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ABSTRACT

A simulation study was conducted to explore the robustness of general factor mean
difference estimation in bifactor ordered-categorical data. In the No Differential Item
Functioning (DIF) conditions, the data generation conditions varied were sample size, the
number of categories per item, effect size of the general factor mean difference, and the
size of specific factor loadings; in data analysis, misspecification conditions were
introduced in which the generated bifactor data were fit using a unidimensional model,
and/or ordered-categorical data were treated as continuous data. In the DIF conditions, the
data generation conditions varied were sample size, the number of categories per item,
effect size of latent mean difference for the general factor, the type of item parameters that
had DIF, and the magnitude of DIF; the data analysis conditions varied in whether or not
setting equality constraints on the noninvariant item parameters.

Results showed that falsely fitting bifactor data using unidimensional models or
failing to account for DIF in item parameters resulted in estimation bias in the general
factor mean difference, while treating ordinal data as continuous had little influence on the
estimation bias as long as there was no severe model misspecification. The extent of
estimation bias produced by misspecification of bifactor datasets with unidimensional
models was mainly determined by the degree of unidimensionality (i.e., size of specific
factor loadings) and the general factor mean difference size. When the DIF was present,
the estimation accuracy of the general factor mean difference was completely robust to
ignoring noninvariance in specific factor loadings while it was very sensitive to failing to
account for DIF in threshold parameters. With respect to ignoring the DIF in general factor
loadings, the estimation bias of the general factor mean difference was substantial when



the DIF was -0.15, and it can be negligible for smaller sizes of DIF. Despite the impact of
model misspecification on estimation accuracy, the power to detect the general factor mean
difference was mainly influenced by the sample size and effect size. Serious Type | error

rate inflation only occurred when the DIF was present in threshold parameters.
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Chapter 1: Introduction

Overview

The bifactor model is widely used in measurement models when sets of items are
grouped into clusters. For example, in a reading comprehension test, a cluster may be
formed when a set of questions are given based on a specific reading passage. These
clusters can be considered as testlets, which are very common in both cognitive and non-
cognitive tests (e.g., Chen, West, & Sousa, 2006; Gighac & Watkins, 2013; Min & He,
2014; Reise, Morizot, & Hays, 2007). Testlet-based items are desirable mainly in the
following two circumstances. First, the construct (e.g., the depression construct) to be
measured may consist of several related facets (e.g., negative mood, social withdrawal,
poor cognitive functioning, etc.). Second, as in the example mentioned earlier, context-
dependent items may be based on a common stimulus (e.g., a reading passage). In these
circumstances, the bifactor model can be an appropriate representation of the construct
when an assessment is designed to measure a strong common trait despite the existence of
testlets (Reise, 2012). In the bifactor model, a general factor is hypothesized to underlie all
items, and each item is specified to load on at most one of the specific factors, which
explains the additional common variance among a set of items beyond the influence of the
general factor. It is assumed that the general factor and all specific factors are orthogonal
with each other.

The bifactor model was initially applied as a special case of the confirmatory factor
analysis (CFA) model for continuous items (Holzinger & Swineford, 1937). To
accommodate a wider range of measurement applications, the bifactor model was extended

for use with binary data within the item-response theory (IRT) framework by Gibbons and



Hedeker in 1992. Gibbons et al. (2007) introduced the bifactor IRT model for polytomous
data.

The single-group bifactor model based on ordered-categorical data has been widely
applied and studied in recent years. In both applied research and simulation studies (e.g.,
DeMars, 2006; Immekus & Imbrie, 2008; Min & He, 2014; Reise et al., 2007; Rijmen,
2010), researchers are mostly interested in comparing the bifactor IRT model with other
competitive IRT models for items which may form testlets, including unidimensional
models (only the common trait is modeled), testlet models (constraints are placed on the
relationship between the general factor loadings and the specific factor loadings of the
bifactor model), second-order IRT models (equivalent with a testlet model in which a
proportional constraint is specified between the general factor loadings and the specific
factor loadings for items within each testlet), and correlated-factors models (only the
specific factors are modeled and the specific factors can be correlated with each other).
These models can be compared based on parametric methods by utilizing exploratory and
confirmatory models. Nonparametric DIMTEST (Stout, Douglas, Junker, & Roussos, 1999)
is used in some research (e.g., DeMars, 2006) to explore essential unidimensionality. If a
unidimensional model is deemed adequate, there would be no need for subsequent
comparisons of varied multidimensional IRT models.

Given that the unidimensional model, the testlet model, the second-order model and
the correlated-factors model are all nested within the bifactor model, the bifactor model
plays an important role in determining dimensionality issues for testlet-based items. As
suggested by DeMars (2013), another important utility of the bifactor model is that more

meaningful general factor scores can be obtained after accounting for the specific factors.



Also, bifactor models can be used to estimate the extent to which a subset of items can
discriminate the ability reflected by the subdomain after the common variance due to the
general factor is partialed out such that a decision can be made regarding the utility of
forming subscale scores (Reise et al., 2007). In addition, the unique contribution of each
specific factor (or general factor) to prediction of an external variable after controlling for
the general factor (or specific factors) can be estimated using a bifactor model (Chen et al.,
2006).

With respect to estimation, the bifactor model with ordered-categorical data can be
estimated by both full-information estimation (e.g., marginal maximum likelihood; Bock
& Aitkin, 1981) under the IRT framework (e.g., Gibbons & Hedeker, 1992; Gibbons et al.,
2007) and limited-information estimation (e.g., weighted least squares) within the
framework of structural equation modeling (SEM; Reise, 2012). Unlike full-information
estimation in which the entire response vector of each test taker is utilized for computation,
the limited-information estimator is implemented based on tetrachoric or polychoric
correlations among items. It has been shown that the two-parameter normal-ogive IRT
model is equivalent to the factor analytic model for ordinal categorical data (Kamata &
Bauer, 2008; Takane & de Leeuw, 1987).

In the field of consumer research, organizational research, and clinical studies,
researchers are frequently interested in latent mean differences across different populations
in terms of demographic characteristics, cultures, and backgrounds. In addition to the
utilities mentioned above, with bifactor models, latent mean differences in both the general
factor and the specific factors can be estimated across groups (Chen et al., 2006). As

suggested by Schmitt and Kuljanin (2008), the establishment of measurement invariance



is crucial for the comparisons of latent means or other structural coefficients because these
subsequent analyses might be meaningless if directly assuming measurement invariance.
Measurement invariance holds if a measuring device works in the same way across varied
conditions (i.e., different populations, different time points) that are irrelevant to the
attribute being measured (Millsap, 2011). Differential item functioning (DIF) is considered
as a between-group difference between item parameters, or item response functions given
the same score on the latent continuum, that determine the item response function in
different groups. Under the IRT framework, there are multiple methods for DIF detection
in item parameters, and the most commonly applied method is likelihood ratio (LR) tests.
In addition, the DIF can be detected under the CFA framework as well using traditional
multiple-group CFA models, categorical multiple-group CFA models and multiple-
indicator-multiple-causes (MIMIC) models. It has been consistently agreed that latent
mean comparisons can be conducted under conditions of partial invariance (Byrne,
Shavelson, & Muthén, 1989; Steenkamp & Baumgartner, 1998). However, there are no
consistent opinions about the extent to which partial invariance is allowed without
compromising estimation accuracy and power for tests of latent mean differences. Only a
few simulation studies have focused on the factors influencing latent mean comparisons
under both IRT and CFA frameworks (e.g., De Beuckelaer & Swinnen, 2018; Jones &
Gallo, 2002). Their results indicated that one of the major factors that resulted in bias in
latent mean difference estimation was failing to account for DIF.

For the multiple-group data with unknown structure, dimensionality issues need to
be explored first before testing DIF and estimating between-group latent mean differences.

The consequences of fitting bifactor data with unidimensional models have been studied



in some single-group studies (e.g., DeMars, 2006). To the best of my knowledge, only one
study focused on this issue for multiple-group data (Fukuhara & Kamata, 2011), and as
shown in their results, for the generated bifactor binary response data, DIF can be better
detected using the bifactor IRT model in comparison with the unidimensional model.

Although selecting the appropriate model and correctly detecting DIF in the item
parameters are the prerequisite for estimating latent mean differences, they might not be
achieved in reality. Thus, the main purpose of this study is to explore the robustness of
latent mean comparisons for the general factor underlying bifactor, ordered-categorical
data to misspecification of the dimensionality of data structure and the equality constraints
on noninvariant item parameters under varied research conditions. In this chapter, I first
introduce the bifactor IRT model in terms of its specification, estimation, applications, and
important utilities. Next, | focus on different methods for DIF detection and latent mean
comparisons. Finally, | illustrate factors that influence DIF detection procedures and latent
mean comparisons based on findings of previous simulation studies. Following this review,
the proposed simulation study is presented in the methods chapter. It is expected that the
results of this study will provide recommendations for researchers who are interested in the
latent mean difference of the general factor despite the existence of the specific factors in
bifactor, ordered-categorical data.

Introduction to Bifactor IRT Models

The following section starts with an introduction to basic principles of IRT models
based on unidimensional IRT models, which can be extended to multidimensional IRT
models. Then the dimensionality issues are addressed. To be specific, the general forms of

multidimensional models are illustrated first. Then | introduce the bifactor IRT model, a



hierarchical multidimensional IRT model, in terms of its specification, estimation,
applications, and important utilities. After that, I discuss the role of bifactor models in
exploring the dimensionality issues of IRT models by comparing the bifactor model with
its competing alternative models.
Basic Principles of Item Response Theory Models

Item response theory was introduced around 1950s as a relatively recent alternative
to classical test theory (CTT). Unlike CTT that focuses on total observed scores, IRT
focuses on each item. IRT places the person characteristics and item characteristics on the
same latent continuum, and the item response function (IRF) specifies the function that
relates the probability of responses to both person characteristics and item characteristics
(de Ayala, 2009).

For dichotomous data, the common IRT models are the one-parameter logistic (1PL)
model, the two-parameter logistic (2PL) model, and the three-parameter logistic (3PL)
model. The 2PL model was the focus of the current study. The IRF of the 2PL model is

shown below:

eaj(ei— b])

P(xi; = 1|6;, a;, bj) = ) (1)
where x;; denotes person i’s response to item j, 6; is the latent ability parameter for person
I, a; isthe discrimination parameter for item j, b; is the difficulty parameter for item j, and
P(x;; = 116;,a;, b;) denotes the probability of person i correctly answering item j. To
obtain a unique solution for the discrimination parameter for item j (a;), a common
identification method is to set the variance of the latent ability () distribution to 1; to
obtain a unique solution for the difficulty parameter for item j (b;), a common identification

method is to set the mean of the latent ability (&) distribution to 0.
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For 2PL models, each item has its own difficulty parameter that represents the point
on the latent ability scale where the probability of passing this item is .50. The
discrimination parameter reflects the steepness of an item. For an item with a larger value
of the discrimination parameter, the probability of passing it changes more quickly than
another item with relatively smaller discrimination parameter around the neighborhood of
their corresponding difficulty parameters. In the 2PL model, the discrimination parameters
vary across items.

For polytomous data, the common IRT models include the partial credit model
(PCM), the rating scale model (RSM), the generalized partial credit model (GPCM) and
the graded response model (GRM). The GRM was focused in the current study. The GRM

has the same specification as the 2PL model. The equation for the GRM is:

eaj(ei— bjx)
P(xij = x|6;,a;, bjy) = ) 2)

where b;, denotes the threshold parameter representing the point on the latent ability scale
where the probability that a response above x is .50, and P(x;; = x|6;, a;, bj,) is the
probability for person i to give a response above x. Note that for an item with C categories
there are C -1 threshold parameters. P(x;; = x|6;, a;, bj) equals 1 when x is 0.
Based on Equation 3, the probability of giving a response of x can be obtained from:
P(xij = x16;, a;, bjx)= P(x;; = x|6;, a;, bjx) - P(x;; = x + 1|0;, a;, bj(x+1)) (3)
For IRT models with polytomous data, researchers can get an overall picture of the
probabilities for an item using the expected score function. The expected score is calculated
by summing the products of the number assigned to each category and probability of this

category given the latent ability, so the expected score function describes the relationship



between the latent ability and the expected item score. When there are only two categories,
the expected score function is actually the item response function.

There are three fundamental assumptions underlying commonly applied IRT
models (de Ayala, 2009). First, it is assumed that only one latent variable determines the
probability of observed responses (unidimensionality assumption). Second, it is assumed
that the item responses are uncorrelated with each other after controlling for the latent
variable (local independence assumption). Third, it is assumed that the IRT model follows
a specific form specified by the model (functional form assumption).

The most commonly applied estimation method under IRT framework is marginal
maximum likelihood (MML; Bock & Aitkin, 1981). In MML, item parameters are
estimated first using the marginal distribution in which person parameters are removed
from the marginalization process. After obtaining item parameters, person parameters can
be estimated using either maximum likelihood estimation (MLE) or the Bayesian method
(de Ayala, 2009). The drawback of MLE is that it cannot estimate latent scores for
examinees with zero correct answers or perfect scores. Expected a posterior (EAP) and
maximum a posterior (MAP) are two specific strategies for the Bayesian method. In
addition to MML, Bayesian estimation with Markov Chain Monte Carlo (MCMC) has
gained popularity in recent years.

The 2PL IRT model and the GRM can be estimated within the framework of the
CFA model because of their equivalency with categorical CFA models (Wirth & Edwards,
2007). In categorical CFA models, it is assumed that continuous latent response variates

underlie the ordered-categorical data. Using x; to represent the observed discrete response



variable for item j and x;" to represent the underlying latent response variate for x;, one
could express the relationship between x; and x; as:

x; = 0,if xj* <Tj

Xj =%, if Tjx <X < Tjxsn)

x; =C—1,if tjc-1) < x]T" (4)
where t;, is the xth threshold parameter for item j. Using the one-factor CFA model as an
example, the equation relating the common latent factor to the latent response variates is:

X*= A"+ & (5)
where X™ is the vector containing latent response variates, A% is the loading vector, &*
denotes the common latent factor, and &* is the residual vector. The model implied
variance and covariance matrix X*can be expressed as:

I = ALO'A, + O} (6)
where @ is the variance of the common latent factor, A’;’ iIs the transpose vector of A,
and @j is the variance and covariance matrix for the residuals. In order to identify this
model, the mean of the common factor is fixed to 0, the variance of the common latent
factor is fixed to 1, and the variances of latent variates are fixed to 1. Categorical CFA
models are estimated using tetrachoric or polychoric correlations among the items which
can be considered as the estimates of Pearson correlations among the latent response
variates. Like the CFA models with continuous data, parameters in the categorical CFA
models are estimated to minimize the differences between the model-implied variance-

covariance matrix and the data variance-covariance matrix. Given that only the tetrachoric

or polychoric correlations estimated based on proportion of responses in the observed



contingency table are used as data input, estimation methods applied for CFA models with
ordered-categorical data are called limited-information analysis, which is named in contrast
to full-information analysis (e.g., MML) that utilizes all information of the data. The
WLSMYV estimator of Mplus (Muthén & Muthén, 2010) is commonly applied for
estimating model parameters for categorical CFA models.

In unidimensional models, the loading parameters and threshold parameters
obtained in categorical CFA models can be converted to discrimination parameters and
difficulty (or threshold) parameters for the corresponding equivalent 2PL (or the GRM)

IRT model using the following formulas:

1.72;
_ ]
a; = —2
b:(b..) = IX 7
J( Jx) 2% ( )
j

where A7 and 7;, denote the standardized factor loading and threshold parameter for item j
in the categorical CFA model, and a; and b;(b;,) represent the discrimination parameter
and difficulty parameter (threshold parameter).

For both IRT models and categorical CFA models, global model fit and local model
fit indices can be obtained using the commonly applied software (e.g., IRTPRO for IRT
models, Cai, Thissen & du Toit, 2011; Mplus for CFA models, Muthén & Muthén, 2010).
Nested models can be compared using the likelihood ratio (LR) test for IRT models and
the chi-square difference test with corrections for categorical CFA models (i.e., DIFFTEST
option of the Mplus).

Although IRT models can be estimated within the framework of CFA for some IRT
forms (i.e., 2PL model and the GRM), the IRT framework can provide some unique

10



features. For example, the lack of local fit for a 2PL IRT model might suggest the existence
of a pseudo-guessing parameter. Another important feature of IRT models is that
information functions are obtained for each item and the test. The information function
describes how well an item (or a test) can discriminate among examinees with different
latent ability scores. For unidimensional IRT models, the amount of information an item
or a test can provide for an examinee depends on this person’s latent ability level. The
discrimination parameter determines the maximum information an item can provide. The
test information function is the sum of all the item information functions such that the
length of a test also determines the information of this test. When estimating latent score
ability using MLE, the standard error of an estimate is the inverse square root of the test
information given this person’s estimated ability level.

Reise (2012) suggested two potential problems regarding the equivalence between
the IRT model and CFA model. First, the interpretation of loading parameters in the CFA
model might differ from the converted discrimination parameters in the IRT model in terms
of the magnitude. Second, it might not be appropriate to use the model fit obtained from a
linear CFA model to interpret the model fit for a non-linear IRT model because these
models are estimated based on different assumptions.

As an alternative to CTT based on the true score model, IRT provides several
unique utilities (Reise & Henson, 2003). First, in IRT, an individual’s location on the latent
continuum is estimated and each item can have an unequal contribution in estimating latent
ability scores. Second, item characteristics and person characteristics are independent with
each other in IRT which is the foundation of computerized adaptive testing (CAT; Wainer,

2000) and IRT based linking methods. Third, the unidimensional assumption and the local
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independence assumption of IRT are often tested in real data and the dimensionality issues
are discussed in more detail later. Fourth, in order to have comparable test scores across
different groups of people, one needs to assess whether or not items function the same way
across these groups. IRT provides systematic methods for detecting differential item
functioning (DIF).
The General Form of Multidimensional IRT Models

As suggested by Reise et al. (2007), measures differ in their degree of conceptual
breadth. A measure is considered to be broad if it contains relatively heterogeneous items
and it is considered to be narrow if it contains relatively homogeneous items. For example,
a measure of depression might be considered as a broad measure because it contains
multiple aspects of the depression construct such as negative mood, social withdrawal, poor
cognitive functioning, somatic concerns, and suicidal ideation. In contrast, if a test is
designed to measure somatic concerns, it is considered to be relatively narrow. For a
relatively narrow measure, it is more likely to specify a unidimensional model; for a
relatively broad measure, it is more likely to explore the dimensionality issue. Another
circumstance in which multidimensional IRT models are desirable is when the items of a
test are indicators of more than one skill (Ackerman, 2005). In fact, all the assessments
measure multiple dimensions, and whether examinees vary on those dimensions which
items strongly load on determines the dimensionality of the model. For example, scores on
mathematics problem solving items may reflect both mathematics skills and reading skills,
so a multidimensional IRT model is more desirable. However, if the test takers only differ

in one of the skills, a unidimensional model is preferred (Ackerman, 2005). In multiple-
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group models, whether distributions of different groups vary on a given strongly related
dimension also determines the dimensionality of the model.

The multidimensional IRT models have two types of structures which are between-
item multidimensionality and within-item multidimensionality (Adams, Wilson & Wang,
1997). For the model with between-item multidimensionality, each item discriminates on
only one of the several dimensions and these dimensions might be correlated with each
other, which corresponds to simple structure in factor analysis models. For the model with
within-item multidimensionality, some of the items discriminate on more than one
dimension, which corresponds to complex structure in factor analysis models.

For the items that discriminate more than one dimension, either compensatory
models (Reckase, 1985) or non-compensatory models (also called the partial compensatory
model; Sympson, 1978) can be applied. Taking an example of the 2PL IRT model, the

equation for the compensatory model is:

’

e(al-ei +dj)

P(x;j = 1|0, aj,d)) =———— (8)

1te (ajei +dj)

where 6; is the 1 x m vector containing multiple latent scores for person i, a; is the 1 x m
vector containing discrimination parameters of item j with respect to corresponding latent
abilities, and d; is the intercept parameter of item j. Although each latent ability has a
corresponding discrimination parameter, only one intercept parameter is estimated because
the difficulty parameters with respect to multiple latent abilities are indeterminate. In the
compensatory model, the low ability of an examinee on one dimension can be compensated
by the high ability of this examinee on another dimension in terms of the probability of

passing an item. In contrast to the compensatory model in which multiple latent abilities
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are added together in the logit, the non-compensatory model is specified as the product of
multiple unidimensional models. Using the example of the 2PL model and supposing that
there are two underlying abilities, one can express the equation of the non-compensatory

model as:

e%j1@i1—bj1) e%j2(@i2— bj3)
P(xij = 110;1, 62, a1, ajz, bj1, bjz) = ”

9)

@b X @by
where 6;,,0;, are latent abilities for person i, a;y, a;, are corresponding discrimination
parameters, and bjy, b;, are corresponding difficulty parameters. In the non-compensatory
model, even if a person has very high ability in one dimension and extremely low on
another dimension, the probability for this person to pass an item is still very low. As shown
in the research of Babcock (2011), non-compensatory models can be estimated using
Bayesian methods.
An Introduction to Bifactor IRT Models

Bifactor IRT models are hierarchical multidimensional models in which a general
factor explains the common variance among all the items and specific factors are modeled
to explain the common variance independent of the general factor (Reise, 2012). Each item
is allowed to load on at most one of the specific factors. It is assumed that the general factor
is orthogonal with the specific factors and there are no correlations among the specific
factors. Although the orthogonality assumption might be hard to achieve for real data,
Reise (2012) suggested that the specific factors cannot be considered as residualized factors
that explain the additional common variance beyond the general factor if they are allowed
to correlate with the general factor. Correlations among the specific factors may indicate
the existence of other factor(s) that complicate the structure of the data. Despite the

importance of orthogonality assumption, Jeon, Rijmen, and Rabe-Hesketh (2011)
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suggested that relaxing this assumption in multiple-group bifactor models when it is
violated in one of the groups could improve estimation accuracy for the DIF.

The bifactor model was introduced by Holzinger and Swineford (1937) based on
the factor analysis model. Gibbons and Hedeker (1992) used the EM algorithm for
marginal maximum likelihood estimation to analyze binary data under the framework of
IRT. In 2007, Gibbons et al. (2007) applied bifactor IRT models for polytomous data. As
pointed out by Reise (2012), the bifactor model has become an important representation of
multidimensional structure and has gained increasing popularity in research and
applications for both IRT and SEM in recent years.

In the bifactor IRT model, the general factor represents a broader concept (e.g.,
depression) or the main trait intended to measure (e.g., mathematics skills for mathematics
problem solving items) whereas the specific factors represent narrower concepts (e.g.,
negative mood, social withdrawal, poor cognitive functioning, somatic concerns, and
suicidal ideation) or the trait not intended to measure (e.g., reading skills for mathematics
problem solving items). Although researchers are primarily interested in individual
differences in the general factor, clusters of items are designed for the following reasons.
First, the majority of psychological constructs are complex constructs including multiple
facets, such that subdomains of items are needed to improve content validity (Reise, 2012).
Second, in cognitive tests, context-dependent items are desirable for measuring higher-
level abilities such as problem-solving skills, and the application of common stimulus (e.g.,
a reading passage) provides a good way to save examinees’ time (DeMars, 2006).

The bifactor structure can be applied to both compensatory IRT models and non-

compensatory IRT models although almost all the research and applications focused on
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compensatory bifactor models (Desa, 2012). The general form of multidimensional item
response function shown in Equations 8 and 9 can be applied to bifactor models.
Compensatory IRT models were focused in the current study. Taking the example of
Equation 8 and supposing that item j loads on the kth specific factor, the item response

function of the bifactor model can be written as:

e@jGENOGENT 4jGREOiGRITE))
P(xij = 1|0i6en, bicric Qjcen, Ajgric df) = 1+ 0 @GENPIGEN" 9jGRKOIGRK ) (10)

where 8,.zy denotes the general factor score for person i, 6;;z, denotes the specific factor
score for person i, ajggy is the discrimination parameter of item j for the general factor,
a;cry 1S the discrimination parameter of item j for the kth specific factor, and d; represents

the item intercept of item j which is the log-odds of correct responses when 6.y and 6;;zk
are all zero. The discrimination parameter in the bifactor model reflects how well an item
can discriminate examinees along with a given dimension (general dimension or specific
dimension) of the item response surface. A multidimensional information surface is used
to indicate the information provided by an item for each point on the ability plane and it is
formed for each ability composite (direction on the ability plane). To compare the degree

of difficulty cross items based on a bifactor model, a multidimensional difficulty (MDIFF)

parameter can be calculated as -d;/ \/ajGENZ + ajgre? . Item with higher MDIFF is
considered to be more difficult, whereas the item with lower MDIFF is considered to be
easier.

With respect to person parameters, it is assumed that in the bifactor model, the
general factor scores and specific factor scores are from a multivariate normal distribution
with orthogonal dimensions (Gibbons & Hedeker, 1992). In most of the cases, researchers
are mostly interested in individual differences on the general factor when applying a
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bifactor model, which are reflected by 6,.5y. Sometimes researchers also want to evaluate
an examinee’s performance on the subscale. It should be noted that specific factor score
estimates cannot be directly used for scaling individual differences on the subscale because
they reflect the residualized factor scores beyond the information provided by the general
factor (DeMars, 2013). But they can be used to evaluate examinees’ strengths and
weaknesses on the subscale after controlling for the general factor. To estimate an
examinee’s overall performance on a given subscale, one needs to either use the correlated-
factors model or some relatively sophisticated methods based on bifactor models such as
the composite score of both the general factor score and the residualized factor score
(DeMars, 2013) and the restricted bifactor model (Chang, 2015).

To identify a bifactor IRT model with freely estimated discrimination parameters
for both the general factor and specific factors, the means of the general factor and specific
factors need to be fixed to O, and the variances of the general factor and specific factors
need to be fixed to 1. In some special cases of bifactor models, some more constraints
might be needed for identification purpose. For example, if a specific factor has only two
indicators, equality constraints need to be placed on the item discrimination parameters for
these two indicators.

The EM algorithm for MML is commonly used for estimation of bifactor IRT
models (Gibbons & Hedeker, 1992; Gibbons et al., 2007). In multidimensional IRT models,

the likelihood function of responses of N persons for p binary items can be written as:
Xij — i
L(X|T,0) =TT}, 17, P(xi; = 1|15, 07 P(xy; = 0|}, 0,) "0 (11)
where X represents the responses of N persons for p items, I' contains all the item

parameters, @ is the latent scores of all the dimensions for all the persons, x;; represents
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the response of item j for person i, I; contains the item parameters for item j (e.g.,
discrimination parameters for all the dimensions, item intercept), and @; contains latent
scores for all the dimensions for person i. In the MML, people are considered to be
randomly drawn from a multidimensional distribution g(8). Supposing that there are k
dimensions of latent abilities (64, 0,, ..., 0, ) underlying the responses, the marginal

likelihood function of the responses can be written as:
L0y =2 [ 7 [T 7L (X | T,0) g(8)d6,do, ..d6, (12)

For the bifactor IRT models, all the items load on one general factor and each item loads
on at most one of the specific factors. Thus, the likelihood function only needs to integrate
over two dimensions regardless of the number of total dimensions involved which greatly
simplifies the integration process for multidimensional IRT models (Gibbons et al., 2007).
Once item parameters are obtained and the model fit is acceptable, latent scores of the
general factor and residualized factors can be estimated using MLE or Bayesian methods
(EAP or MAP).

Bifactor models with ordered-categorical data can be estimated within the CFA
framework (Reise, 2012). In bifactor models, the relationship between the observed ordinal
variables and their corresponding continuous latent variates follows the same rule of
unidimensional models (shown in Equation 4), and the equation relating the general factor
and specific factors to the latent response variates is

X*= A% + & (13)
where X* is the vector containing latent response variates, A% is the loading matrix, &*
denotes the vector containing the general factor and specific factors, and 8* is the residual

vector. For example, if a bifactor model has 9 items and three specific factors, items 1-3
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load on the first specific factor, items 4-6 load on the second specific factor, and items 7-9
load on the third specific factor, then the vector of & is:
FEEM]
“el
L €ora |

(14)

where &;py1 1S the general factor, &g, IS the first specific factor, &g, iS the second specific

factor, and ;g5 is the third specific factor. The loading matrix Ay has the following

pattern:

Acent1 AGria 0 0
GRN21  AGR21 0 0
GEN31  AGR31 0 0
GEN4,1 0 GR4,2 0

Ay = | Agens 0 GRS,2 0 (15)

GEN6,1 0 GR6,2 0
GEN7,1 0 0 GR7,3
GENS 1 0 0 AGrs,3

| AGro,1 0 0 GRO,3

where Agy denotes the factor loadings relating the general factor to the latent response
variates, and A, denotes the factor loadings relating the specific factors to the latent
response variates. The limited-information estimation method based on tetrachoric or
polychoric correlations are used for bifactor models with ordered-categorical data. In
contrast to the full-information estimation in which the entire response vectors are made
use of when estimating item parameters, in the limited-information estimation, only the
observed response contingency table among the items are used for estimating model
parameters.

In multidimensional models, The loading parameters and threshold parameters

obtained in categorical CFA models can be converted to discrimination parameters and
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item intercept parameters for the corresponding equivalent 2PL (or the GRM) IRT model

using the following formulas:

174,
4jp R
1-— _
p=1d,
—1.7Tj(x
d;(djy) = —=22 (16)

where A5, denotes the standardized factor loading of dimension p for item j and z;, denotes
the threshold parameter for item j in the categorical CFA model, and a;, and d;(d;)
represent the discrimination parameter of dimension p and item intercept parameter.

In most applications of bifactor models, researchers are more interested in
individual differences on the general factor. As suggested by DeMars (2013), employing
bifactor IRT models, researchers can get pure estimates of the common latent trait because
the common variances due to the specific factors are accounted for. Reise et al. (2007)
compared multiple models using the data from the Consumer Assessment of Healthcare
Providers and Systems. They found that the discrimination parameters on the general factor
increased for some of the items after modeling the specific factors using a bifactor model
in comparison with the corresponding parameters obtained from a unidimensional model.
Thus, they argued that these items became more meaningful measures after controlling for
the specific factors.

Researchers are also interested in examinees’ performance on subscales sometimes.
Although an examinee’s subscale score cannot be directly estimated using a bifactor model,
his or her strengths and weaknesses on each subscale beyond the influence of the general

factor are reflected by the residulized factor score (DeMars, 2013), so researchers can
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employ a bifactor model to determine whether it is meaningful to report scores for a
subscale (Reise et al, 2007). In the study of Reise et al. (2007), although the item loadings
on each subscale were fairly strong in the correlated-factors model, when using the bifactor
model, most of the items had larger discrimination parameters on the general factor than
those on the specific factors. For example, one of the items had a discrimination parameter
of 1.30 in the correlated-factors model. If we only looked at this result, we might think that
it is a good measure of the subdomain. However, when employing the bifactor model, this
item had a discrimination parameter of 1.27 on the general factor and 0.38 on the specific
factor, which suggested that the unique contribution of the subdomain on this item was
very small after controlling for the general factor. DeMars (2013) summarized that subscale
scores are useful when items have high discrimination parameters on the subscale(s) in the
bifactor model whereas scoring the subscale(s) might be redundant if the item
discrimination parameters of the subscale(s) are very low.

Reise (2012) proposed another method to determine whether subscale scores should
be formed using an index omega subscale (wg). w can be used to indicate the model-based
reliability for a subscale after controlling for the general factor in a bifactor model. Using
subscript m to denote the items loading on the kth subscale, omega subscale for the kth

subscale (w4 ) can be calculated using the following formula:

— (X Amcri)®
Wste X AmGEN)?+(Z AmGRr)2+X Om (17)

where A,,cgn represents the standardized general factor loadings for the items relating to
the kth subscale, 1,,ri represents the standardized specific factor loadings for these items,
and 4,,, represents the error variances for these items. Note that all of these parameters are

obtained under a CFA framework. Omega subscale shown in Equation 17 reflects the
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proportion of common variance among a subset of items due to the specific factor beyond
the influence of the general factor. In the study of Reise (2012), five specific factors were
modeled in a bifactor model, and the indices of omega subscale were shown to
be .21, .32, .26, .44 and .22, respectively. The proportion of common variance of a subset
of items that was due to both the general factor and their corresponding specific factor was
also calculated in Reise’s study (2012), and they were .62, .66, .67, .62, and .66,
respectively. Based on these results, Reise (2012) pointed out that the reliable variance on
the subscales was little if the variance due to the general factor was partialed out, so he
concluded that there was no need to report subscale scores if total scores were given.

Reise, Moore, and Haviland (2010) pointed out a problem of reporting subscale
scores in predicting external variables. They argued that the multicollinearity among the
subscales might make it harder to precisely estimate the unique effect of each subdomain
on outcome variables. In this case, bifactor models would be desirable in which the unique
contribution of the general factor and each subdomain to the external outcome variables
can be estimated (Chen et al., 2006; Chen, Hayes, Carver, Laurenceau, & Zhang, 2012;
Gustafsson & Balke, 1993).

Given that bifactor models are appropriate representations of many complex
constructs measured in both cognitive and non-cognitive tests, bifactor models can offer
utilities in the areas where an IRT model is desirable. For example, testlet-based items are
commonly applied in CAT (Wainer, Bradlow, & Du, 2000). In cognitive tests, context-
based items are often desirable in measuring some higher-level skills (DeMars, 2006). Also,
making utility of context-based items can improve test efficiency because it would be time

consuming if an examinee only needs to answer one question after reading a long passage.
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In non-cognitive CAT, the construct to be measured might include multiple aspects (e.g.,
Haley et al., 2009). In these circumstances, bifactor modeling can help researchers retain
their primary interest in the general factor while avoiding violation of local independency
assumption due to forcing all the items onto only one dimension.

Another important utility of IRT models is to help researchers link scales across
multiple measures such that test scores from different measures can be comparable (Reise
& Henson, 2003). As suggested by Reise et al. (2007), linking scales based on bifactor
models are usually more complicated, but if researchers are only interested in linking
measures onto the general factor, standard linking methods can be used. Li (2011) applied
the bifactor model for vertical scaling in which measures with similar construct but
different difficulty levels were linked onto the same scale such that the test scores of
students from different grades can be comparable and the growth of a given student can be
tracked. In Li’s study (2011), the general factor was used to represent the common vertical
scale across grades and the specific factors were used to represent the shifted construct
specific to each grade.

Comparisons of Bifactor IRT Models with Competing Models

The applications of bifactor IRT models in exploring dimensionality issues are of
great importance to researchers. The common alternative models to bifactor models include
the unidimensional model, the testlet-effects model, the second-order model and the
correlated-factors model (e.g., DeMars, 2006; Immekus & Imbrie, 2008; Min & He, 2014;
Reise et al., 2007; Rijmen, 2010), and all these models are nested within the bifactor model.

Both confirmatory models and exploratory models can be used for comparisons

among these competitive models (e.g., Reise et al., 2007; Reise et al., 2010). When

23



applying confirmatory models, the unidimensional model, the testlet-based model, the
second-order model and the correlated-factors model can be compared with the bifactor
model using either the chi-square different test with corrections (i.e., DIFFTEST option of
Mplus) under the CFA framework (e.g., Reise, 2012) or the LR test under the IRT
framework (e.g., DeMars, 2006; Immekus & Imbrie, 2008). When implementing
exploratory models for potentially multidimensional data, researchers can conduct both the
standard exploratory factor analysis (e.g., exploratory principle axis factoring with oblimin
rotations) and exploratory bifactor modeling using the Schmid-Leiman (SL)
orthogonalization or target pattern rotation (Reise et al., 2010).

As pointed out by Reise et al. (2010), measures are rarely strictly unidimensional
for broad and complex constructs. Given the need of unidimensional models due to their
simplicity, “essential unidimensionality” was proposed as a weak form of the local
independence assumption (Stout, 1987). Nonparametric DIMTEST can be used to test
essential unidimensionality (Kogar, 2018). If a measure is sufficiently unidimensional,
there would be no need to compare multiple multidimensional models.

Reise (2012) proposed two indices obtained from bifactor models to indicate degree
of unidimensionality, which were the explained common variance (ECV) and percentage
of uncontaminated correlations (PUC). To be specific, the ECV is the proportion of
common variance among all the items attributed to the general factor, which reflects the
strength of the general factor to the specific factors. The correlations among the items
within each specific factor are considered to be contaminated by both common variance
explained by the general factor and common variance explained by the specific factor. The

number of uncontaminated correlations equals to the total number of correlations among
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all the items minus the number of contaminated correlations, and the PUC is the ratio of
the number of uncontaminated correlations to the total number of correlations. Larger ECV
and PUC are desirable when forcing potentially multidimensional data into a
unidimensional model. As recommended by Reise (2012), if test developers plan to have a
unidimensional model of a relatively broader construct, they can improve PUC by
increasing the number of testlets and decreasing the number of items within each testlet. In
the simulation study of Reise, Scheines, Widaman, and Haviland (2013) conducted within
the SEM framework, they explored the effect of misspecification of bifactor data using a
unidimensional model on the structural coefficient of predicting a latent criterion from the
general factor. They found that the ECV and PUC of the generated data were good
predictors of estimation bias of the structural coefficient. To be specific, the estimation bias
decreased as ECV and PUC increased, and the effect of ECV on the estimation bias was
moderated by PUC. When the PUC was high, the structural coefficients are almost
unbiased even if the ECV is low. Reise et al. (2013) also pointed out that the model fit
indices (i.e., CFI, SRMR, and RMSEA) performed poorly in testing unidimensionality
because the misspecified unidimensional models had acceptable model fit in most of the
cases, and that these model fit indices cannot serve as predictors of the bias of the structural
coefficient when predicting external criterion from the general factor. Thus, they suggested
that researchers should use ECV and PUC in addition to overall model fit indices to
determine the degree of unidimensionality.

When determining whether it is appropriate to fit a unidimensional model to
potentially multidimensional data, another important aspect to consider is the degree of

distortion of the item parameters due to forcing the data onto only one dimension. Reise et
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al. (2007) pointed out that the unidimensional factor might be pulled toward the subset of
items with strong local dependence. In practice, the item discrimination parameters for a
unidimensional model are often compared with the corresponding item discrimination
parameters of the general factor in a bifactor model to determine whether distortion occurs
(Reise et al., 2007). DeMars (2006) found that the item discrimination parameters would
be negatively biased if generated bifactor data was fitted with a unidimensional model
based on a simulation study. Also, she indicated that fitting a complex model (i.e., bifactor
model) to a simple data structure (i.e., unidimensional data) would not produce any bias
but it would slightly increase root mean square error (RMSE) in the estimates of item
parameters. Given there was no estimation bias and the decrease in estimation efficiency
was very small when specifying a bifactor model to the unidimensional data, DeMars (2006)
suggested that a bifactor model is preferred when suspecting multidimensionality, and she
also proposed that researchers could specify specific factors for some of the testlets rather
than all of them to improve the estimation efficiency.

With respect to person parameter (i.e., primary trait reflected by the general factor
in the bifactor model) estimation, DeMars’s study (2006) indicated that person parameter
estimates obtained from different models (i.e., unidimensional model, testlet-effects model
and bifactor model) were closely correlated with each other, whereas Min and He’s study
(2014) indicated that the correlation of the primary trait estimates between the
unidimensional model and the bifactor model was only .772. The reliability of tests in
estimating examinees’ primary traits are also of interest to researchers. Borrowing the
concepts from CTT, the test reliability can be calculated using the correlation between the

estimated latent ability scores and their true values in a simulation study. The correlation
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is conducted within each replication to represent the test reliability, and then the obtained
test reliability is averaged over the replications. In DeMars’s study (2006), it was found
that within the same data generation condition, reliabilities were similar across different
analysis models (i.e., unidimensional model, testlet-effects model, and bifactor model). Her
results also indicated that tests with items generated using a unidimensional model had
higher reliabilities than those generated testlet-based tests because the generated testlets
brought in additional error when estimating the primary traits. In real data, the test
reliability can be estimated as 1-(s2/s2), where s, is the average standard error of the latent
ability estimate across examinees, and s# is the estimated total variance of the population
which equals to the sum of variance of latent ability scores obtained from EAP and error
variance. DeMar’s study (2006) indicated that reliability was overestimated when applying
unidimensional models to bifactor data.

The testlet-effects model can be considered as a special case of the bifactor model,
in which constraints can be placed on the relationship between the general factor loadings
and the specific factor loadings or specific factor variances (Min & He, 2014). Testlet-
effects models, in which a proportional constraint is placed on the relationship between the
general factor loadings and the specific factor loadings for each testlet are commonly
applied for model comparisons with unidimensional models and bifactor models (e.g.,
DeMars, 2006; Min & He, 2014), and this type of the testlet-effects model is equivalent
with the second-order model (Rijimen, 2010).

The second-order model is also a restricted version of the bifactor model, in which
a second-order factor is specified to explain the relationship among the first-order factors.

As pointed out by Chen et al. (2006), second-order factor models are desirable when there
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are substantial correlations among the first-order factors and it is hypothesized that these
correlations can be accounted for by a higher-order factor. In second-order models, the
second-order factor influences each item via the first-order factor. If the direct effects of
the second-order factor on the items are modeled, then this second-order model would be
equivalent with the bifactor model (Chen et al., 2006). Chen et al. (2006) illustrated the
similar interpretations between the second-order factor model and the bifactor model from
the following aspects. First, the second-order factor of the second-order factor model
corresponds to the general factor of the bifactor model; second, the disturbances of the
first-order factors in the second-order factor model correspond to the specific factors in the
bifactor model; third, orthogonality among the disturbances of the first-order factors and
the second-order factor in the second-order factor model corresponds to the orthogonality
among the specific factors and the general factor in the bifactor model, and fourth, in the
special case of nonexistence of a subdomain (i.e., the loadings on this subdomain are very
small in a bifactor model), the disturbance of the corresponding first-order factor would be
around 0 in the second-order factor model and the corresponding specific factor should not
be specified in the bifactor model. As suggested by Chen et al. (2006), in addition to having
less restrictions, bifactor models are preferred over second-order factor models because the
interpretation and utility of the specific factors in bifactor models are more direct than using
the disturbances of the first-order factors in second-order factor models. For example,
employing the bifactor model, one can estimate the unique influence of each subdomain
on the indicators and the unique contribution of each subdomain to an external variable

(e.g., Chen et al., 2006; Gustafsson & Balke, 1993).
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Another alternative to the bifactor model is the correlated-factors model which is a
non-hierarchical multidimensional model. In the correlated-factors model, each item loads
on only one of the dimensions and the dimensions might be correlated with each other. The
correlated-factors model can be considered as nested within the bifactor model, in which
only the specific factors are modeled and the covariance among items of different testlets
are explained via the correlations among dimensions. As mentioned earlier, in the study of
Reise et al. (2007), most of the items with fairly strong loadings in the correlated-factor
models actually discriminated the general factor better than their respective specific factors
in a bifactor model, which means that in the correlated-factors model the effect of each
dimension on the items might be confounded with the impact of an unmodeled general
factor. As suggested by Reise et al. (2007), when dimensions in the correlated-factors
model are uncorrelated with each other, one could simply fit several separate
unidimensional models to the data; when these dimensions are highly correlated with each
other, it might indicate the existence of a general factor. To be specific, if the correlations
among the dimensions are moderate (i.e.,.1 to .4), itis likely that the general factor loadings
are small whereas the specific factor loadings are large, and thus a correlated-factors model
is recommended; if the correlations among dimensions are higher than .40, a bifactor model
would be preferred (Reise et al., 2007).

In summary, the bifactor model plays an important role in exploring dimensionality
issues because it is a more general model for its competitive models. When suspecting
multidimensionality, researchers are advised to estimate the degree of unidimensionality
using a bifactor model. Also, bifactor models can be applied to determine which form of

multidimensional models is preferred to represent the construct.
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Introduction to Differential Item Functioning (DIF) and Latent Mean
Comparisons

This section focuses on multiple-group models for ordered-categorical data. I first
give a brief introduction to the issues of measurement invariance and DIF. Then I discuss
methods to detect DIF and compare latent means within both IRT and CFA frameworks.
Brief Introduction to Measurement Invariance and DIF

Measurement invariance is considered to hold if a test measures the construct of

interest the same way across different conditions (e.g., different groups of people, different
occasions, different time points, etc.) that are irrelevant to the construct to be measured
(Millsap, 2011). The necessary and sufficient condition for measurement invariance is
(Mellenbergh, 1989; Meredith & Millsap, 1992; Millsap, 2007):

PX|W,G)=P(X|W) (18)
where X denotes observed scores, W denotes underlying latent variables, G denotes the
group membership, P (X | W, G) is the conditional distribution of observed scores on the
latent variables and group membership, and P (X | W) is the conditional distribution of
observed scores on the latent variables. As shown in Equation 18, measurement invariance
means that the conditional probability of a given set of observed scores given the same
level of the underlying latent variables is independent of the group membership (e.g.,
different groups of people, different occasions, different time points, etc.).

Measurement invariance can be tested within both CFA and IRT frameworks (e.g.,
Flowers, Raju, & Oshima, 2002; Kim & Yoon, 2011; Meade & Lautenschlager, 2004;
Reise, Widaman, & Pugh, 1993). Under CFA framework, measurement invariance is

regarded as factorial invariance and it is evaluated using a series of nested models. Under
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IRT framework, measurement invariance is considered to be the invariance of item
response functions (IRFs) determined by the item parameters, and it is assessed by
detecting differential item functioning (DIF) at the item parameter level or the IRF level
(Meredith & Teresi, 2006; Reise et al., 1993).

An item is considered to show DIF if the expected score (or probability of passing
this item) of an examinee given his or her latent ability score(s) is dependent on his or her
group membership (Flowers et al., 2002). Different from measurement invariance that
requires no differences exist in item parameters or IRFs, DIF can be viewed as the
differences in item parameters or IRFs, so it is a matter of degree rather than yes or no
(Borsboom, 2006). Borsboom (2006) suggested that the influence of the bias (i.e., failure
of measurement invariance) of a test on making correct statistical conclusions depends on
the research scenarios. For example, measurement invariance is crucial when making
inferences from the differences in observed scores across groups to their latent mean
differences. However, if the size of bias is much smaller than the target effects (i.e.,
observed score differences), there would be not a concern with the bias. Thus, as
recommended by Borsboom (2006), researchers should test DIF rather than just assume
measurement invariance when comparing mean differences between groups.

There are two types of DIF, uniform DIF and non-uniform DIF. Uniform DIF
occurs when an item always favors one group regardless of the latent ability levels, whereas
non-uniform DIF occurs when IRFs (or expected score functions) of different groups cross
over at some point such that the probability of passing this item (or expected score of this
item) is higher for one group for some latent ability levels and other groups at other latent

ability levels. With respect to item parameters, discrimination parameters remain the same
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(i.e., only difficulty or threshold parameters vary) across groups for the case of uniform
DIF; discrimination parameters differ across groups for the case of non-uniform DIF
(Flowers et al., 2002; Teresi, 2006). In comparison with uniform DIF, the power to detect
non-uniform DIF is lower using some of the DIF detection procedure, and non-uniform
DIF might have no impact on observed score differences because the item with non-
uniform DIF favors different groups depending on the latent ability levels (Tay, Meade &
Cao, 2015). Although the influence of non-uniform DIF on observed score differences
between groups might not be obvious, it is still a concern for individuals’ observed score
interpretation across different groups.

In addition to DIF, differential functioning also occurs at test level. If an examinee’s
total expected score in a test given his or her latent ability scores is dependent on the group
membership, it is said that this test shows differential functioning (Raju, van der Linden &
Fleer, 1995). Borsboom (2006) pointed out that a test might be unbiased in the presence of
DIF for multiple items because DIF of different items might be canceled out.

Methods of Detecting DIF

For multiple-group ordered-categorical data, measurement invariance can be
explored under both IRT and CFA frameworks. Under the IRT framework, measurement
invariance is usually tested by detecting differential functioning at item level (i.e., DIF).
Before detecting DIF, the dimensionality issues (i.e., factor structure) need to be tested
across groups (Tay et al., 2014). Also, model selection might be needed if researchers are
uncertain which model best fit the data. Once the factor structure and the model form are
supported as being the same across groups, the next step is to detect DIF. The most

commonly applied method of detecting DIF derived from IRT models is likelihood ratio
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test (the LR test; e.g., Kim & Yoon, 2011; Meade & Lautenschlager, 2004), which is also
most closely related to CFA procedure involving comparisons among series of nested
models. The LR test compares the likelihood values between the baseline model (M,) and
a more (or less) constrained model (M;). Supposing that M; is a more constrained model,

a G%statistic can be obtained from the following formulas:

LR = :’:—1 (19)
G2 = -2In(LR) = -2In(Lyy,) + 2In(Ly, ) (20)

where LR denotes likelihood ratio, Ly, is the likelihood function of M; and Ly, is the
likelihood function of M, which can be obtained using multiple-group MML estimation.
G? statistic has an approximate y? distribution with degree of freedom equal to the
difference of parameters between M, and M; under the null hypothesis such that a
significance test can be conducted for model comparisons.

When detecting DIF using LR tests, there are two approaches in selecting a baseline
model: forward and backward procedures (Kim & Yoon, 2011). In the forward procedure,
the baseline model is the least constrained model in which equality constraints are only
placed on the anchor item(s) necessary for model identification. Then a more constrained
model in which equality constraints are added on a studied item of the focal group is
compared with the baseline model. In the backward procedure, the baseline model is the
most constrained model in which equality constraints are placed on all items. Then a less
constrained model in which equality constraints are relaxed for a studied item of the focal
group is compared with the baseline model. The drawback of the forward procedure is that
the selection of anchor variable(s) is somewhat arbitrary, while the backward procedure

has the limitation that the baseline model is very likely to be a misspecified model in which
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equality constraints are placed on noninvariant items (Kim & Yoon, 2011). In practice, the
applications of LR tests are quite flexible. Researchers can combine ideas of both the
forward procedure and the backward procedure. For example, researchers can use the
model with equality constraints on several anchor items as the baseline model and then test
DIF of a subset of items of interest. If the more constrained model significantly reduces the
model fit, then equality constraints can be relaxed one by one to figure out the specific
parameters with non-invariance (Millsap, 2011).

Take the unidimensional IRT model as an example. The most commonly applied
identification method for multiple-group IRT models is to fix the mean of the latent ability
distribution of the reference group as 0 and the variance of this distribution as 1 in addition
to setting equality constraints on at least one anchor item. The mean and variance of the
latent ability distribution for the focal group are freely estimated such that the latent mean
difference can be estimated.

In addition to focusing on the differences in item parameters, DIF can be tested by
comparing the expected score functions or IRFs across different groups using the
differential item and test functioning (DFIT) framework (Morales, Flowers, Gutierrez,
Kleinman, & Teresi, 2006).

The issues of DIF can be evaluated under the CFA framework as well. Some
researchers applied traditional multiple-group CFA models for continuous data to explore
factorial invariance of a test composing of ordered-categorical items (e.g., Flowers et al.,
2002; Meade & Lautenschlager, 2004). When applying traditional multiple-group CFA
models, researchers need to initially test whether the variance-covariance matrices and

mean vectors are the same across different groups. If the null hypothesis of no differences
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is rejected, measurement invariance (i.e., invariance about the relationships between latent
factors and observed measures), structural invariance (i.e., invariance of variances and
covariances among latent variables), and latent mean differences can be tested using a
series of nested models. Measurement invariance should be established before testing
structural invariance and latent mean differences. The evaluation of measurement
invariance includes tests of configural invariance (i.e., equivalent factor structures), metric
invariance (i.e., equivalent factor loadings), strong invariance (i.e., equivalent loadings and
intercepts), and strict invariance (i.e., equivalent loadings, intercepts and unique error
variances) step by step. Researchers do not need to conduct all these tests, and the extent
to which invariance is required depends on researchers’ needs. For example, if researchers
are interested in latent mean differences, at least partial loading and intercept invariance
should be achieved (Byrne, Shavelson, & Muthén, 1989). Like multiple-group IRT models,
traditional multiple-group CFA models are usually identified by setting the latent means of
the reference group as 0 and the corresponding variances as 1 in addition to placing equality
constraints on the loading and intercept of at least one item per factor. There are three major
drawbacks of applying traditional multiple-group CFA models for continuous data to
explore measurement invariance for ordered-categorical items. First, traditional CFA
models usually assume that the observed variables are continuous and normally distributed
which is obviously violated for applications in tests composing ordered-categorical items.
Second, the loadings in traditional CFA models can be considered as corresponding to the
discrimination parameters of IRT models but no parameters of traditional CFA models
correspond directly to the difficulty parameters of IRT models. Although the intercept

parameters of CFA models are similar to item difficulty parameters of IRT models, they
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still function differently. For example, there are more than one step difficulty parameters
(or threshold parameters) for polytomous data in IRT models, but there is only one intercept
parameter if the data are forced to fit with traditional multiple-group CFA models (Meade
& Lautenschlager, 2004). Third, traditional CFA models describe linear relationships
between observed variables and latent common factors, whereas IRT specifies a nonlinear
function between the probability of examinees’ responses and latent ability scores.

Although traditional multiple-group CFA models for continuous data have
limitations in exploring measurement invariance for ordered-categorical data due to their
fundamental differences from IRT models, multiple-group categorical CFA models can be
appropriately applied for detecting DIF because of their equivalence with 2PL models and
GRMs (Kim & Yoon, 2011).

The identification methods of the least constrained multiple-group categorical CFA
models (i.e., baseline models) were introduced in detail by Millsap and Yun-Tein (2004).
Both the factor structure (i.e., no cross loadings vs. existence of cross loadings) and the
item type (i.e., binary item vs. polytomous item) can influence the identification strategy
for the baseline model of multiple-group categorical CFA models. Take the case in which
each item loads on only one factor and the number of categories for each item is larger than
2 as an example. One of the identification methods for the baseline model in this case is:
(1) fix the means of factors in the reference group zero; (2) in each of the two groups, for
each factor, select a reference variate and fix its loading to 1; (3) fix the variance of each
latent continuum underlying each observed ordered categorical variable to 1 in the
reference group; (4) fix all of the intercepts to zero in both groups; (5) constrain each

respective threshold of each latent response continuum (e.g., the first threshold) to be equal

36



across groups; and (6) for the reference variate of each factor, fix an additional threshold
(e.g., the second threshold) to be equal across groups. Once the baseline model is
established, the invariance for factor loadings and threshold parameters can be examined
through a series of nested models. The WLSMYV estimator can be used for multiple-group
categorical CFA models, and the DIFFTEST option in Mplus can be applied for chi-square
difference tests using WLSMV estimator (Asparouhov, Muthé, & Muthé, 2006)).
DIFFTEST is implemented based on the T3z chi-square difference correction which is
considered to perform better than previously proposed correction methods given its

statistical properties are more similar to those for a ¥ statistic. The DIFFTEST option has

been available in Mplus since version 6, in which the model information of the two nested
models is extracted to calculate the Tz statistic via a series of complicated formulas. Like
in the traditional multiple-group CFA models and multiple-group IRT models, the freely
estimated latent factor means of the focal group in multiple-group categorical CFA models
reflect the latent mean differences that might be of interest.

In addition to these multiple-group methods, multiple samples can be combined
into one dataset and the DIF can be directly estimated by modeling group membership as
a variable together with the person ability variable (either the total scores or latent ability
scores) to predict examinees’ responses using logistic regression or multiple-indicator-
multiple-causes (MIMIC) models.

Another type of DIF detection procedure is based on nonparametric models in
which examinees’ performance of the reference group and the focal group are compared
conditional on their abilities, and their abilities are obtained using observed scores rather

than latent ability scores. Common nonparametric methods include the Mantel-Haenszel
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x? method (M-H), standardization method of Dorans and Kulick (1986), and SIBTEST
(Shealy & Stout, 1993).

The Application of Latent Mean Comparisons for Ordered-categorical Data

Latent mean comparisons become popular within the CFA framework (Schmitt &
Kuljanin, 2008). Measurement invariance needs to be tested before conducting latent mean
comparisons. As suggested by Byrne et al. (1989), one could estimate latent mean
differences across groups if partial invariance regarding factor loadings and intercepts is
achieved. However, there are no consistent opinions about the extent to which partial
factorial invariance is allowed. Some researchers suggested that for each factor there
should be at least one more indicator in addition to the referent indicator having invariant
factor loadings and intercepts across groups to make latent mean comparison meaningful
(e.g., Steenkamp & Baumgartner, 1998), whereas some argued that the majority of items
should have invariant loadings and intercepts to avoid the arbitrariness of latent mean
comparisons (e.g., Reise et al., 1993).

When the indicators are subscale scores which can be considered as being from a
multivariate normal distribution (e.g., Hong, Malik, & Lee, 2003), it is appropriate to apply
a traditional multiple-group CFA model to estimate latent mean differences. However, if
the indicators are ordered-categorical items rather than subscale scores, it might be more
appropriate to estimate latent mean differences based on IRT models or categorical CFA
models. Although some researchers applied traditional multiple-group CFA models for
these ordered-categorical indicators (e.g., Flowers et al., 2002; Meade & Lautenschlager,
2004; Steenkamp & Baumgartner, 1998), it should be noted that violation of the

multivariate normal distribution assumption of the indicators might result in unexpected
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results in analysis. Given that ordered-categorical items are very common in psychological
measures (e.g., measures using Likert-type scales), understanding methods for conducting
latent mean comparisons based on IRT models or categorical CFA models is critical.

When conducting latent mean comparisons under IRT framework, LR tests are
most commonly applied (e.g., Bolt, Hare, Vitale, & Newman, 2004; Jeon et al., 2011; Oishi,
2006; Woods, Cai, & Wang, 2012). In addition, Wald tests, MIMIC and hierarchical IRT
models can be also conducted for estimating latent mean differences based on IRT models
(e.g., Woods et al., 2012; Finch, 2005; Jong et al., 2007). In practice, observed score
differences are commonly used for making inferences. In comparison with making
inferences based on observed group mean differences, conducting latent mean comparisons
based on IRT models offer the following two major advantages.

First, when applying IRT models, items with larger discrimination parameters
contribute more to the latent ability estimation such that in comparison with the summed
total scores, the latent ability scores are more closely correspond to the true scores (Oishi,
2006). In other words, the latent mean difference reflects more pure true score difference.

Second, the observed mean differences are the combination of latent mean
differences and test level differential functioning. For example, in the study exploring the
gender difference on a stress reaction measure (Smith & Reise, 1998), the observed gender
differences in the stress reaction measure reflected both the latent mean difference in the
negative affectivity factor and the gender differences in expressions of the negative
affectivity. Given that the focus of the research is the mean differences in the target
construct, making inferences based on observed score differences would produce

confounding effects. In contrast, latent mean comparisons are conducted based on invariant
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items which can avoid such confounding effects. It should be noted that the summation of
items that might show DIF does not necessarily lead to biased observed differences because
DIF of different items might cancel out each other. In the above example, some of the items
might be easier for women to endorse whereas some might be easier for men to endorse,
and thus, as suggested by Borsboom (2006), blind removal of items with severe DIF might
induce more bias at the test level.

As mentioned earlier, measurement invariance needs to be tested before conducting
latent mean comparisons using multiple-group CFA models. Similarly, when conducting
latent mean comparisons based on multiple-group IRT models, DIF needs to be detected
first for item parameters (e.g., Bolt et al., 2004; Oishi, 2006). In practice, the DIF of the
item parameters are probably due to the following reasons: (1) examinees’ understanding
of the concepts might not be identical across groups; (2) the translation of the measure
might be improper; (3) the examinees in some groups might avoid extreme responses; (4)
social desirability or social norms might differ across groups; (5) some of the items might
be more easier for a given group than for other groups; (6) examinees’ of different groups
might have different reference points when describing themselves (Chen, 2008). From a
measurement standpoint, the presence of DIF might be due to group differences in the
unmodeled common factor(s) or systematic errors (Meredith & Teresi, 2006).

Additionally, as when conducting latent mean comparisons within the multiple-
group CFA framework, latent mean differences can be estimated based on partial invariant
item parameters of the multiple-group IRT model (e.g., Bolt et al., 2004; Oishi, 2006). For
example, in the study of Oishi (2006), the mean difference in the Satisfaction with Life

Scale (SWLS) was estimated between American and Chinese samples. In their study based
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on a multiple-group unidimensional model, only 1 item was shown to be invariant across
groups after conducting a series of LR tests and the latent mean comparison was conducted
with only this invariant item constrained to be equal across groups. Oishi (2006) suggested
that more invariant items are needed to obtain a truly unbiased estimate of the latent mean
difference although one could get a solution of the latent mean difference using only one
anchor item of the latent factor.

Factors Influencing DIF Detection and Latent Mean Comparisons

In this section, I illustrate the factors that influence DIF detection and latent mean
comparisons based on the findings of a variety of simulation studies.

There are two types of factors that influence the detection of DIF, those regarding
the data generation process (e.g., sample size, effect size of DIF, item parameters, person
parameters, etc.), and those regarding the data analysis process (e.g., DIF detection
methods, data analysis model). In addition to the main effect of each factor on the DIF
detection procedure, the joint effect of several factors on how well DIF can be detected are
also of interest to researchers. The outcomes that are focused on are usually the Type |
error rate and power in detecting DIF.

Factors Influencing Type | Error Rates for DIF Detection

Acceptable Type | error rates are the prerequisite for making inferences regarding
empirical powers. As shown in Table 1A, the data generation factors influencing Type |
error rates are the sample size, the data generation model, the percentage of DIF, the pattern
of DIF across items, and the distributions of person parameters; the data analysis factors
influencing Type I error rates are the model selected for DIF detection (e.g., whether or not

misspecified) and the methods used for DIF detection (e.g., nonparametric vs. parametric
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methods, forward approach vs. backward approach, and whether or not using Bonferroni
corrections).

In the study of Cohen, Kim & Wollack (1996), the datasets were generated using
either the 2PL model or the 3PL model, and no DIF was generated for the items. When
analyzing the data, the datasets generated using the 2PL model were correctly specified,
and the datasets generated using the 3PL model were either correctly specified or
misspecified by fixing the pseudo-guessing parameter to the average value of the pseudo-
guessing parameters of all the items. The DIF was tested for each item sequentially using
other items as anchor items, and the proportion of significant LR test results across all the
replications across all the items for each research condition reflected the Type I error rate
for this condition. Their results indicated that the Type | error rates were close to the
nominal alpha level for the 2PL model conditions, and the Type I error rates were a little
higher for the 3PL model conditions, especially when the nominal alpha level was at .0005
to .005. Also, it indicated that sample size did not influence Type | error rates obviously in
their research scenario.

Bolt’s study (2002) showed that slight misspecification of the model would lead to
large inflation of Type | error rates when applying LR tests to detect DIF for the items
analyzed using graded response models (GRMs), and the Type | error inflation was
especially severe when the sample size was large (i.e., 1000 in each group). It also indicated
that there were much less Type | error rate inflation due to model misspecification if using
DFIT for DIF detection, and that the Poly-SIBTEST (a nonparametric estimation method;
Chang, Mazzeo, & Roussos, 1996) seemed to be unaffected by the generating models in

terms of Type | error rates. Thus, as suggested by Bolt (2002), when the sample size is
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large, researchers should be cautious about use of LR tests to detect DIF for items of the
GRM when they are uncertain if the GRM properly represents the construct.

Type | error rates are also influenced by the distributions of person parameters. In
the study of Ankenmann, Witt, & Dunbar (1999), both LR tests and the Mantel procedure
(a nonparametric estimation method) showed good control over Type | error rates when
the distributions of ability parameters were identical across groups. However, when the
latent mean difference between the reference group and the focal group was nonzero, LR
tests still maintained acceptable control over Type | error rates whereas the Mantel
procedure lacked control over Type | error rates.

When detecting DIF using LR tests based on multiple-group IRT models or
traditional multiple-group CFA models, the strategy in setting up baseline models (forward
approach vs. backward approach) have a great influence on Type | error rates (e.g., Stark,
Chernyshenko, & Drasgow, 2006). As found by Stark et al. (2006), when using the
constrained-baseline model (backward approach), both LR tests under IRT models and chi-
square difference tests under CFA models showed substantial Type I error inflation unless
no DIF existed in the fully constrained model, and the Type | error inflation could be
reduced by applying a Bonferroni-corrected critical p value. As suggested by Wang and
Yeh (2003), when conducting LR tests using all other items as anchor (constrained-baseline
model), Type I error inflation occurred when the percentage of items with DIF reached 12%
under the 3PL model and 20% under the 2PL model and the GRM for the conditions in
which all the items with DIF favored one group (one-side conditions), whereas for the
conditions in which some of the items favored the reference group while some favored the

focal group (both-side conditions), the performance of the constrained baseline model in
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controlling over Type | error rates was determined by average signed area (i.e., the average
difference between IRFs of each item). The larger the average signed area was, the more
severe Type | error inflation produced by using constrained baseline model was for both-
side conditions.

Factors Influencing Power for DIF Detection

Once acceptable Type | error rates are achieved, researchers can appropriately
interpret power in simulation studies. As shown in Table 2A, the data generation factors
that influence the power in detecting DIF include sample size, the ratio of sample size in
the reference group to the focal group, the effect size and pattern of DIF, the magnitude of
item parameters, the item type (binary vs. polytomous), and the distributions of person
parameters; the data analysis factors that influence the power in detecting DIF include the
model selected for DIF detection and the methods to detect DIF (e.g., nonparametric vs.
parametric methods, IRT-based methods vs. CFA-based methods, forward approach vs.
backward approach, the number of anchor items, and whether or not using Bonferroni
corrections).

As expected, many studies based on different DIF detection methods have shown
that the power in detecting DIF increases as the sample size increases (e.g., Ankenmann et
al., 1999; Kim & Cohen, 1992; Raju, Drasgow, & Slinde, 1993). Generally, large sample
size is required to obtain accurate item parameters for IRT models. To recover item
parameters with little bias for a 2PL model, the sample size of 500 is usually required for
a test with less than 40 items (e.g., Reise & Yu, 1990; Stone, 1992) although this
requirement was not satisfied in some of the simulation and real data research. For a 3PL

model, more examinees are needed to obtain accurate estimation of item parameters. The
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study of Ankenmann et al. (1999) suggested that LR tests lacked power in detecting DIF
when the sample size was as small as 500 in each group.

In addition to total sample size, the ratio of sample size between the reference group
and the focal group also influences the power in detecting DIF. The results of Sweeney’s
study (1996) indicated that for a given total sample size, the power to detect DIF was higher
for equal sample size conditions than the conditions with much fewer examinees in the
focal group.

It can be also expected that effect size of the DIF would influence the power to
detect it. Previous studies have consistently indicated that the items with larger effect size
of DIF were more easily detected as showing DIF (e.g. Narayanan & Swaminathan, 1996;
Sweeney, 1996). As suggested by Borsboom (2006), the ratio of effect size of DIF to the
latent mean difference of the person ability scores is crucial in judging whether such DIF
should be paid attention to.

The power in detecting DIF is not only affected by the effect size of the DIF but
also affected by the pattern of the DIF. In the study of Ankenmann et al. (1999),
noninvariant threshold parameters for GRMs were simulated. In the constant DIF pattern,
a value was added to each of the threshold parameter of the noninvariant item in the
reference group to obtain the threshold parameters of this item in the focal group, which
corresponds to the practical condition where an item is more difficult for the focal group
than the reference group. In the balanced DIF pattern, to obtain the threshold parameters
of the noninvariant item in the focal group, a value was added to the lowest threshold
parameter of the noninvariant item in the reference group while the same value was

subtracted from the highest threshold parameter of this noninvariant item in the reference
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group, which corresponds to the practical condition where examinees in the focal group
tend to avoid extreme responses. Ankenmann et al. (1999) found that the Mantel procedure
(a nonparametric estimation method) showed greater power than LR tests for the constant
DIF pattern conditions when the person ability distributions were identical across groups.
However, for the balanced DIF pattern conditions, LR tests showed much higher power
than Mantel procedure.

As suggested by Bolt’s study (2002), in comparison with the nonparametric DIF
detection method (i.e., Poly-SIBTEST), parametric DIF detection methods such as LR tests
and DFIT showed greater power in detecting DIF for the items of GRMs when the model
was correctly specified, and this advantage was especially obvious for the small sample
size conditions (i.e., 300 for each group). Also, when the sample size was small (i.e., 300
in each group), these parametric methods also showed acceptable Type | error rates even
under conditions of slight model misspecification. Thus, it was concluded that the
parametric methods are preferable for DIF detection when the sample size is small.

Sweeney (1996) found that the magnitude of item parameters influenced the power
to detect DIF for them, which means that for the same amount of DIF, it might be detected
in one item but not in another item. Sweeney (1996) explored the joint effects of the ratio
of reference group sample size to the focal group sample size, effect size of the DIF, the
magnitude of item parameters and the person ability distributions on the power to detect
DIF using LR tests and concluded that the power to detect DIF depended on the following
two joint factors: (1) the differences between the IRFs for the reference group and the IRFs
for the focal group; (2) the number of focal group examinees located on the latent ability

continuum where the IRFs differ across groups. For example, if an item is too easy or too
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difficult relative to examinees’ abilities, the difference of IRFs between the reference group
and the focal group would be almost zero over most of the ability range such that the DIF
in difficulty parameters would be difficult to be detected.

In comparison with the traditional multiple-group CFA models, although IRT based
methods do not have the problems of violations of normality and continuity, they require
larger sample sizes than CFA models to achieve a given degree of accuracy in locating the
items with DIF. Based on the results of Stark et al. (2006), it was recommended to apply
traditional multiple-group CFA models for detecting items with DIF when the sample size
is small and the items are polytomous. Also, Stark et al. (2006) pointed out that the free-
baseline models (forward approach) performed better than the constrained-baseline models
(backward approach) for both LR tests under IRT models and chi-squire difference tests
under CFA models. In addition, although Bonferroni corrections were helpful in reducing
Type | error inflations for the backward approach, they were not recommended for small
samples because they would reduce power as well due to their strict criterion in obtaining
significant results.

Although the constrained-baseline model leads to substantial Type | error inflation,
using some of the items as anchor usually yields good control over Type I error rates (Wang
& Yeh, 2003). In Wang and Yeh’s study (2003), they simulated 25 items. They pointed out
that using 1 anchor item could appropriately control over the Type | error rate while
showing acceptable power of detecting DIF, and that using 4 or 10 anchor items would
lead to higher power. Thus, researchers can select a baseline model that is more
constrained than free-baseline model but less constrained than the constrained baseline

model. As suggested by Wang and Yeh (2003), anchor items can be selected based on
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related theories (or experts’ opinions) and preliminary analyses. The LR tests using all
other items as anchor is one of the commonly applied methods to locate anchor items.
Simulation Studies for Multiple-group Bifactor Models

To the best of my knowledge, only three simulation studies have focused on DIF
detection under bifactor IRT models. Two of these three studies (e.g., Cai, Yang, & Hansen,
2011; Jeon, Rijmen, & Rabe-Hesketh, 2013) were conducted using extended methods of
full-information marginal maximum likelihood estimator with dimension reduction
technique (Gibbons & Hedeker, 1992), and the other one (Fukuhara & Kamata, 2011) was
conducted using a fully Bayesian estimation method.

Jeon et al. (2013) allowed the orthogonality assumption to be violated in the focal
group, and they found that ignoring between-group differences in the relationship among
latent variables resulted in substantial bias in DIF estimates. Cai et al. (2011) worked on
an extended multiple-group, bifactor IRT model in which the model can be very flexible.
They conducted two simulation studies. In the first study, the examinees in Group 2 did
not take items related to one of the specific factors in Group 1, which corresponded to the
realistic condition where existing group specific subdomain(s). In the second study, the
generated data for both groups consisted of multiple types of items (i.e., multiple-choice
items, constructed response items, complex multiple-choice items), which corresponded to
realistic educational tests. Cai el al.’s simulation study (2011) was conducted to illustrate
the efficiency of the proposed estimation method. In their study, the data analysis model
was consistent with data generation model, and they were interested in the recovery of

parameters including latent mean differences.
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Fukuhara and Kamata (2011) generated testlet-based data with DIF in difficulty
parameters and analyzed data using both a bifactor IRT model and a unidimensional IRT
model. Their results indicated that the bifactor model could produce better DIF detection
and more accurate estimates for DIF magnitude in comparison with the unidimensional
model which ignored the local dependency resulting from the testlets.

Simulation Studies for Latent Mean Comparisons

Although person ability distributions were usually generated to be different in
previous simulation studies exploring the DIF issues, in most of the studies, the latent mean
difference was treated as a factor that might have an impact on DIF detection procedure
rather than the outcome (e.g., Stark et al., 2006).

In some of the simulation studies about multiple-group IRT models, the estimation
of accuracy for the latent mean difference was focused on (e.g., Kim & Cohen, 1998;
Woods et al., 2012). In these studies, latent mean differences were estimated based on
anchor items generated to be invariant, and no estimation bias for the latent mean
differences was found. One possible explanation was that there would be no bias as long
as there was no misspecification.

Similar results were also found in some CFA-based simulation studies. Yang (2008)
systematically explored the influence of partial loading invariance and partial intercept
invariance as well as some other important factors on latent mean comparisons under CFA
framework. In this study, all models were correctly specified, and the results indicated that
the power of detecting latent mean differences was higher for the complete invariant model
than the model with noninvariant components and, further, that the power was not

influenced by the degree of noninvariance. For all research conditions, there was no
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obvious estimation bias, which might be due to the same reason that all the models were
correctly specified.

Hancock, Lawrence, and Nevitt (2000) explored the impact of misspecification of
the model by setting equality constraints to noninvariant loadings on latent mean
comparisons based on multiple-group CFA models. They also varied sample size, between-
group sample size ratio, the pattern of sample size, and population generalized variance.
They found that the power to detect the latent mean difference was lower when the model
was misspecified by ignoring the noninvariance in comparison with the corresponding
correctly specified model. It also indicated that in most of the cases, larger disparity
between sample sizes for the groups was associated with decreased power to detect the
latent mean difference. Additionally, in comparison with the conditions in which the group
with larger sample size was associated with smaller population generalized variance, the
power to detect the latent mean difference was lower for the conditions in which the group
with the larger sample size was associated with larger population generalized variance.

Beuckelaer and Swinnen (2018) generated a two-group single-factor CFA model
with 3 or 4 indicators, with the second indicator having noninvariant loading or intercept
in some research conditions, and then the latent mean difference was estimated based on
the traditional multiple-group CFA model assuming strong invariance was achieved. They
also manipulated the type of distribution of the items (normal distribution, discrete 5-point
scales with either a unimodal left-skewed distribution or a symmetric bimodal distribution),
sample size in each of the group, effect size of latent mean difference, and noninvariance
of factor loadings or indicator intercepts. Their results indicated that ignoring

noninvariance may have a very strong influence on the percentage of correct statistical
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conclusions of the latent mean difference tests. The probability of drawing correct
statistical conclusions of the latent mean difference tests was strongly reduced due to
ignoring the difference in the noninvariant indicator intercept of about one-tenth or even
smaller of the total length of the scale. Also, ignoring the difference of 0.2 in the factor
loading also reduced the percentage of correct conclusions of the latent mean difference
tests. In their study, sample size and the distribution of the indicators did not influence the
percentage of correct conclusions regarding the latent mean difference tests.

Jones and Gallo (2002) detected DIF and estimated the latent mean difference of
Mini-Mental State Examination responses across different groups (i.e., high-education
group vs. low-education group; male vs. female) using MIMIC for dichotomous items, and
they also examined the effect of ignoring DIF on latent mean difference estimates by
purposely fixing the direct effects of group membership on the response variates to zero.
The MIMIC for dichotomous items approximates to 2PL IRT models with discrimination
parameters assumed to be equal across groups. The direct effects of group membership on
the response variates reflect the differences in threshold parameters (or difficulty
parameters) across groups. In their study, there were 31 items in total, 10 of them showed
DIF between high-and low-education groups while 16 of them showed DIF between male
and female. They found that ignoring DIF resulted in 1.6% overestimation of the latent
mean difference between high- and low-education group, and 95% overestimation of the
latent mean difference between male and female.

The Purpose of the Current Study
Bifactor models have gained increasing popularity in recent years because they

often serve as the most appropriate representations for relatively broader psychological
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constructs containing multiple narrower aspects and testlet-based cognitive tests including
items based on common stimulus. When researchers are interested in comparing such
complex psychological constructs or testlet-based cognitive tests among multiple
populations, they need to rely on multiple-group bifactor models. From a methodological
standpoint, however, only a few studies have focused on multiple-group bifactor models,
and to the best of my knowledge, all of these studies involved the factors that influenced
DIF detection of the item parameters (e.g., Cai et al., 2011; Fukuhara & Kamata, 2011,
Jeon et al., 2011). Given that researchers are usually very interested in the primary trait
represented by the general factor when applying bifactor models and they might be also
interested in comparing latent means of the primary trait among multiple populations, the
main purpose of the current study is to systematically explore the factors that influence the
latent mean comparisons of the general factor for bifactor ordered-categorical data.
Bifactor models have been widely applied for the purpose of exploring
dimensionality issues in single-group analysis. With bifactor models, the degree of
unidimensionality can be estimated such that researchers can have more information
regarding the consequence of violation of local independence assumption. Although
multiple methods are employed in determining unidimenisionality in practice, the criterion
is somewhat arbitrary. Also, unidimensional models might be preferred to
multidimensional models in some cases for the purpose of theoretical simplicity. Thus, the
first specific aim of the current study is to explore the impact of fitting the bifactor ordered-
categorical data using unidimensional models on the latent mean comparison for the

general factor.
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In real data analysis, most of multiple-group comparisons using bifactor models are
based on traditional CFA models. On one hand, for the items with only a few categories,
the applications of traditional CFA models might not be appropriate because of violation
of normality and continuity assumptions. On the other hand, as pointed out by Stark et al.
(2006), traditional CFA models might be preferred to IRT models for polytomous data
when the sample size is small because IRT models in which more parameters need to be
estimated require larger sample size than the corresponding traditional CFA models to
achieve certain degree of estimation accuracy. Thus, the second aim of the current study is
to explore the impact of treating ordered-categorical data as continuous data under varied
conditions in bifactor model framework.

Although complete measurement invariance is ideal for latent mean comparisons,
it is hard to achieve in application. In most cases, latent mean comparisons are conducted
under partial measurement invariance obtained from stepwise selection of noninvariant
parameters. The post hoc adjustments on multiple-group models have been criticized by
many researchers (e.g., Marsh et al., 2018), and previous simulation study results also
suggested that the noninvariant parameters can never be perfectly recovered under
traditional multiple-group analysis based on such post hoc manner unless the effect size of
the DIF or the sample size was very large. Although an alternative method named
alignment method (Asparouhov & Muthén, 2013) has been proposed recently to avoid the
problems of the commonly applied post hoc selection of noninvariant parameters, it cannot
be implemented for bifactor model cases because this new method only applies to the
model in which each indicator loads on only one factor. Thus, in order to better interpret

the latent mean difference of the general factor of a bifactor model, it is necessary to
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consider the possibility of failing to account for DIF. Accordingly, the third specific aim
of this study is to explore the impact of failing to account for DIF in different parameters
on the latent mean comparison of the general factor for the generated multiple-group,

bifactor, ordered-categorical data.
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Chapter 2: Methods
Overview

Monte Carlo simulation methods were applied in the current study to explore the
robustness of latent mean comparisons for the general factor of the generated bifactor,
ordered-categorical data to varied research conditions. Although the IRT framework
provides complete features in terms of person parameters and item parameters when latent
ability is measured by ordered-categorical variables, the commonly applied IRT models
(i.e., 2PL model or GRM) are equivalent to categorical CFA models and they can be
estimated with categorical variable methodology in the CFA framework. In the current
research scenario, the focal variable was the latent mean difference rather than each
person’s parameter estimate and no pseudo-guessing parameter was assumed, SO
theoretically speaking, both IRT models and categorical CFA models can be used to fit the
data equivalently. Given that no simulation studies have focused on multiple-group,
bifactor, categorical CFA, and for some researchers, SEM software (e.g., Mplus) might be
relatively more easily accessible, it was chosen as the estimation method in the current
study.

The representative model is a bifactor categorical CFA model, which is equivalent
with a bifactor GRM within the IRT framework. A set of specific research conditions,
including varying population characteristics, sample characteristics, item characteristics
and data analysis strategies, were designed to address the research questions. For each
research condition, 1000 entire response datasets were generated using R based on
multiple-group bifactor GRMs. For some conditions, the data analysis model was different

from the data generation model to study effects of model misspecification in terms of fitting
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bifactor data using a unidimensional model, treating ordered-categorical data as continuous
data, and setting equality constraints to the noninvariant item parameters. Mplus 7 was
used for data analysis, which was implemented with MplusAutomation package in R. Using
MplusAutomation package, the results obtained from fitting the data analysis model to each
sample included overall model fit and parameter estimates. The results from all converged
replications within a condition were summarized descriptively, including estimation bias
(E (8) — 0), relative estimation bias ((E (8) — 0) / 6), power (or Type | error rate), estimated
variance, mean of the comparative fit index (CFI), mean of the standardized root mean
square residual (SRMR), mean of the weighted root mean square residual (WRMR), and
mean of the root mean square error of approximation (RMSEA). Details regarding the
representative model, research conditions, the procedures for data generation and analysis,
and the statistical outcomes of interest are illustrated in this section.
Representative Model

The representative model was a bifactor categorical confirmatory factor analysis
model involving both mean and covariance structures, as shown in Figure 1, which is
equivalent with the bifactor GRM within the IRT framework. For all conditions in this
study, two populations were specified and the model was configurally invariant across
these populations. As shown in Figure 1, a general factor was hypothesized to explain
common variance among all 12 items, and each item loaded on one of the three specific
factors. The general factor and all specific factors were orthogonal with each other.

For both populations, the variance of the general factor was set to 1 when generating
the data, such that the generated latent mean difference can be considered as a standardized

effect size. To obtain standardized interpretations of other parameters, the variances for all
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specific factors were set to 1, all loadings were specified as completely standardized factor
loadings, and the unit variance of each continuous latent variate underlying the
corresponding ordered-categorical item was obtained through setting appropriate residual
variance. To be specific, the residual of each continuous latent variate was set to one minus

the sum of its variance explained by the general factor (e.g., for item 1, it is A¢%y, 1) and

its variance explained by the corresponding specific factor (e.g., for item 1, it is A¢%, 1).

X : X

sl x| x| x

In analysis, factors were scaled by setting the means of all latent factors to 0 and

* * * * *
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sl x| x| X

Figure 1 The Representative Model

the variances of all latent factors to 1 in the reference group, and setting equality constraints
for at least one factor loading for each latent factor. For bifactor models, to identify the
variance-covariance matrix and mean vector among the continuous latent variates
underlying the polytomous ordered-categorical items (X; — X7,) it was required to set the

variances of the continuous latent variates to 1 in the reference group, and to constrain at
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least two of the threshold parameters for each measured variable to be invariant across
groups (Millsap & Yun-Tein, 2004); for binary data, in addition to setting the equality
constraint on the only threshold parameter for each measured variable, the variances of the
continuous latent variates were required to be set to 1 in both groups. Given that the
threshold parameters and intercept parameters are indeterminate, the intercepts for both
groups were set to 0. To minimize potential confounding effects on estimation bias of the
latent mean difference in the general factor produced due to identification constraints,
factor means were generated to be 0 in the reference group, variances of all latent factors
and continuous latent variates were generated to be 1 as mentioned above, and all intercepts
were generated to be 0 in both groups. For the threshold parameters on which equality
constraints were applied for identification purposes, these might not be generated to be
invariant across groups in some research conditions. For these conditions, it was not
possible to specify the analysis models to be fully consistent with the corresponding
generation models due to the needs of model identifications.

Although in realistic situations, anchor items may be chosen arbitrarily, in the
current simulation study, it was assumed that the chosen anchor items were generated to
have invariant item parameters across groups such that the estimation bias would be
unrelated with the choice of anchor items. In the current study, the first three measured
variables for each specific factor served as the anchor items and they were generated to
have invariant general factor loadings, specific factor loadings, and threshold parameters
across groups. When analyzing the data, all the item parameters for these anchor items
were constrained to be equal across groups. The last measurement variable for each specific

factor may have noninvariance in the general factor loading, specific factor loading, or
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threshold parameters. When analyzing the data, the factor loadings and threshold
parameters for these items were either freely estimated or constrained to be equal across
groups depending on the identification requirement and research conditions.

The generated datasets were all bifactor, ordered-categorical data with either 2, 3,
or 5 categories per item, and the number of categories for each item remained the same
across all items and groups for each condition. The values of the parameters fell in a similar
range as those from previous simulation studies and applied research involving multiple-
group, bi-factor IRT models (e.g., Berkeljon, 2012; Cai et al., 2011; Fukuhara & Kamata,
2011). For all conditions, the threshold parameters (z;) of the reference group were set to
0 for all the items in the binary data case, they were set to -0.5 and 0.5 for all the items in
the 3 categories per item case, and they were set to -0.9, -0.3, 0.3, and 0.9 for all the items
in the 5 categories per item case. The general factor loadings of the reference group were
set to 0.7 for all items in all conditions. The specific factor loadings of the reference group
were generated to be identical across all items, but their magnitudes varied across different
research conditions. In the focal group, the anchor items were generated to have the same
general factor loadings, specific factor loadings, and threshold parameters as the reference
group. For items with noninvariant factor loadings, the sizes of the DIF were -0.05, -0.10,
and -0.15. For items with noninvariant threshold parameters, a constant value (i.e., 0.05,
0.10 or 0.15) was added to each of the threshold parameters, such that the noninvariant
item consistently favored one group over the other. The latent mean difference of the
general factor varied across research conditions. The latent mean differences of the specific
factors were set to -0.1, 0, and 0.1 for the three specific factors, respectively, which

corresponds to a realistic situation in which the focal group members and reference group
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members show strengths in different specific dimensions beyond the influence of the
general dimension; these values remained the same across all the research conditions.
Research Conditions

The main factors manipulated in the current study may be distinguished by those
manipulated within the data generation phase and those varied within the analysis model.
For the generated multiple-group bifactor IRT models without DIF, the data generation
conditions varied were sample size, the number of categories per item, effect size of latent
mean difference for the general factor, and the size of specific factor loadings; in the data
analysis conditions, model misspecification conditions were introduced in which the
generated bifactor data were fit using a unidimensional model, and/or ordered-categorical
data were treated as continuous data. For the generated multiple-group bifactor IRT models
with DIF, the data generation conditions varied were sample size, the number of categories
per item, effect size of latent mean difference for the general factor, the type of item
parameters (the general factor loadings, the specific factor loadings, or the threshold
parameters) that had DIF, and the magnitude of DIF; the data analysis conditions varied in
whether or not setting equality constraints on the noninvariant item parameters. The total
number of specific research conditions was 408. The specific design parameters are
described below and are summarized in Tables 1 and 2.
Research Conditions for the Generated Multiple-group Bifactor IRT Models without
DIF

In the following research conditions (shown in Table 1), all items were generated
to have invariant item parameters across groups, and they were constrained to be equal in

analysis. The data generation conditions included sample size, the number of categories
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per item, size of latent mean difference for the general factor and size of specific factor
loadings. The data analysis conditions included the types of analysis models and estimation
methods. The specific conditions were described below.

Table 1

Manipulated Factors for the Generated Multiple-group Bifactor Models without DIF

Factors Design Parameters
Total sample size 600 or 1200
The number of categories per item 2,3,0r5

Size of latent mean difference for the

general factor 0,-0.1, 0r-0.2

Size of specific factor loadings 0.30r05

Unidimensional models or bifactor

The types of analysis models models

Traditional CFA models with MLR
Estimation methods estimator or categorical CFA models with
WLSMV estimator
Note: Traditional CFA models with MLR estimator was not applied for the conditions

with binary data.

Sample size. Sample size is an important factor that influences the power to detect
the latent mean difference of the general factor. Also, previous research (Stark et al., 2006)
suggested that for ordered-categorical data with small sample size, traditional CFA might
be preferred because the sample size requirement is very high for IRT models. In the
current study, total sample size was varied to include 600 or 1200 cases. These sample
sizes were chosen to avoid floor effects or ceiling effects regarding power, based on
research conditions examined in preliminary analyses for which the difference between

them was meaningful. Sample sizes were equal between the two groups.
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The number of categories per item. In addition to sample size, the number of
categories for each item also determines whether it is appropriate to specify a traditional
CFA model for the ordered-categorical data. As the number of categories increases (i.e., 5
categories or more), in comparison with IRT models, it might be more appropriate to treat
the ordered-categorical data as continuous and apply CFA models because fewer
parameters need to be estimated in a CFA model for continuous data (e.g., Stark et al.,
2006). In the current study, to examine the joint impact of the number of categories and the
choice of estimation methods, the number of categories was set to 3 or 5 for each item,
with the number of categories being the same across all items and groups for each condition.
Given the popularity of dichotomous data, binary datasets were also generated, and they
were only analyzed using categorical CFA models.

Size of latent mean difference for the general factor. The latent mean difference
of the general factor was 0, -0.1, or -0.20. These values were chosen based on preliminary
analysis to avoid floor or ceiling effects regarding power. When generating data, the
variance of the general factor was set to 1 for both groups, so the corresponding latent mean
difference can be considered as the standardized effect size. An effect size of 0 is consistent
with the null hypothesis of no between-population differences in latent means; rejection of
the null hypothesis in this case is a Type I error.

Size of specific factor loadings. As suggested by Reise (2012), the explained
common variance among all items due to the general factor (ECV) can be used to indicate
the degree of unidimensionality of a given dataset. In the current study, the general factor
loadings of the reference group were set to 0.7 for all conditions, which is a typical value

according to previous studies (e.g., Reise, 2012), so the varied size of specific factor
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loadings reflected different degrees of unidimensionality of the data. The specific factor
loadings of the reference group were generated to be identical across all items, and they
were set to 0.3 and 0.5, respectively. The conditions with specific loadings of 0.3
corresponded to the situation containing less multidimensional data in which the specific
factors have relatively small unique contribution to examinees’ performance after
controlling for the general factor and there might be no need to report subscale scores.
When the specific factor loadings were 0.5, it corresponded to the situation containing more
multidimensional data in which examinees’ strengths and weaknesses on the subscales
beyond the influence of the general factor was substantial.

The type of analysis models. The ordered-categorical data were generated to have
bifactor structure. In applied data analysis, multiple-group IRT models might be conducted
based on the unidimensionality assumption without testing dimensionality, as there is not
an absolute criterion to judge unidimensionality (Tay et al., 2014). Thus, in the current
study, the generated bifactor ordered-categorical data was fitted with either bifactor models
or unidimensional models to explore the impact of misspecification of the model structure
on the latent mean comparison of the general factor in a bifactor model.

Estimation methods. Stark et al. (2006) suggested that polytomous data (i.e., 5- or
more scale points) can be analyzed as continuous data using CFA models with ML
estimator when the sample size was small (i.e., 1,000 or less), given that the number of
estimated parameters is relatively small for CFA models for continuous data in comparison
with IRT models. Thus, in the current study, the generated bifactor, ordered-categorical
data with 3 or 5 categories and no DIF were analyzed using either categorical CFA models

with the WLSMV estimator or CFA models in which ordered-categorical data were treated
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as continuous. Given that ML parameter estimates with standard errors and a chi-square
statistic that are robust to non-normality can be obtained via robust maximum likelihood
(MLR) estimator, the MLR estimator was chosen as the estimator for CFA analysis in
which ordered-categorical data were treated as continuous.

Research Conditions for the Generated Multiple-group Bifactor IRT Models with
DIF

In the following research conditions (shown in Table 2), the specific factor loadings
in the reference group were set as 0.5. When analyzing the data, the data were fit with
bifactor models using categorical CFA models with WLSMV estimator. The data
generation conditions included the sample size (300 or 600), the number of categories per
item (2, 3, or 5), latent mean difference of the general factor (0, -0.1, or -0.2), the type of
item parameters with DIF, and the magnitude of DIF. The data analysis model varied
according to whether noninvariant item parameters were constrained to be equal. The
specific conditions unique to the generated multiple-group bifactor IRT models with DIF
are described below.

The type of item parameters with DIF. In the current study, the types of item
parameters that might have DIF included the general factor loadings, the specific factor
loadings, and the threshold parameters. For each of the research condition in which DIF
was generated, only one of these three types of item parameters had DIF, such that the
impact of types of item parameters having DIF on the latent mean comparison of the
general factor can be examined.

The magnitude of DIF. For all research conditions, only the last measured variable

of each specific factor had DIF, so only three measurement variables (X3, Xg and X7,) had
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DIF. The sizes of DIF for the factor loadings were -0.05, -0.1, or -0.15. To be specific, in
the research conditions in which the general factor loadings had DIF, the general factor
loadings were 0.65, 0.60, or 0.55 for these three measured variables in the focal group; in
the research conditions in which the specific factor loadings had DIF, the specific factor
loadings were 0.45, 0.40, or 0.35 for these three measured variables in the focal group. The
size of the DIF for the threshold parameters were also 0.05, 0.1, or 0.15, which was added
to each of the threshold parameters with DIF in the reference group, suggesting that these
items were more difficult for the focal group. The values of the DIF were informed by
those used in previous studies (e.g., Fukuhara & Kamata, 2011). In the research conditions
with polytomous data (i.e., 3 or 5 categories per item) in which the threshold parameters
had DIF, the threshold parameters were (-0.45, 0.55), (-0.40, 0.60), or (-0.35, 0.65) for
these three measured variables in the focal group when there were 3 categories per item,
and they were (-0.85, -0.25, 0.35, 0.95), (-0.80, -0.20, 0.40, 1.00), or (-0.75, -0.15, 0.45,
1.05) when there were 5 categories per item. For binary data conditions, the threshold
parameters were 0.05, 0.10, or 0.15 for these three measured variables in the focal group.
Equality constraints on noninvariant parameters. Given that perfect recovery
of DIF is hard to achieve in practice, in the current study, the parameters that were
generated to have DIF were either freely estimated (i.e., correctly specified) or constrained
to be equal (i.e., misspecified) in the analysis. When testing measurement invariance using
multiple-group categorical CFA models, loading invariance and threshold invariance are
usually tested sequentially (Millsap & Yun-Tein, 2004). In practice, for the items with
known DIF in factor loadings, when testing threshold invariance, their threshold

parameter(s) can be either constrained to be equal or freely estimated. Given that
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discrimination parameters and difficulty parameters are usually tested simultaneously
within the IRT framework, to better correspond to measurement invariance tests in IRT, in
the current study, equality constraints were placed on only loading parameters considered
to have DIF or only threshold parameters considered to have DIF. Note that for conditions
with polytomous data in which the threshold parameters had DIF, two of the noninvariant
threshold parameters for each item needed to be constrained to be equal across groups for
identification purpose; for conditions with binary data with noninvariant threshold
parameters, these noninvariant parameters must be constrained to be equal in the analysis

in order to identify the model.

Table 2

Manipulated Factors for the Generated Multiple-group Bifactor Models with DIF

DIF in general DIF in specific DIF in threshold
Factors . X
factor loadings factor loadings parameters
Total sample size 600 or 1200 600 or 1200 600 or 1200
The number of 2,3,0r5 2,3,0r5 2,3,0r5

categories per item

Size of latent mean
difference for the 0,-0.1,0r-0.2 0,-0.1,0r-0.2 0,-0.1,0r-0.2
general factor

: -0.05, -0.10, or - -0.05, -0.10, or -
Magnitude of DIF T e T e 0.05, 0.10, or 0.15
g 0.15 0.15 e
Whether setting Whether setting thether settln_g
. . . . equality constraints
. equality constraints  equality constraints
Data analysis o on the threshold
on the general on the specific .
procedure . . . . parameters with
factor loadings with  factor loadings with
DIE DIE DIF not necessary

for identification
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Data Generation and Data Analysis Procedures

R was used for data generation and Mplus 7 (Muthé & Muthé&, 2012) was
employed for data analysis; these were implemented with the MplusAutomation package
in R. The data generation models were multiple-group GRMs whose parameters were
transformed using Equation 16 from the corresponding loading parameters and threshold
parameters of the multiple-group categorical CFA models in the varied research conditions
presented above. For each condition, 1000 datasets with a given sample size were simulated
from each population. Problematic simulations in which convergence was not achieved in
a given number of iterations were discarded before summarizing the outcome so the
number of simulations for each research condition may vary. To ensure independence
across research conditions, a random seed was produced for each data generation condition
using a random number generator. Note that for each data generation condition, there were
multiple data analysis conditions.

To scale the latent factors, the means of all factors were fixed to 0 and the variances
of all factors were fixed to 1 in the reference group, and loadings and threshold parameters
(or intercepts) of at least one item for each factor were constrained to be invariant across
groups. In the current study, all loadings and threshold parameters (or intercepts) were
constrained to be equal for the conditions in which no DIF was generated. For the
conditions in which DIF existed, the loadings and threshold parameters that were generated
to be invariant were constrained to be equal across groups, and those with DIF were either
estimated freely or constrained between groups, depending on data analysis conditions.

Given that the latent mean differences in the general factor and specific factors are
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indeterminate, they are unable to be estimated simultaneously in analysis. Given that
specific factor mean differences were not the focus in the current study, when analyzing
the latent mean difference of the general factor, the mean of the general factor was set to 0
in the reference group, the means of the specific factors were set to 0 in the both groups,
and the mean of the general factor in the focal group was freely estimated.

In the analysis phase for multiple-group categorical CFA, DELTA parameterization
in which the variances of latent response variates are set to 1 in the reference group was
applied given that it performs better than THETA parameterization in some cases and there
was no interest in testing invariance of the residual variance in the current study. As
mentioned previously, in the data generation phase of the current study, variances of all
latent response variates were generated to be 1 in both groups such that the constraints
setting by DELTA parameterization would not influence the interpretation of the
magnitude of the estimates for other parameters (e.g., latent mean difference of the general
factor).

In addition to the constraints mentioned above, for multiple-group categorical CFA
analysis based on binary data using misspecified unidimensional models, given that there
is only one threshold parameter for each item, the variance of the latent continuous variate
underlying item 1 (X;7) was fixed to 1 in the focal group. For multiple-group categorical
CFA analysis based on polytomous data using bifactor models, the first two threshold
parameters for each measured variable were constrained to be invariant across groups
regardless of whether they had DIF; for binary data cases, the only threshold parameter of

each item was constrained to be equal across groups regardless of whether DIF was
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generated for them, and variances of all the continuous latent variates (X7-X;,) were fixed
to 1 in the focal group.

When applying multiple-group categorical CFA, the WLSMV estimator was
applied and the DIFFTEST function in Mplus was used for testing latent mean difference
of the general factor for each generated dataset. When conducting DIFFTEST, the more
restricted model was the model constraining latent means of the general factor to be zero
in both groups, and the less constrained model was the one freely estimating the latent
mean of the general factor in the focal group. Other parameters of these two models were
specified in the same way following the research conditions.

In the analysis phase for multiple-group traditional CFA, the ordered-categorical
data were treated as continuous data and MLR estimator was applied. The Satorra-Bentler
scaled chi-square difference test was used to test the latent mean difference of the general
factor across groups. When conducting chi-square difference tests, the more restricted
model was the model constraining latent means of the general factor to be zero in both of
the two groups, and the less constrained model was the one freely estimating the latent
mean of the general factor in the focal group. Other parameters of these two models were
specified in the same way following the research conditions.

Outcomes of Interest

For a given research condition, the outcomes of interest were summarized across
all replications with a proper solution. Results for replications with estimation problems
were excluded from computation of the summary statistics. To obtain a comprehensive
assessment of the impact of manipulated factors on the estimates and tests of differences

in latent means between populations, the summarized outcomes for each condition
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included Type I error rate or power, estimation bias, relative estimation bias, estimated
variance, mean CFl, mean SRMR or WRMR, and mean RMSEA.
Type | Error Rates and Empirical Powers

For research conditions in which the effect size of the latent mean difference was
generated to be zero, Type | error rate refers to the proportion of replications in which the
null hypothesis that the latent mean of the general factor in the focal group is zero was
rejected based on DIFFTEST or the Satorra-Bentler scaled chi-square difference test. For
research conditions in which the effect size of the latent mean difference was non-zero in
the population, power refers the proportion of replications in which the null hypothesis that
the latent mean of the general factor in the focal group is zero was rejected based on
DIFFTEST or the Satorra-Bentler scaled chi-square difference test. Empirical powers were
interpreted for a condition only if the respective Type | error rate falls in the acceptable
range of .025-.075, as designated by Bradley’s liberal criterion (1978).
Estimation Biases, Relative Estimation Biases, and Variances for Latent Mean
Difference

Estimation bias was the difference between the mean of estimated latent mean
differences across replications within a condition and the population latent mean difference.
The corresponding equation is:

Estimation Bias = E (9) — 0 (21)
where E () denotes the average value of estimated latent mean differences across
replications, and 0 denotes the true value of the latent mean difference in the population.
Relative estimation bias was the ratio of estimation bias to the true value of the latent mean

difference in the population, and the corresponding equation is:

70



Relative Estimation Bias = (E (8) —6)/6 (22)

Also, the variances of estimated latent mean differences across replications were computed.
Coverage Rates of 95% Confidence Interval

Coverage rate of the 95% confidence interval was the proportion of replications
within a condition for which the population value of the difference in the general factor
means falls within the computed 95% confidence interval for this difference in means.
Model Fit Indices

Model fit indices, including CFl, SRMR or WRMR, and RMSEA were collected
because they are generally recommended for use in judging overall model fit. CFls and
RMSEAs were collected for all models, SRMRs were collected for models analyzed using
the MLR estimator, and WRMRs were collected for models analyzed using WLSMV
estimators. In the current study, these indices were examined to determine descriptively
whether they were sensitive to misspecification of the noninvariant parameters.

Comparative Fit Index (CFI). CFl is an incremental fit index, which is defined

as:

CFI = 1- (A=Y 23)

Xj—dfn
where xZ and yZ are chi-square statistics for the tested model and the null model in which
only variances of observed variables are estimated, and df; and dfy are the corresponding
degree of freedom for these two models, respectively. Hu and Bentler (1999) suggested
that a CFI values of .95 or higher indicates a good model fit. According to findings of
Cheung and Rensvold (2002), a reduction of .01 or less in CFI suggests that hypothesis of
invariance should not be rejected. CFls obtained from replications with proper solutions

were averaged for each condition to obtain the mean CFI.
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Standardized Root Mean Square Residual (SRMR). SRMR is an absolute model
fit index and reflects the mean of absolute correlation residuals. Hu and Bentler (1999)
suggested that the acceptable value for SRMR should be equal or less than .08, and values
of .05 indicate a good model fit (e.g., Kline, 2011). SRMRs obtained from replications with
proper solutions were averaged for each condition to obtain the mean of SRMR.

Weighted Root Mean Square Residual (WRMR). Similar to SRMR, WRMR is
also computed based on residuals, which was proposed by Muthén (1998-2004) for models
using WLSMV estimators for ordered categorical data. As suggested by Yu & Muthén,
(2002), values of 0.9 of WRMR suggest good fit, while Yu (2002) recommended a higher
cutoff of 1.0 as a criterion for good fit. WRMRs obtained from replications with proper
solutions were averaged for each condition to obtain the mean WRMR.

Root Mean Square Error of Approximation (RMSEA). RMSEA is a parsimony-
corrected model fit index. The population RMSEA may be estimated based on fitting a

hypothesized model to a sample as:

_ | x?-df
RMSEA = /m (24)

where x? is the chi-square statistic obtained when fitting a given model to a sample, df is
the model degrees of freedom, and N is the sample size. As recommended by Browne and
Cudeck (1993), values of less than .05 indicate a very good fit; values between .05 and .08
indicate a fair fit; and values larger than .10 indicate a bad fit. RMSEASs obtained from
replications with proper solutions were averaged for each condition to obtain the mean

RMSEA.
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Chapter 3: Results
Factors Influencing the Latent Mean Comparisons for the General Factor in the No
DIF Conditions

When exploring the impact of fitting bifactor ordered-categorical data with
unidimensional models and treating ordered-categorical data as continuous data when
evaluating latent mean comparisons for the general factor, all item parameters were
generated to be invariant across groups and constrained to be equal in analysis such that
there were no confounding effects due to DIF. The degree of unidimensionality varied in
terms of different sizes of the explained common variance among all items due to the
general factor (ECV) because the specific factor loadings varied while the general factor
loadings remained the same for different data generation conditions. Also, sample sizes,
effect sizes of the latent mean difference of the general factor, and the numbers of
categories per item were also varied when generating the data. The generated bifactor
polytomous data were analyzed using the following four strategies: unidimensional model
with MLR estimator, unidimensional model with WLSMYV estimator, bifactor model with
MLR estimator, and bifactor model with WLSMV estimator. The generated bifactor binary
datasets were analyzed using either unidimensional model with WLSMV estimator or
bifactor model with WLSMYV estimator.
Factors Influencing the Estimation Bias

The estimation bias of the general factor mean difference for the generated invariant
bifactor ordered-categorical data is shown in Figure 2 and Tables B1-B6. Results indicated
all the manipulated factors, including the degree of unidimensionality (sizes of specific

factor loadings), sample size, the effect size of the latent mean difference for the general
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factor, and the number of categories per item and estimation strategies applied in analysis,

influenced the estimation bias of the general factor mean difference. Joint effects among

these factors were also found.
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Figure 2 The Estimation Bias of the General Factor Mean Difference under No DIF

Conditions

As shown in Figure 2 and Tables B1-B2, for the 3-point scale data, when the effect

size of the latent mean difference for the general factor was generated to be zero and the
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total sample size was 1200, the absolute values of estimation bias for the latent mean
difference of the general factor ranged from .0005 to .0009 with a mean of .0007, which
were ignorable and not influenced by other data generation conditions or data analysis
conditions. For the conditions with effect size of zero, decreasing the total sample size from
1200 to 600 slightly increased the absolute values of estimation bias, making them ranged
from .0008 to .0026 with a mean of .0017, which were not influenced by estimation
strategies either.

For the 5-point scale data and the binary data, when the effect size of the general
factor mean difference was generated to be zero, the absolute values of its estimation bias
were a little higher than those for the 3-point scale data in general, and they were not
influenced by neither estimation strategies nor the total sample size obviously (shown in
Figure 2). When the effect size was zero, the absolute values of the estimation bias ranged
from .0018 to .0034 with a mean of .0026 for the 5-point scale data (shown in Tables B1
and B2), and they ranged from .0003 to .0044 with a mean of .0029 for the binary data
(shown in Tables B1 and B2).

As shown in Figure 2, for the generated invariant data, when the absolute values of
effect size of the general factor mean difference increased, the absolute values of its
estimation bias conditioning on other factors also increased in general, and the magnitude
of the increase depended on total sample sizes and the joint factors of the degree of
unidimensionality and analysis strategies.

To be specific, for the 3-point scale data, when the absolute value of the effect size
was generated to be 0.1, the absolute values of estimation bias ranged from .0002 to .0094

and from .0019 to .0117 for the conditions with total sample size of 1200 and 600,
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respectively; when the absolute value of the effect size was generated to be 0.2, the absolute
values of estimation bias ranged from .0003 to .0198 and from .0025 to .0275 for the
conditions with total sample size of 1200 and 600, respectively (shown in Tables B3-B6).

For the 5-point scale data, when the absolute value of the effect size was generated
to be 0.1, the absolute values of estimation bias ranged from .0002 to .0118 and from .0002
to .0156 for the conditions with total sample size of 1200 and 600, respectively; when the
absolute value of the effect size was generated to be 0.2, the absolute values of estimation
bias ranged from .0001 to .0190 and from .0004 to .0251 for the conditions with total
sample size of 1200 and 600, respectively (shown in Tables B3-B6).

Different from the data with 3 or 5 categories per item, for the binary data,
decreasing the sample size did not increase the absolute values of the estimation bias when
the effect size of the general factor mean difference was nonzero (shown in Figure 2). For
the binary data, when the absolute value of the effect size was generated to be 0.1, the
absolute values of estimation bias ranged from .0005 to .0101 and from .0007 to .0074 for
the conditions with total sample size of 1200 and 600, respectively; when the absolute
value of the effect size was generated to be 0.2, the absolute values of estimation bias
ranged from .0017 to .0175 and from .0010 to .0176 for the conditions with total sample
size of 1200 and 600, respectively (shown in Tables B3-B6).

In addition to the total sample size, the joint factors of the degree of
unidimensionality and analysis strategies also had an influence on the estimation bias of
the latent mean difference for the general factor when its effect size was generated to be
nonzero. As indicated in Figure 2, for the data with 3 or 5 categories per item, when the

total sample size was 1200, no matter what the effect size of the latent mean difference for
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the general factor was, the absolute values of estimation bias was minimal as long as the
data were fitted with bifactor models, and these values increased for some conditions when
the total sample size decreased to 600. For the binary data, the absolute values of the
estimation bias were also minimum if the data were fitted with bifactor models, and they
were not influenced by the total sample size (shown in Figure 2). For the data with any
number of categories (i.e., 2, 3 or 5), in comparison with the conditions in which the
generated bifactor data was fitted with bifactor models, fitting the same generated data with
unidimensional models produced more positive estimation bias in general (shown in
Figures 1-3). The increase in the estimation bias was much more substantial for conditions
involved the more multidimensional data (i.e., specific factor loadings = 0.5) than for
conditions involved the less multidimensional data (i.e., specific factor loadings = 0.3), and
it was also more substantial for the conditions with effect size for the general factor mean
difference of -0.2 than for the conditions with the effect size of -0.1 (shown in Figure 2).

As shown in Figure 2, for the generated bifactor 3-point or 5-point scale data, the
selection of estimators (i.e., WLSMV or MLR) had little influence on the estimation bias
of the latent mean difference for the general factor as long as the data was fitted with
bifactor models. When the more multidimensional data (i.e., specific factor loadings = 0.5)
was fitted with unidimensional models, selecting the WLSMV estimator seemed to
produce more estimation bias than selecting MLR estimator.

The relative estimation bias of the latent mean difference for the general factor is
shown in Figure 3. The absolute values of the relative estimation bias were minimal when
the generated bifactor data was fitted with bifactor models and the total sample size was

1200, and when decreasing the total sample size to 600, these values increased for the 3-
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point scale and 5-point scale data and remained similar for the binary data. For the
generated data with 2, 3, or 5 categories, falsely fitting the bifactor data with
unidimensional models resulted in relative estimation bias with absolute values of around
2.5-5% for most conditions involving less multidimensional data (i.e., specific factor
loadings = 0.3), and these values reached around 10-15% for the conditions involving more
multidimensional data (i.e., specific factor loadings = 0.5). Different from the estimation
bias (i.e., E (8) — 0), the relative estimation bias (i.e., (E (8) — 0) / 8) was not influenced

substantially by the magnitude of the effect size when the effect size was generated to be

nonzero.
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Factors Influencing the Type | Error Rate/Power

The Type | error rate or power to detect the general factor mean difference for the
generated invariant bifactor ordered-categorical data is shown in Figure 4 and Tables B1-
B6.

Results regarding Type | error rates are shown in Tables B1 and B2. Type | error
rates fell in the limits of .025 to .075 for all conditions involving invariant data. Also, for
the generated data with 3 or 5 categories per item, Type | error rates obtained using the
WLSMYV estimator (ranged from .040 to .069) were a little higher than those obtained using
the MLR estimator (ranged from .032 to .043) for a given generated data and analysis
model (shown in Figures 4). When applying the WLSMYV estimator, the relatively inflated
Type | error rates (i.e., above .06) usually occurred when the total sample size was large or
the datasets were binary. The selection of analysis model (unidimensional models vs.
bifactor models) seemed to have no obvious influence on Type | error rates.

As shown in Figure 4, the most dominant factors influencing power were the effect
size of the general factor mean difference and the total sample size. For the 3-point scale
data, when the effect size was -0.1, the values of the power ranged from .170 to .206 and
from .335 to .385 for the conditions with total sample size of 600 and 1200, respectively;
when the effect size was -0.2, they ranged from .547 to .607 and from .863 to .892 for the
conditions with total sample size of 600 and 1200, respectively (shown in Tables B3-B6).
For the 5-point scale data, when the effect size was -0.1, powers ranged from .165 to .229
and from .320 to .405 for the conditions with total sample size of 600 and 1200,
respectively; when the effect size was -0.2, they ranged from .564 to .672 and from .897

to .933 for conditions with total sample size of 600 and 1200, respectively (shown in Tables
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B3-B6). For binary data, when the effect size was -0.1, powers ranged from .210 to .232
and from .358 to .378 for conditions with total sample size of 600 and 1200, respectively;
when the effect size was -0.2, they ranged from .597 to .646 and from .886 to .895 for

conditions with total sample size of 600 and 1200, respectively (shown in Tables B3-B6).
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Figure 4 Empirical Type | Error Rates/Powers to Detect the General Factor Mean
Difference under No DIF Conditions

In addition to the effect size of the general factor mean difference and the total

sample size, the selection of the estimator might also influence the power to detect the
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general factor mean difference. As shown in Figure 4, for a given generated data set and
analysis model (unidimensional model or bifactor model), the power obtained using the
WLSMV estimator seemed to be higher than that obtained using the MLR estimator in
most of the cases.

For a given total sample size and effect size of the general factor mean difference,
the variation of the values in power among conditions using MLR estimator seemed to be
smaller than that using the WLSMYV estimator. For the MLR estimator, when the effect
size was -0.1, powers ranged from .165 to .188 and from .320 to .355 for the conditions
with total sample size of 600 and 1200, respectively; when the effect size was -0.2, they
ranged from .549 to .612 and from .863 to .908 for the conditions with total sample size of
600 and 1200, respectively (shown in Tables B3-B6). For the WLSMV estimator, when
the effect size was -0.1, powers ranged from .166 to .232 and from .325 to .405 for the
conditions with total sample size of 600 and 1200, respectively; when the effect size was -
0.2, they ranged from .547 to .672 and from .864 to .933 for the conditions with total sample
size of 600 and 1200, respectively (shown in Tables B3-B6).

As shown in Tables B3-B6, a part of the large variation in the values of power
obtained using the WLSMYV estimator among the conditions for a given sample size and
effect size can be explained by the data generation factors of the number of categories per
item and the degree of unidimensionality in the current research scenario. For example, in
most cases, conditioning on other factors, the powers to detect the general factor mean
difference obtained using the WLSMYV estimator were largest for the 5-point scale data,
and they were slightly higher for the conditions involving less multidimensional data than

those for the conditions involving more multidimensional data.
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As shown in Figures 2-4, for the same generated bifactor data, although fitting them
with unidimensional models produced varying degrees of estimation bias in the latent mean
difference of the general factor, power was not influenced by the analysis model applied
(i.e., unidimensional models or bifactor models) using a given estimator (i.e., the MLR
estimator or the WLSMV estimator).

Estimated Variance

In the No DIF conditions, the main factor that influenced the estimated variance of
the latent mean difference in the general factor was sample size (shown in Tables B1-B6).
When the total sample size was 600, the estimated variances for these No DIF conditions
ranged from .006 to .009; when the total sample size was 1200, they were .003 or .004. In
addition to the total sample size, applying the unidimensional model usually led to a smaller
estimated variance in comparison with applying the bifactor model, and the difference in
the estimated variance for a given generated dataset was .001 or .002. Also, in most cases,
the estimated variance for the general factor mean difference tended to be smaller for
polytomous data than that for binary data for a given total sample size. Given the level of
precision reported (rounding to the thousandths place), not all differences in estimated
variances were reported. The selection of the estimator (i.e., the MLR estimator or the
WLSMYV estimator), the effect size of the general factor mean difference, and the degree
of unidimensionality for the generated bifactor data had no obvious impact on the estimated
variance for the general factor mean difference.

Coverage Rates of the 95% Confidence Interval
In the No DIF conditions, almost all the coverage rates of the 95% confidence

interval were above .950. Only for one condition, the coverage rate dropped to .948 because
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of relatively serious estimation bias (i.e., .0251 in the absolute value) resulting from fitting
the generated bifactor data using a unidimensional model when the total sample size was
600 and the effect size of the general factor mean difference was generated to be -0.2.
Goodness of Fit Indices

The means of the goodness of fit indices (i.e., CFI, SRMR/WRMR, and RMSEA)
for the No DIF conditions are shown in Tables B7-B12.

Means of CFls. As shown in Tables B7-B12, the means of CFIs for most of the
conditions in which the generated bifactor ordinal data were analyzed with bifactor models
using the WLSMYV estimator were .999 when the general factor mean difference was freely
estimated, and in a few small sample size conditions, they were .998. When the effect size
of the general factor mean difference was 0, constraining the latent mean difference in the
general factor to be 0 did not result in any decrease in these means of CFls, and it even
increased the means of CFls for a few conditions. When the effect size of the general factor
mean difference was -0.1, the drop of the means of CFIs due to constraining the latent mean
difference of the general factor to be zero were 0.001 for almost all the conditions except
for one condition in which the mean of the CFI did not change based on the level of
precision reported (rounding to the thousandths place). When the effect size of the general
factor mean difference was -0.2, the conditions involving less multidimensional data
evidenced drops in the means of CFlIs due to constraining to zero the latent mean difference
of the general factor of 0.005 and .007 for binary data and polytomous data, respectively;
in the conditions involving more multidimensional data, reductions in the means of CFls

were .003 and .004 for binary data and polytomous data, respectively.
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The means of CFls for the conditions in which the less multidimensional data (i.e.,
specific factor loadings = 0.3) was analyzed with unidimensional models using the
WLSMYV estimator ranged from .977 to .984 (shown in Tables B7, B9, and B11). For the
same generated dataset and the same estimator (i.e., the WLSMYV estimator), in comparison
with the bifactor analysis model, the drop of the means of CFls resulting from fitting them
with the unidimensional model were from .015 to .016 and from .019 to .021 for binary
data and polytomous data, respectively. For these misspecified conditions with
unidimensional analysis models, constraining the general factor mean difference to be zero
increased the means of CFls when the effect size was generated to be 0; even when the
effect size of the general factor mean difference was generated to be -0.1, all but one of the
means of CFls still increased after constraining the general factor mean difference to be
zero. Also, the increase in the means of CFls due to constraining the general factor mean
difference to be zero was especially obvious for polytomous data. When the effect size of
the general factor mean difference was -0.2, imposing the equality constraint on the general
factor mean difference in unidimensional models resulted in the drop of .004 and .001 for
the means of CFls for binary data and 3-point scale data, respectively. But for the 5-point
scale data, they still increased even when constraining the general factor mean difference
of -0.2 to be equal.

With respect to the generated more multidimensional data (i.e., specific factor
loadings = 0.5), the means of CFls for the conditions with unidimensional analysis models
using the WLSMV estimator ranged from .887 to .912(shown in Tables B8, B10 and B12).
For binary, bifactor data analyzed with the WLSMV estimator, the means of CFls were

smaller by .087 and .092 with small sample size and large sample size, respectively, when
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fitting them with the misspecified unidimensional model in comparison with the bifactor
analysis model. For the 3-point scale data, the drops were .101 and .105-.106 for small
sample size conditions and large sample size conditions, respectively; for the 5-point scale
data, they were .107-.108 and .112 for small and large sample size conditions, respectively.
After incorrectly fitting the more multidimensional data with unidimensional models using
the WLSMV estimator, imposing the equality constraint on the general factor mean
difference increased the means of CFIs no matter what the effect size was generated to be
(i.e., 0, -0.1 or -0.2), and such increase got large as the number of categories per item
became more.

For the conditions in which the generated ordinal data were treated as continuous
and the MLR estimator was applied, the means of CFls for bifactor analysis conditions
ranged from .996 to .999, which was slightly influenced by the data generation conditions
(i.e., the total sample size, the number of categories per item, and the degree of
unidimensionality). After constraining the general factor mean difference to be zero, there
was no change in the means of CFls for all conditions with the effect size of 0 and most
conditions with the effect size of -0.1; the drop was .001 for one condition with the effect
size of -0.1 and all conditions with the effect size of -0.2 (shown in Tables B7-B12).

The means of CFls for the conditions in which the generated less multidimensional
data (i.e., specific factor loadings = 0.3) was analyzed with unidimensional models using
the MLR estimator ranged from .946 to .953(shown in Tables B7, B9, and B11). For the
same generated dataset and the same estimator (i.e., the MLR estimator), in comparison
with the bifactor analysis model, the drop of the means of CFIs resulting from fitting them

with the unidimensional model were around .045 and .050 for 3- and 5-point scale data,
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respectively. For these unidimensional analysis models using the MLR estimator, there
were no changes in the means of CFls after constraining the general factor mean difference
to be zero for all conditions with the effect size of 0 and half of the conditions with the
effect size of -0.1, and they dropped by .001 and .002 for the other half of conditions with
the effect size of -0.1 and all conditions with the effect size of -0.2, respectively.

With respect to the generated more multidimensional data (i.e., specific factor
loadings = 0.5), the means of CFls for the unidimensional analysis models using the MLR
estimator ranged from .727 to .751 (shown in Tables B8, B10, and B12). To be specific, in
comparison with the bifactor analysis model using the MLR estimator, the decrease of the
means in CFIs due to fitting them with the unidimensional model using the MLR estimator
were 246-.247 and .248 - .249 for the 3-point scale data with small and large sample size,
respectively, and they were around .270 for the 5-point scale data. For these unidimensional
models with MLR estimator, imposing the equality constraint on the general factor mean
difference, the means of CFls did not drop or dropped by .001 when the effect size was 0
or -0.1, and they dropped by .001 or .002 when the effect size was -0.2.

Means of WRMRs. The means of WRMRs were reported for the conditions
analyzed with the WLSMV estimator. As shown in Tables B7-B12, when the generated
bifactor ordinal data were analyzed with bifactor models, the means of WRMRs ranged
from .802 to 1.023. The means of WRMRs were influenced by the data generation
conditions including the number of categories, total sample size, and degree of
unidimensionality. For example, for binary data, means of WRMRs ranged from .969 to

1.023, while for polytomous data, they ranged from .802 to .857. Also, larger sample size
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and high degree of unidimensionality were associated with larger values in the means of
WRMRs.

After imposing equality constraints on the general factor mean difference generated
to be 0 in the bifactor analysis models with the WLSMV estimator, the means of WRMRs
ranged from 1.003 to 1.050 and from .854 to .911 for binary data and polytomous data,
respectively. When the general factor mean difference with effect size of -0.1 was
constrained to be equal, the means of WRMRs ranged from 1.044 to 1.113 and from .910
to 1.070 for binary data and polytomous data, respectively. When the effect size of the
constrained general factor mean difference was -0.2, the means of WRMRs ranged from
1.129 to 1.292 and from 1.055 to 1.442 for binary data and polytomous data, respectively.
The changes of the means of WRMRs due to imposing equality constraints on the nonzero
general factor mean difference were more substantial for polytomous data than those for
binary data, with maximum of around 0.2 and 0.6 for the conditions with effect size of -
0.1 and -0.2, respectively (shown in Tables B7-B12).

When the generated less multidimensional data (i.e., specific factor loadings = 0.3)
were analyzed with unidimensional models using the WLSMV estimator, the means of
WRMRs ranged from 1.225 to 1.442 and from 1.290 to 1.599 for binary and polytomous
data, respectively. With respect to the generated more multidimensional data (i.e., specific
factor loadings = 0.5), when fitting them with the misspecified unidimensional model using
the WLSMV estimator, the means of WRMRs ranged from 2.639 to 3.599 and from 3.109
to 4.517 for binary and polytomous data, respectively. Larger number of categories per
item and the larger sample size were associated with more increase in the means of

WRMRs due to fitting the bifactor data using the unidimensional model (shown in Tables
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B7-12). In the unidimensional analysis models, after imposing equality constraints on the
general factor mean difference, the means of WRMRs became even larger but the increase
was very small relative to that resulting from falsely fitting the bifactor data using the
unidimensional model.

Means of SRMRs. As shown in Tables B7-B12, when the generated bifactor
ordinal data was treated as continuous and analyzed using the MLR estimator, the means
of SRMRs were reported. Using bifactor analysis models, the means of SRMRs ranged
from .029 to .033 and from .021 to .024 for the small (Total N = 600) and large (i.e., Total
N = 1200) sample conditions. In addition to the sample size, the means of SRMRs were
also influenced by other data generation conditions slightly, such as the number of
categories per item and the degree of unidimensionality. After imposing equality
constraints on the general factor mean difference, the increase in the means of SRMRs
ranged from .001 to .002, from .003 to .004, and from .008 to .012 for the conditions with
effect sizes of 0, -0.1, and -0.2, respectively.

The means of SRMRs for the conditions in which the less multidimensional data
(i.e., specific factor loadings = 0.3) was analyzed with unidimensional models was .046
and .039 - .040 when the total sample size was 600 and 1200, respectively (shown in Tables
B7, B9, and B11). After imposing equality constraints on the general factor mean
difference, the increase in the means of SRMRs was 0-.001, .002-.003, and .006-.007 for
the conditions with the effect size of 0, -0.1 and -0.2, respectively.

With respect to the more multidimensional data (i.e., specific factor loadings = 0.5),
fitting them using unidimensional models, the means of SRMRs became .091 and .096 for

the 3- and 5-point scale data, respectively, when the total sample size was 600, and they
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were .088 and .093 for the 3- and 5-point scale data when the total sample size was 1200
(shown in Tables B8, B10, and B12). The increase in the means of SRMRs resulting from
imposing equality constraints on the general factor mean difference in these
unidimensional models was 0, .001, and .003 for conditions with effect sizes of 0, -0.1, and
-0.2, respectively.

Means of RMSEAs. As shown in Tables B7-B12, when the generated bifactor
ordinal datasets were analyzed using bifactor models, the means of RMSEAS ranged
from .006 to .013 with their magnitude influenced by data generation conditions including
the total sample size, the number of categories per item, and the degree of
unidimensionality. The selection of the estimator (i.e., the MLR estimator or the WLSMV
estimator) seemed to have little impact on the means of RMSEAs when the model was
correctly specified. After imposing equality constraints on the general factor mean
difference, the means of RMSEAs did not change or even decreased when the effect size
was 0. When the effect size was -0.1, setting equality constraints on the latent mean
difference of the general factor yielded increases in means of RMSEAs ranging from .003
to .006 for analysis conditions with the WLSMV estimator, and 0 to .001 for conditions
with the MLR estimator. When the effect size was -0.2, the increase in the means of
RMSEAs ranged from .013 to .025 and from .002 to .005 for conditions with the WLSMV
estimator and the MLR estimator, respectively, after imposing equality constraints on the
general factor mean difference.

When generated less multidimensional data (i.e., specific factor loadings = 0.3)
were fitted with unidimensional models, the means of RMSEAs ranged from .042 to .062,

and the increase relative to the corresponding bifactor model using the same estimator
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ranged from .034 to .053. With respect to the more muldata (i.e., specific factor loadings =
0.5), fitting them with unidimensional models, the means of RMSEASs ranged from .122
to .169 with the increase in comparison with the corresponding correctly specified model
using the same estimator ranged from .112 to .160. After imposing equality constraints on
the general factor mean difference in these unidimensional models, the means of RMSEAs
did not change or even decreased for all conditions with the effect size of 0 and -0.1 and
most conditions with the effect size of -0.2. Only for some conditions in which the data
was generated with high degree of unidimensionality and the effect size of -0.2, the means
of RMSEAs increased by .001.
Factors Influencing the Latent Mean Comparisons for the General Factor in the
Conditions with DIF

In order to examine the influence of the DIF on latent mean comparisons of the
general factor within the generated multiple-group ordinal bifactor datasets, the
manipulated data generation conditions included the total sample size (i.e., 600 or 1200),
the effect size of the general factor mean difference (i.e., 0, -0.1, or -0.2), the number of
categories per item (2, 3, or 5), the type of parameters with DIF (general factor loadings,
specific factor loadings, or threshold parameters), and the magnitude of DIF (i.e., -0.05, -
0.10, or -0.15 for factor loadings; 0.05, 0.10, or 0.15 for threshold parameters). When
analyzing the data, all generated datasets were analyzed using bifactor models with the
WLSMV estimator, and the parameters with DIF were either freely estimated or
constrained to be equal across groups. For conditions with DIF, all item parameters (i.e.,
general factor loadings, specific factor loadings, and threshold parameters) in the reference

group and variance-covariance matrix and mean vectors for the latent factors were the same
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as those for the No DIF conditions with low degree of unidimensionality (i.e., strong
specific factor loadings) except that the DIF was present for different types of item
parameters, so the subset of the No DIF conditions in which the data were generated with
strong specific factor loadings and analyzed with bifactor models using the WLSMV
estimator serve as the baseline conditions for evaluating the DIF conditions.
Factors Influencing the Estimation Bias

Estimation bias for the conditions with DIF in general factor loadings are shown in
Figure 5 and Tables B13-B18. In comparison with the corresponding baseline conditions
in which no DIF was generated and all parameters were constrained to be equal, the DIF
in the general factor loadings seemed to have no influence on the estimation bias for the
general factor mean difference if the general factor loadings with DIF were freely estimated
(see Figure 5). As shown in Tables B2, B4, and B6, the estimation bias of the general factor
mean difference for all baseline conditions ranged from -.0041 to .0081 with a mean
of .0004. As shown in Figure 2, the estimation bias of these baseline conditions was slightly
influenced by the total sample size and effect size of the general factor mean difference for
the 3- and 5-point scale data. For the conditions with DIF in the general factor loadings,
the estimation bias of the general factor mean difference ranged from -.0044 to .0049 with
a mean of -.0001 when the model was correctly specified (shown in Tables B13-B18),
which fell in the similar range as the baseline conditions. Unlike the baseline conditions,
the estimation bias of these correctly specified models for the conditions with DIF in the
general factor loadings was not influenced by the total sample size or the effect size of the

general factor mean difference (shown in Figure 5).
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Figure 5 Estimation Bias of the General Factor Mean in the Conditions with DIF in
General Factor Loadings

As shown in Tables B13-B18, when the magnitude of DIF in the general factor
loadings were -0.05, the differences of the estimation bias for the general factor mean
difference between the conditions with general factor loadings having DIF constrained to
be equal and the corresponding correctly specified conditions ranged from -.0001 to .0002,
from .0016 to .0018, and from .0034 to .0037 when the effect size was 0, -0.1, and -0.2,
respectively. As the magnitude of DIF in the general factor loadings increased, the

differences in estimation bias in the general factor mean difference between these two
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analysis conditions remained similar for the conditions with the effect size of zero (i.e.,
ranged from -.0001 to .0002 and from 0 to .0003 when DIF =-0.10 and -0.15, respectively),
and they increased obviously for the conditions with the effect size of -0.10 and -0.15. To
be specific, when the DIF =-0.10, they ranged from .0033 to .0040 and from .0066 to .0075
for conditions with effect sizes for the general factor mean difference of -0.1 and -0.2,
respectively. When the DIF = -0.15, they were .0048 and .0055 for binary and polytomous
data, respectively, in the conditions with the effect size of -0.1, and they were .0091- .0093
and .0111- .0112 for binary and polytomous data in conditions with the effect size of -0.2.

In summary, as shown in Figure 5 and Tables B13-B18, for a given generated
dataset with DIF in the general factor loadings, when constraining the general factor
loadings with DIF to be equal across groups, in comparison with the correctly specified
model with the general factor loadings with DIF freely estimated, there was no obvious
change in the estimation bias for the general factor mean difference for the conditions with
the effect size of 0, and there was substantial increase in the estimation bias for the general
factor mean difference for conditions with nonzero effect size (i.e., -0.1 or -0.2). The
magnitude of the increase in the estimation bias for the general factor mean difference
resulting from constraining the general factor loadings with DIF to be equal across groups
was mainly determined by the magnitude of DIF and the effect size of the general factor
mean difference, and it was slightly influenced by the number of categories per item.
Controlling for the magnitude of the DIF and the number of categories per item, when the
effect size of the general factor mean difference was -0.2, the increase in its estimation bias
due to setting equality constraints on the general factor loadings having DIF was around

two times that for the conditions with the effect size of -0.1.
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In addition to the estimation bias (i.e., E (8) — 0), the relative estimation bias (i.e.,
(E () — 0) / 0) was also reported in the current study. As shown in Figure 6, in the baseline
conditions and the conditions with the general factor loadings having DIF freely estimated,
most of the relative estimation biases were around 0, and their maximum values could
reach around 5% in absolute values. In comparison with the correctly specified model,
when the DIF = -0.05, constraining the general factor loadings with DIF to be equal across
groups resulted in around 1.6-1.8% decrease in the relative estimation bias for the general
factor mean difference estimates; when the DIF = -0.10, the decrease was around 3.2-3.9%;
when the DIF = -0.15, the decrease was around 4.6-4.8% and 5.5-5.6% for binary data and
polytomous data, respectively. As indicated in Figure 6, the changes in the relative
estimation bias for the general factor mean difference estimates due to setting equality
constraints on general factor loadings with DIF were not substantial relative to the
estimation bias of these estimates for the correctly specified models when the DIF = -0.05
and -0.10, and only when DIF = -0.15, the relative estimation bias for the general factor
mean difference estimates resulting from constraining the general factor loadings with DIF
to be zero might need more attention. Unlike how the estimation bias of the general factor
mean difference was influenced by its effect size, the relative estimation bias was not
influenced by the effect size.

The results of (relative) estimation bias for the conditions with DIF in specific
factor loadings are shown in Figures 7 and 8 and Tables B19-B24. Similar to conditions
with DIF in general factor loadings, the DIF in specific factor loadings had no impact on
the estimation bias for the general factor mean difference as long as the model was correctly

specified. When the specific factor loadings with DIF were freely estimated, the estimation
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Figure 6 Relative Estimation Bias of the General Factor Mean in the Conditions with DIF
in General Factor Loadings

bias ranged from -.0058 to .0068 with a mean of .0003, which fell in a similar range to the
baseline conditions and the correctly specified conditions with DIF in the general factor
loadings, and their absolute values slightly increased as the total sample size decreased

from 1200 to 600.
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Figure 7 Estimation Bias of the General Factor Mean in the Conditions with DIF in
Specific Factor Loadings

After setting equality constraints on the specific factor loadings with DIF, in
comparison with the corresponding correctly specified model, the estimation bias of the
general factor mean difference did not change for almost all conditions when the effect size
was zero. When the effect size of the general factor mean difference was nonzero, the
changes in estimation bias due to setting equality constraints on specific factor loadings
with DIF were 0, .0001, or .0002 regardless of the size of the DIF (shown in Tables B19-

B24).
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Figure 8 Relative Estimation Bias of the General Factor Mean in the Conditions with DIF
in Specific Factor Loadings

As indicated by Figures 7 and 8, the changes in estimation bias or relative

estimation bias resulting from setting equality constraints on the specific factor loadings

with DIF were minimal relative to the estimation bias or the relative estimation bias for the

correctly specified models.

The results of estimation bias for the conditions with DIF in threshold parameters

are shown in Figure 9 and Tables B25-B30. When the DIF was present in threshold

parameters, a constant of 0.05, 0.10, or 0.15 was added to all the threshold parameter(s) of
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the noninvariant items. For binary data and the 3-point scale data, the noninvariant
threshold parameters had to be constrained to be equal for identification purpose. For the
5-point scale data, the first two noninvariant threshold parameters for each noninvariant
item were constrained to be equal for identification purposes and the other two noninvariant
threshold parameters could be freely estimated. As shown in Tables B25-B30, for binary
data and the 3-point scale data, the estimation bias of the general factor mean difference
ranged from -.0199 to -.0123, from -.0381 to -.0286, and from -.0584 to -.0499 when the
DIF in the threshold parameters was 0.05, 0.10, and 0.15, respectively. For the 5-point
scale data, when two of the noninvariant threshold parameters for each item with DIF were
freely estimated, the estimation bias of the general factor mean difference ranged from
-.0131 to -.0099, from -.0252 to -.0203, and from -.0356 to -.0277 when the DIF in the
threshold parameters was 0.05, 0.10, and 0.15, respectively. After constraining all
threshold parameters with DIF to be equal for the 5-point scale data, the estimation bias of
the general factor mean difference ranged from -.0204 to -.0180, from -.0403 to -.0343,
and from -.0549 to .0495 when the DIF = 0.05, 0.10, and 0.15, respectively. For a given
generated 5-point scale data with the DIF of 0.05 in threshold parameters, the changes in
estimation bias for the general factor mean difference due to constraining more
noninvariant threshold parameters to be equal were -.086 or -.084, -.074 or -.075, -.069 or
-.067 when the effect size was 0, -0.1, and -0.2, respectively. When DIF was 0.10, these
changes were -.0172 or -.0169, -.0153 or -.0151, -.0132 or -.0131 for the conditions with
effect sizes of 0, -0.1, and -0.2, respectively; when the DIF was 0.15, they were -.0246 or
-.0248, -.0218, -.0193 or -.0189 for the conditions with the effect size of 0, -0.1, and -0.2,

respectively.
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Figure 9 Estimation Bias of the General Factor Mean in the Conditions with DIF in
Threshold Parameters

As indicated in Figure 9, the estimation biases of the general factor mean difference
for the conditions with noninvariant threshold parameters constrained to be equal were
negative and very substantial relative to the corresponding baseline conditions, and the
main factor that influenced the estimation bias was the magnitude of DIF in threshold
parameters. Other factors, such as total sample size and effect size of the general factor
mean difference, seemed to have little influence on the estimation bias when DIF was

present in threshold parameters. In comparison with the estimation bias of the general
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factor mean difference in the binary data and the 3-point scale data in which all the
noninvariant threshold parameters were constrained to be equal across groups for
identification purposes, the estimation bias was smaller when two of the noninvariant
threshold parameters were freely estimated for the 5-point scale data. When all
noninvariant threshold parameters were constrained to be equal for the 5-point scale data,
the estimation bias for the general factor mean difference became similar to those for the
binary data and the 3-point scale data.

The relative estimation bias of the general factor mean difference for the conditions
with DIF in threshold parameters is shown in Figure 10. As indicated in Figure 10, for the
binary data and the 3-point scale data, the relative estimation bias of the general factor
mean difference was nearly 20%, 30-40%, and 50-60% when the effect size was -0.1 and
the DIF in the threshold parameters was 0.05, 0.10, and 0.15, respectively. Figure 10
showed that relative estimation bias decreased somewhat when two of the noninvariant
threshold parameters for each item with DIF were freely estimated in the 5-point scale data,
and the magnitude of decrease depended on the magnitude of DIF. When all threshold
parameters with DIF were constrained to be equal for the 5-point scale data, the relative
estimation bias of the general factor mean difference became similar to those for the binary
data and the 3-point scale data. When the effect size was -0.2, the relative estimation bias

became around half of those for the conditions with the effect size of -0.1.
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Figure 10 Relative Estimation Bias of the General Factor Mean in the Conditions with
DIF in Threshold Parameters

Factors Influencing the Type | Error Rate/Power

The Type | error rate or power to detect the general factor mean difference for the

conditions with DIF in general factor loadings are shown in Tables B13-B18 and Figure

11.

As shown in Tables B13 and B14, Type I error rates fell in the limits of .025 to .075

for all conditions with DIF in general factor loadings. In the conditions with DIF in general

factor loadings, the Type | error rates were relatively lower for the 5-point scale data
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(ranged from .028 to .043) and relatively higher for the 3-point scale data when the total
sample size was 600 (ranged from .060 to .075). Whether or not the general factor loadings
with DIF constrained to be equal seemed to have no influence on the Type | error rates.

Figure 11 indicated that the main factors influenced the power to detect the general
factor mean difference in the conditions with DIF in general factor loadings were the total
sample size and the effect size. As shown in Tables B13-B18, when the effect size was -
0.1, empirical powers ranged from .168 to .222 and from .294 to .381 for conditions with
total sample size of 600 and 1200, respectively; when the effect size was -0.2, they ranged
from .556 to .637 and from .822 to .882 for the conditions with total sample size of 600
and 1200, respectively. In addition to the total sample size and the effect size, the number
of categories per item might also influence the values for the power to detect the general
factor mean difference when DIF was present in general factor loadings. Specifically, for
a given total sample size and effect size, powers were largest for the 3-point scale data and
smallest for the 5-point scale data in most cases.

As indicated in Figure 5 and 11, in comparison with the correctly specified model,
constraining the general factor loadings with DIF to be equal across groups produced more
estimation bias in the general factor mean difference, but it had little influence on the power
to detect the general factor mean difference.

Type | error rates regarding the general factor mean difference estimation for the
conditions with specific factor loadings having DIF are shown in Tables B19 and B20.
Type | error rates fell in the limits of .025 to .075 for all conditions with DIF in specific
factor loadings. Similar to the conditions with DIF in general factor loadings, Type | error

rates were relatively smaller for the 5-point scale data than for the 3-point scale data when
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the DIF was present in specific factor loadings. Also, constraining the noninvariant specific

factor loadings to be equal seemed to have no obvious impact on the Type | error rates.
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Figure 11 Type | Error Rate/Power to Detect the General Factor Mean Difference in the
Conditions with DIF in General Factor Loadings

As shown in Figure 12, the dominant factors influencing the power to detect the
general factor mean difference for the conditions with DIF in specific factor loadings were
total sample size and effect size. When the effect size of the general factor mean difference

was -0.1, the values of power ranged from .171 to .227 and from .314 to .400 for the

103



conditions with total sample size of 600 and 1200, respectively; when the effect size was -
0.2, they ranged from .571 to .642 and from .857 to .909 for the conditions with total sample
size of 600 and 1200, respectively. For a given total sample size and effect size, in
comparison with the conditions with DIF in general factor loadings, powers to detect the
general factor mean difference fell in similar ranges for the conditions with DIF in specific
factor loadings. The number of categories per item also slightly influence the power to
detect the general factor mean difference when the DIF was present in specific factor
loadings. For example, power seemed to be smaller for 5-point scale data than 3-point scale
data in most cases. Also, whether the specific factor loadings with DIF were constrained
to be equal across groups seemed to have little influence on the power to detect the general
factor mean difference.

Type | error rates regarding the general factor mean difference estimation for the
conditions with DIF present in threshold parameters are shown in Tables B25 and B26.
When the total sample size was 600, the Type I error rates fell in the limits of .025 to .075
for the conditions with DIF in the threshold parameters of 0.05 and 0.10, and in the 5-point
scale data with two of the noninvariant threshold parameters freely estimated, the Type |
error rate also fell in the limits of .025 and .075 for the condition with the DIF of 0.15.
When the total sample size was 1200, the Type | error rates fell in the limits of .025 to .075
in the 3-point scale data for the condition with DIF in the threshold parameters of 0.05 and
in the 5-point scale data for the conditions with DIF in the threshold parameters of 0.05
and 0.10. Also, the Type I error rates fell in the limits of .025 to .075 seemed to be smaller
for the 5-point scale data in comparison with those for the binary data and the 3-point scale

data. All other Type I error rates for the conditions with DIF in threshold parameters were
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inflated using .075 as the upper limit, and the magnitude of inflation depended on the
magnitude of the DIF in the threshold parameters and the total sample size. Larger
magnitude of DIF in the threshold parameters and larger total sample size were associated
with more serious inflation of the Type | error rates regarding the latent mean difference
estimation.

When Type | error rates fell beyond the limits of .025 to .075, the corresponding
power to detect the general factor mean difference cannot be appropriately interpreted, so
only the subset of the empirical detection rates for the nonzero effect size can be interpreted
as power when DIF was present in threshold parameters. As shown in Tables B27-B30, the
powers were mainly determined by the total sample size and the effect size. When the effect
size of the general factor mean difference was -0.1, powers ranged from .234 to .331 and
from .395 to .587 for the conditions with total sample size of 600 and 1200, respectively;
when the effect size was -0.2, they ranged from .630 to .765 and from .921 to .963 for the
conditions with the total sample size of 600 and 1200, respectively. In comparison with the
powers for the conditions with DIF in general factor loadings or specific factor loadings,
the powers for conditions with DIF in threshold parameters were obviously larger for a
given total sample size and effect size. In addition to the total sample size and the effect
size, the magnitude of DIF in the threshold parameters and the number of categories per
item also influenced the power to detect the general factor mean difference. To be specific,
larger magnitudes of DIF were associated with greater power, and the power was relatively

smaller for the 5-point scale data than that for the 3-point scale data in general.
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Figure 12 Type | Error Rate/Power to Detect the General Factor Mean Difference in the
Conditions with DIF in Specific Factor Loadings

Estimated Variance

Similar to the No DIF conditions, in the conditions with DIF, the main factor
influencing the estimated variance of the general factor mean difference was the total
sample size (shown in Tables B13-B30). When the total sample size was 600, the estimated
variances ranged from .007 to .009; when the total sample size was 1200, they ranged
from .003 to .005. Estimated variances for these conditions with DIF fell in similar ranges

to those for the No DIF conditions for a given sample size. Additionally, in comparison
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with the corresponding correctly specified model, setting equality constraints on general
factor loadings with DIF led to a smaller estimated variance in some conditions with the
total sample size of 600 and only a few conditions with the total sample size of 1200, and
the difference in the estimated variance for a given generated dataset was .001. When DIF
was present in specific factor loadings or threshold parameters, estimated variances for the
general factor mean difference remained the same after setting (more) equality constraints
on the noninvariant parameters in comparison with the corresponding model with fewer
equality constraints. Also, the estimated variance for the general factor mean difference
seemed to be smaller for the data with more categories per item in general for a given total
sample size in some of the cases. Given the level of precision reported (rounding to the
thousandths place), not all differences in estimated variances were reported.
Coverage Rates of 95% Confidence Interval

In conditions with DIF in general factor loadings or specific factor loadings, almost
all the coverage rates of the 95% confidence interval were above .950 no matter whether
the parameters with DIF were freely estimated or not (shown in Tables B13-B24). When
DIF was present in threshold parameters, most of the coverage rates of the 95% confidence
interval were above .950 when the DIF = 0.05. When the DIF in the threshold parameters
was 0.10 and 0.15, some coverage rates of the 95% confidence interval fell below .950 due
to the serious estimation bias, and larger total sample size usually made them drop down
more seriously.
Goodness of Fit Indices

The means of the goodness of fit indices (i.e., CFI, WRMR, and RMSEA) for the

conditions with DIF were shown in Tables B31-B48.
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Means of CFls. As shown in Tables B31-B42, for the correctly specified models
with all item parameters with DIF (i.e., noninvariant general factor loadings or noninvariant
specific factor loadings) freely estimated, the means of CFIs were .999 with only one
exception of .998 for a condition with the total sample size of 600. The results regarding
the means of CFls for these correctly specified models were similar to the baseline
conditions in which there was no DIF in item parameters and all the item parameters were
constrained to be equal across groups in analysis. After imposing equality constraints on
the general factor mean difference for these correctly specified models, the means of CFls
did not change or even increased by .001 when the effect size of the general factor mean
difference was zero. When the effect size was -0.1, the drop of the means in CFIs resulting
from setting equality constraints on the general factor mean difference was .001 for almost
all the correctly specified models. Only for the conditions involving binary data in which
DIF was present in specific factor loadings and the total sample size was 1200, the means
of CFls did not change when the effect size was -0.1. When the effect size of the general
factor mean difference was -0.2, the drop of the means in CFls resulting from setting
equality constraints on the general factor mean difference was .003 for binary data and .004
to .005 for polytomous data.

When DIF was present in general factor loadings, in comparison with the
corresponding correctly specified model, constraining the general factor loadings with DIF
of -0.05 to be equal across groups did not change the means of CFls in most cases, and for
two conditions involving binary data, they decreased by .001. When the DIF in the general
factor loadings was -0.10, the drops of the means of CFIs due to setting equality constraints

on the general factor loadings with DIF was .002, 0, and .001 for the binary, the 3-point
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scale, and the 5-point scale data, respectively; when the DIF = -0.15, they decreased
by .004, .001, and .002 for the binary, the 3-point scale, and 5-point scale data, respectively.
In the models with general factor loadings having DIF constrained to be equal, imposing
equality constraints on the general factor mean difference, the means of CFls did not
change or even increased when the effect size was zero; they decreased by .001 for some
of the conditions with the effect size of -0.1, and they did not change or even increased for
the rest; when the effect size was -0.2, the drops of CFIs were mostly .003 (with one of .002
and one of .004) for binary data and mostly .004 (with a few exceptions of .003) for
polytomous data.

When DIF was present in specific factor loadings, constraining the noninvariant
specific factor loadings to be equal only decreased the means of CFls by .001 for most of
the conditions with DIF of -0.15 and very a few conditions with DIF of -0.10. For the rest
of the conditions (i.e., all conditions with DIF of -0.05, most conditions with DIF of -0.10,
and a very few conditions with DIF = -0.15), the means of CFls did not change due to
setting equality constraints on the specific factor loadings with DIF. For the conditions
with specific factor loadings having DIF constrained to be equal, after imposing equality
constraints on the general factor mean difference, the means of CFls did not change or even
increased when the effect size was zero; they did not change or decreased by .001 when
the effect size was -0.1; and when the effect size was -0.2, the drop of the means of CFls
was .003 or .004 for binary data and mostly .004 (with one exception of .005) for
polytomous data.

Results regarding the means of CFlIs for the conditions with DIF in threshold

parameters are shown in Tables B43-B48. When the DIF was present in threshold
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parameters, none of the models could be correctly specified in the current study because
equality constraints had to be placed on the only threshold parameter for each item in binary
datasets and at least two threshold parameters for each item in polytomous datasets for
identification purposes. As shown in Tables B43-B48, setting equality constraints on the
only threshold parameter for the binary data or at least two threshold parameters for the
polytomous data, the means of CFIs were .999, .999 with some exceptions of .998, and
mostly .998 with a few exceptions of .999 when the DIF in the threshold parameters was
0.05, 0.10, and 0.15, respectively. For the 5-point scale data, after constraining more
noninvariant threshold parameters to be equal, the means of CFIs did not change when the
DIF = 0.05, and they decreased by .001 for most of the conditions with DIF of 0.10 and
0.15. In the models with DIF in threshold parameters, constraining the general factor mean
difference to be zero, the means of CFls did not change or even increased when the effect
size of the general factor mean difference was zero; they decreased by .001 or .002 for
conditions with the effect size of -0.1 and by .004-.007 for conditions with the effect size
of -0.2.

Means of WRMRSs. As shown in Tables B31-B42, when the DIF was present in
the general factor loadings or specific factor loadings, for the correctly specified models
with all item parameters with DIF freely estimated, the means of WRMRs ranged from .938
to .972 and from .786 to .833 for binary and polytomous data, respectively. Additionally,
the means of WRMRs also increased slightly as the total sample size got larger. After
imposing equality constraints on the general factor mean difference of zero, the means of
WRMRs ranged from .969 to 1.001 and from .837 to .896 for binary data and polytomous

data, respectively. When the effect size was -0.1, the means of WRMRs for the constrained
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model ranged from 1.003 to 1.065 and from .892 to 1.053 for binary data and polytomous
data, respectively; when the effect size was -0.2, they ranged from 1.094 to 1.246 and from
1.040 to 1.442 for binary data and polytomous data, respectively. The increase in the means
of WRMRs due to setting equality constraints on the general factor mean difference was
relatively most substantial for the 5-point scale data.

When the DIF was present in general factor loadings, after constraining the general
factor loadings with DIF of -0.05 to be equal, the means of WRMRs ranged from .995 to
1.029 and from .812 to .857 for binary data and polytomous data, respectively; when the
DIF = -0.10, they ranged from 1.048 to 1.120 and from .824 to .898 for binary data and
polytomous data, respectively; when the DIF = -0.15, they ranged from 1.124 to 1.257 and
from .853 to .967 for binary and polytomous data, respectively.

When DIF was present in specific factor loadings, after constraining the specific
factor loadings with DIF of -0.05 to be equal, the means of WRMRs ranged from .984
to .994 and from .808 to .848 for binary and polytomous data, respectively; when the DIF
= -0.10, they ranged from .992 to 1.015 and from .817 to .866 for binary data and
polytomous data, respectively; when the DIF = -0.15, they ranged from 1.009 to 1.046 and
from .836 to .905 for binary data and polytomous data, respectively.

As shown in Tables B31-B42, for a given effect size of the general factor mean
difference, the increase in the means of WRMRs resulting from imposing equality
constraints on the general factor mean difference in the models with noninvariant general
factor loadings or noninvariant specific factor loadings constrained to be equal across

groups was similar to those in the corresponding correctly specified models.
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When DIF of 0.05 was present in threshold parameters, setting equality constraints
on the only threshold parameter of each item for the binary data or at least two threshold
parameters of each item for the polytomous data, the means of WRMRs ranged from .980
to .993 and from .785 to .843 for binary and polytomous data, respectively; when the DIF
= 0.10, they ranged from .990 to 1.014 and from .798 to .878 for binary data and
polytomous data, respectively; when the DIF = 0.15, they ranged from 1.007 to 1.048 and
from .825 to .935 for binary data and polytomous data, respectively (shown in Tables B43-
B48). For a given magnitude of DIF in threshold parameters, if only constraining two
threshold parameters of each item to be equal across groups for identification purpose, the
means of WRMRs were smaller for the 5-point scale data than those for the 3-point scale
data. For the 5-point scale data with DIF in threshold parameters, after constraining all
threshold parameters to be equal, the means of WRMRs ranged from .817 to .860,
from .844 to0 .910, and from .889 to .993 when the DIF = 0.05, 0.10, and 0.15, respectively.
As shown in Tables B43-B48, for a given effect size of the general factor mean difference,
there were not much differences of the increase in the means of WRMRs resulting from
imposing equality constraints on the general factor mean difference between the conditions
with DIF in threshold parameters and the conditions with DIF in general factor loadings or
specific factor loadings.

Means of RMSEAs. As shown in Tables B31-B42, when DIF was present in the
general factor loadings or specific factor loadings, for the correctly specified models with
all the item parameters with DIF freely estimated, the means of RMSEAs ranged from .007
to .015, with their values slightly influenced by the total sample size and number of

categories per item. Smaller sample sizes and larger number of categories per item were
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associated with larger values of RMSEAs. When the effect size of the general factor mean
difference was zero, the means of RMSEAs decreased after imposing equality constraints
on the general factor mean difference in most of the cases, with very few exceptions in
which they did not change. When the effect size of the general factor mean difference was
nonzero, the increase in the means of RMSEAs resulting from imposing equality
constraints on the general factor mean difference ranged from .001 to .006 and from .013
to .023 for the conditions with effect size of -0.1 and -0.2, respectively, which was slightly
influenced by the total sample size and the number of categories per item.

When DIF was present in the general factor loadings, constraining noninvariant
general factor loadings to be equal, the means of RMSEAs increased by 0 to .003, .002
to .011, and .005 to .020 for the conditions with the DIF of -0.05, -0.10, and -0.15,
respectively. The magnitude of the increase in the means of RMSEAs was influenced by
the total sample size and the number of categories per item. After imposing equality
constraints on the general factor loadings with DIF, the means of RMSEAs increased most
substantially for the binary data. Also, larger sample sizes were associated with larger
increases in the means of RMSEAs resulting from constraining the noninvariant general
factor loadings to be equal. When setting equality constraints on the nonzero general factor
mean difference, the increases in the means of RMSEAs for the conditions with
noninvariant general factor loadings constrained to be equal were smaller than those for
the corresponding conditions with correctly specified models in general.

When the DIF was present in specific factor loadings, after setting equality
constraints on these noninvariant specific factor loadings, the increase in the means of

RMSEAs ranged from 0 to .001, from .001 to .004 and from .003 to .007 for the conditions
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with DIF of -0.05, -0.10, and -0.15, respectively. Also, after constraining the nonzero
general factor mean difference to be zero, the increase in the means of RMSEAs for the
conditions with equality constraints on the specific factor loadings with DIF was slightly
smaller than those for the corresponding conditions with correctly specified models in most
of the cases.

When the DIF was present in threshold parameters, setting equality constraints on
the only threshold parameter of each item for the binary data or at least two threshold
parameters of each item for the polytomous data, the means of RMSEAs ranged from .010
to .014, from .011 to .017, and from .013 to .021 for the conditions with DIF of 0.05, 0.10,
and 0.15, respectively. After constraining more noninvariant threshold parameters to be
equal for the 5-point scale data, the means of RMSEAs increased by .001, .003 (with one
exception of .002), and .005 (with one exception of .004) when DIF = 0.05, 0.10, and 0.15,
respectively. When the effect size of the general factor mean difference was nonzero, the
increase in the means of RMSEAs resulting from imposing equality constraints on the
general factor mean difference ranged from .002 to .009 and from .016 to .024 for the

conditions with effect sizes of -0.1 and -0.2, respectively.
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Chapter 4: Discussion
Overview

In educational, psychological, and social science disciplines, bifactor models are
increasingly applied because they often serve as the most appropriate representations for
measurement systems in which relatively broader constructs (e.g., depression) additionally
may have multiple, narrower facets (e.g., negative mood, social withdrawal, poor cognitive
functioning, etc.) that should be modeled. Similarly, cognitive tests for a general domain
such as reading comprehension may include multiple testlets, which are clusters of items
based on common stimuli (e.g., reading passages) or text type (e.g., narrative vs. expository)
that create additional dimensionality in the data. Despite the prevalence of bifactor data,
only a few methodological studies focusing on multiple-group bifactor models have been
undertaken (e.g., Fukuhara & Kamata, 2011; Jeon et al., 2011; Cai et al., 2011), and these
studies focused on the DIF detection or item parameter recovery. Given that (latent) mean
differences between populations are often of interest to researchers from different
disciplines, and that for bifactor data, researchers are often interested in population
differences in the distributions of the primary trait, the current simulation study examined
the performance of several approaches to estimating the latent mean difference of the
general factor for ordinal, bifactor data.

The approaches involved in the current study varied in terms of the choice of
analysis models (unidimensional models vs. bifactor models), estimators (the WLSMV
estimator or the MLR estimator), and whether equality constraints were imposed on the
item parameters with DIF.

Results showed that bias in the general factor mean difference estimation was

produced mainly when the model was misspecified by fitting the generated bifactor data
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using unidimensional models or setting equality constraints on item parameters with DIF.
Treating ordered categorical data as continuous did not yield estimation bias in the general
factor mean difference. Although the estimation bias of the general factor mean difference
was influenced by different analysis models to varying degrees, the most dominant factors
that influenced Type | error rates or powers to detect the general factor mean difference
were total sample size and effect size. As expected, the more complicated models usually
produced less estimation bias but they also had less estimation precision, demonstrating
the tradeoff between the estimation bias and estimated variance.
Robustness of Latent Mean Difference Estimation under Unidimensional IRT
Models to Multidimensional Violation

As stated by Reise et al. (2010), although most IRT models applied today are
unidimensional models, strict unidimensional models rarely exist, and researchers are
usually more interested in whether the data are sufficiently unidimensional to satisfy a
weak form of local independence assumption. On one hand, in addition to prevalent
applications, unidimensional models might be preferred due to their theoretical simplicity.
On the other hand, researchers want to avoid the problems due to the violation of the
unidimensionality assumption. Given that there are no absolute and consistent criterions to
determine whether a dataset is sufficiently unidimensional, in single-group IRT practice,
researchers are usually more concerned about the impact on item parameter estimates that
may result from fitting potentially multidimensional data using a unidimensional model.
Reise et al. (2010) proposed comparing factor loadings of a unidimensional model with the
general factor loadings of the corresponding bifactor model to figure out whether there are

problems in item parameter estimates due to violation of unidimensionality assumption.
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DeMars (2006) also compared item parameters obtained from bifactor models and
unidimensional models for generated bifactor datasets. Results from these studies indicated
the general factor loadings (corresponding to general discrimination parameters in IRT
models) were distorted after fitting unidimensional models to bifactor data. Also, DeMars
(2006) pointed out the recovery of difficulty parameters did not appear to be influenced by
fitting the generated bifactor data using a unidimensional model.

Similarly, in multiple-group IRT models, instead of discussing the strength or
weakness of the criteria to determine the degree of unidmensionality, it is more important
to understand the consequence on DIF detection or subsequent analysis such as latent mean
comparison of the general factor resulting from fitting unidimensional models to the
generated bifactor datasets. Fukuhara and Kamata (2011) conducted a study in which
multiple-group bifactor data were generated with DIF in item difficulty parameters and
analyzed using both bifactor models and unidimensional models. They found DIF could be
better detected using bifactor models in comparison with the corresponding unidimensional
model. In the current study, the consequence on the general factor mean difference
estimation resulting from the violation of unidimensional assumption was the focus.
Results showed the estimation bias for the correctly specified models (i.e., fitting the
bifactor data using bifactor models) was around 0 in general, and that positive estimation
bias was produced when fitting unidimensional models to the generated bifactor datasets.
The magnitude of the increase in estimation bias of the general factor mean difference
resulting from the violation of unidimensional assumption mainly depended on the effect
size of the general factor mean difference and the degree of unidimensionality (i.e., the

sizes of specific factor loadings) of the generated data in terms of ECV; it was also slightly
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influenced by the selection of the estimator (i.e., MLR vs. WLSMV). More specifically,
when the effect size of the general factor mean difference was 0, there was no obvious
change in the estimation bias due to fitting the bifactor data using a unidimensional model;
when the effect size was 0.2, the increase in the estimation bias was almost two times that
for the conditions with the effect size of 0.1. When generating the data, the ECV was
around .84 and .66 for the data with high degree and low degree of unidimensionality (i.e.,
less multidimensional and more multidimensional data), respectively, suggesting that 84%
and 66% of the explained common variance in the data was attributed to the general factor.
If fitting a unidimensional model to the generated bifactor data with nonzero effect size in
the general factor mean difference, the absolute values of the relative bias in the general
factor mean difference were around 2.5-5.0% for less multidimensional data, and these
values usually reached 10-15% for more multidimensional data. The relative estimation
bias did not appear to be influenced by the effect size of the latent mean difference.

For the limited-information estimation method (i.e., the WLSMV estimator)
applied in the current study, the threshold parameters and the tetrachoric or polychoric
correlations were estimated first either simultaneously or separately, and then a CFA model
was fitted to the tetrachoric or polychoric correlations (Rhemtulla, Brosseau-Liard, &
Savalei, 2012; Wirth & Edwards, 2007), so the change of the model structure
(unidimensional model vs. bifactor model) would probably influence the model-implied
tetrachoric or polychoric correlations by using a different set of parameter estimates. As
mentioned previously, fitting unidimensional models to bifactor data usually made the
factor loadings (corresponding to discrimination parameters) distorted, so it can be inferred

that the function of the estimation bias in the general factor mean difference influenced by
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the violation the unidimensional assumption was mainly through the distorted factor
loadings. Note that in the current study, even for conditions with low degree of
unidimensionality, all the specific factor loadings (i.e., 0.5) were smaller than the general
factor loadings (i.e., 0.7). Thus, for the cases with relatively stronger specific factors, the
distortion of the factor loadings likely would be even more serious, which would result in
more estimation bias in the general factor mean difference.

In addition to estimation bias, the mean squared error (i.e., MSE) or the root mean
square error (RMSE), the combination of the estimation accuracy and estimation precision,
was also of great importance in evaluating an estimation procedure. As shown in the results,
the main factor influencing estimated variances of the general factor mean difference was
sample size. Although the increase in estimation bias of the general factor mean difference
resulting from fitting the bifactor datasets using unidimensional models was not influenced
obviously by the sample size, the estimation precision got worse for the conditions with
smaller total sample sizes. Also, the results of the current study indicated that analysis with
unidimensional models usually led to estimated variances for the general factor mean
difference that were smaller by .001 or .002 in comparison with the corresponding bifactor
models for the same generated dataset. These reductions in the estimated variance were
much larger than the respective increases in the squared estimated bias (i.e., around .0006
at maximum) due to analyzing bifactor data with unidimensional models in the research
conditions of the current study Thus, in the current study, the consequence on the
estimation for the general factor mean difference resulting from fitting unidimensional
models to the generated bifactor model might be acceptable in terms of MSE, which differs

from DeMars (2006)’s results regarding the RMSE in item parameter estimates. The
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difference of the conclusions between the current study and DeMars’ study (2006) suggests
that whether the consequence of fitting bifactor data with a unidimensional model was
acceptable depends on the focal estimated parameters. In addition, the magnitude of the
manipulated factors might also influence these conclusions. Given the respective factors
influencing the estimation accuracy and estimation precision of the general factor mean
difference estimation discussed above, it can be inferred that the estimation bias resulting
from fitting the unidimensional model to a potentially bifactor dataset might become the
more dominant factor in determining the MSE or RMSE for the general factor mean
difference estimation as the ECV decreases and the effect size increases.

Estimation with Robust Maximum Likelihood vs. Categorical Variable

Methodology for the Ordinal Bifactor Data

In practice, researchers often treat ordinal data as continuous for the following two
reasons: first, some researchers are more familiar with estimation methods for continuous
data; second, the numerical coding of the ordinal data in an ascending order makes them
look similar to continuous data (Rhemtulla et al., 2012). However, ignoring the non-
continuity and non-normality of the ordinal data might contribute to estimation problems.
Whether ordinal data can be treated as continuous has been explored by many researchers
(e.g., Rhemtulla et al., 2012; Stark et al., 2006), and there is some agreement that
continuous data estimation strategies perform as well as categorical data estimation
strategies if the number of categories is large enough (i.e., 5 or more). Researchers also
explored other factors that influenced the choice between the continuous variable
methodology and categorical variable methodology for ordered-categorical data. For

example, based on the simulation study of Rhemtulla et al. (2012), robust maximum
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likelihood estimation might not be appropriate for the ordinal data with asymmetric
threshold parameters. Also, researchers (e.g., Rhemtulla et al., 2012; Stark et al., 2006)
recommended treating ordinal data with 5 or more categories as continuous when the
sample size is small (e.g., 150 for single-group analysis or 500 for multiple-group analysis).

For multiple-group ordinal data, several studies were conducted to compare
continuous and categorical estimation strategies in terms of DIF detection (e.g., Desa, 2014;
Flowers et al., 2002; Meade & Lautenschlager, 2004; Stark et al., 2006). There were no
consistent conclusions regarding the performance of the continuous approach in the DIF
detection from these simulation studies. Some researchers (e.g., Desa, 2014; Meade &
Lautenschlager, 2004) pointed out that the continuous approach using ML or MLR
estimation was unable to correctly detect the DIF in threshold parameters because there
were not exact corresponding parameters in continuous CFA models for the threshold
parameters, while some other researchers (Stark et al., 2006) showed that continuous CFA
model with the ML estimator performed similarly in detecting DIF in both loading
parameters and threshold parameters as the IRT model.

In the current simulation study, however, DIF detection was not the focus.
Regarding the estimation bias of the general factor mean difference, both the categorical
approach with the WLSMV estimator and the continuous approach with the MLR estimator
performed acceptably as long as the model was correctly specified using bifactor models.
When the generated more multidimensional data (i.e., specific factor loadings = 0.5) was
fitted with unidimensional models, large estimation bias in the general factor mean

difference was produced for both the MLR estimator and the WLSMYV estimators, but the
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estimation bias was smaller when implementing the MLR estimator than that when
implementing the WLSMV estimator.

As indicated in the results, the Type | error rate and power to detect the general
factor mean difference were slightly influenced by the selection of between the Satorra-
Bentler scaled chi-square difference test for MLR estimator and the DIFFTEST for the
WLSMV estimator. More specially, for the 3-point scale data and the 5-point scale data,
the Type | error rate or the power obtained through the Satorra-Bentler scaled chi-square
difference test for the MLR estimator seemed to be a little smaller than that obtained
through the DIFFTEST for the WLSMYV estimator in general.

In summary, in order to obtain higher power to detect the general factor mean
difference, the WLSMV estimator was recommended over the MLR estimator although
the improvement was limited. The choice between the MLR estimator and the WLSMV
estimator had no substantial influence on the estimation accuracy of the general factor
mean difference except in the severe misspecification conditions. Inconsistent with our
expectations, total sample size (i.e., 600 or 1200) and number of categories per item (i.e.,
3 or 5) seemed to have no influence in the preference between the MLR estimator and the
WLSMYV estimator.

Goodness of Fit Indices for the No DIF Conditions

Previous studies (e.g., Chen, 2007; Cheung & Rensvold, 2002) have shown that the
change of goodness of fit indices can be applied for testing different levels of measurement
invariance. In the current study, the means of CFI, WRMR/SRMR and RMSEA were
reported for each of the analysis models, but changes in goodness of fit indices per se were

not evaluated. The results revealed that all the goodness of fit indices (i.e., CFl,
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WRMR/SRMR, RMSEA) suggested nearly perfect fit when bifactor models fit to the
generated bifactor data except that the means of WRMRs were a little bit larger than 1 for
some conditions involving binary data. Further, the selection of the estimator (i.e., the MLR
estimator or the WLSMV estimator) had little influence on the model fit reflected by these
indices if the model was correctly specified using bifactor models.

Imposing equality constraint on the general factor mean difference of zero, the
means of CFls or RMSEAs did not change or suggested a better model fit, while the means
of SRMRs and WRMRs increased a little bit. When the effect size was nonzero, all the
means of these goodness of fit indices indicated a poorer model fit after constraining the
general factor mean difference to be zero in general, but the degree of changes varied for
these indices.

To be specific, the reductions in means of CFls due to constraining the nonzero
general factor mean difference to be zero were the minimal (i.e., less than .01 even when
the effect size of the general factor mean difference was -0.2), and they were especially
small when the MLR estimator was applied (i.e., .001 when the effect size was -0.2 and 0
in most of the cases when the effect size was -0.1), so CFIs might not be sensitive for
determining the significance of the nonzero effect size for the general factor mean
difference in bifactor models.

The WRMRs seemed to be most sensitive to the nonzero effect size of the general
factor mean difference when it was constrained to be zero in terms of both the changes of
the mean values (i.e., around 0.1-0.2 and 0.2-0.6 for the effect size of -0.1 and -0.2) and
the absolute mean values (i.e., larger than 0.9 when the effect size was -0.1 and larger than

1 when the effect size was -0.2) for polytomous data, but it should be noted that the means
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of WRMRSs also increased a little bit when constraining to zero the latent mean difference
with effect size of zero. Another weakness of the WRMRs was that both their changes in
means and their absolute values in means were influenced by the data generation conditions
such as the sample size, the number of categories per item, and even the degree of
unidimensionality.

The increase in the means of SRMRs resulting from constraining the general factor
mean difference of -0.1 to be zero was just a little bit larger than that due to constraining
to zero the general factor mean difference with effect size of zero. When constraining the
general factor mean difference of -0.2 to be zero, the increase in the means of SRMRs
became obvious (i.e., around 0.01), but the absolute values for the means of SRMRs still
suggested very good fit.

The changes in the means of RMSEAs were somewhat sensitive to the nonzero
effect size of the general factor mean difference when the WLSMYV estimator was applied
(i.e.,.002-.006 and .013-.025 for effect size of -0.1 and -0.2, respectively), and they did not
provide much information in detecting the nonzero effect size when the MLR estimator
was applied (0-.001 and .002-.005 for effect size of -0.1 and -0.2). Thus, when the WLSMV
estimator was applied, the goodness of fit indices (i.e., CFI, WRMR, RMSEA) tended to
be more sensitive in detecting the nonzero effect size of the general factor mean difference
for the bifactor models in comparison with those for the conditions with the MLR estimator
used (i.e., CFl, SRMR, RMSEA).

In the No DIF conditions, all the goodness of fit indices (i.e., CFI, WRMR/SRMR,
RMSEA) were very sensitive to model misspecification of fitting the unidimensional

models to the generated bifactor data, and the decreases in the means of CFls were
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especially substantial when the MLR estimator was applied. However, CFls and RMSEASs
cannot provide any help in detecting the nonzero effect size of the general factor mean
difference in unidimensional models because their means did not change obviously or even
suggested a better fit after imposing equality constraints between groups on the general
factor mean difference of -0.1 or -0.2. Thus, researchers should use caution when using the
change of goodness of fit indices (i.e., CFl or RMSEA) for comparing model fits if the less
constrained model was already misspecified.
The Impact of DIF on the General Factor Mean Difference Estimation in
Bifactor Models

Although it is ideal to conduct latent mean comparisons based only on the invariant
items, previous simulation studies have suggested that perfect recovery of the DIF was hard
to achieve with commonly applied DIF detection methods, especially when the magnitude
of the DIF or the sample size was not large enough (e.g., Narayanan & Swaminathan, 1996;
Sweeney, 1996). Consistent with results from previous studies (e.g., Hancock et al., 2000;
Yang, 2008), when the item parameters with DIF were freely estimated, the estimation
accuracy of the latent mean difference was not adversely affected by the DIF; when failing
to account for DIF, more estimation bias would be produced in comparison with the
correctly specified model. Different from previous simulation studies (e.g., Beuckelaer &
Swinnen, 2018) in which the impact of ignoring noninvariance on latent mean comparisons
focused on models with simple structures, this study sought to evaluate estimation of the
general factor mean difference within bifactor models with DIF in different item

parameters. | found that the extent of impact of failing to account for DIF on estimation of
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the general factor mean difference largely depended on the type of parameters generated
to have DIF.

To be specific, as shown in the results, when the DIF was present in general factor
loadings, in comparison with the No DIF conditions, there was no more estimation bias of
the general factor mean difference produced if the general factor loadings with DIF were
freely estimated. In comparison with this corresponding correctly specified model, when
the general factor loadings with DIF were constrained to be equal in the analysis model,
the increase in the estimation bias was positive and substantial for conditions with nonzero
effect sizes, but no increase was observed when the effect size was zero. The increase in
the estimation bias resulting from setting equality constraints on the general factor loadings
with DIF for the conditions with effect size of -0.2 was about two times that for the
conditions with effect size of -0.1; the increase in the estimation bias for the conditions
with DIF magnitude of -0.10 and -0.15 was about 2 or 3 times that for the conditions with
DIF magnitude of -0.05.

To calculate the relative estimation bias, the estimation bias was divided by the true
parameter value, and therefore, the relative estimation bias was only influenced by the
magnitude of DIF. For the misspecified conditions with noninvariant general factor
loadings constrained to be equal across groups, the absolute values of the relative
estimation bias for the general factor mean difference were around 5% when the magnitude
of DIF was -0.15; they may be regarded as negligible for conditions with smaller DIF.

When the same degree of DIF was present in specific factor loadings, there was no
more estimation bias produced than in the comparable No DIF conditions regardless of

whether the specific factor loadings with DIF were freely estimated or not. This suggests
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that setting equality constraints on the noninvariant specific factor loadings had little
influence on the estimation bias of the general factor mean difference.

Also for DIF present in threshold parameters comparable to that present for factor
loadings, the estimation bias of the general factor mean difference became very substantial
even when the magnitude of DIF was 0.05. When generating the data, for the items with
DIF in threshold parameters, a constant (i.e., 0.05, 0.10, or 0.15) was added to all threshold
parameters. It worth noting that the only threshold parameter per item for the binary data
and two of the threshold parameters per item for the polytomous data needed to be
constrained to be equal between groups for identification purposes. Thus, in practice, even
if DIF in threshold parameters was correctly detected, some threshold parameters with DIF
had to be constrained to be equal to identify the model in multiple-group categorical CFA
models. In the current study, all threshold parameters with DIF had to be constrained to be
equal for the binary data and the 3-point scale data; for the 5-point scale data, half of the
threshold parameters with DIF had to be constrained to be equal and the other half were
either freely estimated or constrained to be equal depended on different research conditions.

The results showed that the magnitude of DIF was the main factor influencing the
estimation bias of the general factor mean difference resulting from setting equality
constraints on the threshold parameters with DIF. When the magnitude of DIF in the
threshold parameters was 0.10 or 0.15, the estimation bias in the general factor mean
difference was around 2 or 3 times that for the conditions with DIF magnitude of 0.05,
respectively, and all the estimation bias was substantially negative. For a given magnitude
of DIF in threshold parameters, the estimation bias of the general factor mean difference

resulting from constraining the noninvariant threshold parameters to be equal was similar
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across all the effect sizes (i.e., 0, -0.1, or -0.2) and datasets with different number of
categories per item as long as all the noninvariant threshold parameters were constrained
to be equal. For the 5-point scale data, when freely estimating half of the threshold
parameters with DIF, there was an obvious decrease in the estimation bias in comparison
with the conditions with all the noninvariant threshold parameters were constrained to be
equal.

When the effect size was -0.1, the values of the relative estimation bias of the
general factor mean difference resulting from setting equality constraints on the
noninvariant threshold parameters were nearly 20%, 30-40%, and 50-60% for DIFs of 0.05,
0.10, and 0.15, respectively, and they reduced by half when the effect size was -0.2. In
general, even a very small DIF in the threshold parameters made the estimation bias of the
general factor mean difference substantial. To illustrate conceptually how small the
difference in response frequencies might be for the DIF of 0.05 in threshold parameters,
consider an example for the 3-point scale data. In the reference group, the threshold
parameters were -0.5 and 0.5, suggesting that about 31%, 38%, and 31% of the normally
distributed latent response variates (M = 0, SD = 1) fell in categories 1, 2, and 3,
respectively. If the magnitude of DIF was 0.05, the threshold parameters for the
noninvariant items in the focal group would be -0.45 and 0.55, suggesting that about 33%,
38%, and 29% of the normally distributed latent response variates (M = 0, SD = 1) fell in
each of the three categories when the mean difference in latent response variates was not
considered. If constraining the threshold parameters with DIF to be equal, the falsely

estimated threshold parameters would influence the estimation of the mean for the latent

128



response variates in the focal group, which would further influence the estimation of the
general factor mean difference.

In the current study, the DIF was manipulated in general factor loadings, specific
factor loadings, and threshold parameters. If corresponding to the item parameters in
GRMs using Equation 16, when the DIF of a negative value (i.e., -0.05, -0.10, or -0.15)
was present in the general factor loading for an item, this item would have relatively lower
ability to discriminate individuals’ differences in the general factor for the focal group in
comparison with the reference group; its specific factor discrimination parameter and item
intercept also shifted accordingly. Similarly, when the DIF of a negative value (i.e., -0.05,
-0.10, or -0.15) was present in the specific factor loading for an item, this item would have
relatively lower ability to discriminate individuals’ differences in the specific factor for the
focal group in comparison with the reference group; its general factor discrimination
parameter and item intercept also shifted accordingly. With respect to the DIF in threshold
parameters, a positive value (i.e., 0.05, 0.10, or 0.15) was added to each of the threshold
parameters for the chosen noninvariant items in the focal group, suggesting these items
were relatively more difficult for the examinees in the focal group. The effect size of the
general factor mean difference was manipulated as 0, -0.1, or -0.2. The negative values in
the effect size suggested the focal group’s overall performance in the general factor were
worse than the reference group’s performance. As shown above, the positive estimation
bias for the general factor mean difference with nonzero effect size produced by setting
equality constraints on the general factor loadings with DIF means that the absolute general
factor mean difference was underestimated after constraining the noninvariant general

factor loadings to be equal. The negative estimation bias for the general factor mean
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difference resulting from setting equality constraints on the threshold parameters with DIF
means that the absolute general factor mean difference was overestimated after
constraining the noninvariant threshold parameters to be equal.

With respect to the Type | error rate or power to detect the general factor mean
difference for bifactor models in the conditions with DIF, DIF in factor loadings did not
influence the values of the Type | error rate or power no matter whether the noninvariant
loadings were freely estimated or not. However, when DIF was present in threshold
parameters, Type | error rates were inflated in many conditions and, accordingly, the
corresponding power could not be appropriately interpreted. Even the powers for
conditions in which their corresponding Type | error rates fell in the designated limits
(i.e., .025-0.075) were still obviously larger than corresponding baseline conditions in
which no DIF was simulated, and they were influenced by the magnitude of DIF. Thus,
researchers should be cautious when using significance tests for the general factor mean
difference in bifactor models when there was DIF in threshold parameters.

Goodness of Fit Indices for the Conditions with DIF

The results showed that the performance of the goodness of fit indices (i.e., CFlI,
WRMR, RMSEA) for the correctly specified models with noninvariant item parameters
freely estimated was similar to that for the corresponding baseline conditions discussed
earlier. None of these fit indices seemed to worsen obviously, on average, when incorrect
equality constraints were imposed on the item parameters with DIF, which suggested there
may be difficulty in detecting the DIF using goodness of fit indices and incremental

changes in these indices for multiple-group, bifactor, ordered-categorical CFA models.
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Among these indices, the CFIs were least sensitive to the model misspecification
due to ignoring the DIF. The smallest mean CFI among all the conditions with DIF
was .995, assuming the general factor mean difference was freely estimated, meaning the
decrease in the mean CFI cannot exceed .005 regardless of the type of item parameters
with DIF and the magnitude of DIF.

The increase in the means of WRMRs resulting from setting equality constraints on
noninvariant item parameters seemed to be relatively obvious, but it should be noted that
the means of WRMRs would typically increase if the model became more constrained, and
that the changes in the means of WRMRs were influenced by data generation conditions
unrelated to the magnitude of DIF. As mentioned previously, values of WRMRs less than
0.9 or 1.0 suggest a good fit (Yu & Muthén, 2002; Yu, 2002). The absolute values of the
means of WRMRs for binary data fell between 0.9 and 1 for correctly specified models
and they were larger than 1 in some of the conditions when the DIF was ignored; for
polytomous data, they were usually less than 0.9 even when the noninvariant item
parameters were constrained to be equal, and they only fell between 0.9 and 1for some of
the conditions with large DIF (usually 0.15) ignored and the total sample size of 1200.

The means of RMSEAs usually increased as the noninvariant item parameters were
constrained to be equal, however, the largest mean of RMSEAs was .028 among all the
conditions with DIF if the general factor mean difference was freely estimated, suggesting
the increase in the means of RMSEAs due to constraining noninvariant item parameters to
be equal cannot be very large. Among all the conditions with DIF, the RMSEAs were
relatively most sensitive to setting equality constraints on the general factor loadings with

DIF for binary data.
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In summary, although constraining item parameters with DIF to be equal across
groups might produce a different degree of estimation bias for the general factor mean
difference, the goodness of fit indices for each model usually suggested good model fit
regardless of the magnitude of estimation bias. As pointed out by Reise (2012), it might
not be appropriate to use goodness of fit indices for linear CFA models to evaluate non-
linear IRT models because they are estimated based on different assumptions. So a reason
that these goodness of fit indices applied in the current study were not very sensitive to
noninvariance of item parameters for ordinal bifactor data might be that they were
developed for linear models rather than non-linear models.

Limitations and Future Studies

First, when exploring the impact of fitting unidimensional models to bifactor data
on the general factor mean difference estimation, the absolute value for the general factor
mean difference was underestimated due to the model misspecification. According to
analysis of the estimation procedure and results from previous simulation studies (e.g.,
DeMars, 2006; Reise et al., 2010), it was inferred that the estimation bias in the general
factor mean difference was produced through the distorted factor loading estimates
resulting from violation of the unidimensionality assumption. However, there were no
consistent conclusions about the direction of the distortion of the factor loading estimates,
so additional data generation conditions—such as the number of testlets, the number of
items within each testlet, the correlations among the testlets, and the loadings on each
testlet—might be informative for understanding how the factor loadings are distorted due

to fitting unidimensional models to bifactor data.
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Second, in the current study, the estimation of the general factor mean difference
was robust to fitting unidimensional models to bifactor data in terms of MSE (i.e., sum of
the squared estimation bias and estimated variance). However, as revealed in the results,
larger effect size of the general factor and lower degree of unidimensionality would result
in larger estimation bias, while estimated variance was usually determined by the sample
size and the degrees of freedom, so the estimation bias still has the potential to increase
while holding the estimated variance constant. In the future studies, more levels of the
effect size and the degree of unidimensionality could be included to provide a more
complete picture about when the consequence of fitting unidimensional models to bifactor
data on the general factor mean difference estimation becomes unacceptable.

Third, the study of Rhemtulla et al. (2012) indicated that the continuous approach
(e.g., the MLR estimator) might not be appropriate for the ordinal data with asymmetrical
threshold parameters. In this study, when exploring the impact of treating ordinal data as
continuous on the general factor mean difference, all the threshold parameters were
symmetrically distributed, and no obvious impact was found. In the future, to further
explore this topic, the degree of symmetry for the threshold parameters might be
manipulated.

Fourth, although item parameters in categorical CFAs and those in 2PL Models or
GRMs can be converted to each other according to Equation 16, the shift in a given type
of item parameter within one framework (e.g., CFA framework, as in this study) might lead
to changes in different types of item parameters within the other framework (e.g., IRT
framework). For example, for a given item, the DIF in the general factor loading for a

bifactor CFA model corresponds to the main DIF in its general factor discrimination
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parameter and also some changes in its specific factor discrimination parameter and item
intercept for the corresponding bifactor GRM. Conversely, the DIF in the general factor
discrimination parameter in a bifactor GRM corresponds to the main DIF in its general
factor loading and also some changes in its specific factor loading and threshold parameter
in the corresponding bifactor CFA. In the future study, the DIF can be manipulated in item
parameters within the IRT framework to explore whether consistent conclusions regarding
the general factor mean difference estimation could be made.

Fifth, the goodness of fit indices might provide supplemental information to
significance tests in the process of evaluating differences in the general factor mean. In the
current study, the means of several goodness of fit indices (i.e., CFl, WRMR/SRMR,
RMSEA) were reported to provide some general sense of the sensitivity of these indices to
the general factor mean difference under varied conditions. Incremental changes in these
indices were not computed for each replicate dataset, which would be required to determine
whether particular cutoffs are useful aids for decisions regarding the tenability of
constraints.

Finally, to estimate the general factor mean difference in a bifactor model, at least
one of the specific factor mean differences must be constrained to be zero, and others can
be either freely estimated or constrained to be zero. In the current study, only the general
factor mean difference was of interest, so all the specific factor means were constrained to
be zero in both groups. However, in realistic situations, although researchers are usually
most interested in the latent mean difference in the general factor when applying bifactor
models, they might also want to estimate the specific factor mean differences at the same

time. In these situations, they may freely estimate one or more specific factor mean
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differences of interest. The choice of the specific factor(s) with the mean(s) constrained to
be zero in the focal group might influence the latent mean difference estimation for both
the general factor and other specific factors. Thus, the robustness of the general factor mean
difference estimation to the choice of referent specific factors could be explored in the
future.

Significance and Conclusions

Despite the prevalence and popularity of bifactor models, methodological issues in
the estimation of multiple-group bifactor models have not been well studied. Different from
the very few simulation studies regarding multiple-group bifactor models that focused on
the DIF detection and item parameter recovery (e.g., Cai et al., 2011; Fukuhara & Kamata,
2011; Jeon et al., 2011), this study systematically explored factors that might influence the
estimation and testing of the general factor mean difference for ordinal bifactor data.

In practice, ordinal bifactor data are often fitted with unidimensional models
because consistent and absolute criteria to determine the degree of unidimensionality are
lacking. Also, unidimensional models are preferred sometimes due to their theoretical
simplicity, so researchers might assume a unidimensional data structure unless strong
multidimensional evidence is found. In this study, | found that increase in the estimation
bias of the general factor mean difference resulting from fitting unidimensional models to
bifactor data was substantial (i.e., the absolute values of relative estimation bias were
around 10-15%) when 66% of the explained common variance among items contributed to
the general factor. However, the largest increase in squared estimation bias was still less
than the decrease in estimated variance when fitting unidimensional models to bifactor data

in the research conditions of the current study. Given the findings that the increase in
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estimation bias grew by the same factor as the increase in effect size and that the estimation
bias increased substantially as the degree of unidimensionality decreased, it would be
expected that the unidimensional model might not be favored in terms of mean square error
(i.e., MSE) as the absolute effect size of the general factor mean difference increases
beyond 0.2 and the explained common variance among items contributed to the general
factor decreases (i.e., less than 0.66).

According to previous simulation studies (e.g., Rhemtulla et al., 2012; Stark et al.,
2006), the number of categories per item and sample size might influence whether it is
appropriate to treat ordinal data as continuous. However, results of the current study
revealed that the choice between the continuous approach (i.e., the MLR estimator) and the
categorical approach (i.e., the WLSMV estimator) had a small influence on power and no
obvious impact on estimation accuracy as long as there were no severe model
misspecifications in the general factor mean difference estimation for the 3-point and 5-
point scale data for total sample sizes of 600 and 1200.

Given that the DIF with relatively small magnitudes such as those in the current
study may not be perfectly recovered in applied data analysis, the impact of constraining
the noninvariant item parameters to be equal on the general factor mean difference
estimation was also explored. It could be concluded from the current study that (1) when
the effect size of the general factor mean difference was zero, the DIF in factor loadings
had no impact on estimation for the general factor mean difference no matter whether the
noninvariant loadings were freely estimated or constrained to be equal; (2) for the
conditions with nonzero effect size of the general factor mean difference, ignoring the fact

that some items did not discriminate examinees’ performance in the general factor in the
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focal group as well as what they did in the reference group would result in underestimation
of the absolute difference in the general factor mean; (3) the estimation bias for the general
factor mean difference resulting from setting equality constraints on the noninvariant
general factor loadings increases by the same factor as that multiplied by the effect size or
the magnitude of DIF; (4) the estimation of the general factor mean difference was
somewhat robust to ignoring the DIF in general factor loadings in terms of estimation bias,
given that the relative estimation bias was around 5% when the DIF= -0.15; (5) ignoring
the differences in discrimination ability in the specific factors between groups would not
bring in any bias in the estimation for the general factor mean difference, which means that
the general factor mean difference estimation was completely robust to ignoring the DIF
in specific factor loadings; (6) ignoring the fact that some items favored the reference
group over the focal group would substantially overestimate the absolute value of the
general factor mean difference, which means that the general factor mean difference
estimation was not robust to the DIF in the threshold parameters; (7) for a given magnitude
of DIF, the impact of constraining noninvariant threshold parameters on the estimation bias
was similar across all effect sizes, including zero; and (8) for items with more categories
(i.e., 5), freeing as many noninvariant threshold parameters as possible would somewhat
reduce the estimation bias of the general factor mean difference.

In the current study, the dominant factors influencing the Type | error rate and
power to detect the general factor mean difference were total sample size and effect size of
the general factor mean difference. The Type | error rates fell in the designated limit of
0.025 to 0.075 in all conditions with no DIF or DIF in factor loadings, and they fell beyond

this limit for many conditions with DIF in threshold parameters.
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Finally, this study informs recommendations for applied researchers seeking to
examine the general factor mean difference in ordinal, bifactor data. First, when
multidimensionality is suspected but a unidimensional solution is preferred, it is important
to examine the degree of unidimensionality and the effect size of the general factor mean
difference. If the ECV is not very small (i.e., larger than 0.66) and the effect size is not
very large (i.e., smaller than 0.2), it might be acceptable to fit the potential bifactor model
with a unidimensional model. Second, if we are interested in the general factor mean
difference for bifactor polytomous data, either the MLR estimator or the WLSMV
estimator may be used, although it should be noted that there are not consistent opinions in
the literature regarding whether these two estimators could detect DIF similarly (e.g., Desa,
2014; Meade & Lautenschlager, 2004; Stark et al., 2006). Third, DIF in threshold
parameters cannot be completely detected using multiple-group categorical CFA models
because one or two threshold parameters per item must be constrained to be equal to
identify the model. Given that ignoring DIF in threshold parameters would yield substantial
bias in the general factor mean difference estimate, | recommend examining the DIF in
item intercept parameters within IRT framework before conducting the latent mean
comparison of the general factor. If DIF is found in threshold parameters, it might not be
appropriate to examine the general factor mean difference using multiple-group categorical
CFA models because noninvariant threshold parameters may need to be constrained to be
equal for identification purposes. Also, in this situation, the significance test of the general
factor mean difference might not be reliable due to potentially large estimation bias. Fourth,
given that the general factor difference estimation was somewhat robust to ignoring DIF in

general factor loadings and completely robust to ignoring DIF in specific factor loadings,
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constraining the general factor loadings with smaller DIF (i.e., less than 0.15) or
constraining the specific factor loadings with any size of DIF might be acceptable if
researchers want to estimate the general factor mean difference based on information from

more observed variables.
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Table 1A

Simulation Studies on Factors Influencing Type | Error Rates in Detecting DIF

Data
Reference Generation Data Analysis Main Results
Factors
a) correctly specifying a) the type I error rates were close
the models; b) to the nominal alpha level for the
misspecifying the 3PL  2PL model conditions; b) the type
Cohen. Kim a) model type model by fixing the | error rates were inflated for both
' (2PL or 3PL pseudo-guessing correctly specified 3PL models
& Wollack ] . .
IRT model); b)  parameter to the and misspecified 3PL models,
(1996) . . .
sample size average value of the especially when the nominal alpha
pseudo-guessing level was at .0005 to .005; ¢)
parameters of all the sample size does not influence
items type | error rates
a) slight misspecification of the
a) model type model would lead to large
(GRM or yp inflation of Type I error rates
alternative applying different DIF when_ applymg the LR'G.RM’ and
models to detection methods such inflation was espeuglly
Bolt (2002)  GRM); b) (LR-GRM, DFIT-  evere whien the sample size was
sample size; )  GRM or Poly- arge; b) t ere Were 1ess Type l
’ error rates inflation due to model
the latent mean  SIBTEST) . ification if usi
difference in misspecification if using DFIT-
abilit GRM; ¢) Type | error rates were
y unaffected by the generating
models using Poly-SIBTEST
a) both LR tests and Mantel
procedure showed good control
over Type | error rates when the
a) sample size: distributions of ability parameters
b) the I21 tent ’ were identical across groups ; b)
Ankenmann, mean difference applying different DIF  when the latent mean difference in
Witt & in ability: c) detection methods (LR  ability was nonzero, LR tests still
Dunbar aramet);’r tests or Mantel maintained acceptable control
(1999) \ealues for the procedure) over Type | error rates whereas
studied item the Mantel procedure lacked

control over Type | error rates,
and the inflation got worse for
larger sample size and higher
discrimination parameter values
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Table 1A Continued

Data Generation

Reference Data Analysis Main Results
Factors
a) when using the
constrained-baseline model,
a) applying different both IRT-LR and chi-square
a) amount of DIF detection methods  difference tests under CFA
DIF; b) Type of  (IRT-LR or chi-square showed substantial Type |
DIF when difference test under the error inflation unless no DIF
Stark present; c) the traditi.onal 'CFA); b) existed.in the fully
Chern shénko latent mean applying different constrained model; b) the
Y difference in baseline model (free Type | error inflation could
& Drasgow e . .

(2006) ability; d) basellnt_e model or be reducec! by applylng_ _
number of constrained baseline Bonferroni corrected critical
response model); c) applying p value; c) larger sample size
categories; e) different criterion of the  was slightly related to larger
sample size p value (.05 or Type | error rates; d) the

Bonferroni corrected) latent mean difference in
ability did not substantially
influence the Type | error rate
a) when conducting LR tests
using all other items as
anchor, Type | error inflation
occurred when the percentage
of items with DIF reached

a) model type 12% under the 3PL model

(2PL, 3PL or applying LR tests with and 20% under the 2PL

GRM); b) different anchor item model and the GRM for the
Wang & Yeh  percentage of methods (all-other, 1- conditions in one-side

(2003) DIF; ¢) DIF item constant, 4-item conditions; b) the
direction (one constant or 10-item performance of the
sided or both constant) constrained baseline model in
sided) controlling over Type | error

rates was determined by
average signed area; c) all the
three constant methods had
good control over Type |
error rates
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Table 2A

Simulation Studies on the Factors Influencing Power in Detecting DIF

Data Generation

Reference Data Analysis Main Results
Factors
a) the item with larger effect size of
DIF was more easily detected as
showing DIF; b) the magnitude of
item parameters influenced the power
to detect DIF for them; c¢) for a given
a) item parameter total sample size, the power to detect
values; b) amount DIF was higher for equal sample size
of DIF; ¢) latent applying LR conditions than the conditions with
Sweeney diff in tests for all th hf inees in the focal
(1996) mean difference in  tests for all the  much fewer examinees in the foca
ability; d) ratio of conditions group ; d) the power to detect DIF
sample size depended on the differences between
between groups the IRFs for the reference group and
the IRFs for the focal group and the
number of focal group examinees
located on the latent ability
continuum where the IRFs differ
across groups
a) sample size was the main factor
a) model type aoolvin influencing power; b) power was not
yp pRIyINg influenced by the generating models
(GRM or different DIF : ) :
. . obviously; c) there was a slight
alternative models  detection reduction in power when the latent
Bolt (2002)  to GRM); b) methods (LR- on inp atent
A mean difference was nonzero if using
sample size; c) the  GRM, DFIT- TN . .
latent mean GRM or Polv- DFIT-GRM; d) in comparison with
difference in ability SIBTEST) Y" Poly-SIBTEST, LR-GRM and DFIT-
GRM showed greater power in
detecting DIF
a) the power was influenced by the
. sample size for both of the methods;
a) sample size; b) .
b) the power was higher for larger
the latent mean . SN 2
. . a) applying discrimination parameter conditions;
difference in .

Ankenmann, ability: ) different DIF  ¢) Mantel procedure showed greater
Witt & aran}:éter values detection power than LR tests for the constant
Dunbar fpor the studied methods (LR DIF pattern conditions when the
(1999) tests or Mantel  person ability distributions were

item; d) the pattern
of DIF in threshold
parameters

procedure)

identical across groups; d) for the
balanced DIF pattern conditions, LR
tests showed much higher power than
Mantel procedure
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Table 2A Continued

Data Generation

Reference Data Analysis Main Results
Factors
a) perfect detection was
achieved for all large DIF
conditions; b) sample sizes,
analysis methods and
baseline models influenced
. . power for small DIF
a) applylng different conditions; ¢) Bonferroni
a) amount of DIF detection methods corrected critical p value
DIF; b) Type of  (IRT-LR or chi-square reduced power as well: d) the
DIF when difference test under the increase in the number’ of
present; c) the traditional CFA); b) D
Stark, . . categories improved accuracy
latent mean applying different : .
Chernyshenko . . - of DIF detection using
difference in baseline model (free - ]
& Drasgow A . traditional CFA models; e)
ability; d) baseline model or .
(2006) - . for small sample sizes,
number of constrained baseline .

) . traditional CFA models
response model); c) applying performed better than IRT in
categories; e) different criterion of the power to detect DIF: f) the
sample size p value (.0_5 or free-baseline modelé

Bonferroni corrected) performed better than the
constrained-baseline models
for both LR tests under IRT
models and chi-squire
difference tests under CFA
models

a) model type

(2PL, 3PL or applying LR tests with . .

GRM); b) different anchor item 22)5?230%/?2522223&1 S
Wang & Yeh  percentage of methods (all-other, 1- ower : b) usin Fz)l or 10

(2003) DIF; ¢) DIF item constant, 4-item gnchor,items Ie% to higher

direction (one constant or 10-item ower g

sided or both constant) P

sided)
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