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ABSTRACT 

A simulation study was conducted to explore the robustness of general factor mean 

difference estimation in bifactor ordered-categorical data. In the No Differential Item 

Functioning (DIF) conditions, the data generation conditions varied were sample size, the 

number of categories per item, effect size of the general factor mean difference, and the 

size of specific factor loadings; in data analysis, misspecification conditions were 

introduced in which the generated bifactor data were fit using a unidimensional model, 

and/or ordered-categorical data were treated as continuous data. In the DIF conditions, the 

data generation conditions varied were sample size, the number of categories per item, 

effect size of latent mean difference for the general factor, the type of item parameters that 

had DIF, and the magnitude of DIF; the data analysis conditions varied in whether or not 

setting equality constraints on the noninvariant item parameters.  

Results showed that falsely fitting bifactor data using unidimensional models or 

failing to account for DIF in item parameters resulted in estimation bias in the general 

factor mean difference, while treating ordinal data as continuous had little influence on the 

estimation bias as long as there was no severe model misspecification. The extent of 

estimation bias produced by misspecification of bifactor datasets with unidimensional 

models was mainly determined by the degree of unidimensionality (i.e., size of specific 

factor loadings) and the general factor mean difference size. When the DIF was present, 

the estimation accuracy of the general factor mean difference was completely robust to 

ignoring noninvariance in specific factor loadings while it was very sensitive to failing to 

account for DIF in threshold parameters. With respect to ignoring the DIF in general factor 

loadings, the estimation bias of the general factor mean difference was substantial when 
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the DIF was -0.15, and it can be negligible for smaller sizes of DIF. Despite the impact of 

model misspecification on estimation accuracy, the power to detect the general factor mean 

difference was mainly influenced by the sample size and effect size. Serious Type I error 

rate inflation only occurred when the DIF was present in threshold parameters.       
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Chapter 1: Introduction 

Overview 

The bifactor model is widely used in measurement models when sets of items are 

grouped into clusters. For example, in a reading comprehension test, a cluster may be 

formed when a set of questions are given based on a specific reading passage. These 

clusters can be considered as testlets, which are very common in both cognitive and non-

cognitive tests (e.g., Chen, West, & Sousa, 2006; Gignac & Watkins, 2013; Min & He, 

2014; Reise, Morizot, & Hays, 2007). Testlet-based items are desirable mainly in the 

following two circumstances. First, the construct (e.g., the depression construct) to be 

measured may consist of several related facets (e.g., negative mood, social withdrawal, 

poor cognitive functioning, etc.). Second, as in the example mentioned earlier, context-

dependent items may be based on a common stimulus (e.g., a reading passage). In these 

circumstances, the bifactor model can be an appropriate representation of the construct 

when an assessment is designed to measure a strong common trait despite the existence of 

testlets (Reise, 2012). In the bifactor model, a general factor is hypothesized to underlie all 

items, and each item is specified to load on at most one of the specific factors, which 

explains the additional common variance among a set of items beyond the influence of the 

general factor. It is assumed that the general factor and all specific factors are orthogonal 

with each other.     

The bifactor model was initially applied as a special case of the confirmatory factor 

analysis (CFA) model for continuous items (Holzinger & Swineford, 1937). To 

accommodate a wider range of measurement applications, the bifactor model was extended 

for use with binary data within the item-response theory (IRT) framework by Gibbons and 
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Hedeker in 1992.  Gibbons et al. (2007) introduced the bifactor IRT model for polytomous 

data.      

The single-group bifactor model based on ordered-categorical data has been widely 

applied and studied in recent years. In both applied research and simulation studies (e.g., 

DeMars, 2006; Immekus & Imbrie, 2008; Min & He, 2014; Reise et al., 2007; Rijmen, 

2010), researchers are mostly interested in comparing the bifactor IRT model with other 

competitive IRT models for items which may form testlets, including unidimensional 

models (only the common trait is modeled), testlet models (constraints are placed on the 

relationship between the general factor loadings and the specific factor loadings of the 

bifactor model), second-order IRT models (equivalent with a testlet model in which a 

proportional constraint is specified between the general factor loadings and the specific 

factor loadings for items within each testlet), and correlated-factors models (only the 

specific factors are modeled and the specific factors can be correlated with each other). 

These models can be compared based on parametric methods by utilizing exploratory and 

confirmatory models. Nonparametric DIMTEST (Stout, Douglas, Junker, & Roussos, 1999) 

is used in some research (e.g., DeMars, 2006) to explore essential unidimensionality. If a 

unidimensional model is deemed adequate, there would be no need for subsequent 

comparisons of varied multidimensional IRT models.  

Given that the unidimensional model, the testlet model, the second-order model and 

the correlated-factors model are all nested within the bifactor model, the bifactor model 

plays an important role in determining dimensionality issues for testlet-based items. As 

suggested by DeMars (2013), another important utility of the bifactor model is that more 

meaningful general factor scores can be obtained after accounting for the specific factors. 
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Also, bifactor models can be used to estimate the extent to which a subset of items can 

discriminate the ability reflected by the subdomain after the common variance due to the 

general factor is partialed out such that a decision can be made regarding the utility of 

forming subscale scores (Reise et al., 2007). In addition, the unique contribution of each 

specific factor (or general factor) to prediction of an external variable after controlling for 

the general factor (or specific factors) can be estimated using a bifactor model (Chen et al., 

2006).   

With respect to estimation, the bifactor model with ordered-categorical data can be 

estimated by both full-information estimation (e.g., marginal maximum likelihood; Bock 

& Aitkin, 1981) under the IRT framework (e.g., Gibbons & Hedeker, 1992; Gibbons et al., 

2007) and limited-information estimation (e.g., weighted least squares) within the 

framework of structural equation modeling (SEM; Reise, 2012). Unlike full-information 

estimation in which the entire response vector of each test taker is utilized for computation, 

the limited-information estimator is implemented based on tetrachoric or polychoric 

correlations among items. It has been shown that the two-parameter normal-ogive IRT 

model is equivalent to the factor analytic model for ordinal categorical data (Kamata & 

Bauer, 2008; Takane & de Leeuw, 1987).  

In the field of consumer research, organizational research, and clinical studies, 

researchers are frequently interested in latent mean differences across different populations 

in terms of demographic characteristics, cultures, and backgrounds. In addition to the 

utilities mentioned above, with bifactor models, latent mean differences in both the general 

factor and the specific factors can be estimated across groups (Chen et al., 2006). As 

suggested by Schmitt and Kuljanin (2008), the establishment of measurement invariance 
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is crucial for the comparisons of latent means or other structural coefficients because these 

subsequent analyses might be meaningless if directly assuming measurement invariance. 

Measurement invariance holds if a measuring device works in the same way across varied 

conditions (i.e., different populations, different time points) that are irrelevant to the 

attribute being measured (Millsap, 2011). Differential item functioning (DIF) is considered 

as a between-group difference between item parameters, or item response functions given 

the same score on the latent continuum, that determine the item response function in 

different groups. Under the IRT framework, there are multiple methods for DIF detection 

in item parameters, and the most commonly applied method is likelihood ratio (LR) tests. 

In addition, the DIF can be detected under the CFA framework as well using traditional 

multiple-group CFA models, categorical multiple-group CFA models and multiple-

indicator-multiple-causes (MIMIC) models. It has been consistently agreed that latent 

mean comparisons can be conducted under conditions of partial invariance (Byrne, 

Shavelson, & Muthén, 1989; Steenkamp & Baumgartner, 1998). However, there are no 

consistent opinions about the extent to which partial invariance is allowed without 

compromising estimation accuracy and power for tests of latent mean differences. Only a 

few simulation studies have focused on the factors influencing latent mean comparisons 

under both IRT and CFA frameworks (e.g., De Beuckelaer & Swinnen, 2018; Jones & 

Gallo, 2002). Their results indicated that one of the major factors that resulted in bias in 

latent mean difference estimation was failing to account for DIF.  

For the multiple-group data with unknown structure, dimensionality issues need to 

be explored first before testing DIF and estimating between-group latent mean differences. 

The consequences of fitting bifactor data with unidimensional models have been studied 
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in some single-group studies (e.g., DeMars, 2006). To the best of my knowledge, only one 

study focused on this issue for multiple-group data (Fukuhara & Kamata, 2011), and as 

shown in their results, for the generated bifactor binary response data, DIF can be better 

detected using the bifactor IRT model in comparison with the unidimensional model.  

Although selecting the appropriate model and correctly detecting DIF in the item 

parameters are the prerequisite for estimating latent mean differences, they might not be 

achieved in reality. Thus, the main purpose of this study is to explore the robustness of 

latent mean comparisons for the general factor underlying bifactor, ordered-categorical 

data to misspecification of the dimensionality of data structure and the equality constraints 

on noninvariant item parameters under varied research conditions. In this chapter, I first 

introduce the bifactor IRT model in terms of its specification, estimation, applications, and 

important utilities. Next, I focus on different methods for DIF detection and latent mean 

comparisons. Finally, I illustrate factors that influence DIF detection procedures and latent 

mean comparisons based on findings of previous simulation studies. Following this review, 

the proposed simulation study is presented in the methods chapter. It is expected that the 

results of this study will provide recommendations for researchers who are interested in the 

latent mean difference of the general factor despite the existence of the specific factors in 

bifactor, ordered-categorical data. 

Introduction to Bifactor IRT Models 

The following section starts with an introduction to basic principles of IRT models 

based on unidimensional IRT models, which can be extended to multidimensional IRT 

models. Then the dimensionality issues are addressed. To be specific, the general forms of 

multidimensional models are illustrated first. Then I introduce the bifactor IRT model, a 
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hierarchical multidimensional IRT model, in terms of its specification, estimation, 

applications, and important utilities. After that, I discuss the role of bifactor models in 

exploring the dimensionality issues of IRT models by comparing the bifactor model with 

its competing alternative models. 

Basic Principles of Item Response Theory Models    

Item response theory was introduced around 1950s as a relatively recent alternative 

to classical test theory (CTT).  Unlike CTT that focuses on total observed scores, IRT 

focuses on each item. IRT places the person characteristics and item characteristics on the 

same latent continuum, and the item response function (IRF) specifies the function that 

relates the probability of responses to both person characteristics and item characteristics 

(de Ayala, 2009).  

For dichotomous data, the common IRT models are the one-parameter logistic (1PL) 

model, the two-parameter logistic (2PL) model, and the three-parameter logistic (3PL) 

model. The 2PL model was the focus of the current study. The IRF of the 2PL model is 

shown below: 

                                         P(𝑥𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗) = 
𝑒

𝑎𝑗(𝜃𝑖− 𝑏𝑗)

1+𝑒
𝑎𝑗(𝜃𝑖− 𝑏𝑗)

 
                                         (1) 

where 𝑥𝑖𝑗 denotes person i’s response to item j, 𝜃𝑖 is the latent ability parameter for person 

i,  𝑎𝑗 is the discrimination parameter for item j, 𝑏𝑗 is the difficulty parameter for item j, and 

P(𝑥𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗) denotes the probability of person i correctly answering item j.  To 

obtain a unique solution for the discrimination parameter for item j (𝑎𝑗 ), a common 

identification method is to set the variance of the latent ability (𝜃) distribution to 1; to 

obtain a unique solution for the difficulty parameter for item j (𝑏𝑗), a common identification 

method is to set the mean of the latent ability (𝜃) distribution to 0.   
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For 2PL models, each item has its own difficulty parameter that represents the point 

on the latent ability scale where the probability of passing this item is .50. The 

discrimination parameter reflects the steepness of an item. For an item with a larger value 

of the discrimination parameter, the probability of passing it changes more quickly than 

another item with relatively smaller discrimination parameter around the neighborhood of 

their corresponding difficulty parameters.  In the 2PL model, the discrimination parameters 

vary across items.   

For polytomous data, the common IRT models include the partial credit model 

(PCM), the rating scale model (RSM), the generalized partial credit model (GPCM) and 

the graded response model (GRM). The GRM was focused in the current study. The GRM 

has the same specification as the 2PL model. The equation for the GRM is: 

                                  P(𝑥𝑖𝑗 ≥ 𝑥|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗𝑥) = 
𝑒

𝑎𝑗(𝜃𝑖− 𝑏𝑗𝑥)

1+𝑒
𝑎𝑗(𝜃𝑖− 𝑏𝑗𝑥)

 
                                                (2) 

where 𝑏𝑗𝑥 denotes the threshold parameter representing the point on the latent ability scale 

where the probability that a response above x is .50, and P(𝑥𝑖𝑗 ≥ 𝑥|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗𝑥 ) is the 

probability for person i to give a response above x. Note that for an item with C categories 

there are C -1 threshold parameters. P(𝑥𝑖𝑗 ≥ 𝑥|𝜃𝑖, 𝑎𝑗 , 𝑏𝑗𝑥) equals 1 when 𝑥 is 0. 

Based on Equation 3, the probability of giving a response of x can be obtained from: 

      P(𝑥𝑖𝑗 = 𝑥|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗𝑥)= P(𝑥𝑖𝑗 ≥ 𝑥|𝜃𝑖, 𝑎𝑗 , 𝑏𝑗𝑥) - P(𝑥𝑖𝑗 ≥ 𝑥 + 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗(𝑥+1))             (3) 

 For IRT models with polytomous data, researchers can get an overall picture of the 

probabilities for an item using the expected score function. The expected score is calculated 

by summing the products of the number assigned to each category and probability of this 

category given the latent ability, so the expected score function describes the relationship 
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between the latent ability and the expected item score. When there are only two categories, 

the expected score function is actually the item response function.  

There are three fundamental assumptions underlying commonly applied IRT 

models (de Ayala, 2009). First, it is assumed that only one latent variable determines the 

probability of observed responses (unidimensionality assumption). Second, it is assumed 

that the item responses are uncorrelated with each other after controlling for the latent 

variable (local independence assumption). Third, it is assumed that the IRT model follows 

a specific form specified by the model (functional form assumption).  

The most commonly applied estimation method under IRT framework is marginal 

maximum likelihood (MML; Bock & Aitkin, 1981). In MML, item parameters are 

estimated first using the marginal distribution in which person parameters are removed 

from the marginalization process. After obtaining item parameters, person parameters can 

be estimated using either maximum likelihood estimation (MLE) or the Bayesian method 

(de Ayala, 2009). The drawback of MLE is that it cannot estimate latent scores for 

examinees with zero correct answers or perfect scores. Expected a posterior (EAP) and 

maximum a posterior (MAP) are two specific strategies for the Bayesian method. In 

addition to MML, Bayesian estimation with Markov Chain Monte Carlo (MCMC) has 

gained popularity in recent years.  

The 2PL IRT model and the GRM can be estimated within the framework of the 

CFA model because of their equivalency with categorical CFA models (Wirth & Edwards, 

2007). In categorical CFA models, it is assumed that continuous latent response variates 

underlie the ordered-categorical data. Using 𝑥𝑗 to represent the observed discrete response 
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variable for item j and 𝑥𝑗
∗ to represent the underlying latent response variate for 𝑥𝑗, one 

could express the relationship between 𝑥𝑗 and 𝑥𝑗
∗ as: 

                                               𝑥𝑗 = 0, 𝑖𝑓 𝑥𝑗
∗ < 𝜏𝑗1 

𝑥𝑗 = 𝑥, 𝑖𝑓 𝜏𝑗𝑥 < 𝑥𝑗
∗ < 𝜏𝑗(𝑥+1) 

                                                      𝑥𝑗 = 𝐶 − 1, 𝑖𝑓 𝜏𝑗(𝐶−1) < 𝑥𝑗
∗                                             (4) 

where 𝜏𝑗𝑥 is the xth threshold parameter for item j. Using the one-factor CFA model as an 

example, the equation relating the common latent factor to the latent response variates is: 

                                                           𝑋∗ = 𝚲𝐱
∗ 𝜉∗ + 𝛅∗                                                         (5) 

where 𝑋∗  is the vector containing latent response variates, 𝚲𝐱
∗  is the loading vector, 𝜉∗ 

denotes the common latent factor, and 𝛅∗  is the residual vector. The model implied 

variance and covariance matrix 𝚺∗can be expressed as: 

                                                         𝚺∗ = 𝚲𝐱
∗Φ∗𝚲𝐱

∗′
+ 𝚯𝛅

∗                                                     (6) 

where Φ∗ is the variance of the common latent factor, 𝚲𝐱
∗′

 is the transpose vector of 𝚲𝐱
∗ , 

and 𝚯𝛅
∗  is the variance and covariance matrix for the residuals. In order to identify this 

model, the mean of the common factor is fixed to 0, the variance of the common latent 

factor is fixed to 1, and the variances of latent variates are fixed to 1. Categorical CFA 

models are estimated using tetrachoric or polychoric correlations among the items which 

can be considered as the estimates of Pearson correlations among the latent response 

variates. Like the CFA models with continuous data, parameters in the categorical CFA 

models are estimated to minimize the differences between the model-implied variance-

covariance matrix and the data variance-covariance matrix. Given that only the tetrachoric 

or polychoric correlations estimated based on proportion of responses in the observed 
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contingency table are used as data input, estimation methods applied for CFA models with 

ordered-categorical data are called limited-information analysis, which is named in contrast 

to full-information analysis (e.g., MML) that utilizes all information of the data. The 

WLSMV estimator of Mplus (Muthén & Muthén, 2010) is commonly applied for 

estimating model parameters for categorical CFA models.  

In unidimensional models, the loading parameters and threshold parameters 

obtained in categorical CFA models can be converted to discrimination parameters and 

difficulty (or threshold) parameters for the corresponding equivalent 2PL (or the GRM) 

IRT model using the following formulas: 

𝑎𝑗 =
1.7𝜆𝑗

∗

√1 − 𝜆𝑗
∗2

 

                                                                    𝑏𝑗(𝑏𝑗𝑥) = 
𝜏𝑗(𝑥)

𝜆𝑗
∗                                                         (7) 

where 𝜆𝑗
∗ and 𝜏𝑗𝑥 denote the standardized factor loading and threshold parameter for item j 

in the categorical CFA model, and 𝑎𝑗 and 𝑏𝑗(𝑏𝑗𝑥) represent the discrimination parameter 

and difficulty parameter (threshold parameter).  

For both IRT models and categorical CFA models, global model fit and local model 

fit indices can be obtained using the commonly applied software (e.g., IRTPRO for IRT 

models, Cai, Thissen & du Toit, 2011; Mplus for CFA models, Muthén & Muthén, 2010). 

Nested models can be compared using the likelihood ratio (LR) test for IRT models and 

the chi-square difference test with corrections for categorical CFA models (i.e., DIFFTEST 

option of the Mplus).  

Although IRT models can be estimated within the framework of CFA for some IRT 

forms (i.e., 2PL model and the GRM), the IRT framework can provide some unique 
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features. For example, the lack of local fit for a 2PL IRT model might suggest the existence 

of a pseudo-guessing parameter. Another important feature of IRT models is that 

information functions are obtained for each item and the test. The information function 

describes how well an item (or a test) can discriminate among examinees with different 

latent ability scores. For unidimensional IRT models, the amount of information an item 

or a test can provide for an examinee depends on this person’s latent ability level. The 

discrimination parameter determines the maximum information an item can provide. The 

test information function is the sum of all the item information functions such that the 

length of a test also determines the information of this test. When estimating latent score 

ability using MLE, the standard error of an estimate is the inverse square root of the test 

information given this person’s estimated ability level.   

Reise (2012) suggested two potential problems regarding the equivalence between 

the IRT model and CFA model. First, the interpretation of loading parameters in the CFA 

model might differ from the converted discrimination parameters in the IRT model in terms 

of the magnitude. Second, it might not be appropriate to use the model fit obtained from a 

linear CFA model to interpret the model fit for a non-linear IRT model because these 

models are estimated based on different assumptions.  

As an alternative to CTT based on the true score model, IRT provides several 

unique utilities (Reise & Henson, 2003). First, in IRT, an individual’s location on the latent 

continuum is estimated and each item can have an unequal contribution in estimating latent 

ability scores. Second, item characteristics and person characteristics are independent with 

each other in IRT which is the foundation of computerized adaptive testing (CAT; Wainer, 

2000) and IRT based linking methods. Third, the unidimensional assumption and the local 
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independence assumption of IRT are often tested in real data and the dimensionality issues 

are discussed in more detail later. Fourth, in order to have comparable test scores across 

different groups of people, one needs to assess whether or not items function the same way 

across these groups. IRT provides systematic methods for detecting differential item 

functioning (DIF).  

The General Form of Multidimensional IRT Models 

As suggested by Reise et al. (2007), measures differ in their degree of conceptual 

breadth. A measure is considered to be broad if it contains relatively heterogeneous items 

and it is considered to be narrow if it contains relatively homogeneous items. For example, 

a measure of depression might be considered as a broad measure because it contains 

multiple aspects of the depression construct such as negative mood, social withdrawal, poor 

cognitive functioning, somatic concerns, and suicidal ideation. In contrast, if a test is 

designed to measure somatic concerns, it is considered to be relatively narrow. For a 

relatively narrow measure, it is more likely to specify a unidimensional model; for a 

relatively broad measure, it is more likely to explore the dimensionality issue. Another 

circumstance in which multidimensional IRT models are desirable is when the items of a 

test are indicators of more than one skill (Ackerman, 2005). In fact, all the assessments 

measure multiple dimensions, and whether examinees vary on those dimensions which 

items strongly load on determines the dimensionality of the model. For example, scores on 

mathematics problem solving items may reflect both mathematics skills and reading skills, 

so a multidimensional IRT model is more desirable. However, if the test takers only differ 

in one of the skills, a unidimensional model is preferred (Ackerman, 2005). In multiple-
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group models, whether distributions of different groups vary on a given strongly related 

dimension also determines the dimensionality of the model. 

The multidimensional IRT models have two types of structures which are between-

item multidimensionality and within-item multidimensionality (Adams, Wilson & Wang, 

1997). For the model with between-item multidimensionality, each item discriminates on 

only one of the several dimensions and these dimensions might be correlated with each 

other, which corresponds to simple structure in factor analysis models. For the model with 

within-item multidimensionality, some of the items discriminate on more than one 

dimension, which corresponds to complex structure in factor analysis models.   

 For the items that discriminate more than one dimension, either compensatory 

models (Reckase, 1985) or non-compensatory models (also called the partial compensatory 

model; Sympson, 1978) can be applied. Taking an example of the 2PL IRT model, the 

equation for the compensatory model is: 

                                P(𝑥𝑖𝑗 = 1|𝜽𝒊, 𝒂𝒋, 𝑑𝑗) = 
𝑒

(𝒂𝒋𝜽𝒊
′

+𝑑𝑗)

1+𝑒
(𝒂𝒋𝜽𝒊

′
+𝑑𝑗)

 

                                      (8) 

where 𝜽𝒊 is the 1 x m vector containing multiple latent scores for person i, 𝒂𝒋 is the 1 x m 

vector containing discrimination parameters of item j with respect to corresponding latent 

abilities, and 𝑑𝑗  is the intercept parameter of item j. Although each latent ability has a 

corresponding discrimination parameter, only one intercept parameter is estimated because 

the difficulty parameters with respect to multiple latent abilities are indeterminate. In the 

compensatory model, the low ability of an examinee on one dimension can be compensated 

by the high ability of this examinee on another dimension in terms of the probability of 

passing an item. In contrast to the compensatory model in which multiple latent abilities 
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are added together in the logit, the non-compensatory model is specified as the product of 

multiple unidimensional models.  Using the example of the 2PL model and supposing that 

there are two underlying abilities, one can express the equation of the non-compensatory 

model as: 

                  P(𝑥𝑖𝑗 = 1|𝜃𝑖1, 𝜃𝑖2, 𝑎𝑗1, 𝑎𝑗2, 𝑏𝑗1, 𝑏𝑗2) = 
𝑒

𝑎𝑗1(𝜃𝑖1− 𝑏𝑗1)

1+𝑒
𝑎𝑗1(𝜃𝑖1− 𝑏𝑗1)

 
 x 

𝑒
𝑎𝑗2(𝜃𝑖2− 𝑏𝑗2)

1+𝑒
𝑎𝑗2(𝜃𝑖2− 𝑏𝑗2)

 
         (9) 

where 𝜃𝑖1, 𝜃𝑖2  are latent abilities for person i, 𝑎𝑗1, 𝑎𝑗2  are corresponding discrimination 

parameters, and 𝑏𝑗1, 𝑏𝑗2 are corresponding difficulty parameters. In the non-compensatory 

model, even if a person has very high ability in one dimension and extremely low on 

another dimension, the probability for this person to pass an item is still very low. As shown 

in the research of Babcock (2011), non-compensatory models can be estimated using 

Bayesian methods. 

An Introduction to Bifactor IRT Models 

 Bifactor IRT models are hierarchical multidimensional models in which a general 

factor explains the common variance among all the items and specific factors are modeled 

to explain the common variance independent of the general factor (Reise, 2012). Each item 

is allowed to load on at most one of the specific factors. It is assumed that the general factor 

is orthogonal with the specific factors and there are no correlations among the specific 

factors. Although the orthogonality assumption might be hard to achieve for real data, 

Reise (2012) suggested that the specific factors cannot be considered as residualized factors 

that explain the additional common variance beyond the general factor if they are allowed 

to correlate with the general factor. Correlations among the specific factors may indicate 

the existence of other factor(s) that complicate the structure of the data. Despite the 

importance of orthogonality assumption, Jeon, Rijmen, and Rabe-Hesketh (2011) 
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suggested that relaxing this assumption in multiple-group bifactor models when it is 

violated in one of the groups could improve estimation accuracy for the DIF.      

 The bifactor model was introduced by Holzinger and Swineford (1937) based on 

the factor analysis model. Gibbons and Hedeker (1992) used the EM algorithm for 

marginal maximum likelihood estimation to analyze binary data under the framework of 

IRT. In 2007, Gibbons et al. (2007) applied bifactor IRT models for polytomous data. As 

pointed out by Reise (2012), the bifactor model has become an important representation of 

multidimensional structure and has gained increasing popularity in research and 

applications for both IRT and SEM in recent years.  

 In the bifactor IRT model, the general factor represents a broader concept (e.g., 

depression) or the main trait intended to measure (e.g., mathematics skills for mathematics 

problem solving items) whereas the specific factors represent narrower concepts (e.g., 

negative mood, social withdrawal, poor cognitive functioning, somatic concerns, and 

suicidal ideation) or the trait not intended to measure (e.g., reading skills for mathematics 

problem solving items). Although researchers are primarily interested in individual 

differences in the general factor, clusters of items are designed for the following reasons. 

First, the majority of psychological constructs are complex constructs including multiple 

facets, such that subdomains of items are needed to improve content validity (Reise, 2012). 

Second, in cognitive tests, context-dependent items are desirable for measuring higher-

level abilities such as problem-solving skills, and the application of common stimulus (e.g., 

a reading passage) provides a good way to save examinees’ time (DeMars, 2006).  

 The bifactor structure can be applied to both compensatory IRT models and non-

compensatory IRT models although almost all the research and applications focused on 
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compensatory bifactor models (Desa, 2012). The general form of multidimensional item 

response function shown in Equations 8 and 9 can be applied to bifactor models. 

Compensatory IRT models were focused in the current study. Taking the example of 

Equation 8 and supposing that item j loads on the kth specific factor, the item response 

function of the bifactor model can be written as: 

         P(𝑥𝑖𝑗 = 1|𝜃𝑖𝐺𝐸𝑁 , 𝜃𝑖𝐺𝑅𝑘 , 𝑎𝑗𝐺𝐸𝑁 , 𝑎𝑗𝐺𝑅𝑘, 𝑑𝑗) = 
𝑒

(𝑎𝑗𝐺𝐸𝑁𝜃𝑖𝐺𝐸𝑁+ 𝑎𝑗𝐺𝑅𝑘𝜃𝑖𝐺𝑅𝑘+𝑑𝑗)

1+𝑒
(𝑎𝑗𝐺𝐸𝑁𝜃𝑖𝐺𝐸𝑁+ 𝑎𝑗𝐺𝑅𝑘𝜃𝑖𝐺𝑅𝑘+𝑑𝑗)              (10)     

 where 𝜃𝑖𝐺𝐸𝑁 denotes the general factor score for person i, 𝜃𝑖𝐺𝑅𝑘 denotes the specific factor 

score for person i, 𝑎𝑗𝐺𝐸𝑁 is the discrimination parameter of item j for the general factor, 

𝑎𝑗𝐺𝑅𝑘 is the discrimination parameter of item j for the kth specific factor, and 𝑑𝑗 represents 

the item intercept of item j which is the log-odds of correct responses when 𝜃𝑖𝐺𝐸𝑁 and 𝜃𝑖𝐺𝑅𝑘 

are all zero. The discrimination parameter in the bifactor model reflects how well an item 

can discriminate examinees along with a given dimension (general dimension or specific 

dimension) of the item response surface. A multidimensional information surface is used 

to indicate the information provided by an item for each point on the ability plane and it is 

formed for each ability composite (direction on the ability plane).  To compare the degree 

of difficulty cross items based on a bifactor model, a multidimensional difficulty (MDIFF) 

parameter can be calculated as -𝑑𝑗/ √𝑎𝑗𝐺𝐸𝑁
2 + 𝑎𝑗𝐺𝑅𝑘

2 . Item with higher MDIFF is 

considered to be more difficult, whereas the item with lower MDIFF is considered to be 

easier. 

With respect to person parameters, it is assumed that in the bifactor model, the 

general factor scores and specific factor scores are from a multivariate normal distribution 

with orthogonal dimensions (Gibbons & Hedeker, 1992). In most of the cases, researchers 

are mostly interested in individual differences on the general factor when applying a 
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bifactor model, which are reflected by 𝜃𝑖𝐺𝐸𝑁. Sometimes researchers also want to evaluate 

an examinee’s performance on the subscale. It should be noted that specific factor score 

estimates cannot be directly used for scaling individual differences on the subscale because 

they reflect the residualized factor scores beyond the information provided by the general 

factor (DeMars, 2013).  But they can be used to evaluate examinees’ strengths and 

weaknesses on the subscale after controlling for the general factor. To estimate an 

examinee’s overall performance on a given subscale, one needs to either use the correlated-

factors model or some relatively sophisticated methods based on bifactor models such as 

the composite score of both the general factor score and the residualized factor score 

(DeMars, 2013) and the restricted bifactor model (Chang, 2015). 

 To identify a bifactor IRT model with freely estimated discrimination parameters 

for both the general factor and specific factors, the means of the general factor and specific 

factors need to be fixed to 0, and the variances of the general factor and specific factors 

need to be fixed to 1. In some special cases of bifactor models, some more constraints 

might be needed for identification purpose. For example, if a specific factor has only two 

indicators, equality constraints need to be placed on the item discrimination parameters for 

these two indicators. 

 The EM algorithm for MML is commonly used for estimation of bifactor IRT 

models (Gibbons & Hedeker, 1992; Gibbons et al., 2007). In multidimensional IRT models, 

the likelihood function of responses of N persons for p binary items can be written as: 

              L (X | Γ, θ) = ∏ ∏ 𝑃(𝑥𝑖𝑗 = 1|𝛤𝑗 , 𝜽𝒊)
𝑝
𝑗=1

𝑁
𝑖=1

𝑥𝑖𝑗
𝑃(𝑥𝑖𝑗 = 0|𝛤𝑗 , 𝜽𝒊)

1−𝑥𝑖𝑗              (11) 

where X represents the responses of N persons for p items, Γ contains all the item 

parameters, θ is the latent scores of all the dimensions for all the persons, 𝑥𝑖𝑗 represents 
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the response of item j for person i, 𝛤𝑗  contains the item parameters for item j (e.g., 

discrimination parameters for all the dimensions, item intercept), and  𝜽𝒊 contains latent 

scores for all the dimensions for person i. In the MML, people are considered to be 

randomly drawn from a multidimensional distribution g(𝜽). Supposing that there are k 

dimensions of latent abilities ( 𝜃1, 𝜃2, … , 𝜃𝑘 ) underlying the responses, the marginal 

likelihood function of the responses can be written as:                                      

                    L (X | Γ) = ∫ ∫ ··· ∫ 𝐿 (𝑋 | 𝚪, 𝜽)
+∞

−∞

+∞

−∞

+∞

−∞
g(𝜽)𝑑𝜃1𝑑𝜃2 …𝑑𝜃𝑘                      (12) 

For the bifactor IRT models, all the items load on one general factor and each item loads 

on at most one of the specific factors. Thus, the likelihood function only needs to integrate 

over two dimensions regardless of the number of total dimensions involved which greatly 

simplifies the integration process for multidimensional IRT models (Gibbons et al., 2007). 

Once item parameters are obtained and the model fit is acceptable, latent scores of the 

general factor and residualized factors can be estimated using MLE or Bayesian methods 

(EAP or MAP).   

 Bifactor models with ordered-categorical data can be estimated within the CFA 

framework (Reise, 2012). In bifactor models, the relationship between the observed ordinal 

variables and their corresponding continuous latent variates follows the same rule of 

unidimensional models (shown in Equation 4), and the equation relating the general factor 

and specific factors to the latent response variates is 

                                                  𝑋∗ = 𝚲𝐱
∗ 𝛏∗ + 𝛅∗                                                           (13) 

where 𝑋∗  is the vector containing latent response variates, 𝚲𝐱
∗  is the loading matrix, 𝛏∗ 

denotes the vector containing the general factor and specific factors, and 𝛅∗ is the residual 

vector. For example, if a bifactor model has 9 items and three specific factors, items 1-3 
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load on the first specific factor, items 4-6 load on the second specific factor, and items 7-9 

load on the third specific factor, then the vector of  𝛏∗ is: 

                                                       𝛏∗ = 

[
 
 
 
𝜉𝐺𝐸𝑁1

∗

𝜉𝐺𝑅1
∗

𝜉𝐺𝑅2
∗

𝜉𝐺𝑅3
∗ ]

 
 
 
                                                             (14) 

where 𝜉𝐺𝐸𝑁1
∗  is the general factor, 𝜉𝐺𝑅1

∗  is the first specific factor, 𝜉𝐺𝑅2
∗ is the second specific 

factor, and 𝜉𝐺𝑅3
∗  is the third specific factor. The loading matrix 𝚲𝐱

∗   has the following 

pattern: 

                                𝚲𝐱
∗  = 

[
 
 
 
 
 
 
 
 
 
 
𝜆𝐺𝐸𝑁1,1

∗ 𝜆𝐺𝑅1,1
∗ 0 0

𝜆𝐺𝑅𝑁2,1
∗ 𝜆𝐺𝑅2,1

∗ 0 0

𝜆𝐺𝐸𝑁3,1
∗ 𝜆𝐺𝑅3,1

∗ 0 0

𝜆𝐺𝐸𝑁4,1
∗ 0 𝜆𝐺𝑅4,2

∗ 0

𝜆𝐺𝐸𝑁5,1
∗ 0 𝜆𝐺𝑅5,2

∗ 0

𝜆𝐺𝐸𝑁6,1
∗ 0 𝜆𝐺𝑅6,2

∗ 0

𝜆𝐺𝐸𝑁7,1
∗ 0 0 𝜆𝐺𝑅7,3

∗

𝜆𝐺𝐸𝑁8,1
∗ 0 0 𝜆𝐺𝑅8,3

∗

𝜆𝐺𝑅9,1
∗ 0 0 𝜆𝐺𝑅9,3

∗ ]
 
 
 
 
 
 
 
 
 
 

                                         (15) 

where 𝜆𝐺𝐸𝑁
∗  denotes the factor loadings relating the general factor to the latent response 

variates, and 𝜆𝐺𝑅
∗  denotes the factor loadings relating the specific factors to the latent 

response variates. The limited-information estimation method based on tetrachoric or 

polychoric correlations are used for bifactor models with ordered-categorical data. In 

contrast to the full-information estimation in which the entire response vectors are made 

use of when estimating item parameters, in the limited-information estimation, only the 

observed response contingency table among the items are used for estimating model 

parameters.  

 In multidimensional models, The loading parameters and threshold parameters 

obtained in categorical CFA models can be converted to discrimination parameters and 
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item intercept parameters for the corresponding equivalent 2PL (or the GRM) IRT model 

using the following formulas: 

𝑎𝑗𝑝 =
1.7𝜆𝑗𝑝

∗

√1 − ∑ 𝜆𝑃
𝑝=1 𝑗𝑝

∗2
 

                                                              𝑑𝑗(𝑑𝑗𝑥) = 
−1.7𝜏𝑗(𝑥)

√1−∑ 𝜆𝑃
𝑝=1 𝑗𝑝

∗2
                                                    (16) 

where 𝜆𝑗𝑝
∗  denotes the standardized factor loading of dimension p for item j and 𝜏𝑗𝑥 denotes 

the threshold parameter for item j in the categorical CFA model, and 𝑎𝑗𝑝  and 𝑑𝑗 (𝑑𝑗𝑥 ) 

represent the discrimination parameter of dimension p and item intercept parameter.   

  In most applications of bifactor models, researchers are more interested in 

individual differences on the general factor. As suggested by DeMars (2013), employing 

bifactor IRT models, researchers can get pure estimates of the common latent trait because 

the common variances due to the specific factors are accounted for. Reise et al. (2007) 

compared multiple models using the data from the Consumer Assessment of Healthcare 

Providers and Systems. They found that the discrimination parameters on the general factor 

increased for some of the items after modeling the specific factors using a bifactor model 

in comparison with the corresponding parameters obtained from a unidimensional model. 

Thus, they argued that these items became more meaningful measures after controlling for 

the specific factors.    

 Researchers are also interested in examinees’ performance on subscales sometimes. 

Although an examinee’s subscale score cannot be directly estimated using a bifactor model, 

his or her strengths and weaknesses on each subscale beyond the influence of the general 

factor are reflected by the residulized factor score (DeMars, 2013), so researchers can 
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employ a bifactor model to determine whether it is meaningful to report scores for a 

subscale (Reise et al, 2007). In the study of Reise et al. (2007), although the item loadings 

on each subscale were fairly strong in the correlated-factors model, when using the bifactor 

model, most of the items had larger discrimination parameters on the general factor than 

those on the specific factors. For example, one of the items had a discrimination parameter 

of 1.30 in the correlated-factors model. If we only looked at this result, we might think that 

it is a good measure of the subdomain. However, when employing the bifactor model, this 

item had a discrimination parameter of 1.27 on the general factor and 0.38 on the specific 

factor, which suggested that the unique contribution of the subdomain on this item was 

very small after controlling for the general factor. DeMars (2013) summarized that subscale 

scores are useful when items have high discrimination parameters on the subscale(s) in the 

bifactor model whereas scoring the subscale(s) might be redundant if the item 

discrimination parameters of the subscale(s) are very low.   

Reise (2012) proposed another method to determine whether subscale scores should 

be formed using an index omega subscale (𝜔𝑠). 𝜔𝑠 can be used to indicate the model-based 

reliability for a subscale after controlling for the general factor in a bifactor model. Using 

subscript m to denote the items loading on the kth subscale, omega subscale for the kth 

subscale (𝜔𝑠𝑘) can be calculated using the following formula: 

                                      𝜔𝑠𝑘 = 
(∑𝜆𝑚𝐺𝑅𝑘)2

(∑𝜆𝑚𝐺𝐸𝑁)2+(∑𝜆𝑚𝐺𝑅𝑘)2+∑𝜃𝑚
                                               (17) 

where 𝜆𝑚𝐺𝐸𝑁 represents the standardized general factor loadings for the items relating to 

the kth subscale, 𝜆𝑚𝐺𝑅𝑘 represents the standardized specific factor loadings for these items, 

and 𝜃𝑚 represents the error variances for these items. Note that all of these parameters are 

obtained under a CFA framework. Omega subscale shown in Equation 17 reflects the 
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proportion of common variance among a subset of items due to the specific factor beyond 

the influence of the general factor. In the study of Reise (2012), five specific factors were 

modeled in a bifactor model, and the indices of omega subscale were shown to 

be .21, .32, .26, .44 and .22, respectively. The proportion of common variance of a subset 

of items that was due to both the general factor and their corresponding specific factor was 

also calculated in Reise’s study (2012), and they were .62, .66, .67, .62, and .66, 

respectively. Based on these results, Reise (2012) pointed out that the reliable variance on 

the subscales was little if the variance due to the general factor was partialed out, so he 

concluded that there was no need to report subscale scores if total scores were given.   

 Reise, Moore, and Haviland (2010) pointed out a problem of reporting subscale 

scores in predicting external variables. They argued that the multicollinearity among the 

subscales might make it harder to precisely estimate the unique effect of each subdomain 

on outcome variables. In this case, bifactor models would be desirable in which the unique 

contribution of the general factor and each subdomain to the external outcome variables 

can be estimated (Chen et al., 2006; Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; 

Gustafsson & Balke, 1993).  

 Given that bifactor models are appropriate representations of many complex 

constructs measured in both cognitive and non-cognitive tests, bifactor models can offer 

utilities in the areas where an IRT model is desirable. For example, testlet-based items are 

commonly applied in CAT (Wainer, Bradlow, & Du, 2000). In cognitive tests, context-

based items are often desirable in measuring some higher-level skills (DeMars, 2006). Also, 

making utility of context-based items can improve test efficiency because it would be time 

consuming if an examinee only needs to answer one question after reading a long passage.  
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In non-cognitive CAT, the construct to be measured might include multiple aspects (e.g., 

Haley et al., 2009). In these circumstances, bifactor modeling can help researchers retain 

their primary interest in the general factor while avoiding violation of local independency 

assumption due to forcing all the items onto only one dimension.   

 Another important utility of IRT models is to help researchers link scales across 

multiple measures such that test scores from different measures can be comparable (Reise 

& Henson, 2003). As suggested by Reise et al. (2007), linking scales based on bifactor 

models are usually more complicated, but if researchers are only interested in linking 

measures onto the general factor, standard linking methods can be used. Li (2011) applied 

the bifactor model for vertical scaling in which measures with similar construct but 

different difficulty levels were linked onto the same scale such that the test scores of 

students from different grades can be comparable and the growth of a given student can be 

tracked. In Li’s study (2011), the general factor was used to represent the common vertical 

scale across grades and the specific factors were used to represent the shifted construct 

specific to each grade.   

Comparisons of Bifactor IRT Models with Competing Models  

 The applications of bifactor IRT models in exploring dimensionality issues are of 

great importance to researchers. The common alternative models to bifactor models include 

the unidimensional model, the testlet-effects model, the second-order model and the 

correlated-factors model (e.g., DeMars, 2006; Immekus & Imbrie, 2008; Min & He, 2014; 

Reise et al., 2007; Rijmen, 2010), and all these models are nested within the bifactor model.  

Both confirmatory models and exploratory models can be used for comparisons 

among these competitive models (e.g., Reise et al., 2007; Reise et al., 2010). When 
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applying confirmatory models, the unidimensional model, the testlet-based model, the 

second-order model and the correlated-factors model can be compared with the bifactor 

model using either the chi-square different test with corrections (i.e., DIFFTEST option of 

Mplus) under the CFA framework (e.g., Reise, 2012) or the LR test under the IRT 

framework (e.g., DeMars, 2006; Immekus & Imbrie, 2008). When implementing 

exploratory models for potentially multidimensional data, researchers can conduct both the 

standard exploratory factor analysis (e.g., exploratory principle axis factoring with oblimin 

rotations) and exploratory bifactor modeling using the Schmid-Leiman (SL) 

orthogonalization or target pattern rotation (Reise et al., 2010). 

 As pointed out by Reise et al. (2010), measures are rarely strictly unidimensional 

for broad and complex constructs. Given the need of unidimensional models due to their 

simplicity, “essential unidimensionality” was proposed as a weak form of the local 

independence assumption (Stout, 1987). Nonparametric DIMTEST can be used to test 

essential unidimensionality (Koğar, 2018). If a measure is sufficiently unidimensional, 

there would be no need to compare multiple multidimensional models.  

Reise (2012) proposed two indices obtained from bifactor models to indicate degree 

of unidimensionality, which were the explained common variance (ECV) and percentage 

of uncontaminated correlations (PUC). To be specific, the ECV is the proportion of 

common variance among all the items attributed to the general factor, which reflects the 

strength of the general factor to the specific factors. The correlations among the items 

within each specific factor are considered to be contaminated by both common variance 

explained by the general factor and common variance explained by the specific factor. The 

number of uncontaminated correlations equals to the total number of correlations among 
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all the items minus the number of contaminated correlations, and the PUC is the ratio of 

the number of uncontaminated correlations to the total number of correlations. Larger ECV 

and PUC are desirable when forcing potentially multidimensional data into a 

unidimensional model. As recommended by Reise (2012), if test developers plan to have a 

unidimensional model of a relatively broader construct, they can improve PUC by 

increasing the number of testlets and decreasing the number of items within each testlet. In 

the simulation study of Reise, Scheines, Widaman, and Haviland (2013) conducted within 

the SEM framework, they explored the effect of misspecification of bifactor data using a 

unidimensional model on the structural coefficient of predicting a latent criterion from the 

general factor. They found that the ECV and PUC of the generated data were good 

predictors of estimation bias of the structural coefficient. To be specific, the estimation bias 

decreased as ECV and PUC increased, and the effect of ECV on the estimation bias was 

moderated by PUC. When the PUC was high, the structural coefficients are almost 

unbiased even if the ECV is low. Reise et al. (2013) also pointed out that the model fit 

indices (i.e., CFI, SRMR, and RMSEA) performed poorly in testing unidimensionality 

because the misspecified unidimensional models had acceptable model fit in most of the 

cases, and that these model fit indices cannot serve as predictors of the bias of the structural 

coefficient when predicting external criterion from the general factor. Thus, they suggested 

that researchers should use ECV and PUC in addition to overall model fit indices to 

determine the degree of unidimensionality.   

When determining whether it is appropriate to fit a unidimensional model to 

potentially multidimensional data, another important aspect to consider is the degree of 

distortion of the item parameters due to forcing the data onto only one dimension. Reise et 
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al. (2007) pointed out that the unidimensional factor might be pulled toward the subset of 

items with strong local dependence. In practice, the item discrimination parameters for a 

unidimensional model are often compared with the corresponding item discrimination 

parameters of the general factor in a bifactor model to determine whether distortion occurs 

(Reise et al., 2007).  DeMars (2006) found that the item discrimination parameters would 

be negatively biased if generated bifactor data was fitted with a unidimensional model 

based on a simulation study. Also, she indicated that fitting a complex model (i.e., bifactor 

model) to a simple data structure (i.e., unidimensional data) would not produce any bias 

but it would slightly increase root mean square error (RMSE) in the estimates of item 

parameters. Given there was no estimation bias and the decrease in estimation efficiency 

was very small when specifying a bifactor model to the unidimensional data, DeMars (2006) 

suggested that a bifactor model is preferred when suspecting multidimensionality, and she 

also proposed that researchers could specify specific factors for some of the testlets rather 

than all of them to improve the estimation efficiency.  

With respect to person parameter (i.e., primary trait reflected by the general factor 

in the bifactor model) estimation, DeMars’s study (2006) indicated that person parameter 

estimates obtained from different models (i.e., unidimensional model, testlet-effects model 

and bifactor model) were closely correlated with each other, whereas Min and He’s study 

(2014) indicated that the correlation of the primary trait estimates between the 

unidimensional model and the bifactor model was only .772. The reliability of tests in 

estimating examinees’ primary traits are also of interest to researchers. Borrowing the 

concepts from CTT, the test reliability can be calculated using the correlation between the 

estimated latent ability scores and their true values in a simulation study. The correlation 
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is conducted within each replication to represent the test reliability, and then the obtained 

test reliability is averaged over the replications. In DeMars’s study (2006), it was found 

that within the same data generation condition, reliabilities were similar across different 

analysis models (i.e., unidimensional model, testlet-effects model, and bifactor model). Her 

results also indicated that tests with items generated using a unidimensional model had 

higher reliabilities than those generated testlet-based tests because the generated testlets 

brought in additional error when estimating the primary traits. In real data, the test 

reliability can be estimated as 1-(𝑠𝑒
2/𝑠𝑇

2), where 𝑠𝑒 is the average standard error of the latent 

ability estimate across examinees, and 𝑠𝑇
2 is the estimated total variance of the population 

which equals to the sum of variance of latent ability scores obtained from EAP and error 

variance. DeMar’s study (2006) indicated that reliability was overestimated when applying 

unidimensional models to bifactor data.   

The testlet-effects model can be considered as a special case of the bifactor model, 

in which constraints can be placed on the relationship between the general factor loadings 

and the specific factor loadings or specific factor variances (Min & He, 2014). Testlet-

effects models, in which a proportional constraint is placed on the relationship between the 

general factor loadings and the specific factor loadings for each testlet are commonly 

applied for model comparisons with unidimensional models and bifactor models (e.g., 

DeMars, 2006; Min & He, 2014), and this type of the testlet-effects model is equivalent 

with the second-order model (Rijimen, 2010).  

The second-order model is also a restricted version of the bifactor model, in which 

a second-order factor is specified to explain the relationship among the first-order factors. 

As pointed out by Chen et al. (2006), second-order factor models are desirable when there 
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are substantial correlations among the first-order factors and it is hypothesized that these 

correlations can be accounted for by a higher-order factor. In second-order models, the 

second-order factor influences each item via the first-order factor. If the direct effects of 

the second-order factor on the items are modeled, then this second-order model would be 

equivalent with the bifactor model (Chen et al., 2006). Chen et al. (2006) illustrated the 

similar interpretations between the second-order factor model and the bifactor model from 

the following aspects. First, the second-order factor of the second-order factor model 

corresponds to the general factor of the bifactor model; second, the disturbances of the 

first-order factors in the second-order factor model correspond to the specific factors in the 

bifactor model; third, orthogonality among the disturbances of the first-order factors and 

the second-order factor in the second-order factor model corresponds to the orthogonality 

among the specific factors and the general factor in the bifactor model, and fourth, in the 

special case of nonexistence of a subdomain (i.e., the loadings on this subdomain are very 

small in a bifactor model), the disturbance of the corresponding first-order factor would be 

around 0 in the second-order factor model and the corresponding specific factor should not 

be specified in the bifactor model. As suggested by Chen et al. (2006), in addition to having 

less restrictions, bifactor models are preferred over second-order factor models because the 

interpretation and utility of the specific factors in bifactor models are more direct than using 

the disturbances of the first-order factors in second-order factor models. For example, 

employing the bifactor model, one can estimate the unique influence of each subdomain 

on the indicators and the unique contribution of each subdomain to an external variable 

(e.g., Chen et al., 2006; Gustafsson & Balke, 1993).  
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Another alternative to the bifactor model is the correlated-factors model which is a 

non-hierarchical multidimensional model. In the correlated-factors model, each item loads 

on only one of the dimensions and the dimensions might be correlated with each other. The 

correlated-factors model can be considered as nested within the bifactor model, in which 

only the specific factors are modeled and the covariance among items of different testlets 

are explained via the correlations among dimensions. As mentioned earlier, in the study of 

Reise et al. (2007), most of the items with fairly strong loadings in the correlated-factor 

models actually discriminated the general factor better than their respective specific factors 

in a bifactor model, which means that in the correlated-factors model the effect of each 

dimension on the items might be confounded with the impact of an unmodeled general 

factor. As suggested by Reise et al. (2007), when dimensions in the correlated-factors 

model are uncorrelated with each other, one could simply fit several separate 

unidimensional models to the data; when these dimensions are highly correlated with each 

other, it might indicate the existence of a general factor. To be specific, if the correlations 

among the dimensions are moderate (i.e.,.1 to .4), it is likely that the general factor loadings 

are small whereas the specific factor loadings are large, and thus a correlated-factors model 

is recommended; if the correlations among dimensions are higher than .40, a bifactor model 

would be preferred (Reise et al., 2007).  

In summary, the bifactor model plays an important role in exploring dimensionality 

issues because it is a more general model for its competitive models. When suspecting 

multidimensionality, researchers are advised to estimate the degree of unidimensionality 

using a bifactor model. Also, bifactor models can be applied to determine which form of 

multidimensional models is preferred to represent the construct.  
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Introduction to Differential Item Functioning (DIF) and Latent Mean 

Comparisons  

This section focuses on multiple-group models for ordered-categorical data. I first 

give a brief introduction to the issues of measurement invariance and DIF. Then I discuss 

methods to detect DIF and compare latent means within both IRT and CFA frameworks.  

Brief Introduction to Measurement Invariance and DIF  

  Measurement invariance is considered to hold if a test measures the construct of 

interest the same way across different conditions (e.g., different groups of people, different 

occasions, different time points, etc.) that are irrelevant to the construct to be measured 

(Millsap, 2011). The necessary and sufficient condition for measurement invariance is 

(Mellenbergh, 1989; Meredith & Millsap, 1992; Millsap, 2007): 

                                       P (X | W, G) = P (X | W)                                              (18) 

where X denotes observed scores, W denotes underlying latent variables, G denotes the 

group membership,  P (X | W, G) is the conditional distribution of observed scores on the 

latent variables and group membership, and P (X | W)  is the conditional distribution of 

observed scores on the latent variables. As shown in Equation 18, measurement invariance 

means that the conditional probability of a given set of observed scores given the same 

level of the underlying latent variables is independent of the group membership (e.g., 

different groups of people, different occasions, different time points, etc.).  

 Measurement invariance can be tested within both CFA and IRT frameworks (e.g., 

Flowers, Raju, & Oshima, 2002; Kim & Yoon, 2011; Meade & Lautenschlager, 2004; 

Reise, Widaman, & Pugh, 1993). Under CFA framework, measurement invariance is 

regarded as factorial invariance and it is evaluated using a series of nested models. Under 
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IRT framework, measurement invariance is considered to be the invariance of item 

response functions (IRFs) determined by the item parameters, and it is assessed by 

detecting differential item functioning (DIF) at the item parameter level or the IRF level 

(Meredith & Teresi, 2006; Reise et al., 1993).  

An item is considered to show DIF if the expected score (or probability of passing 

this item) of an examinee given his or her latent ability score(s) is dependent on his or her 

group membership (Flowers et al., 2002). Different from measurement invariance that 

requires no differences exist in item parameters or IRFs, DIF can be viewed as the 

differences in item parameters or IRFs, so it is a matter of degree rather than yes or no 

(Borsboom, 2006). Borsboom (2006) suggested that the influence of the bias (i.e., failure 

of measurement invariance) of a test on making correct statistical conclusions depends on 

the research scenarios. For example, measurement invariance is crucial when making 

inferences from the differences in observed scores across groups to their latent mean 

differences. However, if the size of bias is much smaller than the target effects (i.e., 

observed score differences), there would be not a concern with the bias. Thus, as 

recommended by Borsboom (2006), researchers should test DIF rather than just assume 

measurement invariance when comparing mean differences between groups.  

There are two types of DIF, uniform DIF and non-uniform DIF. Uniform DIF 

occurs when an item always favors one group regardless of the latent ability levels, whereas 

non-uniform DIF occurs when IRFs (or expected score functions) of different groups cross 

over at some point such that the probability of passing this item (or expected score of this 

item) is higher for one group for some latent ability levels and other groups at other latent 

ability levels. With respect to item parameters, discrimination parameters remain the same 
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(i.e., only difficulty or threshold parameters vary) across groups for the case of uniform 

DIF; discrimination parameters differ across groups for the case of non-uniform DIF 

(Flowers et al., 2002; Teresi, 2006). In comparison with uniform DIF, the power to detect 

non-uniform DIF is lower using some of the DIF detection procedure, and non-uniform 

DIF might have no impact on observed score differences because the item with non-

uniform DIF favors different groups depending on the latent ability levels (Tay, Meade & 

Cao, 2015). Although the influence of non-uniform DIF on observed score differences 

between groups might not be obvious, it is still a concern for individuals’ observed score 

interpretation across different groups.    

In addition to DIF, differential functioning also occurs at test level. If an examinee’s 

total expected score in a test given his or her latent ability scores is dependent on the group 

membership, it is said that this test shows differential functioning (Raju, van der Linden & 

Fleer, 1995). Borsboom (2006) pointed out that a test might be unbiased in the presence of 

DIF for multiple items because DIF of different items might be canceled out.  

Methods of Detecting DIF   

For multiple-group ordered-categorical data, measurement invariance can be 

explored under both IRT and CFA frameworks. Under the IRT framework, measurement 

invariance is usually tested by detecting differential functioning at item level (i.e., DIF). 

Before detecting DIF, the dimensionality issues (i.e., factor structure) need to be tested 

across groups (Tay et al., 2014). Also, model selection might be needed if researchers are 

uncertain which model best fit the data. Once the factor structure and the model form are 

supported as being the same across groups, the next step is to detect DIF. The most 

commonly applied method of detecting DIF derived from IRT models is likelihood ratio 
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test (the LR test; e.g., Kim & Yoon, 2011; Meade & Lautenschlager, 2004), which is also 

most closely related to CFA procedure involving comparisons among series of nested 

models. The LR test compares the likelihood values between the baseline model (𝑀0) and 

a more (or less) constrained model (𝑀1). Supposing that 𝑀1 is a more constrained model, 

a 𝐺2statistic can be obtained from the following formulas: 

                                                  LR = 
𝐿𝑀1

𝐿𝑀0

                                                              (19)   

                           𝐺2 = -2ln(LR) = -2ln(𝐿𝑀1
) + 2ln(𝐿𝑀0

)                                       (20) 

where LR denotes likelihood ratio, 𝐿𝑀1
 is the likelihood function of  𝑀1 and 𝐿𝑀0

 is the 

likelihood function of  𝑀0, which can be obtained using multiple-group MML estimation. 

𝐺2  statistic has an approximate 𝜒2  distribution with degree of freedom equal to the 

difference of parameters between 𝑀0  and 𝑀1  under the null hypothesis such that a 

significance test can be conducted for model comparisons. 

 When detecting DIF using LR tests, there are two approaches in selecting a baseline 

model: forward and backward procedures (Kim & Yoon, 2011). In the forward procedure, 

the baseline model is the least constrained model in which equality constraints are only 

placed on the anchor item(s) necessary for model identification. Then a more constrained 

model in which equality constraints are added on a studied item of the focal group is 

compared with the baseline model. In the backward procedure, the baseline model is the 

most constrained model in which equality constraints are placed on all items. Then a less 

constrained model in which equality constraints are relaxed for a studied item of the focal 

group is compared with the baseline model. The drawback of the forward procedure is that 

the selection of anchor variable(s) is somewhat arbitrary, while the backward procedure 

has the limitation that the baseline model is very likely to be a misspecified model in which 
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equality constraints are placed on noninvariant items (Kim & Yoon, 2011). In practice, the 

applications of LR tests are quite flexible. Researchers can combine ideas of both the 

forward procedure and the backward procedure. For example, researchers can use the 

model with equality constraints on several anchor items as the baseline model and then test 

DIF of a subset of items of interest. If the more constrained model significantly reduces the 

model fit, then equality constraints can be relaxed one by one to figure out the specific 

parameters with non-invariance (Millsap, 2011).  

 Take the unidimensional IRT model as an example. The most commonly applied 

identification method for multiple-group IRT models is to fix the mean of the latent ability 

distribution of the reference group as 0 and the variance of this distribution as 1 in addition 

to setting equality constraints on at least one anchor item. The mean and variance of the 

latent ability distribution for the focal group are freely estimated such that the latent mean 

difference can be estimated.  

 In addition to focusing on the differences in item parameters, DIF can be tested by 

comparing the expected score functions or IRFs across different groups using the 

differential item and test functioning (DFIT) framework (Morales, Flowers, Gutierrez, 

Kleinman, & Teresi, 2006).  

 The issues of DIF can be evaluated under the CFA framework as well. Some 

researchers applied traditional multiple-group CFA models for continuous data to explore 

factorial invariance of a test composing of ordered-categorical items (e.g., Flowers et al., 

2002; Meade & Lautenschlager, 2004). When applying traditional multiple-group CFA 

models, researchers need to initially test whether the variance-covariance matrices and 

mean vectors are the same across different groups. If the null hypothesis of no differences 
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is rejected, measurement invariance (i.e., invariance about the relationships between latent 

factors and observed measures), structural invariance (i.e., invariance of variances and 

covariances among latent variables), and latent mean differences can be tested using a 

series of nested models. Measurement invariance should be established before testing 

structural invariance and latent mean differences. The evaluation of measurement 

invariance includes tests of configural invariance (i.e., equivalent factor structures), metric 

invariance (i.e., equivalent factor loadings), strong invariance (i.e., equivalent loadings and 

intercepts), and strict invariance (i.e., equivalent loadings, intercepts and unique error 

variances) step by step. Researchers do not need to conduct all these tests, and the extent 

to which invariance is required depends on researchers’ needs. For example, if researchers 

are interested in latent mean differences, at least partial loading and intercept invariance 

should be achieved (Byrne, Shavelson, & Muthén, 1989). Like multiple-group IRT models, 

traditional multiple-group CFA models are usually identified by setting the latent means of 

the reference group as 0 and the corresponding variances as 1 in addition to placing equality 

constraints on the loading and intercept of at least one item per factor. There are three major 

drawbacks of applying traditional multiple-group CFA models for continuous data to 

explore measurement invariance for ordered-categorical items. First, traditional CFA 

models usually assume that the observed variables are continuous and normally distributed 

which is obviously violated for applications in tests composing ordered-categorical items. 

Second, the loadings in traditional CFA models can be considered as corresponding to the 

discrimination parameters of IRT models but no parameters of traditional CFA models 

correspond directly to the difficulty parameters of IRT models. Although the intercept 

parameters of CFA models are similar to item difficulty parameters of IRT models, they 
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still function differently. For example, there are more than one step difficulty parameters 

(or threshold parameters) for polytomous data in IRT models, but there is only one intercept 

parameter if the data are forced to fit with traditional multiple-group CFA models (Meade 

& Lautenschlager, 2004). Third, traditional CFA models describe linear relationships 

between observed variables and latent common factors, whereas IRT specifies a nonlinear 

function between the probability of examinees’ responses and latent ability scores. 

 Although traditional multiple-group CFA models for continuous data have 

limitations in exploring measurement invariance for ordered-categorical data due to their 

fundamental differences from IRT models, multiple-group categorical CFA models can be 

appropriately applied for detecting DIF because of their equivalence with 2PL models and 

GRMs (Kim & Yoon, 2011).  

 The identification methods of the least constrained multiple-group categorical CFA 

models (i.e., baseline models) were introduced in detail by Millsap and Yun-Tein (2004). 

Both the factor structure (i.e., no cross loadings vs. existence of cross loadings) and the 

item type (i.e., binary item vs. polytomous item) can influence the identification strategy 

for the baseline model of multiple-group categorical CFA models. Take the case in which 

each item loads on only one factor and the number of categories for each item is larger than 

2 as an example. One of the identification methods for the baseline model in this case is: 

(1) fix the means of factors in the reference group zero; (2) in each of the two groups, for 

each factor, select a reference variate  and fix its loading to 1; (3) fix the variance of each 

latent continuum underlying each observed ordered categorical variable to 1 in the 

reference group; (4) fix all of the intercepts to zero in both groups; (5) constrain each 

respective threshold of each latent response continuum (e.g., the first threshold) to be equal 
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across groups; and (6) for the reference variate of each factor, fix an additional threshold 

(e.g., the second threshold) to be equal across groups. Once the baseline model is 

established, the invariance for factor loadings and threshold parameters can be examined 

through a series of nested models. The WLSMV estimator can be used for multiple-group 

categorical CFA models, and the DIFFTEST option in Mplus can be applied for chi-square 

difference tests using WLSMV estimator (Asparouhov, Muthén, & Muthén, 2006)). 

DIFFTEST is implemented based on the T3 chi-square difference correction which is 

considered to perform better than previously proposed correction methods given its 

statistical properties are more similar to those for a χ2
 statistic. The DIFFTEST option has 

been available in Mplus since version 6, in which the model information of the two nested 

models is extracted to calculate the T3 statistic via a series of complicated formulas. Like 

in the traditional multiple-group CFA models and multiple-group IRT models, the freely 

estimated latent factor means of the focal group in multiple-group categorical CFA models 

reflect the latent mean differences that might be of interest.   

 In addition to these multiple-group methods, multiple samples can be combined 

into one dataset and the DIF can be directly estimated by modeling group membership as 

a variable together with the person ability variable (either the total scores or latent ability 

scores) to predict examinees’ responses using logistic regression or multiple-indicator-

multiple-causes (MIMIC) models.  

 Another type of DIF detection procedure is based on nonparametric models in 

which examinees’ performance of the reference group and the focal group are compared 

conditional on their abilities, and their abilities are obtained using observed scores rather 

than latent ability scores. Common nonparametric methods include the Mantel-Haenszel 
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𝜒2 method (M-H), standardization method of Dorans and Kulick (1986), and SIBTEST 

(Shealy & Stout, 1993).  

 The Application of Latent Mean Comparisons for Ordered-categorical Data  

  Latent mean comparisons become popular within the CFA framework (Schmitt & 

Kuljanin, 2008). Measurement invariance needs to be tested before conducting latent mean 

comparisons. As suggested by Byrne et al. (1989), one could estimate latent mean 

differences across groups if partial invariance regarding factor loadings and intercepts is 

achieved. However, there are no consistent opinions about the extent to which partial 

factorial invariance is allowed. Some researchers suggested that for each factor there 

should be at least one more indicator in addition to the referent indicator having invariant 

factor loadings and intercepts across groups to make latent mean comparison meaningful 

(e.g., Steenkamp & Baumgartner, 1998), whereas some argued that the majority of items 

should have invariant loadings and intercepts to avoid the arbitrariness of latent mean 

comparisons (e.g., Reise et al., 1993).  

 When the indicators are subscale scores which can be considered as being from a 

multivariate normal distribution (e.g., Hong, Malik, & Lee, 2003), it is appropriate to apply 

a traditional multiple-group CFA model to estimate latent mean differences. However, if 

the indicators are ordered-categorical items rather than subscale scores, it might be more 

appropriate to estimate latent mean differences based on IRT models or categorical CFA 

models. Although some researchers applied traditional multiple-group CFA models for 

these ordered-categorical indicators (e.g., Flowers et al., 2002; Meade & Lautenschlager, 

2004; Steenkamp & Baumgartner, 1998), it should be noted that violation of the 

multivariate normal distribution assumption of the indicators might result in unexpected 
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results in analysis. Given that ordered-categorical items are very common in psychological 

measures (e.g., measures using Likert-type scales), understanding methods for conducting 

latent mean comparisons based on IRT models or categorical CFA models is critical.  

 When conducting latent mean comparisons under IRT framework, LR tests are 

most commonly applied (e.g., Bolt, Hare, Vitale, & Newman, 2004; Jeon et al., 2011; Oishi, 

2006; Woods, Cai, & Wang, 2012). In addition, Wald tests, MIMIC and hierarchical IRT 

models can be also conducted for estimating latent mean differences based on IRT models 

(e.g., Woods et al., 2012; Finch, 2005; Jong et al., 2007).   In practice, observed score 

differences are commonly used for making inferences. In comparison with making 

inferences based on observed group mean differences, conducting latent mean comparisons 

based on IRT models offer the following two major advantages.  

First, when applying IRT models, items with larger discrimination parameters 

contribute more to the latent ability estimation such that in comparison with the summed 

total scores, the latent ability scores are more closely correspond to the true scores (Oishi, 

2006).  In other words, the latent mean difference reflects more pure true score difference.  

Second, the observed mean differences are the combination of latent mean 

differences and test level differential functioning. For example, in the study exploring the 

gender difference on a stress reaction measure (Smith & Reise, 1998), the observed gender 

differences in the stress reaction measure reflected both the latent mean difference in the 

negative affectivity factor and the gender differences in expressions of the negative 

affectivity. Given that the focus of the research is the mean differences in the target 

construct, making inferences based on observed score differences would produce 

confounding effects. In contrast, latent mean comparisons are conducted based on invariant 
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items which can avoid such confounding effects. It should be noted that the summation of 

items that might show DIF does not necessarily lead to biased observed differences because 

DIF of different items might cancel out each other. In the above example, some of the items 

might be easier for women to endorse whereas some might be easier for men to endorse, 

and thus, as suggested by Borsboom (2006), blind removal of items with severe DIF might 

induce more bias at the test level.    

 As mentioned earlier, measurement invariance needs to be tested before conducting 

latent mean comparisons using multiple-group CFA models. Similarly, when conducting 

latent mean comparisons based on multiple-group IRT models, DIF needs to be detected 

first for item parameters (e.g., Bolt et al., 2004; Oishi, 2006). In practice, the DIF of the 

item parameters are probably due to the following reasons: (1) examinees’ understanding 

of the concepts might not be identical across groups; (2) the translation of the measure 

might be improper; (3) the examinees in some groups might avoid extreme responses; (4) 

social desirability or social norms might differ across groups; (5) some of the items might 

be more easier for a given group than for other groups; (6) examinees’ of different groups 

might have different reference points when describing themselves (Chen, 2008). From a 

measurement standpoint, the presence of DIF might be due to group differences in the 

unmodeled common factor(s) or systematic errors (Meredith & Teresi, 2006).  

Additionally, as when conducting latent mean comparisons within the multiple-

group CFA framework, latent mean differences can be estimated based on partial invariant 

item parameters of the multiple-group IRT model (e.g., Bolt et al., 2004; Oishi, 2006). For 

example, in the study of Oishi (2006), the mean difference in the Satisfaction with Life 

Scale (SWLS) was estimated between American and Chinese samples. In their study based 
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on a multiple-group unidimensional model, only 1 item was shown to be invariant across 

groups after conducting a series of LR tests and the latent mean comparison was conducted 

with only this invariant item constrained to be equal across groups. Oishi (2006) suggested 

that more invariant items are needed to obtain a truly unbiased estimate of the latent mean 

difference although one could get a solution of the latent mean difference using only one 

anchor item of the latent factor.    

Factors Influencing DIF Detection and Latent Mean Comparisons 

 In this section, I illustrate the factors that influence DIF detection and latent mean 

comparisons based on the findings of a variety of simulation studies.  

 There are two types of factors that influence the detection of DIF, those regarding 

the data generation process (e.g., sample size, effect size of DIF, item parameters, person 

parameters, etc.), and those regarding the data analysis process (e.g., DIF detection 

methods, data analysis model). In addition to the main effect of each factor on the DIF 

detection procedure, the joint effect of several factors on how well DIF can be detected are 

also of interest to researchers. The outcomes that are focused on are usually the Type I 

error rate and power in detecting DIF.  

Factors Influencing Type I Error Rates for DIF Detection 

Acceptable Type I error rates are the prerequisite for making inferences regarding 

empirical powers. As shown in Table 1A, the data generation factors influencing Type I 

error rates are the sample size, the data generation model, the percentage of DIF, the pattern 

of DIF across items, and the distributions of person parameters; the data analysis factors 

influencing Type I error rates are the model selected for DIF detection (e.g., whether or not 

misspecified) and the methods used for DIF detection (e.g., nonparametric vs. parametric 



42 
 

methods, forward approach vs. backward approach, and whether or not using Bonferroni 

corrections).  

 In the study of Cohen, Kim & Wollack (1996), the datasets were generated using 

either the 2PL model or the 3PL model, and no DIF was generated for the items. When 

analyzing the data, the datasets generated using the 2PL model were correctly specified, 

and the datasets generated using the 3PL model were either correctly specified or 

misspecified by fixing the pseudo-guessing parameter to the average value of the pseudo-

guessing parameters of all the items. The DIF was tested for each item sequentially using 

other items as anchor items, and the proportion of significant LR test results across all the 

replications across all the items for each research condition reflected the Type I error rate 

for this condition. Their results indicated that the Type I error rates were close to the 

nominal alpha level for the 2PL model conditions, and the Type I error rates were a little 

higher for the 3PL model conditions, especially when the nominal alpha level was at .0005 

to .005. Also, it indicated that sample size did not influence Type I error rates obviously in 

their research scenario.   

 Bolt’s study (2002) showed that slight misspecification of the model would lead to 

large inflation of Type I error rates when applying LR tests to detect DIF for the items 

analyzed using graded response models (GRMs), and the Type I error inflation was 

especially severe when the sample size was large (i.e., 1000 in each group). It also indicated 

that there were much less Type I error rate inflation due to model misspecification if using 

DFIT for DIF detection, and that the Poly-SIBTEST (a nonparametric estimation method;  

Chang, Mazzeo, & Roussos, 1996) seemed to be unaffected by the generating models in 

terms of Type I error rates. Thus, as suggested by Bolt (2002), when the sample size is 
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large, researchers should be cautious about use of LR tests to detect DIF for items of the 

GRM when they are uncertain if the GRM properly represents the construct.    

 Type I error rates are also influenced by the distributions of person parameters. In 

the study of Ankenmann, Witt, & Dunbar (1999), both LR tests and the Mantel procedure 

(a nonparametric estimation method) showed good control over Type I error rates when 

the distributions of ability parameters were identical across groups. However, when the 

latent mean difference between the reference group and the focal group was nonzero, LR 

tests still maintained acceptable control over Type I error rates whereas the Mantel 

procedure lacked control over Type I error rates.   

 When detecting DIF using LR tests based on multiple-group IRT models or 

traditional multiple-group CFA models, the strategy in setting up baseline models (forward 

approach vs. backward approach) have a great influence on Type I error rates (e.g., Stark, 

Chernyshenko, & Drasgow, 2006). As found by Stark et al. (2006), when using the 

constrained-baseline model (backward approach), both LR tests under IRT models and chi-

square difference tests under CFA models showed substantial Type I error inflation unless 

no DIF existed in the fully constrained model, and the Type I error inflation could be 

reduced by applying a Bonferroni-corrected critical p value. As suggested by Wang and 

Yeh (2003), when conducting LR tests using all other items as anchor (constrained-baseline 

model), Type I error inflation occurred when the percentage of items with DIF reached 12% 

under the 3PL model and 20% under the 2PL model and the GRM for the conditions in 

which all the items with DIF favored one group (one-side conditions), whereas for the 

conditions in which some of the items favored the reference group while some favored the 

focal group (both-side conditions), the performance of the constrained baseline model in 
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controlling over Type I error rates was determined by average signed area (i.e., the average 

difference between IRFs of each item). The larger the average signed area was, the more 

severe Type I error inflation produced by using constrained baseline model was for both-

side conditions.      

Factors Influencing Power for DIF Detection 

Once acceptable Type I error rates are achieved, researchers can appropriately 

interpret power in simulation studies. As shown in Table 2A, the data generation factors 

that influence the power in detecting DIF include sample size, the ratio of sample size in 

the reference group to the focal group, the effect size and pattern of DIF, the magnitude of 

item parameters, the item type (binary vs. polytomous), and the distributions of person 

parameters; the data analysis factors that influence the power in detecting DIF include the 

model selected for DIF detection and the methods to detect DIF (e.g., nonparametric vs. 

parametric methods, IRT-based methods vs. CFA-based methods, forward approach vs. 

backward approach, the number of anchor items, and whether or not using Bonferroni 

corrections).  

 As expected, many studies based on different DIF detection methods have shown 

that the power in detecting DIF increases as the sample size increases (e.g., Ankenmann et 

al., 1999; Kim & Cohen, 1992; Raju, Drasgow, & Slinde, 1993). Generally, large sample 

size is required to obtain accurate item parameters for IRT models. To recover item 

parameters with little bias for a 2PL model, the sample size of 500 is usually required for 

a test with less than 40 items (e.g., Reise & Yu, 1990; Stone, 1992) although this 

requirement was not satisfied in some of the simulation and real data research. For a 3PL 

model, more examinees are needed to obtain accurate estimation of item parameters. The 
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study of Ankenmann et al. (1999) suggested that LR tests lacked power in detecting DIF 

when the sample size was as small as 500 in each group.         

            In addition to total sample size, the ratio of sample size between the reference group 

and the focal group also influences the power in detecting DIF. The results of Sweeney’s 

study (1996) indicated that for a given total sample size, the power to detect DIF was higher 

for equal sample size conditions than the conditions with much fewer examinees in the 

focal group.  

             It can be also expected that effect size of the DIF would influence the power to 

detect it. Previous studies have consistently indicated that the items with larger effect size 

of DIF were more easily detected as showing DIF (e.g. Narayanan & Swaminathan, 1996; 

Sweeney, 1996). As suggested by Borsboom (2006), the ratio of effect size of DIF to the 

latent mean difference of the person ability scores is crucial in judging whether such DIF 

should be paid attention to.   

 The power in detecting DIF is not only affected by the effect size of the DIF but 

also affected by the pattern of the DIF. In the study of Ankenmann et al. (1999), 

noninvariant threshold parameters for GRMs were simulated. In the constant DIF pattern, 

a value was added to each of the threshold parameter of the noninvariant item in the 

reference group to obtain the threshold parameters of this item in the focal group, which 

corresponds to the practical condition where an item is more difficult for the focal group 

than the reference group. In the balanced DIF pattern, to obtain the threshold parameters 

of the noninvariant item in the focal group, a value was added to the lowest threshold 

parameter of the noninvariant item in the reference group while the same value was 

subtracted from the highest threshold parameter of this noninvariant item in the reference 
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group, which corresponds to the practical condition where examinees in the focal group 

tend to avoid extreme responses. Ankenmann et al. (1999) found that the Mantel procedure 

(a nonparametric estimation method) showed greater power than LR tests for the constant 

DIF pattern conditions when the person ability distributions were identical across groups. 

However, for the balanced DIF pattern conditions, LR tests showed much higher power 

than Mantel procedure. 

As suggested by Bolt’s study (2002), in comparison with the nonparametric DIF 

detection method (i.e., Poly-SIBTEST), parametric DIF detection methods such as LR tests 

and DFIT showed greater power in detecting DIF for the items of GRMs when the model 

was correctly specified, and this advantage was especially obvious for the small sample 

size conditions (i.e., 300 for each group). Also, when the sample size was small (i.e., 300 

in each group), these parametric methods also showed acceptable Type I error rates even 

under conditions of slight model misspecification. Thus, it was concluded that the 

parametric methods are preferable for DIF detection when the sample size is small.              

Sweeney (1996) found that the magnitude of item parameters influenced the power 

to detect DIF for them, which means that for the same amount of DIF, it might be detected 

in one item but not in another item. Sweeney (1996) explored the joint effects of the ratio 

of reference group sample size to the focal group sample size, effect size of the DIF, the 

magnitude of item parameters and the person ability distributions on the power to detect 

DIF using LR tests and concluded that the power to detect DIF depended on the following 

two joint factors: (1) the differences between the IRFs for the reference group and the IRFs 

for the focal group; (2) the number of focal group examinees located on the latent ability 

continuum where the IRFs differ across groups. For example, if an item is too easy or too 
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difficult relative to examinees’ abilities, the difference of IRFs between the reference group 

and the focal group would be almost zero over most of the ability range such that the DIF 

in difficulty parameters would be difficult to be detected.  

In comparison with the traditional multiple-group CFA models, although IRT based 

methods do not have the problems of violations of normality and continuity, they require 

larger sample sizes than CFA models to achieve a given degree of accuracy in locating the 

items with DIF. Based on the results of Stark et al. (2006), it was recommended to apply 

traditional multiple-group CFA models for detecting items with DIF when the sample size 

is small and the items are polytomous. Also, Stark et al. (2006) pointed out that the free-

baseline models (forward approach) performed better than the constrained-baseline models 

(backward approach) for both LR tests under IRT models and chi-squire difference tests 

under CFA models. In addition, although Bonferroni corrections were helpful in reducing 

Type I error inflations for the backward approach, they were not recommended for small 

samples because they would reduce power as well due to their strict criterion in obtaining 

significant results.    

Although the constrained-baseline model leads to substantial Type I error inflation, 

using some of the items as anchor usually yields good control over Type I error rates (Wang 

& Yeh, 2003). In Wang and Yeh’s study (2003), they simulated 25 items. They pointed out 

that using 1 anchor item could appropriately control over the Type I error rate while 

showing acceptable power of detecting DIF, and that using 4 or 10 anchor items would 

lead to higher power.  Thus, researchers can select a baseline model that is more 

constrained than free-baseline model but less constrained than the constrained baseline 

model. As suggested by Wang and Yeh (2003), anchor items can be selected based on 
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related theories (or experts’ opinions) and preliminary analyses. The LR tests using all 

other items as anchor is one of the commonly applied methods to locate anchor items.  

Simulation Studies for Multiple-group Bifactor Models 

To the best of my knowledge, only three simulation studies have focused on DIF 

detection under bifactor IRT models. Two of these three studies (e.g., Cai, Yang, & Hansen, 

2011; Jeon, Rijmen, & Rabe-Hesketh, 2013) were conducted using extended methods of 

full-information marginal maximum likelihood estimator with dimension reduction 

technique (Gibbons & Hedeker, 1992), and the other one (Fukuhara & Kamata, 2011) was 

conducted using a fully Bayesian estimation method.  

Jeon et al. (2013) allowed the orthogonality assumption to be violated in the focal 

group, and they found that ignoring between-group differences in the relationship among 

latent variables resulted in substantial bias in DIF estimates. Cai et al. (2011) worked on 

an extended multiple-group, bifactor IRT model in which the model can be very flexible. 

They conducted two simulation studies. In the first study, the examinees in Group 2 did 

not take items related to one of the specific factors in Group 1, which corresponded to the 

realistic condition where existing group specific subdomain(s). In the second study, the 

generated data for both groups consisted of multiple types of items (i.e., multiple-choice 

items, constructed response items, complex multiple-choice items), which corresponded to 

realistic educational tests. Cai el al.’s simulation study (2011) was conducted to illustrate 

the efficiency of the proposed estimation method. In their study, the data analysis model 

was consistent with data generation model, and they were interested in the recovery of 

parameters including latent mean differences.  
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Fukuhara and Kamata (2011) generated testlet-based data with DIF in difficulty 

parameters and analyzed data using both a bifactor IRT model and a unidimensional IRT 

model. Their results indicated that the bifactor model could produce better DIF detection 

and more accurate estimates for DIF magnitude in comparison with the unidimensional 

model which ignored the local dependency resulting from the testlets.           

Simulation Studies for Latent Mean Comparisons 

 Although person ability distributions were usually generated to be different in 

previous simulation studies exploring the DIF issues, in most of the studies, the latent mean 

difference was treated as a factor that might have an impact on DIF detection procedure 

rather than the outcome (e.g., Stark et al., 2006). 

 In some of the simulation studies about multiple-group IRT models, the estimation 

of accuracy for the latent mean difference was focused on (e.g., Kim & Cohen, 1998; 

Woods et al., 2012). In these studies, latent mean differences were estimated based on 

anchor items generated to be invariant, and no estimation bias for the latent mean 

differences was found. One possible explanation was that there would be no bias as long 

as there was no misspecification.  

 Similar results were also found in some CFA-based simulation studies. Yang (2008) 

systematically explored the influence of partial loading invariance and partial intercept 

invariance as well as some other important factors on latent mean comparisons under CFA 

framework. In this study, all models were correctly specified, and the results indicated that 

the power of detecting latent mean differences was higher for the complete invariant model 

than the model with noninvariant components and, further, that the power was not 

influenced by the degree of noninvariance. For all research conditions, there was no 
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obvious estimation bias, which might be due to the same reason that all the models were 

correctly specified.  

 Hancock, Lawrence, and Nevitt (2000) explored the impact of misspecification of 

the model by setting equality constraints to noninvariant loadings on latent mean 

comparisons based on multiple-group CFA models. They also varied sample size, between-

group sample size ratio, the pattern of sample size, and population generalized variance. 

They found that the power to detect the latent mean difference was lower when the model 

was misspecified by ignoring the noninvariance in comparison with the corresponding 

correctly specified model. It also indicated that in most of the cases, larger disparity 

between sample sizes for the groups was associated with decreased power to detect the 

latent mean difference. Additionally, in comparison with the conditions in which the group 

with larger sample size was associated with smaller population generalized variance, the 

power to detect the latent mean difference was lower for the conditions in which the group 

with the larger sample size was associated with larger population generalized variance.  

 Beuckelaer and Swinnen (2018) generated a two-group single-factor CFA model 

with 3 or 4 indicators, with the second indicator having noninvariant loading or intercept 

in some research conditions, and then the latent mean difference was estimated based on 

the traditional multiple-group CFA model assuming strong invariance was achieved. They 

also manipulated the type of distribution of the items (normal distribution, discrete 5-point 

scales with either a unimodal left-skewed distribution or a symmetric bimodal distribution), 

sample size in each of the group, effect size of latent mean difference, and noninvariance 

of factor loadings or indicator intercepts. Their results indicated that ignoring 

noninvariance may have a very strong influence on the percentage of correct statistical 
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conclusions of the latent mean difference tests. The probability of drawing correct 

statistical conclusions of the latent mean difference tests was strongly reduced due to 

ignoring the difference in the noninvariant indicator intercept of about one-tenth or even 

smaller of the total length of the scale. Also, ignoring the difference of 0.2 in the factor 

loading also reduced the percentage of correct conclusions of the latent mean difference 

tests. In their study, sample size and the distribution of the indicators did not influence the 

percentage of correct conclusions regarding the latent mean difference tests.        

 Jones and Gallo (2002) detected DIF and estimated the latent mean difference of 

Mini-Mental State Examination responses across different groups (i.e., high-education 

group vs. low-education group; male vs. female) using MIMIC for dichotomous items, and 

they also examined the effect of ignoring DIF on latent mean difference estimates by 

purposely fixing the direct effects of group membership on the response variates to zero.  

The MIMIC for dichotomous items approximates to 2PL IRT models with discrimination 

parameters assumed to be equal across groups. The direct effects of group membership on 

the response variates reflect the differences in threshold parameters (or difficulty 

parameters) across groups. In their study, there were 31 items in total, 10 of them showed 

DIF between high-and low-education groups while 16 of them showed DIF between male 

and female. They found that ignoring DIF resulted in 1.6% overestimation of the latent 

mean difference between high- and low-education group, and 95% overestimation of the 

latent mean difference between male and female. 

The Purpose of the Current Study 

  Bifactor models have gained increasing popularity in recent years because they 

often serve as the most appropriate representations for relatively broader psychological 
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constructs containing multiple narrower aspects and testlet-based cognitive tests including 

items based on common stimulus. When researchers are interested in comparing such 

complex psychological constructs or testlet-based cognitive tests among multiple 

populations, they need to rely on multiple-group bifactor models. From a methodological 

standpoint, however, only a few studies have focused on multiple-group bifactor models, 

and to the best of my knowledge, all of these studies involved the factors that influenced 

DIF detection of the item parameters (e.g., Cai et al., 2011; Fukuhara & Kamata, 2011; 

Jeon et al., 2011). Given that researchers are usually very interested in the primary trait 

represented by the general factor when applying bifactor models and they might be also 

interested in comparing latent means of the primary trait among multiple populations, the 

main purpose of the current study is to systematically explore the factors that influence the 

latent mean comparisons of the general factor for bifactor ordered-categorical data.   

Bifactor models have been widely applied for the purpose of exploring 

dimensionality issues in single-group analysis. With bifactor models, the degree of 

unidimensionality can be estimated such that researchers can have more information 

regarding the consequence of violation of local independence assumption. Although 

multiple methods are employed in determining unidimenisionality in practice, the criterion 

is somewhat arbitrary. Also, unidimensional models might be preferred to 

multidimensional models in some cases for the purpose of theoretical simplicity. Thus, the 

first specific aim of the current study is to explore the impact of fitting the bifactor ordered-

categorical data using unidimensional models on the latent mean comparison for the 

general factor.    
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 In real data analysis, most of multiple-group comparisons using bifactor models are 

based on traditional CFA models. On one hand, for the items with only a few categories, 

the applications of traditional CFA models might not be appropriate because of violation 

of normality and continuity assumptions.  On the other hand, as pointed out by Stark et al. 

(2006), traditional CFA models might be preferred to IRT models for polytomous data 

when the sample size is small because IRT models in which more parameters need to be 

estimated require larger sample size than the corresponding traditional CFA models to 

achieve certain degree of estimation accuracy. Thus, the second aim of the current study is 

to explore the impact of treating ordered-categorical data as continuous data under varied 

conditions in bifactor model framework.    

 Although complete measurement invariance is ideal for latent mean comparisons, 

it is hard to achieve in application. In most cases, latent mean comparisons are conducted 

under partial measurement invariance obtained from stepwise selection of noninvariant 

parameters. The post hoc adjustments on multiple-group models have been criticized by 

many researchers (e.g., Marsh et al., 2018), and previous simulation study results also 

suggested that the noninvariant parameters can never be perfectly recovered under 

traditional multiple-group analysis based on such post hoc manner unless the effect size of 

the DIF or the sample size was very large. Although an alternative method named 

alignment method (Asparouhov & Muthén, 2013) has been proposed recently to avoid the 

problems of the commonly applied post hoc selection of noninvariant parameters, it cannot 

be implemented for bifactor model cases because this new method only applies to the 

model in which each indicator loads on only one factor. Thus, in order to better interpret 

the latent mean difference of the general factor of a bifactor model, it is necessary to 
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consider the possibility of failing to account for DIF. Accordingly, the third specific aim 

of this study is to explore the impact of failing to account for DIF in different parameters 

on the latent mean comparison of the general factor for the generated multiple-group, 

bifactor, ordered-categorical data.            
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Chapter 2: Methods 

Overview 

Monte Carlo simulation methods were applied in the current study to explore the 

robustness of latent mean comparisons for the general factor of the generated bifactor, 

ordered-categorical data to varied research conditions. Although the IRT framework 

provides complete features in terms of person parameters and item parameters when latent 

ability is measured by ordered-categorical variables, the commonly applied IRT models 

(i.e., 2PL model or GRM) are equivalent to categorical CFA models and they can be 

estimated with categorical variable methodology in the CFA framework. In the current 

research scenario, the focal variable was the latent mean difference rather than each 

person’s parameter estimate and no pseudo-guessing parameter was assumed, so 

theoretically speaking, both IRT models and categorical CFA models can be used to fit the 

data equivalently. Given that no simulation studies have focused on multiple-group, 

bifactor, categorical CFA, and for some researchers, SEM software (e.g., Mplus) might be 

relatively more easily accessible, it was chosen as the estimation method in the current 

study.  

The representative model is a bifactor categorical CFA model, which is equivalent 

with a bifactor GRM within the IRT framework. A set of specific research conditions, 

including varying population characteristics, sample characteristics, item characteristics 

and data analysis strategies, were designed to address the research questions. For each 

research condition, 1000 entire response datasets were generated using R based on 

multiple-group bifactor GRMs.  For some conditions, the data analysis model was different 

from the data generation model to study effects of model misspecification in terms of fitting 
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bifactor data using a unidimensional model, treating ordered-categorical data as continuous 

data, and setting equality constraints to the noninvariant item parameters. Mplus 7 was 

used for data analysis, which was implemented with MplusAutomation package in R. Using 

MplusAutomation package, the results obtained from fitting the data analysis model to each 

sample included overall model fit and parameter estimates. The results from all converged 

replications within a condition were summarized descriptively, including estimation bias 

(E (𝜃) – θ), relative estimation bias ((E (𝜃) – θ) / θ), power (or Type I error rate), estimated 

variance, mean of the comparative fit index (CFI), mean of the standardized root mean 

square residual (SRMR), mean of the weighted root mean square residual (WRMR), and 

mean of the root mean square error of approximation (RMSEA).  Details regarding the 

representative model, research conditions, the procedures for data generation and analysis, 

and the statistical outcomes of interest are illustrated in this section.  

Representative Model 

The representative model was a bifactor categorical confirmatory factor analysis 

model involving both mean and covariance structures, as shown in Figure 1, which is 

equivalent with the bifactor GRM within the IRT framework. For all conditions in this 

study, two populations were specified and the model was configurally invariant across 

these populations. As shown in Figure 1, a general factor was hypothesized to explain 

common variance among all 12 items, and each item loaded on one of the three specific 

factors. The general factor and all specific factors were orthogonal with each other.  

For both populations, the variance of the general factor was set to 1 when generating 

the data, such that the generated latent mean difference can be considered as a standardized 

effect size. To obtain standardized interpretations of other parameters, the variances for all 
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specific factors were set to 1, all loadings were specified as completely standardized factor 

loadings, and the unit variance of each continuous latent variate underlying the 

corresponding ordered-categorical item was obtained through setting appropriate residual 

variance.  To be specific, the residual of each continuous latent variate was set to one minus 

the sum of its variance explained by the general factor (e.g., for item 1, it is 𝜆𝐺𝐸𝑁1,1
∗2 ) and 

its variance explained by the corresponding specific factor (e.g., for item 1, it is 𝜆𝐺𝑅1,1
∗2 ).  

 

Figure 1 The Representative Model 

 

In analysis, factors were scaled by setting the means of all latent factors to 0 and 

the variances of all latent factors to 1 in the reference group, and setting equality constraints 

for at least one factor loading for each latent factor. For bifactor models, to identify the 

variance-covariance matrix and mean vector among the continuous latent variates 

underlying the polytomous ordered-categorical items (𝑋1
∗ − 𝑋12

∗ ) it was required to set the 

variances of the continuous latent variates to 1 in the reference group, and to constrain at 
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least two of the threshold parameters for each measured variable to be invariant across 

groups (Millsap & Yun-Tein, 2004); for binary data, in addition to setting the equality 

constraint on the only threshold parameter for each measured variable, the variances of the 

continuous latent variates were required to be set to 1 in both groups.  Given that the 

threshold parameters and intercept parameters are indeterminate, the intercepts for both 

groups were set to 0. To minimize potential confounding effects on estimation bias of the 

latent mean difference in the general factor produced due to identification constraints, 

factor means were generated to be 0 in the reference group, variances of all latent factors 

and continuous latent variates were generated to be 1 as mentioned above, and all intercepts 

were generated to be 0 in both groups. For the threshold parameters on which equality 

constraints were applied for identification purposes, these might not be generated to be 

invariant across groups in some research conditions. For these conditions, it was not 

possible to specify the analysis models to be fully consistent with the corresponding 

generation models due to the needs of model identifications.         

Although in realistic situations, anchor items may be chosen arbitrarily, in the 

current simulation study, it was assumed that the chosen anchor items were generated to 

have invariant item parameters across groups such that the estimation bias would be 

unrelated with the choice of anchor items. In the current study, the first three measured 

variables for each specific factor served as the anchor items and they were generated to 

have invariant general factor loadings, specific factor loadings, and threshold parameters 

across groups. When analyzing the data, all the item parameters for these anchor items 

were constrained to be equal across groups. The last measurement variable for each specific 

factor may have noninvariance in the general factor loading, specific factor loading, or 
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threshold parameters. When analyzing the data, the factor loadings and threshold 

parameters for these items were either freely estimated or constrained to be equal across 

groups depending on the identification requirement and research conditions.  

The generated datasets were all bifactor, ordered-categorical data with either 2, 3, 

or 5 categories per item, and the number of categories for each item remained the same 

across all items and groups for each condition. The values of the parameters fell in a similar 

range as those from previous simulation studies and applied research involving multiple-

group, bi-factor IRT models (e.g., Berkeljon, 2012; Cai et al., 2011; Fukuhara & Kamata, 

2011). For all conditions, the threshold parameters (𝜏𝑗) of the reference group were set to 

0 for all the items in the binary data case, they were set to -0.5 and 0.5 for all the items in 

the 3 categories per item case, and they were set to -0.9, -0.3, 0.3, and 0.9 for all the items 

in the 5 categories per item case. The general factor loadings of the reference group were 

set to 0.7 for all items in all conditions. The specific factor loadings of the reference group 

were generated to be identical across all items, but their magnitudes varied across different 

research conditions. In the focal group, the anchor items were generated to have the same 

general factor loadings, specific factor loadings, and threshold parameters as the reference 

group. For items with noninvariant factor loadings, the sizes of the DIF were -0.05, -0.10, 

and -0.15. For items with noninvariant threshold parameters, a constant value (i.e., 0.05, 

0.10 or 0.15) was added to each of the threshold parameters, such that the noninvariant 

item consistently favored one group over the other. The latent mean difference of the 

general factor varied across research conditions. The latent mean differences of the specific 

factors were set to -0.1, 0, and 0.1 for the three specific factors, respectively, which 

corresponds to a realistic situation in which the focal group members and reference group 
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members show strengths in different specific dimensions beyond the influence of the 

general dimension; these values remained the same across all the research conditions.  

Research Conditions 

The main factors manipulated in the current study may be distinguished by those 

manipulated within the data generation phase and those varied within the analysis model. 

For the generated multiple-group bifactor IRT models without DIF, the data generation 

conditions varied were sample size, the number of categories per item, effect size of latent 

mean difference for the general factor, and the size of specific factor loadings; in the data 

analysis conditions, model misspecification conditions were introduced in which the 

generated bifactor data were fit using a unidimensional model, and/or ordered-categorical 

data were treated as continuous data. For the generated multiple-group bifactor IRT models 

with DIF, the data generation conditions varied were sample size, the number of categories 

per item, effect size of latent mean difference for the general factor, the type of item 

parameters (the general factor loadings, the specific factor loadings, or the threshold 

parameters) that had DIF, and the magnitude of DIF; the data analysis conditions varied in 

whether or not setting equality constraints on the noninvariant item parameters. The total 

number of specific research conditions was 408. The specific design parameters are 

described below and are summarized in Tables 1 and 2.   

Research Conditions for the Generated Multiple-group Bifactor IRT Models without 

DIF 

 In the following research conditions (shown in Table 1), all items were generated 

to have invariant item parameters across groups, and they were constrained to be equal in 

analysis. The data generation conditions included sample size, the number of categories 
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per item, size of latent mean difference for the general factor and size of specific factor 

loadings. The data analysis conditions included the types of analysis models and estimation 

methods. The specific conditions were described below.  

Table 1 

Manipulated Factors for the Generated Multiple-group Bifactor Models without DIF 

Factors Design Parameters 

Total sample size 600 or 1200 

  

The number of categories per item 2, 3, or 5 

  

Size of latent mean difference for the 

general factor 
0, -0.1, or -0.2 

  

Size of specific factor loadings 0.3 or 0.5 

  

The types of analysis models 
Unidimensional models or bifactor 

models 

  

Estimation methods 

Traditional CFA models with MLR 

estimator or categorical CFA models with 

WLSMV estimator 

Note: Traditional CFA models with MLR estimator was not applied for the conditions 

with binary data.  

 

Sample size. Sample size is an important factor that influences the power to detect 

the latent mean difference of the general factor. Also, previous research (Stark et al., 2006) 

suggested that for ordered-categorical data with small sample size, traditional CFA might 

be preferred because the sample size requirement is very high for IRT models. In the 

current study, total sample size was varied to include 600 or 1200 cases. These sample 

sizes were chosen to avoid floor effects or ceiling effects regarding power, based on 

research conditions examined in preliminary analyses for which the difference between 

them was meaningful. Sample sizes were equal between the two groups.  
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The number of categories per item. In addition to sample size, the number of 

categories for each item also determines whether it is appropriate to specify a traditional 

CFA model for the ordered-categorical data. As the number of categories increases (i.e., 5 

categories or more), in comparison with IRT models, it might be more appropriate to treat 

the ordered-categorical data as continuous and apply CFA models because fewer 

parameters need to be estimated in a CFA model for continuous data (e.g., Stark et al., 

2006). In the current study, to examine the joint impact of the number of categories and the 

choice of estimation methods, the number of categories was set to 3 or 5 for each item, 

with the number of categories being the same across all items and groups for each condition. 

Given the popularity of dichotomous data, binary datasets were also generated, and they 

were only analyzed using categorical CFA models.      

Size of latent mean difference for the general factor. The latent mean difference 

of the general factor was 0, -0.1, or -0.20. These values were chosen based on preliminary 

analysis to avoid floor or ceiling effects regarding power.  When generating data, the 

variance of the general factor was set to 1 for both groups, so the corresponding latent mean 

difference can be considered as the standardized effect size. An effect size of 0 is consistent 

with the null hypothesis of no between-population differences in latent means; rejection of 

the null hypothesis in this case is a Type I error.  

Size of specific factor loadings. As suggested by Reise (2012), the explained 

common variance among all items due to the general factor (ECV) can be used to indicate 

the degree of unidimensionality of a given dataset. In the current study, the general factor 

loadings of the reference group were set to 0.7 for all conditions, which is a typical value 

according to previous studies (e.g., Reise, 2012), so the varied size of specific factor 
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loadings reflected different degrees of unidimensionality of the data. The specific factor 

loadings of the reference group were generated to be identical across all items, and they 

were set to 0.3 and 0.5, respectively. The conditions with specific loadings of 0.3 

corresponded to the situation containing less multidimensional data in which the specific 

factors have relatively small unique contribution to examinees’ performance after 

controlling for the general factor and there might be no need to report subscale scores. 

When the specific factor loadings were 0.5, it corresponded to the situation containing more 

multidimensional data in which examinees’ strengths and weaknesses on the subscales 

beyond the influence of the general factor was substantial.   

The type of analysis models. The ordered-categorical data were generated to have 

bifactor structure. In applied data analysis, multiple-group IRT models might be conducted 

based on the unidimensionality assumption without testing dimensionality, as there is not 

an absolute criterion to judge unidimensionality (Tay et al., 2014). Thus, in the current 

study, the generated bifactor ordered-categorical data was fitted with either bifactor models 

or unidimensional models to explore the impact of misspecification of the model structure 

on the latent mean comparison of the general factor in a bifactor model.  

Estimation methods. Stark et al. (2006) suggested that polytomous data (i.e., 5- or 

more scale points) can be analyzed as continuous data using CFA models with ML 

estimator when the sample size was small (i.e., 1,000 or less), given that the number of 

estimated parameters is relatively small for CFA models  for continuous data in comparison 

with IRT models. Thus, in the current study, the generated bifactor, ordered-categorical 

data with 3 or 5 categories and no DIF were analyzed using either categorical CFA models 

with the WLSMV estimator or CFA models in which ordered-categorical data were treated 
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as continuous. Given that ML parameter estimates with standard errors and a chi-square 

statistic that are robust to non-normality can be obtained via robust maximum likelihood 

(MLR) estimator, the MLR estimator was chosen as the estimator for CFA analysis in 

which ordered-categorical data were treated as continuous.   

Research Conditions for the Generated Multiple-group Bifactor IRT Models with 

DIF 

 In the following research conditions (shown in Table 2), the specific factor loadings 

in the reference group were set as 0.5. When analyzing the data, the data were fit with 

bifactor models using categorical CFA models with WLSMV estimator. The data 

generation conditions included the sample size (300 or 600), the number of categories per 

item (2, 3, or 5), latent mean difference of the general factor (0, -0.1, or -0.2), the type of 

item parameters with DIF, and the magnitude of DIF. The data analysis model varied 

according to whether noninvariant item parameters were constrained to be equal. The 

specific conditions unique to the generated multiple-group bifactor IRT models with DIF 

are described below.  

The type of item parameters with DIF. In the current study, the types of item 

parameters that might have DIF included the general factor loadings, the specific factor 

loadings, and the threshold parameters.  For each of the research condition in which DIF 

was generated, only one of these three types of item parameters had DIF, such that the 

impact of types of item parameters having DIF on the latent mean comparison of the 

general factor can be examined.  

The magnitude of DIF. For all research conditions, only the last measured variable 

of each specific factor had DIF, so only three measurement variables (𝑋4
∗, 𝑋8

∗ and 𝑋12
∗ ) had 
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DIF. The sizes of DIF for the factor loadings were -0.05, -0.1, or -0.15. To be specific, in 

the research conditions in which the general factor loadings had DIF, the general factor 

loadings were 0.65, 0.60, or 0.55 for these three measured variables in the focal group; in 

the research conditions in which the specific factor loadings had DIF, the specific factor 

loadings were 0.45, 0.40, or 0.35 for these three measured variables in the focal group. The 

size of the DIF for the threshold parameters were also 0.05, 0.1, or 0.15, which was added 

to each of the threshold parameters with DIF in the reference group, suggesting that these 

items were more difficult for the focal group. The values of the DIF were informed by 

those used in previous studies (e.g., Fukuhara & Kamata, 2011). In the research conditions 

with polytomous data (i.e., 3 or 5 categories per item) in which the threshold parameters 

had DIF, the threshold parameters were (-0.45, 0.55), (-0.40, 0.60), or (-0.35, 0.65) for 

these three measured variables in the focal group when there were 3 categories per item, 

and they were (-0.85, -0.25, 0.35, 0.95), (-0.80, -0.20, 0.40, 1.00), or (-0.75, -0.15, 0.45, 

1.05) when there were 5 categories per item. For binary data conditions, the threshold 

parameters were 0.05, 0.10, or 0.15 for these three measured variables in the focal group.  

Equality constraints on noninvariant parameters. Given that perfect recovery 

of DIF is hard to achieve in practice, in the current study, the parameters that were 

generated to have DIF were either freely estimated (i.e., correctly specified) or constrained 

to be equal (i.e., misspecified) in the analysis. When testing measurement invariance using 

multiple-group categorical CFA models, loading invariance and threshold invariance are 

usually tested sequentially (Millsap & Yun-Tein, 2004). In practice, for the items with 

known DIF in factor loadings, when testing threshold invariance, their threshold 

parameter(s) can be either constrained to be equal or freely estimated. Given that 
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discrimination parameters and difficulty parameters are usually tested simultaneously 

within the IRT framework, to better correspond to measurement invariance tests in IRT, in 

the current study, equality constraints were placed on only loading parameters considered 

to have DIF or only threshold parameters considered to have DIF. Note that for conditions 

with polytomous data in which the threshold parameters had DIF, two of the noninvariant 

threshold parameters for each item needed to be constrained to be equal across groups for 

identification purpose; for conditions with binary data with noninvariant threshold 

parameters, these noninvariant parameters must be constrained to be equal in the analysis 

in order to identify the model. 

 

Table 2 

Manipulated Factors for the Generated Multiple-group Bifactor Models with DIF 

Factors 
DIF in general 

factor loadings 

DIF in specific 

factor loadings 

DIF in threshold 

parameters 

Total sample size 600 or 1200 600 or 1200 600 or 1200 

    

The number of 

categories per item 
2, 3, or 5 2, 3, or 5 2, 3, or 5 

    

Size of latent mean 

difference for the 

general factor 

0, -0.1, or -0.2 0, -0.1, or -0.2 0, -0.1, or -0.2 

    

Magnitude of DIF 
-0.05, -0.10, or -

0.15 

-0.05, -0.10, or -

0.15 
0.05, 0.10, or 0.15 

    

Data analysis 

procedure 

Whether setting 

equality constraints 

on the general 

factor loadings with 

DIF 

Whether setting 

equality constraints 

on the specific 

factor loadings with 

DIF 

Whether setting 

equality constraints 

on the threshold 

parameters with 

DIF not necessary 

for identification 
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Data Generation and Data Analysis Procedures 

 R was used for data generation and Mplus 7 (Muthén & Muthén, 2012) was 

employed for data analysis; these were implemented with the MplusAutomation package 

in R. The data generation models were multiple-group GRMs whose parameters were 

transformed using Equation 16 from the corresponding loading parameters and threshold 

parameters of the multiple-group categorical CFA models in the varied research conditions 

presented above. For each condition, 1000 datasets with a given sample size were simulated 

from each population. Problematic simulations in which convergence was not achieved in 

a given number of iterations were discarded before summarizing the outcome so the 

number of simulations for each research condition may vary. To ensure independence 

across research conditions, a random seed was produced for each data generation condition 

using a random number generator. Note that for each data generation condition, there were 

multiple data analysis conditions.  

To scale the latent factors, the means of all factors were fixed to 0 and the variances 

of all factors were fixed to 1 in the reference group, and loadings and threshold parameters 

(or intercepts) of at least one item for each factor were constrained to be invariant across 

groups. In the current study, all loadings and threshold parameters (or intercepts) were 

constrained to be equal for the conditions in which no DIF was generated. For the 

conditions in which DIF existed, the loadings and threshold parameters that were generated 

to be invariant were constrained to be equal across groups, and those with DIF were either 

estimated freely or constrained between groups, depending on data analysis conditions. 

Given that the latent mean differences in the general factor and specific factors are 



68 
 

indeterminate, they are unable to be estimated simultaneously in analysis. Given that 

specific factor mean differences were not the focus in the current study, when analyzing 

the latent mean difference of the general factor, the mean of the general factor was set to 0 

in the reference group, the means of the specific factors were set to 0 in the both groups, 

and the mean of the general factor in the focal group was freely estimated.  

In the analysis phase for multiple-group categorical CFA, DELTA parameterization 

in which the variances of latent response variates are set to 1 in the reference group was 

applied given that it performs better than THETA parameterization in some cases and there 

was no interest in testing invariance of the residual variance in the current study. As 

mentioned previously, in the data generation phase of the current study, variances of all 

latent response variates were generated to be 1 in both groups such that the constraints 

setting by DELTA parameterization would not influence the interpretation of the 

magnitude of the estimates for other parameters (e.g., latent mean difference of the general 

factor).  

In addition to the constraints mentioned above, for multiple-group categorical CFA 

analysis based on binary data using misspecified unidimensional models, given that there 

is only one threshold parameter for each item, the variance of the latent continuous variate 

underlying item 1 (𝑋1
∗) was fixed to 1 in the focal group. For multiple-group categorical 

CFA analysis based on polytomous data using bifactor models, the first two threshold 

parameters for each measured variable were constrained to be invariant across groups 

regardless of whether they had DIF; for binary data cases, the only threshold parameter of 

each item was constrained to be equal across groups regardless of whether DIF was 
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generated for them, and variances of all the continuous latent variates (𝑋1
∗-𝑋12

∗ ) were fixed 

to 1 in the focal group.   

When applying multiple-group categorical CFA, the WLSMV estimator was 

applied and the DIFFTEST function in Mplus was used for testing latent mean difference 

of the general factor for each generated dataset. When conducting DIFFTEST, the more 

restricted model was the model constraining latent means of the general factor to be zero 

in both groups, and the less constrained model was the one freely estimating the latent 

mean of the general factor in the focal group. Other parameters of these two models were 

specified in the same way following the research conditions.   

In the analysis phase for multiple-group traditional CFA, the ordered-categorical 

data were treated as continuous data and MLR estimator was applied. The Satorra-Bentler 

scaled chi-square difference test was used to test the latent mean difference of the general 

factor across groups. When conducting chi-square difference tests, the more restricted 

model was the model constraining latent means of the general factor to be zero in both of 

the two groups, and the less constrained model was the one freely estimating the latent 

mean of the general factor in the focal group. Other parameters of these two models were 

specified in the same way following the research conditions.    

Outcomes of Interest 

For a given research condition, the outcomes of interest were summarized across 

all replications with a proper solution. Results for replications with estimation problems 

were excluded from computation of the summary statistics. To obtain a comprehensive 

assessment of the impact of manipulated factors on the estimates and tests of differences 

in latent means between populations, the summarized outcomes for each condition 
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included Type I error rate or power, estimation bias, relative estimation bias, estimated 

variance, mean CFI, mean SRMR or WRMR, and mean RMSEA.  

Type I Error Rates and Empirical Powers 

For research conditions in which the effect size of the latent mean difference was 

generated to be zero, Type I error rate refers to the proportion of replications in which the 

null hypothesis that the latent mean of the general factor in the focal group is zero was 

rejected based on DIFFTEST or the Satorra-Bentler scaled chi-square difference test. For 

research conditions in which the effect size of the latent mean difference was non-zero in 

the population, power refers the proportion of replications in which the null hypothesis that 

the latent mean of the general factor in the focal group is zero was rejected based on 

DIFFTEST or the Satorra-Bentler scaled chi-square difference test. Empirical powers were 

interpreted for a condition only if the respective Type I error rate falls in the acceptable 

range of .025-.075, as designated by Bradley’s liberal criterion (1978).     

Estimation Biases, Relative Estimation Biases, and Variances for Latent Mean 

Difference 

 Estimation bias was the difference between the mean of estimated latent mean 

differences across replications within a condition and the population latent mean difference. 

The corresponding equation is: 

                                        Estimation Bias = E (𝜃) – θ                                         (21) 

where E (𝜃 ) denotes the average value of estimated latent mean differences across 

replications, and θ denotes the true value of the latent mean difference in the population. 

Relative estimation bias was the ratio of estimation bias to the true value of the latent mean 

difference in the population, and the corresponding equation is: 
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                                           Relative Estimation Bias = (E (𝜃) – θ) / θ                                          (22) 

Also, the variances of estimated latent mean differences across replications were computed.  

Coverage Rates of 95% Confidence Interval 

 Coverage rate of the 95% confidence interval was the proportion of replications 

within a condition for which the population value of the difference in the general factor 

means falls within the computed 95% confidence interval for this difference in means.   

Model Fit Indices 

Model fit indices, including CFI, SRMR or WRMR, and RMSEA were collected 

because they are generally recommended for use in judging overall model fit. CFIs and 

RMSEAs were collected for all models, SRMRs were collected for models analyzed using 

the MLR estimator, and WRMRs were collected for models analyzed using WLSMV 

estimators. In the current study, these indices were examined to determine descriptively 

whether they were sensitive to misspecification of the noninvariant parameters.  

Comparative Fit Index (CFI). CFI is an incremental fit index, which is defined 

as: 

                                                            CFI = 1- (
𝜒𝑇

2−𝑑𝑓𝑇

𝜒𝑁
2 −𝑑𝑓𝑁

)                                                (23) 

where 𝜒𝑇
2 and 𝜒𝑁

2  are chi-square statistics for the tested model and the null model in which 

only variances of observed variables are estimated, and 𝑑𝑓𝑇 and 𝑑𝑓𝑁 are the corresponding 

degree of freedom for these two models, respectively. Hu and Bentler (1999) suggested 

that a CFI values of .95 or higher indicates a good model fit. According to findings of 

Cheung and Rensvold (2002), a reduction of .01 or less in CFI suggests that hypothesis of 

invariance should not be rejected. CFIs obtained from replications with proper solutions 

were averaged for each condition to obtain the mean CFI.    
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Standardized Root Mean Square Residual (SRMR). SRMR is an absolute model 

fit index and reflects the mean of absolute correlation residuals. Hu and Bentler (1999) 

suggested that the acceptable value for SRMR should be equal or less than .08, and values 

of .05 indicate a good model fit (e.g., Kline, 2011). SRMRs obtained from replications with 

proper solutions were averaged for each condition to obtain the mean of SRMR. 

Weighted Root Mean Square Residual (WRMR). Similar to SRMR, WRMR is 

also computed based on residuals, which was proposed by Muthén (1998-2004) for models 

using WLSMV estimators for ordered categorical data. As suggested by Yu & Muthén, 

(2002), values of 0.9 of WRMR suggest good fit, while Yu (2002) recommended a higher 

cutoff of 1.0 as a criterion for good fit. WRMRs obtained from replications with proper 

solutions were averaged for each condition to obtain the mean WRMR.    

Root Mean Square Error of Approximation (RMSEA). RMSEA is a parsimony-

corrected model fit index. The population RMSEA may be estimated based on fitting a 

hypothesized model to a sample as: 

                                               RMSEA = √
𝜒2−𝑑𝑓

𝑑𝑓 (𝑁−1)
                                             (24) 

where 𝜒2 is the chi-square statistic obtained when fitting a given model to a sample, 𝑑𝑓 is 

the model degrees of freedom, and N is the sample size. As recommended by Browne and 

Cudeck (1993), values of less than .05 indicate a very good fit; values between .05 and .08 

indicate a fair fit; and values larger than .10 indicate a bad fit. RMSEAs obtained from 

replications with proper solutions were averaged for each condition to obtain the mean 

RMSEA. 
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Chapter 3: Results 

Factors Influencing the Latent Mean Comparisons for the General Factor in the No 

DIF Conditions 

 When exploring the impact of fitting bifactor ordered-categorical data with 

unidimensional models and treating ordered-categorical data as continuous data when 

evaluating latent mean comparisons for the general factor, all item parameters were 

generated to be invariant across groups and constrained to be equal in analysis such that 

there were no confounding effects due to DIF. The degree of unidimensionality varied in 

terms of different sizes of the explained common variance among all items due to the 

general factor (ECV) because the specific factor loadings varied while the general factor 

loadings remained the same for different data generation conditions. Also, sample sizes, 

effect sizes of the latent mean difference of the general factor, and the numbers of 

categories per item were also varied when generating the data. The generated bifactor 

polytomous data were analyzed using the following four strategies: unidimensional model 

with MLR estimator, unidimensional model with WLSMV estimator, bifactor model with 

MLR estimator, and bifactor model with WLSMV estimator. The generated bifactor binary 

datasets were analyzed using either unidimensional model with WLSMV estimator or 

bifactor model with WLSMV estimator.   

Factors Influencing the Estimation Bias  

 The estimation bias of the general factor mean difference for the generated invariant 

bifactor ordered-categorical data is shown in Figure 2 and Tables B1-B6. Results indicated 

all the manipulated factors, including the degree of unidimensionality (sizes of specific 

factor loadings), sample size, the effect size of the latent mean difference for the general 
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factor, and the number of categories per item and estimation strategies applied in analysis, 

influenced the estimation bias of the general factor mean difference. Joint effects among 

these factors were also found.  

 

 

Figure 2 The Estimation Bias of the General Factor Mean Difference under No DIF 

Conditions 

 

As shown in Figure 2 and Tables B1-B2, for the 3-point scale data, when the effect 

size of the latent mean difference for the general factor was generated to be zero and the 
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total sample size was 1200, the absolute values of estimation bias for the latent mean 

difference of the general factor ranged from .0005 to .0009 with a mean of .0007, which 

were ignorable and not influenced by other data generation conditions or data analysis 

conditions. For the conditions with effect size of zero, decreasing the total sample size from 

1200 to 600 slightly increased the absolute values of estimation bias, making them ranged 

from .0008 to .0026 with a mean of .0017, which were not influenced by estimation 

strategies either.  

For the 5-point scale data and the binary data, when the effect size of the general 

factor mean difference was generated to be zero, the absolute values of its estimation bias 

were a little higher than those for the 3-point scale data in general, and they were not 

influenced by neither estimation strategies nor the total sample size obviously (shown in 

Figure 2). When the effect size was zero, the absolute values of the estimation bias ranged 

from .0018 to .0034 with a mean of .0026 for the 5-point scale data (shown in Tables B1 

and B2), and they ranged from .0003 to .0044 with a mean of .0029 for the binary data 

(shown in Tables B1 and B2).  

As shown in Figure 2, for the generated invariant data, when the absolute values of 

effect size of the general factor mean difference increased, the absolute values of its 

estimation bias conditioning on other factors also increased in general, and the magnitude 

of the increase depended on total sample sizes and the joint factors of the degree of 

unidimensionality and analysis strategies.  

To be specific, for the 3-point scale data, when the absolute value of the effect size 

was generated to be 0.1, the absolute values of estimation bias ranged from .0002 to .0094 

and from .0019 to .0117 for the conditions with total sample size of 1200 and 600, 
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respectively; when the absolute value of the effect size was generated to be 0.2, the absolute 

values of estimation bias ranged from .0003 to .0198 and from .0025 to .0275 for the 

conditions with total sample size of 1200 and 600, respectively (shown in Tables B3-B6).    

For the 5-point scale data, when the absolute value of the effect size was generated 

to be 0.1, the absolute values of estimation bias ranged from .0002 to .0118 and from .0002 

to .0156 for the conditions with total sample size of 1200 and 600, respectively; when the 

absolute value of the effect size was generated to be 0.2, the absolute values of estimation 

bias ranged from .0001 to .0190 and from .0004 to .0251 for the conditions with total 

sample size of 1200 and 600, respectively (shown in Tables B3-B6). 

Different from the data with 3 or 5 categories per item, for the binary data, 

decreasing the sample size did not increase the absolute values of the estimation bias when 

the effect size of the general factor mean difference was nonzero (shown in Figure 2). For 

the binary data, when the absolute value of the effect size was generated to be 0.1, the 

absolute values of estimation bias ranged from .0005 to .0101 and from .0007 to .0074 for 

the conditions with total sample size of 1200 and 600, respectively; when the absolute 

value of the effect size was generated to be 0.2, the absolute values of estimation bias 

ranged from .0017 to .0175 and from .0010 to .0176 for the conditions with total sample 

size of 1200 and 600, respectively (shown in Tables B3-B6). 

In addition to the total sample size, the joint factors of the degree of 

unidimensionality and analysis strategies also had an influence on the estimation bias of 

the latent mean difference for the general factor when its effect size was generated to be 

nonzero. As indicated in Figure 2, for the data with 3 or 5 categories per item, when the 

total sample size was 1200, no matter what the effect size of the latent mean difference for 
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the general factor was, the absolute values of estimation bias was minimal as long as the 

data were fitted with bifactor models, and these values increased for some conditions when 

the total sample size decreased to 600. For the binary data, the absolute values of the 

estimation bias were also minimum if the data were fitted with bifactor models, and they 

were not influenced by the total sample size (shown in Figure 2). For the data with any 

number of categories (i.e., 2, 3 or 5), in comparison with the conditions in which the 

generated bifactor data was fitted with bifactor models, fitting the same generated data with 

unidimensional models produced more positive estimation bias in general (shown in 

Figures 1-3). The increase in the estimation bias was much more substantial for conditions 

involved the more multidimensional data (i.e., specific factor loadings = 0.5) than for 

conditions involved the less multidimensional data (i.e., specific factor loadings = 0.3), and 

it was also more substantial for the conditions with effect size for the general factor mean 

difference of -0.2 than for the conditions with the effect size of -0.1 (shown in Figure 2).  

As shown in Figure 2, for the generated bifactor 3-point or 5-point scale data, the 

selection of estimators (i.e., WLSMV or MLR) had little influence on the estimation bias 

of the latent mean difference for the general factor as long as the data was fitted with 

bifactor models. When the more multidimensional data (i.e., specific factor loadings = 0.5) 

was fitted with unidimensional models, selecting the WLSMV estimator seemed to 

produce more estimation bias than selecting MLR estimator.  

The relative estimation bias of the latent mean difference for the general factor is 

shown in Figure 3. The absolute values of the relative estimation bias were minimal when 

the generated bifactor data was fitted with bifactor models and the total sample size was 

1200, and when decreasing the total sample size to 600, these values increased for the 3-
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point scale and 5-point scale data and remained similar for the binary data. For the 

generated data with 2, 3, or 5 categories, falsely fitting the bifactor data with 

unidimensional models resulted in relative estimation bias with absolute values of around 

2.5-5% for most conditions involving less multidimensional data (i.e., specific factor 

loadings = 0.3), and these values reached around 10-15% for the conditions involving more 

multidimensional data (i.e., specific factor loadings = 0.5). Different from the estimation 

bias (i.e., E (𝜃) – θ), the relative estimation bias (i.e., (E (𝜃) – θ) / θ) was not influenced 

substantially by the magnitude of the effect size when the effect size was generated to be 

nonzero.  

 

Figure 3 The Relative Estimation Bias of the General Factor Mean Difference under No 

DIF Conditions 
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Factors Influencing the Type I Error Rate/Power  

The Type I error rate or power to detect the general factor mean difference for the 

generated invariant bifactor ordered-categorical data is shown in Figure 4 and Tables B1-

B6.  

Results regarding Type I error rates are shown in Tables B1 and B2. Type I error 

rates fell in the limits of .025 to .075 for all conditions involving invariant data. Also, for 

the generated data with 3 or 5 categories per item, Type I error rates obtained using the 

WLSMV estimator (ranged from .040 to .069) were a little higher than those obtained using 

the MLR estimator (ranged from .032 to .043) for a given generated data and analysis 

model (shown in Figures 4). When applying the WLSMV estimator, the relatively inflated 

Type I error rates (i.e., above .06) usually occurred when the total sample size was large or 

the datasets were binary. The selection of analysis model (unidimensional models vs. 

bifactor models) seemed to have no obvious influence on Type I error rates.  

As shown in Figure 4, the most dominant factors influencing power were the effect 

size of the general factor mean difference and the total sample size. For the 3-point scale 

data, when the effect size was -0.1, the values of the power ranged from .170 to .206 and 

from .335 to .385 for the conditions with total sample size of 600 and 1200, respectively; 

when the effect size was -0.2, they ranged from .547 to .607 and from .863 to .892 for the 

conditions with total sample size of 600 and 1200, respectively (shown in Tables B3-B6). 

For the 5-point scale data, when the effect size was -0.1, powers ranged from .165 to .229 

and from .320 to .405 for the conditions with total sample size of 600 and 1200, 

respectively; when the effect size was -0.2, they ranged from .564 to .672 and from .897 

to .933 for conditions with total sample size of 600 and 1200, respectively (shown in Tables 
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B3-B6). For binary data, when the effect size was -0.1, powers ranged from .210 to .232 

and from .358 to .378 for conditions with total sample size of 600 and 1200, respectively; 

when the effect size was -0.2, they ranged from .597 to .646 and from .886 to .895 for 

conditions with total sample size of 600 and 1200, respectively (shown in Tables B3-B6).  

 

 

Figure 4 Empirical Type I Error Rates/Powers to Detect the General Factor Mean 

Difference under No DIF Conditions 

 

In addition to the effect size of the general factor mean difference and the total 

sample size, the selection of the estimator might also influence the power to detect the 
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general factor mean difference. As shown in Figure 4, for a given generated data set and 

analysis model (unidimensional model or bifactor model), the power obtained using the 

WLSMV estimator seemed to be higher than that obtained using the MLR estimator in 

most of the cases.  

For a given total sample size and effect size of the general factor mean difference, 

the variation of the values in power among conditions using MLR estimator seemed to be 

smaller than that using the WLSMV estimator. For the MLR estimator, when the effect 

size was -0.1, powers ranged from .165 to .188 and from .320 to .355 for the conditions 

with total sample size of 600 and 1200, respectively; when the effect size was -0.2, they 

ranged from .549 to .612 and from .863 to .908 for the conditions with total sample size of 

600 and 1200, respectively (shown in Tables B3-B6). For the WLSMV estimator, when 

the effect size was -0.1, powers ranged from .166 to .232 and from .325 to .405 for the 

conditions with total sample size of 600 and 1200, respectively; when the effect size was -

0.2, they ranged from .547 to .672 and from .864 to .933 for the conditions with total sample 

size of 600 and 1200, respectively (shown in Tables B3-B6).  

As shown in Tables B3-B6, a part of the large variation in the values of power 

obtained using the WLSMV estimator among the conditions for a given sample size and 

effect size can be explained by the data generation factors of the number of categories per 

item and the degree of unidimensionality in the current research scenario. For example, in 

most cases, conditioning on other factors, the powers to detect the general factor mean 

difference obtained using the WLSMV estimator were largest for the 5-point scale data, 

and they were slightly higher for the conditions involving less multidimensional data than 

those for the conditions involving more multidimensional data. 
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As shown in Figures 2-4, for the same generated bifactor data, although fitting them 

with unidimensional models produced varying degrees of estimation bias in the latent mean 

difference of the general factor, power was not influenced by the analysis model applied 

(i.e., unidimensional models or bifactor models) using a given estimator (i.e., the MLR 

estimator or the WLSMV estimator).  

Estimated Variance  

In the No DIF conditions, the main factor that influenced the estimated variance of 

the latent mean difference in the general factor was sample size (shown in Tables B1-B6). 

When the total sample size was 600, the estimated variances for these No DIF conditions 

ranged from .006 to .009; when the total sample size was 1200, they were .003 or .004. In 

addition to the total sample size, applying the unidimensional model usually led to a smaller 

estimated variance in comparison with applying the bifactor model, and the difference in 

the estimated variance for a given generated dataset was .001 or .002. Also, in most cases, 

the estimated variance for the general factor mean difference tended to be smaller for 

polytomous data than that for binary data for a given total sample size. Given the level of 

precision reported (rounding to the thousandths place), not all differences in estimated 

variances were reported. The selection of the estimator (i.e., the MLR estimator or the 

WLSMV estimator), the effect size of the general factor mean difference, and the degree 

of unidimensionality for the generated bifactor data had no obvious impact on the estimated 

variance for the general factor mean difference.  

Coverage Rates of the 95% Confidence Interval 

In the No DIF conditions, almost all the coverage rates of the 95% confidence 

interval were above .950. Only for one condition, the coverage rate dropped to .948 because 
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of relatively serious estimation bias (i.e., .0251 in the absolute value) resulting from fitting 

the generated bifactor data using a unidimensional model when the total sample size was 

600 and the effect size of the general factor mean difference was generated to be -0.2.  

Goodness of Fit Indices  

 The means of the goodness of fit indices (i.e., CFI, SRMR/WRMR, and RMSEA) 

for the No DIF conditions are shown in Tables B7-B12.  

Means of CFIs. As shown in Tables B7-B12, the means of CFIs for most of the 

conditions in which the generated bifactor ordinal data were analyzed with bifactor models 

using the WLSMV estimator were .999 when the general factor mean difference was freely 

estimated, and in a few small sample size conditions, they were .998. When the effect size 

of the general factor mean difference was 0, constraining the latent mean difference in the 

general factor to be 0 did not result in any decrease in these means of CFIs, and it even 

increased the means of CFIs for a few conditions. When the effect size of the general factor 

mean difference was -0.1, the drop of the means of CFIs due to constraining the latent mean 

difference of the general factor to be zero were 0.001 for almost all the conditions except 

for one condition in which the mean of the CFI did not change based on the level of 

precision reported (rounding to the thousandths place). When the effect size of the general 

factor mean difference was -0.2, the conditions involving less multidimensional data 

evidenced drops in the means of CFIs due to constraining to zero the latent mean difference 

of the general factor of 0.005 and .007 for binary data and polytomous data, respectively; 

in the conditions involving more multidimensional data, reductions in the means of CFIs 

were .003 and .004 for binary data and polytomous data, respectively.  
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The means of CFIs for the conditions in which the less multidimensional data (i.e., 

specific factor loadings = 0.3) was analyzed with unidimensional models using the 

WLSMV estimator ranged from .977 to .984 (shown in Tables B7, B9, and B11). For the 

same generated dataset and the same estimator (i.e., the WLSMV estimator), in comparison 

with the bifactor analysis model, the drop of the means of CFIs resulting from fitting them 

with the unidimensional model were from .015 to .016 and from .019 to .021 for binary 

data and polytomous data, respectively.  For these misspecified conditions with 

unidimensional analysis models, constraining the general factor mean difference to be zero 

increased the means of CFIs when the effect size was generated to be 0; even when the 

effect size of the general factor mean difference was generated to be -0.1, all but one of the 

means of CFIs still increased after constraining the general factor mean difference to be 

zero. Also, the increase in the means of CFIs due to constraining the general factor mean 

difference to be zero was especially obvious for polytomous data. When the effect size of 

the general factor mean difference was -0.2, imposing the equality constraint on the general 

factor mean difference in unidimensional models resulted in the drop of .004 and .001 for 

the means of CFIs for binary data and 3-point scale data, respectively. But for the 5-point 

scale data, they still increased even when constraining the general factor mean difference 

of -0.2 to be equal.   

 With respect to the generated more multidimensional data (i.e., specific factor 

loadings = 0.5), the means of CFIs for the conditions with unidimensional analysis models 

using the WLSMV estimator ranged from .887 to .912(shown in Tables B8, B10 and B12). 

For binary, bifactor data analyzed with the WLSMV estimator, the means of CFIs were 

smaller by .087 and .092 with small sample size and large sample size, respectively, when 
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fitting them with the misspecified unidimensional model in comparison with the bifactor 

analysis model. For the 3-point scale data, the drops were .101 and .105-.106 for small 

sample size conditions and large sample size conditions, respectively; for the 5-point scale 

data, they were .107-.108 and .112 for small and large sample size conditions, respectively. 

After incorrectly fitting the more multidimensional data with unidimensional models using 

the WLSMV estimator, imposing the equality constraint on the general factor mean 

difference increased the means of CFIs no matter what the effect size was generated to be 

(i.e., 0, -0.1 or -0.2), and such increase got large as the number of categories per item 

became more.  

 For the conditions in which the generated ordinal data were treated as continuous 

and the MLR estimator was applied, the means of CFIs for bifactor analysis conditions 

ranged from .996 to .999, which was slightly influenced by the data generation conditions 

(i.e., the total sample size, the number of categories per item, and the degree of 

unidimensionality). After constraining the general factor mean difference to be zero, there 

was no change in the means of CFIs for all conditions with the effect size of 0 and most 

conditions with the effect size of -0.1; the drop was .001 for one condition with the effect 

size of -0.1 and all conditions with the effect size of -0.2 (shown in Tables B7-B12).    

The means of CFIs for the conditions in which the generated less multidimensional 

data (i.e., specific factor loadings = 0.3) was analyzed with unidimensional models using 

the MLR estimator ranged from .946 to .953(shown in Tables B7, B9, and B11). For the 

same generated dataset and the same estimator (i.e., the MLR estimator), in comparison 

with the bifactor analysis model, the drop of the means of CFIs resulting from fitting them 

with the unidimensional model were around .045 and .050 for 3- and 5-point scale data, 
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respectively. For these unidimensional analysis models using the MLR estimator, there 

were no changes in the means of CFIs after constraining the general factor mean difference 

to be zero for all conditions with the effect size of 0 and half of the conditions with the 

effect size of -0.1, and they dropped by .001 and .002 for the other half of conditions with 

the effect size of -0.1 and all conditions with the effect size of -0.2, respectively.  

 With respect to the generated more multidimensional data (i.e., specific factor 

loadings = 0.5), the means of CFIs for the unidimensional analysis models using the MLR 

estimator ranged from .727 to .751 (shown in Tables B8, B10, and B12). To be specific, in 

comparison with the bifactor analysis model using the MLR estimator, the decrease of the 

means in CFIs due to fitting them with the unidimensional model using the MLR estimator 

were 246-.247 and .248 - .249 for the 3-point scale data with small and large sample size, 

respectively, and they were around .270 for the 5-point scale data. For these unidimensional 

models with MLR estimator, imposing the equality constraint on the general factor mean 

difference, the means of CFIs did not drop or dropped by .001 when the effect size was 0 

or -0.1, and they dropped by .001 or .002 when the effect size was -0.2.  

 Means of WRMRs. The means of WRMRs were reported for the conditions 

analyzed with the WLSMV estimator. As shown in Tables B7-B12, when the generated 

bifactor ordinal data were analyzed with bifactor models, the means of WRMRs ranged 

from .802 to 1.023. The means of WRMRs were influenced by the data generation 

conditions including the number of categories, total sample size, and degree of 

unidimensionality. For example, for binary data, means of WRMRs ranged from .969 to 

1.023, while for polytomous data, they ranged from .802 to .857. Also, larger sample size 
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and high degree of unidimensionality were associated with larger values in the means of 

WRMRs.  

After imposing equality constraints on the general factor mean difference generated 

to be 0 in the bifactor analysis models with the WLSMV estimator, the means of WRMRs 

ranged from 1.003 to 1.050 and from .854 to .911 for binary data and polytomous data, 

respectively. When the general factor mean difference with effect size of -0.1 was 

constrained to be equal, the means of WRMRs ranged from 1.044 to 1.113 and from .910 

to 1.070 for binary data and polytomous data, respectively. When the effect size of the 

constrained general factor mean difference was -0.2, the means of WRMRs ranged from 

1.129 to 1.292 and from 1.055 to 1.442 for binary data and polytomous data, respectively. 

The changes of the means of WRMRs due to imposing equality constraints on the nonzero 

general factor mean difference were more substantial for polytomous data than those for 

binary data, with maximum of around 0.2 and 0.6 for the conditions with effect size of -

0.1 and -0.2, respectively (shown in Tables B7-B12).  

When the generated less multidimensional data (i.e., specific factor loadings = 0.3) 

were analyzed with unidimensional models using the WLSMV estimator, the means of 

WRMRs ranged from 1.225 to 1.442 and from 1.290 to 1.599 for binary and polytomous 

data, respectively. With respect to the generated more multidimensional data (i.e., specific 

factor loadings = 0.5), when fitting them with the misspecified unidimensional model using 

the WLSMV estimator, the means of WRMRs ranged from 2.639 to 3.599 and from 3.109 

to 4.517 for binary and polytomous data, respectively. Larger number of categories per 

item and the larger sample size were associated with more increase in the means of 

WRMRs due to fitting the bifactor data using the unidimensional model (shown in Tables 
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B7-12). In the unidimensional analysis models, after imposing equality constraints on the 

general factor mean difference, the means of WRMRs became even larger but the increase 

was very small relative to that resulting from falsely fitting the bifactor data using the 

unidimensional model.  

Means of SRMRs. As shown in Tables B7-B12, when the generated bifactor 

ordinal data was treated as continuous and analyzed using the MLR estimator, the means 

of SRMRs were reported. Using bifactor analysis models, the means of SRMRs ranged 

from .029 to .033 and from .021 to .024 for the small (Total N = 600) and large (i.e., Total 

N = 1200) sample conditions. In addition to the sample size, the means of SRMRs were 

also influenced by other data generation conditions slightly, such as the number of 

categories per item and the degree of unidimensionality. After imposing equality 

constraints on the general factor mean difference, the increase in the means of SRMRs 

ranged from .001 to .002, from .003 to .004, and from .008 to .012 for the conditions with 

effect sizes of 0, -0.1, and -0.2, respectively. 

The means of SRMRs for the conditions in which the less multidimensional data 

(i.e., specific factor loadings = 0.3) was analyzed with unidimensional models was .046 

and .039 - .040 when the total sample size was 600 and 1200, respectively (shown in Tables 

B7, B9, and B11). After imposing equality constraints on the general factor mean 

difference, the increase in the means of SRMRs was 0-.001, .002-.003, and .006-.007 for 

the conditions with the effect size of 0, -0.1 and -0.2, respectively. 

With respect to the more multidimensional data (i.e., specific factor loadings = 0.5), 

fitting them using unidimensional models, the means of SRMRs became .091 and .096 for 

the 3- and 5-point scale data, respectively, when the total sample size was 600, and they 
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were .088 and .093 for the 3- and 5-point scale data when the total sample size was 1200 

(shown in Tables B8, B10, and B12). The increase in the means of SRMRs resulting from 

imposing equality constraints on the general factor mean difference in these 

unidimensional models was 0, .001, and .003 for conditions with effect sizes of 0, -0.1, and 

-0.2, respectively. 

  Means of RMSEAs. As shown in Tables B7-B12, when the generated bifactor 

ordinal datasets were analyzed using bifactor models, the means of RMSEAs ranged 

from .006 to .013 with their magnitude influenced by data generation conditions including 

the total sample size, the number of categories per item, and the degree of 

unidimensionality. The selection of the estimator (i.e., the MLR estimator or the WLSMV 

estimator) seemed to have little impact on the means of RMSEAs when the model was 

correctly specified. After imposing equality constraints on the general factor mean 

difference, the means of RMSEAs did not change or even decreased when the effect size 

was 0. When the effect size was -0.1, setting equality constraints on the latent mean 

difference of the general factor yielded increases in means of RMSEAs ranging from .003 

to .006 for analysis conditions with the WLSMV estimator, and 0 to .001 for conditions 

with the MLR estimator. When the effect size was -0.2, the increase in the means of 

RMSEAs ranged from .013 to .025 and from .002 to .005 for conditions with the WLSMV 

estimator and the MLR estimator, respectively, after imposing equality constraints on the 

general factor mean difference.   

When generated less multidimensional data (i.e., specific factor loadings = 0.3) 

were fitted with unidimensional models, the means of RMSEAs ranged from .042 to .062, 

and the increase relative to the corresponding bifactor model using the same estimator 
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ranged from .034 to .053. With respect to the more muldata (i.e., specific factor loadings = 

0.5), fitting them with unidimensional models, the means of RMSEAs ranged from .122 

to .169 with the increase in comparison with the corresponding correctly specified model 

using the same estimator ranged from .112 to .160. After imposing equality constraints on 

the general factor mean difference in these unidimensional models, the means of RMSEAs 

did not change or even decreased for all conditions with the effect size of 0 and -0.1 and 

most conditions with the effect size of -0.2. Only for some conditions in which the data 

was generated with high degree of unidimensionality and the effect size of -0.2, the means 

of RMSEAs increased by .001.    

Factors Influencing the Latent Mean Comparisons for the General Factor in the 

Conditions with DIF 

 In order to examine the influence of the DIF on latent mean comparisons of the 

general factor within the generated multiple-group ordinal bifactor datasets, the 

manipulated data generation conditions included the total sample size (i.e., 600 or 1200), 

the effect size of the general factor mean difference (i.e., 0, -0.1, or -0.2), the number of 

categories per item (2, 3, or 5), the type of parameters with DIF (general factor loadings, 

specific factor loadings, or threshold parameters),  and the magnitude of DIF (i.e., -0.05, -

0.10, or -0.15 for factor loadings; 0.05, 0.10, or 0.15 for threshold parameters). When 

analyzing the data, all generated datasets were analyzed using bifactor models with the 

WLSMV estimator, and the parameters with DIF were either freely estimated or 

constrained to be equal across groups. For conditions with DIF, all item parameters (i.e., 

general factor loadings, specific factor loadings, and threshold parameters) in the reference 

group and variance-covariance matrix and mean vectors for the latent factors were the same 
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as those for the No DIF conditions with low degree of unidimensionality (i.e., strong 

specific factor loadings) except that the DIF was present for different types of item 

parameters, so the subset of the No DIF conditions in which the data were generated with 

strong specific factor loadings and analyzed with bifactor models using the WLSMV 

estimator serve as the baseline conditions for evaluating the DIF conditions. 

Factors Influencing the Estimation Bias  

 Estimation bias for the conditions with DIF in general factor loadings are shown in 

Figure 5 and Tables B13-B18. In comparison with the corresponding baseline conditions 

in which no DIF was generated and all parameters were constrained to be equal, the DIF 

in the general factor loadings seemed to have no influence on the estimation bias for the 

general factor mean difference if the general factor loadings with DIF were freely estimated 

(see Figure 5). As shown in Tables B2, B4, and B6, the estimation bias of the general factor 

mean difference for all baseline conditions ranged from -.0041 to .0081 with a mean 

of .0004. As shown in Figure 2, the estimation bias of these baseline conditions was slightly 

influenced by the total sample size and effect size of the general factor mean difference for 

the 3- and 5-point scale data. For the conditions with DIF in the general factor loadings, 

the estimation bias of the general factor mean difference ranged from -.0044 to .0049 with 

a mean of -.0001 when the model was correctly specified (shown in Tables B13-B18), 

which fell in the similar range as the baseline conditions. Unlike the baseline conditions, 

the estimation bias of these correctly specified models for the conditions with DIF in the 

general factor loadings was not influenced by the total sample size or the effect size of the 

general factor mean difference (shown in Figure 5).  
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Figure 5 Estimation Bias of the General Factor Mean in the Conditions with DIF in 

General Factor Loadings 

 

As shown in Tables B13-B18, when the magnitude of DIF in the general factor 

loadings were -0.05, the differences of the estimation bias for the general factor mean 

difference between the conditions with general factor loadings having DIF constrained to 

be equal and the corresponding correctly specified conditions ranged from -.0001 to .0002, 

from .0016 to .0018, and from .0034 to .0037 when the effect size was 0, -0.1, and -0.2, 

respectively.  As the magnitude of DIF in the general factor loadings increased, the 

differences in estimation bias in the general factor mean difference between these two 
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analysis conditions remained similar for the conditions with the effect size of zero (i.e., 

ranged from -.0001 to .0002 and from 0 to .0003 when DIF = -0.10 and -0.15, respectively), 

and they increased obviously for the conditions with the effect size of -0.10 and -0.15. To 

be specific, when the DIF = -0.10, they ranged from .0033 to .0040 and from .0066 to .0075 

for conditions with effect sizes for the general factor mean difference of -0.1 and -0.2, 

respectively. When the DIF = -0.15, they were .0048 and .0055 for binary and polytomous 

data, respectively, in the conditions with the effect size of -0.1, and they were .0091- .0093 

and .0111- .0112 for binary and polytomous data in conditions with the effect size of -0.2.  

In summary, as shown in Figure 5 and Tables B13-B18, for a given generated 

dataset with DIF in the general factor loadings, when constraining the general factor 

loadings with DIF to be equal across groups, in comparison with the correctly specified 

model with the general factor loadings with DIF freely estimated, there was no obvious 

change in the estimation bias for the general factor mean difference for the conditions with 

the effect size of 0, and there was substantial increase in the estimation bias for the general 

factor mean difference for conditions with nonzero effect size (i.e., -0.1 or -0.2). The 

magnitude of the increase in the estimation bias for the general factor mean difference 

resulting from constraining the general factor loadings with DIF to be equal across groups 

was mainly determined by the magnitude of DIF and the effect size of the general factor 

mean difference, and it was slightly influenced by the number of categories per item. 

Controlling for the magnitude of the DIF and the number of categories per item, when the 

effect size of the general factor mean difference was -0.2, the increase in its estimation bias 

due to setting equality constraints on the general factor loadings having DIF was around 

two times that for the conditions with the effect size of -0.1.   
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In addition to the estimation bias (i.e., E (𝜃) – θ), the relative estimation bias (i.e., 

(E (𝜃) – θ) / θ) was also reported in the current study. As shown in Figure 6, in the baseline 

conditions and the conditions with the general factor loadings having DIF freely estimated, 

most of the relative estimation biases were around 0, and their maximum values could 

reach around 5% in absolute values. In comparison with the correctly specified model, 

when the DIF = -0.05, constraining the general factor loadings with DIF to be equal across 

groups resulted in around 1.6-1.8% decrease in the relative estimation bias for the general 

factor mean difference estimates; when the DIF = -0.10, the decrease was around 3.2-3.9%; 

when the DIF = -0.15, the decrease was around 4.6-4.8% and 5.5-5.6% for binary data and 

polytomous data, respectively. As indicated in Figure 6, the changes in the relative 

estimation bias for the general factor mean difference estimates due to setting equality 

constraints on general factor loadings with DIF were not substantial relative to the 

estimation bias of these estimates for the correctly specified models when the DIF = -0.05 

and -0.10, and only when DIF = -0.15, the relative estimation bias for the general factor 

mean difference estimates resulting from constraining the general factor loadings with DIF 

to be zero might need more attention. Unlike how the estimation bias of the general factor 

mean difference was influenced by its effect size, the relative estimation bias was not 

influenced by the effect size.   

The results of (relative) estimation bias for the conditions with DIF in specific 

factor loadings are shown in Figures 7 and 8 and Tables B19-B24. Similar to conditions 

with DIF in general factor loadings, the DIF in specific factor loadings had no impact on 

the estimation bias for the general factor mean difference as long as the model was correctly 

specified. When the specific factor loadings with DIF were freely estimated, the estimation  
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Figure 6 Relative Estimation Bias of the General Factor Mean in the Conditions with DIF 

in General Factor Loadings 

 

bias ranged from -.0058 to .0068 with a mean of .0003, which fell in a similar range to the 

baseline conditions and the correctly specified conditions with DIF in the general factor 

loadings, and their absolute values slightly increased as the total sample size decreased 

from 1200 to 600.  
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Figure 7 Estimation Bias of the General Factor Mean in the Conditions with DIF in 

Specific Factor Loadings 

 

After setting equality constraints on the specific factor loadings with DIF, in 

comparison with the corresponding correctly specified model, the estimation bias of the 

general factor mean difference did not change for almost all conditions when the effect size 

was zero. When the effect size of the general factor mean difference was nonzero, the 

changes in estimation bias due to setting equality constraints on specific factor loadings 

with DIF were 0, .0001, or .0002 regardless of the size of the DIF (shown in Tables B19-

B24).  
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Figure 8 Relative Estimation Bias of the General Factor Mean in the Conditions with DIF 

in Specific Factor Loadings 

 

As indicated by Figures 7 and 8, the changes in estimation bias or relative 

estimation bias resulting from setting equality constraints on the specific factor loadings 

with DIF were minimal relative to the estimation bias or the relative estimation bias for the 

correctly specified models.  

The results of estimation bias for the conditions with DIF in threshold parameters 

are shown in Figure 9 and Tables B25-B30. When the DIF was present in threshold 

parameters, a constant of 0.05, 0.10, or 0.15 was added to all the threshold parameter(s) of 



98 
 

the noninvariant items. For binary data and the 3-point scale data, the noninvariant 

threshold parameters had to be constrained to be equal for identification purpose. For the 

5-point scale data, the first two noninvariant threshold parameters for each noninvariant 

item were constrained to be equal for identification purposes and the other two noninvariant 

threshold parameters could be freely estimated. As shown in Tables B25-B30, for binary 

data and the 3-point scale data, the estimation bias of the general factor mean difference 

ranged from -.0199 to -.0123, from -.0381 to -.0286, and from -.0584 to -.0499 when the 

DIF in the threshold parameters was 0.05, 0.10, and 0.15, respectively. For the 5-point 

scale data, when two of the noninvariant threshold parameters for each item with DIF were 

freely estimated, the estimation bias of the general factor mean difference ranged from 

-.0131 to -.0099, from -.0252 to -.0203, and from -.0356 to -.0277 when the DIF in the 

threshold parameters was 0.05, 0.10, and 0.15, respectively. After constraining all 

threshold parameters with DIF to be equal for the 5-point scale data, the estimation bias of 

the general factor mean difference ranged from -.0204 to -.0180, from -.0403 to -.0343, 

and from -.0549 to .0495 when the DIF = 0.05, 0.10, and 0.15, respectively. For a given 

generated 5-point scale data with the DIF of 0.05 in threshold parameters, the changes in 

estimation bias for the general factor mean difference due to constraining more 

noninvariant threshold parameters to be equal were -.086 or -.084, -.074 or -.075, -.069 or 

-.067 when the effect size was 0, -0.1, and -0.2, respectively. When DIF was 0.10, these 

changes were -.0172 or -.0169, -.0153 or -.0151, -.0132 or -.0131 for the conditions with 

effect sizes of 0, -0.1, and -0.2, respectively; when the DIF was 0.15, they were -.0246 or 

-.0248, -.0218, -.0193 or -.0189 for the conditions with the effect size of 0, -0.1, and -0.2, 

respectively.  
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Figure 9 Estimation Bias of the General Factor Mean in the Conditions with DIF in 

Threshold Parameters 

 

 As indicated in Figure 9, the estimation biases of the general factor mean difference 

for the conditions with noninvariant threshold parameters constrained to be equal were 

negative and very substantial relative to the corresponding baseline conditions, and the 

main factor that influenced the estimation bias was the magnitude of DIF in threshold 

parameters. Other factors, such as total sample size and effect size of the general factor 

mean difference, seemed to have little influence on the estimation bias when DIF was 

present in threshold parameters. In comparison with the estimation bias of the general 
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factor mean difference in the binary data and the 3-point scale data in which all the 

noninvariant threshold parameters were constrained to be equal across groups for 

identification purposes, the estimation bias was smaller when two of the noninvariant 

threshold parameters were freely estimated for the 5-point scale data. When all 

noninvariant threshold parameters were constrained to be equal for the 5-point scale data, 

the estimation bias for the general factor mean difference became similar to those for the 

binary data and the 3-point scale data.  

 The relative estimation bias of the general factor mean difference for the conditions 

with DIF in threshold parameters is shown in Figure 10. As indicated in Figure 10, for the 

binary data and the 3-point scale data, the relative estimation bias of the general factor 

mean difference was nearly 20%, 30-40%, and 50-60% when the effect size was -0.1 and 

the DIF in the threshold parameters was 0.05, 0.10, and 0.15, respectively. Figure 10 

showed that relative estimation bias decreased somewhat when two of the noninvariant 

threshold parameters for each item with DIF were freely estimated in the 5-point scale data, 

and the magnitude of decrease depended on the magnitude of DIF. When all threshold 

parameters with DIF were constrained to be equal for the 5-point scale data, the relative 

estimation bias of the general factor mean difference became similar to those for the binary 

data and the 3-point scale data. When the effect size was -0.2, the relative estimation bias 

became around half of those for the conditions with the effect size of -0.1. 
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Figure 10 Relative Estimation Bias of the General Factor Mean in the Conditions with 

DIF in Threshold Parameters 

 

Factors Influencing the Type I Error Rate/Power 

The Type I error rate or power to detect the general factor mean difference for the 

conditions with DIF in general factor loadings are shown in Tables B13-B18 and Figure 

11.   

As shown in Tables B13 and B14, Type I error rates fell in the limits of .025 to .075 

for all conditions with DIF in general factor loadings. In the conditions with DIF in general 

factor loadings, the Type I error rates were relatively lower for the 5-point scale data 
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(ranged from .028 to .043) and relatively higher for the 3-point scale data when the total 

sample size was 600 (ranged from .060 to .075). Whether or not the general factor loadings 

with DIF constrained to be equal seemed to have no influence on the Type I error rates.  

Figure 11 indicated that the main factors influenced the power to detect the general 

factor mean difference in the conditions with DIF in general factor loadings were the total 

sample size and the effect size. As shown in Tables B13-B18, when the effect size was -

0.1, empirical powers ranged from .168 to .222 and from .294 to .381 for conditions with 

total sample size of 600 and 1200, respectively; when the effect size was -0.2, they ranged 

from .556 to .637 and from .822 to .882 for the conditions with total sample size of 600 

and 1200, respectively. In addition to the total sample size and the effect size, the number 

of categories per item might also influence the values for the power to detect the general 

factor mean difference when DIF was present in general factor loadings. Specifically, for 

a given total sample size and effect size, powers were largest for the 3-point scale data and 

smallest for the 5-point scale data in most cases.  

As indicated in Figure 5 and 11, in comparison with the correctly specified model, 

constraining the general factor loadings with DIF to be equal across groups produced more 

estimation bias in the general factor mean difference, but it had little influence on the power 

to detect the general factor mean difference.  

Type I error rates regarding the general factor mean difference estimation for the 

conditions with specific factor loadings having DIF are shown in Tables B19 and B20. 

Type I error rates fell in the limits of .025 to .075 for all conditions with DIF in specific 

factor loadings. Similar to the conditions with DIF in general factor loadings, Type I error 

rates were relatively smaller for the 5-point scale data than for the 3-point scale data when 
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the DIF was present in specific factor loadings. Also, constraining the noninvariant specific 

factor loadings to be equal seemed to have no obvious impact on the Type I error rates. 

 

Figure 11 Type I Error Rate/Power to Detect the General Factor Mean Difference in the 

Conditions with DIF in General Factor Loadings 

 

 

As shown in Figure 12, the dominant factors influencing the power to detect the 

general factor mean difference for the conditions with DIF in specific factor loadings were 

total sample size and effect size. When the effect size of the general factor mean difference 

was -0.1, the values of power ranged from .171 to .227 and from .314 to .400 for the 
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conditions with total sample size of 600 and 1200, respectively; when the effect size was -

0.2, they ranged from .571 to .642 and from .857 to .909 for the conditions with total sample 

size of 600 and 1200, respectively. For a given total sample size and effect size, in 

comparison with the conditions with DIF in general factor loadings, powers to detect the 

general factor mean difference fell in similar ranges for the conditions with DIF in specific 

factor loadings. The number of categories per item also slightly influence the power to 

detect the general factor mean difference when the DIF was present in specific factor 

loadings. For example, power seemed to be smaller for 5-point scale data than 3-point scale 

data in most cases. Also, whether the specific factor loadings with DIF were constrained 

to be equal across groups seemed to have little influence on the power to detect the general 

factor mean difference.  

Type I error rates regarding the general factor mean difference estimation for the 

conditions with DIF present in threshold parameters are shown in Tables B25 and B26. 

When the total sample size was 600, the Type I error rates fell in the limits of .025 to .075 

for the conditions with DIF in the threshold parameters of 0.05 and 0.10, and in the 5-point 

scale data with two of the noninvariant threshold parameters freely estimated, the Type I 

error rate also fell in the limits of .025 and .075 for the condition with the DIF of 0.15. 

When the total sample size was 1200, the Type I error rates fell in the limits of .025 to .075 

in the 3-point scale data for the condition with DIF in the threshold parameters of 0.05 and 

in the 5-point scale data for the conditions with DIF in the threshold parameters of 0.05 

and 0.10. Also, the Type I error rates fell in the limits of .025 to .075 seemed to be smaller 

for the 5-point scale data in comparison with those for the binary data and the 3-point scale 

data. All other Type I error rates for the conditions with DIF in threshold parameters were 
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inflated using .075 as the upper limit, and the magnitude of inflation depended on the 

magnitude of the DIF in the threshold parameters and the total sample size. Larger 

magnitude of DIF in the threshold parameters and larger total sample size were associated 

with more serious inflation of the Type I error rates regarding the latent mean difference 

estimation.    

When Type I error rates fell beyond the limits of .025 to .075, the corresponding 

power to detect the general factor mean difference cannot be appropriately interpreted, so 

only the subset of the empirical detection rates for the nonzero effect size can be interpreted 

as power when DIF was present in threshold parameters. As shown in Tables B27-B30, the 

powers were mainly determined by the total sample size and the effect size. When the effect 

size of the general factor mean difference was -0.1, powers ranged from .234 to .331 and 

from .395 to .587 for the conditions with total sample size of 600 and 1200, respectively; 

when the effect size was -0.2, they ranged from .630 to .765 and from .921 to .963 for the 

conditions with the total sample size of 600 and 1200, respectively. In comparison with the 

powers for the conditions with DIF in general factor loadings or specific factor loadings, 

the powers for conditions with DIF in threshold parameters were obviously larger for a 

given total sample size and effect size. In addition to the total sample size and the effect 

size, the magnitude of DIF in the threshold parameters and the number of categories per 

item also influenced the power to detect the general factor mean difference. To be specific, 

larger magnitudes of DIF were associated with greater power, and the power was relatively 

smaller for the 5-point scale data than that for the 3-point scale data in general.  

 



106 
 

 

Figure 12 Type I Error Rate/Power to Detect the General Factor Mean Difference in the 

Conditions with DIF in Specific Factor Loadings 

 

Estimated Variance 

Similar to the No DIF conditions, in the conditions with DIF, the main factor 

influencing the estimated variance of the general factor mean difference was the total 

sample size (shown in Tables B13-B30). When the total sample size was 600, the estimated 

variances ranged from .007 to .009; when the total sample size was 1200, they ranged 

from .003 to .005. Estimated variances for these conditions with DIF fell in similar ranges 

to those for the No DIF conditions for a given sample size. Additionally, in comparison 
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with the corresponding correctly specified model, setting equality constraints on general 

factor loadings with DIF led to a smaller estimated variance in some conditions with the 

total sample size of 600 and only a few conditions with the total sample size of 1200, and 

the difference in the estimated variance for a given generated dataset was .001. When DIF 

was present in specific factor loadings or threshold parameters, estimated variances for the 

general factor mean difference remained the same after setting (more) equality constraints 

on the noninvariant parameters in comparison with the corresponding model with fewer 

equality constraints. Also, the estimated variance for the general factor mean difference 

seemed to be smaller for the data with more categories per item in general for a given total 

sample size in some of the cases. Given the level of precision reported (rounding to the 

thousandths place), not all differences in estimated variances were reported.  

Coverage Rates of 95% Confidence Interval 

In conditions with DIF in general factor loadings or specific factor loadings, almost 

all the coverage rates of the 95% confidence interval were above .950 no matter whether 

the parameters with DIF were freely estimated or not (shown in Tables B13-B24). When 

DIF was present in threshold parameters, most of the coverage rates of the 95% confidence 

interval were above .950 when the DIF = 0.05. When the DIF in the threshold parameters 

was 0.10 and 0.15, some coverage rates of the 95% confidence interval fell below .950 due 

to the serious estimation bias, and larger total sample size usually made them drop down 

more seriously.   

 Goodness of Fit Indices 

 The means of the goodness of fit indices (i.e., CFI, WRMR, and RMSEA) for the 

conditions with DIF were shown in Tables B31-B48. 
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 Means of CFIs.  As shown in Tables B31-B42, for the correctly specified models 

with all item parameters with DIF (i.e., noninvariant general factor loadings or noninvariant 

specific factor loadings) freely estimated, the means of CFIs were .999 with only one 

exception of .998 for a condition with the total sample size of 600. The results regarding 

the means of CFIs for these correctly specified models were similar to the baseline 

conditions in which there was no DIF in item parameters and all the item parameters were 

constrained to be equal across groups in analysis. After imposing equality constraints on 

the general factor mean difference for these correctly specified models, the means of CFIs 

did not change or even increased by .001 when the effect size of the general factor mean 

difference was zero. When the effect size was -0.1, the drop of the means in CFIs resulting 

from setting equality constraints on the general factor mean difference was .001 for almost 

all the correctly specified models. Only for the conditions involving binary data in which 

DIF was present in specific factor loadings and the total sample size was 1200, the means 

of CFIs did not change when the effect size was -0.1. When the effect size of the general 

factor mean difference was -0.2, the drop of the means in CFIs resulting from setting 

equality constraints on the general factor mean difference was .003 for binary data and .004 

to .005 for polytomous data.  

 When DIF was present in general factor loadings, in comparison with the 

corresponding correctly specified model, constraining the general factor loadings with DIF 

of -0.05 to be equal across groups did not change the means of CFIs in most cases, and for 

two conditions involving binary data, they decreased by .001. When the DIF in the general 

factor loadings was -0.10, the drops of the means of CFIs due to setting equality constraints 

on the general factor loadings with DIF was .002, 0, and .001 for the binary, the 3-point 
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scale, and the 5-point scale data, respectively; when the DIF = -0.15, they decreased 

by .004, .001, and .002 for the binary, the 3-point scale, and 5-point scale data, respectively. 

In the models with general factor loadings having DIF constrained to be equal, imposing 

equality constraints on the general factor mean difference, the means of CFIs did not 

change or even increased when the effect size was zero; they decreased by .001 for some 

of the conditions with the effect size of -0.1, and they did not change or even increased for 

the rest; when the effect size was -0.2, the drops of CFIs were mostly .003 (with one of .002 

and one of .004) for binary data and mostly .004 (with a few exceptions of .003) for 

polytomous data.  

 When DIF was present in specific factor loadings, constraining the noninvariant 

specific factor loadings to be equal only decreased the means of CFIs by .001 for most of 

the conditions with DIF of -0.15 and very a few conditions with DIF of -0.10.  For the rest 

of the conditions (i.e., all conditions with DIF of -0.05, most conditions with DIF of -0.10, 

and a very few conditions with DIF = -0.15), the means of CFIs did not change due to 

setting equality constraints on the specific factor loadings with DIF. For the conditions 

with specific factor loadings having DIF constrained to be equal, after imposing equality 

constraints on the general factor mean difference, the means of CFIs did not change or even 

increased when the effect size was zero; they did not change or decreased by .001 when 

the effect size was -0.1; and when the effect size was -0.2, the drop of the means of CFIs 

was .003 or .004 for binary data and mostly .004 (with one exception of .005) for 

polytomous data.  

 Results regarding the means of CFIs for the conditions with DIF in threshold 

parameters are shown in Tables B43-B48. When the DIF was present in threshold 
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parameters, none of the models could be correctly specified in the current study because 

equality constraints had to be placed on the only threshold parameter for each item in binary 

datasets and at least two threshold parameters for each item in polytomous datasets for 

identification purposes. As shown in Tables B43-B48, setting equality constraints on the 

only threshold parameter for the binary data or at least two threshold parameters for the 

polytomous data, the means of CFIs were .999, .999 with some exceptions of .998, and 

mostly .998 with a few exceptions of .999 when the DIF in the threshold parameters was 

0.05, 0.10, and 0.15, respectively. For the 5-point scale data, after constraining more 

noninvariant threshold parameters to be equal, the means of CFIs did not change when the 

DIF = 0.05, and they decreased by .001 for most of the conditions with DIF of 0.10 and 

0.15. In the models with DIF in threshold parameters, constraining the general factor mean 

difference to be zero, the means of CFIs did not change or even increased when the effect 

size of the general factor mean difference was zero; they decreased by .001 or .002 for 

conditions with the effect size of -0.1 and by .004-.007 for conditions with the effect size 

of -0.2.  

Means of WRMRs. As shown in Tables B31-B42, when the DIF was present in 

the general factor loadings or specific factor loadings, for the correctly specified models 

with all item parameters with DIF freely estimated, the means of WRMRs ranged from .938 

to .972 and from .786 to .833 for binary and polytomous data, respectively. Additionally, 

the means of WRMRs also increased slightly as the total sample size got larger. After 

imposing equality constraints on the general factor mean difference of zero, the means of 

WRMRs ranged from .969 to 1.001 and from .837 to .896 for binary data and polytomous 

data, respectively. When the effect size was -0.1, the means of WRMRs for the constrained 
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model ranged from 1.003 to 1.065 and from .892 to 1.053 for binary data and polytomous 

data, respectively; when the effect size was -0.2, they ranged from 1.094 to 1.246 and from 

1.040 to 1.442 for binary data and polytomous data, respectively. The increase in the means 

of WRMRs due to setting equality constraints on the general factor mean difference was 

relatively most substantial for the 5-point scale data.   

When the DIF was present in general factor loadings, after constraining the general 

factor loadings with DIF of -0.05 to be equal, the means of WRMRs ranged from .995 to 

1.029 and from .812 to .857 for binary data and polytomous data, respectively; when the 

DIF = -0.10, they ranged from 1.048 to 1.120 and from .824 to .898 for binary data and 

polytomous data, respectively; when the DIF = -0.15, they ranged from 1.124 to 1.257 and 

from .853 to .967 for binary and polytomous data, respectively.  

When DIF was present in specific factor loadings, after constraining the specific 

factor loadings with DIF of -0.05 to be equal, the means of WRMRs ranged from .984 

to .994 and from .808 to .848 for binary and polytomous data, respectively; when the DIF 

= -0.10, they ranged from .992 to 1.015 and from .817 to .866 for binary data and 

polytomous data, respectively; when the DIF = -0.15, they ranged from 1.009 to 1.046 and 

from .836 to .905 for binary data and polytomous data, respectively. 

  As shown in Tables B31-B42, for a given effect size of the general factor mean 

difference, the increase in the means of WRMRs resulting from imposing equality 

constraints on the general factor mean difference in the models with noninvariant general 

factor loadings or noninvariant specific factor loadings constrained to be equal across 

groups was similar to those in the corresponding correctly specified models.  
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 When DIF of 0.05 was present in threshold parameters, setting equality constraints 

on the only threshold parameter of each item for the binary data or at least two threshold 

parameters of each item for the polytomous data, the means of WRMRs ranged from .980 

to .993 and from .785 to .843 for binary and polytomous data, respectively; when the DIF 

= 0.10, they ranged from .990 to 1.014 and from .798 to .878 for binary data and 

polytomous data, respectively; when the DIF = 0.15, they ranged from 1.007 to 1.048 and 

from .825 to .935 for binary data and polytomous data, respectively (shown in Tables B43-

B48). For a given magnitude of DIF in threshold parameters, if only constraining two 

threshold parameters of each item to be equal across groups for identification purpose, the 

means of WRMRs were smaller for the 5-point scale data than those for the 3-point scale 

data. For the 5-point scale data with DIF in threshold parameters, after constraining all 

threshold parameters to be equal, the means of WRMRs ranged from .817 to .860, 

from .844 to .910, and from .889 to .993 when the DIF = 0.05, 0.10, and 0.15, respectively. 

As shown in Tables B43-B48, for a given effect size of the general factor mean difference, 

there were not much differences of the increase in the means of WRMRs resulting from 

imposing equality constraints on the general factor mean difference between the conditions 

with DIF in threshold parameters and the conditions with DIF in general factor loadings or 

specific factor loadings. 

Means of RMSEAs. As shown in Tables B31-B42, when DIF was present in the 

general factor loadings or specific factor loadings, for the correctly specified models with 

all the item parameters with DIF freely estimated, the means of RMSEAs ranged from .007 

to .015, with their values slightly influenced by the total sample size and number of 

categories per item. Smaller sample sizes and larger number of categories per item were 
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associated with larger values of RMSEAs. When the effect size of the general factor mean 

difference was zero, the means of RMSEAs decreased after imposing equality constraints 

on the general factor mean difference in most of the cases, with very few exceptions in 

which they did not change. When the effect size of the general factor mean difference was 

nonzero, the increase in the means of RMSEAs resulting from imposing equality 

constraints on the general factor mean difference ranged from .001 to .006 and from .013 

to .023 for the conditions with effect size of -0.1 and -0.2, respectively, which was slightly 

influenced by the total sample size and the number of categories per item.  

When DIF was present in the general factor loadings, constraining noninvariant 

general factor loadings to be equal, the means of RMSEAs increased by 0 to .003, .002 

to .011, and .005 to .020 for the conditions with the DIF of -0.05, -0.10, and -0.15, 

respectively. The magnitude of the increase in the means of RMSEAs was influenced by 

the total sample size and the number of categories per item. After imposing equality 

constraints on the general factor loadings with DIF, the means of RMSEAs increased most 

substantially for the binary data. Also, larger sample sizes were associated with larger 

increases in the means of RMSEAs resulting from constraining the noninvariant general 

factor loadings to be equal. When setting equality constraints on the nonzero general factor 

mean difference, the increases in the means of RMSEAs for the conditions with 

noninvariant general factor loadings constrained to be equal were smaller than those for 

the corresponding conditions with correctly specified models in general.    

When the DIF was present in specific factor loadings, after setting equality 

constraints on these noninvariant specific factor loadings, the increase in the means of 

RMSEAs ranged from 0 to .001, from .001 to .004 and from .003 to .007 for the conditions 
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with DIF of -0.05, -0.10, and -0.15, respectively. Also, after constraining the nonzero 

general factor mean difference to be zero, the increase in the means of RMSEAs for the 

conditions with equality constraints on the specific factor loadings with DIF was slightly 

smaller than those for the corresponding conditions with correctly specified models in most 

of the cases. 

When the DIF was present in threshold parameters, setting equality constraints on 

the only threshold parameter of each item for the binary data or at least two threshold 

parameters of each item for the polytomous data, the means of RMSEAs ranged from .010 

to .014, from .011 to .017, and from .013 to .021 for the conditions with DIF of 0.05, 0.10, 

and 0.15, respectively. After constraining more noninvariant threshold parameters to be 

equal for the 5-point scale data, the means of RMSEAs increased by .001, .003 (with one 

exception of .002), and .005 (with one exception of .004) when DIF = 0.05, 0.10, and 0.15, 

respectively. When the effect size of the general factor mean difference was nonzero, the 

increase in the means of RMSEAs resulting from imposing equality constraints on the 

general factor mean difference ranged from .002 to .009 and from .016 to .024 for the 

conditions with effect sizes of -0.1 and -0.2, respectively.  
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Chapter 4: Discussion 

Overview 

In educational, psychological, and social science disciplines, bifactor models are 

increasingly applied because they often serve as the most appropriate representations for 

measurement systems in which relatively broader constructs (e.g., depression) additionally 

may have multiple, narrower facets (e.g., negative mood, social withdrawal, poor cognitive 

functioning, etc.) that should be modeled. Similarly, cognitive tests for a general domain 

such as reading comprehension may include multiple testlets, which are clusters of items 

based on common stimuli (e.g., reading passages) or text type (e.g., narrative vs. expository) 

that create additional dimensionality in the data. Despite the prevalence of bifactor data, 

only a few methodological studies focusing on multiple-group bifactor models have been 

undertaken (e.g., Fukuhara & Kamata, 2011; Jeon et al., 2011; Cai et al., 2011), and these 

studies focused on the DIF detection or item parameter recovery. Given that (latent) mean 

differences between populations are often of interest to researchers from different 

disciplines, and that for bifactor data, researchers are often interested in population 

differences in the distributions of the primary trait, the current simulation study examined 

the performance of several approaches to estimating the latent mean difference of the 

general factor for ordinal, bifactor data. 

The approaches involved in the current study varied in terms of the choice of 

analysis models (unidimensional models vs. bifactor models), estimators (the WLSMV 

estimator or the MLR estimator), and whether equality constraints were imposed on the 

item parameters with DIF. 

Results showed that bias in the general factor mean difference estimation was 

produced mainly when the model was misspecified by fitting the generated bifactor data 
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using unidimensional models or setting equality constraints on item parameters with DIF. 

Treating ordered categorical data as continuous did not yield estimation bias in the general 

factor mean difference. Although the estimation bias of the general factor mean difference 

was influenced by different analysis models to varying degrees, the most dominant factors 

that influenced Type I error rates or powers to detect the general factor mean difference 

were total sample size and effect size. As expected, the more complicated models usually 

produced less estimation bias but they also had less estimation precision, demonstrating 

the tradeoff between the estimation bias and estimated variance. 

Robustness of Latent Mean Difference Estimation under Unidimensional IRT 

Models to Multidimensional Violation 

 As stated by Reise et al. (2010), although most IRT models applied today are 

unidimensional models, strict unidimensional models rarely exist, and researchers are 

usually more interested in whether the data are sufficiently unidimensional to satisfy a 

weak form of local independence assumption. On one hand, in addition to prevalent 

applications, unidimensional models might be preferred due to their theoretical simplicity. 

On the other hand, researchers want to avoid the problems due to the violation of the 

unidimensionality assumption. Given that there are no absolute and consistent criterions to 

determine whether a dataset is sufficiently unidimensional, in single-group IRT practice, 

researchers are usually more concerned about the impact on item parameter estimates that 

may result from fitting potentially multidimensional data using a unidimensional model. 

Reise et al. (2010) proposed comparing factor loadings of a unidimensional model with the 

general factor loadings of the corresponding bifactor model to figure out whether there are 

problems in item parameter estimates due to violation of unidimensionality assumption.  
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DeMars (2006) also compared item parameters obtained from bifactor models and 

unidimensional models for generated bifactor datasets. Results from these studies indicated 

the general factor loadings (corresponding to general discrimination parameters in IRT 

models) were distorted after fitting unidimensional models to bifactor data. Also, DeMars 

(2006) pointed out the recovery of difficulty parameters did not appear to be influenced by 

fitting the generated bifactor data using a unidimensional model.  

 Similarly, in multiple-group IRT models, instead of discussing the strength or 

weakness of the criteria to determine the degree of unidmensionality, it is more important 

to understand the consequence on DIF detection or subsequent analysis such as latent mean 

comparison of the general factor resulting from fitting unidimensional models to the 

generated bifactor datasets. Fukuhara and Kamata (2011) conducted a study in which 

multiple-group bifactor data were generated with DIF in item difficulty parameters and 

analyzed using both bifactor models and unidimensional models. They found DIF could be 

better detected using bifactor models in comparison with the corresponding unidimensional 

model. In the current study, the consequence on the general factor mean difference 

estimation resulting from the violation of unidimensional assumption was the focus. 

Results showed the estimation bias for the correctly specified models (i.e., fitting the 

bifactor data using bifactor models) was around 0 in general, and that positive estimation 

bias was produced when fitting unidimensional models to the generated bifactor datasets. 

The magnitude of the increase in estimation bias of the general factor mean difference 

resulting from the violation of unidimensional assumption mainly depended on the effect 

size of the general factor mean difference and the degree of unidimensionality (i.e., the 

sizes of specific factor loadings) of the generated data in terms of ECV; it was also slightly 



118 
 

influenced by the selection of the estimator (i.e., MLR vs. WLSMV). More specifically, 

when the effect size of the general factor mean difference was 0, there was no obvious 

change in the estimation bias due to fitting the bifactor data using a unidimensional model; 

when the effect size was 0.2, the increase in the estimation bias was almost two times that 

for the conditions with the effect size of 0.1. When generating the data, the ECV was 

around .84 and .66 for the data with high degree and low degree of unidimensionality (i.e., 

less multidimensional and more multidimensional data), respectively, suggesting that 84% 

and 66% of the explained common variance in the data was attributed to the general factor. 

If fitting a unidimensional model to the generated bifactor data with nonzero effect size in 

the general factor mean difference, the absolute values of the relative bias in the general 

factor mean difference were around 2.5-5.0% for less multidimensional data, and these 

values usually reached 10-15% for more multidimensional data. The relative estimation 

bias did not appear to be influenced by the effect size of the latent mean difference.  

 For the limited-information estimation method (i.e., the WLSMV estimator) 

applied in the current study, the threshold parameters and the tetrachoric or polychoric 

correlations were estimated first either simultaneously or separately, and then a CFA model 

was fitted to the tetrachoric or polychoric correlations (Rhemtulla, Brosseau-Liard, & 

Savalei, 2012; Wirth & Edwards, 2007), so the change of the model structure 

(unidimensional model vs. bifactor model) would probably influence the model-implied 

tetrachoric or polychoric correlations by using a different set of parameter estimates. As 

mentioned previously, fitting unidimensional models to bifactor data usually made the 

factor loadings (corresponding to discrimination parameters) distorted, so it can be inferred 

that the function of the estimation bias in the general factor mean difference influenced by 



119 
 

the violation the unidimensional assumption was mainly through the distorted factor 

loadings. Note that in the current study, even for conditions with low degree of 

unidimensionality, all the specific factor loadings (i.e., 0.5) were smaller than the general 

factor loadings (i.e., 0.7). Thus, for the cases with relatively stronger specific factors, the 

distortion of the factor loadings likely would be even more serious, which would result in 

more estimation bias in the general factor mean difference.  

 In addition to estimation bias, the mean squared error (i.e., MSE) or the root mean 

square error (RMSE), the combination of the estimation accuracy and estimation precision, 

was also of great importance in evaluating an estimation procedure. As shown in the results, 

the main factor influencing estimated variances of the general factor mean difference was 

sample size. Although the increase in estimation bias of the general factor mean difference 

resulting from fitting the bifactor datasets using unidimensional models was not influenced 

obviously by the sample size, the estimation precision got worse for the conditions with 

smaller total sample sizes. Also, the results of the current study indicated that analysis with 

unidimensional models usually led to estimated variances for the general factor mean 

difference that were smaller by .001 or .002 in comparison with the corresponding bifactor 

models for the same generated dataset. These reductions in the estimated variance were 

much larger than the respective increases in the squared estimated bias (i.e., around .0006 

at maximum) due to analyzing bifactor data with unidimensional models in the research 

conditions of the current study Thus, in the current study, the consequence on the 

estimation for the general factor mean difference resulting from fitting unidimensional 

models to the generated bifactor model might be acceptable in terms of MSE, which differs 

from DeMars (2006)’s results regarding the RMSE in item parameter estimates. The 
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difference of the conclusions between the current study and DeMars’ study (2006) suggests 

that whether the consequence of fitting bifactor data with a unidimensional model was 

acceptable depends on the focal estimated parameters.  In addition, the magnitude of the 

manipulated factors might also influence these conclusions. Given the respective factors 

influencing the estimation accuracy and estimation precision of the general factor mean 

difference estimation discussed above, it can be inferred that the estimation bias resulting 

from fitting the unidimensional model to a potentially bifactor dataset might become the 

more dominant factor in determining the MSE or RMSE for the general factor mean 

difference estimation as the ECV decreases and the effect size increases.    

Estimation with Robust Maximum Likelihood vs. Categorical Variable 

Methodology for the Ordinal Bifactor Data 

 In practice, researchers often treat ordinal data as continuous for the following two 

reasons: first, some researchers are more familiar with estimation methods for continuous 

data; second, the numerical coding of the ordinal data in an ascending order makes them 

look similar to continuous data (Rhemtulla et al., 2012). However, ignoring the non-

continuity and non-normality of the ordinal data might contribute to estimation problems. 

Whether ordinal data can be treated as continuous has been explored by many researchers 

(e.g., Rhemtulla et al., 2012; Stark et al., 2006), and there is some agreement that 

continuous data estimation strategies perform as well as categorical data estimation 

strategies if the number of categories is large enough (i.e., 5 or more). Researchers also 

explored other factors that influenced the choice between the continuous variable 

methodology and categorical variable methodology for ordered-categorical data. For 

example, based on the simulation study of Rhemtulla et al. (2012), robust maximum 
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likelihood estimation might not be appropriate for the ordinal data with asymmetric 

threshold parameters. Also, researchers (e.g., Rhemtulla et al., 2012; Stark et al., 2006) 

recommended treating ordinal data with 5 or more categories as continuous when the 

sample size is small (e.g., 150 for single-group analysis or 500 for multiple-group analysis).   

 For multiple-group ordinal data, several studies were conducted to compare 

continuous and categorical estimation strategies in terms of DIF detection (e.g., Desa, 2014; 

Flowers et al., 2002; Meade & Lautenschlager, 2004; Stark et al., 2006).  There were no 

consistent conclusions regarding the performance of the continuous approach in the DIF 

detection from these simulation studies. Some researchers (e.g., Desa, 2014; Meade & 

Lautenschlager, 2004) pointed out that the continuous approach using ML or MLR 

estimation was unable to correctly detect the DIF in threshold parameters because there 

were not exact corresponding parameters in continuous CFA models for the threshold 

parameters, while some other researchers (Stark et al., 2006) showed that continuous CFA 

model with the ML estimator performed similarly in detecting DIF in both loading 

parameters and threshold parameters as the IRT model.  

 In the current simulation study, however, DIF detection was not the focus. 

Regarding the estimation bias of the general factor mean difference, both the categorical 

approach with the WLSMV estimator and the continuous approach with the MLR estimator 

performed acceptably as long as the model was correctly specified using bifactor models. 

When the generated more multidimensional data (i.e., specific factor loadings = 0.5) was 

fitted with unidimensional models, large estimation bias in the general factor mean 

difference was produced for both the MLR estimator and the WLSMV estimators, but the 
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estimation bias was smaller when implementing the MLR estimator than that when 

implementing the WLSMV estimator.  

 As indicated in the results, the Type I error rate and power to detect the general 

factor mean difference were slightly influenced by the selection of between the Satorra-

Bentler scaled chi-square difference test for MLR estimator and the DIFFTEST for the 

WLSMV estimator. More specially, for the 3-point scale data and the 5-point scale data, 

the Type I error rate or the power obtained through the Satorra-Bentler scaled chi-square 

difference test for the MLR estimator seemed to be a little smaller than that obtained 

through the DIFFTEST for the WLSMV estimator in general. 

 In summary, in order to obtain higher power to detect the general factor mean 

difference, the WLSMV estimator was recommended over the MLR estimator although 

the improvement was limited. The choice between the MLR estimator and the WLSMV 

estimator had no substantial influence on the estimation accuracy of the general factor 

mean difference except in the severe misspecification conditions. Inconsistent with our 

expectations, total sample size (i.e., 600 or 1200) and number of categories per item (i.e., 

3 or 5) seemed to have no influence in the preference between the MLR estimator and the 

WLSMV estimator.    

Goodness of Fit Indices for the No DIF Conditions 

 Previous studies (e.g., Chen, 2007; Cheung & Rensvold, 2002) have shown that the 

change of goodness of fit indices can be applied for testing different levels of measurement 

invariance. In the current study, the means of CFI, WRMR/SRMR and RMSEA were 

reported for each of the analysis models, but changes in goodness of fit indices per se were 

not evaluated. The results revealed that all the goodness of fit indices (i.e., CFI, 
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WRMR/SRMR, RMSEA) suggested nearly perfect fit when bifactor models fit to the 

generated bifactor data except that the means of WRMRs were a little bit larger than 1 for 

some conditions involving binary data. Further, the selection of the estimator (i.e., the MLR 

estimator or the WLSMV estimator) had little influence on the model fit reflected by these 

indices if the model was correctly specified using bifactor models.  

 Imposing equality constraint on the general factor mean difference of zero, the 

means of CFIs or RMSEAs did not change or suggested a better model fit, while the means 

of SRMRs and WRMRs increased a little bit. When the effect size was nonzero, all the 

means of these goodness of fit indices indicated a poorer model fit after constraining the 

general factor mean difference to be zero in general, but the degree of changes varied for 

these indices.  

To be specific, the reductions in means of CFIs due to constraining the nonzero 

general factor mean difference to be zero were the minimal (i.e., less than .01 even when 

the effect size of the general factor mean difference was -0.2), and they were especially 

small when the MLR estimator was applied (i.e., .001 when the effect size was -0.2 and 0 

in most of the cases when the effect size was -0.1), so CFIs might not be sensitive for 

determining the significance of the nonzero effect size for the general factor mean 

difference in bifactor models.   

The WRMRs seemed to be most sensitive to the nonzero effect size of the general 

factor mean difference when it was constrained to be zero in terms of both the changes of 

the mean values (i.e., around 0.1-0.2 and 0.2-0.6 for the effect size of -0.1 and -0.2) and 

the absolute mean values (i.e., larger than 0.9 when the effect size was -0.1 and larger than 

1 when the effect size was -0.2) for polytomous data, but it should be noted that the means 
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of WRMRs also increased a little bit when constraining to zero the latent mean difference 

with effect size  of zero. Another weakness of the WRMRs was that both their changes in 

means and their absolute values in means were influenced by the data generation conditions 

such as the sample size, the number of categories per item, and even the degree of 

unidimensionality.  

The increase in the means of SRMRs resulting from constraining the general factor 

mean difference of -0.1 to be zero was just a little bit larger than that due to constraining 

to zero the general factor mean difference with effect size of zero. When constraining the 

general factor mean difference of -0.2 to be zero, the increase in the means of SRMRs 

became obvious (i.e., around 0.01), but the absolute values for the means of SRMRs still 

suggested very good fit. 

The changes in the means of RMSEAs were somewhat sensitive to the nonzero 

effect size of the general factor mean difference when the WLSMV estimator was applied 

(i.e., .002-.006 and .013-.025 for effect size of -0.1 and -0.2, respectively), and they did not 

provide much information in detecting the nonzero effect size when the MLR estimator 

was applied (0-.001 and .002-.005 for effect size of -0.1 and -0.2). Thus, when the WLSMV 

estimator was applied, the goodness of fit indices (i.e., CFI, WRMR, RMSEA) tended to 

be more sensitive in detecting the nonzero effect size of the general factor mean difference 

for the bifactor models in comparison with those for the conditions with the MLR estimator 

used (i.e., CFI, SRMR, RMSEA).  

In the No DIF conditions, all the goodness of fit indices (i.e., CFI, WRMR/SRMR, 

RMSEA) were very sensitive to model misspecification of fitting the unidimensional 

models to the generated bifactor data, and the decreases in the means of CFIs were 
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especially substantial when the MLR estimator was applied. However, CFIs and RMSEAs 

cannot provide any help in detecting the nonzero effect size of the general factor mean 

difference in unidimensional models because their means did not change obviously or even 

suggested a better fit after imposing equality constraints between groups on the general 

factor mean difference of -0.1 or -0.2. Thus, researchers should use caution when using the 

change of goodness of fit indices (i.e., CFI or RMSEA) for comparing model fits if the less 

constrained model was already misspecified.   

The Impact of DIF on the General Factor Mean Difference Estimation in 

Bifactor Models 

Although it is ideal to conduct latent mean comparisons based only on the invariant 

items, previous simulation studies have suggested that perfect recovery of the DIF was hard 

to achieve with commonly applied DIF detection methods, especially when the magnitude 

of the DIF or the sample size was not large enough (e.g., Narayanan & Swaminathan, 1996; 

Sweeney, 1996). Consistent with results from previous studies (e.g., Hancock et al., 2000; 

Yang, 2008), when the item parameters with DIF were freely estimated, the estimation 

accuracy of the latent mean difference was not adversely affected by the DIF; when failing 

to account for DIF, more estimation bias would be produced in comparison with the 

correctly specified model. Different from previous simulation studies (e.g., Beuckelaer & 

Swinnen, 2018) in which the impact of ignoring noninvariance on latent mean comparisons 

focused on models with simple structures, this study sought to evaluate estimation of the 

general factor mean difference within bifactor models with DIF in different item 

parameters. I found that the extent of impact of failing to account for DIF on estimation of 
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the general factor mean difference largely depended on the type of parameters generated 

to have DIF.     

To be specific, as shown in the results, when the DIF was present in general factor 

loadings, in comparison with the No DIF conditions, there was no more estimation bias of 

the general factor mean difference produced if the general factor loadings with DIF were 

freely estimated. In comparison with this corresponding correctly specified model, when 

the general factor loadings with DIF were constrained to be equal in the analysis model, 

the increase in the estimation bias was positive and substantial for conditions with nonzero 

effect sizes, but no increase was observed when the effect size was zero. The increase in 

the estimation bias resulting from setting equality constraints on the general factor loadings 

with DIF for the conditions with effect size of -0.2 was about two times that for the 

conditions with effect size of -0.1; the increase in the estimation bias for the conditions 

with DIF magnitude of -0.10 and -0.15 was about 2 or 3 times that for the conditions with 

DIF magnitude of -0.05.  

To calculate the relative estimation bias, the estimation bias was divided by the true 

parameter value, and therefore, the relative estimation bias was only influenced by the 

magnitude of DIF. For the misspecified conditions with noninvariant general factor 

loadings constrained to be equal across groups, the absolute values of the relative 

estimation bias for the general factor mean difference were around 5% when the magnitude 

of DIF was -0.15;  they may be regarded as negligible for conditions with smaller DIF.  

When the same degree of DIF was present in specific factor loadings, there was no 

more estimation bias produced than in the comparable No DIF conditions regardless of 

whether the specific factor loadings with DIF were freely estimated or not. This suggests 
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that setting equality constraints on the noninvariant specific factor loadings had little 

influence on the estimation bias of the general factor mean difference.  

Also for DIF present in threshold parameters comparable to that present for factor 

loadings, the estimation bias of the general factor mean difference became very substantial 

even when the magnitude of DIF was 0.05. When generating the data, for the items with 

DIF in threshold parameters, a constant (i.e., 0.05, 0.10, or 0.15) was added to all threshold 

parameters. It worth noting that the only threshold parameter per item for the binary data 

and two of the threshold parameters per item for the polytomous data needed to be 

constrained to be equal between groups for identification purposes. Thus, in practice, even 

if DIF in threshold parameters was correctly detected, some threshold parameters with DIF 

had to be constrained to be equal to identify the model in multiple-group categorical CFA 

models. In the current study, all threshold parameters with DIF had to be constrained to be 

equal for the binary data and the 3-point scale data; for the 5-point scale data, half of the 

threshold parameters with DIF had to be constrained to be equal and the other half were 

either freely estimated or constrained to be equal depended on different research conditions.  

The results showed that the magnitude of DIF was the main factor influencing the 

estimation bias of the general factor mean difference resulting from setting equality 

constraints on the threshold parameters with DIF. When the magnitude of DIF in the 

threshold parameters was 0.10 or 0.15, the estimation bias in the general factor mean 

difference was around 2 or 3 times that for the conditions with DIF magnitude of 0.05, 

respectively, and all the estimation bias was substantially negative. For a given magnitude 

of DIF in threshold parameters, the estimation bias of the general factor mean difference 

resulting from constraining the noninvariant threshold parameters to be equal was similar 
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across all the effect sizes (i.e., 0, -0.1, or -0.2) and datasets with different number of 

categories per item as long as all the noninvariant threshold parameters were constrained 

to be equal. For the 5-point scale data, when freely estimating half of the threshold 

parameters with DIF, there was an obvious decrease in the estimation bias in comparison 

with the conditions with all the noninvariant threshold parameters were constrained to be 

equal.  

When the effect size was -0.1, the values of the relative estimation bias of the 

general factor mean difference resulting from setting equality constraints on the 

noninvariant threshold parameters were nearly 20%, 30-40%, and 50-60% for DIFs of 0.05, 

0.10, and 0.15, respectively, and they reduced by half when the effect size was -0.2. In 

general, even a very small DIF in the threshold parameters made the estimation bias of the 

general factor mean difference substantial. To illustrate conceptually how small the 

difference in response frequencies might be for the DIF of 0.05 in threshold parameters, 

consider an example for the 3-point scale data. In the reference group, the threshold 

parameters were -0.5 and 0.5, suggesting that about 31%, 38%, and 31% of the normally 

distributed latent response variates (M = 0, SD = 1) fell in categories 1, 2, and 3, 

respectively. If the magnitude of DIF was 0.05, the threshold parameters for the 

noninvariant items in the focal group would be -0.45 and 0.55, suggesting that about 33%, 

38%, and 29% of the normally distributed latent response variates (M = 0, SD = 1) fell in 

each of the three categories when the mean difference in latent response variates was not 

considered. If constraining the threshold parameters with DIF to be equal, the falsely 

estimated threshold parameters would influence the estimation of the mean for the latent 
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response variates in the focal group, which would further influence the estimation of the 

general factor mean difference.  

In the current study, the DIF was manipulated in general factor loadings, specific 

factor loadings, and threshold parameters. If corresponding to the item parameters in 

GRMs using Equation 16, when the DIF of a negative value (i.e., -0.05, -0.10, or -0.15) 

was present in the general factor loading for an item, this item would have relatively lower 

ability to discriminate individuals’ differences in the general factor for the focal group in 

comparison with the reference group; its specific factor discrimination parameter and item 

intercept also shifted accordingly. Similarly, when the DIF of a negative value (i.e., -0.05, 

-0.10, or -0.15) was present in the specific factor loading for an item, this item would have 

relatively lower ability to discriminate individuals’ differences in the specific factor for the 

focal group in comparison with the reference group; its general factor discrimination 

parameter and item intercept also shifted accordingly. With respect to the DIF in threshold 

parameters, a positive value (i.e., 0.05, 0.10, or 0.15) was added to each of the threshold 

parameters for the chosen noninvariant items in the focal group, suggesting these items 

were relatively more difficult for the examinees in the focal group. The effect size of the 

general factor mean difference was manipulated as 0, -0.1, or -0.2. The negative values in 

the effect size suggested the focal group’s overall performance in the general factor were 

worse than the reference group’s performance. As shown above, the positive estimation 

bias for the general factor mean difference with nonzero effect size produced by setting 

equality constraints on the general factor loadings with DIF means that the absolute general 

factor mean difference was underestimated after constraining the noninvariant general 

factor loadings to be equal. The negative estimation bias for the general factor mean 
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difference resulting from setting equality constraints on the threshold parameters with DIF 

means that the absolute general factor mean difference was overestimated after 

constraining the noninvariant threshold parameters to be equal.  

With respect to the Type I error rate or power to detect the general factor mean 

difference for bifactor models in the conditions with DIF, DIF in factor loadings did not 

influence the values of the Type I error rate or power no matter whether the noninvariant 

loadings were freely estimated or not. However, when DIF was present in threshold 

parameters, Type I error rates were inflated in many conditions and, accordingly, the 

corresponding power could not be appropriately interpreted. Even the powers for 

conditions in which their corresponding Type I error rates fell in the designated limits 

(i.e., .025-0.075)  were still obviously larger than corresponding baseline conditions in 

which no DIF was simulated, and they were influenced by the magnitude of DIF. Thus, 

researchers should be cautious when using significance tests for the general factor mean 

difference in bifactor models when there was DIF in threshold parameters.  

Goodness of Fit Indices for the Conditions with DIF 

 The results showed that the performance of the goodness of fit indices (i.e., CFI, 

WRMR, RMSEA) for the correctly specified models with noninvariant item parameters 

freely estimated was similar to that for the corresponding baseline conditions discussed 

earlier. None of these fit indices seemed to worsen obviously, on average, when incorrect 

equality constraints were imposed on the item parameters with DIF, which suggested there 

may be difficulty in detecting the DIF using goodness of fit indices and incremental 

changes in these indices for multiple-group, bifactor, ordered-categorical CFA models.  
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Among these indices, the CFIs were least sensitive to the model misspecification 

due to ignoring the DIF. The smallest mean CFI among all the conditions with DIF 

was .995, assuming the general factor mean difference was freely estimated, meaning the 

decrease in the mean CFI cannot exceed .005 regardless of the type of item parameters 

with DIF and the magnitude of DIF.  

The increase in the means of WRMRs resulting from setting equality constraints on 

noninvariant item parameters seemed to be relatively obvious, but it should be noted that 

the means of WRMRs would typically increase if the model became more constrained, and 

that the changes in the means of WRMRs were influenced by data generation conditions 

unrelated to the magnitude of DIF. As mentioned previously, values of WRMRs less than 

0.9 or 1.0 suggest a good fit (Yu & Muthén, 2002; Yu, 2002). The absolute values of the 

means of WRMRs for binary data fell between 0.9 and 1 for correctly specified models 

and they were larger than 1 in some of the conditions when the DIF was ignored; for 

polytomous data, they were usually less than 0.9 even when the noninvariant item 

parameters were constrained to be equal, and they only fell between 0.9 and 1for some of 

the conditions with large DIF (usually 0.15) ignored and the total sample size of 1200.  

The means of RMSEAs usually increased as the noninvariant item parameters were 

constrained to be equal, however, the largest mean of RMSEAs was .028 among all the 

conditions with DIF if the general factor mean difference was freely estimated, suggesting 

the increase in the means of RMSEAs due to constraining noninvariant item parameters to 

be equal cannot be very large. Among all the conditions with DIF, the RMSEAs were 

relatively most sensitive to setting equality constraints on the general factor loadings with 

DIF for binary data. 
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In summary, although constraining item parameters with DIF to be equal across 

groups might produce a different degree of estimation bias for the general factor mean 

difference, the goodness of fit indices for each model usually suggested good model fit 

regardless of the magnitude of estimation bias. As pointed out by Reise (2012), it might 

not be appropriate to use goodness of fit indices for linear CFA models to evaluate non-

linear IRT models because they are estimated based on different assumptions. So a reason 

that these goodness of fit indices applied in the current study were not very sensitive to 

noninvariance of item parameters for ordinal bifactor data might be that they were 

developed for linear models rather than non-linear models.  

Limitations and Future Studies 

First, when exploring the impact of fitting unidimensional models to bifactor data 

on the general factor mean difference estimation, the absolute value for the general factor 

mean difference was underestimated due to the model misspecification. According to 

analysis of the estimation procedure and results from previous simulation studies (e.g., 

DeMars, 2006; Reise et al., 2010), it was inferred that the estimation bias in the general 

factor mean difference was produced through the distorted factor loading estimates 

resulting from violation of the unidimensionality assumption. However, there were no 

consistent conclusions about the direction of the distortion of the factor loading estimates, 

so additional data generation conditions—such as the number of testlets, the number of 

items within each testlet, the correlations among the testlets, and the loadings on each 

testlet—might be informative for understanding how the factor loadings are distorted due 

to fitting unidimensional models to bifactor data. 
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Second, in the current study, the estimation of the general factor mean difference 

was robust to fitting unidimensional models to bifactor data in terms of MSE (i.e., sum of 

the squared estimation bias and estimated variance). However, as revealed in the results, 

larger effect size of the general factor and lower degree of unidimensionality would result 

in larger estimation bias, while estimated variance was usually determined by the sample 

size and the degrees of freedom, so the estimation bias still has the potential to increase 

while holding the estimated variance constant. In the future studies, more levels of the 

effect size and the degree of unidimensionality could be included to provide a more 

complete picture about when the consequence of fitting unidimensional models to bifactor 

data on the general factor mean difference estimation becomes unacceptable.  

Third, the study of Rhemtulla et al. (2012) indicated that the continuous approach 

(e.g., the MLR estimator) might not be appropriate for the ordinal data with asymmetrical 

threshold parameters. In this study, when exploring the impact of treating ordinal data as 

continuous on the general factor mean difference, all the threshold parameters were 

symmetrically distributed, and no obvious impact was found. In the future, to further 

explore this topic, the degree of symmetry for the threshold parameters might be 

manipulated.    

Fourth, although item parameters in categorical CFAs and those in 2PL Models or 

GRMs can be converted to each other according to Equation 16, the shift in a given type 

of item parameter within one framework (e.g., CFA framework, as in this study) might lead 

to changes in different types of item parameters within the other framework (e.g., IRT 

framework). For example, for a given item, the DIF in the general factor loading for a 

bifactor CFA model corresponds to the main DIF in its general factor discrimination 
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parameter and also some changes in its specific factor discrimination parameter and item 

intercept for the corresponding bifactor GRM. Conversely, the DIF in the general factor 

discrimination parameter in a bifactor GRM corresponds to the main DIF in its general 

factor loading and also some changes in its specific factor loading and threshold parameter 

in the corresponding bifactor CFA. In the future study, the DIF can be manipulated in item 

parameters within the IRT framework to explore whether consistent conclusions regarding 

the general factor mean difference estimation could be made.  

Fifth, the goodness of fit indices might provide supplemental information to 

significance tests in the process of evaluating differences in the general factor mean. In the 

current study, the means of several goodness of fit indices (i.e., CFI, WRMR/SRMR, 

RMSEA) were reported to provide some general sense of the sensitivity of these indices to 

the general factor mean difference under varied conditions. Incremental changes in these 

indices were not computed for each replicate dataset, which would be required to determine 

whether particular cutoffs are useful aids for decisions regarding the tenability of 

constraints.  

Finally, to estimate the general factor mean difference in a bifactor model, at least 

one of the specific factor mean differences must be constrained to be zero, and others can 

be either freely estimated or constrained to be zero. In the current study, only the general 

factor mean difference was of interest, so all the specific factor means were constrained to 

be zero in both groups. However, in realistic situations, although researchers are usually 

most interested in the latent mean difference in the general factor when applying bifactor 

models, they might also want to estimate the specific factor mean differences at the same 

time. In these situations, they may freely estimate one or more specific factor mean 



135 
 

differences of interest. The choice of the specific factor(s) with the mean(s) constrained to 

be zero in the focal group might influence the latent mean difference estimation for both 

the general factor and other specific factors. Thus, the robustness of the general factor mean 

difference estimation to the choice of referent specific factors could be explored in the 

future.   

Significance and Conclusions 

Despite the prevalence and popularity of bifactor models, methodological issues in 

the estimation of multiple-group bifactor models have not been well studied. Different from 

the very few simulation studies regarding multiple-group bifactor models that focused on 

the DIF detection and item parameter recovery (e.g., Cai et al., 2011; Fukuhara & Kamata, 

2011; Jeon et al., 2011), this study systematically explored factors that might influence the 

estimation and testing of the general factor mean difference for ordinal bifactor data. 

In practice, ordinal bifactor data are often fitted with unidimensional models 

because consistent and absolute criteria to determine the degree of unidimensionality are 

lacking. Also, unidimensional models are preferred sometimes due to their theoretical 

simplicity, so researchers might assume a unidimensional data structure unless strong 

multidimensional evidence is found. In this study, I found that increase in the estimation 

bias of the general factor mean difference resulting from fitting unidimensional models to 

bifactor data was substantial (i.e., the absolute values of relative estimation bias were 

around 10-15%) when 66% of the explained common variance among items contributed to 

the general factor. However, the largest increase in squared estimation bias was still less 

than the decrease in estimated variance when fitting unidimensional models to bifactor data 

in the research conditions of the current study. Given the findings that the increase in 
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estimation bias grew by the same factor as the increase in effect size and that the estimation 

bias increased substantially as the degree of unidimensionality decreased, it would be 

expected that the unidimensional model might not be favored in terms of mean square error 

(i.e., MSE) as the absolute effect size of the general factor mean difference increases 

beyond  0.2 and the explained common variance among items contributed to the general 

factor decreases (i.e., less than 0.66).  

According to previous simulation studies (e.g., Rhemtulla et al., 2012; Stark et al., 

2006), the number of categories per item and sample size might influence whether it is 

appropriate to treat ordinal data as continuous. However, results of the current study 

revealed that the choice between the continuous approach (i.e., the MLR estimator) and the 

categorical approach (i.e., the WLSMV estimator) had a small influence on power and no 

obvious impact on estimation accuracy as long as there were no severe model 

misspecifications in the general factor mean difference estimation for the 3-point and 5-

point scale data for total sample sizes of 600 and 1200.  

   Given that the DIF with relatively small magnitudes such as those in the current 

study may not be perfectly recovered in applied data analysis, the impact of constraining 

the noninvariant item parameters to be equal on the general factor mean difference 

estimation was also explored. It could be concluded from the current study that (1) when 

the effect size of the general factor mean difference was zero, the DIF in factor loadings 

had no impact on estimation for the general factor mean difference no matter whether the 

noninvariant loadings were freely estimated or constrained to be equal; (2) for the 

conditions with nonzero effect size of the general factor mean difference, ignoring the fact 

that some items did not discriminate examinees’ performance in the general factor in the 
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focal group as well as what they did in the reference group would result in underestimation 

of the absolute difference in the general factor mean; (3)  the estimation bias for the general 

factor mean difference resulting from setting equality constraints on the noninvariant 

general factor loadings increases by the same factor as that multiplied by the effect size or 

the magnitude of DIF; (4) the estimation of the general factor mean difference was 

somewhat robust to ignoring the DIF in general factor loadings in terms of estimation bias, 

given that the relative estimation bias was around 5% when the DIF= -0.15; (5) ignoring 

the differences in discrimination ability in the specific factors between groups would not 

bring in any bias in the estimation for the general factor mean difference, which means that 

the general factor mean difference estimation was completely robust to ignoring the DIF 

in specific factor loadings;  (6) ignoring the fact that some items favored the reference 

group over the focal group would substantially overestimate the absolute value of the 

general factor mean difference, which means that the general factor mean difference 

estimation was not robust to the DIF in the threshold parameters; (7) for a given magnitude 

of DIF, the impact of constraining noninvariant threshold parameters on the estimation bias 

was similar across all effect sizes, including zero; and (8) for items with more categories 

(i.e., 5), freeing as many noninvariant threshold parameters as possible would somewhat 

reduce the estimation bias of the general factor mean difference. 

In the current study, the dominant factors influencing the Type I error rate and 

power to detect the general factor mean difference were total sample size and effect size of 

the general factor mean difference. The Type I error rates fell in the designated limit of 

0.025 to 0.075 in all conditions with no DIF or DIF in factor loadings, and they fell beyond 

this limit for many conditions with DIF in threshold parameters.  
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Finally, this study informs recommendations for applied researchers seeking to 

examine the general factor mean difference in ordinal, bifactor data. First, when 

multidimensionality is suspected but a unidimensional solution is preferred, it is important 

to examine the degree of unidimensionality and the effect size of the general factor mean 

difference. If the ECV is not very small (i.e., larger than 0.66) and the effect size is not 

very large (i.e., smaller than 0.2), it might be acceptable to fit the potential bifactor model 

with a unidimensional model. Second, if we are interested in the general factor mean 

difference for bifactor polytomous data, either the MLR estimator or the WLSMV 

estimator may be used, although it should be noted that there are not consistent opinions in 

the literature regarding whether these two estimators could detect DIF similarly (e.g., Desa, 

2014; Meade & Lautenschlager, 2004; Stark et al., 2006). Third, DIF in threshold 

parameters cannot be completely detected using multiple-group categorical CFA models 

because one or two threshold parameters per item must be constrained to be equal to 

identify the model. Given that ignoring DIF in threshold parameters would yield substantial 

bias in the general factor mean difference estimate, I recommend examining the DIF in 

item intercept parameters within IRT framework before conducting the latent mean 

comparison of the general factor. If DIF is found in threshold parameters, it might not be 

appropriate to examine the general factor mean difference using multiple-group categorical 

CFA models because noninvariant threshold parameters may need to be constrained to be 

equal for identification purposes. Also, in this situation, the significance test of the general 

factor mean difference might not be reliable due to potentially large estimation bias. Fourth, 

given that the general factor difference estimation was somewhat robust to ignoring DIF in 

general factor loadings and completely robust to ignoring DIF in specific factor loadings, 
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constraining the general factor loadings with smaller DIF (i.e., less than 0.15) or 

constraining the specific factor loadings with any size of DIF might be acceptable if 

researchers want to estimate the general factor mean difference based on information from 

more observed variables. 
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Table 1A  

Simulation Studies on Factors Influencing Type I Error Rates in Detecting DIF  

 

 

Reference 

Data 

Generation 

Factors 

Data Analysis Main Results 

Cohen, Kim 

& Wollack 

(1996) 

a) model type 

(2PL or 3PL 

IRT model); b) 

sample size  

a) correctly specifying 

the models; b) 

misspecifying the 3PL 

model by fixing the 

pseudo-guessing 

parameter to the 

average value of the 

pseudo-guessing 

parameters of all the 

items 

a) the type I error rates were close 

to the nominal alpha level for the 

2PL model conditions; b) the type 

I error rates were inflated for both 

correctly specified 3PL models 

and misspecified 3PL models, 

especially when the nominal alpha 

level was at .0005 to .005; c) 

sample size does not influence 

type I error rates 

Bolt (2002) 

a) model type 

(GRM or 

alternative 

models to 

GRM); b) 

sample size; c) 

the latent mean 

difference in 

ability 

applying different DIF 

detection methods 

(LR-GRM, DFIT-

GRM or Poly-

SIBTEST) 

a) slight misspecification of the 

model would lead to large 

inflation of Type I error rates 

when applying the LR-GRM, and 

such inflation was especially 

severe when the sample size was 

large; b) there were less Type I 

error rates inflation due to model 

misspecification if using DFIT-

GRM; c) Type I error rates were 

unaffected by the generating 

models using Poly-SIBTEST 

Ankenmann, 

Witt & 

Dunbar 

(1999) 

a) sample size; 

b) the latent 

mean difference 

in ability; c) 

parameter 

values for the 

studied item  

applying different DIF 

detection methods (LR 

tests or Mantel 

procedure) 

a) both LR tests and Mantel 

procedure showed good control 

over Type I error rates when the 

distributions of ability parameters 

were identical across groups ; b) 

when the latent mean difference in 

ability was nonzero, LR tests still 

maintained acceptable control 

over Type I error rates whereas 

the Mantel procedure lacked 

control over Type I error rates, 

and the inflation got worse for 

larger sample size and higher 

discrimination parameter values 



151 
 

Table 1A Continued 

 

 

 

 

 

 

Reference 
Data Generation 

Factors 
Data Analysis Main Results 

Stark, 

Chernyshenko 

& Drasgow 

(2006) 

a) amount of 

DIF; b) Type of 

DIF when 

present; c) the 

latent mean 

difference in 

ability; d) 

number of 

response 

categories; e) 

sample size  

a) applying different 

DIF detection methods 

(IRT-LR or chi-square 

difference test under the 

traditional CFA); b) 

applying different 

baseline model (free 

baseline model or 

constrained baseline 

model); c) applying 

different criterion of the 

p value (.05 or 
Bonferroni corrected) 

a) when using the 

constrained-baseline model, 

both IRT-LR and chi-square 

difference tests under CFA 

showed substantial Type I 

error inflation unless no DIF 

existed in the fully 

constrained model; b) the 

Type I error inflation could 

be reduced by applying 

Bonferroni corrected critical 

p value; c) larger sample size 

was slightly related to larger 

Type I error rates; d) the 

latent mean difference in 

ability did not substantially 

influence the Type I error rate  

Wang & Yeh 

(2003) 

a) model type 

(2PL, 3PL or 

GRM); b) 

percentage of 

DIF; c) DIF 

direction (one 

sided or both 

sided)  

applying LR tests with 

different anchor item 

methods (all-other, 1-

item constant, 4-item 

constant or 10-item 

constant) 

a) when conducting LR tests 

using all other items as 

anchor, Type I error inflation 

occurred when the percentage 

of items with DIF reached 

12% under the 3PL model 

and 20% under the 2PL 

model and the GRM for the 

conditions in one-side 

conditions; b) the 

performance of the 

constrained baseline model in 

controlling over Type I error 

rates was determined by 

average signed area; c) all the 

three constant methods had 

good control over Type I 

error rates 
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Table 2A  

Simulation Studies on the Factors Influencing Power in Detecting DIF  

 

 

 

Reference 
Data Generation 

Factors 
Data Analysis Main Results 

Sweeney 

(1996) 

a) item parameter 

values; b) amount 

of DIF; c) latent 

mean difference in 

ability; d) ratio of 

sample size 

between groups  

applying LR 

tests for all the 

conditions 

a)  the item with larger effect size of 

DIF was more easily detected as 

showing DIF; b)  the magnitude of 

item parameters influenced the power 

to detect DIF for them; c) for a given 

total sample size, the power to detect 

DIF was higher for equal sample size 

conditions than the conditions with 

much fewer examinees in the focal 

group ; d) the power to detect DIF 

depended on the differences between 

the IRFs for the reference group and 

the IRFs for the focal group and the 

number of focal group examinees 

located on the latent ability 

continuum where the IRFs differ 

across groups 

Bolt (2002) 

a) model type 

(GRM or 

alternative models 

to GRM); b) 

sample size; c) the 

latent mean 

difference in ability 

applying 

different DIF 

detection 

methods (LR-

GRM, DFIT-

GRM or Poly-

SIBTEST) 

a) sample size was the main factor 

influencing power; b) power was not 

influenced by the generating models 

obviously; c) there was a slight 

reduction in power when the latent 

mean difference was nonzero if using 

DFIT-GRM; d) in comparison with 

Poly-SIBTEST, LR-GRM and DFIT-

GRM showed greater power in 

detecting DIF  

Ankenmann, 

Witt & 

Dunbar 

(1999) 

a) sample size; b) 

the latent mean 

difference in 

ability; c) 

parameter values 

for the studied 

item; d) the pattern 

of DIF in threshold 

parameters 

a) applying 

different DIF 

detection 

methods (LR 

tests or Mantel 

procedure) 

a) the power was influenced by the 

sample size for both of the methods; 

b) the power was higher for larger 

discrimination parameter conditions; 

c)  Mantel procedure showed greater 

power than LR tests for the constant 

DIF pattern conditions when the 

person ability distributions were 

identical across groups; d) for the 

balanced DIF pattern conditions, LR 

tests showed much higher power than 

Mantel procedure 
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Table 2A Continued 

 

 

 

 

 

 

 

Reference 
Data Generation 

Factors 
Data Analysis Main Results 

Stark, 

Chernyshenko 

& Drasgow 

(2006) 

a) amount of 

DIF; b) Type of 

DIF when 

present; c) the 

latent mean 

difference in 

ability; d) 

number of 

response 

categories; e) 

sample size  

a) applying different 

DIF detection methods 

(IRT-LR or chi-square 

difference test under the 

traditional CFA); b) 

applying different 

baseline model (free 

baseline model or 

constrained baseline 

model); c) applying 

different criterion of the 

p value (.05 or 

Bonferroni corrected) 

a) perfect detection was 

achieved for all large DIF 

conditions; b) sample sizes, 

analysis methods and 

baseline models influenced 

power for small DIF 

conditions; c)  Bonferroni 

corrected critical p value 

reduced power as well; d) the 

increase in the number of 

categories improved accuracy 

of DIF detection using 

traditional CFA models; e) 

for small sample sizes, 

traditional CFA models 

performed better than IRT in 

power to detect DIF; f) the 

free-baseline models 

performed better than the 

constrained-baseline models 

for both LR tests under IRT 

models and chi-squire 

difference tests under CFA 

models  

Wang & Yeh 

(2003) 

a) model type 

(2PL, 3PL or 

GRM); b) 

percentage of 

DIF; c) DIF 

direction (one 

sided or both 

sided)  

applying LR tests with 

different anchor item 

methods (all-other, 1-

item constant, 4-item 

constant or 10-item 

constant) 

a)  using 1 anchor items 

could show acceptable 

power ; b) using 4 or 10 

anchor items led to higher 

power 
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