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ABSTRACT 

Aging-related damage and failure in structures, such as fatigue cracking, corrosion, and 

delamination, are critical for structural integrity. Most engineering structures have 

embedded defects such as voids, cracks, inclusions from manufacturing.  The properties 

and locations of embedded defects are generally unknown and hard to detect in complex 

engineering structures. Therefore, early detection of damage is beneficial for prognosis 

and risk management of aging infrastructure system.  

Non-destructive testing (NDT) and structural health monitoring (SHM) are widely used 

for this purpose. Different types of NDT techniques have been proposed for the damage 

detection, such as optical image, ultrasound wave, thermography, eddy current, and 

microwave. The focus in this study is on the wave-based detection method, which is 

grouped into two major categories: feature-based damage detection and model-assisted 

damage detection. Both damage detection approaches have their own pros and cons. 

Feature-based damage detection is usually very fast and doesn’t involve in the solution of 

the physical model. The key idea is the dimension reduction of signals to achieve 

efficient damage detection. The disadvantage is that the loss of information due to the 

feature extraction can induce significant uncertainties and reduces the resolution. The 

resolution of the feature-based approach highly depends on the sensing path density. 

Model-assisted damage detection is on the opposite side. Model-assisted damage 

detection has the ability for high resolution imaging with limited number of sensing paths 

since the entire signal histories are used for damage identification.  Model-based methods 

are time-consuming due to the requirement for the inverse wave propagation solution, 

which is especially true for the large 3D structures.  
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 The motivation of the proposed method is to develop efficient and accurate model-based 

damage imaging technique with limited data. The special focus is on the efficiency of the 

damage imaging algorithm as it is the major bottleneck of the model-assisted approach. 

The computational efficiency is achieved by two complimentary components. First, a fast 

forward wave propagation solver is developed, which is verified with the classical Finite 

Element(FEM) solution and the speed is 10-20 times faster. Next, efficient inverse wave 

propagation algorithms is proposed.  Classical gradient-based optimization algorithms 

usually require finite difference method for gradient calculation, which is prohibitively 

expensive for large degree of freedoms.  An adjoint method-based optimization 

algorithms is proposed, which avoids the repetitive finite difference calculations for every 

imaging variables. Thus, superior computational efficiency can be achieved by 

combining these two methods together for the damage imaging. A coupled Piezoelectric 

(PZT) damage imaging model is proposed to include the interaction between PZT and 

host structure. Following the formulation of the framework, experimental validation is 

performed on isotropic and anisotropic material with defects such as cracks, 

delamination, and voids. The results show that the proposed method can detect and 

reconstruct multiple damage simultaneously and efficiently, which is promising to be 

applied to complex large-scale engineering structures. 
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1. INTRODUCTION 

1.1. Background 

Engineering structures have embedded defects such as voids, cracks, inclusions from 

manufacturing.  Other structural damage and failure which are commonly seen in ageing 

structures (pressure vessels, aircraft wings, buildings, manufacturing machinery), such as 

fatigue cracking, corrosion, and delamination, which are critical for structural integrity. 

Early detection of damage is important for prognosis and risk management of engineering 

structures. Due to the complexity of engineering structures and small length scale of the 

damage, the properties and locations of embedded defects are generally unknown and 

hard to detect. Therefore, quality control and anomaly detection are important for the risk 

assessment of engineering structures.  

Non-destructive testing (NDT) and/or structural health monitoring (SHM) techniques are 

widely used to ensure the safety and reliability of structures. Different types of SHM 

techniques have been proposed for the damage detection, such as Acoustic Emission 

(AE), strain load monitoring, guided wave (GW) as reviewed in [1], diagnostic damage 

imaging as discussed in [2], eddy current pulsed thermography [3], microwave, 

ultrasound  and other methods are widely used in damage detection on metallic material 

and composites material. SHM methods are classified into different categories based on 

its applications and working algorithm: Detection methods using strain gauges, fiber 

optics are classified as Passive methods, which the input and loading are usually 

unknown [2][4]. The other classification is Active methods like wave-based damage 

detection methods are widely used because of cost-effective and flexibility. Some wave-
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based methods are reviewed here, Lamb wave has been used for damage detection in 

metallic structures and composites as discussed in [2], [5], [6]. A wavelet active sensing 

method is proposed for delamination detection [7]. The fatigue crack detection using 

Lamb  wave is proposed  in [8]. A guided wave based damage indexing is mentioned in 

[9]. 

The advantages of wave propagation methods in SHM is discussed here. The prior 

knowledge of input also great facilitates the damage identification based on waveform 

information. Since the waveform from one actuator can be received by multiple receivers, 

any change on received waveform is a strong indicator of damage existence. Therefore, 

the waveform or extracted features are key information of damage detection.  

Based on the information used in acoustic wave-based detection methods, it can be 

divided into two major categories: feature-based damage detection and model-based 

damage detection. In feature-based damage detection, features from physics model are 

extracted and used as indicators of damage. A decision-making model based on selected 

feature is used to deicide existence of novelty. A brief review on some feature-based 

model is discussed here: a neural network is implemented for damage detection purpose 

using selected acoustic wave features [10]. The Bayesian network imaging method is 

proposed for delamination detection in composites [11]. Diagnostic imaging based on 

feature from Lamb wave propagation is mentioned  in [12]. A combined feature 

regression for fatigue damage detection is discussed in [13]. The highlight of feature-

based methods is because they are not sensitive to the physics model. However, the 

computational complexity is an important consideration in feature-based method such as 

Neural network. Another drawback is the time spent on training dataset for high 



3 

 

dimensional data.  Therefore, the efficiency of damage detection  highly depends on the 

learning rate in the data-driven methods [14].  

 For model-assisted damage detection, acoustic wave propagation model is directly used 

for damage identification.  Some well-developed model-based methodologies are briefly 

reviewed here. An anomaly detection in images via smooth-sparse decomposition method 

is propose in [15]. A finite element model updating method (FEMU) and virtual field 

method(VFM) based on full-field measurements were discussed for damage detection in 

[16].  Some numerical damage detection methods such as Levenburg-Marquart based 

method coupled with finite element (FEM) was proposed for material parameter 

estimation purpose[17]. A trust-region algorithm coupled with FEM modeling was 

proposed for damage identification in reinforced concrete [18]. The wide use of FEM for 

inverse wave propagation is due to its maturity in solving the acoustic problems. 

However, damage detection usually requires the finer mesh for the high frequency 

acoustic waves and is not computationally efficient for large 3D structures. They are also 

noise-sensitive due to the uncertainties in measurement as mentioned. The benefits for 

model-assisted damage detection is the ability for high resolution imaging with limited 

number of sensing paths since the entire signal histories are used for damage 

identification. 

1.2. Research Objective 

Based on the above brief review, the motivation of the proposed study is to develop very 

efficient damage imaging technique for 2D and 3D structures using model-assisted 

approach. The special focus is on the efficiency of the imaging algorithm as it is the 
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major bottleneck of the model-assisted approach. The computational efficiency is 

achieved by two complimentary components. First, a fast forward wave propagation 

solver is needed. A k-space (wavenumber-space) approach [19] is proposed for the 

damage imaging. The implementation of k-space method highly speeds up the simulation 

efficiency and saves computational memory compared to classical FEM solver [20]. 

Next, an efficient inverse wave propagation algorithm is proposed for damage detection 

and identification.  An adjoint method-based optimization algorithms is proposed, which 

avoids the repetitive finite difference gradient calculations for every imaging variables. 

Thus, superior computational efficiency can be achieved by combining these two 

methods together for the damage imaging. 

Some advantages and uniqueness of the proposed study are: 1. The proposed framework 

only needs limited measurements to reconstruct the damage to improve computational 

efficiency.  3. The forward problems is solved based on coupled first-order equations, 

which is easy to solve in mathematical view [21]. 4. Compared to the most applications 

on soft and homogeneous materials using the k-space method, the focus is on materials 

with strong discontinuity widely seen in engineering structures. 5. Sensitivity equations 

commonly seen in inverse problems are also solved using the k-space method to improve 

the computational efficiency. 

The report consists of three major tasks: 1) the wave propagation solution algorithms for 

elastic solids using k-space model; 2). the adjoint method-based optimization algorithms 

for damage imaging; 3) the experimental damage detection on laminated composites 

based on adjoint method and k-space method.  
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The tasks above are divided into five chapters. First, a modified pseudo-spectral (k-space) 

numerical model for wave propagation is proposed in Chapter 2. One major advantage of 

the proposed method is the superior computational efficiency compared to the classical 

finite element method-based wave propagation and gradient-based optimization 

algorithms, which also great facilitates damage detection. The k-space formulation for 

wave propagation in 2D and 3D anisotropic solids are discussed. It’s first verified with 

analytical solution and FEM (Finite Element Method). Demonstration examples on wave 

propagation in healthy (no damage) anisotropic material are performed. Example with 

defects are added in the numerical model like cracks, delamination, corrosions which are 

defects commonly seen in engineering structures are also discussed. The proposed 

method shows capability of modeling wave propagation in general anisotropic material. 

The proposed study shows high computational efficiency and accuracy compared to 

classical FEM, which great facilitates the application on inversion wave problems like 

damage detection which will be discussed in Chapter 3.  

Chapter 3 talks about an inverse tomography method for damage detection using adjoint 

and k-space method. A novel damage imaging of engineering structures and materials 

methodology using the inverse wave propagation in k-space with adjoint method is 

proposed for damage imaging. Following this, parametric studies for measurement 

duration, number of sensors, noise effect, and computational efficiency are discussed in 

detail. Next, demonstration examples for concrete structures with and without 

reinforcement are presented. The proposed inverse damage detection show capability to 

localize the damage and estimate the shape and properties of damage.    
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In Chapter 4, the experimental damage detection on laminated composites is discussed. 

At the current stage, experimental data is preprocessed to be used in the numerical model. 

Due to the uncertainties related to material properties, the numerical model is calibrated 

using a healthy composites plate (no damage). The experimental inverse damage 

detection on laminated composites will be discussed in the future work. At last, several 

conclusions are drawn, and future work is discussed in the last chapter. 

Chapter 5 is on Uncertainty Quantification and reliability analysis of the proposed study. 

The uncertainty associated to material properties in manufacturing process, noisy 

measurements in the test and uncertainties in the model parameters, will cause variation 

on the system performance.  Therefore, an uncertainty management method should be 

created to control the uncertainty propagation in the model. A Bayesian updating model 

show capability of reducing uncertainties in damage diagnosis as mentioned in [11]. An 

overview is given, and detailed study will be included in future work. 

 The overview of the methods mentioned above, and the proposed framework is shown in 

Fig.1-1 and Fig. 1-2. 
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Figure 1. 1 Review of damage detection methods in SHM 
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2. WAVE PROPAGATION SIMULATION IN DAMAGED ISOTROPIC AND 

ANISOTROPIC SOLIDS USING K-SPACE METHOD 

2.1. Abstract 

A numerical model for wave propagation simulation in damaged isotropic and anisotropic 

solids is proposed in this paper. The wave propagation problem is formulated using two 

coupled first-order differential equations for both isotropic and anisotropic solids and a 

wavenumber corrector-based pseudo-spectral method is used to obtain the time-domain 

solution using the forward and inverse Fourier transformation. Following this, explicit 

modelling of crack-like damage commonly seen in engineering materials are investigated. 

Parametric and convergence study are performed to investigate the proposed simulation 

algorithms. Numerical examples are used to verify the proposed methodology by 

comparing the results from analytical solutions and classical finite element methods. 

Discussions and conclusions are drawn based on the proposed study. 

Keywords: wave propagation, pseudo-spectral, k-space, anisotropic, crack 

2.2. Introduction 

Wave propagation-based detection methods, such as ultrasound imaging [22], Lamb-wave 

propagation [23], laser ultrasound [24], and photoacoustic imaging methods [25], are 

widely used for damage and anomaly detection. Accurate and efficient numerical 

simulation of wave propagation is critical for the mechanism understanding of the above-

mentioned damage detection methodologies. Extensive studies have been proposed for this 

purpose, such as finite element method, finite difference method, boundary element 
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method, spectral element method, and k-space method. Some previous studies are briefly 

reviewed below. Recently, a discontinuous Galerkin pseudo spectral-time domain (DG-

PSTD) [26] method for solving elastic and acoustic wave propagation problems is 

proposed, which can handle both conformal and non-conformal meshes. The finite 

difference method was implemented for wave propagation in heterogeneous materials [27]. 

The hybrid boundary element method was used to investigate elastic guided wave 

scattering for surface defects in [28].  It was shown that the Spectral Finite Element method 

can be applied to detect very small size damage [29]. Co-simulation of Lamb wave 

propagation in composites models with both delamination and matrix cracking using FEM 

was proposed in [30]. A non-conformal mesh discontinues Galerkin (DG) PSTD method 

for elastic wave scattering with arbitrary fracture inclusion is recently proposed in [31], in 

which a linear-slip model is used to mesh thin-layer fracture to reduce the computational 

cost at the same time provides high accuracy.  

Most existing elastic wave propagation problems are solved with finite difference and finite 

element methods. Both are known to be local methods since wave equation of each point 

is solved based on nearby points in numerical solutions. One example is that in the first-

order forward finite difference scheme in which the gradient of a point is represented by 

the local points nearby in the numerical model. To increase the accuracy, the number of 

points per wavelength associated with the gradient calculation should be increased. This 

requirement significantly increases the computational cost for large 3D structures with high 

frequency wave components. The k-space method is a global method since the spatial 

derivative of a point is derived with the Fourier collocation method which requires a 

forward and inverse Fourier transformation of all points in the field of interest [32].  It’s 
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based on the Pseudo-Spectral method with improved stability and accuracy by introducing 

the k-space operator. The k-space method only requires two points per wavelength based 

on the nature of Fourier series and Nyquist Sampling theorem [33] [34] [35]. The Fourier 

series can be written in the form of sinusoidal functions which can be represented by two 

points sampled per wavelength based on the Nyquist-Shannon sampling theorem [35] . 

Thus, in the case of large-scale simulation, finite element and finite difference methods are 

computationally more expensive than the k-space method. The proposed study focuses on 

the k-space method as it has superior computational efficiency for large-scale structural 

applications.  

The k-space formulation was first applied to electromagnetic scattering problem in [36].  

Most recent advances of the k-space method are for biomedical applications in soft 

materials. A simplified version of k-space method by defining a k-t propagator for wave 

propagation in tissues was proposed in [33]. Relatively few studies focus on the extension 

of the k-space method to solids. The k-space formulation was generalized to solve the 

elastodynamic scattering problem in which the second-order differential equations were 

solved for wave propagation in isotropic solids [13]. Alternative approaches have been 

proposed by using a set of coupled first-order differential equations for acoustic wave 

propagation in homogeneous and heterogeneous materials [38].  The above-mentioned 

studies are for isotropic materials and very few studies have been proposed for general 

anisotropic materials until very recently [39][40] . A simulation framework using the k-

space formulation for anisotropic solids based on the second-order differential equation 

representations was proposed for applications on elastic imaging in geophysics [39]. The 

main differences of the proposed study with the methods discussed in [35] -[40] are: 1) the 
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proposed study uses two coupled-first order differential equations of anisotropic elastic 

wave propagation rather one second-order differential equation. The major benefit using 

the coupled first-order equations is that the system equations are relatively easy to be 

solved [41];  2) the proposed study focuses on the discontinuity widely seen in structural 

materials (e.g., crack-like damage). Special algorithm setting is required to ensure the 

convergence when using the k-space method and is investigated in this study. 

The proposed study has the advantage on computational efficiency and memory as 

mentioned in [42] that “The pseudo-spectral method (PSM) or the K-space method is an 

attractive alternative to the FDM that exploits the fast Fourier transform (FFT) algorithm 

for computing the spatial derivatives.” However, they have their own difficulties when 

solving the first-order elastic wave equations, among which the Nyquist errors and the 

generation of non-causal ringing artefacts cause serious challenge, particularly in the 

presence of large abrupt changes in the medium.  As well known, the use of staggered-grid 

formulations mitigates these problems. But the standard staggered-grid PSM cannot tackle 

anisotropy with symmetry lower than orthorhombic [42]. A previous study on this issue 

can be found in [42]. 

The paper is organized as follows. First, the general formulation of isotropic and 

anisotropic materials using the k-space method is discussed. The algorithm is discussed in 

Section 2. Next, inclusion of crack-like damage in the proposed simulation is discussed by 

explicitly including the crack with proper time step modifications. Following this, several 

numerical examples are used to verify and validate the developed numerical simulation 

framework, for both undamaged and damaged, homogeneous and heterogeneous solids. 

The accuracy is quantified by computing the error between the proposed method and the 
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FEM result or with the analytical solution. The computational efficiency using the k-space 

method and the classical FEM is compared and discussed. Finally, several conclusions are 

drawn based on the proposed study.  

2.3. K-Space Formulation for General Isotropic And Anisotropic Solids 

The constitutive equation in a general elastic, isotropic/anisotropic, homogeneous material 

is shown below based on the generalized Hooke’s Law, 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (0.1) 

The strain-displacement relation is, 

 
𝜀𝑘𝑙 =

1

2
(
𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝜕𝑢𝑙

𝜕𝑥𝑘
) 

(0.2) 

where𝑢𝑘  is the k-th component of displacement. 𝜀𝑘𝑙 is a second-order strain tensor 

component, 𝜎𝑖𝑗is second-order Cauchy stress tensor component and 𝐶𝑖𝑗𝑘𝑙  is a fourth-

order stiffness tensor in the Cartesian coordinate. Subscripts i, j, k, l follows the Einstein 

summation convention. The equation of motion can be expressed as  

 𝜌
𝜕2𝑢𝑖

𝜕2𝑡
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖 

(0.3) 

where t is time, 𝜌 is the material’s density, 𝑓𝑖 is the i-th component of external force. To 

simplify the equation of motion into coupled first-order partial differential equations, one 

can replace the time derivative of displacement by velocity. Therefore, Eq. 3 is expressed 

in term of velocity as, 

 
𝜌

𝜕𝑣𝑖

𝜕𝑡
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖 

(0.4) 
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where 𝑣𝑖 is i-th component of the particle velocity. By taking the time derivative of Eq. 

0.1,  

 𝜕𝜎𝑖𝑗

𝜕𝑡
=

𝐶𝑖𝑗𝑘𝑙

2
(
𝜕𝑣𝑘

𝜕𝑥𝑙
+

𝜕𝑣𝑙

𝜕𝑥𝑘
) 

(0.5) 

Eq. 2.3.0.4 and Eq. 2.3.0.5 are the first-order coupled formulation used in k-space method. 

The reason of using first-order equations is discussed here. The Perfect match layer (PML) 

is an efficient way to prevent wave wrapping happening in Fourier series based method 

solving wave propagation problems which is necessary for the proposed method [43]. The 

technique of PML was first introduced in 1994 which implemented on electromagnetic to 

avoid wave reflection on the boundary [44]. The PML not only applies to electromagnetic 

wave, but the acoustic wave and elastic wave propagation as mentioned in [45], [46]. The 

techniques mentioned above are all based on the first-order wave equations.  Therefore, to 

implement the PML for the proposed k-space method, the first-order equations are used in 

this paper.  

Thus, a first order k-space or wavenumber operator of elastic wave equation is required. 

The wavenumber operator is the key point in the proposed framework. It turns out to be 

helpful in the gradient calculation. A k-space operator was proposed for solving acoustic 

wave propagation problem [38]. Similar procedures will be followed in this paper. The 

uniqueness of the k-space operator in the proposed framework is that the operator is derived 

based on the elastic wave equations and applied to damaged solids. It’s easy to get the k-

space operator if the material is isotropic since the wave speed is only related to two Lame 

constants. A more complicated case that wave propagation in damaged anisotropic material 

is considered and details are discussed in following sections. 
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To find the first-order wavenumber operator, we start from Eq.0.3. It can be formed as, 

 
𝜌

𝜕2𝒖

𝜕2𝑡
= [𝛁𝑪𝛁𝑇]𝒖 + 𝒇 

(0.6) 

where 𝛁 is the gradient operator and u is the displacement vector. Detailed derivation of 

Eq. 2.3.6 is included in the Appendix. The components of the displacement are (ux, uy, uz). 

A wave decomposition methodology by solving the Christoffel equation is applied to the 

proposed method [47]. Eq. 2.3.6 can be written in a simplified form, 

 𝜕2𝒖

𝜕2𝑡
= 𝑻𝒖 + 𝒇 

 

(0.7) 

where T is called the Christoffel matrix, which is derived based on the solution of the plane 

wave propagating in anisotropic material [48]. By taking the Fourier Transform on Eq. 0.7,  

 𝜔2𝒖̅ = 𝑻𝒖̅ 

 

(0.8) 

where 𝒖̅ is in the k-f domain (i.e., spatial and temporal frequency domain). Eq. 2.3.8 can 

be written in an indicial form to show its relativity with the wavenumber k, 

 𝜔2𝑢𝑖̅ = 𝑇𝑖𝑙𝑢̅𝑙 

 

(0.9) 

where 𝜔 is the angular frequency and Til= 
1

𝜌
k2Cijklnknj and k is the magnitude of 

wavenumber k, nk   is the unit vector of wave propagation direction. Eq.8 can be written 

as an eigenvalue problem, 

 (𝑇𝑖𝑙 − 𝑣𝑖
2𝑘2𝛿𝑖𝑙) 𝑢̅𝑙 = 0, (0.10) 
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𝑣 =
𝜔

𝑘
 

where 𝛿𝑖𝑙 is the Kronecker delta function and v is the phase velocity. It has been shown 

that v2k2 is the eigenvalue of T and ūl is the corresponding eigenvector [49].  

Since T is positive definite due to the symmetry of C, it can be factorized using the 

eigendecomposition, 

 𝑻 = 𝑸𝜶𝑸T (2.3.11) 

where 𝑸 is a matrix with each column being the eigenvector of  𝑻. 𝑸 is orthogonal, 

indicating that QTQ=I, where I is 3 by 3 identity matrix and α is the eigenvalue matrix 

where its component 𝛼𝑖𝑗 =vi
2k2𝛿ij. If an inverse Fourier Transform in temporal domain is 

applied to Eq. 2.3.8, the new equation can be written in terms of  𝒖̃ (i.e., the displacement 

vector u in the wavenumber space), 

 
𝑸𝜶𝑸T𝒖̃ +

𝜕2𝒖̃

𝜕2𝑡
= 𝟎 

(2.3.12) 

It should be noted that T is independent of time step and it remains same when transformed 

to the temporal domain. Because of the orthogonality of Q, the following equation is 

derived by multiplying Eq. 2.3.12 by QT, 

 
𝑰𝜶𝑸T𝒖̃ + 𝑸T

𝜕2𝒖̃

𝜕2𝑡
= 𝟎 

(2.3.13) 

Or in a compact form, 

 
𝜶𝑼̃ +

𝜕2𝑼̃

𝜕2𝑡
= 𝟎 

(0.14) 

where 𝑼̃=𝑸T𝒖̃. The indicial form of Eq. 2.3.14 can be discretized by using a second-order 

finite difference scheme. The second-order time derivative of 𝑼̃ is approximated,  
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 𝑈𝑖̃(𝑡 + ∆𝑡) − 2𝑈𝑖̃(𝑡) + 𝑈𝑖̃(𝑡 − ∆𝑡)

(∆𝑡)2
= −𝑏𝑖

2𝑈̃𝑖 
(2.3.15) 

where bi=vik, or bi
2= 𝛼i. Eq. 15 needs to be transformed back to spatial domain by using 

the inverse spatial Fourier Transform,  

 𝑈𝑖(𝑡+∆𝑡)−2𝑈𝑖(𝑡)+𝑈𝑖(𝑡−∆𝑡)

(∆𝑡)2
= −𝑣𝑖

2𝐹−1{𝑘2𝐹(𝑈𝑖)} (2.3.16) 

where Ui is the displacement component in the spatial space. The spatial Fourier Transform 

of Ui and the spatial derivative of Ui is, 

 
𝑈̃𝑖 = 𝐹(𝑈𝑖) =

1

2𝜋
∬ 𝑈𝑖

+∞

−∞

𝑒𝑗𝑘𝑥𝑑𝑥  

𝑑𝑈𝑖

𝑑𝑥𝑚
= 𝐹−1(𝑗𝑘𝑚𝐹(𝑈𝑖)) 

(0.17) 

where j is the imaginary number and x is a spatial variable in the Cartesian coordinate.  

One important factor that affects the accuracy of the pseudo-spectral solution is the 

numerical dispersion [50]. The dispersion error can be reduced if a smaller time step  ∆𝑡 

or a higher order numerical scheme is used. However, reducing the time step may results 

in very high computational cost. Thus, a k-space correction is introduced to cancel the 

effect caused by the dispersion error. Similar scheme called k-t space operator was 

implemented for acoustic wave propagation problems [38]. Such correction was proved to 

improve the  accuracy even when the time step is large [33].  A wavenumber operator of 

elastic wave in anisotropic material is proposed and applied to Eq. 0.15. The details are 

discussed in the following sections, 

Eq. 0.15 can be also formed as, 
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 𝑈̈̃ + 𝑏2𝑈̃ = 0 (0.18) 

where the subscripts are omitted in the equation above for brevity. Instead of using a 

standard FD method to get the time derivative as shown in Eq.15, an exact FD scheme is 

used due to the high numerical stability as discussed in [51]. A set of two independent 

solution of Eq.18 are, 

 𝑈̃(1) = e𝑖𝑏𝑡,  𝑈̃(2) = 𝑒−𝑖𝑏𝑡 (0.19) 

The discretized of Eq. 0.18 can be written as, 

 
|
𝑈̃𝑛−1 𝑒𝑖𝑏𝛥𝑡𝑛 𝑒−𝑖𝑏𝛥𝑡𝑛

𝑈̃𝑛 𝑒𝑖𝑏𝛥𝑡(𝑛+1) 𝑒−𝑖𝑏𝛥𝑡(𝑛+1)

𝑈̃𝑛+1 𝑒𝑖𝑏𝛥𝑡(𝑛+2) 𝑒−𝑖𝑏𝛥𝑡(𝑛+2)

| =0 (0.20) 

 or 𝑈̃𝑛+1 + 𝑈̃𝑛−1 − 2cos (𝑏𝛥𝑡) 𝑈̃𝑛=0 (0.21) 

where n is the discretized time step. Since, 

 cos(𝑥) = 1 − 2𝑠𝑖𝑛2(
𝑥

2
) (0.22) 

By using the trigonometric identity in Eq. 0.22, Eq. 0.21 is written as, 

 
𝑈̃𝑛+1 + 𝑈̃𝑛−1 − 2𝑈̃𝑛 + 4sin 2(

𝑏𝛥𝑡

2
)𝑈̃𝑛 = 0 (0.23) 

Eq. 0.23 can be also put in a form comparable to the FD scheme, 

 𝑈̃𝑛+1+ 𝑈̃𝑛−1−2𝑈̃𝑛

(𝛥𝑡)2
 =  

−4sin 2(
𝑏𝛥𝑡

2
)𝑈̃𝑛

(𝛥𝑡)2
 (0.24) 

and by replacing 𝑠𝑖𝑛(
𝑏𝛥𝑡

2
)) by 𝑠𝑖𝑛𝑐(

𝑏𝛥𝑡

2
)

𝑏𝛥𝑡

2
 in Eq. 0.24, we found that, 

 𝑈̃𝑛+1+ 𝑈̃𝑛−1−2𝑈̃𝑛

(𝛥𝑡)2s𝑖𝑛𝑐2(
𝑏𝛥𝑡

2
)

 =  −b2𝑈̃𝑛 (0.25) 

Therefore, Eq. 0.15 can be formed as, 
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 𝑈̃𝑖(𝑡 + ∆𝑡) − 2𝑈̃𝑖(𝑡) + 𝑈̃𝑖(𝑡 − ∆𝑡)

(∆𝑡)2𝑠𝑖𝑛𝑐2(𝑏𝑖∆𝑡/2)
= −𝑏𝑖

2𝑈̃𝑖 (0.26) 

Since 𝑼̃=𝑸T𝒖̃ (represented by the indicial form  𝑈̃𝑖=𝑄𝑖𝑗𝑢̃𝑗  ), where index i represents the 

wave modes corresponding to three eigenvalues of the Christoffel matrix. Therefore, Eq. 

0.26 can be also written as, 

 𝑄𝑖𝑗𝑢𝑗̃(𝑡 + ∆𝑡) − 2𝑄𝑖𝑗𝑢𝑗̃(𝑡) + 𝑄𝑖𝑗𝑢𝑗̃(𝑡 − ∆𝑡)

(∆𝑡)2

= −𝑏𝑖
2𝑠𝑖𝑛𝑐2(𝑏𝑖∆𝑡/2)𝑄𝑖𝑗𝑢𝑗̃) 

(0.27) 

Eq. 0.27 is expressed in a simple form by multiplying both sides by QT or Qji.  Therefore, 

Eq.28 can be derived due to the orthogonality of Q,  

 𝑢𝑗̃(𝑡 + ∆𝑡) − 2𝑢𝑗̃(𝑡) + 𝑢𝑗̃(𝑡 − ∆𝑡)

(∆𝑡)2
= −𝑄𝑗𝑖𝑏𝑖

2𝑠𝑖𝑛𝑐2(𝑏𝑖∆𝑡/2)𝑄𝑖𝑗𝑢𝑗̃) 
(0.28) 

An inverse Fourier Transform is applied to Eq. 0.28 and the new scheme can be formed as, 

  𝒖(𝑡 + ∆𝑡) − 2𝒖(𝑡) + 𝒖(𝑡 − ∆𝑡)

(∆𝑡)2
= 𝐹−1{𝑸𝑩𝑸T𝐹(𝒖))} 

(0.29) 

where B is a diagonal matrix , where 𝐵𝑖𝑗 = 𝑗2(𝑘𝑣𝑖)
2𝑠𝑖𝑛𝑐2(𝑏𝑖∆𝑡/2)𝛿𝑖𝑗, and  𝑗2 = −1. 

Index i=1,2,3 represents the polarization direction of elastic wave in anisotropic material, 

respectively [52], [53]. 

Since we are solving a velocity-stress based formulation, a first-order wavenumber 

operator should be found similar to the k-t operator derived from the acoustic wave 

equation as mentioned in [33]. The derivation of the first-order operator is discussed in the 

following section. 

By multiplying the right-hand side of Eq. 0.29 by 𝑸T𝑸,  
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 𝒖(𝑡 + ∆𝑡) − 2𝒖(𝑡) + 𝒖(𝑡 − ∆𝑡)

(∆𝑡)2
= 𝐹−1{𝑸𝑲𝟐𝑸T𝑸𝑽𝑸T𝐹(𝒖))} 

(0.30) 

where both K and V are diagonal matrixes and B=𝑘2K2V, 

 
𝑲2 = [

𝑗2𝑠𝑖𝑛𝑐2(𝑏1∆𝑡/2)
0
0

0
𝑗2𝑠𝑖𝑛𝑐2(𝑏2∆𝑡/2)

0

0
0

𝑗2𝑠𝑖𝑛𝑐2(𝑏3∆𝑡/2)
] 

 

𝑽 = [
(𝑣1)

2

0
0

0
(𝑣2)

2

0

0
0

(𝑣3)
2
] 

(0.31) 

If an inverse spatial FT is applied on Eq. 0.12,  

 𝜕2𝒖

𝜕2𝑡
= 𝐹−1{𝑗2𝑸𝜶𝑸T𝐹(𝒖)} (0.32) 

where 𝛼𝑖𝑗 =δijvi
2k2. Comparing Eq. 0.32 and Eq. 0.30, it’s seen that the wavenumber term 

𝑗𝑘 can be replaced by 𝑘𝑸𝑲𝑸T. 

Therefore, the first-order wavenumber operator  𝛁𝒌  is defined based on the spatial 

derivative using the pseudo-spectral method [34],  

 𝛁𝒌(𝒇) = 𝐹−1{𝒌𝑸𝑲𝑸T𝐹(𝒇)} (0.33) 

where 𝐾𝑚𝑛 = 𝑗𝑠𝑖𝑛𝑐(𝑏𝑚∆𝑡/2) 𝛿𝑚𝑛 , and 𝑗2 = −1 The index m, n equals 1,2,3, 

respectively. The wavenumber operator 𝛁𝒌 is a first-order partial derivative operator 

which works for the first-order velocity-stress formulation, i.e., the derivative of the 

particle velocity in Eq. 0.5 is expressed as, 

 𝛁𝒌(𝒗) = 𝐹−1{𝒌𝑸𝑲𝑸T𝐹(𝒗)} (0.34) 
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where each column of Q contains the eigenvector of T and QQT=I, The K matrix is 

written as, 

 

𝑲 =

[
 
 
 
 
 𝑗𝑠𝑖𝑛𝑐(

𝑏1∆𝑡

2
) 0 0

0 𝑗𝑠𝑖𝑛𝑐(
𝑏2∆𝑡

2
) 0

0 0 𝑗𝑠𝑖𝑛𝑐(
𝑏3∆𝑡

2
)]
 
 
 
 
 

 (0.35) 

and j is the imaginary unit. The derivative of velocity v can be written in a detailed 

indicial form as, 

 
1 1
( ( ( )))

Ti

m il lk kn n

m

v
F jk F F Q K Q v

x





− −
=  (0.36) 

 and F, F
-1 is the FT (Fourier Transform) and IFT (Inverse Fourier Transform), 

respectively. The symbol F-1 is the short form of spatial FT in the wavenumber space. 

The variable nv  is the spatial FT of velocity component nv , such that, 

 ( , ) ( ( , ))n nv k t F v x t=   (0.37) 

where a similar operation on the displacement U is shown in Eq. 0.17 of the paper. The 

idea behind Eq. 0.36 is to first project velocity in the cartesian coordinate on the direction 

of Q, which is the eigenvector of the Christoffel matrix.  The decomposed velocity 

components are multiplied by the k-space operator and is projected back to the Cartesian 

coordinate again as shown in Eq. 36. In this paper, the decomposition is based on velocity 

since we focus on first-order stress-velocity wave equations. Eq. 0.36 can be also written 

in the compact form, 
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 1

1

1

( ) ( )),

( ( ( ))),

( ( ( )))

1,

0,

im m i

T

i il lk kn n

i in n

T

in il lk kn

lk lh hk

hk

hk

v F jk V

V F F Q K Q F v

or

V F F M F v

where

M Q K Q

K K

h k

h k







−

−

−

 =

=

=

=

=

= =

= 

  (0.38) 

where ( ) i
im

m

v
v

x




 = , the repeated index follows the Einstein summation rule.  

The divergence of stress ( ) σ  can be also written as a function of the k-space operator, 

such that, 

 
1 1( ( ( )))

ij T

m nl lk ki mn

j

F jk F F Q K Q
x






− −=   (0.39) 

 Since the divergence of stress tensor is a vector, Eq. 0.39 can be written as a compact 

form such that, 

 

,

1

1 1

1 1

( ) ( , , )

( )

( ( ( ( ))))

( ( ( ( ))))

1,

0,

i j k

i im m

i m mi

T

mi m nl lk ki mn

mi m ni mn

T

ni nl lk ki

lk lh hk

hk

hk

S S S

S

S F jk

F jk F F Q K Q F

or

F jk F F M F

where

M Q K Q

K K

h k

h k





 

 







−

− −

− −

 =

=

=

=

=

=

=

= =

= 

σ

 (0.40) 
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  where m, n, l, h is dummy index using Einstein Summation rule and Subscript i, j, k is 

the direction in Cartesian coordinate [52], [53]..  

An example is given to show the details of above operations, the first-order wave equation 

in the x-direction is discussed in the Appendix. 

The k-space operator is based on the first-order velocity-stress formulation, therefore the 

variables used are velocity components in the paper. A detailed discussion on wave 

decomposition based on displacement is discussed in [39], which proposes a very efficient 

low-rank mixed-integral operator for the wavefield decomposition in anisotropic elastic 

wave equation [39]. 

 The coupled wave equations can be solved iteratively by implementing a finite 

difference scheme in the temporal domain. The numerical method is programmed and 

implemented in MATLAB and is based on the framework developed for acoustic wave 

propagation in soft materials such as tissue and liquid [32]. A pseudocode and flowchart 

(Fig. 2-1) is given to show how the k-space operator works in the proposed framework, 

 

set up  

mesh and material properties 

initial values of velocity and stress 

time step t and length N 
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for i=1: N step 

{ 

compute divergence ( ( , ))i• x  using Eq. 39  

update velocity ( , 1) ( , ) ( ( , ))i i t i t+ =  +• v x v x x  using Eq. 4 

update gradient of velocity ( , 1)i +v x  using Eq. 38 

update stress ( , )( , 1) t : ( , 1)i i i+ =   ++σ x x C v xσ   

if  {i==N; 

break; 

            end} 
  set i=i+1; 
}  

end 
 

 

 

 

 

 

 

 

(b)  

Figure 2. 1 (a) Pseudocode and (b) flow chart of the proposed simulation framework 

 

2.4. Wave Propagation With Crack-Like Strong Discontinuities  

Most existing wave propagation simulations using the k-space method considering the 

heterogeneous materials are for discontinuities introduced by acoustic properties mismatch. 

In structural materials, other types of discontinuity, such as crack, delamination, and sharp 

notches, can appear under the service conditions. One unique focus of the proposed study 

(a)  

 Derive the spatial derivative 
𝜕𝑣𝑖(𝑡)

𝜕𝑥𝑚
 using 

wavenumber operator at time step t,   

Update 𝑣𝑖(𝑡 + 1) with finite difference 

scheme 

 

Update the stress component of next time 

step 𝜎𝑖𝑗(𝑡 + 1) with finite difference scheme 

Calculate time derivative of stress 

component 
𝜕𝜎𝑖𝑗(𝑡)

𝜕𝑡
 

Derive 
𝜕𝜎𝑖𝑗(𝑡+1)

𝜕𝑥𝑗
 using wavenumber 

operator at time step t+1,   

If t+1 is last time 
step 

Output time profile of stress 𝝈 and velocity 𝒗 

Yes 

No, t=t+1 
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is the investigation of this type of discontinuities as the simulation tool will be eventually 

used for damage detection purposes.  

The above-mentioned formulation is readily available for application to crack problems, 

by assigning different material properties to the computational grid in the k-space 

formulation. The major difficulty is the computational stability due to the discontinuity 

introduced by inserted cracks. To ensure the stability of the numerical method, the time 

step should be selected properly. Therefore, the  CFL (Courant –Friedrichs-Lewy) 

condition [33] [54], [55] is used as the guideline for the stability control. It is shown that 

the time step in the simulation should be smaller than the time step of the fastest wave 

travelling across one mesh. The CFL condition relates the mesh size and the time step in 

the numerical model as mentioned in [54], [55]. The CFL number is defined as,  

 
0

0

,

max( )

t

x

V

V
CFL


=



= V

  (2.4.41) 

where ∆𝑡 is the time step and ∆𝑥 is the mesh size, and V0 is the maximum velocity in the 

material. In the derivative calculation, the wavenumber k is replaced by the k-space 

operator in Eq. (0.33). It’s seen that, 

 
sin ( ) ,

2

m
n mn

m m

b t
K j c

b v k




=

=

 (2.4.42) 

where 
nK is the diagonal terms in K in Eq. 0.35. The symbol vm is known to be the phase 

velocity of wave propagation in generalized anisotropic material. It’s also known to be 

the eigenvalue derived from the Christoffel equation as discussed in [56]. Therefore, the 

CFL condition in Eq. 2.4.41 is generalized into the form, 
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0

0

,

max( )

t

x

V

V
CFL


=



= v

 (2.4.43) 

We discussed the CFL condition of the demonstration examples, where the material is 

transversely isotropic. It’s known that for transversely isotropic material, the maximum 

phase velocity along the symmetric axis will be the compressional wave speed VP 

( 11
p

C
V


= ). For isotropic material, the maximum phase velocity will also be the 

compressional wave speed due to the same wave speed in any direction. Therefore, Vp is 

used in the CFL equation in the proposed study. However, for general anisotropic material, 

we should write CFL condition in terms of phase velocity v because it depends on both 

Stiffness matrix and direction. The choice of CFL number should be carefully selected 

considering the balance between computational cost and numerical stability and accuracy. 

The criterion of  CFL number to provide the numerical stability using k-space method is 

also described in [33] [41] [20], such that 

 
sin (

𝜋𝐶𝐹𝐿

2
) ≤

𝑉0

𝑉𝑚𝑎𝑥
 

(2.4.44) 

which provides the stability condition using the ratio between V0 and Vmax, where Vmax is 

the maximum wave speed supported by the physics model.  The left-hand side of Eq. 2.4.44 

is bounded between -1 to 1 due to the nature of sinusoidal function. The condition can be 

easily satisfied by setting the Vmax larger than V0 by refining the grid size of numerical model.  

The other factor needs to be considered is the accuracy of numerical simulation, especially 

when the material is heterogeneous where many cracks and inclusions exist. Such error 

needs to be compensated by refining the mesh size and time step. Based on the Nyquist 
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Sampling Theorem [35], the sampling frequency should be at least twice or higher than the 

highest frequency contained in the signal. Eq. 0.36 shows the relation between the time 

step ∆t and the frequency, 

 ∆𝑡 =
1

𝑓𝑠𝑎𝑚𝑝𝑙𝑒
  

𝑓𝑠𝑎𝑚𝑝𝑙𝑒 ≥ 2𝑓𝑠𝑖𝑔𝑛𝑎𝑙 

(2.4.45) 

 

where fsample is the sampling frequency and fsignal is the highest frequency component in 

the signal. Therefore, fsample should be properly selected to avoid aliasing in the 

simulation. Nyquist theorem can also be represented by the CFL condition based on Eq. 

2.4.46, which is also discussed in the k-space method used in wave propagation in tissue 

in [33], such that, 

 
𝐶𝐹𝐿 ≤

𝑉0

𝑉𝑚𝑎𝑥
 

(2.4.46) 

 

Eq. 2.4.44 and Eq. 2.4.46 give restrictions on the selection of CFL number in 

consideration of stability and accuracy in the k-space method [33] [41] [20]. In the 

current study, CFL number is set to 0.3 for homogeneous material based on a previous 

study [41]. For the model with discontinuity such as cracks and delamination, it’s is 

shown that a CFL number of 0.1 can provide good results for all investigated cases with a 

single crack or a group of cracks in the following examples in Section 4. 

 

2.5. Model Verification and Validation 

2.5.1. 2d Isotropic Solids 
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A simple isotropic material 2D model is verified by comparing the k-space result and the 

FEM result. A 2D aluminum model of 0.1 m by 0.1 m is used for demonstration. The 

material properties are given in  

. A time varying point source is applied in the middle of the model. A sensor is located 

0.05 m from the left of the source. The FEM simulation is done by the commercial software 

ABAQUS using 1,000,000 CPS4R elements. In the proposed framework, only the time of 

arrival and the waveform of the first-time window is important for damage detection 

purpose. Thus, only the first-time window signal is shown in the figure. Results are shown 

in Fig. 2-2. In Fig. 2-2, it’s seen that the time of arrival and wave in the first-time window 

match well between k-space and FEM solutions. The percentage difference is also 

presented in the figure. To quantify the comparison, the compression wave speed is 

estimated using the k-space and FEM and they are compared to the theoretical value, 

respectively. The error in the first-time window between k-space and FEM solution is 

within 6%, respectively as seen in Fig. 2-2. The reference line is added indicating the end 

of the first-time window. In the FEM model, a free boundary is used and reflections using 

FEM can be seen in Fig. 2-2. An absorption boundary layer is used in the k-space model. 

Therefore, only the error of first-time window is compared. 
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Table 2. 1 Compressional wave speed comparison 

 k-space FEM theoretical 

Vp (m s-1) 5077.3 5087.9 5282.1 

    

 

2.5.2. 2d Anisotropic Solids 

Wave propagation in homogeneous, anisotropic material in 2D case is performed and is 

compared with the analytical solution for verification. The analytical solution for apatite is 

provided in [57]. For easy comparison with the analytical solution, the material of the 

demonstration example is also apatite, which is homogeneous and transversely isotropic. 

Material properties are in Table. 2-2. A concentrated force is applied on the horizontal 

direction in the 2D model. The symmetry axis of the material is aligned with the horizontal 

direction. The source is time varying with the shape of the Ricker wavelet [58]. The source 

has a central frequency of 500 kHz with a time delay of 6μs. The 2D model is 20 cm by 20 

Figure 2. 2 Velocity recorded by the sensor in isotropic 2D model  
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cm with the source applied in the center. The model is discretized by 400 by 400 grid points 

in the k-space model. The CFL number is set to be 0.1. 

Table 2. 2 Material properties of apatite 

 C11(Pa) C12(Pa) C13 (Pa) C33 (Pa) C44 (Pa) 𝝆(kg 𝒎−𝟑) 

Apatite 16.7e10 2.31e10 6.6e10 14e10 6.63e10 3200 

Clay shale 6.66e10 1.97e10  3.94e10 3.99e10 1.09e10 2590 

One receiver is in the horizontal direction which is 0.08 m from the source.  The velocity 

on the horizontal direction is compared with the analytical solution [59]. Figure 2. 3 shows 

analytical solution compared with the numerical result of velocity and displacement, 

respectively. Almost identical agreement is observed between the analytical solutions and 

numerical results. To quantify the difference, the relative error is shown together in the 

figure. The highest error is 6% as seen in Fig. 2-3(a) and 5% in Fig. 2-3 (b). 

Figure 2. 3 Comparison of the numerical simulation with analytical solutions, a) 

normalized velocity(left), b) normalized displacement(right) 
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2.5.3.  3d Anisotropic Solids 

The next verification example is the wave propagation in clay shale (i.e., homogeneous 

and anisotropic material) in 3D. Similar problem was solved using the spectral scheme and 

the analytical solution along the symmetry axis was provided in [60]. Again, for 

demonstration purpose, the material used in the 3D model is also clay shale. The size of 

the model is 250 m by 250 m by 250 m with a mesh size of 5 m in all directions in the k-

space model. The source is a Ricker wavelet with the central frequency of 50 Hz and a time 

delay of 0.1 s, which is applied on the top surface in the direction of symmetry axis. The 

receiver is 50 m from the actuator along the symmetric axis. The time step is set to be 

2.958e-4 s and the CFL number is 0.1.  

In order to verify the 3D model, we compared numerical result with the analytical solution 

[60], as seen in Figure 2. 5. Again, almost identical solutions of the analytical methods and 

the proposed numerical framework can be observed. 

Figure 2. 4 An anisotropic model in 3D 
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The convergence on the mesh size is investigated in this section as it is related to the 

computational efficiency and accuracy for large-scale simulations. For damage detection 

problems, signal features are usually employed as the indicators for damage, such as the 

wave amplitude and the time of arrival. In the case of wave propagation in anisotropic 

materials in the 3D domain, it is observed that the wave amplitude is not affected much by 

the mesh size but the time of arrival changes as the mesh size changes as seen in Figure 2. 

6(a). A Central Difference scheme is compared with the Forward Difference in time 

domain. The time of arrival of each waveform is found by setting a threshold value, which 

is shown as the reference line in Fig. 2-6(a) and Fig. 2-6(b). The time of arrival is shown 

in Fig. 2-6(c). Both schemes are converged when mesh size is equal to or smaller than 

6.25m. 

Figure 2. 5 Comparison of the numerical simulation with analytical solutions. a) 

Normalized velocity(left); b) Normalized displacement(right) 
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2.6. Verification of the Crack Model  

Above examples are for the general verification on homogeneous material without 

considering crack-like discontinuities. This section is for the verification of the crack model. 

Since analytical solutions for crack models are rarely found in the open literature, the 

verification is done by comparing the proposed method results with the finite element 

results using ABAQUS. The model is a 0.4 m by 0.1 m with a crack near the left end as 

shown in Fig. 2-7. The crack tip meshing is enriched for the convergence. The element 

type is CPS4R and solved explicitly in the FEM model. A time varying pressure is applied 

on the left boundary to see the wave propagation through crack. The crack in the finite 

element model is a mathematically sharp crack [61]. The crack has a length of 0.08m, 

perpendicular to the length of model and is 0.05 m from the left edge in Figure 2. 7 

Figure 2. 6 Mesh convergence study. a) received wave form for different mesh size using FD 

(Forward Difference); b), received wave form for different mesh size using CD (Central Difference); 

c) time of arrival vs. mesh size for CD and FD  
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The wave amplitude at receivers s1 and s2 are used for the verification purpose. They are 

0.07m and 0.08m, from the left edge, respectively. It should be noted that, since an 

absorption boundary condition is used in the k-space method, the reflected wave from the 

boundary is not considered in the current study as the focus is on the transmitted wave. 

Therefore, only features like time of arrival and amplitude in the first-time window are 

considered in this paper. It is seen that the results of the k-space method agree with the 

FEM results very well in Figure 2. 7. To quantify the results, the relative percent error is 

computed and the highest difference turns out to be 2.6% as shown in Fig. 2-8(a) and 2(b). 

s1 

s2 

crack 

pressure 

Figure 2. 7 2D crack model. s1 and s2 are sensors 
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  In the literature, internal damage (e.g., inclusions and sharp notches) has also been 

modelled in the FEM. This is usually achieved by removing a layer of element in the model 

to create finite width discontinuity. This type of discontinuities is widely seen in structures 

due to the imperfections, manufacturing errors, or a blunted crack due to overloading. A 

numerical model is designed to reflect this scenario. A gap of 8e-2 m is created in both the 

FEM and the k-space model. The other parameters are same with the mathematical crack 

Figure 2. 9 Time profile of velocity recorded by s1 and s2 

Figure 2. 8 Time profile of normalized velocity at sensor s1(left) and s2(right) of crack model 

using FEM gap model and k-space solver 

 



36 

 

model. The results are shown in Figure 2. 9. Again, excellent agreement is observed 

between the FEM solution and the proposed k-space solution. The relative error is 

quantified that the highest error is 3% in both scenarios as shown in Fig. 2-9. 

2.7. Numerical Simulation Results for Representative Engineering Applications 

The previous section focuses on the model verification and validation using simple 

models. Once the proposed method is verified, it can be applied to investigate the 

engineering wave propagation problems with cracks. Three examples are used to 

illustrate the capability of the proposed method: 1) a 2D model with single or multiple 

cracks. This represents the fatigue crack problems in commonly used fuselage structure 

in aircraft; 2) an embedded subsurface crack within an isotropic solid. This represents the 

ultra-high cycle fatigue in metallic components where the crack is usually initiated 

internally. 3) the delamination in 3D anisotropic layered structures. This represents the 

fatigue or impact damage of carbon fiber reinforced composite laminates. Details are 

discussed below. 

2.7.1.  2d Model With A Single or Group of Cracks 

 The simulation target is a 10cm by 2cm aluminum model discretized by 252 by 62 

grids. The grid spacing is 3.68e-2 cm in both directions. A centered crack of 0.6 cm in 

length and one grid spacing in width is considered. The material in the crack is air. The 

density is set to be 1.2041 kg/m3 and the compressional wave speed is 343.2 m/s. A point 

source in the x direction is applied on the top edge. The source is a 5.5cycles tone-burst of 

50 kHz. A receiver is located at 7 cm from the source along x-direction in Figure 2. 10(a), 

where the scale in figure is in mm. It shows the contour of the normalized velocity. 
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Table 2. 3 Material properties of aluminum 

 E(Pa) 𝑮(Pa) v 𝝆(kg𝒎−𝟑) 

aluminum 79Gpa 1.31e10 0.33 2770 

The time history of received wave at the sensor location is shown in Figure 2. 10(b). The 

wave of a non-cracked aluminum model is plotted together for comparison. It is clearly 

seen that the amplitude drops and phase changes due to the existence of crack. This has 

been experimentally observed and explained empirically in [13].  

Figure 2. 10 (a) Contour of normalized velocity of cracked model, (b) velocity at the receiver, non-

crack model (dashed line) and crack model (solid line) 
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Figure 2. 11 Crack distribution at various crack number 

It has been reported that the crack length and the number of cracks both have significant 

effect on the received wave signals [30]. To see the effect of crack number and length on 

wave propagation, parametric studies are performed using the proposed simulation method. 

Distribution of cracks is shown in Figure 2. 11 .The number of cracks starts from 2 to 7. 

Cracks are distributed uniformly where the gap between adjacent cracks is 4 mm. Results 

are shown in Fig. 2- 2-12(a)- (c), where the normalized velocity amplitude and time of 

arrival when different number of cracks is considered at a specific crack length is shown. 

It’s seen that the amplitude depends on number of cracks that the wave amplitude decreases 

with the increase of crack numbers. The time of arrival has a dependence on crack number 

as well that the time of arrival is delayed as the crack number increased. The relationship 

appears to be nonlinear. 
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                                  (a)                                                                                  (d) 

                           (b)                                                                           (e) 

                           (c)                                                                                    (f) 

Figure. 2-12  

Figure 2. 12 (a)-(c) Horizontal velocity of various crack number when the length of each crack is 6 mm, 5 

mm and 2 mm, (d)-(f) Horizontal velocity vs of various crack length when number of cracks is 6,4, and 2, 

respectively 
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The effect of crack length on wave propagation is also discussed. Figure 2. 12(d)-(f) 

shows received wave in the case of different crack length when the number of cracks is 

constant in each figure. For small crack lengths, the change of waveform is not 

significant. Amplitude and time of arrival of crack length and crack numbers are 

compared to see their effect on wave propagation. It’s seen when the crack length is 

bigger than 3 mm in this case, the wave amplitude decreases significantly as the crack 

length increases as shown in Figure 2. 13(a). The time of arrival also increases as the 

increase of crack length as shown in Figure 2. 13(b). There is a sudden jump on time of 

arrival when number of cracks increased from 3 to 4 at the same time the crack length 

equals 6mm and 7 mm. Compared with the effect of the number of cracks, the crack 

length has much more significant impact on the wave amplitude and the time of arrival.                                        

(a)                                                                            (b) 

 

2.7.2. Delamination In 3d Isotropic Solids 

Figure 2. 13 (a)-(c) Horizontal velocity of various crack number when the length of each crack 

is 6 mm, 5 mm and 2 mm, (d)-(f) Horizontal velocity vs of various crack length when number 

of cracks is 6,4, and 2, respectively 
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The example is aluminum material with a disc-like delamination in the 3D domain. 

Material properties are shown in Table. 2-3. The model is 0.05 m by 0.05 m by 0.001 m 

and is discretized by 43 by 43 by 22 elements. The location of the damage is shown in 

Figure 2. 14. The damage is 4.55e-5 m from the top surface. A total of 11 receivers (A1-

S7, S9-S12) and one actuator (S8) are placed in a circular manner on the surface. The radius 

of the sensors is 0.2 m.  

Sensor 8 excites a tone-burst signal and other sensors are receivers. The time profile of 

horizontal velocity is shown in Figure 2. 15. Again, current study focuses on the 

waveform in the first-time window and time of arrival since they are important features in 

damage detection problems. The waveform of pristine conditions (or no damage) in the 

first-time window are shown together for comparison. The behavior of wave propagation 

is complex and needs further investigation in the future. 

Figure 2. 14 Illustration of the model of 3D isotropic solid with embedded damage 
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2.7.3. DELAMINATION IN 3D ANISOTROPIC LAYERED SOLID 

Composite laminates with delamination is modelled to investigate effect of delamination 

on wave propagation in composites. The material is Torayca T700G unidirectional carbon-

prepreg material [30]. The material is widely used in aircraft and sports goods. Material 

 (a) Normalized Horizontal velocity at Sensor 1  (b) Normalized Horizontal velocity at 

Sensor 4 

 (c) Normalized Horizontal velocity at Sensor 2  (d) Normalized Horizontal velocity at Sensor 12 

Figure 2. 15 Normalized velocity at different receivers 
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properties are provided in Table 2. 4. The laminate has 12 plies with each ply in different 

fibre direction. The geometry is 0.02 m by 0.015 m by 0.0024 m for demonstration purpose. 

The fiber direction of each ply from top surface to bottom surface is [0°/ 90°/ 90° /45°/ -

45°/ 90°/90°/ -45°/ 45°/ 90°/ 90°/ 0°], respectively. Total of 6 pairs of sensors are attached 

on top surface as shown in Figure 2. 16. S5 is the actuator exciting a 5.5 cycles tone-burst 

of 150 kHz.  The location of a square delamination is shown in Fig. 2-16. The delamination 

is modelled as a separation between the Ply 5 and Ply 6.  

 

Table 2. 4 Material properties of Torayca T700G 

E11(Gpa) E22(Gpa) E33(Gpa) G12(Gpa) G23(Gpa) G13(Gpa) ν12 ν23 ν13 

127.5 8.4 8.4 6.2 3.4 6.2 0.31 0.36 0.31 

Figure 2. 16 Composite laminate with delamination between plies 

Ply1 

Ply12 
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  shows the time profile of wave propagation recorded by different sensors. The wave 

recorded by sensor 3, 5 and 9 in the delamination model show no major difference with the 

wave of non-delamination (pristine) model. For sensor 2,4 and 6, it’s found that the wave 

going through the delamination area contributes to the amplitude decay, but almost no 

difference in the time of arrival compared to the wave in the non-delamination model. 

Comparison of the waveform from sensor 6 and sensor 9 with the results of pristine model 

are shown for brevity, respectively. Again, it is shown that the delamination has less impact 

on the received signal which was also mentioned in [30]. 

2.8. Computational Efficiency of Proposed Framework  

As mentioned in the previous sections, the implementation of k-space method highly 

increases the computational efficiency. To quantify the efficiency, the CPU time of 2D 

model using the proposed framework is compared with the classical FEM solution. A 2d 

aluminum model like previous examples are used for demonstration. The waveform is 

not shown in this section for brevity. 

 (b) Horizontal velocity at sensor 9  (a) Horizontal velocity at sensor 6 

Figure 2. 17 (a), (b) Horizontal Velocity at different receivers 
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The model is 0.1m by 0.1 m. The mesh size of the k-space model and FEM model are 

both 1e-3m. A 3.5 cycles tone-burst of 100khz is excited near the edge of the model. For 

accurate comparison, the FEM model and the k-space model are both coded in 

MATLAB. The CPU time of proposed framework is compared with the time using the 

FEM solver in MATLAB. The quantitative result is shown in Table 2. 5. It’s seen that the 

proposed framework is about 19 times faster than the classical FEM solver. The superior 

efficiency the proposed framework will benefit the large-scale models in real-world 

engineering problems. 

Table 2. 5 CPU time comparison 

Method CPU time(s) 

k-space 5.5433 

FEM 94.6291 
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2.10. Appendix 

The detailed derivation of Eq. 2-6 is discussed as below. An example is given to show the 

term in the bracket of Eq. 2-6 is the divergence of stress in Eq. A1. A Voigt Notation Cjp 

is used for stiffness matrix C in Eq. A1. The details of derivation of k-space operator and 

implementation on stress and velocity terms in x-direction is discussed here as shown in 

Eq. A2. 
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3. TOMOGRAPHIC DAMAGE IMAGING BASED ON INVERSE ACOUSTIC 

WAVE PROPAGATION IN K-SPACE USING ADJOINT METHOD 

3.1. Abstract 

A novel damage imaging of engineering structures and materials methodology using the 

inverse wave propagation in k-space with adjoint method is proposed in this paper. The 

proposed methodology consists of two parts: the wave propagation solution algorithms 

for elastic solids in k-space and adjoint method-based optimization algorithms for 

damage imaging. One major advantage of the proposed method is the superior 

computational efficiency compared to the classical finite element method-based wave 

propagation and gradient-based optimization algorithms. The k-space formulation for 

wave propagation in 2D and 3D solids are discussed first. Adjoint method and a modified 

conjugate gradient method is presented for the inverse problem of damage imaging. 

Following this, parametric studies for measurement duration, number of sensors, noise 

effect, and computational efficiency are discussed in detail.  Next, demonstration 

examples for concrete structures with and without reinforcement are presented. Several 

conclusions and future work are given based on the proposed study. 

Key words: k-space, adjoint, damage detection, imaging, tomography 

3.2. Introduction 

Aging-related damage and failure in structures, such as fatigue cracking, corrosion, and 

delamination, are critical for structural integrity and early detection of damage is 

beneficial for prognosis and risk management of aging infrastructure system. In addition, 

most engineering structures have embedded defects such as voids, cracks, inclusions, etc. 
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from manufacturing.  The properties and locations of embedded defects are generally 

unknown and hard to detect in complex engineering structures. Quality control and 

anomaly detection is important for the risk assessment of structures under external 

loadings. 

Non-destructive testing (NDT) and/or structural health monitoring (SHM) are widely 

used for this purpose. Different types of NDT techniques have been proposed for the 

damage detection, such as ultrasound, thermography, eddy current, microwave, and 

others[62][63]. The focus in this study is on the acoustic/ultrasound wave-based detection 

and only the related previous studies are briefly discussed below. Acoustic wave-based 

damage detection can be grouped into two major categories: feature-based damage 

detection and model-assisted damage detection. For feature-based damage detection, 

features from signals (e.g., amplitude, phase change, time of arrival, correlation) are 

extracted and used as indicators of damage. In this approach, the acoustic wave 

propagation model is not directly used for damage identification. For example, a 

SHM(structural health monitoring) technique based on novelty detection for damage 

detection on aircraft panel was discussed in [64]. A comparative study on NDE 

techniques on concrete structures including the  shear wave ultrasound technique, ground 

penetrating radar, semi-coupled ultrasonic tomography were discussed in [65]. The 

techniques mentioned above can detect defects in thick, heavy concrete structures. Other 

techniques such as PCA (principle component analysis), PLS(partial least square) were 

discussed in [66]. A combined feature regression using signal magnitude, phase change, 

and correlation coefficient has been proposed for fatigue damage detection using piezo 

sensor network-induced Lamb waves[13][67]. Other methods, such as the neural 



50 

 

network, was also implemented for damage detection purpose using selected acoustic 

wave features [10]. Neural network-based method has wide applications in engineering 

structures. The highlight is that the method is not sensitive to the model information. 

However, the drawback is the time requirement on training the dataset. The efficiency 

highly depends on the learning rate in data-driven methods [14].The above techniques are 

used to reduce dimensions in damage detection problems and have been proven to be 

very efficient. The general steps of the method are that features are obtained from 

measured data. Regression or machine learning algorithms are applied to represent the 

relationship between selected features and damage sizes and/or locations. 

          For model-assisted damage detection, acoustic wave propagation model is directly 

used for identification or imaging of damage. This usually involves the inverse wave 

propagation solution for imaging. Such problems are consisting of model parameter 

estimation and damage identification.  Most inverse wave propagation problems can be 

treated as an optimization problem where the objective is to minimize deviation of 

simulated sensor responses from the measured responses. Some well-developed 

methodologies based on optimization are briefly reviewed here. A finite element model 

updating method (FEMU) and virtual field method(VFM) based on full-field 

measurements were discussed for damage detection problem[16].  FEMU and VFM need 

information of full-field measurements to compute deviation between measurements and 

numerical estimation. Both methods show good accuracy and work for model of complex 

geometry. The drawbacks are such method can be computationally prohibitive when 

solving large-scale structures. They are also noise-sensitive due to the uncertainties in 

measurement as mentioned in 11. Levenburg-Marquart based method coupled with finite 
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element(FEM) was proposed for material parameter estimation purpose[17]. The 

computation on the Jacobian matrix is required due to the nature of Levenburg method. 

Therefore, this method is also computationally expensive for the large-scale model. 

Similarly, a trust-region algorithm coupled with FEM modeling was proposed for damage 

identification in reinforced concrete [18]. The wide use of FEM for inverse wave 

propagation is due to its maturity in solving the acoustic problems. Damage detection 

usually requires the finer mesh for the high frequency acoustic waves and is not 

computationally efficient for large 3D structures. A time reversal technique using the k-

space wave propagation was applied on photoacoustic tomography in soft biological 

medium[69]. The demonstrated computational efficiency in the imaging reconstruction is 

due to the spectral nature of the k-space formulation and has a great potential for solid 

structures in engineering applications.  

Both damage detection approaches have their own pros and cons. Feature-based damage 

detection is usually very fast and does not involves the inverse wave propagation 

solution.  The key idea is the dimension reduction of signals to achieve the efficient 

damage detection. The disadvantage is that the loss of information due to the feature 

extraction can induce significant uncertainties for the damage detection and reduces the 

resolution. The resolution of the feature-based approach highly depends on the sensing 

path density (e.g., number of sensors permanently installed or the probe scanning steps). 

Model-assisted damage detection is on the opposite side. The damage detection is usually 

slow due to the requirement for the inverse wave propagation solution, which is 

especially true for the large 3D structures.  The benefits for model-assisted damage 
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detection is the ability for high resolution imaging with limited number of sensing paths 

since the entire signal histories are used for damage identification.  

             Based on the above brief review, the motivation of the proposed study is to 

develop very efficient damage imaging technique for 2D and 3D structures using model-

assisted approach. The special focus is on the efficiency of the imaging algorithm as it is 

the major bottleneck of the model-assisted approach. The computational efficiency is 

achieved by two complimentary components. First, a fast forward wave propagation 

solver is needed. A k-space (wavenumber-space) approach [19] is proposed for the 

damage imaging. Classical finite element-based solver is not appropriate for small 

damage detection due to the fine mesh requirement for the high frequency signals. Most 

model-based inverse methods mentioned in 10–13,16 are based on FEM method. 

Compared to classical FEM method, the implementation of k-space method in the 

proposed framework highly speeds up the simulation efficiency and saves computational 

memory [20]. Next, efficient inverse wave propagation algorithms is proposed.  Classical 

gradient-based optimization algorithms usually requires finite difference method for 

gradient calculation, which is prohibitively expensive for large degree of freedoms (e.g., 

damage imaging in 3D structures) [71]. Adjoint method-based optimization algorithms is 

proposed, which avoids the repetitive finite difference calculations for every imaging 

variables. Thus, superior computational efficiency can be achieved by combining these 

two methods together for the damage imaging. 

            Some advantages and uniqueness of the proposed framework are: 1.compared to 

feature- based approach as mentioned in [14], the proposed framework relaxes the 

requirements on measurements and time spent on training data; 2. In the VFM and 
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FEMU method, full-field measurements are required [68]. The proposed framework only 

needs limited measurements to reconstruct the damage. Therefore, the efficiency of 

damage reconstruction is highly improved.  3. The forward problems is based on coupled 

first-order equations, which is easy to solve in mathematical view [21]. 4. Compared to 

the most applications on soft and homogeneous materials using the k-space method, the 

focus is on materials with strong discontinuity widely seen in engineering structures. The 

adjoint method is combined with the k-space method for damage detection purpose. The 

formulation based on this application is given. 5. Sensitivity equations commonly seen in 

inverse problems are also solved using the k-space method to improve the computational 

efficiency. 

The paper is organized as follows. First, the formulation of the damage imaging using the 

proposed methodology is proposed. Forward wave propagation in k-space is briefly 

reviewed. Adjoint-based inverse formulation is discussed in detail and the optimization 

algorithms and flow chart are presented. Following this, engineering representative 

examples are used to illustrate the proposed methodology. The reconstruction of defects 

and rebar in a reinforced concrete structure is studied using the structural information 

shown in [65]. The superior efficiency of the proposed framework is verified by 

comparing with the FEM-based model. As mentioned above, the stability and accuracy of 

inverse problem are related to factors such as the number of measurements, simulation 

duration, and measurement noise [72]. Therefore, a parametric study on measurement 

noise, duration, and the number of measurements is discussed in detail.  
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3.3. Damage Imaging Based on Forward And Inverse Wave Propagation 

This section discussed the proposed methodology in detail. A brief review of the forward 

wave propagation solver using the k-space formulation is given first for the completeness 

of the proposed study. Detailed derivation and verification can be found in [19]. 

Following this, the formulation of the damage imaging and solution algorithm is 

discussed in detail.  

3.3.1. K-Space Method for Forward Wave Propagation Analysis In Damaged Solids 

Model-assisted approach for damage detection require a forward solver to obtain the 

system output under external excitations. The proposed study will use the k-space method 

as the forward solver due to its superior efficiency. The k-space method is based on the 

Pseudo-Spectral method with improved stability and accuracy by introducing the k-space 

operator based on spatial Fourier Transform. The use of k-space operator relax the 

requirement on time step and comparable accuracy is achieved even when a larger time 

step is used [33].  The other advantage of k-space method is the high efficiency due to the 

nature of Fourier series.  The Fourier- based functions can be represented by sinusoidal 

functions and a sinusoidal function can be well represented by at least two points sampled 

per wavelength according to Nyquist-Shannon sampling theorem[73]. Classical finite 

element and finite difference methods require 15-20 points sampled per wavelength. 

Therefore, the k-space method has superior computational efficiency for large scale 

structural applications.  
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Most recent advances of the k-space method are biomedical applications on soft materials 

[33] [38] and isotropic materials[37]. The application of k-space method focuses on the 

strong discontinuity or damage widely seen in structural materials in this paper. 

The k-space method is based on a stress-velocity formulation as shown in Eq. (3.3.1) and 

(3.3.2), where 𝒗 is the component of particle velocity, 𝝈 is second-order Cauchy stress 

tensor and C is a fourth-order stiffness tensor, 

 
𝜌

𝜕𝒗

𝜕𝑡
=

𝜕𝝈

𝜕𝒙
+ 𝒇 (3.3.2) 

 

 𝜕𝝈

𝜕𝑡
=

𝑪

2
(∇𝒗 + ∇𝒗𝑻) (3.3.3) 

 

The above equations are solved numerically in a k-t (wavenumber-time) domain. A k-

space operator 𝛁𝒌 is derived for the computation of spatial derivative based on Fourier 

Transform pair[19],  

 𝜵𝑘(𝒗) = 𝐹−1{𝑘𝑸𝑲𝑸𝑇𝐹(𝒗)} (3.3.4) 

where k is the wavenumber, and Q is the matrix with each column being the eigenvector 

of Christoffel matrix T.  T is a positive definite matrix, which can be written in a eigen-

decomposition form, T=QαQT as discussed in [48]. The matrix K is diagonal matrix and 

Kij=jδijsinc(bi∆t/2), where bi is square root value of the eigenvalue α. F and F-1 is the 

spatial transform pair. The time derivative in Eq. (3.3.1) and (3.3.2) are iteratively solved 

using a first-order Finite Difference scheme, i.e., Eq. (3.3.1) and (3.3.2) can be written in 

discretized form, 
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𝜌

𝒗(𝑡 + 𝟏) − 𝒗(𝑡)

∆𝑡
= 𝜵𝑘(𝝈(𝑡)) + 𝒇(𝑡) (3.3.5) 

 𝝈(𝑡 + 1) − 𝝈(𝑡)

∆𝑡
=

𝑪

2
(𝜵𝑘𝒗(𝑡 + 1) + 𝜵𝑘𝒗(𝑡 + 1)𝑻) (3.3.6) 

where t is the current time step, and the spatial derivative of stress and velocity are 

obtained using Eq. (3.3.3).  The displacement can be easily obtained by integrating 

velocity in time domain. In Section 3.3.2, displacement is used as the variable in the 

inverse computation. 

The steps of k-space method are concluded in the figure below. The numerical 

verification of the accuracy and efficiency of k-space method for 2D and 3D problems 

can be found in [19]. 

 

 

Compute 
𝜕𝑣𝑖(𝑡)

𝜕𝑥𝑚
  

  

Update 𝑣𝑖(𝑡 + 1) 
  

Update 𝜎𝑖𝑗(𝑡 + 1) 
Compute

 
𝜕𝜎𝑖𝑗(𝑡)

𝜕𝑡
 

  

Compute 
𝜕𝜎𝑖𝑗(𝑡+1)

𝜕𝑥𝑗
  

  
  

If t=tend Stop computation 

and save outputs  
  

No Yes 

Set initial value of 

velocity and stress   
  

Numerical model set up: material 

properties; mesh size, etc. 
 

Figure 3. 1 Flowchart Diagram of the k-space method solving forward 

problem 
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3.3.2. Damage Imaging Formulation and Solution Algorithms 

The main objective of this section is to provide the problem statement and formulation of 

the damage imaging framework. The formulation of the damage imaging is treated as a 

constrained optimization problem to inversely identify the material property at each grid 

point in the simulation domain. The objective function is the summation of the squared 

error of model predicted displacements and measured displacements as, 

where the objective S is written as a function of measured displacement Um and predicted 

displacement u. P is the unknown parameter to be estimated. T is the duration of the 

measurement, M is the total number of sensors, and V is the domain of interest. The 

predicted displacement u is obtained by solving the wave propagation equations using the 

k-space method.   

In the proposed study, the objective function is optimized using the constrained CG 

method with the adjoint method. Classical methods of gradient computation such as finite 

difference and central difference methods are time-consuming and computationally 

expensive in a large-scale model. The implementation of adjoint method helps to reduce 

the computation cost on gradient by introducing a Lagrange multiplier.  The adjoint 

method are widely used to solve inverse heat transfer problem and elastography in 

medical imaging, source reconstruction in seismology [74]-[75]. A sensitivity problem is 

discussed first below since the solution is used for the computation of the step size in the 

CG method.  In the following discussion, material stiffness (shear modulus) is used for 

the parameter P. Other material properties, such as density and attenuation coefficient, 

 min {𝑆(𝑃)|𝑆(𝑃) =
1

2
∫ ∫ ∑𝑀

𝑚=1 (𝑢(𝑥𝑚, 𝑡; 𝑃) − 𝑈𝑚(𝑥, 𝑡))
2
𝑑𝑉𝑑𝑡

𝑉

𝑇

0
} (3.3.7) 
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can be used as the parameter P in the similar way. In the sensitivity problem, the 

variational form of the displacement and model parameter is used. The displacement u 

becomes (u+∆u) by adding a perturbation ∆u and the stiffness tensor C becomes (C+∆C) 

along the direction of estimated variable P. The displacement variation ∆𝒖  is a function 

of space coordinate x, time t , and model parameter variation ∆𝑷 , i.e.,   ∆𝒖 =

∆𝒖(𝒙, 𝒕; ∆𝑷). The variation in force and density are canceled out since they are assumed 

to be independent of P. By using the Taylor expansion, the sensitivity equation can be 

expressed as  

 
𝜌

𝜕2∆𝒖

𝜕2𝑡
= ∇ ∙ (∆𝑪: ∇𝒖 + 𝑪: ∇(∆𝒖)) (3.3.8) 

The initial conditions and boundary conditions of the sensitivity problem are, 

 
∆𝒖(𝑥, 0) = 0,

𝜕∆𝒖(𝑥, 0)

𝜕𝑡
= 0 (3.3.9) 

 𝒏 ∙ ∆𝝈 = 0 𝑜𝑟 𝒏 ∙ (∆𝑪: ∇𝒖 + 𝑪: ∇(∆𝒖)) = 0   (3.3.10) 

The form of Eq.0.5 is analogous to the wave equation where the variable is ∆u instead of 

u and the force is ∇ ∙ (∆𝑪: ∇𝒖) instead of f.  Therefore, the solution to sensitivity problem 

can be obtained by the k-space method when the unknown variable is ∆u and external 

force term is ∇ ∙ (∆𝑪: ∇𝒖). Following the sensitivity problem discussion, the adjoint 

problem is discussed below. Based on the chain rule, gradient of the objective function S 

is computed as 

 ∆𝑆(𝑷) = grad𝑆(𝑷)∆𝑷 (3.3.11) 
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Therefore, the variation ∆S along the direction of estimated variable P can be computed 

first and the gradient gradS(P) is derived based on it. Before computing the gradient, the 

objective function need to be modified by introducing a Lagrange multiplier λ (x, t), 

 

𝑆(𝑷) =
1

2
∫ ∑ ∫ (𝒖(𝒙, 𝑡; 𝑷) − 𝑼𝒎(𝒙, 𝑡))

2
𝛿(𝒙 − 𝒙𝒎)𝑑𝑡

𝑉

𝑀

𝑚=1

𝑇

0

𝑑𝑉𝑑𝑡 

−∫ ∫ 𝝀(𝒙, 𝑡) (𝜌
𝜕2𝒖(𝒙, 𝑡; 𝑷)

𝜕2𝑡
− ∇ ∙ (𝑪: ∇(𝒖(𝒙, 𝑡; 𝑷))) − 𝒇)𝑑𝑉𝑑𝑡

𝑉

𝑇

0

 

(3.3.12) 

where 𝛿 is a Dirac function, and the number of sensor m=1…M. The variation ∆S is 

found to be, 

 
∆𝑆(𝑷) = ∫ ∑ ∫ (𝒖 − 𝑼𝒎)𝛿(𝒙 − 𝒙𝒎)∆𝒖𝑑𝑉𝑑𝑡

𝑉

𝑀

𝑚=1

𝑇

0

 

−∫ ∫ 𝜌𝝀
𝜕2∆𝒖

𝜕2𝑡
𝑑𝑉𝑑𝑡

𝑉

𝑇

0

+ ∫ ∫ 𝝀∇ ∙ (∆𝑪: ∇(𝒖) + 𝑪: ∇(∆𝒖))𝑑𝑉𝑑𝑡
𝑉

𝑇

0

 

(3.3.13) 

The second step is to simplify the variation on objective. The first term on the right-hand 

side in Eq. (3.3.16) is straightforward and there is no need to simplify. The second term 

can be expanded by integral by parts, 

 
∫ ∫ 𝜌𝝀

𝜕2∆𝒖

𝜕2𝑡
𝑑𝑉𝑑𝑡

𝑉

𝑇

0

= ∫ 𝜌𝝀
𝜕∆𝒖

𝜕𝑡𝑉

𝑑𝑉|0
𝑇 − ∫ ∫ 𝜌

𝜕𝝀

𝜕𝑡

𝜕∆𝒖

𝜕𝑡
𝑑𝑉𝑑𝑡

𝑉

𝑇

0

 

= ∫ 𝜌𝝀
𝜕∆𝒖

𝜕𝑡𝑉

𝑑𝑉|0
𝑇 − ∫ 𝜌

𝜕𝝀

𝜕𝑡

𝜕∆𝒖

𝜕𝑡𝑉

𝑑𝑉|0
𝑇 

+∫ ∫ 𝜌
𝜕2𝝀

𝜕2𝑡
∆𝒖𝑑𝑉𝑑𝑡

𝑉

𝑇

0

 

 

(3.3.14) 

If the Gauss' theorem is applied to the last term of Eq.(3.3.16), it’s found that, 
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∫ ∫ 𝝀∇ ∙ (∆𝑪: ∇(𝒖) + 𝑪: ∇(∆𝒖))𝑑𝑉𝑑𝑡

𝑉

𝑇

0

= ∫ ∫ 𝛌 ∙ (𝐧 ∙ (∆𝑪: ∇(𝒖) + ∆𝑪: ∇(𝒖)))𝑑𝑆𝑑𝑡
𝑆

𝑇

0

− ∫ ∫ ∇𝛌: (∆𝑪: ∇(𝒖))𝑑𝑉𝑑𝑡
𝑉

𝑇

0

 

(3.3.15) 

By applying the Gauss’ Theorem again to the last term in Eq.(3.3.15), it can be further 

simplified if the commutativity of double dot product is applied[76],  

 
−∫ ∫ ∇𝛌: (𝑪: ∇(∆𝒖))𝑑𝑉𝑑𝑡

𝑉

𝑇

0

= −∫ ∫ ∆𝐮: (𝑪: ∇𝝀)𝑑𝑉𝑑𝑡
𝑉

𝑇

0

 

= −∫ ∫ ∆𝐮 ∙ (𝒏 ∙ (𝑪: ∇𝝀))𝑑𝑆𝑑𝑡
𝑆

𝑇

0

 

+∫ ∫ ∆𝐮 ∙ (∇ ∙ (𝑪: ∇𝝀))𝑑𝑉𝑑𝑡
𝑉

𝑇

0

 

(3.3.16) 

Based on the results in Eq.(3.3.17)-(3.3.19), the variation ∆S is, 
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∆𝑆(𝑷) = ∫ ∑ ∫ (𝒖 − 𝑼𝒎)𝛿(𝒙 − 𝒙𝒎)∆𝒖𝑑𝑉
𝑉

𝑀

𝑚=1

𝑑𝑡
𝑇

0

− ∫ 𝜌𝝀
𝜕∆𝒖

𝜕𝑡𝑉

𝑑𝑉|0
𝑇

+ ∫ 𝜌
𝜕𝝀

𝜕𝑡

𝜕∆𝒖

𝜕𝑡𝑉

𝑑𝑉|0
𝑇 − ∫ ∫ 𝜌

𝜕2𝝀

𝜕2𝑡
∆𝒖𝑑𝑉𝑑𝑡

𝑉

𝑇

0

+ ∫ ∫ 𝛌 ∙ (𝐧 ∙ (∆𝑪: ∇(𝒖) + 𝑪: ∇(∆𝒖)))𝑑𝑆𝑑𝑡
𝑆

𝑇

0

− ∫ ∫ ∇𝛌: (∆𝑪: ∇(u))𝑑𝑉𝑑𝑡
𝑉

𝑇

0

− ∫ ∫ ∆𝐮 ∙ (𝒏 ∙ (𝑪: ∇𝝀))𝑑𝑆𝑑𝑡
𝑆

𝑇

0

+ ∫ ∫ ∆𝐮 ∙ (∇ ∙ (𝑪: ∇𝝀))𝑑𝑉𝑑𝑡
𝑉

𝑇

0

 

(3.3.17) 

 

Based on Eq.(3.3.9) and Eq.(3.3.10), which are the boundary and initial conditions in the 

sensitivity problem, the terms involving 
𝜕∆𝒖(𝒙,𝟎)

𝜕𝑡
  and  the term containing   𝐧 ∙

(∆𝑪: ∇(𝒖) + 𝑪: ∇(∆𝒖))=0 can be canceled. Therefore, Eq.(3.3.17) can be expressed as,  
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∆𝑆(𝑷) = ∫ ∑ ∫ (𝒖 − 𝑼𝒎)𝛿(𝒙 − 𝒙𝒎)∆𝒖𝑑𝑉𝑑𝑡
𝑉

𝑀

𝑚=1

𝑇

0

− ∫ ∫ 𝜌
𝜕2𝝀

𝜕2𝑡
∆𝒖𝑑𝑉𝑑𝑡

𝑉

𝑇

0

+ ∫ ∫ (∇ ∙ (𝑪: ∇(∆𝝀))) ∙ ∆𝐮𝑑𝑉𝑑𝑡
𝑉

𝑇

0

− ∫ 𝜌𝝀
𝜕∆𝒖

𝜕𝑡𝑉

𝑑𝑉|𝑇

+ ∫ 𝜌
𝜕𝝀

𝜕𝑡

𝜕∆𝒖

𝜕𝑡𝑉

𝑑𝑉|𝑇 − ∫ ∫ ∇𝛌: (∆𝑪: ∇(𝒖))𝑑𝑉𝑑𝑡
𝑉

𝑇

0

− ∫ ∫ ∆𝐮 ∙ (𝒏 ∙ (𝑪: ∇𝝀))𝑑𝑆𝑑𝑡
𝑆

𝑇

0

 

(3.3.18) 

If terms related to ∆u are canceled by assigning a proper value of λ in Eq. (3.3.18), the 

derivative of ∆S with respect to ∆u is avoided in the computation, which is a time-

consuming step in the optimization problem. Thus, one can obtain  

 

−𝜌
𝜕2𝝀

𝜕2𝑡
+ ∇ ∙ (𝑪: ∇𝝀) + ∑(𝒖 − 𝑼𝒎)𝛿(𝒙 − 𝒙𝒎)

𝑀

𝑚=1

= 0 (3.3.19) 

Eq. (3.3.19) is called the adjoint problem achieved by canceling ∆u terms in Eq. (3.3.18). 

The final time conditions are satisfied, which are derived by making terms involving  

𝜕∆𝒖(𝒙,𝑻)

𝜕𝑡
 zero in Eq. (3.3.17), 

 
𝝀(𝒙, 𝑻) = 𝟎,

𝝏𝝀

𝝏𝒕
(𝒙, 𝑻) = 𝟎 (3.3.20) 

and the boundary condition of the adjoint problem is, 

 𝒏 ∙ (𝑪: ∇(𝝀)) = 0 𝑜𝑟 𝒏 ∙ 𝛔′ = 0  (3.3.21) 
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One feasible solution to Eq.(3.3.19) is to define a new time variable t’=T-t. A new adjoint 

variable λ’ is defined such that λ’ (x, t’) =λ (x, T-t). By substituting the new time variable 

t’ and λ’ into Eq.(3.3.19), one can obtain 

 
−𝜌

𝜕2𝝀′(𝒙, 𝑡′)

𝜕2𝑡
+ ∇ ∙ (𝑪: ∇𝝀′(𝒙, 𝒕′))

+ ∑(𝒖(𝑇 − 𝑡) − 𝑼𝒎(𝑇 − 𝑡))𝛿(𝒙 − 𝒙𝒎)

𝑀

𝑚=1

= 0 

(3.3.22) 

which is subject to the new initial condition,  

 
𝝀′(𝑥, 0) = 0

𝜕𝝀′

𝜕𝑡
(𝑥, 0) = 0,  (3.3.23) 

The boundary condition is the same as Eq. (3.3.21). It’s seen that the form of Eq.(3.3.22) 

is analogous to the wave equation by replacing displacement u by 𝝀′ and by replacing 

force f by the last term in Eq. (3.3.22). Therefore, the adjoint problem is also solved using 

the k-space method. The original adjoint variable λ can be easily obtained by replacing λ’ 

by λ or set λ (x, t) =λ’ (x, T-t’). The variation ∆S in Eq.(3.3.18) is simplified as, 

 
∆𝑆(𝑷) = −∫ ∫ ∇𝛌: (∆𝑪: ∇(𝒖))𝑑𝑉𝑑𝑡

𝑉

𝑇

0

 (3.3.24) 

Since stiffness is considered as the unknown parameter P, Eq. (3.3.24) can also be written 

as a function of ∆P, 

 
∆𝑆(𝑷) = −∫ ∫ ∇𝛌:(

∂𝑪

∂𝑷
: ∇(𝒖))∆𝑷𝑑𝑉𝑑𝑡

𝑉

𝑇

0

 (3.3.25) 

By substituting Eq. (3.3.25) into Eq. (3.3.10), the gradient term 𝑔𝑟𝑎𝑑𝑆(𝑷) becomes, 
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grad𝑆(𝑷) = −∫ ∫ ∇𝛌: (

∂𝑪

∂𝑷
: ∇𝒖)𝑑𝑉𝑑𝑡

𝑉

𝑇

0

 (3.3.26) 

Eq. (3.3.26) gives the gradient of the objective in terms of the adjoint variable. It is seen 

that the gradient solution does not dependent on the dimensionality (number of unknowns 

in the P vector), which greatly enhance the optimization efficiency.  

Next, a Conjugate Gradient (CG) method combining the above-mentioned adjoint 

method is used for parameter estimation. The general formulation of iterative CG method 

was well-developed and discussed in many optimization problems  [77] [78][79].  Only a 

brief overview is shown here for the completeness of the proposed study. Eq.(3.3.27)and 

(3.3.29) show the formulation of CG, where i is the number of iterations, and P is 

unknown parameter. The value of P is updated along searching direction d iteratively,  

 𝑷𝑖+1 = 𝑷𝑖 + 𝛽𝑖𝒅𝑖 (3.3.27) 

 where 𝛽𝑖 is searching step size. In classical CG, the step size β  is a function of 

sensitivity matrix[72]. In the proposed framework, a line search technique is used to 

simplify the equation so that the step size is in term of ∆u instead of the sensitivity term 

[80]. The expression is shown in Eq. (3.3.28), 

 

𝛽𝑖 =
∑ ∫ (𝑼𝑖

𝑚 − 𝒖𝑖
𝑚) ∙ ∆𝒖𝑖

𝑚𝑑𝑡
𝑇

0
𝑀
𝑚=1

∑ ∫ ∆𝒖𝑖
𝑚 ∙ ∆𝒖𝑖

𝑚𝑑𝑡
𝑇

0
𝑀
𝑚=1

 

 (3.3.28) 

where ∆u is obtained from the solution of the sensitivity problem, Eq. 0.5. The other 

important parameter in CG is the searching direction d, 

 𝒅𝑖 = −∇𝑆(𝑷𝑖) + 𝛾𝑖𝒅𝑖−1 (3.3.29) 
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where initial value d0=−𝛻𝑆(𝑷0), γ  is the conjugation coefficient and the expression is 

shown in Eq. (3.3.28) , which is in the form derived by Polak as mentioned in 11,19. 

 
𝛾𝑖 =

∇𝑆(𝑷𝑖)
𝑇
(∇𝑆(𝑷𝑖) − ∇𝑆(𝑷𝑖−1))

∇𝑆(𝑷𝑖−1)𝑇∇𝑆(𝑷𝑖−1)
 

(3.3.30) 

where gradS is obtained by Eq. (3.3.26) in terms of adjoint variable λ. 

The computation steps are summarized below, 

Step 1. Compute the direct problem Eq. (3.3.1) and (3.3.2) given initial guess of unknown 

parameter P. 

Step 2. Compare the measurements Um recorded by sensors with estimated displacement 

um by computing objective function Eq. (3.3.6).  

Step 3. Set a proper stopping criterion based on the objective, i.e. a threshold ε that if 

S(P)<ε, stop the iterations; If not, go to Step 4, 

Step 4. Solve sensitivity problem Eq. 0.5 save the solution ∆u, 

Step 5. Solve adjoint problem Eq. (3.3.19) and save the solution λ, 

Step 6. Knowing λ and estimated P, compute gradient grad𝑆(𝑷) using Eq. (3.3.25), 

Step 7. Compute conjugation coefficient 𝛾𝑖 using Eq. (3.3.30) and searching step size 𝛽𝑖 

using Eq. (3.3.28), 

Step 8. Update Pi to Pi+1 using Eq. (3.3.27), 

Step 9. Let iteration number i=i+1 and start from Step 1 to Step 8 again. 
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3.4. Numerical Simulations and Demonstration Example 

 Numerical simulation using the proposed methodology is performed in this section. First, 

parametric studies are used to investigate several sensing parameters on the accuracy and 

efficiency of the proposed methodology, such as signal duration, number of sensors, and 

noise level. Next, the proposed methodology is applied to several homogeneous 

(aluminum plate and plain concrete block) and heterogeneous (reinforced concrete with 

steel liner) 3D structures for demonstration. 

3.4.1. Parametric Study 

An aluminum plate of 10cm by 10cm in 2d is modelled using the proposed methodology. 

Material properties are given in Table. 3-2. A total of 30 sensors is attached near edges of 

the plate as shown in Fig. 3-2. Damage of various shapes is defined inside the dashed 

square. Each sensor acts as actuator and receiver.  

                     

 

Figure 3. 2 Sensor layout and predefined damage field 

damage 
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 The sensor has a certain duration of measurement that may affect the inverse imaging 

result. Therefore, the duration tf of 30us, 50us, and 100us are used when the other 

parameters stay the same. The reconstructed modulus distribution when measurement 

duration is 30us, 50 us and 100 us, respectively are shown in Fig. 3-3. It is shown from 

images that the longer duration of signals will improve the imaging. A quantitative 

assessment is shown in Fig. 3-4 by plotting the cross-correlation coefficient of the 

reconstructed images with the true damage image with respect to the signal durations.  It 

is seen that increasing the measurement duration increases the imaging performance 

drastically at the beginning and shows less effect when the measurement duration is 

beyond a certain limit (e.g., 40 us). 

 

 Figure 3. 3Reconstruction when measurement duration is (a) 30us; (b) 50us; (c) 100us. 
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Figure 3. 4 Cross-correlation coefficient plot when tf is 30us, 50us, and 100us.  

Next, the effect of number of sensors on the reconstruction accuracy is discussed. Same 

model as the above one is used. The number of sensors is reduced to 24,17,9, 6, 

respectively and the corresponding result is compared with the one using 33 

measurements. The duration of 100 us is used in both scenarios. It is seen that the 

increase of sensors will improve the imaging resolution, but it is not proportional to the 

number of sensors. For fewer number of sensors, the increase of sensors significantly 

improves the imaging quality. If the number of sensors is beyond a certain number (e.g., 

24 in this case), the imaging is good enough to isolate the damage location and sizes. The 

cross-correlation coefficients with respect to the number of sensors is shown in Fig. 3- 

5(f) for this trend. 
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 Figure 3. 5 Reconstruction result when (a) 33 measurements are taken; (b) 24 

measurements are taken; (c) 17 measurements are taken; (d) 9 measurements are taken; (e) 

6 measurements are taken;(f) cross-correlation coefficient between reconstruction result 

and predefined damage.  

Following this, the effect of measurement noise is discussed. The Gaussian random noise 

of various standard deviation is added to the measurements to see the effect on the 

inverse result.   The same model with duration of 100us and 30 sensors are used. Fig. 3-6 

shows the mean value and the plus/minus standard deviation of reconstruction result 

when noise level of 0.01, 0.1, 0.2 is applied to measurements. In each scenario of certain 

noise, the Monte Carlo simulation technique is used for random sampling. The mean and 

variance of results of 50 Monte Carlo simulations are computed.  The mean value has 

little variation when noise level is increased as shown in Fig. 3-6. The standard deviation 

increases as the noise level increases. Therefore, we conclude that the mean 

reconstruction result is not sensitive to the noise level range in the current investigation. 
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The mean damage imaging for different level of noise are shown in Fig. 3-7. The location 

and shape of damage are well reconstructed in all three scenarios. 

 Figure 3. 6 Mean value with standard deviation of reconstruction result when noise level of 

0.01,0.1,0.2 is added to measurements. 

 

Figure 3. 7 Reconstruction result when level of 0.01,0.1,0.2 Gaussian random noise is added 

in measurements. 

As mentioned in the previous sections, the implementation of k-space and adjoint method 

highly increases the computational efficiency. To quantify the superior efficiency, the 

CPU time of proposed framework is compared with the classical FEM solution with CG 

method under different iterations. The same 2d model is used. The model has 30 sensors 
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and 100us duration. In Fig. 3-8, the CPU time of proposed framework in different 

iterations is shown together with the CPU time using the FEM solver. From Fig. 3-8 and 

Table. 3-1, we can conclude that the proposed framework has superior efficiency 

compared to classical inverse solver. It should be mentioned that the 3D case will have 

even higher computational efficiency due to the large number of degree of freedoms. 

 

Figure 3. 8 Log-log plot of CPU time using k-space method compared with FEM method in 

different iterations.  

Table 3. 1 CPU time comparison  

Number of Iterations 10
0

 10
1

 10
2

 10
3

 

K-space CPU Time(s) 0.4993 3.476 34.0586 330.0564 

FEM CPU Time(s) 7.7128 70.5341 735.4135 6502 

 

3.4.2. Demonstration Examples 

Case 1: Homogeneous Material – Aluminum Plate 

To illustrate the proposed framework, an example of an aluminum plate with embedded 

defects is studied. The model is 100mm by 100mm by 20mm, and 15,625 elements are 

used to discretize the numerical model. A total of 156 sensors are used. Instead of having 
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one fixed actuator, multiple actuators are used by using a ‘flying’ sensor map and the 

input is excited by the actuator in sequence following the scanning line as shown in Fig. 

3-9. The ‘flying’ sensor improves the accuracy of model. The actuator shoots a tone-burst 

of 3.5 cycles, and the center frequency is 150Khz. The embedded damage of various 

shapes is distributed randomly inside the block as shown in Fig. 3-10(b). As discussed in 

the beginning of Section 2, the damage is considered as a reduction in shear modulus. 

The material properties are given in Table. 3-2.  

Table 3. 2 Material properties of aluminum 

 E(GPa) 𝐆(GPa) v 𝛒(kg𝐦−𝟑) 

aluminum 79 26 0.33 2700 

 

                        

Figure 3. 9Aluminum block with sensors in a scanning pattern 

Scanning Line 

x 

y 

z 
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Figure 3. 10(a) Reconstruction of damage in the aluminum block; (b) Pre-defined damage 

embedded in the block. 

A 3D view of the reconstructed and pre-defined damage map is shown in Fig. 3-10. The 

information of the middle cross-section in the xy plane is extracted to have a clear view 

on the reconstruction result.  The synthetic distribution of shear modulus is shown in Fig. 

3-11(b) and the reconstruction result is shown in (a). The result and the error compared to 

synthetic data in the x-direction on A-A' plane and the result in the z-direction(height) on 

B-B' are shown in Fig. 3-12. Very good agreement is observed for both the location and 

magnitude of the shear modulus reduction regions.   
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Figure 3. 11 (a) Reconstruction on the middle slice; (b) predefined damage of middle slice. 

 

Figure 3. 12 (a)Reconstruction of the line on cross-section A-A’ in x direction; (b) Error 

distribution of line in A-A’; (c) Reconstruction of the line on cross-section B-B’ in z 

direction; (d) Error distribution of line in B-B’. 

CASE 2: HOMOGENEOUS MATERIAL – PLAIN CONCRETE 

A’ A 

B 

B’ 
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The proposed framework is used to solve a practical problem in this section. A concrete 

specimen containing voids and flaws is studied. The model was studied using shear-wave 

ultrasound techniques, ground penetrating radar, air-coupled ultrasonic, etc. in [65]. 

Material properties and wave speed are shown in Table. 3-3. The pre-defined concrete 

model is shown in Fig. 3-13(a) where surface crack and honeycombing are on the left 

part of the concrete block. The block is 200 cm by 120cm by 18cm, and the numerical 

model is discretized into 87,516 elements. There are 49 sensors arranged in an indexed 

order on the top surface and the defects are located near the bottom surface. The sensor is 

either actuator or receiver, like previous examples. The actuator is giving a 10Khz tone-

burst of 3.5 cycles. 

 

Figure 3. 13 (a) Predefined damage in concrete; (b) Reconstruction in concrete. 

In Fig. 3-13, the distribution of shear modulus is shown where the honeycombing and 

surface crack are well reconstructed. The predefined distribution of honeycombing and 

cracks are shown in a planar manner in Fig. 3-14(b). The related reconstruction result is 

shown in (a).  
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 Figure 3. 14 (a) Reconstruction damage in 2D; (b) predefined damage in 2D. 

Table 3. 3 Material properties used in plain concrete model. 

Vcompression (ms-1) Vshear (ms-1) ρ(kgm-3) 

7637.6 4082.5 2400 

 

 Comparing the result with the pre-defined damage from Fig. 3-13,14, it’s seen that the 

proposed framework can identify and reconstruct the defects on the surface and inside the 

structure.   

CASE 3. HETEROGENEOUS MATERIAL – REINFORCED CONCRETE WITH 

STEEL LINER 

The above two examples show the applicability of the proposed method for homogeneous 

materials. Realistic 3D structures usually involve multiple phase of materials and is 

heterogeneous, such as composite materials and reinforced concrete structures. A 

honeycombing 

cracks 
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demonstration example is presented to check the applicability of the proposed 

methodology for heterogeneous 3D structures.   The example studied in this section is 

inspired by the concrete structure in nuclear power plant[65] . The model is shown in Fig. 

3-15 that a 40cm by 40cm by 100cm concrete block and a steel plate liner on the inner 

surface is modeled. The numerical model is discretized by 128,000 elements. Corrosion 

is considered happenning on the steel plate contacting the concrete since organic 

materials contacting steel leads to corrosion[82]. Heavy reinforcement is used for the 

required safety of nuclear power plant. Defect 1 and 2 are randomly embedded inside the 

block. The objective is to reconstruct the defects and corrosion through the thickness, and 

the location of rebar. The ‘flying’ sensor map is also used in the numerical model. A total 

of 49 sensors/actuators are placed in an indexed order on the bottom surface. The source 

is a 3.5 cycle tone-burst of 5kHz in z direction.  The reconstruction result is shown in Fig. 

3-16, which is a binarized image to only show the damage part. The pixel value of the 

reconstruction image is normalized to be in range of 0-1, then an optimized threshold of 

0.4 is set to isolating the damages from the model[83].  The pixel value turns to be one if 

its value is bigger than the threshold and are shown in green in Fig. 3-16; it becomes 

blank/zero if the value is bigger than the threshold, as shown in Fig. 3-16. Therefore, only 

the damage part is isolated and displayed. Since the threshold is a constant, it may not 

work perfectly to all different types of damage in the model. Therefore, some of the non-

damaged part is mistaken to be damage and vice versa, as seen in Fig. 3-16. In general, 

the proposed methodology can characterize the overall damage distribution in this large 

3D structure. It is seen that the results for this complex structure is not as good as the 
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homogeneous case. Complex internal deflection of waves makes the identified damage 

very noisy. Both type I and type II errors are seen the image.  

3.5. Numerical Inverse Tomography on Simple Laminated Composites 

In Chapter 3, the inverse tomography on isotropic model is performed, where the tuning 

variable can be one of mechanical properties like Young’s modulus, Shear modulus, 

density and Poisson ratio, absorption coefficient, etc. In composites or anisotropic 

material, the defects have variety of property change where two or more tuning 

parameters should be considered in the model. Demonstration examples of multiple 

parameters deduction in the material is discussed in the following sections. 

3.5.1.   Elastic Constants Damage Reconstruction in Orthotropic Material At Multiple 

Location 

 
Figure 3. 15 Reinforced concrete wall of a 

reactor, rebar and damage distribution  

 

Figure 3. 16 Reconstruction result by setting a 

threshold to only show the rebar and defects.  
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The model is a simple two-layer composites and properties can be found in Table. 3-1. 

The model is 10cm by 10cm by 2mm. Two types of defects are defined, E1 and E2 

reduction which are arbitrarily located on the sample as shown in Fig. 3-7(a). Both 

damages are through thickness. Sensors is located near the edges on the sample. Each 

sensor can act either as actuator or receiver to scan the model surface.  The true damage 

distribution is shown in (c) (e) and reconstruction results are shown in (b) and (d). The 

damage location and value of properties can be well reconstructed. 

 

Figure 3. 17  E1 and E2 reconstruction results 

3.5.2.  Multiple Stiffness Deduction Damage Reconstruction at One Location 

The constitutive relation can be either written in the form of elastic constants, E1, E2, E3 

and Poisson ratio v12,v23, v13. It can be also written in the form of stiffness matrix Cij. The 

advantage of directly using stiffness components is relieving the pain on gradient 

(a) Composites model 

with E1 and E2 damage  

(b) E1 reconstruction.                (c) E1 true distribution 

 

 

 

              (d) E2 reconstruction.                (e) E2 true distribution 
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calculation using multiple chain rule. More specifically, the gradient of objective function 

S w.r.t E1 can be formed as, 

 11 1 23 32

11 12 13

1 11 1 12 1 13 1
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(3.5.1) 

It’s seen that multiple chain rule is used if the tuning variable is elastic constant. The 

additional computational cost can be avoided by using the stiffness components instead 

of elastic constants. The stiffness deduction damage is discussed in the following 

example. Multiple components [c11 c12 c22 c23 c44 c55] have certain level deduction at the 

same time in one location. The material is same as the one using elastic constants.  

Figure 3. 18 Damage reconstruction and true damage of stiffness components 
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The objective function update under each iteration of some stiffness components is 

plotted in Fig. 3-9. The convergence rate will be discussed in the future work. 

Figure 3. 19 The objective function under each iteration of c55, c12 and c22 

 

4. Experimental Validation of The Adjoint Inversion Damage Imaging  

4.1. Abstract 

Aging-related damage and failure in structures, such as fatigue cracking, corrosion, and 

delamination, are critical for structural integrity. Most engineering structures have 

embedded defects such as voids, cracks, inclusions from manufacturing.  The properties 

and locations of embedded defects are generally unknown and hard to detect in complex 

engineering structures. The structures integrity highly depends on the long-term damage 

accumulation. Therefore, early detection of damage is beneficial for prognosis and risk 

management of aging infrastructure system. Quality control and abnormality detection is 

important for the risk assessment of structures under external loadings. 

Non-destructive testing (NDT) and structural health monitoring (SHM) are widely used 

for this purpose. Different types of NDT techniques have been proposed for the damage 
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detection, such as acoustic wave, thermography, eddy current, microwave. The 

advantages of acoustic wave propagation methods are discussed here. The prior 

knowledge of input great facilitates the damage identification based on waveform 

information. Since the waveform from one actuator can be received by multiple receivers, 

any change on received waveform is a strong indicator of damage existence. Therefore, 

the waveform or extracted features are key information of damage detection. The focus in 

this study is on the acoustic wave-based detection method, which is grouped into two 

major categories: feature-based damage detection and model-assisted damage detection. 

Both damage detection approaches have their own pros and cons. Feature-based damage 

detection is usually very fast and doesn’t involve in the solution of the physical model. 

The key idea is the dimension reduction of signals to achieve efficient damage detection. 

The disadvantage is that the loss of information due to the feature extraction can induce 

significant uncertainties and reduces the resolution. The resolution of the feature-based 

approach highly depends on the sensing path density. Model-assisted damage detection is 

on the opposite side. The highlight for model-assisted damage detection is the ability for 

high resolution imaging with limited number of sensing paths since the entire signal 

histories are used for damage identification.  Model-based methods are time-consuming 

due to the requirement for the inverse wave propagation solution, which is especially true 

for the large 3D structures.  

             Based on the brief review, the motivation of the proposed method is to develop 

efficient and accurate model-based damage imaging technique with limited data. The 

special focus is on the efficiency of the damage imaging algorithm as it is the major 

bottleneck of the model-assisted approach. The computational efficiency is achieved by 
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two complimentary components. First, a fast wave propagation solver is proposed, which 

is verified with the classical Finite Element(FEM) solution and the speed is 10-20 times 

faster. Next, efficient inverse wave propagation algorithms is proposed.  Classical 

gradient-based optimization algorithms usually require finite difference method for 

gradient calculation, which is prohibitively expensive for large degree of freedoms.  An 

adjoint method-based optimization algorithms is proposed, which avoids the repetitive 

finite difference calculations for every imaging variables. Thus, superior computational 

efficiency can be achieved by combining these two methods together for the damage 

imaging. A coupled Piezoelectric (PZT) damage imaging model is proposed to include 

the interaction between PZT and host structure. Following the formulation of the 

framework, experimental validation is performed on isotropic and anisotropic material 

with defects such as cracks, delamination, voids. The results show that the proposed 

method can detect and reconstruct multiple damage simultaneously and efficiently, which 

is promising to be applied to complex large-scale engineering structures. 

The formulation of the forward and inverse damage imaging is discussed in previous 

chapters, the focus of this chapter is on the experimental validation on various materials 

with common engineering structures such as cracks, delamination, holes. A novel PZT-

coupled damage imaging model is proposed and validated with experimental data.  The 

major advantages and uniqueness are summarized:  

1. Compared to feature- based approach [14], the proposed framework 

relaxes the requirements on measurements and time spent on training data; 

2. The forward solver uses coupled first-order equations which is easy to 

solve in mathematical view.  
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3. The sensitivity problem is derived and solved using the k-space method 

which helps to improve the computational efficiency.   

4. A novel PZT-coupled adjoint damage imaging is proposed, the interaction 

between PZT and host structures are included in the damage imaging 

methods, which further improves the accuracy compared to the coupled 

FEM models.  

5. The capability of simultaneous multiple damage identification with a 

sparse sensors configuration compared to full-filed measurements methods 

[68]. 

6.  PZT sensors are used to generate and receive waveform data in the 

experiments. The generated wave can  travel long distance which works 

well for large engineering structures with insulation and coating and are 

sensitive to multiple defects[84]. 

7. The proposed study shows feasibility and potential of efficient baseline-

free for multiple damage detection on engineering structures with a sparse 

sensor configuration. 

4.2.  Introduction 

Aging-related damage and failure in structures, such as fatigue cracking, corrosion, and 

delamination, are critical for structural integrity and early detection of damage is 

beneficial for prognosis and risk management of aging infrastructure system. In addition, 

most engineering structures have embedded defects such as voids, cracks, inclusions, etc. 

from manufacturing.  The properties and locations of embedded defects are generally 

unknown and hard to detect in complex engineering structures. Quality control and 
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abnormality detection is important for the risk assessment of structures under external 

loadings. 

Non-destructive testing (NDT) and/or structural health monitoring (SHM) are widely 

used for this purpose. Different types of NDT techniques have been proposed for the 

damage detection, such as acoustic wave, thermography, eddy current, microwave, and 

others[62][63]. The focus in this study is on the damage detection of strong discontinuity 

defects such as cracks and delamination using experimental wave-based method. 

Therefore, only the related previous studies are briefly discussed as the following.  

Crack is one of the most common defect in structures and are indicators of degradation of 

structures integrity. Early detection is necessary to prevent crack propagation which leads 

to possible structure failures. Non-destructive crack detection methods are well 

developed in recent years since fast for this purpose. The state of the art is briefly 

reviewed. Image-based damage detection methods such as Infrared (IR) thermography, 

ultrasonic imaging, thermography are used for surface crack detection[87]. Image-based 

methods has the advantage of high resolution than manual inspection methods. However, 

it requires efficient technique for data processing such as image segmentation and data 

deduction[88].Other methods such as MEMS based Structure Health monitoring(SHM) 

methods used for defect detection in aerospace structures[87]. 

PZT-based wave propagation is widely used in Structure Health Monitoring. It has the 

advantage of nonintrusive, inexpensive, broadband wave generation and lightweight for 

the purpose of in-situ and offline structure inspection[92][93]. Therefore, accurate and 

efficient model of wave propagation using PZT sensors are necessary.  Due to the 
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complex wave propagation pattern especially in composites material and large-scale 

structures, FEM-based model is widely used to study the wave integration with defects. a 

FEM wave propagation model and Neural network method for detection of through-hole 

defect in laminate composites is discussed [94]. A 2d lamb wave interaction with slot-like 

defects in metallic structure using FEM is discussed in,[95] [96]. A Spectral Element 

Method(SEM) is used to simulated PZT induced wave in metallic material[97].  

Some analytical methods are investigated. Analytical method on the  PZT induced wave 

interacting with damage are proposed [98]. Scattering of wave in model with 

discontinuity damage is discussed in [99] .  An integrated PZT sensor plate model in 

metallic material is  proposed based on Mindlin Plate theory[100]. An equivalent nodal 

force solution to model PZT actuator is mentioned in[101].  Some hybrid methods 

combining both numerical  model analytical methods are studied [100][102]. 

To ensure accuracy of model in piezo sensor-based Structure Health Monitoring(SHM), 

it’s essential to integrate direct and converse Piezo electric with the dynamics of the 

structure model. However, the computational efficiency of is the major bottleneck of 

model-based methods. In classical FEM dynamic model, 15-20 nodes should be sampled 

per wavelength is necessary to ensure convergence and accuracy. Therefore, the 

computational cost is heavy especially for large-scale structures and those made of 

anisotropic material.  

The proposed study focus on the above difficulty and the motivation is to develop an 

efficient and baseline-free PZT induced forward and inverse wave propagation model for 

damage detection in isotropic and anisotropic material. The computational efficiency is 



87 

 

achieved by two complimentary components: first, a fast-forward wave propagation 

solver is needed. A k-space approach [19] is proposed for the damage imaging. Classical 

finite element-based solver is not appropriate for small damage detection due to the fine 

mesh requirement for the high frequency signals. Most model-based inverse methods 

mentioned in [10–13],[16] are based on FEM method. Compared to classical FEM 

method, the implementation of the k-space method in the proposed framework highly 

speeds up the simulation efficiency and saves computational memory [20]. Next, an 

efficient inverse wave propagation algorithm is proposed.  Classical gradient-based 

optimization algorithms usually require finite difference method for gradient calculation, 

which is prohibitively expensive for large degree of freedoms (e.g., damage imaging in 

3D structures) [71]. In this paper, an adjoint method-based optimization algorithms is 

proposed, which avoids the repetitive finite difference calculations for every imaging 

variables. Thus, superior computational efficiency can be achieved by combining these 

two methods together for the damage imaging.  

The paper is organized as follows: First, the background and objective of the proposed 

damage imaging, and the state of art of existing damage detection methodology are 

reviewed. The improved model integrated with PZT damage imaging formulation is 

discussed. Demonstration experiments on various materials are performed. The detailed 

experiment preparation and procedures are discussed. Cracks, delamination, voids, which 

are commonly seen defects in engineering structures are reconstructed using the proposed 

method. It demonstrated that the ability of localization and identification the size and 

shape of various defects in the proposed study, which is promising to apply to complex 

structures. finally, some conclusions and future work are drawn based on the above study  
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4.3. Integrated PZT Damage Imaging Model 

4.3.1. Coupled PZT Model Formulation 

The piezoelectric constitutive equation in a strain-charge form is written as 

 𝑆 = 𝑠𝜎 + 𝑑𝐸 Eq.4- 1 

 𝐷 = 𝑑𝜎 + 𝜀𝐸 Eq.4- 2 

In which S is the strain components, s is the compliance coefficient, 𝜎 is the stress tensor, 

d is the piezoelectric coupling coefficient, 𝜀 is the electric permittivity and E is the 

electric field components. The PZT sensor in the tests are type PZT-5A disc from 

Steminc. The material properties and dimension are shown in the Table 4. 1. The PZT 

sensors can work either in an actuator mode when the input voltage is converted to strain. 

The receiver mode vice versa. 

Actuator Mode 

One common method to infer the displacement field for a structural component is done 

using the finite element method as shown in [30], [103]. A simplification is used in the 

proposed method that the equivalent displacement from the piezo sensor (PZT) disc is 

proportional to the electric voltage output of the PZT. The details of this simplification 

can be found in [104].  

The PZT sensor is attached to the surface of the specimen. In the actuator mode, the 

strain in plane induced by an external voltage Vi applied on the PZT sensor is written as,  

 𝜀𝑟𝑎 = 𝑑31𝑉𝑖/ℎ Eq.4- 3 
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 to the surface of the host structure. Therefore, the strain distribution in the thickness 

direction is continuous at the interface between the host structure and PZT surface [105]. 

The radial displacement at the interface is, 

 
𝑑𝑟 =

𝑟𝑝𝑧𝑡𝑑31

ℎ
(
𝐸ℎ(1 − 𝜐𝑝𝑧𝑡)

𝐸𝑝𝑧𝑡
+ 1)𝑉𝑖 = 𝑓(𝑉𝑖) 

 

Eq.4- 4 

where rpzt is the disc radius, εra is the in-plane strain induced by the external voltage. 

 
𝐸ℎ =

𝐴𝐸𝑝𝑧𝑡

𝐸
𝐷 −

𝐸𝑝𝑧𝑡

(1 − 𝜐𝑝𝑧𝑡)
 

Eq.4- 5 

 
𝐴 = (

1 − 𝜐

1 − 𝜐𝑝𝑧𝑡
) 

Eq.4- 6 

 𝐵 = 2𝐸𝐸𝑝𝑧𝑡𝐻ℎ(1 − 𝜐)(2ℎ2 + 3𝐻ℎ + 2ℎ2) Eq.4- 7 

 
𝐶 =

(𝐸2𝐻4(1 − 𝜐𝑝𝑧𝑡
2) + 𝐸𝑝𝑧𝑡

2ℎ4(1 − 𝜐2))

(1 − 𝜐𝑝𝑧𝑡)
 

Eq.4- 8 

 
𝐷 =

𝐸𝐸𝑝𝑧𝑡ℎ(4𝐸𝐻3 + 3𝐸𝐻2ℎ + 𝐴𝐸𝑝𝑧𝑡ℎ
3)

(𝐵 + 𝐶)
 

Eq.4- 9 

where E, Epzt  are the Young’s Modulus, H, h is the thickness, v and vpzt are Poisson’s 

Ratio of the specimen and PZT material, respectively. The equivalent displacement dr is 

applied as an external force f(V) as shown in Eq.4- 3. The forward model is shown in  

Eq.4- 10. The details of the solution to it is discussed in CHAPTER 3. 

 
𝜌

𝜕2𝑢𝑖

𝜕2𝑡
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑓(𝑉) 

 Eq.4- 10 

Receiver Mode 

The PZT sensor can also convert the deformation back to voltage again. The output 

voltage Vo can be expressed as[93], [106], 

 
𝑉𝑜 =

𝐸𝑝𝑧𝑡ℎ𝑑31

4𝐾3𝜖0𝜋(1 − 𝜐𝑝𝑧𝑡)
𝜀𝑟𝑠 

Eq.4- 11 

in which  𝜀𝑟𝑠 is the in-plane strain of the PZT disc in the receiver mode. The in-plane 

displacement ur on the edge of PZT is linear to strain 𝜀 r [104], 
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𝑢𝑟 = ∫ 𝜀𝑟𝑑𝑟

𝑟𝑝𝑧𝑡

0

 
 Eq.4- 12 

Therefore, the output voltage Vo is proportional to ur, which can be written in a short 

form, 

 𝑉𝑜 = 𝐿(𝑢𝑟)  Eq.4- 13 

 

Figure 4. 1 Diagram of the coupled PZT model (actuator and receiver mode) 

Coupled PZT Inverse Formulation 

Objective Function 

The adjoint -based inversion algorithm is discussed in CHAPTER 2. An improved 

integrated PZT inversion formulation is discussed here. The major improvement is 

integration of the piezoelectric effect into the inversion model. Since the major focus is 

on the strong discontinuity type defects such as cracks and delamination, the tuning 

parameter in the formulation is selected to be the material density.  The objective 

function in term of material density ρ is written as, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝑆(ρ)|S(P) =
1

2
∫ ∫ ∑ ∑ (uexp(xm

n , t; ρ) − Um
n (x, t))

2
M

m=1

N

n=1

 dVdt}
V

T

0

 
Eq.4- 14 

 

where the objective S is written as a function of experimental displacement uexp and 

predicted displacement U. T is the duration of the measurement, and M is the total 

number of sensors of each actuator. N is the number of actuators and V is the domain of 

interest. The predicted displacement Um is the solution of the wave propagation equations 

using the proposed k-space method. Given the material of PZT sensor in Table 4. 1, the 
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conversion between electric potential to displacement uexp is obtained as shown in Eq.4- 

11 Eq.4- 13, which can be expressed as uexp = f(V)exp. 

Adjoint problem 

By introducing the adjoint variable 𝝀 into the objective function in Eq.4- 14,  

𝑆(𝑷) =
1

2
∫ ∑ ∑ ∫ (𝑓(𝑉)𝑒𝑥𝑝(𝒙𝒎, 𝑡; 𝑷) − 𝑼𝒎

𝒏 (𝒙, 𝑡)𝛿(𝒙 − 𝒙𝒎))
2
𝑑𝑡

𝑉

𝑀

𝑚=1

𝑁

𝑛=1

𝑇

0

𝑑𝑉𝑑𝑡 

− ∑ ∫ ∫ 𝝀𝒏(𝒙, 𝑡) (𝜌
𝜕2𝒖(𝒙, 𝑡; 𝑷)

𝜕2𝑡
− 𝛻 ∙ (𝑪: 𝛻(𝒖(𝒙, 𝑡; 𝑷))) − 𝒇𝒏)𝑑𝑉𝑑𝑡

𝑉

𝑇

0

𝑁

𝑛=1

 

Eq.4- 15 

 

By using the Gaussian theorem and integral by parts, the variation on S in the direction of 

density is 

∆𝑆(𝜌) = ∑ −∫ ∫ 𝜌𝝀𝒏
𝒅𝟐𝒖𝒏

𝒅𝟐𝒕
𝑑𝑉𝑑𝑡

𝑉

𝑇

0

𝑁

𝑛=1

 
Eq.4- 16 

 

and the gradient δS is approximated by, 

𝛿𝑆 =
∆𝑆(𝜌)

∆𝜌
 = ∑

∆𝑆(𝑃𝑘)

∆𝑃𝑘

𝐾

𝑘=1

= ∑(−∫ ∫ 𝝀𝒏
𝒅𝟐𝒖𝒏

𝒅𝟐𝒕
𝑑𝑉𝑑𝑡)

𝑉

𝑇

0

𝑁

𝒏=1

 
Eq.4- 17 

 

 

Sensitivity Problem 

A sensitivity problem is discussed since the solution is used for the computation of the 

step size in the CG method.  In the following discussion, material density is used for the 

parameter P. Other material properties, such as Modulus and attenuation coefficient, can 

be used as the parameter P in a similar way. The displacement u becomes (u+∆u) by 

adding a perturbation ∆u and the density 𝜌 becomes (𝜌 +∆ 𝜌) along the direction of 

estimated variable 𝝆. The displacement variation ∆𝒖  is a function of space coordinate x, 
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time t, and ∆𝜌 , i.e.,   ∆𝒖 = ∆𝒖(𝒙, 𝒕; ∆𝜌). The sensitivity equation is by using Taylor 

expansion, 

𝜌
𝜕2∆𝒖

𝜕2𝑡
= 𝛻 ∙ (𝑪: 𝛻(∆𝒖)) − ∆𝜌

𝜕2𝒖

𝜕2𝑡
 

Eq.4- 18 

 

The solution of sensitivity problem ∆𝒖 is solved by the proposed forward solver since the 

similarity to the forward wave equation, and the external force becomes −∆𝜌
𝜕2𝒖

𝜕2𝑡
. 

Multiple-path Conjugate gradient optimization 

A CG (Conjugate Gradient) method combining the adjoint method is used for 

parameter estimation. The parameter is optimized with all sensor path information included 

simultaneously. Eq.(3.3.27)and (3.3.29) show the formulation of CG, where i is the number 

of iterations, and P is unknown parameter. The value of P is updated along searching 

direction d iteratively [77]–[79],  

𝜌𝑖+1 = 𝜌𝑖 + ∑ (𝛽𝑖)𝑎𝑐𝑡𝒅
𝑖
𝑎𝑐𝑡

𝑀

𝑎𝑐𝑡=1

 

Eq.4- 19 

 

 where 𝛽𝑖 is searching step size and total of M actuators are activated. In classical CG, the 

step size β  is a function of sensitivity matrix[72]. In the proposed framework, a line search 

technique is used to simplify the equation so that the step size is in term of ∆u instead of 

the sensitivity term [80]. The expression is shown in Eq. (3.3.28), 

𝛽𝑖
𝑎𝑐𝑡

=
∑ ∑ ∫ (𝑼𝒎

𝒏 (𝒙, 𝑡)𝑖 − 𝒖𝒎
𝒏 𝑖) ∙ (∆𝒖𝒏(𝒙𝒎, 𝑡))𝑖𝑑𝑡

𝑇

0
𝑀
𝑚=1

𝑁
𝑛=1

∑ ∑ ∫ (∆𝒖𝒏(𝒙𝒎, 𝑡))𝑖 ∙ (∆𝒖𝒏(𝒙𝒎, 𝑡))𝑖𝑑𝑡
𝑇

0
𝑀
𝑚=1

𝑁
𝑛=1

 

Eq.4- 20 

 

where ∆𝑢𝑛 is obtained from the solution of the sensitivity problem, Eq. 0.5. The 

searching direction d of an actuator is, 

𝒅𝑖
𝑎𝑐𝑡 = −𝛻𝑆𝑎𝑐𝑡(𝜌

𝑖) + 𝛾𝑖
𝑎𝑐𝑡

𝒅𝑖−1
𝑎𝑐𝑡 Eq.4- 21 
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where initial value d0=−𝛻𝑆(ρ0), γ  is the conjugation coefficient and the expression is 

shown in Eq. (28) , which is in the form derived by Polak [11,19]. 

𝛾𝑖
𝑎𝑐𝑡

=
𝛻𝑆(𝜌𝑖)

𝑇
(𝛻𝑆(𝜌𝑖) − 𝛻𝑆(𝜌𝑖−1))

𝛻𝑆(𝜌𝑖−1)𝑇𝛻𝑆(𝜌𝑖−1)
 

Eq.4- 22 

 

where 𝛿𝑆 is obtained by Eq. (3.3.26) in terms of adjoint variable λ. 

The computation steps are summarized as the following, 

1. Compute the direct problem given initial guess of unknown parameter ρ. 

2. Compare the experimental equivalent displacement  f(V)exp recorded by sensors 

with estimated displacement Um by computing objective function.  

3. Set a proper stopping criterion based on the objective, i.e. a threshold ε that if 

S(ρ)<ε, stop the iterations; If not, go to Step 4, 

4. Compute ∆u by solving the sensitivity problem, 

5. Compute 𝝀 by solving the adjoint problem  

6. Given λ and the estimated density 𝜌, compute gradient grad𝑆(𝜌) using Eq. (25), 

7. Compute conjugation coefficient 𝛾𝑖  and searching step size 𝛽𝑖  

8. Update 𝜌 i to 𝜌 i+1 

9. Let iteration number i=i+1 and start from Step 1 to Step 8 again. 

Table 4. 1 Material Properties of PZT-5A 

density(kg/m3) charge constant 

d31(10-12m/V) 

charge constant 

d33(10-12m/V) 

Relative 

dielectric 

constant  

Diameter(mm) 

1780 -190 450 1580 7 

 

4.4. EXPERIMENTAL VALIDATION of DAMAGE IMAGING 
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Experiments are conducted using surface mounted (Piezo-electric) PZT sensors on 

aluminum 2024-T3 and Carbon Fiber Reinforced Polymer (CFRP) T700G. Various shape 

cracks are made on the aluminum sample. The CFRP samples has pre-inserted Teflon 

between plies to model delamination. The wave signals are collected by an automatic 

data acquisition system.  

4.4.1. Experimental Setup 

The test set up is shown in Fig. 4-1. The automatic data acquisition system consists the 

AGILENT A1000 function generator, Tektronix DPO2000 oscilloscope, IA-3000 Relay 

control multiplexer, STEMINC PZT discs are mounted on the sample surface. The laptop 

controls the function generator and oscilloscope to actuate and save waveform signals 

using the LabVIEW program. The sample preparation and experiment procedures are 

summarized: 

Sample Preparation 

Clean the sample with acetone to be prepared for PZT sensor mounting. The sensor 

layout of the aluminum sample is shown Figure 4. 4. The locations of sensors are first 

marked with a pencil on the sample surface. The area is polished with a sand paper to 

have a stable interaction between PZT wafer and the sample and the area is cleaned with 

acetone again. Proper amount of Rapid fuse glue is applied on the bottom surface of the 

PZT wafer. Put the glued side of the sensor on the marked location on the sample and 

apply proper pressure on the top surface of the PZT for 20 seconds until the glue dried. 
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Experiment Procedures 

The data collection process is shown in . First, an Agilent 1000 arbitrary function 

generator excites 20 Volts peak-peak Hanning-windowed 3 cycles tone-burst to the 

common I/O C1 on the MUX trough a BNC cable. The C1 group contains 16 channels 

connected to PZT actuators. The receivers are also connected to the other group of 

channels of C2. For example, an PZT sensor A1 can be the actuator and other PZT S2 to 

S32 are receivers. In next run, sensor Ai can be actuator (i=2, 3, ..., N) and the remaining 

sensors are receivers. A Tektronix DPO2024 oscilloscope acquires the waveform data 

and save the data automatically using a LabVIEW program. The flowchart of the 

experiment setup is shown in Figure 4. 3. The data acquisition system including the 

MUX, oscilloscope and function generator is shown in Figure 4. 2 and Figure 4. 3.  
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Figure 4. 3 Experiment set up- signal generation and data acquisition. 

 

Figure 4. 4 Damage 1 Linear crack on aluminum 2024-t3 sample and PZT sensors layout 

 

Figure 4. 2 Diagram of the experiment setup 
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4.4.2. Isotropic Material 

Experiments Setup 

An 914mm by 914mm by 1.6mm aluminum T2024 plate with a line crack and a void 

defect is used for demonstration. The linear crack is 3.5mm in length and 2mm in height. 

The PZT discs are attached on the surface with a 7mm diameter and 0.2mm thickness. 

The sensor layout is shown in Figure 4. 4. The center frequency of the excitation signal is 

150kz in the range of non-dispersion region in the frequency thickness product curve of 

aluminum [107]. Material properties are given in Table 4. 2.  

Table 4. 2 Material properties of aluminum T2024. 

 Yong’s Modulus(Pa) Shear Modulus(Pa) Poisson Ratio Density(kg𝒎−𝟑) 

aluminum 70e9 1.31e10 0.33 2700 

 

Damage Imaging Results 

The interval of PZT sensor is 4cm.The distance of sensor arrays which are parallel to the 

crack is 0.2m. The sensor array normal to the crack length is 0.3m apart. Total of 20 PZT 

sensors are used which can either work in actuator or receiver mode. The reconstruction 

result of a 3.5 cm linear crack is shown in Figure 4. 5. The result of multiple defects 

including the linear crack and void with diameter of 0.8cm is shown in Figure 4. 6. The 

noise at the PZT sensor location is not eliminated totally by applying a constant 

threshold. This may need further discussion and will be discussed in the future work.  
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Figure 4. 5 Damage Imaging of linear crack 

 

Figure 4. 6 Damage Imaging of multiple defects (void and linear crack) 

4.4.3. Anisotropic Composites Laminate 

Experimental Setup 

Demonstration testing is performed on T700G laminated composites. The ply layup is 

[02/904]s with Teflon inserted at the middle layer which is an artificial delamination. The 

delamination is 2.54cm in diameter. The PZT sensors are Steminc PZT-5A which are 

mounted on the specimen surface. The sensor layout is show in Figure 4. 7. Each PZT 

40 
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40 

40 
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works as an actuator or receiver. The data acquisition system is same as the one in the 

aluminum test. 

Figure 4. 7 Sensor Configuration of Laminated Composites CFRP T700G with center 

delamination 

Damage Imaging Results 

 

Figure 4. 8 Damage Imaging of laminated composites with center delamination 
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Discussion 

The delamination area can be reconstructed using the proposed method. The variation 

caused by the signals can be seen on the right side of the delamination. The uncertainty 

caused by the experimental data should be addressed. The related sensitivity analysis will 

be done in the future work. 

 

5. CONCLUSION AND FUTURE WORK 

5.1. Chapter 2 

A k-space method for wave propagation in damaged anisotropic solids is proposed in 

Chapter I. Numerical examples are used to demonstrate and verify the proposed 

methodology. Several major conclusions are, 

• The proposed k-space formulation with two coupled first order differential 

equations and the wave number correction scheme are shown to be very accurate 

in the simulation of wave propagation in general anisotropic materials in the 2D 

and 3D domain; 

• In the 2D simulation, the crack length has larger impact on the received wave 

amplitude and time of arrival compared to the crack density; 

The combined effect of crack length and crack density is much more complex than a 

simple empirical model can predict, which indicates that it is necessary to use a model-

assisted approach for damage detection in the future; 

• The embedded subsurface crack has less impact on the received signal compared 

to the surface damages in the current investigation; 
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The CFL number needs to be reduced to compensate for the strong discontinuity and to 

ensure the stability in the numerical model. In the simulation examples, the CFL number 

of 0.1 for composites, anisotropic material and 0.3 for isotropic material are used 

respectively, which is shown to perform well for the investigated cases  

•   The current focus is on the forward simulation using the k-space method. Due to 

its superior computational efficiency, the inverse formulation using the k-space 

method should be investigated and will greatly facilitate the damage detection. 

Experimental validation with the proposed methodology is also required and is 

ongoing. Uncertainties associated with the material and measurements need to be 

included in the future for practical applications. 

• A standard grid is used in the proposed study. The staggered grid is known to 

increase stability and accuracy but not required in spectral  as mentioned in [41] 

[109]. Most work using the staggered grid focus on the wave propagation in soft 

material such as tissues and weakly heterogeneous material, and few of them 

focus on solids with strong discontinuities including cracks and delamination to 

the author’s knowledge. It is mentioned that the staggered grid can yield 

inaccurate results or instability problems when the propagation of waves in media 

with high contrast of elastic parameters or strong fluctuations as mentioned in 

[42] [110] [111]. The discussion on standard staggered grid can be also found in 

the Introduction section. As mentioned in [42], the use of staggered-grid 

formulations mitigates problems like Nyquist errors and generation of non-usual 

artefacts when solving first-order wave equations. But the standard staggered-grid 

PSM cannot tackle anisotropy with symmetry lower than orthorhombic. A 
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previous study on this issues can be found in  [42]. Detailed investigation using 

the proposed framework needs further study is listed as future work. 

• The proposed study aims for the damage detection using transmitted waves. The 

first-time window waveform is the key feature in damage detection. The time of 

arrival and amplitude varies if damage exists. An accurate Linear-slip model 

incorporated Discontinues Galerkin method is proposed to study the 

transmission and reflections from fractures in [31]. The authors would like to 

include the discussion on reflected wave in the future work.  

• The proposed framework uses a Forward Finite Difference in time 

discretization. A Central Difference scheme is compared with the Forward 

Difference scheme. It’s found both methods converge around the same mesh 

size. The accuracy and convergence rate using different approximation orders 

need further investigation and details will be included in future work. 

5.2. Chapter 3 

A new damage imaging methodology combining k-space forward wave propagation 

solver and an adjoint method-based conjugate gradient optimization algorithms is 

proposed in Chapter II. Numerical simulations and parametric studies are used to verify 

the proposed methodology and applicability to various engineering structures/materials. 

Several conclusions can be drawn based on the proposed study.  

• It is shown that 10~20 times enhancement for the computational efficiency using 

the proposed methodology for 2D and 3D structures;  
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• The increase of signal duration and sensor numbers will improve the imaging 

quality of the proposed method, but not linearly. The damage detection (location 

and size) can be achieved with a limited number of sensors and measurement 

durations; 

• The noise level appears to have very little effect on the mean reconstruction of the 

proposed methodology;  

• The proposed methodology can be applied for both homogeneous and 

heterogeneous materials. 

Several future research directions are identified below. 

• Experimental validation is required to fully justify the proposed methodology, 

especially for heterogeneous 3D structures. 

• The current approach assumes the damage is related to the shear modulus 

change. This assumption is appropriate for cracking-induced damage as the 

stiffness will drop with minimal change of densities. For other type of 

damages, such as void, swelling, oxidization, and erosion, both density and 

stiffness may change simultaneously. Extension of the proposed methodology 

for simultaneous identification of multiple material property changes will be 

critical and challenging.  

• Large uncertainties associated with the damage and measurements has not 

been systematically addressed. Probabilistic damage imaging will need further 

investigation for the confidence quantification of the damage detection results. 

5.3. Chapter 4 
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An improved forward and inverse damage imaging is proposed based on CHPATER 3. 

The improved model includes the interaction between PZT sensor and the host structure. 

PZT sensor-based methods are widely adopted in damage detection in engineering 

structures such as aircrafts, pressure vessels, pipeline since the generated wave can travel 

long distance for large engineering structures with insulation and coating and are 

sensitive to multiple defects. Also, PZT sensors are lightweight and cost-effectiveness. 

However, due to the complex wave pattern in engineering structures, it’s necessary to 

include the piezo-electric effect into the numerical model to improve the accuracy of the 

damage detection model. The key challenge of the coupled model is the computational 

efficiency especially in large-scale structures. The proposed method focuses on the above 

difficulty and the high efficiency is achieved by a fast k-space forward model and inverse 

adjoint model. Experimental validation is performed on various materials. It shows 

capability of reconstructing multiple damage (crack, void and delamination) 

simultaneously. The proposed method show potential for real-time damage detection in 

the engineering structures. 
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