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ABSTRACT

This dissertation examines six different models in the field of econophysics using

interacting particle systems as the basis of exploration. In each model examined,

the underlying structure is a graph G = (V ,E ), where each x ∈ V represents an

individual who is characterized by the number of coins in her possession at time t.

At each time step t, an edge (x, y) ∈ E is chosen at random, resulting in an exchange

of coins between individuals x and y according to the rules of the model. Random

variables ξt, and ξt(x) keep track of the current configuration and number of coins

individual x has at time t respectively. Of particular interest is the distribution of

coins in the long run. Considered first are the uniform reshuffling model, immediate

exchange model and model with saving propensity. For each of these models, the

number of coins an individual can have is nonnegative and the total number of coins

in the system is conserved for all time. It is shown here that the distribution of

coins converges to the exponential distribution, gamma distribution and a pseudo

gamma distribution respectively. The next two models introduce debt, however,

the total number of coins again remains fixed. It is shown here that when there is

an individual debt limit, the number of coins per individual converges to a shifted

exponential distribution. Alternatively, when a collective debt limit is imposed on

the whole population, a heuristic argument is given supporting the conjecture that

the distribution of coins converges to an asymmetric Laplace distribution. The final

model considered focuses on the effect of cooperation on a population. Unlike the

previous models discussed here, the total number of coins in the system at any given

time is not bounded and the process evolves in continuous time rather than in discrete

time. For this model, death of an individual will occur if they run out of coins. It is

shown here that the survival probability for the population is impacted by the level

of cooperation along with how productive the population is as whole.
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Chapter 1

INTRODUCTION

1.1 Econophysics

Plutarch once said “An imbalance between rich and poor is the oldest and most

fatal ailment of all republics [4].” This imbalance between the rich and the poor is

still as ever-present today as it has been throughout history [6]. In most societies that

ever existed, wealth classes form over time even when each individual in the society

begins with roughly the same amount of wealth. It is unclear why this occurs, and

getting at the root cause of this has proven to be quite difficult in part because there

isn’t much data available on individual wealth. Consider specifically the distribution

of wealth in the United States; although each individual is required to report their

yearly earnings for tax purposes, it would be highly unusual for one to report on the

status of their total wealth at all let alone report this information on a regular basis.

As such, using traditional statistical methods to examine the distribution of wealth

across a population over time is seemingly untenable. The field of econophysics tries

to solve problems such as this and provides tools to examine the distribution of wealth

by modeling monetary interactions between individuals on a microscopic level. As

its name implies, econophysics is the combining of economics and physics. Specifi-

cally, econophysics is the field of research where known problem solving techniques

and principles in physics are interpreted for and applied to problems in economics.

Appearing first in [17], the term econophysics was described well in this paper as-

serting that “behavior of large numbers of humans as measured, e.g., by economic

indices might conform to analogs of the scaling laws that have proved useful in de-
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scribing systems composed of large numbers of inanimate objects.” It was with this

notion in mind that the research presented in this dissertation was conducted. Many

models describing the exchange of money between individuals have been looked at

by [3, 5, 6, 9, 11] among others. It is intuitive that examining the way money is

exchanged between individuals on a granular scale could help to answer questions

about the distribution of wealth in a population. This intuition is the motivation

behind choosing the framework of interacting particle systems to model wealth flows

in a population.

1.2 Interacting Particle Systems

In the fields of physics, biology, sociology, economics and others, the mathematical

models used to describe the phenomena that happen within these respective fields are

often lacking in helping to build an understanding of the role that spatial structure

and/or social network (represented by a connected graph) plays in how the overall

process will evolve in the long run. It is natural to make the assertion that this

spatial component taking the form of local interactions is very important in many of

these processes and that in fact, the spatial component can have a large impact on

the evolution of such processes. For example, two groups of the same species who

have become separated by some physical barrier will no longer be able to interact

with one another and will evolve independently of one another. Interacting particle

systems are mathematical models that take into account the spatial structure of the

underlying process as well as the rules that govern the interactions between single

particles, where particles are interpreted as a single unit in the population being

modeled, i.e. a person, animal, cell, etc. Looking at the spatially explicit versions of

these models allows one to deduce the overall effects that single interactions between

particles can have on the process as a whole. The general framework for interacting
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particle systems has each particle located on a vertex of a given graph. The graph

provides the spatial structure for the process as only those particles connected by

an edge can interact with one another and it is assumed that the underlying graph

remains constant throughout the process. The process will evolve in time by allowing

adjacent particles to interact with one another. Each interaction will result in a

changing of properties of the participating particles according to the rules of the

process. More rigorously, given a graph G = (V ,E ), an interacting particle system is

defined as a continuous-time or a discrete-time Markov chain where the state at time

t is a configuration:

ξt : V → K

where each x ∈ V is a spatial location for a particle in the process, and each i ∈ K

corresponds to a type. It is said that ξt(x) is the type of vertex x at time t. For each

vertex x ∈ V , the so-called interaction neighborhood:

Nx = {y ∈ V : (x, y) ∈ E }

is the set of vertices (particles) with whom x can interact.

The focus of this dissertation is to solve existing problems in the field of econo-

physics utilizing the framework of interacting particle systems. The uniform reshuf-

fling model, immediate exchange model, model with saving propensity, and the models

with debt are all well known in the field of econophysics. Discussed in chapters 2 and

3 are discretized versions of these five important models. In chapter 4, another model

is introduced where the effect of cooperation between individuals is studied. In each

of the models discussed in this dissertation, the graph G = (V ,E ) gives the under-

lying spatial structure and each vertex x in the set V represents an individual who

is characterized by the amount of coins in his/her possession at time t. The goal of

chapter 2, is to find the stationary distribution for the number of coins per individ-
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ual for the uniform reshuffling model, immediate exchange model, and model with

saving propensity. Similarly, the goal of chapter 3, is to find the stationary distribu-

tion for the number of coins per individual for the model with individual debt limit

and the model with collective debt limit. For the five models discussed in chapter 2

and chapter 3, the underlying graph G is a finite connected graph and remains fixed

throughout the process. The goal of the chapter 4 is to determine the effect that

cooperation has on the probability of survival of a population of individuals where

death of an individual will occur if that individual needs to spend a coin but has no

coin to spend. Unlike the other models discussed here, G can be either finite or infi-

nite and although G is initially connected, it is possible for G to become disconnected

if a cut vertex is removed from the graph via death of the individual located there.

1.3 Models on Connected Graphs

Chapter 2 of this dissertation is concerned with three models: the uniform reshuf-

fling model, the immediate exchange model and the model with saving propensity.

Simulations of the uniform reshuffling model, which was first studied in [6], suggest

the conjecture that when the number of individuals and the average number of coins

per individual is large, the stationary distribution for the number of coins per indi-

vidual is the exponential distribution. Simulations of the immediate exchange model

done in [8] suggest a similar conjecture that the stationary distribution for the number

of coins per individual is the gamma distribution. Simulations in [16] of the model

with saving propensity suggest the conjecture that the stationary distribution for the

number of coins per individual is a gamma distribution. In this dissertation, interact-

ing particle systems are used to look at discrete versions of these three models, and for

each, the underlying graph is finite and connected. Further, by design the processes

are conservative in that at any given time t, there are exactly M coins in circulation.
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Let N = |V | be finite and denote the number of individuals in the processes. For

each process, the set of types is

K = {0, 1, . . . ,M}

so that no individual has a negative amount of coins at any time, and so that each

individual always has an integer valued amount of coins.

1.3.1 Uniform Reshuffling Model

The simplest of the three models is the uniform reshuffling model. The dynamics of

the process are as follows: at each time step t, an edge (x, y) ∈ E is chosen at random,

the total amount of coins the two individuals x and y possess at that time are pooled

together and then redistributed among the two individuals uniformly. The simulations

performed in [6] for this model under the assumption that all the individuals are

equally likely to interact suggest that, as the population size approaches infinity, the

distribution of money converges to an exponential distribution.

1.3.2 Immediate Exchange Model

The dynamics of the immediate exchange model are as follows: at each time step

t, an edge (x, y) ∈ E is chosen at random, then the interacting individuals x and y

each choose a random number of coins to give to the other from their own set of coins

uniformly. They then exchange the coins they have chosen to give. For this model, it

was conjectured based on numerical simulations in [8] that, when the individuals are

equally likely to interact, the distribution of money converges to a gamma distribution.

This result has been proved analytically in [10] for an infinite-population version of

the model.
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1.3.3 Model with Saving Propensity

The dynamics of the model with saving are as follows: at each time step t, an edge

(x, y) ∈ E is chosen at random, then the interacting individuals x and y each choose a

random amount of their own coins to save for themselves. At this time remaining coins

are redistributed according to the uniform reshuffling model. The numerical results

in [4] show that, when all the individuals are equally likely to interact, the limiting

distribution of money is similar but not exactly equal to a gamma distribution.

Chapter 2 of this dissertation not only gives rigorous proofs of the results in [4,

6, 8, 10], but also extends those results to any connected graph G . Even though the

local evolution rules for those three models are simplistic and do not take into account

all the complexity of financial interactions in the real world, numerical simulations

performed by other scientists show that the limiting behavior of those models matches

well with real world data for the distribution of money.

1.4 Models with Debt

Chapter 3 of this dissertation is concerned with the two models introduced by [6,

18] where debt is included: the model with individual debt limit Li and the model

with collective debt limit Lc. These models have also been studied by others via

simulations. These simulations suggest the conjectures that when the number of

individuals and average number of coins per individual is large, the stationary distri-

bution for the number of coins per individual is a shifted exponential distribution for

the model with individual debt limit Li, and an asymmetric Laplace distribution for

the model with collective debt limit Lc. Here interacting particle systems are used to

study discrete versions of these models where the underlying graph G is once again

6



assumed to be finite and connected. For simplicity, G will be a directed multigraph

such that (x, y) ∈ E if and only if (y, x) ∈ E . Once again both models with debt are

conservative in that at any given time, there are exactly M coins in circulation. For

both models, each individual always has an integer valued amount of coins.

1.4.1 Model with Individual Debt Limit Li

The model with individual debt limit has the set of types

K = {−Li,−Li + 1, . . . , 0, . . . ,M + (N − 1)Li}

which means that each individual can have no more than M + (N − 1)Li) coins and

no less than −Li coins at any time. The dynamics of this process are as follows: at

each time step t, an edge (x, y) ∈ E is chosen at random, and if person x has more

than −Li, coins he gives one coin to person y, otherwise the exchange is cancelled.

1.4.2 Model with Collective Debt Limit Lc

In the model with collective debt limit, let V ? = V ∪ {?}, where ? represents the

location of a bank. The bank loans out at most Lc coins in total and once those Lc

coins are borrowed, it will not loan out more coins regardless of the distribution of

debt among the individuals. This model has the set of types

K = {−Lc,−Lc + 1, . . . , 0, . . . ,M + Lc}

so that each individual can have no more than M+Lc (all coins in circulation plus all

coins from the bank) and no less than −Lc (bank is empty and only one individual is

in debt) coins at any time. The dynamics of this process are as follows: at each time

step t, an edge (x, y) ∈ E is chosen at random and there are four possibilities for the

interaction between x and y:

7



Case 1: (ξt(x) > 0 and ξt(y) ≥ 0) In this case person x gives one coin to person

y.

Case 2: (ξt(x) ≤ 0 and ξt(y) ≥ 0) In this case, if the bank has at least one coin

left to loan, person x borrows a coin from the bank and gives it to person y, other-

wise the exchange is cancelled.

Case 3: (ξt(x) > 0 and ξt(y) < 0) In this case, person x gives one coin to person

y who then immediately gives this coin to the bank to pay off some of her debt.

Case 4: (ξt(x) ≤ 0 and ξt(y) < 0) In this case, if the bank has at least one coin

left to loan, person x borrows a coin from the bank and gives it to person y who then

immediately gives this coin to the bank to pay off some of her debt. If the bank has

already loaned out all Lc of its coins, the exchange is cancelled.

Previous conjectures by those who have worked on the discrete model with in-

dividual debt limit Li are proved in chapter 3. Also contained in chapter 3 is an

expression for the stationary distribution for the model with collective debt limit Lc.

Thus far, the expression for the stationary distribution for the model with collective

debt limit Lc is too complicated to simplify to prove the conjecture made by others

that the stationary distribution for the number of coins per individual is Laplace.

However, a computer was used to plot the Laplace distribution alongside the actual

stationary distribution which yielded an almost perfect fit giving more evidence that

the conjecture is in fact true. Furthermore, it is shown in chapter 3 that the process

ξt(?) is a supermartingale. This insight is the basis for a heuristic argument in favor of

the conjecture that the stationary distribution for the number of coins per individual

8



is asymmetric Laplace.

1.5 Model with Cooperation

Chapter 4 of this dissertation is concerned with processes where cooperation plays

a role in the dynamics of the system. In this model, the underlying graph G is a locally

finite connected graph which can be either finite or infinite in order, and the process

is a continuous-time Markov chain with set of types Z+ ∪ {−1, 0}.

The dynamics of this process is as follows: Each agent x in the system spends one

coin at rate one and earns one coin at rate φx chosen from a fixed distribution φ. To

incorporate the concept of cooperation in the system, fix a nonnegative constant µ as

the rate of cooperation. For any pair of neighbors on the graph, the “richer” of the

two x gives the “poorer” of the two y one coin at rate µ assuming this interaction

will not result in making x more poor than y. If at any time during the process an

agent with zero coin needs to spend a coin, she dies and is assigned type −1 for the

remainder of the process. Any agent who has died can no longer interact, spend or

earn coins.

The reason why a continuous-time Markov chain is used, as opposed to a discrete-

time Markov chain as with the first five models, is because the graph G can be

infinite. Indeed, when the number of individuals is countably infinite, choosing a pair

of individuals uniformly at random like for the first five models is not well defined.

Instead, it is necessary to use independent Poisson processes to describe the times at

which pairs of neighbors interact, which results in a continuous-time Markov chain.

1.5.1 Model with Cooperation Where G Is Finite

First studied are the simple cases on a finite connected graph where there is

either perfect cooperation (µ =∞) or no cooperation (µ = 0). It is shown that in the

9



case that in average the population spends more money than they need to survive,

perfect cooperation results in less individuals expected to survive than if there were no

cooperation. On the other hand, when in average the population earns more money

than they need to survive, perfect cooperation results in more individuals expected

to survive than if there were no cooperation.

1.5.2 Model with Cooperation Where G Is the One Dimensional Integer Lattice

Finally studied is the system where G is the one dimensional integer lattice. In the

case where the population earns less than they need to survive in average, it is shown

that the proportion of individuals who eventually die has a positive lower bound that

does not depend on the number of coins each agent starts with or the value of µ.
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Chapter 2

RIGOROUS RESULTS FOR THE DISTRIBUTION OF MONEY ON

CONNECTED GRAPHS

2.1 Abstract

This paper is concerned with general spatially explicit versions of three stochastic

models for the dynamics of money that have been introduced and studied numeri-

cally by statistical physicists: the uniform reshuffling model, the immediate exchange

model and the model with saving propensity. All three models consist of systems

of economical agents that consecutively engage in pairwise monetary transactions.

Computer simulations performed in the physics literature suggest that, when the

number of agents and the average amount of money per agent are large, the limiting

distribution of money as time goes to infinity approaches the exponential distribu-

tion for the first model, the gamma distribution with shape parameter two for the

second model and a distribution similar but not exactly equal to a gamma distribu-

tion whose shape parameter depends on the saving propensity for the third model.

The main objective of this paper is to give rigorous proofs of these conjectures and

also extend these conjectures to generalizations of the first two models and a variant

of the third model that include local rather than global interactions, i.e., instead of

choosing the two interacting agents uniformly at random from the system, the agents

are located on the vertex set of a general connected graph and can only interact with

their neighbors.
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2.2 Introduction

The objective of this paper is to give rigorous proofs of various conjectures (as well

as extensions of these conjectures) about general spatially explicit versions of models

in econophysics describing the dynamics of money within a population of economical

agents. The term econophysics was coined by physicist Eugene Stanley to refer to

the subfield of statistical physics that applies concepts from traditional physics to

economics. The terminology is motivated by the idea that molecules can be viewed

as individuals, energy as money, and collisions between two molecules as exchanges of

money between two individuals. The models we consider in this paper are known in

the mathematics literature as interacting particle systems [8] and are inspired from

models for the dynamics of money reviewed in [10] that consist of large systems

of N economic agents that interact to engage in pairwise monetary transactions. The

models in [10] are examples of discrete-time Markov chains where, at each time step,

two agents are selected uniformly at random to interact, which results in an exchange

of money between the two agents in an overall conservative system, meaning that the

total amount of money in the system, say M dollars, remains constant. By analogy

with the temperature in physics, the average amount of money per agent T = M/N

is called the money temperature. The main problem about these models is to find the

limiting distribution of money, which is mathematically defined as the limit as time

goes to infinity of the probability that a given agent has a given amount of money.

The first paper introducing such models is [3] where several rules for the exchange

of money are considered. In the most natural version, called the uniform reshuffling

model, the total amount of money the two interacting agents possess before the

interaction is uniformly redistributed between the two agents after the interaction.

More precisely, using the same notation as in the review [10] and letting mi and m′i

12



be the amount of money agent i has before and after the interaction, respectively, an

interaction between agents i and j results in the update

mi → m′i = ε (mi +mj)

mj → m′j = (1− ε)(mi +mj)
where ε = Uniform (0, 1). (2.1)

The computer agent-based simulations performed in [3] suggest that, for all the rules

under consideration including (2.1), the limiting distribution of money approaches

an exponential distribution with mean T when both the population size N and the

money temperature T are large, i.e., the probability that a given individual has m

dollars approaches

P (m) =
1

T
e−m/T where T = M/N.

Strictly speaking, since the independent uniform random variables ε used at each

update are continuous, the probability of having exactly m dollars is equal to zero,

so the limit above given in the physics literature has to be understood as follows: As

time goes to infinity, the probability that a given individual has at least m dollars

approaches ∫ ∞
m

1

T
e−x/T dx = e−m/T .

One of the models in [3] assumes that one of the two interacting agents chosen at

random gives one dollar to the other agent if she indeed has at least one dollar. The

simulations in [3] suggest that the limiting distribution of money for this model also

approaches the exponential distribution, which has been proved analytically and ex-

tended to general spatial models in [7].

The second model we consider in this paper is inspired from the so-called imme-

diate exchange model introduced and studied numerically in [4]. In this model, two

agents are again chosen uniformly at random at each time step, but we now assume

that each of the two interacting agents gives a random fraction of her fortune to the
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other agent. More precisely, an interaction between agents i and j results in the

update

mi → m′i = (1− εi)mi + εjmj

mj → m′j = (1− εj)mj + εimi

where εi, εj = Uniform (0, 1) (2.2)

are independent. Note that the uniform reshuffling model (2.1) can be obtained

from the immediate exchange model (2.2) by assuming that the two uniform random

variables used at each update are not independent but instead satisfy εi + εj = 1. In-

terestingly, this slight change in the interaction rules creates a new behavior. Indeed,

the numerical simulations in [4] suggest that the limiting distribution of money now

approaches a gamma distribution with mean T and shape parameter two when the

population size and the money temperature are large:

P (m) =
4m

T 2
e−2m/T where T = M/N.

As previously, this limit has to be understood as follows: As time goes to infinity, the

probability that a given individual has at least m dollars approaches∫ ∞
m

4x

T 2
e−2x/T dx =

(
1 +

2m

T

)
e−2m/T .

Shortly after the publication of [4], the convergence to the gamma distribution has

been proved analytically in [5] for an infinite-population version of the immediate

exchange model.

The third and last model we consider in this paper is inspired from another gen-

eralization of the uniform reshuffling model that includes saving propensity [2]. The

two interacting agents now save a fixed fraction λ of their fortune and only the com-

bined remaining fortune is reshuffled randomly between the two agents, which makes

the uniform reshuffling model the particular case λ = 0. In equations, an interaction
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between agents i and j results in the update

mi → m′i = λmi + ε (1− λ)(mi +mj)

mj → m′j = λmj + (1− ε)(1− λ)(mi +mj)
where ε = Uniform (0, 1). (2.3)

The computer simulations performed in [9] suggest that the limiting distribution of

money converges to a gamma distribution. However, the results in [1] show that the

limiting distribution is similar but not exactly equal to a gamma distribution with

mean T and shape parameter r that depends on the saving propensity as follows:

P (m) =
1

Γ(r)

(
r

T

)r
mr−1 e−rm/T where T = M/N and r =

1 + 2λ

1− λ
.

This again has to be understood as follows: As time goes to infinity, the probability

that a given individual has at least m dollars is close to∫ ∞
m

1

Γ(r)

(
r

T

)r
xr−1 e−rx/T dx where r =

1 + 2λ

1− λ
.

Note that the distribution above reduces to the exponential distribution when λ = 0,

in accordance with the numerical results for the uniform reshuffling model in [3]. Note

also that the gamma distribution with shape parameter r = 2, which approximates the

limiting distribution of the immediate exchange model, is obtained by setting λ = 1/4.

2.3 Model Description

The models we study in this paper are discrete-state versions of the models (2.1)–

(2.3) that also include a spatial structure in the form of local interactions.

• Discrete-state versions means that we assume that there is a total of M coins

in the system, where M is a nonnegative integer, and that individuals are char-

acterized by the number of coins they possess, which we again assume to be a

nonnegative integer. In particular, the fortune of each individual is a discrete
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quantity rather than a continuous one, and each exchange of money can only

result in a finite number of outcomes.

• Local interactions, as opposed to global interactions where any two individuals

in the system may interact at each time step, means that individuals are located

on the set of vertices V of a graph G = (V ,E ) that we assume to be connected,

and that only neighbors, i.e., individuals connected by an edge e ∈ E , can

interact to exchange coins. The graph G has to be thought of as representing a

social network where only individuals connected by an edge (friends, business

partners, etc.) can interact to exchange money.

As previously, we let N = card(V ) be the population size. Each of the three models

is again a discrete-time Markov chain but the state at time t ∈ N is now a spatial

configuration

ξ : V → N where ξ(x) = number of coins at vertex x.

In addition to the fact that the amount of money individuals possess is discrete

rather than continuous, the main difference with the non-spatial models described in

the previous section is that, at each time step, the interacting pair is not selected by

choosing a pair uniformly at random but by choosing an edge e ∈ E uniformly at

random. Note that the non-spatial models in the previous section can be viewed as

particular cases where G is the complete graph with N vertices.

Uniform reshuffling model. The version of the uniform reshuffling model (Xt) we

consider evolves in discrete time as follows. At each time step, say t, an edge (x, y)

is chosen uniformly at random from the edge set E , which results in an interaction

between the economical agents at vertex x and at vertex y. Following [3], we assume

that the total amount of coins both agents have at time t is uniformly redistributed
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between the two agents at time t+1. Since each coin is treated as an indivisible unit,

the number of outcomes is finite. More precisely, we let

U = Uniform {0, 1, . . . , Xt(x) +Xt(y)} (2.4)

and update the configuration by setting

Xt+1(x) = U and Xt+1(y) = Xt(x) +Xt(y)− U (2.5)

while Xt+1 ≡ Xt on the set V − {x, y}. Note that

Xt(x) +Xt(y)− U = Uniform {0, 1, . . . , Xt(x) +Xt(y)} in distribution,

indicating that, though (2.5) is not symmetric in x and y, the numbers of coins the

agents at x and y receive from the interaction are indeed equal in distribution.

Immediate exchange model. In our version of the immediate exchange model (Yt),

we again choose an edge (x, y) uniformly at random at each time step, which results

in an interaction between the two agents incident to the edge. Following [4], we now

assume that the two agents give a (uniform) random number of their coins to the

other agent. More precisely, we let

U1 = Uniform {0, 1, . . . , Yt(x)} and U2 = Uniform {0, 1, . . . , Yt(y)} (2.6)

be independent, and update the configuration by setting

Yt+1(x) = Yt(x)− U1 + U2 and Yt+1(y) = Yt(y)− U2 + U1 (2.7)

while Yt+1 ≡ Yt on the set V − {x, y}.

Uniform saving model. As previously, an edge (x, y) is chosen uniformly at random

at each time step, which results in an interaction between the two agents incident

to the edge. In the original model with saving introduced in [2], each agent saves a
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fixed (deterministic) fraction of their fortune and the combined remaining amount of

money is uniformly redistributed between the two agents. In contrast, we add more

randomness to the process by assuming that the number of coins each agent saves is

also random. This results in a model (Zt) that combines the previous two types of

interactions: random exchange and uniform reshuffling. More precisely, we let

U1 = Uniform {0, 1, . . . , Zt(x)} and U2 = Uniform {0, 1, . . . , Zt(y)} (2.8)

be independent. These are the random numbers of coins vertex x and vertex y save

before the exchange. Then, given that U1 = cx and U2 = cy, we let

U = Uniform {0, 1, . . . , Zt(x) + Zt(y)− cx − cy} (2.9)

be the random number of coins vertex x gets after uniform reshuffling. In particular,

the new configuration is obtained by setting

Zt+1(x) = cx + U and Zt+1(y) = Zt(x) + Zt(y)− cx − U (2.10)

while Zt+1 ≡ Zt on the set V − {x, y}. Note that the number of coins at vertex y

after the interaction can be written and interpreted in the following manner:

Zt+1(y) = Zt(x) + Zt(y)− cx − U = cy + (Zt(x) + Zt(y)− cx − cy − U)

which is the number of coins vertex y saves before the interaction plus the number of

coins vertex y gets after uniform reshuffling of the coins involved in the exchange.

2.4 Main Results

Numerical simulations of the uniform reshuffling model (2.4)–(2.5) on the complete

graph suggest that the limiting distribution of money approaches the exponential

distribution

1

T
e−c/T for all c = 0, 1, . . . ,M,
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shown in Figure 2.1 when the number of vertices and the money temperature are large.

This is in agreement with the numerical results found for the continuous counter-

part (2.1). Similarly, numerical simulations of the immediate exchange model (2.6)–

(2.7) on the complete graph are in agreement with the numerical results found for

the continuous counterpart (2.2), suggesting again that the limiting distribution of

money approaches in this case the gamma distribution

4c

T 2
e−2c/T for all c = 0, 1, . . . ,M,

shown in Figure 2.2 when the number of vertices and the money temperature are

large. These results are expected since our versions of the uniform reshuffling and

immediate exchange models are good approximations of models (2.1) and (2.2) when

the number of coins is large. Now, in contrast with model (2.3), our version of the

uniform saving model (2.8)–(2.10) does not include any parameter measuring the

saving propensity. As for the immediate exchange model, simulations of the uniform

saving model suggest convergence to the gamma distribution with shape parameter

two, which is close to to the limit of model (2.3) with saving propensity λ = 1/4.
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Figure 2.1: Simulation Results for a Single Realization of the Uniform Reshuffling
Model (2.4)–(2.5) on the Complete Graph. The Number of Vertices Used in Each
Simulation Is Indicated at the Top Right of the Pictures. For Each of the Four
Simulations, All the Vertices Start with $100. The Gray Histograms Represent the
Distribution of Money After 106 Updates While the Black Solid Curve Is the Expo-
nential Distribution with Mean T = 100.

Our analytical results for the three models (2.4)–(2.10) not only give rigorous

proofs of the three conjectures above when the number of vertices and the money

temperature are large, they also extend these conjectures in several directions:

1. The convergence to a distribution of money that approaches the exponential

distribution or the gamma distribution holds regardless of the initial configu-

ration of the system while the numerical results in [3, 4, 9] assume that each

agent starts with T dollars.
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Figure 2.2: Simulation Results for a Single Realization of the Ummediate Rxchange
Model (2.6)–(2.7) on the Complete Graph. The Number of Vertices Used in Each
Simulation Is Indicated at the Top Right of the Pictures. For Each of the Four
Simulations, All the Vertices Start with $100. The Gray Histograms Represent the
Distribution of Money After 106 Updates While the Black Solid Curve Is the Gamma
Distribution with Mean T = 100 and Shape Parameter Two.

2. The convergence to a distribution of money that approaches the exponential

distribution or the gamma distribution holds for the general spatial models

on any connected graphs while the numerical results in [3, 4, 9] focus on the

complete graph only.
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3. The results in 1 and 2 appear as particular cases of more general results that

give the exact expression of the limiting distribution of money for all possible

values of the population size and the money temperature while the conjectures

in [3, 4, 9] are only true under the assumption that these two quantities are

large.

The level of generality of our results is a good illustration of the advantage of using

mathematical tools as opposed to computer simulations that cannot be performed

for all possible connected graphs with all possible number of vertices containing all

possible number of coins starting from all possible initial configurations.

We now state our results and briefly sketch their proofs. For all three models,

there is a positive probability that an interaction between x and y results in the same

number of coins moving from x→ y and from y → x and therefore no change after the

update. This shows that the processes are aperiodic. It can also be proved that the

three processes are irreducible, which is an intrinsic consequence of the connectedness

of the network of interactions. These two ingredients together with finiteness of the

state space imply that, for each of the three models, there is a unique stationary

distribution to which the process converges regardless of the initial configuration.

For the model with uniform reshuffling, the symmetry of the evolution rules can

be used to prove that the probability of a transition from ξ → η is equal to the

probability of a transition from η → ξ for any two configurations ξ and η. This

implies that the process is doubly stochastic from which it follows that the unique

stationary distribution is uniform on the set of all possible configurations, i.e., under

the stationary distribution, all the configurations are equally likely. This can be used

to obtain an explicit expression of the limiting distribution of money. Some basic

algebra also implies that this distribution approaches the exponential distribution

with mean T when N and T are both large, in agreement with the conjecture in [3].
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Theorem 2.1 (uniform reshuffling) – For all connected graph G with N vertices,

regardless of the number M of coins and the initial configuration,

lim
t→∞

P (Xt(x) = c) =

(
M − c+N − 2

N − 2

)/(
M +N − 1

N − 1

)
.

In particular, when N and T = M/N are large,

lim
t→∞

P (Xt(x) = c) ≈ 1

T
e−c/T .

In contrast, the immediate exchange model is not doubly stochastic. However, one can

use reversibility to have an implicit expression of the unique stationary distribution.

Some combinatorial techniques lead to an explicit expression while some basic algebra

implies that the limiting distribution of money approaches the gamma distribution

with mean T and shape parameter two when N and T are both large, in agreement

with the conjecture in [4].

Theorem 2.2 (immediate exchange) – For all connected graph G with N ver-

tices, regardless of the number M of coins and the initial configuration,

lim
t→∞

P (Yt(x) = c) = (c+ 1)

(
M − c+ 2N − 3

2N − 3

)/(
M + 2N − 1

2N − 1

)
.

In particular, when N and T = M/N are large,

lim
t→∞

P (Yt(x) = c) ≈ 4c

T 2
e−2c/T .

Turning to the uniform saving model, though its evolution rules are somewhat differ-

ent from the evolution rules of the immediate exchange model, it can be proved that

their respective stationary distributions satisfy the same detailed balance equation

and therefore are equal. In particular, in contrast with the model with saving intro-

duced in [2] that converges to a distribution similar but not exactly equal to a gamma

distribution, the limiting distribution of money for our discrete version of the model
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with saving converges exactly to the gamma distribution with shape parameter two

in the large population and large temperature limit.

Theorem 2.3 (uniform saving) – For all connected graph G with N vertices, re-

gardless of the number M of coins and the initial configuration,

lim
t→∞

P (Zt(x) = c) = (c+ 1)

(
M − c+ 2N − 3

2N − 3

)/(
M + 2N − 1

2N − 1

)
.

In particular, when N and T = M/N are large,

lim
t→∞

P (Zt(x) = c) ≈ 4c

T 2
e−2c/T .

The rest of this paper is devoted to proofs. Theorem 2.1 is proved in Section 2.5. Sec-

tions 2.6 and 2.7 focus on the reversibility of the immediate exchange model and the

uniform saving model, respectively, and give the corresponding detailed balance equa-

tions. Section 2.8 gives the common final step to complete the proof of Theorems 2.2

and 2.3.

2.5 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1 about the limiting distribu-

tion of money for the uniform reshuffling model (2.4)–(2.5). The proof relies on the

following two key ingredients:

1. There exists a unique stationary distribution πX to which the uniform reshuffling

model converges starting from any initial configuration.

2. The uniform distribution on the set of all possible configurations is stationary.

With these two preliminary results in hand, the theorem follows using some basic

combinatorics and some basic algebra. From now on, we let

CN,M = {ξ : V → N such that
∑

x∈V ξ(x) = M}
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be the set of all possible configurations with exactly M coins. Also, for every ver-

tex x ∈ V and every configuration ξ : V → N, we let

ξx(z) = ξ(z) + 1{z = x} for all z ∈ V

be the configuration obtained from ξ by adding one coin at vertex x. We now prove

existence and uniqueness of the stationary distribution.

Lemma 2.4 – There is a unique stationary distribution πX and

lim
t→∞

Pη(Xt = ξ) = πX(ξ) for all ξ, η ∈ CN,M .

Proof. According to [6, Theorem 7.7], it suffices to prove that the process is finite,

irreducible and aperiodic. Finiteness is obvious while aperiodicity follows from the

fact that

P (Xt+1 = ξ |Xt = ξ) =
1

card(E )

∑
(x,y)∈E

P (Uniform {0, 1, . . . , ξ(x) + ξ(y)} = ξ(x))

=
1

card(E )

∑
(x,y)∈E

(
1

ξ(x) + ξ(y) + 1

)
≥
(

1

M + 1

)
> 0

for every configuration ξ ∈ CN,M . To prove that the process is also irreducible,

let x, y ∈ V . Since the graph is connected, there exists a path

(x0, x1, . . . , xt) ⊂ V such that x0 = x, xt = y and t < N.

In particular, for all ξ ∈ CN,M−1,

P (Xt = ξy |X0 = ξx) ≥
t−1∏
s=0

P (Xs+1 = ξxs+1 |Xs = ξxs)

=
t−1∏
s=0

(
1

card(E )

)(
1

ξ(xs) + ξ(xs+1) + 2

)
≥
(

1

N2 (M + 1)

)N
> 0.

(2.11)

Let m ≤M . We deduce from (2.11) by induction that, for all

ξ ∈ CN,M−m and x, y ∈ V m
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there exists t < mN such that

P (Xt = (· · · (ξy1)y2 · · · )ym |X0 = (· · · (ξx1)x2 · · · )xm) ≥
(

1

N2 (M + 1)

)mN
. (2.12)

Since any ξ, η ∈ CN,M can be obtained from the configuration with zero coin by

adding M coins at the appropriate vertices, it follows from (2.12) with m = M that

P (Xt = η |X0 = ξ) ≥
(

1

N2 (M + 1)

)MN

> 0 for some t < MN.

This shows that the process is irreducible and completes the proof. �

The next lemma shows that the uniform reshuffling model is doubly stochastic, from

which we deduce that the unique stationary distribution πX from the previous lemma

is the uniform distribution on the set of configurations CN,M .

Lemma 2.5 – The unique stationary distribution is πX = Uniform (CN,M).

Proof. Let ξ, η ∈ CN,M . Note that P (Xt+1 = η |Xt = ξ) > 0 if and only if

ξ ≡ η on V − {x, y} and ξ(x) + ξ(y) = η(x) + η(y)

for some (x, y) ∈ E , in which case we have

P (Xt+1 = η |Xt = ξ) =
1

card(E )
P (Uniform {0, 1, . . . , ξ(x) + ξ(y)} = η(x))

=
1

card(E )

1

ξ(x) + ξ(y) + 1
.

In particular, either P (Xt+1 = η |Xt = ξ) = P (Xt+1 = ξ |Xt = η) = 0 or

P (Xt+1 = η |Xt = ξ) =
1

card(E )

1

ξ(x) + ξ(y) + 1

=
1

card(E )

1

η(x) + η(y) + 1
= P (Xt+1 = ξ |Xt = η).

This shows that the transition matrix of the process is symmetric and so doubly

stochastic. Therefore, it follows from [6, Section 7.3] that the uniform distribution on
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the set of configurations is stationary. By the uniqueness of the stationary distribu-

tion πX established in the previous lemma, we conclude that πX = Uniform (CN,M).

�

With Lemmas 2.4 and 2.5 in hand, we are now ready to prove the theorem.

Proof of Theorem 2.1. This is similar to the proofs of Lemma 4 and Theorem 1

in [7] that we briefly recall. First, we note that

card(CN,M) = card {c ∈ NN : c1 + · · ·+ cN = M} =

(
M +N − 1

N − 1

)
.

Since in addition all the configurations are equally likely under πX according to

Lemma 2.5, and since there are card(CN−1,M−c) configurations with exactly c coins

at vertex x,

lim
t→∞

P (Xt(x) = c) =
card(CN−1,M−c)

card(CN,M)
=

(
M − c+N − 2

N − 2

)/(
M +N − 1

N − 1

)
.

This shows the first part of the theorem. In addition, when N and T are large,

lim
t→∞

P (Xt(x) = c) =
(M − c+N − 2) · · · (M − c+ 1)

(M +N − 1) · · · (M + 1)

(N − 1)!

(N − 2)!

=
(M − c+N − 2) · · · (M − c+ 1)

(M +N − 2) · · · (M + 1)

(N − 1)

(M +N − 1)

≈
(
N

NT

)(
1− c

NT

)N
≈ 1

T
e−c/T .

This shows the second part of the theorem. �

2.6 Reversibility of the Immediate Exchange Model

This section collects preliminary results about the immediate exchange model (2.6)–

(2.7) that will be useful to prove Theorem 2.2. As for the uniform reshuffling model,

the first step is to show that there exists a unique stationary distribution πY to which
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the immediate exchange model converges starting from any initial configuration. Con-

trary to the uniform reshuffling model, the process is not doubly stochastic and so

the uniform distribution is no longer stationary. However, an implicit expression of

the (unique) stationary distribution can be found using reversibility.

Lemma 2.6 – There is a unique stationary distribution πY and

lim
t→∞

Pη(Yt = ξ) = πY (ξ) for all ξ, η ∈ CN,M .

Proof. As for the uniform reshuffling model, it suffices to establish finiteness, irre-

ducibility and aperiodicity. Finiteness is again obvious. Letting

U(z, ξ) = Uniform {0, 1, . . . , ξ(z)} for all z ∈ V

be independent, aperiodicity follows from the fact that

P (Yt+1 = ξ |Yt = ξ) =
1

card(E )

∑
(x,y)∈E

P (U(x, ξ) = U(y, ξ))

=
1

card(E )

∑
(x,y)∈E

min(ξ(x) + 1, ξ(y) + 1)

(ξ(x) + 1)(ξ(y) + 1)
≥
(

1

M + 1

)
> 0

for every ξ ∈ CN,M . Also, letting (x, y) ∈ E and ξ ∈ CN,M−1,

P (Yt+1 = ξy |Yt = ξx) =
P (Uniform {0, 1, . . . , ξ(x) + 1} = U(y, ξ) + 1)

card(E )

=
1

card(E )

min(ξ(x) + 1, ξ(y) + 1)

(ξ(x) + 2)(ξ(y) + 1)
≥ 1

N2 (2M + 2)
> 0.

Repeating the proof of Lemma 2.4, we deduce that, for all ξ, η ∈ CN,M ,

P (Yt = η |Y0 = ξ) =

(
1

N2 (2M + 2)

)MN

> 0 for some t < MN,

which shows irreducibility. �
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We now give an implicit expression of πY using reversibility.

Lemma 2.7 – The distribution πY is reversible and

πY (ξ) =
µ(ξ)∑

η∈CN,M

µ(η)
where µ(ξ) =

∏
z∈V

(ξ(z) + 1). (2.13)

Proof. Let ξ 6= η in CN,M and assume that, for some (x, y) ∈ E ,

ξ ≡ η on V − {x, y} and ξ(x) + ξ(y) = η(x) + η(y). (2.14)

Letting U(z, ξ) = Uniform {0, 1, . . . , ξ(z)} be independent, we have

P (Yt+1 = η |Yt = ξ) =
P (ξ(x) + U(y, ξ)− U(x, ξ) = η(x))

card(E )

=
1

card(E )

ξ(x)∑
cx=0

ξ(y)∑
cy=0

1{cx = ξ(x)− η(x) + cy}
(ξ(x) + 1)(ξ(y) + 1)

=
1

card(E )

ξ(x)∑
cx=0

1{ξ(x)− η(x) ≤ cx ≤ ξ(x)− η(x) + ξ(y)}
(ξ(x) + 1)(ξ(y) + 1)

.

Since ξ(x)− η(x) + ξ(y) = η(y), we get

Qx,y(ξ, η) = card(E ) (ξ(x) + 1)(ξ(y) + 1)P (Yt+1 = η |Yt = ξ)

= min(ξ(x), ξ(x)− η(x) + ξ(y))−max(0, ξ(x)− η(x)) + 1

= min(ξ(x), η(y)) + min(ξ(x), η(x))− ξ(x) + 1.

Using also that η(y)− ξ(x) = ξ(y)− η(x),

Qx,y(ξ, η) = min(ξ(x), η(y)) + min(ξ(x), η(x))− ξ(x) + 1

= min(0, η(y)− ξ(x)) + min(ξ(x), η(x)) + 1

= min(0, ξ(y)− η(x)) + min(ξ(x), η(x)) + 1

= min(η(x), ξ(y)) + min(η(x), ξ(x))− η(x) + 1 = Qx,y(η, ξ)
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from which it follows that

(ξ(x) + 1)(ξ(y) + 1)P (Yt+1 = η |Yt = ξ)

= (η(x) + 1)(η(y) + 1)P (Yt+1 = ξ |Yt = η).

(2.15)

If on the contrary condition (2.14) is not satisfied, since there are only two neighbors

exchanging money at each time step, we must have

P (Yt+1 = η |Yt = ξ) = P (Yt+1 = ξ |Yt = η) = 0. (2.16)

Combining (2.15) and (2.16), we conclude that, in any case,

µ(ξ)P (Yt+1 = η |Yt = ξ) = µ(η)P (Yt+1 = ξ |Yt = η) where µ(ξ) =
∏
z∈V

(ξ(z) + 1).

By uniqueness, this implies that πY is reversible and satisfies (2.13). �

2.7 Reversibility of the Uniform Saving Model

The objective of this section is to prove that Lemmas 2.6 and 2.7 in the previous

section also hold for the uniform saving model (2.8)–(2.10). The main ideas behind

the proofs are the same as for the immediate exchange model but the technical details

are somewhat different.

Lemma 2.8 – There is a unique stationary distribution πZ and

lim
t→∞

Pη(Zt = ξ) = πZ(ξ) for all ξ, η ∈ CN,M .

Proof. Let ξ ∈ CN,M and let

U(z, ξ) = Uniform {0, 1, . . . , ξ(z)} and Uc = Uniform {0, 1, . . . , c}

be independent for all z ∈ V and c ∈ N. Then,

P (Zt+1 = ξ |Zt = ξ) ≥ 1

card(E )

∑
(x,y)∈E

P (U(x, ξ) = ξ(x), U(y, ξ) = ξ(y))

=
1

card(E )

∑
(x,y)∈E

1

(ξ(x) + 1)(ξ(y) + 1)
≥
(

1

M + 1

)2

> 0
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so the process is aperiodic. Also, letting (x, y) ∈ E and ξ ∈ CN,M−1,

P (Zt+1 = ξy |Zt = ξx) ≥ P (Uniform {0, 1, . . . , ξ(x) + 1} = ξ(x), U(y, ξ) = ξ(y), U1 = 0)

card(E )

=
1

card(E )

1

2 (ξ(x) + 2)(ξ(y) + 1)
≥
(

1

N(M + 2)

)2

> 0.

Repeating the proof of Lemma 2.4, we deduce that, for all ξ, η ∈ CN,M ,

P (Zt = η |Z0 = ξ) =

(
1

N(M + 2)

)2MN

> 0 for some t < MN,

so the process is irreducible. As previously, convergence to a unique stationary dis-

tribution follows from the fact that the process is finite, irreducible and aperiodic.

�

Lemma 2.9 – The distribution πZ is reversible and

πZ(ξ) =
µ(ξ)∑

η∈CN,M

µ(η)
where µ(ξ) =

∏
z∈V

(ξ(z) + 1). (2.17)

Proof. Let ξ 6= η in CN,M be two configurations. As for the uniform reshuffling and

immediate exchange models, when condition (2.14) is not satisfied,

P (Zt+1 = η |Zt = ξ) = P (Zt+1 = ξ |Zt = η) = 0. (2.18)

To study the transition probability when (2.14) holds, let

U(z, ξ) = Uniform {0, 1, . . . , ξ(z)} and Uc = Uniform {0, 1, . . . , c}

be independent for all z ∈ V and c ∈ N. By conditioning on all the possible values

of U(x, ξ) and U(y, ξ) and using independence, we get

P (Zt+1 = η |Zt = ξ) =
1

card(E )

ξ(x)∑
cx=0

ξ(y)∑
cy=0

P (cx + Uξ(x)+ξ(y)−cx−cy = η(x))

(ξ(x) + 1)(ξ(y) + 1)
. (2.19)
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By conditioning on all the possible values of Uξ(x)+ξ(y)−cx−cy and using again indepen-

dence, the numerator in the sum above can be written as

P (cx + Uξ(x)+ξ(y)−cx−cy = η(x)) =
1{cx ≤ η(x) ≤ ξ(x) + ξ(y)− cy}

ξ(x) + ξ(y)− cx − cy + 1

=
1{cx ≤ η(x) ≤ η(x) + η(y)− cy}

ξ(x) + ξ(y)− cx − cy + 1
=
1{cx ≤ η(x)}1{cy ≤ η(y)}
ξ(x) + ξ(y)− cx − cy + 1

.

(2.20)

Combining (2.19) and (2.20), we obtain that

Qx,y(ξ, η) = card(E ) (ξ(x) + 1)(ξ(y) + 1)P (Zt+1 = η |Zt = ξ)

can be written using symmetry as

Qx,y(ξ, η) =

ξ(x)∑
cx=0

ξ(y)∑
cy=0

1{cx ≤ η(x)}1{cy ≤ η(y)}
ξ(x) + ξ(y)− cx − cy + 1

=

ξ(x)∧η(x)∑
cx=0

ξ(y)∧η(y)∑
cy=0

(
1

ξ(x) + ξ(y)− cx − cy + 1

)

=

η(x)∧ξ(x)∑
cx=0

η(y)∧ξ(y)∑
cy=0

(
1

η(x) + η(y)− cx − cy + 1

)
= Qx,y(η, ξ)

from which it follows that

(ξ(x) + 1)(ξ(y) + 1)P (Zt+1 = η |Zt = ξ)

= (η(x) + 1)(η(y) + 1)P (Zt+1 = ξ |Zt = η).

(2.21)

Combining (2.18) and (2.21), we conclude that, in any case,

µ(ξ)P (Zt+1 = η |Zt = ξ) = µ(η)P (Zt+1 = ξ |Zt = η) where µ(ξ) =
∏
z∈V

(ξ(z) + 1),

showing that πZ is reversible and satisfies (2.17). �

2.8 Proof of Theorems 2.2 and 2.3

Lemmas 2.6–2.9 in the previous two sections imply that, though the evolution

rules of the immediate exchange model and of the uniform saving model are different,
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both processes converge to the same stationary distribution π = πY = πZ which is

characterized by

π(ξ) =
µ(ξ)∑

η∈CN,M

µ(η)
where µ(ξ) =

∏
z∈V

(ξ(z) + 1).

To complete the proof of Theorems 2.2 and 2.3, the last step is to find a more explicit

expression of the stationary distribution by computing the denominator

Λ(N,M) =
∑

ξ∈CN,M

∏
z∈V

(ξ(z) + 1) =
∑

c1+···+cN=M

(c1 + 1)(c2 + 1) · · · (cN + 1).

To compute Λ(N,M), we start with the following technical lemma.

Lemma 2.10 – For all M,K ∈ N,

S(M,K) =
M∑
c=0

(c+ 1)

(
M − c+K

K

)
=

(
M +K + 2

K + 2

)
.

Proof. We prove the result by induction on M +K. The fact that

S(0, K) =
0∑
c=0

(c+ 1)

(
0− c+K

K

)
=

(
K

K

)
= 1 =

(
0 +K + 2

K + 2

)

S(M, 0) =
M∑
c=0

(c+ 1)

(
M − c+ 0

0

)
=

M∑
c=0

(c+ 1) =
(M + 1)(M + 2)

2
=

(
M + 0 + 2

0 + 2

)
shows that the result holds when M = 0 or K = 0. Now, let m ∈ N∗ and assume

that the result holds whenever M +K < m. Using the well-known identity(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
for all 1 ≤ k < n

consecutively in the following two cases

n = M − c+K and k = K with K ≥ 1 and M > c

n = M +K + 2 and k = K + 2 with K ≥ 1 and M ≥ 1
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and assuming that M +K = m with M,K ≥ 1, we get

S(M,K) =
M−1∑
c=0

(c+ 1)

[(
(M − 1)− c+K

K

)
+

(
M − c+ (K − 1)

K − 1

)]
+ (M + 1)

= S(M − 1, K) +
M∑
c=0

(c+ 1)

(
M − c+ (K − 1)

K − 1

)
= S(M − 1, K) + S(M,K − 1)

=

(
M +K + 2− 1

K + 2

)
+

(
M +K + 2− 1

K + 2− 1

)
=

(
M +K + 2

K + 2

)
.

This completes the proof. �

Using Lemma 2.10, we can now compute Λ(N,M).

Lemma 2.11 – For all N,M ≥ 1, we have

Λ(N,M) =
∑

c1+···+cN=M

(c1 + 1)(c2 + 1) · · · (cN + 1) =

(
M + 2N − 1

2N − 1

)
.

Proof. We prove the result by induction on N . Observing that

Λ(1,M) =
∑
c1=M

(c1 + 1) = (M + 1) =

(
M + 2− 1

2− 1

)
shows that the result holds for N = 1. Now, fix N ≥ 2 and assume that the result

holds for N − 1 vertices. Decomposing according to the possible values of cN , we get

Λ(N,M) =
M∑

cN=0

(cN + 1)
∑

c1+···+cN−1=M−cN

(c1 + 1)(c2 + 1) · · · (cN−1 + 1)

=
M∑
c=0

(c+ 1) Λ(N − 1,M − c) =
M∑
c=0

(c+ 1)

(
M − c+ 2N − 3

2N − 3

)
.

Finally, applying Lemma 2.10, we obtain

Λ(N,M) = S(M, 2N − 3) =

(
M + 2N − 3 + 2

2N − 3 + 2

)
=

(
M + 2N − 1

2N − 1

)
,

which completes the proof. �
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We are now ready to prove the theorems.

Proof of Theorems 2.2 and 2.3. Combining Lemmas 2.6 and 2.7, we obtain that,

regardless of the initial configuration and regardless of the choice of vertex x ∈ V ,

lim
t→∞

P (Yt(x) = c) =
∑

ξ:ξ(x)=c

π(ξ)

=
∑

c1+···+cN−1=M−c

(c1 + 1) · · · (cN−1 + 1)(c+ 1)

Λ(N,M)
=

(c+ 1) Λ(N − 1,M − c)
Λ(N,M)

.

This, together with Lemma 2.11, implies that

lim
t→∞

P (Yt(x) = c) = (c+ 1)

(
M − c+ 2N − 3

2N − 3

)/(
M + 2N − 1

2N − 1

)
.

This proves the first part of Theorem 2.2. Now, observe that

(c+ 1)

(
M − c+ 2N − 3

2N − 3

)/(
M + 2N − 1

2N − 1

)
= (c+ 1)

(2N − 1)(2N − 2)

(M + 2N − 1)(M + 2N − 2)

(M − c+ 2N − 3) · · · (M − c+ 1)

(M + 2N − 3) · · · (M + 1)
.

In particular, when N and T are large, this is approximately

(c+ 1)

(
2N

M

)2(
1− c

M

)2N

≈ 4c

T 2

(
1− c

NT

)2N

≈ 4c

T 2
e−2c/T .

This completes the proof of Theorem 2.2. The proof of Theorem 2.3 is exactly the

same since both models converge to the same stationary distribution π = πY = πZ .

�
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Chapter 3

RIGOROUS RESULTS FOR THE DISTRIBUTION OF MONEY ON

CONNECTED GRAPHS (MODELS WITH DEBTS)

3.1 Abstract

In this paper, we continue our analysis of spatial versions of agent-based models for

the dynamics of money that have been introduced in the statistical physics literature,

focusing on two models with debts. Both models consist of systems of economical

agents located on a finite connected graph representing a social network. Each agent

is characterized by the number of coins she has, which can be negative in case she

is in debt, and each monetary transaction consists in one coin moving from one

agent to one of her neighbors. In the first model, that we name the model with

individual debt limit, the agents are allowed to individually borrow up to a fixed

number of coins. In the second model, that we name the model with collective

debt limit, agents can borrow coins from a central bank as long as the bank is not

empty, with reimbursements occurring each time an agent in debt receives a coin.

Based on numerical simulations of the models on complete graphs, it was conjectured

that, in the large population/temperature limits, the distribution of money converges

to a shifted exponential distribution for the model with individual debt limit, and

to an asymmetric Laplace distribution for the model with collective debt limit. In

this paper, we prove exact formulas for the distribution of money that are valid for

all possible social networks. Taking the large population/temperature limits in the

formula found for the model with individual debt limit, we prove convergence to the

shifted exponential distribution, thus establishing the first conjecture. Simplifying
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the formula found for the model with collective debt limit is more complicated, but

using a computer to plot this formula shows an almost perfect fit with the Laplace

distribution, which strongly supports the second conjecture.

3.2 Introduction

The main objective of this paper is to continue the mathematical analysis of

economical models for the dynamics of money initiated by the authors in [6, 7].

These models consist of (typically) large systems of economical agents, where each

agent is characterized by the amount of money, or number of coins, she has at a given

time. The processes evolve in discrete time and, at each time step, two agents are

selected at random from the entire population to engage in a monetary transaction.

The main problem about these models is to find the limiting distribution of money,

i.e., letting ξt(x) be the number of coins agent x has at time t, the objective is to find

lim
t→∞

P (ξt(x) = c)

the probability that agent x has c coins at equilibrium. Physicists have introduced

a number of economical models and, relying on numerical simulations, were able to

derive interesting conjectures about the distribution of money in the limit as the

number of individuals, and the average number of coins per individual called the

money temperature, both tend to infinity. The simplest such system, which we call

the one-coin model, was introduced in [2]. In this model, after two agents have

been selected to engage in a monetary transaction, one of the two agents chosen

at random gives one of her coins to the other agent (if she has at least one). The

authors of [2] conjectured that, for this simple model, the distribution of money

converges to the exponential distribution with mean the money temperature in the

large population/temperature limits.
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More realistic variants of the one-coin model where monetary transactions involve

multiple coins were also introduced in the statistical physics literature, such as the

three models studied analytically by the authors in [7] that can be described as follows.

• In the uniform reshuffling model also introduced in [2], all the coins of

the two agents selected to interact are uniformly redistributed between the

two agents. The simulations performed in [2] suggest that, for this type of

monetary transaction, the distribution of money at equilibrium converges to

the exponential distribution with mean the money temperature in the large

population/temperature limits, just like in the one-coin model.

• In the immediate exchange model introduced in [3], each of the two inter-

acting agents chooses independently and uniformly at random a number of her

coins that she gives to the other interacting agent. Results from [3, 4] suggest

that, in this case, the distribution of money converges to a gamma distribu-

tion with mean the money temperature and shape parameter two in the large

population/temperature limits.

• In the model with saving propensity introduced in [1], the two interacting

agents independently save some of their coins, and the remaining coins are uni-

formly redistributed between the two agents, just like in the uniform reshuffling

model. The computer simulations performed in [8] suggest that, like in the

immediate exchange model, the limiting distribution of money converges to a

gamma distribution with mean the money temperature and shape parameter

two in the large population/temperature limits.

All the conjectures above have been recently proved analytically by the authors in [6]

for the one-coin model, and in [7] for the other three models. In addition, we were
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able to extend these results to more general models where the economical agents

are located on a finite connected graph and can only interact with their neighbors.

Thinking of the graph as a social network, this means that individuals can only

exchange money with their friends or business partners, which results in a more

realistic model. Interestingly, we were able to prove that the distribution of the

number of coins a given agent has at equilibrium does not depend on the number of

connections of this agent, in particular the distribution is the same for agents with a

large number of connections and for agents with only one neighbor.

In this paper, we continue our analysis, looking now at two models with debts

introduced in the physics literature [2, 9]. The inclusion of debts is modeled by the

fact that the agents can now have a negative number of coins. The evolution rules

at each transaction are the same as in the idealized one-coin model, but the models

also differ qualitatively in that [2] assumes that the agents have the same individual

debt limit whereas [9] assumes that there is a collective limit.

• We call model with individual debt limit the model with debts introduced

in [2]. In this model, agents are allowed to individually borrow Li coins, and the

numerical simulations performed in [2] suggest that the distribution of money

at equilibrium now converges to a shifted exponential distribution in the large

population/temperature limits.

• We call model with collective debt limit the model in [9]. In this model,

agents can borrow coins from a bank that starts with Lc coins as long as the

bank is not empty, with reimbursements occurring each time an agent in debt

receives a coin. It was conjectured in [9] that the distribution of money at

equilibrium converges to an asymmetric Laplace distribution in the large pop-

ulation/temperature limits.
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As in [6, 7], we study spatial generalizations of these economical models where agents

are located on a social network. Following an approach similar to [6], we give a

complete proof of (and extend) the conjecture in [2] about the model with individual

debt limit. The model with collective debt limit is more challenging. Our main result

gives an exact expression of the distribution of money at equilibrium for all possible

number of individuals and coins, but we were not able to simplify this expression in

the large population/temperature limits to prove the conjecture in [9]. However, using

a computer to plot the exact distribution found analytically shows an almost perfect

fit with the Laplace distribution found numerically in [9], which strongly supports

their conjecture.

In the next two sections, we give a rigorous definition of the spatial versions of

the two models with debts introduced in [2, 9], and state our main results about the

distribution of money at equilibrium. The other sections are devoted to proofs.

3.3 Model Description

In contrast with [2, 9] that rely on numerical simulations restricted to models

where all pairs of individuals are equally likely to interact at each time step, our

analysis is general enough to account for local interactions and network structure.

This means that the individuals are more realistically located on the set of vertices

of a general finite connected graph G = (V ,E ) representing a social network. The

structure of the network is incorporated in the dynamics by assuming that only indi-

viduals located on vertices connected by an edge of the graph, that can be thought

of as friends or business partners, may interact to exchange money. Note that the

models in [2, 9] can be viewed as the particular cases where G is a complete graph.

The two models with debts studied in this paper are spatially explicit variants

of the basic one-coin model introduced in [2], and studied analytically on general
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connected graphs in [6]. Having a general finite connected graph G = (V ,E ), the

(spatial) one-coin model is a discrete-time Markov chain in which the state at time t

is a configuration

ξt : V → N where ξt(x) = number of coins agent x has at time t.

In order to describe the dynamics, because the flow of money at each transaction is

oriented from one vertex to another, it is convenient to define the set of directed edges

~E = {(x, y), (y, x) : {x, y} ∈ E }.

At each time step, a directed edge, say (x, y) ∈ ~E , is chosen uniformly at random,

which results in the transfer of one coin from vertex x to vertex y if and only if there

is a least one coin at x before the interaction. The restriction on the transfer reflects

the fact that individuals cannot have debts. In contrast, the models introduced

in [2, 9] allow the individuals to go into debt and have a negative number of coins.

In particular, the state at time t is now

ξt : V → Z where ξt(x) =


+ number of coins x has when ξt(x) ≥ 0

− number of coins x borrowed when ξt(x) < 0.

As in the basic one-coin model, a directed edge (x, y) ∈ ~E representing the flow of

money (one coin) is chosen uniformly at random at each time step. The conditions

under which the transaction indeed occurs are however different.

Model with individual debt limit. In the model with debts introduced in [2],

agents are allowed to borrow individually up to Li coins, which is modeled by assuming

that the transaction indeed occurs if and only if the state at vertex x exceeds −Li.

In equations, letting (x, y) be the selected edge and ξ the configuration before the
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interaction, the configuration after the interaction is

(σx,y ξ)(z) = ξ(z) + 1{ξ(x) > −Li and z = y}

−1{ξ(x) > −Li and z = x} for all z ∈ V ,

obtained by moving one coin from x to y if and only if the state at x exceeds −Li.

Recalling that, at each time step, a directed edge is chosen uniformly at random,

and using that the total number of directed edges is twice the number of edges in E ,

the model with individual debt limit is the discrete-time Markov chain (Xt) with

transition probabilities

P (Xt+1 = σx,y ξ |Xt = ξ) =
1

2 card(E )
for all (x, y) ∈ ~E .

Model with collective debt limit. The model with collective debt limit introduced

in [9] is more complicated. The money can be borrowed from a central bank that we

represent by adding a vertex ? to the vertex set V , so the vertex set becomes

V ? = V ∪ {?} where ? = location of the central bank.

Though there is some flow of money between the bank and the individuals, the edge

set is unchanged, i.e., there is no edge between the central bank and the individuals.

As previously, a directed edge, say (x, y), is chosen at each time step. From the point

of view of x,

• In case x has at least one coin, one coin moves from vertex x to vertex y, which

results in the state at vertex x to decrease by one.

• In case x has zero coin or is in debt, and there is at least one coin in the bank,

x takes one coin from the bank to give to y, which results in the state at x to

decrease by one.

• In case x has zero coin or is in debt, and the bank has no coin, nothing happens.
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From the point of view of y,

• In case y is not in debt before the interaction and indeed receives one coin, the

state of the bank does not change further and the state at vertex y increases by

one.

• In case y is in debt before the interaction and indeed receives one coin, y gives

one coin to the bank to reimburse part of her debt, so the state of the bank

increases by one and the state at vertex y increases by one.

Note in particular that, in case both x and y are in debt and there is at least one coin at

the bank before the interaction, the bank gives one coin to x, and y immediately gives

it back to the bank so the state of the bank does not change. In equations, letting ξ

be the configuration before the interaction, the configuration after the interaction is

(τx,y ξ)(z) = ξ(z) + 1{max(ξ(x), ξ(?)) > 0 and z = y}

− 1{max(ξ(x), ξ(?)) > 0 and z = x} for all z ∈ V

(τx,y ξ)(?) = ξ(?) + 1{max(ξ(x), ξ(?)) > 0 and ξ(x) > 0 and ξ(y) < 0}

− 1{max(ξ(x), ξ(?)) > 0 and ξ(x) ≤ 0 and ξ(y) ≥ 0}.

In particular, using again that there are 2 card(E ) directed edges, the model with

collective debt limit is the Markov chain (Yt) with transition probabilities

P (Yt+1 = τx,y ξ |Yt = ξ) =
1

2 card(E )
for all (x, y) ∈ ~E .

From now on, we let N = card(V ) be the number of vertices, which is also the number

of individuals in the system. Note that, each time a transaction indeed occurs, the

state of one vertex decreases by one, the state of another vertex increases by one, and

the state of all the other vertices does not change. In particular, letting M be the
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initial number of coins in the population,

∑
z∈V

Xt(z) =
∑
z∈V

Yt(z) = M for all t > 0.

The model with individual debt limit is thus characterized by the structure of the

network, and the two parameters M and Li. Similarly, letting Lc be the initial number

of coins in the central bank, the model with collective debt limit is characterized by

the structure of the network, and the two parameters M and Lc. Finally, the average

number of coins per individual is denoted by T = M/N , and called the money

temperature by analogy with the notion of temperature in physics.

3.4 Main Results

As previously mentioned, the numerical simulations of the model with individ-

ual debt limit on the complete graph performed in [2], i.e., the model in which all

pairs of individuals are equally likely to be selected, suggest that the limiting distri-

bution of money approaches a shifted exponential distribution in the large popula-

tion/temperature limits. The gray histogram in Figure 3.1 shows the distribution of

money obtained from numerical simulations that we have reproduced. More precisely,

the conjecture in [2] states that, when the number of individuals N and the money

temperature T = M/N are large, we have the approximation

lim
t→∞

P (Xt(x) = c) ≈ fX(c) =
1

T + Li
exp

(
− c+ Li
T + Li

)
. (3.1)

The black curve in Figure 3.1 shows the graph of the density function fX . Note that

this distribution is similar to the distribution of money in the one-coin model except

that the money temperature T is replaced by T +Li, and the range is shifted by −Li.

This shows that the model with individual debt limit behaves essentially like the one-

coin model in which the average number of coins per individual is now T + Li, due
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Figure 3.1: Distribution of Money for the Model with Individual Debt Limit Li =
1000 and Temperature T = 500. The Solid Curve Corresponds to the Graph of the
Density Function (3.1) While the Gray Histogram Gives the Distribution of Money
Obtained From 5× 1010 Iterations of the Process on the Complete Graph with N =
10, 000 Vertices.

to the fact that each individual can use Li additional coins. Using reversibility of the

stochastic process to identify the stationary distribution and some basic combinatorics

to count the total number of admissible configurations, we get the following theorem.

Theorem 3.1 (individual debt limit) – For all connected graph G with N ver-

tices, regardless of the number M of coins, the limit Li and the initial configuration,

lim
t→∞

P (Xt(x) = c) =
ΛX(N − 1,M − c, Li)

ΛX(N,M,Li)
for all − Li ≤ c ≤M + Li(N − 1)
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where the function ΛX is given by

ΛX(N,M,Li) =

(
M + LiN +N − 1

N − 1

)
for all N,M,Li.

In particular, when N and T = M/N are large,

lim
t→∞

P (Xt(x) = c) ≈ fX(c) for all − Li ≤ c ≤M + Li(N − 1).

The first part of the theorem gives an exact expression of the distribution of money

for all possible parameters of the system, and for all possible connected graphs. The

second part shows that taking the limit as N and T tend to infinity in this exact

expression implies the conjecture (3.1).

We now look at the model with collective debt limit. Recall that the numerical

simulations of the model on the complete graph in [9] suggest that the distribution

of money at equilibrium now approaches an asymmetric Laplace distribution in the

large population/temperature limits. The gray histogram in Figure 3.2 shows the

distribution of money obtained from numerical simulations that we have reproduced.

More precisely, the conjecture in [9] states that, in the large population limit, and

when M/N and Lc/N are large, we have the approximation

lim
t→∞

P (Yt(x) = c) ≈ fY (c) =


K e−ac for c ≥ 0

K e+bc for c ≤ 0

(3.2)

where, letting ρ = Lc/M ,

K ∼ 1

T

(√
1 + ρ−√ρ

)2

a ∼ 1

T

(
1−

√
ρ

1 + ρ

)
b ∼ 1

T

(√
1 + ρ

ρ
− 1

)
. (3.3)

The black curve in Figure 3.2 shows the graph of the density function fY . As for

the model with individual debt limit, using reversibility to identify the stationary

distribution and some combinatorics to count the total number of admissible con-

figurations leads to an exact expression of the distribution of money for all possible
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connected graphs and all possible M and Lc. The combinatorial analysis, however,

is more complicated for the model with collective debt limit.

Theorem 3.2 (collective debt limit) – For all connected graph G with N vertices,

regardless of the number M of coins, the limit Lc and the initial configuration,

lim
t→∞

P (Yt(x) = c) =


ΛY (N − 1,M − c, Lc)

ΛY (N,M,Lc)
for all 0 ≤ c ≤M + Lc

ΛY (N − 1,M − c, Lc + c)

ΛY (N,M,Lc)
for all −Lc ≤ c ≤ 0

where the function ΛY is given by

ΛY (N,M,Lc) =
Lc∑
a=0

N∑
b=0

(
N

b

)(
a− 1

b− 1

)(
M + a+N − b− 1

N − b− 1

)
.

In contrast with Theorem 3.1, we were not able to simplify the expression of ΛY

sufficiently to prove that the distribution of money indeed converges to (3.2)–(3.3)

in the large population/temperature limits. However, using a computer program to

plot the exact expression of the distribution of money found in the theorem (the

black squares in Figure 3.2) shows an almost perfect fit with the Laplace distribution

(the solid curve in Figure 3.2) found via numerical simulations in [9], which strongly

supports their conjecture. To further support the conjecture, we also give a partial

proof of (3.3), assuming that (3.2) holds, in the last section of this paper. More

precisely, we prove that, at equilibrium, the number of coins in the bank is a strict

supermartingale, which suggests that the number of coins in the bank divided by the

collective debt limit Lc converges to zero as Lc →∞. Assuming that this is indeed the

case and that the distribution of money is indeed described by an asymmetric Laplace

distribution (3.2), we prove (3.3) rigorously.

The rest of the paper is devoted to proofs and organized as follows. In the next

section, we collect preliminary results for both models, showing the existence and

uniqueness of their stationary distribution. We also use reversibility to prove that, at
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equilibrium, all the configurations are equally likely. In the following two sections, we

use some combinatorics to obtain an explicit expression of the stationary distribution,

from which Theorems 3.1 and 3.2 can be easily deduced. Finally, the last section gives

the partial proof of (3.3) under the assumption that (3.2) holds.

3.5 Ergodicity and Reversibility

This section collects some preliminary results about the models with individual

debt limit and collective debt limit that will be useful later to prove our theorems.

More precisely, we prove that both processes are irreducible, aperiodic and reversible.

From now on, the set of all possible configurations of the model with individual debt

limit is denoted by

CN,M,Li
= {ξ : V → Z :

∑
x∈V ξ(x) = M and ξ(x) ≥ −Li for all x ∈ V }

while the set of configurations of the model with collective debt limit is

DN,M,Lc = {ξ : V → Z :
∑

x∈V ξ(x) = M and
∑

x∈V (−ξ(x))1{ξ(x) < 0} ≤ Lc}.

Because the proofs of irreducibility, aperiodicity, and reversibility are similar for both

models, instead of studying both processes separately, we give the details of the proofs

for the process with individual debt limit and then briefly explain how the proof can

be adapted to show the analog for the process with collective debt limit. We start

with irreducibility. Intuitively, the reason why the two processes are irreducible is

because the graph is connected, which allows us to move coins from any vertex to

any other vertices.

Lemma 3.3 (irreducibility) – The process (Xt) is irreducible.

Proof. Letting ξ 6= ξ′, the objective is to show that

P (Xt = ξ′ |X0 = ξ) > 0 for some t ∈ N. (3.4)
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The key is to use the following metric d on the set of configurations:

d(ξ, ξ′) =
∑
z∈V

|ξ(z)− ξ′(z)| for all ξ, ξ′ : V → Z.

Because ξ 6= ξ′, there exist x, y ∈ V such that

ξ(x) > ξ′(x) and ξ(y) < ξ′(y).

Then, define the configuration η ∈ CN,M,Li
as

η(x) = ξ(x)− 1, η(y) = ξ(y) + 1, η(z) = ξ(z) for all z 6= x, y

and let Γ = (x, z1, z2, . . . , zs, y) be a self-avoiding path of the graph G connecting x

and y. Note that such a path exists because the graph is connected. Note also that,

because Γ is a self-avoiding path, the integer s is less than the diameter of the graph.

Now, define recursively

ξ1 = τx,z1 ξ, ξ2 = τz1,z2 ξ1, . . . , ξi+1 = τzi,zi+1
ξi, . . . , ξs+1 = τzs,y ξs.

Because ξ(x) > ξ′(x) ≥ −Li, we can move a coin from x to z1, which gives ξ1(z1) >

−Li. By using a simple induction, we deduce that ξi(zi) > −Li for all i. This also

implies that we can move a coin s+ 1 times to bring it from x to y therefore ξs+1 = η

and

P (Xs+1 = η |X0 = ξ) ≥ Pξ(X1 = ξ1)
s∏
i=1

Pξi(X1 = ξi+1) =

(
1

2 card(E )

)s+1

. (3.5)

In addition, because ξ(x) > ξ′(x), we must have

|η(x)− ξ′(x)| = η(x)− ξ′(x) = (ξ(x)− 1)− ξ′(x)

= (ξ(x)− ξ′(x))− 1 = |ξ(x)− ξ′(x)| − 1.

(3.6)

Similarly, because ξ(y) < ξ′(y), we have

|η(y)− ξ′(y)| = ξ′(y)− η(y) = ξ′(y)− (ξ(y) + 1)

= (ξ′(y)− ξ(y))− 1 = |ξ(y)− ξ′(y)| − 1.

(3.7)
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Combining (3.6) and (3.7), we deduce that

d(η, ξ′) =
∑
z∈V

|η(z)− ξ′(z)|

=
∑
z 6=x,y

|η(z)− ξ′(z)|+ |η(x)− ξ′(x)|+ |η(y)− ξ′(y)|

=
∑
z 6=x,y

|η(z)− ξ′(z)|+ (|ξ(x)− ξ′(x)| − 1) + (|ξ(y)− ξ′(y)| − 1)

=
∑
z∈V

|ξ(z)− ξ′(z)| − 2 = d(ξ, ξ′)− 2 < d(ξ, ξ′).

(3.8)

Observing also that −Li ≤ ξ(z) ≤M + Li(N − 1) for all z ∈ V , we have

d(ξ, ξ′) =
∑
z∈V

|ξ(z)− ξ′(z)| ≤
∑
z∈V

(M +NLi) ≤ N(M +NLi) (3.9)

for all ξ, ξ′ ∈ CN,M,Li
. Combining (3.5), (3.8) and (3.9), we conclude that

P (Xt = ξ′ |X0 = ξ) ≥
(

1

2 card(E )

)DN(M+NLi)

for some t ≤ DN(M + NLi), where D is the diameter of the graph G . This shows

that (3.4) holds so the process is irreducible and the proof is done. �

Lemma 3.4 (irreducibility) – The process (Yt) is irreducible.

Proof. The proof is identical to the proof of Lemma 3.3 with only exception:

−Lc ≤ ξ(z) ≤M + Lc for all ξ ∈ DN,M,Lc and z ∈ V .

This implies that, for all ξ, ξ′ ∈ DN,M,Lc ,

d(ξ, ξ′) =
∑
z∈V

|ξ(z)− ξ′(z)| ≤
∑
z∈V

(M + 2Lc) ≤ N(M + 2Lc)

so the same argument as in the proof of Lemma 3.3 gives

P (Xt = ξ′ |X0 = ξ) ≥
(

1

2 card(E )

)DN(M+2Lc)
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for some t ≤ DN(M + 2Lc), where D is the diameter of the graph G . �

In view of irreducibility, in order to prove that the two processes are aperiodic, it

suffices to identify a configuration that has period one, which is done in the next two

lemmas.

Lemma 3.5 (aperiodicity) – The process (Xt) is aperiodic.

Proof. Let ξ ∈ CN,M,Li
such that ξ(x) = −Li for some x ∈ V . Because the graph G

is connected, vertex x has at least one neighbor y ∈ V . Also, given that the directed

edge (x, y) is the one chosen at the next time step, because vertex x has reached its

debt limit, it cannot give any coin to y so the exchange of money is canceled. In

particular,

P (Xt+1 = ξ |Xt = ξ) ≥ P (edge (x, y) ∈ ~E is selected) =
1

2 card(E )
> 0.

This shows that configuration ξ has period one. Because the process is irreducible,

all the configurations must have the same period, therefore the process is aperiodic.

�

Lemma 3.6 (aperiodicity) – The process (Yt) is aperiodic.

Proof. Starting with a configuration ξ ∈ DN,M,Lc such that ξ(x) = −Lc for some x ∈

V , and following the exact same reasoning as in the proof of Lemma 3.5, give the

result. �

Irreducibility and aperiodicity, together with the fact that the number of configu-

rations is finite, imply that, for both models, there exists a unique stationary distri-

bution to which the process converges starting from any initial configuration. The

next natural step is to find this stationary distribution for each process. In view of

53



the large number of configurations and more importantly the fact that the agents are

located on a general finite connected graph rather than a complete graph, writing the

transition matrix in order to compute the stationary distribution looks impossible.

However, one can easily find the stationary distribution observing that the processes

are reversible and using the corresponding detailed balance equations.

Lemma 3.7 (reversibility) – The process (Xt) is reversible and

P (Xt+1 = ξ′ |Xt = ξ) = P (Xt+1 = ξ |Xt = ξ′) for all ξ, ξ′ ∈ CN,M,Li
.

Proof. The equations to be proved are obvious when ξ = ξ′. To deal with the non-

trivial case where the two configurations are different, we distinguish two scenarios:

(a) P (Xt+1 = ξ′ |Xt = ξ) > 0 and ξ 6= ξ′

(b) P (Xt+1 = ξ′ |Xt = ξ) = 0 and ξ 6= ξ′.

Because the configurations that can be reached from ξ in one step are of the form σx,y ξ,

in the context of scenario (a), we have ξ(x) > −Li and

ξ′(x) = ξ(x)− 1, ξ′(y) = ξ(y) + 1, ξ′(z) = ξ(z) for all z 6= x, y (3.10)

for some (x, y) ∈ ~E . In particular,

ξ′(y) = ξ(y) + 1 ≥ −Li + 1 > −Li

which, together with (3.10), implies that σy,x ξ
′ = ξ. Therefore,

P (Xt+1 = ξ′ |Xt = ξ) = P (Xt+1 = σx,y ξ |Xt = ξ) = 1/(2 card(E ))

= P (Xt+1 = σy,x ξ
′ |Xt = ξ′) = P (Xt+1 = ξ |Xt = ξ′)

because the probabilities of choosing directed edge (x, y) and directed edge (y, x)

(out of all the possible 2 card(E ) directed edges) are equal. Now, in the context of

scenario (b), condition (3.10) does not hold for any of the directed edges. Equivalently,

ξ(y) = ξ′(y)− 1, ξ(x) = ξ′(x) + 1, ξ(z) = ξ′(z) for all z 6= x, y
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does not hold for any of the directed edge (y, x) ∈ ~E from which it follows that

configuration ξ cannot be reached from ξ′ in one step. In conclusion, in the context

of scenario (b),

P (Xt+1 = ξ′ |Xt = ξ) = P (Xt+1 = ξ |Xt = ξ′) = 0.

In either case, P (Xt+1 = ξ′ |Xt = ξ) = P (Xt+1 = ξ |Xt = ξ′). �

Lemma 3.8 (reversibility) – The process (Yt) is reversible and

P (Yt+1 = ξ′ |Yt = ξ) = P (Yt+1 = ξ |Yt = ξ′) for all ξ, ξ′ ∈ DN,M,Lc .

Proof. As for irreducibility and aperiodicity, the proof of reversibility is quite similar

for both processes, so we only focus on the differences. As previously, the detailed

balanced equations are obvious when ξ = ξ′ and the idea is again to distinguish

between the two scenarios

(a) P (Yt+1 = ξ′ |Yt = ξ) > 0 and ξ 6= ξ′

(b) P (Yt+1 = ξ′ |Yt = ξ) = 0 and ξ 6= ξ′.

In the context of scenario (b), the same argument as in the proof of Lemma 3.7 gives

P (Yt+1 = ξ′ |Yt = ξ) = P (Yt+1 = ξ |Yt = ξ′) = 0.

In the context of scenario (a), because the configurations that can be reached from ξ

in one step are of the form τx,y ξ, we now have max(ξ(x), ξ(?)) > 0 and

ξ′(x) = ξ(x)− 1, ξ′(y) = ξ(y) + 1, ξ′(z) = ξ(z) for all z 6= x, y (3.11)

for some (x, y) ∈ ~E . Then, we have the following three implications:

ξ(x) > 0 and ξ(?) > 0 imply that ξ′(?) ≥ ξ(?) > 0

ξ(x) ≤ 0 and ξ(?) > 0 imply that ξ′(y) > 0 or ξ′(?) = ξ(?) > 0

ξ(x) > 0 and ξ(?) = 0 imply that ξ′(y) > 0 or ξ′(?) = 1.
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In either case, max(ξ′(y), ξ′(?)) > 0 which, together with (3.11), implies that τy,x ξ
′ =

ξ. In particular, the two transition probabilities are equal:

P (Yt+1 = ξ′ |Yt = ξ) = P (Yt+1 = τx,y ξ |Yt = ξ) = 1/(2 card(E ))

= P (Yt+1 = τy,x ξ
′ |Yt = ξ′) = P (Yt+1 = ξ |Yt = ξ′).

This completes the proof. �

3.6 Proof of Theorem 3.1

In this section, we prove the explicit expression for the distribution of money given

in Theorem 3.1 for the model with individual debt limit, and take the limit as N

and T both tend to infinity to deduce and extend conjecture (3.1) to general finite

connected graphs. As previously mentioned, irreducibility and aperiodicity of the

model with individual debt limit proved in Lemmas 3.3 and 3.5 and the fact that the

number of configurations is finite imply that the process (Xt) has a unique stationary

distribution, say πX , to which it converges starting from any initial configuration:

lim
t→∞

Pη(Xt = ξ) = πX(ξ) for all ξ, η ∈ CN,M,Li
. (3.12)

In addition, the detailed balanced equations in Lemma 3.7 imply that, under the

stationary distribution, all the configurations are equally likely. Indeed, the lemma

shows that the transition matrix of the process is symmetric, and therefore doubly

stochastic, from which it follows that

πX = Uniform (CN,M,Li
). (3.13)

Letting ΛX(N,M,Li) = card(CN,M,Li
) be the number of admissible configurations for

the process with individual debt limit, it directly follows from (3.12) and (3.13) that,

regardless of the initial configuration of the system and the choice of x ∈ V ,

lim
t→∞

P (Xt(x) = c) =
ΛX(N − 1,M − c, Li)

ΛX(N,M,Li)
(3.14)
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for all c = −Li, . . . ,M + Li(N − 1), because the numerator is equal to the number

of configurations such that there are c coins at vertex x, while the denominator is

equal to the total number of configurations. In particular, to complete the proof of

theorem, the next step is to count the number of configurations, which is done in the

next lemma.

Lemma 3.9 – For all N,M and Li, we have

ΛX(N,M,Li) =

(
M + LiN +N − 1

N − 1

)
.

Proof. By definition, ΛX(N,M,Li) is the number of integer solutions to

ξ(x1) + ξ(x2) + · · ·+ ξ(xN) = M with ξ(xi) ≥ −Li for all i.

Letting η(xi) = ξ(xi) + Li + 1, this is the number of integer solutions to

η(x1) + η(x2) + · · ·+ η(xN) = M +N(Li + 1) with η(xi) ≥ 1 for all i

which is known to be the binomial coefficient(
M + LiN +N − 1

N − 1

)
.

See for instance [5, Figure 1.3]. �

Using (3.14) and Lemma 3.9, we are now ready to complete the proof of Theo-

rem 3.1, which not only shows conjecture (3.1) but also extends the conjecture to all

finite connected graphs.

Proof of Theorem 3.1. According to Lemma 3.9,

ΛX(N,M,Li) =
1

(N − 1)!

N−1∏
k=1

(M + LiN + k).
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Similarly, we have

ΛX(N − 1,M − c, Li) =
1

(N − 2)!

N−2∏
k=1

(M − c+ LiN − Li + k).

Taking the ratio, we get

ΛX(N − 1,M − c, Li)
ΛX(N,M,Li)

=
(N − 1)!

(M + LiN +N − 1)(N − 2)!

N−2∏
k=1

(
M − c+ LiN − Li + k

M + LiN + k

)

=
N − 1

M + LiN +N − 1

N−2∏
k=1

(
M + LiN + k − (c+ Li)

M + LiN + k

)

=
N − 1

M + LiN +N − 1

N−2∏
k=1

(
1− c+ Li

M + LiN + k

)
.

Recalling that T = M/N , in the limit as N, T →∞,

ΛX(N − 1,M − c, Li)
ΛX(N,M,Li)

∼
(

N

N(T + Li)

)(
1− c+ Li

N(T + Li)

)N
∼
(

1

T + Li

)
exp

(
− c+ Li
T + Li

)
.

This, together with (3.14), completes the proof of the theorem. �

3.7 Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2 that describes the limiting

behavior of the model with collective debt limit. Following the same argument as in

Section 3.6, but using Lemmas 3.4, 3.6 and 3.8 instead of Lemmas 3.3, 3.5 and 3.7,

we obtain that

lim
t→∞

Pη(Yt = ξ) = πY (ξ) for all ξ, η ∈ DN,M,Lc (3.15)

where the (unique) stationary distribution πY is

πY = Uniform (DN,M,Lc). (3.16)

Now, given that there are c coins at vertex x, there is a total of M−c coins distributed

across the rest of the graph. In addition, the number of coins from the bank all the
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agents excluding x can borrow is Lc when c ≥ 0 but Lc + c when c < 0. Hence,

letting ΛY (N,M,Lc) = card(DN,M,Lc) and applying (3.15) and (3.16), we deduce

that, regardless of the initial configuration,

lim
t→∞

P (Yt(x) = c) =


ΛY (N − 1,M − c, Lc)

ΛY (N,M,Lc)
for all 0 ≤ c ≤M + Lc

ΛY (N − 1,M − c, Lc + c)

ΛY (N,M,Lc)
for all −Lc ≤ c ≤ 0.

In particular, to complete the proof of Theorem 3.2, it suffices to compute the number

of configurations ΛY (N,M,Lc), which is done in the next lemma.

Lemma 3.10 – For all N,M and Lc,

ΛY (N,M,Lc) =
Lc∑
a=0

N∑
b=0

(
N

b

)(
a− 1

b− 1

)(
M + a+N − b− 1

N − b− 1

)
.

Proof. Introducing the set

D+
N,M,Lc

= {ξ ∈ DN,M,Lc : ξ(x) ≥ 0 for all x ∈ V }

and its complement D−N,M,Lc
= DN,M,Lc \D+

N,M,Lc
, we have

ΛY (N,M,Lc) = card(DN,M,Lc) = card(D+
N,M,Lc

) + card(D−N,M,Lc
). (3.17)

Because D+
N,M,Lc

is the set of configurations with nobody in debt, DN,M,Lc = CN,M,0.

In particular, a direct application of Lemma 3.9 implies that

card(D+
N,M,Lc

) = card(CN,M,0) = ΛX(N,M, 0) =

(
M +N − 1

N − 1

)
. (3.18)

To count the number of configurations in D−N,M,Lc
, we let

φ(N,M,Lc, a, b) = number of configurations in DN,M,Lc with a coins

borrowed from the bank and where the debt

is shared among b individuals.
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Then, we have the following decomposition:

card(D−N,M,Lc
) =

Lc∑
a=1

a∧(N−1)∑
b=1

φ(N,M,Lc, a, b). (3.19)

Now, observe that

• There are N choose b ways to choose the individuals in debt.

• Following the same reasoning as in the proof of Lemma 3.9, there are a − 1

choose b− 1 ways to distribute the debt among those individuals,

• Similarly, there are (M + a) + (N − b)− 1 choose N − b− 1 ways to distribute

the M + a coins among the remaining N − b individuals.

This implies that

φ(N,M,Lc, a, b) =

(
N

b

)(
a− 1

b− 1

)(
M + a+N − b− 1

N − b− 1

)
. (3.20)

Finally, combining (3.17)–(3.20) and using the convention(
−1

−1

)
= 1 and

(
n

k

)
= 0 when n < k or k < 0 ≤ n

we conclude that

ΛY (N,M,Lc) =

(
M +N − 1

N − 1

)
+

Lc∑
a=1

a∧(N−1)∑
b=1

φ(N,M,Lc, a, b)

=

(
M +N − 1

N − 1

)
+

Lc∑
a=1

a∧(N−1)∑
b=1

(
N

b

)(
a− 1

b− 1

)(
M + a+N − b− 1

N − b− 1

)

=
Lc∑
a=0

N∑
b=0

(
N

b

)(
a− 1

b− 1

)(
M + a+N − b− 1

N − b− 1

)
.

This completes the proof. �
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3.8 Partial Proof of the Conjecture (3.3)

As previously mentioned, the plot (using a computer) of the explicit expression

for the distribution of money proved in Theorem 3.2 strongly suggests convergence to

the asymmetric Laplace distribution conjectured in [9]. In this section, we give more

evidence that this conjecture is true. More precisely, we assume convergence to an

asymmetric Laplace distribution

fY (c) =


K e−ac for c ≥ 0

K e+bc for c ≤ 0

(3.21)

and argue that the three parameters K, a and b are indeed given by (3.3). To compute

these three parameters, the basic idea is to derive a system of three equations involving

these parameters. The next lemma gives two such equations.

Lemma 3.11 – For all N,M and Lc, we have

K

a
+
K

b
= 1 and

K

a2
− K

b2
=
M

N
.

Proof. The first equation directly follows from the fact that, because fY is a density

function, its integral must be equal to one, while computing this integral gives∫
R
fY (x) dx =

∫
R−
Ke+bx dx+

∫
R+

Ke−ax dx =
K

a
+
K

b
.

The second equation follows from looking at the mean number of coins per individual.

Because each interaction has either no effect or moves one coin from a vertex x to

a vertex y, which results in the state at x to decrease by one and the state at y to

decrease by one, we have

∑
z∈V

Yt(z) =
∑
z∈V

Y0(z) = M for all t ∈ R+. (3.22)
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But our assumption that the distribution of money converges to the asymmetric

Laplace distribution given in (3.21) also implies that

lim
t→∞

E

(
1

N

∑
z∈V

Yt(z)

)
= lim

t→∞
E(Yt(x)) =

∫
R
xfY (x) dx

=

∫
R−
Kxe+bx dx+

∫
R+

Kxe−ax dx =
K

a2
− K

b2
.

(3.23)

Combining (3.22) and (3.23) gives the second equation. �

To find a third equation involving the parameters K, a and b, the next step is to

argue that the number of coins in the bank, when rescaled by its initial value Lc,

tends to zero as time goes to infinity. More precisely, we believe that

lim
t→∞

Yt(?)

Lc
→ 0 as N,M/N,Lc/N →∞. (3.24)

The next lemma shows that, as long as there is at least one coin in the bank, the

number of coins in the bank behaves like a supermartingale, which suggests that (3.24)

is true.

Lemma 3.12 – For all N,M,Lc, we have

lim
t→∞

E(Yt+1(?)− Yt(?) |Yt(?) > 0) < 0.

Proof. Letting (x, y) ∈ ~E be the oriented edge selected at time t, we define

Jt = (sign (Yt(x)), sign (Yt(y))) = type of interaction at time t.

In words, the random variable Jt keeps track of whether the agent x selected to give

a coin and the agent y selected to receive a coin are in debt (state −), have zero coin

(state 0), or have a surplus of coins (state +). There are 32 = 9 types of interactions

and, as long as there is at least one coin in the bank, the type of interaction determines

62



whether the number of coins in the bank decreases, stays the same, or increases. More

precisely,

Yt+1(?) = Yt(?)− 1 when Jt = (−, 0), (−,+), (0, 0), (0,+)

Yt+1(?) = Yt(?) when Jt = (−,−), (0,−), (+, 0), (+,+)

Yt+1(?) = Yt(?) + 1 when Jt = (+,−).

(3.25)

Now, define the corresponding conditional probabilities

p(ε1, ε2) = lim
t→∞

P (Jt = (ε1, ε2) |Yt > 0) for all ε1, ε2 ∈ {−, 0,+}.

Because edges (x, y) and (y, x) are equally likely to be chosen,

p(ε1, ε2) = p(ε2, ε1) for all ε1, ε2 ∈ {−, 0,+}. (3.26)

Also, using convergence to πY = Uniform (DN,M,Lc) and that, regardless of the number

of coins in the bank, there is a positive fraction of configurations with zero coin at a

given vertex,

p(0,−) + p(0, 0) + p(0,+) = lim
t→∞

P (Yt(x) = 0 |Yt(?) > 0) > 0. (3.27)

Combining (3.25)–(3.27), we deduce that

limt→∞E(Yt+1(?)− Yt(?) |Yt(?) > 0)

= p(+,−)− p(−, 0)− p(−,+)− p(0, 0)− p(0,+)

= − (p(−, 0) + p(0, 0) + p(0,+)) = − limt→∞ P (Yt(x) = 0 |Yt(?) > 0) < 0.

This completes the proof. �

The previous lemma shows that the process (Yt(?)) stopped at the time it reaches

zero is a supermartingale. Because the inequality in the lemma is strict, this suggests

that (3.24) holds. To make the proof perfectly rigorous, we would need to prove a
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slightly stronger result, namely that the conditional expectation is less than a neg-

ative constant that does not depend on the parameters of the system. Numerical

simulations of the model with collective debt limit support this result, revealing that

the number of coins in the bank drops quickly and then fluctuates around values

that are negligible compared to Lc. Moving forward with our heuristic argument,

we now assume that (3.24) holds in order to derive a third equation involving the

parameters K, a and b.

Lemma 3.13 – Assume that (3.24) holds. Then,

K

a2
∼ M + Lc

N
as N,M/N,Lc/N →∞.

Proof. The trick to establish the lemma is now to look at the mean number of coins

among the individuals who have no debt. Due to (3.24), the set of all individuals

with no debt share a total of about M + Lc coins at equilibrium. In equation, this

can be written as

lim
t→∞

∑
z∈V

Yt(z)1{Yt(z) ≥ 0} ∼M + Lc. (3.28)

In other respects, our assumption that the distribution of money converges to the

Laplace distribution given in (3.21) implies that

lim
t→∞

E

(
1

N

∑
z∈V

Yt(z)1{Yt(z) ≥ 0}
)

=

∫
R
xfY (x)1{x ≥ 0} dx =

∫
R+

Kxe−ax dx =
K

a2
.

(3.29)

Combining (3.28) and (3.29) proves the lemma. �

Using Lemmas 3.11 and 3.13, we can now prove (3.3) that we recall in the next

lemma.

Lemma 3.14 – Let ρ = Lc/M . Then, as N,M/N,Lc/N →∞,

K ∼ 1

T

(√
1 + ρ−√ρ

)2

a ∼ 1

T

(
1−

√
ρ

1 + ρ

)
b ∼ 1

T

(√
1 + ρ

ρ
− 1

)
.
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Proof. Lemma 3.13 and the second equation in Lemma 3.11 imply that

K

a2
∼ M + Lc

N
and

K

b2
=
K

a2
−
(
K

a2
− K

b2

)
∼ M + Lc

N
− M

N
=
Lc
N
.

In particular, some basic algebra gives

a ∼
√

KN

M + Lc
and b ∼

√
KN

Lc
(3.30)

which, together with the first equation in Lemma 3.11, implies that

1

K
=

1

a
+

1

b
∼
√
M + Lc
KN

+

√
Lc
KN

and K ∼
( √

N√
M + Lc +

√
Lc

)2

. (3.31)

Combining (3.30) and (3.31), we deduce that

a ∼
( √

N√
M + Lc +

√
Lc

)√
N

M + Lc
=

1√
M + Lc

(
N√

M + Lc +
√
Lc

)
b ∼

( √
N√

M + Lc +
√
Lc

)√
N

Lc
=

1√
Lc

(
N√

M + Lc +
√
Lc

)
.

(3.32)

Recalling T = M/N and ρ = Lc/M , and using (3.31) and (3.32), we get

K ∼ 1

T

(
1√

1 + ρ+
√
ρ

)2

=
1

T

(√
1 + ρ−√ρ

)2

a ∼ 1

T

√
1

1 + ρ

(
1√

1 + ρ+
√
ρ

)
=

1

T

(
1−

√
ρ

1 + ρ

)

b ∼ 1

T

√
1

ρ

(
1√

1 + ρ+
√
ρ

)
=

1

T

(√
1 + ρ

ρ
− 1

)
.

This completes the proof. �
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Figure 3.2: Distribution of Money for the Model with Collective Debt Limit with
Money Temperature T = 500 and Parameter ρ = 0.20. The Solid Curve Corresponds
to the Graph of the Density Function (3.2)–(3.3) While the Black Squares Correspond
to the Distribution of Money Obtained From the Exact Expression in Theorem 3.2
with N = 100. The Gray Histogram Gives the Distribution of Money Obtained
From 5× 1010 Iterations of the Stochastic Process on the Complete Graph with N =
10, 000 Vertices.

67



Chapter 4

THE ROLE OF COOPERATION IN SPATIALLY EXPLICIT ECONOMICAL

SYSTEMS

4.1 Abstract

This paper is concerned with a model in econophysics, the subfield of statistical

physics that applies concepts from traditional physics to economics. In our model,

economical agents are represented by the vertices of a connected graph and are char-

acterized by the number of coins they possess. Agents independently spend one coin

at rate one for their basic need, earn one coin at a rate chosen independently from a

fixed distribution φ and exchange money at rate µ with one of their nearest neighbors,

with the richest neighbor giving one coin to the other neighbor. If an agent needs to

spend one coin when her fortune is at zero, she dies, i.e., the corresponding vertex is

removed from the graph. Our first results focus on the two extreme cases of lack of

cooperation µ = 0 and perfect cooperation µ =∞ for finite connected graphs. These

results suggest that, when overall the agents earn more than they spend, cooperation

is beneficial for the survival of the population, whereas when overall the agents earn

less than they spend, cooperation becomes detrimental. The infinite one-dimensional

system is also studied. In this case, when the agents earn less than they spend in

average, the density of agents that die eventually is bounded from below by a positive

constant that does not depend on the initial number of coins per agent or the level

of cooperation.
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4.2 Introduction

Models in econophysics typically consist of large systems of economical agents

who earn, spend and exchange money. For a review of such models, we refer the

reader to [8]. These models so far have mainly been studied by statistical physicists.

From a mathematical point of view, they fall into the category of stochastic processes

known as interacting particle systems [4, 7]. The most basic model in econophysics

has been studied in [3] based on numerical simulations but was also considered earlier

in [1, 2]. This model consists of a system of N interacting economical agents that are

characterized by the number of dollars they possess, and evolves as follows: at each

time step, an agent chosen uniformly at random gives one dollar to another agent

again chosen uniformly at random, unless the first agent has no money in which case

nothing happens. The main conjecture about this model is that, when the number

of agents and the money temperature, defined as the average amount of money per

agent, are both large, the limiting distribution of money is well approximated by the

exponential distribution with parameter the money temperature.

Spatially explicit versions of this model where agents are located on the vertices of

a finite connected graph and can only exchange money with their nearest neighbors

have been recently introduced and studied analytically in [6]. The non-spatial model

considered in [3] is simply obtained by assuming that the underlying graph is the

complete graph with N vertices. It is proved in [6] that the conjecture in [3] is indeed

correct and in fact holds for all spatially explicit versions, not only the process on the

complete graph.

In this paper, we study variants of the spatially explicit models [6] where agents

also earn money, spend money and die if they run out of money. In addition, we

assume that the exchange of money occurs in a cooperative setting, meaning that
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the flow of money is exclusively directed from “rich” agents to “poor” agents. We

also follow the framework of interacting particle systems [7] by assuming that the

process evolves in continuous rather than in discrete time. This approach will allow

us to define the system on infinite graphs using an idea of Harris [4] that consists in

constructing the process from a collection of independent Poisson processes.

4.3 Model Description

To define our spatial model formally, we let G = (V ,E ) be a finite or infinite

locally finite connected graph. Each vertex represents an economical agent who is

either alive and characterized by the amount of money she possesses, or dead. To

fix the ideas, we assume that the amount of money agents who are alive possess is

a nonnegative integer representing a number of credits or coins, while we use the

state −1 for dead agents. In particular, the state of the system at time t is a spatial

configuration

ξt : V −→ {−1, 0, 1, 2, . . .}

with the value of ξt(x) indicating that agent x is dead or representing the number

of coins this agent possesses when she is alive. To define the evolution rules, we

attach to each vertex x ∈ V a random variable φx chosen independently from a fixed

distribution φ. The individual at vertex x earns one coin at rate φx and, to ensure

her survival, spends one coin at rate one. The population is also characterized by its

level of cooperation which is measured using a nonnegative parameter µ as follows:

nearest neighbors that are alive interact at rate µ and, in case one neighbor has at

least two more coins than the other neighbor, she gives one coin to the other neighbor.

In particular, the “richest” agent before the interaction does not give any coin if this

makes her “poorer” than her neighbor. Finally, if an individual has zero coin at the
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time she needs to spend one coin then she dies and the corresponding vertex is removed

from the graph. To describe the dynamics formally, for each spatial configuration ξ,

we let

spending ξ−x (z) = ξ(z)− 1{z = x} for all z ∈ V

earning ξ+x (z) = ξ(z) + 1{z = x} for all z ∈ V

be the configurations obtained respectively by removing/adding one coin at vertex x.

Also, for each edge (x, y) ∈ E of the network of interactions, we let

cooperation ξ(x,y)(z) = ξ(z) + 1{ξ(x) < ξ(y)− 1}(1{z = x} − 1{z = y})

+ 1{ξ(y) < ξ(x)− 1}(1{z = y} − 1{z = x})

be the configuration obtained by moving one coin from the richer to the poorer vertex

if the two vertices are at least two coins apart. The dynamics of the system is then

described by the Markov generator L defined on the set of cylinder functions by

Lf(ξ) =
∑
x∈V

(f(ξ−x )− f(ξ))1{ξ(x) 6= −1}

+
∑
x∈V

φx (f(ξ+x )− f(ξ))1{ξ(x) 6= −1}

+
∑

(x,y)∈E

µ (f(ξ(x,y))− f(ξ))1{ξ(x) 6= −1, ξ(y) 6= −1}.

The first sum describes the rate at which vertices spend one coin, the second sum

the rate at which they earn one coin, and the third sum the rate at which neighbors

exchange one coin. As previously mentioned, the process is well defined on locally

finite graphs, including infinite graphs, and can be constructed from a collection of

independent Poisson processes. More precisely,

• for all x ∈ V , let N−t (x) be a Poisson process with intensity one,

• for all x ∈ V , let N+
t (x) be a Poisson process with intensity φx,

• for all (x, y) ∈ E , let Nt(x, y) be a Poisson process with intensity µ.
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We further assume that these processes are independent. This implies that, with

probability one, the arrival times are all distinct. A general result due to Harris [4]

then shows that the process can be constructed using the following rules:

• At the arrival times of the Poisson process N−t (x), we take one coin from the

individual at vertex x if this individual is still alive.

• At the arrival times of the Poisson process N+
t (x), we give one coin to the

individual at vertex x if this individual is still alive.

• At the arrival times of N+
t (x, y), we move one coin from x to y if x has at least

two more coins than y or one coin from y to x if y has at least two more coins

than x.

4.4 Main Results

To begin with, we compare the two processes with the same earning rates φz in

the absence of cooperation µ = 0 and in the presence of perfect cooperation µ =∞ on

finite connected graphs to understand whether cooperation is beneficial or detrimental

for survival. Our first results look at the probability of global survival that we define

as

pµ(c, (φz)) = P (ξt(z) 6= −1 for all (z, t) ∈ V × R+ | ξ0 ≡ c)

where c refers to the common initial number of coins per agent and where the earning

rates φz are independent realizations of the distribution φ for all z ∈ V . Estimates for

the probability of global survival can be expressed in terms of the two key quantities

D = max
x∈V

∑
z∈V

d(x, z) and Φ =
1

N

∑
z∈V

φz (4.1)
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where d refers to the graph distance and N to the population size. Using that, as

long as all the agents are alive, the total number of coins on the graph behaves like

a random walk that increases at rate NΦ and decreases at rate N together with

the fact that nearest neighbors are at most one coin apart in the presence of perfect

cooperation, we get the following theorem.

Theorem 4.1 – In the presence of perfect cooperation µ =∞,

p∞(c, (φz)) ≥ max (0, 1− Φ−(Nc−D+1)).

The proof relies, among other things, on an application of the optional stopping the-

orem for martingales. The inequality in the statement turns out to be an equality

when N = 1. In particular, since the system in the absence of cooperation behaves

like N independent copies of a one-person system, the theorem also gives the prob-

ability of global survival when µ = 0. Using this and some basic algebra, it can be

proved that, when Φ > 1 and c is large, the probability of global survival is larger in

the presence of perfect cooperation than in the absence of cooperation.

Theorem 4.2 – Assume that Φ > 1. Then, there exists c0 < ∞ that depends on N

such that

p0(c, (φz)) =
∏
z∈V

max (0, 1− φ−(c+1)
z ) ≤ max (0, 1− Φ−(Nc−D+1)) ≤ p∞(c, (φz))

for all c ≥ c0.

More generally, we conjecture that, when Φ > 1, i.e., when overall the agents earn

more than they spend, the probability of global survival is larger in the presence

of perfect cooperation than in the absence of cooperation regardless of the initial

value c.

We now focus on the two-person system: we set V = {x, y} and assume that
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vertices x and y are connected by an edge. In this case, Theorem 4.1 implies that

when

Φ =
φx + φy

2
> 1 and φx < 1 < φy

global survival is possible in the presence of perfect cooperation whereas individual x

dies almost surely in the absence of cooperation, showing again that cooperation is

beneficial. Cooperation, however, becomes detrimental when

Φ =
φx + φy

2
< 1 and φx < 1 < φy.

In this case, regardless of the level of cooperation µ, global survival is not possible

so, to measure the effect of cooperation, we study instead

Eµ(c, (φz)) = E(card{z ∈ V : ξt(z) 6= −1 for all t ∈ R+} | ξ0 ≡ c),

the expected number of individuals that live forever. Due to perfect cooperation and

the fact that individual x dies almost surely, it can be proved that the last time both

individuals each have one coin is almost surely finite and that, between this time

and the first time one of the two individuals dies, the process behaves according to

a certain seven-state Markov chain. Using a first-step analysis to study this Markov

chain and part of the proof of Theorem 4.1, the expected value of the number of

individuals that live forever can be computed explicitly.

Theorem 4.3 – Assume that V = E = {x, y} and that

Φ =
φx + φy

2
< 1 and φx < 1 < φy.

Then, letting Ψ = 8 + 2φx + 2φy, for all c ≥ 1,

E∞(c, φx, φy) =

(
2

Ψ

)(
1− 1

φy

)
+

(
φy
Ψ

+
1

4

)(
1−

(
1

φy

)2)
< 1−

(
1

φy

)c+1

= E0(c, φx, φy).
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Our approach to prove this result works in theory for all complete graphs, but be-

comes computationally intractable even with only three vertices. More generally, we

conjecture that, at least on the complete graph and when Φ < 1, i.e., when overall the

agents earn less than they spend, the expected number of individuals that live forever

is larger in the absence of cooperation than in the presence of perfect cooperation.

In a nutshell, we conjecture that cooperation is beneficial for populations that are

“productive” but detrimental for populations that are not.

Finally, we look at the infinite system in one dimension: the underlying graph is

represented by the integers with each integer being connected to its predecessor and

to its successor. In this case, the process is more difficult to study because the graph

is infinite. The next result shows that, when the expected value of φ is less than one,

the density of individuals who die eventually in the infinite one-dimensional system

is bounded from below by a positive constant that does not depend on the level of

cooperation or on the initial number of coins per agent.

Theorem 4.4 – Assume that E(φ) < 1. Then,

lim
n→∞

1

2n+ 1

n∑
z=−n

1{ξt(z) = −1 for some t} = l

where l > 0 does not depend on µ or on the initial fortune c per vertex.

To prove this result, we first identify a collection of events that ensure that a given

agent dies before time one. This, together with the ergodic theorem, implies that

the density of agents that die before time one is positive. This density, however,

depends a priori on the initial fortune. Then, we define a sink as a vertex such that

the agents in any finite interval that contains this vertex earn overall less than they

spend. The law of large numbers implies that the density of sinks is bounded from

below by a constant that does not depend on the initial fortune. Using finally that,

at time one, each sink is located between two agents who already died, we use a
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recursive argument to prove that each sink dies eventually. In conclusion, the density

of individuals who die eventually is bounded from below by the density of sinks which,

in turn, is bounded from below by a positive constant that does not depend on the

initial fortune. This gives the result.

The proof of Theorem 4.4 also suggests that, when the expected value of φ is larger

than one, the density of agents who live forever can be made arbitrarily close to one

by choosing the initial fortune c large enough. The proof of this result, however,

requires additional arguments that we were not able to make rigorous.

4.5 Proof of Theorems 4.1 and 4.2

In this section, we start by collecting some preliminary results about martingales

that will be used later to prove the first two theorems. The first step is to estimate

probabilities related to the continuous-time Markov chain (Wt) with transition rates

limε→0 ε
−1 P (Wt+ε = Wt + 1) =

∑
z∈V φz

limε→0 ε
−1 P (Wt+ε = Wt − 1) = card(V ) = N.

(4.2)

Recall from (4.1) that Φ = (1/N)
∑

z∈V φz. To state our next results, we also define

Ti = inf {t : Wt = i} for all i ∈ Z.

Lemma 4.5 – Assume that K ≤ Nc ≤M and Φ 6= 1. Then,

p(K,M) = P (TM < TK |W0 = Nc) =
1− Φ−(Nc−K)

1− Φ−(M−K)
.

Proof. This follows from the optional stopping theorem applied to the martin-

gale (Φ−Wt) stopped at time T = min(TK , TM). See [5, Example 5.1] for a proof.

�

Lemma 4.6 – For all M ≤ Nc and all Φ > 0,

q(M) = P (TM =∞|W0 = Nc) = max (0, 1− Φ−(Nc−M)).
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Proof. We distinguish three cases depending on the value of Φ.

• When Φ = 1, the process (Wt) is the one-dimensional symmetric random walk

which is known to be recurrent. This gives the probability q(M) = 0.

• When Φ < 1, the law of large numbers implies that Wt → −∞ almost surely.

In particular, the stopping time TM is again almost surely finite and the prob-

ability q(M) = 0.

• When Φ > 1, the law of large numbers now gives Wt →∞ so

{TM =∞} = {TK < TM for all K ≥ Nc} almost surely.

Since in addition we have the inclusions

{TK+1 < TM} ⊂ {TK < TM} for all K ≥ Nc,

by continuity from above and Lemma 4.5, we get

q(M) = P (TK < TM for all K ≥ Nc |W0 = Nc)

= P (limK→∞ {TK < TM} |W0 = Nc)

= limK→∞ P (TK < TM |W0 = Nc) = 1− Φ−(Nc−M).

Observing also that 1− Φ−(Nc−M) ≤ 0 if and only if Φ ≤ 1 gives the result. �

Lemma 4.6 is the main ingredient to prove Theorem 4.1. To see the connection

between the previous martingale results and the economical system, define

τ = inf {t : ξt(x) = −1 for some x ∈ V } and Zt =
∑
z∈V

ξt(z)

and observe that, before time τ , the individual at z is alive, earns one coin at rate φz

and spends one coin at rate one, therefore

limε→0 ε
−1 P (Zt+ε = Zt + 1 | τ > t) =

∑
z∈V φz

limε→0 ε
−1 P (Zt+ε = Zt − 1 | τ > t) = card(V ) = N.
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In other words, by time τ , the total number of coins behaves like the Markov chain (Wt).

Using this and the previous lemma, we can now prove the theorem.

Proof of Theorem 4.1. In the limiting case µ = ∞ and as long as all the in-

dividuals are alive, each time an individual has at least two more coins than one

of her neighbors, this individual instantaneously gives a coin to one of her poorest

neighbors, therefore

|ξt(x)− ξt(y)| ≤ 1 for all (x, y) ∈ E and t < τ.

Now, letting x, y ∈ V be arbitrary, there exist

z0 = x, z1, . . . , zd = y ∈ V such that (zi, zi+1) ∈ E for all i = 0, 1, . . . , d− 1

where d = d(x, y). In particular, the triangle inequality implies that

|ξt(x)− ξt(y)| ≤ |ξt(z0)− ξt(z1)|+ · · ·+ |ξt(zd−1)− ξt(zd)|

≤ d = d(x, y)

(4.3)

for all t < τ . Now, on the event that τ < ∞, just before that time, there is at least

one vertex, say x, with zero coin, while the other vertices have a positive fortune.

This, together with (4.3), implies that the total number of coins satisfies

Zτ− =
∑
z∈V

ξτ−(z) =
∑
z∈V

|ξτ−(x)− ξτ−(z)| ≤
∑
z∈V

d(x, z).

Taking the maximum over all possible configurations gives

Zτ− ≤ max
x∈V

∑
z∈V

d(x, z) = D .
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Finally, using Lemma 4.6 and observing that all the individuals survive if and only

if τ =∞ gives the following lower bound for the probability of global survival

p∞(c, (φz)) = P (τ =∞| ξ0(z) = c for all z ∈ V )

≥ P (Zt ≥ D for all t | ξ0(z) = c for all z ∈ V )

= P (Wt > D − 1 for all t |W0 = Nc)

= P (TD−1 =∞|W0 = Nc) = q(D − 1)

= max (0, 1− Φ−(Nc−D+1)).

This completes the proof of the theorem. �

Using Lemma 4.6 and Theorem 4.1, we can now prove Theorem 4.2.

Proof of Theorem 4.2. It follows from Lemma 4.6 that, in the presence of only

one vertex, say x, the probability of survival is given by

p0(c, φx) = q(−1) = max (0, 1− φ−(c+1)
x ).

Since in the absence of cooperation µ = 0, the system with N individuals consists

of N independent copies of a one-person system, we get

p0(c, (φz)) =
∏
z∈V

p0(c, φz) =
∏
z∈V

max (0, 1− φ−(c+1)
z ).

It directly follows that

p0(c, (φz)) = 0 when φz ≤ 1 for some z ∈ V

so the inequality to be proved is obvious in this case. Assume now that φz > 1 for

all z ∈ V . In this case, we have the following inequalities:

log (p0(c, (φz))) =
∑
z∈V

log (1− φ−(c+1)
z ) ≤ −

∑
z∈V

φ−(c+1)
z

log (p∞(c, (φz))) ≥ log(1− Φ−(Nc−D+1)) ≥ − Φ−(Nc−D+1)

1− Φ−(Nc−D+1)
.
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In particular, since Φ > 1, for all N ≥ 2 and c sufficiently large,

log (p∞(c, (φz))) ≥ −
Φ−(Nc−D+1)

1− Φ−(Nc−D+1)
≥ −2 Φ−(Nc−D+1) ≥ −2

(
min
z∈V

φz

)−(Nc−D+1)

≥ −
(

min
z∈V

φz

)−(c+1)

≥ −
∑
z∈V

φ−(c+1)
z ≥ log (p0(c, (φz))).

This completes the proof of the theorem. �

4.6 Proof of Theorem 4.3

As stated in the introduction, the two-person system is simple enough that we

may calculate certain probabilities by hand. Since there are only two vertices, we will

call them x and y and the rates at which they earn a coin φx and φy, respectively.

To simplify the notation, write

Xt = ξt(x) and Yt = ξt(y) for all t ≥ 0.

Letting T− = inf {t : min(Xt, Yt) = −1}, the process

Φ−(Xt∧T−+Yt∧T− ) =

(
2

φx + φy

)Xt∧T−+Yt∧T−

is again a martingale. Using that the individuals’ fortunes differ by at most one

coin in the presence of perfect cooperation, and repeating the proofs of Lemmas 4.5

and 4.6, we easily show that, when both individuals start with c coins, the probability

of global survival satisfies

p∞(c, φx, φy) = P (min(Xt, Yt) ≥ 0 for all t |X0 = Y0 = c)

≥ P (Xt + Yt > 0 for all t |X0 = Y0 = c)

= max (0, 1− (2/(φx + φy))
2c)

in the case of perfect cooperation. In particular, when

φx + φy > 2 and φx < 1 < φy,
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while individual x dies almost surely in the absence of cooperation, global survival is

possible in the presence of perfect cooperation, showing that cooperation is beneficial

in this case. We now focus on the parameter region

φx + φy < 2 and φx < 1 < φy (4.4)

and show that, in this case, cooperation is detrimental: individual x again dies almost

surely while individual y is more likely to live forever in the absence of cooperation

than in the presence of perfect cooperation. The probability of survival can be com-

puted explicitly.

Using again that the individuals’ fortunes differ by at most one coin in the pres-

ence of perfect cooperation, together with the fact that global survival is not possible

when (4.4) holds, implies that the stopping time T− is almost surely finite and that

(XT− , YT−) ∈ {(−1, 0), (−1, 1), (0,−1), (1,−1)}.

To simplify the notation, we rename these four states as well as the three adjacent

states as shown in Figure 4.1 and define the stopping times and corresponding prob-

abilities

τi = inf {t : (Xt, Yt) = Si} and pi = P (T− = τi) for i = 1, 2, 3, 4.

The probabilities pi are computed explicitly in the next lemma.

Lemma 4.7 – Assume (4.4) and perfect cooperation. Then,

p1 = p2 =
2

Ψ
p3 =

φx
Ψ

+
1

4
p4 =

φy
Ψ

+
1

4

where Ψ = 8 + 2φx + 2φy.

Proof. Observe that T− is almost surely finite when (4.4) holds. Since in addition

the individuals’ fortunes differ by at most one coin before time T−,

T+ = sup {t : Xt = Yt = 1} <∞ almost surely.
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Figure 4.1: The Seven States and Transition Rates Between Times T+ and T−.

Also, between time T+ and time T−, the process consists of the seven-state continuous-

time Markov chain whose transition rates are indicated in Figure 4.1. Referring again

to the picture for the name of the states, we define the conditional probabilities

pij = P (T− = τi | (X0, Y0) = Sj) for all (i, j) ∈ {1, 2, 3, 4} × {5, 6, 7}.

Using a first-step analysis and looking at the probabilities at which the process start-

ing from state S5 jumps to each of the four adjacent states, we get

p15 =
1

2 + φx + φy
+

φx p16
2 + φx + φy

+
φy p17

2 + φx + φy
.

The same idea gives p16 = p17 = (1/2) p15. Solving the system, we get

p15 =
2

4 + φx + φy
and p16 = p17 =

1

4 + φx + φy
.

Since in addition the first state visited after time T+ is equally likely to be S6 and S7,

we conclude that the probability p1 is given by

p1 =
p16 + p17

2
=

1

4 + φx + φy
=

2

Ψ
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which, by symmetry, is also the value of p2. To compute p3, we again use a first-step

analysis to obtain a system involving the three conditional probabilities:

p35 =
φx p36

2 + φx + φy
+

φy p37
2 + φx + φy

p36 =
1

2
+
p35
2

p37 =
p35
2
.

Solving the system gives

p35 =
φx

4 + φx + φy
p36 =

1

2
+

φx
8 + 2φx + 2φy

p37 =
φx

8 + 2φx + 2φy

from which it follows as before that

p3 =
p36 + p37

2
=

φx
8 + 2φx + 2φy

+
1

4
=
φx
Ψ

+
1

4
.

By symmetry, the value of p4 is obtained by exchanging the role of φx and φy in the

previous expression, which completes the proof. �

Using the previous lemma as well as Lemma 4.6 and conditioning on the first bound-

ary state visited, we deduce that the expected number of individuals that survive in

the presence of perfect cooperation, which is also the probability that y survives, is

given by

E∞(c, φx, φy) = p2 p0(0, φy)+p4 p0(1, φy) =

(
2

Ψ

)(
1− 1

φy

)
+

(
φy
Ψ

+
1

4

)(
1−
(

1

φy

)2)
.

Since in addition

1− 1

φy
< 1−

(
1

φy

)2

≤ 1−
(

1

φy

)c+1

for all φy > 1 and c ≥ 1, and since(
2

Ψ

)
+

(
φy
Ψ

+
1

4

)
= P (T− = τ2 or T− = τ4) ≤ 1,

we conclude that

E∞(c, φx, φy) < 1−
(

1

φy

)c+1

= E0(c, φx, φy).

This completes the proof of Theorem 4.3.
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4.7 Proof of Theorem 4.4

As explained in the introduction, the first step to prove Theorem 4.4 is to identify

a collection of events that simultaneously occur with positive probability and ensure

that a given vertex, say the origin, dies before time one. These events are defined

from the collection of independent Poisson processes introduced at the end of the

model description as follows:

A1 = {N+
1 (0) = 0 and N−1 (0) ≥ (c+ 1)2}

A2 = {N+
1 (z) = N−1 (z) = 0 for all z ∈ Z such that 0 < |z| ≤ c+ 1}

A3 = {N+
1 (c+ 2) + · · ·+N+

1 (c+ n+ 1) ≤ n for all n > 0}

A4 = {N+
1 (−(c+ 2)) + · · ·+N+

1 (−(c+ n+ 1)) ≤ n for all n > 0}.

The times at which neighbors exchange a coin are unimportant in the proof of the

theorem. Let A be the event that consists of the intersection of these four events.

Lemma 4.8 – For all µ ∈ [0,∞], we have P (ξ1(0) = −1 |A) = 1.

Proof. To begin with, we ignore the exchange of money between c+ 1 and its right

neighbor and between −(c + 1) and its left neighbor. Recalling that an agent can

receive one coin from a neighbor only if this neighbor has at least two more coins, on

the event A1 ∩ A2,

ξ1(0) = −1 and c ≥ ξt(z) ≥ |z| − 1 for all 0 < |z| ≤ c+ 1 and t ∈ (0, 1). (4.5)

Note that the second inequality above becomes an equality when µ = ∞. In this

case, the total loss of coins among the 2c+ 3 vertices around zero is given by

(c+ 1) + 2c+ 2(c− 1) + · · ·+ 2× 1 + 2× 0 = (c+ 1)2,

which explains our definition of the event A1. Observe that (4.5) implies that there

are exactly c coins at vertex c + 1 until time one. In particular, looking at the full
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Figure 4.2: Typical Configuration at Time One When A Occurs: The Agent at 0
Is Dead and the Fortune of the Agents at Distance at Least c+ 2 From the Origin Is
Below the Black Dashed Line. The Numbers at the Bottom of the Picture Give the
Number of Coins These Agents Earned by Time One. In the Picture, We Assume
That These Agents Do Not Spend Any Coin, in Which Case The Fortune of the
Agents Within Distance c+ 1 of the Origin Is Above the White Dashed Line.

system and allowing the exchange of money between c+ 1 and its right neighbor, on

the event A3,

number of coins traveling c+ 1→ c+ 2 by time one

≥ number of coins traveling c+ 2→ c+ 1 by time one.

(4.6)

By symmetry, on the event A4,

number of coins traveling −(c+ 1)→ −(c+ 2) by time one

≥ number of coins traveling −(c+ 2)→ −(c+ 1) by time one.

(4.7)

Combining (4.5)–(4.7), we deduce that given the event A we must have ξ1(0) = −1.

�
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To prove that the event A has a positive probability, we let

ε = − E(φ)− 1

2
> 0 so that E(φ) = 1− 2ε

and call vertex z ∈ Z

a right ε-sink when φz + φz+1 + · · ·+ φz+n ≤ (n+ 1)(1− ε) for all n ∈ N

a left ε-sink when φz + φz−1 + · · ·+ φz−n ≤ (n+ 1)(1− ε) for all n ∈ N.

Then, we have the following result.

Lemma 4.9 – We have P (z is a left ε-sink) = P (z is a right ε-sink) = a > 0.

Proof. Define the process

Xn = Xn(z) = φz + φz+1 + · · ·+ φz+n − (n+ 1)(1− ε) for all n ∈ N.

Since the random variables φz, φz+1, . . . , φz+n are independent and identically dis-

tributed, it follows from the strong law of large numbers that

lim
n→∞

Xn

n+ 1
= lim

n→∞

1

n+ 1

n∑
i=0

(φz+i − (1− ε)) = E(φ)− (1− ε) = −ε < 0.

In particular, there exists N , fixed from now on, such that

P (Xn ≤ 0 for all n ≥ N) = P

( n∑
i=1

(φz+i− (1− ε)) ≤ 0 for all n ≥ N

)
≥ 1/2. (4.8)

In addition, since E(φ) < 1− ε, we have p = P (φ ≤ 1− ε) > 0 so

P (Xn ≤ 0 for all n < N) ≥ P (φz+i ≤ 1− ε for all i < N) = pN > 0. (4.9)

Finally, combining (4.8) and (4.9) and using that the events {Xn ≤ 0} for different

values of n ∈ N are positively correlated, we conclude that

P (z is a right ε-sink) = P (Xn ≤ 0 for all n ≥ 0)

= P (Xn ≤ 0 for all n ≥ N |Xn ≤ 0 for all n < N)P (Xn ≤ 0 for all n < N)

≥ P (Xn ≤ 0 for all n ≥ N)P (Xn ≤ 0 for all n < N) ≥ (1/2) pN > 0.
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It also follows from obvious symmetry that the probability that z is a left ε-sink is

equal to the probability that it is a right ε-sink. This completes the proof. �

Using the previous lemma, we can now prove that the event A has positive prob-

ability.

Lemma 4.10 – We have P (A) > 0.

Proof. Since the Poisson processes in the graphical representation are independent

P (A) = P (A1)P (A2)P (A3)P (A4).

In addition, for any given c finite, the first two events have positive probability while,

by symmetry, the last two events have the same probability, i.e.,

P (A1)P (A2) > 0 and P (A3) = P (A4). (4.10)

In particular, to conclude, it suffices to prove that the event A3 has a positive prob-

ability. By conditioning on the event that vertex c+ 2 is a right ε-sink, we get

P (A3) ≥ P (A3 | c+ 2 is a right ε-sink)P (c+ 2 is a right ε-sink)

= aP (A3 | c+ 2 is a right ε-sink)

(4.11)

where a > 0 according to Lemma 4.9. Now, let

Yn = Poisson (n (1− ε)) be independent for all n > 0.

Using that the events that define the event A3 are positively correlated and recalling

the definition of right ε-sink, we deduce that

P (A3 | c+ 2 is a right ε-sink) ≥ P (Yn ≤ n for all n > 0) =
∏
n>0

P (Yn ≤ n). (4.12)
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In other respects,∏
n>0

P (Yn ≤ n) > 0 if and only if
∑
n>0

− log(1− P (Yn > n)) <∞

if and only if
∑
n>0

P (Yn > n) <∞
(4.13)

which follows from standard large deviations estimates for the Poisson distribution.

Combining (4.11)–(4.13), we deduce that P (A3) > 0 which, together with (4.10),

gives the lemma. �

Since the random variables φz are independent and identically distributed, we may

apply the ergodic theorem together with Lemmas 4.8 and 4.10 to deduce that

lim
n→∞

1

2n+ 1

n∑
z=−n

1{ξ1(z) = −1} ≥ P (A) > 0. (4.14)

Note however that this does not imply our theorem since the probability of A1 ∩A2,

and therefore the lower bound P (A), depends on c, the initial number of coins per

vertex.

The second step of the proof is to identify an infinite collection of vertices, that

we call ε-sinks, that are removed eventually. The density of such vertices is bounded

from below by a positive constant that does not depend on c. More precisely, we call

vertex z ∈ Z an ε-sink if

φz−m + φz−m+1 + · · ·+ φz+n ≤ (m+ n+ 1)(1− ε) for all m,n ∈ N. (4.15)

Lemma 4.11 – We have P (z is an ε-sink) ≥ a2 > 0.

Proof. Let Am,n be the event in (4.15) and observe that

Am,0 ∩ A0,n ⊂ Am,n for all m,n ∈ N.
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In particular, the event that z is an ε-sink is

⋂
m,n

Am,n =
⋂
m,n

(Am,0 ∩ A0,n) =

(⋂
m

Am,0

)
∩
(⋂

n

A0,n

)
. (4.16)

Using that A0,n = {Xn ≤ 0} where the process (Xn) has been defined in the proof of

Lemma 4.9 and obvious symmetry, we also have

P

(⋂
m

Am,0

)
= P

(⋂
n

A0,n

)
= P (Xn ≤ 0 for all n ≥ 0) = a > 0 (4.17)

according to Lemma 4.9. Combining (4.16) and (4.17), and using that the events Am,0

and A0,n are positively correlated, we conclude that

P (z is an ε-sink) = P

(⋂
m,n

Am,n

)
≥ P

(⋂
m

Am,0

)
P

(⋂
n

A0,n

)
= a2 > 0.

This completes the proof. �

To complete the proof of the theorem, the last step is to show that all the ε-

sinks die eventually with probability one, which is done in the following lemma.

Lemma 4.12 – Assume that x ∈ Z is an ε-sink. Then ξt(x) = −1 for some t.

Proof. For all times t, we define

z−t = sup {z ≤ x : ξt(z) = −1} and z+t = inf {z ≥ x : ξt(z) = −1}.

In view of (4.14) and since −1 is an absorbing state for each vertex,

It = (z−t , z
+
t ) is bounded at time t = 1 and nonincreasing in t

for the inclusion. Now, set T0 = 1 and define recursively

Ti = inf {t > Ti−1 : It 6= It−} when Ti−1 <∞

= ∞ when Ti−1 =∞
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Figure 4.3: Picture of the Construction in Lemma 4.12 with the Sequence of Stop-
ping Times Ti. The Crosses × Represent the Agents That are Dead. The Gray Region
Shows the Interval It From Time T0 = 1 Until the Sink Dies. In Our Example, It
Takes Four Steps to Kill the Sink Located at the Center of the Picture.

for all i > 0. See Figure 4.3 for a picture. Given that time Ti is finite and that the

interval ITi is nonempty, by the definition of ε-sink, between time Ti and time Ti+1,

the process

Zt = ξt(z
−
Ti

+ 1) + ξt(z
−
Ti

+ 2) + · · ·+ ξt(z
+
Ti
− 1)

is dominated stochastically by a one-dimensional random walk with a negative drift.

This implies that the expected number of coins in the interval It is decreasing, there-

fore one of the vertices in the interval must reach state −1 in a finite time and

P (Ti+1 <∞|Ti <∞ and ITi 6= ∅) = 1.

Recall also that the interval is bounded at time one and observe that, by definition of

the stopping times, the length of the interval decreases by at least one at each step,

i.e.,

|IT0 | <∞ and |ITi+1
| ≤ |ITi | − 1 when Ti < Ti+1 <∞.
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In summary, it takes only a finite number steps for It to become empty and the

duration of each step is almost surely finite. Since in addition the sink dies at the

time It becomes empty,

inf {t : ξt(x) = −1} = inf {t : It = ∅} <∞

with probability one. This completes the proof. �

As previously, since the random variables φz are independent and identically dis-

tributed, we may apply the ergodic theorem which, together with Lemmas 4.11

and 4.12, implies that

lim
n→∞

1

2n+ 1

n∑
z=−n

1{ξt(z) = −1 for some t}

≥ lim
n→∞

1

2n+ 1

n∑
z=−n

1{z is an ε-sink} ≥ a2 > 0.

Since a does not depend on c, this proves Theorem 4.4.
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Chapter 5

CONCLUSION

5.1 Summary of Findings for Conservative Models on Connected Graphs

One purpose of this dissertation was to prove and extend many conjectures about a

few fundamental models in the field of econophyiscs. The uniform reshuffling model,

the immediate exchange model, the model with saving propensity and the models

with individual and collective debt limit are all models well known in the fields of

econophysics. Much research has been done about these models regarding the limiting

distribution of wealth in a population of individuals whose interactions are governed

by the rules of such processes. However, in each case, only conjectures about the

limiting distribution of assets had been made up until the writing of chapters 2 and 3

of this dissertation. Many people looked at these models from a computational point

of view, using simulations as a main basis for conjecture about the limiting behavior

of such models with little or no analytical results to back up their assertions. Another

area where insight into these models was lacking is the role that the spatial structure

played. As the number of possible graphs with N vertices grows quickly with N , to

simplify things, all simulations of these five models done previously by researchers

were on the complete graph with N individuals. Looking only at the complete graph

makes simulating these processes much less computationally expensive but doing so

is at the expense of eliminating the spatial component representing the structure

of the social network. Looking at these models on the complete graph gives no

insight into the role that microscopic interactions has on the limiting behavior of

the process. As such, all conjectures that were made about these five models based
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on numerical results are only applicable to the specific case where the individuals

are interacting on the complete graph. For obvious reasons, this is not a scenario

likely to happen in the real world as not every individual in a population knows

every other individual. Rather, people only tend to interact with those that they

know. This shortcoming is largely overcome in chapters 2 and 3 of this text as

excepting the model with collective debt limit, all of the previous numerical results

are proven analytically and even extended to any connected graph with N vertices.

As for the model with collective debt limit, an expression for the limiting distribution

of wealth is found in chapter 3 analytically, however, this expression is not in a

closed form thus making it difficult to verify the numerical results of others. Instead,

a heuristic argument is given in chapter 3 further giving support to the previous

numerical results regarding this model. Although the conjecture that the limiting

distribution of wealth for the model with collective debt limit has yet to be verified,

insight about this model was still gained. It is shown in chapter 3 that there does

exist a unique stationary distribution of wealth and in accordance with the first four

models discussed in this text, this stationary distribution is the same regardless of the

underlying structure of the graph G . Using a computer to plot the asymmetric Laplace

distribution alongside an approximation of the expression found for limt→∞ P (Yt(x) =

c) where x ∈ V is arbitrary gives strong visual evidence that the true distribution of

wealth is asymmetric Laplace.

5.2 Summary of Findings for Model with Cooperation

The second purpose of this dissertation was to examine the effect of cooperation

on the distribution of wealth in a population over time.
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5.2.1 Summary of Findings for Model with Cooperation on a Finite Connected

Graph

In the case where G is finite, an interesting result is shown in chapter 4. This

result being that depending on the overall productiveness of the population as a

whole, cooperation will either improve the chance of overall survival or guarantee that

overall survival is impossible. Specifically, when the population on average produces

more resources than they use in average, it is shown that cooperation increases the

probability of overall survival. However, the opposite is true when the population

produces less than is needed for survival on average. When productiveness is too

low, adding the element of cooperation by setting µ > 0 ensures that survival of the

population as a whole is impossible. It should be noted that as long as there are

individuals who are more productive than is needed, there is a positive probability

that some individuals will survive. It is likely that the nonproductive individuals will

die first allowing the overall productiveness of the remaining population to increase.

If this production level increases to the point that the remaining population produces

more resource on average than is needed, there would then be a positive probability

that all remaining individuals will survive and having µ > 0 improves this probability

for the remaining individuals.

5.2.2 Summary of Findings for the Model with Cooperation on the One

Dimensional Integer Lattice

In the case where G = Z, total survival of the population is impossible regardless

of the level of cooperation. However, it is shown in chapter 4 that when the average

rate of production of the population is less than is needed for survival, the proportion

of individuals who eventually die is bounded from below by a positive constant that
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is independent of both µ and the initial number of coins per individual.

5.3 Final Thoughts

This research was motivated by the need to understand what causes the state

of wealth distribution in the real world. One reason why it is necessary to examine

these real world phenomena from an analytical point of view is the lack of data

regarding wealth of individuals. The six models looked at here are clearly well suited

for looking at wealth distributions as was the purpose of this dissertation, however,

the beauty in interacting particle systems is that many models in this field are often

found to be analogous to phenomena in other fields, and thus these models can often

be reinterpreted for other contexts while the analytic results found regarding these

models will still hold. This gives a level of profoundness to proving analytic results

about interacting particle systems in that these results can have consequences in the

future which at the present have yet to be conceived. For example, conic sections

were first defined in ancient Greece and at that time, there was no apparent use for

such an abstract notion. It wasn’t until Johannes Kepler came along centuries later

and used ellipses to describe the motion of celestial bodies that the conic sections

had an application. Even though the first five models are rather simple and far

from accounting for all the complexity of real world monetary transactions, statistical

physicists showed that their numerical results fit well the few data available. In

particular, the main objective of this dissertation is not pursue their work and validate

their models but instead to rely on a rigorous analytical treatment to prove that their

conjectures are indeed correct.
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