
The Effect of Leading-Edge Geometry on the Induced Drag of a Finite Wing  

by 

Che Wei Ou 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  

Master of Science  

 

 

 

 

 

 

 

 

 

 

Approved April 2019 by the 

Graduate Supervisory Committee:  

 

Timothy Takahashi, Chair 

Huei-Ping Huang 

Marcus Herrmann 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

May 2019 



 

 

 

 

 

 

 

 

 

 

 

 

©2019 Che Wei Ou 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 



  

i 

 

ABSTRACT 

 

This study identifies the influence that leading-edge shape has on the aerodynamic 

characteristics of a wing using surface far-field and near-field analysis. It examines if a 

wake survey is the appropriate means for measuring profile drag and induced drag. The 

paper unveils the differences between sharp leading-edge and blunt leading-edge wings 

with the tools of pressure loop, chordwise pressure distribution, span load plots and with 

wake integral computations. The analysis was performed using Computational Fluid 

Dynamics (CFD), vortex lattice potential flow code (VORLAX), and a few wind-tunnels 

runs to acquire data for comparison. This study found that sharp leading-edge wings have 

less leading-edge suction and higher drag than blunt leading-edge wings.  

The blunt leading-edge wings have less drag because the normal vector of the 

surface in the front section of the airfoil develops forces at opposed skin friction. The shape 

of the leading edge, in conjunction with the effect of viscosity, slightly alter the span load; 

both the magnitude of the lift and the transverse distribution. Another goal in this study is 

to verify the veracity of wake survey theory; the two different leading-edge shapes reveals 

the shortcoming of Mclean’s equation which is only applicable to blunt leading-edge wings. 
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INTRODUCTION 

“Induced drag is an evil, because all drag is an evil, but it is a necessary evil at least 

and expended for something we want,” says Max M. Munk[1]. There are many sources of 

drag, but induced drag is the most inevitable one for generating lift. In classical 

aerodynamics, induced drag increases with the square of the lift. Traditional methods to 

reduce induced drag include increasing the aspect ratio, adding a winglet, or making the 

span load more elliptical. The most famous example is the Supermarine Spitfire in World 

War II which had an elliptical planform wing. However, elliptical planform wings have a 

complicated structure and also other studies show that this planform doesn’t inherently 

develop an elliptical span load[2]. Hence, wingtip and tapered wing are the main resorts in 

modern aviation.  

 

The formation of induced drag comes from downwash flow generated by deflection 

of airflow. The downwash flow reduces relative incoming flow thereby decreases the 

effective angle of attack to create lift. The classical theory developed by Max M. Munk[1] 

elaborates on the meaning of induced drag as a reaction force of lift worked on the air. In 

the other hand, Mclean[3] defines induced drag as a measure of energy loss and calculates 

the induced drag from the disturbance of wake flow. 

 

This thesis aims to verify the previous theories made by famous aerodynamic 

researchers and discusses the influence of leading-edge geometry on induced drag, to 

understand induced drag from different perspective. It uses the vortex lattice method 



  

2 

 

potential flow solutions[4] and Computational Fluid Dynamics (CFD)[5] to provide the 

essential data for an inviscid model and a viscid model.  

 

The primary objective of the thesis is to determine the relationships of leading-edge 

geometry and use a proper correction factor to correlate the theory with the phenomena. 
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PRIOR ART 

A. Induced Drag Derivation 

  The derivation of induced drag is often determined from the perspective of lift 

developed by “bound vortices” generated across the span. Two different paths of reasoning 

are considered in the study: drag as derived from lift due to downwash and drag as derived 

from lift from Prandtl’s lifting line theory. 

 

1. Drag Due to Lift from Downwash Only 

 

  Max Munk proposed[1] that a lifting wing generates lift because the air flow is 

deflected by the wing. The lift can be calculated as the change in momentum due to the 

downwash velocity. In his statement, the downwash area affected by wings must be the 

same as the span of the wings. The air flowing through the shaded area is shown in Figure 

1:  

 

Figure 1: Max Munk's Circular Downwash Influence Model[1] 
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L = ṁVd (1) 

Where Vd is the downwash velocity and ṁ is the mass flow rate through the circular area 

shown below as: 

ṁ =
1

4
πb2V∞ρ (2) 

Where b is the wing span, V∞ is the freestream velocity, and ρ is the air density.  

 

 Why is the area of influence the shaded cylinder? It seems to be Pohlhausen’s idea[6][7], 

but an extensive literature search hasn’t found a rigorous derivation. 

 

  From here, it is determined that the kinetic energy through this region can simply 

be defined as: 

KEd =
1

2
ṁVd

2 =
1

2
∗

L2

ṁ
=

L2

1
2

πb2V∞ρ
(3) 

  Following the work-energy theorem, drag can be defined in terms of the kinetic 

energy changes in the “wake” flow behind the wing. 

Di =
KEd

V∞
=

L2

πb2q∞

(4) 

where q∞ =
1

2
ρV∞

2  is the incompressible freestream dynamic pressure. 

 

  To convert these forces into coefficient form, we use the following relationship 

between b2 and Sref: 

b2 = Sref ∗ AR (5) 

where AR is the aspect ratio of the wing. Substituting this into Equation (4) 



  

5 

 

Di =
KEd

V∞
=

L2

πb2q∞
(4) 

, and dividing both sides by q ∗ Sref, we can determine the induce drag coefficient: 

Di

q ∗ Sref
=

L2

π ∗ AR ∗ (q ∗ sref)2
(6) 

CDi
=

CL
2

π ∗ AR
(7) 

  Note that Munk’s method does not accurately calculate the induced drag for non-

elliptical loadings. In addition, his method does not consider the effect of the nuanced 

thickness or camber of the wing in this purely ideal flow-field based estimation of induced 

drag will show later that Munk’s method (the Pohlhausen cylinder of downwash) seems 

contrived to fit experimental data for blunt leading-edge wings with elliptical transverse 

span loads. 

 

2. Drag Due to Lift via Lifting Line Theory 

 

  Anderson [8], as well as Bertin & Cummings [9], also derive induced drag from the 

downwash velocity field, but in the context of Prandtl’s lifting line theory [10]. Prandtl, in 

turn, determines lift from the circulation of the spanwise vortices shown in Figure 2. 
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Figure 2: Prandtl Lifting Line Theory[8] 

 

Given there is a limitation with the circulation defined along the span, with the range of 

−
b

2
 to + 

b

2
, each spanwise component of lift is defined via the Kutta-Joukowski theorem: 

L′(y0) = ρ∞V∞Γ(y0) (8)

Where Γ is the circulation (see Figure 3) and y0 is a specific transverse “strip” on the span. 

 

 

Figure 3: Circulation around an airfoil 

 

  Observe that Kutta-Joukowski theorem is composed of Kutta condition and 

Joukowski transformation. From Joukowski transformation [11], a circle can be mapped to 
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airfoil-like shape with a round leading-edge and a sharp trailing edge. From Kutta condition 

[12], the theorem can be applied to “sharp” trailing edge. Therefore, Kutta-Joukowski 

theorem does not consider the thickness or camber effect because the force acting on the 

surface are assumed to point to the center of the airfoil instead of normal to the surface. 

(see Figure 4) Also, the theorem can only be applied to blunt leading-edge airfoil because 

of the Joukowski transformation.  

 

 

Figure 4: The Difference of Joukowski Transformation and Real Situation 

 

  Going back to the derivation of Lifting Line Theory, the classical theory[10] states 

that the total lift is simply an integration of the spanwise lift function: 

𝐿 = ∫ 𝐿′(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

= 𝜌∞𝑉∞ ∫ 𝛤(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

(9) 
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Or, in coefficient form: 

𝐶𝐿 =
2

𝑉∞𝑆𝑟𝑒𝑓
∫ 𝛤(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

(10) 

 

  Due to the downwash velocity 𝑉𝑑 not being parallel with the freestream velocity 

𝑉∞ , there is an induced angle of attack; for small angles where 𝑡𝑎𝑛 𝛼 ≈ 𝛼 (in radians), the 

induced angle of attack can be defined as follows: 

𝛼𝑖(𝑦0) =
−𝑉𝑑(𝑦0)

𝑉∞

(11) 

 

Figure 5: Downwash Angle 𝜶𝒊 

 

  Notice that Far-field Lift is what we calculate about, and near-field lift is a way to 

simplify two-dimensional airfoil theory to “work” in the consist of a finite wing. Moreover, 

the induced drag Di in Figure 5 neglects any viscous or inviscid contribution from axial 

forces in two-dimension.  
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  Below, the definition of downwash velocity is defined as the effect of all vortices 

on a single point on the span: 

𝑉𝑑(𝑦0) = −
1

4𝜋
∫

1

𝑦0 − 𝑦

𝑑𝛤

𝑑𝑦
𝑑𝑦

𝑏
2

−
𝑏
2

(12) 

Which is substituted into Equation (11) to calculate induced angle of attack purely based 

on freestream velocity and circulation: 

𝛼𝑖(𝑦0) =
1

4𝜋𝑉∞
∫

1

𝑦0 − 𝑦

𝑑𝛤

𝑑𝑦
𝑑𝑦

𝑏
2

−
𝑏
2

(13) 

  The drag due to lift at each spanwise point can then be calculated as the streamwise 

component of the normal force vector at this induced angle of attack, which again is 

assumed to be negligible so 𝑠𝑖𝑛 𝛼𝑖 = 𝛼𝑖: 

 

𝐷𝑖
′(𝑦0) = 𝐿′ 𝑠𝑖𝑛 𝛼𝑖(𝑦0) = 𝐿′𝛼𝑖 (14) 

 

Where the thickness is neglected in the equation, and all angle of surface panels are 

perpendicular to radius direction. Beware, the source of the induced drag is only from 

purely rotation of flat plate lift, this treats all the normal vector of the surface is 

perpendicular to the chord, see Figure 6. 
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Figure 6: The Derivation of Induced Drag does not Include Axial Forces or 

Thickness Effects. 

 

  Substituting the spanwise lift from Equation (14) and following the same 

mathematical logic of integration across the span results in the following equation: 

𝐷𝑖 = 𝜌∞𝑉∞ ∫ 𝛤(𝑦)𝛼𝑖(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

(15) 

Which in coefficient form becomes: 

𝐶𝐷𝑖
=

2

𝑉∞𝑆𝑟𝑒𝑓
∫ 𝛤(𝑦)𝛼𝑖(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

(16) 

  If we assume that the lift distribution is “elliptical,” we may define the circulation 

as follows: 

𝛤(𝑦) = 𝛤0
√1 − (

2𝑦

𝑏
)

2

(17) 

Where 𝛤0 is the circulation at the origin. By substituting Equation (17) into Equation (16), 

and integrating the circulation along 𝜃 where −
𝑏

2
≤ 𝑦, =

𝑏

2
 is equivalent to 0 ≤ 𝜃 ≤ 𝜋, the 
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downwash can be calculated as a constant across the span which in turn results in the need 

for a constant induced angle of attack: 

𝑉𝑑(𝜃0) = −
𝛤0

2𝑏
(18) 

𝛼𝑖 =
𝛤0

2𝑏𝑉∞

(19) 

  The value of the circulation at the origin is derived from the lift equation, where 

again the circulation is integrated across the transformed 𝜃 coordinates: 

𝐿 =
𝜌∞𝑉∞𝛤0𝑏

4
𝜋 (20) 

𝛤0 =
4𝐿

𝜌∞𝑉∞𝑏𝜋
=

2𝑉∞𝑆𝑟𝑒𝑓𝐶𝐿

𝑏𝜋
(21) 

Where, once again, the thickness is neglected. 

 

  By substituting the coefficient form of Equation (21) into Equation (19), the 

induced angle of attack becomes the following form: 

𝛼𝑖 =
𝑆𝑟𝑒𝑓𝐶𝐿

𝜋𝑏2
=

𝐶𝐿

𝜋𝐴𝑅
(22) 

With 𝛼𝑖  constant, the integration for induced drag is simplified to the same form as 

calculated for lift, with Equation (22) substituted in coefficient form: 

𝐶𝐷𝑖
=

𝜋𝛼𝑖𝛤0𝑏

2𝑉∞𝑆𝑟𝑒𝑓
=

𝜋𝑏

2𝑉∞𝑆𝑟𝑒𝑓
(

𝐶𝐿

𝜋𝐴𝑅
) (

2𝑉∞𝑆𝑟𝑒𝑓𝐶𝐿

𝑏𝜋
) (23) 

𝐶𝐷𝑖
=

𝐶𝐿
2

𝜋𝐴𝑅
(24) 
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Equation (24) is identical to the formula of induced drag assuming an elliptical lift 

distribution as derived by Munk. In a general form, not assuming an elliptical lift 

distribution, the circulation can be defined in the following form: 

𝛤(𝜃) = 𝛤0 𝑠𝑖𝑛 𝜃 =
2𝑉∞𝑆𝑟𝑒𝑓𝐶𝐿

𝑏𝜋
𝑠𝑖𝑛(𝜃) (25)

  

  Given that the span is defined as the range 0 ≤ 𝜃 ≤ 𝜋 as performed in the previous 

derivation, the circulation can then be expanded to be represented by a Fourier sine series: 

𝛤(𝜃) = 2𝑏𝑉∞ ∑ 𝐴𝑛 𝑠𝑖𝑛 𝑛𝜃

𝑁

1

(26) 

Substituting this form of circulation results in the following lift coefficient and induced 

angle of attack equations in 𝜃 coordinates: 

𝐶𝐿 =
2𝑏2

𝑆𝑟𝑒𝑓
∑ 𝐴𝑛

𝑁

1

∫ 𝑠𝑖𝑛 𝑛𝜃 𝑠𝑖𝑛 𝜃 𝑑𝜃
𝜋

0

(27) 

𝛼𝑖(𝜃) = ∑ 𝑛𝐴𝑛

𝑠𝑖𝑛 𝑛𝜃

𝑠𝑖𝑛 𝜃
 

𝑁

𝑛=1

(28) 

The integral in the lift equation is only defined when 𝑛 = 1, and therefore can be solved to 

determine the Fourier coefficient 𝐴1: 

𝐶𝐿 =
𝐴1𝜋𝑏2

𝑆𝑟𝑒𝑓
= 𝐴1𝜋𝐴𝑅  

𝐴1 =
𝐶𝐿

𝜋𝐴𝑅
(29 − 30) 

Solving for 𝐶𝐷𝑖
 by substituting Eqs. (30) and (29) into Equation (24) results in a Messier 

function: 
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𝐶𝐷𝑖
=

2𝑏2

𝑆𝑟𝑒𝑓
∫ (∑ 𝐴𝑛 𝑠𝑖𝑛 𝑛𝜃

𝑁

𝑛=1

) (∑ 𝐴𝑛 𝑠𝑖𝑛 𝑛𝜃

𝑁

𝑛=1

) 𝑑𝜃
𝜋

0

(31) 

   

  However, this integral resolves to 0 in all cases except when the two Fourier series 

have the same 𝑛, where it converts to 
𝜋

2
; this allows for the following simplification: 

𝐶𝐷𝑖
=

2𝑏2

𝑆𝑟𝑒𝑓
(∑ 𝑛𝐴𝑛

2

𝑁

𝑛=1

)
𝜋

2
= 𝜋𝐴𝑅 ∑ 𝑛𝐴𝑛

2

𝑁

𝑛=1

= 𝜋𝐴𝑅 ∗ 𝐴1
2 (1 + ∑ 𝑛 (

𝐴𝑛

𝐴1
)

2𝑁

𝑛=1

) (32)  

Which is purely the “drag” due to the rotation of the normal force vector. 

 

  If we define 𝛿 = ∑ 𝑛 (
𝐴𝑛

𝐴1
)

2
𝑁
1  and substitute in 𝐴1 into Equation (32), the following 

form for induced drag is produced: 

𝐶𝐷𝑖
=

𝐶𝐿
2

𝜋𝐴𝑅
(1 + 𝛿) (33) 

Where then we classically define 𝑒 =
1

1+𝛿
, resulting in the familiar general form for 

induced drag: 

𝐶𝐷𝑖
=

𝐶𝐿
2

𝜋𝐴𝑅 ∗ 𝑒
(34) 

By definition, 𝛿 ≥ 0, so 𝑒 ≤ 1, where a value of 𝑒 = 1 would indicate an elliptical lift 

distribution.  
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3. Correctness of Ellipticality 

   

  In Equation (34), the elliptical lift distribution (e = 1) produces the minimum 

induced drag according to the lift, hence the situation is called “ideal.” Based on the Lifting 

Line Theory, the “ideal” condition, which is elliptical lift distribution, can be reached by 

an elliptical planform. However, the discussion by Dulin & Takahashi shows an elliptical 

planform might not perfectly match the elliptical lift distribution even in the absence of 

fuselage[2].  

 

  The implication of the equation is intriguing: it would seem that the drag produced 

by a non-elliptical lift distribution would still be proportional to 𝐶𝐿
2, albeit scaled up by a 

factor related to the “ellipticality” (or lack thereof) of the spanwise distribution. Back to 

the foundation of the theory, we must note that this theory considers a world where the 

induced drag is solely a function of the circulation distribution. It neglects any 

contributions to drag arising from the nuanced thickness or camber profile of the wing. 

Therefore, the equation can only for making an approximation to explain the relationship 

between induced drag coefficient and lift coefficient. 

 

  In Figure 7, the actual force is acting normal to the surface, but the Equation (34) 

is derived from Kutta-Joukowski theorem, which means the equation is based on a two-

dimensional cylinder. The equation will neglect the thickness effect, so all circulation will 

be contributed to only lift, which the pressure forces can be seen that they only act to a 

center point. 
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Figure 7: The Pressure Forces are Point to a Center Point Instead of Normal to the 

Surface. 

 

  The sketch shows real wings will develop an axial force ∑𝐹𝐴 from an interaction 

between the pressure field and the airfoil shape. The Joukowski transformation can’t 

present this feature in a real situation. Hence, the concept of “ellipticality” can only present 

an approximation to explain the real world. 
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4. Inviscid Drag from Wake Momentum Changes 

   

  Various authors have attempted to describe inviscid and induced drag effects via 

changes in momentum through a control volume, encapsulating the velocity changes in the 

wake of a wing[13]. Note the usage of the separate wording of “inviscid” and “induced”: 

in some circles, the term “inviscid drag” has been equated with “induced drag,” but in prior 

context of this paper the term “induced drag” has been used interchangeably with “drag-

due-to-lift”; to maintain consistency, that equivalency will be maintained and the term 

“inviscid drag” will be used separately. 

 

  In 1997, Takahashi [13] compiled and examined a variety of momentum-based drag 

decomposition techniques. These methods are largely agnostic to lifting line theory; as 

such, they might allow for contributions to drag arising from the nuanced thickness and 

camber profile of the wing as well as contributions due to viscosity (skin friction) and flow 

separation. 

 

  Takahashi noted that Bollay [14] who sought to differentiate between inviscid drag 

effects and viscous boundary layer effects referred to as “profile drag.” In the most general 

case, Bollay defines “profile drag” as the momentum losses due to change in static pressure 

and in axial momentum changes through a control volume; reference Figure 8:  

 

𝐷 = ∬ 𝑝0𝑑𝑆0

 

𝑆0

+ ∬ 𝜌𝑢0
2𝑑𝑆0

 

𝑆0

− ∬ 𝑝1𝑑𝑆1

 

𝑆1

− ∬ 𝜌𝑢1
2𝑑𝑆1

 

𝑆1

− ∬ 𝜌𝑢𝑡𝑢𝑟𝑑𝑆𝑟

 

𝑆𝑟

(35) 
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Where 𝑆0 is the upstream planar surface in front of the wing, 𝑆1 is the downstream planar 

surface behind the wing, and 𝑆𝑟 is the surface orthogonal to both upstream and downstream 

surfaces.  

 

Figure 8: Bollay Definition of the Control Volume Needed to Express the Drag of a 

Lifting Surface[13] 

  Assuming that the surface 𝑆𝑟 is far enough away from the body that the velocity 

𝑢𝑡 = 𝑢0 , then the mass flux will be zero across 𝑆𝑟  and the momentum equation is as 

follows for inviscid drag: 

 

𝐷𝑖 = ∬ 𝑝0𝑑𝑆0

 

𝑆0

+ ∬ 𝜌𝑢0
2𝑑𝑆0

 

𝑆0

− ∬ 𝑝1𝑖
𝑑𝑆1

 

𝑆1

− ∬ 𝜌𝑢1𝑖

2 𝑑𝑆1

 

𝑆1

= ∬ (𝑝0 + 𝜌𝑢0
2)𝑑𝑆0

 

𝑆0

+ ∬ (𝑝1𝑖
+ 𝜌𝑢1𝑖

2 )𝑑𝑆1

 

𝑆1

(36)
 

 

Note the specific usage of 𝑝1𝑖
 and 𝑢1𝑖

 and the pressure and velocity respectively at the 

downstream plane due purely to inviscid losses, as opposed to the total pressure and 

velocity losses. Introducing Bernoulli’s incompressible equation in 3D: 

ℎ = 𝑝 +
1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2) (37) 
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Where ℎ is the total pressure, and 𝑢, 𝑣, and 𝑤 are the 𝑥, 𝑦, and 𝑧 components of velocity 

respectively. We can hereby assume that the upstream velocity is uniform with no vorticity, 

which means the combination of Equation (37) and (36) results in the following: 

𝐷𝑖 = ∬ (ℎ0 +
1

2
𝜌𝑢0

2) 𝑑𝑆0

 

𝑆0

− ∬ [ℎ1𝑖
+

1

2
𝜌(𝑢1𝑖

2 − 𝑣1𝑖

2 − 𝑤1𝑖

2 )] 𝑑𝑆1

 

𝑆1

 (38) 

Combining and algebraically manipulating Equation (38) and (36) together results in the 

final form of inviscid drag as investigated by Bollay: 

𝐷𝑖 = ∬ [
1

2
𝜌(𝑣1𝑖

2 + 𝑤1𝑖

2 )] 𝑑𝑆1

 

𝑆1

+ ∬ [
1

2
𝜌(𝑢0

2 − 𝑢1𝑖

2 )] 𝑑𝑆1

 

𝑆1

 (39) 

The first integral, containing only non-axial velocity terms, represents the loss of cross-

plane kinetic energy due to generated vortices. The second integral accounts for the 

inviscid losses in axial kinetic energy. This makes for an interesting perspective on inviscid 

drag: it accounts for drag purely from an energy perspective, as Munk’s approach did; it is 

applicable to general lift distribution cases. These methods effectively account for 

downwash through the non-axial velocity terms without introducing any explicit 

circulation term.  

 

  While not being explicitly drag-due-to-lift, Equation (39) still explains at some 

level the drag losses due to sources outside of viscous boundary layer effects, which are 

accounted for separately in what is defined as “profile drag.”  

 

  However, as mathematically graceful as this is, there is a considerable challenge to 

individually determine inviscid velocity changes from an experimental perspective. 
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  On the bright side, we can use inviscid as well as viscous CFD solutions to explore 

the meaning of these equations. 

 

5. Vortex Drag and Induced Drag due to Wake Momentum Changes 

 

  Betz [15] also decomposes drag into induced drag and profile drag similar to Bollay 

[14], though induced drag is defined as drag-due-to-lift and profile drag is defined as drag-

not-due-to-lift. Betz attempts to calculate profile drag on its own, outside of defining the 

profile drag simply as the difference between total drag and induced drag. The control 

volume is similarly defined with upstream and downstream planes and an orthogonal plane 

with no mass flux through its surface, making the total drag equation considering one-

dimensional total pressure as follows: 

𝐷 = ∬ (ℎ0 + 𝜌𝑢0
2)𝑑𝑆0

 

𝑆0

− ∬ (ℎ1 + 𝜌𝑢1
2)𝑑𝑆1

 

𝑆1

 (40) 

 

  Betz identifies the difficulty of working with this equation as being due to the 

discontinuity of the integral across the downstream surface; that is, velocity changes locally 

based on generated vortices. Therefore, he introduces an additional velocity term, 𝑢′, which 

he defines as being equivalent to 𝑢1 outside of the region affected by the vortices. From a 

potential flow perspective, the additional velocity term is accounted for by introducing a 

source in the control volume, defined as having the following yield: 

𝐸 = ∬ (𝑢′ − 𝑢1)𝑑𝑆1

 

𝑆1

 (41) 
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What makes this equation particularly interesting is his following discussion of drag 

generated by the momentum change in the vortices. If no lift is generated, the drag 

generated is due to the source and is negative: 

𝐷′ = −𝜌𝑢0𝐸 = ∬
1

2
𝜌(𝑢0

2 − 𝑢′2
)𝑑𝑆1

 

𝑆1

(42) 

  In a case with lift, the induced drag is considered by Betz to be purely due to the 

downward component of velocity, 𝑤, which Betz equates to downwash: 

 

𝐷𝑖 = ∬
1

2
𝜌𝑤2𝑑𝑆1

 

𝑆1

 (43) 

The total vortex drag is then considered to be the algebraic sum of the induced drag and 

the zero-lift vortex drag case: 

𝐷′ = 𝐷𝑖 − 𝜌𝑢0𝐸 = ∬
1

2
𝜌(𝑢0

2 − 𝑢′2
+ 𝑤2)𝑑𝑆1

 

𝑆1

 (44) 

The equation makes for a rather intriguing idea: the drag generated by the vortices from 

the wing is not only due to the downward component of velocity, but also must account for 

the axial velocity change in the wake. 

 

  In Betz’s original papers, he limits himself to consider two-dimensional flow (he 

neglects spanwise flow, which Takahashi [13] and Bollay [14] considered in their 

extensions of Betz). 
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  McLean [3] also proposes a simple form of induced drag based on wake momentum 

changes. Assuming steady, inviscid flow, the mass flux can be stated simply as the double 

integral of the 𝑢 velocity change across the downstream surface 𝑆1: 

�̇� = ∬ 𝜌(𝑢0 − 𝑢1𝑖
)𝑑𝑆1

 

𝑆1

 (45) 

As before 𝑢1𝑖
 indicates an inviscid assumption for the wake condition. The simple 

momentum equation for a purely inviscid case such as the one below is assumed to be 

induced drag (further confusing the boundary between inviscid drag and drag-due-to-lift): 

𝐷𝑖 = ∬ (𝑝1𝑖
− 𝑝0)𝑑𝑆1

 

𝑆1

− ∬ 𝜌(2𝑢0𝑢1𝑖
+ 𝑢1𝑖

2 )𝑑𝑆1

 

𝑆1

− �̇�𝑢0 (46) 

Applying Bernoulli’s equation in three dimensions to express the pressure terms in the 

velocity components, with the same assumption that the upstream condition only consists 

of axial flow, the “induced drag” then reduces to the following equation: 

Di = ∬
1

2
ρ(−u1i

2 + v1i

2 + w1i

2 )dS1

 

S1

  (47) 

Equation (47) presents an incredibly graceful form for determining induced drag. However, 

as with Bollay’s equation, measuring the velocities due to inviscid changes alone is not a 

trivial challenge. 
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6. Induced Drag using Trefftz Planes 

   

  An alternative method for defining the control volume consists of determining the 

downstream plane S1 infinitely far downstream, known as a Trefftz plane. (Figure 9)  

 

Figure 9: The Concept of Trefftz Plane from Mclean’s Book[3] 

 

McLean [3] notes that Trefftz plane methods assume a vortex sheet that does not “roll up” 

on the sides, which is then defined as a stream surface with no force acting on it. However, 

assuming that the vortices act along filaments as they propagate from the wing (per the 

Kutta-Joukowski theorem) there must be some force orthogonal to both velocity and 

vorticity vectors, which would be simply lift and induced drag. 

 

  From the Biot-Savart Law, McLean notes that the following equation is one way 

of expressing induced drag: 

Di =
1

2
ρ ∫ vnΓ(l)dl (48) 
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where the integral is along the line of the vortex sheet intersecting with the Trefftz plane, 

vn  is the magnitude of the velocity vector perpendicular to the line, and Γ(l)  is the 

circulation at each point along the vortex sheet.  

   

  Since the trailing vortices are the only wakes included into the integration and the 

distribution of vortex strength depends only on the spanwise distribution of lift and on the 

shapes of the lifting surfaces in the rear view called “Trefftz-plane view”[3],  the result can 

be referenced back to the Munk’s equation: 

 Ci =
CL

2

πAR
(7) 

  This method, as McLean points out, is mathematically sound but physically 

unintuitive, and in this form is typically used with values calculated from CFD. Moreover, 

we need to remember that the derivations are based on Lifting-Line Theory which the 

thickness effect is neglected. 

 

  Takahashi [13] outlined another Trefftz plane method by B. M. Jones[16] that uses 

a more readily applicable form of induced drag. Given a Trefftz plane where thus p0 = p∞, 

the incompressible momentum equation is defined as follows: 

Di = ∬ ρ ∗ u1(u0 − u∞)dS1

 

S1

 (49) 

  If the total kinetic energy in the wake remains constant as Jones postulates, then the 

incompressible velocities can all be defined as follows: 

u∞ = √
2

ρ
(h1 − p0) (50) 
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u0 = √
2

ρ
(h0 − p0) (51) 

u1 = √
2

ρ
(h1 − p1) (52) 

This then allows the incompressible momentum equation to be rewritten as follows: 

Di = 2 ∬ [√h1 − p1 ∗ (√h0 − p0 − √h1 − p0)]dS1

 

S1

 (53) 

Note that this form of “induced drag” proves to be experimentally convenient in that it is 

only dependent on the readily-measurable total and static pressures, though it is 

mathematically cumbersome to integrate. Another thing is that the method captures the 

thickness effects that manifest themselves in the downstream flow at the Trefftz planes. 

 

B. Induced Drag Derivation: Stream and Velocity Potential Functions 

   

  The reader should note that these theories consider a world where the induced drag 

is solely a function of the stream function and potential distribution. They neglect any 

contributions to “induced drag” arising from the nuanced thickness or camber profile of 

the wing. 

 

 In 1972, Maskell [10][11] performed a method to decompose the induced drag and 

viscous drag and presented them by velocity potential function and stream function in 

three-dimensional space. The theory has been widely used in many well-known papers and 

books. 
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 Takahashi notes [13] that Maskell defines Betz’s two-dimensional formula as the profile 

drag and combine with the induced drag term.   

D = ∫ ∫ [(𝑃∞ − 𝑃) +
𝜌

2
(𝑢∗ − 𝑢)(𝑢∗ + 𝑢 − 2(𝑈∞ + 𝑢𝑏))𝑑𝑆 +

𝜌

2
∫ ∫ (𝑣2 + 𝑤2)𝑑𝑆    (54) 

The first integral term presents the viscous drag and the second integral term is the induced 

drag term.  

Di =  
ρ

2
∫ ∫ (v2 + w2)dS (55) 

Where v and w can be replaced [19] in terms of stream function and velocity potential 

function 

𝑣 =  
∂Ψ

∂𝑧
+

∂ϕ

∂𝑦
, 𝑤 =  −

∂Ψ

∂𝑦
+

∂ϕ

∂𝑧
(56) 

Substitute the v, w into induced drag term, the equation becomes 

Di =
ρ

2
∫ ∫ (( 

∂ϕ

∂𝑦
+

∂Ψ

∂𝑧
)

2

+ (
∂ϕ

∂𝑧
−

∂Ψ

∂𝑦
)

2

) 𝑑𝑆 (57) 

After extending the equation, the entire equation can be divided into velocity potential 

group and stream function group. 

𝐷𝑖,𝜙 =
𝜌

2
∫ ∫ ((

∂ϕ

∂𝑦
)

2

+ (
∂ϕ

∂𝑧
)

2

) 𝑑𝑆, 𝑎𝑛𝑑 𝐷𝑖,Ψ =  
𝜌

2
∫ ∫ ((

∂Ψ

∂𝑦
)

2

+ (
∂Ψ

∂𝑧
)

2

) 𝑑𝑆 (58) 

The velocity potential group can be solved by changing the symbol. 

𝐷𝑖,𝜙 =
ρ

2
∫ ∫ (∇𝜙) ∙ (∇𝜙)𝑑𝑆 (59) 

As we know that ∇𝜙 ∙ ∇𝜙 =  ∇ ∙ 𝜙∇𝜙, the integration can be rewritten as 

𝐷𝑖,𝜙 =
ρ

2
∫ ∫ ∇ ∙ 𝜙∇𝜙𝑑𝑆 (60) 
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By using Green’s Theorem, the simpler expression will be 

𝐷𝑖,𝜙 = ∮ 𝜙
𝜕𝜙

𝜕𝑛
𝑑𝑙 (61) 

Or a source term 𝜎 can be used to replace ∇ ∙ ∇𝜙  

𝐷𝑖,𝜙 =  
ρ

2
∫ ∫ ϕσdS (62) 

Where 𝜎 =  
𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
=  

𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 =  ∇ ∙ ∇𝜙. 

The stream function group in equation (58) can also be solved with the same procedure, 

the equation is 

𝐷𝑖,Ψ =
ρ

2
∫ ∫ ∇ ∙ Ψ∇Ψ𝑑𝑆 (63) 

For the stream function, we use axial vorticity component ξ to simplify the equation. 

𝐷𝑖,Ψ =  −
ρ

2
∫ ∫ ΨξdS (64) 

Where ξ =  
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
=  −

𝜕2Ψ

𝜕𝑦2 −
𝜕2Ψ

𝜕𝑧2 . 

 

  Hence, the induced drag can be expressed as 

𝐷𝑖 = 𝐷𝑖,Ψ + 𝐷𝑖,𝜙 = −
ρ

2
∫ ∫ ΨξdS +

ρ

2
∫ ∫ ϕσdS (65) 

Note that we use positive axis to represent the induced drag, so the equation we use to 

calculate induced drag is  

𝐷𝑖 =
𝜌

2
∫ ∫ 𝛹𝜉𝑑𝑆 −

𝜌

2
∫ ∫ 𝜙𝜎𝑑𝑆 (66) 

Takahashi [13] notes that the first term is the vorticial flow, and the second term is the 

strength of the residual closure flow in the wake. 
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  To infer stream function 𝛹 and velocity potential function 𝜙 from test data, the 

common way is to solve the Poisson’s equation [20] by the numerical methods such as the 

Jacobi method, Gauss-Seidel method, Successive Over-Relaxation (SOR), etc.  The 

procedure is peculiar because solving the Poisson’s equation means the test data needs to 

be differentiated twice. Normally, we prefer to integrate the data rather than differentiate 

them because of the effects of “noise”. The differentiating data amplifies the effect 

significantly. Therefore, the Mclean’s method on page 21 is more favorable to utilize in 

perspective of data post-processing. 

Di = ∬
1

2
ρ(−u1i

2 + v1i

2 + w1i

2 )dS1
 

S1
  (47) 

 

C. Induced Drag Derivation: From Lifting Line Theory to VLM 

Prandtl’s Lifting Line Theory is a simplified model to predict the lift over a three-

dimensional, finite wing with replacing it with a collection of “bound vorticity”. As 

Anderson [8] states in “Fundamentals of Aerodynamics”, the “induced drag” coefficient 

and lift coefficient can be derived with the concept of circulation and Kutta - Joukowski 

theorem which neglects thickness and camber effects. 

CDi 
=

2

𝑉∞𝑆
 ∫ Γ(𝑦)𝛼𝑖(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

(67)  

CL 
=

2

𝑉∞𝑆
 ∫ Γ(𝑦)𝑑𝑦 

𝑏
2

−
𝑏
2

(68)  

Where  αi(𝑦) = 𝛼𝑖 =
Γ0

2𝑏𝑉∞
 if the circulation varies elliptically along the span. 
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Hence, the induced drag can be presented in terms of lift coefficient. 

CDi
=

𝐶𝐿
2

𝜋𝐴𝑅
(69) 

So as induced angle of attack 

αi =
𝐶𝐿

𝜋𝐴𝑅
(70) 

“Low-Speed Aerodynamics”, [21] written by Joseph Katz & Allen Plotkin, mentions the 

same theory, but they extend the concept to a more general solution for a twisted wing. 

Lifting Line Theory uses appropriate assumptions to predict the “induced drag” 

from downwash[8]. However, it only gives a realistic result for moderate to high aspect 

ratio because the assumption behind Lifting Line Theory is to replace a finite wing with a 

single lifting line across the span of the wing. Once the aspect ratio is larger, the assumption 

of single lifting line is closer to the actual situation. On the contrary, a finite wing has 

smaller aspect ratio, which is lower than four, can’t be approached by only one lifting line 

since the chordwise variation is large enough that can’t be seen as the same vortex.  

For the wing such as swept wing, delta wing, or low aspect ratio wing like the test 

subject we use for comparison, Lifting Surface Theory developed by Multhopp [22][23] 

will be an alternative for a more precise result.  Instead of replacing a finite wing with a 

lifting line, Lifting Surface Theory places many lifting lines at different chord points in 

Figure 10. 
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Figure 10: Concept of Lifting Surface Theory from "Fundamentals of 

Aerodynamics"[8] 

 

This is different from the classical Prandtl’s Lifting Line Theory because 

circulation and downwash are not only a function of spanwise location but also the 

chordwise location. The Vortex Lattice Method [10] is a numerical approach [22] to 

implement Lifting Surface Theory by computer, which is implemented in the VORLAX 

code [4]. It solves potential flows based on the vortex lattice method (VLM). However, 

these solutions apply only to purely inviscid flows, so the VORLAX’s result is the tool 

used here to verify the characteristics of inviscid flow. It cannot capture viscous effects. 
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D. Proposed Induced Drag Corrections 

  All these elegant (and less elegant) derivations for finding “induced drag”, with the 

exception of lifting surface theory, do not account for any geometry-dependent leading-

edge suction in determining the induced drag, despite the phenomenon being well known 

as pointed out by Bertin & Cummings [24]. Nevertheless, there have been several authors 

who have attempted to correct the induced drag value based on this phenomenon, each 

through different methodologies. This thesis examines five different methods below. 

 

1. Henderson’s Leading-edge Suction Parameter 

   

  In 1966, William Henderson, who worked at NASA Langley, investigated the 

effect of leading-edge suction on wings with sharp leading-edges [25]. This was 

particularly relevant at the time due to said wings being considered during the development 

of a supersonic transport aircraft. The aim of this work was to simply determine how much 

leading-edge suction is being generated by the wing. To that end, Henderson defines a 

leading-edge suction parameter "𝑠" as the percentage of observed suction to the amount of 

total possible suction. From Multhopp’s [23] work on lifting surface theory, the drag is 

calculated as follows: 

CDi
= AR ∗ ∫ Γαidy

b
2

−
b
2

 (71) 

Note, once again, that this derivation neglects any axial force contribution to drag that 

might arise from thick or camber. 
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  This calculation reduces to the value in Equation (7) given an elliptical loading: 

CDi
=

CL
2

π ∗ AR
 (72) 

Equation (72) produces the lowest possible result for induced drag; that is, when the 

maximum suction occurs. The maximum drag-due-to-lift possible can be calculated in its 

most basic form simply as the entire streamwise component of lift: 

CDi
= CL tan α (73) 

If the actual induced drag is less than this theoretical value, then there is some suction force 

that counterbalances the induced drag; thus, the difference between the total drag and the 

induced drag is the suction. Given that experimentally, drag-due-to-lift is simply the 

difference between total drag and zero-lift drag: 

CDi,exp
= CD − CD0

 (74) 

 

 The ratio of the suction forces can be simply defined as follows: 

s =
CL tan α − (CD − CD0

)

CL tan α − AR ∗ ∫ Γαidy
b
2

−
b
2

∗ 100% (75)
 

While this is helpful for the determination of total suction generated out of the theoretical 

maximum for any given wing, the ratio does not offer any insight as to what properties of 

a wing generate this suction. 
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2. Polhamus: “Leading-edge Suction” Drag Coefficient Correlation 

   

  The same year Henderson’s paper was published, Edward Polhamus, a fellow 

colleague at NASA Langley, published a paper concerning the effect of leading-edge 

suction on the lift for a sharp leading-edge wing[26]. Two years later, in NASA TN D-

4739 [26], Polhamus is following up his prior document to test his assumptions in the 

context of induced drag. Since his derivation of lift differs from previously discussed 

methods, we will first discuss the basics of his definition of lift before proceeding with his 

discussion of induced drag.  

 

Figure 11: Polhamus Perspective[26] 

 

  Polhamus [26] examines lift from the perspective of a vortex generated in the 

fashion illustrated by Figure 11, whereby the leading-edge suction would propagate into 

the vortex sheet based on the leading-edge geometry. The lift coefficient is calculated as 

the sum of lift due to attached potential flow on the surface and lift due to the generated 

vortices; unlike some of the prior derivations, he attempts to do so without small angle 

approximation techniques. Based on the basic formulation of lift: 

CL = CN cos α (76) 
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Where the Equation (76) neglects the existence of axial force. The geometric relationship 

shows in Figure 12. 

 

Figure 12: Neglect the Axial Force During the Derivation of Lift Coefficient. 

 

  Via the Kutta-Joukowski theorem, the normal force used for the potential flow is 

calculated to be as follows: 

N = ρΓb(V∞ cos α) (77) 

The circulation here is defined as the total effective circulation, given by the following 

equation: 

Γ = KP

SrefV∞

2b
sin α (78) 

 

Figure 13: Kp versus Aspect Ratio[26] 
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In Polhamus’s statement, the parameter 𝐾𝑝 is determined as the lift-curve slope with the 

assumption of small angle approximations, which the author obtains from a modified 

Multhopp lifting-surface theory [22]; the relationship is shown visually in Figure 13 as a 

function of wing aspect ratio.   

 

  However, compare with the general form of circulation’s equation mentioned in 

previous section: 

𝛤(𝜃) = 𝛤0 𝑠𝑖𝑛 𝜃 =
2𝑉∞𝑆𝑟𝑒𝑓𝐶𝐿

𝑏𝜋
𝑠𝑖𝑛(𝜃) (25) 

Γ = ∫ Γ(θ)dθ
π

0

=  
4V∞SrefCL

bπ
(79) 

CL =
π

8
Kp sin α ≈

π

8
Kpα, if α is a small angle. (80) 

The equation above shows the statement of 𝐶𝐿 =  𝐾𝑝𝛼 from Polhamus [26] is not precise. 

The parameter 𝐾𝑝 is not the slope of lift-curve. Instead, 
𝜋

8
𝐾𝑝 should be the lift-curve slope.  

Hence, even the comparison shows the 𝐶𝐿 =  𝐾𝑝𝛼 statement is not correct, we still can use 

the concept of 𝐾𝑝 to correct the leading-edge effect. 

 

  By substituting the circulation into the normal force equation and reducing it to 

coefficient form, the following equations for normal force coefficient and lift coefficient 

can be derived: 

CNP
= KP sin α cos α 

CLP
= KP sin α cos2 α (81 − 82) 
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  The discussion of drag Polhamus reiterates that the sin α term accounts for the true 

boundary condition and the cos2 α term enforces the Kutta condition. The normal force 

coefficient for the vortex lift case is taken to be the suction coefficient CS  which is 

perpendicular to the leading edge, related to the thrust coefficient CT, which is paralleled 

to the incoming wind, by the leading-edge sweep angle of the wing: 

 

CNV
= CS =

CT

cos Λ
 (83) 

 

Figure 14: Relationship Between Cs and CT from Polhamus's paper [26] 

 

The thrust and thrust coefficient (with Equation (73) substituted appropriately) are shown 

below: 

T = ρΓ(V∞ sin α − wi) 

CT = (1 −
wi

V∞ sin α
) KP sin2 α (84 − 85) 

Where wi  refers to the downwash velocity normal to the chord. Based on the 

proportionality of 𝑤𝑖  and 𝛤 , as well as 𝛤  to 𝑉∞ 𝑠𝑖𝑛 𝛼 , Polhamus deduces that the ratio 
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𝑤𝑖

𝑉∞ 𝑠𝑖𝑛 𝛼
 is independent of 𝛼 and can be equated to parameters derived from lift theories that 

rely on small-angle approximations (despite his attempt to refrain from said 

approximations). Given the parameter Ki, defined as follows: 

Ki =
∂CDi

∂CL
2  (86) 

  

The ratio 
𝑤𝑖

𝑉∞ 𝑠𝑖𝑛 𝛼
 is then defined: 

wi

V∞ sin α
= KPKi (87) 

 

  Polhamus claims that any currently accepted form of the induced drag slope (such 

as 
1

𝜋𝐴𝑅∗𝑒
 from the derivation in Section B, Part 2) can be utilized. He personally uses 

Multhopp’s variation. Substituting Equation 81 into Equation 78, and subsequently 

Equation 78 into Equation 76 and Equation 76 into Equation 71, results in the following 

equations: 

CT = (KP − KP
2Ki) sin2 α  

CLV
= (KP − KP

2Ki)
cos α

cos Λ
sin2 α (88 − 89) 

The parameter 𝐾𝑉 = (𝐾𝑃 − 𝐾𝑃
2𝐾𝑖)

1

𝑐𝑜𝑠 𝛬
 is then defined for the sake of convenience; the 

variation of this parameter is shown in Figure 15. 
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Figure 15: Variation of 𝑲𝒗 with Aspect Ratio for Sharp-edge Delta Wings from 

Polhamus’s Paper[26]. 

 

The final vortex lift, and total lift are as follows: 

CLV
= KV sin2 α cos α 

CL = CLP
+ CLV

= KP sin α cos2 α + KV cos α sin2 α (90 − 91) 

Polhamus [26] notes that the term 𝐾𝑉 𝑠𝑖𝑛 𝛼 in Equation (85) represents the leading-edge 

suction, with the cos α term orienting the suction in the direction of lift.  

 

  When examining drag, the drag-due-to-lift is then defined as the axial component 

of lift as shown below: 

CDi
= CL tan α (92) 

Which the equation neglects axial force term. 
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  Polhamus [26] then considers three cases: the first case is where there would be 

zero leading-edge suction with vortex lift (despite the fact that vortex lift was originally 

defined in terms of leading-edge suction): 

CDi
= CL tan α = KP sin2 α cos α + KV sin3 α (93) 

The second case considers zero leading-edge suction with only potential flow lift: 

CDi
= CLP

tan α = KP sin2 α cos α (94) 

Lastly, the third case assumes full leading-edge suction, where the induced drag is assumed 

to be equal to Equation (7) reiterated below: 

CDi
=

CL
2

π∗AR
(7) 

What is of particular interest is Polhamus’s findings that the drag-due-to-lift for a sharp 

leading-edge delta wing most closely follows case 1 shown above in Equation 91. This 

implies, as Polhamus duly notes, that the sharp leading-edge wing does not produce 

leading-edge suction.  

 

 However, the paradox is that the vortex lift is derived based on the assumption that 

leading edge suction does indeed exist! This is discussed and postulated to be a result of a 

rotation of the suction vector such that the vortex lift is generated but thrust, which would 

reduce drag, is not. This is reiterated by Carlson, Mack & Barger [27] in their estimation 

of the thrust itself, discussed below in the next section. 
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3. Pressure Loops and the Concept of Leading-edge Suction 

   

  Leading Edge suction is an axial (or drag direction) force contribution due to the 

interaction of the nuanced thickness, incidence and camber profile of the wing, and the 

local surface pressures resulting from flow over this surface. This effect was originally 

noted by the Bairstow and Jones in ARC R&M 60 from 1914[16]. 

 

  Instead of the classical Cp vs chordwise location pressure plot (see Figure 16), we 

consider the projection of the pressures in terms of the wind-axis frontal area of the lifting 

surface (see Figure 17) 

 

Figure 16: Classical CP vs Chord Plot (from ARC R&M 60) 

 

Figure 17: Suction Loop CP vs Z' Plot (from ARC R&M 60) 



  

40 

 

  

The manifestation of these forces from the nuanced thickness can be seen in Figure 18, 

Figure 19, Figure 20, and Figure 21  

 

 

Figure 18: NACA 0012 and Biconvex Airfoil Coordinates 

 

  In Figure 18, we plot the geometry of a typical NACA 0012 airfoil and the biconvex 

airfoil. In Figure 19, we compute the direction cosines from the geometry, this represents 

the fraction of the pressure acting in the direction normal to the airfoil reference chord. 

While the integration of this value produces a value close to 1, it is not exactly 1. We also 

compute the direction sines from the geometry; this represents the fraction of the pressure 

acting in the direction aligned with the airfoil reference chord – in other words in the axial 

direction. Thus, airfoils produce a “pressure drag” or “pressure thrust” even in the absence 

of sonic or separated flow. 
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  In Figure 20, we compute the direction cosines and sines from the geometry in the 

wind axis at an angle-of-attack of 5-deg. This highlights how the upper and lower pressures 

developed by the wing develop pressure “drag” forces – all completely ignored by lifting 

line theory. 

 

Figure 19: Comparison of Cosine and Sine Components for the Normal Vector of the 

Mesh Panels Between a NACA 0012 Airfoil and a Biconvex Airfoil.  

These four plots show the cosine and sine components on each mesh panel generate by 

CFD software. Figure a and b are for a NACA 0012 airfoil. Figure c and d are for a 

biconvex airfoil. 
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Figure 20: Direction Cosines NACA 0012 Airfoil at 5-degree Angle of Attack. 

 

4. Analytical Correction as applied to Vortex Lattice Calculations 

Since the planform of the airfoil is getting more complicated, the vortex lattice 

method is used for computer program to deal with the complex calculation. VORLAX code 

generates a fully attached, steady, inviscid, small perturbation flow with either purely 

subsonic or supersonic condition. To include the compressibility effect, the Prandtl-Glauert 

correction factor is applied to the vortex lattice calculation.  

β = √1 − M∞
2 (95) 

How to apply it in physical meaning? There are many explanations for elaborating 

the geometry deformation of Prandtl-Glauert effect collected in Kirkman & Takahashi’s 

paper [28]. In VORLAX, it takes the concept of Jones & Cohen’s explanation for 

computation. The transformation stretches the chord of an airfoil, which is in the x-

coordinates, by a factor of 
1

√1−M2
 to simulate the wing surrounded by an incompressible 

flow.[29] They mention that span is identical during Prandtl’s transformation, but the 

effective area becomes larger because of the stretching of the chord. Therefore, if the Mach 
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number gradually approach to one, the chord of the corresponding wing incompressible 

flow turns out to be infinitely long in comparison with the span and the characteristic of 

flow grow essentially into two-dimensional [27].  

 

Figure 21: Geometry Stretching of Prandtl-Glauert Transformation(from Jones’s 

Book[30]) 

 

To discuss the effect of leading-edge suction, a three-dimensional effect, in the flow 

field, this study places emphasis only on the subsonic flow to maximize the effect 

presented.   

Thickness is another issue for the vortex lattice system. A code utilizing panels 

method can’t generate a model with thickness because all the vortex lattices are considered 

as infinitely thin. Although the model can’t have any thickness, the thickness effects can 

be simulated by a double vortex lattice layer which we call it “sandwich” panel model 

described in the VORLAX manual [4]. The two layers will interfere with each other and 

act as a thick airfoil.  
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Since the code uses the vortex lattice method, sideslip effects are excluded from it, 

which there must have some correction applied here. The effect usually can be computed 

by two different approached depended on the coordinated system. Skewed-wing approach 

and skewed free-stream approach [4]. The first one establishes in the wing axis, so the 

longitudinal axis is the freestream vector and skewed free-stream approach is based on the 

body axis, which shows in Figure 22. Instead of using either of the approaches, VORLAX 

combines both methods to reduce the cost of computation. 

 

Figure 22: Two Approaches to Calculate Sideslip Effect 

 

The key point of this thesis paper is to verify the relationship of induced drag and 

different leading edge. However, the leading edge suction in VORLAX is controlled by a 

variable called SPC which it can be either fully turned on or off. The blunt leading-edge 

can be simulated by SPC being set equal to 1, but the sharp leading-edge should have few 

leading-edge suction instead of no leading-edge suction. To correct the problem, the linear 

interpolation can roughly approach the result we need. Applying a certain ratio of leading-



  

45 

 

edge suction by comparing with CFD result can produce the inviscid result for biconvex 

airfoil from VORLAX. Based on our CFD data for the biconvex airfoil, the leading-edge 

suction for it is 30 percent of full leading-edge suction in Figure 23. 

 

Figure 23: Leading-Edge Suction Correction 
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MODELS AND RAW DATA 

A. Description of Wind Tunnel Test 

 

  According to the Morrow’s experimental data[31][32] is post-processed by 

Takahashi, the lift coefficient and drag coefficient versus alpha can be found in Figure 24 

and Figure 25. 

 

Figure 24: NACA0015: CL versus α 

 

Figure 25: NACA0015: CD versus α 
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Since the experimental data is a tool to verify the CFD result in this study, we 

combine the two figures into drag polar plot in Figure 26. The discussion and comparison 

of multiple data sets will be discussed in the “RESULTS AND DISCUSSION” section. 

 

Figure 26: Drag Polar with Experimental Data 

 

B. Description of Flat Plate VORLAX Model 

   

  Vortex lattice method (VLM) is based on the lifting surface theory which uses 

vortex to replace a finite wing. The thin flat plate model is one of the useful tools to predict 

the aerodynamic features of an airfoil. In the left of Figure 27, the plot shows how 

VORLAX code processes a finite wing into a thin panel lattice. 

 

Figure 27: Panels Lattice for Thin Plate Model and Sandwich Model[4] 
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According to the manual of VORLAX [4], we can setup our input file in Figure 28. 

It is notable that we utilize the symmetric boundary condition so there is only half wing in 

the setup. Besides, the crucial variable for this study is the leading-edge suction term since 

the planform will be the same if we don’t consider the thick-wise of the wings. To make 

the difference, leading-edge suction is an important factor to control. We do full leading-

edge suction for simulating a blunt leading-edge wing and the no-leading-edge suction for 

predicting a sharp leading-edge wing. The key variable is SPC which is described as a 

leading-edge suction multiplier in VORLAX [4]. Comparing Figure 28 and Figure 29,  the 

two setups are almost the same but SPC term is different. The leading-edge suction 

multiplier can be turned on by setting the SPC equal to 1. 

 

Figure 28: Full Leading-edge Setup for an Aspect Ratio 3 Airfoil. 
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Figure 29: No Leading-edge Setup for an Aspect Ratio 3 Airfoil. 

 

However, the wing we want to compare is biconvex which has some leading-edge 

suction instead of full or zero. Without the resort the apply “some” leading-edge suction to 

flat plate model, we interpolate the full leading-edge suction case and no leading-edge 

suction case to fit the data acquired from Autodesk CFD. In Figure 30, the VORLAX result 

with 30% leading-edge suction seems to fit the CFD result well. 
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Figure 30: Leading-edge Suction Comparison 

Full leading-edge suction No leading-edge suction 30% Leading edge suction 

CL CDi CL CDi CL CDi 

0 0 0 0 0 0 

0.05474 0.00032 0.05473 0.00096 0.05473 0.00077 

0.10943 0.00129 0.10934 0.00382 0.10936 0.00306 

0.16401 0.00289 0.16371 0.00858 0.1638 0.00687 

0.21845 0.00512 0.21774 0.01523 0.21796 0.0122 

0.27269 0.00799 0.27131 0.02374 0.27173 0.01901 

0.32668 0.01147 0.32431 0.03409 0.32502 0.0273 

0.38039 0.01557 0.37662 0.04624 0.37775 0.03704 

0.43376 0.02026 0.42815 0.06017 0.42983 0.0482 

Table 1: VORLAX Flat Panel Result 
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Figure 31: VORLAX Drag Polar Comparison 

The comparison of full, no, 30% leading-edge suction shows in Table 1 and Figure 31: 

VORLAX Drag Polar Comparison. 

 

C. Description of Thick “Sandwich” VORLAX Model 

 

 The “sandwich” panel is the two semi-impermeable lattice layers used to model the 

thick wing (see the right-hand-side sketch in Figure 27). While a double impermeable 

single lattice later model can provide a reliable data set, it can only compute the pressure 

difference between the upper surface and the lower surface. To plot the pressure loop and 

pressure distribution, the pressure data is necessary for then. The sandwich model uses two 

lattice layers to simulate the upper and lower surfaces of the wing. The distance between 

two lattice panels can’t be too close or too far. Too close will cause the convergence 
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problem, and too far will make the two panels become independent. Therefore, finding a 

proper distance is a try-and-error process. To setup sandwich panel model, we need more 

than the planform of a wing. Camber of each panel is a factor to control the curvature of 

the surface. The camber of upper and lower surface of a NACA0012 and a Biconvex wing 

show in Table 2 and Table 3. 

X/C UPPER SURFACE LOWER SURFACE  

    0.0   0.0000     -0.0000  

   2.5    2.6150     -2.6150  

   5.0    3.5550     -3.5550  

   7.5     4.2000     -4.2000  

  10.0     4.6830     -4.6830  

  20.0    5.7370     -5.7370  

  30.0    6.0020     -6.0020  

  40.0     5.8030     -5.8030  

  50.0     5.2940     -5.2940  

  60.0     4.5630     -4.5630  

  70.0     3.6640     -3.6640  

  80.0     2.6230     -2.6230  

  90.0     1.4480     -1.4480  

  95.0     0.8070     -0.8070  

 100.0    0.1260    -0.1260  

Table 2: Surface Ordinates Distribution for a NACA0012 Wing 
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Figure 32: Surface Ordinates Distribution for a NACA0012 Wing 
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X/C UPPER SURFACE LOWER SURFACE  

    0.0    0.0000     0.0000  

   2.5    0.5927    -0.5927  

   5.0    1.1534    -1.1534  

   7.5     1.6824    -1.6824  

  10.0     2.1800    -2.1800  

  20.0    3.8598    -3.8598  

  30.0    5.0515    -5.0515  

  40.0     5.7633    -5.7633  

  50.0     6.0000    -6.0000  

  60.0     5.7633    -5.7633  

  70.0     5.0515    -5.0515  

  80.0     3.8598    -3.8598  

  90.0     2.1800    -2.1800  

  95.0     1.1534    -1.1534  

100.0   0.0000    0.0000 

Table 3: Surface Ordinates Distribution for a Biconvex Wing 
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Figure 33: Surface Ordinates for a Biconvex Wing. 

 

  One thing that needs to be made aware of is that the drag coefficient from VORLAX 

output file for a “sandwich” model can’t be trusted if we turn on the leading-edge suction 

multiplier. The possible reason for this output is that the code adds a double leading-edge 

suction to the entire wing because there are two lattices layer, thus, the drag coefficients 

are all negative, which means there is no drag, no matter what angle of attack. However, 

we can still get the result from Mclean’s Wake survey and compare with the data from 

Autodesk CFD. 
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D. Description of AUTODESK CFD Model 

 

Autodesk CFD 2018 is an industrial software used in fluid dynamics. It provides 

several solvers utility in different circumstances. To test the precision of the software and 

each turbulent model for our blunt leading-edge and sharp leading-edge case, a benchmark 

is needed. 

 

In Autodesk CFD 2018, there are 10 different turbulent models: k-epsilon, SST k-

omega, SST k-omega SAS, SST k-omega RC(Smirnov-Menter), SST k-omega (Hellsten), 

SST k-omega DES, RNG, Low RE k-epsilon, Mixing Length, Eddy Viscosity. Based on 

the description in Autodesk CFD official website [33], the possible models for simulating 

the fluid we need are SST series. Also, according to the situation we need to test the two 

leading-edge cases, a steady-state, three-dimensional, turbulent external flow across a 

cylinder is the simplest model to run the simulation. The result-oriented method is then 

utilized to verify which turbulent model we should use for our test subject. The result listing 

in Table 4 shows SST k-omega RC (Smirnov-Menter) got the result which is closest to the 

benchmark value with ±0.76% error.  
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Turbulent models Coarse mesh 

 

 Finer mesh 

 

Force CD  Force CD 

K-epsilon 43.822 1.599(±75%)  

  

SST 29.341 1.071(±18%)  27.435 1.001(±10%) 

SST RC SM 29.186 1.065(±17%)  24.7372 0.903(±0.76%) 

SST RC H 28.969 1.057(±21%)  24.167 0.882(±3.08%) 

SST DES 31.725 1.158(±27%)  

  

SST SAS 31.528 1.150(±26%)    

Benchmark is CD = 0.91 

Table 4: Turbulent Models Test 

 

To understand the influence of leading-edge geometry, other controlled variables 

need to be fixed. The two test subjects should have an identical chord, span, thickness, 

and they are tested under the same flow setup.  

 

Geometry Setup 

Chord: 4 inches 

Span: 12 inches 

Thickness: 12% (NACA0012 for blunt leading-edge airfoil) 

Control Volume: 10 inches * 20 inches (Using symmetry boundary condition to 

simplify the model.) 
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Figure 34: Geometry Setup 

 
Figure 35: Mesh Around the Airfoil 

 
Figure 36: Wireframe for Control Volume 
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Simulation Setup 

Range of Angle-of-Attack: 0~8 degrees 

Boundary Condition: 30 m/s in the inlet, 0 Gage pressure in the outlet, and 

Slip/Symmetry condition in the other four walls to simulate an unlimited wide 

wind tunnel. 

Solution Mode: Steady state. 

Turbulent Model: SST k-omega RC (Smirnov-Menter) 

Wall Layers: 15 layers with 0.45-layer factor and wall layer blending enabled. 

 

Figure 37: Wall Layers 

       

To make sure our computational results converge to a valid answer, it is best to 

make a convergence plot. From Figure 38, the residual value should be close to zero when 

the model has fully converged.  In this figure, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 are the velocity components, 

Press is the pressure, Temp is the temperature, TKE represents the turbulent kinetic energy, 

TED shows the turbulent energy dissipation, and Scalar is the value for showing if 

turbulent viscosity exists; which is indicated when Scalar = 1. In the residual convergence 
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plot, we look at the velocity components and pressure value. They are faded to zero as the 

number of iterations goes up, which means the result is converged properly. 

       

Figure 38: Convergence Plot (Residual) 

 

 Other than residual value, the potential velocity change is also an interesting value  

to look at. For a steady state condition, the energy tends to become smaller as the model 

converges. The phenomena can present in the potential velocity because of the kinetic 

energy. From Figure 39, the all velocity components become the small values in the end of 

computation. That is another evidence that the CFD result has fully converged. 

 

Figure 39: Convergence Plot (DPhi/Phi) 
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Aside from these two kinds of convergence plots, we can show an intuitive graph with 

Figure 40. It shows how all values stabilize after many iterations; this indicates 

convergency because our model is supposed to be steady state. 

 

 

Figure 40: Convergence Plot (Average) 

 

  The figures of two cases with nine different angles are Figure 41 and Figure 42, 

which shows the velocity field under several circumstances. As angle-of-attack increases, 

the blunt leading-edge can accelerate the flow across the upper surface of the airfoil earlier. 

Relatively, the sharp leading-edge has lower speed when it reaches the high angle-of-attack. 

It causes flow separation to happen in the trailing edge easily. However, the pitch angle is 

not high enough to see the severe separation from the velocity field or pressure field in 

Figure 43 and Figure 44.  
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Figure 43: Pressure Field for a NACA0012 Airfoil from Zero to Eight Angle of 

Attack 

 
Figure 41: Velocity Field for a NACA0012 Airfoil from Zero to Eight Angle of Attack 

 

 
Figure 42: Velocity Field for a Biconvex Airfoil from Zero to Eight Angle of Attack. 
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Figure 44: Pressure Field for a Biconvex Airfoil from Zero to Eight Angle of Attack. 
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RESULTS AND DISCUSSION 

  In this section we will discuss the leading-edge suction effect on wings comparing 

Autodesk CFD software, VORLAX [4], and the wing tunnel test data to simulate flow field 

around NACA 4-digit and biconvex airfoil and compare their aerodynamics features.  

 

A. Verify CFD Results with Wind Tunnel Data and VORLAX Code 

   

  First, the reliability of the CFD should be tested. We can use the VORLAX code, 

inviscid data set, and wind tunnel data, viscous data set, as another benchmark to verify the 

convergence of the result from CFD software.  

 

 

 

Figure 45: Lift Coefficient versus Angle of Attack 

The plot shows the CL versus alpha from VORLAX code, CFD results, and wing tunnel results. 

 

 

Figure 11. Lift coefficient versus angle of attack data sets. The plot shows the CL versus alpha from Vorlax 

code, CFD results, and wing tunnel results. 
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  The lift coefficient is not a function of thickness; hence we can use NACA 0015 

wind tunnel data to check NACA 0012 computational result; both models were run at a 

chord Reynolds number of ~200,000. 

 

  Refer to Figure 45. We can see the match is good between CFD, VORLAX, and 

Wind Tunnel Test for the 4-digit airfoils when comparing lift vs angle of attack.   

 

  Refer to drag polar in Figure 46, we can see that VORLAX models cannot predict 

the drag due to lift of the NACA 4-digit airfoils unless we use 100% of the analytical 

leading-edge suction correction. Similarly, to match the Biconvex solution, we need to 

apply 30% of the analytical leading-edge suction which the process of deciding how many 

percentages of the analytical leading-edge suction we need to apply to flat panel model 

shows in “Description of Flat Plate VORLAX Model”. In the absence of such a correction, 

the predicted drag due to lift (due merely to the rotation of the normal force vector) is too 

high to present the overall force in the axial direction for a biconvex wing loyally.  

 

  Thus, leading-edge suction must be considered. This form of suction can’t neglect 

the negative axial “pressure drag” contribution of thickness, which we can see the most of 

theories in previous section neglect the thickness effect so as the leading-edge suction term.  
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  According to the limitation of the sandwich panels model for VORLAX code, we 

use the thin plate model data set for drag polar plot in Figure 46. Utilizing the method to 

decide leading edge suction in “Description of Flat Plate VORLAX Model” section can 

draw out the orange line which is more accurate to present the aerodynamic feature for a 

biconvex wing.  

 

  The CFD data set matches the wind tunnel result for NACA0015 and the thin flat 

plate model for VORLAX code. In the biconvex airfoil case, the CFD result has a little 

deflection for the last three data points. Based on the convergence test in CFD result, we 

can know the inaccuracy is from the difficulty of convergence with a high angle of attack. 

Overall, the CFD result is good enough to use as a viscous data set. 

  

 

Figure 46: Drag Polar 

The plot shows the CL versus CD from VORLAX code, CFD results, and wing tunnel 

results. 
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B. Utilize Pressure Loop to Observe the Leading-edge Suction. 

   

  Pressure loop plots are a classic British convention [16], [34] that shows the 

leading-edge suction force and its impact drag force by plotting pressure coefficient versus 

z-axis which is perpendicular to the wind axis.  

 

 

  In the pressure loop plot, we can clearly visualize the different pressures in each 

position of the wing axis. If the pressure value is negative, it produces suction forces to 

pull the airfoil forward. On the contrary, the positive pressure is drag force resisting the 

 

Figure 47: Pressure Loops for NACA 0012 Airfoil from 1° to 8° angle-of-attack 

These plots show the pressure loop generated from both CFD software and VORLAX 

sandwich panels code for a NACA 0012 airfoil. 
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forward force. Moreover, the area surrounded by the curve indicates the total suction force 

if the area is in negative region or drag force if the area is in positive region.  

 

  By comparing with the red line generated from VORLAX without leading-edge 

suction result in Figure 47, we can see the trend is similar aside from the left enclosed 

region. Therefore, it is consistent with the fact that pure VORLAX result without the 

leading-edge multiplier[4] with almost no leading-edge suction, and the trend also shows 

the CFD simulation is good enough for analysis. With the same concept, the left region 

enclosed by blue line generated from CFD data grows as the angle-of-attack goes up, so 

the total leading-edge suction increases.   
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  On the contrary, the sharp leading-edge cases in Figure 48 have different form of 

pressure loop plots. Comparing to the NACA 0012 airfoil, the biconvex airfoil has almost 

no suction force produced for both CFD and VORLAX data sets. Even looking at the 

highest angle of attack case, the area of suction force remains smaller than the blunt 

leading-edge airfoil. It shows that the same airfoil with identical chord length, thickness, 

and camber can generate extremely different aerodynamics features because of the 

difference of the leading-edge. In sum, leading-edge will affect the production of leading-

edge suction.  

 
 

 
Figure 48: Pressure Loops for Biconvex Airfoil from One to Eight Angle-of-Attack 

These plots show the pressure loops generate from both CFD software and VORLAX 

sandwich panels code for biconvex airfoil. 
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C. Infer the Transverse Span Load to Extract the Classical Bound Vorticity Distribution 

   

  Span Loads is an important feature to present the three-dimensional effect of a 

wing. The lift coefficient versus span is a common setup for a span loads plot. However, 

Since VORLAX code only can generate spanwise normal force coefficient rather than 

spanwise lift coefficient, we compare VORLAX’s Cn with CFD’s Cn. According to the 

geometrical relationship between lift, drag, normal force, and axial force, we can formulate 

the equation as: 

N = L cos(α) + D sin(α) (96) 

A =  −Lsin(α) + Dcos(α) (97) 

L = Ncos(α) − Asin(α) (98) 

D = Nsin(α) + Acos(α) (99) 

 

 

 

 

Figure 49: Normal Vector for the Middle Point of Each Panel. 

The plot demonstrates the normal vector of part of mesh panels using for CFD software. 

The reverse direction is the vector of pressure force. 
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Because of small angle approximation, most of the theories we mention before 

assuming the normal force coefficient span loads will be identical with the lift coefficient 

span loads. In fact, the normal force can’t use small approximation to assume that the sine 

component of the pressure acting on the panels are always zero and that the cosine 

component of the pressure acting on the panels are always one because the angles of the 

surfaces are not small enough to be suitable for small angle approximation especially at the 

region of leading-edge. 

 

Figure 50: Comparison of Cosine and Sine Components for the Normal Cector of 

the Mesh Panels Between a NACA 0012 Airfoil and a Biconvex Airfoil. 

These four plots show the cosine and sine components on each mesh panel generate by 

CFD software. Figure a and b are for a NACA 0012 airfoil. Figure c and d are for a 

biconvex airfoil. 
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The direction of the pressure force is perpendicular to the surfaces. In other words, 

the vector of pressure work on each mesh panel is paralleled to the normal direction of each 

panel. In Figure 49, it shows the normal vector on the surfaces of a NACA 0012 airfoil and 

we can see the arrows have more horizontal component when it approaches the leading-

edge. The decomposition of the sine and cosine components, which is the direction of axial 

force and normal force, is demonstrated in Figure 50. To calculate the normal force 

coefficient Cn, the cosine component is the critical term for applying pressure force in the 

direction normal to the chord axis. The blunt leading-edge case in Figure 50a and Figure 

50b indicate the pressure force in leading edge is applied to axial force mostly, which we 

know that is source of leading-edge suction. On the contrary, sharp leading-edge in Figure 

6c and 6d don’t have much pressure force transform to leading-edge suction. If we didn’t 

calculate the cosine and sine component for each panel, the error is around 7% to 8% for a 

NACA 0012 airfoil and 5% to 6% for a biconvex airfoil.  

 

Based on the method we use, the comparison of spanwise Cn distribution can be 

drawn correctly. Figure 51 indicates that the two results show the same trend no matter 

what the angle-of-attack is it. Aside from some fluctuations, the two curves have the same 

curvature. Since the VORLAX code simulates an inviscid flow, so we can know the 

viscous effect puts no influence on span loads. The comparison of NACA 0012 and 

biconvex airfoil in Figure 52 reveals a fact that leading edge will change the shape of span 

loads. Therefore, based on the two facts: the viscous effect won’t change the span loads 

and the shape of span loads for NACA 0012 and a biconvex airfoil are not identical, we 

can say that the difference of blunt and sharp leading edge is caused by the inviscid effect. 
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In “Configuration Aerodynamics”, Mason mentions [35] a wing in inviscid flow generates 

drag and the drag is due to the effective angle-of-attack. In other words, the induced drag 

effect affects the shape of span loads, and we can say the shape of the leading edge might 

create different induced drag so that the shape of span loads changes. 

 

 

 

 

 

 

Figure 51: Span Loads for a NACA0012 Airfoil from One to Eight Angle of Attack. 

These plots show the span loads calculated from CFD and VORLAX thin flat plate code for 

a NACA 0012 airfoil. The Cnsection are the average of the normal force coefficient for each 

span section: centerline to ¼ span, ¼ span to ½ span, ½ span to ¾ span, and ¾ span to full 

span. 

 



  

74 

 

 

  

 

 

Figure 52: Span Loads for a Biconvex Airfoil from One to Eight Angle of Attack. 

These plots show the span loads calculated from CFD and VORLAX code for a biconvex 

airfoil. The Cnsection are the average of the normal force coefficient for each span section: 

centerline to ¼ span, ¼ span to ½ span, ½ span to ¾ span, and ¾ span to full span. 
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D. Chordwise Pressure Distribution 

   

  The chordwise pressure distribution is shown by pressure coefficient versus chord. 

A common approximation is to consider the area enclosed by the upper surface pressure 

distribution and lower surface pressure as the lift coefficient. Based on the concept we 

discussed in the previous section (Figure 50), we know the lift is not merely the upper 

surface pressure minus lower surface pressure like a flat plate airfoil since the pressure is 

normal to the surface instead of being perpendicular to the chord. Therefore, the 

approximation is not accurate when we analyze a thick airfoil or the one with a camber.  

 

  To get the correct force acting in the normal direction, the normal vector of each 

angle is essential to find the correct value of normal component like we did in span loads 

section. However, although traditional pressure distribution cannot derive the lift of a wing 

as we always believe before, it still a useful tool to demonstrate how different the pressure 

between the upper surface and lower surface area. 

 

  Figure 53 and Figure 54 are the pressure distribution plots for the blunt leading-

edge model, NACA 0012 airfoil, and sharp leading-edge model, biconvex airfoil generated 

by CFD. For a biconvex airfoil in Figure 54, it shows that Cp decreases rapidly after the 

peak. A sharp leading-edge can face incoming flow with small front cross-section so that 

the velocity on the tip of the leading edge is higher and the absolute value of Cp can be 

larger, but the increasing front cross-section makes the velocity decade continuously. 

Therefore, the pressure difference between the upper surface and lower surface shrinks 
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very fast. On the contrary, although the flow hits the blunt leading-edge with a larger 

thickness in the front of the airfoil so that the pressure peak is not as high as the sharp 

leading-edge, blunt leading-edge has a shorter region for decreasing velocity and longer 

region to increase the flow speed or delay the flow speed reduction. Consequently, the 

pressure difference declines slower and the area enclosed by the curve is larger.  

 

  The VORLAX model, with its coarse grid, doesn’t resolve the leading-edge suction 

“spike” as clearly as the CFD model. Thus, the axial forces integrated from VORLAX will 

differ. 

 

 

 
Figure 53: Pressure Distribution for a NACA 0012 Airfoil 

These plots show the pressure distribution from zero angle-of-attack to eight angle-of-attack. 
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Figure 54: Pressure Distribution for a Biconvex 0012 Airfoil 

These plots show the pressure distribution of a biconvex airfoil from zero angle-of-attack to 

eight angle-of-attack. 
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E. Mclean’s Equation Verification 

   

  In Mclean’s “Understanding Aerodynamics”[3],  he derives a general formula from 

far-field momentum balance for induced drag. 

Di = ∬
1

2
ρ(−u1i

2 + v1i

2 + w1i

2 )dS1
 

S1
  (47) 

However, as we know, a different leading-edge will change the span loads from the 

previous section. We wonder whether this equation can present a correct result for two 

different leading-edge.  

 

For the CFD result, we can use TECPLOT to integrate the u, v, w velocities across 

the entire plane we want.  

 

Figure 55: Wake Survey Plane and Induced Drag for a NACA0012 Airfoil from 

Mclean's Equation 
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Figure 56: Wake Survey Plane and Induced Drag for a Biconvex Airfoil from 

Mclean's Equation 

  The choice of distance can take Brune’s paper [36] as a reference. In this paper, he 

states the lift and induced drag are roughly independent from the location of the wake 

survey location we choose. Technically, we can choose any distance away from trailing-

edge because we don’t have limited measuring points as the experiment does. However, to 

eliminate the effect from tailing edge and wall because of the imperfection of convergence, 

the selection of wake survey plane needs to be as close as possible to the trailing edge, but 

it won’t be affected by trailing-edge flow. With 20 different planes in Figure 55, Figure 56, 

we can see the continuous change of the drag value as the increase of distance away from 

the trailing edge. This work helps us to decide where is far enough to take as the survey 

plane.  



  

80 

 

Another data set is from VORLAX examination. The data set is made in body axis, 

which if we what to apply the Mclean’s equation, either a transformation from body axis 

to wind axis or subtraction from mean downwash is needed. In Figure 57 and Figure 58, 

we can see there is no much different if we utilize either methods or combining both. 

 

Figure 57: Post-processing for VORLAX Wake Integration (Blunt leading-edge) 

 

Figure 58: Post-processing for VORLAX Wake Integration (Sharp leading-edge) 
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Therefore, we take the result after applying transformation and subtraction of the 

mean downwash as the VORLAX’s wake integral data and combine it with CFD’s wake 

integral data. As we know from the famous decomposition of drag: 

CD = CDi
+ 𝐶𝐷0

(100) 

The induced drag can simply be calculated by CD − 𝐶𝐷0
, where CD0

 is the drag when the 

angle of attack is zero. It looks reasonable, but the viscous drag term also increases when 

the angle of attack becomes higher. In order to present a proper induced drag value for 

comparison, the equation can be rewritten as:  

CD𝑖
= 𝐶𝐷 − 𝐶𝐷𝑝

− 𝐶𝐷0
(101) 

Where pressure drag coefficient 𝐶𝐷𝑝
 can be derived from the pressure different between 

inlet and outlet of the control volume. 
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Figure 59: Mclean’s Wake Integral for Blunt Leading-edge 

 

In Figure 34, the VORLAX’s result seems to match the Mclean’s equation. CFD 

result is closed to the line, but it didn’t fit as good as VORLAX. The difference between 

VORLAX and CFD is around 10%-20% which we can treat as the influence of viscous 

effect. However, the sharp leading edge in Figure 35 shows something interesting. Not 

only the CFD’s result but also the VORLAX’s result has a huge gap between the induced 

drag and Mclean’s answer. Besides, we can see the induced drag from three different 

models (VORLAX sandwich panels, VORLAX flat panels, and CFD three-dimensional 

model) are pretty similar to each other. From here, the model shows the inaccuracy of 

Mclean’s prediction does not originate from any viscous effect. Another important fact is 
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that Mclean’s result for both cases are the same which means the two airfoils have the same 

wake flow. 

 

Figure 60: Mclean’s Wake Integral for Sharp Leading-edge 
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1. There are some vortexes generated before survey plane => wake survey can’t 

collect the all energy loss. 

2. Mclean’s equation didn’t consider the leading-edge suction term. 

According to the first assumption, we should be able to see the difference of the flow 

field between blunt leading-edge and sharp leading-edge. 

 

Figure 61: Velocity Flow Across a Biconvex Airfoil 

 

Figure 62: The Vortex Behind a Biconvex Airfoil 
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In Figure 61 and Figure 62, we can see a smooth flow across a biconvex airfoil and 

generated shed vortex near the tip. It proves the concept of wake integration is correct. If 

the concept is right, but the result only can apply to the blunt leading-edge case. It means 

the equation has a missing term. The second assumption can be tested by calculating the 

difference of leading-edge suction and then add it to sharp leading-edge, so it can simulate 

a biconvex airfoil with NACA0012 leading-edge suction.  

Assume that Mclean’s result can present the induced drag correctly without missing 

any term. Since the derived induced drag is higher than Mclean’s result which we assume 

that is the real induced drag, the leading-edge thrust will be negative to match the situation. 

However, we already proved that the biconvex has a small positive leading-edge 

suction in Figure 63. 

 

Figure 63: The Pressure Loop for a Biconvex Wing at 8° angle-of-attack. (CFD 

only) 
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Based on this, we are almost sure that Mclean’s equation has something missing 

and the term is a function of angle of attack, which is second assumption. 

 

Figure 64: The Pressure Loop for a NACA0012 Wing at 8° angle-of-attack. (Both 

CFD and VORLAX) 

 

According to the result so far, the leading-edge suction seems to be the only factor 

between the two airfoils which is possible to make the difference in value, and the blunt 

leading-edge result looks good in Figure 64. (Notes that the VORLAX result cannot 

capture the leading-edge suction.) 

 

The way Mclean calculates the induced drag is to derive the energy losses in the 

wake, called wake survey. Based on Kelvin's circulation theorem, the energy of the shed 
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vortex is equal to the bound vortex and the bound vorticity is the one to generated lift to 

each panel. The lift also produces a forward and backward thrust which we called leading-

edge suction. Therefore, blunt and sharp leading-edge have the same or similar lift for each 

panel, but because of the shape of leading-edge they distribute their lift (normal to each 

panels) to leading-edge suction with a different ratio (see Figure 65). 

 

 

Figure 65: Pressure Force Distribution. [37] 
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We can see the wake survey in this perspective: 

Wake Integration = the energy of shed vortex = the energy of bound vortex 

                          = the sum of lift on each panel = normal vector of some panels is 

pointed to vertical direction, but some is points to horizontal direction. 

                         = energy to generated lift (wing axis) + energy to generated leading-

edge thrust. 

                         = induced drag (+) + leading-edge suction (-). 

Wake Integration == induced drag (+) + leading-edge suction (-). 

Total drag = induced drag + leading-edge suction (-) + profile drag. 

Total drag = Wake Integration - leading-edge suction (-) + profile drag 

Total drag (CD) – profile drag (CD0
) = Wake survey - leading-edge suction (-) 

CD – CD0
 = Mclean’s result – LE_suction 

 

If the Mclean’s result for blunt and sharp leading-edge are the same or similar, then 

(CD − 𝐶𝐷0
)

𝑏𝑙𝑢𝑛𝑡
− (CD − 𝐶𝐷0

)
𝑠ℎ𝑎𝑟𝑝

= (𝐿𝐸𝑠𝑢𝑐𝑡𝑖𝑜𝑛)𝑠ℎ𝑎𝑟𝑝 − (𝐿𝐸𝑠𝑢𝑐𝑡𝑖𝑜𝑛)𝑏𝑙𝑢𝑛𝑡 

Also, we know the Mclean’s result is fairly close to blunt leading-edge result,  

(CD − 𝐶𝐷0
)

𝑏𝑙𝑢𝑛𝑡
= Mclean’s result. 

(CD − 𝐶𝐷0
)

𝑏𝑙𝑢𝑛𝑡
= (CD − 𝐶𝐷0

)
𝑠ℎ𝑎𝑟𝑝

− (𝐿𝐸𝑠𝑢𝑐𝑡𝑖𝑜𝑛)𝑠ℎ𝑎𝑟𝑝 + (𝐿𝐸𝑠𝑢𝑐𝑡𝑖𝑜𝑛)𝑏𝑙𝑢𝑛𝑡 
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Mclean’s result = (CD − 𝐶𝐷0
)

𝑠ℎ𝑎𝑟𝑝
− ∆𝐿𝐸𝑠𝑢𝑐𝑡𝑖𝑜𝑛 

Therefore, we can use the difference of leading edge thrust to correct the Mclean’s 

equation in Figure 60.  

 

In Figure 54, the “CDi – delta_LEsuction” turns out to fit the Mclean’s result with 

reasonable accuracy. The result of correction is good when the angle-of-attack is small. 

The error for high angle of attack can be seen as the imperfect of CFD convergence.  As 

we mentioned before, the difference does not originate from the viscous effect. We can 

also use the inviscid result to verify this theory again if the leading-edge suction term can 

be extracted from VORLAX. However, the method that VORLAX uses to simulate the 

thick airfoil is to use two vortex lattice layers where the joints are at the leading-edge and 

trailing-edge, so the assumption can’t be verified by the data set we have. Now, we know 

that the missing term in Mclean’s equation is the leading-edge suction term based on the 

result, but a question remains; why the differences of the leading-edge thrust can’t be 

detected in the wake? In previous discussion, we note that the Mclean’s equation accounts 

for the energy of wake, but the shed vorticity in the wake is not equal to the lift but bound 

vorticity, which is the pressure force on the surface. Moreover, the pressure force is the 

source of lift and leading-edge suction. Also, the Mclean’s result of the blunt leading-edge 

wing can present the real situation properly. Therefore, the fact is that the Mclean’s 

equation always assumes the wings have full leading-edge suction so it can’t derive the 

induced drag for sharp leading-edge wings correctly. 
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CONCLUSION 

For induced drag classic derivation, the theories discussed in the Prior Art section 

neglect thickness. They calculate the induced drag from a rotation of normal forces into the 

drag direction. The theories do not consider the curvature or thickness of the surface; thus, 

they claim pressure forces are always pointed orthogonal to the airfoil. That is also the 

reason why Kutta-Joukowski theorem can be written in such a concise from: 

 L′(y0) = ρ∞V∞Γ(y0)# 8Where Γ is the circulation (see Figure 3) and  y0 is a specific transverse “strip” on 

the span.  

Classical methods assume all airfoils are transformed from perfect, inviscid flow around a 

cylinder. In this simplified model, the sum of pressure forces on the surface of a circle in 

the drag direction is zero. This property of ideal inviscid flow means that all follow-up 

theories developed from the Kutta-Joukowski theorem make the same assumption: the 

airfoils don’t have thickness effects and cannot develop axial forces due to inviscid flow 

mechanisms. 

 

 However, we know that the common airfoils have sharp trailing edges. The Kutta 

condition and Kelvin’s circulation theorem explain how the finite angle or cusp trailing 

edge can produce a starting vortex: The “vorticity” of this vortex is identical to the “bound 

vorticity” which is the circulation in the Kutta-Joukowski theorem.  
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 Mclean emphasizes that induced drag is a measure of the shed vorticity in the wake. 

Based on the development of these theories, Mclean believes the energy loss in the wake 

goes back to the consequence of lift because of the energy conservation and Kelvin’s 

theorem. His logic is correct, but we know the source of his theory is the Kutta-Joukowski 

theorem which assumes the airfoils have round leading-edge and sharp trailing-edge (with 

Kutta condition). In this perspective, Mclean’s Wake Survey Method also neglects the 

thickness effect and presumes all airfoil have a blunt leading edge and sharp trailing edges. 

Thus, classical methods to derive induced drag apply to ideal blunt leading-edge airfoils 

only.  

Viscous and inviscid test data also show the fact that a wake survey doesn’t match 

with the value directly derived from the pressure force acting on the surface. The critical 

point is the leading-edge suction caused by the shape of the leading-edge. To be more 

specific, the classical theories do not consider the change of leading-edge suction along 

with the shape of the leading edge. Instead, they assume all airfoils have “full” leading-

edge suction.  

 Polhamus is the first to provide the idea of leading-edge suction. Even his theory 

does not fully match with the lifting line theory: the concept of Polhamus’s paper shows 

how to “correct” induced drag. The difference between Mclean’s Wake Survey and real 

test data for a sharp leading-edge wing can be explained by the lack of a leading-edge 

suction term. Once the correct value is applied to the Mclean’s result, the data becomes 

reasonably close. In conclusion, classical methods can only derive induced drag apply for 

ideal blunt leading-edge airfoils. We can correct the result by knowing the difference of 
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leading-edge suction between full leading-edge suction wings and partially leading-edge 

suction wings. 
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