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ABSTRACT  

  

To make meaningful comparisons on a construct of interest across groups or over 

time, measurement invariance needs to exist for at least a subset of the observed variables 

that define the construct. Often, chi-square difference tests are used to test for 

measurement invariance. However, these statistics are affected by sample size such that 

larger sample sizes are associated with a greater prevalence of significant tests. Thus, 

using other measures of non-invariance to aid in the decision process would be beneficial. 

For this dissertation project, I proposed four new effect size measures of measurement 

non-invariance and analyzed a Monte Carlo simulation study to evaluate their properties 

and behavior in addition to the properties and behavior of an already existing effect size 

measure of non-invariance. The effect size measures were evaluated based on bias, 

variability, and consistency. Additionally, the factors that affected the value of the effect 

size measures were analyzed. All studied effect sizes were consistent, but three were 

biased under certain conditions. Further work is needed to establish benchmarks for the 

unbiased effect sizes. 
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CHAPTER 1 

INTRODUCTION 

There are outcomes of interest, like math ability or extraversion, which cannot be 

directly measured. One way to indirectly measure these outcomes is to measure a set of 

variables that are related to the construct of interest. Theoretically, we believe there is an 

underlying construct, called a latent variable, which directly influences the observed 

variables (Thurstone, 1947). If group comparisons on the latent variable are of interest, 

such as comparing males and females on parenting or assessing familism over time, then 

the relationship between the latent variable and the probability of obtaining a particular 

score on the observed variables needs to be equal across groups or time. Specifically, a 

majority of the observed variables need to be invariant. As the number of non-invariant 

observed variables increases, the more difficult it becomes to defend the position that the 

latent variable has the same meaning and metric across groups, making mean group 

comparisons on the latent variable tenuous.  

Measurement invariance exists in the factor analytic framework if the following 

property holds: 

 𝑃𝑔(𝑦|η) = 𝑃(𝑦|η), (1) 

where 𝑦 is the score on an observed variable, η is the latent variable score, 𝑔 is group 

membership, and 𝑃𝑔(𝑦|η) is the measured response function for the observed variable 𝑦 

and group 𝑔. If true, two people with the same level on the latent construct would be 

expected to have the same observed score, regardless of group membership. If this 

property does not hold, then the measurement properties of the observed variables in 
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relation to the construct differ across groups and measurement invariance has been 

violated (Millsap, 2011). 

Typically, in factor analysis, measurement invariance (also known as factorial 

invariance when using factor analytic models) is established by testing a series of nested 

hierarchical models with chi-square difference tests. However, these tests are highly 

affected by sample size such that statistically significant differences can be found for 

negligible group differences when the sample size is large. Thus, effect sizes should be 

used to quantify the magnitude of the non-invariance. For this dissertation project, I 

propose four new effect size measures for measurement non-invariance, and study the 

properties of these proposed effect size measures as well as one existing effect size of 

measurement non-invariance. I begin with a formal overview of measurement invariance 

testing and effect size measures. I then transition to discussing the creation of four new 

effect sizes of measurement non-invariance. Next, I describe the method and results of a 

simulation study that evaluates the behavior and properties of the four new effect size 

measures as well as a current effect size measure of non-invariance. Finally, I discuss the 

implication of the results. 

Measurement Invariance 

A measurement model expresses how unobserved latent variables relate to 

observed variables (Millsap, 2011). A measurement model that is often used when testing 

measurement invariance for continuous observed variables is the linear common factor 

model (Meredith, 1993; Thurstone, 1947). In this model, one or more common factors 

(i.e., latent variables) account for the covariances among a set of observed variables. For 

𝑝 observed variables and 𝑞 common factors, the common factor model can be written as: 
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 𝐲j = 𝛕 + 𝚲𝛈j + 𝛆j. (2) 

In Equation 2, 𝐲j is a 𝑝 × 1 vector of person j’s scores on 𝑝 observed variables, 𝛕 is a 𝑝 ×

1 vector of measurement intercepts, 𝛈j is a 𝑞 × 1 vector of factor scores (i.e., latent 

variable scores) for person j, 𝚲 is a 𝑝 × 𝑞 matrix of factor loadings (analogous to 

regression coefficients) that relate the factor scores to the observed scores, and 𝛆j is a 𝑝 ×

1 vector of unique factor scores for person j. Equation 2 has a similar structure to a 

regression equation (e.g., predictor, outcome, intercept, regression coefficient, residual); 

however, the predictors (i.e., the common factors) are unobserved variables. The common 

factors are assumed to follow a multivariate normal distribution, such that 

𝛈j~𝑀𝑉𝑁(𝛋, 𝚿), where 𝛋 is a 𝑞 × 1 vector of factor means and 𝚿 is a 𝑞 × 𝑞 matrix of 

common factor variances and covariances. The unique factors are assumed to follow a 

multivariate normal distribution, such that 𝛆j~𝑀𝑉𝑁(𝟎, 𝚯), where 𝚯 is a 𝑝 × 𝑝 matrix of 

unique factor variances and covariances. 𝚯 is typically assumed to be a diagonal matrix 

(i.e., the unique factors are uncorrelated with one another); however, this assumption can 

be relaxed.  

The common factor model leads to a set of expectations for the means, variances, 

and covariances of the observed variables. The expected covariance structure of the 

factor analysis model is: 

 𝚺𝐘 = 𝚲𝚿𝚲′ + 𝚯, (3) 

where 𝚺𝐘 is a 𝑝 × 𝑝 model-implied covariance matrix for the observed variables, and the 

expected mean structure of the factor analysis model is: 

 𝛍𝐘 = 𝛕 + 𝚲𝛋, (4) 
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where 𝛍𝐘 is a 𝑝 × 1 vector of model-implied means for the observed variables. In the 

single-population case, the mean structure is not often of importance; however, it is 

necessary for examining multiple populations and examining change over time – two 

situations where measurement invariance testing is necessary. 

To find a unique solution to Equation 2, we need to impose constraints in the 

common factor model to solve the rotational uniqueness problem and to achieve global 

identification (e.g., define the scale and zero point for the latent variables; Bollen & 

Jöreskog, 1985; Millsap, 2011). There are many ways to identify a unidimensional 

common factor model for continuous variables so I focus on the two most common 

approaches: standardizing the common factor and using a reference indicator. 

Standardizing the common factor, ηj, is done by constraining its mean to be 0 and its 

variance to be 1. The reference indicator approach is implemented by constraining the 

factor loading and measurement intercept of one observed variable (an indicator) to 1 and 

0, respectively.  

We can expand the factor analysis model for a single population (as defined in 

Equation 2) to the multiple-population case by estimating the factor analysis model 

separately for each group, indexed by 𝑔, such that: 

 𝒚𝑗𝑔 = 𝛕𝑔 + 𝚲𝑔𝛈𝑗𝑔 + 𝛆𝑗𝑔, (5) 

with the expectation: 

 𝐶𝑜𝑣(𝒚𝑗𝑔|𝛈𝑗𝑔) = 𝚯𝑔. (6) 

For factorial invariance to hold, the factor model parameters (𝛕𝑔, 𝚲𝑔, 𝚯𝑔) need to have 

the same values for all of the groups or time points being compared. In other words, the 

factor model parameters do not have values that differ by group (i.e., 𝛕, 𝚲, 𝚯). There are 
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four steps to testing for measurement invariance: 1) identifying a common baseline factor 

model for all groups, 2) choosing at least one reference variable to link the metric of the 

latent variable(s) across groups, 3) analyzing chi-square difference tests to identify non-

invariance, and 4) estimating the final model. 

Common baseline model. Factor models should be fit separately in each group to 

determine the best fitting model. If the groups are found to have the same number of 

factors with the same observed variables that define the factors, then a multiple-group 

model can be fit to the data where the only group equality constraints are those needed 

for identification and to link the metric of the latent variable across groups. This model is 

referred to as the configural invariance model (Meredith, 1993; Millsap, 2011). If the 

groups do not have the same number of factors or have different variables that define the 

factors, either testing stops and making valid group mean comparisons on the construct is 

doubtful or a partial invariance model can be analyzed, which I detail later in the 

document (Steenkamp & Baumgartner, 1998). 

There are many ways to identify a multiple-group confirmatory factor analysis 

(CFA) model and link the metrics of the factors across groups for continuous measured 

variables. Here, I recreate one potential set of identification constraints when there is 

independent cluster structure (i.e., each indicator has only one non-zero loading and each 

factor is defined by at least three indicators with non-zero loadings). (Refer to Millsap 

(2011) to learn about identification for other scenarios.) 

1. For one group (e.g., Group 1), fix the common factor means (𝛋𝑔) to 0 and the 

factor variances, 𝚿𝒓𝒓, to 1. 
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2. Choose a reference variable for each common factor and constrain its loading and 

its intercept to be equal across groups. 

The common factor means and variances for the other group (or groups) are freely 

estimated. Standardizing the factors for both groups can lead to inaccurate invariance 

testing (Yoon & Millsap, 2007). The reference variable is known as an anchor item in the 

item response theory (IRT) framework. Even though the reference variable was 

previously defined as the variable which has a loading of one and an intercept of zero, in 

the context of measurement invariance in factor analysis, the reference variable or 

reference indicator refers to the measured variable that has group equality constraints on 

its parameters (see French & Finch, 2008; Johnson, Meade, & DuVernet, 2009; Jung & 

Yoon, 2017; Yoon & Millsap, 2007). 

If the configural invariance model fits well, invariance testing can continue. 

While the χ2 fit statistic is available to test exact fit, fit should not be assessed based on 

the χ2 statistic (Jöreskog, 1971), partly because it is sensitive to even slight departures 

from multivariate normality (Jöreskog & Sörbom, 1983, p. I.39; West, Finch, & Curran, 

1995) and sample size (Kelloway, 1995). Some of the global approximate fit statistics 

available for continuous indicators are the root mean square error of approximation 

(RMSEA; Browne & Cudeck, 1993; Steiger, 1989; Steiger & Lind, 1980), the 

comparative fit index (CFI; Bentler, 1990), and the standardized root mean square 

residual (SRMR; Jöreskog, & Sörbom, 1983). At the local level, residuals can aid in 

determining where in the model the misfit is occurring. Additionally, “substantive, 

theoretical and conceptual considerations” should be used when assessing fit (Jöreskog, 
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1971, p. 421). It is acceptable to sacrifice fit to increase interpretability (Cudeck & 

Browne, 1983). 

Reference variable. As stated above, a reference variable needs to be chosen to 

link the metrics of the latent variable(s) by group. The reference variable must be 

invariant or the accuracy of the invariance testing is distorted (Bollen, 1989; Cheung & 

Rensvold, 1999; Yoon & Millsap, 2007) and the results are misleading (Johnson et al., 

2009). Thus, an invariant observed variable needs to be used as the reference variable; 

however, invariance is rarely known a priori. As stated by French and Finch (2008), this 

leads to a circular situation where the reference variable needs to be invariant, invariance 

of parameters are established by estimating a model, and we cannot estimate a model for 

invariance without an invariant reference variable. There are many methods in factor 

analysis to identify which observed variable to use as a reference variable such as using 

modification indices (Yoon & Millsap, 2007), the factor-ratio test (Cheung & Rensvold, 

1999), and the list-and-delete method (Rensvold & Cheung, 2001). Here, I describe a 

two-step approach to selecting a reference variable. 

 An empirical method that uses modification indices to identify which observed 

variable to use as the reference variable is the smallest modification index procedure with 

a partial invariance model (Jung & Yoon, 2017). First, a full scalar invariance model (i.e., 

a factor model where the loadings and intercepts are constrained to be equal across 

groups) is fit to the data. Then, the modification indices of just the invariance constraints 

(loadings and intercepts) are examined. A cutoff value is chosen for the modification 

indices. One choice is to use the value of 3.84, which is the value of the χ2 distribution 

with one degree of freedom associated with a p-value of .05. Others have used a cutoff 
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value of 5.0 (Byrne, Shavelson, & Muthén, 1989). However, the modification indices are 

affected by sample size such that larger sample sizes are associated with larger values of 

the modification indices. If there are any modification indices above the chosen cutoff 

value, then the parameter with the highest modification index is freed to vary across 

groups. This new model is estimated and the modification indices are once again 

examined. This procedure stops until there are no modification indices associated with 

invariance constraints above the chosen cutoff value left in the model. This model is 

considered to be the baseline model. Finally, the observed variable with the smallest 

modification index in the baseline model is chosen as the reference variable. In Jung and 

Yoon’s (2017) simulation study, there was 99.4% accuracy with identifying an invariant 

reference variable across all conditions (sample size, location of non-invariance [loading 

or intercept], and size and pattern of non-invariance) where four out of the six observed 

variables were invariant; however, they did not simulate non-invariance in models with 

any model misspecification.  

Testing. A forward approach of sequentially adding more model constraints is 

used to establish measurement invariance. Specifically, four hierarchically nested models 

are tested and compared: the configural invariance model, the metric invariance model, 

the scalar invariance model, and the strict invariance model (Meredith, 1993; Millsap, 

2011; Vandenberg & Lance, 2000; Widaman & Reise, 1997). In the configural invariance 

model, as modeled in Equation 5, the dimensions of the loading matrices 𝚲𝑔 are 

constrained to be equal (i.e., the groups have the same number of factors) and all zero 

loadings are in the same location across factor loading matrices (i.e., the same observed 

variables load on the same factors across groups). All remaining parameters (nonzero λs, 
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𝛕𝑔, and 𝚯𝑔) are free to vary across groups with the exception of the parameters 

constrained to invariance for identification purposes. The metric invariance model is 

identical to the configural invariance model except that the factor loading matrices 𝚲𝑔 are 

constrained to be equal across groups (𝚲𝑔 = 𝚲). The scalar invariance model is identical 

to the metric invariance model except that the 𝛕𝑔 vectors are constrained to be equal 

across groups (𝛕𝑔 = 𝛕). Finally, the strict invariance model is identical to the scalar 

invariance model except the 𝚯𝑔 matrices are constrained to be equal across groups (𝚯𝑔 =

𝚯).  

The four invariance models are nested and can be statistically compared using 

uncorrected χ2 difference tests (e.g., the difference in χ2 between the scalar invariance 

model and the metric invariance model; Bentler & Bonett, 1980; Bollen, 1989) or 

corrected χ2 difference tests (Brace & Savalei, 2017; Satorra & Bentler, 2010). If the less-

constrained (i.e., less invariant) model has good fit, the difference in the χ2 statistics is 

distributed as a χ2 with degrees of freedom equal to the number of estimated factor model 

parameters that differ between the models (Millsap, 2011, p. 194; Steiger, Shapiro, & 

Browne, 1985). If the difference test is significant, then the added invariance restrictions 

significantly worsen the fit of the model. If the difference test is not significant, the more 

parsimonious (i.e., the more invariant) model is chosen and the next invariance model is 

tested. The strict invariance model, in addition to not having significantly different fit 

from the scalar invariance model, should have good fit overall (Millsap, 2011). 

Partial invariance. At any level of invariance, invariance may not hold (based on 

the significance of the χ2 difference test) and thus the sequence of testing the hierarchical 

invariance models stops. However, it may be unrealistic to expect full measurement 
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invariance to hold (Horn, 1991; Horn, McArdle, & Mason, 1983; Steenkamp & 

Baumgartner, 1998). It is possible that only one or a few parameters that were 

constrained to invariance are causing the misfit. Thus, partial invariance can be tested for 

where only some of the parameters are constrained to invariance (Byrne et al., 1989). For 

instance, if the test of scalar invariance does not hold, one can test a model where only a 

subset of the intercepts is constrained to invariance.  

A specification search is needed to identify the location of the non-invariance. To 

determine which parameters should be non-invariant, a forward or backward approach 

can be adopted. If most of the parameters tested are invariant, it is more efficient to use a 

backward approach by releasing constraints from the more invariant model than to use a 

forward approach, which adds constraints to the less invariant model (Meade & 

Lautenschlager, 2004). If using the backward approach, modification indices and 

expected parameter change statistics can be used to identify which specific parameter is 

the source of the most misfit (Jöreskog & Sörbom, 1983, p. I.40-I.42; Reise, Widaman, & 

Pugh, 1993). However, using modification indices typically leads to incorrect 

conclusions (MacCallum, Roznowski, & Necowitz, 1992; Millsap, 2005). To minimize 

capitalizing on chance and increase generalizability, only parameters with severe 

violations should be freed to be non-invariant (MacCallum et al., 1992; Steenkamp & 

Baumgartner, 1998). Additionally, substantive theory should help guide decisions with 

regards to identifying non-invariant parameters, although this is rarely available 

(Steenkamp & Baumgartner, 1998). 

Rather than testing the sequence of hierarchically nested models, we can test each 

parameter for invariance individually by calculating confidence intervals (Meade & 
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Bauer, 2007) or bias-corrected bootstrap confidence intervals (Cheung & Lau, 2012) of 

the difference in factor loadings or intercepts. In the latter approach, the configural 

invariance model is estimated and the bias-corrected bootstrap confidence intervals of the 

difference in factor loadings for the non-reference variables are calculated. If the 

confidence interval contains zero, then the parameter is considered to be invariant. 

Otherwise, it is categorized as non-invariant. Then, a metric or partial metric invariance 

model is estimated based on the previous results. Bias-corrected bootstrap confidence 

intervals of the difference in measurement intercepts are then calculated. This procedure 

is easily implemented in Mplus (Muthén & Muthén, 1998-2014) via the MODEL 

CONSTRAINT command. This procedure can be used as a way to investigate partial 

invariance when a level of invariance does not hold. However, the power of these tests is 

influenced by many factors including sample size, factor overdetermination, item 

communality, and size of the factor loadings (Cheung & Lau, 2012). 

There are different options on how to handle non-invariant observed variables in 

factor analysis (Cheung & Rensvold, 1998; Millsap & Kwok, 2004; Sass, 2011). The five 

options detailed by Sass (2011) are: 1) do not use the factor models or factor scores, 2) 

interpret scores independently and do not make any group comparisons, 3) delete the 

non-invariant variables from the model, 4) constrain non-invariant variables to invariance 

anyways, and 5) use a partial invariance model. The third option, while common in 

practice, is not desirable because it is possible that researchers would be using different 

variables to represent the same construct or scale (Millsap & Kwok, 2004). The 

justification for using the fourth option is the assumption that the population differences 

on the parameters are minimal even though they may not be in the specific sample (Horn 
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et al., 1983). Instead of choosing only one of these options, multiple options can be 

analyzed. If the conclusions are drastically different, then further work needs to be done 

to determine which option is more valid. The number of non-invariant parameters and the 

size of the non-invariance impacts how different the options are (Sass, 2011).  

The fifth option, using a partial invariant model, requires more detailed steps. 

Once the non-invariant parameter or parameters are identified, they are freed to vary 

across groups in the partial invariance model. Then, the partial invariance model is 

statistically compared to the baseline model. If the χ2 difference test is not significant (or 

the change in another fit statistic (e.g., RMSEA) is below a recommended benchmark), 

then the sequence of invariance testing can continue (Reise et al., 1993). This is because 

full invariance at one level (e.g., metric invariance) is not needed to test invariance at the 

next level (e.g., scalar invariance; Byrne et al., 1989). 

Because testing for partial invariance is a post-hoc fitting procedure, there are 

many criticisms against using it due to its exploratory nature (MacCallum, 1986). First, if 

there are many non-invariant parameters, then multiple χ2 difference tests are analyzed, 

but the Type I error rate is not controlled for (Green, Thompson, & Babyak, 1998; 

Kaplan, 1989). To remedy this, we can use a Type I error correction such as the false 

discovery rate procedure (Benjamini & Hochberg, 1995). Additionally, the partial 

invariance models are modified to increase model fit to a particular data set. Because of 

sampling error, the sample may not be representative of the population and that could be 

the cause of non-invariance (Horn et al., 1983). To combat this issue, the model should 

be cross-validated with an independent sample (Anderson & Gerbing, 1988). One method 

to cross-validate the model is to split the data set into a calibration sample and a 
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validation sample (Bentler, 1980). Rather than using the full sample to establish 

measurement invariance, researchers can use a calibration sample and make 

modifications (e.g., allow a parameter to freely vary across groups) to improve model fit. 

The final model with the empirical modifications is then tested using the validation 

sample. If the model has good fit in the validation sample, then the modifications were 

appropriate and the model is generalizable. 

There is debate as to how much partial invariance is too much. Steenkamp and 

Baumgartner (1998) argue that only one other indicator other than the reference variable 

needs to be invariant to have meaningful group mean comparisons; however, they 

acknowledge that having more invariant parameters is desired. Dimitrov (2010) 

suggested that no more than 20% of the factor model parameters should be freed to vary 

across groups; however, there is no empirical support for this suggestion. Mean 

comparisons on the common factor are valid with a partial invariant model (Byrne et al., 

1989) and power to detect mean differences on the common factor is minimally affected 

when there are non-invariant parameters (Kaplan & George, 1995; Whittaker, 2013). 

However, if the majority of the indicators are non-invariant, is the same construct being 

measured in both groups? Sometimes, it is rational to believe the measured constructs 

differ between groups (including the same people measured at different times). For 

instance, controlling for the latent variable, Dutch soldiers pre- and post-deployment 

perceive the symptoms of post-traumatic stress disorder differently presumably due to the 

trauma of war (Lommen, van de Schoot, & Engelhard, 2014). In this case, mean 

comparisons of this measure should not be conducted. Millsap and Kwok (2004) note that 

the purpose of the measure drives how much partial invariance should be tolerated. 
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Statistically comparing measurement invariance models. One of the issues with 

relying on χ2 difference tests to determine invariance is that the χ2 difference test is 

sensitive to sample size (Brannick, 1995; Kelloway, 1995) such that larger sample sizes 

are associated with more significant statistical tests even when the difference in 

parameters is trivial (Wu, Li, & Zumbo, 2007). Rather than solely relying on the χ2 

difference test, changes in other fit statistics can be used to evaluate invariance (Chen, 

2007; Cheung & Rensvold, 2002; Little, 1997; Meade, Johnson, & Braddy, 2008). For 

instance, if the change in CFI (ΔCFI) between nested models is less than .01, then the 

null hypothesis (that the fit is the same for both models) should not be rejected and the 

more parsimonious (i.e., invariant) model should be used (Cheung & Rensvold, 2002). 

(Note: the change in fit indices are calculated by subtracting the fit index of the more 

invariant model from the fit index of the less invariant model.) Meade et al. (2008), on 

the other hand, recommended using a ΔCFI < .002 to establish metric or scalar 

invariance. However, the CFI is not very sensitive to changes in the mean structure, 

which is important for invariance testing (Chen, Sousa, & West, 2005). Chen (2007) 

recommended different cutoffs based on whether metric invariance, scalar invariance, or 

strict invariance was evaluated. If the total sample size is greater than 300 and the sample 

sizes are equal across group (i.e., 150 participants in each group), then metric invariance 

is established if ΔCFI < .010 and if either ΔRMSEA < 0.015 or ΔSRMR < 0.030. Scalar 

or strict invariance is established if ΔCFI < .010 and if either ΔRMSEA < 0.015 or 

ΔSRMR < 0.010. Ideally, the changes of these goodness-of-fit statistics should not be 

affected by sample size; however, there are conflicting results concerning how sample 

size impacts ΔCFI. Some researchers have found the ΔCFI to not be impacted by sample 
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size (Chen, 2007; Cheung & Rensvold, 2002), others found that as sample size increased, 

ΔCFI increased (Meade & Bauer, 2007), and still others have found that as sample size 

decreased, ΔCFI decreased (Kang, McNeish, & Hancock, 2016). 

While sample size is one of the factors that influence detection of non-invariance 

(Meade & Lautenschlager, 2004), the χ2 difference tests and change in fit statistics can be 

affected by many other factors. The ratio of group sample sizes impacts the detection of 

non-invariance, such that if the sample sizes are equal, ΔCFI, ΔRMSEA, and ΔSRMR 

tend to be larger than if the sample sizes are unequal and Type II error (i.e., concluding 

invariance when there is non-invariance) increases as the sample sizes become more 

equal (Chen, 2007). Additionally, the communalities of the variables (proportion of 

variance in the variable accounted for by the common factors) affect detection of non-

invariance such that χ2 difference tests perform better with higher communalities 

(increased power and more accurate; Meade & Bauer, 2007; Meade & Lautenschlager, 

2004) and as the communalities of variables with non-invariance increased, ΔCFI 

decreased (Meade & Bauer, 2007). χ2 difference tests have more power to detect 

measurement invariance when factor overdetermination (i.e., the ratio of indicators to 

factors) is high and the non-invariance pattern was mixed (e.g., one group had higher 

loadings for some observed variables and lower loadings for other observed variables 

compared to the other group; Meade & Bauer, 2007). Finally, as the magnitude of the 

loadings increased (i.e., improved measurement quality), the ΔCFI decreased (Kang et 

al., 2016).  

In conclusion, while there are recommended cutoffs for the changes in fit 

statistics (including the χ2 difference test), these should be used with caution because the 
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changes in fit statistics are affected by many factors. Wu et al. (2007) and Kline (2011) 

point out that the cutoffs for ΔCFI, ΔRMSEA, etc. are based on limited simulation 

conditions and may not generalize to all data sets and models. For instance, Kang and 

colleagues (2016) do not recommend using ΔCFI because they found it to be affected by 

measurement quality, which has not often been manipulated in simulation studies. In 

addition, others argue that approximate fit statistics like RMSEA and CFI should never 

be used because, by their nature, they are not precise (Barrett, 2007). These complicated 

issues with using fit statistics to detect non-invariance highlight the need for using effect 

sizes to better understand the group parameter differences and the measure itself. 

Effect Size Measures 

Effect size measures are “a quantitative reflection of the magnitude of some 

phenomenon that is used for the purpose of addressing a question of interest” (Kelley & 

Preacher, 2012, p. 140) and “provide information about the magnitude” of the effect 

being studied (Durlak, 2009, p. 917). For instance, an effect size can quantify the 

difference between two parameters. There are three purposes for using effect sizes: power 

analysis, research synthesis, and research reporting (Steinberg & Thissen, 2006). In the 

case of assessing non-invariance, effect sizes are used for research reporting purposes. 

The American Psychological Association (2001) recommends reporting effect size 

estimates for all effects studied in addition to the significance of those effects. This is 

because the p-value does not provide information on the magnitude of the effect. 

Statistical significance and effect size measures supplement each other and should both 

be used when making research decisions (Fan, 2001). Thus, researchers should use effect 

size measures to aid in the invariance testing process. 
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While effect size measures can provide additional information about the statistical 

test, they can only be interpreted in a specific research context. The size of the effect does 

not determine its practical or clinical value (Durlak, 2009). For instance, changing 

behaviors is more difficult than changing attitudes (Durlak, 2009). Thus, an effect size 

value of 0.5 may be meaningful when studying behavioral changes, but negligible when 

studying changes in attitudes. Additionally, just because an effect has a small magnitude 

does not mean that the effect does not have practical implications and importance. A 

biomedical study investigating the effects of taking aspirin on number of heart attacks 

found the magnitude of the effect (r2 = .0012) to be “so small as to be considered 

quantitatively unimpressive by methodological convention” (Rosnow & Rosenthal, 1989, 

p. 1279). However, this effect was considered to be so impactful on the health of the 

participants that the Steering Committee of the Physicians’ Health Study Research Group 

(1988) told participants in the control group to start taking aspirin. Because the outcome 

was life or death, and the cost of treatment was small, the effect was considered to be 

practically significant. Effect size measures cannot solely determine practical importance, 

but can provide additional information about the effect being studied above and beyond 

the significance test. 

Useful and high-quality effect size measures should have four properties: an 

appropriate scale, calculable confidence intervals, independence from sample size, and 

good estimation properties (Preacher & Kelley, 2011). The scale of the effect size 

measure should be appropriate for the research question at hand to increase 

interpretability. If the outcome of interest is in interpretable units, unstandardized effect 

size measures are preferable over standardized measures (Baguley, 2009).  
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Another property of a good effect size is the availability of confidence intervals 

(Wilkinson & Task Force on Statistical Inference, 1999). When used for research 

reporting, it is important to note that the calculated effect sizes are estimates and thus are 

subject to sampling error just like any other sample statistic. It is possible to find a large 

effect even though the effect size in the population is small due to sampling error, 

especially if the sample size is small (Fan, 2001).  

Even though the effect size is subject to sampling error, which decreases as the 

sample size increases, the point estimate of the effect size should not be affected by 

sample size (Preacher & Kelley, 2011). In other words, two researchers studying the 

same phenomenon should come to the same conclusion about the effect size regardless of 

their sample sizes.  

Finally, the effect size measure should have good estimation properties. 

Specifically, the effect size should be consistent (as sample size increases, the sample 

estimate converges to the population value), unbiased (the sample value in expectation 

equals the population value), and efficient (low sampling variability).  

Effect size measures of non-invariance in IRT. An item response theory (IRT) 

model can be used instead of a factor analysis model when the indicators are categorical. 

Invariance testing in the IRT framework is known as differential item functioning (DIF). 

Detailing the models and testing process in IRT is beyond the scope of this paper; 

however, in this framework, many effect size measures of DIF have been developed and 

thus it is worth mentioning the importance of the work done in this area. Interested 

readers should refer to Meade (2010), who developed a taxonomy for categorizing effect 

size measures used to measure DIF in an IRT framework. 
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Effect size measures of non-invariance in factor analysis. One of the 

unresolved problems of measurement invariance is using an effect size measure to assess 

degree of non-invariance (Millsap, 2005). There have been attempts to create an effect 

size measure of non-invariance for continuous indicators; however, they are not widely 

used and their properties (e.g., consistency, bias) have not been studied. 

One effect size that measures non-invariance for continuous indicators in mean 

and covariance structure (MACS) analysis is dMACS (Nye & Drasgow, 2011). The formula 

for this effect size is: 

 

𝑑MACS =
1

𝑆𝐷𝑖𝑃𝑜𝑜𝑙𝑒𝑑

√∫(�̂�𝑖1 − �̂�𝑖2|η)
2

𝑓2(η)𝑑η , (7) 

where 𝑆𝐷𝑗𝑃𝑜𝑜𝑙𝑒𝑑 is the pooled within-group standard deviation of indicator i for Group 1 

and Group 2, �̂�𝑖1 is the expected observed score on indicator i using factor model 

parameters for Group 1, �̂�𝑖2 is the expected observed score on indicator i using factor 

model parameters for Group 2, and 𝑓2(η) is the distribution of the latent variable for 

Group 2 only. Nye and Drasgow (2011) define the pooled within-group standard 

deviation as: 

 
𝑆𝐷𝑖𝑃𝑜𝑜𝑙𝑒𝑑 =

(𝑁1 − 1)𝑆𝐷1 + (𝑁2 − 1)𝑆𝐷2

(𝑁1 − 1) + (𝑁2 − 1)
 , (8) 

where 𝑁1 is the sample size of Group 1, 𝑁2 is the sample size of Group 2, 𝑆𝐷1 is the 

standard deviation of the indicator for Group 1, and 𝑆𝐷2 is the standard deviation of the 

indicator for Group 2. It should be noted that this formula is not the standard way of 

calculating a pooled standard deviation. Typically, the pooled variance is estimated and 

then the square root of that pooled variance is calculated to estimate the pooled standard 
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deviation. The expected observed score for indicator i and Group 1, �̂�𝑖1, at a particular 

value of the latent variable is calculated as: 

 �̂�𝑖1 = τ𝑖1 + λ𝑖1η, (9) 

where τ𝑖1 is the measurement intercept for indicator i and Group 1, λ𝑖1 is the factor 

loading for indicator i and Group 1, and η is the value of the latent variable being 

evaluated. We can apply the same formula to calculate the expected observed score for 

Group 2, �̂�𝑖2, by using Group 2 parameters (i.e., τ𝑖2 and λ𝑖2). In IRT, if we plot the 

expected item score (in actuality, we are plotting the probability of endorsing an item or 

answering the item correctly in the binary case) against the latent variable, the resulting 

curve is called an item response function or trace line. There is no corresponding 

terminology in factor analysis. Thus, I refer to the regression line produced by Equation 9 

as an indicator response function (IRF). This effect size measure, dMACS, is interpreted as 

the standardized average difference in expected indicator scores across a normal latent 

variable distribution for Group 2 assuming the differences were uniform. The larger the 

value of dMACS, the greater the magnitude of non-invariance. Thus, we prefer smaller 

values of dMACS compared to larger values. 

 Even though the intended use for dMACS is in the factor analytic framework, I 

describe how it would be categorized in the four dimensions of Meade’s (2010) IRT 

taxonomy to describe the components of this effect size. First, dMACS is measured at the 

indicator level. In other words, dMACS can be calculated for each observed variable. 

Second, an assumed distribution (with estimated parameters) is used rather than sample 

estimates of latent variable scores to calculate the effect size. Specifically, a normal latent 

variable distribution is assumed for Group 2. Most effect sizes in the IRT framework only 
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use Group 2 participants to determine the adverse impact of item or test scores (Flowers, 

Oshima, & Raju, 1999; Raju, van der Linden, & Fleer, 1995; Stark, Chernyshenko, & 

Drasgow, 2004). Group 2 is typically the group suspected of being penalized by bias 

(e.g., females, African-Americans) or the lowest-scoring group and is typically referred 

to as the focal group in IRT. Third, this effect size does not allow for cancellation. At the 

indicator level, cancellation can occur when evaluating across the latent variable 

distribution. If the factor loadings for an indicator are different across groups, then it is 

possible that at some levels of the latent variable distribution one group is expected to 

score higher than the other group whereas at other levels of the latent variable distribution 

the reverse is true. Thus, positive differences and negative differences can be summed 

together and cancel each other out. Therefore, it is possible to have an effect size value of 

zero even when there is non-invariance because of cancellation. Because the group 

difference in expected indicator scores in dMACS is squared, the sign of the squared 

difference will always be positive and thus cancellation cannot occur for that effect size. 

Fourth and finally, dMACS is in a standardized metric. Standardizing the effect size is 

important for comparing the effect size across continuous indicators because the 

indicators can have vastly different scales. 

Millsap and Olivera-Aguilar (2012) developed an effect size measure of indicator 

non-invariance when there are two groups and metric invariance holds, but scalar 

invariance does not. In this scenario, the mean group difference in observed indicators 

can be expressed as: 

 μ𝑖1 − μ𝑖2 = (τ𝑖1 − τ𝑖2) + 𝛌𝑖(𝛋1 − 𝛋2), (10) 
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where μ𝑖1 is the observed mean of indicator i for Group 1, τ𝑖1 is the measurement 

intercept of indicator i for Group 1, 𝛌𝑖 is the ith row of the factor loading matrix, and 𝛋1 

is the vector of common factor means for Group 1. The remaining parameters in the 

equation have the same interpretation except applied to Group 2. This equation illustrates 

that the difference in observed indicator means (μ𝑖1 − μ𝑖2) is affected by the group 

difference in intercepts and the group difference in factor means. The portion of the 

observed mean difference on indicator i due to the group difference on the intercepts can 

be calculated via the ratio of the intercept difference as: 

 τ𝑖1 − τ𝑖2

μ𝑖1 − μ𝑖2
 . (11) 

This ratio is the portion of the group difference in the observed means that can be 

explained by non-invariance. The remaining portion is the group difference that can be 

explained by group differences in the latent variable means. A drawback to this effect 

size is that the observed group difference in indicator means can be zero, leading to an 

undefined number of the effect size. Additionally, the effect size measure can be negative 

if the difference in observed means is of the opposite sign to the difference in 

measurement intercepts, making interpretation difficult. Millsap and Olivera-Aguilar 

(2012) did not name this effect size nor provide benchmarks; however, Millsap and Kim 

(2018) argue that an intercept difference to observed indicator mean difference ratio of 

1:2 or larger prevents researchers from making valid group mean comparisons on that 

indicator. 
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 Millsap and Olivera-Aguilar (2012) also developed an effect size measure of 

indicator non-invariance when scalar invariance holds, but strict invariance does not. In 

this scenario, the variance of indicator i for group g can be given as: 

 𝜎𝑖𝑔
2 =  𝛌𝑖

′𝚿𝑔𝛌𝑖 + Θ𝑖𝑔 . (12) 

In a similar vein to the effect size above, the portion of group difference in the observed 

variances due to non-invariance can be calculated as: 

 Θ𝑖1 − Θ𝑖2

σ𝑖1
2 − σ𝑖2

2  . (13) 

The remaining portion is due to group difference on the factor distribution (𝚿𝑔). Again, 

this effect size can be negative, which makes interpretation difficult. 

Proposed effect size measures of non-invariance in factor analysis. Inspired by 

the effect sizes of DIF in IRT and by dMACS, I propose four new effect size measures of 

measurement non-invariance for continuous outcomes in the factor analytic framework. 

First, the signed difference in expected indicator scores for Group 2 (SDI2) is defined as: 

 
𝑆𝐷𝐼2 =

∫ [�̂�𝑖1 − �̂�𝑖2|η] ∙ 𝑓2(η)𝑑η
∞

−∞

𝑆𝐷(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟)2
 , (14) 

where the parameters have the same interpretation as before in the formula for dMACS 

except 𝑆𝐷(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟)2 is the standard deviation of the observed indicator scores for 

Group 2. This measure is similar to dMACS, but it allows for cancellation across the latent 

variable distribution (the sign of the difference in expected indicator scores [�̂�𝑖1 − �̂�𝑖2] is 

preserved and is thus called a signed measure). Additionally, the denominator differs 
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from dMACS. The numerator measures the impact of non-invariance on Group 2 

participants. Thus, the denominator should refer to Group 2 only as well.1  

To create an unsigned version of SDI2, the absolute value of the difference in 

expected indicator scores can be calculated instead of the raw difference. Specifically, the 

unsigned difference in expected indicator scores for Group 2 (UDI2) is calculated as: 

 
𝑈𝐷𝐼2 =

∫ |�̂�𝑖1 − �̂�𝑖2|η| ∙ 𝑓2(η)𝑑η
∞

−∞

𝑆𝐷(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟)2
 . (15) 

The parameters have the same interpretation as they do for SDI2. Here, the absolute value 

of the group differences in expected indicator scores are calculated to put UDI2 on the 

same metric as SDI2, which is a different metric than the metric of dMACS. 

I intend for the SDI2 and UDI2 to be used together when assessing non-invariance 

because they provide information independent of each other. Chalmers, Counsell, and 

Flora (2016) discussed the different combinations of values for signed and unsigned 

measures, which I modified in Table 1. Elaborating on the table, there are predictable 

ways we know the two measures will behave even though there is not necessarily a 

deterministic relationship. As illustrated in Figure 1, first, unsigned effect size measures 

will always be positive since either the negative differences are squared or the absolute 

value of the difference is calculated. Second, if they are on the same scale, the unsigned 

effect size measure will always be greater than or equal to the signed effect size measure 

since the signed effect size allows for cancellation. If the indicator is invariant, then both 

                                                 
1 I ran all analyses using a (corrected) pooled standard deviation in the denominator for 

all five studied effect sizes and the conclusions did not change (e.g., standardized bias 

conclusions were the same). Additionally, the pooled and not pooled versions of the 

effect sizes were correlated .99 for all effect sizes. Thus, I chose the denominator that was 

more interpretable. 
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effect size values will be zero, as illustrated by the filled-in circle in Figure 1. If the 

loadings are invariant, but the intercepts are non-invariant, then the signed effect size will 

be equal to the unsigned effect size, which is shown by the point-up triangles on the 45-

degree angles. The pattern of the point-down triangles represents when there is complete 

cancellation (i.e., the loadings are non-invariant and the cross of the IRFs occurs at the 

mean of the symmetrical factor distribution). In conclusion, both the signed and unsigned 

measures provide independent pieces of information and thus both should be calculated 

in conjunction with one another to evaluate the magnitude of non-invariance. 

Most effect sizes of non-invariance in the IRT framework as well as dMACS, SDI2, 

and UDI2 measure the impact of non-invariance for Group 2 only. Specifically, the effect 

sizes compare the expected indicator scores of people in Group 2 compared to the 

expected indicator scores of people in Group 2 if they were instead in Group 1. However, 

what is typically of practical interest is comparing how the expected indicator scores 

change when modeling invariance versus allowing the groups to have different 

measurement model parameters. More accurately, if the amount of non-invariance is not 

problematic, rather than analyzing a model separately in each group and constraining 

parameters to be invariant, many researchers combine the groups and analyze the factor 

analytic model for the entire sample (see Sandler, Wolchik, Mazza, Gunn, Tein, Berkel, 

Jones, & Porter (2019) for an example). Braun and Holland (1982) referred to the 

combination of populations as a synthetic population. In this case, the comparison of 

interest is between the expected indicator score when non-invariance is modeled in a 

multiple-group model to the expected indicator score when the measurement model is 

estimated for the synthetic sample. Additionally, there is utility in considering how Group 
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1 is affected by non-invariance in addition to how Group 2 is affected. Thus, the third 

effect size measure of non-invariance I propose is the weighted signed difference in 

expected indicator scores (WSDI), which is defined as: 

 
𝑊𝑆𝐷𝐼 = 𝑝1

∫ [�̂�𝑖1 − �̂�𝑖S|η] ∙ 𝑓1(η)𝑑η
∞

−∞

𝑆𝐷(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟)1
+ 𝑝2

∫ [�̂�𝑖S − �̂�𝑖2|η] ∙ 𝑓2(η)𝑑η
∞

−∞

𝑆𝐷(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟)2
, (16) 

where 𝑝1 is the proportion of people in Group 1, 𝑝2 is the proportion of people in Group 

2, �̂�𝑖𝑆 is the expected indicator score on indicator i using parameters from a single-

population model (which needs to be equated to the multiple-group model), and the other 

parameters have the same meaning as before. The proportions are calculated using the 

observed sample sizes and thus assume the observed proportions match the population 

proportions. Rather than comparing the expected indicator scores using the parameters 

for the two groups like for the SDI2, the comparison for the WSDI is between the 

expected indicator score using separate group parameters to the expected indicator score 

using the synthetic group parameters.  

The unsigned version of WSDI is the weighted unsigned difference in expected 

indicator scores (WUDI), which is defined as: 

 
𝑊𝑈𝐷𝐼 = 𝑝1

∫ |�̂�𝑖1 − �̂�𝑖𝑆|η| ∙ 𝑓1(η)𝑑η
∞

−∞

𝑆𝐷(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟)1
+ 𝑝2

∫ |�̂�𝑖S − �̂�𝑖2|η| ∙ 𝑓2(η)𝑑η
∞

−∞

𝑆𝐷(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟)2
. (17) 

This effect size is identical to the effect size in Equation 16 except the absolute values of 

the expected indicator score differences are calculated and analyzed. 

Present Study and Hypotheses 

 I conducted Monte Carlo simulations to study the properties of the four proposed 

effect size measures of measurement non-invariance (i.e., SDI2, UDI2, WSDI, and WUDI) 
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and of dMACS to answer three research questions. First, I tested if the five effect size 

measures were unbiased and consistent. I anticipated that the three unsigned measures 

would exhibit bias for the truly invariant indicators. For invariant indicators, the value of 

the unsigned effect size measures is zero in the population (there are no group differences 

in expected indicator scores). The sample estimate of the unsigned effect size will always 

be zero or a positive number. Because the sample value of the effect size is not expected 

to be zero in every simulated data set, this will result in positive bias of the sample values 

of the unsigned effect sizes. I also expected the five effect sizes to be consistent. 

Congruence between population values and sample estimates in a factor analysis model 

increases as sample size increases (MacCallum, Widaman, Zhang, & Hong, 1999). 

Because the effect sizes are calculated using parameter estimates (e.g., loadings), I 

expected this to cause the effect sizes to be consistent. 

Second, I tested if the total sample size, ratio of Group 1 sample size to Group 2 

sample size, magnitude of non-invariance, location of non-invariance (e.g., loadings, 

intercepts), or the latent variable distribution of Group 2 affected the value of the effect 

sizes. I anticipated that the magnitude of non-invariance would be an important predictor 

(significant and explains a large portion of the variance of the outcome) of the value of 

the effect size measure for all five effect sizes. I hypothesized that the latent variable 

distribution of Group 2 affected the value of the effect sizes for the indicators that had a 

non-invariant loading, but not for the invariant indicator or the indicator with just a non-

invariant intercept. If the IRFs are identical or parallel, then the difference in expected 

indicator scores is uniform at each level of the latent variable. If, however, the IRFs 

cross, then the difference in expected indicator scores depends on the value of the latent 
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variable. Where the latent variable distribution of the groups is centered in relation to 

where the IRFs cross affects how much cancellation occurs and how much weight is 

given to the bigger group differences in expected indicator scores. I expected sample size 

and balance of the group sample sizes to not be meaningful predictors because I expected 

the point estimate of the effect sizes to not be affected by sample size, which is a property 

of high-quality effect size measures (Preacher & Kelley, 2011). 

Finally, I investigated the relationships among the five measures. I expected 

dMACS to be highly related to UDI2. While there are differences in how these effect sizes 

are calculated, I did not have reason to believe that they would be differentially affected 

by my simulation factors and thus I expected there to be a monotonic relationship 

between their population values. I also expected those two effect sizes to have a high 

relationship to WUDI but that the relationship would be weaker because of the different 

conceptualization for WUDI. I anticipated the two signed effect sizes to have a moderate 

to high relationship, similar to the relationship between UDI2 and WUDI. Finally, I 

expected the signed and unsigned versions of the same effect size (e.g., WSDI and 

WUDI) to have a weaker relationship compared to the like-signed effect size measures 

(e.g., WSDI and SDI2) because the signed and unsigned versions of the same effect size 

provide independent pieces of information. 
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CHAPTER 2 

METHOD 

Manipulated Simulation Factors 

A full factorial Monte Carlo simulation with five factors was implemented. The 

five manipulated factors were: (1) total sample size (three levels), (2) balance of group 

sample sizes (two levels), (3) magnitude of non-invariance (three levels), (4) location of 

non-invariance (four levels), and (5) latent variable distribution of Group 2 (three levels). 

In total, there were 3×2×3×4×3 = 216 design cells. The four levels of location of non-

invariance, which are described in detail below, were captured in one replication. Thus, 

even though there were 216 design cells, only 216 ÷ 4 = 54 different types of models 

were simulated. For each type of model, 1,000 replications2 were simulated for a total of 

54,000 samples. Previous simulation studies of measurement invariance have used this 

number of replications per design cell (Cheung & Rensvold, 2002; Fan & Sivo, 2009; 

French & Finch, 2008). Because each sample contains four different locations of non-

invariance, there were a total of 216,000 records that were used in the analyses. 

The total sample sizes investigated were 300, 500, and 1,000. These sample sizes, 

or similar sample sizes, were used in previous simulation studies of measurement 

invariance (e.g., Chen, 2007; Stark, Chernyshenko, & Drasgow, 2006; Yoon & Millsap, 

2007) and are representative of the sample sizes used in empirical studies. For example, 

244 children participated in the efficacy trial of the Family Bereavement Program 

(Sandler et al., 2003) and 749 children participated in the La Familia study (Gonzales, 

                                                 
2 The Monte Carlo standard error (a measure of between-simulation variability) was 

calculated for each effect size within each design cell. The largest value was 0.0008. 

Thus, the number of replications was deemed acceptable. 
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Knight, Gunn, Tein, Tanaka, & White, 2018). The balance of the two group sample sizes 

was simulated to be a ratio of either 1:1 or 2:1. For instance, if the total sample size was 

300 and the 1:1 sample size ratio was used, then Group 1 was simulated to have a sample 

size of 150 and Group 2 was simulated to have a sample size of 150. If the 2:1 sample 

size ratio was used, then Group 1 was simulated to have a sample size of 200 and Group 

2 was simulated to have a sample size of 100. These ratios reflect ratios commonly seen 

in invariance analyses (e.g., treatment to control ratio in a study is typically 1:1 whereas 

racial or ethnic ratios can be closer to 2:1 depending on the specific categorization). For 

example, 886 parents participated in the effectiveness trial of the New Beginnings 

Program with 409 parents assigned to the two-session control condition and 477 parents 

assigned to the ten-session treatment condition (Sandler et al., 2019). Of those 886 

parents, 526 were non-Hispanic white and 280 were Hispanic (80 parents were 

categorized as another race or ethnicity). 

The magnitude of non-invariance was simulated to be small, medium, or large. A 

small magnitude of non-invariance was defined as a raw difference of 0.10 in the 

loadings and 0.20 in the intercepts. A medium magnitude of non-invariance was defined 

as a difference of 0.25 in the loadings and 0.40 in the intercepts. Finally, a large 

magnitude of non-invariance was defined as a difference of 0.40 in the loadings and 0.60 

in the intercepts. In all cases, Group 2 was simulated to have a smaller (or more negative) 

loading or intercept compared to Group 1. These values were chosen based on previous 

research that defined these differences when the factor was standardized for one group 

(Kim, 2011; Stark, Chernyshenko, & Drasgow, 2006; Yoon & Millsap, 2007). Because 

the factor was standardized and the indicators were simulated to have an expected 
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variance of 1 (explained later) for Group 1, the loadings for Group 1 were in a 

standardized metric. 

The four levels of location of non-invariance were: (1) the loading of the indicator 

was non-invariant, (2) the intercept of the indicator was non-invariant, (3) the loading and 

the intercept of the indicator were non-invariant, and (4) neither the loading nor the 

intercept of the indicator was non-invariant (i.e., the parameters of the indicator were 

invariant). While these effect size measures are not expected to be calculated for invariant 

indicators in practice, I did so to compare the magnitude of the effect size due to non-

invariant parameters to the magnitude of the effect size due to sampling error of invariant 

parameters. Lastly, impact (i.e., the group mean difference of the latent variable) was 

manipulated by varying the population latent variable distribution for Group 2 across 

simulations. For all design cells, latent variable scores for participants in Group 1 were 

randomly drawn from a standard normal distribution. Latent variable scores for 

participants in Group 2 were randomly drawn from one of three normal distributions: 

𝑁(0, 1), 𝑁(−0.5, 1.3), or 𝑁(−0.5, 0.7). The first two were chosen based on previous 

research that used the same distributions (Kim, 2011; Millsap & Kwok, 2004). The last 

distribution was chosen to tease apart if the differences in effect size values were due to a 

factor mean difference or a factor variance difference. 

Data Generation 

For both groups, a one-factor model with eight indicators was simulated using R 

v. 3.1.2. Data were simulated according to the following equation 

 𝒚𝑗𝑔 = 𝛕𝑔 + 𝚲𝑔η𝑗𝑔 + 𝛆𝑗𝑔, (18) 
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where 𝒚𝑗𝑔 is an 8 ×  1 vector of indicator scores for person 𝑗 in group 𝑔. Group 1 always 

had the same factor loading and measurement intercept values for each replication such 

that 𝚲1 = [0.8, 0.9, 0.6, 0.7, 0.8, 0.8, 0.8, 0.8] and 𝛕1 = [0.2, 0.4, −0.2, −0.1, 0.0, 0.0,  

0.0, 0.0]. Group 2 was simulated to have the same loading and intercept values as Group 

1 for the first five indicators (i.e., the first five indicators were simulated to be invariant 

across group). The loading of the sixth indicator was simulated to be lower in Group 2, 

but the intercept for this indicator was invariant. For Group 2, the intercept of the seventh 

indicator was simulated to be more negative, but the loading for the indicator was 

invariant. Finally, the loading and the intercept of the eighth indicator were simulated to 

be lower or more negative in Group 2. The group difference of the loadings and 

intercepts varied depending on the magnitude of measurement non-invariance. 

Specifically, for the small magnitude condition, the population loadings for Group 2 were 

𝚲2 = [0.8, 0.9, 0.6, 0.7, 0.8, 0.7, 0.8, 0.7] and the population intercepts were 𝛕2 =

[0.2, 0.4, −0.2, −0.1, 0.0, 0.0, −0.2, −0.2]. For the medium magnitude condition, the 

population loadings for Group 2 were 𝚲2 = [0.8, 0.9, 0.6, 0.7, 0.8, 0.55, 0.8, 0.55] and the 

population intercepts were 𝛕2 = [0.2, 0.4, −0.2, −0.1, 0.0, 0.0, −0.4, −0.4]. Finally, for 

the large magnitude condition, the population loadings for Group 2 were 𝚲2 =

[0.8, 0.9, 0.6, 0.7, 0.8, 0.4, 0.8, 0.4] and the population intercepts were 𝛕2 =

[0.2, 0.4, −0.2, −0.1, 0.0, 0.0, −0.6, −0.6]. 

Latent variable scores for participants in Group 1, η𝑗1, were randomly drawn from 

a standard normal distribution (mean = 0, variance = 1). The normal distribution used to 

generate latent variables scores for Group 2 varied across conditions as described above. 

The expected variance of an indicator is based on the following equation: 
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 var(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟) = λ ∙ var(𝑓𝑎𝑐𝑡𝑜𝑟) ∙ λ + var(𝑢𝑛𝑖𝑞𝑢𝑒). (19) 

Thus, for the participants in Group 1 to have an expected variance equal to one for each 

indicator, the unique factor scores, ε𝑖𝑗1, were randomly drawn from a normal distribution 

(mean = 0, variance = 1 −  λ𝑖1 ∙ Ψ1 ∙ λ𝑖1). The unique factor scores for Group 2, ε𝑖𝑗2, were 

also randomly drawn from the same normal distribution, meaning the unique variances 

were invariant and that the expected variance of the indicators for Group 2 varied 

depending on the values of the factor loadings and variance of the common factor for 

Group 2. 

Calculation of Effect Sizes 

Group 1 and Group 2 parameters used in the calculation of the effect sizes were 

taken from an estimated multiple-group one-factor CFA model where the measurement 

model parameters of the first four indicators were constrained to be invariant across 

groups and the measurement model parameters for the last four indicators were freed to 

vary across groups. The model was further identified by standardizing the factor for 

Group 1.3 This scenario is similar to the scenario envisioned for applied researchers when 

they calculate these effect size measures (e.g., after testing for invariance and concluding 

a partial invariance model is the best-fitting model). For the sample estimate of the effect 

size measures, the sample estimate of the standard deviation of the indicator was used in 

the denominator. For the population effect size calculations, the expected standard 

deviation of the indicators was used in the denominator (see Equation 19). Because of the 

complexities of integrating across a normal distribution, quadrature was used to 

                                                 
3 Using different identification constraints (e.g., standardizing the factor for one group or 

using a reference variable) does not affect the value of the effect size.  
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approximate the integral in the calculation of the five effect size measures. The group 

differences in expected indicator scores were evaluated across the range of −5 ≤ η ≤ 5 

using 101 quadrature nodes spaced 0.1 apart.4  

For the two weighted effect size measures, the synthetic parameters are from a 

single-population measurement model. However, the synthetic loadings and intercepts 

need to be on the same scale as the measurement model parameters from the multiple-

group model to make the expected indicator scores comparable. In other words, the same 

reference group needs to be used to estimate both models or the parameters need to be 

equated. The former option was used for this study. The sample estimate of the synthetic 

parameter was calculated by duplicating the entire generated data set for the current 

replication and labeling the duplicated data as the data for the synthetic group. Then, a 

three-group measurement model was estimated with Group 1 as the reference group (i.e., 

the common factor was standardized for this group), Group 2 as the second group, and 

the synthetic group as the third group. The first five indicators were constrained to be 

invariant across the three groups. The loadings and intercepts for the last three indicators 

(i.e., the indicators simulated to be non-invariant) were freely estimated in all groups. The 

sample estimate of the synthetic parameters were the estimated loadings and intercepts in 

the third group (i.e., the synthetic group) for the last four indicators (i.e., the studied 

indicators). The population value of the parameters of non-invariant indicators for the 

synthetic population cannot be easily calculated because the amount and type of non-

                                                 
4 I simulated 12 design cells (4 location × 3 magnitude) with 10 replications using 1,001 

quadrature nodes spaced 0.01 apart and there was no appreciable difference (largest 

difference was 1×10-6) in the effect size sample estimates or population values compared 

to using 101 quadrature nodes. To reduce computational burden, the latter option was 

used. 
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invariance, the relative size of the groups, and the latent variable distribution of the 

groups affect it. Thus, they were estimated via simulated data. Because four of the five 

simulated factors (all but total sample size) affect the value of the synthetic parameters, 

72 (2×3×4×3) different population synthetic loadings and synthetic intercepts were 

estimated and used in the calculations of the weighted effect sizes. For each of the 72 

design cells, a data set with a total sample size of 100,000 was generated. Similar to the 

process to obtain the sample estimate, this data set was duplicated to create the data for 

the synthetic group and a three-group measurement model was estimated with Group 1 as 

the reference group, Group 2 as the second group, and the synthetic group as the third 

group. The population synthetic parameters were the estimated loadings and intercepts in 

the third group (i.e., the synthetic group) for the last four indicators (i.e., the studied 

indicators). 

Evaluation Criteria 

 The effect size measures were evaluated based on average raw bias, standardized 

bias, the root mean square error, consistency, and the relation of the effect size measures 

to one another. Average raw bias refers to the difference between the estimated effect 

size in the sample and the population value of the effect size divided by the total number 

of records in a design cell and is defined as: 

 
𝐴𝑅𝐵(θ̂) =

∑ (θ̂𝑟 − θ)𝑅
𝑟=1

𝑅
, (20) 

where θ̂𝑟 is the parameter estimate for the rth record, θ is the parameter, and R is the 

number of records. Standardized bias refers to the difference between the average 

estimated effect size and the average population value of the effect size divided by the 
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standard deviation of the estimated effect size within a design cell, also known as the 

empirical standard error of that parameter. Specifically, standardized bias is defined as: 

 
𝑆𝐵(θ̂) =

𝐴𝑅𝐵(θ̂)

𝑆𝐷(θ̂)
. (21) 

Unacceptable bias was defined as the absolute value of standardized bias being greater 

than 0.40 (Collins, Schafer, & Kam, 2001; Lai & Kwok, 2016). Parameter variability was 

assessed by calculating the root mean square error (RMSE) of the parameter estimates 

across all records in a design cell. The formula for the RMSE of parameter estimate θ̂ is: 

 

𝑅𝑀𝑆𝐸(θ̂) = √∑ (θ̂𝑟 − θ)
2𝑅

𝑟=1

𝑅 − 1
. (22) 

Thus, each design cell had one estimate of average raw bias, standardized bias, and 

RMSE.  

The consistency of the effect size measures was examined analytically by 

averaging the RMSE values for each level of the total sample size and for each sample 

size of individual groups. If the marginalized RMSE values decreased as sample size 

increased, then the effect size was deemed consistent.  

To determine the amount of overlapping information of the effect sizes, I 

calculated the correlations between the like-signed effect sizes (e.g., SDI2 and WSDI). 

Additionally, I calculated the correlations between the population values of the signed 

and unsigned versions of the same effect size (e.g., SDI2 and UDI2). 

Data Analyses 

A five-way between-subjects analysis of variance (ANOVA) was conducted to 

determine if any of the design factors affected the values of the effect size measures. 
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There were 216 conditions × 1,000 replications = 216,000 records used in the analysis. 

Because of this large sample size, the power to detect effects with trivial effect sizes was 

high. Thus, partial η2 (no relation to the common factor variable) was used. Partial η2 was 

calculated via the following formula 

 
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 η2 =

𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 (23) 

where SS refers to the sums of squares. Only effects with an effect size of partial η2 ≥ .01 

(a small effect by Cohen’s (1988) standards) are reported and described, which is a 

criterion that has been used in previous simulation studies (for an example, see Krull & 

MacKinnon, 1999). Additionally, only pairwise or simple pairwise comparisons that had 

a Cohen’s d value ≥ 0.2 are reported and described.  
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CHAPTER 3 

RESULTS 

All factor models converged to a proper solution (e.g., no negative variances). 

Results are organized in terms of bias, consistency, values, and relationship of the effect 

sizes. 

Bias 

Table 2 presents the average raw bias of the five effect size measures for each 

design cell. An ANOVA on the differences between the sample estimate in each record 

and the population value of the design cell revealed that there was a meaningful effect of 

sample size and location of non-invariance for the three unsigned effect sizes (i.e., dMACS, 

UDI2, and WUDI). This is seen in Table 2. The invariant indicator had greater average 

raw bias values compared to the other three studied indicators for the three unsigned 

effect sizes. Additionally, the average raw bias decreased as sample size increased. 

Table 3 presents the standardized bias values for each design cell for the five 

effect size measures. Sample estimates of the signed effect size measures (i.e., SDI2 and 

WSDI) were unbiased in all 216 conditions (average raw bias range for SDI2 = -0.007 to 

0.008, standardized bias range for SDI2 = -0.078 to 0.095, average raw bias range for 

WSDI = -0.004 to 0.003, standardized bias range for WSDI = -0.133 to 0.110). The three 

unsigned effect size measures had problematic bias (i.e., |standardized bias| greater than 

0.40) for all conditions involving the indicator that was simulated to be invariant. For 

these conditions, the population value of the effect size was 0, or close to 0 in the case of 

WUDI where the synthetic parameters did not always match the multiple-group 

parameters. (This is because the value of the synthetic parameters are affected by latent 
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variable distributions of the two groups in addition to the values of the non-invariant 

parameters.) The sample estimates of the unsigned effect size measures can only be 

positive. Thus, the unsigned effect sizes are positively biased for the invariant indicator. 

Additionally, the three unsigned effect size measures had problematic bias for some of 

the conditions involving the indicator with a non-invariant loading but an invariant 

intercept where the non-invariance was small in magnitude. The standardized bias 

decreased as the total sample size increased and the bias was less for the Group 2 latent 

variable distribution with a mean of -0.5 and a variance of 1.3. 

Consistency 

 Table 4 presents the RMSE values for each design cell for the five effect size 

measures. Table 5 presents the marginal RMSE values by Group 2 sample size for dMACS, 

SDI2, and UDI2. As the Group 2 sample size increased, the three effect sizes became 

more efficient. Table 6 presents the marginal RMSE values by Group 1 sample size for 

WSDI and WUDI. As the Group 1 sample size increased, the two effect sizes became 

more efficient. 

Values of Effect Sizes 

 Table 7 reports the minimum, first quartile, mean, third quartile, and maximum 

value of each effect size by location of non-invariance for the small magnitude condition. 

This summary allows for easy comparison of the value of the effect size due to non-

invariant parameters of small magnitude to the value of the effect size due to sampling 

error of invariant parameters. On average, the values of the unsigned effect sizes for the 

invariant indicator are smaller than the values of the unsigned effect sizes for the three 

non-invariant indicators. Additionally, the average values of the unsigned effect sizes for 
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each of the three non-invariant indicators are greater than the third quartile of the 

unsigned effect sizes for the invariant indicator, indicating that, on average, the effect size 

values for indicators that are invariant are much smaller than the effect size values for 

indicators that are not invariant. 

To determine which simulation factors affected the value of the effect size, I 

analyzed a five-way between-subjects ANOVA separately for each effect size. All 

possible interactions between predictors were included in the analyses. 

 dMACS. The highest order effect that was impactful (i.e., partial η2 ≥ .01) on the 

value of dMACS was the three-way interaction of location × magnitude × latent variable 

distribution for Group 2 (henceforth labeled as LVD2; partial η2 = .05). In other words, 

the two-way interaction of magnitude × LVD2 differed by location of non-invariance. 

Figure 2 illustrates the four simple two-way interactions of magnitude × LVD2 for each 

level of location of non-invariance.  

For the invariant indicator, the level of magnitude and level of LVD2 did not 

meaningfully affect the value of dMACS (i.e., partial η2 < .01 for interaction and main 

effects). This is shown in the top left panel in Figure 2. The lines representing the three 

levels of the LVD2 factor are horizontal and overlapping.  

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading (partial η2 = .05). In the top right panel of Figure 2, 

the line for the lower mean, higher variance condition (i.e., mean = -0.5, variance = 1.3) 

diverged from the other two LVD2 conditions as magnitude of non-invariance increased. 

The simple main effect of LVD2 was impactful at all three levels of magnitude. For all 

three levels of magnitude, the lower mean, lower variance condition (i.e., mean = -0.5, 
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variance = 0.7) and the same mean, same variance condition (i.e., mean = 0, variance = 1) 

did not differ from one another based on the value of dMACS (Cohen’s d < 0.2). The 

average value of dMACS for the lower mean, higher variance condition was meaningfully 

larger than the other two conditions at all magnitudes, with the difference increasing as 

magnitude of non-invariance increased. Table 8 presents the Cohen’s d values and 

average value of dMACS for the studied comparisons that had a meaningful pairwise or 

simple pairwise comparison. 

The simple two-way interaction of magnitude × LVD2 was not impactful on the 

value of dMACS for the indicator with a non-invariant intercept. This is illustrated in the 

bottom left panel in Figure 2. The lines are roughly parallel, indicating there is no 

interaction. The main effect of magnitude was impactful (partial η2 = .85) as was the 

main effect of LVD2 (partial η2 = .04). As magnitude of non-invariance increased, the 

value of dMACS increased. None of the pairwise comparisons between the three LVD2 

groups were meaningful (i.e., Cohen’s d < 0.2 for all three pairwise comparisons).  

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading and non-invariant intercept (partial η2 = .14). As 

shown in the bottom right panel of Figure 2, the LVD2 conditions diverged from one 

another as magnitude of non-invariance increased. The simple main effect of LVD2 was 

meaningful at each level of magnitude of non-invariance. The same mean, same variance 

condition had a higher average value of dMACS compared to the other two conditions at all 

levels of magnitude, with the difference increasing as magnitude of non-invariance 

increased. The lower mean, higher variance condition had a larger average value of dMACS 

when the magnitude of non-invariance was medium and when it was large.  
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In addition to the three-way interaction, there was also an impactful two-way 

interaction of sample size × location (partial η2 = .14). The simple main effect of sample 

size was not impactful for the three indicators that had non-invariance; however, the 

simple main effect of sample size was impactful for the invariant indicator (partial η2 = 

.16). As sample size increased, the average value of dMACS decreased due to the bias 

decreasing (i.e., the sample estimate approached the population value of 0).  

SDI2. Table 9 presents the Cohen’s d values and average value of SDI2 for each 

condition that had a meaningful pairwise or simple pairwise comparison. The highest 

order effect that was impactful on the value of SDI2 was the three-way interaction of 

location × magnitude × LVD2 (partial η2 = .08). Figure 3 illustrates the four simple two-

way interactions of magnitude × LVD2 for each level of location of non-invariance. For 

the invariant indicator, the magnitude of non-invariance and LVD2 factors did not 

meaningfully affect the value of SDI2 (i.e., partial η2 < .01 for interaction and main 

effects).  

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading (partial η2 = .19). The simple main effect of LVD2 

was meaningful at each level of magnitude of non-invariance. For the same mean, same 

variance condition, the average value of SDI2 was roughly 0, regardless of the magnitude 

of non-invariance, due to cancellation of positive and negative differences. This value 

was higher than the average value of SDI2 for the two lower mean LVD2 conditions, with 

the difference increasing as magnitude of non-invariance increased. The lower mean, 

lower variance condition had lower (i.e., more negative) values of SDI2 than the lower 
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mean, higher variance condition when the magnitude of non-invariance was medium and 

large.  

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant intercept (partial η2 = .03). The simple main effect of 

LVD2 was meaningful for the small magnitude of non-invariance condition (partial η2 = 

.06), the medium magnitude condition (partial η2 = .17), and the large magnitude 

condition (partial η2 = .30). In all conditions, the lower mean, lower variance condition 

always had a higher average value of SDI2 than the other two conditions and the lower 

mean, higher variance condition always had a lower average value of SDI2 than the other 

two conditions. The difference between conditions increased as magnitude of non-

invariance increased. 

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading and non-invariant intercept (partial η2 = .19). The 

simple main effect of LVD2 was meaningful for the small magnitude of non-invariance 

condition (partial η2 = .12), the medium magnitude condition (partial η2 = .42), and the 

large magnitude condition (partial η2 = .60). The same mean, same variance condition 

always had a higher average value of SDI2 than the other two conditions and the lower 

mean, higher variance condition always had a lower average value of SDI2 than the other 

two conditions. The difference between conditions increased as magnitude of non-

invariance increased. 

UDI2. Table 10 presents the Cohen’s d values and average value of UDI2 for each 

condition that had a meaningful pairwise or simple pairwise comparison. The highest 

order effect that was impactful on the value of UDI2 was the three-way interaction of 
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location × magnitude × LVD2 (partial η2 = .07). Figure 4 illustrates the four simple two-

way interactions of magnitude × LVD2 for each level of location of non-invariance. 

The simple two-way interaction of magnitude × LVD2 was not meaningful for 

the invariant indicator (partial η2 < .01); however, the main effect of LVD2 was impactful 

(partial η2 = .011). The lower mean, lower variance condition had, on average, higher 

values of UDI2 than the lower mean, higher variance condition. 

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading (partial η2 = .04). The simple main effect of LVD2 

was not impactful for the small magnitude condition, but was impactful for the medium 

magnitude condition (partial η2 = .04) and the large magnitude condition (partial η2 = 

.15). In the medium magnitude condition, the lower mean, higher variance condition had 

a meaningfully higher mean than the lower mean, lower variance condition and the same 

mean, same variance condition. Additionally, the lower mean, lower variance condition 

had a meaningfully higher mean than the same mean, same variance condition. In the 

large magnitude condition, the lower mean, higher variance condition had a meaningfully 

higher mean than other two LVD2 conditions. 

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant intercept (partial η2 = .03). The simple main effect of 

LVD2 was meaningful for the small magnitude of non-invariance condition (partial η2 = 

.06), the medium magnitude condition (partial η2 = .17), and the large magnitude 

condition (partial η2 = .30). In all conditions, the lower mean, lower variance condition 

had the highest average value of UDI2 followed by the same mean, same variance 
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condition and then the lower mean, higher variance condition with the differences 

becoming more pronounced as magnitude of non-invariance increased.  

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading and intercept (partial η2 = .16). The simple main 

effect of LVD2 was meaningful for the small magnitude of non-invariance condition 

(partial η2 = .10), the medium magnitude condition (partial η2 = .36), and the large 

magnitude condition (partial η2 = .53). In all conditions, the same mean, same variance 

condition had higher values of UDI2, on average, than the other two LVD2 conditions. 

The lower mean, lower variance condition had higher values of UDI2 than the lower 

mean, higher variance condition when the magnitude was small, essentially the same 

average values when the magnitude was medium (Cohen’s d < .2), and lower average 

values when the magnitude was large. 

The main effect of sample size was impactful (partial η2 = .012). However, none 

of the pairwise comparisons had an effect size greater than or equal to a small effect.  

WSDI. Table 11 presents the Cohen’s d values and average value of WSDI for 

each condition that had a meaningful pairwise or simple pairwise comparison. The 

highest order effect that was impactful on the value of WSDI was the three-way 

interaction of location × magnitude × LVD2 (partial η2 = .03). Figure 5 illustrates the 

four simple two-way interactions of magnitude × LVD2 for each level of location of non-

invariance. For the invariant indicator, the magnitude of non-invariance and LVD2 

factors did not meaningfully affect the value of WSDI (i.e., partial η2 < .01 for interaction 

and main effects). 
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The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading (partial η2 = .08). The simple main effect of LVD2 

was impactful for the small magnitude condition (partial η2 = .04), the medium 

magnitude condition (partial η2 = .24), and the large magnitude condition (partial η2 = 

.42). For the same mean, same variance condition, the average value of WSDI was 

roughly 0, regardless of the magnitude of non-invariance, due to complete cancellation. 

This value was higher than the average value of WSDI for the lower mean, lower variance 

condition and the lower mean, higher variance condition at all levels of magnitude. 

Additionally, the lower mean, lower variance condition had lower WSDI values, on 

average, than the lower mean, higher variance condition for medium and large 

magnitudes. 

The simple two-way interaction of magnitude × LVD2 was not impactful on the 

value of WSDI for the indicator with intercept non-invariance, but the main effect of 

magnitude was impactful (partial η2 = .83) as was the main effect of LVD2 (partial η2 = 

.05). The same mean, same variance condition had higher values of WSDI, on average, 

than the lower mean, higher variance condition. The values of WSDI increased as 

magnitude of non-invariance increased. 

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading and non-invariant intercept (partial η2 = .10). The 

simple main effect of LVD2 was impactful for the small magnitude condition (partial η2 

= .07), the medium magnitude condition (partial η2 = .29), and the large magnitude 

condition (partial η2 = .45). The same mean, same variance condition had higher values 

of WSDI, on average, than the other two LVD2 conditions. 
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The two-way interaction of location × balance was impactful on the value of 

WSDI (partial η2 = .03). The simple main effect of balance was not meaningful for the 

invariant indicator nor for the indicator with a non-invariant loading. The simple main 

effect of balance was meaningful for the indicator with a non-invariant intercept and for 

the indicator with a non-invariant loading and intercept, such that the balanced condition 

had a higher average than the unbalanced condition. 

WUDI. Table 12 presents the Cohen’s d values and average value of WUDI for 

each condition that had a meaningful pairwise or simple pairwise comparison. The 

highest order effect that was impactful on the value of WUDI was the three-way 

interaction of location × magnitude × LVD2 (partial η2 = .02). Figure 6 illustrates the 

four simple two-way interactions of magnitude × LVD2 for each level of location of non-

invariance. For the invariant indicator, the magnitude of non-invariance and LVD2 

factors did not meaningfully affect the value of WUDI (i.e., partial η2 < .01 for interaction 

and main effects). 

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading (partial η2 = .01). The lower mean, higher variance 

condition had meaningfully higher values of WUDI, on average, than the other two 

LVD2 conditions when the magnitude of non-invariance was medium or large. 

The simple two-way interaction of magnitude × LVD2 was not impactful on the 

value of WUDI for the indicator with intercept non-invariance, but the main effect of 

magnitude was impactful (partial η2 = .84) as was the main effect of LVD2 (partial η2 = 

.05). For the former effect, as magnitude of non-invariance increased, the value of WUDI 
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increased. For the latter effect, the same mean, same variance condition had meaningfully 

higher values than the lower mean, higher variance condition.  

The simple two-way interaction of magnitude × LVD2 was meaningful for the 

indicator with a non-invariant loading (partial η2 = .06). The same mean, same variance 

condition had meaningfully higher values than the other two LVD2 conditions, with the 

difference increasing as magnitude of non-invariance increased. Additionally, the lower 

mean, higher variance condition had higher values than the lower mean, lower variance 

condition when the magnitude of non-invariance was large. 

In addition to the just-described three-way interaction, there was a second 

impactful three-way interaction of location × magnitude × balance (partial η2 = .01) on 

the value of WUDI. Figure 7 illustrates the four simple two-way interactions of 

magnitude × balance for each level of location of non-invariance. For the invariant 

indicator, the magnitude of non-invariance and balance of sample sizes did not 

meaningfully affect the value of WUDI (i.e., partial η2 < .01 for interaction and main 

effects). 

The simple two-way interaction of magnitude × balance was not impactful on the 

value of WUDI for the indicator with a non-invariant loading, but the main effect of 

magnitude was impactful (partial η2 = .80) as was the main effect of balance (partial η2 = 

.04). As magnitude increased, the value of WUDI increased. The balanced condition had 

higher values of WUDI, on average, compared to the unbalanced condition; however, 

Cohen’s d was less than 0.2. 

The simple two-way interaction of magnitude × balance was meaningful for the 

indicator with a non-invariant intercept (partial η2 = .02). The balanced conditions had 
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higher values of WUDI, on average, compared to the unbalanced conditions for all levels 

of magnitude of non-invariance with the difference increasing as magnitude increased. 

The simple two-way interaction of magnitude × balance was meaningful for the 

indicator with a non-invariant loading and intercept (partial η2 = .04). The balanced 

conditions had higher values of WUDI, on average, compared to the unbalanced 

conditions for all levels of magnitude of non-invariance with the difference increasing as 

magnitude increased. 

In addition to the two three-way interactions, the main effect of sample size was 

impactful (partial η2 = .013). However, none of the pairwise comparisons of the three 

sample size conditions had an effect size greater than or equal to a small effect.  

Relationship of Effect Sizes 

 The population values of the signed effect sizes were almost perfectly related (r = 

.988). The population values of the unsigned effect sizes were also almost perfectly 

related (rdmacs,UDI2 = .996, rdmacs,WUDI = .988, rUDI2,WUDI = .988). Finally, the population 

values of the signed and unsigned versions of the same effect size were highly related 

(rSDI2,UDI2 = .694, rWSDI,WUDI = .807). 
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CHAPTER 4 

DISCUSSION 

Relying solely on p-values of a statistical test to make decisions is not good 

practice because the p-value is highly affected by sample size. Instead, effect size 

measures should be used in conjunction with p-values to understand the magnitude of the 

effect being studied in addition to examining statistical significance. However, in the area 

of measurement invariance, only a few effect size measures of non-invariance exist; 

however, they are not widely used and their properties have not been studied. Creating an 

unbiased and consistent effect size of measurement non-invariance is important to help 

researchers understand the impact of non-invariance on their models. This study 

examined the statistical properties of an existing effect size measure and of four proposed 

effect size measures under different simulated conditions. I discuss the results in terms of 

the findings, limitations of the study, future directions, and recommendations. 

Overview and Implications of Results 

  Two of the estimation properties that Preacher and Kelley (2011) state high-

quality effect size measures should have are that they are unbiased and consistent. All 

five effect size measures were consistent. The two signed effect size measures were 

unbiased across all simulated conditions. The three unsigned effect size measures were 

generally unbiased; however, they exhibited bias in some of the simulated conditions. 

These effect sizes were positively biased when a truly invariant indicator was not 

constrained to be invariant in the estimated model. Additionally, the unsigned effect size 

measures were biased in most of the conditions where the loading of the indicator was 

non-invariant and the magnitude of non-invariance was small. The bias decreased as the 
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total sample size increased. Given these results, when the sample estimate of the 

unsigned effect size is small (e.g., UDI2 = 0.07) and the value of the corresponding 

signed effect size is close to 0, the unsigned effect size is most likely overestimated.  

Another property of high-quality effect size measures is that the value of the 

effect size should be independent of sample size (Preacher & Kelley, 2011). The 

ANOVA results illustrated that sample size did not affect the value of the two signed 

effect sizes as there were no meaningful main or simple main effects involving sample 

size as a predictor. Sample size did predict the value of dMACS for the invariant indicator, 

such that as sample size increased, the value of dMACS decreased. This is because bias 

decreased as sample size increased and the sample estimate converged to the population 

value of 0. Sample size was flagged as an important predictor of the values of UDI2 and 

WUDI, but none of the pairwise comparisons were meaningful. In both cases, as sample 

size increased, the average value of the effect size decreased. 

 For all effect size values, there was a meaningful three-way interaction of location 

of non-invariance, the latent variable distribution for Group 2, and magnitude of non-

invariance. This occurred because magnitude of non-invariance did not affect the sample 

estimates of the invariant indicator, but did affect the values of the non-invariant 

indicators, such that as magnitude of non-invariance increased, the absolute value of the 

effect size increased. One notable exception to this pattern occurred when the latent 

variable distribution for Group 2 (LVD2) was centered where the indicator response 

functions (IRFs) for the two groups crossed. In this case, there was complete cancellation 

and the expected value of the signed effect sizes was zero regardless of the magnitude of 

non-invariance.  
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The location of LVD2 is important when there is loading non-invariance. If the 

IRFs are parallel, then LVD2 does not affect the value of any of the effect sizes. If the 

loadings appreciably differ between groups, where the latent variable distributions of the 

two groups are in relation to where the IRFs cross affects the value of all five effect sizes. 

For instance, for the indicator with a non-invariant loading, the IRFs crossed when η = 0. 

However, when the indicator had a non-invariant loading and a non-invariant intercept 

and the magnitude of non-invariance was medium, the IRFs crossed when η = -1.6. 

Where the latent variable distributions of the two groups were centered in relation to that 

crossing affected how much cancellation occurred and how much weight was given to the 

bigger group differences in expected indicator scores.  

The balance of group sample sizes did not affect the values of dMACS, SDI2, or 

UDI2, but was impactful on the values of the two weighted effect sizes. When the 

difference was meaningful, the average value of the effect size in the balanced condition 

was always greater than the average value of the effect size in the unbalanced condition. 

However, this may not generalize to all possible conditions (e.g., Group 2 has a larger 

loading than Group 1, Group 2 has a larger sample size than Group 1) and further work is 

needed before establishing a pattern with regards to the effect of the balance of sample 

sizes on the value of the weighted effect sizes.  

 The five effect size measures were highly related to one another. This is to be 

expected for dMACS and UDI2 because the formulas for these two effect sizes are very 

similar. The extremely high relationship between WUDI and the two other unsigned 

effect sizes was surprising. While a strong relationship was expected, a greater difference 

between the effect sizes was anticipated. It is important to note that the effect sizes were 
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highly related given the simulated conditions studied. Including other simulated 

conditions may affect the correlations. For instance, exploring more disparate sample 

sizes, more disparate latent variable distributions, and different IRFs may lead to different 

conclusions regarding how closely related WUDI is with the other two unsigned effect 

sizes. Additionally, the correlations between signed and unsigned versions of the same 

effect size measure should be interpreted cautiously because the full range of possibilities 

was not simulated. More specifically, non-invariance was simulated such that Group 1 

always had higher loadings and/or intercepts and a higher or the same mean on the latent 

variable continuum. If the full range of possibilities was simulated as shown in Figure 1, I 

would expect the correlations to attenuate.  

Limitations 

As with any simulation study, this study was limited in scope. For instance, there 

were simulation factors and conditions within studied factors that were not examined that 

are important to investigate in a future study. The remainder of this section addresses five 

limitations of the current study. 

First, the population communalities for the studied indicators were all equal to .64 

for Group 1. However, the communalities of indicators affect the recovery of parameters 

(MacCallum et al., 1999). As communalities decrease, the sampling variability of 

parameter estimates increases, thus affecting the effect size calculations. Anything that 

affects the recovery of parameters is expected to affect the effect size estimates. 

Second, a condition that was not studied that is important to vary is level and type 

of misspecification. In this study, the tested model was essentially the same as the 

generating model. (It was not exactly because a few invariant parameters were not 
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constrained to invariance.) Fitting a variety of incorrect models to the data should be 

conducted to see how model misspecification affects the value and bias of the effect 

sizes. For instance, if a non-invariant, non-studied indicator was modeled to be invariant, 

then I would expect the values of the effect sizes of the studied indicators to be impacted. 

As stated previously, if the reference variable (or variables) that links the metrics between 

the groups is not invariant, then the accuracy of the invariance testing is biased and the 

other parameters in the models are not accurately recovered (Bollen, 1989; Cheung & 

Rensvold, 1999; Johnson et al., 2009; Yoon & Millsap, 2007). In addition to analyzing 

models with specific misspecifications, it would be important to model passive misfit as 

well (Cudeck & Browne, 1992) and see how that impacts the value, consistency, and bias 

of the effect size measures.  

Third, the indicators for Group 1 were simulated to have the same expected 

observed variances. While the denominator of the effect sizes were designed to make the 

effect size values comparable across indicators with different variances, it would be 

important to establish if and how different scales affect the value of the effect sizes. If 

scaling does affect the value of the effect sizes, then this would impact what effect size 

values are considered small or large. 

Fourth, there was not an analytical calculation of the synthetic parameters 

(measurement parameters for the synthetic population). The proposed method for 

calculating the population value of the synthetic parameters was an empirical one and 

thus just an estimate of the true value. This affects the population value of the weighted 

effect sizes as well as the sample estimate and thus affects measures of bias. The 

population value of the synthetic parameters for the invariant indicator can be calculated 
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analytically (they are equal to the multiple-group parameters); however, they were 

calculated empirically in this study to match the procedure for calculating the synthetic 

parameters of the non-invariant indicators. 

Fifth and finally, high quality effect size measures should be efficient (Preacher & 

Kelley, 2011). Efficiency was not evaluated in this study because different estimators of 

the same effect size were not compared. Thus, it cannot be concluded that these effect 

size measures were efficient. 

Future Directions 

 Beyond addressing the limitations of the current study, there are many avenues 

for future research regarding these effect size measures. In this section, I address six 

future directions. 

First, in addition to the properties stated by Preacher and Kelley (2011), another 

important quality of a good effect size measure is the use of benchmarks and guidelines, 

which aid in interpretability (Kirk, 1996). For instance, Cohen (1988) developed 

benchmarks for Cohen’s d where a value of 0.2 indicated a small effect, 0.5 a medium 

effect, and 0.8 a large effect. dMACS is in the same metric of Cohen’s d. The advantage of 

putting an effect size on the same scale as Cohen’s d is that researchers have a good 

understanding of the metric, can easily make comparisons across studies, and can use the 

same benchmarks. A disadvantage of applying Cohen’s d benchmarks to effect sizes of 

non-invariance is that the benchmarks were developed by looking at different effect sizes 

across many studies on psychological effects and may not be generalizable to non-

invariance studies. However, researchers are using Cohen’s benchmarks to interpret 

magnitude of non-invariance for dMACS (Clark, Listro, Lo, Durbin, Donnellan, & Neppl, 
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2016). A future study should calculate the five effect size measures for applied 

measurement invariance studies in the extant literature to get a sense of the range of 

typical values. It will be difficult to calculate the weighted effect sizes based on published 

research because researchers rarely publish the results from both a multiple-group model 

and a single-population model.  

Second, as mentioned before, Preacher and Kelley (2011) stated that good effect 

size measures have calculable confidence intervals. Future research should investigate the 

proper way to calculate confidence intervals for these effect size measures either 

analytically or empirically. Chalmers and colleagues (2016) described an empirical way 

to calculate confidence intervals for an effect size of non-invariance in the IRT 

framework. First, using the sample-obtained point estimate of the parameters and the 

estimated variation of those parameters, impute plausible parameter values for the 

parameters used in the effect size calculations (e.g., loadings and intercepts). Second, 

compute the effect size using the imputed parameter estimates. Third, repeat steps one 

and two M times (e.g., 1,000). After this process is over, there will be M effect size 

estimates that can be used to calculate empirical confidence intervals.  

Third, developing corrections for the bias seen in the unsigned effect size 

measures would help the sample estimates be more trustworthy. However, because the 

unsigned effect size measures were biased only in specific conditions, we would need to 

be cautious about introducing bias to the unbiased conditions if we try to correct for the 

bias in the biased conditions. The conditions that were biased were the ones that had 

small or null values for the population effect size. Given this, it would be helpful to 

determine a cutoff population value where the sample estimates are not biased. If a 
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sample estimate falls below that cutoff value, then the results are less trustworthy. 

(Though it is important to note that a sample estimate might fall below that cutoff value 

due to sampling error even though the population value is larger than the cutoff value.) 

Rather than adjusting the formula to correct for bias, another possibility is to 

adjust the model. The sample estimates of the effect sizes were calculated by allowing the 

loading and intercept to differ by group. However, invariance testing may lead 

researchers to conclude that one or both of those parameters are invariant (e.g., the 

loading is invariant, but the intercept is not). This would affect the sample estimate of the 

effect sizes and thus would affect conclusions of bias. For instance, if a truly invariant 

indicator is modeled to be invariant, then the sample estimate of the effect size will match 

the population value. In this study, however, the parameters of the truly invariant 

indicator were not constrained to invariance and this caused the unsigned effect sizes for 

that indicator to exhibit positive bias.  

Fourth, understanding how the proposed effect sizes should be calculated and how 

to interpret them in complex models is an important next step. This study looked at a 

simple case of one factor with eight indicators. In reality, researchers work with multiple 

factors, which can lead to complexities such as cross-loadings. As noted by Nye and 

Drasgow (2011), more complex effect size formulas are needed for indicators that load 

on multiple latent variables. 

Fifth, there is potential to create more effect size measures of non-invariance in 

the factor analytic framework. More effect sizes of non-invariance are needed because 

effect sizes are purpose-specific and, thus, some are more appropriate for certain 

inferences (e.g., latent mean estimation, inferences at the person level, validity of a cut 
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score). The five effect size measures analyzed in this study were measured at the 

indicator level. A scale-level effect size measure would be useful to understand the 

impact of non-invariance on scale scores or factor scores. Additionally, an effect size that 

accompanies the tests of levels of invariance (e.g., metric, scalar) can be used jointly with 

the p-values to detect non-invariance and measure the magnitude of misfit.  

These effect size measures are designed for continuous outcomes; however, they 

can be easily translated for categorical/ordinal outcomes. In the IRT framework, the five 

effect sizes can be calculated as is, except the expected indicator scores would be 

calculated using the item response functions based on the IRT parameters. Even though 

there are many effect size measures in the IRT framework, none of the effect size 

measures in existence compare expected item scores using multiple-group parameters to 

expected item scores using the synthetic group parameters. Thus, the WSDI and WUDI 

would be useful to translate into the IRT framework. 

Finally, once more studies have been conducted on these effect sizes to better 

understand their properties and behavior, an important future direction is to convince 

researchers to use these effect sizes. The best way to do so is to make the effect size 

measures and their confidence intervals easily available in popular statistical software 

programs and to create interpretable benchmarks.  

Recommendations 

I recommend that applied researchers calculate and report at least one of these 

effect sizes based on a partial invariant model that has been finalized through invariance 

testing. The intended use of the four proposed effect sizes is that they should be 

calculated once invariance testing is completed and the final model is settled on. They are 
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not designed to be used to detect non-invariance, but to measure the impact of non-

invariance that has been detected with statistical tests.  

The specific effect size a researcher should use is determined by the substantive 

question at hand. Because the unsigned effect size measures were biased under certain 

conditions, cautions should be taken when using those effect sizes and thus should not be 

the only effect size calculated. More caution should be taken when the value of the 

unsigned effect size is relatively small (e.g., UDI2 is 0.07) because that is when the effect 

size is most likely to be over-estimated. Given that the like-signed effect sizes were 

highly related to one another, it is best to choose the effect size that is most interpretable. 

More simulation and empirical work is needed before making valid 

recommendations regarding interpretation of the magnitude of the effect sizes (e.g., 

determining the cutoff value for a small effect of non-invariance). Until then, the 

benchmarks of Cohen’s d can be used as a rough proxy for dMACS, SDI2, and UDI2, but 

should not be taken as hard cut-offs.  
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Table 1 

Possible outcomes for signed and unsigned effect size combinations.  

  Small signed effect size Large signed effect size 

Small 

unsigned 

effect size 

Indicator is invariant or close to 

invariant. 

This outcome is not possible to 

observe because the signed 

effect size ≤ unsigned effect 

size property will always hold. 

Large 

unsigned 

effect size 

The expected indicator score lines 

cross to create a balanced overall 

scoring on the indicator. However, 

there is non-ignorable non-invariance 

at particular levels of the latent 

variable. 

Non-ignorable non-invariance. 

Indicators with large intercept 

differences but no loading 

differences will lead to this 

scenario. 

Note. This table is a modification of Table 1 from Chalmers, Counsell, and Flora (2016). 
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Table 2 

Average raw bias of the five effect size measures for each design cell. 

Loc1 N2 Bal3 Mag4 LVD25 dMACS UDI2 WUDI SDI2 WSDI 

I 300 1:1 Small (0,1) 0.099 0.085 0.035 0.001 0.001 

I 300 1:1 Small (-0.5,1.3) 0.103 0.085 0.039 0.002 0.001 

I 300 1:1 Small (-0.5,0.7) 0.104 0.095 0.036 -0.006 -0.003 

I 300 1:1 Medium (0,1) 0.097 0.083 0.037 0.000 0.000 

I 300 1:1 Medium (-0.5,1.3) 0.100 0.082 0.036 0.005 0.001 

I 300 1:1 Medium (-0.5,0.7) 0.104 0.095 0.037 -0.004 -0.004 

I 300 1:1 Large (0,1) 0.100 0.086 0.039 0.000 0.000 

I 300 1:1 Large (-0.5,1.3) 0.102 0.085 0.037 0.003 0.001 

I 300 1:1 Large (-0.5,0.7) 0.105 0.096 0.036 0.001 0.000 

I 300 2:1 Small (0,1) 0.108 0.094 0.039 -0.001 0.000 

I 300 2:1 Small (-0.5,1.3) 0.109 0.090 0.035 0.000 -0.001 

I 300 2:1 Small (-0.5,0.7) 0.107 0.100 0.038 0.002 0.000 

I 300 2:1 Medium (0,1) 0.106 0.092 0.032 0.002 -0.001 

I 300 2:1 Medium (-0.5,1.3) 0.108 0.088 0.035 -0.001 -0.001 

I 300 2:1 Medium (-0.5,0.7) 0.109 0.102 0.037 0.000 0.001 

I 300 2:1 Large (0,1) 0.108 0.093 0.036 0.001 0.002 

I 300 2:1 Large (-0.5,1.3) 0.107 0.087 0.035 0.003 0.001 

I 300 2:1 Large (-0.5,0.7) 0.113 0.106 0.040 -0.001 0.001 

I 500 1:1 Small (0,1) 0.078 0.068 0.027 0.001 0.000 

I 500 1:1 Small (-0.5,1.3) 0.077 0.064 0.029 0.001 0.000 

I 500 1:1 Small (-0.5,0.7) 0.082 0.076 0.027 -0.002 -0.001 

I 500 1:1 Medium (0,1) 0.080 0.069 0.031 -0.003 -0.002 

I 500 1:1 Medium (-0.5,1.3) 0.079 0.065 0.027 0.000 -0.001 

I 500 1:1 Medium (-0.5,0.7) 0.082 0.075 0.027 0.000 -0.003 

I 500 1:1 Large (0,1) 0.078 0.067 0.030 -0.002 -0.001 

I 500 1:1 Large (-0.5,1.3) 0.078 0.064 0.027 -0.001 -0.001 

I 500 1:1 Large (-0.5,0.7) 0.082 0.075 0.026 0.003 0.001 

I 500 2:1 Small (0,1) 0.082 0.070 0.029 -0.002 -0.001 

I 500 2:1 Small (-0.5,1.3) 0.085 0.069 0.027 -0.001 -0.001 

I 500 2:1 Small (-0.5,0.7) 0.085 0.078 0.029 0.002 0.000 

I 500 2:1 Medium (0,1) 0.082 0.070 0.023 0.003 -0.001 

I 500 2:1 Medium (-0.5,1.3) 0.083 0.067 0.027 -0.002 -0.001 

I 500 2:1 Medium (-0.5,0.7) 0.084 0.078 0.028 0.000 0.001 

I 500 2:1 Large (0,1) 0.080 0.069 0.026 -0.002 0.000 

I 500 2:1 Large (-0.5,1.3) 0.081 0.066 0.026 0.001 0.001 

I 500 2:1 Large (-0.5,0.7) 0.086 0.080 0.030 -0.002 0.000 

I 1,000 1:1 Small (0,1) 0.055 0.047 0.016 -0.002 -0.001 

I 1,000 1:1 Small (-0.5,1.3) 0.056 0.046 0.020 0.001 0.000 

I 1,000 1:1 Small (-0.5,0.7) 0.057 0.052 0.016 -0.004 -0.002 

I 1,000 1:1 Medium (0,1) 0.055 0.047 0.019 0.004 0.002 

I 1,000 1:1 Medium (-0.5,1.3) 0.055 0.045 0.018 0.001 0.000 

I 1,000 1:1 Medium (-0.5,0.7) 0.058 0.053 0.017 0.000 -0.003 

I 1,000 1:1 Large (0,1) 0.055 0.047 0.020 -0.001 -0.001 

I 1,000 1:1 Large (-0.5,1.3) 0.056 0.046 0.018 -0.003 -0.002 

I 1,000 1:1 Large (-0.5,0.7) 0.058 0.053 0.015 0.000 -0.001 
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I 1,000 2:1 Small (0,1) 0.059 0.050 0.020 -0.001 0.000 

I 1,000 2:1 Small (-0.5,1.3) 0.058 0.047 0.017 -0.003 -0.002 

I 1,000 2:1 Small (-0.5,0.7) 0.060 0.056 0.020 0.001 0.000 

I 1,000 2:1 Medium (0,1) 0.058 0.049 0.014 0.002 -0.002 

I 1,000 2:1 Medium (-0.5,1.3) 0.060 0.048 0.019 -0.002 -0.001 

I 1,000 2:1 Medium (-0.5,0.7) 0.060 0.056 0.019 0.000 0.001 

I 1,000 2:1 Large (0,1) 0.059 0.051 0.019 -0.001 0.001 

I 1,000 2:1 Large (-0.5,1.3) 0.058 0.047 0.018 0.000 0.000 

I 1,000 2:1 Large (-0.5,0.7) 0.060 0.055 0.020 0.001 0.001 

NIL 300 1:1 Small (0,1) 0.034 0.033 0.014 0.001 0.001 

NIL 300 1:1 Small (-0.5,1.3) 0.028 0.029 0.014 -0.004 -0.003 

NIL 300 1:1 Small (-0.5,0.7) 0.037 0.039 0.018 0.004 0.002 

NIL 300 1:1 Medium (0,1) 0.017 0.019 0.007 0.006 0.003 

NIL 300 1:1 Medium (-0.5,1.3) 0.011 0.014 0.005 -0.006 -0.003 

NIL 300 1:1 Medium (-0.5,0.7) 0.017 0.023 0.008 -0.005 -0.001 

NIL 300 1:1 Large (0,1) 0.008 0.011 0.003 -0.003 -0.003 

NIL 300 1:1 Large (-0.5,1.3) 0.005 0.011 0.003 -0.006 -0.002 

NIL 300 1:1 Large (-0.5,0.7) 0.008 0.014 0.003 -0.002 -0.001 

NIL 300 2:1 Small (0,1) 0.040 0.041 0.017 -0.005 -0.003 

NIL 300 2:1 Small (-0.5,1.3) 0.038 0.038 0.016 -0.002 0.000 

NIL 300 2:1 Small (-0.5,0.7) 0.038 0.043 0.017 0.001 0.001 

NIL 300 2:1 Medium (0,1) 0.014 0.017 0.006 -0.001 -0.001 

NIL 300 2:1 Medium (-0.5,1.3) 0.012 0.016 0.005 -0.002 0.001 

NIL 300 2:1 Medium (-0.5,0.7) 0.014 0.023 0.007 -0.002 0.000 

NIL 300 2:1 Large (0,1) 0.008 0.014 0.003 -0.004 -0.001 

NIL 300 2:1 Large (-0.5,1.3) 0.010 0.017 0.004 -0.005 0.000 

NIL 300 2:1 Large (-0.5,0.7) 0.004 0.011 0.002 0.003 0.002 

NIL 500 1:1 Small (0,1) 0.021 0.021 0.009 0.000 0.000 

NIL 500 1:1 Small (-0.5,1.3) 0.015 0.016 0.008 0.000 -0.001 

NIL 500 1:1 Small (-0.5,0.7) 0.024 0.027 0.012 0.000 0.001 

NIL 500 1:1 Medium (0,1) 0.011 0.012 0.005 -0.002 -0.001 

NIL 500 1:1 Medium (-0.5,1.3) 0.007 0.009 0.004 -0.003 -0.002 

NIL 500 1:1 Medium (-0.5,0.7) 0.013 0.017 0.007 -0.004 -0.001 

NIL 500 1:1 Large (0,1) 0.008 0.009 0.002 -0.004 -0.002 

NIL 500 1:1 Large (-0.5,1.3) 0.005 0.008 0.002 -0.002 -0.001 

NIL 500 1:1 Large (-0.5,0.7) 0.002 0.005 0.001 0.002 0.000 

NIL 500 2:1 Small (0,1) 0.025 0.026 0.011 -0.002 -0.001 

NIL 500 2:1 Small (-0.5,1.3) 0.017 0.018 0.008 0.003 0.001 

NIL 500 2:1 Small (-0.5,0.7) 0.021 0.025 0.010 0.003 0.002 

NIL 500 2:1 Medium (0,1) 0.008 0.009 0.003 -0.002 -0.002 

NIL 500 2:1 Medium (-0.5,1.3) 0.004 0.008 0.002 0.001 0.002 

NIL 500 2:1 Medium (-0.5,0.7) 0.007 0.011 0.004 0.002 0.000 

NIL 500 2:1 Large (0,1) 0.003 0.006 0.001 -0.007 -0.003 

NIL 500 2:1 Large (-0.5,1.3) 0.000 0.005 0.001 -0.001 0.001 

NIL 500 2:1 Large (-0.5,0.7) 0.000 0.004 0.001 0.003 0.002 

NIL 1,000 1:1 Small (0,1) 0.013 0.013 0.005 0.001 0.001 

NIL 1,000 1:1 Small (-0.5,1.3) 0.010 0.010 0.005 -0.001 -0.001 

NIL 1,000 1:1 Small (-0.5,0.7) 0.010 0.012 0.005 0.001 0.001 

NIL 1,000 1:1 Medium (0,1) 0.003 0.004 0.002 -0.002 0.000 

NIL 1,000 1:1 Medium (-0.5,1.3) 0.001 0.002 0.001 0.002 0.001 
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NIL 1,000 1:1 Medium (-0.5,0.7) 0.005 0.007 0.003 -0.002 -0.001 

NIL 1,000 1:1 Large (0,1) 0.002 0.003 0.001 0.000 -0.001 

NIL 1,000 1:1 Large (-0.5,1.3) 0.003 0.005 0.001 0.000 0.000 

NIL 1,000 1:1 Large (-0.5,0.7) 0.003 0.005 0.001 -0.003 -0.002 

NIL 1,000 2:1 Small (0,1) 0.009 0.010 0.005 -0.001 -0.001 

NIL 1,000 2:1 Small (-0.5,1.3) 0.009 0.010 0.004 0.000 0.000 

NIL 1,000 2:1 Small (-0.5,0.7) 0.011 0.014 0.005 0.000 0.001 

NIL 1,000 2:1 Medium (0,1) 0.006 0.007 0.002 0.000 -0.001 

NIL 1,000 2:1 Medium (-0.5,1.3) 0.003 0.005 0.001 -0.002 0.000 

NIL 1,000 2:1 Medium (-0.5,0.7) 0.004 0.007 0.002 -0.003 -0.001 

NIL 1,000 2:1 Large (0,1) 0.002 0.003 0.000 -0.003 -0.001 

NIL 1,000 2:1 Large (-0.5,1.3) 0.003 0.005 0.001 -0.001 0.001 

NIL 1,000 2:1 Large (-0.5,0.7) 0.003 0.006 0.001 0.000 0.001 

NII 300 1:1 Small (0,1) 0.018 0.006 0.003 0.002 0.000 

NII 300 1:1 Small (-0.5,1.3) 0.019 0.006 0.003 0.000 -0.001 

NII 300 1:1 Small (-0.5,0.7) 0.019 0.009 0.006 0.003 0.002 

NII 300 1:1 Medium (0,1) 0.009 0.002 0.000 0.001 0.000 

NII 300 1:1 Medium (-0.5,1.3) 0.009 0.000 0.000 0.000 -0.001 

NII 300 1:1 Medium (-0.5,0.7) 0.009 0.001 0.001 0.001 -0.001 

NII 300 1:1 Large (0,1) 0.012 0.007 0.002 0.007 0.002 

NII 300 1:1 Large (-0.5,1.3) 0.010 0.005 0.001 0.005 0.000 

NII 300 1:1 Large (-0.5,0.7) 0.005 -0.001 0.000 -0.001 -0.002 

NII 300 2:1 Small (0,1) 0.015 0.003 0.000 -0.002 -0.002 

NII 300 2:1 Small (-0.5,1.3) 0.022 0.008 0.004 0.001 0.000 

NII 300 2:1 Small (-0.5,0.7) 0.024 0.010 0.005 0.003 0.000 

NII 300 2:1 Medium (0,1) 0.007 -0.001 -0.003 -0.001 -0.004 

NII 300 2:1 Medium (-0.5,1.3) 0.015 0.005 0.004 0.004 0.003 

NII 300 2:1 Medium (-0.5,0.7) 0.009 0.001 0.002 0.001 0.000 

NII 300 2:1 Large (0,1) 0.008 0.006 0.001 0.006 0.001 

NII 300 2:1 Large (-0.5,1.3) 0.012 0.006 0.003 0.006 0.002 

NII 300 2:1 Large (-0.5,0.7) 0.010 0.007 0.002 0.007 0.001 

NII 500 1:1 Small (0,1) 0.014 0.006 0.003 0.004 0.002 

NII 500 1:1 Small (-0.5,1.3) 0.012 0.002 0.002 0.000 0.000 

NII 500 1:1 Small (-0.5,0.7) 0.011 0.002 0.003 0.000 0.000 

NII 500 1:1 Medium (0,1) 0.005 0.000 0.000 0.000 0.000 

NII 500 1:1 Medium (-0.5,1.3) 0.006 0.001 0.000 0.001 -0.001 

NII 500 1:1 Medium (-0.5,0.7) 0.006 0.002 0.001 0.002 0.000 

NII 500 1:1 Large (0,1) 0.002 -0.001 -0.001 -0.001 -0.001 

NII 500 1:1 Large (-0.5,1.3) 0.007 0.003 0.000 0.003 0.000 

NII 500 1:1 Large (-0.5,0.7) 0.004 0.002 0.000 0.002 -0.001 

NII 500 2:1 Small (0,1) 0.008 0.000 -0.001 -0.002 -0.002 

NII 500 2:1 Small (-0.5,1.3) 0.014 0.004 0.002 0.001 0.000 

NII 500 2:1 Small (-0.5,0.7) 0.013 0.005 0.003 0.003 0.001 

NII 500 2:1 Medium (0,1) 0.008 0.003 -0.002 0.002 -0.002 

NII 500 2:1 Medium (-0.5,1.3) 0.011 0.006 0.004 0.006 0.003 

NII 500 2:1 Medium (-0.5,0.7) 0.005 -0.001 0.001 -0.002 0.000 

NII 500 2:1 Large (0,1) 0.002 -0.001 0.000 -0.001 0.000 

NII 500 2:1 Large (-0.5,1.3) 0.004 0.002 0.001 0.002 0.001 

NII 500 2:1 Large (-0.5,0.7) 0.008 0.007 0.002 0.007 0.001 

NII 1,000 1:1 Small (0,1) 0.004 0.000 0.000 0.000 0.000 



  74 

NII 1,000 1:1 Small (-0.5,1.3) 0.005 -0.001 0.000 -0.001 0.000 

NII 1,000 1:1 Small (-0.5,0.7) 0.005 0.001 0.001 0.001 0.000 

NII 1,000 1:1 Medium (0,1) 0.003 0.000 0.000 0.000 0.000 

NII 1,000 1:1 Medium (-0.5,1.3) 0.002 0.000 -0.001 0.000 -0.001 

NII 1,000 1:1 Medium (-0.5,0.7) 0.004 0.003 0.000 0.003 0.000 

NII 1,000 1:1 Large (0,1) 0.003 0.002 0.000 0.002 0.000 

NII 1,000 1:1 Large (-0.5,1.3) 0.003 0.001 -0.001 0.001 -0.001 

NII 1,000 1:1 Large (-0.5,0.7) 0.003 0.001 0.001 0.001 0.000 

NII 1,000 2:1 Small (0,1) 0.006 0.001 -0.001 0.001 -0.001 

NII 1,000 2:1 Small (-0.5,1.3) 0.004 -0.001 0.000 -0.002 -0.001 

NII 1,000 2:1 Small (-0.5,0.7) 0.008 0.003 0.001 0.003 0.001 

NII 1,000 2:1 Medium (0,1) 0.003 0.001 -0.003 0.001 -0.003 

NII 1,000 2:1 Medium (-0.5,1.3) 0.003 0.000 0.001 0.000 0.001 

NII 1,000 2:1 Medium (-0.5,0.7) 0.001 -0.001 0.000 -0.001 0.000 

NII 1,000 2:1 Large (0,1) 0.000 -0.001 0.000 -0.001 0.000 

NII 1,000 2:1 Large (-0.5,1.3) 0.004 0.002 0.002 0.002 0.001 

NII 1,000 2:1 Large (-0.5,0.7) 0.007 0.005 0.002 0.005 0.001 

NILI 300 1:1 Small (0,1) 0.018 0.018 0.008 0.001 0.000 

NILI 300 1:1 Small (-0.5,1.3) 0.020 0.023 0.006 -0.003 -0.002 

NILI 300 1:1 Small (-0.5,0.7) 0.021 0.023 0.008 -0.004 -0.002 

NILI 300 1:1 Medium (0,1) 0.012 0.017 0.007 0.004 0.001 

NILI 300 1:1 Medium (-0.5,1.3) 0.011 0.018 0.005 0.001 0.000 

NILI 300 1:1 Medium (-0.5,0.7) 0.012 0.020 0.005 -0.001 -0.002 

NILI 300 1:1 Large (0,1) 0.006 0.014 0.003 0.004 -0.001 

NILI 300 1:1 Large (-0.5,1.3) 0.010 0.019 0.006 0.008 0.001 

NILI 300 1:1 Large (-0.5,0.7) 0.009 0.018 0.004 -0.003 -0.002 

NILI 300 2:1 Small (0,1) 0.017 0.018 0.007 0.001 0.000 

NILI 300 2:1 Small (-0.5,1.3) 0.020 0.024 0.006 0.000 0.000 

NILI 300 2:1 Small (-0.5,0.7) 0.026 0.029 0.008 0.001 -0.001 

NILI 300 2:1 Medium (0,1) 0.010 0.018 0.005 0.004 0.000 

NILI 300 2:1 Medium (-0.5,1.3) 0.013 0.022 0.007 0.004 0.001 

NILI 300 2:1 Medium (-0.5,0.7) 0.012 0.022 0.004 0.000 0.000 

NILI 300 2:1 Large (0,1) 0.003 0.014 0.004 0.001 0.000 

NILI 300 2:1 Large (-0.5,1.3) 0.009 0.020 0.007 0.008 0.003 

NILI 300 2:1 Large (-0.5,0.7) 0.012 0.023 0.006 0.001 0.000 

NILI 500 1:1 Small (0,1) 0.010 0.011 0.005 0.002 0.001 

NILI 500 1:1 Small (-0.5,1.3) 0.014 0.017 0.005 0.001 0.000 

NILI 500 1:1 Small (-0.5,0.7) 0.016 0.017 0.006 0.001 0.000 

NILI 500 1:1 Medium (0,1) 0.005 0.009 0.003 0.001 0.000 

NILI 500 1:1 Medium (-0.5,1.3) 0.006 0.010 0.002 -0.004 -0.002 

NILI 500 1:1 Medium (-0.5,0.7) 0.005 0.010 0.002 -0.004 -0.003 

NILI 500 1:1 Large (0,1) 0.002 0.005 0.001 -0.002 -0.002 

NILI 500 1:1 Large (-0.5,1.3) 0.009 0.014 0.004 0.003 -0.001 

NILI 500 1:1 Large (-0.5,0.7) 0.002 0.010 0.001 0.002 -0.001 

NILI 500 2:1 Small (0,1) 0.006 0.007 0.003 -0.003 -0.002 

NILI 500 2:1 Small (-0.5,1.3) 0.017 0.020 0.006 0.003 0.001 

NILI 500 2:1 Small (-0.5,0.7) 0.016 0.018 0.004 0.000 -0.001 

NILI 500 2:1 Medium (0,1) 0.004 0.010 0.002 0.002 -0.001 

NILI 500 2:1 Medium (-0.5,1.3) 0.008 0.014 0.004 0.003 0.001 

NILI 500 2:1 Medium (-0.5,0.7) 0.010 0.018 0.004 0.006 0.003 
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NILI 500 2:1 Large (0,1) 0.002 0.008 0.003 0.002 0.001 

NILI 500 2:1 Large (-0.5,1.3) 0.006 0.013 0.005 0.007 0.003 

NILI 500 2:1 Large (-0.5,0.7) 0.003 0.009 0.002 0.000 -0.001 

NILI 1,000 1:1 Small (0,1) 0.004 0.004 0.002 -0.001 0.000 

NILI 1,000 1:1 Small (-0.5,1.3) 0.008 0.010 0.003 0.000 0.000 

NILI 1,000 1:1 Small (-0.5,0.7) 0.008 0.010 0.003 0.002 0.000 

NILI 1,000 1:1 Medium (0,1) 0.003 0.004 0.002 0.000 0.000 

NILI 1,000 1:1 Medium (-0.5,1.3) 0.004 0.006 0.002 0.001 0.000 

NILI 1,000 1:1 Medium (-0.5,0.7) 0.007 0.011 0.003 0.005 0.000 

NILI 1,000 1:1 Large (0,1) 0.003 0.006 0.001 0.002 -0.001 

NILI 1,000 1:1 Large (-0.5,1.3) 0.004 0.006 0.002 0.002 -0.001 

NILI 1,000 1:1 Large (-0.5,0.7) 0.003 0.006 0.001 0.001 0.000 

NILI 1,000 2:1 Small (0,1) 0.003 0.004 0.001 -0.001 -0.001 

NILI 1,000 2:1 Small (-0.5,1.3) 0.008 0.011 0.002 0.001 0.000 

NILI 1,000 2:1 Small (-0.5,0.7) 0.008 0.010 0.002 0.002 -0.001 

NILI 1,000 2:1 Medium (0,1) 0.004 0.007 0.001 0.002 -0.001 

NILI 1,000 2:1 Medium (-0.5,1.3) 0.002 0.005 0.001 0.000 0.000 

NILI 1,000 2:1 Medium (-0.5,0.7) 0.001 0.005 0.000 -0.002 -0.001 

NILI 1,000 2:1 Large (0,1) 0.004 0.008 0.003 0.004 0.001 

NILI 1,000 2:1 Large (-0.5,1.3) 0.002 0.006 0.003 0.001 0.001 

NILI 1,000 2:1 Large (-0.5,0.7) 0.002 0.005 0.001 0.000 -0.001 

Notes. 1Location of non-invariance (I = invariant indicator, NIL = non-invariant loading, NII = non-

invariant intercept, NILI = non-invariant loading and intercept), 2Total sample size, 3Balance of sample 

sizes, 4Magnitude of non-invariance, 5Latent variable distribution of Group 2 (mean, variance). 
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Table 3 

Standardized bias of five effect size measures for each design cell. 

Loc1 Mag2 N3 Bal 4 LVD25 dMACS UDI2 WUDI SDI2 WSDI 

I Small 300 1:1 (0,1) 1.87 1.86 1.55 0.02 0.02 

I Small 300 1:1 (-0.5,1.3) 1.87 1.84 1.80 0.02 0.02 

I Small 300 1:1 (-0.5,0.7) 1.82 1.75 1.48 -0.06 -0.06 

I Small 300 2:1 (0,1) 1.92 1.86 1.85 -0.01 -0.01 

I Small 300 2:1 (-0.5,1.3) 1.84 1.79 1.71 0.00 -0.03 

I Small 300 2:1 (-0.5,0.7) 1.86 1.81 1.77 0.02 0.01 

I Small 500 1:1 (0,1) 1.88 1.81 1.43 0.01 0.01 

I Small 500 1:1 (-0.5,1.3) 1.89 1.89 1.78 0.02 0.00 

I Small 500 1:1 (-0.5,0.7) 1.90 1.85 1.45 -0.02 -0.02 

I Small 500 2:1 (0,1) 1.86 1.83 1.79 -0.04 -0.04 

I Small 500 2:1 (-0.5,1.3) 1.85 1.81 1.68 -0.01 -0.03 

I Small 500 2:1 (-0.5,0.7) 2.01 1.98 1.90 0.02 0.00 

I Small 1,000 1:1 (0,1) 1.88 1.86 1.30 -0.05 -0.05 

I Small 1,000 1:1 (-0.5,1.3) 1.97 1.96 1.78 0.01 -0.01 

I Small 1,000 1:1 (-0.5,0.7) 1.86 1.81 1.21 -0.08 -0.09 

I Small 1,000 2:1 (0,1) 1.91 1.88 1.81 -0.02 -0.02 

I Small 1,000 2:1 (-0.5,1.3) 1.89 1.88 1.66 -0.08 -0.13 

I Small 1,000 2:1 (-0.5,0.7) 1.93 1.88 1.76 0.02 -0.01 

I Medium 300 1:1 (0,1) 1.88 1.86 1.70 0.00 0.00 

I Medium 300 1:1 (-0.5,1.3) 1.82 1.81 1.64 0.07 0.04 

I Medium 300 1:1 (-0.5,0.7) 1.90 1.86 1.57 -0.04 -0.11 

I Medium 300 2:1 (0,1) 1.90 1.84 1.54 0.02 -0.04 

I Medium 300 2:1 (-0.5,1.3) 1.87 1.80 1.77 -0.01 -0.03 

I Medium 300 2:1 (-0.5,0.7) 1.86 1.81 1.73 0.00 0.03 

I Medium 500 1:1 (0,1) 1.91 1.89 1.68 -0.05 -0.05 

I Medium 500 1:1 (-0.5,1.3) 1.88 1.85 1.66 -0.01 -0.03 

I Medium 500 1:1 (-0.5,0.7) 1.86 1.81 1.45 0.00 -0.09 

I Medium 500 2:1 (0,1) 1.89 1.86 1.44 0.04 -0.04 

I Medium 500 2:1 (-0.5,1.3) 1.93 1.91 1.82 -0.03 -0.05 

I Medium 500 2:1 (-0.5,0.7) 1.93 1.89 1.76 0.00 0.03 

I Medium 1,000 1:1 (0,1) 1.95 1.94 1.60 0.09 0.09 

I Medium 1,000 1:1 (-0.5,1.3) 1.82 1.81 1.49 0.03 -0.02 

I Medium 1,000 1:1 (-0.5,0.7) 1.79 1.75 1.21 0.01 -0.12 

I Medium 1,000 2:1 (0,1) 1.90 1.87 1.27 0.04 -0.08 

I Medium 1,000 2:1 (-0.5,1.3) 1.87 1.86 1.75 -0.05 -0.09 

I Medium 1,000 2:1 (-0.5,0.7) 1.96 1.92 1.70 0.00 0.03 

I Large 300 1:1 (0,1) 1.88 1.85 1.71 0.01 0.00 

I Large 300 1:1 (-0.5,1.3) 1.90 1.88 1.72 0.04 0.02 

I Large 300 1:1 (-0.5,0.7) 1.84 1.77 1.46 0.01 0.01 

I Large 300 2:1 (0,1) 1.85 1.84 1.72 0.02 0.04 

I Large 300 2:1 (-0.5,1.3) 1.87 1.82 1.79 0.03 0.04 

I Large 300 2:1 (-0.5,0.7) 1.93 1.86 1.84 -0.01 0.02 

I Large 500 1:1 (0,1) 1.90 1.89 1.69 -0.03 -0.03 

I Large 500 1:1 (-0.5,1.3) 1.85 1.84 1.64 -0.02 -0.04 

I Large 500 1:1 (-0.5,0.7) 1.83 1.76 1.33 0.04 0.02 

I Large 500 2:1 (0,1) 1.89 1.87 1.69 -0.04 0.00 

I Large 500 2:1 (-0.5,1.3) 1.88 1.86 1.78 0.02 0.03 
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I Large 500 2:1 (-0.5,0.7) 1.89 1.84 1.78 -0.02 0.01 

I Large 1,000 1:1 (0,1) 1.89 1.86 1.57 -0.02 -0.02 

I Large 1,000 1:1 (-0.5,1.3) 1.85 1.84 1.54 -0.07 -0.12 

I Large 1,000 1:1 (-0.5,0.7) 1.95 1.92 1.22 0.00 -0.03 

I Large 1,000 2:1 (0,1) 1.97 1.94 1.70 -0.02 0.03 

I Large 1,000 2:1 (-0.5,1.3) 1.83 1.81 1.69 0.00 0.01 

I Large 1,000 2:1 (-0.5,0.7) 1.93 1.89 1.78 0.02 0.05 

NIL Small 300 1:1 (0,1) 0.48 0.53 0.52 0.02 0.03 

NIL Small 300 1:1 (-0.5,1.3) 0.36 0.43 0.53 -0.05 -0.07 

NIL Small 300 1:1 (-0.5,0.7) 0.48 0.54 0.61 0.04 0.05 

NIL Small 300 2:1 (0,1) 0.57 0.63 0.68 -0.06 -0.07 

NIL Small 300 2:1 (-0.5,1.3) 0.49 0.55 0.62 -0.03 0.00 

NIL Small 300 2:1 (-0.5,0.7) 0.53 0.60 0.64 0.01 0.03 

NIL Small 500 1:1 (0,1) 0.37 0.42 0.39 0.00 0.01 

NIL Small 500 1:1 (-0.5,1.3) 0.24 0.30 0.39 0.00 -0.02 

NIL Small 500 1:1 (-0.5,0.7) 0.40 0.46 0.50 0.00 0.02 

NIL Small 500 2:1 (0,1) 0.43 0.48 0.52 -0.02 -0.04 

NIL Small 500 2:1 (-0.5,1.3) 0.27 0.33 0.39 0.04 0.05 

NIL Small 500 2:1 (-0.5,0.7) 0.35 0.42 0.45 0.04 0.06 

NIL Small 1,000 1:1 (0,1) 0.32 0.35 0.28 0.03 0.04 

NIL Small 1,000 1:1 (-0.5,1.3) 0.21 0.25 0.30 -0.01 -0.03 

NIL Small 1,000 1:1 (-0.5,0.7) 0.23 0.29 0.31 0.03 0.03 

NIL Small 1,000 2:1 (0,1) 0.21 0.26 0.29 -0.02 -0.04 

NIL Small 1,000 2:1 (-0.5,1.3) 0.19 0.23 0.28 -0.01 0.00 

NIL Small 1,000 2:1 (-0.5,0.7) 0.24 0.30 0.31 0.01 0.03 

NIL Medium 300 1:1 (0,1) 0.19 0.22 0.21 0.06 0.07 

NIL Medium 300 1:1 (-0.5,1.3) 0.11 0.15 0.15 -0.06 -0.07 

NIL Medium 300 1:1 (-0.5,0.7) 0.18 0.24 0.23 -0.04 -0.03 

NIL Medium 300 2:1 (0,1) 0.15 0.18 0.17 -0.01 -0.03 

NIL Medium 300 2:1 (-0.5,1.3) 0.12 0.17 0.16 -0.02 0.02 

NIL Medium 300 2:1 (-0.5,0.7) 0.15 0.22 0.19 -0.02 -0.01 

NIL Medium 500 1:1 (0,1) 0.16 0.18 0.18 -0.02 -0.03 

NIL Medium 500 1:1 (-0.5,1.3) 0.10 0.13 0.14 -0.04 -0.05 

NIL Medium 500 1:1 (-0.5,0.7) 0.18 0.23 0.22 -0.04 -0.03 

NIL Medium 500 2:1 (0,1) 0.10 0.12 0.12 -0.02 -0.05 

NIL Medium 500 2:1 (-0.5,1.3) 0.06 0.11 0.09 0.02 0.06 

NIL Medium 500 2:1 (-0.5,0.7) 0.09 0.14 0.13 0.02 0.01 

NIL Medium 1,000 1:1 (0,1) 0.07 0.08 0.10 -0.03 -0.02 

NIL Medium 1,000 1:1 (-0.5,1.3) 0.02 0.05 0.06 0.03 0.02 

NIL Medium 1,000 1:1 (-0.5,0.7) 0.10 0.14 0.14 -0.03 -0.04 

NIL Medium 1,000 2:1 (0,1) 0.12 0.13 0.12 0.00 -0.04 

NIL Medium 1,000 2:1 (-0.5,1.3) 0.05 0.08 0.07 -0.04 0.02 

NIL Medium 1,000 2:1 (-0.5,0.7) 0.08 0.12 0.11 -0.04 -0.06 

NIL Large 300 1:1 (0,1) 0.08 0.10 0.07 -0.03 -0.06 

NIL Large 300 1:1 (-0.5,1.3) 0.05 0.09 0.07 -0.05 -0.05 

NIL Large 300 1:1 (-0.5,0.7) 0.08 0.12 0.08 -0.02 -0.01 

NIL Large 300 2:1 (0,1) 0.08 0.13 0.09 -0.03 -0.01 

NIL Large 300 2:1 (-0.5,1.3) 0.09 0.13 0.11 -0.04 0.01 

NIL Large 300 2:1 (-0.5,0.7) 0.04 0.09 0.05 0.02 0.06 

NIL Large 500 1:1 (0,1) 0.10 0.11 0.08 -0.04 -0.06 

NIL Large 500 1:1 (-0.5,1.3) 0.06 0.09 0.08 -0.02 -0.03 

NIL Large 500 1:1 (-0.5,0.7) 0.03 0.06 0.04 0.02 0.01 
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NIL Large 500 2:1 (0,1) 0.04 0.07 0.04 -0.07 -0.08 

NIL Large 500 2:1 (-0.5,1.3) 0.01 0.05 0.03 -0.01 0.02 

NIL Large 500 2:1 (-0.5,0.7) 0.01 0.05 0.02 0.03 0.06 

NIL Large 1,000 1:1 (0,1) 0.03 0.05 0.04 -0.01 -0.04 

NIL Large 1,000 1:1 (-0.5,1.3) 0.06 0.08 0.07 -0.01 -0.01 

NIL Large 1,000 1:1 (-0.5,0.7) 0.06 0.08 0.05 -0.04 -0.09 

NIL Large 1,000 2:1 (0,1) 0.04 0.05 0.02 -0.04 -0.03 

NIL Large 1,000 2:1 (-0.5,1.3) 0.05 0.07 0.06 -0.02 0.04 

NIL Large 1,000 2:1 (-0.5,0.7) 0.05 0.09 0.07 0.00 0.03 

NII Small 300 1:1 (0,1) 0.24 0.08 0.08 0.02 0.01 

NII Small 300 1:1 (-0.5,1.3) 0.25 0.08 0.10 0.00 -0.01 

NII Small 300 1:1 (-0.5,0.7) 0.23 0.10 0.17 0.04 0.05 

NII Small 300 2:1 (0,1) 0.19 0.04 0.00 -0.03 -0.07 

NII Small 300 2:1 (-0.5,1.3) 0.27 0.11 0.13 0.02 0.01 

NII Small 300 2:1 (-0.5,0.7) 0.28 0.12 0.15 0.03 0.01 

NII Small 500 1:1 (0,1) 0.23 0.10 0.09 0.07 0.06 

NII Small 500 1:1 (-0.5,1.3) 0.19 0.03 0.06 0.00 -0.01 

NII Small 500 1:1 (-0.5,0.7) 0.17 0.03 0.10 0.00 0.01 

NII Small 500 2:1 (0,1) 0.14 0.00 -0.04 -0.04 -0.08 

NII Small 500 2:1 (-0.5,1.3) 0.21 0.06 0.08 0.01 0.00 

NII Small 500 2:1 (-0.5,0.7) 0.19 0.07 0.09 0.04 0.02 

NII Small 1,000 1:1 (0,1) 0.10 0.01 0.00 0.00 -0.01 

NII Small 1,000 1:1 (-0.5,1.3) 0.11 -0.01 0.01 -0.02 -0.02 

NII Small 1,000 1:1 (-0.5,0.7) 0.11 0.02 0.05 0.01 0.01 

NII Small 1,000 2:1 (0,1) 0.14 0.03 -0.03 0.02 -0.04 

NII Small 1,000 2:1 (-0.5,1.3) 0.09 -0.03 -0.01 -0.04 -0.05 

NII Small 1,000 2:1 (-0.5,0.7) 0.16 0.06 0.06 0.05 0.02 

NII Medium 300 1:1 (0,1) 0.11 0.02 0.00 0.01 -0.01 

NII Medium 300 1:1 (-0.5,1.3) 0.11 0.00 0.00 0.00 -0.03 

NII Medium 300 1:1 (-0.5,0.7) 0.11 0.01 0.02 0.01 -0.03 

NII Medium 300 2:1 (0,1) 0.09 -0.01 -0.09 -0.01 -0.10 

NII Medium 300 2:1 (-0.5,1.3) 0.17 0.06 0.11 0.05 0.07 

NII Medium 300 2:1 (-0.5,0.7) 0.10 0.01 0.04 0.01 0.01 

NII Medium 500 1:1 (0,1) 0.08 0.00 -0.01 0.00 -0.01 

NII Medium 500 1:1 (-0.5,1.3) 0.10 0.01 0.00 0.01 -0.02 

NII Medium 500 1:1 (-0.5,0.7) 0.09 0.03 0.02 0.03 0.00 

NII Medium 500 2:1 (0,1) 0.12 0.04 -0.06 0.04 -0.06 

NII Medium 500 2:1 (-0.5,1.3) 0.16 0.09 0.13 0.09 0.11 

NII Medium 500 2:1 (-0.5,0.7) 0.07 -0.02 0.02 -0.02 0.00 

NII Medium 1,000 1:1 (0,1) 0.06 0.01 0.00 0.01 0.00 

NII Medium 1,000 1:1 (-0.5,1.3) 0.05 -0.01 -0.04 -0.01 -0.05 

NII Medium 1,000 1:1 (-0.5,0.7) 0.07 0.05 0.01 0.05 0.00 

NII Medium 1,000 2:1 (0,1) 0.07 0.01 -0.13 0.01 -0.13 

NII Medium 1,000 2:1 (-0.5,1.3) 0.06 0.01 0.04 0.01 0.03 

NII Medium 1,000 2:1 (-0.5,0.7) 0.02 -0.02 0.00 -0.02 -0.01 

NII Large 300 1:1 (0,1) 0.15 0.08 0.06 0.08 0.06 

NII Large 300 1:1 (-0.5,1.3) 0.12 0.06 0.02 0.06 0.01 

NII Large 300 1:1 (-0.5,0.7) 0.05 -0.01 -0.01 -0.01 -0.03 

NII Large 300 2:1 (0,1) 0.09 0.06 0.03 0.06 0.03 

NII Large 300 2:1 (-0.5,1.3) 0.14 0.07 0.09 0.07 0.07 

NII Large 300 2:1 (-0.5,0.7) 0.11 0.07 0.05 0.07 0.03 

NII Large 500 1:1 (0,1) 0.03 -0.02 -0.03 -0.02 -0.03 
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NII Large 500 1:1 (-0.5,1.3) 0.10 0.05 0.01 0.05 0.00 

NII Large 500 1:1 (-0.5,0.7) 0.06 0.03 0.00 0.03 -0.01 

NII Large 500 2:1 (0,1) 0.04 -0.02 -0.01 -0.02 -0.01 

NII Large 500 2:1 (-0.5,1.3) 0.06 0.03 0.05 0.03 0.03 

NII Large 500 2:1 (-0.5,0.7) 0.11 0.08 0.06 0.08 0.04 

NII Large 1,000 1:1 (0,1) 0.07 0.04 0.02 0.04 0.02 

NII Large 1,000 1:1 (-0.5,1.3) 0.06 0.02 -0.03 0.02 -0.03 

NII Large 1,000 1:1 (-0.5,0.7) 0.07 0.02 0.03 0.02 0.02 

NII Large 1,000 2:1 (0,1) 0.01 -0.02 -0.02 -0.02 -0.02 

NII Large 1,000 2:1 (-0.5,1.3) 0.08 0.04 0.08 0.04 0.07 

NII Large 1,000 2:1 (-0.5,0.7) 0.13 0.09 0.07 0.09 0.06 

NILI Small 300 1:1 (0,1) 0.22 0.22 0.21 0.01 0.00 

NILI Small 300 1:1 (-0.5,1.3) 0.29 0.35 0.19 -0.04 -0.06 

NILI Small 300 1:1 (-0.5,0.7) 0.28 0.29 0.21 -0.04 -0.06 

NILI Small 300 2:1 (0,1) 0.22 0.22 0.20 0.01 -0.01 

NILI Small 300 2:1 (-0.5,1.3) 0.26 0.32 0.20 0.00 -0.01 

NILI Small 300 2:1 (-0.5,0.7) 0.34 0.35 0.24 0.01 -0.02 

NILI Small 500 1:1 (0,1) 0.16 0.17 0.17 0.03 0.03 

NILI Small 500 1:1 (-0.5,1.3) 0.25 0.31 0.18 0.02 0.00 

NILI Small 500 1:1 (-0.5,0.7) 0.26 0.27 0.20 0.02 0.00 

NILI Small 500 2:1 (0,1) 0.09 0.11 0.09 -0.04 -0.06 

NILI Small 500 2:1 (-0.5,1.3) 0.28 0.35 0.22 0.04 0.05 

NILI Small 500 2:1 (-0.5,0.7) 0.25 0.27 0.16 0.00 -0.03 

NILI Small 1,000 1:1 (0,1) 0.08 0.09 0.09 -0.02 -0.02 

NILI Small 1,000 1:1 (-0.5,1.3) 0.20 0.27 0.14 0.01 -0.01 

NILI Small 1,000 1:1 (-0.5,0.7) 0.17 0.20 0.13 0.05 -0.01 

NILI Small 1,000 2:1 (0,1) 0.07 0.09 0.06 -0.02 -0.05 

NILI Small 1,000 2:1 (-0.5,1.3) 0.19 0.27 0.13 0.02 0.02 

NILI Small 1,000 2:1 (-0.5,0.7) 0.17 0.20 0.09 0.03 -0.02 

NILI Medium 300 1:1 (0,1) 0.14 0.18 0.18 0.04 0.03 

NILI Medium 300 1:1 (-0.5,1.3) 0.14 0.22 0.13 0.01 0.00 

NILI Medium 300 1:1 (-0.5,0.7) 0.14 0.21 0.12 -0.01 -0.03 

NILI Medium 300 2:1 (0,1) 0.11 0.17 0.14 0.04 0.00 

NILI Medium 300 2:1 (-0.5,1.3) 0.15 0.24 0.19 0.04 0.03 

NILI Medium 300 2:1 (-0.5,0.7) 0.13 0.21 0.11 0.00 0.00 

NILI Medium 500 1:1 (0,1) 0.07 0.11 0.11 0.01 0.00 

NILI Medium 500 1:1 (-0.5,1.3) 0.09 0.16 0.07 -0.05 -0.07 

NILI Medium 500 1:1 (-0.5,0.7) 0.08 0.13 0.06 -0.05 -0.09 

NILI Medium 500 2:1 (0,1) 0.06 0.12 0.08 0.02 -0.02 

NILI Medium 500 2:1 (-0.5,1.3) 0.11 0.20 0.15 0.04 0.03 

NILI Medium 500 2:1 (-0.5,0.7) 0.15 0.23 0.13 0.07 0.08 

NILI Medium 1,000 1:1 (0,1) 0.05 0.08 0.09 0.00 0.00 

NILI Medium 1,000 1:1 (-0.5,1.3) 0.08 0.14 0.09 0.02 0.00 

NILI Medium 1,000 1:1 (-0.5,0.7) 0.14 0.20 0.14 0.08 0.02 

NILI Medium 1,000 2:1 (0,1) 0.09 0.12 0.07 0.03 -0.02 

NILI Medium 1,000 2:1 (-0.5,1.3) 0.03 0.10 0.07 -0.01 -0.02 

NILI Medium 1,000 2:1 (-0.5,0.7) 0.03 0.09 0.00 -0.03 -0.03 

NILI Large 300 1:1 (0,1) 0.06 0.12 0.07 0.03 -0.03 

NILI Large 300 1:1 (-0.5,1.3) 0.11 0.18 0.14 0.06 0.02 

NILI Large 300 1:1 (-0.5,0.7) 0.10 0.16 0.09 -0.02 -0.04 

NILI Large 300 2:1 (0,1) 0.02 0.10 0.10 0.01 -0.01 

NILI Large 300 2:1 (-0.5,1.3) 0.10 0.17 0.16 0.06 0.06 
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NILI Large 300 2:1 (-0.5,0.7) 0.12 0.19 0.13 0.01 -0.01 

NILI Large 500 1:1 (0,1) 0.03 0.06 0.03 -0.02 -0.06 

NILI Large 500 1:1 (-0.5,1.3) 0.12 0.17 0.12 0.03 -0.01 

NILI Large 500 1:1 (-0.5,0.7) 0.03 0.11 0.03 0.02 -0.01 

NILI Large 500 2:1 (0,1) 0.03 0.08 0.09 0.02 0.02 

NILI Large 500 2:1 (-0.5,1.3) 0.08 0.14 0.16 0.06 0.07 

NILI Large 500 2:1 (-0.5,0.7) 0.03 0.10 0.06 0.00 -0.03 

NILI Large 1,000 1:1 (0,1) 0.06 0.09 0.05 0.03 -0.02 

NILI Large 1,000 1:1 (-0.5,1.3) 0.08 0.11 0.09 0.04 -0.02 

NILI Large 1,000 1:1 (-0.5,0.7) 0.06 0.10 0.05 0.01 -0.01 

NILI Large 1,000 2:1 (0,1) 0.06 0.11 0.11 0.05 0.04 

NILI Large 1,000 2:1 (-0.5,1.3) 0.04 0.10 0.12 0.01 0.03 

NILI Large 1,000 2:1 (-0.5,0.7) 0.04 0.07 0.06 0.00 -0.03 

Notes. 1Location of non-invariance (I = invariant indicator, NIL = non-invariant loading, NII = non-

invariant intercept, NILI = non-invariant loading and intercept), 2Magnitude of non-invariance, 3Total 

sample size, 4Balance of sample sizes, 5Latent variable distribution of Group 2 (mean, variance). Bolded 

values represent standardized bias values greater than 0.4.  
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Table 4 

RMSE of the five effect size measures for each design cell. 

Loc1 LVD22 Mag3 N4 Bal5 dMACS SDI2 UDI2 WSDI WUDI 

I (0,1) Small 300 2:1 0.122 0.036 0.087 0.044 0.107 

I (0,1) Small 300 1:1 0.112 0.038 0.077 0.042 0.097 

I (0,1) Small 500 2:1 0.093 0.027 0.064 0.033 0.080 

I (0,1) Small 500 1:1 0.089 0.032 0.064 0.032 0.078 

I (0,1) Small 1,000 2:1 0.066 0.019 0.045 0.023 0.057 

I (0,1) Small 1,000 1:1 0.062 0.021 0.043 0.021 0.054 

I (0,1) Medium 300 2:1 0.120 0.035 0.084 0.038 0.104 

I (0,1) Medium 300 1:1 0.109 0.038 0.076 0.043 0.094 

I (0,1) Medium 500 2:1 0.092 0.027 0.065 0.028 0.080 

I (0,1) Medium 500 1:1 0.090 0.032 0.063 0.036 0.078 

I (0,1) Medium 1,000 2:1 0.065 0.019 0.045 0.018 0.056 

I (0,1) Medium 1,000 1:1 0.061 0.021 0.042 0.023 0.053 

I (0,1) Large 300 2:1 0.123 0.035 0.084 0.042 0.106 

I (0,1) Large 300 1:1 0.113 0.039 0.078 0.046 0.098 

I (0,1) Large 500 2:1 0.090 0.026 0.062 0.030 0.078 

I (0,1) Large 500 1:1 0.088 0.030 0.060 0.034 0.076 

I (0,1) Large 1,000 2:1 0.066 0.019 0.046 0.022 0.057 

I (0,1) Large 1,000 1:1 0.062 0.021 0.043 0.023 0.053 

I (-0.5,1.3) Small 300 2:1 0.124 0.035 0.084 0.041 0.103 

I (-0.5,1.3) Small 300 1:1 0.117 0.037 0.078 0.045 0.096 

I (-0.5,1.3) Small 500 2:1 0.097 0.026 0.065 0.031 0.079 

I (-0.5,1.3) Small 500 1:1 0.087 0.028 0.058 0.033 0.072 

I (-0.5,1.3) Small 1,000 2:1 0.066 0.017 0.042 0.020 0.053 

I (-0.5,1.3) Small 1,000 1:1 0.063 0.020 0.042 0.023 0.052 

I (-0.5,1.3) Medium 300 2:1 0.122 0.033 0.081 0.041 0.101 

I (-0.5,1.3) Medium 300 1:1 0.114 0.036 0.075 0.042 0.094 

I (-0.5,1.3) Medium 500 2:1 0.094 0.025 0.060 0.031 0.076 

I (-0.5,1.3) Medium 500 1:1 0.089 0.028 0.061 0.032 0.074 

I (-0.5,1.3) Medium 1,000 2:1 0.068 0.018 0.043 0.022 0.055 

I (-0.5,1.3) Medium 1,000 1:1 0.063 0.020 0.042 0.022 0.052 

I (-0.5,1.3) Large 300 2:1 0.121 0.034 0.082 0.041 0.100 

I (-0.5,1.3) Large 300 1:1 0.116 0.037 0.078 0.043 0.096 

I (-0.5,1.3) Large 500 2:1 0.092 0.025 0.060 0.030 0.075 

I (-0.5,1.3) Large 500 1:1 0.089 0.028 0.058 0.032 0.073 

I (-0.5,1.3) Large 1,000 2:1 0.066 0.018 0.044 0.021 0.053 

I (-0.5,1.3) Large 1,000 1:1 0.063 0.020 0.042 0.022 0.052 

I (-0.5,0.7) Small 300 2:1 0.122 0.035 0.093 0.043 0.114 

I (-0.5,0.7) Small 300 1:1 0.119 0.041 0.094 0.044 0.110 

I (-0.5,0.7) Small 500 2:1 0.095 0.026 0.069 0.033 0.088 

I (-0.5,0.7) Small 500 1:1 0.093 0.031 0.072 0.033 0.086 

I (-0.5,0.7) Small 1,000 2:1 0.068 0.020 0.053 0.024 0.064 

I (-0.5,0.7) Small 1,000 1:1 0.065 0.022 0.050 0.021 0.060 

I (-0.5,0.7) Medium 300 2:1 0.124 0.036 0.096 0.043 0.116 

I (-0.5,0.7) Medium 300 1:1 0.118 0.040 0.092 0.044 0.108 
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I (-0.5,0.7) Medium 500 2:1 0.095 0.027 0.072 0.032 0.088 

I (-0.5,0.7) Medium 500 1:1 0.094 0.031 0.072 0.033 0.086 

I (-0.5,0.7) Medium 1,000 2:1 0.067 0.019 0.050 0.022 0.063 

I (-0.5,0.7) Medium 1,000 1:1 0.066 0.023 0.052 0.022 0.061 

I (-0.5,0.7) Large 300 2:1 0.127 0.037 0.099 0.045 0.120 

I (-0.5,0.7) Large 300 1:1 0.119 0.041 0.094 0.043 0.110 

I (-0.5,0.7) Large 500 2:1 0.097 0.028 0.075 0.034 0.091 

I (-0.5,0.7) Large 500 1:1 0.094 0.032 0.073 0.033 0.087 

I (-0.5,0.7) Large 1,000 2:1 0.067 0.019 0.051 0.023 0.062 

I (-0.5,0.7) Large 1,000 1:1 0.065 0.022 0.050 0.020 0.060 

NIL (0,1) Small 300 2:1 0.081 0.039 0.093 0.031 0.077 

NIL (0,1) Small 300 1:1 0.078 0.040 0.085 0.031 0.071 

NIL (0,1) Small 500 2:1 0.064 0.030 0.071 0.024 0.059 

NIL (0,1) Small 500 1:1 0.061 0.031 0.065 0.024 0.054 

NIL (0,1) Small 1,000 2:1 0.044 0.020 0.048 0.016 0.039 

NIL (0,1) Small 1,000 1:1 0.045 0.022 0.046 0.017 0.039 

NIL (0,1) Medium 300 2:1 0.092 0.040 0.106 0.034 0.094 

NIL (0,1) Medium 300 1:1 0.092 0.042 0.098 0.036 0.090 

NIL (0,1) Medium 500 2:1 0.074 0.032 0.083 0.027 0.075 

NIL (0,1) Medium 500 1:1 0.071 0.032 0.076 0.028 0.069 

NIL (0,1) Medium 1,000 2:1 0.051 0.022 0.058 0.019 0.052 

NIL (0,1) Medium 1,000 1:1 0.049 0.023 0.053 0.019 0.047 

NIL (0,1) Large 300 2:1 0.096 0.044 0.126 0.038 0.113 

NIL (0,1) Large 300 1:1 0.098 0.046 0.113 0.038 0.105 

NIL (0,1) Large 500 2:1 0.080 0.035 0.099 0.031 0.093 

NIL (0,1) Large 500 1:1 0.075 0.036 0.089 0.030 0.081 

NIL (0,1) Large 1,000 2:1 0.054 0.025 0.072 0.021 0.062 

NIL (0,1) Large 1,000 1:1 0.054 0.025 0.062 0.022 0.058 

NIL (-0.5,1.3) Small 300 2:1 0.086 0.036 0.090 0.030 0.077 

NIL (-0.5,1.3) Small 300 1:1 0.083 0.037 0.082 0.030 0.072 

NIL (-0.5,1.3) Small 500 2:1 0.067 0.027 0.067 0.023 0.058 

NIL (-0.5,1.3) Small 500 1:1 0.063 0.029 0.066 0.022 0.054 

NIL (-0.5,1.3) Small 1,000 2:1 0.049 0.020 0.050 0.016 0.042 

NIL (-0.5,1.3) Small 1,000 1:1 0.047 0.021 0.046 0.016 0.040 

NIL (-0.5,1.3) Medium 300 2:1 0.096 0.036 0.101 0.032 0.095 

NIL (-0.5,1.3) Medium 300 1:1 0.097 0.040 0.100 0.032 0.091 

NIL (-0.5,1.3) Medium 500 2:1 0.077 0.028 0.080 0.026 0.076 

NIL (-0.5,1.3) Medium 500 1:1 0.077 0.031 0.078 0.025 0.072 

NIL (-0.5,1.3) Medium 1,000 2:1 0.056 0.020 0.058 0.019 0.055 

NIL (-0.5,1.3) Medium 1,000 1:1 0.055 0.022 0.056 0.018 0.051 

NIL (-0.5,1.3) Large 300 2:1 0.108 0.040 0.127 0.037 0.126 

NIL (-0.5,1.3) Large 300 1:1 0.110 0.043 0.123 0.037 0.119 

NIL (-0.5,1.3) Large 500 2:1 0.083 0.032 0.103 0.029 0.096 

NIL (-0.5,1.3) Large 500 1:1 0.084 0.034 0.094 0.028 0.089 

NIL (-0.5,1.3) Large 1,000 2:1 0.056 0.023 0.070 0.019 0.064 

NIL (-0.5,1.3) Large 1,000 1:1 0.060 0.023 0.065 0.020 0.064 

NIL (-0.5,0.7) Small 300 2:1 0.081 0.037 0.100 0.031 0.084 

NIL (-0.5,0.7) Small 300 1:1 0.084 0.040 0.099 0.035 0.082 

NIL (-0.5,0.7) Small 500 2:1 0.064 0.029 0.078 0.024 0.065 
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NIL (-0.5,0.7) Small 500 1:1 0.066 0.031 0.078 0.027 0.064 

NIL (-0.5,0.7) Small 1,000 2:1 0.049 0.021 0.056 0.018 0.048 

NIL (-0.5,0.7) Small 1,000 1:1 0.046 0.023 0.055 0.018 0.044 

NIL (-0.5,0.7) Medium 300 2:1 0.100 0.041 0.123 0.037 0.108 

NIL (-0.5,0.7) Medium 300 1:1 0.094 0.043 0.111 0.037 0.097 

NIL (-0.5,0.7) Medium 500 2:1 0.075 0.032 0.093 0.028 0.080 

NIL (-0.5,0.7) Medium 500 1:1 0.076 0.032 0.084 0.030 0.078 

NIL (-0.5,0.7) Medium 1,000 2:1 0.052 0.022 0.064 0.019 0.056 

NIL (-0.5,0.7) Medium 1,000 1:1 0.051 0.023 0.060 0.020 0.052 

NIL (-0.5,0.7) Large 300 2:1 0.101 0.042 0.134 0.039 0.124 

NIL (-0.5,0.7) Large 300 1:1 0.105 0.044 0.130 0.040 0.117 

NIL (-0.5,0.7) Large 500 2:1 0.078 0.034 0.106 0.030 0.093 

NIL (-0.5,0.7) Large 500 1:1 0.081 0.034 0.098 0.032 0.090 

NIL (-0.5,0.7) Large 1,000 2:1 0.055 0.023 0.073 0.021 0.066 

NIL (-0.5,0.7) Large 1,000 1:1 0.054 0.024 0.068 0.021 0.060 

NII (0,1) Small 300 2:1 0.079 0.036 0.083 0.034 0.078 

NII (0,1) Small 300 1:1 0.074 0.038 0.077 0.036 0.073 

NII (0,1) Small 500 2:1 0.061 0.028 0.063 0.027 0.061 

NII (0,1) Small 500 1:1 0.061 0.031 0.063 0.030 0.061 

NII (0,1) Small 1,000 2:1 0.045 0.020 0.045 0.019 0.045 

NII (0,1) Small 1,000 1:1 0.042 0.021 0.043 0.021 0.043 

NII (0,1) Medium 300 2:1 0.083 0.037 0.087 0.037 0.087 

NII (0,1) Medium 300 1:1 0.080 0.040 0.083 0.040 0.083 

NII (0,1) Medium 500 2:1 0.067 0.030 0.070 0.030 0.070 

NII (0,1) Medium 500 1:1 0.061 0.031 0.064 0.031 0.064 

NII (0,1) Medium 1,000 2:1 0.046 0.021 0.048 0.021 0.048 

NII (0,1) Medium 1,000 1:1 0.044 0.022 0.044 0.022 0.044 

NII (0,1) Large 300 2:1 0.088 0.039 0.097 0.039 0.097 

NII (0,1) Large 300 1:1 0.081 0.041 0.086 0.041 0.086 

NII (0,1) Large 500 2:1 0.069 0.031 0.073 0.031 0.073 

NII (0,1) Large 500 1:1 0.062 0.031 0.065 0.031 0.065 

NII (0,1) Large 1,000 2:1 0.048 0.022 0.053 0.022 0.053 

NII (0,1) Large 1,000 1:1 0.042 0.021 0.045 0.021 0.045 

NII (-0.5,1.3) Small 300 2:1 0.085 0.035 0.082 0.033 0.076 

NII (-0.5,1.3) Small 300 1:1 0.079 0.037 0.076 0.035 0.071 

NII (-0.5,1.3) Small 500 2:1 0.067 0.028 0.065 0.027 0.062 

NII (-0.5,1.3) Small 500 1:1 0.062 0.028 0.059 0.028 0.057 

NII (-0.5,1.3) Small 1,000 2:1 0.044 0.018 0.042 0.018 0.042 

NII (-0.5,1.3) Small 1,000 1:1 0.043 0.020 0.042 0.020 0.041 

NII (-0.5,1.3) Medium 300 2:1 0.089 0.037 0.086 0.036 0.085 

NII (-0.5,1.3) Medium 300 1:1 0.082 0.039 0.079 0.038 0.079 

NII (-0.5,1.3) Medium 500 2:1 0.068 0.029 0.066 0.028 0.066 

NII (-0.5,1.3) Medium 500 1:1 0.064 0.030 0.061 0.030 0.061 

NII (-0.5,1.3) Medium 1,000 2:1 0.047 0.019 0.045 0.019 0.045 

NII (-0.5,1.3) Medium 1,000 1:1 0.044 0.021 0.042 0.021 0.042 

NII (-0.5,1.3) Large 300 2:1 0.087 0.037 0.087 0.036 0.087 

NII (-0.5,1.3) Large 300 1:1 0.086 0.041 0.084 0.041 0.084 

NII (-0.5,1.3) Large 500 2:1 0.069 0.029 0.069 0.029 0.069 

NII (-0.5,1.3) Large 500 1:1 0.068 0.032 0.065 0.032 0.065 
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NII (-0.5,1.3) Large 1,000 2:1 0.048 0.020 0.047 0.020 0.047 

NII (-0.5,1.3) Large 1,000 1:1 0.047 0.022 0.045 0.022 0.045 

NII (-0.5,0.7) Small 300 2:1 0.088 0.038 0.097 0.036 0.090 

NII (-0.5,0.7) Small 300 1:1 0.086 0.041 0.092 0.039 0.087 

NII (-0.5,0.7) Small 500 2:1 0.068 0.029 0.073 0.028 0.071 

NII (-0.5,0.7) Small 500 1:1 0.067 0.032 0.072 0.031 0.070 

NII (-0.5,0.7) Small 1,000 2:1 0.052 0.022 0.056 0.022 0.055 

NII (-0.5,0.7) Small 1,000 1:1 0.047 0.022 0.050 0.022 0.050 

NII (-0.5,0.7) Medium 300 2:1 0.096 0.042 0.105 0.041 0.105 

NII (-0.5,0.7) Medium 300 1:1 0.088 0.042 0.094 0.041 0.094 

NII (-0.5,0.7) Medium 500 2:1 0.071 0.031 0.078 0.031 0.078 

NII (-0.5,0.7) Medium 500 1:1 0.070 0.033 0.073 0.033 0.073 

NII (-0.5,0.7) Medium 1,000 2:1 0.051 0.022 0.055 0.022 0.055 

NII (-0.5,0.7) Medium 1,000 1:1 0.050 0.023 0.053 0.023 0.053 

NII (-0.5,0.7) Large 300 2:1 0.094 0.041 0.105 0.040 0.105 

NII (-0.5,0.7) Large 300 1:1 0.096 0.046 0.102 0.045 0.102 

NII (-0.5,0.7) Large 500 2:1 0.075 0.032 0.083 0.032 0.083 

NII (-0.5,0.7) Large 500 1:1 0.074 0.035 0.078 0.035 0.078 

NII (-0.5,0.7) Large 1,000 2:1 0.052 0.023 0.058 0.023 0.058 

NII (-0.5,0.7) Large 1,000 1:1 0.052 0.025 0.055 0.025 0.055 

NILI (0,1) Small 300 2:1 0.082 0.037 0.090 0.034 0.084 

NILI (0,1) Small 300 1:1 0.084 0.041 0.088 0.038 0.083 

NILI (0,1) Small 500 2:1 0.065 0.030 0.073 0.028 0.067 

NILI (0,1) Small 500 1:1 0.065 0.031 0.066 0.030 0.063 

NILI (0,1) Small 1,000 2:1 0.046 0.020 0.049 0.019 0.046 

NILI (0,1) Small 1,000 1:1 0.044 0.021 0.046 0.020 0.044 

NILI (0,1) Medium 300 2:1 0.092 0.042 0.111 0.039 0.107 

NILI (0,1) Medium 300 1:1 0.090 0.044 0.102 0.041 0.097 

NILI (0,1) Medium 500 2:1 0.072 0.032 0.086 0.030 0.083 

NILI (0,1) Medium 500 1:1 0.072 0.035 0.083 0.032 0.078 

NILI (0,1) Medium 1,000 2:1 0.051 0.023 0.060 0.021 0.058 

NILI (0,1) Medium 1,000 1:1 0.050 0.024 0.056 0.022 0.054 

NILI (0,1) Large 300 2:1 0.101 0.049 0.144 0.045 0.137 

NILI (0,1) Large 300 1:1 0.098 0.048 0.123 0.044 0.118 

NILI (0,1) Large 500 2:1 0.077 0.036 0.105 0.034 0.101 

NILI (0,1) Large 500 1:1 0.077 0.039 0.100 0.036 0.094 

NILI (0,1) Large 1,000 2:1 0.057 0.026 0.076 0.024 0.075 

NILI (0,1) Large 1,000 1:1 0.054 0.026 0.067 0.024 0.064 

NILI (-0.5,1.3) Small 300 2:1 0.080 0.035 0.086 0.032 0.077 

NILI (-0.5,1.3) Small 300 1:1 0.071 0.037 0.082 0.032 0.068 

NILI (-0.5,1.3) Small 500 2:1 0.064 0.029 0.071 0.026 0.061 

NILI (-0.5,1.3) Small 500 1:1 0.060 0.030 0.065 0.028 0.056 

NILI (-0.5,1.3) Small 1,000 2:1 0.044 0.019 0.047 0.018 0.041 

NILI (-0.5,1.3) Small 1,000 1:1 0.042 0.021 0.047 0.020 0.039 

NILI (-0.5,1.3) Medium 300 2:1 0.088 0.040 0.108 0.036 0.094 

NILI (-0.5,1.3) Medium 300 1:1 0.083 0.043 0.103 0.039 0.085 

NILI (-0.5,1.3) Medium 500 2:1 0.069 0.031 0.083 0.029 0.072 

NILI (-0.5,1.3) Medium 500 1:1 0.064 0.032 0.077 0.029 0.063 

NILI (-0.5,1.3) Medium 1,000 2:1 0.048 0.021 0.056 0.020 0.049 
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NILI (-0.5,1.3) Medium 1,000 1:1 0.046 0.023 0.056 0.021 0.045 

NILI (-0.5,1.3) Large 300 2:1 0.098 0.047 0.136 0.043 0.119 

NILI (-0.5,1.3) Large 300 1:1 0.094 0.050 0.129 0.044 0.105 

NILI (-0.5,1.3) Large 500 2:1 0.080 0.038 0.108 0.034 0.095 

NILI (-0.5,1.3) Large 500 1:1 0.075 0.038 0.098 0.034 0.082 

NILI (-0.5,1.3) Large 1,000 2:1 0.053 0.025 0.073 0.023 0.063 

NILI (-0.5,1.3) Large 1,000 1:1 0.051 0.026 0.067 0.024 0.055 

NILI (-0.5,0.7) Small 300 2:1 0.082 0.040 0.105 0.034 0.089 

NILI (-0.5,0.7) Small 300 1:1 0.079 0.041 0.097 0.037 0.082 

NILI (-0.5,0.7) Small 500 2:1 0.064 0.030 0.079 0.027 0.070 

NILI (-0.5,0.7) Small 500 1:1 0.062 0.032 0.075 0.030 0.065 

NILI (-0.5,0.7) Small 1,000 2:1 0.048 0.022 0.057 0.020 0.052 

NILI (-0.5,0.7) Small 1,000 1:1 0.046 0.023 0.054 0.022 0.050 

NILI (-0.5,0.7) Medium 300 2:1 0.089 0.043 0.120 0.040 0.106 

NILI (-0.5,0.7) Medium 300 1:1 0.085 0.045 0.113 0.042 0.095 

NILI (-0.5,0.7) Medium 500 2:1 0.070 0.034 0.093 0.031 0.083 

NILI (-0.5,0.7) Medium 500 1:1 0.068 0.036 0.089 0.034 0.075 

NILI (-0.5,0.7) Medium 1,000 2:1 0.049 0.023 0.065 0.022 0.057 

NILI (-0.5,0.7) Medium 1,000 1:1 0.049 0.026 0.065 0.024 0.055 

NILI (-0.5,0.7) Large 300 2:1 0.099 0.049 0.140 0.046 0.126 

NILI (-0.5,0.7) Large 300 1:1 0.092 0.050 0.130 0.047 0.111 

NILI (-0.5,0.7) Large 500 2:1 0.077 0.038 0.108 0.036 0.097 

NILI (-0.5,0.7) Large 500 1:1 0.074 0.040 0.102 0.037 0.087 

NILI (-0.5,0.7) Large 1,000 2:1 0.054 0.027 0.078 0.025 0.070 

NILI (-0.5,0.7) Large 1,000 1:1 0.052 0.028 0.072 0.027 0.061 

Notes. 1Location of non-invariance (I = invariant indicator, NIL = non-invariant loading, NII = non-

invariant intercept, NILI = non-invariant loading and intercept), 2Latent variable distribution of Group 2 

(mean, variance), 3Magnitude of non-invariance, 4Total sample size, 5Balance of sample sizes.  
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Table 5 

Marginal RMSE by Group 2 sample size for dMACS, SDI2, and UDI2. 

Effect size Group 2 sample size 

  100 150 167 250 333 500 

dMACS 0.099 0.095 0.077 0.074 0.054 0.052 

SDI2 0.102 0.095 0.078 0.074 0.055 0.052 

UDI2 0.100 0.093 0.078 0.073 0.055 0.051 
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Table 6 

Marginal RMSE by Group 1 sample size for WSDI and WUDI. 

Effect size Group 1 sample size 

 
150 200 250 333 500 667 

WSDI 0.041 0.039 0.032 0.030 0.023 0.021 

WUDI 0.040 0.038 0.031 0.029 0.021 0.021 
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Table 7 

Descriptive statistics of each effect size by location of non-invariance for the small 

magnitude condition. 

Location dMACS 

 

Min1 Q12 Mean3 Q34 Max5 

I6 0.00 0.05 0.08 0.11 0.41 

NIL7 0.00 0.09 0.13 0.17 0.49 

NII8 0.00 0.17 0.21 0.25 0.52 

NILI9 0.00 0.17 0.21 0.26 0.55 

 

UDI2 

 

Min Q1 Mean Q3 Max 

I 0.00 0.04 0.07 0.09 0.38 

NIL 0.00 0.08 0.12 0.15 0.48 

NII 0.00 0.16 0.21 0.25 0.52 

NILI 0.00 0.16 0.20 0.24 0.56 

 

WUDI 

 

Min Q1 Mean Q3 Max 

I 0.00 0.02 0.03 0.04 0.15 

NIL 0.00 0.03 0.05 0.06 0.18 

NII 0.00 0.07 0.09 0.11 0.22 

NILI 0.01 0.07 0.09 0.11 0.26 

 

SDI2 

 

Min Q1 Mean Q3 Max 

I -0.38 -0.04 0.00 0.04 0.32 

NIL -0.40 -0.08 -0.04 0.01 0.28 

NII -0.14 0.16 0.20 0.25 0.52 

NILI -0.19 0.13 0.18 0.23 0.56 

 

WSDI 

 

Min Q1 Mean Q3 Max 

I -0.14 -0.02 0.00 0.02 0.15 

NIL -0.14 -0.03 -0.01 0.01 0.12 

NII -0.04 0.07 0.09 0.11 0.22 

NILI -0.06 0.06 0.09 0.11 0.26 

Notes. 1Minimum value of effect size, 2First quartile of effect size, 3Mean value 

of effect size, 4Third quartile of effect size, 5Maximum value of effect size, 
6Indicator with an invariant loading and intercept 1Indicator with a non-invariant 

intercept, 2Magnitude of non-invariance, 3Indicator with a non-invariant loading, 
4Latent variable distribution for Group 2, 5Indicator with a non-invariant loading 

and intercept, 6Indicator with an invariant loading and intercept, 6Indicator with 

an invariant loading and intercept, 7Indicator with a non-invariant loading, 
8Indicator with a non-invariant intercept, 9Indicator with a non-invariant loading 

and intercept. 
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Table 8 

Cohen’s d values and average value of dMACS for each meaningful pairwise or simple 

pairwise comparison. 

Subgroup 

Comparison 

Group 1 

Comparison 

Group 2 

Comparison 

Group 1 

Mean 

Comparison 

Group 2 

Mean 

Cohen's 

d 

NII1 Small mag2 Medium mag 0.21 0.41 2.89 

 

Small mag Large mag 0.21 0.61 5.70 

  Medium mag Large mag 0.41 0.61 2.79 

NIL3 & Small Mag LVD24(-0.5,1.3) LVD2(0,1) 0.14 0.13 0.27 

  LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.14 0.13 0.25 

NIL & Medium Mag LVD2(-0.5,1.3) LVD2(0,1) 0.34 0.28 0.73 

  LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.34 0.28 0.70 

NIL & Large Mag LVD2(-0.5,1.3) LVD2(0,1) 0.56 0.46 1.22 

  LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.56 0.45 1.27 

NILI5 & Small Mag LVD2(0,1) LVD2(-0.5,1.3) 0.24 0.20 0.60 

  LVD2(0,1) LVD2(-0.5,0.7) 0.24 0.20 0.64 

NILI & Medium Mag LVD2(0,1) LVD2(-0.5,1.3) 0.52 0.43 1.29 

 

LVD2(0,1) LVD2(-0.5,0.7) 0.52 0.39 1.75 

  LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.43 0.39 0.49 

NILI & Large Mag LVD2(0,1) LVD2(-0.5,1.3) 0.82 0.68 1.70 

 

LVD2(0,1) LVD2(-0.5,0.7) 0.82 0.61 2.67 

  LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.68 0.61 0.99 

I6 N = 300 N = 500 0.11 0.08 0.47 

 

N = 300 N = 1000 0.11 0.06 1.05 

  N = 500 N = 1000 0.08 0.06 0.64 

Notes. Comparisons appear in the order they are discussed in the narrative. 1Indicator with a non-invariant 

intercept, 2Magnitude of non-invariance, 3Indicator with a non-invariant loading, 4Latent variable 

distribution for Group 2, 5Indicator with a non-invariant loading and intercept, 6Indicator with an invariant 

loading and intercept. 
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Table 9 

Cohen’s d values and average value of SDI2 for each meaningful pairwise or simple 

pairwise comparison. 

Subgroup 

Comparison 

Group 1 

Comparison 

Group 2 

Comparison 

Group 1 

Mean 

Comparison 

Group 2 

Mean Cohen's d 

NIL1 & Small 

Magnitude 
LVD22(0,1) LVD2(-0.5,1.3) -0.001 -0.051 0.72 

LVD2(0,1) LVD2(-0.5,0.7) -0.001 -0.058 0.76 

NIL & Medium 

Magnitude 
LVD2(0,1) LVD2(-0.5,1.3) 0.000 -0.146 1.80 

LVD2(0,1) LVD2(-0.5,0.7) 0.000 -0.167 1.93 

LVD2(-0.5,1.3) LVD2(-0.5,0.7) -0.146 -0.167 0.25 

NIL & Large 

Magnitude 
LVD2(0,1) LVD2(-0.5,1.3) -0.003 -0.268 2.70 

LVD2(0,1) LVD2(-0.5,0.7) -0.003 -0.291 2.86 

LVD2(-0.5,1.3) LVD2(-0.5,0.7) -0.268 -0.291 0.22 

NII3 & Small 

Magnitude 
LVD2(-0.5,0.7) LVD2(0,1) 0.225 0.200 0.35 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.225 0.183 0.60 

LVD2(0,1) LVD2(-0.5,1.3) 0.200 0.183 0.27 

NII & Medium 

Magnitude 
LVD2(-0.5,0.7) LVD2(0,1) 0.446 0.401 0.61 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.446 0.368 1.07 

LVD2(0,1) LVD2(-0.5,1.3) 0.401 0.368 0.49 

NII & Large 

Magnitude 
LVD2(-0.5,0.7) LVD2(0,1) 0.671 0.602 0.90 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.671 0.553 1.57 

LVD2(0,1) LVD2(-0.5,1.3) 0.602 0.553 0.70 

NILI4 & Small 

Magnitude 
LVD2(0,1) LVD2(-0.5,0.7) 0.217 0.179 0.49 

LVD2(0,1) LVD2(-0.5,1.3) 0.217 0.151 0.95 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.179 0.151 0.39 

NILI & Medium 

Magnitude 
LVD2(0,1) LVD2(-0.5,0.7) 0.494 0.364 1.44 

LVD2(0,1) LVD2(-0.5,1.3) 0.494 0.318 2.09 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.364 0.318 0.53 

NILI & Large 

Magnitude 
LVD2(0,1) LVD2(-0.5,0.7) 0.834 0.583 2.35 

LVD2(0,1) LVD2(-0.5,1.3) 0.834 0.536 2.83 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.583 0.536 0.44 

Notes. Comparisons appear in the order they are discussed in the narrative. 1Indicator with a non-invariant 

loading, 2Latent variable distribution for Group 2, 3Indicator with a non-invariant intercept, 4Indicator with 

a non-invariant loading and intercept. 
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Table 10 

Cohen’s d values and average value of UDI2 for each meaningful pairwise or simple 

pairwise comparison. 

Subgroup 

Comparison 

Group 1 

Comparison 

Group 2 

Comparison 

Group 1 

Mean 

Comparison 

Group 2 

Mean 

Cohen's 

d 

I1 
LVD22(-0.5,0.7) LVD2(-0.5,1.3) 0.077 0.066 0.24 

NIL3 & Medium 

Magnitude 
LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.296 0.274 0.29 

LVD2(-0.5,1.3) LVD2(0,1) 0.296 0.256 0.54 

LVD2(-0.5,0.7) LVD2(0,1) 0.274 0.256 0.23 

NIL & Large 

Magnitude 
LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.537 0.463 0.77 

LVD2(-0.5,1.3) LVD2(0,1) 0.537 0.450 0.95 

NII4 & Small 

Magnitude 
LVD2(-0.5,0.7) LVD2(0,1) 0.227 0.203 0.37 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.227 0.186 0.63 

LVD2(0,1) LVD2(-0.5,1.3) 0.203 0.186 0.27 

NII & Medium 

Magnitude 

  

LVD2(-0.5,0.7) LVD2(0,1) 0.446 0.401 0.61 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.446 0.368 1.08 

LVD2(0,1) LVD2(-0.5,1.3) 0.401 0.368 0.49 

NII & Large 

Magnitude 
LVD2(-0.5,0.7) LVD2(0,1) 0.671 0.602 0.90 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.671 0.553 1.57 

LVD2(0,1) LVD2(-0.5,1.3) 0.602 0.553 0.70 

NILI5 & Small 

Magnitude 
LVD2(0,1) LVD2(-0.5,0.7) 0.229 0.200 0.44 

LVD2(0,1) LVD2(-0.5,1.3) 0.229 0.178 0.84 

LVD2(-0.5,0.7) LVD2(-0.5,1.3) 0.200 0.178 0.36 

NILI & Medium 

Magnitude  
LVD2(0,1) LVD2(-0.5,0.7) 0.516 0.402 1.42 

LVD2(0,1) LVD2(-0.5,1.3) 0.516 0.388 1.71 

NILI & Large 

Magnitude 
LVD2(0,1) LVD2(-0.5,1.3) 0.874 0.670 2.15 

LVD2(0,1) LVD2(-0.5,0.7) 0.874 0.649 2.31 

LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.670 0.649 0.23 

Notes. Comparisons appear in the order they are discussed in the narrative. 1Indicator with an invariant 

loading and intercept, 2Latent variable distribution for Group 2, 3Indicator with a non-invariant loading, 
4Indicator with a non-invariant intercept, 5Indicator with a non-invariant loading and intercept. 
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Table 11 

Cohen’s d values and average value of WSDI for each meaningful pairwise or simple 

pairwise comparison. 

Subgroup 

Comparison 

Group 1 

Comparison 

Group 2 

Comparison 

Group 1 

Mean 

Comparison 

Group 2 

Mean 

Cohen's 

d 

NIL1 & Small 

Magnitude 

LVD22(0,1) LVD2(-0.5,1.3) 0.000 -0.012 0.38 

LVD2(0,1) LVD2(-0.5,0.7) 0.000 -0.015 0.47 

NIL & Medium 

Magnitude  
LVD2(0,1) LVD2(-0.5,1.3) 0.000 -0.032 1.00 

LVD2(0,1) LVD2(-0.5,0.7) 0.000 -0.042 1.28 

LVD2(-0.5,1.3) LVD2(-0.5,0.7) -0.032 -0.042 0.33 

NIL & Large 

Magnitude 
LVD2(0,1) LVD2(-0.5,1.3) -0.001 -0.055 1.54 

LVD2(0,1) LVD2(-0.5,0.7) -0.001 -0.071 1.97 

LVD2(-0.5,1.3) LVD2(-0.5,0.7) -0.055 -0.071 0.47 

NII3 
LVD2(0,1) LVD2(-0.5,1.3) 0.189 0.171 0.22 

Small mag4 Medium mag 0.091 0.182 2.81 

Small mag Large mag 0.091 0.273 5.30 

Medium mag Large mag 0.182 0.273 2.56 

NILI5 & Small 

Magnitude 

LVD2(0,1) LVD2(-0.5,0.7) 0.098 0.081 0.65 

LVD2(0,1) LVD2(-0.5,1.3) 0.098 0.078 0.54 

NILI & Medium 

Magnitude 

LVD2(0,1) LVD2(-0.5,0.7) 0.211 0.161 1.40 

LVD2(0,1) LVD2(-0.5,1.3) 0.211 0.160 1.33 

NILI & Large 

Magnitude 

LVD2(0,1) LVD2(-0.5,0.7) 0.338 0.249 2.02 

LVD2(0,1) LVD2(-0.5,1.3) 0.338 0.257 1.84 

NII Balanced Unbalanced 0.192 0.172 0.25 

NILI Balanced Unbalanced 0.195 0.168 0.29 

Notes. Comparisons appear in the order they are discussed in the narrative. 1Indicator with a non-invariant 

loading, 2Latent variable distribution for Group 2, 3Indicator with a non-invariant intercept, 4Magnitude of 

non-invariance, 5Indicator with a non-invariant loading and intercept. 
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Table 12 

Cohen’s d values and average value of WUDI for each meaningful pairwise or simple 

pairwise comparison. 

Subgroup 

Comparison  

Group 1 

Comparison  

Group 2 

Comparison 

Group 1 

Mean 

Comparison 

Group 2 

Mean 

Cohen's 

d 

NIL1 & Medium 

Magnitude 
LVD22(-0.5,1.3) LVD2(-0.5,0.7) 0.115 0.109 0.23 

LVD2(-0.5,1.3) LVD2(0,1) 0.115 0.109 0.25 

NIL & Large 

Magnitude 
LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.195 0.178 0.55 

LVD2(-0.5,1.3) LVD2(0,1) 0.195 0.182 0.44 

NII3 
Small magnitude Medium magnitude 0.093 0.183 2.83 

Small magnitude Large magnitude 0.093 0.274 5.35 

Medium magnitude Large magnitude 0.183 0.274 2.56 

LVD2(0,1) LVD2(-0.5,1.3) 0.189 0.173 0.21 

NILI4 & Small 

Magnitude 
LVD2(0,1) LVD2(-0.5,0.7) 0.104 0.090 0.45 

LVD2(0,1) LVD2(-0.5,1.3) 0.104 0.087 0.58 

NILI & Medium 

Magnitude 
LVD2(0,1) LVD2(-0.5,1.3) 0.220 0.183 1.12 

LVD2(0,1) LVD2(-0.5,0.7) 0.220 1.820 0.11 

NILI & Large 

Magnitude 
LVD2(0,1) LVD2(-0.5,1.3) 0.355 0.299 1.32 

LVD2(0,1) LVD2(-0.5,0.7) 0.355 0.288 1.51 

LVD2(-0.5,1.3) LVD2(-0.5,0.7) 0.299 0.288 0.24 

NIL Small magnitude Medium magnitude 0.050 0.111 2.37 

Small magnitude Large magnitude 0.050 0.185 4.79 

Medium magnitude Large magnitude 0.111 0.185 2.42 

NII & Small 

Magnitude 
Balanced Unbalanced 0.099 0.088 0.36 

NII & Medium 

Magnitude 
Balanced Unbalanced 0.193 0.172 0.63 

NII & Large 

Magnitude 
Balanced Unbalanced 0.289 0.259 0.88 

NILI & Small 

Magnitude 
Balanced Unbalanced 0.100 0.087 0.47 

NILI & Medium 

Magnitude 
Balanced Unbalanced 0.210 0.180 0.85 

NILI & Large 

Magnitude 
Balanced Unbalanced 0.340 0.288 1.12 

Notes. Comparisons appear in the order they are discussed in the narrative. 1Indicator with a non-invariant 

loading, 2Latent variable distribution for Group 2, 3Indicator with a non-invariant intercept, 4Indicator with 

a non-invariant loading and intercept. 
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Figure 1. Illustration of possible values for signed and unsigned effect size measures. The 

grey area represents impossible values. The red area denotes possibilities where Group 2 

has higher expected indicator scores, on average. The blue area denotes possibilities 

where Group 1 has higher expected indicator scores, on average. 
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Figure 2. Simple two-way interactions of magnitude × latent variable distribution for 

Group 2 by location of non-invariance on value of dMACS. The average values of dMACS by 

condition are plotted. 
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Figure 3. Simple two-way interactions of magnitude × latent variable distribution for 

Group 2 by location of non-invariance on value of SDI2. The average values of SDI2 by 

condition are plotted.  
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Figure 4. Simple two-way interactions of magnitude × latent variable distribution for 

Group 2 by location of non-invariance on value of UDI2. The average values of UDI2 by 

condition are plotted. 
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Figure 5. Simple two-way interactions of magnitude × latent variable distribution for 

Group 2 by location of non-invariance on value of WSDI. The average values of WSDI by 

condition are plotted. 
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Figure 6. Simple two-way interactions of magnitude × latent variable distribution for 

Group 2 by location of non-invariance on value of WUDI. The average values of WUDI 

by condition are plotted.  
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Figure 7. Simple two-way interactions of magnitude × balance of group sample sizes by 

location of non-invariance on value of WUDI. The average values of WUDI by condition 

are plotted.  


