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ABSTRACT

Social media has become the norm of everyone for communication and also as a main-

stream in everyday life. (1). The usage of social media has increased exponentially

in the last decade. The myriads of Social media services such as Facebook, Twitter,

Snapchat, and Instagram etc allow people to connect with their friends, and followers

freely. The attackers who try to take advantage of this situation has also increased at

an exponential rate. Every social media service has its own recommender systems and

user profiling algorithms(2). These algorithms use users current information to make

different recommendations. Often the data that is formed from social media services

is Linked data as each item/user is usually linked with other users/items. Recom-

mender systems due to their ubiquitous and prominent nature are prone to several

forms of attacks(11). One of the major form of attacks is poisoning the training set

data. As recommender systems use current user/item information as the training set

to make recommendations, the attacker tries to modify the training set in such a way

that the recommender system would benefit the attacker or give incorrect recommen-

dations and hence failing in its basic functionality (10). Most existing training set

attack algorithms work with “flat” attribute-value data which is typically assumed

to be independent and identically distributed (i.i.d.) (4) . However, the i.i.d. as-

sumption does not hold for social media data since it is inherently linked as described

above. Usage of user-similarity with Graph Regularizer in morphing the training data

produces best results to attacker (3). This thesis proves the same by demonstrating

experiments on Collaborative Filtering with multiple datasets.
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Chapter 1

INTRODUCTION

Social media has become the most important aspect of everyday life. Nowadays,

most communication is done through social media. Imagining a life without social

media for example Facebook, Instagram, and Snapchat etc has become much harder.

Number of active users in Facebook has increased from around 100 million in 2008

to more than 2 billion people in 2018; Instagram has almost a billion users now while

it had only 90 million users five years back in 2013. The rate of increase is quite

similar in other social media services such as Twitter and Snapchat from their in-

ception. In each form of social media, the relation between users are similar with

each user connected to multiple users as friends or followers.(1) This paper mainly

focuses on Recommender systems and User profiling algorithms. Recommender sys-

tems use the relations between users on the social media service to suggest potential

friends or followers in all of social media. On the other hand, User profiling algo-

rithms make models of each user based on their activity on the social media service.

User-profiling algorithms use these models for suggestions and recommendations.(6)

In most of the algorithms, user-product relation is represented as a matrix with each

value in the matrix representing affinity of user in the corresponding row to prod-

uct of the corresponding column. As these matrices are incomplete, algorithms like

collaborative-filtering try to fill them by using user similarity matching.(15) As rec-

ommender systems play a vital role, they are susceptible to different types of attacks.

We are exploring one form of attack called data-poisoning where the attacker tries to

morph the training data for recommender system and user profiling algorithms (10).

In this type of attack, a malicious party creates a set of users with preferences in such
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a way that, the recommender systems benefit the attacker. Data poisoning attacks

could be of two types. In one case, recommender system might benefit one user or one

product or in the other the system might make completely obsolete recommendations.

In both cases, credibility of the model is lost.

Many existing algorithms working on graph linked data assume that the data is

independent and identically distributed. But social media data is linked data in which

each user is connected to other user and hence the assumption of i.i.d assumption on

the data is no longer valid. The problem of linked data is very well described in Tang

et al(3). In social media data, the users tend to form groups having much intra-

connections in the group than inter-connections with users of other groups. Having

this type of linkage makes the i.i.d assumption obsolete.

We present a systematic approach to computing near-optimal data poisoning at-

tacks for factorization- based collaborative filtering/recommendation models. We

assume a highly motivated attacker with knowledge of both the learning algorithms

and parameters of the learner following the Kerckhoffs principle to ensure reliable

vulnerability analysis in the worst case.

An attacker would want to conceal his attacks by doing minimal manipulations

to the training data that produce the best results as mentioned in this paper. The

main aim of the attacker would be to make as few changes as possible to the data

and disrupt the system to his favor as much as the attacker could. This would be a

bi-level optimization problem. Our main contributions in this paper are

• Formalizing this bi-level optimization problem using user similarity as a metric

for attack.
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• Our second contribution is to demonstrate our attack framework on Linked

graph data.

The rest of the paper is defined as follows. We formally define the problem of data

poisoning attacks on linked data using user similarity in section 3; introduce our new

framework for data poisoning in section 3, with KKT conditions and user-similarity;

present empirical evaluation with discussion in Section 4 and the related work in

Section 5; and conclude this work in Section 6.
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Chapter 2

PROBLEM STATEMENT

We discuss our problem statement here and formulate the optimization to solve.

In this paper, scalars are denoted by lower-case letters (a, b, . . .), vectors are written

as lower-case bolded letters (a, b, . . .), and matrices correspond to boldfaced upper-

case letters (A, B, . . .). We also assume that attacker is fully aware of the system’s

learning algorithm. There are two types of Machine learner problems for social media.

We formulate the both of them using following equations.

θ̂D ε argminθεD OL(D, θ),

s.t. gi(θ) ≤ 0, i = 1...m,

hi(θ) = 0, i = 1...p

min
XεRmxn

||R(M-X)||2F , s.t. rank(X) ≤ k,

Where D is training data. In classic machine learning, D is an iid sample from the

underlying task distribution but in the case of social media, D cannot be iid as dis-

cussed above in the introduction because of the linkage between the data. OL(D, θ) is

the learner’s objective: For example, regularized risk minimization can be formulated

as

OL(D, θ) = RL(D, θ) + λδθ

where, for some learner’s empirical risk function RL and regularizer δ. The g and h

functions are potentially nonlinear; together with the hypothesis space θ they deter-
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mine the feasible region. θ̂D is the learned model (recall argmin returns the set of

minimizers).

In equation 4, we consider machine learners that can be posed as a matrix com-

pletion problem which are also optimization problems. Let MεRmn be a data matrix

consisting of m rows and n columns. Mij for iε[m]andjε[n] would then correspond to

the rating the ith user gives for the jth item. We use δ = (i, j) : Mij is observed to

denote all observable entries in M and assume that |δ||| ¡¡ mn. We also use i [n] and

j [m] for columns (rows) that are observable at the ith row (jth column). The goal of

collaborative filtering (also referred to as matrix completion in the statistical learning

literature [2]) is then to recover the complete matrix M from few observations M.

One standard assumption is that M is a low ranked matrix which can be obtained

by solving equation 4.
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Chapter 3

PROPOSED METHOD

The increase in online user usage has led to a variety of information which could

be used in multiple ways. If one wants to watch a movie, it would be a painful expe-

rience to go through all the movies and pick one. Recommender systems help users

to ease their process of selection by suggesting items to users that users might find

beneficial. Recommender systems are the essential parts of most software companies

ranging from Google search to Amazon Ecommerce to Netflix video recommendations

etc. They also have become a key part of people’s social life via Facebook, Twitter,

Youtube, and Netflix etc. Online recommender systems root back to several disci-

plines such as cognitive science, information retrieval, and etc. Precise recommender

systems help both the spectrum of industry i.e. Users and Vendors. Users would find

their targets easily and Vendors would in turn make profits in less time than needed

and also keep customers happy. Netflix through its contest awarded 1 million dollars

to the team that improved their recommender system’s accuracy.

Due to their dominance, they became an independent area of research from mid

1990s. Social Networks in online platforms increase the social life of people. Social

recommender systems help people find their potential friends or inspirational figures

etc. There are many approaches in solving social recommender systems. One of the

most frequent way used is collaborative filtering. In a typical collaborative filtering

systems an n*m user matrix is created, where n users preferences about m products

are represented as ratings. The collaborative filtering systems maps similar users and

similar movies and tries to predict unseen ratings. With the increase in prominence

of social recommender systems using collaborative filtering, the threats from people
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who want to misuse them increase exponentially. Malicious users or rival companies

try to insert fake users or manipulate the data matrix available for two main pur-

poses. Malicious users want to change the recommender systems in such a way that

it recommends the items that are valuable for malicious users more frequently. While

the rival companies tend to inject fake users so as to decrease the accuracy of the

recommender system.

These type of attacks are called shilling attacks. In the case of social networks

like Facebook, malicious users might want to increase their popularity and hence

inject the recommendation system in such a way that it suggests them. The same

case follows for Youtube, Twitter and etc. In the case of Netflix, rival companies

might introduce injections to reduce its accuracy. While the e-commerce systems like

Amazon, Zappos are vulnerable for both kinds of attacks.

3.0.1 Identifying K.K.T. Conditions

In this section, we talk about how to identify the KKT conditions of our bi-level

optimization problem and formulate them. Bi-level optimization problems are NP

hard in general. We present an efficient solution for a broad class of training- set

attacks. Specifically, we require the attack space D to be differentiable (e.g. the

attacker can change the continuous features in D for classification, or the real-valued

target in D for regression). Attacks on a discrete D, such as changing the labels in D

for classification, are left as future work. We also require the learner to have a convex

and regular objective OL.

Under these conditions, the bi-level problem Eq (5) can be reduced to a single-level

constrained optimization problem via the Karush-Kuhn-Tucker (KKT) conditions of

the lower-level problem (Burges 1998). We first introduce KKT multipliers i,i = 1...m

and i,i = 1...p for the lower-level constraints g and h, respectively. Since the lower-
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level problem is regular, we replace the lower-level problem with its KKT conditions

(the constraints are stationarity, complementary slackness, primal and dual feasibility,

respectively):

3.0.2 Attack Against Matrix Factorization Systems

Most of the recommender systems use Matrix Factorization systems, here we

formulate our attacks on those systems. In the attack against collaborative filtering,

the data matrix consists of m users and n items. Since, every user wouldn’t have

rated every field in the matrix is not filled in and collaborative filtering algorithms

is used to fill in the matrix. An attacker can add αm users. Since, we would like to

avoid being detected each user can give his preference only up to N items and in the

range of -l, l. The main reason behind it is to go undetected from the agent.

These are the notations used in the paper. M as the original matrix. M with a cap

to represent the matrix that consists of all the malicious users. The dimensonality of

original Matrix is m * n and the dimensionality of malicious matrix M cap is alpha

m * n. Alpham represents number of malicious users. Since, we want a risk averse

model, we assume the maximum value of alpha to be 0.3. Since, this is a bi-level

optimization problem, equation 4 in the problem statement can now be formulated

as

θλ(M̂ : M) = argminU,Û,V T ||Rω(M − UV T )||2F+

||Rω̂(M̂ − ÛV T )||2F + 2λU(||U ||2F + ||Û ||2F ) + 2λV (||V ||2F )

where the resulting output consists of low rank latent factors U, U cap without
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or with malicious users respectively while

The sign from the equation is a variable consisting of low-rank matrix factors U,

U cap, and V repressing normal users, malicious users and items respectively. The

Graph Regularization term used in the equation helps finding optimized U, U cap,

and V values. We have M cap = UVT. The goal of the attacker is to find optimal

malicious users, M cap such that, Equation 6 from the paper.

Here M = new M is the malicious data which we use to attack the collaborative

filtering system. And S(Mcap, M) denotes the utility score that describes how good

the attack is.

There could be two kinds of attacks based on the attacker utility.

3.0.3 Availability Attack

The main aim of this attack is to disrupt the collaborative systems so that it

gives completely different predictions. Lets say that M dash is the systems prediction

without data poisoning and M cap is the systems prediction. Then the utility function

is defined as follows.

Rav(M̂,M) = R(M̂ − M̄)2

. The effectiveness of the attack is defined by the value of R, the higher it is the more

severe the attack is.

3.0.4 Integrity attack

The main aim of this attack is to make few items in the set more popular. Let

J is that subset and w is the weightage given to each item in set J by the attacker.

Then the utility function is defined as follows.

Rin(M̂,M) = Σm
i=1ΣjεJ0w(j)M.

9



Where function R is the loss function for integrity function and and M hat is the

prediction of system with data poisoning attack and M is predictions without data

poisoning attack

3.0.5 Optimal Attack Strategy

We use the projected gradient agent (PGA) method for solving the optimization

problem in Eq. (6) with respect to the alternating minimization (12) formulation in

Eq. (4). In iteration t we update M cap as follows.

M̂
∗
ε argminM̂εMR(M̂(θλ(M̂ ;M)),M)

Here, projection gradient is used so we keep all the malicious users preferences in

a range of (-v, v) and st is the step size. Note that the estimated matrix M depends

on the model (M ; M) learnt on the joint data matrix, which further depends on the

malicious users M . Since the constraint set M is highly non-convex, we generate B

items uniformly at random for each malicious user to rate. The ProjM() operator

then reduces to projecting each malicious users rating vector onto an l ball of diameter

, which can be easily evaluated by truncating all entries in M at the level of .

We next show how to (approximately) compute M R(M ,M). This is challenging

because one of the arguments in the loss function involves an implicit optimization

problem. We first apply chain rule to arrive at

OM̂R(M̂,M) = OM̂θλ(M̂ ;M)OθR(M̂,M)

10



Figure 3.1: Algorithm Used
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Chapter 4

EXPERIMENTS

4.0.1 Data

In this section we explain the datasets that we used, and pre-processing that we

made to the datasets to fit to this problem. To evaluate the effectiveness of our pro-

posed poisoning attack strategy, we use the publicly available MovieLens dataset(cite)

for testing attacks on Collaborative-Filtering. The dataset contains 20 millions rat-

ings and 465,000 tag applications applied to 27,000 movies by 138,000 users [23].

Each user who has watched a movie rates the movie from 1 to 5. We shift the rat-

ing range to [-2, 2] for computation convenience and setting neutrality to zero. To

avoid the cold-start problem, we consider users who have rated at least 20 movies.

The second dataset that we used is Amazon Instant Video dataset which has ratings

about amazon videos, we removed users that have less than 10 ratings. Statistics of

the dataset can be found on Table2. Precisely, even though several users are removed

by preprocessing, Amazon dataset is still extremely sparse compared to the others.

Two metrics are employed to measure the relative performance of the systems before

and after data poisoning attacks: root mean square error (RMSE) for the predicted

unseen entries and average rating for specific items.

12



Figure 4.1: Availabality Attack on MovieLens Dataset

Figure 4.2: Integrity Attack on MovieLens Dataset
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Figure 4.3: Availabality Attack on Amazon Instant Dataset

Figure 4.4: Integrity Attack on Amazon Instant Dataset

Table 4.1: Movielens Dataset Statistics

Statistics

Users 943

Movies 1682

Ratings 100,000

Table 4.2: Amazon Instant Video Dataset Statistics

Statistics

Users 5000

Movies 10843

Ratings 50,000

The first step of our experiment was to check the best value for the hyper-

parameter Regularization constant as this was crucial in determining how significant

14



Graph Regularization is for Linked data, we have tried values ranging from 0.001 to

100 for the same. The results can be seen in the figure below when experimented

with availability attack along with integrity attack. Figure1, and Figure2 clearly de-

picts for availability attacks that Utility value linearly increases with reguralization

constant peaking at the value of 1 and then starts decreasing from there. The same

can be said for integrity attacks that the graph follows the same trend while utility

peaks when reguralization constant is 0.84 by looking at figures 3, 4.

Our first experiment with malicious data was to test the bi-level optimization

problem with graph regularization on MovieLens data with collaborative filtering on

availability attacks.

Table 4.3: Malicious Percent with Utility for Movielens Dataset on Availability Attack

Malicious percent utility utility with Graph regularization

0.05 6.63 21.603

0.1 17.43 25.501

0.15 31.000 34.444

0.2 53.541 54.058

0.25 67.309 68.681

As you can see from the figures from 1 to 4, the movielens dataset being more

dense than Amazon Instant Video dataset produces better results.

The above table depicts how much the error rises with the rise in Malicious per-

centage of users. As you can see, the increase is semi-linear with the peak slope

occurring at 0.1 percent of malicious users. The calculation of utility value is mea-

sured as per equation 6. The third column explains the utility value when bi-level

optimization is done with graph regularization. As you can see, the utility value is

15



Table 4.4: Malicious Percent with Utility for Amazon Instant Video Dataset for

Availability Attack

Malicious percent utility utility with Graph regularization

0.05 31.778 63.921

0.1 43.194 71.642

0.15 43.160 67.434

0.2 53.671 128.675

0.25 63.497 136.933

almost double with graph regularization.

Table 4.5: Regularization Constant at 1

Malicious percent utility with Graph regularization for MovieLens dataset on AA

0.05 21.603

0.1 25.501

0.15 34.444

0.2 54.058

0.25 68.681

As we discussed above, integrity attacks are widely popular as the key aim in most

attacks is to increase the popularity of few items which might have been sponsored

by the attackers. To see how data poisoning attacks fare with integrity attacks we

have repeated similar experiments as above for Collaborative filtering with Graph

Regularization on integrity attacks.

The above table depicts how much the error rises with the rise in Malicious per-

centage of users. As you can see, the increase is semi-linear with the peak slope

16



Table 4.6: Malicious Percent with Utility for Movielens Dataset on Integrity Attack

Malicious percent utility utility with Graph regularization

0.05 2.779 3.242

0.1 3.197 4.053

0.15 3.174 4.364

0.2 3.677 4.562

0.25 3.497 4.863

Table 4.7: Malicious Percent with Utility for Amazon Instant Video Dataset on In-

tegrity Attack

Malicious percent utility utility with Graph regularization

0.05 0.716 1.611

0.1 1.607 2.029

0.15 2.288 2.897

0.2 3.346 3.058

0.25 2.284 3.572

occurring at 0.1 percent of malicious users. The calculation of utility value is mea-

sured as per equation 6. The third column explains the utility value when bi-level

optimization is done with graph regularization. As you can see, the utility value is

almost double with graph regularization.

After hyper-parameter tuning for regularization constant, we got the best results

at the regularization constant as 1. The utility value at different percentage of mali-

cious users is given in the above table.

17



Table 4.8: Regularization Constant at 1

Malicious percent utility with Graph regularization on Movielens dataset with IA

0.05 3.242

0.1 4.053

0.15 4.364

0.2 4.562

0.25 4.863

18



Chapter 5

FUTURE WORK

Although we focused on formulating the optimal training-set attack in this paper,

our ultimate goal for the poisoning attack analysis is to develop possible defensive

strategies based on the careful analysis of adversarial behaviors. Our optimal training-

set attack formulation opens the door for an alternative defense: flagging the parts

of training data likely to be attacked and focus human analysts attention on those

parts. And also, since the poisoning data is optimized based on the attackers mali-

cious objectives, the correlations among features within a feature vector may change

to appear different from normal instances. Therefore, tracking and detecting devi-

ations in the feature correlations and other accuracy metrics can be one potential

defense. Additionally, defender can also apply the combinational models or sampling

strategies, such as bagging, to reduce the influence of poisoning attacks. We would

also like to extend our work in other Machine Learning algorithms like SVM for clas-

sification tasks to prove that Graph Regularization is ubiquitous in getting the best

attacks when used in social media platforms as the data present over there is not i.i.d.
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Chapter 6

CONCLUSIONS

As you can see that from the above results, a simple addition of graph regularization

in the bi-level optimization sky-rockets the utility values which show the effectiveness

of the solution. The increase in the utility values you can see from the results is near

linear in case of both integrity attacks and availability attacks.

We would like to conclude by saying that graph regularization is a less explored

feature, which goes well with linked data for example social media data as the data

is not i.i.d.
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● Matrix factorization for collaborative filtering

● It is widely used in various recommender systems

● Ex: Finding affinity relations, recommendations

Collaborative Filtering for Recommender Systems

● Poisoning the training data to break recommender systems
● Loss of trust
● Availability attack

○  Recommender system gives 
 wrong recommendations as 
 other fruits should be 
 recommended first

● Integrity attack
○ In this scenario, attacker might be

promoting items like milk, and 
hence it is recommended.

Data poisoning for collaborative filtering
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● Data poisoning has been applied to classification based SVM systems

● The experiments were done on wine dataset

● Reference: Shike Mei and Xiaojin Zhu. “Using Machine Teaching to Identify Optimal Training-Set 
Attacks on Machine Learners.” In: AAAI. 2015, pp. 2871–2877

Related work on Classification based SVM systems

● Data poisoning for recommender systems, proposed in 2016 NIPS

● The work was done on MovieLens dataset 

● The optimization function for this thesis was built based off of this paper

Reference: Bo Li and Yining Wang. “Data poisoning attacks on 
factorization-based collaborative filtering”. In Advances in Neural Information 
Processing Systems (NIPS*), 2016a.

*NIPS is now called NeurIPS

Related work
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Structure of Linked Data

● IID: Each datapoint is mutually independent and follows the same distribution

● In the context of social media, the data does not hold iid assumption as each user/product is linked 
to one another thus creating linked data

Invalid IID assumption
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● Formulating the bi-level optimization function by using graph regularization 

● Pre-processing the datasets and experimenting to find the best hyper parameters

● Experimentally proving that using graph regularization produces better results for data poisoning 
attacks

Our Contributions in this thesis

Attacks with Graph Regularization
● Optimization function without Graph Regularization

● Optimization function with Graph Regularization 
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● Availability attack:

● Integrity attack:

Loss/Reward function for availability attack and integrity attack

● MovieLens 100k dataset is formulated by GroupLens Research

● The dataset that we used consists of 943 users rating 1682 movies

● A total of 100,000 ratings were recorded

● Each rating is in a range from 0 to 4

MovieLens dataset
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● This dataset has 5,073 users who have rated 10,843 items

● There were around 50,000 ratings in total

Amazon Instant Video dataset

● Malicious user percentages to be injected

● Regularization Constant 

● Dimensionality of Latent Vectors

Hyper-parameters used for experiments
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Results on MovieLens dataset

Results on Amazon instant video dataset
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● From the experimental results from both the datasets we can see that using graph regularization 
easily outperforms the ones without using it. 

● Graph regularization is a less explored feature 

Conclusions

● Expansion to Classification based models

● Building Defense systems against data poisoning attacks

Future Work
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● Bo Li and Yining Wang. “Data poisoning attacks on factorization-based 
collaborative filtering”. In Advances in Neural Information Processing 
Systems (NIPS*), 2016a.

● Shike Mei and Xiaojin Zhu. “Using Machine Teaching to Identify Optimal 
Training-Set Attacks on Machine Learners.” In: AAAI. 2015, pp. 2871–2877

● J. Tang and H. Liu. “Feature selection with linked data in social media”. In 
SDM, 2012.

● Amazon Instant Video Dataset
● MovieLens Dataset

Major references

Thank you
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