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ABSTRACT

In this thesis, a new approach to learning-based planning is presented where critical

regions of an environment with low probability measure are learned from a given

set of motion plans. Critical regions are learned using convolutional neural networks

(CNN) to improve sampling processes for motion planning (MP).

In addition to an identification network, a new sampling-based motion planner,

Learn and Link, is introduced. This planner leverages critical regions to overcome

the limitations of uniform sampling while still maintaining guarantees of correctness

inherent to sampling-based algorithms. Learn and Link is evaluated against planners

from the Open Motion Planning Library (OMPL) on an extensive suite of challenging

navigation planning problems. This work shows that critical areas of an environment

are learnable, and can be used by Learn and Link to solve MP problems with far less

planning time than existing sampling-based planners.
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Chapter 1

INTRODUCTION

1.1 Sampling-based Motion Planning

The motion planning problem deals with finding a feasible trajectory that takes

a robot from an initial configuration to a goal configuration without colliding with

obstacles. Reif (1979) showed that from a computational complexity point of view,

even a simple form of the motion planning problem is NP-hard. In order to achieve

computational efficiency, motion planning methods relax requirements of complete-

ness. Sampling-based motion planners, such as Rapidly-exploring Random Trees

(RRT) from LaValle and Kuffner Jr (2001) and Probabilistic Roadmaps (PRM) from

Svestka et al. (1996), rely on probabilistic completeness, which assures a solution,

if one exists, as the number of samples approaches infinity. Sampling-based motion

planners sample a set of states from the configuration space (C-space) and check their

connectivity without ever explicitly constructing any obstacles. This can reduce com-

putation time considerably, especially as environments increase in complexity. Their

performance, however, hinges on two main considerations: the way the C-space is

sampled, and the particular order in which samples are chosen.

Lack of scalability of motion planning severely limits the applicability of symbolic

planning algorithms in robotics problems, and precludes the development of versa-

tile, autonomous robots. In order to improve the scalability of motion planning, a

new approach for learning approximate, significant landmarks, or critical regions, for

motion planning problems is presented. Lindemann and LaValle (2005) showed that

these type of regions, such as narrow corridors, are less likely to be sampled, but are
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critical for solutions since most solutions must pass through them.

In this work, the sampling limitations of sampling-based motion planners are rec-

tified using a CNN to identify critical regions prior to planning. Recent work on CNNs

has demonstrated their utility in situations where the input data can be expressed

as an image-based representation (Badrinarayanan et al. (2015); Ronneberger et al.

(2015)). For a MP problem, an image representation can be created through record-

ing the motion plans and environment. This approach begins using RRT-Connect

(Kuffner and LaValle (2000)) to compute motion plans on a set of handmade training

environments, though historical data or human demonstrations can be used as well. A

raster scan is then used to construct images of the environments and trajectories. The

environment images are based on collisions with the environment’s obstacles, and the

trajectory images are based on path intersections. Using the trajectory images, two

labelling approaches are explored. The first method involves creating auto-generated

saliency maps from the trajectory images using the Itti and Koch (2000) saliency

model. The saliency maps are then thresholded to identify the most critical regions.

The second method involves creating saliency labels using a cluster-and-fill approach

on the critical regions of the trajectory image. This requires clustering the most

salient areas, finding the concave hull of the region, and filling in the border de-

scribed by the hull. This is done to produce smooth and clean regions so that the

network is able to learn to distinguish between the free space and the critical regions

more easily. Finally, a CNN is trained to identify critical regions using the saliency

labels.

The model is then utilized by a new sampling-based motion planner, Learn and

Link, to reduce the computation necessary to solve challenging navigation plans with-

out compromising guarantees of correctness. Learn and Link has two modes: a single

query mode, Learn and Link Planner (LLP), and a multi-query mode, Learn and Link
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Roadmap (LL-RM). LL-RM is similar to PRM in that a roadmap is constructed, us-

ing both critical regions and random configurations, which can be used for multiple

queries (see Figure 1.1). LLP is used for efficient single query plans when it is not

necessary to construct a general roadmap, and one would like to bias a roadmap for

a given start-goal pair. Currently, Learn and Link is usable for navigation planning

and is being extended for general robot planning in the future. LLP and LL-RM are

evaluated against sampling-based motion planners from OMPL.

Figure 1.1: An example of the roadmap created using LL-RM for a Barrett WAM
arm navigation task. The green points are states that were created when linking the
vertices of the roadmap, the blue points are the vertices of the roadmap that were
uniformly sampled, and the red points are the vertices of the roadmap that came
from the critical regions.

Experiments reveal that areas of an environment that are critical for MP, but

have a low probability of being sampled under a uniform distribution, are identifiable

using CNNs. They demonstrate that these critical regions can be utilized by Learn

and Link to robustly compute motion plans while requiring far less planning time

than existing sampling-based motion planners. This approach is advantageous over
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pure sampling-based planners and pure learners: it leverages learning from experience

to outperform sampling-based planners, but avoids the possibility of missing solutions

that limits pure imitation learning, and remains probabilistically complete.

These results are believed to be general and hold across many domains. This

approach is particularly useful in situations where one would have some prior knowl-

edge on the class of environments being traversed, but not have the luxury of using

time-expensive planners.

This approach presents a first step towards creating hierarchies for continuous

planning problems by extracting critical regions for a given environment and defining

actions as transitions between them.

1.2 Related Works

The notion of discrete landmarks has been used to improve the performance of

classical planners in the past (Hoffmann et al. (2004)). The approach proposed in

this thesis relates to this concept but differs in its consideration of the sets of states

that are not only useful for reaching the goal, but are also less likely to be reached

under a stochastic search paradigm.

Several methods have been proposed to guiding sampling-based motion planners to

solutions. Heuristically-guided RRT (Urmson and Simmons (2003)) uses a probabilis-

tic implementation of heuristic search concepts to create a reasonable bias towards

exploration, as well as exploiting known good paths. Although this approach was

able to produce less expensive paths, it required a high computational price. Any-

time RRTs (Ferguson and Stentz (2006)) reuse information from previous RRTs to

improve on the path by rejecting samples which have a higher heuristic cost. Batch

Informed Trees (BIT*) (Gammell et al. (2015)) uses a heuristic to efficiently search

a series of increasingly dense implicit RGGs while reusing previous information. In
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contrast, the method proposed in this thesis guides the planner to solutions without

the need of a heuristic. Rather, the learned sampling distribution helps bias the sam-

pling towards critical regions which have a lower probability of getting sampled, but

in most scenarios are necessary for optimal solution.

The coupling of learning and motion planning has been extensively investigated in

the past. Recent work by Ichter et al. (2018) uses a Conditional Variational Autoen-

coder to bias sample points for motion planning conditioned on encoded environment

variables. This encoding is generalizable to higher dimensions, however it requires

structuring the data to encompass the state of the robot, the environment, the obsta-

cles (encoded as an occupancy grid), and the start and goal configurations. Moreover,

during inference, the network model requires this costly data structuring again, which

can take around 50 seconds. In contrast, this approach focuses on image-based learn-

ing where data can be easily generated using a top-view camera. Moreover, inferences

can also be made using a top-view image of the environment to leverage the learned

critical regions for motion planning in less than 5 seconds. This results in faster in-

ference for situations demanding faster motion plans. Havoutis and Ramamoorthy

(2009) use topology to learn sub-manifold approximations that are defined by a set

of possible trajectories in the configuration space. This requires either motion plans

that are generated through a motion capture device, or hand-crafted partial plans.

Pan et al. (2013) use instance-based learning where prior collision results are stored

as an approximate representation of the collision space and the free C-space. This is

used to make cheaper probabilistic queries. Although their method shows significant

improvement in some environments, their work is limited in finding solutions through

narrow passages between obstacles where optimal solution may lie. In this work, the

network learns the positions of regions that are critical for a given class of motion

planning problems, but have low probability of getting sampled under uniform dis-
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tribution. These critical regions can be leveraged by any motion planner for faster

solutions.

1.3 Experimental Setup

The model’s generalizability is evaluated on two domains: SE(2) and a 10-DOF

C-space involving a 7-DOF Barrett WAM arm on a moveable platform (see Figure

1.2).

Figure 1.2: 7-DOF Barrett WAM arm on a movable base solves a transportation
task using LL-RM. The pink points are states that were created when linking the
start and goal configurations to the roadmap.

This thesis focuses on investigating two main questions:

1. Can CNNs be used to identify critical regions for motion planning?

2. Can Learn and Link solve challenging navigation problems using less time than

prominent sampling-based planners?

The first consideration aims to see if the visual prowess exhibited by CNNs extends
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to critical region identification. The second consideration aims to see to what extent

do critical regions help a planner in computation reduction.

To investigate these considerations, challenging motion planning problems were

designed for SE(2) (see Figure 1.3) and the Barrett WAM arm (see Figure 1.4), and

various network architectures were explored. The testing environments are comprised

of extreme narrow channel situations and floor plan types. For both domains, 100

MP problems were constructed using the same start and goal pair, the same range,

and a planning time limit of 60 seconds. LLP and LL-RM use 5% of the total non-

collision causing critical region points identified as n, and m = n/10 and m = 0,

respectively. OMPL PRM and LL-RM are both given 1 second to build a roadmap

prior to planning. This approach is for robots with omnidirectional base movements,

though an arbitrary local planner can be substituted in the EXTEND module. It

is also important to point out that OMPL is written in highly optimized C++ code

compared to this Python implementation.

Figure 1.3: SE(2) test environments used to evaluate the model. Red dots represent
the start and goal configurations.

The critical regions identified by a model are evaluated using the ground truth

motion trace image for an environment. The model-identified critical regions are

first clustered using k -Nearest Neighbors (Altman (1992)). Then, each critical region

cluster is evaluated using the µ-criticality of the cluster, where v(r) is estimated as the
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Figure 1.4: Barrett arm test environments used to evaluate the model. The robot
is placed at the start and goal configurations.

area of the pixels in the cluster. The metric values for each cluster are then summed

to obtain an evaluation of the environment as a whole. The higher the value, the

better the critical regions.

This metric is used instead of comparing pixel accuracy with the ground truth label

since the motion trace image is embedded with much more information regarding the

quality of the critical regions than solely being able to locate them.
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Chapter 2

LEARNING CRITICAL REGIONS

Given a robot R, an environment E, and a class of MP problems M, the measure of

criticality of a Lebesgue-measurable open set r ⊆ Rn, µ(r), is defined as ltsn→+r
f(r)
v(sn)

,

where f(sn) is the fraction of observed motion plans solving tasks from M that pass

through sn, v(sn) is the measure of sn under a reference (usually uniform) density,

and →+ denotes the limit from above along any sequence {sn} of sets containing r

(r ⊆ sn for all n). Note that µ(r) is zero when f(r) = 0. While µ(r) can be infinite

for a region, for all practical purposes, only regions r with v(r) > 0 under the uniform

density are considered. Intuitively, regions with high criticality measures are those

that are vital for solutions to problems in M, but have a low probability of exploration

under a uniform density.

To learn critical regions, a setDtrain ofNtrain MP problem instances {Π1, ...,ΠNtrain
},

with corresponding solution trajectories {τ1, ..., τNtrain
}, is used to construct the train-

ing images; and a set Dtest of Ntest MP problem instances is used to evaluate the

learned model.

This approach consists of two phases: a data generation phase and a model train-

ing phase.

2.1 Data Generation

For each Πi ∈ Dtrain, an off-the-shelf motion planner is ran to generate a cor-

responding motion plan τi consisting of 50 random MP problems from M for var-

ious handmade environments (see Figure 2.1). In this thesis, an OpenRAVE (Di-

ankov and Kuffner (2008)) implementation of OMPL’s RRT-Connect planner by
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https://github.com/personalrobotics is utilized, though any motion planner can

be used instead.

Training images for each Πi ∈ Dtrain are constructed using a raster scan and a

saliency model. The process for an SE(2) robot is described, though it can be easily

extended to mobile manipulators, such as the Barrett arm on a mobile base. First,

a pixel-sized obstacle is created based on the dimensions of the desired image and

the bounds of a given environment, and it is scanned across the environment. For

the input images, if a collision is detected with an environment’s obstacles, a black

pixel is selected, otherwise a white pixel is selected. For the motion trace images, a

pixel value is assigned based on the fraction of paths that pass through the region

the pixel encompasses. Using the trajectory images, two labelling approaches are

explored. The first method (see Figure 2.2) involves using auto-generated saliency

maps from the motion trace images using an implementation of Itti’s saliency model

by https://github.com/mayoyamasaki. The saliency maps are binned into two

categories, high saliency (denoted by white pixels) and low saliency (denoted by

black pixels) before being used as labels. The second method (see Figure 2.3) involves

creating saliency labels using a cluster-and-fill approach on the critical regions of the

trajectory image. This involves clustering the most salient areas, calculating the

concave hull of each cluster, and filling the interiors described by each hull. This is

done to produce smooth and clean regions so that the network is able to learn to

distinguish between the free space and the critical regions more easily. The second

labeling approach was devised to determine if the biases inherent to saliency models

were affecting the performance of the network; though in the end, the auto-generated

labels performed better with the final network.
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Figure 2.1: Handmade training environments used for the SE(2) domain (not in-
cluding rotations). Training environments for the Barrett arm are similar, though
scaled appropriately for the difference in robot size.

Figure 2.2: (a) Example training environment overlain with motion traces.(b) Model
input obtained post raster scan.(c) Motion trace image based on the fraction of paths
that pass through each pixel.(d) Saliency map obtained from the motion trace im-
age.(e) Input label obtained after binning the saliency map based on pixel intensity.

Figure 2.3: (a) Example training environment overlain with motion traces.(b) Model
input obtained post raster scan.(c) Motion trace image based on the fraction of paths
that pass through each pixel.(d) Thresholded motion trace image to visualize the most
salient areas.(e) Input label obtained after clustering the salient areas and filling them
in.
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2.2 Network Architecture

A general structure for a convolutional encoder-decoder neural network which

learns to detect critical regions is proposed.

The network, depicted in Figure 2.4, has 14 convolutional layers. 7 layers in the

encoder network and 7 layers in the decoder network form the encoder-decoder archi-

tecture for pixel-wise classification. A pooling layer with stride 2 is introduced after

each group of same number of filters to encode the learned representation. Similarly,

an upsampling layer is added before each deconvolutional layer group of same num-

ber of filters. Inspiration is drawn from Badrinarayanan et al. (2015) for a learnable

upsampling layer in the decoder network.

Figure 2.4: Network architecture selected for the CNN.

The first two convolutional layers have 64 filters with a 3×3 kernel. Motivated by

the recent promising results of Simonyan and Zisserman (2014), 3 layers with 3 × 3

kernel size are stacked to obtain a similar receptive field as a 7× 7 kernel, with 81%

less parameters, and more effective training owing to the added non-linearity after

every layer. For the initial layer group of filter size 64 and 128, only two layers of

kernel size 3×3 are stacked. Though the receptive field is smaller than a 7×7 kernel,

still only 2 layers are stacked as the problem statement does not require learning

12



complex geometric features. The next 2 layers are of 128 filters with a 3 × 3 kernel.

Finally, 3 layers of 256 filters each, with a 3×3 kernel, are added for a larger receptive

field since Zeiler and Fergus (2014) showed that deeper layers learn invariant complex

features.

In the decoder network, corresponding deconvolutional layers to the encoder net-

work are used. The upsampled output is used for pixel-wise classification using a

softmax cross entropy loss function. Each layer in the network is activated using

ReLu non-linearity.

2.3 Network Training

The network was trained on a single Nvidia GTX 1080Ti using a mini-batch size

of 16 and a dataset of 10,024 images. Following Ioffe and Szegedy (2015), the network

was not trained with dropout (Srivastava et al. (2014)) since the output of every layer

is batch-normalised, which also acts as a regularizer. The Adam Optimizer (Kingma

and Ba (2014)) with a 0.1 learning rate is used to train the network. The network

was trained for 50,000 epochs since the loss converges at this point. The training

images are shuffled before each epoch and trained with mini-batch to ensure that

every input to the network is different from the previous. This assists the optimizer

to exit local minima. An implementation of SegNet (Badrinarayanan et al. (2015)) by

https://github.com/andreaazzini is used for its data pipelines since they provide

a fast and efficient input pipeline which reduces training time.

On average, training for the full dataset using mini-batch takes approximately 3

hours.
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2.4 Processing Critical Regions

The following section discusses how to process the model output so that it can be

used by Learn and Link.

Seeing as the model output is in image format, a mapping of pixel indices to the

environment’s coordinate system is required: f : (i, j) 7→ [pminx , pminy , pmaxx , pmaxy ].

Such a mapping is defined as follows:

f(i, j) =

∣∣∣∣∣∣∣
pminx pminy

pmaxx pmaxy

∣∣∣∣∣∣∣
f(i, j) =

∣∣∣∣∣∣∣
bmin bmax

bmin bmax

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
i −(j + 1)

i+ 1 −j

∣∣∣∣∣∣∣× pw
where pw = bmax−bmin

224
and 0 ≤ i, j ≤ 224.

In the equation: i is the horizontal pixel index, j is the vertical pixel index, bmin

and bmax are the bounds of the square environment, pw is the width of a pixel in

terms of the environment’s coordinate system, and f(i, j) gives the bounds for a

pixel located at (i, j) in terms of the environment’s coordinate system. i and j are

bounded since 224×224 is the desired dimension of the model input. It can be altered

to accommodate the model.

Using f, the pixels of the model output are iterated through and the coordinate

bounds of the pixels identified as critical regions, i.e. the white pixels, are stored. A

list of critical region points are then taken and passed to Learn and Link.
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Chapter 3

LEARN AND LINK

In this section, Learn and Link, and the various methods that compromise it, are

discussed.

3.1 Algorithms

The two version of Link and Learn are discussed. A single query version: Learn

and Link Planner, and a multi-query version: Learn and Link Roadmap.

3.1.1 Learn and Link Planner

Algorithm 1 is the base of LLP. In lines 11−17, the graphs in the roadmap RM are

initialized using a list of k configurations from the critical regions (CR) that do not

result in collisions, the initial configuration (qinit), and the goal configuration (qgoal).

In line 19, a random sample is taken to grow the current graph in its direction. In line

20, an attempt is made to extend the current graph to qnew, a new configuration in

the direction of qrand. If adding qnew to the graph results in a collision, i.e. EXTEND

returns Trapped, qnew is not added to the graph; otherwise it is added. In line 21, a

solution check occurs. If a solution is found, the path connecting the start and goal

configurations is found using Dijkstra’s algorithm (Dijkstra (1959)) in line 22. If the

conditions in lines 20 − 21 are not satisfied, shift to the next graph in the roadmap

using a round-robin approach in line 24. If an explicit sample cap is reached, i.e.

S 6=∞, without a solution path being found, an empty solution path is returned.

Algorithm 2 is used in an attempt to link a subgraph to the remaining graphs

in the roadmap (lines 9 − 11), to remove dead graphs from consideration (line 12),
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and to check whether all the subgraphs in the roadmap have been linked (line 13).

A subgraph is considered dead once it has been linked and added to another graph.

Once only one graph remains in the roadmap list, Linked is returned to indicate that

the roadmap is complete when used in LL-RM, or that a solution path is obtainable

when used in LLP.

Algorithms 3 and 4 depict the methods reused and adapted from RRT-Connect.

These methods are used to grow the current graph in the direction of the random

samples taken. These are used in LL-RM as well.

3.1.2 Learn and Link Roadmap

In this section we discuss the additional methods that make up LL-RM.

Algorithm 5 is used to construct LL-RM’s roadmap. In lines 10 − 13, n random

non-collision configurations are added as vertices to the roadmap from the critical

regions identified by the model. In lines 14−17, m random non-collision configurations

are added as vertices to the roadmap using a uniform sampler. For the remainder of

the algorithm, the subgraphs spawned from the vertices in the roadmap are attempted

to be linked. In line 19, a random sample is taken to grow the current subgraph

in its direction. In line 20, an attempt is made to extend the graph to qnew, a

new configuration in the direction of qrand. If adding qnew to the graph results in a

collision, i.e. EXTEND returns Trapped, qnew is not added to the graph; otherwise

it is added. In line 21, a connectivity attempt occurs to link the current subgraph to

the remaining graphs in the roadmap; once all the subgraphs have been connected,

Linked is returned and the building process is complete. Finally, the roadmap is

returned on line 22. If the conditions in lines 20 − 21 are not satisfied, shift to the

next subgraph in the roadmap using a round-robin approach in line 23. If an explicit

sample cap is reached, i.e. S 6= ∞, without a solution path being found, an empty
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roadmap, indicating a failure, is returned. This roadmap can be reused for multiple

queries.

Algorithm 6 is the planning component of LL-RM. In lines 9− 12, two subgraphs

are initialized from the initial (qinit) and goal (qgoal) configurations in an attempt

to connect them to the existing roadmap RM. In lines 13 − 18, the same approach

used in the building process is employed to connect the start and goal subgraphs to

the roadmap. In line 16, a solution check occurs. If a solution is found, the path

connecting the start and goal configurations is found using Dijkstra’s algorithm in

line 17.

3.2 Extension to Mobile Manipulators

The extension to higher DOF robots follows simply. Since the model only gives

base poses, append each configuration in CR with a random, non-collision causing,

configuration for the additional DOF values prior to calling the planner. The algo-

rithm then proceeds as usual.

3.3 Probablistic Completeness

Learn and Link maintains the probabilistic completeness property inherent to

sampling-based motion planners. Since LLP and LL-RM only add a finite set of

points to seed their roadmaps, it does not reduce the set of support (regions with

non-zero probability) of its uniform sampler, and thus, this property is preserved.

Even when the network paired with Learn and Link fails to identify any critical

regions, no issue arises. In this scenario, LLP works analogously to RRT-Connect

and LL-RM works analogously to PRM, both of which are probabilistcally complete.
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Algorithm 1 LLP

1: Input

2: Qinit: start configuration

3: Qgoal: goal configuration

4: CR: list of critical region points

5: Output

6: P : non-collision path from start to goal, if it exists

7: procedure LLP(qinit,qgoal,CR)

8: curr ← 0

9: RM ← []

10: K ← |CR|

11: G0.init(qinit)

12: G1.init(qqoal)

13: RM.append(G0)

14: RM.append(G1)

15: for k = 1 to K do

16: Gk+1.init(CRk)

17: RM.append(Gk+1)

18: for s = 1 to S do

19: qrand ← UNIFORM()

20: if EXTEND(Gcurr, qrand) 6= Trapped then

21: if LINK(RM,Gcurr, qnew) == Linked then

22: P ← PATH(RM [0])

23: Return P

24: Gcurr ← SWAP (RM,Gcurr)

25: Return []
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Algorithm 2 LINK

1: Input

2: RM : roadmap created using LLP or BUILD LL-RM

3: Gcurr: current subgraph being grown

4: Qnew: most recent configuration added to Gcurr

5: Output

6: S: status of Gcurr’s link attempt

7: procedure LINK(RM,Gcurr,qnew)

8: R← []

9: for Gi in RM \Gcurr do

10: if CONNECT (Gi, qnew) == Reached then

11: R.append(Gi)

12: RM.link and remove(R,Gcurr)

13: if |RM | == 1 then

14: S ← Linked

15: else if |R| > 0 then

16: S ← Connected

17: else

18: S ← Advanced

19: Return S
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Algorithm 3 CONNECT

1: Input

2: G: graph being grown towards q

3: Q: configuration which G is trying to connect to

4: Output

5: S: status of G’s connect attempt

6: procedure CONNECT(G,q)

7: repeat

8: S ← EXTEND(G, q)

9: until S 6= Advanced

10: Return S
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Algorithm 4 EXTEND

1: Input

2: G: graph being grown towards q

3: Q: configuration which G is stepping toward

4: Output

5: S: status of G’s extend attempt

6: procedure EXTEND(G,q)

7: S ← Trapped

8: qnear ← NN(q,G)

9: if CONFIG(q, qnear, qnew) then

10: G.add vertex(qnew)

11: G.add egde(qnear, qnew)

12: if qnew == q then

13: S ← Reached

14: else

15: S ← Advanced

16: Return S
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Algorithm 5 BUILD LL-RM

1: Input

2: N : number of critical region states to include in the roadmap

3: M : number of uniform states to include in the roadmap

4: CR: list of critical region points

5: Output

6: RM : constructed roadmap

7: procedure BUILD(n,m,CR)

8: curr ← 0

9: RM ← []

10: for n = 0 to N − 1 do

11: s← SAMPLE(CR)

12: Gn.init(s)

13: RM.append(Gn)

14: for m = 0 to M − 1 do

15: s← SAMPLE()

16: GN+m.init(s)

17: RM.append(GN+m)

18: for s = 1 to S do

19: qrand ← UNIFORM()

20: if EXTEND(Gcurr, qrand) 6= Trapped then

21: if LINK(RM,Gcurr, qnew) == Linked then

22: Return RM

23: Gcurr ← SWAP (RM,Gcurr)

24: Return []
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Algorithm 6 PLAN LL-RM

1: Input

2: Qinit: start configuration

3: Qgoal: goal configuration

4: RM : roadmap created using BUILD

5: Output

6: P : non-collision path from start to goal, if it exists

7: procedure PLAN(qinit,qgoal,RM)

8: curr ← 0

9: G1.init(qinit)

10: G2.init(qqoal)

11: RM.append(G1)

12: RM.append(G2)

13: for s = 1 to S do

14: qrand ← UNIFORM()

15: if EXTEND(Gcurr, qrand) 6= Trapped then

16: if LINK(RM,Gcurr, qnew) == Linked then

17: P ← PATH(RM [0])

18: Return P

19: Gcurr ← SWAP (RM,Gcurr)

20: Return []
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Chapter 4

RESULTS

Results suggest that both LLP and LL-RM require far less time to obtain a solution

than OMPL’s RRT, RRT-Connect, and PRM planners, especially as the environments

increase in difficulty. Figures 4.1 and 4.2 show a comparison of planning time used by

the OMPL planners and LLP and LL-RM using the areas learned by the parsimonious

network.

4.1 SE(2)

For SE(2), LLP and LL-RM outperformed OMPL’s planners in terms of aver-

age planning time and success rate, except on environment (d). On this floor plan

environment, PRM edged out both LLP and LL-RM, requiring 62% and 78% less

planning time on average, respectively; though RRT and RRT-Connect were still

easily outperformed. The next closest was on the second floor plan environment (b)

where LLP and LL-RM used 66% and 57% less time on average, respectively, than

PRM, the best performing OMPL planner on this environment. The performance on

these floor plan environments is attributed to there being a lot more open space and

less narrow passages compared to the size of the robot, and the size of the C-space.

Also recall that PRM and LL-RM both received an additional second for roadmap

construction. On environments (a) and (c), whose passages allow for limited move-

ment, the difference is more extreme. On environment (a), RRT, RRT-Connect, and

PRM had success rates of 19%, 0%, and 53%, respectively. For successful plans, LLP

and LL-RM required 97% and 99% less time on average, respectively, than PRM,

the best performing OMPL planner on this environment. On environment (c), RRT,
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Figure 4.1: Boxplots of the 100 runs comparing the planning time used to arrive at
a solution for the SE(2) domain. The success rate of the 100 plans for each planner
is listed in red on the plot.

RRT-Connect, and PRM had success rates of 93%, 8%, and 100%, respectively. For

successful plans, LLP and LL-RM required 64% and 74% less time on average, re-

spectively, than PRM, the best performing OMPL planner on this environment.

4.2 10-DOF

For the transportation tasks using the movable Barrett arm, LLP and LL-RM

require less planning time on average and had higher success rate than OMPL. On

environment (a), RRT, RRT-Connect, and PRM had success rates of 0%, 87%, and
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Figure 4.2: Boxplots of the 100 runs comparing the planning time used to arrive at
a solution for the 10-DOF domain. The success rate of the 100 plans for each planner
is listed in red on the plot.
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31%, respectively. When comparing successful plans, LLP and LL-RM required 89%

and 92% less time on average, respectively, than PRM, the best performing OMPL

planner on this environment. On environment (b), RRT, RRT-Connect, and PRM

had success rates of 0%, 23%, and 8%, respectively. When comparing successful

plans, both LLP and LL-RM required 88% less time on average than RRT-Connect,

the best performing OMPL planner on this environment.

4.3 Network Ablation Study

Since obstacles in an environment can be represented by bounding boxes, most

of the objects in our dataset have regular geometric shapes. An ablation study was

performed to find the simplest model that can learn the feature representation using

as few layers as possible, without compromising the results. Two different types

of neural networks are investigated and compared their performance with SegNet

using the µ-criticality measure. The ablation study for both types of architecture is

discussed below.

Convolutional Network

The main question in the network ablation study was to enquire whether a solely

convolutional network would suffice in solving this problem.

The CNN-based VGGNet learned only to trace obstacle borders. The µ-criticality

for VGGNet as shown in the Figure 4.3(a) is 0 for all the test environment. Although

the criticality values were not promising, it still shed light on network behaviour. The

network was able to learn the geometry of the obstacles in the image, which CNNs

are known to be good at, but was unable to identify the critical regions. Moreover,

training VGGNet takes 16 hours on a single Nvidia GTX 1080Ti GPU for 50,000

epochs.
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Encoder-Decoder

Following promising initial results using a SegNet architecture as shown in Figure

4.3(b), an encoder-decoder network which can learn the latent representation in a su-

pervised manner for pixel-wise classification was investigated. In an encoder-decoder,

the encoder can learn the feature representation and encode it into a latent space.

While the decoder can learn the pixel-wise classification on the learned features.

A simple encoder-decoder network with 4 layers each in encoder and decoder

sections of the network was able to somewhat learn the critical regions of the data well,

obtaining µ-criticality scores of 0.0156, 0.384, and 1.043, respectively on the SE(2)

environments, but tended to show a lot of checkerboard artifacts in the identified

regions.

Building on top of the above architecture, 3 more batch normalized layers were

added to increase the receptive field size in an attempt to smooth out the critical

regions and generalize to the test set. µ-criticality scores of 0.604, 0.371 and 0.702

were achieved for the respective environments, as shown in Figure 4.3(c), indicating

the network’s ability to identify the critical regions for motion planning.
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Figure 4.3: (a) Critical regions identified using VGGNet. From left to right, µ-
criticality is 0, 0, 0.(b) Critical regions identified using SegNet. From left to right,
µ-criticality is 0, 0.141, and 0.260.(c) Critical regions identified using the parsimonious
network. From left to right, µ-criticality is 0.604, 0.371, and 0.702.
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Chapter 5

CONCLUSION

A new approach to learning-based planning is presented using a new sample-based

motion planner, Learn and Link. A fully convolutional encoder-decoder neural net-

work is constructed to learn critical regions for navigation planning problems that

generalizes across different domains. The model is used by Learn and Link to remedy

the limitations of uniform sampling, without compromising guarantees of correctness.

Observed results on challenging navigation planning problems demonstrate that

CNNs have the capability to extract important features relevant to robot planning

problems.
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Chapter 6

FUTURE WORK

In the future, this thesis could be extended to general planning tasks, in addition to

navigation tasks. Currently, challenges are mainly in formulating the construction of

data which could be used by a model to learn critical regions for general planning

problems.

More work could also be done improving the second labeling approach. Either

the parameters for calculating the concave hull of the clusters need to be tuned, or a

different architecture is require to better utilize these labels.
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APPENDIX A

CODE
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Code written for this thesis is located at:
https://github.com/AAIR-lab/WaypointLearning
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APPENDIX B

DATA
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Data generated and used to train the model is located at:
https://drive.google.com/open?id=1NmT7f9XSA1mnNguTzaqSV4KLnrFfRKy
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