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ABSTRACT 
   

Advances in technology are fueling a movement toward ubiquity for beyond-the-

desktop systems. Novel interaction modalities, such as free space or full body gestures are 

becoming more common, as demonstrated by the rise of systems such as the Microsoft 

Kinect. However, much of the interaction design research for such systems is still focused 

on desktop and touch interactions. Current thinking in free-space gestures are limited in 

capability and imagination and most gesture studies have not attempted to identify gestures 

appropriate for public walk-up-and-use applications. A walk-up-and-use display must be 

discoverable, such that first-time users can use the system without any training, flexible, and 

not fatiguing, especially in the case of longer-term interactions. One mechanism for defining 

gesture sets for walk-up-and-use interactions is a participatory design method called gesture 

elicitation. This method has been used to identify several user-generated gesture sets and 

shown that user-generated sets are preferred by users over those defined by system 

designers. However, for these studies to be successfully implemented in walk-up-and-use 

applications, there is a need to understand which components of these gestures are 

semantically meaningful (i.e. do users distinguish been using their left and right hand, or are 

those semantically the same thing?). Thus, defining a standardized gesture vocabulary for 

coding, characterizing, and evaluating gestures is critical. This dissertation presents three 

gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation 

methodology, alongside a novel coding scheme for gesture elicitation data that focuses on 

features most important to users’ mental models. Generalizable design principles, based on 

the three studies, are then derived and presented (e.g. changes in speed are meaningful for 

scroll actions in walk up and use displays but not for paging or selection). The major 
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contributions of this work are: (1) an elicitation methodology that aids users in overcoming 

biases from existing interaction modalities; (2) a better understanding of the gestural features 

that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles 

for walk-up-and-use public displays.  
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CHAPTER 1 

INTRODUCTION 

Post-WIMP (windows, icons, menus, pointers) interfaces have existed for over a 

decade, although in limited use. Beginning in 2006 with the release of the Nintendo Wii, 

there has been a market explosion of tracking platforms for post-WIMP interaction. As the 

technology progressed, the time between releases of novel interaction technologies has been 

decreasing dramatically (Figure 1). NielsenWire estimated that as of 2011, 96.7% of US 

households had at least one TV (Nielsen, 2011) and as of January 2012, Microsoft had sold 

18 million Kinect units (Takahashi, 2012). The Kinect gesture-based system began in gaming 

environments, but free space gesture capabilities have since been incorporated into desktop 

interaction. For example, Leap Motion and Intel RealSense partnered with laptop 

manufacturers, such as Asus, HP, and Acer to make gestural interaction available with the 

purchase of consumer PCs (Acer, 2015; Baldwin, 2013).  

More recently, gesture and voice interaction technology has been integrated into 

drones, virtual reality (VR)/ augmented reality (AR) technologies and robotics. In early 2016, 

Yuneec launched the Typhoon H drone, which integrated the Intel RealSense hardware and 

SDK. Also in early 2016, Microsoft and Oculus both released VR products using various 

gestural input methods. The past few years have been witness to a significant introduction of 

robotic greeters into public areas such as airports and malls (Evangelista, 2016; Read, 2017). 

These greeter robots currently use both conversational and touch interfaces as input 

modalities. Some even have face detection capabilities, although they haven’t yet 

incorporated free space gestural interaction.  
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Gestural and voice input technologies are increasingly becoming part of daily life, yet 

the consumer market is still struggling to find compelling use cases and contexts for gesture. 

One of the reasons for this is that there is still a dearth of generalizable design guidelines that 

help make gestural input easy-to-use and intuitive. Some research has been conducted that 

addresses the design issues associated with the demand for increasingly user-centered, 

gesture-based interactions, but there are still many open questions. To date, designs for new 

modalities have primarily been built upon previous systems and what little is known about 

them. While significant research has been conducted to better understand desktop and touch 

interactions, and results from this research have been incorporated into touchscreen 

computer interfaces for home and office use, free space gestures have the potential to go 

well beyond these interfaces.  Despite some possible limitations, free space gestures can have 

rich potential for full body interaction, by allowing for diverse natural user input that people 

use in human-to-human communication daily.  Limitations may include lack of tactile 

feedback, difficulty in discovering gestures, fatigue, and/or gestural ambiguity (the latter 

three are addressed later in this document). Therefore, significant gestural interaction 

research must be conducted to fill critical knowledge gaps relating to each of these issues. 

We need to better understand how these issues impact whether and how researchers and 

interface designers can optimize system designs for user-centered everyday gesture-based 

applications. In tandem with the rise of interface options is an increasingly pressing need for 

insight into gestural interaction – this need exists across the spectrum from gesture discovery 

and definition to characterization and recommendation. This dissertation focuses on 

answering some of these questions, specifically around increasing discoverability, reducing 
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fatigue, and developing a better understanding of users’ mental models when it comes to the 

features of gestures that matter most to their desire to convey meaning.  

Participatory design methods (Schuler & Namioka, 1993), specifically gesture 

elicitation, can be used to appropriately identify gestures that are guessable by a larger user-

base. Existing contemporary research in free-space gestures has limited utility for whole 

body interaction: the bulk of this research is designer-focused, limited by current 

technologies, and developed primarily for hand gesture. Although there has been some 

research conducted recently in full-body or foot gestures for limited contexts of use 

(Alexander, Han, Judd, Irani, & Subramanian, 2012; Grace et al., 2013, 2017). Morris et al., 

found that researcher-defined gestures may not always match up well to user-preferred 

gestures (Morris, Wobbrock, & Wilson, 2010). Gesture elicitation studies (Alexander et al., 

2012; E, E, Landay, & Cauchard, 2017a; Findlater, Lee, & Wobbrock, 2012; Micire, Desai, 

Courtemanche, Tsui, & Yanco, 2009; Morris et al., 2010; M. Nielsen, Störring, Moeslund, & 

Granum, 2004; Wobbrock, Morris, & Wilson, 2009) have successfully combated designer-

centered approaches to touch interaction but have not yet been widely used in the context of 

free-space gestures.  These studies have also identified that the methodology may constrain 

users, through bias or habit (called legacy bias), with existing modalities such as desktop and 

mouse  (Epps, Lichman, & Wu, 2006; Morris, 2012; Morris et al., 2014; Wobbrock et al., 

2009). These biases may provide insights into guessable gestures, but may not take full 

advantage of this novel interaction modality. This suggests ample room, and need, for 

creative thinking about new possibilities for designing free space gestural interactions for 

walk-up-and-use interactions.  The research community could benefit from user-centered 

input as demand grows for "intuitive" interfaces across novel modalities and human cultures. 
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One critical area of research is in developing walk-up-and-use interactions that use 

free space gestures instead of touch or desktop interfaces. Because gestural walk-up-and-use 

interactions do not require users to come into direct contact with the system, they are less 

likely to break or become unreliable with use, although this also means that these systems do 

not provide tactile feedback to users. Additionally, walk-up-and-use systems in contexts such 

as museums, malls and airports can provide users with an easy and intuitive means of 

gathering relevant information (e.g. information about a museum’s archives, the location of a 

store of interest in a shopping center, or which gate your flight is leaving out of). For 

gestural interactions to be intuitive in a walk-up-and-use context, in which the system must 

be self-explanatory and not require prior training, several of the limitations of free-space 

gestural interactions (difficulty in discovering gestures, fatigue, and gestural ambiguity) must 

be addressed. This means the gestures must be: A) Discoverable or guessable – as defined by 

Wobbrock et al. (Wobbrock, Aung, Rothrock, & Myers, 2005), a guessable symbol, or in this 

case gesture is one which allows a user to access the intended referent via that guess despite 

a lack of prior knowledge of the gesture. By definition, walk-up-and-use displays are self-

explanatory, so that anyone can use the system without any prior training, making it possible 

to interact and look up information quickly. Discoverability is both important and still a 

challenge with full-body interactions (Cafaro et al., 2014; Cafaro, Lyons, & Antle, 2018; 

Norman, 2010). B) Easy-to-use – a gesture that is not fatiguing and that is easy for 

participants to physically accomplish. Limitations of existing technologies often require users 

to perform fatiguing and awkward gestures that are prone to result in the “gorilla arm” effect 

(Boring, Jurmu, & Butz, 2009; J. D. Hincapié-Ramos, Guo, & Irani, 2014a; J. Hincapié-

Ramos, Guo, Moghadasian, & Irani, 2014; Ruiz & Vogel, 2015). This discourages users to 



  6 

interact with a display for any length of time. Many elicitation studies ask participants to rate 

gestures based on ease (e.g. (Felberbaum & Lanir, 2018; Wobbrock et al., 2009)  C) Flexible 

and reliable – such that user variability is supported, to account for influences such as culture 

(Cauchard, E, Zhai, & Landay, 2015; E, E, Landay, & Cauchard, 2017b), resulting in a low 

number of errors, and high efficiency with little to no gestural ambiguity (U. Oh & Findlater, 

2013; Sharp, Keskin, Robertson, Taylor, & Shotton, 2015; Wobbrock et al., 2005). To better 

design gestures for walk-up-and-use interactions, we must therefore better understand which 

components of these gestures are semantically meaningful to users and define a standardized 

vocabulary for coding, characterizing, and evaluating gestures. This will allow us to better 

train classifiers that focus on the correct gestural features that distinguish gestures in users’ 

mental models. A lack of understanding of users’ mental models also means that there are no 

generalizable design principles, requiring a new gesture elicitation study to be conducted for 

each new system, making the gesture set contextually useful only for the system it was build.    

In this dissertation, I present three studies using a novel gesture elicitation 

methodology and contribute to the discovery and characterization of a user-centered, 

guessable gesture set(s) for full body interaction in walk-up-and-use systems. Unlike 

traditional gesture elicitation methodologies that ask for only one gesture per action from 

participants, the new methodology asks participants for multiple gestures per action to 

reduce bias from existing modalities, while still producing easily guessable gestures.  

The goal of this approach is to define a standardized gesture vocabulary and 

qualitative coding scheme that will help identify, confirm, characterize, and offer design 

support for, genuinely "intuitive" interface design across walk-up-and-use post-WIMP 

interfaces. This research, therefore, aims to answer the following questions:  
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RQ 1) How do we modify gesture elicitation to reduce legacy bias?  

RQ 2) Which gestural features matter to users and how do they influence a user’s 

mental model about that gesture?  

RQ 3) What are the set of design principles that can be used in the future to design 

gestural interfaces that are discoverable, easy-to-use-and flexible for public 

displays? 

This document is organized as follows: Chapter 2 provides a comprehensive 

overview of the related work in the design of free space gesture sets, the use of gesture 

elicitation methodologies and analysis of their results, how fatigue influences gesture 

performance, and an overview of how human movement is coded and analyzed. Chapter 3 

discusses the first of three studies conducted as part of this dissertation work. This study was 

focused on reducing legacy bias through increasing production and explores the use of 

priming in gesture elicitation studies. Chapter 4 presents the second elicitation study 

conducted, which focused on identifying physical fatigue in gesture and how it relates to user 

preference and discoverability.  Chapter 5 presents the third and final study conducted, 

which was focused on understanding users’ mental models in more detail. The primary goal 

of this final study was to better understand which gestural features are important to users 

and how these features influence users’ mental models, with the aim of better informing data 

collection efforts used to construct classifiers for gesture recognition. Finally, I close with a 

meta-discussion of themes that emerged across the three studies and the set of design 

principles derived (Chapter 6), and a summary of the contributions of this work (Chapter 7).  

The primary contributions of this thesis are: 1) a modified gesture elicitation 

methodology using priming and production to reduce legacy bias, 2) a qualitative coding 
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scheme that better captures users’ mental models. 3) a set of generalizable design principles 

that can be used in the future to design gestural interfaces that are discoverable, easy-to-use 

and flexible for public displays.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

In this section, I provide an introductory overview of the work that has been 

conducted in designing free space gestures for various interactions, both through designer 

specified approaches, as well as via participatory design through gesture elicitation. 

Additionally, I will provide an overview of some of the key elements that affect user 

preference of free space gestures, such as cultural influences and physical fatigue. Finally, I’ll 

provide an overview of how gestures have been coded and analyzed in the past, and why 

these methods are insufficient for coding full-body gestural interaction aimed at identifying 

critical gestural features based on users’ mental models.  

2.1 Free Space Gesture Sets 

Some research has already been conducted to develop free hand gestural languages, 

but many of these studies have been limited in imagination, do not taken full advantage of 

the new interaction modality (such as constraining users to the use of hands only 

interaction), require extensive training, or are in other ways inappropriate for walk-up-and-

use interactions (e.g. requiring users to lie on their backs during the interaction). For 

example, Blackshaw et al. developed a gestural language, addressing hand gestures for 

manipulating an actuated surface (Blackshaw, DeVincenzi, Lakatos, Leithinger, & Ishii, 

2011), but their grammar included only five actions: scaling, selection, translation, rotation, 

and direct manipulation. Such a hands-only grammar has significant limitations for free 

space modalities: it excludes users who lack use of their hands, and fails to accommodate 

alternate sources for and types of gesture. Similarly, Zigelbaum et al. worked with the 

Oblong system (The system also used in the film Minority Report) to develop g-stalt, a 
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comprehensive yet relatively simple gestural interface (Zigelbaum, Browning, Leithinger, 

Bau, & Ishii, 2010) that includes 20 gestures inspired by gesture studies on human-to-human 

communication. Other studies have developed gestural languages that require extensive 

training, which are not appropriate for walk-up-and-use interactions. One such system, 

Charade (Baudel & Beaudouin-lafon, 1993), was developed to allow users to give 

presentations with hand gestures using a data glove to recognize a complex data set. 

Unfortunately, in addition to requiring extensive training, Charade is also limited to 

applications associated with a very specific data set, suggesting associated gestures are neither 

intuitive nor easily generalizable. In a recent survey article, Johnson-Glenberg provides a set 

of design principles for VR in education, but only a few are limited to gesture interaction 

(Johnson-Glenberg, 2018).  

Additionally, much of this research has been designer specified instead of developed 

through participatory design methods, such as gesture elicitation, that are more likely to 

provide insight into discoverable gestures.  In each of these systems designers developed 

gestural languages without input from users, and the tools required considerable training 

before use. The limits of such studies (only hands, not intuitive), suggest a potentially 

significant gap between design and use trends, an increasing liability that adds to the need to 

identify user expectations for interaction with increasingly ubiquitous, novel interaction 

systems.  

User-centered gesture research has also been conducted, but it is difficult to apply 

the results to walk-up-and-use interactions since most studies have not focused on this 

context of use. Oh et al., for instance, looked at whether users prefer using hover or swipe for 

different menu layouts in a Hands-Up system with a ceiling projection (J. H. Oh et al., 2012). 
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They found that it depended upon the projection layout: users preferred hover for radial 

layouts and had no preference for list layouts. While such research does acknowledge the 

need to understand user preferences, it is still artificially constrained, which limits its utility in 

walk-up-and-use scenarios (such as public and/or educational displays), since it assumes the 

user is lying down to interact with a ceiling projection and using an application with fairly 

limited scope and few menu options.   

Another study, conducted by Spiro, uses a webcam-based crowdsourcing application 

called Motion Chain (Spiro, 2012) to study gestural motion.  The system is similar to the 

ESP game developed by von Ahn, L. and Dabbish (von Ahn & Dabbish, 2004). The 

application aims to aggregate a large corpus of gestures with potential utility in machine 

learning, and runs on any computer with a webcam. The application allows users to play one 

of two games: Charades or Chains. Both are based on the popular children’s game, 

“Telephone.” The model has utility and, again, suggests that valuable data comes from users. 

A similar approach can be used to create a large database to help "teach" machines to classify 

patterns across variables. The current limitation of the form is that it neither identifies a full 

gesture set for walk-up-and-use systems, nor distinguishes between what end-users might 

consider "good" or "bad" gestures.  

These examples demonstrate that research does exist that may have relevance in free 

space gesture sets and post-WIMP interaction design, but that the focus of existing efforts 

has been too limited, both technologically and methodologically, to be of significant use in 

everyday contexts. There is increasing need to develop and validate a method for eliciting 

discoverable, human-preferred gesture sets for new modalities. This need, in tandem with 

exponentially increasing market demand for user-centered technology, suggests that user 
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expectations—and design preferences—should inform research. Investigating free space 

gestures requires finding new, less limited elicitation methodologies and gesture set 

definition(s), and then validating potentially discoverable gestures in ways that mimic 

potential everyday interaction with ubiquitous systems. Such research could usefully inform 

design not only in walk-up-and-use displays, but lay a foundation for exploring additional 

free space applications yet to be discovered.  

The goal of this dissertation research, then, is to identify the gestural features that are 

most important to users and to leverage that understanding to specify at least one gesture set 

that could support free space interactions in walk-up-and-use applications. The first order of 

business when exploring novel modalities is to explore them using novel methods, to 

potentially reduce the impact of legacy bias, which will be discussed further in the next 

chapter. The nature of this research is, therefore, necessarily inclusive: initial gesture studies 

are exploratory, both in terms of method and results, and their purpose is to generate 

possibilities that can be validated later. The long-term aim is to identify a genuinely intuitive 

human gesture set that is discoverable by a large user base. For this reason, a new gesture 

elicitation approach must be used.  

2.2 Gesture Elicitation  

User-generated input is critical for any gesture set approaching ubiquity. Many prior 

free-space gesture systems (Baudel & Beaudouin-lafon, 1993; Blackshaw et al., 2011; J. H. 

Oh et al., 2012; Zigelbaum et al., 2010) are designer-specified, despite Morris et al. (Morris et 

al., 2010) showing that user-suggested gestures are not only different from and simpler than 

researcher-authored gestures, but are in fact preferred over those gesture sets defined by 



  13 

HCI professionals. This is a significant finding, underscoring the need for more user-

centered input in design assumptions.  

In lieu of designer-driven approaches, a participatory design methodology called 

gesture elicitation has been used in several studies to design a variety of gestural and speech 

interfaces. Gesture elicitation presents users with referents (an action’s effect) and asks the 

participant to provide symbols (the interactions that could result in that referent). Historically, 

most gesture elicitation studies have only asked participants to produce one symbol per 

referent (or one one-handed gesture, and one two-handed gesture per referent).  

To identify a non-conflicting gesture set, commonly proposed gestures are 

aggregated across participants for each referent by calculating an agreement score (Vatavu & 

Wobbrock, 2015, 2016; Wobbrock et al., 2005). Wobbrock et al. (Wobbrock et al., 2005) 

proposed the use of the following formula to compute the agreement scores of proposed 

gestures:  

Eq. 1: 𝐴" = 	∑ &|()||(*|
+
,

()⊆(*  

In the equation above, r is the referent in the set of all referents R, 𝑃" is the set of 

proposed gestures for referent r, and 𝑃/ is the subset of identical gestures from 𝑃" . This 

agreement score was proposed for studies in which each participant proposed only one 

gesture per referent and was further refined by Findlater et al. (Findlater et al., 2012), in 

which the authors added two correcting factors, which make the equation more accurate as 

shown in (Vatavu & Wobbrock, 2015). The corrected agreement rate used is the following:  

Eq. 2: 𝐴𝑅" = 	
∑ 1

2
|()|(|()|	4	5)7)⊆7*

1
2
|(*|(|(*|	4	5)
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Vatavu and Wobbrock also introduced two additional measures (Vatavu & 

Wobbrock, 2015), a between group coagreement rate(𝐶𝑅("1,"2)) and disagreement rate (𝐷𝑅"), 

which are as follows:  

Eq. 3:𝐶𝑅("1,"2) = 	
∑ ;),1∙	;),2=
)>1

?
, 𝑛 = 5

,
|𝑃|(|𝑃| − 1) 

 

Eq. 4: 𝐷𝑅" = 	−	
|(|
|(|45

∑ &|()||(|
+
,
+()

|(|
|(|45

 

or more simply 

𝐷𝑅" = 	1 − 𝐴𝑅" 

The coagreement rate is used to understand the level of shared agreement between 

two referents. In the formula for 𝐶𝑅, 𝑟5 and , 𝑟, stand for the referents for which the 

coagreement rate is being computed and 𝑛 denotes the number of pairs of participants. 𝛿/,5 

takes the value of 1 if the i-th pair of participants agree for referent 𝑟5 and 0 otherwise. The 

same is true for 𝛿/,, . The authors also defined a k-coagreement rate for 𝑘 > 2 referents.  

Vatavu and Wobbrock further define the between-group coagreement rate that can be used 

to compare groups of participants within a study or across studies (e.g. to compare 

differences between men and women or across age groups) (Vatavu & Wobbrock, 2016). 

This formula is as follows:  

Eq. 5: 𝐶𝑅I(𝐺5, 𝐺,, … , 𝐺L) = 	
∑ ∑ ∑ ∑ ;M,N

|OP|
N>1

|O)|
M>1

Q
P>)R1

Q
)>1

∑ ∑ |S)|∙|SP|Q
P>)R1

Q
)>1

 

where  𝐺5, 𝐺,,… , 𝐺L  are the different groups being compared with 𝑘	 = total 

number of groups being compared, 𝛿T,U is Kronecker’s notation that evaluates to either 0 or 
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1 depending on whether participants 𝑝 and 𝑞 are in agreement or not and the sum goes for 

all pairs of participants selected from all pairs of groups 𝐺/ and 𝐺X , 1	 ≤ 	𝑖	 < 	𝑗	 ≤ 	𝑘.  

By going back and analyzing data from previous studies, the authors found that there 

is a difference between technical and non-technical participants in terms of agreement, 

which shows that legacy bias does have an effect on the gestures that users specify and their 

agreement with one another. They also found difference in agreement between men and 

women and found that touch gestures have higher agreement than free hand gestures, and 

free hand gestures have more agreement than full body.  

To accommodate studies in which an arbitrary number of interactions are proposed 

per referent, Morris (Morris, 2012) proposed the max-consensus and consensus-distinct metrics. 

The max-consensus ratio is equivalent to the percentage of participants that suggest the most 

popular proposed interaction for a referent and is written as follows:  

Eq. 6: Max-consensus = 𝑚𝑎𝑥 `∀()⊆(* &
|()|
|(*|
+b 

The consensus-distinct metric is the percent of the distinct interactions proposed for 

a given referent (or referent/modality combination) that achieved a specific consensus 

threshold among participants. Usually, a default consensus threshold of two is used – this 

means that at least two participants proposed the same interaction. These metrics provide a 

peak and spread of agreement. These various formulas can be used to identify non-

conflicting gesture sets from gesture elicitation studies that users prefer over designer-

specified sets. 

Gesture elicitation has been used in a wide variety of emerging interaction and 

sensing technologies, such as tabletop multi-touch gesture sets ( Epps, Lichman, & Wu, 
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2006; Findlater et al., 2012; Micire et al., 2009; M. Nielsen et al., 2004; Wobbrock et al., 

2009), physical objects, such as pen-based interactions (Frisch, Heydekorn, & Dachselt, 

2009) or mobile phone motion gestures (Ruiz, Li, & Lank, 2011). Few gesture elicitation 

studies have targeted free space gestures. One, conducted by Alexander et al., used gesture 

elicitation to identify foot gestures (Alexander et al., 2012); another study used gesture 

elicitation to identify free-hand gestures for web browsing (Morris, 2012). The latter also 

introduced a multi-user variant to gesture elicitation to allow multi-person teams to suggest 

gestures together. To date, there has been little research targeting gestures that could be 

discoverable in walk-up-and-use public display scenarios.  

A couple of exceptions are presented Maher and Lee (Maher & Lee, 2017). In their 

book, they present two interactive systems, the willful marionette and a walk-up-and-use 

information display for exploring information on courses and faculty at a university campus. 

For the walk-up-and-use display, an elicitation study was run in which participants were 

asked for at least 4 gestures per referent. For the willful marionette, a combination of early 

prototypes and body-storming were used to generate an initial gesture set, which were then 

performed by the marionette through a Wizard of Oz approach during a gesture elicitation 

study with participants. In this study, participants were asked to interact with the marionette 

spontaneously without being given a task or goal. The approach used for the willful 

marionette deviates from the way elicitation studies are usually conducted, but regardless 

provides insight into how users might interact with system requiring gestural input. In both 

cases, the aim was to identify a gesture set for a particular walk-up-and-use interaction that 

was easily discoverable.  



  17 

Eliciting novel gesture sets for new modalities using gesture elicitation also has its 

challenges. In multi-touch interaction’s infancy, for instance, people identified gestures that 

did not take full advantage of the capabilities of the new modality; they used one finger to 

interact rather than leveraging multi-touch input  (Ryall, Morris, Everitt, Forlines, & Shen, 

2006). This suggests researchers must be proactive with their methods and measures and 

prompt people to think beyond familiar, or technologically constrained, human-computer 

interactions to combat legacy bias. Cautions are framed by previous research results (Morris, 

2012), which found, for instance, that gestures users produced were heavily influenced by 

mouse interactions. Considering the ubiquity of these technologies, however, this is not 

surprising—novel systems require novel thinking, and most users resort to habits learned in 

more familiar scenarios. Users mentioned, for instance, that they would pretend their hand 

was a mouse they would use to point at objects on screen. Other studies of user-produced 

gestures have also identified user bias stemming from mouse-based interactions ( Epps, 

Lichman, & Wu, 2006; Wobbrock et al., 2009). 

This survey of related work demonstrated that gesture elicitation is a promising 

methodology to use for identifying a discoverable gesture set for walk-up-and-use 

interactions, but additional research must be conducted in order to encourage users to take 

full advantage of the novel interaction and help them avoid generating gestures based on 

legacy bias.   

2.3 Fatigue in Gestures 

Although users tend to prefer gestures that are specified by them instead of by 

designers (Morris et al., 2010), and these gesture sets are usually more memorable and 

discoverable, prior elicitation studies (Epps, Lichman, & Wu, 2006; Morris, 2012; Morris et 
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al., 2010; Wobbrock et al., 2009) have found that users are biased by familiar interactions 

(e.g., selecting simple gestures where a finger mimics a mouse), such as WIMP (windows, 

icons, menus and pointing) interfaces, touch interfaces, or even interactions with existing 

gestural technologies, such as the Kinect. Legacy bias and can occur because users explicitly 

want to transfer knowledge from past systems to new ones, which can reduce the physical 

and mental strain of interacting with a new modality, or because they assume that there are 

technological limitations that may or may not exist (Morris et al., 2010). For example, due to 

users’ understanding of the technical limitations of 3D motion tracking platforms, they tend 

to specify large gestures that result in the “gorilla arm” effect or the use of a hover gesture to 

select items, based on the Kinect and Microsoft 360 gesture set. These gestures, however, 

violate the primary guidelines provided by Nielsen et al. to avoid fatigue in gestural interfaces 

(M. Nielsen et al., 2004) and put a significant amount of strain on the shoulder joint, which 

is known to fatigue faster than the elbow or wrist (Law & Avin, 2010). In general, legacy bias 

keeps users from producing gesture that take advantage of the new interaction modalities, 

sensing technologies, and application domains and may propagate existing metaphors that 

are no longer relevant (similar to how we still use the floppy disk icon to indicate the save 

action) while also producing gestures that are highly fatiguing and unnatural. For example, 

“hover” is often one of the first gestures produced in elicitation studies, even though it’s 

often the least preferred gesture and highly fatiguing, as the user is required to hold their 

hand in the same position for at least 2 seconds (see Figure 2).  
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In an effort to combat legacy bias, Morris introduced the user of partners (Morris, 

2012; Morris et al., 2014), where two people are asked to produce symbols together so that 

they can build off of one another’s suggestions. The use of partners was inspired by group 

brainstorming methods used in design as common practice such as in (Dow et al., 2011).  

Legacy bias may also have some benefits. Culturally shared metaphors, for example, 

are one reason for legacy bias and shared metaphors may lead to higher agreement scores 

(Wobbrock et al., 2009) and higher discoverability and learnability (Wobbrock et al., 2005). 

Gestures based on metaphors have also been shown to be learned more quickly (Krueger, 

1993). However, Cafaro et al. found that legacy bias did not increase discoverability in their 

study (Cafaro et al., 2018). Köpsel and Bubalo argue that we can benefit from legacy bias, 

because it can be a helpful tool to gently introduce new forms of interaction, such as 

gestures or multimodal interfaces, to the general public (Köpsel & Bubalo, 2015). This 

means that a balance must be struck between the benefits of legacy bias which may lead to 

more easily discoverable gestures and the drawbacks, which include propagating outdated 

metaphors and defining gestures that are more fatiguing and less natural for users. 

 

Figure 2. Instructions on how to perform the hover gesture on the Microsoft Kinect. 
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While many ergonomics studies have been conducted for mouse-based interactions, 

research has only recently shifted its focus on understanding user fatigue in free-space and 

full body gestural interactions. It is clear, though, that fatigue is an important factor in the 

adoption of free-space gestural interactions in order to avoid the “gorilla arm” effect 

(“Gorilla Arm,” n.d.).  As it has been noted by Lenman et al. (Lenman, Bretzner, & 

Thuresson, 2002) gestures that require hand or arm movements without support are likely to 

be difficult for users to repeat or perform for extended periods of time without fatigue. 

Nielsen et al., who provide an overview of the main principles in ergonomics, also note that 

interfaces should avoid forcing users to use repetition or stay in a static position (M. Nielsen 

et al., 2004). They provide the following guidelines for fatigue avoidance in gestural 

interfaces:  

• Avoid outer positions  

• Relax muscles.  

• Relaxed neutral position is in the middle between outer positions  

• Avoid repetition  

• Avoid staying in static position  

• Avoid internal and external force on joints that may stop body fluids. 

Some researchers have begun to apply ergonomics to both touch and free-hand 

gestures. For example, Hoggan et al. have evaluated various features of pinch gestures to 

determine which features have the largest effect on ergonomics (Hoggan, Nacenta, et al., 

2013). In a related study, Hoggan et al. similarly evaluated rotations performed with the 

index finger and thumb (Hoggan, Williamson, et al., 2013). In both of these studies, the 

researchers found that distance, angle, direction and position have significant effects on the 
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ergonomic failure rates and movement speeds of pinch and rotation gestures. Kölsch et al. 

have evaluated the postural comfort of free-hand gestures at stomach height in the 

horizontal plane and found that users are more comfortable when they do not have to reach 

far from their bodies and with interfaces that use both hands for interactions over ones that 

constrain the user to single-hand interactions (Kölsch, Beall, & Turk, 2003). Cabral et al. 

evaluated the use of gestures in virtual reality environments and compared the performance 

of gestures to a mouse (Cabral, Morimoto, & Zuffo, 2005). They found that even the 

completion time of simple pointing tasks were slower than when using a mouse and that 

using gestures for a short time could result in fatigue. Existing relevant principles of 

ergonomics should continue to be applied to free-space and full body gestures. Finally, Lui 

and Thomas ran two experiments: one with command gestures and another with pointing 

and selection gestures (X. Liu & Thomas, 2017). In their first experiment, participants were 

asked to rate how tiring a gesture was and how appealing it was after being given four pairs 

of gestures, one considered less physically difficult to perform than the other (the four pairs 

were, with the more difficult gesture second: pinch / grab, finger tap / palm tap, swipe left / 

swipe up, make a small circle / make a large circle). In the second experiment, participants 

were asked to select objects randomly from a 3D grid under two conditions – one in which 

the objects were close together, and another in which they were 2.2x further apart. They 

found that the more fatiguing a gesture is perceived to be, the less appealing it is to 

participants.  

Qualitative fatigue is often measured through the Borg CR10 scale (Borg, 1998). 

Additionally, work has been conducted in quantitatively evaluating gesture fatigue for arm 

movements. Hincapié-Ramos et al introduced a novel measure, the Consumed Endurance 
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(CE) metric, which is the ratio of the interaction time and the computed endurance time (J. 

D. Hincapié-Ramos, Guo, Moghadasian, & Irani, 2014). The endurance is the duration that a 

muscle can sustain a level of contraction before requiring rest. In general, measures of arm 

fatigue focus on the shoulder, as this is the joint in the arm that’s most likely to become 

fatigued first (Law & Avin, 2010). This is also true of CE. In their study, the authors found 

that using a bent arm in the vertical center of the body are less fatiguing. Additionally, 

putting items that are often interacted with in regions lower in the interaction plane and 

closer to the arm being used will also reduce fatigue. Finally, the authors evaluated a novel 

keyboard layout, the SEATO, which is less fatiguing than a QWERTY layout for gestural 

interaction without sacrificing speed and with minimal impact on error rate. This method has 

been validated against the Borg CR10 scale, but can currently only evaluate arm fatigue. 

Additionally, the authors have provided a tool that uses input from the Microsoft Kinect 

camera to calculated the CE metric for different poses (J. D. Hincapié-Ramos, Guo, & Irani, 

2014b).  

Jang et al. took a different approach (Jang, Stuerzlinger, Ambike, & Ramani, 2017). 

CE only quantifies fatigue in the moment and can only calculate physical fatigue, not 

perceived fatigue. Because of this, Jang et al. introduced another metric, the three-

compartment muscle (TCM) model, as well as an easier low cost way to estimate max 

shoulder torque, which is required by the model. To measure max shoulder torque, 

experimenters measured the time to fatigue by asking users to hold a weight directly out 

from their body horizontally for as long as they can. The assumption is that users exert 

constant shoulder torque for the duration of the exercise. They validated this measurement 

by comparing it to the measurement from a dynamometer. The authors then conducted an 



  23 

experiment with a mid-air pointing task aimed at collecting subjective fatigue ratings using 

the Borg CR10 scale and biomechanical measurements of fatigue to generate a cumulative 

fatigue model that describes the relationship between the two. Rest periods (between-

subject) and vertical location of interaction (within-subject) were factors that were tested in 

this experiment. They also compared their measure to CE, showing that CE was less 

accurate than their method, as it underestimated fatigue levels by not accounting for 

cumulative fatigue, with estimates dropping to nearly 0 during rest periods. They also found 

that, while their model was accurate, it was highly impacted by the interaction zone (vertical 

location of interaction). 

To understand the effect of fatigue in elicitation studies, Ruiz and Vogel asked 

participants to wear wrist weights while performing gestures during an elicitation study (Ruiz 

& Vogel, 2015). They found that wearing wrist weights deterred users from performing large 

arm gestures and instead elicited a larger variety of gestures (e.g. using feet to indicate 

selections, or head nods) and gestures with lower CE scores than when participants did not 

wear the weights. However, gestures had low agreement scores and it’s unclear whether 

wearing weights while performing a gesture is a valid substitute for prolonged use.  

To reduce fatigue from free-hand gestural interactions with public displays, 

researchers have started to explore at-your-side gestures (M. Liu, Nancel, & Vogel, 2015; 

Siddhpuria, Katsuragawa, Wallace, & Lank, 2017). In (M. Liu et al., 2015), Liu, Nancel and 

Vogel present Gunslinger, which uses leap motion cameras mounted on the thighs of the 

user to track subtle at-your-side gestures, and explore the use of Gunslinger in tandem with 

touch gestures. In this study, the gesture set for both touch and free-space gestures are 

defined by the researchers and hand gestures are limited to finger and hand poses. More 
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recently Siddhpuria et al. conducted an elicitation study for at-your-side gestures with the 

intention of using a smart watch as the tracking input (Siddhpuria et al., 2017). In this case, 

gestures were limited to motion gestures, and could not suggest poses, as these wouldn’t be 

recognized. Although participants generally rated their gestures as highly natural, having low 

fatigue and as generally being socially acceptable, the authors found a low level of consensus 

for elicited gestures. 

2.4 Describing and Annotating Human Movement 

Various fields of research have sought to develop diverse classifications and 

taxonomies of human movement to help shed light on the features of gesture that are 

important to people when communicating with one another or expressing themselves. 

Understanding the features that are important in human-to-computer communication is just 

as important, as this understanding can help designers gain insight into users’ mental models 

and the gestural features that semantically distinguish gestures from one another. This will 

allow designers to better create gesture sets that are discoverable, not fatiguing and flexible 

and this information can be used to more accurately train gesture recognition classifiers. A 

better understanding of users’ mental models through a clear and consistent annotation 

scheme, will also allow for the creation of generalizable design principles. These design 

principles can be used as a starting point for new systems in various contexts, instead of 

having to run a new elicitation study for each system that is designed and built.  

When trying to understand gesture as it relates to speech, various researchers, such as 

Efron (Efron, 1941), Kendon (Kendon, 1986), and McNeill and Levy (McNeill, 1992; 

McNeill & Levy, 1982), have come up with different taxonomies of gestures.  In McNeill 

and Levy’s taxonomy, gestures are classified as either: 
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• Metaphoric: Gestures that portray the speaker’s idea, while relating only indirectly 

to the content of the interaction. 

• Symbolic: Standardized gestures, complete within themselves, without the need to 

accompany speech, and may be less likely to transfer across cultural boundaries. 

• Iconic: Represent the content of speech, such as an entity or action – e.g. making a 

gesture of bending back an object in space while saying "and he bent it back." 

• Deictic: Gestures which locates references and objects with respect to a spatial 

reference frame, e.g. "pointing." 

• Beats: Rhythmic hand gestures accompanying speech that can signal to a listener 

which parts of the speech are more important than others. 

Deixis and iconicity are two dimensions of gesture meaning, not really different 

gestures (Lascarides & Stone, 2009; McNeill, 2005) and their meanings are largely 

improvised in context (Lascarides & Stone, 2009). Unlike the communicative gestures 

presented so far, manipulative gestures are gestures whose purpose is to control some object or 

entity through a tight coupling of the movement of the hand and object being manipulated 

(Pavlovic, Sharma, & Huang, 1997). See (Karam & Schraefel, 2005) for a more 

comprehensive overview of the different gesture taxonomies.  

While these taxonomies may provide insight into whether gestures will be easily 

identified across cultural boundaries, using just this taxonomy does not provide the level of 

detail necessary to understand relevant features of the gestures that are both important to 

users and can be used to train classifiers for future systems.  
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Unlike most studies that look at and code for only hand gestures, Quek et al. (Quek et al., 

2002) and McNeill (McNeill, 1992), in their research, define gestures to include not only 

hand movements, but also full body movements, facial expressions and gaze shifts. To 

analyze gestures used in human-to-human communication, Quek et al. annotated and 

analyzed their data as is seen in Figure 3 and Figure 4. While their work codes the 2D location 

of the gesture in their video, and classifies the gesture based on taxonomy, it does not 

provide the level of detail for classifying 3D gestures. It’s also heavily tied to the linguistic 

description the users are providing, as opposed to being a primary interaction modality. 

Figure 3. Sample of a psycholinguistic analysis transcript from (Quek et al., 2002). 
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In dance, one of the primary ways of expressing gesture is through Laban movement 

analysis (LMA) (Laban & Ullmann, 1971). The major categories used in Laban notation are 

body, effort, shape, and space.  

• Body: Describes how the movement flows through the body.  

• Effort: is about the dynamics of the movement, and describes things such as flow 

(free flowing or bound), weight (light or heavy), time (sustained or quick), space 

(direct or indirect movement).  

 

Figure 4. Hand position, handedness analysis, and F_00 graphs for several frames of a psychoanalysis transcript from 

(Quek et al., 2002). 
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• Shape: is about the form, and the shape qualities include things such as rising / 

sinking (vertical direction), spreading / enclosing (horizontal direction), advancing / 

retreating (sagittal direction).  

• Space: describes the body’s motion in connection to the environment and concerns 

itself with the kinesphere, spatial intention, and geometric observations of the 

movement.  

Several works in HCI have used LMA to better understand gestures (Loke, Larssen, 

Robertson, & Edwards, 2007; Moen, 2005). In (Morris et al., 2014), the authors found that 

the content on the screen may influence the time and weight of gestures. Additionally, 

complementary referents (e.g. scrolling up and scrolling down), will affect the shape (e.g. 

participants may recommend a rising vs a shrinking gesture). While I draw inspiration from 

LMA, especially around gesture path and flow, it is difficult to discriminate some of the 

features of LMA, such as speed (Grijincu, Nacenta, & Kristensson, 2014) and Laban features 

must be calibrated to each individual user (Sikora & Burleson, 2017).   

Recently, Mcaweeney et al. have sought to study ways in which visual representations 

of gestures can be used to communicate gestures supported by a system to users 

(McAweeney, Zhang, & Nebeling, 2018). They began by reviewing 30 gesture elicitation 

studies for touch, air and tangible interaction to produce a taxonomy of gestures. From this 

review, they classified gestures into six dimensions (Body context, Environmental context, 

Perspective, Frame, Color, and Gesture elements) and 26 categories. They then conducted 

an elicitation study to understand user mental models. In this study, they asked participants 

to draw out several representations of gestures based on videos of the acted-out gestures and 

then show this representation to a partner, who acted it out. Once the partner correctly acted 
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out the gesture, the pair co-designed a representation of the gesture for each referent. The 

authors used the taxonomy from study one to code the final 150 co-designed 

representations. Analyzing the content of the representations, they came up with five 

features that nearly all representations articulated: Time, Position, Posture, Motion, and 

Touch. This study provides good insights into features that matter, but focused on touch 

gestures and on communicating those gestures to users via diagrams, not in the features that 

matter when training classifiers to discriminate between user gestures. 

Others, such as Krupka et al. have proposed their own simple languages to define 

hand gestures and have developed a set of tools to show the language can be used for both 

development and gesture recognition (Krupka et al., 2017). Krupka et al.’s language is based 

on 4 predicates - pointing direction, relative location, fingertip touching and finger flexion - 

used to describe hand poses at six points on the hand, the fingertips, and the palm center. A 

gesture is defined by a sequence of hand poses (see Figure 5 below for an example). The 

authors claim that their language can express the basic signs of American Sign Language 

(ASL) phonology and the basis poses used in several current commercial systems.  The 

pipeline was trained on more than 360,000 annotated images of hand poses. Their 

recognition algorithm results in 96% detection accuracy after some training, making this 

system impractical for walk-up-and-use systems, since users first need practice and training 

with the system. Their system is also only focused on hand gestures, meaning that the 

language would need to be extended for full body gestures.  
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Figure 5. Example of a coded hand gestures for (Krupka et al., 2017). 

Unlike (Krupka et al., 2017), Hachaj and Ogiela present a Gesture Description 

Language (GDL) for full body gestures and a classifier for the GDL that was evaluated on 

1,600 movements with an 80.5-98.5% rate of accuracy (Hachaj & Ogiela, 2014). The GDL 

uses key frame descriptions to classify gestures (See Figure 6 below for example gestures 

specified using the GDL). The GDL they describe is not readily designer friendly and due to 

its very specific nature, could accidentally reject gestures that users believe are similar or 

identical based on their mental models. It provides no support for designers to evaluate 

which features matter and which do not (e.g. a swipe with the hand would be encoded 

differently than a swipe with the arm, even though they might be the same to the user). Their 

system was evaluated on an arbitrary set of gestures that most systems out there don’t 

currently use (e.g. hand on head, rotating clockwise and counter-clockwise) and a few that 

are used in existing walk-up-and-use systems, such as clapping and waving. None of the 
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gestures they evaluated had leg movements, even though the GDL is supposed to cover full 

body motion.   

 

 

Figure 6. Examples from the rule-based GDL (Hachaj & Ogiela, 2014). The second example shows the description for 

recognizing a hand clap. 

Finally, researchers studying gesture-based interfaces have focused on identifying 

gestures that are learnable, discoverable, immediately usable (Long, Landay, & Rowe, 1999), 

and memorable (Nacenta, Kamber, Qiang, & Kristensson, 2013). Grijincu et al. have 

therefore focused on enabling further analysis of memorability through the annotation, 

sharing and descriptive analysis of the set of gestures that were generated by participants in 

previous work by the authors (Grijincu et al., 2014).  

While all of this work aims to understand and classify gestures, many require a large 

data set to train on, and few can be used in designing full body interactions for public 

displays by understanding users’ mental models (e.g. of which features are most important to 

them) to group gestures accordingly and better train classifiers. Instead, we need to identify a 

gesture taxonomy that allows for full body motion and can provide better insight into which 

features matter most so as to not end up with trained classifiers that make distinctions 

between gestures that users do not make. 
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CHAPTER 3 

STUDY 1: ADDRESSING LEGACY BIAS 

As previously mentioned, legacy bias is the influence that existing modalities such as 

desktop and mouse interactions, or even existing free-space and full body technologies, have 

on the gestures that people suggest for novel interactions (Morris et al., 2014). This study 

contributed to the identification of legacy bias and explored ways in which researchers can 

conduct elicitation studies to reduce or eliminate legacy bias through changes in priming and 

production, which addresses RQ 1 presented in the introduction of this document. 

Additionally, this study explored the relationship between legacy bias and discoverability and 

ease-of-use.  

In this chapter, I present a modified elicitation methodology based on (Wobbrock et 

al., 2005, 2009) to encourage creativity from participants via priming and production with the 

aim of reducing legacy bias in gesture elicitation studies and identifying new gestures 

appropriate for depth-camera-based interactions. The primary goal is to encourage 

participants to come up with gestures that don’t suffer from the drawbacks of legacy bias 

(specifically the elicitation of fatiguing and unnatural gestures), while still allowing 

participants to come up with gestures that will be easily discoverable. The user of priming was 

inspired by North et al.’s finding that users who performed a task with physical objects 

before using a touch-table were less likely to use only pointing-based interactions (North, 

Dwyer, Lee, Fisher, & Isenberg, 2009). Priming is already a well-established phenomenon, in 

which prior stimuli influence how people perceive and react to future stimuli (Wentura & 

Degner, 2010). In this study, I explore the use of both kinesthetic and video priming, as 

described in the modifications section below (3.1.1).  
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For production, standard gesture elicitation methods ask users to produce a single 

gesture to cause the action depicted by the referent prompt (Wobbrock et al., 2005, 2009). In 

a few cases, participants have been asked to perform a single gesture with one hand, and 

another gesture with two hands. To reduce legacy bias, in this study I modified the production 

methodology such that each participant was asked to produce as many gestures as they could 

come up with (with the experimenter aiming for between five and nine gestures each). By 

eliciting multiple gestures per referent, the elicitation method attempted to reduce bias from 

other interaction modalities, and encourage user creativity, similar to how increased 

production is used in ideation processes in design. The hypothesis is that increasing 

production would lead to identifying gestures that are more appropriate for free space 

interactions while maintaining discoverability, and improving reliability and ease of use by 

getting participants to move beyond the first few gestures, which are more likely to be 

influenced by legacy bias. Iteration and increased production have already been shown to be 

beneficial in design (Dow et al., 2010, 2011; Dow, Heddleston, & Klemmer, 2009; J. Nielsen, 

1993; Terry & Mynatt, 2002). In the ESP image-labeling game, “taboo” words are listed to 

prevent users from always proposing obvious tags for images (von Ahn & Dabbish, 2004). 

Additionally, Dow et al. found that forcing designers to generate a large amount of initial 

ideas resulted in final designs that were better than if the designers only generated a small 

number of initial ideas (Dow et al., 2011).  Therefore, requiring multiple suggestions for each 

referent would help participants move beyond biases stemming from years of mouse-based 

interactions and allow them to move past the first few biased gestures to produce more 

novel gestures or iterate on initial gestures, ultimately specifying more appropriate gestures 

for the interaction modality. 
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The primary aim of this study is to address RQ 1 (How do we modify gesture 

elicitation to reduce legacy bias?). A secondary aim was to understand what variables affect 

the types of gestures produced (RQ 2 and RQ 3). Therefore, the following research 

questions were addressed in this study: 

1) How does increased gesture production affect user preference and the types of gestures 

elicited?  

2) Does priming affect the number or types of gestures elicited? 

3) Which variables (such as the layout of the objects on screen and the number and 

type of objects users are asked to interact with) affect the gestures produced?  

3.1 Method 

To reduce legacy bias, we modified the standard elicitation methodology (Wobbrock 

et al., 2005, 2009) with priming and production, as mentioned previously. In the study, we chose 

to focus on a single possible walk-up-and-use application that would allow us to further 

explore question 3 and would benefit from user-generated input: faceted browsing. Faceted 

browsing (Yee, Swearingen, Li, & Hearst, 2003) is a method for navigation that allows users 

to explore large collections of data by filtering along multiple categories and is a common 

way of interacting with product catalogues on e-commerce sites and other metadata-rich 

“big data” collections. 

Participants filled out a short demographic survey before they came to the lab. Once 

the participants came to the lab, they were provided with a brief introduction of what they 

would do that day, followed by either the video priming, or kinesthetic priming for those in 

one of the two priming conditions. The remainder of the study was spent on the gesture 

elicitation, with the first referent used as a warm up so that participants got used to the task 
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and to thinking aloud. Participants were videotaped by several cameras mounted in the 

ceiling for the duration of the study. The study lasted a total of 90 minutes and participants 

were compensated with a $50 gift card to the company store where the study was conducted. 

 

3.1.1 Modifications for Eliciting Creativity 

Priming: Participants were randomly assigned to one of three conditions: no priming, 

video priming, or video and kinesthetic priming. Six participants were assigned to each priming 

condition, and five assigned to the no priming condition. Participants in the no priming 

condition were given a brief amount of time (about 5 minutes) to relax and become 

accustomed to the space. Video priming participants were asked to watch a three-and-a-half-

minute video comprised of clips of gestures in different settings, including gestures used in 

various sports, comedy acts and silent movies, and landing signals for aircraft (Figure 7). 

Video and kinesthetic priming participants were first shown the same video as in the video 

priming condition and then asked to perform the following 15 gestures: 

• Walk in a circle. (whole body, free-space, standing) 

• Tug your left ear with your right hand. (self-contact) 

• Hop (standing, whole body 

Figure 7. Still image from the video used in the video 

priming condition. 
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• Sit down on the couch. 

• Make an X on the table with your right hand.  

• Stand up. 

• Act like a plane. 

• Act like an elephant.  

• Turn in place.  

• March. 

• Raise your right leg. 

• Raise your left leg. 

• Pound your chest like a gorilla. 

• Walk to the screen. 

• Throw a pillow at the wall.  

Production:  In this study, we asked participants to produce as many gestures as 

they could come up with for each referent. After each gesture suggestion, participants were 

prompted to try to produce another gesture until participants produced at least five gestures 

per referent and ran out of ideas. Repetition of gestures was allowed between referents, but 

not within the same referent. Once participants had produced the required number of 

minimum gestures, they were permitted to stop if they claimed to be out of ideas. After each 

participant was finished, they were asked to reflect upon their suggestions and indicate a 

favorite and least favorite gesture. Notably, and unlike Wobbrock et al. (Wobbrock et al., 

2009), participants were not asked to immediately rate each proposed gesture. In pilot 
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studies, we asked participants to rate each gesture on a seven point Likert Scale for the 

following:  

• How well do you think the gesture matched the action performed in the video?  

• How easy was the gesture to make?  

• How fatiguing do you think this gesture would be if performed repeatedly? 

• How creative do you think this gesture is? 

This was found to impede their creative flow, which conflicts with the goal of 

creative elicitation, and was removed from the final study. 

3.1.2 Participants 

17 participants were recruited from outside of the organization in which the study 

was conducted at a major tech company in the Seattle area. None had any prior experience 

with depth camera systems (e.g. Microsoft Kinect). Of those 59% were female, and ages 

ranged from 18 – 48 years (mean = 30).  

3.1.3 Environment 

The study took place in a laboratory setting arranged like a living room to make users 

feel more comfortable and encourage creativity. The room had a 63” wall-mounted TV + 

Kinect opposite a couch (see Figure 8). They were told that they could use the space available 

to them, as well as any objects within the space.  Participants were video recorded from 

multiple cameras mounted to the ceiling to ensure that all gestures were visible by at least 

one camera without any occlusion.  

3.1.4 Referents  

Participants were randomly assigned to one of four video referent orders. Each of 

the four video orders were randomly generated to account for any order effects. All 
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participants were shown all 14 videos, unless the participant ran out of time (only two of the 

17 participants ran over on time, with participants taking between 45 and 90 minutes to get 

through all referents). Participants were instructed that gestures were defined as any sort of 

movement (i.e., not necessarily limited to hands/arms), and asked to think aloud during the 

study. They were encouraged to ignore existing technological limitations -- to pretend that 

any computer they were interacting with could perceive and understand any sort of human 

movement they proposed.  

 

In order to assess how different variables affected the gestures produced by 

participants, the layout of the objects, the type of objects (text or abstract shapes), and the 

number of objects were varied across referents. The study asked every participant to look at 

four layout styles: linear, grid, radial and a three-column), with each participant seeing all 

four layout types. See Figure 9 for an example of each of the linear, radial and three-column 

layouts that were shown to participants and Figure 10 for an example of the grid layout for 

 

Figure 8. Environment in which the gesture elicitation study took place. Silhouette by Moriah Rich, from The Noun 

Project. 
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the selection action. To probe whether different data types might necessitate different 

gestures, we looked for differences between how people treated text and abstract objects. To 

test whether the number of objects on screen made a difference in participants' gestural 

choices, we looked at whether participants’ behaviors varied by layout and/or navigation 

requirements. 

 

 

Figure 10. An example of the referent which asked participants to select the square turning red amongst blue squares.  

3.1.5 Elicitation Process 

Participants would see the left image in Figure 10 and then hear “Pretend you are selecting 

one object out of many from a grid. Here is an example” after which the image would switch to the 

right image in Figure 10. There was no targeted interaction with the video during the time the 

participant was suggesting actions; the video was simply placed on repeat. The participant 

would then be asked to act as many gestures as they came up with that could cause the selection to 

occur. One participant, for instance, produced the following gestures, in order: (1) hover 

   

Figure 9. Three examples of referents which vary by layout, number, and type of objects.  

Left: Paging action, abstract shapes, linear layout. Center: Selection action, text, radial layout. Right: Scrolling action, 

abstract shapes, 3-column layout.  
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over the object to select it, (2) grab at the object and pull back, (3) pull object towards a “hot 

spot” on the screen, (4) point at the object with the right arm, (5) point with both arms at 

the object.  

3.2 Coding and Analysis 

During the study, each gesture was coded by the observer as the participant was 

performing the gestures (see Appendix A for an example of the form used by the observing 

experimenter). The observer made notes on the position of the user in the space (location 

related to the screen, orientation, whether the person was sitting or standing), the gesture 

primitive, the type of motion, the type of gesture, the hand configuration, the body parts 

used, the side of the body that was used, the palm position, whether the gesture mapped to 

the body or  a  specific location in the room, and for those referents that had a speed 

component, whether speed was based on movement or position. This coding was then used 

to help with gesture segmentation and to speed up the qualitatively coding after the study. 

Whether the person was sitting or standing was added after piloting, as we noticed that some 

users would describe the gesture they would perform instead of acting it out, even after 

being encouraged to act it out.  

We began by coding a short description of each gesture, such as “point toe” or “jab 

at it”, but as we were doing so, we realized that this would result in too many unique 

gestures would ignore gestures that were semantically similar to participants. we then 

considered Laban Movement Analysis (LMA), and how instructors describe movement in 

martial arts and climbing instruction as two of the researcher had backgrounds as instructors. 

However, LMA requires significant training to use, and as mentioned in the related work, 

discriminating some of the features of LMA, such as speed, is difficult (Grijincu et al., 2014). 
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In martial arts and climbing, the nuances of the mechanical movement matter, whereas in 

everyday gestural interaction people aren’t aware of the subtleties of their movement. 

Instead, we chose to use elements of LMA in coding for speed, direction of motion, and 

coding for relative or absolute movement, but simplified the process. Research in touch 

interactions tells us that hand configuration might matter, although usually not the number 

of fingers used (Morris et al., 2010; Wobbrock et al., 2009), so we also coded for this feature 

to determine if there are differences between free-space and touch interaction. Finally, codes 

were normalized across researchers (e.g. speak vs. voice, or hover vs. hold). If a gesture did 

not fit into existing codes for a feature, a new one was created and the list of possible codes 

was built up in this way.  

The final features that were encoded are listed in Table 1. Whether the person was 

sitting or standing was noted in a separate “notes” column in cases where the user was 

sitting instead of acting out the gesture, since this case was relatively rare. The direction of 

motion was normalized to a list of possible values, as shown in the example for easier 

analysis. Whether the gesture mapped to the user’s body or to the room was encoded in the 

final coding scheme with the gesture being labeled as either relative or absolute. An example 

of a relative gesture is swiping anywhere in the space as long as they were swiping up. An 

absolute gesture was one where, for example, the user must be standing in front of a column 

or object to perform the gesture.  

A subset of the gestures was pairwise coded with an additional researcher to ensure 

consistency. This data was then used to identify the median position of the favorite and least 

favorite gestures, and the most popular and least popular gestures. Any comments that 

participants made during the think-aloud process that highlighted the reasons for either 
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defining the gestures or preferring them, or any metaphors used were transcribed and 

recorded as notes during the coding process. Metaphors were especially important to extract, 

as gestures based off of metaphors have been shown to be learned more quickly (Krueger, 

1993). Quotes from the transcripts were extracted and grouped in themes that emerged (e.g. 

if several participants mentioned the same metaphors or motivation for defining a gesture).  

 

3.3 Results 

In this section, we present the results as they relate to the research questions laid out 

at the beginning of the chapter. Section 3.3.1 presents results related to increased production 

Table 1 

List of features that were coded in Study 1 for each gesture with example values 

Feature Examples 

Gesture Primitive Point, swipe, kick 

Gesture # in Video 1, 2, 3, 7 

Gesture Type Repeating, Sequence, Simultaneous 

Body Part Used Arm, hand, leg, head, full body 

Gesture Direction To an object, forward, back, right, left 

Side of  body Right, left, both 

Hand Config.  Fist, flat hand, 1-finger point 

Palm Position In, out, up, down 

Speed Mapping To position, to movement 

Relative / Absolute? Relative, absolute 

Favorite / Least favorite Empty, favorite, least favorite 
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and Section 3.3.2 presents results related to priming (RQ 1). Section 3.3.3 presents 

qualitative observations and quotes from participants based on emerging themes. From 

these, some features that do and don’t matter for users’ mental models become clear (RQ 2). 

Additionally, several design principles begin to emerge (RQ 3).  

 

3.3.1 Effect of Increased Production  

To evaluate the effect of increased production in gesture elicitation, we began by 

looking at the variety of gestures produced by participants, in order to evaluate whether they 

moved beyond gestures that were solely inspired by existing interactions. Even though all 

participants defined pointing for selection and swipe for paging and scrolling, participants also 

proposed gestures using hands, arms, legs and the head, or whole-body movement (in the 

space, or leaning, turning, and twisting). 35% of gestures specified did not use arms, for 

example. See Table 2 for a breakdown of participant’s proposals by part of the body used. 

Additionally, a total of 133 unique gesture primitives were identified during the qualitative 

Table 2 

Percentage of gesture primitives for each part of the body for Study 1 

Body part used % of primitives using body part 

Arms (including hands, elbows, forearms, fingers) 60.80% 

Full body  22.92% 

Legs (including feet, toes, knees) 7.49% 

Head 4.20% 

Voice 3.09% 

Eyes 1.51% 
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coding, although many were only suggested by one participant each, such as “doggy paddle”, 

“lunge”, “fishing”, and flying like an “airplane”. Only 37.6% (n = 50) of gesture primitives 

were mentioned by two or more participants.   

The study also confirmed the value of changing the production method to ask 

participants to define a large number of gestures by looking at the average position of 

favorite and least favorite gestures across all participants. The median number of gestures 

produced per participant was 7 (SD=1.35) and the median position of the favorite gesture 

was 3 (SD = 2.33), indicating that users’ first suggestion generally was not their “best.” Even 

though the production of more than one symbol has value, we noticed that some 

participants’ gestures diminished in variety: Having pointed with their hand up, for example, 

they might then point with their hand down, and then point again with a fist. This suggests 

there is room for improvement in the production method.  

3.3.2 Effect of priming 

For priming, we conducted a one-way ANOVA between subjects to test the effect of 

priming on the quantity of gestures produced by participants. Priming was found to have no 

effect on the quantity of gestures produced (F (2, 14) = 1.17, p = .339). See Table 3 for the 

means and standard deviations of the quantity of gestures produced across participants per 

condition. However, priming did seem to impact users’ gesture suggestions. For example, 

only users who saw the video priming produced gestures where their two arms were rolled 

about each other – a motion highly similar to one in a priming video clip; non-primed users 

did not produce this gesture. Without further analysis, we cannot conclude that this 

transference was beneficial and did not introduce unwanted biases.  
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Additionally, participants who were kinesthetically primed tended to produce more gestures 

that involved moving about the room than others, although this trend fell short of statistical 

significance (F (2, 14) = 0.51,  p = .612). See Table 4 for means and standard deviations for 

each. Replication with more participants is necessary to verify the impact of priming on the 

types of gestures produced.  

 

3.3.3 Users’ Mental Models and Emerging Design Principles 

This section summarizes our qualitative findings regarding users’ mental models 

about faceted browsing (RQ2), and emerging trends in their gesture suggestions that could 

Table 3 

Means and standard deviations for each priming condition for the number of gestures produced across participants 

Condition Mean # Gestures Produced Standard Deviation 

Kinesthetic Priming  6.95 1.36 

Video Priming 7.09 1.46 

No Priming (Control) 6.34 1.07 

 

Table 4 

Means and standard deviations for each priming condition for gestures involving moving about the room 

Condition Mean # Gestures for move Standard Deviation 

Kinesthetic Priming 5.83 7.25 

Video Priming 3.33 5.41 

No Priming (Control) 4.20 5.06 
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be used as design principles in the future (RQ3). Specifically, we look at how different 

variables, such as the layout of the objects on screen, and the different types and number of 

objects, affect the gestures participants produce. We also highlight unexpected findings in 

free-space and full-bodied interactions that emerged. This section is broken down into the 

high level themes that emerged during analysis. As previously mentioned, portions of the 

users’ speech were transcribed during the coding process if that speech contained 

information around the motivations for defining a gesture, contained insights into the 

features that mattered to users, or contained metaphors that users drew upon when defining 

the gestures. These quotes were grouped into themes based on common features of gestures 

produced or motivations for defining those gesture. At least three participants (20%) had to 

mention the same feature or motivation for it to be counted as a separate theme. A total of 

six themes emerged in this way:  

• Similarities Across Selecting, Scrolling and Paging 

• Gestures on the Body, Gestures in Space 

• Gestures for Size and Speed 

• Gestures for Parallelizing Data Exploration 

• Objects vs. Text   

• Concerns about Ambiguity 

Below, we go into detail for each theme.  

Theme 1: Similarities Across Selecting, Scrolling and Paging  

Although hover was a common first gesture produced for selection tasks, it was 

rarely selected as a favorite gesture. Unsurprisingly, for selecting items, nearly all participants 

chose a pointing gesture. For scrolling and paging through items, all participants proposed a 
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swipe gesture. The most common gesture for all three of these actions were similar to 

gestures found in touch interactions. For swiping, the direction of motion was more 

important than the hand used or the palm position. We found that although participants 

generally had their palm facing the direction of motion towards the beginning of the study, 

they tended to lose track of this as the study progressed. Participants largely avoided gestures 

that caused them to face away from the screen for scrolling, but not for paging. For example, 

spinning in a circle was not used for scrolling, but it was used for paging. This seems to be 

due to the fact that users see scrolling as a more continuous action for which they need more 

control, unlike paging, which is a discrete action (the expectation was that the screen would 

change one page at a time).   

Theme 2: Gestures on the Body, Gestures in Space 

 While most participants stayed rooted in place and used gestured that largely 

involved waving their hands in the air, some participants began to find other options.  One 

clever choice was body mapping. Some participants (P6, P7) mapped the length of their 

forearm to the items on screen and began to tap parts of their bodies to select individual 

items: the wrist would be the lowest item; the elbow was the top. Another participant came 

up with a method of choosing one of three columns by touching his left or right shoulder, or 

in between the two shoulders. Such gestures truly take advantage of (and push the 

boundaries of) the capabilities of depth-camera input. 

Several participants began to disambiguate multiple columns (e.g. the right most 

image in Figure 9) by moving in space: a step to the left indicated a motion in the left column, 

while a step right indicated that they wished to manipulate the right. 
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Theme 3: Gestures for Size and Speed  

Several of the participants mentioned that less precise gestures could be used when 

objects were larger (such as selecting columns, or with the objects instead of the text), or 

when there were fewer objects. P3 stated, “if there were a lot of items we felt like we would 

have to scroll through or line up with the ones we wanted instead of just being able to pick it 

directly.” Conversely, a few of the participants made bigger gestures when there were more 

objects. P4 and P6 noted that in a grid layout, they might want to sometimes move a single 

row, or the entire grid. A “big” swipe would grab all the rows and columns; while a smaller 

swipe might only take a single row or an individual item. Other participants used two-

handed gestures when there were more items. P12, for example, stated that he wanted to 

push the content down with both hands because there was a lot of content there, and that a 

one-handed swipe would be preferred when there were a smaller number of items.  

Two-handed gestures may have meant “big” to some users, but others felt they 

meant “fast.” P9 and P12 both used two-handed swipes to signify that they wanted the 

system to scroll faster than when swiping with one hand. Many other participants mapped 

either the speed or the angle of their gesture to the speed of the scroll. For example, the 

higher one lifts their arm above the point where it’s parallel to the ground, the faster the 

scroll. 

Theme 4: Gestures for Parallelizing Data Exploration 

We had initially suspected that participants would use their dominant hand to make 

gestures (76% were right-handed). We were startled to see participants freely switching 

between hands—indeed, sometimes they would do a gesture, then repeat it with the 

opposite hand. About a third of the participants preferentially used the hand closest to 
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where the task started regardless of hand-dominance. For example, P12, who was right 

handed, said “I’m using my left hand since it’s sort of on the left side. It feels more natural 

than pointing with the right arm.”  

Several participants (P3, P4, P6, P7) indicated that they wanted to be able to multi-

task and manipulate multiple objects in different columns at once. To allow for this, many 

participants defined single-handed gestures that relied on relative body positioning to 

identify the column being used. For example, swiping with the left hand on the left side of 

the body, while also swiping with the right hand on the right side of the body allowed 

participants to simultaneously manipulate both the right and left columns. Either hand 

swiping directly in front of the body could manipulate the middle column; or, if users 

wanted to manipulate all three columns at once, a foot was sometimes slid forward or back 

for the middle column.  

Theme 5: Objects vs. Text 

We had wondered whether participants would manipulate abstract objects differently 

than they would text, since both data types abound in faceted browsing tasks. P6, said that 

moving text didn’t “feel right,” but that moving objects seemed intuitive. P7, who came up 

with a way to map scrolling up and down to his right forearm, said that he liked this scrolling 

technique for objects, but would not use it for text; he preferred to pull the words towards 

the direction he wanted them to go. Some participants (P3, P8, P16) noted that because the 

text was smaller than the objects, they felt like they needed finer grained or more precise 

motions for selecting text. P8 also stated “you can scroll more aggressively with items rather 

than text just because of the size.” 
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Theme 6: Concerns about Ambiguity 

Several of our participants were concerned that their gestures might be seen as 

ambiguous by the system. P8 said that two-handed gestures felt clearer to her than one-

handed, noting that with one-handed gestures, “… you get this wave back and forth going 

and it’s not clear which way you’re going…” Two-handed gestures were considered more 

deliberate. 

Participants were particularly concerned that non-hand/arm-based gestures would 

not be interpreted with adequate precision. For example, many participants suggested that 

they might be able to nod their heads at an item to select it. P2 identified the appeal behind 

this small movement, “the less I have to do the better,” but conceded that it might be hard 

to specify which item he was selecting in this manner. Similarly, several participants thought 

of kicking towards the screen for selection. They, too, worried that the system might have 

trouble figuring out precisely which point they were aiming toward. 

3.4 Discussion 

Looking back at the original research question around priming and production, 

which was the focus of this study, the following answers emerged: 

For production:  

Q: How does increased gesture production affect user preference and the 

types of gestures elicited? 

A:  Users on average preferred their third gesture specified, not the first or second 

that are more likely to be impacted by legacy bias. Additional, more creative gestures (e.g. 

not swipe and point) came later in the gesture elicitation sequence for each referent.  
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For priming: 

Q: Does priming affect the types of gestures elicited? 

A: There is some evidence that priming affects the gestures produced. First off, 

kinesthetic priming showed a non-statistically significant increase in participants suggesting 

movement around the space. Second, participants that watched the video or performed the 

kinesthetic gestures before the study were more likely to suggest similar gestures during the 

elicitation study (a different kind of bias than the legacy bias from existing interaction 

modalities).  

3.4.1 Effect of Production 

In this study we saw ample evidence for the use of production to increase creativity 

and help combat legacy bias. As was presented in the results, users suggested a wide variety 

of non-arm gestures and over 100 unique gesture primitive were identified. This variety 

suggested that asking participants to define a large number of gestures for each prompt 

mitigated the effect of typical desktop and touch interaction biases (habituated 

behaviors/thinking) identified in previous gesture elicitation studies (Epps, Lichman, & Wu, 

2006; Morris, 2012; Morris et al., 2010; Wobbrock et al., 2009) and exemplifies participants’ 

willingness to propose gestures that take fuller advantage of a free space medium, although 

hand and arm movements are still most prevalent.  

However, even though the production of more than one symbol has value, as 

mentioned, we also noticed that variety diminished over time. Across referents, participants 

began to repeat gestures suggested for previous prompts. This could be due participant 

boredom or fatigue as the study progressed due to the time required by the production stage, 

which was on average 40 – 60 minutes. It could also be due to the lack of variety across 
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referents, or the level of abstraction of the referents. The finding that users’ favorite gesture 

was typically the third gesture they produced suggests that reducing the number of prompted 

commands or introducing more variety in an elicitation study might be a better choice for 

fatigue control than simply reducing the minimum production requirement. The use of 

specific, rather than generic, data and scenarios might also alleviate subject boredom. 

Within a particular referent, participants also suggested multiple gestures with 

modifications in only one feature (e.g. swiping up with the full arm vs swiping up with only 

the forearm or hand).  These small changes could actually be due to participants refining 

their gestures, rather than suggesting completely new gestures, data which was not available 

with the methodology used in this study. Potential modifications for the elicitation 

methodology are discussed in section 3.4.4 below.  

To better understand the effect of the modified production methodology explored in 

this study, additional research is needed to determine (1) whether the gestures were 

iteratively refined, (2) whether participants continued to produce unique gestures beyond the 

first few ideas and (3) whether the most preferred, or favorite gestures may indicate gestures 

that are easier-to-use and more reliable. These questions are addressed in subsequent studies.  

3.4.2 Effect of Priming 

While we found that increased production was a promising avenue to pursue for 

future gesture elicitation studies, the use of priming is less certain. Understanding the impact 

of specific types of priming on user-elicitation procedures is a rich area for further 

investigation, and others have started to more closely study it, although such research falls 

outside the scope of this dissertation.  
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In research conducted in response to this study, Hoff et al. conducted a study with 

30 participants that looked at the effect of kinesthetic priming and production on the 

symbols provided by individuals (Hoff, Hornecker, Bertel, Weimar, & Media, 2016). For the 

priming task, they asked participants to clear the room of boxes and to stretch to help the 

experimenter determine where in the frame of the camera the participant was standing. They 

found that there was only a small effect of priming on the elicited gestures and concluded 

that individual variability outweighs the effect of priming. Specifically, the number of legacy 

gestures produced was not statistically significant across primed and non-pried participants, 

but the primed participants produced gestures faster and with lower variation. However, 

their study also found a medium effect size, which a G*power test indicating that a study 

with 170 participants would need to be conducted to find a statistically significant result. 

They also asked participants to produce three gestures per referent and they found no effect 

of production on the resultant gesture set, finding that participants preferred their first 

gesture specified. Their study may have introduced unintended bias by asking users in 

different conditions to fill out the demographic survey at different times -- the survey was 

filled out on a computer and the non-primed group did this before the study, while the 

primed group after. This is a potentially confounding factor that was introduced in the study, 

and may have caused the non-primed group to suffer from legacy bias given the recency of 

using a desktop interaction immediately before the elicitation. 

Cafaro et al. used priming with framed guessability, an elicitation methodology that 

uses embodied allegories to create “frames” or scenarios during the elicitation phase (Cafaro 

et al., 2018). The aim is to ground the elicitation, such that gestures that are performed by 

participants are interconnected, increasing discoverability and user preference. To do so, 
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they conducted an experiment with three conditions: funhouse (n = 29), gym (n = 31) and 

control (n = 29). For both the funhouse and gym conditions, participants were given a 

scenario (e.g. “being in front of a distorted mirror while visiting a funhouse”) and then were 

primed in the following three ways: 1) Visual Priming: pictures of the scenario were 

displayed on a screen when they entered the lab. 2) Written Task: Participants were then 

asked to write five things they would do in that scenario. 3) Embodied Priming: Participants 

were finally asked to act out what they wrote in the written task. After priming (for those 

that had priming), participants went through a traditional elicitation methodology. Gesture 

sets created in each of the conditions was then evaluated for discoverability in situ in a 

museum setting. Similar to our results, this study found differences in body vs. arm 

movements based on condition, specifically the gym condition produced a statistically 

significantly higher number of body movements and lower arm movements. Cafaro et al. 

also found a significant effect on the gestures produced, in which participants mentioned the 

scenario in their elicitation process when defining gestures. This is consistent with our study, 

in which participants who were video primed produced gestures that were similar during 

elicitation. Finally, they found that gesture sets produced via framed guessability with 

priming were more discoverable than those produced via the traditional elicitation 

methodology. Additionally, many of the gestures produced in the control condition were 

likely a result of legacy bias, where participants mentioned interactions with existing 

technologies, whereas in the other conditions there were no such mentions. In this study, 

however, it is not clear which of the priming methodologies had an effect, or whether all 

three are required for the effect to be observed.  
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Given the differences in the studies conducted, the inconsistency of the outcomes 

between the studies and additional confounding factors, more research would need to be 

conducted to understand the use of priming and how it affects elicitation outcomes. This 

research is left for future work and outside the scope of this dissertation.  

3.4.3. Users’ Mental Models and Emerging Design Principles 

In the results, we presented six themes that emerged from transcripts of users’ 

comments during the think-aloud process. Each of these themes highlights a feature (RQ2) 

or design principle (RQ3) that can be leveraged for future exploration and design of walk-

up-and-use systems.  

Across the 6 themes, the following insights about users’ mental models 

emerged(RQ2):  

• Palm direction was less important than direction of motion for swipe gestures. This 

was especially true as swiping gestures became more fluid as they were repeated over 

and over again. This finding highlights problems with current gesture recognition 

approaches such as that by Krupka et al., in which palm and finger directions are key 

components of defining a gesture (Krupka et al., 2017). (Theme 1: Similarities Across 

Selecting, Scrolling and Paging) 

• Hand-dominance does not have an effect on the side of the body with which 

participants choose to perform a gesture. Layout and position on screen are more 

likely to affect their choice of whether to use a limb on the right or left side of their 

body for selection tasks. Nearly all users, regardless of hand-dominance preferred 

using the right hand in tasks that were in the center of the screen or for paging and 

scrolling tasks. However, hand-dominance may affect speed, which we did not 
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analyze in this study. In their study, on efficiency of translations and rotations on 

touch interactions, Nguyen and Kipp found that right-handed movements were 

much faster. However, the majority of their participants were right-handed, and they 

hypothesize that this might be why (Nguyen & Kipp, 2014). Similarly, right-handed 

participants were found to be faster than left-handed participants when it comes to 

mouse and pointer interaction (Mouloua, Mouloua, Mcconnell, & Hancock, 2018). 

This theme will be revisited in future studies. (Theme 4: Gestures for Parallelizing 

Data Exploration) 

The following design principles also emerged (RQ3):  

• It was common for participants to map the screen to their own body or to the 

floor in front of them. This was likely due to the fact that the screen they were 

interacting with was large and mapping it to a smaller space, or a space they felt they 

had better access to made it easier to interact with. While we were surprised by users 

mapping the screen to the space originally, this may have been one way for users to 

cope with the “gorilla arm” effect and from keeping their arms outspread for 

prolonged periods of time, since this is fatiguing for users (Lenman et al., 2002). 

Mapping interactions to a user’s own body allows them to keep much of the 

interaction in the optimal space for arm movement (Kölsch et al., 2003). (Theme 2: 

Gestures on the Body, Gestures in Space) 

• Participants expected less precise gestures to work when objects were larger, or 

when there were fewer objects. A larger gesture (or a gesture with both hands 

instead of one) was performed when participants wanted to move more or larger 

objects on screen or when they wanted to move them faster. This type of interaction 
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is consistent with the theories of embodied cognition (Lakoff & Johnson, 1980) and 

embodied interaction (Dourish, 2001). Users leveraged knowledge of real-world 

physical interactions in which heavier or more objects require larger movements, and 

translated that same behavior to digital interactions, (Theme 3: Gestures for Size and 

Speed) 

• Manipulating text was seen as different from manipulating objects and 

different gestures were specified for each type of object, even if the action itself was 

the same (e.g. scrolling through text vs objects). While there are studies that 

specifically look at using mid-air gestures for text entry (Jones, Alexander, Andreou, 

Irani, & Subramanian, 2010; Ni, Bowman, & North, 2011), there are no known 

studies that compare text to abstract objects. As noted in the results, some of the 

differences observed in the manipulation of text vs. objects was due to difference in 

size between the two, however many others were due to real-world metaphors (e.g. 

underlining text or circling a word of interest on a physical page.) (Theme 5: Objects 

vs Text). 

• Many participants expressed concerns about ambiguity of gestures and how these 

could be interpreted by other people or technology (Theme 6). These concerns 

suggest two things: 1) that current-generation depth-sensing technology may not yet 

be of adequate resolution for “big data” tasks like faceted browsing. and that 2) 

Gestures that may be perceived as ambiguous by other people may need additional 

ways for the system to resolve ambiguity, either through a continuous feedback loop 

or the use of other modalities, such as speech. Human communication is inherently 

multimodal, and therefore plenty of research has already been conducted in 
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multimodal interaction (Cabral et al., 2005; Claude, Cerma, & Carbonell, 1993; 

Morris, 2012; Quek et al., 2002; Robbe-Reiter, Carbonell, & Dauchy, 2000; Robbe, 

1998). User concerns around ambiguity only highlight the continuing need for the 

design of multimodal systems.  

Finally, participants regularly tailored their gestures to the level of specificity of the 

prompts (i.e., the size and number of generic objects/text items shown). This suggests that 

elicitation studies couched in data sets of a specific type, size, and quantity might be 

beneficial for producing task-specific gestures, but does not allow us to create generalizable 

design principles to help speed up the design process or to create universal gesture systems 

that can be used across applications on a particular platform. In order to design for platform 

specific, instead of application specific gesture sets, more research must be conducted into 

when type, size and quantity of items on screen affect gesture production and when they do 

not. This study can serve as a start to that line of inquiry by identifying differences between 

text and objects, a large vs. small number of items on screen, and the perception of fast vs. 

slow scrolling. Some of these differences will be explored further in Study 3, presented in 

Chapter 5. 

3.4.4 Challenges with Coding and Methodological Modifications 

Coding and analyzing participants’ gestures produced by this novel methodology 

proved challenging. During pilot testing, interrupting participants during the production 

phase interfered with their creative flow; in subsequent sessions, they were neither asked to 

rate gesture quality on a per-gesture basis, nor interrupted to ask clarifying questions. This 

resulted in a significantly reduced amount of data that the experimenters were able to use to 

segment gestures and extract features.  
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The lack of per-gesture ratings and clarifications reduced available data enough that 

it was difficult to recommend a final faceted browsing gesture set. The large number of 

unique gesture primitives identified is both promising and problematic. While it shows 

improvements in participant’s creative output and ability to move beyond legacy bias, it also 

highlights how difficult it is to group similar gestures together and derive consensus, both 

across qualitative coders and participants themselves. As was mentioned in the results 

section, many of the gesture primitives were mentioned by only one participant, with only 

37.6% of gestures being mentioned by two or more participants.  

Another problem occurred with the fact that breakpoints separating individual 

gestures were not always clear, as even participants noted that in some cases gestures 

blended together (e.g. P8’s comment that “… you get this wave back and forth going and it’s 

not clear which way you’re going.”). This made it difficult to distinguish individual 

movements at any level of granularity above a high level “swipe” and therefore, during the 

coding process answering questions about the start and end positions of gestures and 

whether they were meaningful was more difficult.   

Finally, as noted previously, there was less variability across gestures even within a 

referent as participants continued to elicit gestures. Participants during the think-aloud 

process didn’t often talk about the differences between gestures that they were eliciting, so it 

was impossible to determine whether a gesture was merely a refinement improving gesture a 

previously elicited gesture, or an entirely new gesture. Lack of clarifying interruptions also 

impeded the understanding of users’ mental models about which aspects of a gesture were or 

were not integral (e.g., was the use of the left hand rather than the right meaningful, or 

simply the fact that the hand was swiping?).  
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To reduce the ambiguity of gesture breakpoints and to provide more insights into 

the features that matter to users, subsequent studies (presented in future chapters) asked 

participants to watch video of themselves acting out the gesture suggestions, and then to rate 

them. In Study 3, presented in Chapter 5, participants are also directly asked if a gesture is a 

refinement of a previous gesture. Participants were also encouraged to provide more detail 

during the think-aloud process that can be used to guide the experimenters when conducting 

qualitative coding of the gestures.  

3.5 Summary 

The primary contributions of this study are:  

1) An exploration into the use of priming for gesture elicitation studies.  

2) Modifications to the production of symbols in gesture elicitation studies to increase 

creative output.  

3) A better understanding of legacy bias and how priming and production affect it. 

In addition, in this study, a few features were identified as either being important or 

not to users (hand-dominance, palm direction) and several design principles emerged around 

how to treat large vs. small objects, text. vs images/objects and mapping a large display to a 

different or smaller surface to make it more accessible.  

The methodological changes to production increased variety, while the addition of 

priming showed no clear benefit. Additionally, users’ preference for gestures that were not 

their first produced indicate that this methodology may be more likely to identify gestures 

appropriate for certain walk-up-and use interactions that are expected to go beyond a few 

seconds or minutes. However, the methodology needs to increase referent variety, so 

participants do not become bored. Additional changes to the methodology are needed to 
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shed light on users’ mental models of gestures without breaking their creative flow during 

production, such as introducing a video retrospective of the elicitation step, in which 

participants review their produced gestures, to the study design. These changes are 

implemented in a subsequent study presented in chapter 5. 
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CHAPTER 4 

STUDY 2: A CLOSER LOOK AT FATIGUE 

In the first study presented in Chapter 3, we looked at the effects of priming and 

production on legacy bias and whether using priming and changes in production improved 

the gestures produced in elicitation studies of walk-up-and-use interactions. The study 

showed a positive effect of increasing production and highlighted a few design principles 

that can be explored further in subsequent studies. While increasing production is a 

promising avenue for addressing legacy bias, there were still many gestures produced by 

participants that were affected by legacy bias. For example, many of the gestures performed 

in Study 1 were large gestures influenced by misunderstandings of the technology or gestures 

that were carried over from other modalities, such as touch interactions. These gestures, 

while they might be more discoverable, are also gestures that are prone to the “gorilla arm” 

effect, and may not be preferred for walk-up-and-use interaction. Additionally, while users 

were asked for their favorite and least favorite gestures as a way to identify preference, they 

had many definitions of preference and very little insight was provided on how preference 

relates to discoverability and fatigue. Therefore, in this study, we focus our attention on 

examining how users’ preferred gestures intersected with the most discoverable gestures, and how 

fatigue influences which gestures are preferred by users.  The aim of the study was to 

address RQ 3 (What are the set of design principles that can be used in the future to design 

gestural interfaces that are discoverable, easy-to-use-and flexible for public displays?) by 

deconstructing it into the following research questions:  

1) Discoverability: Is the first gesture defined the one that users prefer on their initial 

ranking?  
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2) Fatigue: Do users’ rankings of preferred gestures change after they have been asked 

to repeat the gestures for an extended period of time? 

3) How do discoverability and fatigue relate to one another?   

4.1 Method 

To explore the relationship between physiological fatigue and user preference, we 

conducted a gesture elicitation study with 15 participants (10 females, 5 males). Participants 

over the age of 18 were recruited from the larger university population to participate in a one 

hour-long study.  All participants were right handed and had various levels of comfort with 

technology. About two-thirds of them had previously used some kind of free-space gesture 

recognition system before (such as the Microsoft Kinect or Leap Motion). Participants were 

asked to wear an Affectiva Q sensor (Picard, n.d.) on their right wrist to measure galvanic 

skin response (GSR) and provide a quantitative assessment of physical fatigue.  

 

 

Figure 11. Fatigue study setup. The monitor was 21" and placed on a 3' tall table. The participants were videotaped 

from the back and diagonally from the front and side. 
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The study was conducted in a lab. Participants were asked to interact with a 21” 

monitor that was set up on a three-foot tall table. The surrounding area was large enough for 

the participant to move around (it was approximately a 6’ x 6’ open area). Participants were 

videotaped by two cameras, one set up to videotape from behind the participant, and a 

second in front of and to the side of the participant (see Figure 11). All participants were 

compensated for their time with a 20-dollar gift card.  

At the beginning of the session, participants were asked to complete a demographic 

survey (See Appendix B for the survey). Then, they were instructed to pretend that they were 

in a furniture store that had a gesture-based walk-up-and-use display. The display provided 

customers with the store’s inventory, including furniture that was not out on the showroom. 

They were asked to imagine that the display could pick up any gestures they performed, and 

to not constrain themselves to current technological limitations. As in previous elicitation 

studies, participants were asked to think-aloud. 

Keeping in line with the positive changes to production from the previous study, 

each participant was shown six referents, or tasks, and asked to identify at least four symbols 

for each referent. The tasks were: activate the screen, select an object, scroll, page, undo, and 

return to the main menu. See Figure 12 for an example of the selection referent after the item 

had been selected. The referent to activate the screen was used as demo task to familiarize 

participants with the protocol of the study. The remaining five tasks were shown to the 

participants in randomized order to account for any order effects on their ratings. In line 

with current elicitation study methodologies, no real-time feedback was given to participants’ 

gestures as they were being performed. 
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After each task, participants were asked to rank the gestures in ascending order based 

on preference. They were asked to provide motivation for this order and asked if they felt 

like they were physically fatigued during the task. Finally, they were asked to imagine doing 

the gestures for an extended period of time and identify those gestures that would be most 

fatiguing. See Appendix C for the User Survey. After the survey, the participants were asked 

to perform each gesture repeatedly for 10 seconds each, explicitly violating the HCI heuristic 

for repetition (one of Nielsen’s main principles of ergonomics (M. Nielsen et al., 2004)). 

Repeating the gestures for 10 seconds would emulate instances in which the user was, for 

example, searching through a larger catalogue and would be scrolling for some time. This 

will likely result in the “gorilla arm” effect for some gestures, in which the user’s arm starts 

to become sore, cramped, etc. from being held up in front of their body for too long and the 

muscles having to contract for an extended period of time. Once they had repeated all of the 

gestures for 10 seconds, they were asked again to answer the same survey questionnaire so 

that their original answers and their new ones could be compared to note any changes in 

users’ preferences.  

Figure 12. Screenshot of the "select" video referent after an item had been selected. 
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4.2 Coding and Analysis  

Gestures produced by participants were segmented and then coded for the features 

listed in Table 5. In this study, the aim was to better understand discoverability and fatigue 

and the relationship between them, not to deep dive into users’ mental models about the 

gestures they perform. Therefore, the list of features that were coded was kept to the 

Table 5 

List of features that were coded in Study 2 for each gesture with example values. 

Feature Examples 

Gesture Primitive Point, swipe, kick 

Gesture # in Video 1, 2, 3, 7 

Primitive Sequence # (for cases 

in which many primitives were 

performed to achieve an action). 

1,2, 3  

Body Part Used Arm, hand, leg, head, full body 

Direction / Path Up, Down, In, Circular, ZigZag  

Hand Configuration  1-Finger, 2-Finger, Fist, Flat Hand 

Palm Position In, out, up, down 

Duration of  Gesture The time it took to produce the first gesture.  

Duration of  Repeated Gestures 
Approximate time users repeated the gestures, since 

repeating for exactly 10 seconds is difficult.  

Gesture Type 
Deictic, Iconic, Symbolic, etc. (this was not used for 

the analysis related to this dissertation). 
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minimum necessary to distinguish between gestures, while still providing enough 

information to group similar gestures together through a more consistent set of gesture 

primitives. The list of possible primitives was built up as new gestures were coded that did 

not fit into existing primitives. We began with a short list of common gesture primitives that 

was informed by the most common gestures elicited in Study 1 (e.g. swipe, point, voice 

commands, etc.) Researched coded all gestures and added codes as needed. This data was 

then used to calculate the gestural consensus across participants and the diversity of gestures 

produced.  

Additionally, the survey responses before and after repetition were added to the 

analysis. In this study, participants were not explicitly asked for their favorite or least 

favorite. Instead, the favorite gesture was assumed to be the first gesture listed in the ranking 

of the all gestures produced for a referent. Comparing the ranking before and after repetition 

allowed us to identify any changes in user preference before and after inducing fatigue. The 

GSR data provided by the Q sensor was not properly baselined for each participant and was, 

therefore, discarded from analysis. 

4.3 Results  

In this section, we discuss the results of the qualitative coding of the gestures and the 

results of the questionnaires for each task in this study. Overall, participants defined a total 

of 438 gestures, resulting in 499 gesture primitives across all 6 referents. Some gestures had 

multiple primitives associated with them. For example, “point to an object and then grab it” 

was coded as one gesture with two gesture primitives: point, grab. Similar to the prior study, 

all participants defining between 3-7 symbols per referent (with an average number of 5 
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symbols per referent across participants). During the coding, a total of 72 unique gesture 

primitives were identified.  

4.3.1 Discoverability of Gestures 

To better understand which gestures are discoverable, we calculated the agreement 

score across participants per referent. The agreement score identifies gestures that are most 

common among all participants, which makes them more likely to be discovered since a 

large number of participants suggested the gestures. Because participants were asked to 

identify a variable number of actions for each referent, though, the agreement score 

proposed by Wobbrock et al. cannot be used (Wobbrock et al., 2009). Instead, we calculate 

the max-consensus and consensus-distinct scores as introduced by Morris, for each referent 

(Morris, 2012).  

The max-consensus score highlights the most agreed upon gestures (i.e. the gesture 

that is specified by the largest number of participants for each referent). The consensus-

distinct score gives an indication of the variety of gestures specified by participants for a 

particular referent. A larger consensus-distinct score suggests fewer total unique gestures 

specified for a particular referent. A referent with both a high max-consensus and a high 

consensus-distinct score, therefore, is indicative of strong agreement on one particular 

gesture with few other contending gestures. Table 6 shows the results of both the max-

consensus and consensus-distinct scores for each referent, calculated with a consensus 

threshold of 2 (meaning that at least two participants agreed on a gesture for the task). 

In Table 6, both the activate screen and undo referents have the same gesture primitive 

(“wave”) with the highest max-consensus. Similarly, the return to main menu and scroll referents 

both have “slide” as the referent with the highest max-consensus and page has “swipe” as the 
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referent with the highest max-consensus, with the primary difference between slide and 

swipe is that a swipe is performed faster than a slide. This highlights a potential problem 

with gesture elicitation studies: since each of the referents is designed for independently, 

there is nothing prohibiting a gesture to be elicited with the highest consensus for multiple 

prompts.  

 

The select referent had the highest max-consensus score at 100%, meaning that every 

single participant specified “point” as a gesture primitive for that task, whereas return to main 

menu had a relatively low max-consensus score at 40%, and also the lowest consensus-

distinct score for all referents. So while select may be heavily influenced by legacy bias, return 

to main menu is not a common gesture interaction used in other modalities, and therefore has 

higher variability and is less influenced by legacy bias than other actions.  

Table 6  

Max-consensus and consensus-distinct scores for each referent in Study 2 

Referent  Gesture with 

Highest Consensus 

Max-Consensus Consensus-distinct 

Activate screen Wave 60% 0.429 

Page Swipe 80% 0.438 

Return to main menu Slide 40% 0.421 

Scroll Slide 73% 0.538 

Select Point 100 % 0.500 

Undo Wave 67% 0.556 
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Table 7  

Top 3 most elicited gestures for each referent in Study 2 and their consensus scores.  

Referent  Gesture  Max-Consensus 

Activate screen Wave 60% 

Point 40% 

Tap 40% 

Page Swipe 80% 

Slide 40% 

Wave 33% 

Return to main menu Slide 40% 

Tap 33% 

Point 27% 

Scroll Slide 73% 

Swipe 67% 

Point 60% 

Select Point 100% 

Tap 40% 

Side 47% 

Undo Wave 67% 

Form X 60% 

Shake 40% 
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Surprisingly, the consensus-distinct scores do not differ greatly across referents, even 

in cases where a high max-consensus score is achieved for a particular gesture. That means 

that the variety of gestures produced for each of the six referents is similar. On average, 

there were 14 distinct gestures elicited per referent (SD = 1.33) by participants with a 

threshold of 2 and 29 distinct gestures (SD = 4.46) if no threshold is applied. To better 

understand the kinds of gestures produced for each referent, and to help create a unique 

gesture set for this task given the lack of uniqueness in the most common gestures for each 

referent, we looked at the top three gestures produced for each task and their consensus 

scores, which can be seen in Table 7.  

By looking at the second and third most common, and therefore, discoverable 

gesture produced within referents, we can now start to identify a unique gesture set across 

referents. For example, for undo “wave” and "form  x” both have similar max-consensus 

scores, but “form x” does not conflict with activate screen. Similarly, “tap” and “slide” for 

return to main menu are similarly discoverable due to similar max-consensus scores, but tap 

does not conflict with scroll or page.   

4.3.2 Effect of Fatigue on Gesture Preference 

A major component of physical fatigue is the part of the body that is moving. For 

this reason, we look at the breakdown of body part used across gestures and participants. See 

Table 8 for a summary.   

In this study, a significant number of the gestures produced were arm gestures 

(78.36%). Of these arm gestures, 20.44% were coded as elbow gestures and another 21.64% 

were coded as hand gestures. These account for over half of the arm gestures (42.08%). In 

this study, gestures that were coded as elbow gestures could’ve included gestures where the 
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point of rotation was the elbow (therefore the forearm was moving without the upper arm), 

or cases like an elbow point where the actual point of rotation was the shoulder. Full body 

gestures in this study only accounted for 3.21%, a significant change from the nearly 23% 

that were produced in the first study. Like in the previous study, we see some mention of eye 

movements (gaze tracking and blinking) and voice interactions.  

 

To more closely examine how fatigue affects user preference, we compared how 

often participants’ rankings for their preferred gestures changed after repeating the gestures 

for 10 seconds each. On average the participants performed each gesture about 8 times (SD 

= 4.34) during the 10 second interval. The results are below in Table 9. Before repetition the 

position of the most preferred gesture was on average at position 2.18 (SD = 1.41), whereas 

after repeating the gesture for 10 seconds, the average most preferred gesture was at position 

2.46 (SD = 1.43). Therefore, repeating the gesture and inducing fatigue changed user 

Table 8 

Percentage of gesture primitives for each part of the body for Study 2 

Body part used % of primitives using body part 

Arms (including hands, elbows, forearms, fingers) 78.36% 

Legs (including feet, toes, knees) 12.22% 

Full Body 3.21% 

Head 3.01% 

Eyes (gaze tracking, blinking) 1.80% 

Voice 1.40% 
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preference towards gestures that may be seen as less discoverable (i.e. elicited later in the 

process).  

In this table, it is clear that participants often changed the rankings of all of the 

gestures they had defined after they were asked to repeat their gesture continuously for 10 

seconds. The gestures that saw the least amount of change were those that belonged to page 

and scroll, which also had some of the highest max-consensus scores. In contrast, return to 

main menu, which had the lowest max-consensus of only 40 %, also had the highest change in 

preference across surveys.  

When participants were asked the reasons for their rankings, 70% of them said that 

they ranked the gestures based on their level of comfort in performing the gestures. This 

response did not vary between the first and second survey, meaning that comfort was 

important and considered by participants even before they were asked to repeat all of the 

gestures for an extended period of time.  

4.3.3 Relationship Between Discoverability and Fatigue 

Table 9 also contains the results for the number of preferred gestures that were 

performed first, both before and after repeating the gesture for 10 seconds. Looking more 

closely at the most preferred gesture in this table, it seems that participants were very likely 

to change their gesture preferences away from the first gesture they performed for each 

referent. There are some exceptions. A few participants decided that the first gesture they 

defined was actually their most preferred after performing the gestures repeatedly. This 

happened in the case of the Page referent, where one participant moved away from their first 

gesture performed, while another one, after repeating the gesture, determined that he/she 

preferred the first gesture they performed more than the original first choice.  
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To assess whether this phenomenon was statistically significant, we conducted an n-way 

ANOVA with unbalanced groups to identify whether the gesture number, task or participant 

had an effect on the changes in ranking for all 438 gestures made across all participants. The 

changes in ranking provide an indirect measure of fatigue, while the order in which the 

gesture was elicited is an indication of discoverability, allowing us to explore whether there is 

a relationship between discoverability and fatigue. The gesture number represents the order 

in which the gesture was elicited by the participants each time. For example, if the 

participant elicited a “swipe”, “tap”, “step” and “kick” for page right, swipe would be 

gesture number 1, tap gesture number 2, etc. We found no effect for task (F (14, 412) =.18,  

p = 0.969) or for participant number (F (14, 412) = 0.24,  p = 0.998). However, we found a 

statistically significant (F (14, 412) = 0.24,  p < .01) effect for gesture number and change in 

rankings. There is an inverse relationship between discoverability and fatigue, with gestures 

that are ranked high initially dropping in ranking after repetition and gestures originally 

ranked lower increasing in ranking.  

4.4 Discussion 

4.4.1 Discoverability and Conflicting Gesture Sets 

As can be seen in Table 6, there are instances in which elicitation studies produce 

ambiguous and conflicting gesture sets if one were to choose the most agreed upon gesture 

for each referent. This is because each referent is treated independently in the study design. 

One possible approach to resolving this issue, is to look at gestures that have the second-

highest consensus scores for a referent, and in cases where there is little difference between 

the gesture with the highest and second-highest consensus to pick the gesture with the 

second-highest consensus score. In this study, this approach is possible and produces a non-
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conflicting gesture set, but it may not work for all studies and contexts (e.g. if there are more 

referents, or if the referents presented are very similar or draw on the same cultural 

metaphors).  

Another approach is to use a framed guessability approach to elicitation studies 

(Cafaro et al., 2014, 2018). This approach extends the concept of embodied allegories 

(Cafaro, 2012) to constrain the metaphorical reasoning space for possible gestures by 

introducing a frame (i.e. a “scenario”), thereby reducing the number of valid options (Cafaro 

et al., 2014). In their work, Cafaro et al. found that users preferred gesture sets constrained 

by embodied allegories rather than gesture sets created through traditional gesture elicitation 

methodologies (Cafaro et al., 2014). Cafaro et al. then extended this approach with priming 

and found that gesture sets created with framed guessability were likely to all share a 

common frame as set up by the priming, and therefore more discoverable even when there 

was no reference to the frame (“the scenario”) in situ. They are also less likely to be affected 

by legacy bias than those generated via traditional elicitation methods. However, the authors 

suggest that the frame chosen during the elicitation phase have clear connections to the in 

situ scenario, meaning that elicitation studies conducted in this way still do not provide is 

with generalizable design principles.  

Like Cafaro et al., we also provided participants with a “scenario”, however our 

scenario was the one we were designing for, not a scenario meant to elicit creative output 

like the “funhouse” example. It is also not clear whether gestures produced with this 

approach are fatiguing or not based on the existing studies. One could imagine a scenario 

such as the “gym” to elicit much more fatiguing gestures by the nature of the activity that 

users engage in when at the gym. More research would need to be done using framed 
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guessability to understand the connection between the scenarios and the effects they have on 

the gesture sets produced.  

4.4.2 Measuring Fatigue 

In this study our initial aim was to quantitively measure fatigue and compare that to 

the qualitative fatigue measures derived from our survey to see if they agree, and if not, 

which gestures might contain differences between measured physical fatigue and perceived 

fatigue. Due to the fact that we had to discard the GSR data because of individual 

differences and a lack of baselining, this was not possible. Other researchers have started to 

look at quantitative measures of fatigue (J. D. Hincapié-Ramos, Guo, & Irani, 2014b; J. D. 

Hincapié-Ramos, Guo, Moghadasian, et al., 2014; Jang et al., 2017). The measure developed 

by Jang et al. specifically aims to take perceived and cumulative fatigue into account (Jang et 

al., 2017). But all of these measures are based off of shoulder joint rotation, as this is the 

joint in the arm that’s most likely to become fatigued first (Law & Avin, 2010).  

In this study, we saw a significant increase in the use of arm gestures over full body 

ones (78% compared to 61% in the first study). The increase in arm gestures could have be 

due to the fact that this study used a small 21” display standing on a table instead of the 63” 

wall-sized display, as this would be consistent with observations from the first study in which 

participants used larger gestures for more or larger objects and smaller gestures for smaller 

objects. From Lenman et al., we know that gestures that require hand or arm movements 

without support are likely to be difficult for users to repeat or perform for extended periods 

of time without fatigue (Lenman et al., 2002), so being able to accurately measure fatigue 

becomes critical. This also highlights the need to understand whether basing measures of 

fatigue off of shoulder joint rotation is appropriate, since more than half of the gestures in 
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this study were hand or elbow/forearm gestures. That means the shoulder may have had no 

rotation component, rendering all of the existing quantitative measures inaccurate without 

modifications. In the next study, one of the features to more closely analyze is the primary 

joint of rotation (the joint most likely to fatigue) for each gestures to answer this question.  

4.4.3 The Tension Between Discoverability and Fatigue 

Much of the research focuses on either measuring the fatigue of gestures (J. D. 

Hincapié-Ramos, Guo, & Irani, 2014b; J. D. Hincapié-Ramos, Guo, Moghadasian, et al., 

2014; Hoggan, Nacenta, et al., 2013; Hoggan, Williamson, et al., 2013; Jang et al., 2017; 

Kölsch et al., 2003; Ruiz & Vogel, 2015) or on finding easily discoverable or guessable 

gestures (Cafaro et al., 2014, 2018; Grijincu et al., 2014; Vatavu, 2012; Wobbrock et al., 2005, 

2009) for touch or full-body interactions, however, none of the research so far has looked at 

the relationship between the two. In previous studies, we found that users do not often 

prefer what we would think of as the most discoverable gestures – those that they are likely 

to perform first. In this study, we take this finding one step further by exploring why the 

most discoverable gestures are not preferred, and we find that comfort is one of the most 

important factors to users in defining gestures, that users do not properly assess how tiring a 

gesture is prior to repetition, and that the most discoverable gestures often become even less 

preferred after repetition, showing an inverse correlation between discoverability and fatigue.  

This creates a tension between designing a gesture set that is easy to discover, 

especially in public spaces, where extensive training is not an option, and designing gestures 

that might be less discoverable, but allow for prolonged interaction. While the consumed 

endurance model estimates that users can only hold their arms up for 90 seconds before 

experiencing fatigue (Bachynskyi, Palmas, Oulasvirta, Steimle, & Weinkauf, 2015; J. D. 
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Hincapié-Ramos, Guo, Moghadasian, et al., 2014), this study shows an impact of fatigue on 

gesture preference after just 10 seconds of repeated motion. This makes designing gestures 

for public displays challenging.  

One possible solution in full-body interaction is to move users away from simply 

using arm gestures, to using a combination of arm, speech and full-body gestures, providing 

more rest time in between arm movements. However, then the challenge lies in 

communicating to users, in a few moments when they walk up to an interactive display, not 

just that the display is interactive, but which gestures map to which actions in the particular 

application. We revisit this point in Chapter 6, after looking more closely at some other 

factors that might influence user preference in the next study.  

4.5 Summary 

In this study we explored discoverability and fatigue of gestures and the relationship 

between the two. Our results indicate that:  

1) Discoverability: Is the first gesture defined the one that users prefer on 

their initial ranking? On average the most preferred gesture is still the 2nd or 

3rd, even on initial ranking, which is consistent with the previous study. This 

means that the most discoverable gestures are not the most preferred.  

2) Fatigue: Do users’ rankings of preferred gestures change after they have 

been asked to repeat the gestures for an extended period of time? 

Participants often did change their rankings of their preferred gestures after 

being asked to repeat the gestures. This means that, even though we found that 

users think about fatigue from the very beginning, participants have a difficult 
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time assessing which gestures will be fatiguing without the opportunity to repeat 

the gestures.  

3) How do discoverability and fatigue relate to one another? Discoverability 

and fatigue are inversely related. Gestures that are specified first drop in ranking 

after repetition meant to induce fatigue, while gestures that are specified later 

increase in ranking. This highlights a tension between designing gesture sets for 

discoverability and designing gesture sets that are not fatiguing.      

Additionally, we modified our gesture elicitation to address one of the limitations in 

the first study by introducing a concrete scenario, with specific, non-abstract referents. 

However, we also used a smaller screen size that would be more appropriate for the 

scenario. This change may have affected the gestures produced as well, as we saw significant 

differences in arm and full body gestures produced between this study and the first.  

The next study builds off of the study presented in this chapter by taking a closer 

look at how useful current measures of quantitative fatigue are. Specifically, in the next study 

we look at the breakdown of body parts used in gestures performed by users and the primary 

joint of rotation, as current quantitative measures of fatigue rely on shoulder joint rotation. 

In the next study, we also use a large display, to provide more insight into whether the 

changes in arm and full body gestures elicited were due to a concrete task or the screen size. 

A significant limitation of this study was the fact that the quantitative data from the 

GSR sensor was discarded and therefore this data could not be compared to the qualitative 

assessment of the participants’ perceived fatigue. A promising area for future research, that is 

not addressed in this dissertation, is to explore the use of current commercial wearables to 

measure physical fatigue and compare those measures to perceived fatigue. 
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CHAPTER 5 

STUDY 3: UNDERSTANDING USERS’ MENTAL MODELS 

Building off of the previous two studies presented in this dissertation, we conducted 

a third study to further refine the methodology and to identify the gestural features that 

matter to participants most so that we may train classifiers with this added information, 

making them more accurate and robust to what people actually do. In previous studies, we 

found that asking participants to produce multiple gestures per referent increased gesture 

variability and that participants preferred their second or third gesture produced more than 

the first, which is more likely to be influenced by legacy bias. We also discovered that ease-

of-use (lack of fatigue) is important to users, and that the first gesture is not only less likely 

to be preferred but also more likely to be identified as fatiguing by users than subsequent 

gestures.  

However, there were limitations to previous studies. In Study 1, referent variability 

was low and therefore participants became bored over the course of the study, limiting their 

creativity for subsequent referents. In both studies, there was not enough data collected 

around users’ mental models. In Study 1, this was due to the lack of information around 

iterative refinements of the gestures, gesture segmentation, and lack of clarity around what 

definition each participant used for favorite. Study 2, however, was focused on better 

understanding the relationship between discoverability and fatigue, and not on users’ mental 

models. We also used different screen sizes and saw differences in the proportion of arm 

and full body gestures produced, which may have been related to the screen size, or the 

types of referents and the concrete scenario used in Study 2.  
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In this study, the primary focus is to address limitations of previous studies to better 

understand users’ mental models (RQ 2). A secondary focus is to validate findings from 

previous studies and to extract design principles for walk-up-and-use interfaces (RQ 3).  For 

RQ 2 (Which gestural features matter to users and how do they influence a user’s mental 

model about that gesture?) the following research questions are addressed:  

1) How do we qualitatively code gesture elicitation studies to understand 

users’ mental models? – Over the course of the previous studies, there have 

been many challenges with coding gestures to better understand those features 

that matter to users. How do we address these challenges?  

2) What do refinements tell us about the features that are important to users? 

– We saw in previous studies that users will refine their gestures throughout the 

course of the elicitation process. Which features change and which don’t during 

this process? 

3) What is the primary joint of rotation for elicited gestures? Does this change 

as users refine their gestures? – Study 2 indicated that users’ preference is heavily 

influenced by perceived fatigue of a gesture, and that many gestures do not seem 

to have the shoulder as the primary point of rotation, rendering many 

quantitative measure of fatigue inaccurate without modification.  

5.1 Method 

For an in-depth exploration into the features that matter to users for full-bodied 

gestures in public walk-up-and-use contexts, we conducted a gesture elicitation study with 22 

participants (12 female, 1 male, 1 gender neutral). Participants over the age of 18 (average 

age = 27 yrs., S.D. = 6.53) were recruited from the larger university population to participate 



  83 

in a one hour-long study.  All participants were right handed and had various levels of 

comfort with technology. Half of the participants had previously used some kind of free-

space gesture recognition system before (such as the Microsoft Kinect or Leap Motion) and 

about half (n = 11) play video games. 

 

Figure 13. The study was conducted in a lab that was arranged to look like a living room. Cameras were placed at 45 degrees 

in front and behind the participant and they interacted with a projection display. 

The study was conducted in a lab arranged to look like a living room. The study 

lasted approximately two hours. At the beginning of the study, participants were asked to fill 

out a short demographic survey (see Appendix D for the survey). The remainder of the 

study was split up into two parts, each of which lasted approximately 45 minutes. 

Participants were allowed to take a short break (5 – 10 minutes) in between. Participants 

were videotaped by two cameras for the duration of the study, one set up to videotape from 
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behind the participant, and another in front of the participant. Cameras were set up on the 

right side of the space, one in the front corner and another in the back corner. These were 

positioned to be out of the way of any movement the participant may like to perform. See 

Figure 13 for details of the space. All participants were compensated for their time with a 20-

dollar gift card.  

Unlike Study 2, this study did not focus specifically on fatigue, so no GSR sensor or 

other quantitative measure of fatigue was used. Because the effect of video and kinesthetic 

priming was inconclusive in Study 1, it was not used here. However, we did provide 

participants with a concrete scenario and referents, like in Study 2. The changes to the 

methodology related to production were maintained. For this study, a retrospective section 

was added to the study to gain more insights into users’ mental models. The retrospective 

will be covered in more detail further down.  

The first part of the study consisted of the gesture elicitation part, in which the 

participants were asked to interact with a large projection display that was approximately 6’ 

from the chairs they were originally seated in. The surrounding area was large enough for the 

participant to move around in (it was approximately a 6’ x 6’ open area). At the beginning of 

the elicitation section, participants were instructed to pretend that they were in a shopping 

center that had a gesture-based walk-up-and-use display providing information on travel to 

national parks. They were told not to constrain themselves to current technological 

limitations and to pretend like the display could pick up anything they did. They were asked 

to think-aloud during the elicitation part of the study and to start by standing. During this 

part of the study, the experimenter had an observer packet in which they noted a short 

description of each gesture as it was performed, and any observations they may have made 



  85 

or any questions they had about the gestures so that follow-up questions could be asked 

during the retrospective. The experimenters also asked a few clarifying questions during the 

elicitation part of the study when necessarily, but this was kept to a minimum so that it 

didn’t interrupt the participant’s flow. 

Each participant was shown 10 referents, or tasks, and asked to identify as many 

symbols for each referent as they could come up with. The first referent (page left) was used 

to get people familiar with the task, and therefore was not coded. The order of the remaining 

9 referents was randomized and each one of the participants saw one of 4 possible referent 

orders. In this study, the referents were expanded to include zooming, multi-object selection 

and object manipulation, as well as distinguishing between scrolling speeds (slow and fast) 

based on results from Study 1. The full list of referents that participants were presented 

were: page right, drag, scroll fast, scroll (slow), select, multi-object select, zoom in, zoom out, and deselect.  

In this study, unlike in Study 1, participants were given concrete tasks within a 

scenario:  

Pretend you’re in shopping center when you come across an interactive display providing 

information about national parks. You’ve always wanted to visit Yellowstone, Glacier, 

and Grand Teton National Parks, so you decide to learn more about what there is to 

see and do at these locations. 

They were also provided with actual images, in this case photos of animals and 

landscapes found in national parks to match the scenario, instead of abstract shapes. See 

Figure 14 for an example of one of the referents participants were shown in this study. These 

changes were made to reduce the boredom observed in the previous study. Once the 
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participant ran out of new gestures to perform for a particular referent, they were asked 

which of the gestures for that referent was their favorite and least favorite, where favorite 

was defined for the participant to mean the gesture which they would be most willing to 

perform in public. In this study, we specifically defined what favorite meant in order to 

account for the variability in meaning in the first study, and to ensure that participants were 

thinking about public displays, keeping in line with the scope of the research.  

 

Figure 14. The "multi-object select" referent showed a set of photos arranged in a grid layout (left image) being selected one 

at a time until multiple images have been selected (right image). Study participants were asked to identify free-space gestures 

they would use to select the objects.  

In the second part of the study, experimenters conducted a retrospective with the 

participants. During the break, the experimenter copied the recorded videos of the elicitation 

section onto a mac mini and loaded the videos in ELAN, making sure they were time 

aligned. Participants sat in one of the chairs in the space and were shown the videos of 

themselves performing the gestures. They were asked to rate each gesture on a five point 

Likert scale for discoverability, ease-of- use (to measure their feelings on fatigue), and 

appropriateness to the action. In some cases, the experimenter asked the participant if a 

gesture was a refinement of a previous one or asked any additional clarifying questions that 

they thought would provide necessary information. Both the ratings, and any additional 
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information provided by the participant at this point, including whether the gesture was a 

refinement of a previous one, were noted in the observer packet by the experimenter.  

5.2 Coding and Analysis 

5.2.1 Gesture Segmentation 

Pairwise coding was conducted to segment the elicitation videos by two researchers 

to ensure that multiple people were able to identify the start and end of a gesture sequence. 

Disagreements between the researchers were discussed and resolved during the 

segmentation process. Any movement related to the user preparing for the gesture was 

ignored, unless the starting point was identified to be important based on the information 

the user provided in the think-aloud. Many participants repeated the gestures several times 

during the elicitation process, so only the first time the gesture was performed was 

segmented. During the coding process, additional repeats were checked for inconsistencies 

and noted (e.g. if users switched from a 1-finger to 2-finger point). Segments of the video 

that provided more information or that contained instances in which the participant was 

exploring the gesture space were also annotated for reference.  

In total, this resulted in 1117 gestures segmented (1442 total annotations, including 

exploratory gestures, additional information provided by the participant, and complementary 

gestures that didn’t match the referent – for example, a gesture that was meant to deselect 

when the participant was shown a select referent) across 22 participants. Of the total number 

of participants, 4 were found to have either missing elicitation videos or the videos ended 

early during the elicitation process due to recording difficulties; these participants were 

excluded from the remainder of the analysis.  
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5.2.2 Gesture Coding 

Of the remaining 18 participants, 10 participants were selected to be coded and their 

data analyzed, resulting in a total of 547 coded gestures (gestures for the first video were 

practice and therefore not coded). The 547 gestures resulted in a total of 660 gesture 

primitives. The 10 coded participants represented an even distribution of video order, 

participant gender, and experimenter. Three of the 18 participants are missing data from the 

retrospective videos, though 2 of the 3 were coded and their data was used as sufficient 

information was in the elicitation videos and the observer forms. Originally, we began with 

two researchers separately coding the gestures and comparing their coding schemes but 

found that achieving consensus and inter-rater reliability would be a challenge. This was due 

to the fact there were so many features that were being coded for, and one coder might use 

one feature to encode a particular piece of information, while a second coding might use a 

separate one. To help alleviate some of this disagreement, additional features were added 

during the coding process, such as the gesture path, and the starting stance. In the end, 

gestures were pair-wise coded by two researchers together allowing for real-time discussion 

of disagreements.  

Features were selected based on inspiration from existing literature and informed by 

previous studies. As with previous studies, we began with assigning a high-level primitive to 

each segmented gesture (e.g. "swipe, hover, point"), side of the body used, an indication of 

the type or direction of motion, and similar to elicitation studies which focus specifically on 

hand gestures, the hand configuration. Hand configuration was coded even though evidence 

from Wobbrock et al. (Wobbrock et al., 2009) and Morris et al. (Morris et al., 2010) shows 

that the number of fingers used is unimportant in touch interactions, because for free-space 
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interactions we may still want to distinguish between someone using a 1-finger point, 

pointing with a flat hand, or pointing with a fist. 

Similar to previous studies, we started with a list of possible values for each feature 

(e.g. for gesture primitives, the list contained swipe, point, hover, kick, jump, etc.) and added 

to that list as gestures were encountered that could not be described by any of the current 

values.  Since this study focuses on full body interactions, which includes gestures such as 

kicking, jumping, and walking around, and not just arm gestures, we coded all body parts 

used for each gesture. Because full body interactions often consisted of a combination of 

gesture primitives, we also coded the gesture primitives and their associations based on how 

they were performed (e.g. in sequence, simultaneously, etc.). For example, a sequence may 

include walking to a specific point in space and then jumping. A simultaneous gesture might 

include swiping with one arm up and one arm down at the same time.   

In addition to the features that were coded in previous studies, we also included 

features to more accurately identify the path in space that each body part moved through in 

the users’ gestures. These features were inspired by how animation software encodes 

animations, allowing animators to define the key parts of the movement and interpolating 

the rest. Likewise, the idea of key frames guided which parts of a gesture’s motion to code 

and which parts of the motion can be trivially interpolated using the information from the 

gesture’s sequence immediately before and after the movement.  We, therefore, encoded the 

beginning and end points of commonly used limbs and the starting stance in cases where it 

was relevant.   

Finally, based on previous studies, we added two additional features to the coding 

scheme: the primary joint of rotation and whether the gesture was a refinement of a previous 
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gesture, and if so, which one. The primary joint of rotation allows us to determine whether 

existing quantitative measures of fatigue are sufficient, while the refinement allows us to 

more readily look at the nuances of the gesture that change over iterations, providing  

valuable information around the features that do and don’t matter to users’ mental models. 

For a full list of features that were coded, details on what each feature means, and examples, 

see Table 10.  

A total of 49 gesture primitives were identified during the coding process. Once all 

of the gestures were pairwise coded, the experimenters went through all the coded gestures 

together, and resolved any remaining discrepancies. Some of the gesture codes were further 

refined. For example, similar gestures that were coded as discrete primitive sequences (like 

touch and tap) were collapsed into one higher-level gesture primitive (e.g. tap). In another 

example refinement, a sequence of gestures was collapsed into a single gesture primitive with 

additional information captured into a different feature (such as collapsing all drawing 

gestures into one gesture primitive with the path details containing the thing that was drawn, 

e.g. an “X”). Generally speaking, such refactoring was focused on making the gesture coding 

more consistent and where possible, smaller without loss of detail. 38 gesture primitives 

remained after consolidation. For the resultant list of gesture primitives and their 

descriptions, see Appendix E. 

Table 10  

Features used to qualitatively code the data for each participant's gestures. 

Feature Definition Examples 
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Gesture Primitive 

High level label of  gestures. There 

were a total of  37 gesture 

primitives identified.  

Point, swipe, kick 

Gesture # in Video 
When was this gesture specified for 

the video?  
1, 2, 3, 7 

Gesture Type 

Some gestures are made up of  a 

sequence of  gestures, or multiple 

movements may happen 

simultaneously or repeat. If  it was a 

sequence, the start and end was 

noted.  

Repeating, Sequence, 

Simultaneous 

Refinement? 
Is this a refinement of  a previous 

gesture and if  so, which one? 

1, 3, 2 (reference to 

the gesture being 

refined) 

Body Part Used 
Which part of  the body was used to 

perform the gesture? 

Arm, hand, leg, head, 

full body 

Gesture Direction 
What was the primary direction of  

travel? 

To an object, 

forward, back, right, 

left 

Which Object? 
If  the direction of  travel was towards 

an object, which object? 

To empty space, to 

selected object 
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Gesture Path 
Was it a straight path or did it arc in 

any way? 
Straight, arc, circular  

Starting Stance 
Was there a non-neutral starting 

stance that mattered? 

Shoulder width, right 

foot forward 

Palm Position Start / 

End 

Direction of  the palm relative to the 

body. 

Forward, back, in 

(towards body) 

Hand Config. Start / 

End 
What configuration is the hand in?  

Fist, flat hand, 1-

finger  

Forearm Start / End Position of  forearm relative to elbow. 
Up, forward, partially 

down 

Upper Arm Start / 

End 

Position of  upper arm relative to 

shoulder. 

Up, right, left, 

partially up 

Point of  Rotation 

The joint that is most fatiguing (i.e. 

shoulder movements are more 

fatiguing than elbow movements, 

which are more fatiguing than wrist 

movements) that moves for the 

gesture.  

Shoulder, elbow, knee 

Relative / Absolute? 
Is the gesture relative to the body or 

absolute in space? 
Relative, absolute 

Favorite / Least 

favorite 

Was this the most or least favorite for 

the referent? 

favorite, least favorite 

n/a 
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5.3 Results 

In this section, we present the results of the qualitative coding. Because one of the 

goals of this study was to address limitations of previous studies and validate results, in 

addition to conducting a more detailed analysis, the results section is broken down by overall 

research questions. The questions presented at the beginning of this chapter, specific to this 

study, are discussed in the context of the larger research questions.   

5.3.1 Modifications for Legacy Bias 

In this section we give an overview of the effect of production on the gesture 

elicitation process. Consistent with previous studies, participants produced on average 5 

gestures per referent (SD = 1.74). Also confirmed in previous studies, the most discoverable 

gesture is not the most preferred. The median position of the favorite was 3 (SD = 2.07) and 

the median position of the least favorite was 4 (SD = 1.68). Some participants had multiple 

favorites or least favorites per referent. Unlike the rest of the participants, P7 stood out 

because they generally preferred the first gesture they specified per referent (for all but 2 of 

the referents). 

Table 11 shows the means and standard deviations for the favorite, least favorite, 

and no preference gestures (those which weren’t rated as either favorite or least favorite). 

Since participants rated the gestures, not the gesture primitives, we removed duplicated 

gesture ratings across primitives, leaving 547 gestures to analyze. A one-way ANOVA with 

unbalanced groups shows that the three groups are statistically significant for all three user 

ratings (guessability (F(2, 454) = 30.01, p < .001), ease-of-use (F(2, 454) = 33.32, p < .001), 
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and appropriateness (F(2, 454) = 37.56, p < .001)). 

 

 

Table 11 

Means and standard deviations for the guessability, ease-of-use and appropriateness ratings across user preference  

User Preference Mean  

Guess. 

St. Dev. 

Guess. 

Mean  

Ease 

St. Dev.  

Ease 

Mean  

Approp. 

St. Dev. 

Approp. 

Favorite (n =97) 4.08 1.17 4.63 0.79 4.54 0.77 

Least Fav. (n=89) 2.62 1.37 3.33 1.34 3.04 1.34 

No Pref. (n = 361) 3.58 1.28 4.13 1.07 3.83 1.21 

 

Table 12  

Percentage of gesture primitives for each part of the body for Study 3 

Body part used % of  primitives using body part 

Arms (including hands, elbows, fingers, etc.) 68.33% 

Legs (including feet, toes, knees) 9.70% 

Voice 8.33% 

Gaze 5.30% 

Full body  4.55% 

Head 3.33% 

Brain Machine Interfaces (BMI) .45% 

Note: Only one person mentioned ASL across referents, two participants mentioned blinking, and three participants 

mentioned BMIs. 
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As with previous studies, we take a look at the breakdown of the types of gesture 

performed to understand whether the changes in production increased the variety of 

gestures produced. In this study, the variety of gestures produced is much more consistent 

with findings from the first study. Arm and hand gestures were still the most common, at 

about 68%, however full-body gestures (e.g. walking, leaning) only made up 4.6% of the 

gestures produced in this study. Gestures using the legs and feet were similar, at 9.7% this 

time, compared to about 7.5% in the first study. In this study, unlike previous ones, there 

were a couple of participants that mentioned brain-machine interfaces.  

Unsurprisingly, head gestures were not used at all for selection (either single or multi-

object selection), but they were used for deselect. Leg gestures weren’t ever mentioned for the drag 

referent, but were for all others. Voice was mentioned for every single referent by at least 

one participant. Table 12 shows the breakdown of the body parts used across all gestures, all 

participants and all referents. 

We also look at the agreement across participants for this study. Overall, all the 

referents had very high max-consensus scores and many referents had high consensus-

distinct scores as well (Table 13 shows the max-consensus and the consensus-distinct scores 

for each referent), indicating that legacy bias still plays a significant role and leads 

participants to specify the same few gestures for each of these actions. This is confirmed by 

participants (P3, P13, P15) explicitly identified that they were drawing from interactions with 

smart phones.   
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Similar to Study 2, looking at just the gestures with the highest consensus does not 

necessarily provide a unique non-conflicting gesture set for all referents, however, there is 

much less overlap in this case than in Study 2. Only one participant, P18, mentioned that 

they cared about how confusable the gesture was for this referent compared to the ones for 

other referents but most participants did not take this issue into account when defining 

gestures. Note that this study does contain referents that are similar and may be expected to 

map to similar gestures as well. Table 14 shows the top 3 gesture primitives that are most 

common based on the max-consensus metric for each referent.  

Table 13  

Max-consensus and consensus-distinct scores for each referent  

Referent Gesture with Highest 

Consensus 

Max-Consensus Consensus-distinct 

Page Right Swipe 100% 0.421 

Drag Move (arm/hand)* 90% 0.882 

Scroll Fast Swipe 90% 0.706 

Select Point 90% 0.667 

Multi Object Select Point 90% 0.579 

Zoom In Expand 80% 0.684 

Zoom Out Pinch 80% 0.500 

Scroll Swipe/Slide 60% 0.600 

Deselect Swipe/Tap 60% 0.400 

* Move in this case refers to moving one’s hand over to the email icon shown on screen to drag the item over. 

Sometimes, this motion was preceded by a “grab” type movement, but not always. 
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Table 14  

The top 3 most common gesture primitives for each referent in Study 3 and their max-consensus scores  

Referent Gesture Max-Consensus 

Zoom In Expand 100% 

Voice 50% 

Tap/Point 40% 

Page Right Swipe  100% 

Step 50% 

Voice 50% 

Drag Move (arm /hand) 90% 

Point 60% 

Grab 60% 

Scroll Fast Swipe 90% 

Nod 50% 

Gaze 40% 

Select Point  90% 

Tap 70% 

Voice 60% 

Multi-Object Select Point 90% 

Voice 70% 

Tap 60% 
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Zoom Out Pinch 80% 

Voice 50% 

Rotate (Body or Hand) 40% 

Scroll Swipe 60% 

Slide 60% 

Voice / Nod 50% 

Deselect Swipe 60% 

Tap  60% 

Voice 50% 

 

5.3.2 A Closer Look at the Features That Matter 

To better understand the features that matter to participants when specifying a 

gesture, we take a closer look at the refined gestures and the changes between the original 

gesture elicited and the refinement. We also take a closer look at the primary joint of 

rotation. As we saw in previous studies, users tended to reduce the magnitude of their 

gestures over time and current quantitative measures of fatigue are primarily developed with 

the shoulder joint as the primary point of rotation.   

Out of the 547 gestures coded across our 10 participants, 57 of them were 

refinements (10.42%). We began by evaluating whether the ratings change between the 

refinements and the original gestures being refined. Table 15 shows the average usability, 

ease-of-use and appropriateness ratings for both the refinements and the original gestures. A 

one-way ANOVA showed no significant difference for appropriateness (F (1, 98) = 0.72,  p 
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= 0.398) and ease-of-use (F (1, 98) = 1.72,  p = 0.193), but was borderline non-significant for 

guessability (F (1, 98) = 3.88,  p = .052). 

 

Additionally, of the combined refinements and originals, 29 were listed as favorite 

gestures (25.67%), whereas only 16.90% of all gestures are listed as favorites. 

Overwhelmingly, participants seemed to refine gestures for which they already had a 

preference. A two-sample two-tailed t-test indicates this difference is statistically significant 

(p < 0.01).  

Another aspect explored was the primary joint of rotation, as we know that fatigue 

measures are currently based off of the fatigue experienced by the shoulder joint and that 

fatigue matters to users. Even in this study, some participants mentioned that the level of 

fatigue a gesture causes is an important consideration during the elicitation process and for 

this reason participants wanted to specify gestures that were “more intimate” (P3) or that 

“take very little effort” and are inconspicuous (P7).   

Table 15 

Means and standard deviations for the guessability, ease-of-use and appropriateness ratings for refinement gestures, the gestures being refined 

and for the entire set of elicited gestures as a comparison. 

 Mean  

Guess. 

St. Dev. 

Guess. 

Mean  

Ease 

St. Dev.  

Ease 

Mean  

Approp. 

St. Dev. 

Approp. 

Refinement 3.63 1.24 4.16 1.01 4.12 1.15 

Original  3.98 1.14 4.31 0.91 4.25 0.96 

All 3.50 1.36 4.08 1.15 3.90 1.26 
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To explorer this area further, we looked at how often each of the joints was actually 

used. As can be seen in Figure 15, current measures of fatigue can only provide a quantitative 

assessment for less than half of the gestures specified by participants. In the figure, gestures 

that are marked with N/A for the joint used are gestures that do not have movement 

associated with the gesture primitive (e.g. dwell).   

 

Finally, we analyzed a subset of the features that changed between the refinement 

and original gesture. The frequency of each feature changing can be found in Table 16. For 

the scope of this work, we did not closely look at the detailed paths that the arms took, so 

 

Figure 15. Overview of the primary joint of rotation per body part across participants. An N/A means that there was no 

movement of any joint for the gesture (e.g. point and dwell gestures don’t usually have joint movements associated with 

them) 
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we did not analyze changes in the start and end position of the forearm and upper arm. 

 

All refinements were on arm gestures, not on gestures that were full-body or leg 

gestures and nearly all of the refinements happened immediately after the gesture they were 

refining. The most likely features to change between the refinement and original gesture 

were the palm direction and hand configuration. Gesture direction also varied but did not 

have any discernable patterns in the change. Gesture path, however, often changed from a 

straight path to an arching or circular path. The number of gesture primitives changed as 

well. In some cases, users added extra primitives, and other times simplified. Adding 

primitives happened in cases where the gesture’s intent became more specific. For the side 

of the body, in all but 1 of the 6 cases, the change was between using both sides of the body 

or only one side.  

Table 16  

Frequency of each feature changing across refinements 

Feature n (%)  

Palm Direction  42 (73.68%) 

Hand Configuration 34 (59.65%) 

Gesture Direction  18 (31.58%) 

Point of  Rotation 16( 28.07)% 

No. of  Gesture Primitives 14 (24.56%) 

Body Part 13 (22.81%) 

Gesture Path 12 (21.05%) 

Side of  the Body 6 (10.53%) 
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Out of the 30 cases in which either body part or point of rotation changed, 10 of 

those cases are instances in which both changed. In all but 5 of the 30 cases, the movement 

became smaller (e.g. using the hand instead of the entire arm, or changing the point of 

rotation from the shoulder to the elbow or even the wrist). In 2 cases, the user changed the 

gesture to use a different finger (e.g. thumb instead of pointer finger), and in 3 cases, the 

movement became larger.  

5.3.3 Users’ Mental Models and Design Principles 

In this study, additional evidence emerged for the themes presented in Study 1.   

Theme 1: Similarities Across Selecting, Scrolling, and Paging 

In this study, the palm direction was often maintained constant across participants 

though there were a few exceptions (e.g. P2). In study 1, we saw several indications of users 

swiping both left and right without changing the direction of the palm.  

Theme 2: Gestures on Body, Gestures in Space  

 Similar to the first study conducted, some participants (P2, P9, P14) mapped the 

screen in front of them to a horizontal plane, often specifying gestures as if they were 

interacting with a touch table instead of a display on the wall in front of them. This 

continued even when the researchers reminded the participant that the display was in front 

of them. Other participants wanted to walk up to the screen and touch or tap on the screen 

directly (P3, P7, P15), even though they could not reach the entire screen due to its size. For 

leg or full body interactions, many participant mapped the screen to the floor (P2, P14, P15, 

P17, P19).  
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Theme 3: Gestures for Size and Speed 

As can be seen in Table 13 and Table 14, scroll fast had a 90% max-consensus score 

for swipe, while scroll (which is a slower movement) had slide and swipe tied at 60% (slide 

and swipe only differ on the speed of movement). Every participant produced either one or 

the other for this referent (2 participants mentioned both). This is consistent with findings 

from Study 1 that participants prefer faster arm motions to map to faster movements on 

screen as well (P3, P9). For example, P9 wanted the speed of the movement to influence 

how quickly the movement happened on screen, specifically called out gestures that they did 

not like because they thought the motion was too small (e.g. P9 mentioned that 1-finger is 

good for actions on a single object, but not many).  

One participant, P3, mapped speed to the angle of rotation of their hand. Another 

participant made the same gesture with a different joint as the primary point of rotation to 

specify speed (P19).  

In this study, the size of the images users interacted with was kept constant and in all 

cases where multiple images were presented, they were shown in a grid layout. This meant 

that we could not observe any variability in the magnitude of the gestures for the number of 

objects or size of objects present. However, P7, explicitly mentioned that the size of the 

display influenced the magnitude of the gesture. 

Theme 4: Gestures for Parallelizing Data Exploration 

In this study, we did not have any tasks that required users to parallelize data 

exploration, and all participants were right handed. Unlike in Study 1, where whether the 

user used the right or left side of their body was influenced by the location of the object they 

were interacting with, in this study, nearly all of the interactions were performed with the 
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right side of the body, with 414 gestures performed on the right side, 100 performed with 

both sides, and 48 performed with the left side of the body. Note, however that the selection 

in the select referent, page right and drag were all on the right side of the screen. Zoom in, zoom 

out, scroll, scroll fast were either centered on screen or had no interaction that forced 

participants to interact on any particular side of the screen. Deselect and multi-object select had 

the same objects selected and were split across both sides of the screen with more objects on 

the left that the participant was interacting with.  

Theme 6: Concerns about Ambiguity 

While participants still had concerns around ambiguity in this study similar to 

previous ones, especially around gestures using the head, or gaze, another source of 

confusion and ambiguity also became apparent. Participants were often likely to specify 

complementary or identical gestures for referents that had complementary actions (e.g. select 

and deselect) or for which the action was the same, but the direction of motion was different 

(e.g. scroll up /down, page right/left, zoom in/out).  For example, many participants wanted 

to select and deselect an individual image by pointing at it. However, many participants (e.g. 

P3, P14) had difficulty remembering which complementary gesture should map to which 

action (e.g. does swiping from left to right mean that the participant would see the image to 

the right of the current one on screen or the one to the left? Similarly, does a pinch gesture 

result in the image zooming in or out?). This resulted in participants specifying both 

complimentary gestures for the same referent.  
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5.4 Discussion 

5.4.1 Methodological Changes and Coding Full-Body Gestures 

To improve the quality of the data collected in this study and to make coding the 

gestures less ambiguous we made several methodological changes, such as using concrete 

referents and introducing a scenario, introducing a retrospective, and changing the way the 

qualitative coding was conducted. As in Study 2, in the study presented in this chapter, we 

used concrete primitives engrained in a scenario. As a result, the boredom effect that was 

present in study 1 was not observed here. This is likely due to the larger variability of the 

referents and the fact that participants had concrete objects to interact with. As in study 2, 

our concrete scenario differs from the type of scenarios that Cafaro et. al use in their framed 

guessability methodology (Cafaro et al., 2014, 2018).  

 The addition of a retrospective allowed us to ask for the ratings of ease of use, 

appropriateness and guessability without breaking creative flow (Csikszentmihalyi, 1997) and 

it allowed us to more accurately identify refinements and gauge user preference. 

Retrospectives also allowed us to confirm certain ambiguities around which gestures users 

thought were unique, not just for refinements, but also to filter out exploratory gestures or 

gestures that were not meant to be considered from the participant’s perspective. This 

significantly reduced the difficulty researchers had in identifying the start and end of gestures 

to segment them. Even so, participants started out with very defined starts and ends to their 

gestures, and as they repeated a given gesture the gesture would become more and more 

sloppy, blending the start and end of the gesture together as it was repeated.  
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In this study, we used a similar sized screen to the one used in Study 1, and the 

gestures broken down by body part used was also more similar. We will take a closer look at 

these similarities and differences across the three studies in the next chapter.  

Over the course of the three studies we managed to reduce the number of unique 

gesture primitives from 133 in the first study to 38 in study three (Study two had 72). This 

allows us to more appropriately group similar gestures together and get a better sense of 

max-consensus and consensus-distinct scores across participants. Unlike most studies, we 

also split gestures up into primitives when the gestures used to accomplish a task were 

complex (for example, the user moving to a position in space then swiping to select an item 

would be considered two gesture primitives – a move and a swipe). In many studies, these 

are considered as one gesture and coded as such. This increases the variety of gestures, but 

prohibits a thorough analysis of what users consider similar movements. For example, 

swiping to scroll, and swiping away an item to deselect it, after moving to the position in 

space the object is at, are similar gestures to a user, even though the latter is part of a 

compound gesture meant to perform one action. Making the change to break down an entire 

set of movements into gesture primitives does increase the complexity of the analysis 

however, and makes calculating a max-consensus score much more difficult as preferences 

may exist for different gesture primitives at different stages of the movement.  

We were also able to collapse nuances that did not matter to users in the gesture 

primitives, and identify more detailed features that could matter, such as the primary joint of 

rotation. We also saw less variety in the later studies, which could be due to increased 

prevalence of touch and gesture interfaces (higher legacy bias), more concrete tasks, 
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differences in participant demographics (the last two studies were conducted on university 

campuses), a lack of priming or other unidentified factors.  

Coding qualitative gestures with this many degrees of freedom is still challenging 

however. Attempts at interrater reliability were time consuming and resulted in a significant 

amount of discussion, specifically for features that were more detailed. Ultimately, it was 

more efficient to pair-wise code the entire data set than to split up the participant data and 

code it separately. For this reason, and because we believed we were able to achieve near 

saturation (Glaser & Strauss, 1967) at 10 participants, we stopped before coding the full set 

of participants that participated in the study. We look more closely at sample size and 

saturation in Chapter 6.  

5.4.2 What Refinements Tell Us About User Preference 

In our analysis, we noticed that users often refined gestures that they already 

preferred, with gestures that were refined containing a much higher percentage of favorites 

than the full set of gestures elicited from participants. Refinements usually happened 

immediately, so as soon as participants found a gesture they thought they might like, they 

put the effort into exploring refinements. All refinements were focused on arm or hand 

gestures, not on gestures that were full-body or leg gestures. One possibility for this is that 

arm and hand gestures are more likely to suffer from legacy bias, as touch and desktop 

interactions use exclusively hand movements and many Kinect interactions also used arm 

gestures for navigation and selection tasks. Another reason for refinements focused 

exclusively on arm gestures is that arms inherently have more degrees of freedom than other 

parts of the body, allowing for more possibilities to be explored.  
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Our results also indicated that some of the features that are used to train classifiers 

now: palm direction and hand configuration especially, seem to contain a large amount of 

variability and are not distinguishing characteristics for users. The finding for hand 

configuration is consistent with findings that users do not place importance on the numbers 

of fingers used in touch interaction (Morris et al., 2010; Wobbrock et al., 2009). Hand 

configuration is only meaningful when the hand configuration itself is the gesture (for 

example, a thumbs up gesture, or an L-shape). These, may therefore, not the best features to 

use as discerning characteristics when designing gestures and training classifiers. Recognizers 

also need to be trained with data that allows for some variability in gesture path, as straight 

and arching paths are used interchangeably by users.  For example, one participant may 

swipe from the top left to the bottom right in an arc motion the first time, and swipe from 

left to right across the body using a straight path a second time. In another case, a user may 

draw an “X” from the top right the first time around and from the top left the second time 

around.  

In comparing the user ratings for guessability, ease-of-use and appropriateness of 

refinements with the original gestures being refined, we found there was no statistically 

significant difference. The ratings for guessability were borderline non-significant, which 

may indicate there is a small effect there that cannot be detected with such a small sample 

size. However, refinements almost exclusively contained changes in the magnitude of the 

gesture between the original and the refinement, getting smaller through changes to the part 

of the arm that was used, or by changes to the primary joint of rotation. The changes in the 

magnitude of the gestures would indicate, then, that participants did take fatigue into 

account during the refinement process, but that it either was not the primary motivating 
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factor or they were simply unaware that fatigue was driving this decision. The work of Liu 

and Thomas, who found that the more fatiguing a gesture is perceived to be, the less 

appealing it is to participants (X. Liu & Thomas, 2017), supports the theory that users were 

just not aware that fatigue was driving their decision.  

It is possible that other ratings of perceived exertion, such as the NASA-TLX (Hart 

& Staveland, 1988) or the BORG CR10 (Borg, 1998) would uncover perceived exertion 

differences that our Likert style questionnaire did not. The BORG CR10 has already been 

used to assess perceived fatigue in arms and hands and has been shown to correlate well with 

objective measures of fatigue (Jang et al., 2017). One avenue for future research is to 

evaluate whether fatigue is the largest motivator for refinements, or if there are other factors 

that have not been identified or studied yet.  

5.4.3 Limitations of Current Quantitative Measures of Fatigue 

Even though results indicate that half of arm gestures have the shoulder as the  

primary joint of rotation, we also find that users modify their gestures during refinements to 

use other, less fatiguing, joints and smaller movements. From the previous study, we know 

that fatigue and comfort play an important part in user preference, so it becomes imperative 

that there are measures of fatigue that are more robust and can be used for the wide variety 

of gestures produced, especially those that are preferred. When taking into account that only 

68% of gestures for this study were arm gestures to begin with, and then half of those had 

the primary point of rotation as the wrist or elbow, that leaves only about 34% of gestures 

that can be accurately assessed with current measures, such as those by Hincapié-Ramos et 

al. (J. D. Hincapié-Ramos, Guo, & Irani, 2014b; J. D. Hincapié-Ramos, Guo, Moghadasian, 
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et al., 2014), or by Jang et al. (Jang et al., 2017). Refining quantitative measures of fatigue to 

allow for evaluating a broader range of gestures is a rich area for future research.   

5.5 Summary  

Looking back at our research questions for this study, we can summarize our 

findings as follows:  

1) How do we qualitatively code gesture elicitation studies to understand users’ 

mental models? In this study, we were inspired by various means of coding and 

discussing gestures, and refined our coding scheme from previous studies, to code a 

set of 16 features, including refinements that providing a rich amount of information 

about users’ mental models. We were able to more accurately segment gesture data, 

and gather information about user preference.  

2) What do refinements tell us about the features that are important to users? 

Refinements highlighted that gesture path, gesture direction, hand configuration and 

palm direction experience a lot of variability within and across users and therefore 

are not as meaningful to users, highlighting a mismatch between users’ mental 

models and current gesture recognizers. Refinements also show us that users often 

minimize their gesture to make them less fatiguing, pointing towards designing 

systems with gestures that utilizes smaller parts of the arm instead of full-arm 

movements.  

3) What is the primary joint of rotation for elicited gestures? While the primary 

joint of rotation is still the shoulder for many gestures, this is likely caused by legacy 

bias. Especially, since we see in users’ refinements that the primary joint of rotation 

often changes to the elbow or wrist. This highlights a need for more robust measures 
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of fatigue and for gesture recognition systems that can recognize smaller movements, 

even with large public displays.   

A few interesting areas for future research were highlighted in this study. One is to 

more closely analyze how well user preference lines up with agreement. We see that, most 

often, gestures that have high agreement are strongly affected by legacy bias. We also see 

that user do not necessarily prefer those gestures that are elicited first, and that are most 

likely to have high discoverability and agreement. Finally, we see that favorite gestures, which 

are on average the third gesture that people produce, have much higher guessability, ease-of-

use (low fatigue) and appropriateness ratings than other gestures. This points to the 

possibility that there might be a mismatch between gestures that have high consensus, and 

those that are preferred by users. 

 We also did not closely analyze the forearm and upper arm keyframes that were 

qualitatively coded, and which might provide additional insight into the variability of user 

gestures that need to be collected for accurate and robust training of gesture recognition 

classifiers. Finally, a logical next step would be to create a gesture sett based on the results of 

this study, develop a system with a recognition engine based off this gesture set and evaluate 

how well it does in a walk-up-and-use scenario. 
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CHAPTER 6 

DISCUSSION 

In this chapter we discuss the differences and themes that emerged across the three 

studies, highlight limitations of the research presented and highlight future work.  

6.1 Differences Across Studies and Associated Effects 

There were several potentially confounding factors across the study that makes 

comparison across the studies difficult. In this section, we review what those factors are and 

highlight differences across the studies. Study 1 was conducted in mid-2012, Study 2 was 

conducted in early 2015, whereas Study 3 was conducted in early 2014, but analyzed after 

Study 2. Not only were there differences across the three studies, but during the course of 

this timeframe, the ubiquity of touch, gesture, and voice interaction technology changed, 

which influences users’ legacy biases.  

First off, the demographics between study 1 and study 2 and 3 differed. Study 1 was 

conducted with local participants from the greater Seattle area, encompassing a wider variety 

of education levels and age groups. Studies 2 and 3 were conducted with a university 

population, which will have a much smaller variability in age groups and education levels, but 

a higher cultural variety.  

We also made several modifications between studies, specifically to address 

limitations of prior studies. In study 1, we leveraged kinesthetic and video priming, but 

because we were not able to detect a strong effect due to priming we removed it for the 

previous studies, and focused on production, which remained constant throughout the three 

studies. Removing priming from the study methodology may have had an impact on the 

variability of gestures produced.  
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We also changed the concreteness of the tasks and introduced a scenario after Study 

1 to decrease the boredom effect we saw. This change did have the effect of reducing 

boredom, but could have potentially reduced the variability of gestures produced as well. 

Finally, the tasks were different across the three studies, with some similarities (all studies 

included scrolling, paging and selection referents). Study 1 included text, not just object 

manipulation and was geared towards facetted browsing, most visible through the 3-column 

layout referents and the large variability in layouts that were being tested for browsing and 

navigation tasks. Study 2 contained a very small set of referents, some of which were focused 

on less common tasks (undo, return to main menu). Both Study 2 and 3 had a smaller variability 

in layouts, as each referent was meant to represent a different part of interacting with the 

same application within the same scenario. These changes were made to be more in line with 

the scenarios introduced.  

Similarly, unlike study 1 and 3, Study 2 used a small display and users stood much 

closer to the display, which may have influenced participants to behave more like they were 

interacting with a touch screen. Even in the other two studies, where participants were 

positioned further from the display, we saw them attempt to touch the screen. The changes 

to proximity and screen size were made to allow for easier collection of galvanic skin 

response data and to represent the scenario of using a kiosk to browse through a catalogue 

of furniture. This change for Study 2 could have easily reduced the magnitude of gestures 

being performed, as the objects on screen were much smaller, and our other studies showed 

that the size of the objects influences the speed and magnitude of the gestures (see Theme 3: 

Gestures for Size and Speed) (Morris et al., 2014). 
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To better understand whether these changes had any effect on the magnitude of the 

gestures produced, we looked at the body part used across studies (see Table 17).  

 

As can be seen in Table 17, Study 1 has a much larger number of full-body 

interactions, which may have been influenced by either the lack of concreteness in the task, 

or might be evidence for priming. As we discussed previously, there is no consensus on the 

effect of priming in gesture elicitation studies yet (Cafaro et al., 2018; Hoff et al., 2016). We 

also see a much higher use of arms and legs and a much lower use of full-body movement 

Table 17 

Percentage of gesture primitives for each part of the body for all 3 studies 

Body part used Study 1: % of  

primitives using 

body part 

Study 2: % of  

primitives using 

body part 

Study 3: % of  

primitives using 

body part 

Arms (including hands, 

elbows, forearms, fingers) 
60.80% 78.36% 68.33% 

Legs (including feet, toes, 

knees) 
7.49% 12.22% 4.55% 

Full Body 22.92% 3.21% 9.70% 

Head 4.20% 3.01% 3.33% 

Eyes (gaze, blinking) 3.09% 1.80% 8.33% 

Voice 1.51% 1.40% 5.30% 

BMI N/A N/A 0.45% 

Note. Highlighted cells indicate an increased production of that type of gesture compared to the other two studies. 
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for Study 2, which used the smaller display. Study 2 also had a lower use of voice, even 

though the study was conducted after Study 3 and may have been influenced by proximity to 

the screen. Finally, we see a significant jump in the use of voice and eye (gaze, blinking) 

interactions for Study 3 and also the introduction of brain-machine interaction technology, 

which are most likely due to changes in technology proliferation. See section 6.2.1 for a brief 

discussion on the proliferation of voice interaction technology.  

When looking at the number of gesture primitives identified across studies, we see a 

significant reduction in primitives from Study 1 to Study 3. Study 1 had 133 primitives 

defined across 15 participants, but only 37.6% (n=50) of those gestures were mentioned by 2 

or more participants. Many of these gestures were influenced by the priming, either because 

they were similar to motions shown in the video or performed during the kinesthetic 

priming (e.g. “doggy paddle”, “lunge”, “fishing”, and flying like an “airplane”). Study 2, 

which did not place an emphasis on the coding scheme or users’ mental models, had 72 

unique gesture primitives. Finally, in Study 3, where the focus was on refining the qualitative 

coding scheme and many more features were introduced, 38 unique gesture primitives were 

identified. Some of the reduction in primitives was due to the fact that additional features 

that coded a subset of the movement, eliminating the need for added primitives. Another 

reason for the reduction in primitives could have been due to the lack of priming and the 

addition of concrete referents and concrete scenarios. In either case, we saw a significant 

decrease in the number of gesture primitives that were only specified by one participant and 

a reduction in variability (increase in consensus-distinct scores) between Study 2 and 3 where 

consensus-distinct scores were calculated. Study 2 consensus-distinct scores ranged from 

0.421 to 0.556 (Table 6), while Study 3 scores ranged from 0.400 to 0.882 (Table 13). 



  116 

One final difference across the studies was the role that hand-dominance played in 

user preference of the side of the body to use. In Study 1, we saw no real effect of hand-

dominance on the side of the body selected with which to perform the gesture. What 

mattered more was the location of the object users were interacting with, reducing the need 

to reach across their bodies, which is consistent with research that shows that putting items 

that are often interacted with closer to the arm being used will also reduce fatigue (J. D. 

Hincapié-Ramos, Guo, Moghadasian, et al., 2014; Kölsch et al., 2003). In Study 3, however 

we saw a significant preference for the use of the right side of the body, and right-handed 

movements were found to be much faster (Nguyen & Kipp, 2014) and unlike for Study 1, all 

participants in Study 3 were right-handed.    

6.1.1 The Rise of Voice Interactions 

Over the course of the three studies, we see some interesting trends in voice 

interaction. While we do not see a significant difference between the use of voice between 

studies 1 and 2, there are other factors that could have influenced this outcome, such as the 

screen size or the types of actions presented in the referents. However, when comparing the 

two studies that were run with similar environments, we see a significant increase in the 

number of times voice was mentioned.  

Figure 16 shows the launch of some of the major voice assistants on the market. 

While Siri launched in October 2011, our study conducted in mid-2012 did not see a 

significant influence of voice interaction. However, by the time the 2014 study was 

conducted, the technology had been out for 3 years, and two other voice assistants had 

launched. This trend toward ubiquity onto the market is likely the cause of the increase in 

preference for voice interaction.  
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6.2 Emerging Themes Across Elicitation Studies 

In Study 1, we introduced 6 themes, some of which we provided additional evidence 

for in Study 3. The 6 themes were:  

• Theme 1: Similarities across Selecting Scrolling, and Paging  

• Theme 2: Gestures on the Body, Gestures in Space 

• Theme 3: Gestures for Size and Speed  

• Theme 4: Gestures for Parallelizing Data Exploration 

• Theme 5: Objects vs. Text  

• Theme 6: Concerns about Ambiguity 

From observations within these themes and additional results across all three studies, 

we can define the following design principles:  

1) Do not design gestures that require the user to maintain a specific palm 

direction. We saw in Study 1 that palm direction was relatively fluid within and 

across participants. In Study 3, we saw more consistency, however this was also 

one of the features that was most likely to change when refining a gesture.  

   

Figure 16. Timeline showing the launch of major voice assistants and technologies.   
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2) Consider mapping interactions with large displays to the floor, the user’s 

body or a smaller horizontal plane in front of the user. In Study 1, we saw 

participants mapping the screen to their body or the floor. In Study 3, we 

additionally saw participants mapping the screen to a horizontal plane directly in 

front of them in mid-air like they were interacting with a touch table.  We did not 

see these types of gestures in Study 2, where users were closer to the display and 

the display was small. 

3) Expect larger, less precise gestures for large objects or many objects. 

Participants defined less precise and larger gestures when there are many objects 

or objects are large, which are more likely to exist when designing for large 

displays that are further away. In Study 2, we observed much smaller gestures as 

the screen was small and close to user sand the objects were small.  

4) Expect faster gestures when users want to navigate faster. We saw 

participants comment on this in Study 3 and we also saw this for the scroll 

referent in Study 3, where there was a tie for max-consensus between slide 

(slower) and swipe (faster), but no such tie existed for scroll fast.  

5) Use more precise gestures drawing from metaphors of interactions with 

books or physical paper when users can interact with text instead of 

buttons or images. Text not only required more precise gestures, but 

participants also drew off of different metaphors related to real-world physical 

interactions with paper and pencil. Example gestures for text including 

underlining, circling, or pulling instead of pushing text to a position in space.   
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6) Design for a variety of joint rotations, magnitude of gestures, and 

variability in gesture path. This principle is related to design principle 3, but 

here we go further. We saw that the primary joint of rotation changes and 

movements become smaller over the course of an interaction and a refinement, 

so designing a system that will recognize a swipe whether it is performed with a 

full arm gesture or just the hand will make the system more robust and make 

gestures easier to discover. Mapping straight or arching paths to the same 

movement will also make systems more robust. 

7) Don’t design for discoverability, design for user preference and for 

minimizing fatigue. We go further into this principle in the next section, 6.2.1.  

8) Design with multi-modal interaction in mind. As we saw, voice, gaze, and 

even brain-machine interfaces are becoming more common for participants. 

Voice interaction can be leveraged to make interactions more accessible and can 

be used in instances where gestures may be considered ambiguous by users.  

6.2.1 The (Un)Importance of Discoverability 

So much of the gesture elicitation research, as mentioned previously, is focused on 

finding guessable gestures (Grijincu et al., 2014; Vatavu, 2012; Wobbrock et al., 2005, 2009) 

or on improving discoverability for gesture sets, especially if a user discovers one gesture and 

still needs to discover the rest (Cafaro et al., 2014, 2018). However, in this research we see 

across multiple studies, that what most elicitation studies would consider discoverable or 

guessable gestures are not necessarily the ones that are best suited for full-body gesture 

interaction due to legacy biases. The tension between discoverability and fatigue, which 
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heavily influences user preference, is one that calls into question the importance of 

discoverability.  

Cafaro et. al’s approach is interesting because its primary focus is on providing 

allegories to frame the interaction such that discovering one gesture will lead to more easily 

understanding and discovering the remaining gesture set (Cafaro et al., 2014, 2018), which 

could be beneficial even if the emphasis is not on discoverability to begin with. Combining 

this approach, with an approach that minimizes legacy bias and gestural fatigue could be a 

promising area for future research.  

So, if discoverability is not the primary goal, the problem becomes how do we 

quickly and easily guide users into understanding which gestures will work for public display 

interaction. One approach is that presented by Maher and Lee in the Walk-Up-and-Use 

Information Display (Maher & Lee, 2017), in which they provide short skeleton animations 

and visual guides to quickly train users and improve discoverability of their gesture set. 

Ultimately, the gesture set is part of a larger application that should have a well-designed 

feedback loop between system and user (see Figure 17) and provide the right affordances 

(Gibson, 1966; Norman, 2013) to users to more easily discover the gesture set.  

 

 

Figure 17. Feedback loop between system and user.   
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6.3 Implications for Gesture Elicitation  

In the previous two sections, we highlighted the differences and similarities across 

the three elicitation studies conducted as part of this dissertation. These sections highlight 

some implications for gesture elicitation studies as whole.  

First, as section 6.1 shows, the gestures that are elicited through this methodology 

are affected by various factors, such as the concreteness of the referents, the environment 

(private vs. public, the amount of physical space the can move around in, the display size), 

the diversity of participants (age, cultural background), and legacy bias, which changes over 

time as technology evolves. In this work, we explored some of these factors, although a 

more structured exploration is necessary. We also showed that increasing production helps 

combat legacy bias. Second, qualitatively coding gesture elicitation studies is not standardized 

and many papers do not present in detail the motivation for selecting the features that are 

selected for qualitatively coding gestures, making comparisons across studies difficult. In this 

work, we aimed to better understand which features are important to users’ mental models 

in order to help guide this feature select in future studies. Third, calculating agreement does 

not guarantee a non-conflicting gesture set, and often one must look further that the most 

agreed upon gesture. In addition, as we presented in this work, discoverability and fatigue are 

often at odds with one another, and agreement scores focus largely on discoverability. 

Therefore, a more comprehensive and standardized approach to identifying a gesture set for 

a particular use case is still necessary.  

While gesture elicitation is a promising avenue of research, and has been shown to 

produce gesture sets that are more preferred than designer specified gestures, more work 
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should be done on improving the methodology, from the way users are elicited, to how 

gestures are coded, to how the codes are analyzed.  

6.4 Sample Size Recommendations for Gesture Elicitation  

The first elicitation studies conducted set a precedent of using a sample size of 20 

participants per study regardless of the number of referents or types of gestures elicited 

(Wobbrock et al., 2005, 2009). A survey of 18 elicitation studies conducted since Wobbrock 

et al.’s 2005 study, excluding (Wobbrock et al., 2009) shows that these studies are conducted 

with a sample size between 8 and 31(M = 20.17, SD = 5.82) per condition (for studies that 

had multiple conditions the sample size was adjusted accordingly) , However, there is no 

clear indication for why a sample size of 20 participants is recommended or used, and no 

analysis has been conducted to determine whether there is a significant difference in a 

gesture set defined by gestures elicited from 10 participants or 20. Since gesture elicitation is 

a participatory design study that is analyzed using qualitative methods, we begin by looking 

at recommendations for qualitative studies more broadly.  

For quantitative studies, there are clear guidelines for calculating statistical power and 

effect size, and therefore sample size (Cohen, 1988; Ellis, 2010). However, no clear 

guidelines exist for qualitative studies, and recommendations vary based on the type of study 

conducted, though they usually require a smaller sample size than quantitative methods.  

Evaluation methods, such as usability studies, have low sample size 

recommendations since the goal of these studies is to identify pain points by participants of 

an existing interface. Nielsen & Landauer found that, for most interfaces, 100% of problems 

can be found by running a study with 15 participants (J. Nielsen & Landauer, 1993). 

Furthermore, Jakob Nielsen recommends small-N usability testing as 85% of all usability 
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problems can be found by running only 5 participants in a study. One exception to this 

recommendation is for cases where there are multiple distinct groups that are being targeted 

by an interface, then one should run 5 participants per group. (J. Nielsen, 2010). This 

recommendation was confirmed by analyzing insights gained across 83 different studies (J. 

Nielsen, 2012).  

Qualitative studies that use generative methods have different recommendations, as 

the goal of these methods is to better understand users’ mental models, where there is more 

variability (J. Nielsen, 2004). For both ethnographic studies and grounded theory, Morse 

suggests running studies with 30-50 participants (Morse, 1994). However, for grounded 

theory, Creswell suggests only 20-30 (Creswell, 2007). For phenomenological studies, the 

recommendation from Creswell is 5-25 participants (Creswell, 2007), whereas Morse 

suggests no less than 6 (Morse, 1994).  

For card sorting, which is a participatory design study aimed at understanding users’ 

mental models, usually around information architecture, Nielsen recommends using 15 

participants (J. Nielsen, 2004, 2012). Nielsen’s recommendation is based off of Tullis & 

Wood’s study, in which they originally tested 168 participants, and then simulated the 

outcome of the card sorting task with fewer participants and calculated how well the 

similarity scores correlate with the scores derived from testing the larger group (Tullis & 

Wood, 2004). 15 participants achieved a .90 correlation, while correlation of .95 was 

achieved for 30 participants. While Tullis & Wood recommended running 20-30 participants, 

Nielsen argues that the difference between .90 correlation and .95 correlation is not worth 

the added cost of running double the participants (J. Nielsen, 2004).  
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In many of the above cases, the sample size recommendations are built off of the 

notion of saturation, which occurs when adding more participants doesn’t yield additional 

perspectives or data (Glaser & Strauss, 1967). More specifically, data saturation occurs when 

one can replicate the study with the existing amount of data and when adding more 

participants does not yield new codes, themes, or data (Fusch & Ness, 2015; Guest, Bunce, 

& Johnson, 2006; O’Reilly & Parker, 2012).   

In this dissertation, we’ve shown repeatedly across the three studies that we were 

able to replicate many of the results for factors that remained static across elicitation studies, 

even with a small n of 10. For example, we saw evidence of the original themes that emerged 

in Study 1 in Study 3, in all studies we were able to reproduce the impact of production, and 

we saw similarities across the body parts used between Study 1 and Study 3 as well, Since 

there were some factors that changed across studies still, to confirm the ability to replicate 

the study another similar study could be run identical to Study 3, but this is left for future 

work. Additionally, in looking at the data in Study 3, we see that the data is layered, intricate, 

detailed, nuanced, etc., indicating a rich data set (Fusch & Ness, 2015). 

To better understand the impact of adding more participants to an elicitation study, 

we look more closely at Study 3, in which many of the original shortcomings around 

qualitative coding were addressed. Each participant elicited an average of 17 unique gestures 

across all referents (S.D. = 3.53, min = 10, max = 22). Figure 18 shows the total number of 

gesture primitives specified as each participant is coded. As seen in the figure, the majority of 

new gesture primitives are added in the first 3 participants, with very few new gestures 

specified after participant 5. Many of the new gestures specified by participants 4 and 5 do 

not have large agreement, with the majority of those gestures being specified by just one or 
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two participants total. If running a larger sample of participants and only qualitatively coding 

a subset of them, then selecting the participants with the most gesture primitives specified 

will give you the largest variety of gestures (breadth).  

 

Since we see that very few new gestures are added after 5 participants have been 

coded, the next step was to analyze subsample permutations of the participants for n >=5 

and see how closely the max-consensus (agreement) and consensus-distinct (variety) results 

match up to our n = 10 results. We ran 5 samples each of sizes n = 5, 6, 7, 8, 9 similar to 

how Tullis & Wood calculated the number of users needed for a card-sorting study (Tullis & 

Wood, 2004). The results can be seen in Figure 19 for the max-consensus scores and Figure 

20 for the consensus-distinct scores. Table 18 shows a for a random sub-sample of the max-

consensus scores, consensus-distinct scores and top three gestures for n = 5 to 9, with n=10 

for reference.  

 

Figure 18. Cumulative gestures added for each participant coded in Study 3.  
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Figure 19. Means and standard deviations for the correlations between the max-consensus scores with n = 10 

participants of 5 random samples of n=5, 6, 7, 8, 9.  

 

 

Figure 20. Means and standard deviations for the correlations between consensus-distinct scores with n = 10 

participants of 5 random samples of n=5, 6, 7, 8, 9.  
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As can be seen in Figure 19 and Figure 20, the max-consensus scores have a fairly low 

correlation at n = 5 and high standard deviation to the output of n =10 but quickly begin to 

converge. This makes it more likely that we see a significant amount of shifting around of 

gestures, as users are split on their preference for these. 

Looking at the differences for one random sampling of n = 5, 6, 7, 8 and 9 and 

comparing it to n = 10 in Table 18, we see that very few of the most common gesture 

primitives (those that have the highest consensus scores) change after n = 6. However, the 

second and third most common gestures do still change.  

Overall, based on the data presented, we can see that running 3 participants is 

enough to identify the majority of gesture primitives that users will specify and that running 

and analyzing 5-6 participants is enough to identify the most common gesture primitives 

across participants. However, analyzing additional participants will start to provide insights 

into gestures that are less influenced by legacy bias and into long-tail gestures that will have 

lower agreement scores. When trying to move past legacy bias, we need to run at least 10 

participants, if not more depending on the depth of the analysis being conducted. 10 

participants still provide a great amount of detailed information, as can be seen by the results 

and discussion presented in Chapter 5.  

6.5 Limitations 

This dissertation presents several studies aimed at gaining an in-depth understanding 

of user preference for gestural interaction, however the majority of the research focuses on 

able-bodied adults and does not account for additional factors, such as culture, that may 

influence user preference and mental models. In this section, we provide an overview of 
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participant demographics that are not accounted for in this research, as well as highlight 

remaining open questions and potential future work.  

6.5.1 Designing for Accessibility  

Designing for accessibility means designing for “any user, anywhere, anytime” 

(Soegaard, 2019). As mentioned, in this research, our specific focused was on able-bodied 

adults, however public displays should be available to all users, many of which are not 

accounted for in the research presented here. In this section, we look at a few of the 

demographics that may struggle with gestural interactions with a full-body walk-up-and-use 

public display.  

Visually Impaired 

Visually impaired users may struggle with seeing the items on the display to interact 

with them and may have even more difficulty identifying that the display is interactive, an 

issue even for sighted individuals. When it comes to reading items on screen, standard 

accessibility tools already exist for visual displays on desktop and mobile. These same screen-

reading tools could be implemented on large public displays as well. The concern then 

becomes communicating to users how to trigger the screen-reading capabilities. One way, 

might be to also provide voice control capabilities, a feature that was regularly suggested by 

participants in elicitation studies. Additionally, computer vision capabilities inherent in 

gestural interfaces could allow for recognition of support or probing canes, allowing the 

system to automatically switch modalities and engage a user via voice.  

Since gestures can still be performed by visually impaired users, studies have been 

conducted both to aid visually impaired users in understanding other people’s gestures in 

collaborative environments and in identifying differences in gesture preferences between 
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visually impaired and sighted individuals. To help visually impaired users in collaborative 

environments, Kunz et al. developed a system that processed gestures and speech in order to 

provide meaningful information about deictic gestures performed by others in tabletop 

interactions (Kunz et al., 2014).  

To better understand user preference of visually impaired individuals, Kane et al. 

conducted a gesture elicitation study for touch-based gestural interaction comparing gestural 

preferences for both blind and sighted individuals, and found that these two groups prefer 

different types of gestures (Kane, Wobbrock, & Ladner, 2011). During the elicitation study, 

blind participants suggested gestures that used the edges or corners of the screens, contained 

significantly more strokes, and used more multi-touch gestures, many of which used a mode 

key while performing a different gesture with the other hand. Additionally, more of the 

gestures produced by blind participants were abstract or metaphorical, while more of the 

gestures produced by sighted people were symbolic. For metaphorical gestures, blind 

participants often used references to physical keyboards, whereas none of the sighted 

participants did, which points to a different type of legacy bias than that observed in our 

study and similar studies with sighted participants. Blind participants also performed larger 

gestures, gestures had a greater variation in size across instances, glyph gestures, specifically, 

were wider, and all gestures took twice as long to perform as it took sighted users (Kane et 

al., 2011), The difference in how long it takes individuals to perform gestures means that 

speed, although a meaningful feature for sighted participants, is one that cannot be used if an 

interface is to be accessible for all users. Other demographics, such as older individuals, are 

also slower in performing gestures (see Elderly section below). This study was conducted for 

touch interactions, where edges and corners exist and can be felt. However, in full-body 
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gesture interaction, the camera frame is difficult to communicate to users, and cannot be felt 

or touched. However, audio feedback could potentially be used to indicate when users are 

approaching the bounding box of the recognition space.   

 For mid-air gestural interaction, Funes et al. conducted a study evaluating the 

use of gestural interaction for video playback to help visually impaired users through a 

system called Gesture4All. They tested several gesture recognition technologies, and found 

that 3D gesture interaction using a smart phone was preferred over standard accessibility 

tools, such as screen reading software, for video playback because it was easier to perform 

accurately and the Gesture4All system also provided audio feedback when a gesture was 

recognized (Funes, Fortes, Trojahn, & Goularte, 2018). This study provides additional 

support for the user of multimodal output for users, and suggests a novel approach for 

gesture interaction. An alternative for visually impaired users, could be to use tactile 

feedback and the accelerometer on their own mobile devices to allow for communication 

with a public display via blue tooth pairing, for example.  

Physical Impaired 

There are many different types of physical impairment that one might be concerned 

about. Much of the research has focused on individuals with motor impairments, such as 

degenerative diseases or others that cause tremors. However, individuals may also be 

wheelchair bound or be missing limbs. Research into individuals with these types of 

impairments is much less common.    

For users with motor impairments, several researchers have looked at how to modify 

or augment touch-based interactions, as these screens are small and therefore require precise 

movements that some are not able to perform. For example, in stylus-based touch 
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interaction for small screens, Wobbrock et al. designed and evaluated a unistroke input 

technique that uses corners and edges as guides. This system increased accuracy for able-

bodied individuals by 18% and could also be used by individuals with motor-impairments, 

such as tremors, even when those users were not able to use the Graffiti writing system 

(Wobbrock, Myers, & Kembel, 2003). Malu et al. evaluated the use of smartwatch 

interactions with users that have motor impairments and found that text input is extremely 

difficult without voice, and that even though users thought tap interactions were easy to 

perform, they had a high error rate. In their study, the authors also conducted an elicitation 

study for smart watch interaction by users that are motor impaired. In their second study, 

they observed legacy bias, but also noticed that legacy bias didn’t have as strong of an effect 

with this demographic, where there are limitations in motion and comfort is even more 

important. Additionally, they found that users that have motor impairments of the upper 

limbs explicitly disliked on-body interactions, for smart watches (Malu, Chundury, & 

Findlater, 2018). In the first study presented in this dissertation, we saw a trend for users to 

elicit on-body gestures with large displays. This difference could be due to either the 

significant change in screen size, or it could highlight a difference between able-bodied and 

motor impaired individuals.  

In full-body gesture interaction, one elicitation study, conducted specifically looked 

at the effect of physical impairment in gesture elicitation studies (Altakrouri, Burmeister, 

Boldt, & Schrader, 2016). The study was conducted with 20 healthy and 12 physically 

impaired participants in an office setting and found that impaired participants were more 

likely to use full body motions, had lower agreement scores, and wanted more personalized 

gestures. An interesting finding in this particular study was that users specified that they 



  133 

would not use full body movements in public, but they would in private. This could be due 

to cultural influences, as the study was conducted in Germany, or could specifically pertain 

to a public vs. private office setup and not to all public spaces. In the first study presented in 

this research, we found a significant number of full body interactions suggested that users 

would be willing to perform in public, especially around data navigation tasks. Another 

differentiation between the study and the research presented here is that this research 

explicitly looks at walk-up-and-use displays, where personalization is not possible. Additional 

research would need to be conducted to better understand how motor impairment affects 

users of different cultural backgrounds and how user preferences are affected in different 

contexts.  

Physically impaired participants can benefit from gaze and voice, both of which were 

mentioned by participants in our elicitation studies. Some participants were explicitly 

concerned about the perceived ambiguity of gaze as an interaction modality, however 

research has shown that this can be an effective mode of interaction (Chakraborty, Sarcar, & 

Samanta, 2014; Jacob, 1991; Majaranta, Aoki, Donegan, Hansen, & Hansen, 2011; Rajanna 

& Hammond, 2018; Wobbrock, Rubinstein, Sawyer, & Duchowski, 2008) for text entry 

(Chakraborty et al., 2014; Wobbrock et al., 2008) as well as actions such as minimizing and 

maximizing windows, scrolling, refreshing a website or opening a new tab (Rajanna & 

Hammond, 2018).  During our elicitation studies, sometimes participants would consider 

individuals that could not walk or move around, such as those in wheelchairs and would 

suggest small gestures that could be performed while sitting (e.g. drawing something or 

performing a gesture on the armrest of the couch).   

 



  134 

Elderly 

While much of the research on motor impairment and visual impairment may also be 

applicable to the elderly, older adults also undergo sensory, perceptual and cognitive changes 

(Schieber, 2003) and declining motor skills (Vercruyssen, 1997) as they age. This may impact 

their ability to perform full-body gestural interactions. They may also suffer from conditions, 

such as strokes, which may impair only one side of their body. In the studies presented in 

this dissertation, all participants were adults between 18 – 48 years of age, and unlike 

situational impairments or motor impairments, most of our participants did not comment on 

age related modifications that could be made to gestures as they were elicited.  

Several researchers have evaluated older adult (either over the age of 60 or 65 

depending on the study) usage of touch screen interfaces. One study comparing younger and 

older adults on touch gesture interaction found no difference in accuracy between the two 

groups regardless of gesture complexity or screen size, but found that older adults were 

often slower in performing the gestures (Stößel, Wandke, & Blessing, 2010). Another study 

comparing older and younger participant’s preference for touch gestures found that older 

adults prefer one-finger over multi-finger gestures (e.g. double tap to zoom instead of pinch-

to-zoom), are more tolerant of more complex gestures, and prefer symbolic gestures more 

often than younger users (Stößel & Blessing, 2010). When looking at these results, this may 

also mean that older individuals are less likely to be influenced by legacy bias of touch screen 

interfaces. In yet another study by Kobayashi et al., the researchers found that older adults 

had difficult with tapping accuracy, especially with small targets and that interactions with 

large screens often outperformed small screens (Kobayashi, Hiyama, & Miura, 2011).  
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One advantage of large, public displays is that objects on screen tend to be larger and 

easier to see and most full-body gesture recognition technology allows users to be closer or 

further away as needed, allowing older adults to approach the screen if they are having 

difficult reading it. In our studies, we also found hand-dominance did not often affect with 

which side of the body that users chose to perform a gesture, indicating that many gestures 

could be performed with either the right or left side of the body and contain the same 

meaning. Allowing user to, for example, swipe with either the right or left hand and focus on 

direction of motion instead, would allow elderly individuals that have control over only one 

side of their body to still interact with displays. Arm gestures, across all studies, were also 

most common. Designing public displays with only upper body interactions would also 

provide a more accessible interface for physically impaired individuals and elderly users that 

are wheelchair bound. Again, the speed at which a gesture is performed, cannot be used as a 

distinguishing feature due to the differences in speed between younger and older individuals.  

For mid-air gestural interaction, one study, aimed at comparing older adults with 

younger ones, found that older individuals are more likely to rate gestures as fatiguing and 

difficult to perform, were more affected by failed attempts, and found it harder to perform 

gestures that required their hand to be in a specific location than younger users (Cabreira & 

Hwang, 2016), providing evidence for preferring to design a system with gestures that are 

relative to one’s own body instead of in a particular point in space. Cabriera & Hwang also 

conducted two additional studies, one to assess swipe gestures (Cabreira & Hwang, 2018b) 

and another to assess pointing and selection gestures (Cabreira & Hwang, 2018a). For swipe 

they found that larger carousel menus encourage older adults to make larger movements, 

thereby increasing recognition rates (Cabreira & Hwang, 2018b). This is consistent with our 
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findings that larger objects elicit larger movements from participants. For pointing and 

selection tasks, they found that providing both audio and visual feedback helps older adults 

increases target acquisition speed but not accuracy and that target location significantly 

affects both selection time and accuracy, and that targets in the top right or towards the 

center of the screen were most successful (Cabreira & Hwang, 2018a). Another study aimed 

to develop a full-body gesture-based game for institutionalized older adults. In this research, 

the authors worked with a physical therapist to develop a gesture set that would be accessible 

for older adults. In their evaluation, they found that gestures that required leg movements or 

both arms were rated as more difficult, but that participants liked that the gestures allowed 

them to be active, with some participants even rating the gestures as too easy. Overall, 

dynamic gestures were less likely to be completed than static ones (Gerling, Livingston, 

Nacke, & Mandryk, 2012). This study builds on existing research to show, that even though 

the elderly may struggle with aspects of gestural interfaces, they are still motivated to engage 

with them.  

Children 

While children are less likely to suffer from physical impairments, such as tremors, or 

be wheelchair bound, children are still developing their motor control, especially fine motor 

movement. The lack of fine motor control is especially important for touch interaction, 

where there is limited screen real estate and movements are much smaller. Therefore, the 

majority of research into children and gesture has been done for touch, especially since 

children as young as age 2 are using tablets and other touch interfaces on their own.  

When evaluating the seven most common gestures for touch interactions (tap, flick, 

drag-and-drop, slide, pinch, spread and rotate), Aziz found that children aged 4 and older 
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could perform all gestures with no difficulty, while children aged 3 struggled with pinch and 

spread gestures, and children aged 2 additionally struggled with rotate and drag-and-drop 

(Aziz, 2013). Similarly, Nacher et al. evaluated 100 apps on the app store for iOS and found 

that nearly all of them only used tap and drag. However, when evaluating what gestures 

children aged 2-3 could perform, they found that these children could also perform one-

finger rotations and two-finger scale up / down gestures with the same accuracy as tap and 

drag. They found that children had difficulty performing double tap, long press and two-

finger rotation gestures (Nacher, Jaen, Navarro, Catala, & González, 2015).  

To understand whether children and adults elicit different gestures, Rust et al. 

conducted an elicitation study with children from 8 to 11 years of age and adults for touch 

interactions. Similar to other studies, they found that both children and adults are influenced 

by legacy bias (96% of gestures elicited were standard touch screen gestures, such as tap, 

drag, swipe, pinch and rotate), and that children and adults elicit similar gestures (Rust, Malu, 

Anthony, & Findlater, 2014). Similar to the second and third study presented in this 

dissertation, Rust et al. used concrete referents, but unlike standard elicitation methods, they 

provided feedback when the touch was registered; they also allowed children to use a 

drawing program for 5 minutes before the study to eliminate novelty of the technology, 

which may have biased the children in some way.  

In another study, Anthony et al. compared gesture recognition accuracy for adults 

and children (7 – 16 years of age), finding that children are more likely to have holdover 

touches (touches located near the previous touch target) and higher rates of errors for 

touches in general. Additionally, children’s  gestures were less likely to be recognized than 

adult gestures and that recognition accuracy was correlated with age – the  younger the child 
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the worse the recognition (Anthony, Brown, Nias, Tate, & Mohan, 2012). In prior work by 

Brown et al., they also found that swipe gestures may be difficult for children because they 

tend to lift their finger mid swipe and that children have difficulty acutely touching small 

onscreen targets (Brown et al., 2010). 

For full-body gestural interaction, Connell et al. conducted an elicitation study with 

six children (ages 3-8) asking children to produce gestures for 22 tasks using abstract shapes 

of 3 different categories (object manipulation, special interaction, and utility or navigation 

based tasks) (Connell, Kuo, Liu, & Piper, 2013). In their study, they found evidence, even in 

young children, for legacy bias, but found that younger children that had less experience with 

Kinect or touch interactions were more likely to suggest egocentric gestures, voice 

interaction, full-body gestures, and generally produced a larger variety of gestures. This 

study, however, had a very small sample size and used a Wizard-of-Oz approach providing 

feedback to participants during the elicitation process. Regardless, this study highlights that, 

young children with less or no touch interaction experience may be a promising avenue for 

further study, as they may provide better insights into natural gestures that are not influenced 

by legacy bias.  

In general, however, there is little research into designing for full-bodied interactions 

for children, especially for task driven public displays as children are also less likely to use 

these over interactive museum displays or gesture-based games, either in public or at home. 

Concerns around small target sizes and precise movements are less likely to be problematic 

when dealing with large public displays, as targets can be larger, and non-finger movements 

do not require the level of precision that finger gestures for touch interaction require.  
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Situational Impairments 

 Every user undergoes situational impairments (Sears, Lin, Jacko, & Xiao, 2003) at 

some point in time, and users are especially likely to be experiencing situation impairment in 

locations where walk-up-and-use public displays would be found. When thinking about 

public displays in airports and malls, users may be carrying items they just purchased, 

ensuring their children do not run off, be stressed about making a flight, or other contextual 

circumstances that either lead to decreased cognitive ability or motor ability. One participant, 

in Study 3, specifically, thought about what it would be like to be holding her child in her 

arms, or holding groceries and still be able to interact with the display.  This was one of the 

primary motivating factors for her when producing gestures.  

Early work in situational impairment argues that environmental and contextual 

changes might affect mobile device users similar to how cognitive and physical impairments 

affect users with disabilities (Barnard, Yi, Jacko, & Sears, 2007).  One study found that the 

number of errors made by an unimpaired user on a mobile device was similar to motor-

impaired desktop users (Yesilada, Harper, Chen, & Trewin, 2010). Similarly, another study 

looking at motor impairment, also found perceived benefits to using smartwatches with able-

bodied situationally impaired individuals. (Malu et al., 2018).  

Some research has been conducted in touch and desktop-based interaction to help 

identify and support situational impairment. For example, many people use their phones 

while walking. One study, looked at improving typing accuracy by using the phone 

accelerometer to help compensate for the user’s movement when walking (Goel, Findlater, 

& Wobbrock, 2012). Another study, by Rajanna and Hammond looking at desktop 

interactions, suggest using gaze interaction as a way to address situational impairment 
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(Rajanna & Hammond, 2018).  

 Some insights can be drawn from full-body gesture research into the elderly and 

physically impaired individuals, such as supporting flexibility in which arms can be used for 

common gestures (such as swipe, tap, etc.), and supporting multi-modal input and output. 

However, to the best of our knowledge, no research has been conducted on how to account 

for situational impairment specifically in full-body walk-up-and-use interactions, making it a 

rich area for future research.  

6.5.2 Effect of Culture on Gestures 

Cultural norms can also influence the types of gestures users are most likely to 

perform. This is especially important for walk-up-and-use interfaces, because users’ diverse 

cultural backgrounds are likely to interact with them. Some HCI research has sought to 

better understand how culture influences gesture elicitation.  

For example, researchers from Stanford conducted two similar elicitation studies: 

one in the US and another in China, to better understand how culture influences user 

preference for interacting with drones (Cauchard et al., 2015; E et al., 2017a). Both elicitation 

studies were conducted on university campuses and participants were presented 18 different 

actions associated with drone control (e.g. follow me, fly higher, take a picture). Participants 

were asked to interact in the manner that felt most natural (not specifically gesture). The 

study used a post-task think-aloud method and asked participants to rate suitability and 

simplicity. After the elicitation portion of the study (part one), participants were given a 

sheet of paper with suggestions for interaction techniques and asked to complete 4 of the 18 

tasks again to see if their interaction changed after the suggestions (part two). US 

participants expressed discomfort using voice initially and use of voice increased while use of 
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gesture decreased between part one and part two of the study (from 37% to 57% for voice 

and 88% to 70% for gesture). However, Chinese participants used voice more often from 

the very beginning of the study and there was no significant difference between modalities 

chosen in part one and part two of the study (56% and 59% respectively for voice and 80% 

to 84% for gesture). Chinese participants were also more likely to use multimodal 

commands. In 75% of cases voice input would complement the gesture, but in the 

remaining 25% the voice input would augment the gesture by providing additional 

information. Finally, although there was significant agreement within cultures and for many 

actions there was also significant agreement across cultures, there were instances in which 

there was high agreement in one culture and low agreement in another (e.g. with stop, where 

Chinese participants use two common gestures for stop – holding their hand out in a “T- 

shape” and holding their palm out, like in the US).  

A significant amount of research has looked at the effect of culture on gesture 

outside of the HCI literature, and a full review of this work is outside the scope of this 

dissertation. However, a couple of examples will be discussed.  

Matsumoto and Hwang compared emblematic gestures, those gestures that don’t 

need to co-occur with speech, across cultures (Matsumoto & Hwang, 2013). They first had 

encoders produce emblems, and then they had an independent set of observers judge the 

emblems produced by the encoders to make sure they were really emblematic gestures. A list 

of gestures was derived from previous studies using the same encoding/decoding 

methodology in three different countries: the US, Israel and Iran. A subset of the most 

important ones, as chosen by three independent subject matter experts was chosen for the 

comparison study. In this study, they found that 15 of the gestures in their study were 
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recognized across gestures. These gestures were often basic gestures (e.g. “no”, “yes”. “to 

threaten someone” by waving your fist at them, etc.) or gestures referring to objects that are 

culturally invariant (e.g. “run”, “phone” and “cigarettes”). They found no culturally similar 

gestures that were categorized as religious ones or ones referring to social norms and 

etiquette. Research conducted by Archer on cultural differences in gesture ultimately led the 

author to conclude that there is no "universal language" of gestures (Archer, 1997). This was 

supported by differences such as the meaning of “OK” or “Thumbs up” gestures in English 

having many different, often negative interpretations in other languages.  

For walk-up-and-use public displays and elicitation studies in general, this means that 

researchers should try to both identify common gestures that might be insulting in other 

cultures prior to developing a final gesture set and to recruiting participants from diverse 

cultural backgrounds. Not only may gestures mean different things in different languages, 

but the social acceptance of performing gestures in public or using voice interaction in 

addition to gesture will differ. This may also mean that, just like mobile applications, 

commercial applications developed for multiple locales may need slightly differing 

interaction paradigms, not just text localization.  As public displays and full-body or free-

space gestural interaction becomes more common, additional research should be conducted 

to determine the impact of culture on developing systems that are deployed across cultures.  

6.6 Open Questions and Future Work 

While this dissertation highlights the importance of fatigue and comfort for 

participants and asks users to qualitatively assess the fatigue of gestures they perform, the 

research presented here shows that there is still no quantitative measure of fatigue that can 

be used for the variety of free-space and full-bodied gestures that are elicited for walk-up-
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and-use interactions. Additionally, while the variability of elicited gestures changed between 

studies, it is not clear whether this variability was affected by priming or by the fact that one 

study asked participants to interact with abstract objects and another with concrete objects.  

Both of these questions are interesting avenues for future work.  

Another interesting avenue to explore is on how to leverage the methodological 

changes presented here to de-emphasize initial discoverability, and find gesture sets that 

users are prefer and which are less fatiguing. This avenue of research could take multiple 

approaches. One could be to explore how to quickly communicate to users what the gesture 

set is for a system. Another could be to leverage framed guessability (Cafaro et al., 2018) to 

more easily allow users to draw off of allegories to discover additional gestures once one has 

been discovered.  

While a significant amount of research has been conducted in understanding the 

impact of culture on gestures in human-to-human communication, very little research exists 

around how culture influences elicitation of gestures or gestural preference in public 

displays. Similarly, there is research in how to design accessible touch interactions, but much 

less work in full-body or free-space gestures. In this dissertation, we presented design 

principles that could be used for full-body interactions with public displays for able-bodied 

adults, but public displays should be accessible to all demographics. Therefore, another 

avenue of research is to identify how the design principles presented here should be refined 

such that they are accessible for all demographics.  

Finally, a logical next step for future work would be to train more robust classifiers 

for a walk-up-and-use system and assess how easily users can discover the gestures they need 

to perform without any training.  
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CHAPTER 7 

CONCLUSION 

The goal of the research presented in this dissertation was to answer the following 

research questions:  

RQ 1) How do we modify gesture elicitation to reduce legacy bias?  

RQ 2) Which gestural features matter to users and how do they influence a user’s 

mental model about that gesture?  

RQ 3)  What are the set of design principles that can be used in the future to design 

gestural interfaces that are discoverable, easy-to-use-and flexible for public displays?  

Answering these questions is especially important now given the rise of post-WIMP 

interaction technologies. Existing research has already shown that users prefer user-

generated gestures to those produced by expert designers. Using a gesture elicitation 

methodology, therefore, is an ideal way to identify gestures set for walk-up-and-use free 

space contexts.  

In this dissertation, we presented three gesture elicitation studies to address the 

research questions presented above. The first study focused on RQ1 and explored the use of 

priming (both kinesthetic and video priming) and increased production as ways to combat 

legacy bias. Priming did not seem to have a significant effect on the number of gestures 

elicited per participant. However, there were indications that priming did influence the types 

of gestures people performed (e.g. by mimicking gestures they did during the kinesthetic 

priming phase, or ones they saw in the video priming) and results from this study and related 

work suggest priming should be further explored. This study also indicated that increases in 



  146 

production were found to be beneficial, showing that users typically preferred the second or 

third gesture produced per referent. This was corroborated by the subsequent studies as well. 

The second study focused on RQ3 by exploring the interplay between fatigue, 

discoverability and user preference. In this study, we found that users care considerably 

about fatigue and comfort when performing gestures. However, they were not good at 

judging how fatiguing a gesture was during the elicitation phase, and often changed their 

preferences after repetition. Finally, we found that discoverability and fatigue are at odds 

with one another, and that gestures that are more discoverable also tend to be more fatiguing 

and therefore less preferred by participants.    

The third study focused on RQ2 to identify the features that are most important to 

users’ mental models to both identify design principles that can be leveraged by designers 

and better inform the development of robust classifiers for full-body gesture based systems. 

We discussed changes in the qualitative coding to help identify and distinguish gestures that 

are considered similar and different by users. We also explored what refinements tell us 

about user preference, and found that refinements were often done for gestures that users 

already preferred and were refining exclusively arm gestures. We identified palm direction 

and hand configuration are largely variable and containing little meaning for participants and 

found that participants also used arching paths in addition to straight paths without any 

change in the meaning of the gesture. Finally, in this study, we also showed that current 

quantitative measures of fatigue, all of which focus on shoulder joint rotation, are inadequate 

for many of the gestures that are elicited from participants for full body walk-up-and-use 

interactions.  
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Across the three studies, we identified 8 design principles. The following is a 

summary of the design principles that emerged across the three studies for walk-up-and-use 

interactions:  

1) Do not design gestures that require the user to maintain a specific palm 

direction.  

2) Consider mapping interactions with large displays to the floor, the user’s body or 

a smaller horizontal plane in front of the user.  

3) Expect larger, less precise gestures for large objects or many objects.  

4) Expect faster gestures when users want to navigate faster.  

5) Use more precise gestures drawing from metaphors of interactions with books or 

physical paper when users can interact with text instead of buttons or images.  

6) Design for a variety of joint rotations, magnitude of gestures, and variability in 

gesture path.  

7) Don’t design for discoverability, design for user preference and for minimizing 

fatigue.  

8) Design with multi-modal interaction in mind. 

The key contributions of this thesis are:  

1) A modified gesture elicitation methodology that aims to overcome legacy biases 

through the use of priming and increased production.  

2) A qualitative coding scheme that better captures users’ mental models. 

A set of generalizable design principles that can be used in the future to design 

gestural interfaces that are discoverable, easy-to-use and flexible for walk-up-and-use public 

displays. 
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APPENDIX A 

CODING FORM – STUDY 1 
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Participant No.:  
Video name:  
Gesture 1 

Notes: 
  

Position 

 

 

 

Common Primitives 
� Squat 
� Jump 
� Raise on toes 

 
� Clap 
� Snap 
� Voice 
� Gaze 
� Grab/Clench 
� Drag + Drop 

Motion 
� Swipe 
� Punch 
� Kick 
� Point 
� Circular 
� Twist 
� Step 
� Lean/Tilt 
� Turn 
� Tap 

 Type of Gesture 
� Absolute 
� Relative 

 
� Sequence 
� Continuous 
� Discrete 
� Repeated 
 

Speed 
� Based on 

movement speed 
� Based on 

position 
Body Part 

� Hand 
� Forearm 
� Elbow 
� Arm 
� Waist 
� Foot 
� Lower Leg 
� Knee 
� Leg 
� Head 
� Full body 

Which side? 
� Right 
� Left 

 
Person is: 

� Standing 
� Sitting 

Hand Configuration 
� 1 Finger 
� 2 Finger 
� Flat hand 
� Fist 
 

Palm position 
� Up 
� In 
� Out 
� Down 
� Forward 

Gesture Mapped to…. 
� Body ________________________________________________________________________ 
� Room _______________________________________________________________________ 
� Other _______________________________________________________________________ 
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APPENDIX B  

DEMOGRAPHIC SURVEY – STUDY 2 
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Participant Number: ____________ 
 

Gesture Elicitation Study - Background Survey 
 

1) Are you technologically savvy (in other words, do you program, build anything on 
the web, develop electrical devices, and/or solve problems with technology?) 

a. Yes 
b. No 
c. Considered myself savvy but not a computer, mechanical, or electrical 

engineer. 
 

2) Do you own and/or currently use any tablet, video game systems (e.g. Wii, Xbox, 
etc.), smartphone, laptop, computer, and/or music player with touch screen? 

a. Yes  
b. No 

 
3) Have you ever used a gesture recognition system before like Xbox Kinect and Leap 

Motion? 
a. Yes  
b. No 

 
4) Do you currently experience any muscle or joint pain? 

a. Yes  
b. No 
c. Some 

 
5) Do you like to work-out whenever you find the time and opportunity? 

a. Yes  
b. No 
c. Sure, mostly depends on my mood. 

 
6) How long would you say that you have used a tablet or smartphone (not meant to be 

a trick question)? 
a. Since it came out  
b. About 1 to 2 years 
c. 3 and more 
d. Never 
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APPENDIX C 

USER SURVEY – STUDY 2 
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Participant Number: ____________ 
 
Gesture Elicitation Study - User Survey 
 
Question 1: For this task, please rank your preference for each gesture in an ascending order, 
with 1 being most preferred. 
 

__________________________________________________________________ 
 
Question 2: What was the reason or factor for your ranking? Ranking was based on: 

a. Comfort   
b. Boost in energy or mood 
c. Intuitiveness for this task (in other words, suitable and brought to mind first) 
d. Creativity 
e. Ease of communication with computational devices (easy for computers to 

recognize gestures) 
f. Others: __________________________________________ 

 
Question 3: Imagine doing the same gestures repeatedly for an hour. Which of your gestures 
do you think would be most stressful to you? 

Please list them here. 
 

__________________________________________________________________ 
 
Question 4: What do you like about this task? Please select all that applies to you. 

a. Easy to understand 
b. Easy to perform gestures for 
c. Similar to technologies you have used in the past 
d. Others: List other reasons for your preference. 

 
________________________________________________________ 

 
Question 5: What do you dislike about this task? 

a. Unsuitable for gestures 
b. Unrealistic 
c. Stressful 
d. Confusing 
e. Others: Please list other reasons here. 

      
    ________________________________________________________ 



  167 

 
Question 6: Did you feel physically stressed out doing this task?  

a. Yes  
b. No 
c. Others: _______________________________________________________ 
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APPENDIX D 

USER SURVEY – STUDY 3 
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Participant Number: ____________ 
 

Gesture Elicitation Study - User Survey 
 

1. What is your gender? 
a. Female 
b. Male 
c. Other 

 
2. What is your age? 

 
 
 

3. What is your race (circle all that apply)?  
a. White or Caucasian 
b. Hispanic or Latino  
c. Black or African American 
d. Native American or American Indian 
e. Asian  
f. Pacific Islander 
g. Other (please specify): ______________ 

 
4. What cultures are you most influenced by?  

 
 
 

5. Are you right handed, left handed, or no preference? 
a. Right 
b. Left 
c. No preference 

 
6. Current degree being pursued?  

a. Bachelors 
b. Masters 
c. PhD 
d. Other (please specify): ____________________ 

 
7. What is your major? 
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8. Do you play video games? 

a. Yes 
b. No 

 
9. If you play video games, how often (Skip this question if you do not play video 

games)? 
a. Less than once a week 
b. Once a week 
c. Daily, but less than 1 hour a day 
d. Several hours a day (1-5 hours a day) 

 
10. Have you ever used a Microsoft Kinect or similar product (e.g. Leap motion or any 

other gesture tracking hardware) for video games? 
a. Yes 
b. No 

 
11. If you have, how often? 

 
 
 

12. On a scale of 1 to 5, how comfortable are you using gesture tracking hardware (e.g. 
Microsoft Kinect, Leap Motion, Nintendo Wii)? 

 

Not at all 
comfortable 

 Neutral  Very 
comfortable 

1 2 3 4 5 

 
13. Have you used these devices in other contexts besides video games (e.g. to interact 

with a public kiosk, in a museum, etc.)? If so, how have you used them? 
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APPENDIX E 

GESTURE PRIMITIVE DEFINITIONS – STUDY 3 
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ASL: Using defined ASL hand or arm gestures.  

Blink: Blinking one’s eyes.    

BMI: Any mention of “just thinking about it” and the action happening. Short for Brain-

machine interface.  

Clap: Clapping your hands together. Much greater force than pinch and implies that the two 

hands make contact, which may or may not be true for a pinch. Usually includes the hands 

making a noise on contact.  

Draw: Any gesture that involves drawing. E.g. Draw an “X” or a circle or draw a check 

mark.  

Expand: Used for any movement where multiple body parts move away from one another 

after starting out together or next to one another. Opposite of pinch.  

Flick: Flicking with your arms / hands. Fast, short movement done with force. Like flicking 

an ant or lint away.  

Gaze: Any gesture involving the user looking at a particular location or item.  

Grab: Going from an open handed or partially open hand configuration to a fist like one is 

holding onto something. Similar to how one would grab a physical item.  

Hover: Moving and holding a body part in position for several seconds.  This may or may 

not be towards a particular object.  

Jump: Jumping with the legs or full body upwards. Usually used as a complementary gesture 

to squat.  

Kick: Kicking with your legs. Usually done quickly and with force.  

Lean: Change in weight distribution rather than a rotation of a joint. E.g. shifting weight 

onto the balls of your feet or shifting your weight from one foot to the other.  
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Move: Should be used in instances in which moving the body part to a specific position in 

meaningful to the user, for example when “dragging” or moving objects to a particular 

location. In cases in which the user moves their body part in preparation for a gesture, we 

ignore this movement. This primitive is also used in cases in which there’s a meaningful 

expansion of the arm or leg that wouldn’t be captured if it wasn’t split out on its own.   

Nod: Up / down “yes” nod or looking up / down by rotating your neck. Or left / right 

“no” nod or looking left / right by rotating your neck.  

Pen Click: Only performed by one participant that used a pen as part of his gestures. He 

would click the pen open / closed to indicate things such as selection, etc.  

Pinch: Used for any movement where multiple body parts move towards one another after 

being separated (e.g. bringing your arms together, or pinching two fingers together). 

Opposite of expand.  

Point: Always to a specific location in space (i.e. absolute….whether it’s an object, the edge 

of the screen, etc.) and doesn’t have the force of a tap or necessarily the quick joint rotation. 

Shorter hold than a hover.  This could include the participant specifying that they’d like to 

touch the screen.  

Pull: Usually a slower movement with a lot of perceived force. Like you’re pulling something 

towards you.  

Push: Usually a slower movement with a lot of perceived force. Like you’re pushing 

something away from you.  

Rotate: Any joint rotation that doesn’t fit into another, more meaningful, gesture primitive.  

Scoop: Like picking something up with an arcing motion.  
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Shake: Short quick movements back and forth of a joint. Often times, this is called an 

erasing” gesture.  

Shoot gun: Hand gesture like one’s shooting a gun where the index finger is straight and 

pointed at something and the thumb bends to indicate the shooting action.  

Slide: Moving a body part (usually arm or leg) from one location to another on a straight or 

arched path. More like a dragging motion instead of a swipe. This is slower than a swipe and 

has less speed / force associated with it.  

Snap: Snapping one’s fingers together. Short, quick movement, with sound.  

Squat: Squatting or crouching. Usually involves only movement of the legs.  

Step: One foot movement and landing, but not continuing with a second step.  

Swipe: Moving a body part (usually arm or leg) from one location to another on a straight or 

arched path. Similar to swiping on a touch screen. This is faster than a slide and implies 

more speed / force.  

Tap: Like a point but with a quick rotation of a joint and added force. This could include the 

participant specifying that they’d like to touch the screen.  

Throw: Like physically throwing an object in a particular direction. Indicates that the user is 

“holding” something and that they’re tossing it with force in a particular direction, usually in 

an arc.  

Thumbs up: Thumbs up gesture / symbol. Usually with a hover / hold at the end.  

Tilt: Tilting head with the ear going towards the shoulder and the face remaining facing 

forward.  

Unsquat: Standing up straight from a squatting position.  

Voice: Any sort of voice command.  
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Walk: Multiple steps in a row in which the user is targeting a specific spot.  

X: Crossing two limbs in an X shape 


