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ABSTRACT  
   

Human-inhabited or -disturbed areas pose many unique challenges for wildlife, 

including increased human exposure, novel challenges, such as finding food or nesting 

sites in novel structures, anthropogenic noises, and novel predators. Animals inhabiting 

these environments must adapt to such changes by learning to exploit new resources and 

avoid danger. To my knowledge no study has comprehensively assessed behavioral 

reactions of urban and rural populations to numerous novel environmental stimuli. I 

tested behavioral responses of urban, suburban, and rural house finches (Haemorhous 

mexicanus) to novel stimuli (e.g. objects, noises, food), to presentation of a native 

predator model (Accipiter striatus) and a human, and to two problem-solving challenges 

(escaping confinement and food-finding). Although I found few population-level 

differences in behavioral responses to novel objects, environment, and food, I found 

compelling differences in how finches from different sites responded to novel noise. 

When played a novel sound (whale call or ship horn), urban and suburban house finches 

approached their food source more quickly and spent more time on it than rural birds, and 

urban and suburban birds were more active during the whale-noise presentation. In 

addition, while there were no differences in response to the native predator, rural birds 

showed higher levels of stress behaviors when presented with a human. When I replicated 

this study in juveniles, I found that exposure to humans during development more 

accurately predicted behavioral differences than capture site. Finally, I found that urban 

birds were better at solving an escape problem, whereas rural birds were better at solving 

a food-finding challenge. These results indicate that not all anthropogenic changes affect 

animal populations equally and that determining the aversive natural-history conditions 
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and challenges of taxa may help urban ecologists better understand the direction and 

degree to which animals respond to human-induced rapid environmental alterations. 



  iii 

DEDICATION  
   

I would like to dedicate this dissertation to all of the wonderful women in my life: 

Graham, Zoe, Jenny, Elise, Rashel, Karla, Grace, Chelsea, Elizabeth, my mom, my 

amazing sister Jessica, and, of course, Kelvie, who has always been the light in all the 

darkness. Your strength, determination, compassion, and inner beauty inspire me every 

day. Thank you for always being, as Zoe would say, “100% team Melinda Weaver.” I 

love you all. 

 

And of course, no dedication would be complete without Fenway, the strongest old lady I 

know, Chubbs, my rock, Bammie, my sunshine, Duncan, the reason I get up every 

morning, and Muggsy, the reason I went to graduate school and the reason I am who I am 

today, without whom there is a hole that can never be filled. I love you more than words 

can possibly express. You’re better than an arm rest. 



  iv 

ACKNOWLEDGMENTS  
   

First of all, I would like to thank my advisor, Kevin McGraw, for all of the 

support, guidance, and patience he has shown me in the last seven years. He has allowed 

me the independence to grow as a researcher while still providing guidance every time I 

struggled. I always felt that I had the freedom to pursue anything I wanted and never felt 

that I couldn’t do anything I set my mind to. He was kind and patience and supportive. 

Thank you for helping me become the person I am today and being the type of advisor 

that I can talk to about anything, “even feelings.” 

I would also like to thank my committee, Heather Bateman, Pierre Deviche, 

Stephen Pratt, and Ron Rutowski, who made a huge contribution to my research and my 

development as a scientist. Thank you for always making yourselves available to answer 

questions about everything from experimental design to career development. I am a better 

scientist and person because of the unwavering support and generosity you showed me. 

I would like to thank my labmates, past and present, Michael Butler, Melissa 

Meadows, Lisa Taylor, Matt Toomey, Rusty Ligon, Brett Seymoure, Rick Simpson, 

Pierce Hutton, and Emily Webb for all their support and guidance throughout the years. 

You’ve all made this dissertation better by editing documents and contributing ideas.  

This work was made possible by grants from Arizona State University Graduate 

and Professional Student Association, Sigma Xi, Animal Behavior Society, and the 

Central Phoenix-Arizona Long Term Ecological Project (National Science Foundation 

grant number BCS-1026865).  

This dissertation would also not be possible without the work of many fabulous 

undergraduates who helped run behavioral trials and trap birds before the sun came up 



  v 

and analyze thousands of behavioral videos: Khushbu Ahir, Suleman Allahi, Stacy 

Arnold, Joey Barbara, Amber Bail, Courtney Baxter, Bryson Becker, Tipton Billington, 

Kristin Bliven, Emily Boyle, Jacob Brill, Ellen Brooks, Kenny Chan, Sarita Chari, 

Madison Crump, Otilia Cruz, Lindsey Davis, Virginia Davis, Victoria Duran, Rhiannon 

Dysart, Kayla Edwins, Ramzi El-Sayed, Laura Eyering, Mitchel Faas, Kali Fardell, 

Megan Feeney, Eric Gehres, Gabrielle Georgini, Francisco Gonzalez, Erin Hebert, Kat 

Heusel, Yun-Pei Hsieh, Cynthia Hurtado, Megan Ipson, Chelsei Irving, Farhan Iqbal, 

Fasha Johari, Brett Johnson, Rebecca Kervella, Amelia Lax, Alicia Marcell, Christine 

Martinez, Abdullah Masum, Shane Maule, Shawn Maule, Esteban Medrano, Vincenza 

Misseri, Autumn Moore-Barkus, Jerasimos Moschonas, Melanie Mousel, Nathanial 

Munoz, Armaghan Nasim, Cameron Noe, Rebecca Ohrmund, Kaila Pack, Alexandra 

Paul, David Peifer, Makenzee Perez, Forrest Pratt, Daniel Restrepo, Angela Riley, 

Andrea Rivera, Kalie Rumaner, Michelle Sharifi, Jordon Sheahan, Sarah Shirota, Kyle 

Simmons, Kristine Soy, Princess Taylor, Maria Torres, Roberto Torres, Autumn Tullock, 

Paola Vivelo, Elizabeth Welling, Jeremiah Wetherby, Lauren Yanez, and Megan 

Zimmerman. I would especially like to thank Army, Autumn, Courtney, Ellen, Jeremiah, 

and Ellen, who have grown into amazing humans who I am proud to call friends.  

Of course, getting a dissertation isn’t just about research. I would also like to 

thank Delon Washo-Krupp, Josh Klein, and Taleen Der-Ghazarian for creating such a 

great environment in which to teach and learn to become a teacher. Delon, you have been 

an amazing mentor and friend, and I really appreciate all you have done for me, 

especially Bammie, when I needed a friend most in the world. 



  vi 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ................................................................................................................... ix  

LIST OF FIGURES .................................................................................................................. x  

PREFACE  ............................................................................................................................... xi  

CHAPTER 

1 URBAN HOUSE FINCHES ARE LESS AVERSE TO NOVEL NOISES, BUT 

NOT OTHER NOVEL ENVIRONMENTAL STIMULI, THAN RURAL 

BIRDS ....................................................................................................................  1  

      Abstract .............................................................................................................. 1 

      Introduction ........................................................................................................ 2 

      Methods.............................................................................................................. 5 

      Results .............................................................................................................. 12 

      Discussion ........................................................................................................ 14 

      Figures and Tables ........................................................................................... 20 

2 REARING ENVIRONMENT HAS STRONGER EFFECTS THAN 

URBAN/RURAL HABITAT OF ORIGIN ON BEHAVIORAL RESPONSE 

OF SONGBIRDS TO HUMANS AND NOVELTY .........................................  30  

      Abstract ............................................................................................................ 30 

      Introduction ...................................................................................................... 31 

      Methods............................................................................................................ 34 

      Results .............................................................................................................. 39 

      Discussion ........................................................................................................ 40 



  vii 

CHAPTER                                                                                                               Page 

     Tables and Figures ............................................................................................ 45 

3 CONTEXT-DEPENDENT VARIATION IN PROBLEM SOLVING ABILITY 

AS A FUNCTION OF URBANIZATION IN A SONGBIRD ..........................  54  

     Abstract ............................................................................................................. 54 

     Introduction ....................................................................................................... 55 

     Methods............................................................................................................. 57 

     Results ............................................................................................................... 61 

     Discussion ......................................................................................................... 62 

     Tables and Figures ............................................................................................ 67 

4 CONCLUDING REMARKS  .............................................................................  72  

REFERENCES  ...................................................................................................................... 77 

APPENDIX 

A      CIRCULATING CORTICOSTERONE LEVELS VARY DURING EXPOSURE TO  

ANTHROPOGENIC STIMULI AND SHOW WEAK CORRELATION WITH  

          BEHAVIOR ACROSS AN URBAN GRADIENT IN HOUSE FINCHES  

          (HAEMORHOUS MEXICANUS)  .........................................................................  97  

B      AVIAN ANTHROPHOBIA? BEHAVIORAL AND PHYSIOLOGICAL  

       RESPONSES OF HOUSE FINCHES (HAEMORHOUS MEXICANUS) TO HUMAN  

     AND PREDATOR THREATS ACROSS AN URBAN GRADIENT  ..................  106 

C      MAP OF FIELD SITES  .......................................................................................  116  

D      PERMISSIONS FOR INCLUSIONS OF PUBLISHED WORKS  ....................  118  



  viii 

LIST OF TABLES 

Table Page 

1.1       ANOVAs for Activity and Novel Environment Experiments  ........................... 24 

1.2       ANOVAs for Novel Object, Novel Noise and Novel Food Experiments  ......... 26 

1.3       Repeatabilities for Novel Object Trial Behavior  ................................................ 28 

1.4       Novelty Video Observer Repeatability  ............................................................... 29 

2.1       ANOVAs for Captive Bird Experiments  ............................................................ 50 

2.2       ANOVAs for Mid-Point Captive vs Wild Trials  ................................................ 52 

2.3       ANOVAs for Post-Treatment Captive vs Wild Trials  ....................................... 53 

3.1       ANOVAs for Behavior in Escape Challenge Experiment  ................................. 70 

3.2       ANOVAs for Behaviora in Food-Finding Challenge Experiment  .................... 71 



  ix 

LIST OF FIGURES 

Figure Page 

1.1       Photos of Novel Object and Environment Trial Setups ...................................... 20 

1.2       Significant Activity Trial Results  ....................................................................... 21 

1.3       Significant Novel Environment Trial Results  .................................................... 22 

1.4       Significant Novel Noise Trial Results  ................................................................ 23 

2.1       Photo of Experimental Setup  .............................................................................. 46 

2.2       Significant Captive Experiment Results  ............................................................. 47 

2.3       Significant Mid-Point Trial Experiment Results  ................................................ 48 

2.4       Significant Post-Treatment Trial Experiment Results ........................................ 49 

3.1       Photo of Experimental Setup ............................................................................... 67 

3.2       Results of Escape Challenge ................................................................................ 68 

3.3       Results of Food-Finding Challenge  .................................................................... 69 

 



  x 

PREFACE 

The world in which we live is complex, often harsh, and always changing. Thus, 

animals often modify their behavior to be successful in their specific environment, 

namely by surviving to pass along their genes and by finding a mate with which to 

reproduce. To do this, they must make decisions about how to best utilize resources, such 

as nesting sites and potential food sources, while still protecting themselves from 

predators and competition from other animals vying for similar resources. Some 

behaviors are steadfast, working in multiple environments for a variety of species, such 

as how prey animals can be seen congregating in big groups to reduce the chances of 

being hunted by a predator (Hamilton, 1971), a behavior seen in many taxa of mammals, 

fish, and birds. However, other behaviors are more suited for a particular environment, 

such as desert animals seeking shelter from predators hiding underground when no 

vegetation is available (Noy-Meir, 1974). If the environment doesn’t change throughout 

an animal’s lifetime, even behaviors adapted for a specific ecosystem won’t change, 

allowing the animal to consistently and predictably respond to a given situation each time 

it encounters it. However, when that environment changes, will the animal be able to 

change its behavior quickly enough to survive? 

 This is exactly the challenge that animals are facing as human populations expand 

across the globe. Humans can modify the environment in a variety of ways, such as 

agriculture, housing developments, and recreational parks, and they can do so quickly, 

reducing the timeframe that animals have to respond to changes. Perhaps the largest 

impact of humans on animal populations is urbanization. For the first time in human 

history, more people reside in cities (defined by the U.S. Census Bureau as areas 
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consisting of 50,000 or more people) than rural areas, and this is expected to increase to 

60% by 2030 (United Nations Population Fund, 2007), including the projected doubling 

of urban areas in this timeframe (U.N. DESA, 2003). Urban areas drive out many native 

species, due to habitat loss and modification (Grimm et al., 2008) or exposure to 

nonnative competitors (Shochat et al., 2010), predators (e.g., cats; Loss et al., 2013), 

pollution (Isaksson, 2015), and pathogens (Bradley and Altizer, 2007), resulting in 

reduced biodiversity in cities (McKinney, 2006). However, some species thrive in urban 

areas, taking advantage of resources such as availability of anthropogenic foods 

(Newsome et al., 2015; Tryjanowski et al., 2015), urban-provided cover and nesting sites 

(Isaac et al., 2014; Møller, 2009), year-round water supplies (Fokidis et al., 2009), and 

moderate weather (Shochat et al., 2006).  An important question in conservation biology 

is – what makes some species more tolerant than others to urban development?  

Animals can respond to urbanization in three distinct ways: disperse to a new 

environment, adjust through phenotypic plasticity, or adapt through genetic changes 

(Wong & Candolin, 2014). Because human-induced changes happen so rapidly, there is 

not often time for genetic adaptation (Chevin & Lande, 2010), so animals plastically 

adjust their behavior, such as by modifying their response to predators (McCleery, 2009; 

Kitchen et al., 2010), competitors (Hasegawa et al., 2014), or mates (Lane et al., 2011), or 

their choice of habitat (Miller et al., 1998, Yeh et al., 2007) and feeding tactics (Møller, 

2008; Liker & Bokony, 2009). Those who cannot behaviorally respond often perish, 

which is why many scientists predict that the majority of the earth’s species will be 

extinct in the next 50-100 years (Stork, 2010).  
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Often, the way that animals endure human-induced rapid environmental change is 

through behavioral responsiveness to novelty (i.e. neotolerance; Reale et al., 2007). 

Humans introduce many new abiotic stimuli or biotic challenges into the environment, 

ranging from new food sources (Robb et al., 2008) and predatory threats (Kauhala et al., 

2015) to noise pollution (Perillo et al., 2017), and species who thrive near humans may 

show superior ability to problem-solve and acclimate/adapt to such novelty (Greenberg & 

Mettke-Hoffman, 2001; Kark, 2007; Møller, 2008; Liker & Bokony, 2008; McCleery, 

2009; Kitchen et al., 2010). In fact, a meta-analysis of animal behavioral responses to 

urbanization found that phenotypic changes were happening at a greater rate in cities than 

natural areas and other areas impacted by humans (Alberti et al., 2017). However, when 

and how these changes occur is less well-understood. Thus, a comprehensive set of 

studies testing a suite of behavioral responses to diverse urban stressors, in an animal that 

exists in both urban and natural settings, is needed to understand contexts in which urban 

animals may benefit from either pursuing or avoiding novelty. 

To address this, I chose to investigate urban impacts on behavior in a bird species 

that is ubiquitous in the southwestern United States, the house finch (Haemorhous 

mexicanus). Birds are excellent subjects for comparative studies of urban wildlife 

because many species survive well in both urban and rural environments, while some 

thrive in only in the presence or absence of human developments (Blair, 1996). Unlike 

many species that persist in cities, many species of birds, especially songbirds, are not 

considered pests but instead are drawn to yards with feeders and bird baths, allowing the 

population density of urban birds to more than double compared to that of their rural 

counterparts (Tryjanowski et al., 2015).  
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Specifically, house finches are an excellent model organism for studying 

behavioral responses to urbanization because, in their native range in the desert 

southwestern United States, they inhabit urban, suburban, and native rural ecosystems. 

Utilizing the extensive greater Phoenix land use area data from the Central Arizona-

Phoenix Long-Term Ecological Research Project, I was also able to choose sites that 

differed in many known urban variables, such as population density and land-use features 

(Giraudeau et al., 2014), in which to study these birds. House finches also readily display 

behaviors like foraging and aggression in open environments (e.g. feeders, backyards), 

are abundant and easily captured, and are amenable to captive behavioral 

experimentation. I captured house finches at six sites, ranging from urban Phoenix to 

rural Estrella Mountain Park (see Appendix 3 for map) to examine behavioral differences 

among three distinct populations (urban, rural, and suburban). Specifically, I investigated 

three behavioral metrics that would probe their responsiveness to novelty: activity 

behavior (defined by flights; Ditchkoff et al., 2006), stress behavior (defined by bill 

wipes; Clark, Jr., 1970), and latency to approach/time spent on an aversive or rewarding 

novel stimulus (Toms et al., 2010).  

In a series of behavioral tests and experiments conducted both in the field and lab 

during two seasons across four years in both juveniles and adults, I exposed house 

finches to multiple novel anthropogenic stimuli and stressors and recorded behavior and 

measured stress hormone levels to determine what differences, if any, existed between 

urban, suburban, and rural populations. Because urban areas have more human-created 

buildings, food sources (e.g. bird feeders, trash cans), and noises (e.g. car alarms, 

construction, traffic), I predicted that adult city birds would show greater behavioral 
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resilience and decreased stress response toward the stimuli, whereas juveniles would 

acclimate to urban stimuli based on exposure to these stimuli during development.  

Specifically, in Appendix B, I exposed birds to the presence of both humans and a 

model predator (Cooper’s hawk, Accipiter striatus), to which birds at all sites are 

exposed. In Chapter 1, I presented birds with a suite of novel abiotic stimuli: novel 

environment, novel objects, novel food, and novel noise. In Chapter 2, I replicated the 

study in Appendix B but with juveniles during a common-garden experiment, in which I 

randomly assigned birds from both urban and rural sites to a low human exposure 

treatment or a high human exposure treatment and repeated the human-presence trials at 

various time points during development. In Chapter 3, I gave birds two problem-solving 

challenges, one aversive (escape from confinement) and one rewarding (food-finding). 

Finally, in Appendix A, I took blood samples of birds before and after human-presence 

and novel-environment trials to measure stress hormones to understand the link between 

behavioral and hormonal responses. Across these studies, I predicted that urban and 

suburban house finches would show fewer signs of behavioral and hormonal stress in 

response to novel stimuli and urban stressors (but not the native predator, which is a 

known predator to birds at all sites) and would approach food and solving problems more 

quickly than rural birds in the presence of these novel stimuli. 
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CHAPTER 1 

URBAN HOUSE FINCHES ARE LESS AVERSE TO NOVEL NOISES, BUT NOT 

OTHER NOVEL ENVIRONMENTAL STIMULI, THAN RURAL BIRDS 

 

Abstract 

Human-inhabited or -disturbed areas pose many unique challenges for wildlife, including 

reacting to novel environmental stimuli like car traffic, buildings, and anthropogenic noise. 

Animals inhabiting these environments must adapt to such changes by overcoming such 

novelty (i.e. neotolerance, neophilia), and either exploiting new resources or avoiding 

danger. Although many studies have tested animal responses to individual forms of novelty 

(e.g., human objects, food, urban noise), to our knowledge no study has comprehensively 

assessed behavioral reactions of urban and rural populations to numerous novel 

environmental stimuli. We tested exploratory behavior of urban, suburban, and rural house 

finches (Haemorhous mexicanus) in response to four different types of novelty (novel 

structural environment, novel object, novel noise, and novel food) in separate captive 

experiments, while also recording each bird for 30 minutes before exposure to determine 

baseline activity level. Although we found few population-level differences in behavioral 

responses to novel objects, environment, and food, we found significant differences in how 

finches from different sites responded to novel noises. When played a novel sound (whale 

call or ship horn), urban and suburban house finches approached their food source more 

quickly and spent more time on it than rural birds, and urban and suburban birds were more 

active during the whale-noise presentation. These results indicate that, in comparison with 
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other types of novel stimuli, anthropogenic noise may be a key driver of urban adaptation 

in birds and its influence may vary depending on the type of sound. 

 

Introduction 

The growth of urban areas continues to pose a challenge to the planet’s biodiversity. 

Since 2007, more people reside in cities than natural areas (United Nations Population 

Fund, 2007), and urban growth is projected to double in the next decade (U.N. DESA, 

2003), resulting in a predicted 70% of the human population residing in cities by 2050. 

This poses many challenges to wildlife, such as destruction of native habitat, introduction 

of non-native predators and competitors, and air/water/noise pollution (Marzluff, 2001; 

Shochat et al., 2006). However, many species of animals thrive in the presence of humans, 

benefiting from increased availability of food (e.g., human refuse, bird feeders, agricultural 

sources), water (Fokidis et al., 2009), cover, and nesting sites (e.g., buildings, shade trees; 

Møller, 2009). A recent study shows that population density of urban birds has more than 

doubled compared to that of their rural counterparts, in large part because of the 

supplemental food sources provided by humans (Tryjanowski et al., 2015). The question 

of which traits allow some species to adjust to and flourish in urban environments while 

others are driven out is an important one facing urban behavioral ecologists. 

Animals face many survival threats, such as predators, territorial conspecifics, and 

harmful food sources, in their natural environments, but relaxed selection on neophobia is 

one potential driver of adjustments to urban areas that has recently gained traction in urban 

ecological studies (Tryanjowski et al., 2016; Griffin et al., 2017). In particular, increased 

availability of anthropogenic food sources (43% of people in the United States and 75% in 
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the UK feed birds in urban areas; reviewed in Robb et al., 2008) may permit the adoption 

of novel feeding tactics, such as feeding from bird feeders, agricultural sites, or trash 

cans/dumps (Kark, 2007; Møller, 2008; Liker & Bokony, 2009). Thus, urban individuals 

may be more willing to approach novel objects because they may contain food and pose 

little threat, and thus locate and exploit novel food sources more than their rural 

counterparts (Greenberg & Mettke-Hoffman, 2001). This propensity to take risks in 

response to an unknown situation has been described as ‘exploration,’ ‘risk-taking,’ and 

‘neophilia/neotolerance’ (Reale et al., 2007). Studies of neophilia/neotolerance have 

implications for behavioral innovation, stress responses, competitive ability, aggression, 

and fitness of animals residing with or near humans (reviewed in Greggor et al., 2015). 

However, neophobia could still be valuable in urban areas because neophilic animals may 

face increased exposure to toxins, predators, and parasites that they should learn to avoid 

(Greenberg & Mettke-Hoffman, 2001). 

Studies on behavioral responses of animals in urban areas to novel/anthropogenic 

stimuli have provided conflicting results. Captive mynas (Acridotheres tristis) in urban 

areas show higher levels of exploration in novel foraging tasks and in the face of predators 

than their rural counterparts (Sol et al., 2011). However, wild populations of house 

sparrows (Passer domesticus) and brown-headed cowbirds (Molothrus ater) show lower 

levels of exploration than rural conspecifics when approaching novel objects and structures 

(Echeverria & Vassallo, 2008). A breadth of research has been done on house sparrows, a 

well-known urban adapter, in captivity, also producing conflicting results. Bokony et al. 

(2012) found no difference in latency to approach novel food or objects between urban and 

rural house sparrow populations, though Martin and Fitzgerald (2005) found that 
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populations of house sparrows who had more recently invaded an urban area were more 

likely to approach novel food, though not novel objects, than established populations, and 

Liebl and Martin (2014) found that sparrows in edge populations were more likely to 

approach novel food sources than established populations. Thus, additional studies are 

needed to understand contexts in which urban animals may benefit from either pursuing or 

avoiding novelty. 

In addition to the aforementioned forms of visual stimuli, urban animals face 

another unique challenge near humans: anthropogenic sound, which can come in novel 

forms (e.g., frequencies, locations, daily timing, etc.) and be considerably louder than 

natural ambient sound (Barber et al., 2009). For example, in the United States, more than 

88% of the population is exposed to anthropogenic noise louder than 55 dB(A) (Mennitt et 

al., 2013), which is roughly equivalent to the sound of constant rainfall (Chepesiuk, 2005) 

and at the point at which humans begin to show elevated stress hormones (Babisch, 2003). 

In the face of anthropogenic noise, which rarely serves as a rewarding stimulus, animals 

must either modify behavior (e.g., alter vocalizations, tune out) and/or stress physiology to 

persist in noisy human environments or risk being extinguished from human-impacted 

areas. 

Many studies have measured behavioral responses of animals to single novel 

anthropogenic stimuli (e.g., novel environment, objects, noise, food; reviewed in Griffin 

et al., 2017), but to our knowledge no one to date has investigated responsiveness to 

multiple stimuli in the same study system. Given that prior studies on different taxa using 

different stimuli have revealed mixed results, such an investigation is needed to better 

evaluate consistency of neoresponsiveness in urban v. rural animals. We tested the 
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exploratory behavior of several populations of a common North American bird species 

(the house finch, Haemorhous mexicanus) sampled across a gradient of urbanization in 

the desert of southwestern U.S.A. (Phoenix, Arizona). Specifically, we exposed captive 

urban, suburban, and rural finches to four types of novel anthropogenic stimuli: (1) 

structural environment (Escheverria & Vassallo, 2008), (2) objects (Drent et al., 2003), 

(3) noise, and (4) food. To thoroughly explore site- and stimulus-specific differences in 

behavior, we also recorded each bird in its cage for 30 minutes to determine the baseline 

activity level since general movement around the cage (also a relatively new environment 

for the birds) could affect exploratory behavior. Urban areas have more human-created 

structures, food sources (e.g., bird feeders, trash cans), and noises (e.g., car alarms, 

construction, traffic) than non-urban areas, so we predicted that urban and suburban birds 

would show more exploratory behavior toward and tolerance of these novel 

anthropogenic stimuli (i.e., that they would show less behavioral stress, be less active, 

and approach food more quickly than rural birds in the presence of these novel stimuli). 

 

Methods 

Field Methods 

We trapped adult house finches during the winter (pre-breeding season; December 

2013 - February 2014); we selected this time of year for testing because in our prior work 

(Weaver et al., 2018) we saw greater urban-rural differences in behavior during the winter 

season than the summer molt season. Because of the length of the season, we used day 

trapped as a covariate in statistical analyses; however, this was not significant so we 

removed it from the model. Based on an a priori power analysis and similar prior 
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phenotypic work by our group on these birds (Giraudeau et al., 2015), we aimed to trap 

~20 birds per site using basket traps baited with sunflower seeds at each of six sites across 

an urban gradient: two considered urban (n = 55 birds captured in total), two considered 

suburban (n = 39), and two considered rural (n = 53), based on urban land-use parameters 

(e.g. population density, landscape type) measured by the Central Arizona-Phoenix Long-

Term Ecological Research program (Giraudeau et al., 2014). The urban sites consisted of 

the Arizona State University (ASU) – Tempe campus aviary and a neighborhood near 

downtown Phoenix, the suburban sites were a suburban park (Gilbert, AZ) and 

neighborhood (Chandler, AZ), and rural sites were located at natural desert areas in South 

Mountain and Estrella Mountain Regional Parks (see map in Appendix C).  

At capture, each bird was fitted with a numbered United States Geological Survey 

metal identification band and transported to ASU in a paper bag. Because of financial costs 

associated with captively housing the birds, we trapped finches at one site, brought them 

to captivity for eight days (see below for test procedures), returned them to the wild, and 

then trapped at the next site. Each bird went through one trial per day, beginning the day 

after capture. While birds might have experienced some captivity-related stress, no birds 

decreased in weight during the study, and we exposed all birds to the same conditions. We 

randomized site order and found no significant site differences in trapping date in our 

analysis.  

 

Captive housing and initial testing 

We individually housed birds for 8 days in small wire cages (60cm x 40cm x 30cm) 

in a climate-controlled indoor vivarium on the Arizona State University – Tempe campus. 
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All birds were provided with a diet of black sunflower seeds and tap water ad libitum during 

daylight hours and housed in the same room, which was kept at a temperature of 25º C on 

a natural outdoor light cycle. Each bird went through four trials (described below), in which 

they were separately exposed to a novel environment, novel objects, novel noises, and 

novel food. Trial order was randomized among birds and sites. Also, on the day after 

capture, each bird was filmed for 30 minutes with a video camera in its home cage to 

establish baseline activity levels that may explain variation in behavioral performance 

during the subsequent trials. From each video, two independent observers scored several 

behaviors using the software program Cowlog (Hanninen & Pastell, 2009): the number of 

flights (defined as any time bird moves using its wings; used as a general measure of 

activity level), number of bill wipes (proposed as an indicator of stress and displacement 

behavior; Tinbergen, 1940; Clark, 1970), and time spent on the feeders. Data collected by 

each observer were tested for repeatability (Table 1.4; Lessells & Boag, 1987), and 

behavioral scores were averaged for final analyses. Observers were pre-screened on 

training videos and expected to reach 0.75 repeatability with each behavior before 

participating in official data collection. If this did not occur, a third observer watched a 

subset of videos, and we selected the data from the observer with which the third person’s 

repeatability was > 0.75. All observers were blind to site to avoid observer bias. 

 

 

Novel Environment Trials 

Each bird was released for one hour into a large, novel aviary cage (Figure 1.1) 

equipped with a large storage box with holes carved into it, a picnic table, a large branch, 
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and two zebra finches (Taeniopygia guttata, a male and female). The box, table, and 

branch contained sunflower seeds in, on, or next to it. The large storage box was used to 

create a novel feeding structure that birds had never experienced, the table represented a 

human-associated object that could appear at urban, suburban, and rural sites, and the 

branch was included as an object from the natural environment. Because birds in urban 

areas may be exposed to non-native competitors introduced by humans (e.g., house 

sparrows, rosy-faced lovebirds Agapornis roseicollis), we included zebra finches (which 

are native to Australia and thus foreign to house finches) as novel biotic stimuli. Each 

trial was recorded by two video cameras arranged to capture as much of the large aviary 

space as possible. In addition to the aforementioned three behaviors, we also quantified 

how much time subjects spent on each of the box, table, and branch (or within 1 m of the 

zebra finches) as well as their latency to approach each. Prior to the trial, birds were food-

deprived overnight to ensure motivation to feed. For all trials in this study, trials were 

conducted between 0700 and 1400 hours, but we found no significant effect of time of 

day tested on our analysis and so did not include this factor in the final analyses. 

 

Novel Object Trials 

 Each bird participated in three different hour-long, novel-object trials on three 

separate days in our campus courtyard aviary (Figure 1.1) and was exposed to three 

objects (one per trial): a flashing glow stick, a camouflage flag, and a tree branch of a 

size similar to the glow stick and base of the flag (sham control). The two novel objects 

were selected because they might appeal to different visual sensitivities, as the glow stick 

flashed different colors (while remaining stationary) and the flag moved unpredictably 
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with wind (while not exhibiting striking color). Each object was placed on a perch next to 

the only food dish in the aviary cage prior to an overnight food deprivation period to 

ensure motivation to feed. We used four of each different type of object and randomly 

assigned different objects to each bird to avoid pseudoreplication. As above, testing time 

of day was used as a co-variate in analyses, order of object presentation was randomized, 

and each trial was recorded with video cameras mounted on tripods placed outside of the 

test arena. In addition to quantifying flights, bill wipes, and time spent on the feeder, we 

also measured latency to approach the food dish. Immediately before and after each trial, 

we also measured a physiological response, breath rate, by counting number of breaths in 

one minute as the bird was held in hand, a method of measuring stress that is less 

invasive than taking a blood sample and previously was shown in great tits (Parus major) 

to increase following stressful situations (Carere & van Oers, 2004). 

 

Novel Noise Trials 

 Each bird participated in two 30-min. novel-noise trials on successive days. Trials 

were again held in our campus courtyard aviary with a food and water dish and after birds 

had experienced overnight food deprivation. For the first 10 minutes of every trial, we 

played back white noise, to determine how birds generally reacted to a standard sound 

being played through the speakers at maximum volume in order to see if they reacted 

differently to the novel sound based on just responding to the speaker. Finches were then 

exposed to 10 minutes of either humpback whale vocalizations or ship sounds (order of 

noise trial was again randomized among birds), both of which should be novel to desert 

house finches. These sounds were compiled from a looped recording of online sounds 
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(https://drive.google.com/drive/folders/1ixWK1U0wgGYc_wimfhoLoGeAvs4dWL3q) 

played throughout the 10-minute trial, selected because one (ship) is a monotonous, 

lower-frequency sound and the other (whale) is a variable, higher-frequency sound, 

representing different types of novel noise types to inland populations of house finches 

from Arizona. While both overlap in frequency range with both house finch song and 

urban noise (see Figure 1.1 for spectrograms), the dominant ship-sound frequencies 

overlap more with those of urban noise, and the same is true whale noise with house 

finch song. We played no sound for the final 10 minutes of each trial. To maintain 

consistency in sound quality across trials, the sound was played from the same location, 

behind the aviary three meters from the food dish with no person present, and the same 

speaker was used on maximum volume (32 dbM) with a first-generation iPod shuffle. 

Because the sounds were synthetically recorded and not designed to how the range of 

songbird repertoire is affected (as critiqued in Kroodsma, 1990), just to present birds with 

novel sounds, we used only one ship recording and one whale recording during the trials 

(Van Donselaar et al., 2018). All trials were video-recorded, and we scored the same bird 

behaviors described above for the novel-object trials. We also measured breath rate 

before and after each trial by counting how many breaths each bird took in one minute.  

 

Novel Food Trials 

 Each bird participated in one 30-minute novel-food trial, which occurred in its 

home cage after an overnight food-deprivation period. Because these trials were all 

conducted at the same time of day (0700 hrs.), time of day was not included as a co-

variate in the statistical analyses. For these trials, we added diced papaya, rather than the 
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typical sunflower seeds, to each bird's food dish. We chose this food because it is 

unlikely that desert house finches are exposed to this food source in the wild, but it is 

known to be one of the primary food sources of Hawaiian populations of this species 

(Hirai, 1974). Each trial was recorded on a video camera. Birds were scored for latency to 

land on the feeder after the food was introduced to the cage and for time spent feeding. 

Trials were limited to a half hour because birds were left in their home cage and did not 

need to explore the environment to find the food. 

 

Statistical Methods 

We ran all statistical analyses in the R computing environment (Ver. 2.15.1). 

Values were square-root- or log-transformed to normalize them when necessary. We 

selected behaviors that we found in previous studies to measure different traits (Weaver 

et al., 2018), allowing us to analyze each behavior separately rather than combine them 

using principal components analysis. Also, as we believe each of these behaviors captures 

unique information because they are not correlated (Weaver et al., 2018), we ran separate 

analyses of variance (ANOVAs) rather than a multivariate ANOVA (MANOVA; 

Huberty & Morris, 1989). We applied sequential Bonferroni corrections (Rice, 1989) to 

account for multiple testing (i.e. four novel-stimulus tests, so starting p-value was 0.0125 

in each model). Flights represent general activity in an environment, bill wipes capture 

stationary stress/displacement behavior, latency to approach object/feeder measures 

exploration of a specific object in the environment, and time spent feeding represents 

acclimation to the novel object/food. To determine whether the behavioral responses of 

house finches to novel stimuli differed based on degree of urbanization, we ran a series of 
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ANOVAs using capture site (urban, suburban, rural), sex, and their interactions as the 

predictors/covariates and breath rate, flights, bill wipes, time spent on feeders, and 

latency to approach objects/feeders as the separate response variables. In addition, we 

entered individual as a random effect to account for the fact that birds were tested in 

multiple trials. In the novel-object and -noise trials in which there was more than one 

treatment, we also used treatment as a predictor. When necessary, we used Tukey’s 

honest-significant-difference tests for post-hoc comparisons. Because there were three 

novel object trials, we also calculated repeatability (Stoffel et al., 2017) using the 

protocol established in Lessells and Boag (1987) for each bird to measure temporal 

consistency in behavioral responses.  

 

Results 

Home Cage Activity Levels 

During the first day in captivity, we found that urban and suburban birds were 

significantly more active (i.e. greater number of flights; Figure 1.2) than rural birds. In 

addition, urban birds displayed more stress behaviors (i.e. greater number of bill wipes; 

Table 1.1) than rural birds, but this was not significant after Bonferroni correction. There 

were no capture-site differences in time spent on the feeder, and overall we found no 

significant effects of sex or the site*sex interaction on finch behavioral measures (Table 

1). 

 

Novel Environment Trials 
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 Urban, suburban, and rural birds did not significantly differ in latency to 

approach or time spent on the box, table, or branch (Table 1.1). However, urban birds 

spent less time on the feeder and took longer to approach it than did suburban and rural 

birds (Figure 1.3). Interestingly, rural birds approached the zebra finches significantly 

faster and spent more time near them than did urban and suburban birds (Figure 1.3). 

There were no site differences in activity or stress behaviors and no significant effects of 

sex or any interaction terms on finch behavior in this experiment (Table 1.1). 

 

Novel Object Trials 

 We found no effect of urbanization on finch behaviors or breath rate in the novel-

object trials, regardless of stimulus type (glowstick, control stick, or flag; Table 1.2). 

There were also no significant effects of sex or the site*sex interaction on finch behaviors 

or breath rate (Table 1.2). Overall, rural birds were most repeatable in their behavior, and 

urban birds were least repeatable, with the biggest differences appearing in the time spent 

on feeder and latency to approach feeder, where rural birds were highly repeatable but 

urban birds were not (Table 1.3). Regardless of capture site, initial breath rate was most 

repeatable, and flights and bill wipes were least repeatable (Table 1.3). 

 

Novel Noise Trials 

 Regardless of noise type (ship vs whale), urban and suburban birds approached 

the feeder significantly more quickly during the sound playback than did rural birds 

(Figure 1.4). We also found that urban, suburban, and rural birds differed significantly in 

the amount of time spent on the feeder (Figure 1.4); suburban birds spent the most time 
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on the feeder, regardless of time or noise, whereas rural birds spent the least. Noise 

exposure significantly affected how much time birds spent on the feeder, with birds from 

all sites spending the least amount of time on the feeder after the noise presentation 

(Figure 1.4), regardless of noise type. Because they spent the most time on the feeder 

during the white noise (Figure 1.4), we believe that birds were responding to the noise 

rather than the exposure of the speaker in captivity. 

 We found no significant site differences in finch activity level, but there was a 

site*noise interaction, such that suburban birds were less active than both urban and rural 

birds during the ship-noise presentation, but not during the whale trials (Figure 1.4). 

Urban, suburban, and rural birds did not differ in bill wipes during these trials, but there 

was an effect of noise type on bill wiping; birds bill-wiped more during the whale sound 

(Figure 1.4), regardless of site. There were no effects of sex, site, noise types, or any 

interactions on breath rate (Table 1.2).  

 

Novel Food Trials 

 Of the 143 birds that completed the trial, 121 of those approached the feeder and 

pecked at the food. Birds from the three sites did not differ significantly in time spent 

eating or latency to approach the novel food source (Table 1.2). There were also no 

significant effects of sex or the sex*site interaction on finch behaviors during these trials 

(Table 1.2). 

 

Discussion 
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Because urban and suburban animals can be exposed to a variety of novel 

environmental stimuli, we tested whether or not urban, suburban, and rural house finches 

showed differential behavioral responses to anthropogenic noises, structures, food sources, 

and objects. We predicted that, given their presumed prior experience with such stimuli 

(some benign, others rewarding), urban birds would better behaviorally adjust to these 

stimuli, showing less behavioral stress, exhibiting lower activity levels in the cages, and 

approaching feeding sources more quickly than rural birds. We found support for these 

predictions in the novel-noise trials, as urban and suburban birds approached the feeder 

more quickly and spent more time on the feeder during noise presentations than did rural 

birds. However, urban, suburban, and rural birds showed few behavioral differences in 

response to presentation of novel feeding structures, objects, and food.  

Most studies on response to anthropogenic novelty, regardless of context or species, 

have focused on response to human objects, environmental conditions, or supplemental 

food (Griffin et al., 2017) but rarely have included noise, though behavioral responses to 

noises have been studied extensively in birds and amphibians (Barber et al., 2010). Only 

one other study has included response to urban noise as compared with other urban 

stimuli. Van Donselaar et al. (2018) found that urban chickadees were more likely to 

approach a feeder during presentation of urban noise than rural but found no differences 

between latency to approach novel objects, though this study utilized more urban-specific 

stimuli rather than presentation of novelty. As latency to approach novel food or objects 

is the common measure in novelty tests (Griffin et al., 2017), our results indicate that 

rural birds exhibited a stronger aversive response to the novel noises, regardless of noise 

type. The fact that we found stronger behavioral differences in noise trials than the other 
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novelty presentations is consistent with prior work in both birds (Bayne et al., 2008; 

Rheindt, 2003) and anurans (Eigenbrod et al., 2008), which show that species richness is 

higher on transects further from noisy traffic ways, indicating that many species tend to 

avoid anthropogenic noises, though these studies were not testing novelty or response to 

other stimuli. Moreover, anthropogenic noise negatively impacts animal hunting 

efficiency in mammals (Luo et al., 2015; Siemers & Schaub, 2011) and birds (Mason et 

al., 2016), body condition (Schroeder et al., 2012) and pairing success in songbirds 

(Bayne et al., 2008), foraging success in mammals (Brown et al., 2012; Shannon et al., 

2014) and fish (Purser & Radford, 2011), and mating success in birds (Gross et al., 2010; 

Habib et al., 2007; Reijnin & Foppen, 1994).  

Finches in our study also differentially responded to the varied noise treatments, 

such that birds showed a greater number of stress behaviors and spent less time on the 

feeder during whale sound trials but not during ship sound trials. This is particularly 

interesting because the whale sounds were more heterogeneous, high-frequency 

vocalizations (see Figure 1.1 for spectrograms), which are unlike lower-frequency, 

constant noises typically recorded in cities (e.g., traffic, construction; Wood & Yerezinac, 

2006; Goodwin & Shriver, 2011), but more similar to the higher-frequency songs that 

they produce naturally and that they even modify to higher frequency ranges in response 

to city noise (Halfwerk & Slabbekoorn, 2009). Most studies to date focus on response to 

urban noise, but none that we know of have looked at novel noises and/or higher-

frequency noises that may overlap with natural vocalizations. 

Aside from significant habitat- and noise-type-specific behavioral responses by the 

finches to the noise stimuli, we found few other urban/rural behavioral differences in the 
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other novel environmental-stimulus trials. Rural birds approached the novel birds (zebra 

finches) faster than did urban and suburban birds, but there were no population-level 

differences in latency to approach novel feeding structures, though urban birds did spend 

less time on the familiar feeder than rural birds and took longer to approach it, which 

could be affected by motivation to feed. That rural birds approached novel birds more 

quickly is not what we had predicted; however, this result paired with finding no 

differences in response to the other novel structures, objects, and food may indicate that 

rural birds are exposed to enough novelty (e.g. novel birds, structures, food types 

depending on season) in their natural environments that they are not affected by it as 

much as we expected. While urban areas have novel structures and food sources, there is 

a great reduction in biodiversity of both plant and animal species (Chace & Walsh, 2006; 

McKinney, 2008). Thus, birds from natural areas may generally be more exposed to a 

range of bird species (i.e. novel forms to them as they develop), resulting in reduced 

wariness to approach another species, especially if that species is not a threat.   

Taken together, these mixed results generally mirror those of prior studies on 

response to novelty in animal populations, where there is some evidence for both 

neophobia and neotolerance in urban wildlife. For example, in a review of response to 

novelty, Griffin et al. (2017) found urban birds showed higher levels of neophobia in five 

studies, lower levels in four, and no difference in three. Our results most closely resemble 

those of Bokony et al. (2012), which found no difference in latency to approach novel 

food or objects between urban and rural house sparrow (Passer domesticus) populations. 

Though house finches are a species native to the desert southwestern USA, they now 

inhabit human-developed areas through most of the country following an introduction in 
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the east in the 1940s (Hill, 1993). Their ability to thrive across a range of 

environments/climates may be a result of reduced fear of novelty, especially given their 

need for opportunism (e.g., breeding, feeding) in their native desert environment where 

resources are dispersed in both space and time. We have shown elsewhere that house 

finches do not show an increase in plasma corticosterone after introduction to a novel 

environment (Weaver et al., 2018); similarly, European starlings (Sturnus vulgaris) 

showed no increase in heart rate following an introduction to novel food and objects 

(Fischer et al., 2016). Thus, for certain environmental stimuli, especially those perceived 

as new opportunities or added resources, these birds (whether urban, suburban, or rural) 

may not respond to them as novel stressors but instead as commodities worth 

investigating, as opposed to cues like sound that carry perceived threat or greater risk 

than reward. 

Ultimately, as urban areas expand worldwide and present animal populations with 

unique abiotic and biotic challenges, we must continue to improve our understanding of 

which anthropogenic stimuli are most supportive of or disruptive to animal populations 

and biodiversity. Although we found little evidence for urban-rural differences in 

neophobia/neotolerance in house finches, this may have occurred because house finches 

are an adaptive species that have demonstrated an ability to thrive in both native desert 

and urban environments. Conducting these robust novelty studies on species that do not 

acclimate to urban environments or only thrive around humans could elucidate more 

patterns in different levels of neotolerance/neophobia. We did find that rural birds took 

longer to approach a feeder and spent less time feeding in response to novel noises than 

urban and suburban birds. Given that studies on response to novelty across an urban 
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gradient have been mixed, but many studies have demonstrated that anthropogenic noise 

can negatively impact biodiversity, we suggest that more researchers incorporate 

response to novel noises into future urban behavioral-ecological studies. Our 

experimental results suggest that environmental noise is a driving force shaping avian 

acclimation or adjustment to urban areas. 
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Figures 

 

 

 

Figure 1.1. Photo at top left illustrates the large novel environment, containing a taped 

cardboard storage box (left), white and black table (center), and branch (right). The pair of 

photos at top right illustrate the glowstick (top) and all objects (bottom) used as novel 

objects. Spectrograms illustrate whale sound (A), ship sound (B), urban noise (C), and 

house finch song (D). 
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Figure 1.2. When birds were video-recorded in their home cages to quantify baseline 

behavior, we found that urban and suburban birds were significantly more active (i.e. had 

a greater number of distinct flights within the cage in the 30-minute timeframe; mean + SD 

depicted) than rural birds. Unshared letters denote groups that were significantly different 

after post-hoc testing. 

 



  22 

 

Figure 1.3. In our novel-

environment trials, urban birds spent 

significantly less time on the feeder 

than did rural and suburban birds 

(A), urban and suburban birds spent 

less time near the novel birds than 

did rural birds (B), and urban birds 

took longer to approach the novel 

birds than rural birds (C). Again data 

are represented as means + SD and 

unshared letters denote groups that 

were significantly different. 
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Figure 1.4. In the novel-noise trials, rural birds took significantly longer to approach the 

feeder than did urban and suburban birds (a), birds flew least before the novel noise and 

most after it (b), urban and rural birds were more active than suburban birds during the 

ship, but not whale, noise (c), birds bill-wiped more during the whale noise than ship noise 

(d), rural birds spent the least amount of time on the feeder and suburban birds spent the 

most, regardless of the noise (e), and birds spent more time on the feeder before and during 

the noise than after the noise (f). 
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Tables 

Table 1.1. Results of ANOVAs for the activity and novel-environment experiments, 

including effects of each of the variables measured and their interactions on different finch 

behaviors. Because we applied sequential Bonferroni corrections, p < 0.01 denotes 

statistical significance. 

Experiment Behavior Term F  df p 

Activity  Flights Site 9.03 2, 127 <0.01 

  Sex 1.11 1, 128 0.29 
  Site*Sex 3.93 2, 127 0.02 
 Bill Wipes Site 3.11 2, 127 0.04 
  Sex 1.38 1, 128 0.24 
  Site*Sex 0.28 2, 127 0.76 
 Time on Feeder Site 0.84 2, 127 0.44 
  Sex 0.01 1, 128 0.92 
  Site*Sex 1.36 2, 127 0.26 
Environment Flights Site 0.07 2, 144 0.93 
  Sex 0.40 1, 145 0.53 
  Site*Sex 1.36 2, 144 0.26 
 Bill Wipes Site 3.61 2, 144 0.03 
  Sex 0.01 1, 145 0.93 
  Site*Sex 0.18 2, 144 0.91 
 Time on Feeder Site 9.26 2, 144 <0.01 
  Sex 0.25 1, 145 0.62 
  Site*Sex 0.04 2, 144 0.97 
 Time on Branch Site 3.04 2, 144 0.05 
  Sex 0.07 1, 145 0.80 
  Site*Sex 0.32 2, 144 0.73 
 Time on Table Site 2.33 2, 144 0.10 
  Sex 0.01 1, 145 0.94 
  Site*Sex 0.52 2, 144 0.59 
 Time on Box Site 0.53 2, 144 0.59 
  Sex 0.80 1, 145 0.37 
  Site*Sex 0.08 2, 144 0.93 
 Time Spent Near 

Bird 
Site 17.73 2, 144 <0.01 

  Sex 0.41 1, 145 0.53 
  Site*Sex 1.25 2, 144 0.29 
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 Time to Feeder Site 3.56 2, 144 0.04 
  Sex 2.00 1, 145 0.17 
  Site*Sex 0.86 2, 144 0.43 
 Time to Table Site 1.67 2, 144 0.19 
  Sex 0.46 1, 145 0.50 
  Site*Sex 0.05 2, 144 0.96 
 Time to Box Site 0.66 2, 144 0.52 
  Sex 0.01 1, 145 0.99 
  Site*Sex 2.17 2, 144 0.12 
 Time to Bird Site 7.87 2, 144 <0.01 
  Sex 1.66 1, 145 0.20 
  Site*Sex 1.14 2, 144 0.32 
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Table 1.2. Results of ANOVAs (repeated measures for object and noise, with band number 

used as a random effect) for the novel-object, novel-noise, and novel-food experiments, 

including effects of each of the variables measured and their interactions on different finch 

behaviors. Because we applied sequential Bonferroni corrections, p < 0.01 denotes 

statistical significance. 

Experiment Behavior Term F  df p 
Object Flight Site 3.85 2, 404  0.15 
  Trial Object 3.29 2, 404 0.19 
  Sex 2.11 1, 405 0.15 
  Site*Trial Object 9.27 4, 402 0.05 
  Site*Sex 2.67 2, 404 0.26 
  Sex*Trial Object 1.06 2, 404 0.59 
 Bill Wipe Site 5.76 2, 404 0.06 
  Trial Object 2.51 2, 404 0.28 
  Sex 0.10 1, 405 0.76 
  Site*Trial Object 2.48 4, 402 0.65 
  Site*Sex 0.39 2, 404 0.82 
  Sex*Trial Object 2.39 2, 404 0.30 
 Time on Feeder Site 1.99 2, 404 0.37 
  Trial Object 5.79 2, 404 0.06 
  Sex 3.10 1, 405 0.08 
  Site*Trial Object 3.83 4, 402 0.43 
  Site*Sex 2.74 2, 404 0.25 
  Sex*Trial Object 4.77 2, 404 0.09 
 Time to Feeder Site 1.74 2, 404 0.42 
  Trial Object 2.37 2, 404 0.31 
  Sex 0.11 1, 405 0.74 
  Site*Trial Object 2.03 4, 402 0.73 
  Site*Sex 0.62 2, 404 0.73 
  Sex*Trial Object 1.56 2, 404 0.46 
 Breath Rate Site 1.16 2, 810 0.56 
  Trial Object 5.80 2, 810 0.06 
  Measurement Period 0.37 1, 811 0.54 
  Site*Trial Object 4.11 2, 808 0.39 
  Site*Measurement Period 0.83 2, 810 0.66 
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Noise Flight Site 8.41 2, 838 0.01 

  Trial Type 3.35 1, 839 0.07 
  Noise Type 24.13 2, 838 <0.01 
  Site*Trial Type 16.88 2, 838 <0.01 
  Site*Noise Type 8.05 4, 836 0.09 
 Bill Wipe Site 1.40 2, 838 0.50 
  Trial Type 5.70 1, 839 0.01 

  Noise Type 0.80 2, 838 0.67 
  Site*Trial Type 0.92 2, 838 0.63 
  Site*Noise Type 2.03 4, 836 0.73 
 Time on Feeder Site 13.57 2, 838 <0.01 
  Trial Type 0.30 1, 839 0.58 
  Noise Type 11.44 2, 838 <0.01 
  Site*Trial Type 2.42 2, 838 0.30 
  Site*Noise Type 2.80 4, 836 0.59 
 Time to Feeder Site 11.21 2, 838 <0.01 

  Trial Type 0.32 1, 839 0.57 
  Noise Type 0.50 2, 838 0.78 
  Site*Trial Type 6.61 2, 838 0.04 
  Site*Noise Type 11.11 4, 836 0.03 
 Breath Rate Site 1.61 2, 538 0.45 
  Trial Type 0.26 1, 539 0.61 
  Measurement Period 0.12 1, 539 0.72 
  Site*Trial Type 0.09 2, 538 0.95 
  Site*Measurement Period 5.29 2, 538 0.07 
Food Time Feeding Site 0.99 2, 141 0.37 
  Sex 0.09 1, 142 0.77 
  Site*Sex 0.25 2, 141 0.78 
 Time to Feed Site 0.45 2, 141 0.64 
  Sex 0.76 1, 142 0.39 
  Site*Sex 0.33 2, 141 0.72 



  28 

Table 1.3. Repeatability of finch measurements for birds from each site during the novel-

object trials. 

 

Behavior Site Repeatability 

Pre-Trial Breath Rate 
 
 
Post-Trial Breath Rate 
 
 
Flights 
 
 
Bill Wipes 
 
 
Time on Feeder 
 
 
Latency to Approach 
Feeder 

Rural 
Suburban 
Urban 
Rural 
Suburban 
Urban 
Rural 
Suburban 
Urban 
Rural 
Suburban 
Urban 
Rural 
Suburban 
Urban 
Rural 
Suburban 
Urban 

0.458 
0.477 
0.509 
0.508 
0.136 
0.505 
0.326 
0.392 
0.430 
0.394 
0.329 
0.354 
0.408 
0.541 
0.172 
0.403 
0.298 
0.294 
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Table 1.4. Repeatability measurements between two observers that watched every video 

from the human-approach trials. 

 
Experiment Behavior Repeatability 

Winter 2012 Hop  0.96 
 Fly  0.93 
 Ruffle  0.74 
 Bill wipe  0.90 
 Time on feeder  0.93 
 Time in hide  0.83 
Summer 2012 Hop  0.87 
 Fly  0.86 
 Ruffle  0.66 
 Bill wipe  0.71 
 Time on feeder  0.92 
 Time in hide  0.87 
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CHAPTER 2 

REARING ENVIRONMENT HAS STRONGER EFFECTS THAN URBAN/RURAL 

HABITAT OF ORIGIN ON BEHAVIORAL RESPONSES OF SONGBIRDS TO 

HUMANS AND NOVELTY 

 

Abstract 

Urban areas continue to expand worldwide and reduce animal biodiversity. Some species 

thrive in cities, but in most populations it is unclear if they are adapted or acclimated to 

urban environments. Also, for species that appear to acclimate to urban environmental 

stimuli, it is largely unknown at what point during development acclimation occurs. Here 

we used a common-garden experiment with juvenile birds to assess developmental 

differences in behavior between urban and rural birds. We captured fledgling house finches 

(Haemorhous mexicanus) at urban and rural sites in Phoenix, AZ, USA and randomly 

assigned them to either a low- or high-human-exposure treatment. We then assessed their 

behavior in response to an approaching human and a novel object at the beginning, mid-

point, and conclusion (~70 days) of the study.  At the mid-point and conclusion of the trial, 

we also ran similar behavioral tests on wild-caught birds from both habitat types for 

ecological comparison. We found that, at all time points and regardless of habitat of origin, 

birds that were less exposed to humans during development had higher activity levels when 

approach by a human than birds frequently exposed to humans. Wild-caught birds showed 

higher activity levels when approached than captive birds. We also found that, during the 

mid-point trials only, urban birds and wild-caught birds spent more time on the novel object 

than rural birds, suggesting that there is a critical learning period where exploratory 
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behavior may be stronger in juveniles in a complex environment. Taken together, these 

results provide experimental support for the notion that juvenile acclimation is a key driver 

of animal tolerance of humans in urban settings. 

 

Introduction 

The world is currently experiencing a massive, rapid land use change as more 

people move from rural areas to cities. Urbanization can negatively impact animals in many 

ways (reviewed in Marzluff, 2001; Shochat et al., 2006), including through loss of native 

habitat, exposure to nonnative competitors and predators, and urban noise and light 

pollution. Many species are unable to tolerate these changes, resulting in reduced 

biodiversity in cities (McKinney, 2006). Animals that do persist in cities must co-exist with 

humans and utilize anthropogenic food sources and structures for nesting and shelter. This 

often requires behavioral modifications (reviewed in Miranda et al. 2013), such as altered 

responses to predators (McCleery, 2009; Kitchen et al., 2010), competitors (Hasegawa et 

al., 2014), or mates (Lane et al., 2011), or adjusting choice of habitat (Miller et al., 1998, 

Yeh et al., 2007), vocalizations (Brumm, 2004; Barber et al., 2009), or feeding sources 

(Møller, 2008; Liker & Bokony, 2009). Often, studies on urban animal populations 

measure difference in ‘boldness,’ response to a known threat, and ‘exploration,’ response 

to an unknown stimulus (first defined in Reale et al., 2007), as animals that are successful 

in urban environments should better tolerate or utilize novelty, including built structures, 

food sources, the presence of people, and urban noise. 

A large body of literature supports the idea that urban animals acclimate to human 

presence, demonstrating that urban populations of a variety of bird and mammal species 
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flee at decreased distances from an approaching human than their rural counterparts 

(Arroyo et al., 2017; Carrete & Tella, 2017; Cavalli et al., 2016; Clucas & Marzluff, 2012; 

McCleery, 2009; Møller, 2008; but see Valcarcel & Fernandez-Juricic, 2009). Studies on 

the response of urban animals to other novel stimuli are not as clear-cut. Griffin et al. (2017) 

reviewed studies on bird exploration across an urban gradient and found that in all but two 

studies, urban and rural populations differed, indicating that animals are responding to 

humans through behavioral changes, though the directionality of the studies is mixed. In 

half of the studies, urban birds show greater levels of neophobia than their urban 

counterparts, and in the other half, they show decreased neophobia. This reveals more 

questions than answers in determining how exactly animals acclimate to life with humans.  

Phenotypic plasticity, the ability of animals to adjust behavior, morphology, or 

physiology through time or across environments (first proposed by Baldwin, 1896), may 

be the driver behind responses to urban change, which must happen rapidly and effectively 

to keep up with urban growth (Charmantier et al., 2008). In fact, a meta-analysis showed 

that the rate of phenotypic change is greater in urban areas than natural areas or other 

anthropogenic systems (Alberti et al., 2017), suggesting that urban animals are acclimating 

to cities rather than being predisposed to survive in those areas. However, less is known 

about when during an animal’s lifetime this occurs. A handful of behavioral studies are 

now recognizing the importance of developmental plasticity (Snell-Rood, 2013), and 

specifically the ontogeny of personality (Ruploh et al., 2013), in understanding how 

animals might change their phenotype in response to environmental changes, such as 

human-induced changes. Differences in early-life environment can alter short- and/or long-

term behavioral responses in many species, including birds (Taeniopygia guttata, Ruploh 
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et al., 2015; Parus major, Naguib et al., 2011; van Oers et al., 2015; Cyanistes caeruleus, 

Arnold et al., 2007; Aphelocoma californica, Pravosudov & Kitaysky, 2006; Anas 

platyrhynchos, Butler et al., 2011), which are commonly used in studies of acclimation to 

urban ecosystems. However, many of these studies test birds at just one time point during 

development, potentially missing differences in behavior that may appear during unknown 

critical developmental periods. In addition, most of these studies are conducted in a lab 

environment, without comparison to animals going through similar phases of their 

development under natural conditions, and few study urban-rural differences between 

populations. 

To our knowledge, no study has utilized a common-garden experimental approach 

to investigate developmental differences in behavior between urban and rural populations. 

Therefore, we conducted a multi-faceted study that incorporated both field and lab trials 

and multiple time points to elucidate differences in response to human presence on juvenile 

house finches (Haemorhous mexicanus) from urban and rural sites in and around Phoenix, 

Arizona. House finches from their native range in the southwestern USA are prevalent in 

both human-dominated and natural (desert) areas, making them an excellent system for 

studying population-level behavioral variation. In a previous study on adult house finches 

at these sites, we found that, when approached by a human, rural birds had increased 

activity and stress behaviors compared to urban birds (Weaver et al., 2018b), indicating 

that urban birds are more tolerant of the presence of humans/novelty. Here, we 

experimentally tested the effects of human presence on development of these behaviors 

under controlled captive conditions. We captured house finches just after fledging and 

randomly assigned them to either a low- or a high-human-exposure treatment and ran 
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behavioral trials at three different times during their juvenile life stage, which included the 

first 90 days of their development. At the mid-point and end-point of the trials, we also 

performed behavioral tests on wild-caught hatch-year finches at the same urban and rural 

sites to compare behavior with those developing in captivity. If animals are acclimating to 

urban environments, we predict that birds in the high human exposure treatment would 

show modified behavioral responses (less activity, fewer stress behaviors, more time spent 

on novel object) than low exposure birds, regardless of capture site. Alternatively, if some 

populations are genetically adapted to (i.e. innately attuned to behaving in) urban 

environments, we expect that urban birds would already exhibit differences in behavior at 

an early age (i.e. our initial testing) and be more neotolerant than rural birds, regardless of 

treatment type. We also predict that captive birds would be more tolerant of 

humans/novelty than wild-caught birds captured at roughly the same time-points in their 

development, since they are not being housed in captive conditions in close proximity to 

humans. 

 

Methods 

Field Methods 

From 21-24 May 2014, using basket traps baited with sunflower seeds, we trapped 

~20 juvenile house finches just after fledging at each of four sites: two considered urban 

(n = 44) and two considered rural (n = 44), based on urban land use parameters measured 

by the Central Arizona-Phoenix Long-Term Ecological Research program (Giraudeau et 

al., 2014). The two urban sites were the Arizona State University campus and a 

neighborhood near downtown Phoenix. The two rural sites were natural park areas at South 
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Mountain and Estrella Mountain Regional Parks (see Appendix C for map). Juveniles were 

identified based on unique plumage characteristics (Pyle, 1987). Based on previous 

research on house finch breeding in Arizona (Badyaev et al., 2012), we estimated the age 

range of the birds at capture to be 28-60 days (assuming first-egg-dates starting in late 

February). Since house finches do not disperse from their natal site until end of the summer 

(Veit & Lewis, 1996), we believe that we captured birds very near their nest during the 

selected time periods. At capture, we fitted each bird with a numbered United States 

Geological Survey metal identification band, measured body mass (using a digital scale, to 

the nearest 0.01 g), and inspected them for signs of avian pox. Birds of atypically low body 

mass (less than 15g) or with visible pox lesions were released without being tested. We 

transported the rest of these birds back to Arizona State University in a paper bag for the 

follow-up testing and experiment.   

 

Behavioral Trials with Captive Birds 

Birds were individually housed in small wire cages (60cm x 40cm x 30cm) in a 

climate-controlled vivarium and given a diet of black sunflower seeds and tap water ad 

libitum. The rooms were kept at a temperature of 25º C on a natural outdoor light cycle. In 

the week following capture, we ran the initial bout of behavioral tests from 26-28 May 

2014. We placed each bird individually in a large cage (0.77 m tall x 0.59 m long x 0.50 m 

wide; Figure 1) in our outdoor courtyard aviary between 0600-1000 hrs. (only during 

mornings because of the extreme Phoenix summer heat, when daily maximum 

temperatures can exceed 45° C). We tested four birds simultaneously (in different visually 

separated aviary compartments) and thus ran 16 trials per day. We used trial date and time 
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of day as covariates to statistically account for this temporal variation, but removed them 

from the final model because they had no significant effect. The cage was equipped with a 

shaded area and feeders with sunflower seeds and water. We added a novel object (a perch 

made of a child’s sword that flashes colorful light) to measure latency to approach an 

unfamiliar perch. The perch was placed at the highest (i.e. preferred) level of the cage, 

while the typical stick perches were placed lower in the cage. We selected this object 

because it was the size of perch but glowed with flashing colors that would be novel to 

birds from all sites. 

Each bird was given 30 minutes to acclimate in the new cage while we recorded all 

behavior with a handheld video camera mounted on a tripod placed 5 m from the cage. 

After the acclimation period, one person (MW) walked toward the cage starting from a 

distance of 10 m at a pace of one step per second until touching the cage and walked away 

at the same pace. We recorded the bird’s behavior during this approach as well as for 15 

minutes afterward. From each video, two independent observers scored three behaviors 

using the software program Cowlog (Hanninen & Pastell, 2009): frequency of flights (used 

as a measure of activity level), frequency of bill wipes (proposed as indicators of stress; 

Tinbergen 1940), and time spent on the novel perch. Data collected by each observer were 

tested for repeatability (Lessells & Boag, 1987), and behavioral scores were averaged for 

final analyses. Before averaging scores, observers were expected to reach 70% (0.70) 

interobserver repeatability for each behavior (final repeatability for flights = 0.82, bill 

wipes = 0.70, and time on novel object = 0.90). If observers had not reached 0.70 

repeatability, a third observer would watch the videos until obtaining interobserver 
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repeatability of 0.70. We would then use data from the observer with which the third 

observer was repeatable. 

After administering the initial “human-approach test,” we randomly assigned 10 

birds from each site to a “low human exposure” group and 10 to a “high human 

exposure” group (sensu Cook et al. 2017). Birds from the “low human exposure” 

treatment were exposed to a human in their housing room for up to 15 minutes per day, 

which occurs during normal husbandry (e.g. feeding, watering, sweeping), except on one 

day every two weeks when cages were changed out (which took about 60 minutes). In the 

“high human exposure” housing room (in addition to the baseline human activities 

outlined above for the “low human exposure” treatment), a research assistant slowly 

paced throughout the room for one randomly selected daylight hour every other day, at a 

rate of one step per second, which is meant to mimic human activity that might occur 

around birds living in urban areas. 

Birds were kept in three different rooms, two that held 20 and one larger room 

that held 40 finches, housed only with birds belonging to the same treatment group. Birds 

were rotated on rolling cage racks among rooms every two weeks to remove any room 

effects on the experiment. We kept the birds in captivity for 70 days, which we selected 

in order to keep the birds in captivity during the first 90 days (or longer) of their 

development. This duration is just longer than the critical learning period for song 

development (reviewed in Brainard & Doupe, 2002) recorded in zebra finches 

(Taeniopygia guttata; George et al., 1995), song sparrows (Melospiza melodia; Marler & 

Peters, 1987), and white-crowned sparrows (Zonotrichia leucophrys; Marler, 1970). We 

retested each bird at the halfway point of the study (30 June-4 July) and again just before 
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we released all birds back into the wild (10-13 Aug.), the same periods during which we 

tested birds in the wild (see more below). In the weeks following these human-approach 

trials, finches were also tested for problem-solving ability as part of another study (Cook 

et al., 2017), but all birds were tested in the same fashion as to not affect the outcome of 

the present experiment in any way. Because of an unexpected avian pox outbreak during 

the study, not every captive bird participated in all three trials. Birds that showed signs of 

pox were euthanized to prevent further spread and thus not included in subsequent trials. 

Thus, 73 birds (38 high exposure consisting of 17 urban and 21 rural birds, 35 low 

exposure consisting of 14 urban and 21 rural birds) participated in trial 2 and 57 in all 

three trials (30 high exposure consisting of 12 urban and 18 rural birds, 27 low exposure 

consisting of 12 urban and 15 rural birds). 

 

Behavioral Trials with Wild-Caught Birds 

We returned to each field site twice more (once at the mid-point of the study, 5-12 

July, and once at the completion of the study, 15-23 Aug.) to capture and perform the 

above-described trials on wild-caught juvenile house finches. We ran tests at the field site 

from 0600-1000 hrs. in the same type of shaded outdoor microhabitat that captive birds 

were experiencing. Based on what we know about house finch ecology and behavior, we 

believe that this reduced stress levels that would have been exacerbated by transporting 

birds back to campus and keeping them in captivity overnight and that, by conducting these 

trials in the field in a similar microhabitat, we were able to gain better insight into their 

natural behavior. We tested up to 12 birds per day (three simultaneously, at locations at a 

site separated by 10 m), so we visited each site twice during a week-long period. Overall, 
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we tested 160 wild-caught juveniles (39 urban and 40 rural in July; 37 urban and 44 rural 

in August) at these time points. 

 

Statistical Methods 

We ran all statistical analyses in the R computing environment (Ver. 2.15.1). In 

our prior work, none of our three behavioral measures (flights, bill wipes, and time spent 

on novel object) were significantly intercorrelated (Weaver et al., 2018), so we analyzed 

each behavior in a separate analysis of variance (ANOVA) rather than combining them 

using principal components analysis or running a multivariate ANOVA (MANOVA; 

Huberty & Morris, 1989). To determine whether the behavioral responses of house 

finches to an approaching human and to a novel object differed based on degree of 

urbanization or human exposure condition, we ran a series of repeated-measures 

ANOVAs using capture site (urban v. rural), condition (high-exposure captive v. low-

exposure captive v. wild caught), trial number in captive birds only (first, second, third), 

time of trial (before approach, after approach) and their interactions as the 

predictors/covariates and flights, bill wipes, and time spent on novel object as the 

separate response variables. In addition, we entered individual as a random effect to 

account for the fact that birds were tested in multiple trials. Because all behaviors met 

assumptions of normality and equal variance, we used parametric statistics for each 

ANOVA. When necessary, we used Tukey’s honest-significant-difference tests for post-

hoc comparisons.  

 

Results 
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First, we found a significant main effect of the human approach on flight frequency 

(Figure 2; Table 1), such that birds flew more after the human approach than before it; thus, 

finches were clearly responding to the approaching human stimulus. We found a significant 

effect of the captive human-exposure treatment on frequency of flights during the human 

approach trial (Figure 2). Finches experimentally exposed less to humans flew more than 

those birds who were frequently exposed to humans (Figure 2, Table 1). We also found an 

overall effect of trial period on frequency of flights (Table 1). Birds flew significantly less 

during the third trial than in the first and second trials (Figure 2). Last, we found a 

significant effect of captivity on flight frequency (Table 3). Captive birds flew significantly 

less than wild birds during their final trial but did not differ in flights during the mid-point 

trials (Figure 4). We found no other significant effects on flight frequency (Table 1).  

We found no significant effects of any variable or the interactions on bill-wipe 

frequency (Table 1). However, we found a significant effect of the habitat type on time 

spent on the novel object (Table 2). Urban birds spent more time on the object than rural 

birds, but only during the mid-point trial (Figure 3). In addition, we found a significant 

effect of captivity on time spent on the novel object (Table 2). Also, during this mid-point 

trial only, wild-caught birds spent more time on the object than captive birds, and high 

exposure birds spent more time on the object than low exposure birds (Figure 3).  We found 

no other significant effects on time spent on the novel object (Tables 1, 2, 3). 

 

Discussion 

 To better understand development of behavioral differences in urban and rural 

house finches, we captured birds just after fledging at urban and rural sites and exposed 
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them to either a low human approach treatment or a high human approach treatment. We 

then conducted behavioral trials pre-, mid-, and post-treatment, and compared the last two 

trials to trials conducted on wild-caught birds in the field. We found that, regardless of 

capture site and treatment, birds were less active in response to human approach in the 

post-treatment trial than the pre-treatment and mid-treatment trials. In addition, we found 

that, during the post-treatment trial, wild-caught birds flew more frequently in response to 

a human than captive birds, regardless of site. Finally, we found that, during the mid-point 

trial only, urban birds spent more time on the novel object than rural birds, and wild-caught 

birds spent more time on it than captive birds. Among captive finches, high-human-

exposure birds spent more time on the novel object than the low exposure birds. These 

results suggest that house finches, regardless of site, have the ability to acclimate to the 

presence of humans and change their response to humans accordingly when exposed to 

them frequently as juveniles, as they would be in urban environments. 

 A number of studies have explored behavioral differences between urban and rural 

populations and discovered that urban birds are indeed capable of modifying behavior in 

response to anthropogenic conditions (reviewed in Miranda et al., 2013). However, little 

attention has been paid to the age of the birds, and tests on juvenile animals are 

comparatively rare.  In our earlier study on adults from this population of house finches, 

we found that urban birds flew less and showed fewer stress behaviors in response to 

human approach than their rural counterparts (Weaver et al., 2018b). As adults may have 

already established their habitat and habitat-specific behavior, we replicated this study with 

juveniles here and added an experimental approach, by exposing them to low or high levels 

of human exposure. We did not find any clear and consistent urban/rural differences in 
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behaviors of young birds, but we did show that, regardless of habitat of origin, high-human-

exposure birds flew less than low-exposure birds (with no difference in stress behaviors or 

time spent on novel object). These results suggest that young birds from the different 

habitats did not inherently differ in behavior (i.e. due to genetic predisposition or to very-

early-life conditions) and did not differentially respond to levels of human exposure during 

development. Instead, because all captive groups seemed to become accustomed to 

repeated exposure to humans for weeks, it appears that acclimation during the post-fledging 

phase accounts for observed urban finch tolerance of humans (i.e. in cities). However, it is 

worth noting that there was a small pre-study difference in flight behavior between the two 

treatment groups and no interaction between treatment and trial period, indicating that, 

although birds were randomly assigned to groups, finches from the low-human-exposure 

group were also more active before treatment onset. As a post hoc analysis, we ran a 

repeated measures ANOVA on the mid-treatment and post-treatment trials using the pre-

treatment behavior as a covariate to further elucidate treatment differences and found no 

differences in flights between low-exposure and high-exposure treatments. Thus, while we 

can say that all birds acclimated to human exposure, there was no different in treatments 

(F2, 227 = 1.55, p = 0.43). 

In the post-treatment trials, all captive birds, regardless of treatment, flew less in 

response to an approaching human than the previous two trials and flew significantly less 

than wild-caught birds tested during the same time period. This makes sense, as captive 

birds were exposed to humans on a daily basis during the study period, allowing enough 

exposure with reinforcement (i.e. no negative consequences to nearby/approaching 

humans, except being captured for cage relocation once every two weeks) to acclimate 
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more to human presence than wild-caught birds. Our results resemble those found in an 

experiment on adult house sparrows (Passer domesticus), in which Vincze et al. (2013) 

found that all birds acclimated to human presence after several trials, but urban birds 

acclimated more quickly than rural sparrows. Although we detected no site differences in 

behavioral responsiveness to humans, our low-human-exposure treatment was meant to be 

comparable to rare human encounters in rural areas, whereas high exposure was intended 

to simulate urban-typical, frequent experiences with humans. Interestingly, our results 

conflict with those of Miranda et al. (2013), who found that urban European blackbirds 

(Turdus merula) still differed behaviorally from rural counterparts when raised in a 

common-garden study, though these birds did not undergo different treatments in captivity 

and thus are not comparable to ours per se.  

 The developmental time during or over which juvenile behavioral investigations 

are conducted may also impact findings across studies. During the mid-point trials only, 

urban house finches spent more time on the novel object than did rural birds, regardless of 

treatment, and wild-caught birds spent more time on it than captive birds. Also, at this same 

testing time-point, within captive birds we found that high-human-exposure birds spent 

more time on the object than low-exposure birds. In our previous study of adult house 

finches, we found no urban/rural difference in time spent near novel objects (albeit 

different ones than the sword used here; Weaver et al., in press), which suggests that there 

is a critical juvenile developmental period in which exploratory behavior in house finches 

is most responsive to environmental variation (and does not persist into adulthood). This 

difference vanished by the post-treatment trials one month later. Though we have no way 

of knowing the exact age of the birds, based on timing of the typical breeding period for 



  44 

finches (Badayev et al., 2012) we estimate that they were between 60-90 days old during 

this time, which appears to be a sensitive window in behavioral development. Most of what 

is known about behavioral development in passerines comes from studies on song learning 

(reviewed in Brainard and Doupe, 2002), where birds have an early sensory learning period 

and a later sensorimotor period in which experiences during 60-90 days of life shape the 

final stages of learning (Ruploh et al., 2015). Adolescence is a period in which dramatic 

changes happen in most animal’s lives, when they begin to rely less on their parents and 

often disperse from natal sites (Sachser et al., 2010). During this time, for example, mice 

increase risk-taking behaviors and exposure to novelty (Macri et al., 2002; Laviola et al., 

2003). This has not been studied in songbirds, but Butler et al. (2011) found that mallard 

ducks (Anas platyrhynchos) exposed to an immune challenge in later adolescence showed 

behavioral changes, whereas ducks that were immunochallenged earlier in development 

did not. Our results suggest that understanding urban acclimation requires a greater 

understanding of critical periods in animal behavioral development. 

 In conclusion, we found stronger evidence for urban house finches acclimating to 

the presence of humans than for an early-life genetic/pre-fledging predisposition for human 

tolerance, and this was true regardless of whether birds were captured from urban or rural 

habitats. Birds exposed less to humans in this study behaved similarly to adult rural birds 

in our prior work, being more active in the presence of humans than high-human-exposure 

fledglings, regardless of capture site. However, because we only tested responsiveness to 

and effects of human exposure and a novel object under captive conditions, this does not 

rule out a combination of acclimation and predisposition to other urban-dominated stimuli 

(that we did not investigate) in nature. In addition, we found interesting temporal 
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differences in juvenile behavior during development, during which birds in a more complex 

environment (urban vs rural; wild caught vs captive) spent more time near a novel object 

but only during the mid-point trials. This result opens the door for further studies on if or 

precisely when critical periods for personality development occur, which is not widely 

studied in wild animals. 

 

Figures 
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Figure 2.1. Experimental setup for the human approach trials, equipped with a cardboard 

box for a shaded area, a novel object (glowing green and purple toy sword), tree branches 

for natural perches, and white food and water dishes. 

 

 

Figure 2.2. Differences in flight frequency as a function of human-exposure treatment (high 

or low), habitat type (urban or rural), trial period (pre-, mid-, or post-experiment), and time 

of testing (before or after the human approach). In captive trials, low-human-exposure birds 

flew significantly more than high-exposure birds, regardless of habitat type, trial period, 

and time of testing. Also, birds flew significantly more after the human approach than 

before, and flew more in the first two trials than the final trial. Graphs depict mean and 

standard deviation. Unshared letters represent significant differences in treatment time-

points, and asterisks indicated differences in flight frequency before and after approach. 
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Figure 2.3. Differences in time spent on novel object as a function of urbanization (left) 

and treatment (right) during the mid-point trial in July. Urban birds spent more time on the 

novel object than rural birds, and wild caught birds spent more time on the novel object 

than captive birds while high exposure birds spent more time on the object than low 

exposure birds. Graphs depict mean and standard deviation, and unshared letters denote 

statistically significant differences between groups. 

 

* 
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Figure 2.4. In the post-treatment trial, conducted in August, wild-caught birds flew more 

than captive birds, regardless of capture site or experimental treatment. Graph depicts mean 

and standard deviation. 
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Tables 

Table 2.1. Results of repeated-measures ANOVAs testing the effects of habitat type, 

human-exposure treatment, trial period, time of testing, and their interactions on flight 

frequency. Statistically significant p-values are in bold. 

 

Behavior Term F df p 

Flights Habitat Type 0.82 1, 527 0.36 
 Treatment (low v high exposure) 3.69 1, 527 0.05 

 Trial Time (before v after) 5.99 1, 527 0.01 

 Trial Number (initial, mid, final) 9.48 2, 526 0.01 

 Type*Condition 0.13 1, 527 0.72 
 Type*Trial Time 0.05 1, 527 0.82 
 Treatment*Trial Time 2.31 1, 527 0.13 
 Type*Trial Number 2.47 2, 526 0.29 
 Treatment*Trial Number 2.02 2, 526 0.36 
 Trial Time*Trial Number 0.15 2, 526 0.93 
 Type*Treatment*Trial Time 0.01 1, 527 0.95 
 Type*Treatment*Trial Number 0.31 2, 526 0.85 
 Type*Trial Time*Trial Number 0.13 2, 526 0.94 
 Treatment*Trial Time*Trial # 2.09 2, 526 0.35 
 Type*Treatment*Trial x*Trial # 0.12 2, 526 0.94 
Bill Wipes Habitat Type 0.18 1, 527 0.67 
 Treatment (low v high exposure) 0.37 1, 527 0.54 
 Trial Time (before v after) 0.02 1, 527 0.88 
 Trial Number (initial, mid, final) 1.19 2, 526 0.55 
 Type*Treatment 1.35 1, 527 0.25 
 Type*Trial Time 0.04 1, 527 0.83 
 Treatment*Trial Time 1.52 1, 527 0.22 
 Type*Trial Number 0.73 2, 526 0.69 
 Treatment*Trial Number 0.66 2, 526 0.72 
 Trial Time*Trial Number 0.61 2, 526 0.74 
 Type*Treatment*Trial Time 0.42 1, 527 0.52 
 Type*Treatment*Trial Number 0.12 2, 526 0.94 
 Type*Trial Time*Trial Number 2.01 2, 526 0.37 
 Treatment*Trial Time*Trial # 1.23 2, 526 0.54 
 Type*Condition*Trial x*Trial # 2.04 2, 526 0.36 
Time on Object Habitat Type 0.47 1, 527 0.49 
 Treatment (low v high exposure) 0.30 1, 527 0.59 
 Trial Time (before v after) 0.78 1, 527 0.38 
 Trial Number (initial, mid, final) 2.63 2, 526 0.27 
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 Type*Treatment 0.19 1, 527 0.67 
 Type*Trial Time 0.10 1, 527 0.76 
 Treatment*Trial Time 0.01 1, 527 0.98 
 Type*Trial Number 5.10 2, 526 0.08 
 Treatment*Trial Number 0.89 2, 526 0.64 
 Trial Time*Trial Number 0.29 2, 526 0.86 
 Type*Treatment*Trial Time 0.15 1, 527 0.70 
 Type*Treatment*Trial Number 3.50 2, 526 0.17 
 Type*Trial Time*Trial Number 0.57 2, 526 0.75 
 Treatment*Trial Time*Trial # 0.40 2, 526 0.82 
 Type*Treatment*Trial x*Trial # 1.90 2, 526 0.39 
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Table 2. Results of ANOVAs for midpoint trials, conducted in July, comparing wild caught 

and captive birds, including each of the variables measured and their interactions. 

Statistically significant p-values are in bold. 

 

Behavior Term F df p 

Flights Habitat Type 0.01 1, 298 0.96 
 Treatment (low vs high vs wild) 1.34 2, 297 0.51 
 Trial Time (before vs after) 0.79 1, 298 0.37 
 Type*Treatment 0.12 2, 297 0.94 
 Type*Trial Time 0.02 1, 298 0.88 
 Treatment*Trial Time 0.07 2, 297 0.97 
 Type*Treatment*Trial Time 0.21 2, 297 0.90 
Bill Wipes Habitat Type 0.70 1, 298 0.40 
 Treatment (low vs high vs wild) 1.48 2, 297 0.48 
 Trial Time (before vs after) 0.10 1, 298 0.76 
 Type*Treatment 3.07 2, 297 0.22 
 Type*Trial Time 3.39 1, 298 0.07 
 Treatment*Trial Time 1.00 2, 297 0.61 
 Type*Treatment*Trial Time 2.93 2, 297 0.23 
Time on Object Habitat Type 4.12 1, 298 0.04 

 Treatment (low vs high vs wild) 7.28 2, 297 0.03 

 Trial Time (before vs after) 0.08 1, 298 0.77 
 Type*Treatment 1.04 2, 297 0.59 
 Type*Trial Time 2.35 1, 298 0.13 
 Treatment*Trial Time 0.70 2, 297 0.71 
 Type*Treatment*Trial Time 5.22 2, 297 0.07 
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Table 3. Results of ANOVAs for final trials, conducted in August, comparing wild-caught 

and captive birds, including each of the variables measured and their interactions. 

Statistically significant p-values are in bold. 

 

Behavior Term F df p 

Flights Habitat Type 0.80 1, 269 0.37 
 Treatment (low vs high vs wild) 37.9 2, 268 <0.01 

 Trial Time (before vs after) 7.57 1, 269 <0.01 

 Type*Treatment 2.83 2, 268 0.24 
 Type*Trial Time 0.98 1, 269 0.32 
 Treatment*Trial Time 4.56 2, 268 0.10 
 Type*Treatment*Trial Time 1.57 2, 268 0.46 
Bill Wipes Habitat Type 2.20 1, 269 0.14 
 Treatment (low vs high vs wild) 0.45 2, 268 0.80 
 Trial Time (before vs after) 1.13 1, 269 0.29 
 Type*Treatment 0.92 2, 268 0.63 
 Type*Trial Time 2.44 1, 269 0.12 
 Treatment*Trial Time 3.37 2, 268 0.19 
 Type*Treatment*Trial Time 1.03 2, 268 0.60 
Time on Object Habitat Type 2.31 1, 269 0.13 
 Treatment (low vs high vs wild) 4.65 2, 268 0.10 
 Trial Time (before vs after) 0.08 1, 269 0.78 
 Type*Treatment 3.94 2, 268 0.14 
 Type*Trial Time 0.01 1, 269 0.90 
 Treatment*Trial Time 1.59 2, 268 0.45 
 Type*Treatment*Trial Time 0.25 2, 268 0.88 
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CHAPTER 3 

CONTEXT-DEPENDENT VARIATION IN PROBLEM SOLVING ABILITY AS A 

FUNCTION OF URBANIZATION IN A SONGBIRD 

 

Abstract 

Recent human-induced transformations to the environment are significantly impacting 

wild animal populations. While some animals thrive due to these changes, others are being 

extinguished. Many studies have attempted to identify behavioral traits (e.g. personality, 

diet versatility, cognition) that allow some animals to succeed in human-dominated 

landscapes, but few have studied multiple traits or environmental contexts concurrently, 

despite the fact that different environments may require different types of behavioral 

performance. We presented house finches (Haemorhous mexicanus) captured from urban, 

suburban, and rural sites with two different environmental problems to solve (escaping 

from a novel environment and finding food in novel feeding structures) and measured 

success and speed of problem solving as well as activity levels and stress behaviors of the 

birds. We found that urban birds were better at solving the escape challenge, but rural birds 

were better at finding hidden food. In addition, we found that birds who solved the escape 

challenge were more active than those who did not solve this problem, although we 

observed no such behavioral difference in the food challenge. These results indicate that, 

because cognitive tasks can vary across environments, certain problem-solving abilities 

may not be favored for all urban-dwelling species. 

 

Introduction 



  54 

 

As human-dominated landscapes continue to expand across the globe, determining 

which traits enhance survival of animal species inhabiting urban environments has become 

an important challenge for ecologists. Cities typically have reduced biodiversity compared 

to surrounding natural areas, due to the novel, intense forms of anthropogenic 

environmental disturbance, which include destruction of native habitat, introduction of 

non-native predators and competitors, various types of pollution, and the presence of 

humans themselves (Marzluff, 2001; Shochat et al., 2006). However, many species 

successfully adapt to and thrive in cities, taking advantage of artificial food and water 

sources (Fokidis et al., 2009) and additional cover and nesting sites (Møller, 2008, 

Tryjanowski et al., 2015). Several behavioral traits have been implicated as potential 

drivers of exploitation of and adaptation to urban areas, such as boldness and plasticity 

(Lowry et al., 2013), but studies on behavioral variation along an urban-rural gradient have 

produced mixed results (Griffin et al., 2017), demonstrating that urban species may differ 

in the strategies that allow them to survive in their surroundings. 

Because animals inhabiting urban areas face a number of behavioral problems they 

must solve, such as finding food in novel areas and searching novel structures for nesting 

sites and protection, many researchers have proposed that problem-solving ability should 

play a key role in determining which species can survive in human-impacted areas. 

Superior feeding innovation (or problem-solving ability; Griffin et al., 2017) is often found 

in urban birds (Audet et al., 2016) and mammals (Mangalam & Singh, 2013). It has been 

argued that this pressure to innovate stems from inhabiting harsher, more complex, unique 

environments (Roth et al., 2010), but few such studies have explored problem-solving in 
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multiple contexts. Griffin et al. (2017) reviewed the literature on innovation in urban birds 

and found in six of eight studies that urban birds showed a higher level of innovation (the 

term used to describe ability to solve a problem) than their rural counterparts. However, in 

all but one of the studies, only the ability of animals to acquire food through a novel feeder 

was tested. Birds also face key navigational challenges in urban environments, such as 

escaping unique threats (e.g. feral cats) and locating novel nesting locations (e.g. 

buildings), which may require different abilities. Only Preiszner et al. (2017) has tested 

avian innovation in multiple contexts, finding that urban great tits (Parus major) were more 

successful both in clearing an obstacle to their nests and acquiring food through a novel 

feeder. To our knowledge, no ecological study has tested how animals solve a problem that 

presents an aversive challenge, such as escaping from confinement. 

Here we explored the extent to which problem-solving ability varies as a function of 

urbanization and task type (aversive vs rewarding). We administered two types of 

problem-solving challenges (locating food, considered rewarding, and escaping 

confinement, considered aversive) to house finches (Haemorhous mexicanus) captured 

across an urban gradient in Phoenix, Arizona, USA and recorded the behavior of all 

individuals to examine problem-solving success and its potential correlates (activity level 

and stress-related behaviors; Weaver et al., 2018). House finches are seed-eating 

passerines (Family Fringillidae) found in both urban and natural (desert) areas in their 

native range, and in previous work several behavioral (Valcarcel & Fernandez-Juricic, 

2009; Weaver et al., 2018; Cook et al., 2017) and physiological differences (Giraudeau et 

al., 2014) have been identified between urban and rural birds. We initially predicted, 

based on prior work in other species (Preiszner et al., 2017) and because, in a pilot study, 
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urban finches were found to escape from live traps better than rural birds (pers. obs.), that 

urban birds would be better problem-solvers regardless of task type. In addition, because 

previous studies had shown urban-rural variation in behavioral responses to stress in 

house finches (Weaver et al., 2018), we predicted that urban birds would have lower 

activity scores and display fewer stress behaviors during these trials, as reduced stress 

would give the birds a greater ability to solve the problem. 

 

Methods 

Field Methods 

We trapped after-hatch-year house finches during two pre-breeding seasons 

(January-March 2012 for the cage-escape tests and January-February 2015 for the food-

location tests), which we selected because, in our previous work (Weaver et al., 2018), we 

saw greater urban-rural behavioral differences at this time of year than during the summer 

molt season. We used basket traps baited with sunflower seeds to capture finches at two 

urban, two suburban, and two rural sites across the greater Phoenix area; these sites were 

categorized based on human population density and urban land-use parameters measured 

by the Central Arizona-Phoenix Long-Term Ecological Research program (Cook et al., 

2017; see map in Appendix C). The two urban sites were the Arizona State University-

Tempe campus and a neighborhood near downtown Phoenix. The two suburban sites were 

a landscaped park in Gilbert, AZ and a residential neighborhood in southeast Tempe, AZ. 

The two rural sites were natural, desert-foothill areas at South Mountain and Estrella 

Mountain Regional Parks. At capture, we fitted each bird with a numbered United States 

Geological Survey metal band for individual identification. We studied 50 urban (24 
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females, 26 males), 46 suburban (22 females, 24 males), and 50 rural (26 females, 24 

males) finches in 2012 (81 males, 71 females), but because we found no consistent 

differences in suburban birds in early work (Weaver et al., 2018), we tested only urban (n 

= 56; 31 females, 25 males) and rural (n = 57; 25 females, 22 males) birds in 2015.  

Birds studied in the escape challenge were behaviorally tested in the field and then 

released immediately at their capture site (see below). Birds given the food-finding 

challenge were transported to the Arizona State University-Tempe campus in a paper bag 

and kept in captivity for roughly two weeks before testing (see below); after conducting 

two additional, unrelated behavioral studies with them, this group of birds was also released 

at their capture site. For both types of challenges, we ran five behavioral trials per day, 

between 0700-1100 hrs. We used time of day as a covariate in our original model but 

removed it because it was not significant. 

 

Field Cage-Escape Trials (2012) 

We placed each bird individually in a large cage (0.77 m tall x 0.59 m long x 0.50 

m wide; Figure 3.1) on the ground at its capture site, in similar light conditions to those 

where they were captured in the trap and adjacent to a human path (sidewalk at the urban 

areas and parking lot at rural areas, which we guarded to ensure trials were not interrupted). 

The cage was equipped with a hide area and feeders with sunflower seeds and water, as 

well as a small tunnel through which the finch could escape the cage. Each bird was given 

a 20-minute time period to escape the cage on its own. If it did not escape by the 20-minute 

mark, a human (MW) walked toward the cage (Weaver et al., 2018) to putatively stress the 

bird and assess if this stimulus would trigger it to escape the cage during the subsequent 
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10 minutes. All trials were video-recorded with a camera (JVC Everio, Long Beach, CA) 

mounted on a tripod about one meter from the cage. Three birds were tested at a time, each 

in its own cage that was separated by at least 20 meters from the other cages. Videos were 

scored for the time it took for a bird to escape the cage, the number of flights (used as a 

measure of activity level) and bill wipes (proposed as a behavioral indicator of stress; 

Tinbergen, 1940; Clark Jr., 1970), and the amount of time spent on the feeders and in the 

hide area. Behavioral data from this experiment were also previously utilized to understand 

response to humans across an urban gradient (Weaver et al., 2018), and in this paper, we 

only analyze the behaviors related to solving the escape challenge. From each video, two 

independent observers scored the behaviors using the software program Cowlog (Hänninen 

& Pastell, 2009). Data collected by each observer were tested for repeatability (Lessells & 

Boag, 1987), and behavioral scores were averaged for final analyses. Observers were pre-

screened on training videos and expected to reach 0.75 repeatability with each behavior 

before participating in official data collection. If this did not occur, a third observer watched 

a subset of videos, and we selected the data from the observer with which the third person’s 

repeatability was > 0.75. 

 

Captive Food-Finding Trials (2015) 

 For two weeks (acclimation phase), birds were individually housed in small wire 

cages (60cm x 40cm x 30cm) in a climate-controlled vivarium on the Arizona State 

University-Tempe campus and given a diet of black oil sunflower seeds and tap water ad 

libitum. The rooms were kept at a temperature of 25º C on a natural outdoor light cycle. 

We chose not to food-deprive all birds prior to food-finding trials because we did not want 



  59 

hunger to be the driving factor in locating food sources, which could potentially measure 

another metric, such as nutritional/body condition, rather than problem-solving ability. In 

addition, we found no differences in time spent on feeder across sites in multiple 

experiments conducted on these populations (Weaver et al., 2018; Weaver et al., in press), 

so we do not believe their motivation to feed is different between sites. After the two-week 

adjustment period to captivity, each bird was placed a large flight cage (9’ L X 5’ W X 9’ 

H) within ASU’s School of Life Sciences courtyard aviary. Each flight cage was equipped 

with a black plastic trashcan, a small metal food dish hidden behind a dish towel, and a 

child’s plastic cup with an attached plastic straw (Figure 3.1), all containing sunflower 

seeds hidden inside where the bird must enter the item to find the seeds. We chose common 

objects that even birds at rural parks might have some exposure to, so as not to test novelty 

per se. Each bird spent an hour in the flight cage, and we recorded all behavior with a video 

camera mounted on a tripod and performed video analyses as described above. Videos were 

scored for each bird’s ability to find each of the three hidden food sources (yes/no), the 

speed with which they located the hidden food source(s), as well as the number of flights 

and bill wipes (as above). 

  

Statistical Methods 

We ran all statistical analyses in the R computing environment (Ver. 2.15.1). For 

the field cage-escape trials in 2012, we calculated the proportions of escapes per site and 

compared them using chi-squared tests. We then ran multiple analyses of variance 

(ANOVAs) to determine if birds who did and did not escape the cage significantly 

differed in their numbers of flights and bill wipes or in the time spent on the feeder/hide 
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and if this varied by site. For the hidden-food trials in 2015, we also ran chi-squared tests 

on proportion of birds that located each of the three different food sources per site. We 

measured these variables separately since they were spatially-distinct and object-specific 

challenges (Papp et al., 2015). We then ran multiple ANOVAs using flights and bill 

wipes as independent variables to determine if finding hidden food sources was linked to 

these behaviors and differed by site. We included sex in our analysis but found no 

differences in ability to solve problems (χ2 = 0.35, p = 0.55 in 2012 and χ2 = 2.31, p = 

0.13 in 2015). When necessary, values were log-transformed to normalize them, and we 

used Tukey’s honest significant difference tests for post-hoc comparisons. 

 

Results 

Field cage-escape trials 

 Urban birds were significantly more likely to escape the cage than rural birds (χ2 = 

4.36, p = 0.037; Figure 3.2), though suburban birds did not differ from either. Of the 51 

urban birds, 11 escaped (22%), whereas eight of 49 suburban birds escaped (16%) and 

three of 54 rural birds escaped (5%). Of the 19 escapes, 14 came before the human 

approached and five came after; there was no significant difference in time to escape among 

sites (F1, 153 = 1.50, p = 0.25). Regardless of site, birds that escaped the cage had higher 

activity levels (i.e. more flights/minute) than those who did not escape (Figure 3.2), but 

there were no other behavioral differences between birds that escaped and those that did 

not or among birds from different sites (Table 3.1). There also were no significant 

interactive effects of capture site and escape likelihood on frequency of flights or bill wipes 

(Table 3.1). 
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Captive food-finding trials 

 Rural birds were more likely than urban birds to find the food in all three structures: 

behind the towel (χ2 = 9.48, p < 0.01), in the cup (χ2 = 13.10, p < 0.01), and in the trash can 

(χ2 = 3.99, p = 0.05; Figure 3), but for those who solved the challenges urban and rural 

birds did not differ in time to find any of the food sources (Figure 3.3). We found no 

significant effects of capture site, solving success, or their interaction on trial behaviors 

(e.g. flights, bill wipes; Table 3.2). 

 

Discussion 

 Urban environments often introduce novel structures (e.g. feeders, nesting areas, 

physical obstacles) that require innovation - either to avoid danger or exploit a resource - 

from city-dwelling species. Though several single-challenge studies support this claim 

(Griffin et al., 2017), here we aimed to test if urban animals are better problem-solvers at 

multiple tasks (food finding and escaping confinement), including a solving a problem that 

presents an aversive challenge (escaping confinement) rather than just finding a reward 

(food finding). Based on previous studies, most of which that found urban birds to be better 

problem solvers (reviewed in Griffin et al., 2017), we predicted that urban house finches 

would be better at solving both types of challenges. Instead, we found task-dependent 

differences in problem solving ability between urban and rural birds. House finches that 

we captured from urban sites were more successful at escaping from a holding cage, but 

rural birds were more likely to locate hidden food sources in a free-flight aviary. These 

results are consistent with the notion that urban environments do not favor superior 
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innovation ability in all situations and that particular life-history traits, environmental 

limitations/needs, and types of tasks should be considered when understanding pressures 

favoring problem-solving ability in human-modified and natural environments. 

The fact that urban birds were more successful at escaping from a novel 

environment than rural birds is consistent with previous studies on problem-solving and 

urbanization, in which six of eight studies found that urban birds were more like to solve a 

problem than rural counterparts (Griffin et al., 2017), including Preiszner et al. (2017) 

which found that urban great tits solved both an obstacle and food-innovation problem 

better than their rural counterparts. Because space-confinement, like exposure to humans, 

is an environmental stressor, we might expect urban birds (exposed more to both physical 

obstacles and humans) to show decreased stress response and increased performance under 

both conditions. Although studies testing responses to humans have produced conflicting 

results, as some urban populations of house finches show a greater behavioral-stress 

response to human approach (Valcarcel & Fernandez-Juricic, 2009), our previous study 

using these finch populations demonstrated that urban birds showed decreased response to 

human approach than rural birds (Weaver et al., 2018; also see Møller, 2008; Carrete & 

Tella, 2011 for similar findings in other species). Thus, this may give urban birds an 

advantage in reacting to anthropogenic stimuli and solving threatening, human-related 

problems.  

We sought to isolate particular behavioral correlates of problem-solving during the 

cage-confinement tests, and, interestingly, regardless of site, birds that solved the problem 

were more active (i.e. more flights/min) than those that did not. Thus, in this case, 

movement in and exploration of the novel environment may be the key contributor to 
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problem-solving success. This is consistent with results from previous studies in songbirds 

that have linked exploratory behavior and ability to solve a problem in a novel environment 

(Guillette et al., 2009; Webster & Lefebvre, 2001; Sol et al., 2011), including a study on 

our finch population that demonstrated that the best predictor of solving a novel task was 

visual assessment of the novel task (Cook et al., 2017). 

 In contrast to our findings from the cage-escape tests, however, we found that, when 

we tested ability to find hidden food, rural birds were more successful than urban birds at 

locating each of three different food sources. This opposing result may arise from the 

increased difficulty of finding food in a natural, desert environment as compared with 

urban environments, which are now increasingly supplemented with human food sources, 

such as bird feeders and trash dumps (Tryjanowski et al., 2015). Thus, although cities may 

require some species to become more innovative in seeking out rare or novel food sources 

(Griffin et al., 2017), house finches are granivores and often found at backyard bird feeders. 

Increased food accessibility in the urban environment may allow some species like house 

finches to reallocate attention/resources to other challenges, such as exposure to humans, 

non-native predators, and novel structures (e.g. for nesting, navigating around). In contrast 

to studies that have proposed the idea that novel environments are catalysts for behavioral 

innovation, Kotraschal and Taborsky (2010) proposed that, in fact, changing environments 

(i.e. like natural deserts but unlike more stable/predictable cities) select for greater food-

related problem-solving abilities, finding that cichlid fish (Simochromis pleurospilus) 

raised with changes in food rations performed better at food innovation tasks later in life 

(see Laland & Reader, 1999 for similar results with guppies; Poecilia reticulata). In 

addition, Federspiel et al. (2017) found that rural common mynas (Acridotheres tristis) 
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were also better at a learning challenge than urban birds, which have also been well-

established in human-modified areas and have been exploiting human food sources for 

generations. 

 Also in contrast to the cage-escape study, in the food-finding trials we found no 

differences in activity level or bill wipes for birds that did and did not discover the hidden 

food sources. Few avian studies have investigated the link between food-related problem-

solving and neophobia, and some have found a positive association between the two 

(Guillette et al., 2009; Webster & Lefebvre, 2001; Sol et al., 2011). However, this is not 

true in all cases. Audet et al. (2016) found that Barbados bullfinches (Loxigilla 

barbadensis) who were more likely to solve a food-related challenge were also more 

neophobic, and Lermite et al. (2017) found that common mynas (Acridotheres tristis) who 

were more likely to solve a novel foraging problem showed no difference in neophobia 

from those that could not solve it. Lermite et al. (2017) attributed differences between their 

results and those of other studies on neophobia and cognition partly to giving birds free 

access to food before the challenge, as we did, therefore measuring problem-solving ability 

rather than motivation to feed. Because rural birds are thought to have to search greater 

distances for more sparse resources (Tryjanowski et al., 2015), they may be better adapted 

to solve this challenge, even if not more likely to be habituated to novel feeding structures 

(Griffin et al., 2017). Thus, these challenges we employed in this study may have 

highlighted differences in problem-solving abilities necessary to survive in each 

environment, where rural birds are more skilled at finding food but urban birds faced with 

spatially navigating in more structurally complex (compared to sparsely vegetated deserts) 

or novel physical environments. 
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In summary, we exposed birds captured along an urban-rural gradient to two 

different problem-solving tasks, an escape challenge and a food-finding challenge, and, 

although we predicted that urban birds would be more successful in both, we found that 

urban birds were more effective in the escape challenge, but rural birds were more 

successful in locating the food. In addition, whereas activity level was found to positively 

predict solving success in the cage-escape trials, no such behavioral predictor of solving 

success was found in the food challenge. Because urban birds receive supplementary food 

from bird feeders and trash cans but face other spatial/navigational challenges in their 

environment (e.g. novel structures and predators), they may need to prioritize certain types 

of problems to solve over others. Our findings call for additional work on trade-offs in 

innovation, specifically as a function of the importance of different behavioral tasks and 

the presence and strength of different environmental selection pressures. 
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Figures 

 

 

 

Figure 3.1. (A) Cage used in the escape trials. (B) Aviary used in the food-finding trials, in 

which we hid food in novel feeding structures.  
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Figure 3.2. Urban birds were more successful at escaping the cage than rural birds (left 

panel). (B) Birds that escaped the cage were more active (as measured by number of flights 

per minute) than birds who did not, regardless of site. Histogram boxes denote means, with 

lines representing standard deviation. Unshared letters denote statistically significant 

differences between groups. 
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Figure 3.3. Rural birds were more successful in finding food in all three novel areas during 

the food-finding challenge.  
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Tables 

Table 3.1. ANOVA tables depicting effects of site, escape likelihood, and their interactions 

on finch behaviors (flights and bill wipes) during the cage-escape challenge. Statistically 

significant p-values are in bold. 

 

Behavior Term F df p 

Flight Rate Site 0.50 2, 152 0.61 
 Escape 6.45 1, 153 0.01 

 Site*Escape 2.09 2, 152 0.13 
Bill-Wipe Rate Site 0.68 2, 152 0.51 
 Escape 0.47 1, 153 0.49 
 Site*Escape 0.52 2, 152 0.59 
 Time Spent on Feeder Site 5.09 2, 152 <0.01 

 Escape 2.32 1, 153 0.12 
 Site*Escape 0.34 2, 152 0.71 
Time Spent in Hide Site 1.19 2, 152 0.31 
 Escape 0.02 1, 153 0.88 
 Site*Escape 0.11 2, 152 0.90 
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Table 3.2. ANOVA tables depicting effects of site, task type, and their interactions on finch 

behaviors (flights and bill wipes) during the food-finding challenge.  

 

Behavior Term F df p 

Flight Rate Site 0.11 2, 103 0.74 
 Discover Towel 0.07 1, 104 0.79 
 Discover Cup 0.32 1, 104 0.57 
 Discover Trash 0.09 1, 104 0.76 
 Site*Discover Towel 0.05 2, 103 0.83 
 Site*Discover Cup 0.30 2, 103 0.59 
 Site*Discover Trash 2.40 2, 103 0.13 
Bill-Wipe Rate Site 1.92 2, 103 0.17 
 Discover Towel 0.27 1, 104 0.61 
 Discover Cup 0.04 1, 104 0.84 
 Discover Trash 0.61 1, 104 0.44 
 Site*Discover Towel 0.22 2, 103 0.64 
 Site*Discover Cup 3.97 2, 103 0.05 
 Site*Discover Trash 1.91 2, 103 0.17 
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CHAPTER 4 

CONCLUDING REMARKS 

Although urban ecologists have learned much to date, using a range of methods 

on several taxa, about the behavioral responses of animals to urbanization, many 

questions still remain regarding the specific features of urban development/areas that are 

having the greatest impact on the ability of animals to acclimate or adapt to cities. A 

review by Sol et al. (2014), for example, found that life-history traits (e.g. fecundity, 

body size, relative brain size) were actually poor predictors of which bird species succeed 

in urban areas, but did not explicitly assess behavioral traits such as exploration of 

novelty and problem-solving ability. In this dissertation, I developed a comprehensive, 

multi-year study with both field and lab components to investigate the effects of major 

novel urban environmental stimuli on the behavior of an avian species (the house finch; 

Haemorhous mexicanus), a songbird that is commonly found in both urban and natural 

areas throughout their native southwestern USA range. I chose the top four stimuli that I 

predicted would drive behavioral differences in urban and rural populations: human 

presence (Møller, 2008; Valcarcel & Fernandez-Juricic, 2009), novel structures (Drent et 

al., 2003), novel food sources (Robb et al., 2008), and novel noise (Barber et al., 2010). 

Then, I observed behavioral and hormonal responses to these stimuli in adults and 

juveniles from urban and rural sites.  

As predicted, urban and rural finches behaviorally differed more in response to 

the presence of humans (urban-associated stimuli) than to a native raptor predator (which 

is found in both developed and natural areas). When replicating the human-approach 

experiment in juveniles, I found that, unlike in adults, there were no site differences, but 
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that all birds acclimated to humans by the post-treatment trials. However, the only other 

differences we found in response to other novel urban stimuli was that urban birds had 

decreased response to novel noise than rural counterparts and context-dependent 

problem-solving abilities within those novel environments. Finally, we found very few 

differences between urban and rural birds in hormonal response to humans or to novelty. 

Taken together, our findings (1) reveal that different novel or anthropogenic 

environmental conditions can vary in their salience to acclimating/adapting urban wildlife 

and (2) provide consistent support for the notion that urban animals are more 

behaviorally resilient to putatively aversive novel anthropogenic stimuli. 

One of the biggest contemporary questions in urban behavioral ecology is 

whether phenotype differences between urban and rural animals occur because of a 

genetic predisposition or phenotypic plasticity (Wong & Candolin, 2014). When I 

initially proposed the experiments for this dissertation, I expected to discover traits that 

formed an urban ‘personality,’ but as I began my experiments, I realized that I was 

examining phenotypic changes in animals from urban environments rather than 

consistency in traits through time and across contexts, as the definition of personality 

denotes. While genetic adaptation may take generations, plasticity happens more quickly, 

making it the more likely driver of urban acclimation (Chevin & Lande, 2010), especially 

for longer-lived vertebrates like birds. A recent meta-analysis of phenotypic plasticity 

indicated in fact that phenotypic changes happen on a much greater scale in urban areas 

vs natural conditions (Alberti et al., 2017), and results from my dissertation generally 

support this notion.  
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Perhaps the most compelling evidence of acclimation is that, despite finding site 

differences in response to humans in adult house finches (Appendix B), there were no 

capture-site effects in juveniles from urban and rural sites in Chapter 2. If urban and rural 

birds had inherited tendencies to respond differently to humans, we expected to see that 

they would show these differences even at their initial testing at 28-60 days of age.  

However, urban and rural birds did not differ in behavioral responses to humans at the 

initial time point, or at any time point throughout the experiment (i.e. being exposed to 

the same common-garden experimental conditions). Instead, we saw experimental effects 

of the human-exposure treatment on both urban and rural finches, such that all birds 

acclimated to the benign presence of humans. In addition, compared to wild-caught birds, 

regardless of site, at that same time period, all captive birds showed decreased activity 

levels in response to human approach. The importance of this finding is magnified 

because there are few studies on personality development in non-human juvenile animals 

(Petelle et al., 2013), and most of those are conducted on domesticated mammal species 

(Farrell et al., 2015), even though this is a critical time period when animals experience 

dramatic changes, such as dispersing from their natal environment (Sachser et al., 2010). 

Since events that modify juvenile behavior can have lasting effects into adulthood 

(Ruploh et al., 2015), a compelling line of future research would be determining critical 

learning periods at which point juveniles are more malleable to environmental influences 

on their behavior patterns. 

Although Chapter 1 revealed few populations differences, urban birds 

demonstrated reduced behavioral response to urban noise, indicating another avenue 

through which they might be acclimating to city life. Given the key role of vocal/auditory 
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communication (e.g. contact calls, mating songs) in this and other songbird species (Hill 

1993), response to novel noise may be a primary driver in urban acclimation. While 

studies have shown that birds tend to avoid urban noise (Rheindt, 2003; Bayne et al., 

2008) or modify song to compensate for any communication disturbances it may cause 

(Potvin & MacDougall-Shackleton, 2015; LaZerte et al., 2017), only one study has 

incorporated noise into a novelty study (Von Donselaar, 2018), and, in that study, urban 

black-capped chickadees (Poecile atricapillus) were exposed to urban noise rather than 

novel noise. That I found significant results, and found that rural birds responded more 

strongly to one novel sound (whale noise) than the other (ship noise), suggests the need 

for a greater understanding of how novel noise drives behavioral changes in urban areas. 

As urban areas rapidly shift, changes in human-created noises could also shift in 

frequency and decibels. Understanding how animals respond to novel noise could help us 

predict how this will affect biodiversity in human-modified areas. 

Overall, the first three studies in my dissertation revealed that humans and urban 

noise were the key drivers of behavioral changes in urban animals. In a meta-analysis 

conducted on urban phenotypic change, Alberti et al. (2017) argued that biotic 

interactions (e.g. introduction of predators or competition) and habitat modification were 

the most salient environmental regulators of urban animal acclimation. While my 

dissertation did not suggest that humans are perceived as predators, my initial study 

(Appendix B), which found that rural birds showed a higher stress response to humans, 

provided evidence for the first claim, indicating that human presence is a biotic 

interaction that may dictate which species fail to persist in urban environments. While 

noise may not directly fall into the habitat modification category, I would argue that 



  75 

Chapter 3 does address habitat modification, as ability to escape confinement may be an 

acclimation that results from evading predators, searching for shelter, and navigating 

through novel structures, most of which are a result of habitat modification. While urban 

animals may face introduction of novel predators (e.g., cats; Loss et al., 2013) and 

structures (Isaac et al., 2014; Møller, 2009), they have year-round, supplemental food 

sources (Tryjanowski et al., 2015) that reduce the need to shift foraging strategies as the 

food sources change, as they do in natural environments (Kotraschal & Taborsky, 2010). 

Though earlier studies proposed that urban areas may select for larger brains (Reader & 

McDonald, 2003; Sol et al., 2005), later studies (Evans et al., 2011; Sol et al., 2014) 

found weak correlations between brain size and likelihood to colonize urban areas in bird 

species. My findings that urban birds are better at solving one type of problem but not 

another call for additional investigations into potential differences in brain structure 

and/or tradeoffs associated with problem-solving ability in urban and rural areas. 

Finally, Appendix A revealed no differences in plasma corticosterone (a blood 

stress hormone) between urban and rural populations, despite finding multiple behavioral 

differences. This is an interesting finding because it suggests that, although urban animals 

may modify their behavior in response to humans (as seen in Appendix B), they may still 

be experiencing stress in response to humans. However, since a meta-analysis on urban-

rural differences in corticosterone levels (Bonier, 2012) also revealed few differences, 

our results may also be another in a series of studies that reveal plasma corticosterone to 

be a poor indicator of urban stress response. Additional work is thus needed on other 

mechanisms that may underlie these behavioral differences. Is there another hormone 

(e.g. epinephrine, Koolhaas et al., 1999; vasopressin, Englemann et al., 1996) or 
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physiological measure, such as metabolism (Holtmann et al., 2017), hematology (Fokidis 

et al., 2008), or body condition (e.g. oxidative stress), that is a better measure of the 

effects of acclimating to life in the city? These are questions I hope to tackle in future 

work as I delve further into the overall question that drove this dissertation – what makes 

some species adaptable and others intolerant to human presence?  
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APPENDIX A 

CIRCULATING CORTICOSTERONE LEVELS VARY DURING EXPOSURE TO  

ANTHROPOGENIC STIMULI AND SHOW WEAK CORRELATION WITH  

          BEHAVIOR ACROSS AN URBAN GRADIENT IN HOUSE FINCHES  

          (HAEMORHOUS MEXICANUS) 
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APPENDIX B 

AVIAN ANTHROPHOBIA? BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF 

HOUSE FINCHES (HAEMORHOUS MEXICANUS) TO HUMAN AND PREDATOR 

THREATS ACROSS AN URBAN GRADIENT 
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APPENDIX C 

MAP OF FIELD SITES 
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Map of six capture sites, which were labeled urban, suburban, or rural based on human 

population density within 1 km of site as well as on land-use/land-cover metrics. A = 

Estrella Mountain (rural); B = Phoenix neighborhood (urban); C = ASU campus (urban); 

D = South Mountain (rural); E = Chandler neighborhood (suburban); F = Gilbert 

Crossroads Park (suburban). Map made on Google maps. 

 

 

 
 

 

 

 

 

A F 
E D 

C B 



  117 

APPENDIX D 

PERMISSION FOR INCLUSION OF PUBLISHED WORKS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  118 

All co-authors have granted permission for published work to be included. 
 


