geometric con-

struction in Figure 3.3, where The minimum distance between two sensors that allows

them to be connected to the same relay is 2(rk + rs).

Figure 3.3: Constraint 23 Geometric Construction

3.2.2 Symmetry-breaking Constraints

xrk ≤ xrk+1 , ∀k = 2, ..nk − 1 (24)

Constraints (24) break the symmetry in the problem. Because RNs are identical,

any permutation of the relay labels represent the same feasible solution. Constraints

(20) help reduce the number of feasible permutations by imposing a non-decreasing

order on the x coordinates.

3.2.3 Convex Hull Constraints

xrk =
∑
s∈S

λskx
s
s , ∀k ∈ K (25)
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yrk =
∑
s∈S

λsky
s
s , ∀k ∈ K (26)∑

s∈S
λsk = 1 , ∀k ∈ K (27)

The idea behind introducing these constraints is to limit the search space of the

model. The conjecture is that there is at least one optimal solution in which the

RNs are located in the convex hull of the sensors including BS. An example is shown

in Figure 3.4 and 3.5. Constraints (25) and (26) imply that the relay coordinates

must be written as a convex combination of coordinates of those sensors that are the

vertices of conv{(xs1, ys1), (xs2, ys2), ..., (xs|S|, ys|S|)}. Constraint (27) requires the linear

combinations in (25) and (26) to be convex. Constraints (15) and (16) are not used

when the convex hull constraints are in place to avoid redundancy.

Figure 3.4: Feasible Solution Without

Convex Hull Constraints

Figure 3.5: Feasible Solution With

Convex Hull Constraints
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Chapter 4

SOLUTION APPROACH

Our solution approach is a cutting-plane method that iteratively adds constraints

(5) and (6) if there is a distance violation. We use Julia 1.0.3 to implement our so-

lution algorithm. In particular, our method relies on the solver callback abilities of

Julia to customize the solution process on the run. For example, we can add cutting

planes, run custom heuristics to find feasible solutions, and add new constraints only

when need as lazy constraints. We exploit this functionality to identify violations and

correct them with the appropriately formed constraints using only one branch and

bound tree, avoiding the solution of new problems from scratch.

4.1 Algorithm

Algorithm 1 describes our cutting-plane approach. Line 1 indicates the required

initializations. Line 2 solves RNPPCS to obtain a solution for (xr1, y
r
1), ..., (x

r
|K|, y

r
|K|).

Since the distances are approximated during the solution process using the techniques

introduced in Chapter 2, Line 3 denotes the calculations made to identify the true

distances between node pairs that communicate using the relay locations obtained

from Step 2. Line 4 defines sets Ω (for sensor-relay pairs) and Γ (for relay-relay pairs)

that contain node pairs that violate the maximum distance allowed for communica-

tion. Line 5 denotes the start of a while loop that adds constraints for violating pairs.

If sets Ω and Γ are empty which means there are no violations found for the true

distances, the solution is declared optimal and the optimal locations and objective

function value are extracted. If there are any violations, the loop executes.
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Line 6 initiates a for loop for all violating sensor-relay pairs. The x component

of the new unit vector for i and j that makes the current solution infeasible are

calculated from the formula in Line 7. Similarly, the y component is calculated in

Line 8. The new constraint for i and j is added to the model in Line 9. Since we

calculate the unit vector in only one orientation for every i,j pair in each iteration,

we do not account for the case where the reverse orientation is required to break the

feasibility of the current solution. Line 10 adds a similar constraint using the unit

vector in the opposite direction to counter this. Likewise, for every violating pair,

two new constraints are added per loop iteration. Line 11 denotes the termination

of the For loop for sensor-relay pairs. At Line 12, a second for loop is initiated for

all communicating relay-relay pairs that violate the distance requirements. The x

and y components of the required unit vectors are generated similar to Line 7 and

8. In Lines 15 and 16, the constraints required to make the distance for the current

relay-relay pair infeasible are added. Line 17 indicates the end of the second for loop.

In Line 18, the model arrives at a new solution. The new Euclidean distances are

calculated in Line 19 in similar manner to Line 3. If no further violations are found,

the while loop terminates. Line 15 indicates the optimal solution and objective value

being returned by the model.
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Algorithm 1: Cutting Plane Algorithm for RNPPCS

1 Pre-calculate pst and generate the valid inequalities;

2 Solve RNPPCS and obtain a solution (xr1, y
r
1), (x

r
2, y

r
2), ..., (x

r
|K|, y

r
|K|);

3 Calculate the euclidean distances: aij, ∀i, j ∈ A, using the locations obtained

in Step 2;

4 Calculate Ω = {(s, k) : s ∈ S, k ∈ K,wsk = 1, ask > rs + rk + ε} and

Γ = {(k, l) : k, l ∈ K, l > k, zkl = 1, akl > 2rk + ε};

5 while Ω 6= ∅ and Γ 6= ∅ do

6 forall i, j ∈ Ω do

7 x̂u =
xsi − xkj
aij

;

8 ŷu =
ysi − ykj
aij

;

9 Add (xkj − xsi )x̂u + (ykj − ysi )ŷu ≤ rk + rs +M(1− wij) to model;

10 Add (xkj − xsi )(−x̂u) + (ykj − ysi )(−ŷu) ≤ rk + rs +M(1− wij) to model;

11 end

12 forall i, j ∈ Γ do

13 x̂u =
xri − xrj
aij

;

14 ŷu =
yri − yrj
aij

;

15 Add (xrj − xri )x̂u + (yrj − yri )ŷu ≤ 2rk +M(1− zij) to model;

16 Add (xrj − xri )(−x̂u) + (yrj − yri )(−ŷu) ≤ 2rk +M(1− zij) to model;

17 end

18 Solve RNPP and obtain a solution (xr1, y
r
1), (x

r
2, y

r
2), ..., (x

r
|K|, y

r
|K|);

19 Calculate the euclidean distances: aij, ∀i, j ∈ A : wij = 1, using the

locations obtained in Step 2;

20 end

21 Return optimal (xr1, y
r
1), (x

r
2, y

r
2), ..., (x

r
|K|, y

r
|K|) and

∑
s∈N

qs
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Algorithm 1 terminates in a finite number of steps because only a finite number

of unit vectors are needed to approximate the Euclidean distance with ε-precision
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Chapter 5

COMPUTATIONAL RESULTS

In this chapter, we examine the performance of our formulation by solving the

RNPPCS for a set of randomly generated instances. In Section 5.1 we describe our

instance generation procedure and in Section 5.2 we illustrate optimal solutions for

a few of them. In Section 5.3, we present our results for a broader set of instances

of various sizes. To perform our computations, we use Julia with Gurobi 8.1 as

optimization solver on a laptop computer with an Intel Core i7 2.40 GHz processor

and 16.0 GB RAM.

5.1 Instance Generation

We create instances ranging from 15 SNs to 75 SNs deployed within a region of

area 200 times 200 units. For each instance with a given number of sensors, we use

two different relay counts. The first combination has as many relays as one third

the number of sensors. The second combination has as many relays as two thirds

the number sensors. For example, we test an instance size of 30 sensors with 10

and 20 relays. For each sensor-relay combination, we generate five random instances

(replications). The communication range of the SNs was considered to be 10 units

and for the RNs it was 20 units. In all instances, the BS was considered to be in the

center, i.e. at coordinate (100,100). The instances were generated with all the SNs

lying in the first quadrant of the coordinate axes however this is not a requirement

since the formulation is general enough to work with negative values for coordinates

of any node. The coordinates of the SNs were generated randomly using a uniform

distribution between 0 and 200. This was done to closely mimic some of the WSN
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designs in literature. Our formulation is easily adaptable to multiple Base Stations.

Three different models were tested. The first model tested (Model A) did not contain

valid inequalities or any other performance enhancing constraints. The second model

(Model B) featured all valid inequalities stated in chapter 3 but does not feature the

convex hull constraints. The third model (Model C) is the full model with all valid

inequalities as well as convex hull type constraints.

5.2 Illustrative Example

In this section , we describe in detail the features of a RNPPCS’s optimal solution.

The communication range of the SNs (rs) is 10 and the same for RNs (rk) is 20. In

Figures 5.1 - 5.4, the green triangle (4) represents the BS location, the red diamonds

(�) denote sensor locations and the black stars (?) represent optimal RN locations. An

instance of 30 SNs is shown in Figure 5.1. The optimal solution obtained using models

A, B and C are shown in Figures 5.2 - 5.4. The three models all produced different

optimal locations. This is normal since there are multiple RN location configurations

that can connect the same number of sensors.

Figure 5.1: Sensor Locations for

|S| = 30

Figure 5.2: Model A Optimal

Solution for |K| = 10
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Figure 5.3: Model B Optimal

Solution for |K| = 10

Figure 5.4: Model C Optimal

Solution for |K| = 10

5.3 Results

In this section, we compare the performance of the different proposed models. The

first three columns of Table 5.1 describe the type of instance solved, including the

number of SNs (|S|), number of RNs (|K|) and instance ID. The last three columns

contain the run time in seconds of the different models. A value of “-” indicates that

the model did not solve in 7200 seconds. In general, as the number of sensors increases,

the difficulty of the problem also increases which makes the solve times longer. This

behavior is not consistent for certain instances due to unique characteristics such as

the sensors being spread out too far within the WSN (denoted as sparse network) and

the number of RNs available are not enough to connect all of them. Further study of

these behaviors can give more insight into improving model performance.
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Table 5.1: Computational Results

S K Replication Model A Model B Model C

15 5 1 50.11 11.25 10.11

2 82.06 5.1 3.08

3 67.34 3.69 4.21

4 63.44 3.72 4.38

5 46.99 3.7 5.91

10 1 - 756.41 289.92

2 10.63 4.72 3.1

3 9.17 9.89 2.86

4 3.58 10.03 3.48

5 48.98 44.49 38.86

30 10 1 15.61 19.2 11.7

2 - - 2099.65

3 14.02 7.13 5.1

4 48.98 47.39 117.72

5 - - 5902.22

20 1 30.33 19.7 13.08

2 31.38 9.3 44.37

3 44.67 65.76 17.22

4 35.6 42.84 42.99

5 34.78 41.26 40.58

50 15 1 42.9 29.69 39.77

2 36.28 18.96 34.9
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Table 5.1 continued from previous page

S K Replication Model A Model B Model C

3 62.87 18.05 34.8

4 47.53 14.8 26.71

5 42.89 81.56 42.26

35 1 72.14 154.22 117.13

2 111.93 162.31 87.05

3 196.15 183.94 187.65

4 212.28 49.13 152.6

5 197.68 33.94 110.46

75 25 1 278.62 66.9 152.02

2 156.15 196.91 47.82

3 181.77 201.12 53.73

4 195.03 64.31 185.32

5 170.19 171.19 81.65

50 1 1083.03 622.04 522.12

2 186.18 291.16 672.35

3 1207.28 201.12 475.17

4 1173.17 662.53 403.73

5 188.65 407.64 422.24
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Chapter 6

FINAL REMARKS AND FUTURE WORK

This thesis presents a framework to solve the RNPPCS exactly. We formulate

this problem as a mixed-integer program. To improve running times, we introduce

multiple valid inequalities and the concept of locating RNs inside the convex hull of

the SNs. Using clever linearizations and an iterative approach for adding constraints,

we solve large instances in reasonable time. Our approach can also be easily be

adapted for WSNs with multiple BSs as well as three-dimensional WSNs. A future

research path is to vary the number of unit vectors used to approximate the locations

and identify further model characteristics that can be exploited to decrease the solve

times. Additionally, we can adapt our approach to identify the minimum number

of RNs required for full connectivity (wherein there exists a path from each SN to

the BS). A potential algorithm would be to start with a pre-calculated (based on the

WSN’s characteristics) estimate for the initial solve run and then implement a binary

search algorithm that either increases or decreases the number of RNs at each step

to converge to the true minimum number of RNs required.

The combination of the approximation technique and cutting plane algorithm we

propose can in fact be adapted for any location problem in continuous space.
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APPENDIX A

JULIA CODE FOR RNPPCS
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using JuMP , Gurobi

# --- data specification --- #

# Parameters:
nk = 50
ns = 75
nu = 8
dr = 20
ds = 10
M = 1000
tolerance = 0

#Sets:
K = collect (1000:1000 + nk - 1)
S = collect (1:ns)
U = collect (1:nu)

#X coordinates:
xs = Dict(
1 => 100,
2 => 152,
3 => 187,
4 => 82,
5 => 95,
6 => 133,
7 => 118,
8 => 177,
9 => 85,
10 => 122,
11 => 70,
12 => 14,
13 => 88,
14 => 63,
15 => 26,
16 => 25,
17 => 61,
18 => 161,
19 => 47,
20 => 76,
21 => 65,
22 => 167,
23 => 34,
24 => 81,
25 => 177,
26 => 113,
27 => 111,
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28 => 29,
29 => 94,
30 => 196,
31 => 133,
32 => 144,
33 => 193,
34 => 139,
35 => 13,
36 => 154,
37 => 137,
38 => 13,
39 => 18,
40 => 56,
41 => 52,
42 => 20,
43 => 67,
44 => 64,
45 => 14,
46 => 148,
47 => 185,
48 => 128,
49 => 54,
50 => 18,
51 => 103,
52 => 110,
53 => 164,
54 => 4,
55 => 49,
56 => 103,
57 => 112,
58 => 58,
59 => 108,
60 => 75,
61 => 100,
62 => 24,
63 => 160,
64 => 182,
65 => 59,
66 => 168,
67 => 173,
68 => 81,
69 => 34,
70 => 32,
71 => 30,
72 => 167,
73 => 96,
74 => 68,
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75 => 104)

#Y coordinates:
ys = Dict(
1 => 100,
2 => 56,
3 => 11,
4 => 123,
5 => 115,
6 => 151,
7 => 132,
8 => 99,
9 => 63,
10 => 52,
11 => 42,
12 => 184,
13 => 4,
14 => 127,
15 => 172,
16 => 88,
17 => 130,
18 => 105,
19 => 175,
20 => 126,
21 => 68,
22 => 125,
23 => 176,
24 => 70,
25 => 39,
26 => 134,
27 => 158,
28 => 74,
29 => 138,
30 => 19,
31 => 154,
32 => 195,
33 => 157,
34 => 146,
35 => 100,
36 => 90,
37 => 9,
38 => 197,
39 => 111,
40 => 114,
41 => 5,
42 => 157,
43 => 186,
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44 => 11,
45 => 11,
46 => 154,
47 => 102,
48 => 171,
49 => 186,
50 => 57,
51 => 167,
52 => 136,
53 => 87,
54 => 11,
55 => 128,
56 => 125,
57 => 163,
58 => 124,
59 => 169,
60 => 24,
61 => 96,
62 => 112,
63 => 80,
64 => 44,
65 => 124,
66 => 165,
67 => 38,
68 => 178,
69 => 191,
70 => 155,
71 => 166,
72 => 129,
73 => 14,
74 => 82,
75 => 63)

# Boundary Identification

lbx = minimum(values(xs))
ubx = maximum(values(xs))
lby = minimum(values(ys))
uby = maximum(values(ys))

# x component of unit vectors

u1 = Dict(
1 => 1,
2 => 0.707107 ,
3 => 0,
4 => -0.707107 ,
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5 => -1,
6 => -0.707107 ,
7 => 0,
8 => 0.707107)

# y component of unit vectors

u2 = Dict(
1 => 0,
2 => 0.707107 ,
3 => 1,
4 => 0.707107 ,
5 => 0,
6 => -0.707107 ,
7 => -1,
8 => -0.707107)

# --- Pre -processing --- #

# sensor -sensor distance generation ("a" parameter)

a = Dict()
[a[s,t] = ((xs[s] - xs[t])^2 + (ys[s] - ys[t])^2) ^0.5 for

s in S, t in S]

for s in S
for t in S

a[t,s] = a[s,t]
end

end

# Binary parameter ’p’ values

p = Dict()
[p[s,t] = 0 for s in S, t in S]
for s in S

for t in S
if a[s,t] <= 2 * ds

p[s,t] = 1
p[t,s] = 1
else
p[s,t] = 0
p[t,s] = 0

end
end
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end

# --- Model declaration --- #

rnlo = Model(solver=GurobiSolver ())

# --- variables --- #

@variable(rnlo , lbx <= xk[k in K] <= ubx)
@variable(rnlo , lby <= yk[k in K] <= uby)
@variable(rnlo , wsk[s in S, k in K], Bin)
@variable(rnlo , wkk[k in K, l in K; l>k], Bin)
@variable(rnlo , y[s in S], Bin)
@variable(rnlo , f[i in union(S,K), j in union(S,K); j!=1]

>=0)
@variable(rnlo , lambda[i in S, j in K] >=0)

# --- objective --- #

@objective(rnlo , Max , sum( y[i] for i = 2:ns))

# --- constraints --- #

@constraint(rnlo , con1[s in S, k in K, u in U], (xk[k] -
xs[s]) * u1[u] + (yk[k] - ys[s]) * u2[u] <= (dr + ds) +
M * (1 - wsk[s,k]))

@constraint(rnlo , con2[l in K, k in K, u in U; l>k], (xk[k
] - xk[l]) * u1[u] + (yk[k] - yk[l]) * u2[u] <= (2 * dr
) + M * (1 - wkk[k,l]))

@constraint(rnlo , con3 , sum( f[1,s] for s=2:ns if p[1,s]
== 1) + sum(f[1,k] for k in K) == sum(y[s] for s=2:ns))

@constraint(rnlo , con4[s in S; s != 1], sum(f[s,t] for t =
2:ns if p[s,t] == 1) + sum(f[s,k] for k in K) - sum(f[

t,s] for t in S if p[t,s] == 1) - sum(f[k,s] for k in K
) == -y[s])

@constraint(rnlo , con5[k in K], sum(f[k,s] for s = 2:ns) +
sum(f[k,l] for l in K) - sum(f[s,k] for s in S) - sum(

f[l,k] for l in K) == 0)

@constraint(rnlo , con6[s in S, k in K], f[s,k] <= (ns - 1)
* wsk[s,k])

@constraint(rnlo , con7[s in S, k in K; s != 1], f[k,s] <=
(ns - 1)* wsk[s,k])
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@constraint(rnlo , con8[l in K, k in K; l > k], f[k,l] <= (
ns - 1)* wkk[k,l])

@constraint(rnlo , con9[l in K, k in K; l > k], f[l,k] <= (
ns - 1)* wkk[k,l])

@constraint(rnlo , con10[s in S, t in S; t != 1], f[s,t] <=
(ns - 1)* p[s,t])

# --- Valid inequalities --- #

@constraint(rnlo , con11[s in S; sum(p[s,t] for t in S) ==
1],

y[s] <= sum(wsk[s,k] for k in K))

for s in S
for t in S

if t!= s
if a[s,t] > 2 * (dr + ds)

@constraint(rnlo , [k in K], wsk[s,k] + wsk[t,k
] <= 1)

end
end

end
end

for i = 1000:1000+nk -2
@constraint(rnlo , xk[i] <= xk[i+1])

end

# --- convex -hull constraints --- #

@constraint(rnlo , con12[k in K], xk[k] == sum(lambda[s,k]
* xs[s] for s in S))

@constraint(rnlo , con13[k in K], yk[k] == sum(lambda[s,k]
* ys[s] for s in S))

@constraint(rnlo , con14[k in K], sum(lambda[s,k] for s in
S) == 1)

# --- lazy constraints --- #

function lazyconstraintgenerator(cb)

xkt = getvalue(xk)
ykt = getvalue(yk)
wskt = getvalue(wsk)
wkkt = getvalue(wkk)

as = Dict()
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[as[s,k] = ((xkt[k] - xs[s])^2 + (ykt[k] - ys[s])^2) ^0.5
for s in S, k in K]

for s in S
for k in K

as[k,s] = as[s,k]
end

end

ak = Dict()
[ak[k,l] = ((xkt[k] - xkt[l])^2 + (ykt[k] - ykt[l])^2) ^0.5

for k in K, l in K]

for k in K
for l in K

ak[l,k] = ak[k,l]
end

end

for s in S
for k in K

if wskt[s,k] == 1.0
if as[s,k] > dr + ds + tolerance

xt = xs[s] - xkt[k]
yt = ys[s] - ykt[k]
u1t = xt/as[s,k]
u2t = yt/as[s,k]
@lazyconstraint(cb, (xk[k] - xs[s]) * u1t + (yk

[k] - ys[s]) * u2t <= dr + ds + M * (1 - wsk
[s,k]))

@lazyconstraint(cb, (xk[k] - xs[s]) * (-u1t) +
(yk[k] - ys[s]) * (-u2t) <= dr + ds + M * (1
- wsk[s,k]))

end
end

end
end

for k in K
for l in K

if l>k
if wkkt[k,l] == 1.0

if ak[k,l] > 2 * dr + tolerance
xt = xkt[k] - xkt[l]
yt = ykt[k] - ykt[l]
u1t = xt/ak[k,l]
u2t = yt/ak[k,l]
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@lazyconstraint(cb, (xk[k] - xk[l]) * u1t +
(yk[k] - yk[l]) * u2t <= (2 * dr) + M *
(1 - wkk[k,l]))

@lazyconstraint(cb, (xk[k] - xk[l]) * u1t +
(yk[k] - yk[l]) * u2t <= (2 * dr) + M *
(1 - wkk[k,l]))

end
end

end
end

end

end

addlazycallback(rnlo , lazyconstraintgenerator)

#--- solve --- #

solve(rnlo)

# --- end of file --- #
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