
Algorithm and Hardware Design for Efficient Deep Learning Inference

by

Abinash Mohanty

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved October 2018 by the
Graduate Supervisory Committee:

Yu (Kevin) Cao, Chair
Jae-sun Seo

Sarma Vrudhula
Chaitali Chakrabarti

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

Deep learning (DL) has proved itself be one of the most important develope-

ments till date with far reaching impacts in numerous fields like robotics, computer

vision, surveillance, speech processing, machine translation, finance, etc. They are

now widely used for countless applications because of their ability to generalize real

world data, robustness to noise in previously unseen data and high inference accu-

racy. With the ability to learn useful features from raw sensor data, deep learning

algorithms have out-performed tradinal AI algorithms and pushed the boundaries

of what can be achieved with AI. In this work, we demonstrate the power of deep

learning by developing a neural network to automatically detect cough instances from

audio recorded in un-constrained environments. For this, 24 hours long recordings

from 9 different patients is collected and carefully labeled by medical personel. A

pre-processing algorithm is proposed to convert event based cough dataset to a more

informative dataset with start and end of coughs and also introduce data augmenta-

tion for regularizing the training procedure. The proposed neural network achieves

92.3% leave-one-out accuracy on data captured in real world.

Deep neural networks are composed of multiple layers that are compute-/memory-

intensive. This makes it difficult to execute these algorithms real-time with low power

consumption using existing general purpose computers. In this work, we propose

hardware accelerators for a traditional AI algorithm based on random forest trees

and two representative deep convolutional neural networks (AlexNet and VGG). With

the proposed acceleration techniques, ∼ 30× performance improvement was achieved

compared to CPU for random forest trees. For deep CNNS, we demonstrate that

much higher perfance can be achieved with architecture space exploration using any

optimization algorithms with system level performance and area models for hardware

primitives as inputs and goal of minimizing latency with given resource constraints.

i

With this method, ∼ 30GOPs performance was achieved for Stratix V FPGA boards.

Hardware acceleration of DL algorithms alone is not always the most efficient way

and sufficient to achieve desired performance. There is a huge headroom available

for performance improvement provided the algorithms are designed keeping in mind

the hardware limitations and bottlenecks. This work achieves hardware-software co-

optimization for Non-Maximal Suppression (NMS) algorithm. Using the proposed

algorithmic changes and hardware architecture

With CMOS scaling coming to an end and increasing memory bandwidth bot-

tlenecks, CMOS based system might not scale enough to accomodate requirements

of more complicated and deeper neural networks in future. In this work, we ex-

plore RRAM crossbars and arrays as compact, high performing and energy efficient

alternative to CMOS accelerators for deep learning training and inference. We pro-

pose and implement RRAM periphery read and write circuits and achieved ∼ 3000×

performance improvement in online dictionary learning compared to CPU.

This work also examines the realistic RRAM devices and their non-idealities.We

do an in-depth study of the effects of RRAM non-idealities on inference accuracy when

a pretrained model is mapped to RRAM based accelerators. To mitigate this issue, we

propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning the model

to take care of the faults of the RRAM array on which it is mapped. Our proposed

method can achieve inference accuracy much higher than what traditional Read-

Verify-Write (R-V-W) method could achieve. RSA can also recover lost inference

accuracy 100× ∼ 1000× faster compared to R-V-W. Using 32-bit high precision RSA

cells, we achieved ∼ 10% higher accuracy using fautly RRAM arrays compared to

what can be achieved by mapping a deep network to an 32 level RRAM array with

no variations.

ii

To my family.

iii

First and foremost, I would like to like to thank my exceptional advisor, Yu Cao

(Kevin), for his steadfast patience, motivation and guidance throughout my doctorate

studies. He has been a great source of inspiration for me. Kevin is an extraordinary

researcher and taught me the importance of persistance in successful research. I

would also like to take this oppurtunity to thank my brilliant co-advisor, Jae-sun

Seo. Special thanks to my thesis committee members, Sarma Vrudhula and Chaitali

Charkrabarti, for their constructive feedback throughout this thesis.

I have been extremely fortunate to collaborate with a wonderful set of colleagues:

Ketul Sutaria, Naveen Suda, Zihan Xu, Ankita Bansal, Xiaocong Du, Zheng Li and

Devyani Patra. Special mention goes to Ketul Sutaria, who has been a incredible

mentor.

I was very lucky to have a wonderful set of friends throughout my life: Abinash

Nanda, Shatadal Mishra, Parth Gupta, Priyam Patel, Anupam Acharya, Biplab Ma-

hapatra, Mohit Mohan Sahu, Sandeep Singh and Summit Dhara. It was conversations

with you that made difficult times easy. I cannot acknowledge all by name, but let

that not diminish my gratitude for all my friends from NIT-Rourkela, Samsung and

ASU.

I have been blessed with a wonderful family. Special thanks to my amazing par-

ents, Arun Mohanty and Sephali Mohanty, my brilliant sisters, Sony Mohanty and

Sibangee Mohanty, my brother-in-law, Sailor Siraj, and my loving fiance, Sajan Sahili,

for their unconditional love and support. Without their guidance, encouragement and

countless sacrifies none of this would have been possible. It is to them I dedicate this

thesis.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . xi

CHAPTER

1 Introduction. 1

2 Introduction to Deep Learning . 8

2.1 A Closer Look at Neural Networks . 9

2.2 Neural Network Layers . 10

2.3 Neural Network Architectures . 15

2.4 Datasets . 19

2.5 ML Frameworks and Hardware . 22

3 Designing a Neural Network . 23

3.1 Background and Motivation . 23

3.2 Data Collection . 25

3.3 Data Preprocessing . 28

3.4 Feature Extraction . 30

3.5 Neural Network Model for Cough Detection . 32

3.6 Results . 32

3.7 Conclusion . 34

4 Hardware Acceleration using FPGA. 36

4.1 High Level Synthesis . 36

4.1.1 Altera OpenCL Framework . 38

4.1.2 Xilinx HLS Framework . 40

4.2 Face Detection using Random Forest Tree . 43

4.2.1 Algorithm background . 44

v

CHAPTER Page

4.2.2 FD Accelerator Design . 44

4.2.3 Results . 50

4.3 Convolution Neural Networks . 53

4.3.1 CNN Accelerator Design. 55

4.3.2 Design Space Exploration. 61

4.3.3 Optimization Framework . 67

4.3.4 Results . 68

4.3.5 Conclusion . 74

5 Hardware Software Co-Optimization . 75

5.1 Non-Maximal Suppression . 76

5.1.1 NMS computation complexity. 78

5.1.2 Fast and Hardware Efficient NMS . 80

5.2 Conclusion . 86

6 Beyond CMOS . 87

6.1 Introduction . 87

6.2 Crosspoint Array Architecture and Design . 91

6.2.1 Read: Integrate and Fire . 91

6.2.2 Write: Timing based Local Programming 93

6.3 65nm CMOS Implementation . 95

6.3.1 Read . 96

6.3.2 Write . 97

6.4 Demonstration in Learning . 98

6.5 Conclusion . 99

7 Random Sparse Adaptation . 100

vi

CHAPTER Page

7.1 Introduction . 100

7.2 Non-ideal effects in a RRAM device . 103

7.3 Random Sparse Adaptation . 104

7.3.1 Regularized random sparse selection . 109

7.3.2 Network adaptation using RSA . 110

7.4 Demonstration of RSA . 111

7.5 Conclusions . 114

8 Summary . 116

REFERENCES . 118

vii

LIST OF TABLES

Table Page

2.1 Properties of several commonly used activation functions. Activation

functions are used to introduce non-linearity between layers in deep

networks. In the absence of non-linear activation functions, neural

networks will essentially be linear mappings from input features to

output labels and thus optimization algorithms cannot fit complicated

datasets. This makes activation functions critical part of neural net-

work architecture design. ReLU being very optimized for hardware

execution is one of the most popular activation functions. 14

3.1 Detailed Participant Information for collection of audio data used for

automatic cough detection. The data consists of 24 hours recordings of

9 patients in un-controlled environments. The data is collected using

FDA approved VitaloJAK device. 26

3.2 Leave-one-out specificity, sensitivity, and accuracy of proposed algo-

rithm. For this purpose, the network was trained using data from 8

patients and tested on the data from the remaining patient. 33

4.1 Vivado HLS Key Optimization Directives. These directives are added

to functionally correct C/C++ codes and then compiled to hardware.

Keeping hardware in mind, these directives can be used to derive highly

threaded hardware which can be optimized for performance, power and

area. This method removes the need to code cycle-to-cycle detailed

RTL and thus improves prototyping time drastically. 42

viii

Table Page

4.2 Face detection run time comparison. 4 parallel classifiers operating

in parallel with adaptive stride scheme and step size of 0.2, achieves

∼ 30× improvement in speed over CPU with minimal reduction in

detection accuracy. 52

4.3 Operations in AlexNet CNN Model (Krizhevsky et al. (2012)). To

classify a 200×200 input image ∼ 1.9GOPs are required. Convolution

and fully connected layers dominate in terms of operation requirement. 54

4.4 Comparison of FPGA accelerator boards. 69

4.5 Summary of Execution time and Utilization. 70

4.6 Optimized parameters. 71

4.7 Classification time/image and overall throughput. 71

4.8 Model accuracy comparison. 73

6.1 PARCA operations for key sparse coding tasks. 92

6.2 Evaluation of the speedup in computing and energy. 99

7.1 Assumptions of major types of RRAM device non-idealities. Write

variations is considered to follow a normal distribution with mean at

the desired value. Stuck-at-high (SF1) arises when certain cells are

always at low impedance state no matter what value in written to

it. Similarly, Stuck-at-low (SF0) are cells which are always at high

impedance state irrespective of the value written to them. 105

7.2 Timing parameters and sizes for RRAM and on-chip memory. On-chip

memory, such as Register File (RF), is much faster in Write, but has

a larger size. 107

ix

Table Page

7.3 High cost in operation time when R-V-W is applied. This is due to

both the long Write time of RRAM devices and the ineffectiveness

of R-V-W, even though in R-V-W the parameters are sorted first by

their values and top ones are verified. As observed, for MNIST, to

recover inference accuracy within 1% of maximum achievable with 32

level RRAM devices R-V-W needs to correctly program top 40% of the

parameters which takes∼ 82 seconds. For CIFAR-10, even with correct

programming of 100% of the RRAM cells, we can reach accuracy of

65.18% and it takes ∼ 2389 seconds. This shows that, verifying and

correctly programming every cell to encode desired conductance values

is very in-efficient. 108

x

LIST OF FIGURES

Figure Page

2.1 Major components of deep neural networks. Feature extraction net-

work learns to extract very high level abstract features which are then

flattened and used as input to the fully connected classifier. For ex-

ample, in convolutional neural networks use convolution operations to

take advantage of spatial relation of features in images. The convolu-

tion layers learn to extract low level features like edges. They combine

edges in succesive layers to create more complicated mid level features

like squares, circles etc. They combine mid level features to create high

level abstract features like eyes, tyres, lips etc. 10

2.2 Max pooling along a feature map with a 2 × 2 kernel and stride size

of 2. Average pooling operates similarly but does average operation.

Global average pooling averages all activations in a given channel to

produce one output activation. 11

2.3 Pooling is a very efficient method of removing redundant low level

features without removing prominent and winning features. Down-

sampling caused by pooling layer helps in reducing dimensionality of

lower-level features. 12

2.4 Typical hidden layer in multi layer perceptron (MLP) network. This

can also be considered as a fully connected layer. In MLP, every output

neuron is connected to all input features. Output of each output neuron

can be considered as a weighted average of all input features. So for

a given input feature vector, the vector representing the values of all

output neurons can be obtained by doing a matrix-vector operation.

Value of the weight matrix is learned by the training algorithm. 16

xi

Figure Page

2.5 Architecture of LeNet-5 (LeCun et al. (1998)). 17

2.6 Architecture of AlexNet (Krizhevsky et al. (2012)). 17

2.7 Architecture of VGG-16 (Simonyan and Zisserman (2014)). 18

2.8 Architecture of ResNet (He et al. (2016)). 18

2.9 Architecture of GoogleNet (Szegedy et al. (2015)). 18

2.10 Architecture of Faster R-CNN (Girshick (2015)). This network per-

forms the feature extraction using convolution layers from classifica-

tion networks like VGG, AlexNet etc. Apart from that it has a RPN

(region proposal network) that produces initial proposals for objects

which are pooled to fixed size using ROIPooling. A fully connected

classification network uses the pooled high level convolution features

to perform classification and fine tuning of bounding boxes. The convo-

lutional feature extraction layers are initialized with weights from any

pre-trained classification network, where as the fully-connected layers

and RPN is initialized using random normal sampling. The whole net-

work is trained end-to-end with the new dataset. This finetunes the

feature extraction convolution layers for the object detection task. 20

2.11 Size normalized examples from MNIST (LeCun et al. (2010)). 21

2.12 Random examples from 10 classes of Cifar-10 dataset (Krizhevsky and

Hinton (2009)). 22

3.1 Spectrogram of speech and noise compared with three coughs. Cough

has distinct high frequency components which are absent in speech and

other sounds. 27

xii

Figure Page

3.2 Preprocessing algorithm extracts a more descriptive cough label. The

dataset has event based labeling from medical personnel. Preprocessing

first calculates energy in the audio around the labeled cough event. It

then detects the maximum energy point. Then it looks for the instance

to the left of the peak with energy equal to 15% of the peak energy

and labels it as start of the cough. Similarly it looks for instance to

the right of the peak with energy equal to 10% of peak energy and

labels it as end of the cough. Time duration between start and end is

considered as cough duration. Using this method, event based cough

dataset is converted to a more informative dataset with start and end

of coughs which is then used for training the neural network. 29

3.3 Each 200 ms frame is subdivided into 50 ms windows - 42 (MFCCs,

Long bank and delta) features are calculated for each 50 ms segment.

50ms was chosen as the sub-window size as 99.7% of the coughs in the

dataset were longer than 50ms. 200ms was used as the frame size as

the average cough duration was 181ms. 30

3.4 Proposed network architecture for cough detection. The network con-

sists of 2 hidden layers each with 512 neurons. The input consists of

168 features consisting of MFCCs, Log banks and Deltas from the 4

50ms non-overlapping windows of the audio signal. The network is

trained using stochastic gradient descent with L2 weight regularization. 31

xiii

Figure Page

3.5 Receiver Operating Characteristic (ROC) of our algorithm averaged

across all participants. Larger area under the curve means the algo-

rithm has better performance. Area under the curve (AUC) for the

proposed neural network is 0.93 (state-of-the-art at the moment for

medical data). 32

4.1 Comparison between CPU, FPGA and GPU for deep learning infer-

ence. CPUs are the most programmable and thus are flexible to sup-

port all possible algorithms. But the flexibility comes at the cost of

poor performance. GPUs on the other hand have highly threaded ar-

chitecture and thus have the highest performance. They are also pro-

grammable to support multiple algorithms. However, GPUs are very

power hungry. FPGAs with their programmable fabric are used to

create custom hardware for any algorithm and thus have performance

much better than CPUs while their power consumption is much smaller

compared to GPUs. 37

4.2 Design flow for high level synthesis (HLS). First the C++ codes are

made functionally correct with fast emulation mode of HLS. After that

HLS directives are used to explore architectural space till we satisfy the

throughput and power requirements. C++ emulation and compiling

high level codes to RTL ensures fast prototyping and low turnaround

time to market. 38

xiv

Figure Page

4.3 Design flow of OpenCL based FPGA accelerator. The heterogeneous

system consists of two parts: (a) Host CPU running C/C++ codes, (b)

FPGA accelerator device programmed with RTL file generated using

openCL kernel. The host and the device communicate using PCIe

port. The host executes the main task and offloads compute intensive

portions of the application to FPGA accelerator. 39

4.4 System diagram of C based HLS accelerator from Xilinx. The host

(master) and the accelerator (slave) both sit on the same SoC using

AXI bus. The master is responsible for transferring data to the ac-

celerator and programming it. The FPGA accelerator has both AXI

master (for high performace DMA transfers from external memory)

and AXI slave interfaces (handshake protocol with CPU master). 41

4.5 Architecture of face detection model in Mathias et al. (2014). They use

30 difference scales of the original image (for faces of different sizes)

and 10000 week classifiers (for faces with different orientations). A

total of 10 channels are generated using the scaled image. A scanning

window with a rigid template based classifier is used to detect faces.

Non Maximal suppression (NMS) is then used to remove redundant

detections and preserve the best detections for final box drawing. 45

xv

Figure Page

4.6 Time profiling of face detection algorithm on Intel Core i5-4590 CPU.

Computation of 10,000 weak classifiers at all positions on the 30 differ-

ent scaled versions of the input image is the most time consuming part.

It consumes ∼ 91% of the total time. So the heterogeneous system was

designed so that the FPGA device will accelerate the boosted classifier

computation while the CPU handles the rest. 46

4.7 Shift register implementation to store the channel data. This architec-

ture allows loading only the new row while the rest of window is reused

from previous iteration, thus saving 95% of the integral data transfer

time. 47

4.8 Performance (left) and FPGA resource utilization (right) for different

number of parallel compute classifier units. Execution time reduces

with increase in number of parallel classifiers till 4, after that it in-

creases because of memory access contention between the parallel exe-

cution units. From the resource utilization plot we see that 4 parallel

classifiers can be accommodated in the given FPGA device with re-

source utilization around 50%. 50

4.9 Precision vs recall curves of the CPU+FPGA implementation of the

model tested on downsized AFW database using (a) different strides

and (b) different scaling factor step sizes. 51

4.10 Mapping 3D convolutions to matrix multiplications. 57

4.11 Accelerating matrix multiplications in OpenCL. 57

xvi

Figure Page

4.12 Piece-wise linear approximation of normalization operation kernel with

a maximum error of 1%. Using piece-wise lookup tables, normalization

is performed without the need for expensive hardware for performing

non-linear functions. 60

4.13 Kernel frequency modeling from full synthesis data at 5 random seeds.

RMS error of the fit: 12.57 MHz . 63

4.14 Run time model vs. measured time of convolution layers 1-5 for a sweep

of matrix multiplication block size (NCONV) for SIMD vectorization

factor, SCONV = 1 and 4. 64

4.15 The execution time model vs. measured data of normalization and fully

connected layers in AlexNet for sweep of loop unroll factors NNORM

and NFC . 65

4.16 Resource utilization empirical models for normalization block. 66

4.17 Optimization progress of AlexNet implementation. Design variables

(NCONV , SCONV , NNORM , NPOOL, NFC) are shown at points A, B and

C. 70

4.18 Execution time and resource utilization of each CNN layer type for

AlexNet implementation on P395-D8 and DE5-Net FPGA boards. 72

5.1 Top1 vs. operations, size ∝ parameters (Canziani et al. (2016)). Newer

network architectures are much more efficient with respect to model

size and the number of operations required. 75

xvii

Figure Page

5.2 Distribution of proposal scores for a typical image in Faster-RCNN

network. As very few anchors overlap properly with the ground truth

objects and majority of the anchors have partial or no overlap, the

distribution of the scores is gaussian with mean (peak) at low/negative

scores. Top proposals which are necessary for correct detections are

in the right tail region of the distribution. These proposals can be

easily extracted by estimating mean(µ) and standard deviation(σ) of

all scores and then discarding proposals with score smaller than µ +

β × σ. β is a empirical parameter determined to minimize training

dataset. 81

5.3 Proposed structure of internal register array for suppression phase of

NMS. The cells are connected in a chained fashion to facilitate effi-

cient (O(1)) insertion and deletion of new data. The cells store previ-

ous/next/current/new data based on the instruction that is provided

to it using the instruction port. 83

6.1 Similarity of biological neural network and the RRAM crosspoint array,

in both the network structure and device plasticity. The conductance

of RRAM cells can be programmed to particular values using program-

ming voltage of specific pulse width. 88

6.2 PARCA architecture with peripheral Read and Write modules. Z and

X (or r) nodes have the same Read (Section 6.2.1), but different Write

circuits (Section 6.2.2). All RRAM cells are Read or Written in parallel. 90

6.3 Circuit schematics of the Read circuit. Based on the IF neuron model,

it converts a wide range of input current Ir,i into a digital number. 93

xviii

Figure Page

6.4 Write circuit for Z, with two periods for r > 0 and r < 0. 94

6.5 Write circuit for r, with the firing rate proportional to r. 95

6.6 The operation of the read circuit for two input current: (left) Ir =

6.5µA; and (right) Ir = 1.1µA; the corresponding ni is 6 and 1. 96

6.7 The overlap in time between Z and r pulses tunes D. 97

6.8 Quantization of read and write circuits are shown. (a) Number of

pulses and RRAM current show a close-to-linear relationship. (b) Dig-

itally programmed pulse width closely follows the mathematical mul-

tiplication. 98

6.9 Demonstration of dictionary learning with MNIST data. 99

7.1 Each layer in a deep neural network can be mapped to a RRAM array

for acceleration. The neural network is first trained offline and the

optimized model paramters are selected. The weights of connections

in neural network are then encoded as conductance values of RRAM

devices using write pulses of appropriate pulse widths. Layerwise ex-

ecution can be performed in parallel given that we have enough read

circuits to collect and digitize column outputs. 102

xix

Figure Page

7.2 The deviation of model parameters after write to the realistic RRAM

array. While the pre-trained models are 32-bit floating point numbers,

real RRAM devices can have 32 level of quantization. This distorts

the distribution of model parameters by forcing pretrained weights to

nearest quantization level. Also RRAM cannot encode the value of 0,

because the conductance value cannot be 0. As a result all parameters

close to 0 are forced to the minimum value that can be encoded by the

RRAM (based on the maximum resistance state). That results in a

step near values of 0 as shown here. 104

7.3 Accuracy degradation due to device non-idealities in the form of write

variations, for two representative convolutional neural networks (LeNet

for MNIST dataset and a 9 layered CNN for CIFAR-10). It is as-

sumed that the write variation follows normal distribution. As demon-

strated, deeper networks for more complicated tasks are affected to

much greater extent. When write variations have σ ≥ 1.0, the outputs

from RRAM array are almost random. 105

7.4 Effect of limited quantization levels available in RRAM devices. It

is assumed here that the devices have no write variations. As shown,

number of levels is critical to inference, especially for complicated tasks

and deeper neural networks. In this work we have assumed 32 levels

in RRAM devices. 106

xx

Figure Page

7.5 Effect of all non-idealities in RRAM arrays on inference accuracy. The

critical non-idealities include device-to-device write variations, quanti-

zation errors, stuck-at-faults (SF0 and SF1). The effects of cycle-to-

cycle read variations in RRAM devices is negligible compared to others

and is not considered in this work. Write variation and quantization

have the most significant impact on accuracy. 106

7.6 A large amount of cells needs to be verified, even if their values are

ranked. 107

7.7 RSA randomly selects a certain portion of cells (shadowed cells) and re-

trains them. Re-training can be considered as a online learning/adaptation

procedure which aims at mitigating the effects of array non-idealities.

During the training process, the weights stored on the selected cells are

adjusted so as to move the networks transform function to a nearby

minimal loss point and thus recover from the lost accuracy. 109

7.8 The network structure, design and flow using RF for RSA cells. The

pretrained network is first mapped to the RRAM array. The random

connections selected for RSA are mapped to RF cell array and initial-

ized with random normal distribution. RSA backpropagates only goes

through RF cells. Since we READ/WRITE on RF cells and RRAM is

used in read only mode, RSA is very fast. 110

xxi

Figure Page

7.9 A small number of 32-bit RSA cells effectively improves the accuracy.

As observed, for simple tasks like MNIST, only 3 ∼ 5% of total con-

nections in RSA can push the accuracy back to software baseline. An

interesting observation here is that, for complicated tasks like CIFAR-

10, RSA can push accuracy to much higher values than what can be

obtained with a stand alone ideal RRAM array. Since the RSA cells

are 32-bit floating point numbers, they mitigate the effects of 32-level

quantization to a great extent and thus achieve higher accuracy. 112

7.10 The training of RSA does not require the full dataset to recover the

accuracy. With increase in the number of RSA cells, the number of

training iterations gets reduced. This behaviour is expected because

with few RSA cells, the optimization algorithm (SGD) has to move

the values to greater distance to reach the minima as the degrees of

freedom available to SGD is less. So it needs more iterations of weight

updates. 113

7.11 RSA rapidly recovers the accuracy, achieving 10− 100× speedup over

R-V-W. With writes to RF cells only, RSA removes the need for slow

accurate RRAM writes. 114

xxii

Chapter 1

INTRODUCTION

Recent years have witnessed groundbreaking achievements in numerous fields of

Artificial Intelligence (AI), with Deep Neural Networks (DNNs) delivering perfor-

mance comparable to or even better than humans. One prime example of this is

Google DeepMind’s AI (AlphaGo) defeating the best human player in the game of

Go (Silver et al. (2016)). DNNs have pushed the performance boundaries of numerous

AI applications including computer vision (Szegedy et al. (2015), He et al. (2016)),

natural language processing (Young et al. (2018)), machine translation (Klein et al.

(2017)), speech processing (Sotelo et al. (2017)), robotics (Levine et al. (2018)).

With exceptional performance, robustness to noise and inherent ability to general-

ize for real world scenarios, DNNs have proved themselves very useful for applications

ranging from simple consumer devices like cell phones (Seide et al. (2011), Lemley

et al. (2017), Chen and Xue (2015)), drones (Palossi et al. (2018)) and self driving cars

(Huval et al. (2015), Bojarski et al. (2016), Chen et al. (2015a)) to much more impact-

ing and difficult tasks like satellite imagery (Hong et al. (2017), Tao et al. (2016), You

et al. (2017)), medical devices (Tseng et al. (2017), Rajpurkar et al. (2017), Kallen-

berg et al. (2016), Avati et al. (2017), Kadambi et al. (2018)), industrial automation

(Kehoe et al. (2015), Manyika (2017), Chang et al. (2017)) and finance (Heaton et al.

(2017), Fischer and Krauss (2018), Chong et al. (2017), Cavalcante et al. (2016)).

This radical change in AI’s performance over past few years can be attributed to

three primary reasons:

1. Huge publicly available labeled datasets (Deng et al. (2009), LeCun et al.

(2010)) necessary for training

1

2. Relentless and pioneering efforts to find better network architectures (Iandola

et al. (2014), Goodfellow et al. (2017), Srivastava et al. (2014))

3. Highly parallelized and threaded hardware architectures like GPU (Chen et al.

(2014)), TPU (Jouppi et al. (2017)), etc which support training these networks

by significantly reducing time required to train these deep networks

For the deep learning research community, improvement in accuracy was the prior-

ity for a long time. They primarily focused on improving network’s inference accuracy

with no concern for the computations needed to achieve that goal. For example, com-

pared to ResNet-34, ResNet-152 (a very popular and top performing neural network

used in computer vision applications, He et al. (2016)) reduces error rate by a mere

1.97% at the expense of ∼ 300% increase in computation cost. As a result, early deep

neural networks had huge parameter size (model size) and humongous computation

requirement. The hardware research community during this phase was primarily fo-

cused on accelerating the newly developed algorithm using the existing architectures.

GPUs, Multi-core CPUs and Clusters were the existing viable options. However, the

existing architectures were for designed for deep learning algorithms. So researchers

started looking for new architectures better suited for DNNs. Works like Suda et al.

(2016), Ma et al. (2017), Zhang et al. (2015) achieved excellent hardware performance

for these DNNs. Since, these neural networks were not designed keeping speed and

hardware in mind, hardware acceleration is not always optimal. For instance, these

networks use 32-bit floating point operations which are very inefficient from hardware

point of view. Also layers like softmax, local-response-normalization, sigmoid etc in-

volve non-linear functions which are not supported in hardware and thus require huge

look-up-tables.

DNNs pushed the boundaries of AI’s accuracies but at the cost of limited usability.

2

They could only be executed in servers with high end GPUs. As a result, their usage

was limited to applications using cloud computers with high performance computing.

Deployment on edge devices was not feasible because to the following reasons: (1)

model size was too big to store on embedded platforms, (2) because of the huge

computation requirements, executing these algorithms was not feasible within the

power envelope of embedded devices running on batteries (Han et al. (2015)). In

tasks like object detection both accuracy and speed determine the performance of

the algorithm. So, there was a need to develop algorithms which are efficient in

both accuracy and speed. This need spearheaded the research for next generation of

deep learning algorithms which were designed keeping both speed and accuracy in

mind. Works like Rastegari et al. (2016), Howard et al. (2017), Szegedy et al. (2015)

are aimed at maximizing network performance while reducing the total model size

and computation requirement. Gupta et al. (2015) did a detailed study on precision

requirements of deep learning algorithms and found out that with careful training

13-bit fixed point numbers can give similar inference accuracies as 32-bit floating

point numbers while having dramatic improvement hardware performance in terms

of speed, power and area.

In the next phase of development, researchers realized that optimizing hardware

architectures for deep learning can lead to improvements in performance, but there

shall always be a huge headroom for improvement which can be achieved only by

developing algorithms keeping in mind the architecture of hardware platform. So

algorithms were developed using methods which were hardware friendly. Han et al.

(2016) implemented a sparse and compressed representation of the existing DNNs

using a recursive process of pruning and re-training and accelerated the execution

using an efficient sparse network accelerator. All these point to the fact that optimal

execution of neural networks on CMOS hardware can be achieved with full stack

3

development by co-optimizing hardware and software for each other.

Even with all of the optimizations mentioned above, CMOS has physical limi-

tations. With Moore’s law coming to an end (Theis and Wong (2017)) devices no

longer scale, thereby ending the improvements in area, power and speed that came

with transition to successive lower nodes. That led researchers to look for new ar-

chitectures with multi-core systems to achieve task and instruction level parallelism

(Bekkerman et al. (2011)). These systems are limited by the level of parallelism

that can be achieved for any given algorithm. Also, since the model parameters and

internal activations for deep neural networks can require significant memory, stor-

ing everything on-chip is not an option. Because of this, internal activations and

model parameters are stored on off-chip DRAM and brought into the accelerator in

a tile based fashion. As DRAM bandwidth requirements for deep networks are huge,

accelerators are bottlenecked by memory bandwidth.

Issues mentioned above created a need in research community to look into new de-

vices and computing architectures that can mitigate the issues associated with CMOS

and initiated the next phase of hardware accelerators development for deep learning.

Many emerging devices like Resistive RAM (Wong et al. (2012)), Phase-change RAM

(Raoux et al. (2008)), STT-MRAM (Huai (2008)), etc. and more efficient architec-

tures were developed to mitigate bottlenecks associated with von neumann architec-

tures. Mohanty et al. (2017) demonstrated that emerging devices can leverage their

physical properties to efficiently perform deep neural network operations thereby im-

proving power, performance and area significantly. However, these emerging devices

are associated with non-idealities (Mohanty et al. (2017)) like quantization error,

device-to-device variations, cycle-to-cycle variations, stuck-at-faults, device calibra-

tion, etc. which have limited their large scale production and deployment. New

approaches to lessen the effects of these non-idealities are active areas of research in

4

device, architecture and algorithm development communities.

In this work, we demonstrate the need and criticality of hardware-software co-

optimization for efficient execution of deep learning. We demonstrate this with im-

plementation and optimization strategies at various stages of DNN algorithm and

hardware development. We implement a deep neural network from scratch for au-

tomatic cough detection from audio data. With the proposed pre-processing scheme

and neural network architecture, we were able to achieve state-of-the-art accuracy for

cough detection out-performing methods based on traditional algorithms like PCA.

We also implement hardware accelerators for deep convolutional neural networks and

random forest trees using FPGAs. With our proposed optimization strategies, we

demonstrated high throughput and efficient execution of these. This work also ex-

plores emerging architectures like RRAM crossbars and RRAM arrays to mitigate the

bottlenecks associated with CMOS based hardware accelerators. Using our proposed

architecture ∼ 3000× performance improvements over CPUs has been demonstrated

for online learning. This work also examines the realistic RRAM devices and their

non-idealities. In this work, we do an in-depth study of the effects of RRAM non-

idealities on inference accuracy when a pretrained model is mapped to RRAM based

accelerators. To mitigate this issue, we propose Random Sparse Adaptation (RSA), a

novel scheme aimed at tuning the model to take care of the faults of the RRAM array

on which it is mapped. Our proposed method can achieve inference accuracy much

higher than what traditional Read-Verify-Write (R-V-W) method could achieve. RSA

can also recover lost inference accuracy 100× ∼ 1000× faster compared to R-V-W.

Rest of the work is organized as follows. Chapter 2 briefly describes some of the

key deep learning concepts and introduces some of the commonly used neural network

layers like convolution, pooling, fully-connected etc. It also introduces several neural

network architectures for image classification and object detection tasks. It also

5

introduces the datasets, frameworks and hardware platforms used in this work.

Chapter 3 demonstrates the development process of deep neural networks using a

test case of automated cough detection in streaming audio data for medical applica-

tions. This chapter explores in detail the development for dataset generation starting

from collection, labeling, cleanup and feature set selection. It also describes neural

network design, training and evaluation. With the approaches described here, state-

of-the-art cough detection algorithm was developed with FDA approved vitaloJAK

data.

Chapter 4 describes acceleration of AI algorithms on FPGA. It looks into high level

synthesis (HLS), a very popular method of hardware RTL generation from C/C++

codes. In particular it looks in details at the system design and HLS procedure using

(1) OpenCL Kernels (Altera’s approach) and (2) HLS directives (Xilinx’s approach).

It also describes the FPGA acceleration of AI algorithms using two test cases, (1) high

performance face detection using random forest trees (2) throughput optimization of

deep CNNs using FPGA acceleration.

Chapter 5 introduces the concepts of hardware software co-optimization. It demon-

strates the benefits of co-optimization using a test case of Non Maximal Suppression

(NMS) algorithm. The chapter introduces NMS and the bottlenecks and limitations

associated with its hardware acceleration (time complexity increases from O(NlogN)

to O(N2)). A novel Fast NMS algorithm is proposed which is developed keeping

in mind the hardware architecture and data pattern and thus is very suitable for

hardware acceleration. A novel hardware register list, capable for performing O(1)

insertion and deletion, is also proposed. With the proposed algorithm changes and

hardware changes, the chapter demonstrates significant improvement in performance

and the worst case time complexity significantly (O(N))

Chapter 6 discusses training and inference of deep neural networks with RRAM

6

crossbar structures. In this chapter we discuss the necessary read and write circuits

needed for this purpose. With the proposed architecture, we demonstrate /sim3000×

acceleration compared to CPU.

Chapter 7 discuses in detail the non-ideal behavior of emerging analog devices

(RRAMs). It gives a quantitative analysis of various non-idealities in RRAM array

on inference accuracy of two representative datasets, MNIST and CIFAR-10. This

chapter proposes a fundamentally new approach, Random Sparse Adaptation (RSA),

to mitigate the impact with high effectiveness and efficiency. Elimination of Write

or device-level characterization to recover the accuracy under RRAM non-idealities.

RSA achieves 10-100X speedup compared to R-V-W. The hybrid implementation of

RSA using a parallel, small, high precision on-chip memory with the main, large,

inaccurate RRAM array, enhancing the accuracy by > 10 % for CIFAR-10 using

RRAM only.

Chapter 8 concludes this work

7

Chapter 2

INTRODUCTION TO DEEP LEARNING

Near future will witness large scale deployment of deep learning (DL) algorithms

for a wide range of AI applications. DL algorithms are drastically different from

standard software algorithms. They are more statistical modeling of complicated real

world problems than software engineering. Upon close examination, one will witness

DL algorithms comprising of huge matrices of numbers (model parameters) which are

multiplied with input vectors. The critical task of DL algorithm development is gen-

erating model parameters which result is best possible outcomes with minimal error

for hand labeled data. This process is call training the algorithm and is done using

statistical optimization algorithms like Stochastic Gradient Descent (SGD), ADAM,

Momentum gradient descent, etc. Once the training is over and model parameters are

finalized, the algorithm is deployed to generate output with new data (which were not

present in the dataset used for training). This is call inference. The goal of training

is to maximize inference accuracy by generalizing the model to predict correct output

for random unseen inputs.

In this chapter, we will discuss some of the key concepts related to deep learning.

We will first discuss the major structural components of a deep neural network. After

that we will look at some of the commonly used layers used in high performing

neural networks. Then we will briefly discuss some popular and high performing

network architectures used in applications like object recognition, object detection,

audio processing etc. We will also look into the datasets used in this work and also

the frameworks used during training.

Rest of the chapter is organized as follows. Section 2.1 gives a brief introduction to

8

deep neural networks and the working principles behind them. It also introduces the

major structural components of deep networks used in computer vision task. Section

2.2 describes the key layers used in neural networks. Section 2.3 some commonly used

neural network architectures. Section 2.4 introduces the publicly available labeled

datasets used in this work. Section 2.5 discusses the deep learning frameworks used

for training and inference in this work. It also briefly describes the hardware platforms

used in this work.

2.1 A Closer Look at Neural Networks

Neural networks are somewhat inspired by the biological functioning of neurons

in brain. However, they do not model the biological neurons exactly. Instead, they

can be better described as complicated and layered mappings from input to output

designed with the sole aim of generalizing and modeling complicated real world tasks,

which would be impossible to accomplish with rule based procedural programming.

Deep networks use classifiers to map inputs to outputs classes. Inputs to the classifier

can be either raw inputs from sensors or they can be a transformed version of the raw

inputs. The part of the neural network that does this tranformation of raw sensor

inputs is called feature extraction layers. This is shown in Fig. 2.1. Traditionaly

feature extraction was done using handcrafted features. This needed a lot of domain

knowledge and engineering effort. Deep learning out-performs traditional AI algo-

rithms because it learns the transformation of raw inputs best suited for the task at

hand. Deep learning algorithms can learn very abstract high level features which are

then used as inputs to the classifier.

9

Flattened
high level
features

Classifier

Output

Raw inputs
from sensor

Feature
extractor

Low level
features

Mid level
features

High level
features

Figure 2.1: Major components of deep neural networks. Feature extraction network

learns to extract very high level abstract features which are then flattened and used as

input to the fully connected classifier. For example, in convolutional neural networks

use convolution operations to take advantage of spatial relation of features in images.

The convolution layers learn to extract low level features like edges. They combine

edges in succesive layers to create more complicated mid level features like squares,

circles etc. They combine mid level features to create high level abstract features like

eyes, tyres, lips etc.

2.2 Neural Network Layers

Neural networks have layered structures with current layers feeding data to suc-

cessive layers. Within each layer, the mappings from input to output is essentially

linear. Each layer is generally followed non-linear activation function. It is because

of the non-linear activations deep neural networks are able to generalize and model

complicated real world datasets. In this section, we will look in details on some the

most used layers used in the neural networks.

10

Convolution

Convolution is the most critical operation of CNNs and it constitutes over 90% of

the total operations in AlexNet model (Krizhevsky et al. (2012)). It involves 3-

dimensional multiply and accumulate operation of Nif input features with K × K

convolution filters to get an output feature neuron value as shown in Equation 2.1.

out(fo, x, y) =

Nif∑
fi=0

K∑
kx=0

K∑
ky=0

wt(fo, fi, kx, ky)× in(fi, x+ kx, y + ky) (2.1)

where out(fo, x, y) and in(fi, x, y) represent the neurons at location (x, y) in the fea-

ture maps fo and fi, respectively and wt(fo, fi, kx, ky) is the weights at position (kx, ky)

that gets convolved with input feature map fi to get the output feature maps fo.

Normalization

Local Response Normalization (LRN) or normalization implements a form of lateral

inhibition (Krizhevsky et al. (2012)) by normalizing each neuron value by a factor that

depends on the neighboring neurons. LRN across neighboring features and within the

Figure 2.2: Max pooling along a feature map with a 2 × 2 kernel and stride size of

2. Average pooling operates similarly but does average operation. Global average

pooling averages all activations in a given channel to produce one output activation.

11

same feature can be computed as shown in Equations 2.2 and 2.3, respectively.

out(fo, x, y) =
in(fo, x, y)[

1 + α
K

fo+K/2∑
fi=fo−K/2

in2(fi, x, y)
]β (2.2)

out(fo, x, y) =
in(fo, x, y)(

1 + α
K2

x+K/2∑
kx=x−K/2

y+K/2∑
ky=y−K/2

in2(fo, x+ kx, y + ky)
)β (2.3)

Pooling

Spatial pooling or sub-sampling is utilized to reduce the feature dimensions as we

traverse deeper into the network. As shown in Equation 2.4, pooling computes the

maximum of neighboring K × K neurons in the same feature map, which also pro-

vides a form of translation invariance (Boureau et al. (2010)). Although max-pooling

is popularly used, average pooling is also used in some CNN models (Boureau et al.

(2010)). In case of average pooling, we do average operation instead of max of neigh-

Figure 2.3: Pooling is a very efficient method of removing redundant low level features

without removing prominent and winning features. Downsampling caused by pooling

layer helps in reducing dimensionality of lower-level features.

12

boring K × K neurons in the same feature map. Reducing the dimensionality of

lower-level features while preserving the important information, the pooling layer

helps abstracting higher-level features without redundancy.

out(fo, x, y) = max
0≤(kx,ky)<K

(
in(fo, x+ kx, y + ky)

)
(2.4)

Activation functions

Commonly used activation functions in traditional neural networks are non-linear

functions such as tanh and sigmoid, which require longer training time in CNNs.

Hence, Rectified Linear Unit, ReLU (Nair and Hinton (2010)), defined as y = max(x,0)

has become the popular activation function among CNN models as it converges faster

in training. Moreover, ReLU has less computational complexity compared to expo-

nent functions in tanh and sigmoid, also aiding hardware design. PReLU is similar to

ReLU except that it has a learnable slope parameter. Softmax and Maxout (Goodfel-

low et al. (2013)) are activation functions that are not functions of a single fold x from

the previous layer or layers. Some of the most commonly used activation functions

and their properties are listed in Table 2.1.

Fully connected layer

Fully-connected layer or inner product layer is the classification layer where all the

input features (Nif) are connected to all of the output features (Nof) through synaptic

weights (wt). Each output neuron is the weighted summation of all the input neurons

as shown in Equation 2.5.

out(fo) =

Nif∑
fi=0

wt(fo, fi)× in(fi) (2.5)

The outputs of the inner-product layer generally traverse through some non-linear

activation function to the next inner-product layer or directly to a Softmax function

13

Table 2.1: Properties of several commonly used activation functions. Activation

functions are used to introduce non-linearity between layers in deep networks. In

the absence of non-linear activation functions, neural networks will essentially be

linear mappings from input features to output labels and thus optimization algorithms

cannot fit complicated datasets. This makes activation functions critical part of neural

network architecture design. ReLU being very optimized for hardware execution is

one of the most popular activation functions.

Name Equation Derivative (wrt. x)

Logistic/Sigmoid σ(x) = 1
1+e−x f ′(x) = f(x)(1− f(x))

TanH tanh(x) = ex−e−x

ex+e−x f ′(x) = 1− f(x)2

ReLU f(x) =


0 for x < 0

x for x ≥ 0

f ′(x) =


0 for x < 0

1 for x ≥ 0

Leaky ReLU f(x) =


0.01x for x < 0

x for x ≥ 0

f ′(x) =


0.01 for x < 0

1 for x ≥ 0

PReLU f(α, x) =


αx for x < 0

x for x ≥ 0

f ′(α, x) =


α for x < 0

1 for x ≥ 0

Softmax fi(~x) = exi∑J
j=1 e

xj
for i = 1, ..., J ∂fi(~x)

∂xj
= fi(~x)(δij − fj(~x))

Maxout f(~x) = maxi xi
∂f
∂xj

=


1 for j = argmax

i
xi

0 for j 6= argmax
i

xi

14

that converts them to probability in the range (0, 1). The final accuracy layer com-

pares the labels of the top probabilities from softmax layer with the actual label and

gives the accuracy of the CNN model.

2.3 Neural Network Architectures

In this section, we shall take a look at some of the most common neural network

architectures like multi-layer perceptron (MLP), convolutional neural network (CNN),

faster RCNN, single shot detector (SSD), recurrent neural network (RNN) etc.

Multi-layer perceptron (MLP)

MLPs have deep layered structures, with each layer feeding data to subsequent layers.

Fig. 2.4 illustrates a very simple fully connected feed forward network. Its fully

connected because each node (neuron) in any layer is connected to every node in the

next layer. Its feed forward because the data movement is always in one direction

(input output) and there is no feed-back path. Each layer in the neural network

is essentially doing a matrix–vector multiplication on the input data. MLPs are

generally used as final classifier layers in complex neural networks and the inputs to

MLP are generally features extracted from the the raw input data using the previous

layers. In case of CNNs, the convolution layers provide the input features to the

MLP for classification. Since the dimension of the inputs to MLPs can be big, MLP

generally account for a huge portion of workload when executing a neural network

as shown in Jouppi et al. (2017). In Xu et al. (2017) MLPs have been successfully

implemented to do feed forward inhibition for character recognition.

15

layeri layeri+1

Wnxm

Y = WX

xi1

xi2

xi3

xin

yi1

yi2

yim

yi = hi(yi-1) yi = yi-1 u Wi

Matrix
multiplication

Layer output
Previous

layer output

Weight matrix

Figure 2.4: Typical hidden layer in multi layer perceptron (MLP) network. This

can also be considered as a fully connected layer. In MLP, every output neuron is

connected to all input features. Output of each output neuron can be considered as a

weighted average of all input features. So for a given input feature vector, the vector

representing the values of all output neurons can be obtained by doing a matrix-vector

operation. Value of the weight matrix is learned by the training algorithm.

Convolutional neural networks

Convolutional neural networks have been widely used for image based computer vision

applications. They take the advantage of spatial locality of images and share the

weights in space, thereby making them invariant to translation of the input. Such

weight sharing makes the number of weight much smaller compared to fully-connected

layer with the same input/output dimensions. As discussed previously, CNNs use

trainable convolution filters to extract learned features from input images. Using

successive convolutions very high level features are extracted, which are then used

for classification using a fully connected classification network. Following are some of

the most commonly used CNNs. We used many of these to benchmark some of our

works.

16

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Figure 2.5: Architecture of LeNet-5 (LeCun et al. (1998)).

Logic utilization is empirically modeled using FPGA synthesis
data for each CNN layer as a function of the design variables.

x A systematic methodology is proposed to minimize total
execution time of a given CNN algorithm, subject to the FPGA
hardware constraints of logic utilization, computational
resources, on-chip memory and external memory bandwidth.

x The new methodology is demonstrated by maximizing the
throughput of two large-scale CNNs: AlexNet [16] and VGG
[17] (which achieved top accuracies in ImageNet challenges
2012 and 2014, respectively), on two Altera FPGA platforms
with different hardware resources.
The rest of the paper is organized as follows. Section 2 briefly

describes the operations of CNNs using AlexNet as an example.
Section 3 presents the challenges in implementing a large-scale
CNN on FPGAs. It also studies the impact of precision of the
weights on the accuracy of AlexNet and VGG models. Section 4
briefly presents the OpenCL implementation of CNN layers and
describes the design variables used for acceleration. Section 5
describes our proposed methodology for design space exploration
to maximize the throughput of the CNN accelerator with limited
FPGA resources. Section 6 presents the experimental results of
two CNNs optimized on two Altera FPGA platforms and
compares them with prior work. Section 7 concludes the paper.

2. BASIC OPERATIONS OF CNN
A typical CNN is comprised of multiple convolutional layers,

interspersed by normalization, pooling and non-linear activation
function. These convolution layers decompose the input image to
different features maps varying from low-level features such as
edges, lines, curves, etc., in the initial layers to high-level/abstract
features in the deeper layers. These extracted features are
classified to output classes by fully-connected classification layers
that are similar to multi-layer perceptrons. For example, Figure 1
shows the architecture of AlexNet CNN [16], which won the
ImageNet challenge in 2012. It consists of 5 convolutional layers
each with a Rectified Linear Unit (ReLU) based activation
function, interspersed by 2 normalization layers, 3 pooling layers
and concluded by 3 fully connected layers which classify the input
224×224 color images to 1,000 output classes. The ImageNet
database-based models are characterized by top-1 and top-5
accuracies, which represent whether the input image label matches
with top-1 and top-5 predictions, respectively.

2.1 Convolution
Convolution is the most critical operation of CNNs and it

constitutes over 90% of the total operations in AlexNet model
[13]. It involves 3-dimensional multiply and accumulate operation
of Nif input features with K×K convolution filters to get an output
feature neuron value as shown in Equation (1).

(1)

where out(fo,x,y) and in(fi,x,y) represent the neurons at location
(x,y) in the feature maps fo and fi, respectively and wt(fo,fi,kx,ky) is
the weights at position (kx,ky) that gets convolved with input
feature map fi to get the output feature map fo.

2.2 Normalization
Local Response Normalization (LRN) or normalization

implements a form of lateral inhibition [16] by normalizing each
neuron value by a factor that depends on the neighboring neurons.
LRN across neighboring features and within the same feature can
be computed as shown in Equations (2) and (3), respectively.

(2)

(3)

where K in Equation (2) is the number of feature maps used for
LRN computation, K in Equation (3) is the number of neurons in
x, y directions in the same feature, while D and E are constants.

2.3 Pooling
Spatial pooling or subsampling is utilized to reduce the

feature dimensions as we traverse deeper into the network. As
shown in Equation (4), pooling computes the maximum or
average of neighboring K×K neurons in the same feature map,
which also provides a form of translational invariance [18].
Although max-pooling is popularly used, average pooling is also
used in some CNN models [18]. Reducing the dimensionality of
lower-level features while preserving the important information,
the pooling layer helps abstracting higher-level features without
redundancy.

(4)

2.4 Activation Functions
The commonly used activation functions in traditional neural

networks are non-linear functions such as tanh and sigmoid,
which require a longer training time in CNNs [16]. Hence,
Rectified Linear Unit (ReLU) defined as y = max(x,0) has become
the popular activation function among CNN models as it
converges faster in training. Moreover, ReLU has less
computational complexity compared to exponent functions in tanh
and sigmoid, also aiding hardware design.

2.5 Fully Connected Layer
Fully-connected layer or inner product layer is the

classification layer where all the input features (Nif) are connected
to all of the output features (Nof) through synaptic weights (wt).
Each output neuron is the weighted summation of all the input
neurons as shown in Equation (5).

(5)

The outputs of the inner-product layer traverse through
ReLU based activation function to the next inner-product layer or
directly to a Softmax function that converts them to probability in
the range (0, 1). The final accuracy layer compares the labels of
the top probabilities from softmax layer with the actual label and
gives the accuracy of the CNN model.

),,(),,,(),,(
0 0 0

yx

N

f

K

k

K

k
iyxioo kykxfinkkffwtyxfout

if

i x y

��u ¦¦¦

E
D

¸̧
¹

·
¨̈
©

§
�

¦
�

�

2/

2/

2),,(1

),,(),,(
Kf

Kff
i

o
o

o

oi

yxfin
K

yxfinyxfout

� �),,(emax/averag),,(
),(0

yxo
Kkk

o kykxfinyxfout
yx

��
�d

¦

u
if

i

N

f
iioo finffwtfout

0

)(),()(

E
D

¸
¸
¹

·
¨
¨
©

§
���

¦ ¦
�

�

�

�

2/

2/

2/

2/

2
2),,(1

),,(),,(
Kx

Kxk

Ky

Kyk
yxo

o
o

x y

kykxfin
K

yxfinyxfout

Figure 1: Architecture of AlexNet CNN [16].

11

11

11

11

224

224

48

55

55

48

55

55

5

3

5

5

3

128

128

27

27

27

27

3
3

3
3

3
3

3
3

13

13

3
3

13

13

192

192

3

3

13

3

3

13

192

192

128

13

13

13

13

128

13

13

2048

2048

2048

2048

1000

3

Stride
of 4

Max
Pooling

Max
Pooling Max

Pooling

dense dense

dense

Figure 2.6: Architecture of AlexNet (Krizhevsky et al. (2012)).

LeNet-5 (LeCun et al. (1990) is one of the first networks which demonstrated that

CNNs, with their learnable feature extraction layers, can out perform traditional net-

works with handcrafted features like HOG, LUV, gradient magnitude etc. It consists

of 2 convolution layers and two fully connected layers. It was designed for hand writ-

ten digits recognition. AlexNet (Krizhevsky et al. (2012)) was one of the first works

which successfully trained a deep convolutional network. It had 5 convolution layers

and 3 fully connected layers with 61 million parameters. The architecture used 3

different types of kernels (3× 3, 5× 5 and 11× 11) and achieved a top-1 accuracy of

57.2% and a top-5 accuracy of 80.3% on ImageNet.

VGG-16 (Simonyan and Zisserman (2014)) is a much larger network compared to

LeNet and AlexNet. It features 13 convolutional layers and 3 fully connected layers.

This network has a huge number of parameters, 138 million. As the network is deeper,

17

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

po
ol

, /
2

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

po
ol

, /
2

3x
3

co
nv

, 2
56

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

po
ol

, /
2

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

po
ol

, /
2

3x
3

co
nv

, 5
12

im
ag

e

de
ns

e
40

96

de
ns

e
40

96

po
ol

, /
2

de
ns

e
10

00

ou
tp

ut

Figure 2.7: Architecture of VGG-16 (Simonyan and Zisserman (2014)).

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

0]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
si

nc
re

as
e

di
m

en
si

on
s.

Ta
bl

e
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1×

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

40
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2

5
6
,4

80
]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

0]
.

A
22

4×
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
ri

zo
nt

al
fli

p,
w

ith
th

e
pe

r-
pi

xe
lm

ea
n

su
bt

ra
ct

ed
[2

1]
.T

he
st

an
da

rd
co

lo
ra

ug
m

en
ta

tio
n

in
[2

1]
is

us
ed

.W
e

ad
op

tb
at

ch
no

rm
al

iz
at

io
n

(B
N

)
[1

6]
ri

gh
t

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
2]

an
d

tr
ai

n
al

lp
la

in
/r

es
id

ua
ln

et
s

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-

ba
tc

h
si

ze
of

25
6.

T
he

le
ar

ni
ng

ra
te

st
ar

ts
fr

om
0.

1
an

d
is

di
vi

de
d

by
10

w
he

n
th

e
er

ro
rp

la
te

au
s,

an
d

th
e

m
od

el
s

ar
e

tr
ai

ne
d

fo
ru

p
to

60
×

1
0
4

ite
ra

tio
ns

.W
e

us
e

a
w

ei
gh

td
ec

ay
of

0.
00

01
an

d
a

m
om

en
tu

m
of

0.
9.

W
e

do
no

tu
se

dr
op

ou
t[

13
],

fo
llo

w
in

g
th

e
pr

ac
tic

e
in

[1
6]

.
In

te
st

in
g,

fo
rc

om
pa

ri
so

n
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,

w
e

ad
op

t
th

e
fu

lly
-

co
nv

ol
ut

io
na

l
fo

rm
as

in
[4

0,
12

],
an

d
av

er
ag

e
th

e
sc

or
es

at
m

ul
tip

le
sc

al
es

(i
m

ag
es

ar
e

re
si

ze
d

su
ch

th
at

th
e

sh
or

te
r

si
de

is
in

{2
24

,2
56

,3
8
4,

48
0,

64
0}

).

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

35
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
ri

ng
th

e
tr

ai
ni

ng
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4 7
73

Figure 2.8: Architecture of ResNet (He et al. (2016)).

•
A

linear
layer

w
ith

softm
ax

loss
as

the
classifier

(pre-
dicting

the
sam

e
1000

classesasthe
m

ain
classifier,but

rem
oved

atinference
tim

e).

A
schem

atic
view

ofthe
resulting

netw
ork

is
depicted

in
Figure

3.

6.Training
M

ethodology

G
oogL

eN
et

netw
orks

w
ere

trained
using

the
D

istB
e-

lief
[4]

distributed
m

achine
learning

system
using

m
od-

est
am

ount
of

m
odel

and
data-parallelism

.
A

lthough
w

e
used

a
C

PU
based

im
plem

entation
only,

a
rough

estim
ate

suggests
that

the
G

oogL
eN

et
netw

ork
could

be
trained

to
convergence

using
few

high-end
G

PU
s

w
ithin

a
w

eek,the
m

ain
lim

itation
being

the
m

em
ory

usage.O
urtraining

used
asynchronous

stochastic
gradientdescentw

ith
0.9

m
om

en-
tum

[17],fixed
learning

rate
schedule

(decreasing
the

learn-
ing

rate
by

4%
every

8
epochs).Polyak

averaging
[13]w

as
used

to
create

the
finalm

odelused
atinference

tim
e.

Im
age

sam
pling

m
ethods

have
changed

substantially
over

the
m

onths
leading

to
the

com
petition,

and
already

converged
m

odelsw
ere

trained
on

w
ith

otheroptions,som
e-

tim
es

in
conjunction

w
ith

changed
hyperparam

eters,
such

as
dropout

and
the

learning
rate.

T
herefore,

it
is

hard
to

give
a

definitive
guidance

to
the

m
osteffective

single
w

ay
to

train
these

netw
orks.To

com
plicate

m
attersfurther,som

e
ofthe

m
odels

w
ere

m
ainly

trained
on

sm
allerrelative

crops,
others

on
larger

ones,
inspired

by
[8].

Still,
one

prescrip-
tion

thatw
as

verified
to

w
ork

very
w

ellafter
the

com
peti-

tion,includes
sam

pling
of

various
sized

patches
of

the
im

-
age

w
hose

size
is

distributed
evenly

betw
een

8%
and

100%
ofthe

im
age

area
w

ith
aspectratio

constrained
to

the
inter-

val
[
34
,

43
].

A
lso,w

e
found

thatthe
photom

etric
distortions

ofA
ndrew

H
ow

ard
[8]w

ere
usefulto

com
batoverfitting

to
the

im
aging

conditions
oftraining

data.

7.
IL

SV
R

C
2014

C
lassification

C
hallenge

Setup
and

R
esults

T
he

IL
SV

R
C

2014
classification

challenge
involves

the
task

ofclassifying
the

im
age

into
one

of1000
leaf-node

cat-
egories

in
the

Im
agenethierarchy.

T
here

are
about1.2

m
il-

lion
im

ages
for

training,50,000
for

validation
and

100,000
im

ages
for

testing.
E

ach
im

age
is

associated
w

ith
one

ground
truth

category,and
perform

ance
is

m
easured

based
on

the
highest

scoring
classifier

predictions.
Tw

o
num

-
bers

are
usually

reported:
the

top-1
accuracy

rate,
w

hich
com

pares
the

ground
truth

againstthe
firstpredicted

class,
and

the
top-5

error
rate,

w
hich

com
pares

the
ground

truth
against

the
first

5
predicted

classes:
an

im
age

is
deem

ed
correctly

classified
if

the
ground

truth
is

am
ong

the
top-5,

regardless
ofits

rank
in

them
.T

he
challenge

uses
the

top-5
errorrate

forranking
purposes.

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogL
eN

etnetw
ork

w
ith

allthe
bells

and
w

histles.

Figure 2.9: Architecture of GoogleNet (Szegedy et al. (2015)).

its accuracy is better compared to AlexNet. VGG-16 achieved a top-1 accuracy of

68.5% and a top-5 accuracy of 88.7% on ImageNet. ImageNet pre-trained model for

this network is widely used in many computer vision tasks like image classification,

detection and segmentation.

ResNet (He et al. (2016)) solved the issue of vanising gradients in deeper layers

with the residual block with bypass layer. The most popular ResNet (ResNet-50) has

25.5 million parameters. It has 49 convolution layers and 1 fully connected layer. It

uses element-wise additions in residual blocks. It achieved a top-1 accuracy of 76.1%

and a top-5 accuracy of 92.9% on ImageNet.

GoogleNet (Szegedy et al. (2015)) features 9 inception modules each consisting of

18

4 branches of 1× 1, 3× 3 and 5× 5 convolutions and down-sampling. In total it has

57 convolution layers and 1 fully connected layer. GoogleNet has a total of 7 million

parameters. It achieved a top-1 accuracy of 68.9% and a top-5 accuracy of 89.0% on

ImageNet.

All the network architectures discussed previously as for image classification task.

Object detection on the other hand uses slightly different network architectures. This

is because object detection algorithms are required to not only classify all the objects

present in the image but also localize them. Faster-RCNN (Girshick (2015)) intro-

duced Region Proposal Network (RPN) that shared full-image convolutional features

with the classification network (fc layers), thus enabling nearly cost-free region pro-

posals. RPNs are trained end-to-end to generate high quality region proposals, that

are pooled using ROI-Pooling layer and feed into classification network for detec-

tion. They used VGG-16 for convolution feature extraction and obtained 5fps on

GPUs with object detection accuracy on PASCAL VOC 2007 (73.2% mAP) and

2012 (70.4% mAP) using 300 proposals per image.

2.4 Datasets

Large labelled datasets are cornerstones of deep learning. They are used to train

and test the performance of models. We used a variety of tasks through out this

work. The datasets used in the experiments for this work include MNIST, Cifar-10,

ImageNet, AFW database. We also created an audio dataset of cough recordings that

we used for training a MLP. Details about this dataset creation is explained in the

next chapter.

MNIST is a dataset for handwritten digits (LeCun et al. (2010)) with 60,000

training images and 10,000 test images. There are ten classes with ten digits, and

the image size is 2828. Each image is grayscale. This dataset is relatively easy and

19

Figure 2.10: Architecture of Faster R-CNN (Girshick (2015)). This network performs

the feature extraction using convolution layers from classification networks like VGG,

AlexNet etc. Apart from that it has a RPN (region proposal network) that pro-

duces initial proposals for objects which are pooled to fixed size using ROIPooling. A

fully connected classification network uses the pooled high level convolution features

to perform classification and fine tuning of bounding boxes. The convolutional fea-

ture extraction layers are initialized with weights from any pre-trained classification

network, where as the fully-connected layers and RPN is initialized using random

normal sampling. The whole network is trained end-to-end with the new dataset.

This finetunes the feature extraction convolution layers for the object detection task.

small, taking the model only a few minutes to train.

Cifar-10 is a dataset of color images (Krizhevsky and Hinton (2009)). It has 50,000

training images and 10,000 test images. There are ten classes, and the image size is

20

3232. The dataset is slightly more difficult than MNIST but the model still only

required a few hours to train. We used Cifar-10 for ablation studies when we needed

to repeat a group of similar experiments many times.

AFW dataset (Zhu and Ramanan (2012)) is built using Flickr images. It has

205 images with 473 labeled faces. For each face, annotations include a rectangular

bounding box, 6 landmarks and the pose angles.

ImageNet is a large-scale dataset for ILSVRC challenge (Deng et al. (2009)). The

training dataset contains 1000 categories and 1.2 million images. The validation

dataset contains 50,000 images, 50 per class. The classification performance is re-

ported using Top-1 and Top-5 accuracy. Top-1 accuracy measures the proportion of

correctly-labeled images. If one of the five labels with the largest probability is a

correct label, then this image is considered to have a correct label for Top-5 accuracy.

We used the ImageNet dataset to measure the performance of model compression and

regularization.

Figure 2.11: Size normalized examples from MNIST (LeCun et al. (2010)).

21

Figure 2.12: Random examples from 10 classes of Cifar-10 dataset (Krizhevsky and

Hinton (2009)).

2.5 ML Frameworks and Hardware

In this work, we use Tensorflow (Abadi et al. (2016)) for training and evaluating

neural networks. Tensorflow is a deep learning framework from Google. All the neural

network computations are abstracted to graph operations like convolution, pooling,

deconvolution etc. This enables the users to focus on the high level network design.

The hardware used for training in this work was a CPU with Core i7-5930K 6-core

3.5GHz desktop processor and NVIDIA Maxwell TitanX GPU with 12GB of memory.

For custom hardware accelerators using FPGA, we use DE5-Net FPGA Development

Kit with Altera Stratix-V GXA7 FPGA and P395-D8 board with Stratix-V GSD8

FPGA board.

22

Chapter 3

DESIGNING A NEURAL NETWORK

In the previous chapter, we discussed some of the basics of neural networks. We

also looked at a few popular and widely used network architectures. In this chapter,

we will discuss in detail the process of designing and training a neural network. For

this purpose, we will use development of an automatic cough detection algorithm as

the test case. The proposed algorithm was developed to be used in medical devices

and analyzes audio files and determines the number of coughs in it. The rest of the

chapter is organized as follows. First we shall look at the background of the problem

statement and also the motivation behind this work. Then we shall look at how the

dataset is collected and designed. Then we shall look at feature extraction from raw

data, network architecture definition, training the network and evaluating it with test

data.

3.1 Background and Motivation

Coughing is one of the most important and frequent symptoms reported by pa-

tients (Ly et al. (1999), Gibson et al. (2010)). Chronic cough can result in dele-

terious effects on health and quality of life (Young and Smith (2010)). Monitoring

cough symptoms is important in detecting and treating respiratory conditions such

as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and

tuberculosis (Tracey et al. (2011), Kerem et al. (2008), Marsden et al. (2008)).

To assess the frequency and severity of cough, several subjective tests have been

developed (e.g. Leicester cough questionnaire (Birring et al. (2003)), visual analog

scales, etc.). These methods provide insight into the perceived severity of cough symp-

23

toms, but are ultimately unreliable when compared to objective methods of studying

cough, because factors such as patient mood, vigilance, and the placebo effect can im-

pact the patient’s report of cough frequency (Smith and Woodcock (2008), Decalmer

et al. (2006)).

However, objective tools for studying cough are lacking. One quantitative method

to assess cough frequency and severity consists of using ambulatory systems to record

audio from patients for an extended time, and then manually counting the number

of coughs in the recorded audio. Manually counting coughs is a time-consuming

process that requires an expert to verify labeled coughs (Barton et al. (2012)). This

is impractical for large amounts of data.

A number of automatic cough detection systems have been proposed in the lit-

erature. The Leicester Cough Monitor (LCM) Birring et al. (2008), and VitaloJAK

McGuinness et al. (2012) are examples of ambulatory systems consisting of both wear-

able devices to record patient audio, and algorithms for cough detection from recorded

data. The LCM applies a Hidden Markov Model (HMM) trained on mel-frequency

cepstral coefficients (MFCCs) in order to detect cough sounds. However, the LCM

algorithm is only semi-automated - it requires manual tuning of model parameters for

each individual recording (McGuinness et al. (2008)). This algorithm takes a 24-hour

patient audio recording and creates a shorter recording with all suspected coughs.

To decrease false alarm rate, a portion of the detected coughs must be manually

confirmed by personnel (Birring et al. (2008)).

Recently, there has been significant interest in applying deep learning techniques

to automatic cough detection. In Barry et al. (2006) the authors devise a probabilis-

tic neural network trained using linear predictive cepstral coefficients (LPCCs) and

MFCCs to distinguish cough sounds from background. The authors in Amoh and

Odame (2015) and Amoh and Odame (2016) applied convolutional neural networks

24

(CNNs) trained directly on the short-time Fourier transform (STFT) of audio seg-

ments. However, most of these methods are validated on limited datasets collected in

artificial environments, or use proprietary hardware for collecting patient data. For

example, in Swarnkar et al. (2013) the data only consists of three patients recorded

in a hospital setting; and, only one patient was recorded for more than four hours.

The authors in Amoh and Odame (2015) and Amoh and Odame (2016) use custom

hardware to record healthy volunteers reading passages and voluntarily coughing in

a controlled lab setting. It is well-known in the literature that voluntary coughs have

different patterns from reflex coughs Smith et al. (2006). In Liu et al. (2015b) a

pre-trained neural network is applied to 24-hour patient recordings collected in a re-

stricted, hospital environment. They use custom recording devices rather than using

an FDA-cleared cough monitor.

In this work, we propose a framework for audio-based automatic cough detec-

tion. The main contributions of this work are: (1) an extensive dataset containing

9 days of audio recorded in real-world conditions, from 9 patients with a variety of

respiratory illnesses, using the FDA-cleared cough monitoring device, VitaloJAK; (2)

a pre-processing algorithm to fine tune data labels to improve neural network ac-

curacy and convert event based cough labeling to labels containing cough start and

end points; (3) a deep neural network (DNN) trained using MFCCs and other fea-

tures to discriminate cough sounds from background noise. The proposed framework

achieves an average leave-one-out cross-validation specificity, sensitivity, and accuracy

of 93.7%, 97.6% and 92.3% respectively.

3.2 Data Collection

As mentioned previously, designing a neural network starts with labelled datasets.

For this work, we created a custom dataset. Recordings were supplied from an acous-

25

Participant Disease Coughs Gender

1 Chronic Cough 3133 M

2 Chronic Cough 509 F

3 Chronic Cough 546 F

4 COPD 102 F

5 COPD 852 F

6 Asthma 221 F

7 Asthma 118 M

8 Lung Cancer 163 F

9 Lung Cancer 26 M

Table 3.1: Detailed Participant Information for collection of audio data used for

automatic cough detection. The data consists of 24 hours recordings of 9 patients in

un-controlled environments. The data is collected using FDA approved VitaloJAK

device.

tic cough recording repository (RADAR) maintained at the University Hospital of

South Manchester, with patient consent. Sound recordings were collected using the

VitaloJAK cough recording device over 24-hour periods; recordings were commenced

in a research clinic and then patients were permitted to go about their normal daily

routines. The monitors were collected once the recordings were completed. The de-

vice makes continuous sound recordings at 8 kHz sample rate, from an air-coupled

contact microphone placed over the manubrium sterni and a free-field lapel micro-

phone. We use audio from the lapel microphone for our analysis. Participants were

instructed not to remove the device or microphones during the recording and to keep

the equipment dry. A total of 9 recordings (3 chronic cough, 2 asthma, 2 chronic

26

CoughCoughCoughSpeech and Noise

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time(s)

0

1

2

3

4

F
re

q
u

e
n

c
y
 (

k
H

z
)

Figure 3.1: Spectrogram of speech and noise compared with three coughs. Cough has

distinct high frequency components which are absent in speech and other sounds.

obstructive pulmonary disease and 2 lung cancer patients) were included in the anal-

ysis. Each 24 hour recording was listened to in its entirety by technical staff trained

in cough identification, and the location of each cough sound heard was recorded

electronically.

Our dataset consists of a total of 5,670 coughs. The dataset contains a rich variety

of background noise such as music, conversation, watching television, and riding in a

car. The audio contains many sounds easily confused with coughing such as throat

clearing, sneezing, and laughing. Table 3.1 shows the breakdown of the dataset by

disease, cough count, and gender.

Figure 3.1, shows the spectrogram of three coughs of different length and a set of

non-cough sounds taken from the dataset. We can make two important observations

from this spectrogram. We note that coughing contains a larger amount of energy in

higher frequencies than speech or other types of noise. A properly trained DNN can

discriminate coughing from background by utilizing these characteristics unique to

coughing. Also, any algorithm trained to detect these coughs must be able to account

for the variability in cough length and intensity (see Figure 3.1).

27

3.3 Data Preprocessing

Every cough in the database was manually labeled by a trained expert. The top

graph in Figure 3.2 shows how coughs were labeled. As we have noted, coughs vary

in duration. However, the provided labels do not reflect this information. If features

are extracted from a constant window around the provided labels, background audio

events adjacent to coughing can be unintentionally included as part of the cough.

Therefore, we must determine the cough start and end times from the provided labels.

The cough reflex consists of three audible portions: 1) a rapid, explosive phase,

2) an intermediate, decaying phase consistent with forced expiration, and 3) a voiced

phase (not necessarily present in all coughs). Since the first two phases are ubiquitous

across all coughs, they allow us to determine the start and end of a cough using an

energy-based criteria.

Figure 3.2 outlines the label preprocessing algorithm. Given the event-based label,

we extract a 420 ms window of audio from 70 ms before to 350 ms after the provided

label. We choose a window of 420 ms because more than 95% of all coughs in our

dataset were observed to be shorter than 400 ms in duration.

Next, an energy versus time profile is generated for the cough. We calculate the

energy for every 10 ms frame within the 420 ms window using a step size of 2 ms. We

calculate the energy for each 10 ms frame and find the maximum value of this energy

profile within the 420 ms window. The first 10 ms frame that precedes the maximum

energy frame with 15% of the energy of the maximum energy frame is chosen as the

start of the cough; and the first frame that occurs after the maximum energy frame

with 10% of the energy of the maximum energy frame is selected as the end of the

cough. Any cough found to have a duration of less than 40 ms is pruned from the

28

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
- 1

0

1

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
0

1

2

3

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
- 1

0

1 C o u g h d u r a t i o n

C o u g h S t a r t

C o u g h E n d

1 0 % o f M a x E n e r g y
1 5 % o f M a x E n e r g y
M a x i m u m E n e r g y

Am
pli

tud
e

T i m e (s)

 C o u g h A m p l i t u d e

E v e n t b a s e d l a b e l
f r o m m e d i c a l p e r s o n e l

En
erg

y

T i m e (s)

 E n e r g y

Am
pli

tud
e

T i m e (s)

Figure 3.2: Preprocessing algorithm extracts a more descriptive cough label. The

dataset has event based labeling from medical personnel. Preprocessing first cal-

culates energy in the audio around the labeled cough event. It then detects the

maximum energy point. Then it looks for the instance to the left of the peak with

energy equal to 15% of the peak energy and labels it as start of the cough. Similarly

it looks for instance to the right of the peak with energy equal to 10% of peak energy

and labels it as end of the cough. Time duration between start and end is considered

as cough duration. Using this method, event based cough dataset is converted to a

more informative dataset with start and end of coughs which is then used for training

the neural network.

29

0.00 0.05 0.10 0.15 0.20

-1

0

1

2
Input feature vector

MFCCs +

Log bank +

deltas50ms

A
u

d
io

 A
m

p
li

tu
d

e

Time (s)

200ms sliding

window

Figure 3.3: Each 200 ms frame is subdivided into 50 ms windows - 42 (MFCCs, Long

bank and delta) features are calculated for each 50 ms segment. 50ms was chosen as

the sub-window size as 99.7% of the coughs in the dataset were longer than 50ms.

200ms was used as the frame size as the average cough duration was 181ms.

dataset 1 . The resulting dataset consists of coughs ranging from 40 ms to 420 ms

duration, with an average duration of 200 ms.

3.4 Feature Extraction

A total of 168 features are used as inputs to the DNN. Since we aim to apply the

DNN in a real-time setting in subsequent work, we perform training and inference

using 200 ms frames of audio (200 ms corresponds to the average cough length). Four

200 ms training examples are generated from each cough by varying the location of

the cough within each training example. This ensures the DNN is invariant to the

position of a cough within the frame.

For each cough, two training examples are generated such that the beginning of

1Less than 0.1% of all coughs were pruned

30

the training example can occur anywhere within a 25 ms window before or after the

cough start time (with uniform random probability). The remaining two out of four

training examples are similarly generated, but the window is increased to 60 ms before

or after the cough start.

Then, each 200 ms frame is further subdivided into four 50 ms windows to capture

the temporal profile of each audio frame (Figure 3.3). From each 50 ms window we

compute 42 features: 13 MFCCs, 13 MFCC delta features, and 13 MFCC delta-delta

features. The remaining three features are the log energy within the 13 MFCCs, 13

MFCC delta features, and 13 MFCC delta-delta features. Since we break down each

200 ms frame into four 50 ms windows, we supply our network with 168 input features.

To generate non-cough training examples, we randomly sample 200 ms segments of

non-cough audio and calculate the same 168 features.

Input

Hidden layers

Output

512 512168 2

MFCCs,
Log banks,

deltas

Figure 3.4: Proposed network architecture for cough detection. The network consists

of 2 hidden layers each with 512 neurons. The input consists of 168 features consisting

of MFCCs, Log banks and Deltas from the 4 50ms non-overlapping windows of the

audio signal. The network is trained using stochastic gradient descent with L2 weight

regularization.

31

3.5 Neural Network Model for Cough Detection

Figure 3.4 shows our proposed neural network architecture. The DNN was trained

with an equal number of positive and negative examples using stochastic gradient

descent (SGD) and momentum. Using a grid search and cross-validation, we employed

a learning rate of 0.15, momentum of 0.9, and a batch size of 150. The network was

trained for 50 epochs.

3.6 Results

Table 3.2 summarizes the leave-one-out specificity, sensitivity, and accuracy our

algorithm achieves. The DNN is trained on all subjects except for one, which was left

for testing. This is then repeated across all subjects in the entire dataset (leave-one-

participant-out cross validation).

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

Tru
e P

os
itiv

e R
ate

F a l s e P o s i t i v e R a t e

R O C a v e r a g e d o v e r
l e a v e - o n e - o u t c r o s s - v a l i d a t i o n
f o r a l l p a t i e n t s

Figure 3.5: Receiver Operating Characteristic (ROC) of our algorithm averaged across

all participants. Larger area under the curve means the algorithm has better per-

formance. Area under the curve (AUC) for the proposed neural network is 0.93

(state-of-the-art at the moment for medical data).

32

Subject Specificity % Sensitivity % Accuracy %

1 97.7 92.2 95.2

2 95 97.4 95.4

3 88.1 97.8 91.9

4 87 97.3 91.2

5 97 97 96.2

6 98.3 97.6 94.3

7 87 94.4 89.7

8 96 96.1 92.5

9 97.3 97.6 92.3

Avg 93.7 97.6 92.3

Table 3.2: Leave-one-out specificity, sensitivity, and accuracy of proposed algorithm.

For this purpose, the network was trained using data from 8 patients and tested on

the data from the remaining patient.

To compute accuracy, a test data set of four positive examples are created for each

cough in accordance with the method outlined in Section 3.4. An equal number of

negative test examples are randomly selected from background audio. To calculate

sensitivity and specificity, a 200 ms sliding window is extracted from each 24 hour

recording, with a step size of 50 ms. We define a false positive as any 200 ms frame

that was incorrectly classified as a cough, and was not within 1 second of a cough.

The DNN achieves an average leave-one-out accuracy of 92.3%, with the highest

accuracy of 96.2% for participant 5, and lowest accuracy of 89.7% for participant

7. This is due to the unique cough signature of participant 7 which is perceptually

similar to throat clearing.

33

Sensitivity (true positive rate) and specificity (true negative rate) are more useful

in describing the DNN’s performance on 24 hour segments of audio due to the severely

imbalanced classes. The algorithm results in an average specificity and sensitivity of

93.7% and 97.6% respectively.

Participant 4 and 7 both had the lowest specificity of 87%. This is due to the

large amount of loud conversation in both of these recordings. Loud speech is one of

the most likely sources of false positives. As several authors note, the most difficult

part in designing ambulatory cough detection systems is robustness to false alarms.

Since classes are heavily imbalanced, specificity must be as high as possible to avoid

large numbers of false positives.

As was expected, the sensitivity for participant 7 was lower than average (94.4%)

due to the participant’s uncommon cough pattern. The lowest leave-one-out sensi-

tivity of 92.2% is found for participant 1. Since 3,133 out of the 5,670 (more than

55% of all training set coughs) come from participant 1, the DNN is likely to have

an incomplete model of cough when the recording from participant 1 is left out from

training.

The receiver operating characteristic (ROC) averaged across all participants is

shown in Figure 3.5. We use the same test data set that is used to find accuracy in

creating the ROC. The area under the curve (AUC) of the ROC is 0.93, a value close to

1 indicating that our model performs well in discriminating cough from background.

3.7 Conclusion

In this chapter, we demonstrated that with careful dataset design, data augmen-

tation, network architecture and training scheme, deep neural networks can perform

extremely well. We discussed the implementation details of a deep neural network and

a data pre-processing algorithms for cough detection from ambulatory data collected

34

with the FDA-cleared VitaloJAK device. We trained a DNN with two hidden lay-

ers on MFCC features to successfully discriminate coughing sounds from background

noise. Results indicate our algorithm achieves high sensitivity, specificity, and accu-

racy on our extensive dataset. The proposed framework could decrease the load on

medical personnel in labeling coughs from ambulatory audio recordings.

35

Chapter 4

HARDWARE ACCELERATION USING FPGA

In the previous chapter, we saw how to design and train a neural network. These

algorithms are very compute intensive, thereby making inference on general purpose

CPUs extremely slow and inefficient. As shown in Fig. 4.1, GPUs with there highly

parallel architecture have proved to be very efficient for deep learning applications.

However, inference on GPUs is power hungry. FPGAs on the other hand, with their

programmable fabric are very suitable for creating multi-threaded hardware which

can be much faster than CPUs while being much more power efficient than GPUs.

In this chapter, we will look at accelerating AI applications using FPGA. First

we will take a look at High Level Synthesis framework for design and implementation

of accelerators. We will study the two approaches to HLS namely, OpenCL kernels

and HLS constructs. Then we shall take two design examples of accelerating: (1) a

random forest tree for face detection task, and (2) convolution neural networks for

image classification task.

4.1 High Level Synthesis

High Level synthesis (HLS), also known as C synthesis, behavioral synthesis or

algorithmic synthesis, is an automated design process that interprets an algorithmic

description of a desired behavior and creates digital hardware that implements that

behavior. Synthesis begins with a high-level specification of the problem, where be-

havior is generally decoupled from e.g. clock-level timing. The desired hardware’s

behaviour (algorithm) can be implemented in a high level language like C/C++ and

then RTL/hardware is automatically generated using a vendor specific compiler.

36

CPU FPGA GPU

More PowerMore Flexibility

More Speed

Figure 4.1: Comparison between CPU, FPGA and GPU for deep learning inference.

CPUs are the most programmable and thus are flexible to support all possible al-

gorithms. But the flexibility comes at the cost of poor performance. GPUs on the

other hand have highly threaded architecture and thus have the highest performance.

They are also programmable to support multiple algorithms. However, GPUs are

very power hungry. FPGAs with their programmable fabric are used to create cus-

tom hardware for any algorithm and thus have performance much better than CPUs

while their power consumption is much smaller compared to GPUs.

HLS tools are gaining importance among FPGA design community as they ac-

celerate the design process. HLS lets hardware designers efficiently build and verify

hardware, by giving them better control over optimization of their design architec-

ture, and enabling the designer to describe the design at a higher level of abstraction

while the tool does the RTL implementation. It can also bridge the gap between

algorithm and hardware development. Moreover as the tool takes in C/C++ codes

as inputs, functional validation is a lot faster compared to RTL validation. Fig. 4.2

demonstrates HLS design flow. HLS compilers are vendor specific and are optimized

for specific FPGA boards. In this work, we look at two frameworks in particular,

Altera OpenCL compiler and Xilinx HLS compiler.

37

4.1.1 Altera OpenCL Framework

In this section we will look at Altera’s HLS framework. There is a recent interest

in using OpenCL (Suda et al. (2016)), a C-based programming language, for FPGAs

because of its parallel programming model. Moreover, the same OpenCL codes can

easily be ported to different platforms: CPUs, GPUs, DSPs or heterogeneous systems

consisting of a combination of them.

C/C++
Behavioral

codes

Functional
correct ?

Vendor Specific
HLS Compiler

Yes

C/C++
Emulation

Meets
Requirement ?

HLS Directives

Technology Library

No

No

End

Yes

Test on FPGA

Software

Hardware

Figure 4.2: Design flow for high level synthesis (HLS). First the C++ codes are

made functionally correct with fast emulation mode of HLS. After that HLS direc-

tives are used to explore architectural space till we satisfy the throughput and power

requirements. C++ emulation and compiling high level codes to RTL ensures fast

prototyping and low turnaround time to market.

38

OpenCL compilers not only compile an OpenCL code to RTL, but also integrate

it with the interfacing IPs for external memory and for communication between host

CPU and FPGA accelerator board. They abstract the designer/user from the intrica-

cies of traditional FPGA design flow such as RTL coding, integration with interfacing

IPs and timing closure, which considerably reduces the design time, while achieving

performance comparable to the traditional flow, but possibly at the expense of higher

on-chip memory utilization (Abdelfattah et al. (2014)).

The design flow of the OpenCL based FPGA accelerator used in this work is

shown in Fig. 4.3. It consists of a FPGA accelerator board that is integrated into

the PCIe slot of a desktop CPU that acts as the OpenCL host. In general, OpenCL

framework consists of two components (a) an OpenCL code that is compiled and

PCIe

Standard C/C++
Compiler

Host
executable

Altera OpenCL
Compiler

FPGA
config file

C/C++ Host code OpenCL kernel

FPGA Accelerator
(OpenCL device)

Desktop CPU
(OpenCL host)

Figure 4.3: Design flow of OpenCL based FPGA accelerator. The heterogeneous

system consists of two parts: (a) Host CPU running C/C++ codes, (b) FPGA accel-

erator device programmed with RTL file generated using openCL kernel. The host

and the device communicate using PCIe port. The host executes the main task and

offloads compute intensive portions of the application to FPGA accelerator.

39

synthesized to run on the FPGA accelerator and (b) a C/C++ based host code with

vendor-specific application program interface (API) to communicate with the FPGA

board. Since the host code is generic C/C++ codes, it can take advantage of libraries

like openCV, blas etc for a lot of tasks. In this design flow, the host (CPU) is used

for trivial tasks, as a controller for the FPGA accelerator and is responsible for data

transfer to/from FPGA device. The compute intensive parts of the application are

offloaded to the FPGA device to accelerate execution. The tool-kit provides support

for emulation, which runs the OpenCL code on host CPU, thus allowing for quick

functional verification before going to the full FPGA implementation.

The Altera SDK for OpenCL provides different synthesis constructs to enable

acceleration of OpenCL kernels such as loop unroll factor and Single-Instruction-

Multiple-Data (SIMD) vectorization factor. It also has constructs for choosing the

number of hardware threads (work group size) working in parallel. All these con-

structs can be used as knobs for design space exploration to optimize for area, power

or performance.

4.1.2 Xilinx HLS Framework

Xilinx’s HLS platform (Vivado HLS) offers the designer more flexibility and access

to lower level hardware details. It can be used to convert both OpenCL kernels and

C/C++ codes to RTL. Creating specialized hardware from C/C++ is achieved by in-

serting specific compiler directives in the source code. The heterogeneous accelerator

architecture in this case is similar to what we saw in the previous section. FPGA is

still a slave device which is controlled by an general purpose CPU. In this case, both

the FPGA and CPU sit on the same die and are connected by AXI Bus.

Xilinx HLS supports 3 types of AXI ports: (1) AXI Master, (2) AXI Slave and (3)

AXI Stream. The AXI slave ports are generally used by the host for programming

40

ARM Core (Host)

FPGA
(Accelerator)

AXI
Interconnect

Instruction
Bus

DMA

External Memory

AXI
Interconnect

Data
Bus

AXI Master

AXI Slave

Figure 4.4: System diagram of C based HLS accelerator from Xilinx. The host

(master) and the accelerator (slave) both sit on the same SoC using AXI bus. The

master is responsible for transferring data to the accelerator and programming it. The

FPGA accelerator has both AXI master (for high performace DMA transfers from

external memory) and AXI slave interfaces (handshake protocol with CPU master).

the accelerator and for the handshake signals. The AXI master ports are used by the

accelerator to initiate high performance DMA transfers to/from external memory.

AXI Stream ports are useful when we have a constant source streaming in data to

the accelerator. A typical system with the host and accelerator in this framework is

shown in Fig. 4.4. Few of the key optimization directives used in Vivado HLS are

presented in Table 4.1.

In the next sections, we shall discuss two example designs which use these HLS

frameworks to accelerate two AI applications. First we shall look at a design which

does high performance face detection with CPU-FPGA acceleration. Then we shall

look into a design that implements a throughput-optimized OpenCL based FPGA

accelerator for large scale convolution neural networks.

41

T
ab

le
4.

1:
V

iv
ad

o
H

L
S

K
ey

O
p
ti

m
iz

at
io

n
D

ir
ec

ti
ve

s.
T

h
es

e
d
ir

ec
ti

ve
s

ar
e

ad
d
ed

to
fu

n
ct

io
n
al

ly
co

rr
ec

t
C

/C
+

+
co

d
es

an
d

th
en

co
m

p
il
ed

to
h
ar

d
w

ar
e.

K
ee

p
in

g
h
ar

d
w

ar
e

in
m

in
d
,

th
es

e
d
ir

ec
ti

ve
s

ca
n

b
e

u
se

d
to

d
er

iv
e

h
ig

h
ly

th
re

ad
ed

h
ar

d
w

ar
e

w
h
ic

h
ca

n
b

e
op

ti
m

iz
ed

fo
r

p
er

fo
rm

an
ce

,
p

ow
er

an
d

ar
ea

.
T

h
is

m
et

h
o
d

re
m

ov
es

th
e

n
ee

d
to

co
d
e

cy
cl

e-
to

-c
y
cl

e
d
et

ai
le

d

R
T

L
an

d
th

u
s

im
p
ro

ve
s

p
ro

to
ty

p
in

g
ti

m
e

d
ra

st
ic

al
ly

.

D
ir

e
ct

iv
e

D
e
sc

ri
p
ti

o
n

A
R

R
A

Y
P

A
R

T
IT

IO
N

P
ar

ti
ti

on
s

la
rg

e
ar

ra
y
s

in
to

m
u
lt

ip
le

sm
al

le
r

ar
ra

y
s

or
in

to
in

d
iv

id
u
al

re
gi

st
er

s,
to

im
p
ro

ve

ac
ce

ss
to

d
at

a
an

d
re

m
ov

e
b
lo

ck
R

A
M

b
ot

tl
en

ec
k
s.

D
A

T
A

F
L

O
W

E
n
ab

le
s

ta
sk

le
ve

l
p
ip

el
in

in
g,

al
lo

w
in

g
fu

n
ct

io
n
s

an
d

lo
op

s
to

ex
ec

u
te

co
n
cu

rr
en

tl
y.

D
E

P
E

N
D

E
N

C
E

P
ro

v
id

es
ad

d
it

io
n
al

in
fo

rm
at

io
n

th
at

ca
n

ov
er

co
m

e
lo

op
-c

ar
ry

d
ep

en
d
en

ci
es

an
d

al
lo

w
lo

op
s

to
b

e
p
ip

el
in

ed
.

IN
L

IN
E

In
li
n
es

a
fu

n
ct

io
n
,

re
m

ov
in

g
al

l
fu

n
ct

io
n

h
ie

ra
rc

h
y.

U
se

d
to

en
ab

le
lo

gi
c

op
ti

m
iz

at
io

n
ac

ro
ss

fu
n
ct

io
n

b
ou

n
d
ar

ie
s

an
d

im
p
ro

ve
la

te
n
cy

/i
n
te

rv
al

b
y

re
d
u
ci

n
g

fu
n
ct

io
n

ca
ll

ov
er

h
ea

d
.

IN
T

E
R

F
A

C
E

S
p

ec
ifi

es
h
ow

R
T

L
p

or
ts

ar
e

cr
ea

te
d

fr
om

th
e

fu
n
ct

io
n

d
es

cr
ip

ti
on

.

L
A

T
E

N
C

Y
A

ll
ow

s
a

m
in

im
u
m

an
d

m
ax

im
u
m

la
te

n
cy

co
n
st

ra
in

t
to

b
e

sp
ec

ifi
ed

.

L
O

O
P

F
L

A
T

T
E

N
A

ll
ow

s
n
es

te
d

lo
op

s
to

b
e

co
ll
ap

se
d

in
to

a
si

n
gl

e
lo

op
w

it
h

im
p
ro

ve
d

la
te

n
cy

.

P
IP

E
L

IN
E

R
ed

u
ce

s
th

e
in

it
ia

ti
on

in
te

rv
al

b
y

al
lo

w
in

g
th

e
co

n
cu

rr
en

t
ex

ec
u
ti

on
of

op
er

at
io

n
s

w
it

h
in

a

lo
op

or
fu

n
ct

io
n
.

R
E

S
O

U
R

C
E

S
p

ec
if

y
th

at
a

sp
ec

ifi
c

li
b
ra

ry
re

so
u
rc

e
(c

or
e)

is
u
se

d
to

im
p
le

m
en

t
a

va
ri

ab
le

(a
rr

ay
,

ar
it

h
-

m
et

ic
op

er
at

io
n

or
fu

n
ct

io
n

ar
gu

m
en

t)
in

th
e

R
T

L
.

U
N

R
O

L
L

U
n
ro

ll
fo

r-
lo

op
s

to
cr

ea
te

m
u
lt

ip
le

in
d
ep

en
d
en

t
op

er
at

io
n
s

ra
th

er
th

an
a

si
n
gl

e
co

ll
ec

ti
on

of

op
er

at
io

n
s.

42

4.2 Face Detection using Random Forest Tree

Past few decades has witnessed evolutionary developments in Human-Computer-

Interaction systems and computer vision. Face detection, which can be done ef-

fortlessly by humans, is considered a fundamental part of such systems. However,

diversity in the nature of human faces (e.g., size, location, pose, orientation and ex-

pression) along with the changes in the environmental conditions (e.g., illumination,

exposure, occlusion, etc.) makes face detection a challenging task. Detecting a large,

unknown number of faces in a single frame of photograph, taken in realistic application

scenarios, involves complex algorithms for segmentation, extraction and verification

of possible facial features from an uncontrolled background. All these make face de-

tection a very computationally expensive task to achieve real time performance with

sufficient accuracy.

Being a mature and classic topic in the field of computer vision, many algorithms

have been proposed to address this problem. Among the best performing are algo-

rithms based on the classic Viola and Jones architecture (Viola and Jones (2001))

such as Deformable Parts Models, Headhunter model (Mathias et al. (2014)) and

convolution neural network based algorithms (Li et al. (2015), Farfade et al. (2015)).

We use the state-of-the-art 1 rigid templates based detector (Mathias et al. (2014)),

which achieves highest precision and recall rates compared to other reported mod-

els, and accelerate it in a heterogeneous system (CPU+FPGA) to achieve real-time

detection rates without significant degradation in accuracy.

1At the time this work was done Mathias et al. (2014) was state-of-the-art. Better performing
algorithms have been proposed since then.

43

4.2.1 Algorithm background

The architecture of the face detection model is shown in Fig. 4.5, which consists of

scaling, channel generation, integral channel computation, classifier output computa-

tion and non-maximum suppression stages. The classifier stage comprises of 5 trained

models each with 2,000 weak classifiers and consumes significant time in the model

evaluation. The baseline face detection model from in this acceleration framework,

which uses 10 feature maps (channels) consisting of 6 quantized histogram of gradient

(HOG) orientation channels, 1 magnitude gradient and 3 color channels (LUV color

space) (Dollár et al. (2009)). The input features used by the detector are simple rect-

angular pooling regions. For fast computation of these rectangular features we use

integral images proposed by Viola and Jones face detector (Viola and Jones (2001)).

The model uses 2,000 shallow boosted weak classifiers with a depth of 2 in each of

the 5 trained models: 1 frontal face model, 2 side views and 2 mirrored models. The

classifier combines the outputs of the entire weak classifiers and compares it with a

threshold to give the bounding box for a face along with a score. All the 5 trained

models are evaluated separately for each window. The input image is scaled up and

down with scaling factors ranging from 0.2× to 3× to enable detection of faces with

broad range of sizes. The bounding boxes from all the scales are passed through

a non-maximum suppression (NMS) stage, which keeps only one detected bounding

box per face by selecting the highest score detection and removing the redundant

overlapping boxes with lower scores.

4.2.2 FD Accelerator Design

Fig. 4.6(left) shows the major computational blocks involved in this algorithm.

The computational time breakdown of each of these blocks for an input color image

44

Input Image

Scale

Channel Generation

Slide Window

NMS

Output

All scales
done ?

No

Yes

All windows
done ?

Boosted Classifiers
No

Yes

3 LUV
6 HOG

Gradient
Magnitude

Figure 4.5: Architecture of face detection model in Mathias et al. (2014). They use

30 difference scales of the original image (for faces of different sizes) and 10000 week

classifiers (for faces with different orientations). A total of 10 channels are generated

using the scaled image. A scanning window with a rigid template based classifier

is used to detect faces. Non Maximal suppression (NMS) is then used to remove

redundant detections and preserve the best detections for final box drawing.

of dimension 320240 pixels on a general purpose CPU (Intel(R) Core i5-4590 @3.30

GHz with 32GB Memory) is shown in Fig. 4.6(right). Even though each weak

classifier involves very simple operation, the overall iterative computation of 2,000

classifiers constitutes for 91.5% of the total time. This emphasizes the need for

hardware acceleration of classifier computation. We mainly focuses on the FPGA

acceleration of the classifier computation, whereas the remaining non-critical stages

are computed in the host CPU.

Acceleration techniques in hardware implementation of the face detection algo-

45

Input Image

Scale

Channel Generation

Slide Window

NMS

Output

All scales
done ?

No

Yes

All windows
done ?

Boosted Classifiers
No

Yes

Weak Classifier Computation over all sliding
windows and all scales is the bottleneck and
accelerated on FPGA.

The computational time breakdown for an input
color image of dimension 320 240 pixels on a
general purpose CPU (Intel(R) Core i5-4590
@3.30 GHz with 32GB Memory)

Figure 4.6: Time profiling of face detection algorithm on Intel Core i5-4590 CPU.

Computation of 10,000 weak classifiers at all positions on the 30 different scaled

versions of the input image is the most time consuming part. It consumes ∼ 91% of

the total time. So the heterogeneous system was designed so that the FPGA device

will accelerate the boosted classifier computation while the CPU handles the rest.

rithm can be broadly classified into two categories: (a) Acceleration by coarse com-

putation and (b) Hardware acceleration by parallel computation of outputs. The

headhunter baseline model from Mathias et al. (2014) used here uses multiple input

scaling factors ranging from 0.2 to 3.0 with a step of 0.1. It also defines a sliding

window stride of 1 at all scales. Such fine grain scaling factor step size and sliding

window strides result in large number of computations and hence increase time for

model evaluation without necessarily increasing the detection quality. In this work,

we use resized AFW database to evaluate the optimal scaling factor step size and slid-

46

Data in

Data out

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD Q

D QD QD
at

a
flo

w
 d

ire
ct

io
n

Figure 4.7: Shift register implementation to store the channel data. This architecture

allows loading only the new row while the rest of window is reused from previous

iteration, thus saving 95% of the integral data transfer time.

ing window stride without significant reduction in the detection quality. At the larger

scaled versions of the input image, which are aimed at detecting small faces, majority

of the windows have background data. Thus the useful information is sparsely avail-

able in those scales. In comparison to these, the smaller scales compress the useful

information into a small area. So using a fixed stride does not give the best perfor-

mance when a trade-off can be made between accuracy and speed. An adaptive stride

technique is implemented in this work which keeps the stride to 1 at lower scales and

gradually increases at larger scales.

From the hardware perspective, the operations can be accelerated by using multi-

ple parallel classifier cores with separate local memory banks. This enables the cores

and sub cores to operate independently on different parts of the same problem. How-

ever, since each classifier core uses the integral data from all the 10 input features,

47

the integral data has to be replicated as many times as the number of parallel classi-

fiers. Hence the amount of on-chip memory available on the FPGA board defines the

maximum number of parallel classifier cores in such a nested architecture. On the

other hand, as shown in Fig. 4.7, using shift register based logic to read the integral

channel data helps reduce the data transfer time by loading only the new row of data

while reusing rest of the window data from the previous iteration. For example, for a

window size of 20×20, shift register based sliding window implementation illustrated

in Fig. 4.7 allows loading only the new row (1×20) while the rest of window (19×20)

is reused from previous iteration, thus saving 95% of the integral data transfer time.

Rigid template based detectors use pooling of rectangular areas as input features.

In the ones using integral channels, these features are computed by simple operations

of 2 additions and subtractions. Each time a feature is computed, 4 points from one

of the 10 channels are used and the output of this is compared with a threshold, θ1, to

decide which of the remaining 2 nodes should be computed next. The computation in

the 2nd node, which is similar to 1st node except for different data points, is compared

with a threshold, θ2, and the output from the weak classifier is determined. Weights

from all 2,000 weak classifiers are summed and compared with a threshold, θf , to give

a strong classification result. These operations are performed on for every window

for the 5 templates and 18 scales of the input image. For a QVGA (320 × 240)

image, there are 96,714 windows upon which 10,000 classifiers are to be computed.

The pseudo-code for this algorithm is shown in Algorithm 1. Thus, even though the

computations involved are simple, the throughput of the system is bottle necked by

the memory access bandwidth.

One way to mitigate this bottleneck is by having multiple copies of the same

data and compute features in parallel. However, the features require random data

points from a given window thereby forcing us to make copies of the entire window

48

Algorithm 1 Pseudo-code for face detection algorithm.

1: procedure detect face(input image, weights)

2: Apply smoothing filter and downscale image by 4.

3: for each scale do

4: Compute the 10 channels

5: Integrate the 10 channels

6: for each sliding window do

7: for each template do

8: for each weak classifier do

9: Compute stage 1 = a1 + d1 − b1 − c1

10: Compare with Stage 1 threshold, θ1

11: Determine Stage 2 node

12: Compute stage 2 = a2 + d2 − b2 − c2

13: Compare with Stage 2 threshold, θ2

14: Update running sum of weight

15: Compare with threshold θf and determine if it is a face

16: Do NMS on detections from all scales to remove redundancies

17: return Detections

data. The limited amount of on-chip SRAM in FPGAs poses a limit on the number

of such parallel units. In our experimental results (Table I), we show that as we

increase the number of parallel classifiers performance increases, which is highest with

4 parallel classifiers. After that, the increase in the number of parallel units degrades

performance till the point where we cannot fit the design into the FPGA board. Due

to memory limitations in FPGAs, all of the image data except the current operating

window is stored in the external DDR memory. Since the access to DDR has very

high latency and power consumption, most of the optimization techniques were aimed

at reducing the number of DDR access transactions and reusing the loaded data for

multiple windows before discarding it.

49

4.2.3 Results

In this section, we present the implementation results (Mohanty et al. (2016)) of

the headhunter baseline face detection model on Altera Stratix-V A7 FPGA based

DE-5 board using Altera OpenCL software development kit (SDK). The Stratix-V

A7 FPGA consists of 622K logic elements, 256 DSP blocks and 2,560 M20K RAMS,

whereas there are 2× 2GB DDR3 DRAMs present on the board that function as the

global memory.

Fig. 4.8 presents the performance of the system (left) and resource utilization

of the FPGA (right) for different number of parallel computing classifier units. A

performance improvement of 40% is observed when the classifiers are computed by two

Figure 4.8: Performance (left) and FPGA resource utilization (right) for different

number of parallel compute classifier units. Execution time reduces with increase in

number of parallel classifiers till 4, after that it increases because of memory access

contention between the parallel execution units. From the resource utilization plot

we see that 4 parallel classifiers can be accommodated in the given FPGA device with

resource utilization around 50%.

50

units in parallel. Increasing the number of parallel units, increases performance till

the number of classifiers is 4 after which it degrades. This is because limited memory

bandwidth leads to contention between the computing units sharing the memory that

results in pipeline stalls. For a given FPGA, the maximum parallelization achievable

is limited by the logic elements and M20K RAMs.

Table 4.2 shows the total time and classifier computation time on the FPGA

using the proposed acceleration techniques described previously. As can be seen,

increasing the stride of the sliding window provides substantial improvements. In

low scaling factors, however, the image has very dense information, thus sliding the

window with a stride of two leads to poor accuracy. On the other hand, the adaptive

stride scheme gives much better performance. Here, we kept stride in x direction

equal to 1 for all the lower scales and increased it successively to a value of 4 for

higher scales. The stride in y-direction is fixed to 2. As seen, we were able to reduce

the classifier computation time to 145ms. The precision-recall curves of the FPGA

implementation tested on AFW database scaled down to 320×240 pixels for different

Figure 4.9: Precision vs recall curves of the CPU+FPGA implementation of the model

tested on downsized AFW database using (a) different strides and (b) different scaling

factor step sizes.

51

T
ab

le
4.

2:
F

ac
e

d
et

ec
ti

on
ru

n
ti

m
e

co
m

p
ar

is
on

.
4

p
ar

al
le

l
cl

as
si

fi
er

s
op

er
at

in
g

in
p
ar

al
le

l
w

it
h

ad
ap

ti
ve

st
ri

d
e

sc
h
em

e
an

d

st
ep

si
ze

of
0.

2,
ac

h
ie

ve
s
∼

30
×

im
p
ro

ve
m

en
t

in
sp

ee
d

ov
er

C
P

U
w

it
h

m
in

im
al

re
d
u
ct

io
n

in
d
et

ec
ti

on
ac

cu
ra

cy
.

Im
p

le
m

e
n
ta

ti
o
n

N
C
L
A
S
S

S
tr

id
e

S
te

p
S
iz

e
T

o
ta

l
T

im
e

(s
)

K
e
rn

e
l

T
im

e
(m

s)

C
P

U
O

n
ly

-
1

0.
1

7.
28

4
-

C
P

U
+

F
P

G
A

1
1

0.
1

4.
47

2
42

79
.1

1

C
P

U
+

F
P

G
A

1
1

0.
2

2.
04

9
49

62
.2

8

C
P

U
+

F
P

G
A

2
1

0.
1

2.
72

6
25

42
.3

2

C
P

U
+

F
P

G
A

2
1

0.
2

1.
25

6
11

65
.7

1

C
P

U
+

F
P

G
A

4
1

0.
1

2.
23

7
20

44
.0

7

C
P

U
+

F
P

G
A

4
1

0.
2

1.
02

9
93

7.
52

2

C
P

U
+

F
P

G
A

4
2

0.
1

0.
73

62
3

54
7.

94
6

C
P

U
+

F
P

G
A

4
2

0.
2

0.
34

83
8

25
1.

35
4

C
P

U
+

F
P

G
A

4
A

d
ap

ti
ve

0.
1

0.
48

80
3

30
0.

28
4

C
P

U
+

F
P

G
A

4
A

d
ap

ti
ve

0.
2

0.
23

78
0

14
5.

00
1

52

strides and different scaling factor step sizes are shown in Fig. 7. The baseline has

lower precision and recall than that reported in Mathias et al. (2014), because of the

use of the down-scaled AFW database. From Fig. 4.9 and Table 4.2, we conclude

that using a scaling step size of 0.2 along with adaptive stride that increases with

the scaling step size gives the best performance without significant degradation in

precision and recall.

Thus in heterogeneous platforms consisting of CPU and FPGA performance-

critical classifier stage can be implemented on FPGA, whereas the non-critical stages

cna be evaluated on the host CPU. Classifier acceleration is achieved by exploring a

combination of multiple acceleration techniques such as coarse computation by using

larger sliding window stride and scaling factor step size, performing multiple classi-

fiers in parallel and integral data reuse by shift register based implementation. These

techniques achieve a speed up of 30x compared to a CPU implementation, without

significant degradation in precision or recall.

4.3 Convolution Neural Networks

Convolutional Neural Networks (CNNs), inspired by visual cortex of the brain, are

a category of feed-forward artificial neural networks. As discussed previously, CNNs

are primarily employed in computer vision applications such as character recognition

(LeCun et al. (1990)), image classification (Krizhevsky et al. (2012), Szegedy et al.

(2015), Simonyan and Zisserman (2014)), video classification (Karpathy et al. (2014)),

face detection (Li et al. (2015)), gesture recognition (Barros et al. (2014)), etc., are

also being used in a wide range of fields including speech recognition (Abdel-Hamid

et al. (2014)), natural language processing (Collobert and Weston (2008)) and text

classification (Lai et al. (2015)).

The operations in CNNs are computationally intensive with over billion operations

53

T
ab

le
4.

3:
O

p
er

at
io

n
s

in
A

le
x
N

et
C

N
N

M
o
d
el

(K
ri

zh
ev

sk
y

et
al

.
(2

01
2)

).
T

o
cl

as
si

fy
a

20
0
×

20
0

in
p
u
t

im
ag

e
∼

1.
9G

O
P

s

ar
e

re
q
u
ir

ed
.

C
on

vo
lu

ti
on

an
d

fu
ll
y

co
n
n
ec

te
d

la
ye

rs
d
om

in
at

e
in

te
rm

s
of

op
er

at
io

n
re

q
u
ir

em
en

t.

L
a
y
e
r

#
F
e
a
tu

re
s

In
p
u
t

D
im

e
n
si

o
n

K
e
rn

e
l

S
iz

e
#

O
p

e
ra

ti
o
n
s

In
p
u
t

Im
ag

e
3

22
4

–
–

C
on

vo
lu

ti
on

-1
/R

eL
U

-1
96

55
11

21
11

20
80

0

N
or

m
al

iz
at

io
n
-1

96
55

–
31

94
40

0

P
o
ol

in
g-

1
96

27
3

62
98

56

C
on

vo
lu

ti
on

-2
/R

eL
U

-2
25

6
27

5
44

80
84

22
4

N
or

m
al

iz
at

io
n
-2

25
6

27
–

20
52

86
4

P
o
ol

in
g-

2
25

6
13

3
38

93
76

C
on

vo
lu

ti
on

-3
/R

eL
U

-2
38

4
13

3
29

91
05

66
4

C
on

vo
lu

ti
on

-4
/R

eL
U

-2
38

4
13

–
22

43
45

47
2

C
on

vo
lu

ti
on

-5
/R

eL
U

-2
25

6
13

–
14

95
63

64
8

P
o
ol

in
g-

5
25

6
6

3
82

94
4

F
u
ll
y

C
on

n
ec

te
d
-6

/R
eL

U
-6

40
96

–
–

75
50

15
68

F
u
ll
y

C
on

n
ec

te
d
-7

/R
eL

U
-7

40
96

–
–

33
55

85
28

F
u
ll
y

C
on

n
ec

te
d
-8

10
00

–
–

81
92

00
0

T
o
ta

l
O

p
e
ra

ti
o
n
s

14
55

82
13

44

54

per input image (Szegedy et al. (2015)), thus requiring high performance server CPUs

and GPUs to train the models. As can be observed in Table 4.3, total number of op-

erations needed to classify a 220×220 image using AlexNet (Krizhevsky et al. (2012))

is humongous. However, they are not energy efficient and hence various hardware ac-

celerators have been proposed based on FPGA. FPGA based hardware accelerators

have gained momentum owing to their reconfigurability and fast development time,

especially with the availability of high-level synthesis (HLS) tools from FPGA ven-

dors. Moreover, FPGAs provide flexibility to implement the CNNs with limited data

precision which reduces the memory footprint and bandwidth requirements, resulting

in a better energy efficiency (e.g. GOPS/Watt).

4.3.1 CNN Accelerator Design

In this section, we will look into the implementation of a CNN accelerator using

OpenCL HLS framework for FPGA. In particular, we shall look at the critical design

variables that impact the throughput and are used for optimization. This is achieved

by analytically modelling of various CNN layers are functions of these design variables.

Then we shall take a look at how thoughput can be systematically improved subject

to constraints like FPGA logic utilization, on-chip memory and external memory

bandwidth. The results are demonstrated with two CNNs, AlexNet (Krizhevsky

et al. (2012)) and VGG (Simonyan and Zisserman (2014)).

In our FPGA design, we first developed computing primitives of CNNs using

OpenCL framework. A scalable convolution module is designed based on matrix

multiplication operation in OpenCL, so that it can be reused for all convolution lay-

ers with different input and output dimensions. Similarly, we developed scalable

hardware modules for normalization, pooling, and fully-connected layers. We iden-

tified key design variables such as loop-unroll factor and SIMD vectorization factor,

55

which determine hardware parallelization and thus directly impact the throughput,

external memory bandwidth requirement, and computational resource utilization.

Intuitively, assigning more computational resources to performance-critical opera-

tions in convolution and fully connected layers would maximize the overall throughput

of the system. However, it may not be a global optimal solution, because each layer

has different feature dimensions and the computational resources are limited. Hence,

there is a great need for a design space exploration methodology that maximizes the

throughput by optimally distributing the FPGA resources among various scalable

CNN hardware blocks.

We propose a design space exploration framework based on both analytical and

empirical models of CNN layer performance and resource utilization, to find the

optimal values of the key design variables that maximize the throughput of a generic

CNN model on a given FPGA board with limited computation resources, on-chip

memory, and external memory bandwidth.

3-D Convolution as Matrix Multiplication

Convolutions are the most performance-critical operations in CNNs, involving com-

putationally intensive 3-D multiply and accumulate (MAC) operations of the input

features with the convolution weights as given in Equation 2.1. To maximize the

overall throughput of the accelerator and also make the design portable to any other

CNN model, a scalable convolution block is needed such that the data can be iterated

through it in software.

We implemented the scalable convolution block by mapping the 3-D convolutions

as matrix multiplication operations similar to that in Chellapilla et al. (2006) by

flattening and rearranging the input features. As an example, Fig. 4.10 illustrates

how Convolution-1 layer in AlexNet is mapped from 3 input features with dimensions

56

generic matrix multiplication operation. Note that we perform the
input feature rearrangement on-the-fly by storing them in the
FPGA on-chip memory before performing matrix multiplication,
which reduces the external memory requirement by eliminating
the need to store the entire rearranged input feature matrix.

The pseudo-code for matrix multiplication based convolution
implementation in OpenCL is shown in Figure 5. It can be
summarized as the following three basic operations which are
repeated over each row of the weight matrix.
a) Fetch the convolution weights to the local memory which is

implemented using FPGA on-chip memory.
b) Compute the input feature actual address locations before

flattening and fetch them to local memory.
c) Compute NCONV multiply and accumulate operations in

parallel on the weights and inputs from local memory.
We utilized matrix multiplication OpenCL code from [24]

and appended the input feature rearranging operation.
Understanding the matrix multiplication OpenCL implementation
is critical for acceleration of the convolution operation. The
implementation of matrix multiplication operation in OpenCL is
illustrated in Figure 6, which consists of convolution weight
matrix A (M×N), multiplied by the rearranged input feature
matrix B (N×P) to compute the output feature matrix C (M×P). It
consists of NCONV×NCONV threads or OpenCL work-items, which
fetch the first NCONV×NCONV inputs to the local memory where
NCONV=4 in this example. Each work-item performs NCONV
parallel multiply and accumulate (MAC) operations on the local
memory data, which is accomplished by loop unrolling that
replicates the hardware resources for acceleration. This process is
repeated by sliding the NCONV×NCONV window column-wise in
matrix A and row-wise in matrix B and performing the MAC
operations to get NCONV×NCONV elements in the product matrix C.

From Figure 6, we see that the input and output matrix
dimensions must be a multiple of NCONV, which might not always
be possible because of different number of input and output
features and different feature dimensions in different convolution

layers. Hence we use zero padding in the input matrices to make
their dimensions a multiple of NCONV. Increasing NCONV boosts
the throughput as it fetches larger number of inputs to the local
memory and performs computations on them without having to
wait for external data. On the other hand, it increases the logic
utilization and execution time if the zero-padding is excessive in
some layers.

We use SIMD vectorization factor (SCONV), as another design
variable to accelerate the convolution operation, which represents
the factor by which computational resources are vectorized to
execute in a Single-Instruction-Multiple-Data fashion. This factor
improves the throughput by a factor of SCONV. Depending on the
model configuration parameters such as number of features and
their dimensions and the number of CNN layers, choosing an
appropriate combination of (NCONV, SCONV) maximizes the overall
throughput of the CNN.

4.3 Normalization Layer
Local response normalization (LRN) implementation

requires an exponent operation as shown in Equation (2), which is
expensive to precisely implement in hardware. Hence we
implement the exponent function f1(xo) shown in Equation (6)
using a piece-wise linear approximation function pwlf(xo).

(6)

(7)

Here K represents the number of features used for
normalization. Using the AlexNet model data as an example, the
exponent function f1(xo) is approximated using a piece-wise linear
function using 20 points with a maximum error of 1%. Because of
the wide dynamic range of values involved in xi computation,
normalization is implemented in 32-bit floating point
representation. The exponent function and the piece-wise linear
approximate function along with the approximation error are
plotted in Figure 7. Normalization is implemented as a single-
threaded OpenCL code using loop unroll factor (NNORM), which
represents the number of normalization operations it performs in a
single cycle. The Altera OpenCL compiler automatically infers
pipelining whenever there are no data dependencies between
multiple iterations. The pseudo code for normalization is shown in

Figure 6: Accelerating matrix multiplications in OpenCL.

A1 A2 A3 B1

B2

B3

C1

C1 = A1×B1 + A2×B2 + A3×B3

M

N

N

P

P

M× =

)().,,(),,(1 ooo xfyxfinyxfout

),,(;)1()(
2/

2/

2
1 yxfin

K
xxxf i

Kf

Kff
ooo

o

oi

¦
�

�

� �
DE

1. Get current work-item/thread identifiers (x, y).
2. For each NCONV elements width-wise in weight matrix:
3. Compute address locations for input features and weights.
4. Fetch input features to inputs[x][y] in local memory.
5. Fetch convolution weights to weights[y][x] in local memory.
6. Wait till NCONV×NCONV inputs and weights are loaded.
7. Do the following NCONV MAC operations in parallel:
8. convolution output += weight[x][k]*input[y][k].
9. Wait till all work-items complete computation on fetched data.
10. Save convolution output to output buffer.
Figure 5: Pseudo code for convolution implementation.

11
11 R

G
B

R

G

B

55x553x11x11

3x
11

x1
1

96

55x55

96

Convolution
filter weights

Input features

Output features

22
4

Flatten and
rearrange

Figure 4: Mapping 3D convolutions to matrix multiplications.

Figure 7: Piece-wise linear approximation of normalization
operation kernel with a maximum error of 1%.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
er

ro
r (

%
)

xo

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

va
lu

e

xo

 Normalization function
 Approximation function

Figure 4.10: Mapping 3D convolutions to matrix multiplications.

224× 224 to a rearranged matrix with dimensions of (3× 11× 11)× (55× 55). The

input features from the first convolution window of 11×11 are flattened and arranged

vertically as shown in Fig. 4.10. Similarly, the entire rearranged matrix can be

generated by sliding the 1111 convolution filter across the input features. After input

features are rearranged, the convolution operation transforms to a generic matrix

multiplication operation. Note that we perform the input feature rearrangement

on-the-fly by storing them in the FPGA on-chip memory before performing matrix

multiplication, which reduces the external memory requirement by eliminating the

generic matrix multiplication operation. Note that we perform the
input feature rearrangement on-the-fly by storing them in the
FPGA on-chip memory before performing matrix multiplication,
which reduces the external memory requirement by eliminating
the need to store the entire rearranged input feature matrix.

The pseudo-code for matrix multiplication based convolution
implementation in OpenCL is shown in Figure 5. It can be
summarized as the following three basic operations which are
repeated over each row of the weight matrix.
a) Fetch the convolution weights to the local memory which is

implemented using FPGA on-chip memory.
b) Compute the input feature actual address locations before

flattening and fetch them to local memory.
c) Compute NCONV multiply and accumulate operations in

parallel on the weights and inputs from local memory.
We utilized matrix multiplication OpenCL code from [24]

and appended the input feature rearranging operation.
Understanding the matrix multiplication OpenCL implementation
is critical for acceleration of the convolution operation. The
implementation of matrix multiplication operation in OpenCL is
illustrated in Figure 6, which consists of convolution weight
matrix A (M×N), multiplied by the rearranged input feature
matrix B (N×P) to compute the output feature matrix C (M×P). It
consists of NCONV×NCONV threads or OpenCL work-items, which
fetch the first NCONV×NCONV inputs to the local memory where
NCONV=4 in this example. Each work-item performs NCONV
parallel multiply and accumulate (MAC) operations on the local
memory data, which is accomplished by loop unrolling that
replicates the hardware resources for acceleration. This process is
repeated by sliding the NCONV×NCONV window column-wise in
matrix A and row-wise in matrix B and performing the MAC
operations to get NCONV×NCONV elements in the product matrix C.

From Figure 6, we see that the input and output matrix
dimensions must be a multiple of NCONV, which might not always
be possible because of different number of input and output
features and different feature dimensions in different convolution

layers. Hence we use zero padding in the input matrices to make
their dimensions a multiple of NCONV. Increasing NCONV boosts
the throughput as it fetches larger number of inputs to the local
memory and performs computations on them without having to
wait for external data. On the other hand, it increases the logic
utilization and execution time if the zero-padding is excessive in
some layers.

We use SIMD vectorization factor (SCONV), as another design
variable to accelerate the convolution operation, which represents
the factor by which computational resources are vectorized to
execute in a Single-Instruction-Multiple-Data fashion. This factor
improves the throughput by a factor of SCONV. Depending on the
model configuration parameters such as number of features and
their dimensions and the number of CNN layers, choosing an
appropriate combination of (NCONV, SCONV) maximizes the overall
throughput of the CNN.

4.3 Normalization Layer
Local response normalization (LRN) implementation

requires an exponent operation as shown in Equation (2), which is
expensive to precisely implement in hardware. Hence we
implement the exponent function f1(xo) shown in Equation (6)
using a piece-wise linear approximation function pwlf(xo).

(6)

(7)

Here K represents the number of features used for
normalization. Using the AlexNet model data as an example, the
exponent function f1(xo) is approximated using a piece-wise linear
function using 20 points with a maximum error of 1%. Because of
the wide dynamic range of values involved in xi computation,
normalization is implemented in 32-bit floating point
representation. The exponent function and the piece-wise linear
approximate function along with the approximation error are
plotted in Figure 7. Normalization is implemented as a single-
threaded OpenCL code using loop unroll factor (NNORM), which
represents the number of normalization operations it performs in a
single cycle. The Altera OpenCL compiler automatically infers
pipelining whenever there are no data dependencies between
multiple iterations. The pseudo code for normalization is shown in

Figure 6: Accelerating matrix multiplications in OpenCL.

A1 A2 A3 B1

B2

B3

C1

C1 = A1×B1 + A2×B2 + A3×B3

M

N

N

P

P

M× =

)().,,(),,(1 ooo xfyxfinyxfout

),,(;)1()(
2/

2/

2
1 yxfin

K
xxxf i

Kf

Kff
ooo

o

oi

¦
�

�

� �
DE

1. Get current work-item/thread identifiers (x, y).
2. For each NCONV elements width-wise in weight matrix:
3. Compute address locations for input features and weights.
4. Fetch input features to inputs[x][y] in local memory.
5. Fetch convolution weights to weights[y][x] in local memory.
6. Wait till NCONV×NCONV inputs and weights are loaded.
7. Do the following NCONV MAC operations in parallel:
8. convolution output += weight[x][k]*input[y][k].
9. Wait till all work-items complete computation on fetched data.
10. Save convolution output to output buffer.
Figure 5: Pseudo code for convolution implementation.

11
11 R

G
B

R

G

B

55x553x11x11

3x
11

x1
1

96

55x55

96

Convolution
filter weights

Input features

Output features

22
4

Flatten and
rearrange

Figure 4: Mapping 3D convolutions to matrix multiplications.

Figure 7: Piece-wise linear approximation of normalization
operation kernel with a maximum error of 1%.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
er

ro
r (

%
)

xo

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

va
lu

e

xo

 Normalization function
 Approximation function

Figure 4.11: Accelerating matrix multiplications in OpenCL.

57

need to store the entire rearranged input feature matrix.

The pseudo-code for matrix multiplication based convolution implementation in

OpenCL is shown in Algorithm 2. It can be summarized as the following three basic

operations which are repeated over each row of the weight matrix.

1. Fetch the convolution weights to the local memory.

2. Compute input feature actual address locations and fetch them to local memory.

3. Compute NCONV multiply and accumulate operations in parallel.

We utilized matrix multiplication OpenCL code from Altera’s OpenCL matrix

multipication tutorial and appended the input feature rearranging operation. Under-

standing the matrix multiplication OpenCL implementation is critical for acceleration

of the convolution operation. The implementation of matrix multiplication operation

in OpenCL is illustrated in Fig. 4.11, which consists of convolution weight matrix A

(M×N), multiplied by the rearranged input feature matrix B (N×P) to compute the

Algorithm 2 Pseudo-code for convolution implementation.

1: procedure convolution(input feature map, weights)

2: Get current work-item/thread identifiers (x, y).

3: for each NCONV elements width− wise in weight matrix do

4: Compute address locations for input features and weights

5: Fetch input features to inputs[x][y] in local memory

6: Fetch convolution weights to weights[y][x] in local memory

7: Wait till NCONV ×NCONV inputs and weights are loaded

8: for all x and y (compute NCONV MAC operations in parallel) do

9: convolution output = convolution output+ weight[x][k]× input[y][k]

10: Wait till all work-items complete computation on fetched data

11: Save convolution output to output buffer.

58

output feature matrix C (M×P). It consists of NCONV ×NCONV threads or OpenCL

work-items, which fetch the first NCONV ×NCONV inputs to the local memory where

NCONV = 4 in this example. Each work-item performs NCONV parallel multiply and

accumulate (MAC) operations on the local memory data, which is accomplished by

loop unrolling that replicates the hardware resources for acceleration. This process

is repeated by sliding the NCONV × NCONV window column-wise in matrix A and

row-wise in matrix B and performing the MAC operations to get NCONV × NCONV

elements in the product matrix C.

From Fig. 4.11, we see that the input and output matrix dimensions must be a

multiple of NCONV , which might not always be possible because of different number

of input and output features and different feature dimensions in different convolution

layers. Hence we use zero padding in the input matrices to make their dimensions

a multiple of NCONV . Increasing NCONV boosts the throughput as it fetches larger

number of inputs to the local memory and performs computations on them without

having to wait for external data. On the other hand, it increases the logic utilization

and execution time if the zero-padding is excessive in some layers. We use SIMD vec-

torization factor (SCONV), as another design variable to accelerate the convolution

operation, which represents the factor by which computational resources are vector-

ized to execute in a Single-Instruction-Multiple-Data fashion. This factor improves

the throughput by a factor of SCONV . Depending on the model configuration pa-

rameters such as number of features and their dimensions and the number of CNN

layers, choosing an appropriate combination of (NCONV , SCONV) maximizes the over-

all throughput of the CNN.

59

Normalization Layer

Local response normalization (LRN) implementation requires an exponent operation

as shown in Equation 2.2, which is expensive to precisely implement in hardware.

Hence we implement the exponent function f1(xo) shown in Equation 4.1 using a

piece-wise linear approximation function pwlf(xo).

out(fo, x, y) = in(fo, x, y).f1(xo) (4.1)

f1(xo) = (1 + xo)
−β;xo =

α

K

fo+K/2∑
fi=fo−K/2

in2(fi, x, y) (4.2)

Here K represents the number of features used for normalization. Using the

AlexNet model data as an example, the exponent function f1(xo) is approximated

using a piece-wise linear function using 20 points with a maximum error of 1%. Be-

cause of the wide dynamic range of values involved in xi computation, normalization

is implemented in 32-bit floating point representation. The exponent function and the

piece-wise linear approximate function along with the approximation error are plotted

generic matrix multiplication operation. Note that we perform the
input feature rearrangement on-the-fly by storing them in the
FPGA on-chip memory before performing matrix multiplication,
which reduces the external memory requirement by eliminating
the need to store the entire rearranged input feature matrix.

The pseudo-code for matrix multiplication based convolution
implementation in OpenCL is shown in Figure 5. It can be
summarized as the following three basic operations which are
repeated over each row of the weight matrix.
a) Fetch the convolution weights to the local memory which is

implemented using FPGA on-chip memory.
b) Compute the input feature actual address locations before

flattening and fetch them to local memory.
c) Compute NCONV multiply and accumulate operations in

parallel on the weights and inputs from local memory.
We utilized matrix multiplication OpenCL code from [24]

and appended the input feature rearranging operation.
Understanding the matrix multiplication OpenCL implementation
is critical for acceleration of the convolution operation. The
implementation of matrix multiplication operation in OpenCL is
illustrated in Figure 6, which consists of convolution weight
matrix A (M×N), multiplied by the rearranged input feature
matrix B (N×P) to compute the output feature matrix C (M×P). It
consists of NCONV×NCONV threads or OpenCL work-items, which
fetch the first NCONV×NCONV inputs to the local memory where
NCONV=4 in this example. Each work-item performs NCONV
parallel multiply and accumulate (MAC) operations on the local
memory data, which is accomplished by loop unrolling that
replicates the hardware resources for acceleration. This process is
repeated by sliding the NCONV×NCONV window column-wise in
matrix A and row-wise in matrix B and performing the MAC
operations to get NCONV×NCONV elements in the product matrix C.

From Figure 6, we see that the input and output matrix
dimensions must be a multiple of NCONV, which might not always
be possible because of different number of input and output
features and different feature dimensions in different convolution

layers. Hence we use zero padding in the input matrices to make
their dimensions a multiple of NCONV. Increasing NCONV boosts
the throughput as it fetches larger number of inputs to the local
memory and performs computations on them without having to
wait for external data. On the other hand, it increases the logic
utilization and execution time if the zero-padding is excessive in
some layers.

We use SIMD vectorization factor (SCONV), as another design
variable to accelerate the convolution operation, which represents
the factor by which computational resources are vectorized to
execute in a Single-Instruction-Multiple-Data fashion. This factor
improves the throughput by a factor of SCONV. Depending on the
model configuration parameters such as number of features and
their dimensions and the number of CNN layers, choosing an
appropriate combination of (NCONV, SCONV) maximizes the overall
throughput of the CNN.

4.3 Normalization Layer
Local response normalization (LRN) implementation

requires an exponent operation as shown in Equation (2), which is
expensive to precisely implement in hardware. Hence we
implement the exponent function f1(xo) shown in Equation (6)
using a piece-wise linear approximation function pwlf(xo).

(6)

(7)

Here K represents the number of features used for
normalization. Using the AlexNet model data as an example, the
exponent function f1(xo) is approximated using a piece-wise linear
function using 20 points with a maximum error of 1%. Because of
the wide dynamic range of values involved in xi computation,
normalization is implemented in 32-bit floating point
representation. The exponent function and the piece-wise linear
approximate function along with the approximation error are
plotted in Figure 7. Normalization is implemented as a single-
threaded OpenCL code using loop unroll factor (NNORM), which
represents the number of normalization operations it performs in a
single cycle. The Altera OpenCL compiler automatically infers
pipelining whenever there are no data dependencies between
multiple iterations. The pseudo code for normalization is shown in

Figure 6: Accelerating matrix multiplications in OpenCL.

A1 A2 A3 B1

B2

B3

C1

C1 = A1×B1 + A2×B2 + A3×B3

M

N

N

P

P

M× =

)().,,(),,(1 ooo xfyxfinyxfout

),,(;)1()(
2/

2/

2
1 yxfin

K
xxxf i

Kf

Kff
ooo

o

oi

¦
�

�

� �
DE

1. Get current work-item/thread identifiers (x, y).
2. For each NCONV elements width-wise in weight matrix:
3. Compute address locations for input features and weights.
4. Fetch input features to inputs[x][y] in local memory.
5. Fetch convolution weights to weights[y][x] in local memory.
6. Wait till NCONV×NCONV inputs and weights are loaded.
7. Do the following NCONV MAC operations in parallel:
8. convolution output += weight[x][k]*input[y][k].
9. Wait till all work-items complete computation on fetched data.
10. Save convolution output to output buffer.
Figure 5: Pseudo code for convolution implementation.

11
11 R

G
B

R

G

B

55x553x11x11

3x
11

x1
1

96

55x55

96

Convolution
filter weights

Input features

Output features

22
4

Flatten and
rearrange

Figure 4: Mapping 3D convolutions to matrix multiplications.

Figure 7: Piece-wise linear approximation of normalization
operation kernel with a maximum error of 1%.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
er

ro
r (

%
)

xo

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

va
lu

e

xo

 Normalization function
 Approximation function

Figure 4.12: Piece-wise linear approximation of normalization operation kernel with

a maximum error of 1%. Using piece-wise lookup tables, normalization is performed

without the need for expensive hardware for performing non-linear functions.

60

in Fig. 4.12. Normalization is implemented as a singlethreaded OpenCL code using

loop unroll factor (NNORM), which represents the number of normalization opera-

tions it performs in a single cycle. The Altera OpenCL compiler automatically infers

pipelining whenever there are no data dependencies between multiple iterations. It

uses local memory to store the sum of squares of a sliding window of K input features,

while performing the normalization operation on the computed sum of squares using

the piece-wise linear approximation function, pwlf(xo).

Implementation of other Layers

Pooling is implemented using a single work-item kernel where acceleration is achieved

by unrolling the loop to generate NPOOL parallel outputs in a single cycle. Fully-

connected layer or inner-product layer is also implemented as single work-item kernel,

where acceleration is achieved by performing NFC parallel multiply and accumulate

operations, which accelerates the performance by a factor of NFC. Nonlinear activa-

tion function ReLU, which performs the function y = max(x, 0) is incorporated at

the output of convolution and inner product implementations with a flag to enable

or disable it.

4.3.2 Design Space Exploration

Choosing the best combination of the design variables (NCONV , SCONV , NNORM ,

NPOOL, NFC) that maximizes the performance of the CNN accelerator, while still

being able to fit in the limited FPGA resources is a non-trivial task, which empha-

sizes the need for a systematic design space exploration methodology. Optimization

framework that relies on full FPGA synthesis at each design point may not be feasible

especially because of the long run time, which could take hours, or potential synthe-

sis failures that occur due to utilization of hardware resources. Hence we model the

61

performance and resource utilization and use them for fast design space exploration.

In this section, we first formulate the optimization problem and present the ana-

lytical and empirical modeling of the performance and FPGA resource utilization as

a function of the design variables for each CNN layer.

Problem Formulation

The resource-constrained throughput optimization problem can be formulated as fol-

lows.

Minimize
TL∑
i=0

runtimei(NCONV , SCONV , NNORM , NPOOL, NFC) (4.3)

Subject to
L∑
j=0

DSPj ≤ DSPMAX (4.4)

L∑
j=0

Memoryj ≤MemoryMAX (4.5)

L∑
j=0

Logicj ≤ LogicMAX (4.6)

where TL represents the total number of CNN layers including the repeated layers,

L denotes the total number of CNN layer types and runtime− i is the execution time

of the layer-i. DSPMAX , MemoryMAX , and LogicMAX represent the total DSP, on-

chip memory and FPGA logic resources, respectively, available in a given FPGA.

Performance Modeling

The execution time of each CNN layer is analytically modeled as a function of the

design variables and validated by performing full synthesis at selective design points

and running them on the FPGA accelerator. The execution time of convolution layer-i

is modeled as follows.

62

Convolution Runtimei =
No. of Convolution Opsi

NCONV × SCONV × Frequencyi
(4.7)

where PADNCONV ceils its inputs to the multiple of NCONV . Maximum frequency

of the kernel, which is also a function of NCONV and SCONV , is modeled empirically

from the synthesis data with different random seeds, as shown in Fig. 4.13. The

execution time model and the measured execution time of convolution layers 1-5

of AlexNet implementation for a sweep of NCONV at different SCONV values are

compared in Fig. 4.14.

Other layers

Similarly, the execution time of normalization, pooling and fully connected layers are

modeled as functions of their respective loop unroll factors used for acceleration as

follows.

Runtimei =
#Operationsi

Unroll factor × Frequency (4.8)

The execution time model vs. measured run time of normalization and fully

connected classification layers are shown in Fig. 4.15.

Figure 8. It uses local memory to store the sum of squares of a
sliding window of K input features, while performing the
normalization operation on the computed sum of squares using
the piece-wise linear approximation function, pwlf(xo).
4.4 Implementation of other Layers

Pooling is implemented using a single work-item kernel
where acceleration is achieved by unrolling the loop to generate
NPOOL parallel outputs in a single cycle. Fully-connected layer or
inner-product layer is also implemented as single work-item
kernel, where acceleration is achieved by performing NFC parallel
multiply and accumulate operations, which accelerates the
performance by a factor of NFC. Nonlinear activation function
ReLU, which performs the function y=max(x,0) is incorporated at
the output of convolution and inner product implementations with
a flag to enable or disable it.

5. DESIGN SPACE EXPLORATION
Choosing the best combination of the design variables

(NCONV, SCONV, NNORM, NPOOL, NFC) that maximizes the
performance of the CNN accelerator, while still being able to fit in
the limited FPGA resources is a non-trivial task, which
emphasizes the need for a systematic design space exploration
methodology. Optimization framework that relies on full FPGA
synthesis at each design point may not be feasible especially
because of the long run time, which could take hours, or potential
synthesis failures that occur due to utilization of hardware
resources. Hence we model the performance and resource
utilization and use them for fast design space exploration.

In this section, we first formulate the optimization problem
and present the analytical and empirical modeling of the
performance and FPGA resource utilization as a function of the
design variables for each CNN layer.

5.1 Problem Formulation
The resource-constrained throughput optimization problem

can be formulated as follows.

(8)

 (9)

 (10)

 (11)

where TL represents the total number of CNN layers including the
repeated layers, L denotes the total number of CNN layer types
and runtimei is the execution time of the layer-i. DSPMAX,
MemoryMAX, and LogicMAX represent the total DSP, on-chip
memory and FPGA logic resources, respectively, available in a
given FPGA.

5.2 Performance Modeling
The execution time of each CNN layer is analytically

modeled as a function of the design variables and validated by
performing full synthesis at selective design points and running
them on the FPGA accelerator.

5.2.1 Convolution time
The execution time of convolution layer-i is modeled as

follows.

(12)

(13)

where PADNCONV ceils its inputs to the multiple of NCONV.
Maximum frequency of the kernel, which is also a function of
NCONV and SCONV, is modeled empirically from the synthesis data
with different random seeds, as shown in Figure 9. The execution
time model and the measured execution time of convolution layers
1-5 of AlexNet implementation for a sweep of NCONV at different
SCONV values are compared in Figure 10.

5.2.2 Other layers
Similarly, the execution time of normalization, pooling and

fully connected layers are modeled as functions of their respective
loop unroll factors used for acceleration as follows.

(14)

The execution time model vs. measured run time of
normalization and fully connected classification layers are shown
in Figure 11.

5.2.3 Memory Bandwidth
Input data, weights, intermediate data and final output data

are stored in the external memory that is present on the FPGA
accelerator board. To enable efficient data transfer to and from
external memory, Altera OpenCL compiler generates complex
load/store units similar to those in GPUs, which combine multiple
external memory accesses into a single burst access, known as
memory coalescing. This ensures the efficient use of available
external memory bandwidth with less contention for memory
accesses between multiple computational blocks. On the other
hand, this makes it difficult to model the external memory
bandwidth usage with respect to the design variables used for
acceleration. This problem is aggravated by the reuse of the
scalable hardware blocks in multiple iterations of CNN layers

FrequencySN
OpsnConvolutioofNo

RuntimenConvolutio
CONVCONV

i
i uu

.

)dimensionsfeature(output
features)output of.(No

features)input of.Nodimensionsfilter (Conv
.

NCONV

NCONV

NCONV

i

PAD
PAD
PAD

OpsnConvolutioofNo

�
�

u

FrequencyfactorUnroll
Operations

Runtime i
i u

#

Figure 9: Kernel frequency modeling from full synthesis data
at 5 random seeds. RMS error of the fit: 12.57 MHz

0 2 4 6 8 10 12 14 16
120

140

160

180

200

220

240

K
er

ne
l F

re
qu

en
cy

 (M
H

z)

SCONV (NCONV=32)

 Data
 Model

0 20 40 60 80 100 120 140
160

180

200

220

240

K
er

ne
l F

re
qu

en
cy

 (M
H

z)

NCONV (SCONV=1)

 Data
 Model

Figure 8: Pseudo-code for normalization implementation.

1. Compute sum_of_squares of first K/2 features.
2. For each input_feature i:
3. For each neuron j in feature i:
4. Do the following for NNORM neurons in parallel:
5. Compute sum_of_squares[j] += input_feature[i+K/2][j]
6. Compute output_feature[i][j] = input_feature[i][j]
7. *pwlf(D/K*sum_of_squares[j])
8. Update sum_of_squares[j] –= input_feature[i–K/2][j]

¦

TL

i
FCPOOLNORMCONVCONVi NNNSNruntime

0
),,,,(Minimize

¦

d
L

j
MAXj DSPDSP

0
 Subject to

¦

d
L

j
MAXj MemoryMemory

0

¦

d
L

j
MAXj LogicLogic

0

Figure 4.13: Kernel frequency modeling from full synthesis data at 5 random seeds.

RMS error of the fit: 12.57 MHz

63

w
ith

 d
iff

er
en

t i
np

ut
 d

im
en

si
on

s,
w

hi
ch

 w
ill

 h
av

e
di

ffe
re

nt
 a

cc
es

s
pa

tte
rn

s.
Fo

r
ex

am
pl

e,
 t

he
 e

xe
cu

tio
n

tim
e

of
 f

ul
ly

 c
on

ne
ct

ed

la
ye

rs
 6

 a
nd

 7
 o

f
A

le
xN

et
 m

od
el

 s
ho

w
n

in
 F

ig
ur

e
11

 s
ho

w
s

th
at

th

e
m

od
el

 m
at

ch
es

 w
el

l w
ith

 th
e

m
ea

su
re

d
tim

e
til

l N
FC

=1
00

. F
or

N

FC
>1

00
, t

he
 m

ea
su

re
d

tim
e

in
cr

ea
se

s
sl

ig
ht

ly
, b

ut
 th

e
m

od
el

 s
til

l
sh

ow
s

a
re

du
ct

io
n

in
 e

xe
cu

tio
n

tim
e.

 T
hi

s
di

sc
re

pa
nc

y
is

 c
au

se
d

by
 t

he
 b

an
dw

id
th

 l
im

ita
tio

n
of

 t
he

 F
PG

A
 b

oa
rd

 u
se

d
fo

r
th

e
m

od
el

 v
al

id
at

io
n.

 H
en

ce
 w

e
us

e
th

e
ba

nd
w

id
th

 l
im

ita
tio

n
of

 t
he

FP

G
A

 b
oa

rd
 to

 d
ef

in
e

th
e

up
pe

r l
im

its
 fo

r t
he

 d
es

ig
n

va
ria

bl
es

 in

ou
r o

pt
im

iz
at

io
n

fra
m

ew
or

k.

5.
3

R
es

ou
rc

e
U

til
iz

at
io

n
M

od
el

in
g

A

na
ly

tic
al

ly
 m

od
el

in
g

th
e

FP
G

A
 r

es
ou

rc
e

ut
ili

za
tio

n
of

 a
n

al
go

rit
hm

 i
n

a
hi

gh
-le

ve
l

la
ng

ua
ge

 s
uc

h
as

 O
pe

nC
L

m
ay

 n
ot

 b
e

fe
as

ib
le

 b
ec

au
se

 o
f t

he
 o

pt
im

iz
at

io
ns

 p
er

fo
rm

ed
 in

 th
e

H
LS

 to
ol

s.
H

en
ce

, w
e

us
e

sy
nt

he
si

s
re

su
lts

 t
o

em
pi

ric
al

ly
 m

od
el

 t
he

 F
PG

A

re
so

ur
ce

 u
til

iz
at

io
n.

 D
SP

 b
lo

ck
 u

sa
ge

, o
n-

ch
ip

 m
em

or
y

an
d

lo
gi

c
ut

ili
za

tio
n

fro
m

 s
yn

th
es

is
 r

es
ul

ts
 o

f
ea

ch
 C

N
N

 la
ye

r
ar

e
fit

te
d

to

lin
ea

r r
eg

re
ss

io
n

m
od

el
s a

s a
 fu

nc
tio

n
of

 th
ei

r d
es

ig
n

va
ria

bl
es

.
Fo

r
ex

am
pl

e,
 r

es
ou

rc
e

ut
ili

za
tio

n
m

od
el

s
of

 n
or

m
al

iz
at

io
n

bl
oc

k
ar

e
sh

ow
n

in
 F

ig
ur

e
12

. L
og

ic
 e

le
m

en
t a

nd
 D

SP
 u

til
iz

at
io

n
fro

m
 th

e
sy

nt
he

si
s

da
ta

 in
 F

ig
ur

e
12

 s
ho

w
 a

 li
ne

ar
 in

cr
ea

se
 w

ith

th
e

sw
ep

t
de

si
gn

 v
ar

ia
bl

e
N

N
O

R
M

.
O

n
th

e
ot

he
r

ha
nd

,
on

-c
hi

p
m

em
or

y
ut

ili
za

tio
n

m
od

el
 s

ho
w

s
sm

al
l

di
sc

re
pa

nc
y

w
ith

 t
he

sy

nt
he

si
s d

at
a

at
 in

te
rm

ed
ia

te
 p

oi
nt

s b
ec

au
se

 o
f i

m
pl

em
en

ta
tio

n
of

co

al
es

ci
ng

lo

ad
/s

to
re

un

its

in

w
hi

ch

th
e

m
em

or
y

re
so

ur
ce

ut

ili
za

tio
n

de
pe

nd
s

on
 w

he
th

er
 th

e
ex

te
rn

al
 m

em
or

y
da

ta
 w

id
th

 is

an
 in

te
ge

r m
ul

tip
le

 o
f t

he
 d

es
ig

n
va

ria
bl

es
 i.

e.
 N

N
O

R
M

.
5.

4
O

pt
im

iz
at

io
n

Fr
am

ew
or

k
Fr

om
 t

he
 c

on
vo

lu
tio

n
ru

n
tim

e
m

od
el

 in
 F

ig
ur

e
10

, w
e

se
e

th
at

 it
 is

 n
on

-m
on

ot
on

ic
, b

ec
au

se
 o

f t
he

 d
iff

er
en

ce
s

in
 d

im
en

si
on

s
of

 th
e

C
N

N
 la

ye
rs

. A
lth

ou
gh

 e
xh

au
st

iv
e

se
ar

ch
 o

f
al

l t
he

 d
es

ig
n

va
ria

bl
es

 c
ou

ld
 b

e
do

ne
 u

si
ng

 t
he

 p
er

fo
rm

an
ce

 a
nd

 r
es

ou
rc

e
ut

ili
za

tio
n

m
od

el
s,

it
m

ay
 n

ot
 b

e
fe

as
ib

le
 if

 th
e

nu
m

be
r o

f d
es

ig
n

va
ria

bl
es

 a
nd

/o
r

th
e

FP
G

A
 r

es
ou

rc
es

 in
cr

ea
se

 s
ub

st
an

tia
lly

. T
hi

s

Fi
gu

re
 1

1:
 T

he
 e

xe
cu

tio
n

tim
e

m
od

el
 v

s.
m

ea
su

re
d

da
ta

 o
f

no
rm

al
iz

at
io

n
an

d
fu

lly
 c

on
ne

ct
ed

 l
ay

er
s

in
 A

le
xN

et
 f

or

sw
ee

p
of

 lo
op

 u
nr

ol
l f

ac
to

rs
 N

N
O

R
M

 a
nd

 N
FC

.

0
5

10
15

20
25

30
0.

0

0.
5

1.
0

1.
5

2.
0

Norm-1 execution time (ms)

N
NO

RM M
od

el
 D

at
a

N
or

m
-1

0
5

10
15

20
25

30
0.

0

0.
5

1.
0

1.
5

2.
0

Norm-2 execution time (ms)

N
N

O
R

M

 M
od

el
 D

at
a

N
or

m
-2

0
20

0
40

0
01020304050 FC-6 execution time (ms)

N
FC M

od
el

 D
at

a

FC
-6

B
an

dw
id

th
 li

m
it

0
20

0
40

0
0102030

FC
-7

FC-7 execution time (ms)

N
FC M

od
el

 D
at

a

B
an

dw
id

th
 li

m
it

Fi
gu

re
 1

0:
 R

un
 ti

m
e

m
od

el
 v

s.
m

ea
su

re
d

tim
e

of
 c

on
vo

lu
tio

n
la

ye
rs

 1
-5

 fo
r

a
sw

ee
p

of
 m

at
ri

x
m

ul
tip

lic
at

io
n

bl
oc

k
siz

e
(N

C
O

N
V
) f

or

SI
M

D
 v

ec
to

ri
za

tio
n

fa
ct

or
, S

C
O

N
V
 =

 1
 a

nd
 4

.

0
50

10
0

15
0

20
0

25
0

02040608010
0

12
0

14
0

Conv-1 execution time (ms)

N
C

O
N

V (S
C

O
N

V=1
)

 M
od

el
 D

at
a

C
on

v-
1

0
50

10
0

15
0

20
0

25
0

02040608010
0

12
0

14
0

Conv-2 execution time (ms)

N
C

O
N

V (S
C

O
N

V=1
)

 M
od

el
 D

at
a

C
on

v-
2

0
50

10
0

15
0

20
0

25
0

02040608010
0

12
0

14
0

Conv-3 execution time (ms)

N
C

O
N

V (S
C

O
N

V=1
)

 M
od

el
 D

at
a

C
on

v-
3

0
50

10
0

15
0

20
0

25
0

02040608010
0

12
0

14
0

Conv-4 execution time (ms)

N
C

O
N

V (S
C

O
N

V=1
)

 M
od

el
 D

at
a

C
on

v-
4

0
50

10
0

15
0

20
0

25
0

02040608010
0

12
0

14
0

Conv-5 execution time (ms)

N
C

O
N

V (S
C

O
N

V=1
)

 M
od

el
 D

at
a

C
on

v-
5

0
50

10
0

15
0

20
0

25
0

0102030 Conv-1 execution time (ms)

N
C

O
N

V (S
C

O
N

V=4
)

 M
od

el
 D

at
a

C
on

v-
1

0
50

10
0

15
0

20
0

25
0

0102030 Conv-2 execution time (ms)

N
C

O
N

V (S
C

O
N

V=4
)

 M
od

el
 D

at
a

C
on

v-
2

0
50

10
0

15
0

20
0

25
0

0102030
C

on
v-

3

Conv-3 execution time (ms)

N
C

O
N

V (S
C

O
N

V=4
)

 M
od

el
 D

at
a

0
50

10
0

15
0

20
0

25
0

0102030
C

on
v-

4

Conv-4 execution time (ms)

N
C

O
N

V (S
C

O
N

V=4
)

 M
od

el
 D

at
a

0
50

10
0

15
0

20
0

25
0

0102030
C

on
v-

5

Conv-5 execution time (ms)

N
C

O
N

V (S
C

O
N

V=4
)

 M
od

el
 D

at
a

Fi
gu

re

12
:

R
es

ou
rc

e
ut

ili
za

tio
n

em
pi

ri
ca

l
m

od
el

s
fo

r
no

rm
al

iz
at

io
n

bl
oc

k.

0
10

20
30

0

50
k

10
0k

15
0k

20
0k

Logic elements

N
N

O
R

M

 M
od

el
 D

at
a

0
10

20
30

20
0

25
0

30
0

35
0

40
0

M20K block RAMs

N
N

O
R

M M
od

el
 D

at
a

0
10

20
30

0

10
0

20
0

30
0

40
0

50
0

DSP blocks

N
N

O
RM

 M
od

el
 D

at
a

F
ig

u
re

4.
14

:
R

u
n

ti
m

e
m

o
d
el

v
s.

m
ea

su
re

d
ti

m
e

of
co

n
vo

lu
ti

on
la

ye
rs

1-
5

fo
r

a
sw

ee
p

of
m

at
ri

x
m

u
lt

ip
li
ca

ti
on

b
lo

ck
si

ze

(N
C
O
N
V

)
fo

r
S
IM

D
ve

ct
or

iz
at

io
n

fa
ct

or
,
S
C
O
N
V

=
1

an
d

4.

64

with different input dimensions, which will have different access
patterns. For example, the execution time of fully connected
layers 6 and 7 of AlexNet model shown in Figure 11 shows that
the model matches well with the measured time till NFC=100. For
NFC>100, the measured time increases slightly, but the model still
shows a reduction in execution time. This discrepancy is caused
by the bandwidth limitation of the FPGA board used for the
model validation. Hence we use the bandwidth limitation of the
FPGA board to define the upper limits for the design variables in
our optimization framework.

5.3 Resource Utilization Modeling
Analytically modeling the FPGA resource utilization of an

algorithm in a high-level language such as OpenCL may not be
feasible because of the optimizations performed in the HLS tools.
Hence, we use synthesis results to empirically model the FPGA
resource utilization. DSP block usage, on-chip memory and logic
utilization from synthesis results of each CNN layer are fitted to
linear regression models as a function of their design variables.

For example, resource utilization models of normalization
block are shown in Figure 12. Logic element and DSP utilization
from the synthesis data in Figure 12 show a linear increase with
the swept design variable NNORM. On the other hand, on-chip
memory utilization model shows small discrepancy with the
synthesis data at intermediate points because of implementation of
coalescing load/store units in which the memory resource
utilization depends on whether the external memory data width is
an integer multiple of the design variables i.e. NNORM.
5.4 Optimization Framework

From the convolution run time model in Figure 10, we see
that it is non-monotonic, because of the differences in dimensions
of the CNN layers. Although exhaustive search of all the design
variables could be done using the performance and resource
utilization models, it may not be feasible if the number of design
variables and/or the FPGA resources increase substantially. This

Figure 11: The execution time model vs. measured data of
normalization and fully connected layers in AlexNet for
sweep of loop unroll factors NNORM and NFC.

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

N
or

m
-1

 e
xe

cu
tio

n
tim

e
(m

s)
NNORM

 Model
 Data

Norm-1

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

N
or

m
-2

 e
xe

cu
tio

n
tim

e
(m

s)

NNORM

 Model
 Data

Norm-2

0 200 400
0

10

20

30

40

50
FC

-6
 e

xe
cu

tio
n

tim
e

(m
s)

NFC

 Model
 Data

FC-6

Bandwidth limit

0 200 400
0

10

20

30
FC-7

FC
-7

 e
xe

cu
tio

n
tim

e
(m

s)
NFC

 Model
 Data

Bandwidth limit

Figure 10: Run time model vs. measured time of convolution layers 1-5 for a sweep of matrix multiplication block size (NCONV) for
SIMD vectorization factor, SCONV = 1 and 4.

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
1

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-1

0 50 100 150 200 250
0

20
40
60
80

100
120
140

Co
nv

-2
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=1)

 Model
 Data

Conv-2

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
3

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-3

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
4

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-4

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
5

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-5

0 50 100 150 200 250
0

10

20

30

Co
nv

-1
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=4)

 Model
 Data

Conv-1

0 50 100 150 200 250
0

10

20

30

Co
nv

-2
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=4)

 Model
 Data

Conv-2

0 50 100 150 200 250
0

10

20

30
Conv-3

C
on

v-
3

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=4)

 Model
 Data

0 50 100 150 200 250
0

10

20

30
Conv-4

Co
nv

-4
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=4)

 Model
 Data

0 50 100 150 200 250
0

10

20

30
Conv-5

C
on

v-
5

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=4)

 Model
 Data

Figure 12: Resource utilization empirical models for
normalization block.

0 10 20 30
0

50k

100k

150k

200k

Lo
gi

c
el

em
en

ts

NNORM

 Model
 Data

0 10 20 30
200

250

300

350

400

M
20

K
bl

oc
k

R
A

M
s

NNORM

 Model
 Data

0 10 20 30
0

100

200

300

400

500

D
SP

 b
lo

ck
s

NNORM

 Model
 Data

Figure 4.15: The execution time model vs. measured data of normalization and fully

connected layers in AlexNet for sweep of loop unroll factors NNORM and NFC .

Memory Bandwidth

Input data, weights, intermediate data and final output data are stored in the external

memory that is present on the FPGA accelerator board. To enable efficient data

transfer to and from external memory, Altera OpenCL compiler generates complex

load/store units similar to those in GPUs, which combine multiple external memory

accesses into a single burst access, known as memory coalescing. This ensures the

efficient use of available external memory bandwidth with less contention for memory

accesses between multiple computational blocks. On the other hand, this makes it

difficult to model the external memory bandwidth usage with respect to the design

variables used for acceleration. This problem is aggravated by the reuse of the scalable

hardware blocks in multiple iterations of CNN layers with different input dimensions,

65

with different input dimensions, which will have different access
patterns. For example, the execution time of fully connected
layers 6 and 7 of AlexNet model shown in Figure 11 shows that
the model matches well with the measured time till NFC=100. For
NFC>100, the measured time increases slightly, but the model still
shows a reduction in execution time. This discrepancy is caused
by the bandwidth limitation of the FPGA board used for the
model validation. Hence we use the bandwidth limitation of the
FPGA board to define the upper limits for the design variables in
our optimization framework.

5.3 Resource Utilization Modeling
Analytically modeling the FPGA resource utilization of an

algorithm in a high-level language such as OpenCL may not be
feasible because of the optimizations performed in the HLS tools.
Hence, we use synthesis results to empirically model the FPGA
resource utilization. DSP block usage, on-chip memory and logic
utilization from synthesis results of each CNN layer are fitted to
linear regression models as a function of their design variables.

For example, resource utilization models of normalization
block are shown in Figure 12. Logic element and DSP utilization
from the synthesis data in Figure 12 show a linear increase with
the swept design variable NNORM. On the other hand, on-chip
memory utilization model shows small discrepancy with the
synthesis data at intermediate points because of implementation of
coalescing load/store units in which the memory resource
utilization depends on whether the external memory data width is
an integer multiple of the design variables i.e. NNORM.
5.4 Optimization Framework

From the convolution run time model in Figure 10, we see
that it is non-monotonic, because of the differences in dimensions
of the CNN layers. Although exhaustive search of all the design
variables could be done using the performance and resource
utilization models, it may not be feasible if the number of design
variables and/or the FPGA resources increase substantially. This

Figure 11: The execution time model vs. measured data of
normalization and fully connected layers in AlexNet for
sweep of loop unroll factors NNORM and NFC.

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

N
or

m
-1

 e
xe

cu
tio

n
tim

e
(m

s)

NNORM

 Model
 Data

Norm-1

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

N
or

m
-2

 e
xe

cu
tio

n
tim

e
(m

s)

NNORM

 Model
 Data

Norm-2

0 200 400
0

10

20

30

40

50

FC
-6

 e
xe

cu
tio

n
tim

e
(m

s)

NFC

 Model
 Data

FC-6

Bandwidth limit

0 200 400
0

10

20

30
FC-7

FC
-7

 e
xe

cu
tio

n
tim

e
(m

s)

NFC

 Model
 Data

Bandwidth limit

Figure 10: Run time model vs. measured time of convolution layers 1-5 for a sweep of matrix multiplication block size (NCONV) for
SIMD vectorization factor, SCONV = 1 and 4.

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
1

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-1

0 50 100 150 200 250
0

20
40
60
80

100
120
140

Co
nv

-2
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=1)

 Model
 Data

Conv-2

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
3

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-3

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
4

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-4

0 50 100 150 200 250
0

20
40
60
80

100
120
140

C
on

v-
5

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=1)

 Model
 Data

Conv-5

0 50 100 150 200 250
0

10

20

30

Co
nv

-1
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=4)

 Model
 Data

Conv-1

0 50 100 150 200 250
0

10

20

30

Co
nv

-2
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=4)

 Model
 Data

Conv-2

0 50 100 150 200 250
0

10

20

30
Conv-3

C
on

v-
3

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=4)

 Model
 Data

0 50 100 150 200 250
0

10

20

30
Conv-4

Co
nv

-4
 e

xe
cu

tio
n

tim
e

(m
s)

NCONV (SCONV=4)

 Model
 Data

0 50 100 150 200 250
0

10

20

30
Conv-5

C
on

v-
5

ex
ec

ut
io

n
tim

e
(m

s)

NCONV (SCONV=4)

 Model
 Data

Figure 12: Resource utilization empirical models for
normalization block.

0 10 20 30
0

50k

100k

150k

200k

Lo
gi

c
el

em
en

ts

NNORM

 Model
 Data

0 10 20 30
200

250

300

350

400

M
20

K
bl

oc
k

R
A

M
s

NNORM

 Model
 Data

0 10 20 30
0

100

200

300

400

500

D
SP

 b
lo

ck
s

NNORM

 Model
 Data

Figure 4.16: Resource utilization empirical models for normalization block.

which will have different access patterns. For example, the execution time of fully

connected layers 6 and 7 of AlexNet model shown in Fig. 4.15 shows that the model

matches well with the measured time till NFC = 100. For NFC¿100, the measured

time increases slightly, but the model still shows a reduction in execution time. This

discrepancy is caused by the bandwidth limitation of the FPGA board used for the

model validation. Hence we use the bandwidth limitation of the FPGA board to

define the upper limits for the design variables in our optimization framework.

Resource Utilization Modeling

Analytically modeling the FPGA resource utilization of an algorithm in a high-level

language such as OpenCL may not be feasible because of the optimizations performed

in the HLS tools. Hence, we use synthesis results to empirically model the FPGA

resource utilization. DSP block usage, on-chip memory and logic utilization from

synthesis results of each CNN layer are fitted to linear regression models as a function

of their design variables.

For example, resource utilization models of normalization block are shown in Fig-

ure 12. Logic element and DSP utilization from the synthesis data in Figure 12 show

a linear increase with the swept design variable NNORM . On the other hand, on-chip

66

memory utilization model shows small discrepancy with the synthesis data at inter-

mediate points because of implementation of coalescing load/store units in which the

memory resource utilization depends on whether the external memory data width is

an integer multiple of the design variables i.e. NNORM .

4.3.3 Optimization Framework

From the convolution run time model in Fig 4.14, we see that it is non-monotonic,

because of the differences in dimensions of the CNN layers. Although exhaustive

search of all the design variables could be done using the performance and resource

utilization models, it may not be feasible if the number of design variables and/or the

FPGA resources increase substantially. This calls for global optimization methodolo-

gies such as simulated annealing, genetic algorithm or particle swarm optimization

with integer variables and multiple inequality constraints. In this work, we use genetic

algorithm with integer constraints from the global optimization toolbox in Matlab for

the design space exploration. Genetic algorithm is a stochastic optimization technique

that mimics the biological evolution process and is popularly used to find the global

minimum of an objective function subject to a set of constraints. It can also handle

mixed integer programming problems, where some of the design variables are integers.

It iteratively improves the quality of the solution by generating a set of candidate so-

lutions at each iteration or generation from a combination of the best solutions from

the previous generation based on a set of genetic rules selection, crossover and mu-

tation. The solutions that violate the constraints (i.e. Equations 4.3 - 4.6) resources

are penalized in such a way to ensure convergence of the feasible solutions to a global

minimum.

The design space of the OpenCL-based FPGA accelerator design is illustrated

below.

67

SCONV = 1, 2, 4, 8or16 (4.9)

NCONV = N × SCONV , 0 < N < NMAX (4.10)

0 < NNORM < NNORM(MAX) (4.11)

0 < NPOOL < NPOOL(MAX) (4.12)

0 < NFC < NFC(MAX) (4.13)

where all the design variables are integers, and upper limits of the design space ex-

ploration such as NMAX , NNORM(MAX), NPOOL(MAX), and NFC(MAX) are determined

by the external memory bandwidth of the FPGA board. For example, in a fully

connected layer implementation where k bytes are required for each MAC operation,

NFC of an accelerator board with external memory bandwidth of MBW is computed

as shown in Equation 4.14.

FFC(MAX) =
Memory bandwidth (MBW)

k × Frequency (4.14)

For an FPGA system with 6 GB/s external memory bandwidth, requiring 2 bytes

per MAC operation in a fully connected layer with 100MHz kernel frequency, the

upper limit for NFC can be computed from Equation 4.14 as 30. Similarly, the upper

limits of other blocks can be computed based on the number of external memory

transfers required for each operation.

4.3.4 Results

In this section, we present the validation results of the proposed optimization

framework by implementing and accelerating two large-scale CNN models: AlexNet

and VGG-16 models on two FPGA boards with different hardware resources. The

68

Table 4.4: Comparison of FPGA accelerator boards.

Specification P395-D8 DE5-Net

FPGA Stratix-V GSD8 Stratix-V GXA7

Logic elements 695k 622k

DSP blocks 1,963 256

M20K RAMs 2,567 2,560

External memory 4× 8GB DDR3 2× 2GB DDR3

hardware specifications of the two Altera Stratix-V based boards are summarized in

Table 4.4.

Both networks are implemented in OpenCL with fixed-point operations using 8-bit

weights for convolution and fully connected layers as obtained from the precision study

in Chapter 3. Although 10-bit precision is chosen for inner product weights, they are

still represented using 8-bits as the 2 bits in MSB side are zeros in all the weights.

Using the performance and resource utilization models and the maximum hardware

resources available in the two boards, optimization framework is run on both AlexNet

and VGG models to find the optimal combination of design variables (NCONV , SCONV ,

NNORM , NPOOL, NFC) that maximizes the throughput. For example, Fig. 4.17 shows

the execution time of the best solution of each iteration during the optimization of

AlexNet implementation on DE5-Net FPGA board. Table 4.5 shows the execution

time from the model, measured execution time on FPGA and the FPGA resource

utilization at chosen points A, B and C in Fig. 4.17. The final design variables for both

networks optimized for the two FPGA boards are shown in Table 4.6. VGG model

does not include normalization layers, hence the corresponding kernel is removed for

the FPGA implementation.

Using Altera OpenCL SDK, the OpenCL kernel codes for AlexNet and VGG

69

Figure 13: Optimization progress of AlexNet implementation.
Design variables (NCONV, SCONV, NNORM, NPOOL, NFC) are
shown at points A, B and C.

0 20 40 60 80
40

60

80

100

120

C(32, 4, 2, 1, 32)

B(50, 2, 1, 1, 49)

Ex
ec

ut
io

n
tim

e
(m

s)

Iterations

 AlexNet CNN on
 DE5-Net board

A(16, 2, 3, 2, 21)

Table 3: Summary of Execution time and Utilization.
 A B C

Exec. time (model) 120.6 ms 54.3 ms 46.1 ms
Exec. time (measured) 117.7 ms 52.6 ms 45.7 ms

Logic elements 158k 152k 153k
M20K memory blocks 1,439 1,744 1,673

DSP blocks 164 234 246

calls for global optimization methodologies such as simulated
annealing, genetic algorithm or particle swarm optimization with
integer variables and multiple inequality constraints. In this work,
we use genetic algorithm with integer constraints from the global
optimization toolbox in Matlab for the design space exploration.

Genetic algorithm is a stochastic optimization technique that
mimics the biological evolution process and is popularly used to
find the global minimum of an objective function subject to a set
of constraints. It can also handle mixed integer programming
problems, where some of the design variables are integers. It
iteratively improves the quality of the solution by generating a set
of candidate solutions at each iteration or generation from a
combination of the best solutions from the previous generation
based on a set of genetic rules – selection, crossover and
mutation. The solutions that violate the constraints (i.e. Equations
(9)-(11)) resources are penalized in such a way to ensure
convergence of the feasible solutions to a global minimum.

The design space of the OpenCL-based FPGA accelerator
design is illustrated in Equation (15).

(15)

where all the design variables are integers, and upper limits of the
design space exploration such as NMAX, NNORM(MAX), NPOOL(MAX),
and NFC(MAX) are determined by the external memory bandwidth of
the FPGA board. For example, in a fully connected layer
implementation where k bytes are required for each MAC
operation, NFC of an accelerator board with external memory
bandwidth of MBW is computed as shown in Equation (16).

(16)

For an FPGA system with 6 GB/s external memory bandwidth,
requiring 2 bytes per MAC operation in a fully connected layer
with 100MHz kernel frequency, the upper limit for NFC can be
computed from Equation (16) as 30. Similarly, the upper limits of
other blocks can be computed based on the number of external
memory transfers required for each operation.

6. EXPERIMENTAL RESULTS
In this section, we present the validation results of the

proposed optimization framework by implementing and
accelerating two large-scale CNN models: AlexNet and VGG (16-
layer) models on two FPGA boards with different hardware
resources. The hardware specifications of the two Altera Stratix-V
based boards are summarized in Table 2.

Both networks are implemented in OpenCL with fixed-point
operations using 8-bit weights for convolution and fully
connected layers as obtained from the precision study in Section

3. Although 10-bit precision is chosen for inner product weights,
they are still represented using 8-bits as the 2 bits in MSB side are
zeros in all the weights. Using the performance and resource
utilization models (Sections 5.2 and 5.3) and the maximum
hardware resources available in the two boards, optimization
framework is run on both AlexNet and VGG models to find the
optimal combination of design variables (NCONV, SCONV, NNORM,
NPOOL, NFC) that maximizes the throughput. For example, Figure
13 shows the execution time of the best solution of each iteration
during the optimization of AlexNet implementation on DE5-Net
FPGA board. Table 3 shows the execution time from the model,
measured execution time on FPGA and the FPGA resource
utilization at chosen points A, B and C in Figure 13. The final
design variables for both networks optimized for the two FPGA
boards are shown in Table 4. VGG model does not include
normalization layers, hence the corresponding kernel is removed
for the FPGA implementation.

Using Altera OpenCL SDK, the OpenCL kernel codes for
AlexNet and VGG models are compiled for the two boards using
the corresponding optimized parameters from Table 3. Using the
host code APIs, FPGA is programmed and the CNN model is run
by queueing the OpenCL implemented CNN kernels with
appropriate arguments that consist of input/output buffer address
locations and the layer dimensions. The execution time of each
kernel and the entire model are measured and throughput is
computed as (total number of operations)/(execution time).

168,4,2,1 orSCONV

MAXCONVCONV NNSNN ��u 0,
)(0 MAXNORMNORM NN ��

)(0 MAXPOOLPOOL NN ��

)(0 MAXFCFC NN ��

Frequencyk
MbandwidthMemoryN BW

MAXFC u

)(
)(

Table 2: Comparison of FPGA accelerator boards.
Specification P395-D8 [25] DE5-Net [26]

FPGA Stratix-V GSD8 Stratix-V GXA7
Logic elements 695k 622k

DSP blocks 1,963 256
M20K RAMs 2,567 2,560

External memory 4× 8GB DDR3 2× 2GB DDR3

Table 4: Optimized parameters.
 P395-D8 board DE5-Net board
 AlexNet VGG AlexNet VGG

NCONV 64 64 32 64
SCONV 8 8 4 2
NNORM 2 - 2 -
NPOOL 1 1 1 1
NFC 71 64 32 30

Figure 4.17: Optimization progress of AlexNet implementation. Design variables

(NCONV , SCONV , NNORM , NPOOL, NFC) are shown at points A, B and C.

models are compiled for the two boards using the corresponding optimized parameters

from Table 3. Using the host code APIs, FPGA is programmed and the CNN model is

run by queueing the OpenCL implemented CNN kernels with appropriate arguments

that consist of input/output buffer address locations and the layer dimensions. The

execution time of each kernel and the entire model are measured and throughput is

computed as (total number of operations)/(execution time).

The total classification time per image and overall throughput of AlexNet and

VGG models on P395-D8 and DE5-Net boards are compared with Caffe tool (Jia et al.

Table 4.5: Summary of Execution time and Utilization.

A B C

Exec. time (model) 120.6 ms 54.3 ms 46.1 ms

Exec. time (measured) 117.7 ms 52.6 ms 45.7 ms

Logic elements 158k 152k 153k

M20K memory blocks 1,439 1,744 1,673

DSP blocks 164 234 246

70

Table 4.6: Optimized parameters.

P395-D8 board DE5-Net

AlexNet VGG AlexNet VGG

NCONV 64 64 32 64

SCONV 8 8 4 2

NNORM 2 - 2 -

NPOOL 1 1 1 1

NFC 71 64 32 30

Table 4.7: Classification time/image and overall throughput.

FPGA Classification time/image (ms) Throughput (GOPS)

AlexNet

P395-D8 20.1 72.4

DE5-Net 45.7 31.8

CPU 191.9 7.6

VGG

P395-D8 262.9 117.8

DE5-Net 651.2 47.5

CPU 1437.2 21.5

(2014)) running on Intel core i5-4590 CPU (3.3 GHz) as shown in Table 4.7. Although

both FPGAs have similar number of logic elements and on-chip memory blocks, the

smaller number of DSP blocks in DE5-Net accounts for its lower throughput compared

to that of P395-D8. The software implementation in Caffe tool uses libraries optimized

for basic vector and matrix operations (i.e., ATLAS Whaley and Dongarra (1998)) for

performing CNN operations. Our OpenCL based FPGA implementations on P395-

D8 achieve 9.5× and 5.5× speedups for AlexNet and VGG models, respectively,

compared to the CPU implementation in Caffe tool.

71

The execution time of the CNN layers in AlexNet and VGG
models implemented on P395-D8 board with kernel profiling
support) is shown in Figure 14. The final classification time
without kernel profiling will be significantly lower than that
shown in Figure 14 because of the delay involved with kernel
profiling itself. The execution of fully-connected layers can be
overlapped with the initial convolution layers of the next image,
which increases the overall throughput of the accelerator (by 27%
in AlexNet implementation on P395-D8). The next input image
transfer from the OpenCL host to the off-chip memory on the
FPGA board is overlapped with current CNN operations, thus not
hampering the throughput. The initial model weight transfer from
the host to the board, which only occurs once in the beginning, is
not included for throughput computation.

The total classification time per image and overall
throughput of AlexNet and VGG models on P395-D8 and DE5-
Net boards are compared with Caffe tool [20] running on Intel
core i5-4590 CPU (3.3 GHz) as shown in Table 5. Although both
FPGAs have similar number of logic elements and on-chip
memory blocks, the smaller number of DSP blocks in DE5-Net
accounts for its lower throughput compared to that of P395-D8.
The software implementation in Caffe tool uses libraries
optimized for basic vector and matrix operations (i.e., ATLAS
[27]) for performing CNN operations. Our OpenCL based FPGA
implementations on P395-D8 achieve 9.5x and 5.5x speedups for
AlexNet and VGG models, respectively, compared to the CPU
implementation in Caffe tool.

The execution time, throughput and the resource utilization
of each kernel type of the AlexNet implementation on P395-D8
and DE5-Net FPGA accelerator boards are shown in Figure 15.
VGG implementation on P395-D8 achieves a peak throughput of
136.5 GOPS for convolution layers, and 117.8 GOPS including
all layers and operations while performing image classification.
From the implementation results, we see that throughput of the
accelerator is largely proportional to the number of DSP blocks

used in the implementation. AlexNet implementation on P395-D8
board is limited by the number of available M20 block RAMs,
while only 727 out of 1963 available DSP blocks are utilized. On
the other hand, throughput on DE5-Net FPGA board is limited by
the lower number of available DSP blocks, although the on-chip
memory resources and logic elements are not fully utilized.

Our optimization framework reports the hardware resource
that causes the performance bottleneck, such that the user can
choose another FPGA hardware, which has larger number of the
specific hardware resources (e.g. DSP blocks). This methodology
can also be used to find the ideal specifications of an FPGA suited
for CNN, by performing optimization with relaxed constraints for
the bottleneck hardware resource. For example, increasing the on-
chip memory resources on P395-D8 FPGA by 10% directly
increases the throughput of AlexNet implementation by ~10%.
This work assumes that MAC operations are implemented using
the DSP blocks only. However, we can potentially enhance the
throughput further by using the remaining logic elements to
implement MAC operations, which will be studied in future work.

The top-1 and top-5 accuracies of FPGA implementation of
AlexNet and VGG models compared to those of the full-precision
Caffe models are summarized in Table 6. The accuracy
degradation due to fixed-point operations in FPGA
implementation is <2% for top-1 accuracy and <1% for top-5
accuracy for both AlexNet and VGG models.

Both DE5-Net and P395-D8 boards are connected to a PCIe
slot of a desktop computer whose CPU operates as the OpenCL
host. Since the FPGA board receives power from external power
port as well as PCIe slot, the power measurement of the FPGA

Figure 14: The execution time of CNN layers in (a) AlexNet
and (b) VGG models on P395-D8 FPGA accelerator.

(a)

(b)

Table 6: Model accuracy comparison.

Accuracy
Full precision in

Caffe tool
Fixed-point FPGA

implementation
Top-1 Top-5 Top-1 Top-5

AlexNet 56.82% 79.95% 55.41% 78.98%
VGG 68.35% 88.44% 66.58% 87.48%

Figure 15: Execution time and resource utilization of each
CNN layer type for AlexNet implementation on P395-D8 and
DE5-Net FPGA boards.

P395-D8

DE5-Net

0 200 400 600 800
DSP blocks

Max. limit

P395-D8

DE5-Net

0 400 800 1200 1600
M20K block RAMs

 Conv
 Norm
 Pool
 FC

P395-D8

DE5-Net

0 30k 60k 90k 120k

Logic Elements

P395-D8

DE5-Net

0 10 20 30 40 50

Execution time (ms)

Table 5: Classification time/image and overall throughput.

 FPGA Classification
time/image (ms)

Throughput
(GOPS)

AlexNet
P395-D8 20.1 72.4
DE5-Net 45.7 31.8

CPU 191.9 7.6

VGG
P395-D8 262.9 117.8
DE5-Net 651.2 47.5

CPU 1437.2 21.5

Figure 4.18: Execution time and resource utilization of each CNN layer type for

AlexNet implementation on P395-D8 and DE5-Net FPGA boards.

The execution time, throughput and the resource utilization of each kernel type

of the AlexNet implementation on P395-D8 and DE5-Net FPGA accelerator boards

are shown in Fig. 4.18. VGG implementation on P395-D8 achieves a peak through-

put of 136.5 GOPS for convolution layers, and 117.8 GOPS including all layers and

operations while performing image classification. From the implementation results,

we see that throughput of the accelerator is largely proportional to the number of

DSP blocks used in the implementation. AlexNet implementation on P395-D8 board

is limited by the number of available M20 block RAMs, while only 727 out of 1963

available DSP blocks are utilized. On the other hand, throughput on DE5-Net FPGA

board is limited by the lower number of available DSP blocks, although the on-chip

memory resources and logic elements are not fully utilized.

Our optimization framework reports the hardware resource that causes the per-

formance bottleneck, such that the user can choose another FPGA hardware, which

72

Table 4.8: Model accuracy comparison.

Accuracy
Full precision in Caffe tool Fixed-point FPGA implementation

Top-1 Top-5 Top-1 Top-5

AlexNet 56.82% 79.95% 55.41% 78.98%

VGG 68.35% 88.44% 66.58% 87.48%

has larger number of the specific hardware resources (e.g. DSP blocks). This method-

ology can also be used to find the ideal specifications of an FPGA suited for CNN,

by performing optimization with relaxed constraints for the bottleneck hardware re-

source. For example, increasing the onchip memory resources on P395-D8 FPGA

by 10% directly increases the throughput of AlexNet implementation by 10%. This

work assumes that MAC operations are implemented using the DSP blocks only.

However, we can potentially enhance the throughput further by using the remaining

logic elements to implement MAC operations, which will be studied in future work.

The top-1 and top-5 accuracies of FPGA implementation of AlexNet and VGG

models compared to those of the full-precision Caffe models are summarized in Table

4.8. The accuracy degradation due to fixed-point operations in FPGA implementation

is ¡2% for top-1 accuracy and ¡1% for top-5 accuracy for both AlexNet and VGG

models. Both DE5-Net and P395-D8 boards are connected to a PCIe slot of a desktop

computer whose CPU operates as the OpenCL host. Since the FPGA board receives

power from external power port as well as PCIe slot, the power measurement of the

FPGA

Both DE5-Net and P395-D8 boards are connected to a PCIe slot of a desktop

computer whose CPU operates as the OpenCL host. Since the FPGA board re-

ceives power from external power port as well as PCIe slot, the power measurement

of the FPGA board itself is not straightforward. We attempted to block the power

73

connection through PCIe and have the FPGA board powered only through the ex-

ternal power port. This way, the average power consumption of DE5-Net board was

measured as 24.2W after programming AlexNet configuration, and as 25.8W while

performing classification. On the other hand, the same measurement method was not

feasible on P395-D8 board as it was designed to use both power supplies. Nonetheless,

we measured its power consumption as 19.1W after programming with AlexNet con-

figuration file, using a utility function provided by board manufacturer that measures

the steady state power of the board.1 We compare the performance of VGG model

implementation on P395-D8 FPGA board to the existing FPGA based CNN acceler-

ators in Table 7. For the entire VGG model with 30.9 GOP, our FPGA accelerator

achieves overall throughput of 117.8 GOPS for ImageNet classification.

4.3.5 Conclusion

In this work, we implemented scalable CNN layers on FPGA using OpenCL frame-

work and identified the key design variables for hardware acceleration. Further, we

proposed a design space exploration methodology based on a combination of analyti-

cal and empirical models for performance and resource utilization, to find the optimal

design variables that yield maximum acceleration of any CNN model implementation

using limited FPGA resources. Using the proposed methodology, we implemented

two large-scale CNNs, AlexNet and VGG, on P395-D8 and DE5-Net FPGA boards

and achieved superior performance compared to previous work.

74

Chapter 5

HARDWARE SOFTWARE CO-OPTIMIZATION

Deep neural networks have demonstrated significant performance improvements

in many AI applications. While this accuracy improvement is ground breaking, it

comes at huge computational costs. For example, going from resNet-34 to resNet-152

decreases top-1 error from 21.84% to 19.87% (mere 1.97% reduction) at the expense

of increase in operations from ∼ 8 G-Ops to ∼ 23 G-Ops (15G-Ops / ∼ 300% increase

in computations). Fig. 5.1 illustrates the operation requirements and the accuracy

numbers of some of the popular and top performing neural networks. As observed, for

the algorithm developers the ultimate goal has been to obtain the highest accuracy

in a multi-class classification problem framework, regardless of the actual inference

time. Since there is no incentive in speeding up inference time, practical applications

of these models are affected by resource utilization, power-consumption, and latency.

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥106 to 155⇥106 params. Both
these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200 MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

Figure 5.1: Top1 vs. operations, size ∝ parameters (Canziani et al. (2016)). Newer

network architectures are much more efficient with respect to model size and the

number of operations required.

75

Hardware designers on the other hand have treated the algorithm as black box and

focused on optimizing the hardware. Relentless efforts have resulted in rapid progress

in the field of deep learning hardware. Several high performance custom hardware

accelerators have been developed to efficiently execute AI algorithms Farabet et al.

(2009), Farabet et al. (2011), Chen et al. (2015c), Kadetotad et al. (2015), Seo et al.

(2015), Kadetotad et al. (2014), Xu et al. (2014), Mohanty et al. (2017), Kim et al.

(2017). However, these hardware architectures were conceptualized, developed and

optimized keeping in mind the software algorithms that are supposed to be executed

on them. While break-throughs in hardware performance has been achieved, there is

still a big room for improvements given the algorithms are developed keeping hardware

in mind. In this chapter we shall look at some similar examples where the gap between

hardware and software can be bridged leading to huge improvements in hardware

performance while minimal effects on algorithm’s accuracy.

Rest of the chapter is organized as follows. In section 5.1 we will look at an design

example where the algorithm is modified to a form best suited for hardware acceler-

ation. We consider Non-Maximal Suppression algorithm (NMS) as a case study to

demonstrate hardware software co-optimization. NMS is widely used in many com-

puter vision algorithms to remove redundancies. Its also used in proposal layer for

faster RCNN network for object detection. We propose a novel hardware friendly

NMS algorithm which removes the need for sorting in hardware and reduces compu-

tation complexity from O(nlog(n)) to O(n).

5.1 Non-Maximal Suppression

Non-maximal suppression in object detection neural networks in the task of finding

all non-overlapping proposals with score > theshold, where score is the probability

that the detection is an object and the threshold is minimum probabilty value for any

76

Algorithm 3 Pseudo-code for Non-Maximal Suppression algorithm.

1: procedure nms(box coordinates, scores, thresh)

2: Get all box co-ordinates and scores.

3: Calculate all areas → (x2 − x1 + 1)× (y2 − y1 + 1)

4: Sort all boxes according to scores → order = scores.argsort()[:: −1]

5: Create an empty list keep → keep = []

6: while order has elements do

7: Get the first index → i = order[0]

8: Put the corresponding box in keep array → keep.append(i)

9: Get overlap x1 → xx1 = maximum(x1[i], x1[order[1 :]])

10: Get overlap y1 → yy1 = maximum(y1[i], y1[order[1 :]])

11: Get overlap x2 → xx2 = maximum(x2[i], x2[order[1 :]])

12: Get overlap y2 → yy1 = maximum(y2[i], y2[order[1 :]])

13: Get overlap height → w = np.maximum(0.0, xx2 − xx1 + 1)

14: Get overlap width → h = np.maximum(0.0, yy2 − yy1 + 1)

15: Get overlap area → inter = w × h

16: Get IoU overlap → ovr = inter/(areas[i] + areas[order[1 :]]− inter)

17: Get proposals with less overlap → inds = np.where(ovr <= thresh)[0]

18: Keep proposals with less overlap → order = order[inds+ 1]

19: return keep

77

detection be considered as containing an object. The pseudo code with corresponding

python code for NMS shown is given in Algorithm 3. As observed, NMS procedure

can be broadly divided into two major tasks:

1. Sorting: Sort all the proposals/boxes according to their scores,

2. Suppression: Starting from the top scored box, keep removing boxes with

lower scores and high overlap with higher scored box

5.1.1 NMS computation complexity

In this section, we shall take a deep dive into the computation complexity of

software baseline NMS algorithm provided in Algorithm 3. In computer vision appli-

cations, NMS is generally applied to reduce the huge number of all possible boxes to

a few highly probable true positive 1 boxes. This process is critical because because

it reduces the number of times we need to perform the computation expensive fully

connected layers to classify the box into one of the many classes. NMS is also used

in post-processing to select the top scoring and non-overlapping boxes in the final

proposals. When NMS is used inside a layer in the neural network (e.g. proposal

layer in Faster-RCNNGirshick (2015)) the dimension of inputs to NMS can be huge

(∼ 1 million). This can potentially make NMS an computation bottleneck if its not

carefully optimized.

Phase 1 of NMS implements sorting. Assuming that the software implements

quick sort or merge sort, the time complexity of sorting is given by:

Time Complexity Sorting = O(nlog(n)) (5.1)

Phase 2 of NMS is the suppression phase. In this phase, a top scoring box is

1A box is considered a true positive if the network labels it as an object and there is an actual
object in the box

78

compared with every other lower scored box in the list for IoU overlap. Since in the

worst case of suppression phase, every box can be compared with every other box,

the time complexity of suppression phase is given by:

Time Complexity Suppression = O(m2) (5.2)

where, m is size of the list containing boxes for suppression phase.

NMS is generally associated with parameters called pre-nms-top-N and post-nms-

top-N. Pre-nms-top-N defines how many top scored boxes after sorting are considered

for suppresion (phase 2). Since suppression phase has quadratic complexity (eq. 5.2)

pre-nms-top-N is generally fixed at a smaller number (∼ 5K − 10K). The acutal

value is generally fixed empirically so as to minimize computation while not affecting

final accuracy numbers.

Post-nms-top-N defines how many boxes are needed after NMS. This is also a

critical parameter because it determines the computation time of both NMS and sub-

sequent fully connected layers. More over, this parameter determines the maximum

number of individual objects the network can detect in a given image. Like pre-nms-

top-N, post-nms-top-N values are also empirically fixed to bring a balance between

final accuracy and computation time. Typically its fixed at 300.

For a given algorithm with pre−nms−top−N = k and post−nms−top−N = m,

eq. 5.2 becomes:

Time Complexity Suppression = O(m× k) (5.3)

From eq. 5.1 and eq. 5.3, worst time complexity of NMS is given by:

Time Complexity NMS = O(nlog(n)) +O(m× k) (5.4)

Considering a design example with n = 129360, m = 2000 and k = 300, we get

nlog(n) ∼ 661262 and m×k ∼ 600000. Thus, in a typical design the time complexity

79

of NMS is determined by m,n and k. But for larger values of m and k, NMS execution

time is proportional to m× k.

5.1.2 Fast and Hardware Efficient NMS

In section 5.1.1, we saw that NMS has two sub-procedures performing sorting and

suppression. Accelerating sorting in hardware is a non-trivial task. While CPUs are

well suited for inherently sequential tasks like sorting, multi-threaded architectures

like GPU and neural network accelerators are not good at it. Especially, when the

input data is big, it has to be streamed into the core and is available one by one.

This makes the sorting task even more in-efficient as when data cannot be cached,

only viable sorting option is bubble sort which has a worst case complexity of O(n2).

Also, because NMS is sometimes used in layers in the neural network, using the CPU

for this purpose is no longer an option as that would involve interrupting the CPU

within a single frame and transferring data from accelerator to CPU memory (which

are very slow and inefficient). All these necessitates a more hardware friendly and

efficient NMS algorithm.

From algorithm 3, after sorting we pick the top pre-nms-top-N proposals for sup-

pression. This process of selecting the n top scored proposals after sorting reduces

the number of proposals drastically, by selecting top ∼ 1.5% of all proposals. So

the entire purpose of sorting in this procedure is to select the top 1.5% proposals.

So if we consider the score associated with the last detection selected after sorting

(algorithm 3) as a threshold value, the first phase of NMS algorithm can be thought

of selecting all the proposals with scores above this threshold and using them for

suppression phase. Lets call this as selection phase. To summarize, the new NMS

algorithm should be able to do the following:

1. Selection Phase: Efficiently select the proposals with scores within top∼ 1.5%

80

scores from a huge set of streaming proposals.

2. Suppression Phase: Efficiently suppress redundant overlapping proposals

within the output from selection phase.

Selection Phase

So the task at hand, is to select proposals with scores within top ∼ 1.5%. Scores here

are proportional to probability assigned by the neural network to the proposal for it

encompassing a ground truth object. Since more than 95% of all proposals correspond

to back ground, we can safely expect most of the scores (background related) to be

Proposals used
in suppressionUnused proposals

Threshold (µ+β.σ)

Score of proposals

N
um

be
r o

f p
ro

po
sa

ls

True +ve
proposals

mean(µ)

Standard
deviation (σ)

Figure 5.2: Distribution of proposal scores for a typical image in Faster-RCNN net-

work. As very few anchors overlap properly with the ground truth objects and major-

ity of the anchors have partial or no overlap, the distribution of the scores is gaussian

with mean (peak) at low/negative scores. Top proposals which are necessary for cor-

rect detections are in the right tail region of the distribution. These proposals can

be easily extracted by estimating mean(µ) and standard deviation(σ) of all scores

and then discarding proposals with score smaller than µ + β × σ. β is a empirical

parameter determined to minimize training dataset.

81

centered around a large -ve number and a very few scores (associated with ground

truth objects) around some large +ve number. In between them its expected to be

a smooth and continuous distribution of scores. So the distribution of scores can

be considered as sum of two Gaussian: (1) one with a large peak, centered around

negative scores, (2) one with a small peak, centered around positive scores. Since the

Gaussian corresponding to proposals with true +ve proposals is typically very small

compared to true -ve proposals, the sum of the two Gaussian above can be safely

assumed to the same as the Gaussian corresponding to true -ve proposals with the

true positive proposals lying in the right side tail of the Gaussian. This is illustrated

using an typical design example in fig. 5.2.

Top scores can be extracted from the set by exploiting the property of the scores

that they have a Gaussian distribution. Using the mean (µ) and standard deviation

(σ) for the distribution, the top ∼ 1.5% of proposals can be easily extracted by

keeping only the proposals with scores above a threshold given by µ + βσ. Here β

is empirically estimated based on the percentage of top scored proposals needed in

suppression phase. In general, β values in range 2.5 ∼ 3 yields good results.

Pseudo code for this is shown in Algorithm 4. To make NMS hardware efficient,

we first stream in all the scores (for all proposals) and the threshold using mean and

standard deviation. This process can be pipelined to process new data every clock

cycle and has worst case complexity of O(N). After that we stream all the proposals

again. This time we use the threshold calculated before to ignore/throwaway low

scored proposals. This effectively does what sorting accomplishes. But the proposals

now are not in sorted order, so we cannot use the suppression algorithm from NMS as

is to get the final result. Section 5.1.2 discusses the modified suppression algorithm

to augment the proposal selection method described here.

82

prev_cell_data

new_data

next_cell_data

Data

cell_data

prev_cell_data

new_data

next_cell_data
cell_data

prev_cell_data

new_data

next_cell_data

Cell Instruction

cell_data

Figure 5.3: Proposed structure of internal register array for suppression phase of NMS.

The cells are connected in a chained fashion to facilitate efficient (O(1)) insertion and

deletion of new data. The cells store previous/next/current/new data based on the

instruction that is provided to it using the instruction port.

Suppression Phase

Selection algorithm proposed in this work produces proposals with no specific order

(un-sorted). So suppression phase has to do sorting so as to maintain order in the

final result. For this, we propose to have a hardware register array to store the top

selected proposals sorted according to their scores. Each cell is connected to two

adjacent cells, (1) previous cell, with higher score and (2) next cell, with lower score.

This chained connection of register cells is shown in fig. 5.3. As can be observed,

each cell in the register array can receive data from 3 sources, (1) previous cell data,

(2) the cell data itself and (3) next cell data. Each cell is capable of performing the

following operations:

1. Insert new data: When a cell is inserting new data, the next cell receives data

stored in this cell by registering data from previous cell data port. By multi

casting this instruction to all cells downstream, O(1) list insertion is achieved.

83

2. Hold current data: Holding data can be achieved by registering the current

data stored in the cell. This does not change data stored in the register array.

3. Delete current data: When a cell is inserting new data, the cell receives data

stored in next cell by registering the data from next cell data port. By multi

casting this instruction to all cells downstream, O(1) list deletion is achieved.

Pseudo-code for the proposed algorithm is given in Algorithm 4. The time com-

plexity of the modified NMS algorithm, for m proposals after selection and n final

proposals, is given by:

Time Complexity NMS = O(Selection) +O(Sorted Suppression) (5.5)

Time Complexity Sorted Suppression = O(m×n)×O(insertion/deletetion) (5.6)

With the proposed hardware register array, we can do insertion and deletion to

the list in constant time. Worst case time complexity for sorted suppression can be

obtained as:

Time Complexity Sorted Suppression = O(m× n) (5.7)

From 5.5 and 5.7, with the proposed changes in algorithm and hardware, we

can very efficiently execute NMS on custom hardware accelerators with worst case

complexity of O(N) +O(m× n). This has same complexity as the software baseline

with sorting (5.4). Since custom hardware are can be optimized to the lowest level

for the application achieving minimal wastage of clock cycles, the proposed hardware

can be orders of magnitude higher in performance (100× ∼ 1000×). Moreover,

if the algorithm had not been modified to a variation more suitable to hardware

architecture, we would have done sorting which has a complexity of O(n2), resulting

in a very complicated hardware with very low performance (∼ N× slower, where

84

Algorithm 4 Pseudo-code for hardware efficient Non-Maximal Suppression.

1: procedure nms(box coordinates, scores, nms threshold,min area, num std dev(β))

2: for prop new in all proposals do

3: Calculate sum of all scores → sum =
∑N

i=0 scorei

4: Calculate sum of all squared scores → squared sum =
∑N

i=0 score
2
i

5: Get mean of all scores → µ = sum/N

6: Get standard deviation of all scores → σ =
√
squared sum/N − µ2

7: Calculate score threshold → θ = µ+ β × σ
8: Instantiate a hardware list → keep = []

9: for prop new in all proposals do

10: if prop new.score < θ then

11: Ignore prop new → GOTO step 9

12: else

13: Initialize a counter variable → j = 0

14: for prop keep in keep do

15: if prop new.score ≥ prop keep[j].score then

16: Insert prop new in keep list → keep.insert(prop new, j)

17: Increment counter → j + +

18: break → GOTO step 27

19: else

20: Get IoU overlap between prop keep[j] and prop new

21: if IoU ≥ nms threshold or prop new.area ≤ min area then

22: Ignore prop new → GOTO step 9

23: Increment counter → j + +

24: if j < max keep size then

25: Insert prop new in keep list → keep.insert(prop new, j)

26: Get new proposal → GOTO step 9

27: if j ≤ keep.size then

28: while j ≤ keep.size do

29: Get IoU overlap between prop keep[j] and prop new

30: if IoU ≥ nms threshold then

31: Delete proposal from keep list → keep.delete(j)

32: return keep

85

N is the number of proposals). For complicated neural networks with large N, the

proposal layer could alone take a few seconds, where as the optimized algorithm and

hardware can be executed in a few milliseconds.

5.2 Conclusion

In this chapter, we demonstrated that, efforts to accelerate a given algorithm with

hardware architecture optimizations doesn’t always lead to the most efficient design.

Even though the performance can be involved to a great extent with hardware opti-

mizations, there is almost always a huge headroom for performance improvement that

can be achieved by hardware-software co-optimization. To demonstrate this we used

a very common algorithm used in deep neural network based object detection algo-

rithms, non-maximal suppression, and identified the major bottlenecks that inhibit

efficient hardware acceleration. We showed that mapping the algorithm as is to hard-

ware will have worst case time complexity of O(n2) while the software complexity is

O(nlog(n)). We replaced the bottleneck parts of the algorithm with procedures more

suitable for hardware acceleration and showed that with the proposed method and

hardware architecture, the same functionality can be achieved with time complexity

of O(n).

86

Chapter 6

BEYOND CMOS

6.1 Introduction

The biophysical neural system has been a rich source of inspiration for computing

beyond the conventional von Neumann architecture. By connecting a massive num-

ber of spiking neurons through synapses, our brain learns how to recognize various

objects and make decisions. It is also hypothesized that training is achieved through

plastic synapses, which change their weights based on the spike timing of presynaptic

and post-synaptic neuron. This learning rule is known as spike-timing-dependent-

plasticity (STDP) Song et al. (2000), Bi and Poo (1998) (Fig. 6.1(a)).

Motivated by neurophysics, sparse coding was successfully developed to pave the

way for deep learning with big data Olshausen and Field (1996) Tosic and Frossard

(2011). It aims to minimize the following objective function:

∑
||D.Zi − xi||2 + λ|Zi|1 (6.1)

where where xi is an input vector, λ is the regularization parameter, D is called

the dictionary, and Zi is the feature vector which is assumed to be sparse. If x has p

dimensions, Z has m dimensions (m > p), then D forms a m×p matrix (or a 2-D ar-

ray). To quickly reach a stable sparse representation for xi, state-of-the-art algorithms

apply iterative, parallel, or stochastic methods for the two most computationally in-

tensive tasks: updating the feature vector Z and updating the dictionary D. In this

paper, we focus on the Iterative Shrinking-Thresholding Algorithm (ISTA Daubechies

et al. (2004)) to update Z due to its inherent parallelism, and the Stochastic Gradient

87

Neurophysics-inspired Parallel Architecture with
Resistive Crosspoint Array for Dictionary Learning

1Deepak Kadetotad, 1Zihan Xu, 1Abinash Mohanty, 1Pai-Yu Chen, 2Binbin Lin,
2Jieping Ye, 2Sarma Vrudhula, 2Shimeng Yu, 1Yu Cao, 1Jae-sun Seo

1School of ECEE, 2School of CIDSE, Arizona State University, Tempe, AZ, USA

Abstract—This paper proposes a parallel architecture with
resistive crosspoint array. The design of its two essential
operations, Read and Write, is inspired by the biophysical
behavior of a neural system, such as integrate-and-fire and time-
dependent synaptic plasticity. The proposed hardware consists of
an array with resistive random access memory (RRAM) and
CMOS peripheral circuits, which perform matrix product and
dictionary update in a fully parallel fashion, at the speed that is
independent of the matrix dimension. The entire system is
implemented in 65nm CMOS technology with RRAM to realize
high-speed unsupervised dictionary learning. As compared to
state-of-the-art software approach, it achieves more than 3000X
speedup, enabling real-time feature extraction on a single chip.

I. INTRODUCTION
The biophysical neural system has been a rich source of

inspiration for computing beyond the conventional von
Neumann architecture. By connecting a massive number of
spiking neurons through synapses, our brain learns how to
recognize various objects and make decisions. It is also
hypothesized that training is achieved through plastic synapses,
which change their weights based on the spike timing of pre-
synaptic and post-synaptic neuron. This learning rule is known
as spike-timing-dependent-plasticity (STDP) [1][2] (Fig. 1(a)).

Motivated by neurophysics, sparse coding was successfully
developed to pave the way for deep learning with big data
[3][4]. It aims to minimize the objective function ∑
 | | , where xi is an input vector, is the
regularization parameter, D is called the dictionary, and Zi is

the feature vector which is assumed to be sparse. If has
 dimensions, Z has dimensions (), then D forms a
 matrix (or a 2-D array). To quickly reach a stable sparse
representation for xi, state-of-the-art algorithms apply iterative,
parallel, or stochastic methods for the two most
computationally intensive tasks: updating the feature vector Z
and updating the dictionary D. In this paper, we focus on the
Iterative Shrinking-Thresholding Algorithm (ISTA [5]) to
update Z due to its inherent parallelism, and the Stochastic
Gradient Descent (SGD [6]) to update D exploiting
stochasticity for greater efficiency:
(1) Update Z via ISTA:

 , where
is the soft thresholding function, and is
the residual error of data presentation (r).

(2) Update D via SGD: , where is
the learning rate and

 .
These learning algorithms are typically implemented in

software, and run on a general-purpose CPU/GPU. Limited by
the sequential architecture of today’s microprocessors, they
suffer from long computing times, especially in dealing with a
large D matrix. Thus, it is desirable to have a special hardware
that accelerates the learning process beyond such limitations.

The resistive crosspoint array structure, shown in Fig. 1(b),
was recently proposed as a promising solution for learning in
hardware neural networks [7][8]. The iterative solution to the
sparse coding problem can be realized by mapping the matrix
D onto the resistive array, and learning takes place through the
update step. The quantity X (or r) is associated with one side of
the array and Z with the other side. In this way, the crosspoint
mimics the structural map of a neural system. At each cross
point, the conductance (G) of a memory cell represents the
synapse weight. The memory technology of choice is resistive
random access memory (RRAM), due to its non-volatility,
integration density, and low power consumption [9]. The inset
of Fig. 1(b) illustrates its structure. Analogous to a synapse
device, G of a RRAM cell is increased (or decreased) by a
positive (or negative) voltage pulse. The amount of change
depends on the voltage value and the pulse width (Fig. 1(b)).

The basic functions of the crosspoint array include:
(1) Read for Matrix Product: When a voltage is input from Z

(VZ,j), the output current at xi is ∑ . If G
encodes D, then a Read corresponds to sensing the current
which encodes , which takes in parallel.

(2) Write to Update D: The conductance of the entire array is
updated in parallel. Previous approaches involve sequential
operations (row-by-row, column-by-column, or even bit-
by-bit) to update G of the RRAM cell.

D RRAM
cell

V

t

X or r

Z

0 10 20 30

-10

-5

0

5

10

Co
nd

uc
ta

nc
e

Ch
an

ge
 '

G
 (P

:
-1
)

Voltage Pulse Width t (ns)

1.5V

1.46V

-1.46V

-1.5V

Conductance at
 V = 0.3V

(a) STDP in a biological synapse.

Pre-synaptic spike

Post-synaptic spike

Synapse

∆t

-100 -50 0 50 100
-60

-40

-20

0

20

40

60

80

100

120

't < 0
LTD

 Exp. data [2]

C
on

du
ct

an
ce

 C
ha

ng
e
'

G
 (�

)

Spike Timing 't (ms)

't > 0
LTP

(b) RRAM based crosspoint array and the tuning of conductance (G).
Figure 1. Similarity of biological neural network and the RRAM crosspoint
array, in both the network structure and device plasticity.

Figure 6.1: Similarity of biological neural network and the RRAM crosspoint array,

in both the network structure and device plasticity. The conductance of RRAM cells

can be programmed to particular values using programming voltage of specific pulse

width.

Descent (SGD Bottou and Bousquet (2008)) to update D exploiting stochasticity for

greater efficiency:

1. Update Z via ISTA: Zt+1 ← hλ/L(Zt−DT
t .rt), where hλ/L is soft thresholding

function, and rt
∆
= Dt.Zt −Xt is the residual error of data presentation (r).

2. Update D via SGD: Dt+1 ← Dt − ηt.∆Dt , where ηt is the learning rate and

∆Dt = rt.Z
T
t .

These learning algorithms are typically implemented in software, and run on a

general-purpose CPU/GPU. Limited by the sequential architecture of todays micro-

88

processors, they suffer from long computing times, especially in dealing with a large D

matrix. Thus, it is desirable to have a special hardware that accelerates the learning

process beyond such limitations.

The resistive crosspoint array structure, shown in Fig. 6.1(b), was recently pro-

posed as a promising solution for learning in hardware neural networks (Afifi et al.

(2010), Rajendran et al. (2013)). The iterative solution to the sparse coding problem

can be realized by mapping the matrix D onto the resistive array, and learning takes

place through the update step. The quantity X (or r) is associated with one side of

the array and Z with the other side. In this way, the crosspoint mimics the structural

map of a neural system. At each cross point, the conductance (G) of a memory cell

represents the synapse weight. The memory technology of choice is resistive random

access memory (RRAM), due to its non-volatility, integration density, and low power

consumption (Jo et al. (2010)). The inset of Fig. 6.1(b) illustrates its structure.

Analogous to a synapse device, G of a RRAM cell is increased (or decreased) by a

positive (or negative) voltage pulse. The amount of change depends on the voltage

value and the pulse width (Fig. 6.1(b)).

The basic functions of the crosspoint array include:

• Read for Matrix Product: When a voltage is input from Z(VZ,j), the output

current at xi is IX,i =
∑
Gi,j.VZ,j . If G encodes D, then a Read corresponds

to sensing the current which encodes D.Z, which takes in parallel.

• Write to Update D: The conductance of the entire array is updated in par-

allel. Previous approaches involve sequential operations (row-by-row, column-

by-column, or even bit-by-bit) to update G of the RRAM cell.

However, when these functions are implemented in a monolithic technology, the

unusually large dimension of D (i.e., large fan-in and fan-out to each X and Z node)

89

poses unique challenges to periphery circuit design: for Read, the receiver needs to

convert a tremendously wide range of output current Ii (> 100× difference) to a

digital data at high precision; for Write, it is preferred to program all cells in parallel

for high-speed computation, with local data only from pre-synaptic and post-synaptic

nodes, as observed in a biophysical synapse. We present effective solutions to these

challenges.

The remainder of the chapter is organized as follows. Section 6.2 describes the

parallel architecture and principles of Read and Write circuitries. Section 6.3 presents

experimental results from a 65nm CMOS design, and a learning demonstration is

shown in Section 6.4. The chapter is concluded in Section 6.5.

However, when these functions are implemented in a
monolithic technology, the unusually large dimension of D
(i.e., large fan-in and fan-out to each X and Z node) poses
unique challenges to periphery circuit design: for Read, the
receiver needs to convert a tremendously wide range of output
current Ii (>100X difference) to a digital data at high precision;
for Write, it is preferred to program all cells in parallel for
high-speed computation, with local data only from pre-synaptic
and post-synaptic nodes, as observed in a biophysical synapse.
We present effective solutions to these challenges.

The remainder of the paper is organized as follows. Section
II describes the parallel architecture and principles of Read and
Write circuitries. Section III presents experimental results from
a 65nm CMOS design, and a learning demonstration is shown
in Section IV. The paper is concluded in Section V.

II. CROSSPOINT ARRAY ARCHITECTURE AND DESIGN

A. Overall Architecture of PARCA
Fig. 2 illustrates the proposed parallel architecture with

resistive crosspoint array (PARCA). The D array connects Z on
one side and r on the other side. The two key operations that
we intend to fully parallelize are: and D update.

x (or): Parallel Read of the RRAM array. For
each non-zero bit of Z, a small read voltage is applied
simultaneously. The read voltage VZ is multiplied with G at
each crosspoint, and the weighted sum results in the output
current at each r node. The read circuitry described in Section
II.B converts this current into a binary number. Compared to
conventional memory arrays that require reading row-by-row,
our approach reads the entire RRAM array in parallel, without
the sneak path problem [10] found in the memory application
of RRAMs, thereby accelerating . A similar Read
operation in the transpose direction computes .

x D update: Parallel Write of the RRAM array. In SGD,
the change of D is proportional to [6]. By properly
generating voltages at local ri and Zj nodes, current Gij of a
RRAM cell is changed by an amount proportional to .
Thus, all RRAM cells are modified in parallel, achieving
considerable speedup compared to previous approaches that
require read-modify-write operations. The proposed write
circuitry is described in Section III.C. Table I summarizes the
key operations handled by PARCA.

B. Read: Integrate and Fire
The proposed Read circuit is essentially a current-to-digital

converter, where it senses the output current at each ri (or Zj)
node for (or), and converts to digital values. In
principle, this output response is similar to that of a biological
neuron model, namely Integrate-and-Fire (IF) [11][12].
Starting from a reset voltage, the output current is integrated on
the finite capacitance of each RRAM column; when the voltage
charges up above a certain threshold, the output switches and
the capacitance is discharged back to the reset voltage. The
read property of a RRAM cell further poses a constraint that
the reset voltage and the threshold voltage should be very close
to each other; otherwise the output current does not represent
the correct weighted sum [13][14]. In our 65nm design
(Section III), the reset voltage and the threshold voltage are
500mV and 530mV, respectively. To meet this constraint, an
asynchronous comparator with high sensitivity to small
changes in voltages was required, and we employed an
adaptive Schmitt trigger to create the IF neuron circuit [15].

For D�Z, we measure the integrated current at each ri node
by counting the number of times () the voltage at the
integration node crosses the set threshold within a read timing
window (). As the charge accumulates over time on a finite
capacitance, the time it takes for the integration voltage to
exceed the threshold is inversely proportional to the current (I�t
= constant). Since ni v 1/t, the current will be proportional to
the number of spikes that occurred during a fixed timing
window. Fig. 3 shows the Read circuit where the capacitance
used to integrate the current is the parasitic capacitance of the
RRAM column or row. The transmission gate (TG) discharges
the capacitance while the adaptive threshold block (ATB)
strengthens the pull down network to vary the threshold below
530mV only when the incoming current is high. The output of
the Schmitt trigger is buffered and drives the clock input of a 8-
bit shift register to store .

C. Write: Timing based Local Programming
To change the conductance of an RRAM cell, the voltage

across the cell should be Vdd, and Vdd/2 only induces
negligible change on G due to its strong dependence on the
voltage [10]. Inspired by STDP in a biological neuron, G is
programmed by the overlap time between local r and Z signals:
The write circuit for Z generates a pulse with a duty cycle
proportional to Z, while a spike train is generated at r with the
firing rate proportional to r and the pulse width is fixed at 1ns.
Wherever the pulse at r is overlapped with Z, it creates |
 | . Therefore, the total programming time equals to
the overlap between Z and r, i.e., . Since Z is always

Figure 2. PARCA architecture with
peripheral Read and Write modules. Z
and X (or r) nodes have the same Read
(Section II.B), but different Write
circuits (Section II.C). All RRAM cells
are Read or Write in parallel.

Task PARCA Method

 ∑

 ∑

update

'
(η is the learning rate [6])

Read Input: small V pulse;
Output: I to digital

Write
Input: large Vr and VZ

pulses, with proper
timing between them

TABLE I. PARCA OPERATIONS
FOR KEY SPARSE CODING TASKS

Zj

ri

Ir, i

Gij

readwrite
(r)

Vr, i

VZ, j

IZ, j
read

write
(Z)

Figure 3. Circuit schematics of the Read circuit. Based on the IF neuron
model, it converts a wide range of input current Ir,i into a digital number.

ATB

Vreset

Vspike

Vspike

Ir,i
(0 – 12.5 μA)

D Q
R

D Q
R

8-bit spike counter

Q[5]

Q[6]Q[5] Q[7]

RE

Q[0]

Ccol
(Crow)

Vp
D Q

R
D Q

R

Q[6] Q[7]Vin

Figure 6.2: PARCA architecture with peripheral Read and Write modules. Z and X

(or r) nodes have the same Read (Section 6.2.1), but different Write circuits (Section

6.2.2). All RRAM cells are Read or Written in parallel.

90

6.2 Crosspoint Array Architecture and Design

Fig. 6.2 illustrates the proposed parallel architecture with resistive crosspoint

array (PARCA). The D array connects Z on one side and r on the other side. The

two key operations that we intend to fully parallelize are: D.Z and D update.

• D.Z (or DT .r): Parallel Read of the RRAM array. For each non-zero bit of Z, a

small read voltage is applied simultaneously. The read voltage VZ is multiplied

with G at each crosspoint, and the weighted sum results in the output current at

each r node. The read circuitry described in Section 6.2.1 converts this current

into a binary number. Compared to conventional memory arrays that require

reading row-by-row, our approach reads the entire RRAM array in parallel,

without the sneak path problem (Liang et al. (2013)) found in the memory

application of RRAMs, thereby accelerating D.Z. A similar Read operation in

the transpose direction computes DT .r.

• D update: Parallel Write of the RRAM array. In SGD, the change of D is

proportional to r.Z (Bottou and Bousquet (2008)). By properly generating

voltages at local ri and Zj nodes, current Gij of a RRAM cell is changed by an

amount proportional to ri.Zj. Thus, all RRAM cells are modified in parallel,

achieving considerable speedup compared to previous approaches that require

read-modify-write operations. The proposed write circuitry is described in Sec-

tion 6.2.2. Table 6.1 summarizes the key operations handled by PARCA.

6.2.1 Read: Integrate and Fire

The proposed Read circuit is essentially a current-to-digital converter, where it

senses the output current at each ri (or Zj) node for D.Z (or DT .r), and converts

to digital values. In principle, this output response is similar to that of a biological

91

Table 6.1: PARCA operations for key sparse coding tasks.

Task PARCA Method

D.Z Ir,i =
∑

iGij.VZ,j

DT .r IZ,j =
∑

j Gij.Vr,ij

D update ∆Gij = η.r.Z

Read Input: small V pulse; Output: I to digital

Write Input: large Vr and VZ pulses, with proper timing between them

neuron model, namely Integrate-and-Fire (IF) (Abbott (1999)). Starting from a reset

voltage, the output current is integrated on the finite capacitance of each RRAM

column; when the voltage charges up above a certain threshold, the output switches

and the capacitance is discharged back to the reset voltage. The read property of

a RRAM cell further poses a constraint that the reset voltage and the threshold

voltage should be very close to each other; otherwise the output current does not

represent the correct weighted sum (Wong et al. (2012), Yu et al. (2013)). In our

65nm design (Section III), the reset voltage and the threshold voltage are 500mV and

530mV, respectively. To meet this constraint, an asynchronous comparator with high

sensitivity to small changes in voltages was required, and we employed an adaptive

Schmitt trigger to create the IF neuron circuit (Wang (1991)).

For D.Z, we measure the integrated current at each ri node by counting the

number of times (ni) the voltage at the integration node crosses the set threshold

within a read timing window (TR). As the charge accumulates over time on a finite

capacitance, the time it takes for the integration voltage to exceed the threshold is

inversely proportional to the current (I.t = constant). Since ni ∝ 1/t, the current will

be proportional to the number of spikes that occurred during a fixed timing window.

Fig. 6.3 shows the Read circuit where the capacitance used to integrate the current is

92

However, when these functions are implemented in a
monolithic technology, the unusually large dimension of D
(i.e., large fan-in and fan-out to each X and Z node) poses
unique challenges to periphery circuit design: for Read, the
receiver needs to convert a tremendously wide range of output
current Ii (>100X difference) to a digital data at high precision;
for Write, it is preferred to program all cells in parallel for
high-speed computation, with local data only from pre-synaptic
and post-synaptic nodes, as observed in a biophysical synapse.
We present effective solutions to these challenges.

The remainder of the paper is organized as follows. Section
II describes the parallel architecture and principles of Read and
Write circuitries. Section III presents experimental results from
a 65nm CMOS design, and a learning demonstration is shown
in Section IV. The paper is concluded in Section V.

II. CROSSPOINT ARRAY ARCHITECTURE AND DESIGN

A. Overall Architecture of PARCA
Fig. 2 illustrates the proposed parallel architecture with

resistive crosspoint array (PARCA). The D array connects Z on
one side and r on the other side. The two key operations that
we intend to fully parallelize are: and D update.

x (or): Parallel Read of the RRAM array. For
each non-zero bit of Z, a small read voltage is applied
simultaneously. The read voltage VZ is multiplied with G at
each crosspoint, and the weighted sum results in the output
current at each r node. The read circuitry described in Section
II.B converts this current into a binary number. Compared to
conventional memory arrays that require reading row-by-row,
our approach reads the entire RRAM array in parallel, without
the sneak path problem [10] found in the memory application
of RRAMs, thereby accelerating . A similar Read
operation in the transpose direction computes .

x D update: Parallel Write of the RRAM array. In SGD,
the change of D is proportional to [6]. By properly
generating voltages at local ri and Zj nodes, current Gij of a
RRAM cell is changed by an amount proportional to .
Thus, all RRAM cells are modified in parallel, achieving
considerable speedup compared to previous approaches that
require read-modify-write operations. The proposed write
circuitry is described in Section III.C. Table I summarizes the
key operations handled by PARCA.

B. Read: Integrate and Fire
The proposed Read circuit is essentially a current-to-digital

converter, where it senses the output current at each ri (or Zj)
node for (or), and converts to digital values. In
principle, this output response is similar to that of a biological
neuron model, namely Integrate-and-Fire (IF) [11][12].
Starting from a reset voltage, the output current is integrated on
the finite capacitance of each RRAM column; when the voltage
charges up above a certain threshold, the output switches and
the capacitance is discharged back to the reset voltage. The
read property of a RRAM cell further poses a constraint that
the reset voltage and the threshold voltage should be very close
to each other; otherwise the output current does not represent
the correct weighted sum [13][14]. In our 65nm design
(Section III), the reset voltage and the threshold voltage are
500mV and 530mV, respectively. To meet this constraint, an
asynchronous comparator with high sensitivity to small
changes in voltages was required, and we employed an
adaptive Schmitt trigger to create the IF neuron circuit [15].

For D�Z, we measure the integrated current at each ri node
by counting the number of times () the voltage at the
integration node crosses the set threshold within a read timing
window (). As the charge accumulates over time on a finite
capacitance, the time it takes for the integration voltage to
exceed the threshold is inversely proportional to the current (I�t
= constant). Since ni v 1/t, the current will be proportional to
the number of spikes that occurred during a fixed timing
window. Fig. 3 shows the Read circuit where the capacitance
used to integrate the current is the parasitic capacitance of the
RRAM column or row. The transmission gate (TG) discharges
the capacitance while the adaptive threshold block (ATB)
strengthens the pull down network to vary the threshold below
530mV only when the incoming current is high. The output of
the Schmitt trigger is buffered and drives the clock input of a 8-
bit shift register to store .

C. Write: Timing based Local Programming
To change the conductance of an RRAM cell, the voltage

across the cell should be Vdd, and Vdd/2 only induces
negligible change on G due to its strong dependence on the
voltage [10]. Inspired by STDP in a biological neuron, G is
programmed by the overlap time between local r and Z signals:
The write circuit for Z generates a pulse with a duty cycle
proportional to Z, while a spike train is generated at r with the
firing rate proportional to r and the pulse width is fixed at 1ns.
Wherever the pulse at r is overlapped with Z, it creates |
 | . Therefore, the total programming time equals to
the overlap between Z and r, i.e., . Since Z is always

Figure 2. PARCA architecture with
peripheral Read and Write modules. Z
and X (or r) nodes have the same Read
(Section II.B), but different Write
circuits (Section II.C). All RRAM cells
are Read or Write in parallel.

Task PARCA Method

 ∑

 ∑

update

'
(η is the learning rate [6])

Read Input: small V pulse;
Output: I to digital

Write
Input: large Vr and VZ

pulses, with proper
timing between them

TABLE I. PARCA OPERATIONS
FOR KEY SPARSE CODING TASKS

Zj

ri

Ir, i

Gij

readwrite
(r)

Vr, i

VZ, j

IZ, j
read

write
(Z)

Figure 3. Circuit schematics of the Read circuit. Based on the IF neuron
model, it converts a wide range of input current Ir,i into a digital number.

ATB

Vreset

Vspike

Vspike

Ir,i
(0 – 12.5 μA)

D Q
R

D Q
R

8-bit spike counter

Q[5]

Q[6]Q[5] Q[7]

RE

Q[0]

Ccol
(Crow)

Vp
D Q

R
D Q

R

Q[6] Q[7]Vin

Figure 6.3: Circuit schematics of the Read circuit. Based on the IF neuron model, it

converts a wide range of input current Ir,i into a digital number.

the parasitic capacitance of the RRAM column or row. The transmission gate (TG)

discharges the capacitance while the adaptive threshold block (ATB) strengthens the

pull down network to vary the threshold below 530mV only when the incoming current

is high. The output of the Schmitt trigger is buffered and drives the clock input of a

8-bit shift register to store ni.

6.2.2 Write: Timing based Local Programming

To change the conductance of an RRAM cell, the voltage across the cell should

be V dd, and V dd/2 only induces negligible change on G due to its strong dependence

on the voltage Liang et al. (2013). Inspired by STDP in a biological neuron, G is

programmed by the overlap time between local r and Z signals: The write circuit

for Z generates a pulse with a duty cycle proportional to Z, while a spike train is

generated at r with the firing rate proportional to r and the pulse width is fixed at

1ns. Wherever the pulse at r is overlapped with Z, it creates |VZ − Vr| = V dd .

Therefore, the total programming time equals to the overlap between Z and r, i.e.,

r.Z. Since Z is always positive while r can be positive or negative, we divide the

write period into a positive/negative period for r > 0/r < 0.

93

positive while r can be positive or negative, we divide the
write period into a positive/negative period for r > 0 / r < 0.

(1) Write Circuits for Z: In the positive period, Z is 0 for a
certain time proportional to Z; then it switches to Vdd/2. The
overlap time between Z = 0 and r = Vdd tunes the RRAM
conductance. A similar scenario is designed for the negative
period, with a symmetric polarity, as shown in Fig. 4.

Fig. 4 shows the digital design to generate such a pulse
pattern. A 16-bit shift register converts the parallel input
Z[15:0] into a sequential output. The time when the output is 1
is proportional to the value of Z. The output of the shift
register is connected back to the first stage of itself in order to
recycle the data Z. With 32 clock cycles for one write period,
it generates two identical pulses with the duty cycle
proportional to the value of Z. These two identical pulses are
connected to multiplexors to generate different programming
voltages for the positive period and the negative period.

(2) Write Circuits for r: The train of pulses generated at r
has its pulse number proportional to the value of r, where each
pulse has a fixed width for fixed RRAM programming period.
The pulses are evenly distributed across the write period in
order to minimize the quantization error.
 Fig. 5 presents the design for generating the r signal. It
consists of various delay elements forming a configurable ring
oscillator (RO) with the polarity control by the sign-bit of r.
The number of pulses during the write period (i.e., the firing
rate) is varied by adding switches into the oscillation loop,
which determine the total gate delay in the ring oscillator. The
control signal of the switches is generated from the r value,
ensuring that only one switch is on for a particular value of r.
When r = 0, no change in the RRAM conductance is allowed.
In total, 15 buffer stages (d1-d15) are implemented with
different delay values, such that the number of pulses
generated in each write cycle is proportional to the r value.
From each rising edge of the RO output, the pulse generator
generates a pulse with fixed 1ns width. This ensures the total
programming time is proportional to the pulse number for our
RRAM technology. The sign-bit of r and the write phase (PN)
finally select the output signal among Vdd, 0, pulse generator
output or the inversion of it.

III. 65NM CMOS IMPLEMENATION
The read and write circuitries are implemented in 65nm

CMOS technology. These circuits are simulated with the
RRAM model [14] that is calibrated with measurements.

A. Read
Fig. 6 demonstrates the proper operation of the read circuit,

with two values of input current. The RRAM current integrates
at the input node (Vin), increasing the voltage until it reaches
the threshold of the Schmitt trigger. The circuit then initiates
reset to discharge the capacitance. This integrate-reset process
continues while Read Enable (RE) is high. The number of reset
pulses () present in this timing window (4.6 ns in our design)
is recorded by enabling the shift register for each reset pulse.

 As shown in Fig. 8(a), the number of reset pulses linearly
increases with incoming RRAM current at ~1µA granularity.
Non-linearity exists at high values, which is due to the finite
discharge time of the capacitance and the voltage overshoot
above threshold due to latency. The non-linearity further limits
the lower bound of the read time window, forcing a longer read
time. Therefore, we introduce the ATB unit, which is only
enabled when the conductance is high, to ensure high linearity
between and , as demonstrated in Fig. 8(a).

B. Write
Fig. 7 shows the timing diagram of the parallel

programming system with programming time of 84 ns. When
the write enable (WE) signal turns on, both Z and r write
circuitries start generating the pulses based on the values of Z
and r and, thus change the value of D during the overlap time.
Fig. 7 demonstrates that when r is positive, the programming
occurs in the positive period and the value of D decreases;
when r is negative, the programming happens in the negative
period and the value of D increases.

D Q
Q

D Q
Q

WE

Z[0]Z[15]

Clock

16-bit Shift Register
WE

PN
VZVdd/2

Figure 4. Write circuit for Z, with two periods for r > 0 and r < 0.

r < 0

r > 0

 V
ol

ta
ge ZZ

Time

r[0:3]

Pulse Generator

Configurable RO

sign

Vr

sign d15 d14 d1d2

PN
PN

WE

PN

 V
ol

ta
ge

Time

 V
ol

ta
ge

Figure 5. Write circuit for r, with the firing rate proportional to r.

r > 0

r < 0

0.50

0.53

0.0

1.5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

RE RE

Vspike
Vspike

Vin Vin

Time (ns)

Vo
lta

ge
 (V

)

Figure 6. The operation of the read circuit for two input current:
(left) Ir = 6.5μA; and (right) Ir = 1.1μA; the corresponding ni is 6 and 1.

0.00

0.75

1.50

0.00

0.75

1.50

0 20 40 60
400n

600n

800n

Z = 6

r = 9

Z
(V

)
r (

V)
D

 (:
-1
)

Time (ns)

D decreases

0.00

0.75

1.50

0.00

0.75

1.50

40 60 80 100
1.0µ

2.0µ

3.0µ

Z = 10

r = -7

Time (ns)

D increases
Z

(V
)

r (
V)

D
 (:

-1
)

Figure 7. The overlap in time between Z and r pulses tunes D.

Figure 6.4: Write circuit for Z, with two periods for r > 0 and r < 0.

Write Circuits for Z : In the positive period, Z is 0 for a certain time propor-

tional to Z; then it switches to V dd/2. The overlap time between Z = 0 and r = V dd

tunes the RRAM conductance. A similar scenario is designed for the negative period,

with a symmetric polarity, as shown in Fig. 6.4.

Fig. 6.4 shows the digital design to generate such a pulse pattern. A 16-bit shift

register converts the parallel input Z[15:0] into a sequential output. The time when

the output is 1 is proportional to the value of Z. The output of the shift register

is connected back to the first stage of itself in order to recycle the data Z. With

32 clock cycles for one write period, it generates two identical pulses with the duty

cycle proportional to the value of Z. These two identical pulses are connected to

multiplexors to generate different programming voltages for the positive period and

the negative period.

Write Circuits for r : The train of pulses generated at r has its pulse number

proportional to the value of r, where each pulse has a fixed width for fixed RRAM

programming period. The pulses are evenly distributed across the write period in

order to minimize the quantization error.

Fig. 6.5 presents the design for generating the r signal. It consists of various delay

elements forming a configurable ring oscillator (RO) with the polarity control by the

94

positive while r can be positive or negative, we divide the
write period into a positive/negative period for r > 0 / r < 0.

(1) Write Circuits for Z: In the positive period, Z is 0 for a
certain time proportional to Z; then it switches to Vdd/2. The
overlap time between Z = 0 and r = Vdd tunes the RRAM
conductance. A similar scenario is designed for the negative
period, with a symmetric polarity, as shown in Fig. 4.

Fig. 4 shows the digital design to generate such a pulse
pattern. A 16-bit shift register converts the parallel input
Z[15:0] into a sequential output. The time when the output is 1
is proportional to the value of Z. The output of the shift
register is connected back to the first stage of itself in order to
recycle the data Z. With 32 clock cycles for one write period,
it generates two identical pulses with the duty cycle
proportional to the value of Z. These two identical pulses are
connected to multiplexors to generate different programming
voltages for the positive period and the negative period.

(2) Write Circuits for r: The train of pulses generated at r
has its pulse number proportional to the value of r, where each
pulse has a fixed width for fixed RRAM programming period.
The pulses are evenly distributed across the write period in
order to minimize the quantization error.
 Fig. 5 presents the design for generating the r signal. It
consists of various delay elements forming a configurable ring
oscillator (RO) with the polarity control by the sign-bit of r.
The number of pulses during the write period (i.e., the firing
rate) is varied by adding switches into the oscillation loop,
which determine the total gate delay in the ring oscillator. The
control signal of the switches is generated from the r value,
ensuring that only one switch is on for a particular value of r.
When r = 0, no change in the RRAM conductance is allowed.
In total, 15 buffer stages (d1-d15) are implemented with
different delay values, such that the number of pulses
generated in each write cycle is proportional to the r value.
From each rising edge of the RO output, the pulse generator
generates a pulse with fixed 1ns width. This ensures the total
programming time is proportional to the pulse number for our
RRAM technology. The sign-bit of r and the write phase (PN)
finally select the output signal among Vdd, 0, pulse generator
output or the inversion of it.

III. 65NM CMOS IMPLEMENATION
The read and write circuitries are implemented in 65nm

CMOS technology. These circuits are simulated with the
RRAM model [14] that is calibrated with measurements.

A. Read
Fig. 6 demonstrates the proper operation of the read circuit,

with two values of input current. The RRAM current integrates
at the input node (Vin), increasing the voltage until it reaches
the threshold of the Schmitt trigger. The circuit then initiates
reset to discharge the capacitance. This integrate-reset process
continues while Read Enable (RE) is high. The number of reset
pulses () present in this timing window (4.6 ns in our design)
is recorded by enabling the shift register for each reset pulse.

 As shown in Fig. 8(a), the number of reset pulses linearly
increases with incoming RRAM current at ~1µA granularity.
Non-linearity exists at high values, which is due to the finite
discharge time of the capacitance and the voltage overshoot
above threshold due to latency. The non-linearity further limits
the lower bound of the read time window, forcing a longer read
time. Therefore, we introduce the ATB unit, which is only
enabled when the conductance is high, to ensure high linearity
between and , as demonstrated in Fig. 8(a).

B. Write
Fig. 7 shows the timing diagram of the parallel

programming system with programming time of 84 ns. When
the write enable (WE) signal turns on, both Z and r write
circuitries start generating the pulses based on the values of Z
and r and, thus change the value of D during the overlap time.
Fig. 7 demonstrates that when r is positive, the programming
occurs in the positive period and the value of D decreases;
when r is negative, the programming happens in the negative
period and the value of D increases.

D Q
Q

D Q
Q

WE

Z[0]Z[15]

Clock

16-bit Shift Register
WE

PN
VZVdd/2

Figure 4. Write circuit for Z, with two periods for r > 0 and r < 0.

r < 0

r > 0

 V
ol

ta
ge ZZ

Time

r[0:3]

Pulse Generator

Configurable RO

sign

Vr

sign d15 d14 d1d2

PN
PN

WE

PN

 V
ol

ta
ge

Time

 V
ol

ta
ge

Figure 5. Write circuit for r, with the firing rate proportional to r.

r > 0

r < 0

0.50

0.53

0.0

1.5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

RE RE

Vspike
Vspike

Vin Vin

Time (ns)

Vo
lta

ge
 (V

)

Figure 6. The operation of the read circuit for two input current:
(left) Ir = 6.5μA; and (right) Ir = 1.1μA; the corresponding ni is 6 and 1.

0.00

0.75

1.50

0.00

0.75

1.50

0 20 40 60
400n

600n

800n

Z = 6

r = 9

Z
(V

)
r (

V)
D

 (:
-1
)

Time (ns)

D decreases

0.00

0.75

1.50

0.00

0.75

1.50

40 60 80 100
1.0µ

2.0µ

3.0µ

Z = 10

r = -7

Time (ns)

D increases

Z
(V

)
r (

V)
D

 (:
-1
)

Figure 7. The overlap in time between Z and r pulses tunes D.

Figure 6.5: Write circuit for r, with the firing rate proportional to r.

sign-bit of r. The number of pulses during the write period (i.e., the firing rate) is

varied by adding switches into the oscillation loop, which determine the total gate

delay in the ring oscillator. The control signal of the switches is generated from the r

value, ensuring that only one switch is on for a particular value of r. When r = 0, no

change in the RRAM conductance is allowed. In total, 15 buffer stages (d1− d15) are

implemented with different delay values, such that the number of pulses generated in

each write cycle is proportional to the r value. From each rising edge of the RO output,

the pulse generator generates a pulse with fixed 1ns width. This ensures the total

programming time is proportional to the pulse number for our RRAM technology.

The sign-bit of r and the write phase (PN) finally select the output signal among

V dd, 0, pulse generator output or the inversion of it.

6.3 65nm CMOS Implementation

The read and write circuitries are implemented in 65nm CMOS technology. These

circuits are simulated with the RRAM model Yu et al. (2013) that is calibrated with

measurements.

95

positive while r can be positive or negative, we divide the
write period into a positive/negative period for r > 0 / r < 0.

(1) Write Circuits for Z: In the positive period, Z is 0 for a
certain time proportional to Z; then it switches to Vdd/2. The
overlap time between Z = 0 and r = Vdd tunes the RRAM
conductance. A similar scenario is designed for the negative
period, with a symmetric polarity, as shown in Fig. 4.

Fig. 4 shows the digital design to generate such a pulse
pattern. A 16-bit shift register converts the parallel input
Z[15:0] into a sequential output. The time when the output is 1
is proportional to the value of Z. The output of the shift
register is connected back to the first stage of itself in order to
recycle the data Z. With 32 clock cycles for one write period,
it generates two identical pulses with the duty cycle
proportional to the value of Z. These two identical pulses are
connected to multiplexors to generate different programming
voltages for the positive period and the negative period.

(2) Write Circuits for r: The train of pulses generated at r
has its pulse number proportional to the value of r, where each
pulse has a fixed width for fixed RRAM programming period.
The pulses are evenly distributed across the write period in
order to minimize the quantization error.
 Fig. 5 presents the design for generating the r signal. It
consists of various delay elements forming a configurable ring
oscillator (RO) with the polarity control by the sign-bit of r.
The number of pulses during the write period (i.e., the firing
rate) is varied by adding switches into the oscillation loop,
which determine the total gate delay in the ring oscillator. The
control signal of the switches is generated from the r value,
ensuring that only one switch is on for a particular value of r.
When r = 0, no change in the RRAM conductance is allowed.
In total, 15 buffer stages (d1-d15) are implemented with
different delay values, such that the number of pulses
generated in each write cycle is proportional to the r value.
From each rising edge of the RO output, the pulse generator
generates a pulse with fixed 1ns width. This ensures the total
programming time is proportional to the pulse number for our
RRAM technology. The sign-bit of r and the write phase (PN)
finally select the output signal among Vdd, 0, pulse generator
output or the inversion of it.

III. 65NM CMOS IMPLEMENATION
The read and write circuitries are implemented in 65nm

CMOS technology. These circuits are simulated with the
RRAM model [14] that is calibrated with measurements.

A. Read
Fig. 6 demonstrates the proper operation of the read circuit,

with two values of input current. The RRAM current integrates
at the input node (Vin), increasing the voltage until it reaches
the threshold of the Schmitt trigger. The circuit then initiates
reset to discharge the capacitance. This integrate-reset process
continues while Read Enable (RE) is high. The number of reset
pulses () present in this timing window (4.6 ns in our design)
is recorded by enabling the shift register for each reset pulse.

 As shown in Fig. 8(a), the number of reset pulses linearly
increases with incoming RRAM current at ~1µA granularity.
Non-linearity exists at high values, which is due to the finite
discharge time of the capacitance and the voltage overshoot
above threshold due to latency. The non-linearity further limits
the lower bound of the read time window, forcing a longer read
time. Therefore, we introduce the ATB unit, which is only
enabled when the conductance is high, to ensure high linearity
between and , as demonstrated in Fig. 8(a).

B. Write
Fig. 7 shows the timing diagram of the parallel

programming system with programming time of 84 ns. When
the write enable (WE) signal turns on, both Z and r write
circuitries start generating the pulses based on the values of Z
and r and, thus change the value of D during the overlap time.
Fig. 7 demonstrates that when r is positive, the programming
occurs in the positive period and the value of D decreases;
when r is negative, the programming happens in the negative
period and the value of D increases.

D Q
Q

D Q
Q

WE

Z[0]Z[15]

Clock

16-bit Shift Register
WE

PN
VZVdd/2

Figure 4. Write circuit for Z, with two periods for r > 0 and r < 0.

r < 0

r > 0

 V
ol

ta
ge ZZ

Time

r[0:3]

Pulse Generator

Configurable RO

sign

Vr

sign d15 d14 d1d2

PN
PN

WE

PN

 V
ol

ta
ge

Time

 V
ol

ta
ge

Figure 5. Write circuit for r, with the firing rate proportional to r.

r > 0

r < 0

0.50

0.53

0.0

1.5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

RE RE

Vspike
Vspike

Vin Vin

Time (ns)

Vo
lta

ge
 (V

)

Figure 6. The operation of the read circuit for two input current:
(left) Ir = 6.5μA; and (right) Ir = 1.1μA; the corresponding ni is 6 and 1.

0.00

0.75

1.50

0.00

0.75

1.50

0 20 40 60
400n

600n

800n

Z = 6

r = 9

Z
(V

)
r (

V)
D

 (:
-1
)

Time (ns)

D decreases

0.00

0.75

1.50

0.00

0.75

1.50

40 60 80 100
1.0µ

2.0µ

3.0µ

Z = 10

r = -7

Time (ns)

D increases

Z
(V

)
r (

V)
D

 (:
-1
)

Figure 7. The overlap in time between Z and r pulses tunes D.

Figure 6.6: The operation of the read circuit for two input current: (left) Ir = 6.5µA;

and (right) Ir = 1.1µA; the corresponding ni is 6 and 1.

6.3.1 Read

Fig. 6.6 demonstrates the proper operation of the read circuit, with two values of

input current. The RRAM current integrates at the input node (Vin), increasing the

voltage until it reaches the threshold of the Schmitt trigger. The circuit then initiates

reset to discharge the capacitance. This integrate-reset process continues while Read

Enable (RE) is high. The number of reset pulses (ni) present in this timing window

(4.6 ns in our design) is recorded by enabling the shift register for each reset pulse.

As shown in Fig. 6.8(a), the number of reset pulses linearly increases with in-

coming RRAM current at ∼ 1µA granularity. Non-linearity exists at high G values,

which is due to the finite discharge time of the capacitance and the voltage overshoot

above threshold due to latency. The non-linearity further limits the lower bound of

the read time window, forcing a longer read time. Therefore, we introduce the ATB

unit, which is only enabled when the conductance is high, to ensure high linearity

between G and ηi , as demonstrated in Fig. 6.8(a).

96

positive while r can be positive or negative, we divide the
write period into a positive/negative period for r > 0 / r < 0.

(1) Write Circuits for Z: In the positive period, Z is 0 for a
certain time proportional to Z; then it switches to Vdd/2. The
overlap time between Z = 0 and r = Vdd tunes the RRAM
conductance. A similar scenario is designed for the negative
period, with a symmetric polarity, as shown in Fig. 4.

Fig. 4 shows the digital design to generate such a pulse
pattern. A 16-bit shift register converts the parallel input
Z[15:0] into a sequential output. The time when the output is 1
is proportional to the value of Z. The output of the shift
register is connected back to the first stage of itself in order to
recycle the data Z. With 32 clock cycles for one write period,
it generates two identical pulses with the duty cycle
proportional to the value of Z. These two identical pulses are
connected to multiplexors to generate different programming
voltages for the positive period and the negative period.

(2) Write Circuits for r: The train of pulses generated at r
has its pulse number proportional to the value of r, where each
pulse has a fixed width for fixed RRAM programming period.
The pulses are evenly distributed across the write period in
order to minimize the quantization error.
 Fig. 5 presents the design for generating the r signal. It
consists of various delay elements forming a configurable ring
oscillator (RO) with the polarity control by the sign-bit of r.
The number of pulses during the write period (i.e., the firing
rate) is varied by adding switches into the oscillation loop,
which determine the total gate delay in the ring oscillator. The
control signal of the switches is generated from the r value,
ensuring that only one switch is on for a particular value of r.
When r = 0, no change in the RRAM conductance is allowed.
In total, 15 buffer stages (d1-d15) are implemented with
different delay values, such that the number of pulses
generated in each write cycle is proportional to the r value.
From each rising edge of the RO output, the pulse generator
generates a pulse with fixed 1ns width. This ensures the total
programming time is proportional to the pulse number for our
RRAM technology. The sign-bit of r and the write phase (PN)
finally select the output signal among Vdd, 0, pulse generator
output or the inversion of it.

III. 65NM CMOS IMPLEMENATION
The read and write circuitries are implemented in 65nm

CMOS technology. These circuits are simulated with the
RRAM model [14] that is calibrated with measurements.

A. Read
Fig. 6 demonstrates the proper operation of the read circuit,

with two values of input current. The RRAM current integrates
at the input node (Vin), increasing the voltage until it reaches
the threshold of the Schmitt trigger. The circuit then initiates
reset to discharge the capacitance. This integrate-reset process
continues while Read Enable (RE) is high. The number of reset
pulses () present in this timing window (4.6 ns in our design)
is recorded by enabling the shift register for each reset pulse.

 As shown in Fig. 8(a), the number of reset pulses linearly
increases with incoming RRAM current at ~1µA granularity.
Non-linearity exists at high values, which is due to the finite
discharge time of the capacitance and the voltage overshoot
above threshold due to latency. The non-linearity further limits
the lower bound of the read time window, forcing a longer read
time. Therefore, we introduce the ATB unit, which is only
enabled when the conductance is high, to ensure high linearity
between and , as demonstrated in Fig. 8(a).

B. Write
Fig. 7 shows the timing diagram of the parallel

programming system with programming time of 84 ns. When
the write enable (WE) signal turns on, both Z and r write
circuitries start generating the pulses based on the values of Z
and r and, thus change the value of D during the overlap time.
Fig. 7 demonstrates that when r is positive, the programming
occurs in the positive period and the value of D decreases;
when r is negative, the programming happens in the negative
period and the value of D increases.

D Q
Q

D Q
Q

WE

Z[0]Z[15]

Clock

16-bit Shift Register
WE

PN
VZVdd/2

Figure 4. Write circuit for Z, with two periods for r > 0 and r < 0.

r < 0

r > 0

 V
ol

ta
ge ZZ

Time

r[0:3]

Pulse Generator

Configurable RO

sign

Vr

sign d15 d14 d1d2

PN
PN

WE

PN

 V
ol

ta
ge

Time

 V
ol

ta
ge

Figure 5. Write circuit for r, with the firing rate proportional to r.

r > 0

r < 0

0.50

0.53

0.0

1.5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

RE RE

Vspike
Vspike

Vin Vin

Time (ns)

Vo
lta

ge
 (V

)

Figure 6. The operation of the read circuit for two input current:
(left) Ir = 6.5μA; and (right) Ir = 1.1μA; the corresponding ni is 6 and 1.

0.00

0.75

1.50

0.00

0.75

1.50

0 20 40 60
400n

600n

800n

Z = 6

r = 9
Z

(V
)

r (
V)

D
 (:

-1
)

Time (ns)

D decreases

0.00

0.75

1.50

0.00

0.75

1.50

40 60 80 100
1.0µ

2.0µ

3.0µ

Z = 10

r = -7

Time (ns)

D increases

Z
(V

)
r (

V)
D

 (:
-1
)

Figure 7. The overlap in time between Z and r pulses tunes D.
Figure 6.7: The overlap in time between Z and r pulses tunes D.

6.3.2 Write

Fig. 6.7 shows the timing diagram of the parallel programming system with

programming time of 84 ns. When the write enable (WE) signal turns on, both Z

and r write circuitries start generating the pulses based on the values of Z and r

and, thus change the value of D during the overlap time. Fig. 6.7 demonstrates that

when r is positive, the programming occurs in the positive period and the value of D

decreases; when r is negative, the programming happens in the negative period and

the value of D increases.

The method of using overlap time of Z and r pulses with a certain granularity to

calculate r.Z introduces quantization error. To analyze this, we performed simula-

tions for all Z and r values. Fig. 6.8(b) compares the simulated results to an ideal

multiplication. The digital programming closely follows the theoretical value, while

producing the maximum error of 1 bit (out of 16 bits) when both Z and r are small.

97

The method of using overlap time of Z and r pulses with a
certain granularity to calculate introduces quantization
error. To analyze this, we performed simulations for all Z and
r values. Fig. 8(b) compares the simulated results to an ideal
multiplication. The digital programming closely follows the
theoretical value, while producing the maximum error of 1 bit
(out of 16 bits) when both Z and r are small.

IV. DEMONSTRATION IN LEARNING
We demonstrate the proposed system on the task of sparse

coding, and compare it against a software implementation.
MNIST data set [16] is used to learn the dictionary and extract
the image features, with ISTA [5] and SGD algorithm [6]. The
software ran on an Intel Core i7 3.4 GHz 8-core processor. The
initial dictionary and the learned dictionary are shown in Fig. 9.
It can be seen that the learned dictionary well captures local
features. Table II summarizes the computation time and energy
consumed by the software and our PARCA system. Both steps
of Update Z and Update D benefit from the parallel computing
of (); Update D is further accelerated by the
parallel write of . Overall, PARCA achieves more than
3000X speedup over the software implementation, with higher
power efficiency.

V. CONCLUSIONS
In this paper, we proposed a parallel architecture with

resistive crosspoint array for dictionary learning applications,
where each dictionary value is represented by the conductance
of a RRAM cell. The proposed bio-inspired read circuit
converts the RRAM current into digital values in an integrate-
and-fire fashion. Analogous to STDP, the write circuits employ
local signals of Z (duty cycle) and r (number of pulses or
spikes) to update the conductance of the entire RRAM array in
parallel. Peripheral circuits were implemented in 65nm CMOS,
and simulated with RRAM device models to accelerate
computation-intensive tasks in dictionary learning. PARCA

demonstrates 3000X acceleration for an image feature
extraction task when compared to ISTA and SGD sparse
coding software.

ACKNOWLEDGMENT
This research was partially supported by Raytheon through

the NSF I/UCRC Center for Embedded Systems, as well as the
Samsung GRO program.

REFERENCES
[1] G. S. Song, et al., “Competitive Hebbian learning through spike-timing-

dependent synaptic plasticity,” Nature Neuroscience, pp. 919-926, 2000.
[2] G. Bi and M. Poo, “Synaptic modifications in cultured Hippocampal

neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” J. of Neuroscience, vol. 18, no. 24, pp. 10464-
10472, Dec. 1998.

[3] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a spase code for natural images,” Letters to
Nature, vol. 381, no. 13, pp. 607-609, June 1996.

[4] I. Tosic and P. Frossard, “Dictionary learning,” IEEE Signal Process.
Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011.

[5] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,”
Communications on pure and applied mathematics, vol. 57, no. 11, pp.
1413–1457, 2004.

[6] L. Bottou and O. Bousquet, “The tradeoffs of large-scale learning,”
Optimization for Machine Learning, pp. 351, 2011.

[7] A. Afifi, A. Ayatollahi, F. Raissi, H. Hajghassem, “Efficient hybrid
CMOS-Nano circuit design for spiking neurons and memristive
synapses with STDP,” IEICE Trans. Fundamentals, vol. E93-A, no. 9,
pp. 1670-1677, Sept. 2010.

[8] B. Rajendran, et al., “Specifications of Nanoscale Devices and Circuits
for Neuromorphic Computational Systems,” IEEE Transaction on
Electron Devices, vol. 60, no. 1, pp. 246-253, 2013.

[9] S. H. Jo, et al., “Nanoscale memristor device as synapse in
neuromorphic systems,” Nano letters, vol. 10, no. 4, pp. 1297–1301,
2010.

[10] J. Liang, S. Yeh, S. S. Wong, and H.-S. P. Wong, “Effect of
wordline/bitline scaling on the performance, energy consumption, and
reliability of cross-point memory array,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 9, no. 1, p. 9, 2013

[11] L. F. Abbott, “Lapique’s introduction of the integrate-and-fire model
neuron (1907),” Brain Research Bulletin, vol. 50, no. 5/6, pp. 303-304,
1999.

[12] C. Mead, Analog VLSI and Neural Systems. Boston, MA: Addison
Wesley, 1989.

[13] H.-S. P. Wong, et al., “Metal Oxide RRAM,” Proceedings of the IEEE,
vol. 100, no. 6, pp. 1951-1970, 2012.

[14] S. Yu, et al., “A low energy oxide-based electronic synaptic device for
neuromorphic visual system with tolerance to device variation,”
Advanced Materials, vol. 25, no. 12, pp. 1774-1779, 2013.

[15] Z. Wang, “CMOS adjustable Schmitt triggers,” IEEE Transactions on
Instrumentation and Measurement, vol. 40, no. 3, pp. 601-605, 1991

[16] http://yann.lecun.com/exdb/mnist/.

-10 0 100 4 8 12

Theorectical (Zr)

Out of 16 bits:
Errmax: 1 bit
ErrRMS: 0.346 bit

Current (PA)

 w/o ATB
 w/ ATB

-10

0

10

D
ig

ita
lly

 P
ro

ga
m

m
ed

 (Z
r)

0

2

4

6

8

N
um

be
r o

f P
ul

se
s

Figure 8. Quantization of read and write circuits are shown. (a) Number of
pulses and RRAM current show a close-to-linear relationship. (b) Digitally
programmed pulse width closely follows the mathematical multiplication.

(a) Read
Quantization

(b) Write
Quantization

Figure 9. Demonstration of dictionary learning with MNIST data.
Before learning After learning

Task Software on CPU PARCA Acceleration

Update Z 17.2 ms (matrix op.) 5 µs (200 Read) 3440X

Update D 26.4 µs (matrix op.) 84 ns (1 Write) 314X

Total Time 17.2 ms 5.01 µs 3430X

Total Energy 208 mJ 0.2 μJ ‒
The task above is for one 10 x 10 image patch , with 100 times in ISTA
to update Z and once in SGD to update D.

TABLE II. EVALUATION OF THE SPEEDUP IN COMPUTING AND ENERGY

Figure 6.8: Quantization of read and write circuits are shown. (a) Number of pulses

and RRAM current show a close-to-linear relationship. (b) Digitally programmed

pulse width closely follows the mathematical multiplication.

6.4 Demonstration in Learning

We demonstrate the proposed system on the task of sparse coding, and compare

it against a software implementation. MNIST data set LeCun et al. (2010) is used

to learn the dictionary and extract the image features, with ISTA Daubechies et al.

(2004) and SGD algorithm Bottou and Bousquet (2008). The software ran on an Intel

Core i7 3.4 GHz 8-core processor. The initial dictionary and the learned dictionary

are shown in Fig. 6.9. It can be seen that the learned dictionary well captures local

features. Table 6.2 summarizes the computation time and energy consumed by the

software and our PARCA system. Both steps of Update Z and Update D benefit

from the parallel computing of D.Z (DT .r); Update D is further accelerated by the

parallel write of . Overall, PARCA achieves more than 3000× speedup over the

software implementation, with higher power efficiency.

98

The method of using overlap time of Z and r pulses with a
certain granularity to calculate introduces quantization
error. To analyze this, we performed simulations for all Z and
r values. Fig. 8(b) compares the simulated results to an ideal
multiplication. The digital programming closely follows the
theoretical value, while producing the maximum error of 1 bit
(out of 16 bits) when both Z and r are small.

IV. DEMONSTRATION IN LEARNING
We demonstrate the proposed system on the task of sparse

coding, and compare it against a software implementation.
MNIST data set [16] is used to learn the dictionary and extract
the image features, with ISTA [5] and SGD algorithm [6]. The
software ran on an Intel Core i7 3.4 GHz 8-core processor. The
initial dictionary and the learned dictionary are shown in Fig. 9.
It can be seen that the learned dictionary well captures local
features. Table II summarizes the computation time and energy
consumed by the software and our PARCA system. Both steps
of Update Z and Update D benefit from the parallel computing
of (); Update D is further accelerated by the
parallel write of . Overall, PARCA achieves more than
3000X speedup over the software implementation, with higher
power efficiency.

V. CONCLUSIONS
In this paper, we proposed a parallel architecture with

resistive crosspoint array for dictionary learning applications,
where each dictionary value is represented by the conductance
of a RRAM cell. The proposed bio-inspired read circuit
converts the RRAM current into digital values in an integrate-
and-fire fashion. Analogous to STDP, the write circuits employ
local signals of Z (duty cycle) and r (number of pulses or
spikes) to update the conductance of the entire RRAM array in
parallel. Peripheral circuits were implemented in 65nm CMOS,
and simulated with RRAM device models to accelerate
computation-intensive tasks in dictionary learning. PARCA

demonstrates 3000X acceleration for an image feature
extraction task when compared to ISTA and SGD sparse
coding software.

ACKNOWLEDGMENT
This research was partially supported by Raytheon through

the NSF I/UCRC Center for Embedded Systems, as well as the
Samsung GRO program.

REFERENCES
[1] G. S. Song, et al., “Competitive Hebbian learning through spike-timing-

dependent synaptic plasticity,” Nature Neuroscience, pp. 919-926, 2000.
[2] G. Bi and M. Poo, “Synaptic modifications in cultured Hippocampal

neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” J. of Neuroscience, vol. 18, no. 24, pp. 10464-
10472, Dec. 1998.

[3] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a spase code for natural images,” Letters to
Nature, vol. 381, no. 13, pp. 607-609, June 1996.

[4] I. Tosic and P. Frossard, “Dictionary learning,” IEEE Signal Process.
Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011.

[5] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,”
Communications on pure and applied mathematics, vol. 57, no. 11, pp.
1413–1457, 2004.

[6] L. Bottou and O. Bousquet, “The tradeoffs of large-scale learning,”
Optimization for Machine Learning, pp. 351, 2011.

[7] A. Afifi, A. Ayatollahi, F. Raissi, H. Hajghassem, “Efficient hybrid
CMOS-Nano circuit design for spiking neurons and memristive
synapses with STDP,” IEICE Trans. Fundamentals, vol. E93-A, no. 9,
pp. 1670-1677, Sept. 2010.

[8] B. Rajendran, et al., “Specifications of Nanoscale Devices and Circuits
for Neuromorphic Computational Systems,” IEEE Transaction on
Electron Devices, vol. 60, no. 1, pp. 246-253, 2013.

[9] S. H. Jo, et al., “Nanoscale memristor device as synapse in
neuromorphic systems,” Nano letters, vol. 10, no. 4, pp. 1297–1301,
2010.

[10] J. Liang, S. Yeh, S. S. Wong, and H.-S. P. Wong, “Effect of
wordline/bitline scaling on the performance, energy consumption, and
reliability of cross-point memory array,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 9, no. 1, p. 9, 2013

[11] L. F. Abbott, “Lapique’s introduction of the integrate-and-fire model
neuron (1907),” Brain Research Bulletin, vol. 50, no. 5/6, pp. 303-304,
1999.

[12] C. Mead, Analog VLSI and Neural Systems. Boston, MA: Addison
Wesley, 1989.

[13] H.-S. P. Wong, et al., “Metal Oxide RRAM,” Proceedings of the IEEE,
vol. 100, no. 6, pp. 1951-1970, 2012.

[14] S. Yu, et al., “A low energy oxide-based electronic synaptic device for
neuromorphic visual system with tolerance to device variation,”
Advanced Materials, vol. 25, no. 12, pp. 1774-1779, 2013.

[15] Z. Wang, “CMOS adjustable Schmitt triggers,” IEEE Transactions on
Instrumentation and Measurement, vol. 40, no. 3, pp. 601-605, 1991

[16] http://yann.lecun.com/exdb/mnist/.

-10 0 100 4 8 12

Theorectical (Zr)

Out of 16 bits:
Errmax: 1 bit
ErrRMS: 0.346 bit

Current (PA)

 w/o ATB
 w/ ATB

-10

0

10

D
ig

ita
lly

 P
ro

ga
m

m
ed

 (Z
r)

0

2

4

6

8

N
um

be
r o

f P
ul

se
s

Figure 8. Quantization of read and write circuits are shown. (a) Number of
pulses and RRAM current show a close-to-linear relationship. (b) Digitally
programmed pulse width closely follows the mathematical multiplication.

(a) Read
Quantization

(b) Write
Quantization

Figure 9. Demonstration of dictionary learning with MNIST data.
Before learning After learning

Task Software on CPU PARCA Acceleration

Update Z 17.2 ms (matrix op.) 5 µs (200 Read) 3440X

Update D 26.4 µs (matrix op.) 84 ns (1 Write) 314X

Total Time 17.2 ms 5.01 µs 3430X

Total Energy 208 mJ 0.2 μJ ‒
The task above is for one 10 x 10 image patch , with 100 times in ISTA
to update Z and once in SGD to update D.

TABLE II. EVALUATION OF THE SPEEDUP IN COMPUTING AND ENERGY

Figure 6.9: Demonstration of dictionary learning with MNIST data.

Table 6.2: Evaluation of the speedup in computing and energy.

Task Software of CPU PARCA Acceleration

Update Z 17.2 ms (matrix op.) 5 µs (200 Read) 3440X

Update D 26.4 µs (matrix op.) 84 ns (1 Write) 314X

Total Time 17.2 ms 5.01 µs 3430X

Total Energy 208 mJ 0.2 J -

6.5 Conclusion

In this paper, we proposed a parallel architecture with resistive crosspoint array

for dictionary learning applications, where each dictionary value is represented by

the conductance of a RRAM cell. The proposed bio-inspired read circuit converts

the RRAM current into digital values in an integrateand-fire fashion. Analogous to

STDP, the write circuits employ local signals of Z (duty cycle) and r (number of

pulses or spikes) to update the conductance of the entire RRAM array in parallel.

Peripheral circuits were implemented in 65nm CMOS, and simulated with RRAM de-

vice models to accelerate computation-intensive tasks in dictionary learning. PARCA

demonstrates 3000X acceleration for an image feature extraction task when compared

to ISTA and SGD sparse coding software.

99

Chapter 7

RANDOM SPARSE ADAPTATION

An array of multi-level resistive memory devices (RRAMs) can speed up the computa-

tion of deep learning algorithms. However, when a pre-trained model is programmed

to a real RRAM array for inference, its accuracy degrades due to many non-idealities,

such as variations, quantization error, and stuck-at faults. A conventional solution

involves multiple read-verify-write (R-V-W) for each RRAM cell, costing a long time

because of the slow Write speed and cell-by-cell compensation. In this chapter, we

shall look at a fundamentally new approach to overcome this issue: random sparse

adaptation (RSA) after the model is transferred to the RRAM array. By randomly

selecting a small portion of model parameters and mapping them to on-chip memory

for further training, we demonstrate an efficient and fast method to recover the accu-

racy: in CNNs for MNIST and CIFAR-10, 5% of model parameters is sufficient for

RSA even under excessive RRAM variations. As the back-propagation in training is

only applied to RSA cells and there is no need of any Write operation on RRAM, the

proposed RSA achieves 10-100X acceleration compared to R-V-W. Therefore, this

hybrid solution with a large, inaccurate RRAM array and a small, accurate on-chip

memory array promises both area efficiency and inference accuracy.

7.1 Introduction

Recent years have witnessed dramatic advances in deep learning research. These

networks involve multiple layers with the previous layer feeding the next layer (Fig.

7.1). However, in order to achieve human-level accuracy or even better, they tend

to be very complicated and demand a large amount of computation resource. The

100

need of hardware acceleration has been urgent and kindled a high interest on new

architectures and emerging devices. Among them, multi-level RRAM devices have

demonstrated the potential to speed up the dot product of vector-matrix multiplica-

tion (Fig. 7.1) (Xia et al. (2016)), achieving high energy efficiency and small footprint

(Gao et al. (2015), Alibart et al. (2012), Lee et al. (2012)).

On the other side, a realistic RRAM array has many non-idealities: high device-

to-device variation, limited precision, stuck-at-faults, limited on/off ratio, etc. A

Closed-Loop-on-Device (CLD) scheme was used in Hu et al. (2013), which repeat-

edly performs programming and sensing to do gradient descent on-chip. However, it

has an expensive feedback control and multiple writes to the RRAM, which is time

consuming. Other works like Liu et al. (2014), explored the Open-Loop-off-Device

(OLD) scheme, where pre-trained models are used to calculate the resistance values of

the devices and then programming and sensing is done over loop, Read-Verify-Write

(R-V-W), till the resistance values converge to the desired values. Variation-aware

training schemes are used in Liu et al. (2015a) and Chen et al. (2017), where read

operations are first done on the array to characterize the devices and model the de-

vice variations in the array. This model is then used as an input while training the

neural network offline. The drawback of this method is that the neural network has

to be trained from scratch for each chip. Moreover, inference accuracy in all of the

above methods are limited by the quantization error (number of levels) of the RRAM

device. Recognizing the expensive cost in time and characterization of RRAM, this

work proposed a novel scheme, with the contribution on:

1. Quantitative analysis of various non-idealities in the RRAM array on inference

accuracy of two representative datasets, MNIST and CIFAR-10.

2. A fundamentally new approach, Random Sparse Adaptation (RSA), to mitigate

101

W
hy

 R
RA

M
 a

rra
ys

 ?
•

Re
sis

tiv
e

ra
nd

om
-a

cc
es

s
m

em
or

y:
 n

on
-v

ol
at

ile
 d

ev
ic

e
wi

th

pr
og

ra
m

m
ab

le
 re

sis
ta

nc
e.

•
M

at
rix

 m
ul

tip
lic

at
io

ns
 (c

on
v,

fc
) c

an
 b

e
ef

fic
ie

nt
ly

m
ap

pe
d

us
in

g
re

sis
ta

nc
e

va
lu

es
 o

f R
RA

M
 d

ev
ic

es
 a

nd
 in

pu
t v

ol
ta

ge
s.

La
ye
r i

La
ye
r i+
1

w
nm

x i
1

x i
2

x i
3 x i
n

y i1 y i2 y im

28

R
es

is
tiv

e
C

el
l

C
w

R
w

R
w

C
w

C
r

R
r

x i
1

x i
2

x i
3

x i
n

se
1

se
2

se
m

y i1
y i2

y im
y i3

w
21

w
31

w
11

w
n1

w
2m

w
3m

w
1m

w
nm

F
ig

u
re

7.
1:

E
ac

h
la

ye
r

in
a

d
ee

p
n
eu

ra
l

n
et

w
or

k
ca

n
b

e
m

ap
p

ed
to

a
R

R
A

M
ar

ra
y

fo
r

ac
ce

le
ra

ti
on

.
T

h
e

n
eu

ra
l

n
et

w
or

k

is
fi
rs

t
tr

ai
n
ed

offl
in

e
an

d
th

e
op

ti
m

iz
ed

m
o
d
el

p
ar

am
te

rs
ar

e
se

le
ct

ed
.

T
h
e

w
ei

gh
ts

of
co

n
n
ec

ti
on

s
in

n
eu

ra
l

n
et

w
or

k
ar

e

th
en

en
co

d
ed

as
co

n
d
u
ct

an
ce

va
lu

es
of

R
R

A
M

d
ev

ic
es

u
si

n
g

w
ri

te
p
u
ls

es
of

ap
p
ro

p
ri

at
e

p
u
ls

e
w

id
th

s.
L

ay
er

w
is

e
ex

ec
u
ti

on

ca
n

b
e

p
er

fo
rm

ed
in

p
ar

al
le

l
gi

ve
n

th
at

w
e

h
av

e
en

ou
gh

re
ad

ci
rc

u
it

s
to

co
ll
ec

t
an

d
d
ig

it
iz

e
co

lu
m

n
ou

tp
u
ts

.

102

the impact with high effectiveness and efficiency.

3. Elimination of Write or device-level characterization to recover accuracy under

RRAM non-idealities. RSA achieves 10-100X speedup compared to R-V-W.

4. The hybrid implementation of RSA using a parallel, small, high precision on-

chip memory with the main, large, inaccurate RRAM array, enhancing the

accuracy by > 10 % for CIFAR-10 using RRAM only.

7.2 Non-ideal effects in a RRAM device

A realistic RRAM device only has finite levels, limited by On/Off resistance,

variations, etc. Write variation is assumed to follow a lognormal distribution (Lee

et al. (2012)):

r′ ← eθ.r (7.1)

θ ∼ N (0, σ) (7.2)

where, r′ is the actual value programmed, r is the intended value, N is the normal

distribution with 0 mean and σ standard deviation (Table 7.1). The nominal on- and

off- state resistances are set to 10kΩ to 1MΩ in our study. We assume 32 levels,

even though Alibart et al. (2012) demonstrated reliable operations with 128 levels.

Stuck-at-faults occur when a device is always at either high resistance state (SF1) or

low resistance state (SF0). In an array, SF1 and SF0 are assumed to affect 9.04%

and 1.75% of the devices, respectively (Chen et al. (2015b)). Cycle-to-cycle variation

(read variations) occur due to random noise in CMOS periphery circuits. They are

negligible compared to write variations and can be mitigated by improving CMOS

circuit design.

103

REFERENCES
[1] L. Xia, et al. “Switched by input: Power efficient structure for RRAM-

based convolutional neural network,” DAC, 2016.
[2] L. Gao, et al. “Programming protocol optimization for analog weight

tuning in resistive memories,” Electron Device Letters, 2015.
[3] F. Alibart, et al. “High precision tuning of state for memristive devices

by adaptable variation-tolerant algorithm,” Nanotechnology, 2012.
[4] S. R. Lee, et al. “Multi-level switching of triple-layered TaOx RRAM

with excellent reliability for storage class memory,” VLSIT, 2012.
[5] M. Hu, et al. “BSB training scheme implementation on memristor-

based circuit,” CISDA, 2013.
[6] B. Liu, et al. “Reduction and IR-drop compensations techniques for

reliable neuromorphic computing systems,” ICCAD, 2014.
[7] B. Liu, et al. “Vortex: variation-aware training for memristor x-bar,”

DAC, 2015.

[8] L. Chen, et al. “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” DATE, 2017.

[9] C.-Y. Chen, et al. “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE Transactions
on Computers, 2015.

[10] S. Park, et al. “RRAM-based synapse for neuromorphic system with
pattern recognition function,” IEDM, 2012.

[11] J. Woo, et al. “Improved synaptic behavior under identical pulses using
AlOx/HfO2 bilayer RRAM array for neuromorphic systems” EDL, 2016.

[12] D. Kadetotad, et al. “Parallel architecture with resistive crosspoint array
for dictionary learning acceleration,” JETCAS, 2015.

[13] M. Chang, et al. “19.4 embedded 1Mb ReRAM in 28nm CMOS with
0.27-to-1V read using swing-sample-and-couple sense amplifier and
self-boost-write-termination scheme,” ISSCC, 2014.

[14] S. Yu, et al. “Scaling-up resistive synaptic arrays for neuro-inspired
architecture: challenges and prospect,” IEDM, 2015.

-0.3

0.0

0.3

0 200 400 600 800 1000
-0.3

0.0

0.3

Id
ea

l V
al

ue
Parameters of fully connected layers (FC)
in LeNet

A
cu

ta
l V

al
ue

Parameter index

xi1

xi2

xi3

xin

se1 se2 sem

yi1 yi2 yimyi3

w21

w31

w11

wn1

w2m

w3m

w1m

wnm

Layeri Layeri+1

wnmxi1

xi2

xi3

xin

yi1

yi2

yim

𝒚𝒊𝒎 = 𝒘𝒏𝒎𝒙𝒊𝒏
𝒏

Fig. 6. A large amount of cells needs to be
verified, even if their values are ranked.

Table 1. Assumptions of major types of RRAM
device non-idealities.

Parameters Values
Write variation
(normal distribution)

𝑟′ → 𝑟𝑒𝜃
𝜃~𝑁(0, 𝜎2)

Quantization level 32

Stuck-at-high (SF1) 1.75%

Stuck-at-low (SF0) 9.04%

Ron/Roff 100
r’ is the real resistance stored in RRAM
and r is the ideal value to be written.

Fig. 1. Each layer in a deep neural network can be mapped to a RRAM array for acceleration.

Fig. 2. The deviation of model parameters after Write to the realistic RRAM array. Fig. 3. Accuracy degradation due to device non-idealities.

Fig. 4. The number of levels is critical to
inference, especially for complicated tasks.

Fig. 5. Write variation and quantization have
the most significant impact on accuracy.

-0.6 -0.3 0.0 0.3 0.6
0

6k

12k

19k

25k

32 levels of RRAM
V=0.8
SF0=1.75%
SF1=9.04%

 Realistic value
 with write
 variations

C
ou

nt

Weights of fully connected layer

 Ideal value

0 10 20 30

20

40

60

80

100
MNIST with LeNet: 10 level sufficient

CIFAR-10 with CNN: > 32 level needed

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Number of Levels in RRAM

 Ideal with 32-bit
 Realistic RRAM

0 20 40 60 80 100

20

40

60

80

100

CIFAR-10: > 90% of top cells to R-V-W

MNIST: > 40% of top cells to R-V-W

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RRAM to R-V-W (%)

 32-level, w/o variations
 R-V-W

0.0 0.5 1.0 1.5 2.0

20

40

60

80

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

V of Write Variation

 Variation only
 Variation + Quantization
 Variation + Quantization

 + Stuck-at-Fault

CIFAR-10
32 levels of quantization
SF0=1.75%
SF1=9.04%

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

 V�of Write Variation

In

fe
re

nc
e

A
cc

ur
ac

y
(%

)

MNIST:
LeNet, 7 layers
136,586 parameters

CIFAR-10:
CNN, 9 layers
1,068,810 parameters
No quantization error

Figure 7.2: The deviation of model parameters after write to the realistic RRAM

array. While the pre-trained models are 32-bit floating point numbers, real RRAM

devices can have 32 level of quantization. This distorts the distribution of model

parameters by forcing pretrained weights to nearest quantization level. Also RRAM

cannot encode the value of 0, because the conductance value cannot be 0. As a result

all parameters close to 0 are forced to the minimum value that can be encoded by the

RRAM (based on the maximum resistance state). That results in a step near values

of 0 as shown here.

Due to these non-idealities, the distribution of pre-trained model parameters is

distorted when they are programmed to a RRAM array (Fig. 7.2), resulting in sig-

nificant degradation of inference accuracy (Fig. 7.3). The performance of more com-

plex datasets, such as CIFAR-10, is even more sensitive to these device effects, as

illustrated in Fig. 7.3. Further study in Fig. 7.4 and Fig. 7.5 confirmed that device-

to-device variation and the quantization level affect the accuracy the most.

7.3 Random Sparse Adaptation

To recover the accuracy loss, R-V-W is commonly used. However, device-level

R-V-W is not effective: even R-V-W of the top ranked parameters requires a large

104

REFERENCES
[1] L. Xia, et al. “Switched by input: Power efficient structure for RRAM-

based convolutional neural network,” DAC, 2016.
[2] L. Gao, et al. “Programming protocol optimization for analog weight

tuning in resistive memories,” Electron Device Letters, 2015.
[3] F. Alibart, et al. “High precision tuning of state for memristive devices

by adaptable variation-tolerant algorithm,” Nanotechnology, 2012.
[4] S. R. Lee, et al. “Multi-level switching of triple-layered TaOx RRAM

with excellent reliability for storage class memory,” VLSIT, 2012.
[5] M. Hu, et al. “BSB training scheme implementation on memristor-

based circuit,” CISDA, 2013.
[6] B. Liu, et al. “Reduction and IR-drop compensations techniques for

reliable neuromorphic computing systems,” ICCAD, 2014.
[7] B. Liu, et al. “Vortex: variation-aware training for memristor x-bar,”

DAC, 2015.

[8] L. Chen, et al. “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” DATE, 2017.

[9] C.-Y. Chen, et al. “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE Transactions
on Computers, 2015.

[10] S. Park, et al. “RRAM-based synapse for neuromorphic system with
pattern recognition function,” IEDM, 2012.

[11] J. Woo, et al. “Improved synaptic behavior under identical pulses using
AlOx/HfO2 bilayer RRAM array for neuromorphic systems” EDL, 2016.

[12] D. Kadetotad, et al. “Parallel architecture with resistive crosspoint array
for dictionary learning acceleration,” JETCAS, 2015.

[13] M. Chang, et al. “19.4 embedded 1Mb ReRAM in 28nm CMOS with
0.27-to-1V read using swing-sample-and-couple sense amplifier and
self-boost-write-termination scheme,” ISSCC, 2014.

[14] S. Yu, et al. “Scaling-up resistive synaptic arrays for neuro-inspired
architecture: challenges and prospect,” IEDM, 2015.

-0.3

0.0

0.3

0 200 400 600 800 1000
-0.3

0.0

0.3

Id
ea

l V
al

ue

Parameters of fully connected layers (FC)
in LeNet

A
cu

ta
l V

al
ue

Parameter index

xi1

xi2

xi3

xin

se1 se2 sem

yi1 yi2 yimyi3

w21

w31

w11

wn1

w2m

w3m

w1m

wnm

Layeri Layeri+1

wnmxi1

xi2

xi3

xin

yi1

yi2

yim

𝒚𝒊𝒎 = 𝒘𝒏𝒎𝒙𝒊𝒏
𝒏

Fig. 6. A large amount of cells needs to be
verified, even if their values are ranked.

Table 1. Assumptions of major types of RRAM
device non-idealities.

Parameters Values
Write variation
(normal distribution)

𝑟′ → 𝑟𝑒𝜃
𝜃~𝑁(0, 𝜎2)

Quantization level 32

Stuck-at-high (SF1) 1.75%

Stuck-at-low (SF0) 9.04%

Ron/Roff 100
r’ is the real resistance stored in RRAM
and r is the ideal value to be written.

Fig. 1. Each layer in a deep neural network can be mapped to a RRAM array for acceleration.

Fig. 2. The deviation of model parameters after Write to the realistic RRAM array. Fig. 3. Accuracy degradation due to device non-idealities.

Fig. 4. The number of levels is critical to
inference, especially for complicated tasks.

Fig. 5. Write variation and quantization have
the most significant impact on accuracy.

-0.6 -0.3 0.0 0.3 0.6
0

6k

12k

19k

25k

32 levels of RRAM
V=0.8
SF0=1.75%
SF1=9.04%

 Realistic value
 with write
 variations

C
ou

nt

Weights of fully connected layer

 Ideal value

0 10 20 30

20

40

60

80

100
MNIST with LeNet: 10 level sufficient

CIFAR-10 with CNN: > 32 level needed

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Number of Levels in RRAM

 Ideal with 32-bit
 Realistic RRAM

0 20 40 60 80 100

20

40

60

80

100

CIFAR-10: > 90% of top cells to R-V-W

MNIST: > 40% of top cells to R-V-W

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RRAM to R-V-W (%)

 32-level, w/o variations
 R-V-W

0.0 0.5 1.0 1.5 2.0

20

40

60

80

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

V of Write Variation

 Variation only
 Variation + Quantization
 Variation + Quantization

 + Stuck-at-Fault

CIFAR-10
32 levels of quantization
SF0=1.75%
SF1=9.04%

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

 V�of Write Variation

In

fe
re

nc
e

A
cc

ur
ac

y
(%

)

MNIST:
LeNet, 7 layers
136,586 parameters

CIFAR-10:
CNN, 9 layers
1,068,810 parameters
No quantization error

Figure 7.3: Accuracy degradation due to device non-idealities in the form of write

variations, for two representative convolutional neural networks (LeNet for MNIST

dataset and a 9 layered CNN for CIFAR-10). It is assumed that the write variation

follows normal distribution. As demonstrated, deeper networks for more complicated

tasks are affected to much greater extent. When write variations have σ ≥ 1.0, the

outputs from RRAM array are almost random.

Table 7.1: Assumptions of major types of RRAM device non-idealities. Write vari-

ations is considered to follow a normal distribution with mean at the desired value.

Stuck-at-high (SF1) arises when certain cells are always at low impedance state no

matter what value in written to it. Similarly, Stuck-at-low (SF0) are cells which are

always at high impedance state irrespective of the value written to them.

Parameter Values

Write variation r′ → reθ, θ ∼ N (0, σ)

Quantization level 32

Stuck-at-high (SF1) 1.75%

Stuck-at-low (SF0) 9.04%

105

REFERENCES
[1] L. Xia, et al. “Switched by input: Power efficient structure for RRAM-

based convolutional neural network,” DAC, 2016.
[2] L. Gao, et al. “Programming protocol optimization for analog weight

tuning in resistive memories,” Electron Device Letters, 2015.
[3] F. Alibart, et al. “High precision tuning of state for memristive devices

by adaptable variation-tolerant algorithm,” Nanotechnology, 2012.
[4] S. R. Lee, et al. “Multi-level switching of triple-layered TaOx RRAM

with excellent reliability for storage class memory,” VLSIT, 2012.
[5] M. Hu, et al. “BSB training scheme implementation on memristor-

based circuit,” CISDA, 2013.
[6] B. Liu, et al. “Reduction and IR-drop compensations techniques for

reliable neuromorphic computing systems,” ICCAD, 2014.
[7] B. Liu, et al. “Vortex: variation-aware training for memristor x-bar,”

DAC, 2015.

[8] L. Chen, et al. “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” DATE, 2017.

[9] C.-Y. Chen, et al. “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE Transactions
on Computers, 2015.

[10] S. Park, et al. “RRAM-based synapse for neuromorphic system with
pattern recognition function,” IEDM, 2012.

[11] J. Woo, et al. “Improved synaptic behavior under identical pulses using
AlOx/HfO2 bilayer RRAM array for neuromorphic systems” EDL, 2016.

[12] D. Kadetotad, et al. “Parallel architecture with resistive crosspoint array
for dictionary learning acceleration,” JETCAS, 2015.

[13] M. Chang, et al. “19.4 embedded 1Mb ReRAM in 28nm CMOS with
0.27-to-1V read using swing-sample-and-couple sense amplifier and
self-boost-write-termination scheme,” ISSCC, 2014.

[14] S. Yu, et al. “Scaling-up resistive synaptic arrays for neuro-inspired
architecture: challenges and prospect,” IEDM, 2015.

-0.3

0.0

0.3

0 200 400 600 800 1000
-0.3

0.0

0.3

Id
ea

l V
al

ue

Parameters of fully connected layers (FC)
in LeNet

A
cu

ta
l V

al
ue

Parameter index

xi1

xi2

xi3

xin

se1 se2 sem

yi1 yi2 yimyi3

w21

w31

w11

wn1

w2m

w3m

w1m

wnm

Layeri Layeri+1

wnmxi1

xi2

xi3

xin

yi1

yi2

yim

𝒚𝒊𝒎 = 𝒘𝒏𝒎𝒙𝒊𝒏
𝒏

Fig. 6. A large amount of cells needs to be
verified, even if their values are ranked.

Table 1. Assumptions of major types of RRAM
device non-idealities.

Parameters Values
Write variation
(normal distribution)

𝑟′ → 𝑟𝑒𝜃
𝜃~𝑁(0, 𝜎2)

Quantization level 32

Stuck-at-high (SF1) 1.75%

Stuck-at-low (SF0) 9.04%

Ron/Roff 100
r’ is the real resistance stored in RRAM
and r is the ideal value to be written.

Fig. 1. Each layer in a deep neural network can be mapped to a RRAM array for acceleration.

Fig. 2. The deviation of model parameters after Write to the realistic RRAM array. Fig. 3. Accuracy degradation due to device non-idealities.

Fig. 4. The number of levels is critical to
inference, especially for complicated tasks.

Fig. 5. Write variation and quantization have
the most significant impact on accuracy.

-0.6 -0.3 0.0 0.3 0.6
0

6k

12k

19k

25k

32 levels of RRAM
V=0.8
SF0=1.75%
SF1=9.04%

 Realistic value
 with write
 variations

C
ou

nt

Weights of fully connected layer

 Ideal value

0 10 20 30

20

40

60

80

100
MNIST with LeNet: 10 level sufficient

CIFAR-10 with CNN: > 32 level needed

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Number of Levels in RRAM

 Ideal with 32-bit
 Realistic RRAM

0 20 40 60 80 100

20

40

60

80

100

CIFAR-10: > 90% of top cells to R-V-W

MNIST: > 40% of top cells to R-V-W

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RRAM to R-V-W (%)

 32-level, w/o variations
 R-V-W

0.0 0.5 1.0 1.5 2.0

20

40

60

80

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

V of Write Variation

 Variation only
 Variation + Quantization
 Variation + Quantization

 + Stuck-at-Fault

CIFAR-10
32 levels of quantization
SF0=1.75%
SF1=9.04%

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

 V�of Write Variation

In

fe
re

nc
e

A
cc

ur
ac

y
(%

)

MNIST:
LeNet, 7 layers
136,586 parameters

CIFAR-10:
CNN, 9 layers
1,068,810 parameters
No quantization error

Figure 7.4: Effect of limited quantization levels available in RRAM devices. It is

assumed here that the devices have no write variations. As shown, number of levels

is critical to inference, especially for complicated tasks and deeper neural networks.

In this work we have assumed 32 levels in RRAM devices.

REFERENCES
[1] L. Xia, et al. “Switched by input: Power efficient structure for RRAM-

based convolutional neural network,” DAC, 2016.
[2] L. Gao, et al. “Programming protocol optimization for analog weight

tuning in resistive memories,” Electron Device Letters, 2015.
[3] F. Alibart, et al. “High precision tuning of state for memristive devices

by adaptable variation-tolerant algorithm,” Nanotechnology, 2012.
[4] S. R. Lee, et al. “Multi-level switching of triple-layered TaOx RRAM

with excellent reliability for storage class memory,” VLSIT, 2012.
[5] M. Hu, et al. “BSB training scheme implementation on memristor-

based circuit,” CISDA, 2013.
[6] B. Liu, et al. “Reduction and IR-drop compensations techniques for

reliable neuromorphic computing systems,” ICCAD, 2014.
[7] B. Liu, et al. “Vortex: variation-aware training for memristor x-bar,”

DAC, 2015.

[8] L. Chen, et al. “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” DATE, 2017.

[9] C.-Y. Chen, et al. “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE Transactions
on Computers, 2015.

[10] S. Park, et al. “RRAM-based synapse for neuromorphic system with
pattern recognition function,” IEDM, 2012.

[11] J. Woo, et al. “Improved synaptic behavior under identical pulses using
AlOx/HfO2 bilayer RRAM array for neuromorphic systems” EDL, 2016.

[12] D. Kadetotad, et al. “Parallel architecture with resistive crosspoint array
for dictionary learning acceleration,” JETCAS, 2015.

[13] M. Chang, et al. “19.4 embedded 1Mb ReRAM in 28nm CMOS with
0.27-to-1V read using swing-sample-and-couple sense amplifier and
self-boost-write-termination scheme,” ISSCC, 2014.

[14] S. Yu, et al. “Scaling-up resistive synaptic arrays for neuro-inspired
architecture: challenges and prospect,” IEDM, 2015.

-0.3

0.0

0.3

0 200 400 600 800 1000
-0.3

0.0

0.3

Id
ea

l V
al

ue

Parameters of fully connected layers (FC)
in LeNet

A
cu

ta
l V

al
ue

Parameter index

xi1

xi2

xi3

xin

se1 se2 sem

yi1 yi2 yimyi3

w21

w31

w11

wn1

w2m

w3m

w1m

wnm

Layeri Layeri+1

wnmxi1

xi2

xi3

xin

yi1

yi2

yim

𝒚𝒊𝒎 = 𝒘𝒏𝒎𝒙𝒊𝒏
𝒏

Fig. 6. A large amount of cells needs to be
verified, even if their values are ranked.

Table 1. Assumptions of major types of RRAM
device non-idealities.

Parameters Values
Write variation
(normal distribution)

𝑟′ → 𝑟𝑒𝜃
𝜃~𝑁(0, 𝜎2)

Quantization level 32

Stuck-at-high (SF1) 1.75%

Stuck-at-low (SF0) 9.04%

Ron/Roff 100
r’ is the real resistance stored in RRAM
and r is the ideal value to be written.

Fig. 1. Each layer in a deep neural network can be mapped to a RRAM array for acceleration.

Fig. 2. The deviation of model parameters after Write to the realistic RRAM array. Fig. 3. Accuracy degradation due to device non-idealities.

Fig. 4. The number of levels is critical to
inference, especially for complicated tasks.

Fig. 5. Write variation and quantization have
the most significant impact on accuracy.

-0.6 -0.3 0.0 0.3 0.6
0

6k

12k

19k

25k

32 levels of RRAM
V=0.8
SF0=1.75%
SF1=9.04%

 Realistic value
 with write
 variations

C
ou

nt

Weights of fully connected layer

 Ideal value

0 10 20 30

20

40

60

80

100
MNIST with LeNet: 10 level sufficient

CIFAR-10 with CNN: > 32 level needed

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Number of Levels in RRAM

 Ideal with 32-bit
 Realistic RRAM

0 20 40 60 80 100

20

40

60

80

100

CIFAR-10: > 90% of top cells to R-V-W

MNIST: > 40% of top cells to R-V-W

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RRAM to R-V-W (%)

 32-level, w/o variations
 R-V-W

0.0 0.5 1.0 1.5 2.0

20

40

60

80

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

V of Write Variation

 Variation only
 Variation + Quantization
 Variation + Quantization

 + Stuck-at-Fault

CIFAR-10
32 levels of quantization
SF0=1.75%
SF1=9.04%

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

 V�of Write Variation

In

fe
re

nc
e

A
cc

ur
ac

y
(%

)

MNIST:
LeNet, 7 layers
136,586 parameters

CIFAR-10:
CNN, 9 layers
1,068,810 parameters
No quantization error

Figure 7.5: Effect of all non-idealities in RRAM arrays on inference accuracy. The

critical non-idealities include device-to-device write variations, quantization errors,

stuck-at-faults (SF0 and SF1). The effects of cycle-to-cycle read variations in RRAM

devices is negligible compared to others and is not considered in this work. Write

variation and quantization have the most significant impact on accuracy.

106

REFERENCES
[1] L. Xia, et al. “Switched by input: Power efficient structure for RRAM-

based convolutional neural network,” DAC, 2016.
[2] L. Gao, et al. “Programming protocol optimization for analog weight

tuning in resistive memories,” Electron Device Letters, 2015.
[3] F. Alibart, et al. “High precision tuning of state for memristive devices

by adaptable variation-tolerant algorithm,” Nanotechnology, 2012.
[4] S. R. Lee, et al. “Multi-level switching of triple-layered TaOx RRAM

with excellent reliability for storage class memory,” VLSIT, 2012.
[5] M. Hu, et al. “BSB training scheme implementation on memristor-

based circuit,” CISDA, 2013.
[6] B. Liu, et al. “Reduction and IR-drop compensations techniques for

reliable neuromorphic computing systems,” ICCAD, 2014.
[7] B. Liu, et al. “Vortex: variation-aware training for memristor x-bar,”

DAC, 2015.

[8] L. Chen, et al. “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” DATE, 2017.

[9] C.-Y. Chen, et al. “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE Transactions
on Computers, 2015.

[10] S. Park, et al. “RRAM-based synapse for neuromorphic system with
pattern recognition function,” IEDM, 2012.

[11] J. Woo, et al. “Improved synaptic behavior under identical pulses using
AlOx/HfO2 bilayer RRAM array for neuromorphic systems” EDL, 2016.

[12] D. Kadetotad, et al. “Parallel architecture with resistive crosspoint array
for dictionary learning acceleration,” JETCAS, 2015.

[13] M. Chang, et al. “19.4 embedded 1Mb ReRAM in 28nm CMOS with
0.27-to-1V read using swing-sample-and-couple sense amplifier and
self-boost-write-termination scheme,” ISSCC, 2014.

[14] S. Yu, et al. “Scaling-up resistive synaptic arrays for neuro-inspired
architecture: challenges and prospect,” IEDM, 2015.

-0.3

0.0

0.3

0 200 400 600 800 1000
-0.3

0.0

0.3

Id
ea

l V
al

ue

Parameters of fully connected layers (FC)
in LeNet

A
cu

ta
l V

al
ue

Parameter index

xi1

xi2

xi3

xin

se1 se2 sem

yi1 yi2 yimyi3

w21

w31

w11

wn1

w2m

w3m

w1m

wnm

Layeri Layeri+1

wnmxi1

xi2

xi3

xin

yi1

yi2

yim

𝒚𝒊𝒎 = 𝒘𝒏𝒎𝒙𝒊𝒏
𝒏

Fig. 6. A large amount of cells needs to be
verified, even if their values are ranked.

Table 1. Assumptions of major types of RRAM
device non-idealities.

Parameters Values
Write variation
(normal distribution)

𝑟′ → 𝑟𝑒𝜃
𝜃~𝑁(0, 𝜎2)

Quantization level 32

Stuck-at-high (SF1) 1.75%

Stuck-at-low (SF0) 9.04%

Ron/Roff 100
r’ is the real resistance stored in RRAM
and r is the ideal value to be written.

Fig. 1. Each layer in a deep neural network can be mapped to a RRAM array for acceleration.

Fig. 2. The deviation of model parameters after Write to the realistic RRAM array. Fig. 3. Accuracy degradation due to device non-idealities.

Fig. 4. The number of levels is critical to
inference, especially for complicated tasks.

Fig. 5. Write variation and quantization have
the most significant impact on accuracy.

-0.6 -0.3 0.0 0.3 0.6
0

6k

12k

19k

25k

32 levels of RRAM
V=0.8
SF0=1.75%
SF1=9.04%

 Realistic value
 with write
 variations

C
ou

nt

Weights of fully connected layer

 Ideal value

0 10 20 30

20

40

60

80

100
MNIST with LeNet: 10 level sufficient

CIFAR-10 with CNN: > 32 level needed

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Number of Levels in RRAM

 Ideal with 32-bit
 Realistic RRAM

0 20 40 60 80 100

20

40

60

80

100

CIFAR-10: > 90% of top cells to R-V-W

MNIST: > 40% of top cells to R-V-W

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RRAM to R-V-W (%)

 32-level, w/o variations
 R-V-W

0.0 0.5 1.0 1.5 2.0

20

40

60

80

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

V of Write Variation

 Variation only
 Variation + Quantization
 Variation + Quantization

 + Stuck-at-Fault

CIFAR-10
32 levels of quantization
SF0=1.75%
SF1=9.04%

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

 V�of Write Variation

In

fe
re

nc
e

A
cc

ur
ac

y
(%

)

MNIST:
LeNet, 7 layers
136,586 parameters

CIFAR-10:
CNN, 9 layers
1,068,810 parameters
No quantization error

Figure 7.6: A large amount of cells needs to be verified, even if their values are ranked.

portion of them (Fig. 7.6). As accurate write operation in RRAM is very slow

compared to on-chip memory (Table 7.2), R-V-W takes a very long time for sufficient

accuracy recovery (Table 7.3).

In contrast to device-level R-V-W, machine learning algorithms themselves, such

as training, are very robust to parameter changes, because of the redundancy in the

solution space and the adaption in training. Such observation inspires us to the

RSA scheme for post-model mapping to the RRAM array. Instead of correcting each

Table 7.2: Timing parameters and sizes for RRAM and on-chip memory. On-chip

memory, such as Register File (RF), is much faster in Write, but has a larger size.

RRAM RF

Material HfOx TiOx TaOx W/Al/PCMO/Pt AlOx/HfO2 Si

Levels 16 128 4 2 2 32-bit

Write time 6.5s 60s 1.5ms 500s 4 ms 1 ns

Read time 24 404 ns 1 ns

Array size 1000 x 1000 100 cells

Area 1064F 2 1041.5F 2

107

T
ab

le
7.

3:
H

ig
h

co
st

in
op

er
at

io
n

ti
m

e
w

h
en

R
-V

-W
is

ap
p
li
ed

.
T

h
is

is
d
u
e

to
b

ot
h

th
e

lo
n
g

W
ri

te
ti

m
e

of
R

R
A

M
d
ev

ic
es

an
d

th
e

in
eff

ec
ti

ve
n
es

s
of

R
-V

-W
,

ev
en

th
ou

gh
in

R
-V

-W
th

e
p
ar

am
et

er
s

ar
e

so
rt

ed
fi
rs

t
b
y

th
ei

r
va

lu
es

an
d

to
p

on
es

ar
e

ve
ri

fi
ed

.
A

s
ob

se
rv

ed
,

fo
r

M
N

IS
T

,
to

re
co

ve
r

in
fe

re
n
ce

ac
cu

ra
cy

w
it

h
in

1%
of

m
ax

im
u
m

ac
h
ie

va
b
le

w
it

h
32

le
ve

l
R

R
A

M

d
ev

ic
es

R
-V

-W
n
ee

d
s

to
co

rr
ec

tl
y

p
ro

gr
am

to
p

40
%

of
th

e
p
ar

am
et

er
s

w
h
ic

h
ta

ke
s
∼

82
se

co
n
d
s.

F
or

C
IF

A
R

-1
0,

ev
en

w
it

h
co

rr
ec

t
p
ro

gr
am

m
in

g
of

10
0%

of
th

e
R

R
A

M
ce

ll
s,

w
e

ca
n

re
ac

h
ac

cu
ra

cy
of

65
.1

8%
an

d
it

ta
ke

s
∼

23
89

se
co

n
d
s.

T
h
is

sh
ow

s
th

at
,

ve
ri

fy
in

g
an

d
co

rr
ec

tl
y

p
ro

gr
am

m
in

g
ev

er
y

ce
ll

to
en

co
d
e

d
es

ir
ed

co
n
d
u
ct

an
ce

va
lu

es
is

ve
ry

in
-e

ffi
ci

en
t.

%
o
f

R
R

A
M

ce
ll
s

fo
r

R
-V

-W
5%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

M
N

IS
T

A
cc

u
ra

cy
(%

)
90

.3
3

85
.4

9
92

.9
8

97
.6

4
98

.6
6

98
.7

9
98

.9
1

99
.1

2
99

.1
2

99
.1

2
99

.1
4

T
im

e
(s

)
10

.2
20

.5
41

.0
61

.5
82

.0
10

2
12

3
14

3
16

4
18

4
20

3

C
IF

A
R

-1
0

A
cc

u
ra

cy
(%

)
23

.4
2

27
.5

5
30

.1
6

37
.1

1
35

.9
9

45
.0

5
56

.9
62

.9
5

62
.2

9
63

.9
2

65
.1

8

T
im

e
(s

)
12

1
24

1
48

3
72

4
96

5
12

06
14

47
16

89
19

30
21

71
23

89

108

Fig. 7. RSA randomly selects a certain portion of cells
(shadowed cells) and re-trains them.

Table 2. Timing parameters and sizes for RRAM and on-chip memory. On-chip memory,
such as Register File (RF), is much faster in Write, but has a larger size.

 RRAM RF

Material HfOx [2] TiOx [3] TaOx [4] W/Al/PCMO/Pt
[10]

AlOx/HfO2
[11] Si

Levels 16 128 4 2 2 32-bit
Write time 6.5 Ps 60 Ps 1.5 ms 500 Ps 4 ms 1 ns
Read time 24 – 404 ns [12][13] 1 ns
Array size 1000 x 1000 100 cells
Area 106×4F2 104×1.5F2

 F is the feature size of lithography [14].

Fig. 8. Regularized RSA: each row or column
has the same number of cells to be randomly
selected, to reduce the size of the RSA array.

Fig. 9. The network structure, design and flow using RF for RSA cells. The backpropagation only goes through RF cells. RRAM is Read only.

Table 3. High cost in operation time when R-V-W is applied. This is due to both the long Write
time of RRAM devices and the ineffectiveness of R-V-W, even though in R-V-W the parameters

are sorted first by their values and top ones are verified.

% of RRAM cells for
R-V-W 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MNIST

Accuracy
(%) 90.33 85.49 92.98 97.64 98.66 98.79 98.91 99.12 99.12 99.12 99.14

Time (s) 10.2 20.5 41.0 61.5 82.0 102 123 143 164 184 203

CIFAR10

Accuracy
(%) 23.42 27.55 30.16 37.11 35.99 45.05 56.9 62.95 62.29 63.92 65.18

Time (s) 121 241 483 724 965 1206 1447 1689 1930 2171 2389

Fig. 12. RSA rapidly recovers the accuracy,
achieving 10-100x speedup over R-V-W.

input: Network architecture Netideal, Dataset
1 Train baseline: Wideal train(Netideal, Dataset)
2 Add RRAM models: Wreal addVariations(Wideal)
3 for conv and fc layers in Net do
4 Create parallel RSA trainable layers
5 Initialize: WRSA truncated normal distribution
6 Create mask: mask; WRSA WRSA×mask

7 while Convergence True do
8 Forward: read RRAM and RSA
9 Compute gradient: gr gradients()
10 Remove gradients of not selected: grmasked gr×mask
11 Calculate weight change: DWRSA f(grmasked)
12 Backpropagation: write RSA only, WRSA WRSA + DWRSA

Fig. 10. A small amount of 32-bit RSA cells
effectively improves the accuracy.

Fig. 11. The training of RSA does not require
the full dataset to recover the accuracy.

0 12k 24k 36k

81.0

82.8

96.9

97.4

98.0

98.6

0 12k 24k 36k

30

45

60

75

32 levels quantization

w/o variations

Training batch size: 64

w/o variations

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Training Times

% of cells to be trained
(from bottom to top):
1%, 3%, 5%, 10%

MNIST with LeNet CIFAR-10 with CNN

0 3 6 9 12 15

60

80

100

CIFAR-10

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RSA Cells (%)

 32-level, w/o variations
 Re-trained with 32-bit RSA cells

MNIST

0 90 180
80

85

90

95

100

0 800 1600 2400

30

45

60

75

LeNet on MNISTIn
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Time (s)

 RSA
 R-V-W

10X

Speed up
100X

Speed up

CNN on CIFAR-10

Time (s)

The compact RSA
array for physical
implementation

Figure 7.7: RSA randomly selects a certain portion of cells (shadowed cells) and re-

trains them. Re-training can be considered as a online learning/adaptation procedure

which aims at mitigating the effects of array non-idealities. During the training pro-

cess, the weights stored on the selected cells are adjusted so as to move the networks

transform function to a nearby minimal loss point and thus recover from the lost

accuracy.

RRAM cell, what we need to adapt is only a small portion of the model to gain the

accuracy back. The selection should be random to cover the feature space; it will be

sparse since the majority of the model distribution is still correct. Fig. 7.7 presents

the concept of RSA.

7.3.1 Regularized random sparse selection

Running gradient descent on-chip while modifying the RRAM cells is slow and

inefficient. The RSA method proposes to randomly select a small subset of cells and

replicate them in a separate on-chip memory (Fig. 7.7), effectively enhancing the

programming speed in adaptation. The random selection is further regularized in the

sense that an equal number of cells will be selected from each row and column of the

original array, such that the selected cells can be compiled into a rectangular array

109

Fig. 7. RSA randomly selects a certain portion of cells
(shadowed cells) and re-trains them.

Table 2. Timing parameters and sizes for RRAM and on-chip memory. On-chip memory,
such as Register File (RF), is much faster in Write, but has a larger size.

 RRAM RF

Material HfOx [2] TiOx [3] TaOx [4] W/Al/PCMO/Pt
[10]

AlOx/HfO2
[11] Si

Levels 16 128 4 2 2 32-bit
Write time 6.5 Ps 60 Ps 1.5 ms 500 Ps 4 ms 1 ns
Read time 24 – 404 ns [12][13] 1 ns
Array size 1000 x 1000 100 cells
Area 106×4F2 104×1.5F2

 F is the feature size of lithography [14].

Fig. 8. Regularized RSA: each row or column
has the same number of cells to be randomly
selected, to reduce the size of the RSA array.

Fig. 9. The network structure, design and flow using RF for RSA cells. The backpropagation only goes through RF cells. RRAM is Read only.

Table 3. High cost in operation time when R-V-W is applied. This is due to both the long Write
time of RRAM devices and the ineffectiveness of R-V-W, even though in R-V-W the parameters

are sorted first by their values and top ones are verified.

% of RRAM cells for
R-V-W 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MNIST

Accuracy
(%) 90.33 85.49 92.98 97.64 98.66 98.79 98.91 99.12 99.12 99.12 99.14

Time (s) 10.2 20.5 41.0 61.5 82.0 102 123 143 164 184 203

CIFAR10

Accuracy
(%) 23.42 27.55 30.16 37.11 35.99 45.05 56.9 62.95 62.29 63.92 65.18

Time (s) 121 241 483 724 965 1206 1447 1689 1930 2171 2389

Fig. 12. RSA rapidly recovers the accuracy,
achieving 10-100x speedup over R-V-W.

input: Network architecture Netideal, Dataset
1 Train baseline: Wideal train(Netideal, Dataset)
2 Add RRAM models: Wreal addVariations(Wideal)
3 for conv and fc layers in Net do
4 Create parallel RSA trainable layers
5 Initialize: WRSA truncated normal distribution
6 Create mask: mask; WRSA WRSA×mask

7 while Convergence True do
8 Forward: read RRAM and RSA
9 Compute gradient: gr gradients()
10 Remove gradients of not selected: grmasked gr×mask
11 Calculate weight change: DWRSA f(grmasked)
12 Backpropagation: write RSA only, WRSA WRSA + DWRSA

Fig. 10. A small amount of 32-bit RSA cells
effectively improves the accuracy.

Fig. 11. The training of RSA does not require
the full dataset to recover the accuracy.

0 12k 24k 36k

81.0

82.8

96.9

97.4

98.0

98.6

0 12k 24k 36k

30

45

60

75

32 levels quantization

w/o variations

Training batch size: 64

w/o variations

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Training Times

% of cells to be trained
(from bottom to top):
1%, 3%, 5%, 10%

MNIST with LeNet CIFAR-10 with CNN

0 3 6 9 12 15

60

80

100

CIFAR-10

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RSA Cells (%)

 32-level, w/o variations
 Re-trained with 32-bit RSA cells

MNIST

0 90 180
80

85

90

95

100

0 800 1600 2400

30

45

60

75

LeNet on MNISTIn
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Time (s)

 RSA
 R-V-W

10X

Speed up
100X

Speed up

CNN on CIFAR-10

Time (s)

The compact RSA
array for physical
implementation

Figure 7.8: The network structure, design and flow using RF for RSA cells. The pre-

trained network is first mapped to the RRAM array. The random connections selected

for RSA are mapped to RF cell array and initialized with random normal distribu-

tion. RSA backpropagates only goes through RF cells. Since we READ/WRITE on

RF cells and RRAM is used in read only mode, RSA is very fast.

for a compact footprint of the RSA array and the periphery circuitry (Fig. 7.7). The

cell positions are still random and the random connection between RSA and RRAM

input/output are hard wired (Fig. 7.8). Pseudo code for RSA on hardware is shown

in Algorithm 5.

7.3.2 Network adaptation using RSA

Fig. 7.8 presents the architecture, design and operation of the proposed RSA

scheme. First, pre-trained models are programmed to RRAM array and the on-

chip RSA cells are initialized from random-normal distribution with 0 mean and 0.1

standard deviation. During the feedforward path for inference, the input to the layers

are passed to both RRAM array and parallel on-chip RSA memory. The output from

both of these are added to generate the overall layer output. During back-propagation

110

Algorithm 5 Pseudo code for Random Sparse Adaptation on hardware.

1: procedure RSA(Network architecture Netideal, Dataset)

2: Train baseline: Wideal ← train(Netideal, Dataset)

3: Add RRAM models: Wreal ← addV ariations(Wideal)

4: for conv and fc layers in Net do

5: Create parallel RSA trainable layers

6: Initialize: WRSA ← truncated normal distribution

7: Create mask: mask; WRSA ← WRSA ×mask

8: while convergence 6= True do

9: Forward: read RRAM and RSA

10: Compute gradient: gr ← gradients()

11: Remove gradients of not selected: grmasked ← gr ×mask
12: Calculate weight change: DWRSA ← f(grmasked)

13: Backpropagation: write RSA only, WRSA ← WRSA + ∆WRSA

for training, RRAM only has Read and the output is combined with RSAs to calculate

the gradient, which is then used to adapt the RSA cells. As the parameters on RRAM

array are masked as non-trainable in this method, no Write is applied on RRAM cells.

Only the on-chip RSA cells are modified to tune the overall network in the direction

to improve the accuracy. Fig. 7.8 shows the pseudo code for training the on-chip

RSA parameters. With the elimination of Write on RRAM, the speed of this method

is not limited by RRAM device anymore.

7.4 Demonstration of RSA

To demonstrate the efficacy of RSA, two representative datasets are used, MNIST

for handwritten digit recognition and CIFAR-10 for more complicated image recog-

nition. RRAM Write variations, quantization error and stuck-at-faults are modeled

in Table 7.1. To estimate the performance of R-V-W and RSA, related timing pa-

111

Fig. 7. RSA randomly selects a certain portion of cells
(shadowed cells) and re-trains them.

Table 2. Timing parameters and sizes for RRAM and on-chip memory. On-chip memory,
such as Register File (RF), is much faster in Write, but has a larger size.

 RRAM RF

Material HfOx [2] TiOx [3] TaOx [4] W/Al/PCMO/Pt
[10]

AlOx/HfO2
[11] Si

Levels 16 128 4 2 2 32-bit
Write time 6.5 Ps 60 Ps 1.5 ms 500 Ps 4 ms 1 ns
Read time 24 – 404 ns [12][13] 1 ns
Array size 1000 x 1000 100 cells
Area 106×4F2 104×1.5F2

 F is the feature size of lithography [14].

Fig. 8. Regularized RSA: each row or column
has the same number of cells to be randomly
selected, to reduce the size of the RSA array.

Fig. 9. The network structure, design and flow using RF for RSA cells. The backpropagation only goes through RF cells. RRAM is Read only.

Table 3. High cost in operation time when R-V-W is applied. This is due to both the long Write
time of RRAM devices and the ineffectiveness of R-V-W, even though in R-V-W the parameters

are sorted first by their values and top ones are verified.

% of RRAM cells for
R-V-W 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MNIST

Accuracy
(%) 90.33 85.49 92.98 97.64 98.66 98.79 98.91 99.12 99.12 99.12 99.14

Time (s) 10.2 20.5 41.0 61.5 82.0 102 123 143 164 184 203

CIFAR10

Accuracy
(%) 23.42 27.55 30.16 37.11 35.99 45.05 56.9 62.95 62.29 63.92 65.18

Time (s) 121 241 483 724 965 1206 1447 1689 1930 2171 2389

Fig. 12. RSA rapidly recovers the accuracy,
achieving 10-100x speedup over R-V-W.

input: Network architecture Netideal, Dataset
1 Train baseline: Wideal train(Netideal, Dataset)
2 Add RRAM models: Wreal addVariations(Wideal)
3 for conv and fc layers in Net do
4 Create parallel RSA trainable layers
5 Initialize: WRSA truncated normal distribution
6 Create mask: mask; WRSA WRSA×mask

7 while Convergence True do
8 Forward: read RRAM and RSA
9 Compute gradient: gr gradients()
10 Remove gradients of not selected: grmasked gr×mask
11 Calculate weight change: DWRSA f(grmasked)
12 Backpropagation: write RSA only, WRSA WRSA + DWRSA

Fig. 10. A small amount of 32-bit RSA cells
effectively improves the accuracy.

Fig. 11. The training of RSA does not require
the full dataset to recover the accuracy.

0 12k 24k 36k

81.0

82.8

96.9

97.4

98.0

98.6

0 12k 24k 36k

30

45

60

75

32 levels quantization

w/o variations

Training batch size: 64

w/o variations

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Training Times

% of cells to be trained
(from bottom to top):
1%, 3%, 5%, 10%

MNIST with LeNet CIFAR-10 with CNN

0 3 6 9 12 15

60

80

100

CIFAR-10

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RSA Cells (%)

 32-level, w/o variations
 Re-trained with 32-bit RSA cells

MNIST

0 90 180
80

85

90

95

100

0 800 1600 2400

30

45

60

75

LeNet on MNISTIn
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Time (s)

 RSA
 R-V-W

10X

Speed up
100X

Speed up

CNN on CIFAR-10

Time (s)

The compact RSA
array for physical
implementation

Figure 7.9: A small number of 32-bit RSA cells effectively improves the accuracy. As

observed, for simple tasks like MNIST, only 3 ∼ 5% of total connections in RSA can

push the accuracy back to software baseline. An interesting observation here is that,

for complicated tasks like CIFAR-10, RSA can push accuracy to much higher values

than what can be obtained with a stand alone ideal RRAM array. Since the RSA cells

are 32-bit floating point numbers, they mitigate the effects of 32-level quantization

to a great extent and thus achieve higher accuracy.

rameters are summarized in Table 7.2. 32-bit register files (RF) are assumed to be

the on-chip memory for RSA because of the flexibility. We further assume that an

array can have a maximum of 16 read circuits; when the array size is large, multiple

columns will share read circuits. For back-propagation, the CMOS circuits calculat-

ing pooling and gradient descent are assumed to be outside of the RRAM and RSA

array, with enough number of processing elements (e.g. 16 cores) to complete the

calculation in time. Overall, the performance of R-V-W and RSA is limited by the

Write time of RRAM and the Read time of RRAM, respectively. Due to the small

size of RSA cells and their fast speed, the parallel path on RSA is not the critical

path.

112

Fig. 7. RSA randomly selects a certain portion of cells
(shadowed cells) and re-trains them.

Table 2. Timing parameters and sizes for RRAM and on-chip memory. On-chip memory,
such as Register File (RF), is much faster in Write, but has a larger size.

 RRAM RF

Material HfOx [2] TiOx [3] TaOx [4] W/Al/PCMO/Pt
[10]

AlOx/HfO2
[11] Si

Levels 16 128 4 2 2 32-bit
Write time 6.5 Ps 60 Ps 1.5 ms 500 Ps 4 ms 1 ns
Read time 24 – 404 ns [12][13] 1 ns
Array size 1000 x 1000 100 cells
Area 106×4F2 104×1.5F2

 F is the feature size of lithography [14].

Fig. 8. Regularized RSA: each row or column
has the same number of cells to be randomly
selected, to reduce the size of the RSA array.

Fig. 9. The network structure, design and flow using RF for RSA cells. The backpropagation only goes through RF cells. RRAM is Read only.

Table 3. High cost in operation time when R-V-W is applied. This is due to both the long Write
time of RRAM devices and the ineffectiveness of R-V-W, even though in R-V-W the parameters

are sorted first by their values and top ones are verified.

% of RRAM cells for
R-V-W 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MNIST

Accuracy
(%) 90.33 85.49 92.98 97.64 98.66 98.79 98.91 99.12 99.12 99.12 99.14

Time (s) 10.2 20.5 41.0 61.5 82.0 102 123 143 164 184 203

CIFAR10

Accuracy
(%) 23.42 27.55 30.16 37.11 35.99 45.05 56.9 62.95 62.29 63.92 65.18

Time (s) 121 241 483 724 965 1206 1447 1689 1930 2171 2389

Fig. 12. RSA rapidly recovers the accuracy,
achieving 10-100x speedup over R-V-W.

input: Network architecture Netideal, Dataset
1 Train baseline: Wideal train(Netideal, Dataset)
2 Add RRAM models: Wreal addVariations(Wideal)
3 for conv and fc layers in Net do
4 Create parallel RSA trainable layers
5 Initialize: WRSA truncated normal distribution
6 Create mask: mask; WRSA WRSA×mask

7 while Convergence True do
8 Forward: read RRAM and RSA
9 Compute gradient: gr gradients()
10 Remove gradients of not selected: grmasked gr×mask
11 Calculate weight change: DWRSA f(grmasked)
12 Backpropagation: write RSA only, WRSA WRSA + DWRSA

Fig. 10. A small amount of 32-bit RSA cells
effectively improves the accuracy.

Fig. 11. The training of RSA does not require
the full dataset to recover the accuracy.

0 12k 24k 36k

81.0

82.8

96.9

97.4

98.0

98.6

0 12k 24k 36k

30

45

60

75

32 levels quantization

w/o variations

Training batch size: 64

w/o variations

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Training Times

% of cells to be trained
(from bottom to top):
1%, 3%, 5%, 10%

MNIST with LeNet CIFAR-10 with CNN

0 3 6 9 12 15

60

80

100

CIFAR-10

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RSA Cells (%)

 32-level, w/o variations
 Re-trained with 32-bit RSA cells

MNIST

0 90 180
80

85

90

95

100

0 800 1600 2400

30

45

60

75

LeNet on MNISTIn
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Time (s)

 RSA
 R-V-W

10X

Speed up
100X

Speed up

CNN on CIFAR-10

Time (s)

The compact RSA
array for physical
implementation

Figure 7.10: The training of RSA does not require the full dataset to recover the

accuracy. With increase in the number of RSA cells, the number of training iterations

gets reduced. This behaviour is expected because with few RSA cells, the optimization

algorithm (SGD) has to move the values to greater distance to reach the minima as

the degrees of freedom available to SGD is less. So it needs more iterations of weight

updates.

Fig. 7.9 shows that using RSA, only a very small portion of parameters (< 5%) is

required to compensate the effect of device variations and stuck-at-faults on inference

accuracy. With gradient descent operating over high-precision RF cells, a much better

accuracy can be achieved than that with 32-level RRAM only. For instance, in the

9-layer CNN for CIFAR-10, the addition of 5% RSA cells boosts the accuracy by more

than 10%, which is very significant for this task. Moreover, Fig. 7.10 demonstrates

that the training of RSA only require an additional 15% of the training iterations

compared to that for the original RRAM. As the percentage of RSA cells increase,

the iteration time can be further reduced.

113

Fig. 7. RSA randomly selects a certain portion of cells
(shadowed cells) and re-trains them.

Table 2. Timing parameters and sizes for RRAM and on-chip memory. On-chip memory,
such as Register File (RF), is much faster in Write, but has a larger size.

 RRAM RF

Material HfOx [2] TiOx [3] TaOx [4] W/Al/PCMO/Pt
[10]

AlOx/HfO2
[11] Si

Levels 16 128 4 2 2 32-bit
Write time 6.5 Ps 60 Ps 1.5 ms 500 Ps 4 ms 1 ns
Read time 24 – 404 ns [12][13] 1 ns
Array size 1000 x 1000 100 cells
Area 106×4F2 104×1.5F2

 F is the feature size of lithography [14].

Fig. 8. Regularized RSA: each row or column
has the same number of cells to be randomly
selected, to reduce the size of the RSA array.

Fig. 9. The network structure, design and flow using RF for RSA cells. The backpropagation only goes through RF cells. RRAM is Read only.

Table 3. High cost in operation time when R-V-W is applied. This is due to both the long Write
time of RRAM devices and the ineffectiveness of R-V-W, even though in R-V-W the parameters

are sorted first by their values and top ones are verified.

% of RRAM cells for
R-V-W 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MNIST

Accuracy
(%) 90.33 85.49 92.98 97.64 98.66 98.79 98.91 99.12 99.12 99.12 99.14

Time (s) 10.2 20.5 41.0 61.5 82.0 102 123 143 164 184 203

CIFAR10

Accuracy
(%) 23.42 27.55 30.16 37.11 35.99 45.05 56.9 62.95 62.29 63.92 65.18

Time (s) 121 241 483 724 965 1206 1447 1689 1930 2171 2389

Fig. 12. RSA rapidly recovers the accuracy,
achieving 10-100x speedup over R-V-W.

input: Network architecture Netideal, Dataset
1 Train baseline: Wideal train(Netideal, Dataset)
2 Add RRAM models: Wreal addVariations(Wideal)
3 for conv and fc layers in Net do
4 Create parallel RSA trainable layers
5 Initialize: WRSA truncated normal distribution
6 Create mask: mask; WRSA WRSA×mask

7 while Convergence True do
8 Forward: read RRAM and RSA
9 Compute gradient: gr gradients()
10 Remove gradients of not selected: grmasked gr×mask
11 Calculate weight change: DWRSA f(grmasked)
12 Backpropagation: write RSA only, WRSA WRSA + DWRSA

Fig. 10. A small amount of 32-bit RSA cells
effectively improves the accuracy.

Fig. 11. The training of RSA does not require
the full dataset to recover the accuracy.

0 12k 24k 36k

81.0

82.8

96.9

97.4

98.0

98.6

0 12k 24k 36k

30

45

60

75

32 levels quantization

w/o variations

Training batch size: 64

w/o variations

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Training Times

% of cells to be trained
(from bottom to top):
1%, 3%, 5%, 10%

MNIST with LeNet CIFAR-10 with CNN

0 3 6 9 12 15

60

80

100

CIFAR-10

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Percentage of RSA Cells (%)

 32-level, w/o variations
 Re-trained with 32-bit RSA cells

MNIST

0 90 180
80

85

90

95

100

0 800 1600 2400

30

45

60

75

LeNet on MNISTIn
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Time (s)

 RSA
 R-V-W

10X

Speed up
100X

Speed up

CNN on CIFAR-10

Time (s)

The compact RSA
array for physical
implementation

Figure 7.11: RSA rapidly recovers the accuracy, achieving 10 − 100× speedup over

R-V-W. With writes to RF cells only, RSA removes the need for slow accurate RRAM

writes.

Finally, Fig. 7.11 compares the improvement in accuracy and the time needed,

between RSA and R-V-W. Leveraging the robustness of the algorithm, rather than

device-level precision, RSA achieves higher accuracies at a much faster speed. The

speed-up is in the range of 10-100X, depending on the Read/Write time of RRAM

devices and the number of convolutions in the algorithm.

7.5 Conclusions

RRAM based computing has a great potential towards power-efficient hardware

acceleration of deep learning algorithms. One of the bottlenecks are non-ideal device

effects, especially variations and quantization errors. Previous methods involve looped

R-V-W at the device level and are inefficient in practice. Inspired by the intrinsic

robustness of machine learning algorithms, this work proposes a novel on-chip training

114

scheme by randomly selecting a small portion of model parameters, mapping them

to a parallel bank of on-chip memory, and adapting them after model mapping to

the hardware. The RSA method completely removes the need of Write on RRAM

after mapping. As demonstrated on MNIST and CIFAR-10, < 5% parameters need

to be selected as RSA cells under > 30% variations, achieving 10-100X acceleration

to R-V-W. The integration of RRAM and on-chip memory in RSA further offers the

operation flexibility and high accuracy beyond RRAM only approaches.

115

Chapter 8

SUMMARY

This work presents a comprehensive study of deep learning algorithm develope-

ment and hardware acceleration to achieve efficient real-time performance. we demon-

strate the need and criticality of hardware-software co-optimization for efficient exe-

cution of deep learning. We demonstrate this with implementation and optimization

strategies at various stages of DNN algorithm and hardware development. The main

contributions of this work are:

1. High performance of deep learning: We implement a deep neural network

from scratch for automatic cough detection from audio data. With the proposed

pre-processing scheme and neural network architecture, we were able to achieve

state-of-the-art accuracy for cough detection out-performing methods based on

traditional algorithms like PCA. Our proposed algorithm achieved 92.3% leave-

one-out accuracy on VitaloJAK data captured in real world.

2. Hardware acceleration using FPGAs: We implement hardware acceler-

ators for deep convolutional neural networks and random forest trees using

FPGAs. With our proposed optimization strategies, we demonstrated high

throughput and efficient execution of these. For face detection using random for-

est trees, our proposed accelerator achieved ∼ 30× performance gain compared

to CPUs. For deep convolutional neural networks, our optimization schemes

achieved 30.9 GOPs and was able to efficiently execute AlexNet and VGG on

Stratix V FPGA boards.

3. Beyond CMOS: This work also explores emerging architectures like RRAM

116

crossbars and RRAM arrays to mitigate the bottlenecks associated with CMOS

based hardware accelerators. Using our proposed architecture ∼ 3000× perfor-

mance improvements over CPUs has been demonstrated for online dictionary

learning.

4. Working with non-ideal RRAMS: This work also examines the realistic

RRAM devices and their non-idealities. In this work, we do an in-depth study

of the effects of RRAM non-idealities on inference accuracy when a pretrained

model is mapped to RRAM based accelerators. To mitigate this issue, we

propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning

the model to take care of the faults of the RRAM array on which it is mapped.

Our proposed method can achieve inference accuracy much higher than what

traditional Read-Verify-Write (R-V-W) method could achieve. RSA can also

recover lost inference accuracy 100× ∼ 1000× faster compared to R-V-W.

117

REFERENCES

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: a system for large-scale machine learning.”,
in “OSDI”, vol. 16, pp. 265–283 (2016).

Abbott, L. F., “Lapicques introduction of the integrate-and-fire model neuron
(1907)”, Brain research bulletin 50, 5-6, 303–304 (1999).

Abdel-Hamid, O., A.-r. Mohamed, H. Jiang, L. Deng, G. Penn and D. Yu, “Convolu-
tional neural networks for speech recognition”, IEEE/ACM Transactions on audio,
speech, and language processing 22, 10, 1533–1545 (2014).

Abdelfattah, M. S., A. Hagiescu and D. Singh, “Gzip on a chip: High performance
lossless data compression on fpgas using opencl”, in “Proceedings of the Interna-
tional Workshop on OpenCL 2013 & 2014”, p. 4 (ACM, 2014).

Afifi, A., A. Ayatollahi, F. Raissi and H. Hajghassem, “Efficient hybrid cmos-nano
circuit design for spiking neurons and memristive synapses with stdp”, IEICE trans-
actions on fundamentals of electronics, communications and computer sciences 93,
9, 1670–1677 (2010).

Alibart, F., L. Gao, B. D. Hoskins and D. B. Strukov, “High precision tuning of state
for memristive devices by adaptable variation-tolerant algorithm”, Nanotechnology
23, 7, 075201 (2012).

Amoh, J. and K. Odame, “Deepcough: A deep convolutional neural network in a
wearable cough detection system”, in “Biomedical Circuits and Systems Conference
(BioCAS), 2015 IEEE”, pp. 1–4 (IEEE, 2015).

Amoh, J. and K. Odame, “Deep neural networks for identifying cough sounds”, IEEE
transactions on biomedical circuits and systems 10, 5, 1003–1011 (2016).

Avati, A., K. Jung, S. Harman, L. Downing, A. Ng and N. H. Shah, “Improving
palliative care with deep learning”, in “Bioinformatics and Biomedicine (BIBM),
2017 IEEE International Conference on”, pp. 311–316 (IEEE, 2017).

Barros, P., S. Magg, C. Weber and S. Wermter, “A multichannel convolutional neural
network for hand posture recognition”, in “International Conference on Artificial
Neural Networks”, pp. 403–410 (Springer, 2014).

Barry, S. J., A. D. Dane, A. H. Morice and A. D. Walmsley, “The automatic recog-
nition and counting of cough”, Cough 2, 1, 8 (2006).

Barton, A., P. Gaydecki, K. Holt and J. A. Smith, “Data reduction for cough studies
using distribution of audio frequency content”, Cough 8, 1, 12 (2012).

Bekkerman, R., M. Bilenko and J. Langford, Scaling up machine learning: Parallel
and distributed approaches (Cambridge University Press, 2011).

118

Bi, G.-q. and M.-m. Poo, “Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type”, Journal
of neuroscience 18, 24, 10464–10472 (1998).

Birring, S., T. Fleming, S. Matos, A. Raj, D. Evans and I. Pavord, “The leicester
cough monitor: preliminary validation of an automated cough detection system in
chronic cough”, European Respiratory Journal 31, 5, 1013–1018 (2008).

Birring, S., B. Prudon, A. Carr, S. Singh, M. Morgan and I. Pavord, “Development of
a symptom specific health status measure for patients with chronic cough: Leicester
cough questionnaire (lcq)”, Thorax 58, 4, 339–343 (2003).

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-driving
cars”, arXiv preprint arXiv:1604.07316 (2016).

Bottou, L. and O. Bousquet, “The tradeoffs of large scale learning”, in “Advances in
neural information processing systems”, pp. 161–168 (2008).

Boureau, Y.-L., J. Ponce and Y. LeCun, “A theoretical analysis of feature pooling in
visual recognition”, in “Proceedings of the 27th international conference on machine
learning (ICML-10)”, pp. 111–118 (2010).

Canziani, A., A. Paszke and E. Culurciello, “An analysis of deep neural network
models for practical applications”, arXiv preprint arXiv:1605.07678 (2016).

Cavalcante, R. C., R. C. Brasileiro, V. L. Souza, J. P. Nobrega and A. L. Oliveira,
“Computational intelligence and financial markets: A survey and future direc-
tions”, Expert Systems with Applications 55, 194–211 (2016).

Chang, O., P. Constante, A. Gordon and M. Singana, “A novel deep neural network
that uses space-time features for tracking and recognizing a moving object”, Journal
of Artificial Intelligence and Soft Computing Research 7, 2, 125–136 (2017).

Chellapilla, K., S. Puri and P. Simard, “High performance convolutional neural net-
works for document processing”, in “Tenth International Workshop on Frontiers in
Handwriting Recognition”, (Suvisoft, 2006).

Chen, C., A. Seff, A. Kornhauser and J. Xiao, “Deepdriving: Learning affordance for
direct perception in autonomous driving”, in “Proceedings of the IEEE Interna-
tional Conference on Computer Vision”, pp. 2722–2730 (2015a).

Chen, C.-Y., H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu and F. T.
Chen, “Rram defect modeling and failure analysis based on march test and a novel
squeeze-search scheme”, IEEE Transactions on Computers 64, 1, 180–190 (2015b).

Chen, L., J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang and L. Jiang, “Accelerator-
friendly neural-network training: learning variations and defects in rram crossbar”,
in “Proceedings of the Conference on Design, Automation & Test in Europe”, pp.
19–24 (European Design and Automation Association, 2017).

119

Chen, P.-Y., D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula, J.-s.
Seo, Y. Cao and S. Yu, “Technology-design co-optimization of resistive cross-point
array for accelerating learning algorithms on chip”, in “Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition”, pp. 854–859
(EDA Consortium, 2015c).

Chen, X., Y. Wang, X. Liu, M. J. Gales and P. C. Woodland, “Efficient gpu-based
training of recurrent neural network language models using spliced sentence bunch”,
in “Fifteenth Annual Conference of the International Speech Communication As-
sociation”, (2014).

Chen, Y. and Y. Xue, “A deep learning approach to human activity recognition
based on single accelerometer”, in “Systems, man, and cybernetics (smc), 2015
ieee international conference on”, pp. 1488–1492 (IEEE, 2015).

Chong, E., C. Han and F. C. Park, “Deep learning networks for stock market anal-
ysis and prediction: Methodology, data representations, and case studies”, Expert
Systems with Applications 83, 187–205 (2017).

Collobert, R. and J. Weston, “A unified architecture for natural language process-
ing: Deep neural networks with multitask learning”, in “Proceedings of the 25th
international conference on Machine learning”, pp. 160–167 (ACM, 2008).

Daubechies, I., M. Defrise and C. De Mol, “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint”, Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences 57, 11, 1413–1457 (2004).

Decalmer, S. C., D. Webster, A. A. Kelsall, K. McGuinness, A. A. Woodcock and J. A.
Smith, “Chronic cough: how do cough reflex sensitivity and subjective assessments
correlate with objective cough counts during ambulatory monitoring?”, Thorax
(2006).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database”, in “Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on”, pp. 248–255 (Ieee, 2009).

Dollár, P., Z. Tu, P. Perona and S. Belongie, “Integral channel features”, (2009).

Farabet, C., B. Martini, B. Corda, P. Akselrod, E. Culurciello and Y. LeCun, “Neu-
flow: A runtime reconfigurable dataflow processor for vision”, in “Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society
Conference on”, pp. 109–116 (IEEE, 2011).

Farabet, C., C. Poulet, J. Y. Han and Y. LeCun, “Cnp: An fpga-based processor for
convolutional networks”, in “Field Programmable Logic and Applications, 2009.
FPL 2009. International Conference on”, pp. 32–37 (IEEE, 2009).

Farfade, S. S., M. J. Saberian and L.-J. Li, “Multi-view face detection using deep
convolutional neural networks”, in “Proceedings of the 5th ACM on International
Conference on Multimedia Retrieval”, pp. 643–650 (ACM, 2015).

120

Fischer, T. and C. Krauss, “Deep learning with long short-term memory networks
for financial market predictions”, European Journal of Operational Research 270,
2, 654–669 (2018).

Gao, L., P.-Y. Chen and S. Yu, “Programming protocol optimization for analog weight
tuning in resistive memories”, IEEE Electron Device Letters 36, 11, 1157–1159
(2015).

Gibson, P. G., A. B. Chang, N. J. Glasgow, P. W. Holmes, A. S. Kemp, P. Katelaris,
L. I. Landau, S. Mazzone, P. Newcombe, P. Van Asperen et al., “Cicada: Cough in
children and adults: Diagnosis and assessment. australian cough guidelines sum-
mary statement”, Medical Journal of Australia 192, 5, 265–271 (2010).

Girshick, R., “Fast r-cnn”, in “Proceedings of the IEEE international conference on
computer vision”, pp. 1440–1448 (2015).

Goodfellow, I. J., D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio, “Maxout
networks”, arXiv preprint arXiv:1302.4389 (2013).

Goodfellow, I. J., D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio, “Maxout
networks (2013)”, arXiv preprint arXiv:1302.4389 (2017).

Gupta, S., A. Agrawal, K. Gopalakrishnan and P. Narayanan, “Deep learning with
limited numerical precision”, in “International Conference on Machine Learning”,
pp. 1737–1746 (2015).

Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz and W. J. Dally, “Eie:
efficient inference engine on compressed deep neural network”, in “Computer Ar-
chitecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on”,
pp. 243–254 (IEEE, 2016).

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”, arXiv preprint
arXiv:1510.00149 (2015).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “Proceedings of the IEEE conference on computer vision and pattern recogni-
tion”, pp. 770–778 (2016).

Heaton, J., N. Polson and J. H. Witte, “Deep learning for finance: deep portfolios”,
Applied Stochastic Models in Business and Industry 33, 1, 3–12 (2017).

Hong, S., S. Kim, M. Joh and S.-k. Song, “Globenet: Convolutional neural net-
works for typhoon eye tracking from remote sensing imagery”, arXiv preprint
arXiv:1708.03417 (2017).

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications”, arXiv preprint arXiv:1704.04861 (2017).

121

Hu, M., H. Li, Y. Chen, Q. Wu and G. S. Rose, “Bsb training scheme implementation
on memristor-based circuit”, in “Computational Intelligence for Security and De-
fense Applications (CISDA), 2013 IEEE Symposium on”, pp. 80–87 (IEEE, 2013).

Huai, Y., “Spin-transfer torque mram (stt-mram): Challenges and prospects”,
AAPPS bulletin 18, 6, 33–40 (2008).

Huval, B., T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka,
P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An empirical evaluation of deep
learning on highway driving”, arXiv preprint arXiv:1504.01716 (2015).

Iandola, F., M. Moskewicz, S. Karayev, R. Girshick, T. Darrell and K. Keutzer,
“Densenet: Implementing efficient convnet descriptor pyramids”, arXiv preprint
arXiv:1404.1869 (2014).

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding”,
in “Proceedings of the 22nd ACM international conference on Multimedia”, pp.
675–678 (ACM, 2014).

Jo, S. H., T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder and W. Lu, “Nanoscale
memristor device as synapse in neuromorphic systems”, Nano letters 10, 4, 1297–
1301 (2010).

Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit”, in “Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on”, pp. 1–12 (IEEE, 2017).

Kadambi, P., A. Mohanty, H. Ren, J. Smith, K. McGuinnes, K. Holt, A. Furtwaengler,
R. Slepetys, Z. Yang, J.-s. Seo et al., “Towards a wearable cough detector based
on neural networks”, in “2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP)”, pp. 2161–2165 (IEEE, 2018).

Kadetotad, D., Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. Vrudhula, S. Yu,
Y. Cao and J.-s. Seo, “Neurophysics-inspired parallel architecture with resistive
crosspoint array for dictionary learning”, in “Biomedical Circuits and Systems Con-
ference (BioCAS), 2014 IEEE”, pp. 536–539 (IEEE, 2014).

Kadetotad, D., Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. B. Vrudhula,
S. Yu, Y. Cao and J.-s. Seo, “Parallel architecture with resistive crosspoint array
for dictionary learning acceleration.”, IEEE J. Emerg. Sel. Topics Circuits Syst. 5,
2, 194–204 (2015).

Kallenberg, M., K. Petersen, M. Nielsen, A. Y. Ng, P. Diao, C. Igel, C. M. Vachon,
K. Holland, R. R. Winkel, N. Karssemeijer et al., “Unsupervised deep learning
applied to breast density segmentation and mammographic risk scoring”, IEEE
transactions on medical imaging 35, 5, 1322–1331 (2016).

122

Karpathy, A., G. Toderici, S. Shetty, T. Leung, R. Sukthankar and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks”, in “Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition”, pp. 1725–1732
(2014).

Kehoe, B., S. Patil, P. Abbeel and K. Goldberg, “A survey of research on cloud
robotics and automation.”, IEEE Trans. Automation Science and Engineering 12,
2, 398–409 (2015).

Kerem, E., S. Hirawat, S. Armoni, Y. Yaakov, D. Shoseyov, M. Cohen, M. Nissim-
Rafinia, H. Blau, J. Rivlin, M. Aviram et al., “Effectiveness of ptc124 treatment
of cystic fibrosis caused by nonsense mutations: a prospective phase ii trial”, The
Lancet 372, 9640, 719–727 (2008).

Kim, M., A. Mohanty, D. Kadetotad, N. Suda, L. Wei, P. Saseendran, X. He, Y. Cao
and J.-s. Seo, “A real-time 17-scale object detection accelerator with adaptive 2000-
stage classification in 65nm cmos”, in “Design Automation Conference (ASP-DAC),
2017 22nd Asia and South Pacific”, pp. 21–22 (IEEE, 2017).

Klein, G., Y. Kim, Y. Deng, J. Senellart and A. M. Rush, “Opennmt: Open-source
toolkit for neural machine translation”, arXiv preprint arXiv:1701.02810 (2017).

Krizhevsky, A. and G. Hinton, “Learning multiple layers of features from tiny images”,
Tech. rep., Citeseer (2009).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in “Advances in neural information processing sys-
tems”, pp. 1097–1105 (2012).

Lai, S., L. Xu, K. Liu and J. Zhao, “Recurrent convolutional neural networks for text
classification.”, in “AAAI”, vol. 333, pp. 2267–2273 (2015).

LeCun, Y., B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard
and L. D. Jackel, “Handwritten digit recognition with a back-propagation network”,
in “Advances in neural information processing systems”, pp. 396–404 (1990).

LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied
to document recognition”, Proceedings of the IEEE 86, 11, 2278–2324 (1998).

LeCun, Y., C. Cortes and C. Burges, “Mnist handwritten digit database. at&t labs”,
(2010).

Lee, S. R., Y.-B. Kim, M. Chang, K. M. Kim, C. B. Lee, J. H. Hur, G.-S. Park, D. Lee,
M.-J. Lee, C. J. Kim et al., “Multi-level switching of triple-layered taox rram with
excellent reliability for storage class memory”, in “VLSI Technology (VLSIT), 2012
Symposium on”, pp. 71–72 (IEEE, 2012).

Lemley, J., S. Bazrafkan and P. Corcoran, “Deep learning for consumer devices and
services: Pushing the limits for machine learning, artificial intelligence, and com-
puter vision.”, IEEE Consumer Electronics Magazine 6, 2, 48–56 (2017).

123

Levine, S., P. Pastor, A. Krizhevsky, J. Ibarz and D. Quillen, “Learning hand-eye co-
ordination for robotic grasping with deep learning and large-scale data collection”,
The International Journal of Robotics Research 37, 4-5, 421–436 (2018).

Li, H., Z. Lin, X. Shen, J. Brandt and G. Hua, “A convolutional neural network
cascade for face detection”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 5325–5334 (2015).

Liang, J., S. Yeh, S. S. Wong and H.-S. P. Wong, “Effect of wordline/bitline scaling
on the performance, energy consumption, and reliability of cross-point memory
array”, ACM Journal on Emerging Technologies in Computing Systems (JETC) 9,
1, 9 (2013).

Liu, B., H. Li, Y. Chen, X. Li, T. Huang, Q. Wu and M. Barnell, “Reduction and ir-
drop compensations techniques for reliable neuromorphic computing systems”, in
“Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided
Design”, pp. 63–70 (IEEE Press, 2014).

Liu, B., H. Li, Y. Chen, X. Li, Q. Wu and T. Huang, “Vortex: variation-aware training
for memristor x-bar”, in “Proceedings of the 52nd Annual Design Automation
Conference”, p. 15 (ACM, 2015a).

Liu, J.-M., M. You, Z. Wang, G.-Z. Li, X. Xu and Z. Qiu, “Cough event classification
by pretrained deep neural network”, BMC medical informatics and decision making
15, 4, S2 (2015b).

Ly, N., L. McCaig and C. W. Burt, “National hospital ambulatory medical care
survey: 1999 outpatient department summary”, Advance data from vital and health
statistics , 321 (1999).

Ma, Y., Y. Cao, S. Vrudhula and J.-s. Seo, “Optimizing loop operation and dataflow
in fpga acceleration of deep convolutional neural networks”, in “Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays”, pp. 45–54 (ACM, 2017).

Manyika, J., “A future that works: Ai, automation, employment, and productivity”,
(2017).

Marsden, P. A., J. A. Smith, A. A. Kelsall, E. Owen, J. R. Naylor, D. Webster,
H. Sumner, U. Alam, K. McGuinness and A. A. Woodcock, “A comparison of
objective and subjective measures of cough in asthma”, Journal of Allergy and
Clinical Immunology 122, 5, 903–907 (2008).

Mathias, M., R. Benenson, M. Pedersoli and L. Van Gool, “Face detection without
bells and whistles”, in “European conference on computer vision”, pp. 720–735
(Springer, 2014).

McGuinness, K., K. Holt, R. Dockry and J. Smith, “P159 validation of the vitalojak
24 hour ambulatory cough monitor”, Thorax 67, Suppl 2, A131–A131 (2012).

124

McGuinness, K., A. Morice, A. Woodcock and J. Smith, “The leicester cough monitor:
a semi-automated, semi-validated cough detection system?”, European Respiratory
Journal 32, 2, 529–530 (2008).

Mohanty, A., X. Du, P.-Y. Chen, J.-s. Seo, S. Yu and Y. Cao, “Random sparse adap-
tation for accurate inference with inaccurate multi-level rram arrays”, in “Electron
Devices Meeting (IEDM), 2017 IEEE International”, pp. 6–3 (IEEE, 2017).

Mohanty, A., N. Suda, M. Kim, S. Vrudhula, J.-s. Seo and Y. Cao, “High-performance
face detection with cpu-fpga acceleration”, in “Circuits and Systems (ISCAS), 2016
IEEE International Symposium on”, pp. 117–120 (IEEE, 2016).

Nair, V. and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines”, in “Proceedings of the 27th international conference on machine learning
(ICML-10)”, pp. 807–814 (2010).

Olshausen, B. A. and D. J. Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images”, Nature 381, 6583, 607 (1996).

Palossi, D., A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza and L. Benini,
“Ultra low power deep-learning-powered autonomous nano drones”, arXiv preprint
arXiv:1805.01831 (2018).

Rajendran, B., Y. Liu, J.-s. Seo, K. Gopalakrishnan, L. Chang, D. J. Friedman and
M. B. Ritter, “Specifications of nanoscale devices and circuits for neuromorphic
computational systems”, IEEE Transactions on Electron Devices 60, 1, 246–253
(2013).

Rajpurkar, P., J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul,
C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia detec-
tion on chest x-rays with deep learning”, arXiv preprint arXiv:1711.05225 (2017).

Raoux, S., G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung et al., “Phase-change random access
memory: A scalable technology”, IBM Journal of Research and Development 52,
4.5, 465–479 (2008).

Rastegari, M., V. Ordonez, J. Redmon and A. Farhadi, “Xnor-net: Imagenet classi-
fication using binary convolutional neural networks”, in “European Conference on
Computer Vision”, pp. 525–542 (Springer, 2016).

Seide, F., G. Li and D. Yu, “Conversational speech transcription using context-
dependent deep neural networks”, in “Twelfth annual conference of the interna-
tional speech communication association”, (2011).

Seo, J.-s., B. Lin, M. Kim, P.-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, S. Vrudhula,
S. Yu, J. Ye et al., “On-chip sparse learning acceleration with cmos and resistive
synaptic devices”, IEEE Trans. Nanotechnol 14, 6, 969–979 (2015).

125

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the game of go with deep neural networks and tree search”, nature 529, 7587, 484
(2016).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014).

Smith, J. and A. Woodcock, “New developments in the objective assessment of
cough”, Lung 186, 1, 48–54 (2008).

Smith, J. A., H. L. Ashurst, S. Jack, A. A. Woodcock and J. E. Earis, “The description
of cough sounds by healthcare professionals”, Cough 2, 1, 1 (2006).

Song, S., K. D. Miller and L. F. Abbott, “Competitive hebbian learning through
spike-timing-dependent synaptic plasticity”, Nature neuroscience 3, 9, 919 (2000).

Sotelo, J., S. Mehri, K. Kumar, J. F. Santos, K. Kastner, A. Courville and Y. Bengio,
“Char2wav: End-to-end speech synthesis”, (2017).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting”, The Journal
of Machine Learning Research 15, 1, 1929–1958 (2014).

Suda, N., V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo and
Y. Cao, “Throughput-optimized opencl-based fpga accelerator for large-scale convo-
lutional neural networks”, in “Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays”, pp. 16–25 (ACM, 2016).

Swarnkar, V., U. R. Abeyratne, Y. Amrulloh, C. Hukins, R. Triasih and A. Setyati,
“Neural network based algorithm for automatic identification of cough sounds”, in
“2013 35th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC)”, pp. 1764–1767 (IEEE, 2013).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich, “Going deeper with convolutions”, in “Proceedings of
the IEEE conference on computer vision and pattern recognition”, pp. 1–9 (2015).

Tao, Y., X. Gao, K. Hsu, S. Sorooshian and A. Ihler, “A deep neural network modeling
framework to reduce bias in satellite precipitation products”, Journal of Hydrom-
eteorology 17, 3, 931–945 (2016).

Theis, T. N. and H.-S. P. Wong, “The end of moore’s law: A new beginning for
information technology”, Computing in Science & Engineering 19, 2, 41–50 (2017).

Tosic, I. and P. Frossard, “Dictionary learning”, IEEE Signal Processing Magazine
28, 2, 27–38 (2011).

Tracey, B. H., G. Comina, S. Larson, M. Bravard, J. W. López and R. H. Gilman,
“Cough detection algorithm for monitoring patient recovery from pulmonary tu-
berculosis”, in “Engineering in Medicine and Biology Society, EMBC, 2011 Annual
International Conference of the IEEE”, pp. 6017–6020 (IEEE, 2011).

126

Tseng, K.-L., Y.-L. Lin, W. Hsu and C.-Y. Huang, “Joint sequence learning and cross-
modality convolution for 3d biomedical segmentation”, in “Computer Vision and
Pattern Recognition (CVPR), 2017 IEEE Conference on”, pp. 3739–3746 (IEEE,
2017).

Viola, P. and M. Jones, “Rapid object detection using a boosted cascade of simple
features”, in “Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Conference on”, vol. 1, pp. I–I (IEEE,
2001).

Wang, Z., “Cmos adjustable schmitt triggers”, IEEE Transactions on instrumentation
and Measurement 40, 3, 601–605 (1991).

Whaley, R. C. and J. J. Dongarra, “Automatically tuned linear algebra software”,
in “Supercomputing, 1998. SC98. IEEE/ACM Conference on”, pp. 38–38 (IEEE,
1998).

Wong, H.-S. P., H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen
and M.-J. Tsai, “Metal–oxide rram”, Proceedings of the IEEE 100, 6, 1951–1970
(2012).

Xia, L., T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang and H. Yang,
“Switched by input: power efficient structure for rram-based convolutional neural
network”, in “Proceedings of the 53rd Annual Design Automation Conference”, p.
125 (ACM, 2016).

Xu, Z., A. Mohanty, P.-Y. Chen, D. Kadetotad, B. Lin, J. Ye, S. Vrudhula, S. Yu, J.-s.
Seo and Y. Cao, “Parallel programming of resistive cross-point array for synaptic
plasticity”, Procedia Computer Science 41, 126–133 (2014).

Xu, Z., S. Skorheim, M. Tu, V. Berisha, S. Yu, J.-s. Seo, M. Bazhenov and Y. Cao,
“Improving efficiency in sparse learning with the feedforward inhibitory motif”,
Neurocomputing 267, 141–151 (2017).

You, J., X. Li, M. Low, D. Lobell and S. Ermon, “Deep gaussian process for crop
yield prediction based on remote sensing data.”, in “AAAI”, pp. 4559–4566 (2017).

Young, E. C. and J. A. Smith, “Quality of life in patients with chronic cough”,
Therapeutic advances in respiratory disease 4, 1, 49–55 (2010).

Young, T., D. Hazarika, S. Poria and E. Cambria, “Recent trends in deep learning
based natural language processing”, ieee Computational intelligenCe magazine 13,
3, 55–75 (2018).

Yu, S., B. Gao, Z. Fang, H. Yu, J. Kang and H.-S. P. Wong, “A low energy oxide-
based electronic synaptic device for neuromorphic visual systems with tolerance to
device variation”, Advanced Materials 25, 12, 1774–1779 (2013).

127

Zhang, C., P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, “Optimizing fpga-based ac-
celerator design for deep convolutional neural networks”, in “Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays”, pp. 161–170 (ACM, 2015).

Zhu, X. and D. Ramanan, “Face detection, pose estimation, and landmark localization
in the wild”, in “Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on”, pp. 2879–2886 (IEEE, 2012).

128

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Introduction to Deep Learning
	A Closer Look at Neural Networks
	Neural Network Layers
	Neural Network Architectures
	Datasets
	ML Frameworks and Hardware

	Designing a Neural Network
	Background and Motivation
	Data Collection
	Data Preprocessing
	Feature Extraction
	Neural Network Model for Cough Detection
	Results
	Conclusion

	Hardware Acceleration using FPGA
	High Level Synthesis
	Altera OpenCL Framework
	Xilinx HLS Framework

	Face Detection using Random Forest Tree
	Algorithm background
	FD Accelerator Design
	Results

	Convolution Neural Networks
	CNN Accelerator Design
	Design Space Exploration
	Optimization Framework
	Results
	Conclusion

	Hardware Software Co-Optimization
	Non-Maximal Suppression
	NMS computation complexity
	Fast and Hardware Efficient NMS

	Conclusion

	Beyond CMOS
	Introduction
	Crosspoint Array Architecture and Design
	Read: Integrate and Fire
	Write: Timing based Local Programming

	65nm CMOS Implementation
	Read
	Write

	Demonstration in Learning
	Conclusion

	Random Sparse Adaptation
	Introduction
	Non-ideal effects in a RRAM device
	Random Sparse Adaptation
	Regularized random sparse selection
	Network adaptation using RSA

	Demonstration of RSA
	Conclusions

	Summary

	REFERENCES

