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ABSTRACT  

   

Alzheimer’s disease (AD) is characterized by the degeneration of cholinergic 

basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides 

the majority of cholinergic input to the cortical mantle and together form the basocortical 

cholinergic system. Histone deacetylase (HDAC) dysregulation in the temporal lobe has 

been associated with neuronal degeneration during AD progression. However, whether 

HDAC alterations play a role in cortical and cortically-projecting cholinergic nbM 

neuronal degeneration during AD onset is unknown. In an effort to characterize 

alterations in the basocortical epigenome semi-quantitative western blotting and 

immunohistochemistry were utilized to evaluate HDAC and sirtuin (SIRT) levels in 

individuals that died with a premortem clinical diagnosis of no cognitive impairment 

(NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD), or severe AD 

(sAD). In the frontal cortex, immunoblots revealed significant increases in HDAC1 and 

HDAC3 in MCI and mAD, followed by a decrease in sAD. Cortical HDAC2 levels 

remained stable across clinical groups. HDAC4 was significantly increased in prodromal 

and mild AD compared to aged cognitively normal controls. HDAC6 significantly 

increased during disease progression, while SIRT1 decreased in MCI, mAD, and sAD 

compared to controls. Basal forebrain levels of HDAC1, 3, 4, 6 and SIRT1 were stable 

across disease progression, while HDAC2 levels were significantly decreased in sAD. 

Quantitative immunohistochemistry was used to identify HDAC2 protein levels in 

individual cholinergic nbM nuclei immunoreactive for the early phosphorylated tau 

marker AT8, the late-stage apoptotic tau marker TauC3, and Thioflavin-S, a marker of 
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mature neurofibrillary tangles (NFTs). HDAC2 nuclear immunoreactivity was reduced in 

individual cholinergic nbM neurons across disease stages, and was exacerbated in tangle-

bearing cholinergic nbM neurons. HDAC2 nuclear reactivity correlated with multiple 

cognitive domains and with NFT formation. These findings identify global HDAC and 

SIRT alterations in the cortex while HDAC2 dysregulation contributes to cholinergic 

nbM neuronal dysfunction and NFT pathology during the progression of AD. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION TO ALZHEIMER’S DISEASE 

In the early 1900s Dr. Alois Alzheimer, a Bavarian psychiatrist and 

neuropathologist, first described a form of presenile dementia in a female patient named 

Auguste Deter (Mufson, Mahady et al. 2015). Auguste developed memory loss and 

neuropsychiatric symptoms and died at the age of 55. Postmortem evaluation of 

Auguste’s brain revealed extensive cortical atrophy and tissue sections stained using 

silver impregnation procedures identified senile plaques (SPs) and neurofibrillary tangles 

(NFTs) (Alzheimer 1906), which are now considered pathological hallmarks of 

Alzheimer’s disease (AD). SPs are present in the extracellular matrix and contain 

insoluble fibrils of amyloid-beta (Aβ) peptide, which is cleaved from the transmembrane 

amyloid precursor protein (APP) by β cleavage through the beta-site APP cleaving 

enzyme 1 (BACE1) and γ secretase (Shoji, Golde et al. 1992; Haass and Selkoe 1993; 

Thinakaran and Koo 2008). NFTs are agyrophilic aggregates of hyperphosphorylated tau 

protein (Trojanowski 1993; Yoshiyama, Lee et al. 2013). NFTs also display beta-pleated 

sheet structures which interfere with cytoskeletal integrity and downstream synaptic 

function. Synaptic loss is major neuropathological hallmark of the AD brain and 

correlates with cognitive decline (Scheff and Price 1998; Scheff and Price 2003; Counts, 

Nadeem et al. 2004; Scheff, Price et al. 2006).  

Clinical manifestations of AD include cognitive and neuropsychiatric symptoms. 

Memory impairment is a primary symptom of AD with declarative episodic memory, 



2 

 

memory of events occurring at a particular time and place, one of the first and most 

severely affected cognitive domains in AD (Carlesimo and Oscar-Berman 1992; Gold 

and Budson 2008). This type of memory depends on medial temporal lobe structures 

(Tulving and Markowitsch 1998). Within episodic memory, memory for recent events is 

impaired in early AD and is served by the hippocampus, entorhinal cortex, and related 

structures (Golomb, de Leon et al. 1993; Grady, Furey et al. 2001; Jahn 2013). 

Subcortical systems supporting procedural memory and motor learning are relatively 

spared until later stages of the disease, as is semantic memory, memory for factual 

information (Hirono, Mori et al. 1997). Semantic memory involves neocortical temporal 

regions including those in the anterior temporal lobe (Bonner and Price 2013).  

Deficits in executive function, related to basocortical cholinergic structures 

(Baudic, Barba et al. 2006), and visuospatial impairment (Quental, Brucki et al. 2009) are 

affected relatively early in the disease course (Imamura, Takatsuki et al. 1998; Muller-

Spahn 2003; Ferris and Farlow 2013). In contrast, language deficits are not present in 

early stages (McKhann, Knopman et al. 2011). In addition to cognitive deficits, 

neuropsychiatric symptoms appear in patients with AD including apathy, social 

disengagement and irritability, depression, agitation, aggression, wandering, and 

psychosis (Lyketsos, Carrillo et al. 2011). These symptoms usually present at later stages 

of AD, and are thought to be predictive of more severe dementia (Peters, Rosenberg et al. 

2013), neurodegeneration (Namekawa, Baba et al. 2013), loss of independence (Zahodne, 

Manly et al. 2013), and early death (Vilalta-Franch, Lopez-Pousa et al. 2013).  
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Clinical indicators of AD occur later in adulthood, usually after the age of 65 in 

99% of patients (late onset AD). Whereas less than 1% of patients have an autosomal 

dominant pattern of inheritance termed “familial AD’ due to mutations in genes that code 

for amyloid metabolism including APP, presenilin 1 (PS1), or presenilin 2 (PS2). The 

greatest risk factor for late onset AD is age (Hebert, Scherr et al. 1995), but 

cardiovascular and lifestyle are additional variables (Bruijn and Ikram 2014). The ε4 

allele of apolipoprotein E (APOE ε4) is the most important genetic risk factor for AD 

(Corder, Saunders et al. 1993; Liu, Kanekiyo et al. 2013; Shi, Yamada et al. 2017). Late 

onset AD is estimated to affect 5.7 million people and is predicted to afflict 13.8 million 

people in the USA by 2050 (Thies and Bleiler 2013; 2018). The impact of this disease on 

global healthcare systems is likely to be devastating, with annual expenditures in the US 

exceeding $232 billion (Wimo, Guerchet et al. 2017; 2018). Understanding the 

underlying processes in prodromal AD, and defining which cases are true 

presymptomatic AD cases will be key in determining novel therapeutic strategies aimed 

at preventing or slowing the emergence of AD. To investigate these types of questions it 

is imperative to have tissue from a cohort of individuals that received extensive 

antemortem clinical and postmortem neuropathological characterization. The studies 

presented in this dissertation were performed using tissue from the Rush Religious Orders 

Studies, a longitudinal clinical and pathological study of aging and dementia in the 

elderly. 

 

 



4 

 

1.1.1 The Rush Religious Orders Study (RROS) 

The Rush Religious Orders Study (RROS) began in 1994 and enrolls nuns, 

priests, and brothers from more than 40 groups across the US (Bennett, Schneider et al. 

2012; Bennett, Buchman et al. 2018). The RROS allows clinicians and scientists to obtain 

brain tissue from persons on whom risk factor information was obtained prior to the onset 

of mild cognitive impairment (MCI) and AD for studies linking risk factors to clinical 

and neuropathologic phenotypes. RROS members undergo yearly clinical evaluations 

beginning at 65 years of age for medical history, a complete neurological examination, 

and cognitive performance by a team of investigators led by a neurologist (Bennett, 

Wilson et al. 2002; Bennett, Schneider et al. 2012). A battery of 21 cognitive 

performance tests is administered each year. The battery of cognitive tests assess a range 

of cognitive abilities and are used to construct a global composite measure of cognition 

and separate measures of five cognitive domains, including episodic memory, semantic 

memory, working memory, perceptual speed, and visuospatial ability (Bennett, Schneider 

et al. 2012). All participants agree to organ donation as a condition of entry. Post-mortem 

data includes neuropathologic evaluation of AD pathology, cerebral infarcts, Lewy body 

disease, and other pathologies common in aging and dementia (Bennett, Schneider et al. 

2012). Pathologic diagnoses of AD include NIA-Reagan measure of likelihood of AD 

based on CERAD plaque and Braak NFT staging, CERAD criteria for neuritic plaque 

density and age-adjusted plaque load, and Braak score based on the staging of NFT 

pathology (Braak and Braak 1991; Mirra 1997). A strength of the RROS is the ability to 
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study MCI/prodromal AD individuals with cognitive impairment abnormal for their age 

group who are at greater risk for developing AD (Petersen 2004).  

1.2 PRODROMAL AD: MILD COGNITIVE IMPAIRMENT 

 The preclinical stage of AD has been suggested to begin 15 to 20 years before the 

emergence of clinical symptoms (Sperling, Mormino et al. 2014). The term MCI is 

synonymous with the term prodromal AD and is used to describe an intermediate stage 

between normal brain ageing and dementia. In addition, NFT and A pathology is 

increased in the brains of individuals with MCI compared to those with no cognitive 

impairment (NCI) (Guillozet, Weintraub et al. 2003; Markesbery, Schmitt et al. 2006; 

Markesbery 2010; Mufson, Malek-Ahmadi et al. 2016). The concept of MCI was formed 

from memory clinics which treated milder cases of dementia, and longitudinal studies of 

elderly populations that were evaluated annually for cognitive status. Many cases with 

earlier, milder cognitive loss did not exhibit impairment in two cognitive domains, a 

criterion that was required for an NINDS/ADRDA diagnosis of AD established by 

McKhann and coworkers (McKhann, Drachman et al. 1984). In the 1990’s these 

individuals were characterized by an amnestic memory disorder and the term ‘MCI’ was 

popularized by Petersen et al. (Petersen, Smith et al. 1999).  

Amnestic MCI (aMCI) was the most common form of MCI reported by memory 

clinics; however, MCI along with other affected single cognitive domains comprise a 

small component of this clinical presentation. MCI individuals with only memory deficits 

are classified as single domain aMCI, while those who have a deficit in memory as well 

as other cognitive domains including language, executive function, and visuospatial skills 
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are categorized as multi-domain MCI (mdMCI) (Petersen 2004; Johnson, Phillips et al. 

2010). The clinical criteria for aMCI include memory impairment corroborated by an 

informant, objective memory impairment for age, preserved general cognition, mostly 

intact functional activities, and are not demented (Petersen 2004). If memory is not 

impaired the individual has nonamnestic MCI (naMCI) and the determination of either a 

single nonmemory domain or multiple nonmemory domains is made by a clinician 

(Petersen 2004).   

Individuals with aMCI are at a higher risk of developing AD, with an estimated 

10-15% conversion rate (Petersen 2004; Johnson, Phillips et al. 2010). However, some 

individuals clinically diagnosed with NCI or MCI can exhibit SP and NFT pathology 

equal to or greater than that seen in mild to moderate AD, challenging the pathologically-

based idea that these lesions alone cause dementia (Mufson, Chen et al. 1999; Price, 

McKeel et al. 2009; Markesbery 2010; Mufson, Malek-Ahmadi et al. 2016). 

Interestingly, individuals with MCI have an upregulation in choline acetyltransferase 

(ChAT) activity in the frontal cortex and hippocampus that correlate with cognitive 

impairment (DeKosky, Ikonomovic et al. 2002), thus early cognitive impairment in 

prodromal AD may be linked to basocortical cholinergic function than the classic 

pathological hallmarks of AD. 

1.3 THE BASOCORTICAL CHOLINERGIC SYSTEM IN AD 

1.3.1 Discovery of Cholinergic Transmission in the CNS 

In the early 1900s Otto Loewi discovered the cardioactive substance released by 

the vagus nerve later identified as acetylcholine (ACh) (Loewi 1921). Many years later it 
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was established that ACh is a neurotransmitter in the central nervous system (CNS), and 

with the advent of axonally transported tract tracers in the early 1970s monosynaptic 

projections were demonstrated from the basal forebrain to the cerebral cortex (Divac 

1975; Kievit and Kuypers 1975). Innervation of the cortex by cholinergic neurons was 

visualized using the hydrolytic enzyme acetylcholinesterase (AChE) combined with 

retrogradely transported horseradish peroxidase (HRP). This methodology was first 

implemented  to determine cholinergic cortical innervation in the monkey brain and 

demonstrated that cortically injected HRP led to the retrograde labeling of AChE positive 

basal forebrain neurons (Mesulam and Hoesen 1976). This technique was improved upon 

by replacing AChE with the immunolabeling of the synthetic enzyme for ACh, choline 

acetyltransferase (ChAT), since all presynaptic cholinergic basal forebrain (CBF) neurons 

contain ChAT (Mesulam, Mufson et al. 1986). These improvements helped to identify 

the anatomical organization of cortically projecting cholinergic neurons in the primate 

brain and to pinpoint their neuronal origin within cell groups termed the Ch1-4 complex 

(Figure 1.1) (Mesulam, Mufson et al. 1983; Mesulam, Mufson et al. 1986). In the 

monkey forebrain, retrograde tracer experiments of cholinergic perikarya identified that 

CBF neurons located in the medial septal (Ch1) and vertical limb of the diagonal band 

nucleus (Ch2) provide most of the cholinergic innervation to the hippocampal formation 

and the hypothalamus, the horizontal limb of the diagonal band nucleus (Ch3) to the 

olfactory bulb, and Ch4/nbM neurons innervate the entire cerebral cortex and to a lesser 

extent the amygdala (Figure 1.1) (Mesulam, Mufson et al. 1983; Mesulam, Mufson et al. 

1986; Mesulam 2013).  
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Select cortical areas receive semi-topographic cholinergic innervation from 

different sectors of the Ch4 complex. Ch4 anteromedial (am) neurons provide cholinergic 

innervation to medial cortical areas; Ch4 anterolateral (al) to frontoparietal cortex, 

opercular regions, and the amygdaloid nuclei; Ch4 intermediodorsal and 

intermedioventral to laterodorsal frontoparietal, peristriate, and midtemporal regions; and 

Ch4 posterior (p) sectors provide cholinergic input to the superiortemporal and 

temporopolar regions (Mesulam, Mufson et al. 1983; Mesulam 2013). Cortical 

projections to Ch4 originate in regions with limbic-paralimbic connections. Cerebral 

injections of tritiated amino acids in the monkey brain revealed anterograde transport to 

Ch4 from piriform, orbitofrontal, and frontopolar cortices, as well as anterior insula, 

temporal pole, entorhinal cortex and anterior cingulate. While injections in parietal 

cortex, peristriate, lateral temporal, and dorsolateral prefrontal cortex were not 

anterogradely transported to Ch4 (Mesulam and Mufson 1984). Ch4 also receives input 

from the hypothalamus and amygdala (Price and Amaral 1981; Mesulam and Mufson 

1984). Thus, Ch4 can influence cholinergic transmission in all parts of the cortex in a 

fashion that is particularly responsive to neural activity within areas of the limbic system 

highlighting a key role in systems-based neuroanatomy in AD.  

Approximately 90% of nbM neurons are cholinergic and are magnocellular and 

hyperchromic (Mesulam 2013). NbM perikaryal shapes are diverse; from multipolar to 

fusiform and pyramidal. These neurons are found in compact groups within the nbM and 

dispersed interstitial neurons embedded within the anterior commissure, internal and 

external medullary laminae of the globus pallidus, ansa peduncularis, ansa lenticularis, 
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and the internal capsule (Mesulam, Mufson et al. 1983). In the human brain cholinergic 

nbM neurons express AChE, the vesicular acetylcholine transporter, calbindin-d28k, high 

affinity nerve growth factor receptor trkA, and low-affinity p75 nerve growth factor 

receptor (p75
NTR

) (Mufson, Bothwell et al. 1989; Geula, Schatz et al. 1993; Kordower, 

Chen et al. 1994; Gilmor, Erickson et al. 1999; Mesulam 2013). 
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Figure 1.1 The Basocortical Cholinergic Projection System 

 

CBF neurons located in the medial septal (Ch1) and vertical limb of the diagonal band 

nucleus (Ch2) provide the majority of cholinergic innervation for the hippocampal 

formation and the hypothalamus, and Ch4/nbM neurons innervate the entire cerebral 

cortex and the amygdala. OC; optic chiasm; Hip; hippocampal formation.  
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1.3.2 CBF Neuron Survival and Maintenance 

CBF neuronal survival is dependent upon nerve growth factor (NGF), which is 

derived from the precursor protein proNGF (Fahnestock, Michalski et al. 2001; 

Fahnestock, Yu et al. 2004). The NGF family of proteins includes brain derived nerve 

growth factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). The NGF 

neurotrophin family binds with nanomolar affinity to the low affinity pan-neurotrophin 

receptor, p75
NTR

, and with picomolar affinity to specific high affinity tyrosine kinase 

receptors (Trks) (Huang and Reichardt 2001). ProNGF binds with a higher affinity to the 

p75
NTR

 receptor compared to trkA (Lee, Kermani et al. 2001), with its coreceptor sortilin 

(Nykjaer, Lee et al. 2004) and NH2. NGF binds TrkA, BDNF and NT-4 binds TrkB, and 

NT-3 binds with TrkC (Huang and Reichardt 2001). TrkA receptors are produced in CBF 

neurons, are anterogradely transported to cortical sites where they bind with cortically 

produced NGF, and promote/maintain synaptic contact with the neurons of the 

hippocampus and cortex (Conner, Franks et al. 2009). In the 1980s, normal brain levels 

of NGF mRNA were shown to correlate with the degree of CBF innervation, with the 

highest NGF protein and mRNA levels present in the cortex and hippocampus 

(Korsching, Auburger et al. 1985). In addition, radiolabelled NGF injection into the 

hippocampus or cortex was demonstrated to bind trkA and be retrogradely transported to 

CBF neurons (Seiler and Schwab 1984). NGF interacts with p75
NTR

 and the high affinity 

NGF-specific receptor TrkA on the surface of cholinergic neurons (Chao, Bothwell et al. 

1986; Kaplan and Miller 2000; Nykjaer, Lee et al. 2004). Using radiolabeling, 

immunohistochemistry, and in situ hybridization p75
NTR

 was shown to be located on CBF 
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neurons in the rat, monkey, and human brain (Riopelle, Verge et al. 1987; Dawbarn, 

Allen et al. 1988) while other studies have shown p75
NTR

 immunolabeling of trigeminal 

and cerebellar neurons (Mufson, Higgins et al. 1991; Mufson, Brashers-Krug et al. 1992). 

Since over 80% of CBF neurons are p75
NTR

 positive, this NGF receptor is a fiduciary 

marker for cholinergic nbM neurons (Mufson, Bothwell et al. 1989). TrkA mRNA and 

protein is present in CBF neurons, with over 90% colocalization with p75
NTR

 (Sobreviela, 

Clary et al. 1994). CBF neurons also express TrkB or TrkC or a combination of these 

(Mufson, Ginsberg et al. 2003).  

Cholinergic neurons located within the nbM produce the NGF receptors trkA and 

p75
NTR

, which are anterogradely transported to the cortex  (Conner, Franks et al. 2009).  

Mature NGF is produced following cleavage from its precursor protein, proNGF. 

Alterations in cortical NGF extracellular metabolism elevate levels of proNGF and 

exacerbate NGF degradation leading to atrophy of the cortical cholinergic system and 

cognitive deficits in adult rats (Allard, Leon et al. 2012). ProNGF is the predominant 

form in the human brain, and levels of proNGF increase during the disease process 

beginning in MCI and are associated with poor performance on cognitive tests 

(Fahnestock, Michalski et al. 2001; Peng, Wuu et al. 2004).  Thus, NGF maturation and 

degradation may also explain cholinergic nbM neuronal atrophy in AD. Signaling 

through the p75
NTR

 receptor is complex due to its many interactions with co-receptors 

and its ability to elicit ligand-dependent and independent trophic or apoptotic events 

(Barker 2004). P75
NTR

-mediated apoptosis occurs following proNGF binding with the co-

receptor sortilin, however proNGF can also have trophic effects by binding TrkA, 
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although at a lower affinity than p75
NTR

  (Fahnestock, Yu et al. 2004; Clewes, Fahey et 

al. 2008; Masoudi, Ioannou et al. 2009). Cholinotrophic enhancement strategies have 

been proven to be effective in improving lesion-induced cognitive deficits in murine 

models, including cholinesterase inhibitors, neurotrophic factors, and transplantation of 

NGF-enriched fetal implants in the CBF (Dunnett 1990; Tuszynski, Roberts et al. 1996; 

Jonhagen, Nordberg et al. 1998; Winkler, Power et al. 1998). Cholinesterase inhibitors 

prevent the breakdown of ACh and sustain its activity at cholinergic synapses (Colovic, 

Krstic et al. 2013). Three cholinesterase inhibitors are approved by the FDA for 

symptomatic treatment of AD including donepezil, rivastigmine, and galantamine 

(Colovic, Krstic et al. 2013). A meta-analysis showed a modest benefit of these drugs for 

stabilizing cognition and behavior (Hansen, Gartlehner et al. 2008; Massoud and 

Gauthier 2010; Hampel, Mesulam et al. 2018).  

Cholinesterase inhibitors not only provide symptomatic benefit, but may reduce 

the enormous financial and emotional burdens of AD on the healthcare system and 

caregivers. A Medicare beneficiary study determined that each additional month of 

cholinesterase inhibitors treatment is associated with a reduction in all-cause healthcare 

costs (Mucha, Shaohung et al. 2008).  Additionally, for each year of treatment the use of 

cholinesterase inhibitors in AD reduces the risk for nursing home placement by ~30% 

(Feldman, Pirttila et al. 2009). Finally, these drugs reduce caregiver burden by reducing 

time devoted to the patient, caregiver stress, and some of the behavioral symptoms 

(Feldman, Gauthier et al. 2003; Hashimoto, Yatabe et al. 2009; Schoenmakers, Buntinx 

et al. 2009; Adler, Yarchoan et al. 2014). Encouraging results have also been obtained 
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using ex vivo gene transfer to deliver nerve growth factor or acetylcholine to 

compromised regions of the basocortical cholinergic system (Dekker, Winkler et al. 

1994; Chen and Gage 1995; Winkler, Power et al. 1998; Tuszynski, Thal et al. 2005). 

These data highlight the importance of understanding the mechanisms driving cholinergic 

projection system dysfunction during the progression of AD. 

1.3.3 Cholinotrophic Alterations in MCI and AD                                                

Three landmark studies revealed the dysfunction of the basocortical cholinergic 

system in AD: the finding that cholinergic presynaptic markers are reduced in the 

cerebral cortex (Bowen, Smith et al. 1976; Davies and Maloney 1976); the loss and 

degeneration of cholinergic Ch4/nbM neurons in AD (Mesulam and Hoesen 1976; 

Whitehouse, Price et al. 1981); and the discovery that the cholinergic antagonist 

scopolamine impairs memory in cognitively normal aged individuals (Drachman and 

Leavitt 1974). Together these observations lead to the formation of the “cholinergic 

hypothesis” of AD (Bartus, Dean et al. 1982), which propelled the development of 

cholinesterase inhibitors for the treatment of AD (Hampel, Mesulam et al. 2018).  

Numerous in vivo and in vitro studies have investigated alterations underlying cholinergic 

and cholinotrophic deficits in AD. Associated with the selective degeneration of CBF 

neurons in severe AD is a reduction in cortical ChAT activity (DeKosky, Harbaugh et al. 

1992) that correlates with disease duration and degree of cognitive impairment in AD 

(Wilcock, Esiri et al. 1982; Bierer, Haroutunian et al. 1995). The number of ChAT and 

vesicular acetylcholine transporter (VAChT) positive neurons were shown to be 

unchanged within the nbM early in the disease process, indicating viable but perhaps 
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dysregulated cholinergic function (Gilmor, Erickson et al. 1999). Interestingly, 

immunohistochemistry using antibodies against the NGF receptors, trkA and p75
NTR

, 

combined with unbiased counting revealed a significant reduction in nbM neurons 

positive for these receptors compared to ChAT stained perikarya (Mufson, Ma et al. 

2002).  

Single-cell gene profiling studies indicate a downregulation in trkA, trkB, and 

trkC expression, while p75
NTR

 and ChAT transcript levels are unchanged in individual 

cholinergic nbM neurons (Ginsberg, Che et al. 2006).  Although a reduction of trkA 

transcripts supports the loss of neurons positive for the trkA protein, the stability of 

p75
NTR

 expression conflicts with the loss of protein in neurons early in AD. The latter 

observation suggests that p75
NTR

 nbM neuronal expression is maintained at a normal 

level or upregulated in the face of the disease process. Interestingly, age of disease onset 

may play crucial role cholinergic neuronal vulnerability, since it has been reported that 

early-onset AD was associated with a greater reduction in cholinergic nbM neurons 

compared to late-onset cases (Tagliavini and Pilleri 1983; Allen, Dawbarn et al. 1988). 

Similarly, ChAT activity in the frontal cortex is not as severely decreased in late-onset 

AD compared to early onset (Bird, Stranahan et al. 1983; Rossor and Mountjoy 1986; 

Perry, Johnson et al. 1992; Sparks, Hunsaker et al. 1992). During the past several years 

clinical pathological investigations have indicated that changes in cortical ChAT activity 

is regionally and disease-stage specific. For example, ChAT activity is reduced in severe 

AD, while it was unchanged in inferior parietal, superior temporal, and anterior cingulate 

cortices in MCI and mild AD compared to NCI cases (DeKosky, Ikonomovic et al. 
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2002). Furthermore, ChAT activity in the superior frontal cortex and hippocampus is 

significantly elevated in MCI, but unchanged in mild AD compared to NCI or MCI. In 

addition to cholinotrophic alterations present in AD, the nbM is one of the first 

subcortical structures to be affected by NFT pathology identifying it as an early site of 

pathogenesis.  

1.3.4 Neurofibrillary Tangle Pathology Within the nbM in AD  

Braak and Braak described the spread of NFT pathology in the AD brain and 

indicated that the area containing the nbM was affected prior to the medial temporal lobe  

suggesting that a toxic moiety is propagated along axonal projections to interrelated brain 

regions (Braak and Braak 1991; Mesulam 1999; de Calignon, Polydoro et al. 2012; Liu, 

Drouet et al. 2012). In prodromal AD the nbM contains NFT densities that are as high as 

those in any other region in the brain (Mesulam, Shaw et al. 2004). A linear model for 

NFT evolution has been proposed that can be observed by antibodies directed against 

oligomeric, phosphorylated, and truncated tau epitopes marking early, intermediate, and 

late stages of NFT development during the progression of AD (Binder, Guillozet-

Bongaarts et al. 2005). For example, tau phosphorylation at Serine 422 (pS422) was 

identified as an early event using the pS422 antibody, phosphorylation at Ser202 and 

Thr205 is another early tau posttranslational modification identified with the AT8 

antibody, whereas tau truncation at aspartate 421 by caspase 3 (Asp421) detected with the 

TauC3 antibody occurs later during NFT formation (Ghoshal, Garcia-Sierra et al. 2001; 

Ghoshal, Garcia-Sierra et al. 2002; Garcia-Sierra, Ghoshal et al. 2003; Binder, Guillozet-
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Bongaarts et al. 2005; Guillozet-Bongaarts, Garcia-Sierra et al. 2005; Guillozet-

Bongaarts, Cahill et al. 2006). 

Oligomeric and pretangle tau isoforms have been found in the nbM in early AD 

and MCI. A recent study identified tau oligomeric complex (TOC1) immunostaining in 

the nbM, and stereological estimates identified that numbers of TOC1 positive neurons 

increase with a concomitant decrease in p75
NTR

 positive neurons during the transition 

from MCI to AD (Tiernan, Mufson et al. 2018). In addition, TOC1 positive nbM neurons 

colocalize with the pretangle marker pS422 and persist in late stage NFTs 

immunoreactive for MN423, truncation at glutamic acid
391

 (Tiernan, Mufson et al. 2018). 

Another report demonstrated that the presence of pS422 positive pretangles, and TauC3 

positive mature tangles increase during disease progression and occur parallel to a loss of 

p75
NTR 

positive neurons (Vana, Kanaan et al. 2011). Numbers of pS422 immunoreactive 

neurons significantly correlate with cognitive measures such as global cognitive score 

and mini-mental state examination, while numbers of TauC3 positive cholinergic nbM 

neurons correlated with Braak score (Vana, Kanaan et al. 2011). Numerous pS422 and 

TauC3 positive neuropil threads were present in MCI and AD, indicating impaired 

axonal/dendritic processes in cholinergic neurons early during disease progression (Vana, 

Kanaan et al. 2011), and suggesting that the degenerative process begins in the axon and 

is retrogradely transported to the cell body. 

A report investigating AT8 and Alz-50 immunostaining in cholinergic nbM 

neurons of MCI and early AD identified that the presence of pretangle-bearing neurons is 

correlated with cognitive impairment (Mesulam, Shaw et al. 2004). Interestingly, the 
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authors identified five early Braak stages (I/II) with extensive nbM NFT pathology that 

was not seen in any other structures outside of medial temporal areas, further confirming 

the selective vulnerability of the nbM to age-related and NFT pathology (Mesulam, Shaw 

et al. 2004). The mechanism linking early pathological tau formation and loss of 

cholinergic phenotype is unknown. However, epigenetic studies have shown that histone 

acetylation and deacetylation are involved in the regulation of ChAT expression (Aizawa 

and Yamamuro 2010; Aizawa, Teramoto et al. 2012) and in the hyperphosphorylation 

and acetylation of pathologic tau (Julien, Tremblay et al. 2009; Min, Chen et al. 2015; 

Min, Sohn et al. 2018), suggesting a role for epigenetics in the selective vulnerability of 

cholinergic nbM neurons in AD.  

1.4 INTRODUCTION TO EPIGENETIC REGULATION 

 Epigenetics is the study of changes in gene expression, chromatin structure, and 

cell function in the absence of alterations to the underlying DNA sequence. Epigenetic 

modifications are capable of altering transcriptional activity in numerous biological 

pathways. Epigenetic status is modified by environmental factors such as diet, exposure 

to hazardous conditions, and life events such as pregnancy (Mastroeni, Grover et al. 

2011).These modifications not only influence gene expression but also may determine 

phenotypic age, which can differentiate mortality risk between individuals of the same 

chronological age (Levine, Lu et al. 2015; Levine, Lu et al. 2018). Thus, epigenetic 

mechanisms may provide a point of intersection for diverse risk factors and 

pathophysiologic processes in AD. Unlike mutations and other genetic abnormalities, 

which are stable in the genome through time, epigenetic modifications are dynamic and 
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potentially reversible with the use of drugs and therapeutic approaches (Rodenhiser and 

Mann 2006). Characterizing the complex spectrum of epigenetic modifications including 

DNA methylation, RNA-related mechanisms, and posttranslational modifications to 

histone proteins which build upon each other and affect gene transcription and 

posttranscriptional expression will have a paramount effect in the area of personalized 

AD therapeutics. 

1.4.1 DNA Methylation 

 DNA methylation (Figure 1.2) is highly interactive with histone acetylation and 

other posttranslational histone modifications, contributing to the complexity of the 

epigenome. In the 1970’s discoveries by Bird established that adjacent cytosine-guanine 

(CpGs) dinucleotides in DNA are methylated by DNA methyltransferases (DNMTs) 

including DNMT1, DNMT2, DNMT3a/b, and DNMT4 (Bird 1978; Mastroeni, Grover et 

al. 2011; Cacabelos and Torrellas 2015). DNMT1 maintains methylation of 

hemimethylated DNA after DNA replication, while de novo DNA methylation is carried 

out by DNMT3a and DNMT3b (Mastroeni, Grover et al. 2011). DNMT2 has 5-cytosine 

DNA methyltransferase activity, but is also a RNA methyltransferase (Tang, Reddy et al. 

2003). DNMTs transfer methyl groups derived from methyltetrahydrofolate to cytosine to 

form 5-methylcytosine. As a result, around 70% of CpG dinucleotides within the human 

genome are methylated (Mastroeni, Grover et al. 2011). DNA methylation can occur in 

coding or non-coding regions at any CpG dinucleotide, but previous studies have 

indicated that CpG-rich sections (CpG islands) within the promoter region are some of 

the most highly methylated.  Gene expression can be modified by methylated CpG 
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sequences through induction of histone modifications, interfering with the binding of 

transcription factors to promoter sites, recruiting transcriptional repressors, and altering 

chromatin structure (Bird and Wolffe 1999; Zhang, McKinsey et al. 2002; Cacabelos and 

Torrellas 2015). 

DNA hydroxymethylation has been identified as another modification to CpGs 

that may make them more inaccessible to transcription. This process involves the 

hydroxylation of 5-methylcytosine to form 5-hydroxymethylcytosine (Valinluck and 

Sowers 2007; Kriaucionis and Heintz 2009; Tahiliani, Koh et al. 2009). It has been 

suggested that hydroxymethylated DNA is a result of oxidative enzymes and oxidative 

damage in neurons (Kriaucionis and Heintz 2009; Tahiliani, Koh et al. 2009). Normally, 

glycosylases remove 5-hydroxymethylcytosines from DNA by utilizing the base excision 

repair (BER) system (Mastroeni, Grover et al. 2011), which allows 5-

hydroxymethylcytosines to be replaced with unmodified cytosines which are then 

methylated de novo by the DNMTs. However, when 5-hydroxymethylcytosines are not 

removed they reduce the interaction of DNA with DNA-binding proteins (Valinluck, Tsai 

et al. 2004; Valinluck and Sowers 2007) and when present in the gene promoter are 

associated with transcriptional repression (Robertson, Robertson et al. 2011). 

 DNA methylation also modifies gene expression through methyl-CpG-binding 

proteins (MeCPs). MeCP2 binds to methylated DNA and recruits HDACs which results 

in a more condensed chromatin state and reduced or silenced gene transcription (Jones, 

Veenstra et al. 1998; Wade, Jones et al. 1998). Earlier reports suggested that MeCP2 

required a methylated chromatin substrate for direct binding (Lewis, Meehan et al. 1992), 
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but more recent work identified that MeCP2 can condense chromatin directly even if 

DNA methylation, histone deacetylase activity, or the cooperation of other transcriptional 

co-repressors are absent (Wade 2001). In contrast, another methyl-CpG-binding protein, 

MeCP1, mediates DNA methylation and histone acetylation. MeCP1 can identify and 

bind to CpG dinucleotides, recruit HDACs, and induce transcriptional repression (Feng 

and Zhang 2001). Unlike MeCP2, MeCP1 does not bind directly to methylated DNA, but 

to a methyl-CpG-binding domain protein, MBD2 (Mastroeni, Grover et al. 2011). These 

proteins maintain DNA methylation of CpGs by recruiting DNMT1, which recognizes 

and repairs CpGs that have lost methyl groups on one DNA strand. 

  



22 

 

 

 

Figure 1.2 Mechanisms of Epigenetic Regulation  

 

Epigenetic regulation depends on interaction between DNA methylation, histone 

modifications and RNA-based mechanisms. DNA methylation occurs largely at CpG 

islands. HATs acetylate lysine residues on histone tails contributing to chromatin 

relaxation or euchromatin, while HDACs remove acetyl groups leading to 

heterochromatin or highly compact chromatin. Two classes of non-coding RNA, miRNA 

and lncRNA, can modulate gene expression by interrupting translation of mRNAs by 

inhibition of post-transcriptional events, transcript degradation, or direct translational 

suppression. DNMT, DNA methyltransferase; Me, methyl group; HAT, histone 

acetyltransferase; HDAC, histone deacetylase; miRNA, micro RNA; mRNA, messenger 

RNA; lncRNA, long non-coding RNA.     
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1.4.2 RNA-related Epigenetic Mechanisms 

 Epigenetic regulation also extends to mechanisms involving non-protein-coding 

RNAs such as long non-coding RNAs (lncRNAs), micro-RNAs (miRNAs), and small 

interfering RNAs (siRNA).  NcRNAs have numerous functions in epigenetic regulation 

including silencing of transposable elements, controlling gene expression, X-

chromosome inactivation, DNA methylation, and histone modifications (Cacabelos and 

Torrellas 2015). LncRNAs are adaptors between specific chromatin loci, chromatin-

remodeling and transcription factors (Cacabelos and Torrellas 2015). LncRNAs can also 

guide epigenetic-modifier complexes to distinct genomic sites, or act as scaffolds, which 

recruit multiple proteins simultaneously (Roberts, Morris et al. 2014). Small non-coding 

RNAs associate with a family of proteins called the Argonaute (AGO) proteins, and play 

a central role in RNA interference/activation (RNAi/a) pathways. Posttranscriptional 

regulation is facilitated by miRNAs and siRNAs which block translation and promote 

transcript degradation (Jiao, Zheng et al. 2014; Zusso, Barbierato et al. 2018). MiRNAs 

(Figure 1.2) inhibit translation through the RISC (RNA-induced silencing complex) and 

promote mRNA degradation by binding to the 3’ untranslated region (3’UTR) (Pratt and 

MacRae 2009).  However, miRNAs can also bind to the promoter region of a target gene 

and promote mRNA translation. MiRNAs also inhibit the expression of mRNAs by 

reducing their stability and translation rate (Cacabelos and Torrellas 2015). Similar to 

protein coding genes, miRNAs are susceptible to epigenetic modulation and are affected 

by DNA methylation. Recently, enhancer of zeste homolog 2 (EZH2) and HDACs were 

identified as critical histone modifiers of deregulated miRNAs in cancer that can be 
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recruited to a miRNA promoter by transcription factors (Liu, Chen et al. 2013). Whether 

these symbiotic relationships between HDACs and miRNAs are dysregulated during the 

onset of AD remains to be determined. 

1.4.3 Posttranslational Histone Modifications  

Histone proteins have a central globular domain and an N-terminal tail with 

multiple sites for modifications. These include posttranslational modifications such as 

methylation, phosphorylation, ubiquitination, sumoylation, biotinylation, citrullination, 

ADP ribosylation, glycosylation and histone acetylation (Konsoula and Barile 2012), and 

not only affect gene transcription (Allfrey 1966), but also DNA repair and replication 

(Wang, Yu et al. 2013). Histone lysine acetyltransferases (HATs/KATs) catalyze the 

transfer of acetyl groups from acetyl-coenzyme A to lysine residues on the N-termini of 

histones (Figure 1.2). Five families of HATs catalyze histone acetylation: 

KAT2A/GCN5, KAT2B/PCAF, KAT6-8, CREBBP/CBP, and EP300 (Huynh and 

Casaccia 2013). Acetylation neutralizes the positive charge of the histone proteins and 

decreases interactions with negatively-charged phosphate groups on DNA (Mastroeni, 

Grover et al. 2011; Cacabelos and Torrellas 2015), resulting in conformational relaxation 

of the chromatin and active transcription.  

Histone deacetylases (HDACs) promote condensed chromatin state and decreased 

or silenced gene transcription by transferring acetyl groups from histone tails to 

coenzyme A (Mastroeni, Grover et al. 2011; Cacabelos and Torrellas 2015). Mammalian 

HDACs can be classified into four families based to their homology to yeast (class I, IIa, 

IIb and IV). Each class differs in structure, enzymatic function, subcellular localization 
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and expression patterns (Cacabelos and Torrellas 2015). Classes I and II are zinc-

dependent and bind acetylated lysines via a water molecule (Fiorino, Giudici et al. 2014). 

Class I HDACs include HDAC1, 2, 3 and 8. These HDACs are ubiquitous, have high 

enzymatic activity for histone substrates, and are localized primarily in the nucleus 

(Haberland, Montgomery et al. 2009). HDAC1 and HDAC2 are very similar in sequence 

and function together as co-repressors in the Sin3, NuRD, CoREST and PRC2 complexes 

(Cacabelos and Torrellas 2015). HDAC2’s role in biology and disease is ascribed to its 

ability to regulate transcription. On the other hand, HDAC2 possesses deacetylase-

independent SUMO E3 ligase-like activity and activates protein synthesis of a subset of 

genes related to proliferation and apoptosis (Xu, Vatsyayan et al. 2010). Since HDAC2 is 

unique in its ability to regulate gene expression at both transcriptional and translational 

levels, it not only is a transcription co-repressor but also a translational activator. 

Class IIa HDACs include HDAC4, 5, 7 and 9. The N-termini of Class IIa HDACs 

have binding sites for the transcription factor myocyte enhancer factor 2 (MEF2) and the 

chaperone protein 14-3-3, allowing these deacetylases to be signal responsive 

(Haberland, Montgomery et al. 2009). These HDACs shuttle from the nucleus to the 

cytoplasm when phosphorylated by calcium/calmodulin-dependent protein kinase 

(CaMK) and protein kinase D (PKD) and bind the 14-3-3 chaperone (Haberland, 

Montgomery et al. 2009). In contrast to other HDACs, class IIa HDACs show 

comparatively restricted expression patterns. HDAC5 and HDAC9 are present the heart, 

brain and in muscles (Haberland, Montgomery et al. 2009). HDAC4 is enriched in the 

brain and in skeletal growth plates, while HDAC7 is present in endothelial cells and 
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thymocytes (Haberland, Montgomery et al. 2009). The mechanism(s) by which class IIa 

HDACs repress transcription has not been elucidated. However, they have been shown to 

recruit class I HDACs through their C-terminal domain, which may account for some of 

their repressive activity (Fischle, Dequiedt et al. 2002). These HDACs have also been 

shown interact with other transcriptional repressors, like heterochromatin protein 1 (HP1) 

and C-terminal-binding protein (CTBP) (Dressel, Bailey et al. 2001; Zhang and Reinberg 

2001; Zhang, McKinsey et al. 2002). Thus, these HDACs are adaptors for other 

transcriptional regulators and confer signal-responsiveness to downstream target genes 

(Haberland, Montgomery et al. 2009).  

HDAC6 and HDAC10 comprise the class IIb HDACs. HDAC6 is a primarily 

cytoplasmic deacetylase, while little is known about the actions of HDAC10 (Fischer, Cai 

et al. 2002; Guardiola and Yao 2002). HDAC6 primarily deacetylates cytoskeletal 

proteins including α-tubulin and cortactin, transmembrane proteins such as interferon 

receptor IFNαR, and chaperone proteins (Hubbert, Guardiola et al. 2002; Kovacs, 

Murphy et al. 2005; Tang, Gao et al. 2007; Zhang, Yuan et al. 2007). HDAC6 is unique 

because it contains two deacetylase domains and a C-terminal zinc finger. HDAC11 is a 

class IV deacetylase expressed in the brain, heart, muscle, kidney and testis. Similar to 

HDAC10 little is known about its function, however, it possesses a deacetylase domain 

with small N- and C-terminal extensions comparable to the class I and II HDACs (Gao, 

Cueto et al. 2002; Liu, Hu et al. 2008).  

Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD
+
)-

dependent deacetylases which transfer an acetyl group from the lysine side chain of a 
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substrate to cofactor. These enzymes are related to the yeast orthologous silent 

information regulator 2 (Sir2), which is involved in increasing yeast longevity. Calorie 

restriction in yeast activates Sir2 leading to lifespan extension, thus a growing number of 

studies have investigated the role of SIRTs in calorie restriction, metabolic homeostasis, 

and aging-related diseases like AD (Fiorino, Giudici et al. 2014). There are seven SIRT 

proteins with diverse subcellular locations including nuclear (SIRT1, 2, 6, 7), 

mitochondrial (SIRT3, 4, 5), and cytoplasmic (SIRT1, 2) family members.  SIRT1 is the 

most studied due to its close homology to Sir2. SIRT1 deacetylates lysine residues on 

histones H1, H3 and H4 in addition to reducing methylation of histone H3 (Imai, 

Armstrong et al. 2000; Vaquero, Scher et al. 2004). SIRT1 also deacetylates and 

represses the activities of p53 (Vaziri, Dessain et al. 2001), and forkhead transcription 

factors (FOXO)3a, FOXO1, and FOXO4 (Motta, Divecha et al. 2004; Yang, Hou et al. 

2005). SIRT1 increases the ability of FOXO3 to induce the cell cycle or to withstand 

oxidative stress, it also reduces the apoptotic ability of FOXO3 (Brunet, Sweeney et al. 

2004). Thus, HDACs and SIRTs are in a unique position to regulate expression and 

function of numerous nuclear and cytoplasmic proteins across many different pathways, 

and merit investigation in AD. 

1.5 EPIGENETIC ALTERATIONS IN THE AD BRAIN 

1.5.1 DNA Methylation in AD 

 Numerous AD-related genes contain methylated CpG sites in their promoter 

regions and a genome-wide decrease in methylation is reported in AD (Mastroeni, Grover 

et al. 2011; Jager, Srivastava et al. 2014; Cacabelos and Torrellas 2015). Mastroeni and 
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colleagues analyzed DNA methylation in a pair of monozygotic twins discordant for AD 

(Mastroeni, McKee et al. 2009). Immunohistochemical detection of 5mC revealed that 

global DNA methylation within the anterior temporal neocortex and the superior frontal 

gyrus was significantly decreased in the twin with AD compared to the non-demented 

twin (Mastroeni, McKee et al. 2009). However, other studies using similar antibody-

based methods have found that individuals with AD tend to have a higher level of DNA 

methylation than individuals without the disease. For example, DNA methylation was 

higher in the middle frontal gyrus of individuals with AD than in the same region of age-

matched controls (Coppieters, Dieriks et al. 2014). Similarly, Rao et al. also found 

increased global DNA methylation in the frontal cortex of AD patients compared with 

cognitively normal controls (Rao, Keleshian et al. 2012). A study of DNA methylation in 

the entorhinal cortex also revealed a significant decrease in global DNA methylation in 

individuals with AD (Mastroeni, Grover et al. 2010).  Immunoreactivity for 5mC was not 

significantly different in AD-spared regions such as the cerebellum, suggesting that this 

effect is region specific (Mastroeni, Grover et al. 2010). Though the results of this study 

in combination with those from the twin study suggest that individuals with AD have 

lower levels of DNA methylation in the temporal cortex than those without the disease, 

other groups have reported opposite findings. For example, one group demonstrated an 

increase in global DNA methylation in the middle temporal gyrus of subjects with AD 

compared with age-matched, cognitively normal controls (Coppieters and Dragunow 

2011). Another group found no significant difference in global DNA methylation in the 

entorhinal cortex of individuals with and without AD (Lashley, Gami et al. 2015).  
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A recent  immunohistochemical study found a reduction in extranuclear 5mC and 

5hmC in astrocytes and neurofilament-labeled pyramidal neurons (Phipps, Vickers et al. 

2016), the latter which display NFT pathology (Hof and Morrison 1990; Vickers, 

Riederer et al. 1994; Thangavel, Sahu et al. 2009), in the inferior temporal gyrus in AD 

compared to age-matched controls. Interestingly, AD-spared calretinin interneurons and 

microglia did not have significant alterations in 5mC or 5hmC, thus DNA methylation 

alterations in AD may be cell type dependent. Similar to DNA methylation findings 

within the temporal cortex and frontal cortex, the results in the hippocampus are 

inconclusive. A study by Chouliaras et al. found a significant decrease in hippocampal 

DNA methylation in AD cases compared to age-matched controls. In addition, the 

authors found that glial cell DNA methylation was significantly different in the CA1 and 

CA3 subregions, whereas neuronal DNA methylation was significantly different only in 

the CA1 subregion (Chouliaras, Mastroeni et al. 2013), suggesting that cell type specific 

alterations in DNA methylation vary depending on hippocampal subregion. By contrast, 

higher levels of DNA methylation were found in the hippocampus compared to 

individuals without AD (Bradley-Whitman and Lovell 2013).  

 Gene-specific DNA methylation studies have identified inconsistent results in 

regards to hypermethylated and hypomethylated genes in AD. Analysis of DNA 

methylation of APP, PSEN1 and MAPT found no significant differences in the frontal 

cortex and hippocampus of non-demented controls and individuals in various stages of 

AD (Barrachina and Ferrer 2009). Iwata et al. used pyrosequencing to analyze DNA 

methylation of various CpG sites of AD-related genes in the inferior temporal lobe, the 
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superior parietal lobe, and the cerebellum in AD subjects and non-demented control 

subjects. This investigation found significant differences in DNA methylation profiles of 

APP, MAPT and GSK3B, but not of PSEN1, BACE1 or APOE and these changes in 

methylation resulted in changes in gene expression (Iwata, Nagata et al. 2014). Thus 

DNA methylation can directly impact gene transcription in AD. 

Using MALDI-TOF mass spectrometry in postmortem brain tissue samples 

derived from the prefrontal cortex of individuals with AD and age-matched controls, it 

was discovered that the promoter region of APOE was hypermethylated in AD (Wang, 

Oelze et al. 2008). In addition to the genes classically associated with AD, numerous 

genome-wide association studies have identified genetic variants associated with 

increased AD susceptibility. This includes the sortilin-related receptor, low-density 

lipoprotein receptor class A repeat-containing protein (SORL1), ATP-binding cassette, 

sub-family A, member 7 (ABCA7), and bridging integrator 1 (BIN1) (Lambert, Ibrahim-

Verbaas et al. 2013; Humphries, Kohli et al. 2015; Yu, Li et al. 2015). Yu and colleagues 

analyzed DNA methylation in the dorsolateral prefrontal cortex of subjects with and 

without AD at 28 gene loci associated with AD pathology (Yu, Li et al. 2015). DNA 

methylation of five genes (SORL1, ABCA7, HLA-DRB5, SLC2A4 and BIN1) was 

significantly associated with AD. Several components of the cell cycle (P16, P21, P27, 

P53, RB1, cyclin B2) and apoptotic proteins (caspases 1, 3, 7-9) are regulated by DNA 

methylation and are upregulated in AD neurons (Cacabelos and Torrellas 2015). S100A2, 

a calcium-binding protein, has an age-dependent decrease in DNA methylation and is 

hypermethylated in AD (Wang, Oelze et al. 2008). 
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 A significant decrease in 5hmC was reported in the entorhinal cortex and 

cerebellum of individuals with AD compared with age-matched controls (Condliffe, 

Wong et al. 2014). On the other hand, another group demonstrated a significant increase 

in 5hmC in the hippocampus, but not in the cerebellum (Bradley-Whitman and Lovell 

2013). In contrast, immunoreactivity for 5hmC was reduced by 20.2% in the 

hippocampus of AD compared with non-demented, age-matched controls (Chouliaras, 

Mastroeni et al. 2013). Similar results were obtained when analyzing monozygotic twins 

discordant for AD. 5hmC immunoreactivity was lower in the CA1 region of the 

hippocampus of the AD twin compared with the non-demented twin. Others found a 

significant increase in 5hmC in the mid-frontal gyrus and mid-temporal gyrus in AD but 

low levels in astrocytes and microglia (Coppieters, Dieriks et al. 2014).  

1.5.2 RNA-related changes in AD 

 Numerous miRNAs have been linked to AD via direct regulation of genes such as 

APP and BACE1 or indirectly via their effects on genes involved in neurogenesis and 

immune responses (Hebert, Horre et al. 2008; Lindsay 2008; Hebert, Horre et al. 2009; 

Soreq and Wolf 2011). Let-7b belongs to the let-7 miRNA gene family and is increased 

in the CSF of AD patients (Lehmann, Kruger et al. 2012). Among its downstream targets 

are members of chromatin remodeling proteins such as enhancer of zeste homolog 2 

(EZH2) and the transcript of the miRNA processing enzyme dicer (DICER1), indicating 

a reciprocal interaction between let-7b expression, miRNA maturation, and epigenetic 

regulation (Forman, Legesse-Miller et al. 2008; Kong, Li et al. 2012). MiRNAs, miR-9, 

miR-125b, and miR-148 are abundantly expressed in the fetal hippocampus but miR-9 
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and miR-148 are significantly downregulated while miR-125b is significantly 

upregulated in postmortem AD tissue (Krichevsky, King et al. 2003; Lukiw 2007; 

Cogswell, Ward et al. 2008; Schonrock, Ke et al. 2010). MiR-9 targets include fibroblast 

growth factor (FGFR1), CDK6, caudal-type homeobox 2 (CDX2), NFKB1, and sirtuin 1 

(SIRT1), the latter which provides feedback via its HDAC activity (O'Hagan, 

Mohammad et al. 2008; Rodriguez-Otero, Roman-Gomez et al. 2011; Rotkrua, Akiyama 

et al. 2011; Schonrock, Humphreys et al. 2012). 

MiR-34c levels have been shown to be elevated in the hippocampus in both AD 

and aged mutant APP/PS1-21 mice, where reducing miR-34c levels rescues learning 

abilities in this mouse model (Zovoilis, Agbemenyah et al. 2011). MiR-107 is a miRNA 

with decreased expression in the temporal cortex in AD, specifically in Braak stage III 

and has been suggested to accelerate AD progression (Wang, Rajeev et al. 2008; Nelson 

and Wang 2010). The same study found significant negative correlations between miR-

107 expression, neuritic plaque and NFT counts, and BACE1 mRNA levels (Wang, 

Rajeev et al. 2008; Nelson and Wang 2010). The family of miR-200 has been studied in 

drosophila where a mutation in the miR-200a/b ortholog leads to behavioral deficits and 

increased apoptosis and HDAC activity within the brain (Karres, Hilgers et al. 2007). 

MiR-200c levels are increased in the hippocampus and medial frontal gyrus in AD 

(Cogswell, Ward et al. 2008), whereas miR-200a levels are increased in peripheral blood 

mononuclear cells of patients with AD (Schipper, Maes et al. 2007). Thus, dysregulated 

miRNA expression combined with compromised regulatory crosstalk between miRNAs 
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and histone-modifying proteins like SIRT1 may contribute to abnormal expression of 

pathogenic genes in AD.  

1.5.3 Histone Modifications in AD 

Learning and memory were first linked to histone acetylation when it was 

demonstrated that acetylation of histones is altered when rats undergo memory 

consolidation (Schmitt and Matthies 1979). Later studies demonstrated that specific 

forms of learning correlate with increased HAT activity (Swank and Sweatt 2001), and 

histone acetylation (Levenson, O'Riordan et al. 2004). Since then, the therapeutic 

potential of HDAC inhibitors in AD was tested in a mouse model that allowed inducible 

overexpression of the p25 protein (CK-p25 mice) (Fischer, Sananbenesi et al. 2005), a 

pathological subunit of cdk5 that is dysregulated in human AD patients (Patrick, 

Zukerberg et al. 1999). Overexpression of p25 causes amyloid and tau pathology, severe 

neurodegeneration and memory impairment (Cruz, Tseng et al. 2003; Fischer, 

Sananbenesi et al. 2005; Cruz, Kim et al. 2006; Graff, Rei et al. 2012). Intraperitoneal 

administration of the HDAC inhibitor sodium butyrate for 4 weeks was able to reinstate 

learning behavior and restore retrieval of consolidated memories in CK-p25 mice. This 

correlated with synaptogenesis and rewiring of the neuronal network suggest 

neuroprotective actions of HDAC inhibition (Fischer, Sananbenesi et al. 2007). 

Epigenetic alterations have been suggested to be a major force of aging 

(Chouliaras, Hove et al. 2012; Heyn, Li et al. 2012; Chouliaras, Mastroeni et al. 2013) 

which is the most predominant risk factor for AD (2015). Histone modifications have 

been widely implicated in the phenotypic alterations that occur during cellular senescence 
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and the aging of various organisms (Wilson and Jones 1983; Bandyopadhyay and 

Medrano 2003; Liu, Wylie et al. 2003; Fraga and Esteller 2007), and may provide a link 

between aging and AD. Histone acetylation mechanisms, particularly those involving the 

Sir2 family of histone deacetylases, have been linked to aging and senescence in yeast 

and invertebrates (Bandyopadhyay and Medrano 2003). However, it is not understood 

how the molecular processes of aging predispose to AD, or become dysregulated in AD. 

A recent study compared genome-wide enrichment of H4k16ac in the lateral temporal 

lobe of AD individuals compared to younger and elderly cognitively normal controls and 

found that while normal aging leads to increased H4k16ac, in AD loss of H4k16ac is 

found in proximity to genes linked to aging and AD (Nativio, Donahue et al. 2018). An 

association was discovered between the genomic locations of significant H4k16ac 

changes with genetic variants identified in genome-wide association studies. These data 

are congruent with analyses of histone acetylation in mouse models of AD, in which loss 

of acetylation occurs at neuronal genes (Graff, Rei et al. 2012) 

Manipulation of histone tail acetylation has been investigated in several animal 

models of AD using HDAC inhibitors. For example, it has been reported that after fear 

conditioning training in APP/PS1 mice, levels of hippocampal acetylated histone 4 (H4) 

were about 50% lower than in wild-type littermates (Francis, Fa et al. 2009). Treatment 

with the HDAC inhibitor Trichostatin A increased the levels of acetylated H4 and 

contextual freezing performance to wild-type levels (Francis, Fa et al. 2009). Treatment 

with HDAC inhibitors has also been shown to induce sprouting of dendrites, increase the 

number of synapses, and reinstate learning behavior and access to long-term memories in 
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CK-p25 transgenics (Fischer, Sananbenesi et al. 2007). In a cortical neuron culture 

model, overexpression of APP resulted in a decrease in histone 3 and histone 4 

acetylation, as well as a decrease in CREB-binding protein levels (Lonze and Ginty 2002; 

Rouaux, Jokic et al. 2003). 

Additionally, a targeted proteomics approach in human brains showed reduction 

of H3k18ac and H3k23ac in AD (Zhang, Schrag et al. 2012). H4k16ac changes between 

aging and AD revealed that changes during aging and changes during disease are 

negatively correlated. In addition to histone acetylation, histone 3 trimethylation on 

lysine 4 (H3k4me3) not only plays a role in chromatin structure regulation and gene 

expression but is ectopically located in the neuronal cytoplasm in AD (Mastroeni, 

Delvaux et al. 2015). These authors observed increasing cytoplasmic localization of 

H3k4me3 with increasing Braak stage, and ectopic localization preceded the early tau 

phosphorylation markers MC1 and PG5 (Mastroeni, Delvaux et al. 2015). These data 

suggest that AD is a state of dysregulated aging that may induce specific transcriptional 

and chromatin structural changes.  

In addition to histone acetylation, histone deacetylation has been indirectly 

studied in a handful of studies by examination of HDAC levels in the AD cortex. Class I 

and II HDACs are the best characterized in the AD brain, however, results measuring 

HDAC protein levels examined in the medial temporal lobe memory circuit, which 

displays tau pathology early in the onset of AD (Braak and Braak 1991), have been 

inconsistent across studies. For example, immunohistochemical analysis of entorhinal 

cortex neurons containing HDAC1 and HDAC2 (Dawson and Kouzarides 2012; Graff 



36 

 

and Tsai 2013; Volmar and Wahlestedt 2015), revealed that levels of both these proteins 

are decreased in the entorhinal cortex (Mastroeni, Grover et al. 2010), while HDAC2 but 

not HDAC1 or HDAC3 was increased in CA1 hippocampal and entorhinal cortex nuclei 

in AD compared to non-cognitively impaired aged controls (Graff, Rei et al. 2012). The 

same study found enrichment of HDAC2 at the promoter and coding regions of genes 

important for learning and memory including synaptophysin (Svp), synaptotagmin (Stg), 

brain-derived nerve growth factor (Bdnf), immediate early gene Arc, and cyclin 

dependent kinase 5 (Cdk5) (Graff, Rei et al. 2012). Knockdown of HDAC2 levels using 

short hairpin RNA in a mouse model of neurodegeneration increased H4k12 acetylation 

and rescued expression of these genes (Graff, Rei et al. 2012). Similar to results reported 

by Mastroeni and colleagues (Mastroeni, Grover et al. 2010), a recent mass spectrometry 

study demonstrated a reduction of HDAC1 expression in the AD frontal cortex and the 

retina compared to age-matched controls (Anderson, Chen et al. 2015).  

HDACs 4 and 6, are predominantly cytosolic deacetylases, and have histone and 

non-histone targets in the AD brain (Ding, Dolan et al. 2008; Gao, Hubbert et al. 2010; 

Shen, Chen et al. 2016). HDAC4 is upregulated by endoplasmic reticulum stress and 

accumulates in the nuclei of neurons in the frontal cortex and hippocampus when 

dephosphorylated in AD (Shen, Chen et al. 2016). The same study observed a parallel 

increase in H3k27me3 and the appearance of cell cycle proteins including cyclin A2 in 

the same regions (Shen, Chen et al. 2016). HDAC5 expression levels in the AD frontal 

cortex are increased, but little is known about HDAC5’s function in AD (Anderson, Chen 

et al. 2015). HDAC6 is involved in autophagic regulation (Pandey, Taylor et al. 2007), 
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mitochondrial transport (Chen, Owens et al. 2010), and facilitation of tau 

hyperphosphorylation (Ding, Dolan et al. 2008; Perez, Santa-Maria et al. 2009). 

Acetylated alpha-tubulin, which serves as a marker of stable microtubules, is reduced in 

neurons in the AD brain (Ding, Dolan et al. 2008). Ding and collaborators observed that 

HDAC6 levels increased by 52% in the cortex and by 91% in the hippocampus of AD 

patients relative to controls, and that the acetylation of alpha-tubulin showed a 

corresponding decrease in AD patients (Ding, Dolan et al. 2008).  These findings suggest 

that HDAC6 decreases the level of acetylated alpha-tubulin and subsequently reduces the 

stability of microtubules, which are a crucial component of the cytoskeleton and transport 

system and are dysregulated in AD. HDAC6 overexpression in AD disturbs 

mitochondrial transport, probably in a glycogen synthase kinase 3ß(GSK3ß)-dependent 

manner (Chen, Owens et al. 2010). One study showed that HDAC6 regulated 

mitochondrial transport in hippocampal neurons, depending on the status of GSK3ß. 

GSK3ß is one of the major kinases that phosphorylates tau. GSK3ß also interacts with 

HDAC6, increasing the phosphorylation of HDAC6 at Ser22 and impairing the 

microtubule-based transport of mitochondria (Chen, Owens et al. 2010).  

Hyperphosphorylated tau collapses the transport system in neurons via 

microtubule disintegration (Mietelska-Porowska, Wasik et al. 2014). Both HDAC6 and 

tau proteins are associated with microtubules, and it was reported that they can also 

interact with each other (Ding, Dolan et al. 2008; Perez, Santa-Maria et al. 2009). Reports 

indicate that HDAC6 interacts with tau protein in vitro, in situ, and in the human brain 

(Ding, Dolan et al. 2008) and that tau acts as an HDAC6 deacetylase inhibitor (Perez, 



38 

 

Santa-Maria et al. 2009). Tubacin can attenuate tau phosphorylation by inhibiting 

HDAC6; however, the underlying mechanism of this site-specific effect is not 

understood. In addition, evidence suggests that the HDAC6-PP1 (Protein phosphatase 1) 

complex reduces the dephosphorylation activity of PP1 on tau. In a recent study, it was 

reported that tau is acetylated by HAT p300 in an AD mouse model, and that acetylated 

tau protein was significantly reduced by SIRT1 overexpression; in contrast, HDAC6 

overexpression did not significantly reduce levels of acetylated tau (Min, Cho et al. 

2010). 

SIRT1 protein and mRNA levels are decreased in the parietal cortex but not in the 

cerebellum (Julien, Tremblay et al. 2009). In the hippocampus, SIRT1 transcripts are 

downregulated in the CA1 and CA3 subfields, but not in the dentate gyrus. Hippocampal 

CA1 and CA3 subregions are the target site of entorhinal cortex projecting neurons, 

which are among the first to develop neurofibrillary tangles in AD (Braak and Braak 

1991). Clinical molecular pathological investigations have shown that cortical SIRT1 

levels correlate with global cognitive score, episodic memory and perceptual speed test 

scores, disease duration, and tau accumulation (Julien, Tremblay et al. 2009) suggesting a 

key role in the pathogenesis of cognitive dysfunction in AD.  This study also revealed 

that individuals with MCI did not show a decrease in SIRT1 but there was a significant 

loss of SIRT1 in patients with the highest indices of AD neuropathology. Transgenic 

mice that overexpress SIRT1 display improved glucose homeostasis and increased 

metabolic rates (Bordone, Cohen et al. 2007), two processes suggested to be dysregulated 

in AD (Pasinetti and Eberstein 2008). More specifically, a reduction of SIRT1 
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deacetylation could limit the capacity of AcetylCoA synthetase to generate AcetylCoA, a 

key molecule in cellular metabolism and production of acetylcholine (Hallows, Lee et al. 

2006).  Additional evidence from experiments in cultured neurons suggests that 

decreased SIRT1 activity accelerates neurodegeneration by upregulating nicotinamide 

mononucleotide adenylyl-transferase1 activity (Araki, Sasaki et al. 2004) or by repressing 

p25-mediated cell death (Kim, Nguyen et al. 2007). Another target of SIRT1 

deacetylation is the mitochondrial deacetylase SIRT3 (Kwon, Seok et al. 2017). Frontal 

cortex SIRT3 mRNA and protein are significantly reduced and are associated with altered 

mitochondrial respiratory activity and neuronal damage in AD (Lee, Kim et al. 2018). 

Levels of mitochondrial SIRT3 are inversely correlated with mitochondrial p53 levels in 

the AD cortex, suggesting that mitochondrial SIRT3 and p53 alterations contribute to AD 

pathogenesis (Lee, Kim et al. 2018). Thus, numerous alterations to HDAC and SIRT 

levels are present in the AD cortex, are highly interactive, and affect many biological 

pathways dysregulated during the disease process.  

While there is strong evidence that HDAC and SIRT proteins are dysregulated in 

cortical and hippocampal regions in AD, whether these proteins are altered in 

basocortical cholinergic neurons and are associated with cognitive function and 

neuropathological criteria remain unknown. Given the importance of this cholinergic 

projection system in working memory, executive function, and attention (Baxter and 

Chiba 1999; Ballinger, Ananth et al. 2016; Maurer and Williams 2017; Blake and Boccia 

2018), the numerous studies demonstrating its early selective vulnerability in AD (Vana, 

Kanaan et al. 2011; Mesulam 2013; Schmitz and Spreng 2016; Tiernan, Mufson et al. 
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2018), and evidence that enhancement of cholinergic transmission is one of the only drug 

therapies approved by the FDA shown to be clinically useful in the treatment of AD, 

(Cavedo, Dubois et al. 2016; Cavedo, Grothe et al. 2017; Hampel, Mesulam et al. 2018), 

identification of HDAC and SIRT dysregulation in basocortical cholinergic neurons and 

their role in the onset and pathogenesis of dementia is of paramount interest in the AD 

drug therapy space. The following series of clinical pathological investigations examine 

the role that epigenetics plays in the degeneration of CBF neurons and their relation to 

cognitive and neuropathological endpoints during the prodromal stages of AD. 
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CHAPTER 2 

FRONTAL CORTEX EPIGENETIC DYSREGULATION DURING THE 

PROGRESSION OF ALZHEIMER’S DISEASE  

2.1 ABSTRACT 

Although the frontal cortex plays an important role in cognitive function and 

undergoes neuronal degeneration in Alzheimer’s disease (AD), the factors driving these 

cellular changes remain unknown.  Recent studies suggest that alterations in epigenetic 

regulation play a pivotal role in this process in AD.  We evaluated frontal cortex histone 

deacetylase (HDAC) and sirtuin (SIRT) levels in tissue obtained from subjects with a 

premortem diagnosis of no cognitive impairment (NCI), mild cognitive impairment 

(MCI), mild to moderate AD (mAD) and severe AD (sAD) using quantitative Western 

blotting. Immunoblots revealed significant increases in HDAC1 and HDAC3 in MCI and 

mAD, followed by a decrease in sAD compared to NCI. HDAC2 levels remained stable 

across clinical groups. HDAC4 was significantly increased in MCI and mAD, but not in 

sAD compared to NCI. HDAC6 significantly increased during disease progression, while 

SIRT1 decreased in MCI, mAD, and sAD compared to NCI. HDAC1 levels negatively 

correlated with perceptual speed, while SIRT1 positively correlated with perceptual 

speed, episodic memory, global cognitive score and mini-mental state examination. 

HDAC1 positively, while SIRT1 negatively correlated with cortical neurofibrillary tangle 

(NFT) counts. These findings suggest that dysregulation of epigenetic proteins contribute 

to neuronal dysfunction and cognitive decline in the early stages of AD. 

2.2 INTRODUCTION 
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Alzheimer’s disease (AD) is an irreversible progressive neurodegenerative 

disorder resulting in cognitive decline, with an enormous societal cost (Wimo, Guerchet 

et al. 2017). With the rapidly expanding elderly population in the USA and other 

countries, understanding the cellular and molecular mechanism(s) driving the onset of 

AD are of paramount importance. AD-related cognitive decline is manifest by deficits in 

working memory and executive function, memory modalities associated with the 

prefrontal cortex (Salat, Kaye et al. 2001; Levine, Lu et al. 2015). The frontal cortex is a 

major hub of the dorsal memory network (DMN) that displays extensive amyloid 

pathology associated with the onset of cognitive decline early in AD (Buckner, Snyder et 

al. 2005; Buckner, Sepulcre et al. 2009; Simic, Babic et al. 2014). However, the 

underlying cellular and molecular mechanism(s) driving frontal cortex neuronal 

dysfunction remain unknown. Recent studies have linked epigenetic modifications 

including DNA methylation and posttranslational modifications of histone proteins 

(Bredy, Wu et al. 2007; Kouzarides 2007; Graff and Tsai 2013; Volmar and Wahlestedt 

2015), to cognitive impairment and synaptic plasticity in the medial temporal memory 

circuit (i.e., entorhinal cortex and hippocampus) (Bredy, Wu et al. 2007; Graff, Rei et al. 

2012; Kosik, Rapp et al. 2012). By contrast, there are virtually no epigenetic studies of 

frontal cortex protein levels and their relation to clinical measures of cognitive 

performance and neuropathological criteria during AD progression.  

Recently, research exploring the potential contribution of epigenetic proteins, 

regulators of gene expression not associated with modifications to DNA sequence 

(Dawson and Kouzarides 2012; Graff and Tsai 2013), has been of great interest in the 



43 

 

field of AD. Histone acetylation, a posttranslational epigenetic process, is regulated by 

the opposite actions of histone acetyltransferases (HATs), and histone deacetylases 

(HDACs), which provide or block access to cellular transcriptional machinery, resulting 

in the tight control of gene expression (Mastroeni, Grover et al. 2011; Dawson and 

Kouzarides 2012; Graff and Tsai 2013; Volmar and Wahlestedt 2015). HDACs, 

including sirtuins (SIRTs), are a family of enzymes with deacetylase activity that have 

been linked to learning and memory (Guan, Haggarty et al. 2009; McQuown, Barrett et 

al. 2011; Bahari-Javan, Maddalena et al. 2012; Graff, Rei et al. 2012; Gupta-Agarwal, 

Franklin et al. 2012; Kim, Akhtar et al. 2012; Graff and Tsai 2013) and AD pathogenesis 

(Ding, Dolan et al. 2008; Julien, Tremblay et al. 2009; Kumar, Chaterjee et al. 2013; 

Shen, Chen et al. 2016; D'Addario, Candia et al. 2017). Interestingly, monozygotic twins 

with identical genetic information display discordant outcomes for AD, with decrements 

in DNA methylation found in neurons of the temporal cortex of the AD twin (Poulsen, 

Esteller et al. 2007; Mastroeni, McKee et al. 2009), suggesting that alterations of the 

epigenome may mediate molecular pathways that contribute to AD pathogenesis. 

Although HDAC protein levels have been examined in the medial temporal lobe 

memory circuit, which displays tau pathology early in the onset of AD (Braak and Braak 

1991), the results have been inconsistent across studies. For example, 

immunohistochemical analysis of entorhinal cortex neurons containing HDAC1 and 

HDAC2, nuclear enzymes associated with transcriptional complexes and modulation of 

chromatin plasticity (Dawson and Kouzarides 2012; Graff and Tsai 2013; Volmar and 

Wahlestedt 2015), revealed that levels of both these proteins are decreased in the 



44 

 

entorhinal cortex (Mastroeni, Grover et al. 2010), while HDAC2 but not HDAC1 or 

HDAC3 was increased in CA1 hippocampal and entorhinal cortex nuclei in AD 

compared to non-cognitively impaired aged controls (Graff, Rei et al. 2012). A recent 

study demonstrated a reduction of HDAC1 expression in the AD frontal cortex compared 

to age-matched controls using mass spectrometry (Anderson, Chen et al. 2015). Others 

have examined HDACs 4 and 6, which are predominantly cytosolic deacetylases, with 

histone and non-histone targets in the AD brain (Ding, Dolan et al. 2008; Gao, Wang et 

al. 2010; Shen, Chen et al. 2016). HDAC4 is upregulated by endoplasmic reticulum stress 

and accumulates in the nuclei of neurons in the frontal cortex when dephosphorylated in 

AD (Shen, Chen et al. 2016). HDAC6 is involved in autophagic regulation (Pandey, Nie 

et al. 2007; Pandey, Taylor et al. 2007), mitochondrial transport (Chen, Owens et al. 

2010), facilitation of tau hyperphosphorylation (Ding, Dolan et al. 2008; Perez, Santa-

Maria et al. 2009), and is increased the cortex in animal models of AD and the human 

condition (Ding, Dolan et al. 2008). SIRT1 protein and mRNA levels were decreased in 

the parietal cortex but protein levels were not altered in the hippocampus or cerebellum. 

Parietal cortex SIRT1 levels correlated with global cognition test scores and tau 

accumulation (Julien, Tremblay et al. 2009). Together these findings suggest that 

members of the HDAC family are dysregulated in cortical regions related to cognitive 

impairment and neurofibrillary tangle (NFT) pathology in AD. However, to our 

knowledge no report has examined HDAC and SIRT protein levels in the frontal cortex 

obtained from cognitively and neuropathologically well-characterized cases during the 
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progression of AD, and more importantly, subjects classified with mild cognitive 

impairment (MCI) a prodromal AD stage (Petersen 2004).  

Thus, the aim of the current study was to identify alterations in HDAC and SIRT1 

protein levels and their association with cognitive test scores, neuropathological criteria 

and demographic variables in the frontal cortex during the progression of AD. HDAC 

protein levels were examined in frontal cortex samples obtained from individuals who 

died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild 

cognitive impairment (MCI), mild/moderate AD (mAD), and severe AD (sAD). 

Information from this study will inform the use of HDAC inhibitors as disease modifying 

therapeutics in pre-symptomatic AD.  

2.3 METHODS 

2.3.1 Subjects 

 

Frozen frontal cortex tissue was obtained from individuals who died with an ante-

mortem clinical diagnosis of NCI (n=14), MCI (n=13), and mild/moderate AD (n=13) 

from the Rush Religious Orders study (RROS), a longitudinal clinicopathological study 

of aging and AD in Catholic nuns, priests, and brothers (Mufson, Chen et al. 1999; 

Bennett, Schneider et al. 2005; Bennett, Schneider et al. 2006). Additional cases with a 

diagnosis of severe AD (n=8) were obtained from the Rush Alzheimer’s Disease Center 

(RADC). The Human Research Committees of Rush University Medical Center approved 

this study and written informed consent for research and autopsy was obtained from the 

participants or their family/guardians.  
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2.3.2 Clinical and Neuropathologic Evaluations 

Details of the clinical evaluation of the RROS cohort have been previously 

reported (Mufson, Chen et al. 1999; Bennett, Schneider et al. 2005; Mufson, He et al. 

2012; Perez, Getova et al. 2012).  Briefly, a team of investigators led by a neurologist 

performed annual neurological examinations and a cognitive battery in addition to 

reviewing each subject’s medical history. The average time from the last clinical 

evaluation to death was ~8 months. Neuropsychological testing included the mini-mental 

state examination (MMSE), global cognitive score (GCS), a composite z-score compiled 

from a battery of 19 cognitive tests (Mufson, Chen et al. 1999), including episodic 

memory z-score, semantic memory z-score, working memory z-score, perceptual speed 

z-score, and visuospatial ability z-score (Wilson, Beckett et al. 2002). Subjects with MCI 

had cognitive impairment insufficient to meet criteria for dementia (Bennett, Wilson et al. 

2002). Among the MCI cases, 3 were amnestic and 10 were non-amnestic. A final 

clinical diagnosis was assigned after a team of neurologists and neuropsychologists 

reviewed the clinical data. Neuropathological diagnosis was based on Braak staging of 

NFTs (Braak and Braak 1991), National Institute on Aging (NIA) Reagan criteria 

(Newell, Hyman et al. 1999), and recommendations of the Consortium to Establish a 

Registry for Alzheimer’s disease (CERAD) (Mirra 1997). Neuritic plaque (NP), diffuse 

plaque (DP), and neurofibrillary tangle (NFT) counts in the mid-frontal cortex were 

obtained from modified Bielschowsky silver stained sections (6 μm) (Schneider, 

Aggarwal et al. 2009). Counts for amyloid density in the mid-frontal cortex, anterior 

cingulate, and superior frontal gyrus were obtained from sections (20μm) stained with the 
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anti-β-amyloid (Aβ) antibody 4G8 (1:9000, Covance, WI, USA) (Bennett, Schneider et 

al. 2004). Cases with mixed pathologies (e.g. stroke, Parkinson’s disease, Lewy body 

dementia, vascular dementia and hippocampal sclerosis) were excluded. 

2.3.3 Antibodies 

 Table 2.1 summarizes the antibodies used, respective dilution, and specificity. 

Rabbit polyclonal antibodies raised against HDAC1 (1:500, Abcam, Cambridge, MA) 

(Poleshko, Palagin et al. 2008; Rashid, Pilecka et al. 2009; Mastroeni, Grover et al. 2010; 

Bicknell, Walker et al. 2011; Slack, LE et al. 2011; Lutz, Fitzner et al. 2016), HDAC2 

(1:500, Abcam) (Saito, Nagai et al. 2006; Burd, Kinyamu et al. 2008; Poleshko, Palagin 

et al. 2008; Fritah, Col et al. 2009; Lee, Murthy et al. 2011), HDAC3 (1:500, Abcam) 

(Chuang, Wu et al. 2013; Huang, Langdon et al. 2016), HDAC4 (1:500, Abcam) (Gupta, 

Samant et al. 2008; Ronn, Volkov et al. 2013), HDAC6 (1:500, Cell Signaling, Danvers, 

MA) (Pernet, Faure et al. 2014; Ratti, Ramond et al. 2015; Pujol Lopez, Kenis et al. 

2016), SIRT1 (1:500, Cell Signaling) (Ringholm, Bienso et al. 2011; van Gent, Di Sanza 

et al. 2014; Bao, Zheng et al. 2016), and a mouse monoclonal antibody for β-tubulin 

(1:2000, Sigma, St. Louis, MO) were used for western blotting experiments. 
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Table 2.1 Summary of Antibodies 

Antibodies used for western blotting, their respective dilution, and published specificity. WB, Western blot; IHC-P, 

Immunohistochemistry-paraffin.

Antigen Description of Immunogen Source, Host Species, Cat. # Dilution Published antibody specificity Reference in text 

HDAC1 

Synthetic peptide conjugated to 

KLH derived from within residues 

450 to the C-terminus of Human 
HDAC1. 

Abcam, rabbit polyclonal, ab19845 1:500 Human tissue, WB; IHC-P 

Lutz et al., 2016; Slack et 

al., 2011; Bicknell et al., 
2011; Mastroeni et al., 

2010; Rashid et al., 2009; 

Poleshko et al., 2008;  

HDAC2 

Synthetic peptide conjugated to 

KLH derived from within residues 
450 to the C-terminus of Human 

HDAC2. 

Abcam, rabbit polyclonal, ab16032 1:500 Human tissue; WB 

Lee et al., 2011; Fritah et 

al., 2009; Poleshko et al., 
2008; Burd et al., 2008; 

Saito et al., 2006 

 

HDAC3 

Synthetic peptide corresponding to 

Human HDAC3 amino acids 411-

428 conjugated to Keyhole Limpet 
Haemocyanin (KLH). 

Abcam, rabbit polyclonal, ab32369 1:500 Human tissue; WB, IHC-P 

Huang et al., 2016; Chuang 

et al., 2013 

 

HDAC4 

Synthetic peptide to amino acids 1-

19 of Human HDAC4 conjugated 

to KLH with C-terminal added 
lysine. 

Abcam, rabbit polyclonal, ab12172 1:500 Human and mouse tissue; WB 

Ronn et al., 2013; Gupta et 

al., 2008 

 

HDAC6 

Synthetic peptide corresponding to 

residues surrounding Pro681 of 
human HDAC6 protein. 

Cell Signaling, rabbit monoclonal, D21B10 1:500 Mouse tissue; WB 

Pujol Lopez et al., 2016; 

Ratti et al., 2015; Pernet et 
al., 2014 

 

SIRT1 

Synthetic peptide corresponding to 

the carboxy terminus of human 

SIRT1 

Cell Signaling, rabbit polyclonal, D739 1:1000 Human and mouse tissue; WB 

Bao et al., 2016; van Gent 

et al., 2014; Ringholm et 

al., 2011 
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2.3.4 Quantitative Immunoblotting 

Frozen tissue samples from the frontal cortex were denatured in sodium dodecyl 

sulfate (SDS) loading buffer to a final concentration of 5 mg/ml. Proteins (50 μg/sample) 

were separated by 4-20% SDS-PAGE (Lonza, Rockland, ME) and transferred to 

polyvinylidene fluoride membranes (Immobilon P, Millipore, Billerica, MA) 

electrophoretically (Counts, Nadeem et al. 2004; Mufson, He et al. 2012). Membranes 

were first blocked in Tris-buffered saline (TBS)/0.05%Tween-20/5% milk for 60 minutes 

at room temperature and primary antibodies against HDAC1, HDAC2, HDAC3, HDAC4, 

HDAC6, and SIRT1 were added to the blocking buffers. Membranes were incubated at 

room temperature for 30 minutes; and then incubated overnight at 4°C. After washes 

(TBS/0.05% Tween-20), membranes were incubated for 1 hour at room temperature with 

horseradish peroxidase-conjugated goat anti-rabbit and anti-mouse IgG secondary 

antibodies (1:5,000 and 1:3,000, respectively). Immunoreactivity was visualized by 

enhanced chemiluminescence (Pierce, Rockford, IL) on a Kodak Image Station 440CF 

(Perkin-Elmer, Wellesley, MA) and bands quantified with Kodak 1D. Frontal cortex 

protein immunoreactive signals were normalized to β-tubulin signals. Samples were 

analyzed in three independent experiments, and only one band was visualized at the 

appropriate kilodalton (kDa) weight for each antibody. Controls included elimination of 

primary antibodies and a non-specific IgG.  

2.3.5 Statistical Analysis 

 The Kruskal-Wallis test was used to detect differences between clinical groups in 

the protein levels, age at death, education, post-mortem interval (PMI), brain weight at 



 

50 

 

 

autopsy, and time between last clinical assessment and autopsy. The Conover-Iman test 

was used to discern group pair-wise comparisons that were statistically significant. Chi-

square analysis was used to determine significance of frequency differences for gender, 

APOE ε4 allele status, Braak stage, CERAD diagnosis, and NIA-Reagan diagnosis 

present between clinical groups. Spearman correlations were used to assess associations 

between protein levels and age at death, education, PMI, brain weight at autopsy, time 

between last clinical assessment and autopsy, along with cognitive variables, count data 

for diffuse plaques (DP), neuritic plaques (NP), NFTs, and amyloid load in the frontal 

cortex, anterior cingulate, and superior frontal gyrus. Within-group differences among the 

deacetylases were tested using the Wilcoxon signed-rank test. Within each of the clinical 

groups, HDAC and SIRT1 differences between low and high Braak stages were assessed 

using the Mann-Whitney test. For correlation analyses, false discovery rate (FDR) was 

used to correct for multiple comparisons (Benjamini and Hochberg 1995; Glickman, Rao 

et al. 2014). All p-values were corrected for multiple comparisons to avoid the risk of 

Type I error. Statistical significance was set at p < 0.05 (two-tailed) and measurements 

were graphically represented using Sigma Plot 12.5 software (Systat Software, San Jose, 

CA). A power analysis showed that a correlation of r = 0.40 could be detected with 80% 

power (two-sided alpha = 0.05) using a sample size of 46. Given the sample size of n = 

48 for this study, there was adequate statistical power for our studies. Statistical analyses 

were carried out using SYSTat 13.0 (SYSTAT, Inc., San Jose, CA). G*Power 3.1 was 

used for the estimate of statistical power. 
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2.4 RESULTS 

2.4.1 Case Demographics 

Clinical, demographic, and neuropathological data for RROS individuals are 

presented in Tables 2.2 and 2.3. No statistically significant group differences were found 

for age at death (p = 0.15), education (p = 0.67), PMI (p = 0.06), brain weight at autopsy 

(p = 0.15), and time between last clinical assessment (p = 0.48) (Table 2.2). No 

significant differences were found in the frequencies of gender (p = 0.98), APOE ε4 

carrier status (p = 0.28), Braak stage (p = 0.87), CERAD diagnosis (p = 0.50), and NIA-

Reagan diagnosis (p = 0.34) (Table 2.2). Among the cognitive variables (Table 2.3), the 

MMSE showed significant group differences as the NCI and MCI groups had 

significantly higher scores than the mAD group (p < 0.001). However, the NCI and MCI 

groups were not significantly different. A similar pattern was noted for the perceptual 

speed domain (Table 2.3) (NCI>mAD and MCI>mAD p < 0.001, NCI vs MCI p = 0.07). 

For GCS and episodic memory, significant group differences were noted for all group 

pair-wise comparisons (p < 0.001) (Table 2.3). Neuropathology revealed that 69% of 

mAD, 85% MCI, and 79% of NCI subjects were Braak stages III-VI. Using the NIA-

Reagan criteria, 50% of NCI, 46% of MCI, and 69% of mAD cases were classified as 

intermediate to high likelihood of AD (Table 2.2). The CERAD diagnosis revealed that 

43% of NCI, 23% of MCI, and 54% of mAD cases were probable or definite AD.  
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Table 2.2 Clinical, Demographic, and Neuropathological Characteristics by Clinical Diagnosis 

 

AD, Alzheimer’s disease; ApoE, apolipoprotein E; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; PMI, 

Postmortem Interval; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NCI, no cognitive 

impairment; NIA, National Institute on Aging. 
a
n=3 MCI cases were amnestic. 

b
Kruskal-Wallis test, with Conover-Inman test 

for multiple comparisons. 
c
Chi-square test. 

d
One mAD case did not have ApoE genotype information. 

 
NCI MCI

a

 mAD p-value 

Number 14 13 13 - 

Gender (M/F) 6/8 6/7 6/7 0.98
c

 

ApoE ε4 (Carrier/Non-Carrier) 1/13 4/9 2/10
d

 0.28
c

 

Age at Death (years) 85.07±4.34 86.63±5.18 88.35±4.75 0.15
b

 

Education (years) 17.21±4.00 17.31±3.12 18.46±4.27 0.67
b

 

PMI (hours) 5.77±2.13 5.97±2.27 4.42±2.27 0.06
b

 

Brain Weight at Autopsy 1,223.00±88.80 1194.77±144.71 1132.46±108.44 0.15
b

 

Duration between last clinic visit and autopsy (years) 0.70±0.83 0.92±0.98 0.77±0.54 0.48
b

 

Braak Stage 

0 

I 

II 

III 

IV 

V 

VI 

  

  

0 

2 

1 

6 

4 

1 

0 

 

 

0 

1 

1 

5 

4 

2 

0 

  

  

0 

2 

2 

2 

4 

3 

0 

0.87
c

 

CERAD Diagnosis 

No AD 

Possible AD 

Probable AD 

Definite AD 

  

4 

4 

3 

3 

  

5 

5 

1 

2 

  

2 

4 

1 

6 

0.50
c

 

NIA Reagan Diagnosis  

Not AD 

Low Likelihood 

Intermediate Likelihood 

High Likelihood 

  

0 

7 

7 

0 

  

0 

7 

4 

2 

  

  

0 

4 

6 

3 

  

0.34
c
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Table 2.3 Summary of Neuropsychological Tests by Clinical Diagnosis Category 

Values represent mean ± SD. 
 a

Kruskal-Wallis test, with Conover-Inman test for multiple comparisons. AD, Alzheimer’s 

disease; GCS, Global Cognitive Score; MMSE, Mini-Mental State Examination; MCI, mild cognitive impairment; NCI, no 

cognitive impairment. 

 

Neuropsychological tests NCI MCI mAD p Value
a

 Groupwise Comparisons 

MMSE 28.14±1.35 27.23±2.68 20.08±5.57 <0.001 NCI, MCI>mAD 

GCS (z-score) 0.03±0.26 -0.44±0.38 -1.19±0.60 <0.001 NCI>MCI>mAD 

Episodic Memory (z-score) 0.47±0.28 -0.25±0.46 -1.49±0.89 <0.001 NCI>MCI>mAD 

Semantic Memory (z-score) -0.18±0.77 -0.40±0.60 -0.83±0.87 0.09 - 

Working Memory (z-score) -0.13±0.48 -0.34±0.68 -0.59±0.63 0.22 - 

Perceptual Speed (z-score) -0.43±0.75 -0.98±0.61 -2.21±0.80 <0.001 NCI, MCI>mAD 

Visuospatial (z-score) -0.35±0.60 -0.85±0.69 -0.99±0.71 0.07 - 



 

54 

 

 

The RADC sAD group had an average age at death of 78.75 ± 5.23 years (range 

71-86), 63% were female, average PMI was 5.08 ± 1.45 hours (range 2-6.4) and average 

brain weight at autopsy was 1,105.71 ± 98.30 grams (range 980-1220). The average 

MMSE score was 2.50 ± 3.50 (range 0-9). This group was evaluated for Braak stage and 

MMSE scores only. Data from all eight sAD cases were included in the boxplots and 

summary diagram but not in the demographic tables. 

2.4.2 Frontal Cortex Epigenetic Protein Levels  

Prompted by evidence linking dysregulated HDAC levels to AD pathogenesis, we 

utilized quantitative western blotting to investigate whether HDACs are altered in the 

frontal cortex, a key component of the dorsal memory network (Buckner, Sepulcre et al. 

2009; Simic, Babic et al. 2014), during AD progression. We chose to evaluate HDACs 

from all three major classes, which display both nuclear and cytoplasmic subcellular 

locations. HDACs 1 and 2 are nuclear proteins involved in gene transcription, and have 

been implicated in dysregulation of genes involved in learning and memory (Guan, 

Haggarty et al. 2009; McQuown, Barrett et al. 2011; Bahari-Javan, Maddalena et al. 

2012; Graff, Rei et al. 2012; Gupta-Agarwal, Franklin et al. 2012; Kim, Akhtar et al. 

2012; Graff and Tsai 2013). HDAC1 levels (Table 2.4, Figure 2.1A) in the NCI, MCI, 

and mAD groups were significantly higher than the sAD group (p < 0.05, p < 0.001, p < 

0.001, respectively), while HDAC2 levels were not significantly different between 

groups (p = 0.63; Table 2.4, Figure 2.1B). HDAC3 is primarily cytoplasmic but can 

shuttle between the nucleus and cytoplasm. HDAC3 levels (Table 2.4, Figure 2.2A) were 

significantly lower in the NCI than the MCI group (p = 0.02), while levels in the NCI, 
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MCI, and mAD groups were significantly higher than the sAD group (p = 0.04, p < 

0.001, p < 0.001, respectively). HDAC4 is a cytoplasmic class II deacetylase, which can 

be translocated to the nucleus in neurodegenerative disease conditions such as AD (Shen, 

Chen et al. 2016). Cortical HDAC4 levels (Table 2.4, Figure 2.2B) in the MCI cases were 

significantly higher than the NCI (p < 0.001) and the mAD (p = 0.04) groups, whereas no 

significant changes were found between sAD and the other clinical groups. We also 

evaluated levels of a Class IIb deacetylase, HDAC6, which interacts with numerous 

cytoplasmic proteins. HDAC6 levels (Table 2.4, Figure 2.3A) in the sAD group were 

significantly higher than the NCI (p < 0.001) and the mAD (p < 0.001) groups, while 

MCI levels were significantly higher than the NCI group (p = 0.01). SIRT1 was the only 

class III deacetylase evaluated, due to its link to tau accumulation in AD (Julien, 

Tremblay et al. 2009). For SIRT1, the only groupwise comparison that was not 

statistically significant was the comparison between the mAD and sAD groups (p = 0.18; 

Figure 2.3B). All other comparisons were statistically significant (NCI > MCI, p = 0.03; 

NCI > mAD, p < 0.001; NCI > sAD, p < 0.001; MCI > mAD, p = 0.02) (Table 2.4, 

Figure 2.3B). Thus deacetylases from each class are dysregulated during the progression 

of AD, contributing to the complexity of frontal cortex epigenetic changes in AD.  
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Table 2.4 Clinical Group Differences for HDAC and SIRT1 Proteins 

Values represent mean±standard deviation (range). NCI, no cognitive impairment; MCI, mild cognitive impairment; mAD, 

mild/moderate Alzheimer’s disease; sAD, severe Alzheimer’s disease. 
a
Kruskal-Wallis test, with Conover-Inman test for 

multiple comparisons. 

 

 

 NCI (n=14) MCI (n=13) mAD (n=13) sAD (n=8) p-value
a
 Groupwise Comparisons 

HDAC1 0.22±0.15 (0.08-0.58) 0.44±0.43 (0.04-1.61) 0.41±0.36 (0.08-1.09) 0.09±0.05 (0.03-0.19) 0.01 MCI>sAD; mAD>sAD 

HDAC2 0.53±0.18 (0.32-1.01) 0.59±0.24 (0.28-1.05) 0.56±0.18 (0.33-0.90) 0.65±0.20 (0.33-0.94) 0.63 - 

HDAC3 0.38±0.39 (0.05-1.18) 0.90±0.80 (0.06-2.68) 0.55±0.48 (0.04-1.51) 0.08±0.04 (0.02-0.14) <0.001 NCI, MCI, mAD>sAD; NCI<MCI 

HDAC4 0.12±0.03 (0.08-0.17) 0.21±0.13 (0.10-0.58) 0.13±0.06 (0.06-0.27) 0.14±0.05 (0.07-0.21) 0.03 NCI<MCI; MCI>mAD 

HDAC6 0.08±0.03 (0.04-0.15) 0.12±0.05 (0.05-0.25) 0.10±0.04 (0.05-0.17) 0.14±0.02 (0.12-0.18) <0.001 NCI<MCI; NCI, mAD<sAD 

SIRT1 0.73±0.33 (0.05-1.18) 0.49±0.30 (0.02-0.77) 0.20±0.14 (0.03-0.43) 0.09±0.05 (0.01-0.18) <0.001 
NCI>MCI, mAD, sAD; MCI>mAD, 

sAD 
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Figure 2.1 HDAC1 and HDAC2 Immunoblots and Boxplots 

Representative immunoblots and boxplots of HDAC1 and HDAC2 frontal cortex levels 

in cases clinically diagnosed as non-cognitively impaired (NCI), mildly cognitively 

impaired (MCI), mild/moderate AD (mAD), and severe AD (sAD). Immunoreactive 

signals obtained by densitometry were normalized to levels of beta-tubulin. (A) HDAC1 

levels were significantly decreased in sAD compared with NCI (p < 0.05), MCI (p < 

0.001), and mAD (p < 0.001). (B) HDAC2 levels were stable across clinical groups. 

Black dots in box-plots indicate outliers. Single asterisk indicates a p < 0.05, double 

asterisks indicate a p < 0.001.  
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Figure 2.2 HDAC3 and HDAC4 Immunoblots and Boxplots 

Representative immunoblots and boxplots of HDAC3 and HDAC4 frontal cortex 

levels in cases clinically diagnosed as non-cognitively impaired (NCI), mildly 

cognitively impaired (MCI), mild/moderate AD (mAD), and severe AD (sAD). 

Immunoreactive signals obtained by densitometry were normalized to levels of 

beta-tubulin. (A) HDAC3 levels were significantly increased in MCI compared to 

NCI (p < 0.05), and significantly decreased in sAD compared to NCI (p < 0.05) 

and MCI (p < 0.001). (B) HDAC4 levels were significantly increased in MCI 

compared to NCI (p < 0.001) and mAD (p < 0.05). Black dots in boxplots indicate 

outliers. Single asterisk indicates a p < 0.05, double asterisks indicate a p < 0.001. 
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We examined within-group differences between HDAC proteins across the four 

clinical groups to determine whether select HDACs are significantly upregulated across 

disease progression. Significant differences in HDACs were found in all four clinical 

groups (p < 0.05), with SIRT1 being the highest protein level in NCI, HDAC3 and 

HDAC2 the highest in MCI, mAD, and HDAC2 the highest in sAD (Table 2.5).   
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Figure 2.3 HDAC6 and SIRT1 Immunoblots and Boxplots 

Representative immunoblots and boxplots of HDAC6 and SIRT1 frontal cortex 

levels in cases clinically diagnosed as non-cognitively impaired (NCI), mildly 

cognitively impaired (MCI), mild/moderate AD (mAD), and severe AD (sAD). 

Immunoreactive signals obtained by densitometry were normalized to levels of 

beta-tubulin. (A) HDAC6 levels were significantly increased in MCI compared to 

NCI, and mAD (p < 0.05), and were significantly increased in sAD compared to 

NCI, and mAD (p < 0.001). (B) SIRT1 levels were significantly higher in NCI 

compared to MCI (p < 0.05), mAD (p < 0.001), and sAD (p < 0.001), and in MCI 

compared to mAD (p < 0.05). Black dots in boxplots indicate outliers. Single 

asterisk indicates a p < 0.05, double asterisks indicate a p < 0.001. 
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Table 2.5 Within-Group Significant Comparisons of HDAC Protein Differences 

All within-group comparisons p<0.05. NCI, no cognitive impairment; MCI, mild cognitive impairment; mAD, mild/moderate 

Alzheimer’s disease; sAD, severe Alzheimer’s disease. 

 

 

 

 

 

 

 

 

 

Clinical 

Group 
Protein Within-Group Comparisons 

  

NCI SIRT1>HDAC6, HDAC4, HDAC3, HDAC1; HDAC2>HDAC3, HDAC4, HDAC6; 

HDAC1>HDAC6; HDAC2>HDAC1; HDAC3>HDAC6 

 

MCI HDAC2>HDAC6, HDAC4, HDAC1; HDAC3>HDAC6, HDAC4, HDAC1; HDAC1>HDAC6; 

HDAC4>HDAC6; SIRT1>HDAC6 

 

mAD HDAC2> HDAC1, HDAC4, HDAC6, SIRT1; HDAC3> HDAC4, HDAC6, SIRT1; 

HDAC1>HDAC6, HDAC4>HDAC6; SIRT1>HDAC6 

 

sAD HDAC2>HDAC1, HDAC3, HDAC4, HDAC6, SIRT1; HDAC4>HDAC1, HDAC3, SIRT1; 

HDAC6> HDAC1, HDAC3, SIRT1 
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2.4.3 Association Between Biochemical, Clinical and Neuropathological 

Measures  

Having established that frontal cortex HDAC levels are altered during disease 

progression, we next sought to identify their association to each other and to 

demographic, cognitive, and neuropathologic variables. Interprotein correlations and their 

association with cognitive measurements are shown in Tables 2.6 and 2.7, respectively. 

SIRT1 showed no correlation with any of the HDAC proteins (Table 2.6). Whereas 

HDAC1 and HDAC3 were moderately correlated (Figure 2.4A) (r = 0.53, p < 0.001), as 

well as HDAC2 and HDAC4 (Figure 2.4B) (r = 0.40, p = 0.005); and HDAC4 and 

HDAC6 (Figure 2.4C) (r = 0.50, p < 0.001) across clinical groups (Table 2.6). Given 

evidence that HDACs are involved in the aberrant expression of genes involved in 

learning, memory, and synaptic plasticity, we probed the association between cortical 

HDAC levels and cognitive measures in the RROS cases. After adjusting for multiple 

comparisons, HDAC1 and SIRT1 were the only proteins that significantly correlated with 

cognitive measures (Table 2.7). Levels of HDAC1 were negatively correlated with 

perceptual speed z-scores (Figure 2.5A; r = -0.45, p = 0.004), whereas SIRT1 was 

positively correlated with perceptual speed z-scores (Figure 2.5B; r = 0.61, p < 0.001). 

SIRT1 levels were moderately correlated with GCS (Figure 2.5C; r = 0.40, p = 0.01), 

episodic memory scores (Figure 2.5D; r=0.36, p < 0.05) and MMSE status (Figure 2.5E; r 

= 0.37, p = 0.02). Since SIRT1 and HDAC6 have been linked to tau accumulation and 

deacetylation (Hempen and Brion 1996; Julien, Tremblay et al. 2009; Perez, Santa-Maria 

et al. 2009; Cook, Gendron et al. 2012), respectively, we examined the association 
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between altered levels of HDACs and NFT counts in the frontal cortex between the NCI, 

MCI, and mAD groups.  
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Table 2.6 Summary of Interprotein Correlations 

  a 
p = 0.005, 

b 
p < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 
HDAC1 HDAC2 HDAC3 HDAC4 HDAC6 SIRT1 

HDAC1   0.22 0.53
b
 0.09 -0.14 -0.07 

HDAC2 0.22    -0.106 0.40
a
 0.25 -0.01 

HDAC3   0.53
b
 -0.11    -0.14 -0.20 0.02 

HDAC4 0.09   0.40
a
 -0.14       0.50

b
 0.14 

HDAC6 -0.14 0.25 -0.20   0.50
b
   0.01 

SIRT1 -0.07 -0.01 0.02 0.14 0.01   
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Table 2.7 Correlations Between Neuropsychological tests and Protein Levels 

a 
p<0.05, 

b 
p<0.001; GCS, Global Cognitive Score; MMSE, Mini-Mental State 

Examination. 

 

 

 

 

 

 

 

 

 

 MMSE GCS Episodic 
Memory 

Semantic 
Memory 

Working 
Memory 

Visuospatial 

Ability 
Perceptual 

Speed 

HDAC1 0.04 -0.27 -0.26 -0.003 0.02 -0.03 -0.45
a

 

HDAC2 0.26 -0.07 -0.13 0.11 -0.13 0.06 -0.12 

HDAC3 -0.08 -0.21 -0.22 -0.04 -0.13 0.13 -0.25 

HDAC4 0.09 -0.11 -0.19 0.07 -0.21 -0.11 -0.04 

HDAC6 0.003 -0.09 -0.12 -0.07 0.04 0.01 -0.03 

SIRT1 0.37
a

 0.40
a

 0.36
a

 0.24 -0.004 0.19 0.61
b
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Figure 2.4 Interprotein Correlation Plots 

(A) Frontal cortex HDAC3 levels correlated positively with HDAC1 levels (r=0.53, p < 

0.001). (B) Significant positive correlations were found between HDAC4 and HDAC2 

(r=0.40, p = 0.005), and (C) between HDAC6 and HDAC4 (r=0.50, p < 0.001). NCI, 

open circles; MCI, open squares; mAD, open triangles; sAD, open diamonds. 
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Figure 2.5 HDAC and Cognitive Test Correlation Plots 

(A) Frontal cortex levels of HDAC1 correlated negatively with perceptual speed z-score 

(r=-0.45, p < 0.05), while SIRT1 levels correlated positively with perceptual speed z-

score (B) (r=0.61, p < 0.001), Global Cognitive score (C) (r=0.40, p < 0.05), episodic 

memory z-score (D) (r=0.36, p < 0.05), and MMSE (E) (r=0.37, p < 0.05). NCI, open 

circles; MCI, open squares; mAD, open triangles. MMSE, Mini-Mental State 

examination. 
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HDAC1 (Figure 2.6A) and SIRT1 (Figure 2.6B) showed weak correlations with 

frontal NFT counts (Table 2.8, r = 0.37, p = 0.02; r = -0.31, p = 0.05; respectively), none 

of the other HDACs correlated with NFT counts (Figure 2.7). Comparisons between low 

(0-III) and high (IV-VI) Braak stages revealed no significant differences between groups 

(p = 0.64) (Table 2.9). No significant differences in protein levels were noted for HDAC 

or SIRT1 proteins in cases with low or high Braak stages (Table 2.10). No significant 

differences were found in NCI protein levels between high and low Braak groups, 

indicating that in controls Braak stage did not have a significant effect on HDAC levels 

(Table 2.11). In addition, levels of HDAC proteins were not correlated with NPs, DPs, or 

NPs+DPs (Figures 2.8, 2.9, 2.10A-F). The demographic variables (age at death, 

education, PMI, brain weight at autopsy, time between last clinical assessment and 

autopsy) did not correlate with any of the proteins examined.   
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Figure 2.6 Correlational Plots Between HDAC Levels and mid-Frontal Cortex NFT Counts 

Frontal cortex levels of HDAC1 (A) correlated positively with mid-Frontal cortex NFT counts (r=0.37, p = 0.02), whereas 

SIRT1 levels (B) negatively correlated with mid-Frontal NFT counts (r=-0.31, p < 0.05). NCI, open circles; MCI, open 

squares; mAD, open triangles; NFT, neurofibrillary tangle.   
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               Table 2.8 Correlations Between Protein Levels and Neuropathological Variables 

               
a
p < 0.05, all other correlations not statistically significant. NFT, neurofibrillary tangle. 

 

 

 

 

 

 

 HDAC1 HDAC2 HDAC3 HDAC4 HDAC6 SIRT1 
       

Diffuse plaques 0.12 -0.11 -0.03 -0.05 0.02 -0.06 

       

Neuritic plaques 0.01 -0.29 -0.01 -0.04 -0.06 -0.15 

       

Diffuse + Neuritic plaques 0.16 -0.20 -0.02 -0.07 -0.04 -0.15 

       

Mid-frontal NFT counts 0.37
 a

 -0.01 0.16 0.07 0.14 -0.31
 a 
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Figure 2.7 Correlation Plots Between HDAC Proteins and NFT Counts  

Frontal cortex levels of HDAC2 (A), HDAC3 (B), HDAC4 (C), and HDAC6 (D) were 

not significantly correlated with mid-frontal cortex neurofibrillary tangles (NFTs) counts.  

NCI, open circles; MCI, open squares; mAD, open triangles.   
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Table 2.9 Low and High Braak Stage Classification by Clinical Group  

 

No Braak stage VI cases were present in the sample; Braak stage information was not 

available for the sAD group; Chi-square p-value = 0.64.  

Braak Stage NCI (n = 14) MCI (n = 13) mAD (n = 13) Total (n = 40) 

     

Low Braak Stage (0-III) 5 6 7 18 

     

High Braak Stage (IV-V) 9 7 6 22 
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Table 2.10 Low and High Braak Stage Differences for HDAC and SIRT1 Proteins 

 

No statistically significant differences were found in HDAC or SIRT levels between low 

and high Braak stage NCI, MCI and mAD cases. NCI, no cognitive impairment; MCI, 

mild cognitive impairment; mAD, mild/moderate AD. 

 

 

 

  

 NCI MCI mAD 

    

HDAC1 p = 0.64 p = 0.15 p = 0.57 

    

HDAC2 p = 0.16 p = 0.78 p = 0.06 

    

HDAC3 p = 0.32 p = 0.99 p = 0.32 

    

HDAC4 p = 0.55 p = 0.89 p = 0.57 

    

HDAC6 p = 0.64 p =0.89 p = 0.67 

    

SIRT1 p = 0.13 p = 0.67 p = 0.48 
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Table 2.11 NCI HDAC and SIRT1 Levels for Low and High Braak Stage Groups 

 

No significant differences were found in NCI protein levels between high and low Braak 

groups. 

 

  

 High Braak Stage Low Braak Stage p-value 

    

HDAC1 0.25±0.20 0.20±0.12 p = 0.64 

    

HDAC2 0.45±0.10 0.58±0.19 p = 0.16 

    

HDAC3 0.27±0.34 0.44±0.41 p = 0.32 

    

HDAC4 0.12±0.03 0.12±0.03 p = 0.55 

    

HDAC6 0.07±0.02 0.08±0.03 p = 0.64 

    

SIRT1 0.60±0.22 0.81±0.37 p = 0.13 
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Figure 2.8 Correlation Plots Between HDAC1 and HDAC2 Proteins and 

Plaque Counts  

 

Frontal cortex levels of HDAC1 and HDAC2 were not significantly correlated 

with mid-frontal cortex diffuse plaque (DP) (A, B), neuritic plaque (NP) (C, D), 

or DP+NP (E, F) counts. NCI, open circles; MCI, open squares; mAD, open 

triangles.  
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Figure 2.9 Correlation Plots Between HDAC3 and HDAC4 Proteins and 

Plaque Counts  

 

Frontal cortex levels of HDAC3 and HDAC4 were not significantly correlated 

with mid-frontal cortex diffuse plaque (DP) counts (A, B), neuritic plaque (NP) 

(C, D), or DP+NP (E, F) counts. NCI, open circles; MCI, open squares; mAD, 

open triangles.   
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Figure 2.10 Correlation Plots Between HDAC6 and SIRT1 Proteins and 

Plaque Counts  

 

Frontal cortex levels of HDAC6 and SIRT1 were not significantly correlated with mid-

Frontal cortex diffuse plaque (DP) (A, B), neuritic plaque (NP) (C, D), or DP+NP (E, F) 

counts. NCI, open circles; MCI, open squares; mAD, open triangles.   
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2.5 DISCUSSION 

HDACs are modulators of chromatin plasticity that interact with other epigenetic 

regulators to influence genomic and cellular stability. These proteins are associated with 

the promoter regions of memory-associated genes, including immediate early genes 

(Guzowski, Lyford et al. 2000; French, O'Connor et al. 2001), brain-derived neurotrophic 

factor (Linnarsson, Bjorklund et al. 1997; Hall, Thomas et al. 2000), and synaptic genes 

(Kouzarides 2007; Graff, Rei et al. 2012) in corticolimbic regions. Increasing evidence 

from animal studies suggests that perturbations to the balance of HDAC proteins and 

acetylation/deacetylation levels in the frontal cortex play a negative role in memory and 

learning (Bredy, Wu et al. 2007; Jakovcevski and Akbarian 2012; Morris, Mahgoub et al. 

2013). Whether alterations in cortical HDAC protein levels are neuroprotective or 

neurotoxic during AD progression is controversial. These proteins may have different 

functions dependent on disease stage, cellular milieu, and environmental factors. Our data 

demonstrate that frontal cortex HDAC proteins are differentially dysregulated depending 

upon antemortem clinical classification and selectively correlate with cognitive tests and 

NFT pathology during the onset of AD.  

Here, we found that frontal cortex levels of HDAC1 and HDAC3 were 

significantly increased in MCI and mAD followed by a significant decrease in sAD 

compared to NCI subjects. These protein levels were significantly correlated with each 

other across disease progression. Functionally, HDAC1 exhibits dual roles in the 

regulation of neuronal activity (Kim, Frank et al. 2008; Jeong, Then et al. 2009; 

Reynolds, Casaccia et al. 2010; Bardai, Price et al. 2012; Dobbin, Madabhushi et al. 
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2013), subserving neuroprotection and neurotoxicity based on its interaction with either 

SIRT1 or HDAC3 (Kim, Frank et al. 2008; Bardai, Price et al. 2012; Dobbin, 

Madabhushi et al. 2013). HDAC1 promotes cell survival via interaction with DNA 

damage response and repair pathways (Miller, Tjeertes et al. 2010; Wang, Pan et al. 

2013), while SIRT1 deacetylates HDAC1 to promote non-homologous end joining in the 

face of DNA damage (Dobbin, Madabhushi et al. 2013), which has been reported in the 

AD brain (Adamec, Vonsattel et al. 1999). Previous reports show that the interaction 

between HDAC1 and HDAC3 is increased in neurons primed to die when compared with 

healthy neurons (Bardai, Price et al. 2012). A recent study demonstrated a reduction of 

HDAC1 expression in the AD frontal cortex compared to age-matched controls using 

mass spectrometry (Anderson, Chen et al. 2015). Whether increases in cortical levels of 

HDAC1 and HDAC3 during prodromal AD reflect the activation of neuronal death 

pathways or a concerted effort to maintain cellular homeostasis is unknown. However, 

we have previously proposed that an upregulation in choline acetyltransferase activity in 

the MCI frontal cortex is indicative of an compensatory reorganizational response 

(DeKosky, Ikonomovic et al. 2002); therefore, it is possible that the increase in HDAC1 

and HDAC3 protein levels reported here in MCI may also be an example of 

neuroplasticity occurring in the prodromal stage of AD. A possible downstream 

consequence of epigenomic plasticity may be the suppression of gene transcription. 

Increased cortical levels of HDAC1 were negatively correlated with perceptual speed z-

scores across disease progression, indicating an association between HDAC1 and poorer 

performance on perceptual speed tasks. Functionally, the frontal cortex plays a critical 
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role in perceptual decision-making (Rahnev, Lau et al. 2011; Fleming, Huijgen et al. 

2012; Rahnev, Nee et al. 2016) and binds perceptual and executive control information to 

guide goal-driven behavior (Opris, Santos et al. 2013). Thus, increased HDAC1 levels in 

the frontal cortex may affect downstream molecular pathways associated with perceptual 

speed domains during AD progression. In addition, increased levels of HDAC1 were 

positively correlated with frontal cortex NFT counts, indicating that both increased 

HDAC1 and NFT burden may contribute to AD neuropathogenesis, however, to our 

knowledge there are no neurobiological reports directly associating HDAC1 and NFT 

formation.   

The present study did not observe changes in HDAC2 levels in the frontal cortex. 

By contrast two immunohistochemical studies have demonstrated both increases and 

decreases in HDAC2 in the entorhinal cortex and hippocampus (Mastroeni, Grover et al. 

2010; Graff, Rei et al. 2012). This may reflect regional-specific changes related to 

specific cellular populations. Interestingly, a case report of monozygotic twins discordant 

for AD reported increased HDAC2 gene expression in peripheral blood cells of the AD 

twin (D'Addario, Candia et al. 2017), suggesting that global levels of HDAC2 expression 

may increase in AD, but depending on the region evaluated may not be translated or post-

translationally modified to yield a functional protein. 

Intracellular trafficking of HDAC4 has been implicated in neuronal survival and 

transcriptional repression. HDAC4 is localized in the cytoplasm under normal conditions; 

in response to low potassium or excitotoxic glutamate conditions, it rapidly accumulates 

in neuronal nuclei where it suppresses myocyte enhancer factor-2 (MEF-2) and cAMP 
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response element-binding protein (CREB)-dependent transcription (Bolger and Yao 

2005; Herrup, Li et al. 2013). HDAC4 is dephosphorylated and translocated to the 

nucleus in neurodegenerative diseases including AD, where it selectively accumulates in 

frontal cortex layer III nuclei (Shen, Chen et al. 2016). Although we did not find 

increases in total cortical HDAC4 levels in mAD and sAD, it is possible that using other 

HDAC4 antibodies directed against its dephosphorylated form would reveal differences 

across clinical groups. By contrast, we found a significant increase in HDAC4 levels in 

MCI compared to NCI, which may reflect a epigenetic plasticity response to an initial 

disease insult.  

HDAC6 levels were increased in MCI and sAD compared to NCI and mAD in the 

frontal cortex, suggesting that similar to HDAC1 and HDAC3, HDAC6 levels may 

increase in response to disease onset, plateau in mild/moderate AD before an increase 

during severe AD. HDAC6 is involved in both the ubiquitin-proteasome system and 

autophagic pathways (Kopito 2000; Boyault, Gilquin et al. 2006; Hildmann, Riester et al. 

2007), where it can regulate the formation and transportation of aggresomes, as well as 

promote proteasome or lysosome-mediated degradation of misfolded proteins. 

Lysosomal-endosomal and autophagic upregulation occurs in cortical, hippocampal, and 

basal forebrain neurons in MCI and AD even before plaque and tangle pathology (Nixon 

and Yang 2011; Orr and Oddo 2013; Perez, He et al. 2015). Perhaps increased HDAC6 

levels in the frontal cortex in MCI reflect augmented protein clearance and degradation. 

HDAC6 has also been implicated in tubulin acetylation and acetylated α-tubulin, a 

marker for microtubule stability, is reduced in the AD brain (Ding, Dolan et al. 2008). By 
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contrast, HDAC6 levels have been reported to be increased in the cortex and 

hippocampus, which is paralleled by a decrease in acetylation of α-tubulin in AD 

compared to controls (Ding, Dolan et al. 2008). Perhaps the increase in frontal cortex 

HDAC6 levels destabilizes microtubules impairing intracellular transport (Chen, Zhou et 

al. 2005; Dompierre, Godin et al. 2007; Gao, Wang et al. 2010). A few reports have 

demonstrated a reduction in acetylated alpha-tubulin immunoreactivity in NFT-bearing 

neurons in the human CA1 region of the hippocampus, suggesting that HDAC6 is also 

involved in tau microtubule destabilization in AD (Hempen and Brion 1996; Perez, 

Santa-Maria et al. 2009; Cook, Gendron et al. 2012). Although these findings suggest an 

interaction between HDAC6 and tau, we did not find a correlation between HDAC6, 

NFT counts, or Braak stage. We did observe a significant positive correlation between 

HDAC4 and HDAC6 levels, indicating that these cytoplasmic HDACs may interact at the 

cellular level. 

In the present study, frontal cortex SIRT1 levels steadily decreased across the 

clinical groups. Decreased expression of SIRT1 in Braak stages I-II has been previously 

shown by Bossers et al. in the AD prefrontal cortex, suggesting that loss of SIRT1 may 

be associated with early NFT formation (Bossers, Wirz et al. 2010). Decreases in SIRT1 

mRNA and protein have been demonstrated in the parietal cortex in AD (Julien, 

Tremblay et al. 2009) but were not significantly decreased in MCI in comparison to our 

data which showed a significant decrease in SIRT1 levels in MCI compared to NCI. This 

earlier study also found a significant positive correlation between parietal cortex SIRT1 

levels and global cognitive z-scores in AD (Julien, Tremblay et al. 2009), similar to the 
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findings reported here for the frontal cortex. We also found significant correlations 

between SIRT1 levels and perceptual speed, episodic memory z-scores, as well as 

MMSE, indicating that a reduction of frontal cortex SIRT1 protein levels may affect 

multiple cognitive domains during AD progression. SIRT1 knockout mice exhibit a 

significant deficit in both short and long-term hippocampal-dependent memory, while 

mice expressing high levels of SIRT1 in the hippocampus show normal long term 

potentiation and memory function, suggesting that SIRT1 may be critical for 

hippocampal-dependent memory tasks (Gao, Wang et al. 2010; Michan, Li et al. 2010). 

What role cortical SIRT1 plays in episodic memory is unknown. However, it is possible 

that a concomitant change in hippocampal and cortical levels of SIRT1 may indicate a 

double hit to different memory circuits. Given the functional disconnection between the 

frontal cortex and hippocampus in AD (Grady, Furey et al. 2001), alterations in cortical 

levels of SIRT1 may exacerbate hippocampal dysfunction. 

SIRT1 directly modulates synaptic plasticity and memory formation (Gao, Wang 

et al. 2010). Although we have shown in tissue from the RROS cohort that drebrin, a 

postsynaptic dendritic spine marker, is decreased in the AD hippocampus (Counts, He et 

al. 2012), whether decreases in SIRT1 and drebrin levels are related to alterations in 

synaptic plasticity has not been established. In cell culture models, SIRT1 is suggested to 

be protective against cellular stress and inflammation by inhibiting NF-kappaB signaling 

to mediate protection against microglia-dependent amyloid-beta toxicity (Chen, Zhou et 

al. 2005). However, we did not find any association between SIRT1 levels and CERAD 

or amyloid density counts in the frontal cortex. We did observe a moderate negative 
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correlation between SIRT1 levels and frontal cortex NFT counts, indicating as others 

have suggested that a reduction in SIRT1 is associated with tau accumulation in the AD 

cortex (Julien, Tremblay et al. 2009).  

  Interestingly, when we divided our NCI cases into high and low Braak groups no 

difference in HDAC and SIRT1 protein levels was found between these NFT defined 

groups. In this regard, many studies have shown that NCI cases display both high Braak 

NFT and amyloid plaque pathology (Mufson, Chen et al. 1999; Price and Morris 1999; 

Erten-Lyons, Woltjer et al. 2009; Mufson, Malek-Ahmadi et al. 2016; Mufson, Malek-

Ahmadi et al. 2016; Wegiel, Flory et al. 2017) but do not differ in the level of different 

molecular and cellular markers (Perez, Nadeem et al. 2017). The concepts of cognitive 

reserve and “super agers” have been used to explain these findings (Arnold, Louneva et 

al. 2013; Mufson, Malek-Ahmadi et al. 2016; Mufson, Malek-Ahmadi et al. 2016; 

Wegiel, Flory et al. 2017). Despite these concepts, a clear biological explanation remains 

to be defined. Aged people with Braak stage III, IV and V display significant neuronal 

damage to the medial temporal lobe (MTL) memory circuit consisting of the 

transentorhinal and entorhinal cortex and hippocampus (Buckner, Snyder et al. 2005; 

Buckner, Sepulcre et al. 2009; Simic, Babic et al. 2014), which may disconnect 

multimodal neocortical information from reaching the MTL. However, despite an 

apparent MTL disconnection and extensive amyloid plaque pathology, aged people 

remain cognitively intact (Mufson, Malek-Ahmadi et al. 2016; Mufson, Malek-Ahmadi et 

al. 2016). These observations suggest that NFT and amyloid lesions may not be a 

necessary precondition for cognitive impairment in the elderly or AD. Therefore, the 
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biological factors that maintain cognitive stability in the face of extensive AD lesions in 

cognitively intact elders remain to be defined. Perhaps dysregulation of epigenetic factors 

play a more pivotal role in cellular alterations during the course of AD.  

A caveat of this or any other human tissue study is what role end of life agonal 

state has upon HDAC protein levels in the brain. The effects of agonal conditions on 

RNA and DNA are well documented. An average postmortem interval of 3-4 hours is 

considered suitable for gene expression analysis (Blair, Wang et al. 2016). On the other 

hand, studies indicate that proteins such as actin and GAPDH, often used as internal 

loading controls for Western blot studies, remain intact even at longer PMIs (i.e., over 48 

hours) (Blair, Wang et al. 2016). Our postmortem intervals were ~5 hours, which is 

slightly higher than what would be considered appropriate for gene expression studies, 

but well within time limits for protein assay usage.  

Figure 2.11 summarizes our findings of HDAC alterations in the frontal cortex 

during the clinical progression of AD. Whether HDAC profiles can be monitored as 

biomarkers for disease progression remains to be determined. The advent of HDAC PET 

tracers ([
11

C]Martinostat) (Schroeder, Wang et al. 2014; Wang, Schroeder et al. 2014; 

Wey, Gilbert et al. 2016) make it possible to image neuroepigenetic proteins in the 

human brain. Combining this technology with peripheral blood cell (D'Addario, Candia 

et al. 2017), and serum HDAC analyses (Kumar, Chaterjee et al. 2013) will aid in the 

development of a more accurate bioassay for determining the transition from NCI to 

MCI. Mapping epigenetic alterations in different brain regions and uncovering the 

molecular and cellular mechanisms related to disease pathogenesis may provide the basis 
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for novel therapeutic platforms for the treatment of dementia and perhaps personalized 

medicine. In this regard, we are presently examining epigenetic alterations in other 

components of the DMN in tissue obtained from the RROS. Interestingly, HDAC 

inhibitors are used for treating cancer (Gallinari, Di Marco et al. 2007; Marks and Xu 

2009; Arrighetti, Corno et al. 2015; Behera, Jayprakash et al. 2015; Ceccacci and 

Minucci 2016) and possibly for AD (Xu, Dai et al. 2011; Delcuve, Khan et al. 2012; 

Cacabelos and Torrellas 2015). 
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Figure 2.11 Summary of Deacetylase Levels in the Frontal Cortex Across AD 

Progression 

 

Summary diagram showing changes in histone deacetylase levels in the frontal cortex 

during the progression of Alzheimer’s disease. NCI, no cognitive impairment; MCI, mild 

cognitive impairment; mAD, mild/moderate Alzheimer’s disease; sAD, severe 

Alzheimer’s disease.  
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CHAPTER 3 

HDAC2 DYSREGULATION IN THE NUCLEUS BASALIS OF MEYNERT DURING 

THE PROGRESSION OF ALZHEIMER’S DISEASE  

3.1 ABSTRACT 

Aims: Alzheimer’s disease (AD) is characterized by degeneration of cholinergic 

basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides 

the major cholinergic input to the cortical mantle and is related to cognitive decline in 

patients with AD. Cortical histone deacetylase (HDAC) dysregulation has been 

associated with neuronal degeneration during AD progression. However, whether HDAC 

alterations play a role in CBF degeneration during AD onset is unknown. We investigated 

global HDAC protein levels and nuclear HDAC2 immunoreactivity in tissue containing 

the nbM and their association with neurofibrillary tangle (NFT) development during AD 

progression. 

Methods: We used semi-quantitative western blotting and immunohistochemistry 

to evaluate HDAC and sirtuin (SIRT) levels in individuals that died with a premortem 

clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), 

mild/moderate AD (mAD), or severe AD (sAD). Quantitative immunohistochemistry was 

used to identify HDAC2 protein levels in individual cholinergic nbM nuclei and their 

localization with the early phosphorylated tau marker AT8, the late-stage apoptotic tau 

marker TauC3, and Thioflavin-S, a marker of mature NFTs. 

Results: In AD patients, HDAC2 protein levels were dysregulated in the basal 

forebrain region containing cholinergic neurons of the nbM. HDAC2 nuclear 
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immunoreactivity was reduced in individual cholinergic nbM neurons across disease 

stages. HDAC2 nuclear reactivity correlated with multiple cognitive domains and with 

NFT formation. 

Conclusions: These findings suggest that HDAC2 dysregulation contributes to 

cholinergic nbM neuronal dysfunction, NFT pathology, and cognitive decline during the 

clinical progression of AD. 

 

3.2 INTRODUCTION 

Alzheimer’s disease (AD) is characterized by degeneration of cholinergic basal 

forebrain (CBF) neurons (Mesulam, Mufson et al. 1983) in the nucleus basalis of 

Meynert (nbM) (Whitehouse, Price et al. 1981; Doucette 1986; Etienne, Robitaille et al. 

1986; Rinne, Paljarvi et al. 1987; Mufson, Bothwell et al. 1989; Iraizoz, Lacalle et al. 

1991; Iraizoz, Guijarro et al. 1999), which are the main source of acetylcholine to the 

cortical mantle (Rye, Wainer et al. 1984). Cholinergic neuron loss in the nbM contributes 

to cognitive and attentional deficits (Iraizoz, Guijarro et al. 1999; Mufson, He et al. 2012) 

and correlates with disease severity in AD (Perry, Tomlinson et al. 1978; Wilcock, Esiri 

et al. 1982; DeKosky, Harbaugh et al. 1992). Alterations in the balance between the high-

affinity trkA (cell survival) and the low-affinity pan neurotrophin receptor (p75
NTR

) (cell 

death) nerve growth factor (NGF) receptors (Mufson, Ma et al. 2000; Mufson, Ma et al. 

2002), dysregulation of NGF metabolism (Peng, Wuu et al. 2004; Cuello, Bruno et al. 

2007; Iulita and Cuello 2016) and development of neurofibrillary tangle (NFT) pathology  

(Rasool, Svendsen et al. 1986; Sassin, Schultz et al. 2000; Mesulam, Shaw et al. 2004; 
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Vana, Kanaan et al. 2011) have been suggested to play a role in the pathogenesis of CBF 

neurons in AD. Interestingly, histone acetylation and deacetylation have been shown to 

be involved in the regulation of choline acetyltransferase (ChAT) expression, the 

synthetizing enzyme for the neurotransmitter acetylcholine (Aizawa and Yamamuro 

2010; Aizawa, Teramoto et al. 2012; Bekdash 2016), suggesting a role for epigenetics in 

the selective vulnerability of cholinergic nbM neurons in AD.  

Histone deacetylases (HDACs), a class of enzymes with deacetylase activity, are 

found in the nucleus and cytoplasm and are believed to play a role in the pathogenesis of 

AD (Ding, Dolan et al. 2008; Guan, Haggarty et al. 2009; Xu, Dai et al. 2011; Cook, 

Gendron et al. 2012; Graff, Rei et al. 2012). Multiple HDAC classes are associated with 

cellular events that are dysfunctional in AD, including endoplasmic reticulum stress 

(HDAC4) (Shen, Chen et al. 2016), autophagic regulation (HDAC6) (Pandey, Nie et al. 

2007), mitochondrial transport (HDAC6) (Chen, Owens et al. 2010), tau 

hyperphosphorylation (HDAC6) (Ding, Dolan et al. 2008), and amyloid beta (Aβ) and 

tau accumulation (SIRT1) (Julien, Tremblay et al. 2009; Lalla and Donmez 2013). 

Studies also indicate that dysregulation of HDACs is associated with brain regions 

susceptible to NFT formation, including the hippocampus and entorhinal cortex, in AD 

(Mastroeni, Grover et al. 2010; Graff, Rei et al. 2012). Although reports indicate that 

basal forebrain pathology precedes and predicts cortical pathology and memory 

impairment (Teipel, Flatz et al. 2005; Schmitz and Spreng 2016), whether epigenetic 

dysregulation occurs and associates with the formation of NFTs in nbM cholinergic 

neurons is unknown. 
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Of the various HDACs, HDAC2 has received extensive investigation because of 

its role in the regulation of genes involved in learning and memory via modulation of 

chromatin plasticity (Dawson and Kouzarides 2012; Graff and Tsai 2013; Volmar and 

Wahlestedt 2015). Immunohistochemical analysis of HDAC1 and HDAC2 has revealed 

decreased reactivity in the entorhinal cortex (Mastroeni, Grover et al. 2010). However, 

HDAC2 (but not HDAC1 or HDAC3) is increased in the nuclei of hippocampal CA1 and 

entorhinal cortex neurons in AD compared with non-cognitively impaired aged controls 

(Graff, Rei et al. 2012). A western blotting study of the frontal cortex revealed significant 

increases in HDAC1, HDAC3, HDAC4, and HDAC6 in MCI and mAD compared with 

NCI, whereas HDAC2 levels remained stable across clinical groups (Mahady, Nadeem et 

al. 2018). Conversely, cortical SIRT1 levels decreased during disease progression 

(Mahady, Nadeem et al. 2018). However, to our knowledge, no reports have examined 

HDAC modifications in the basal forebrain region containing the cholinergic cortical 

projection neurons during the progression of AD and their relation to cognitive 

performance and neuropathological criteria. 

In the present study, we investigated the role of HDACs, especially HDAC2, in 

cholinergic nbM neuronal degeneration during the progression of AD. Using semi-

quantitative western blotting, we analyzed global levels of HDACs and SIRT1 proteins in 

basal forebrain tissue containing the nbM obtained from individuals who died with an 

antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive 

impairment (MCI), mild/moderate AD (mAD), and severe AD (sAD) and who received a 

postmortem neuropathological evaluation. In addition, we examined HDAC2 nuclear 
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immunoreactivity and its association with early (AT8) and late (TauC3) tau epitopes that 

mark NFT evolution (Garcia-Sierra, Ghoshal et al. 2003; Binder, Guillozet-Bongaarts et 

al. 2005; Guillozet-Bongaarts, Garcia-Sierra et al. 2005; Vana, Kanaan et al. 2011; 

Combs, Hamel et al. 2016; Tiernan, Mufson et al. 2018) in individual nbM cholinergic 

neurons in tissue from the same clinicopathological groups. Our data provide evidence 

that reduced HDAC2 levels in the nbM are coincident with early posttranslational tau 

modifications in prodromal AD (MCI), and are associated with cognitive decline. 

3.3 METHODS 

3.3.1 Subjects 

Frozen and free-floating tissue containing cholinergic nbM neurons was obtained 

from individuals who died with an antemortem clinical diagnosis of NCI (n=20), MCI 

(n=13), or mild/moderate AD (n=12) from the Rush Religious Orders Study (RROS) 

(Mufson, Chen et al. 1999; Bennett, Wilson et al. 2002; Bennett, Schneider et al. 2005; 

Mufson, He et al. 2012). Additional cases with a diagnosis of severe AD (n=16) were 

obtained from the Rush Alzheimer’s Disease Center (RADC). The Human Research 

Committees of Rush University Medical Center approved this study and written informed 

consent for research and autopsy was obtained from the participants or their 

family/guardians. 

3.3.2 Clinical and Neuropathologic Evaluations 

Details of the clinical evaluation of the RROS cohort have been reported 

previously (Mufson, Chen et al. 1999; Bennett, Schneider et al. 2005; Mufson, He et al. 

2012; Perez, Getova et al. 2012). Briefly, a team of investigators led by a neurologist 
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performed annual neurological examinations and a cognitive battery in addition to 

reviewing each participant’s medical history. The average time from the last clinical 

evaluation to death was about 8 months. Neuropsychological testing included the Mini-

Mental State Examination (MMSE), the Global Cognitive Score (GCS), and a composite 

z-score compiled from a battery of 19 cognitive tests (Mufson, Chen et al. 1999), 

including episodic memory z-score, semantic memory z-score, working memory z-score, 

perceptual speed z-score, and visuospatial ability z-score (Wilson, Beckett et al. 2002). 

The 13 MCI cases had cognitive impairment insufficient to meet the criteria for dementia 

(Bennett, Wilson et al. 2002). MCI subtypes include: amnestic MCI (aMCI) which is 

characterized by memory impairment and progression to AD at a higher rate than non-

amnestic MCI (naMCI), which involves a cognitive domain(s) other than memory such 

as executive function, language, and visuospatial processing. Amnestic and non-amnestic 

MCI can be subcategorized into single (sdMCI) or multiple domain MCI (mdMCI) 

depending on how many cognitive domains are affected (Petersen 2004). Of the 13 MCI 

cases, 6 were amnestic and 7 were non-amnestic. A final clinical diagnosis was applied to 

these cases after a team of neurologists and neuropsychologists reviewed the clinical 

data. Neuropathological diagnosis was based on Braak staging of NFTs (Braak and Braak 

1991), the National Institute on Aging (NIA) Reagan criteria (Newell, Hyman et al. 

1999), and recommendations of the Consortium to Establish a Registry for Alzheimer’s 

disease (CERAD) (Mirra 1997). The recent criteria for the diagnosis of AD are currently 

being applied to all RROS cases (Dubois, Feldman et al. 2007). Participants were 

excluded if they had mixed pathologies other than AD (e.g., TAR DNA-binding protein 



 

94 

 

43, large strokes, Parkinson’s disease, Lewy body dementia, vascular dementia, 

hippocampal sclerosis). 

3.3.3 Antibodies 

Table 3.1 summarizes the antibodies used and their respective dilution and 

specificity. Antibodies used for quantitative western blotting included rabbit polyclonal 

antibodies raised against HDAC1 (1:500, Abcam, Cambridge, MA), HDAC2 (1:500, 

1:20 immunofluorescence, Abcam), HDAC3 (1:500, Abcam), HDAC4 (1:500, Abcam), 

HDAC6 (1:500, Cell Signaling Technology, Danvers, MA), SIRT1 (1:500, Cell 

Signaling Technology), a goat polyclonal antibody against choline acetyltransferase 

ChAT (1:200, Millipore, Billerica, MA), and a mouse monoclonal antibody for β-tubulin 

(1:2000, Sigma, St. Louis, MO). Tissue sections were immunostained using either a 

rabbit polyclonal p75
NTR

 (1:500, Promega Corp., Madison, WI) or a goat polyclonal 

p75
NTR

 (1:20, immunofluorescence, Abcam) antibody and the mouse monoclonal 

antibody AT8 (tau phosphorylation at Ser202 and Thr205; 1:800 for 3,3′-

diaminobenzidine tetrahydrochloride-dihydrate (DAB) immunohistochemistry, 1:50 for 

immunofluorescence, Thermo Fisher Scientific, Waltham, MA), and a mouse monoclonal 

antibody against the tau Asp421 cleavage neoepitope TauC3, a late-stage NFT marker 

(1:50 immunofluorescence, Thermo Fisher Scientific, Waltham, MA). Fluorescence 

signals were shown with Cy3-, Cy2-, and Cy5-conjugated anti-mouse, anti-goat, and anti-

rabbit IgGs (1:200, Jackson ImmunoResearch Laboratories, West Grove, PA).
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Table 3.1 Summary of Antibodies 

 

WB, Western blot; IHC, Immunohistochemistry. IF, Immunofluorescence.

Antigen Description of Immunogen Source, Host Species Dilution 

HDAC1 
Synthetic peptide conjugated to KLH derived from within residues 450 to the C-

terminus of Human HDAC1. 
Abcam, rabbit polyclonal 1:500 WB 

HDAC2 
Synthetic peptide conjugated to KLH derived from within residues 450 to the C-

terminus of Human HDAC2. 
Abcam, rabbit polyclonal 

1:500 WB, IHC 

 1:20 IF 

HDAC3 
Synthetic peptide corresponding to Human HDAC3 amino acids 411-428 conjugated to 

Keyhole Limpet Haemocyanin (KLH). 
Abcam, rabbit polyclonal 1:500 WB 

HDAC4 
Synthetic peptide to amino acids 1-19 of Human HDAC4 conjugated to KLH with C-

terminal added lysine.  
Abcam, rabbit polyclonal 1:500 WB 

HDAC6 
Synthetic peptide corresponding to residues surrounding Pro681 of human HDAC6 

protein. 
Cell Signaling, rabbit monoclonal 1:500 WB 

SIRT1 Synthetic peptide corresponding to the carboxy terminus of human SIRT1 Cell Signaling, rabbit polyclonal 1:1000 WB 

ChAT Directed against the human placental enzyme choline acetyltransferase Millipore, goat polyclonal  1:200 WB 

p75
NTR

 
Purified rabbit IgG recognizes the cytoplasmic domain of the human p75 neurotrophin 

receptor  

Promega, rabbit polyclonal;  Abcam, goat 

polyclonal 
1:500 IHC, 1:20 IF 

AT8 Partially purified human PHF-tau, recognizes tau phosphorylated at Ser202 and Thr205 ThermoFisher, mouse monoclonal 1:800 IHC, 1:50 IF 

TauC3 KLH-CSSTGSIDMVD, corresponding to the C terminus of tau truncated at Asp421 ThermoFisher, mouse monoclonal 1:50 IF  
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3.3.4 Semi-quantitative Immunoblotting 

Frozen basal forebrain regions were dissected rostrally at the crossing of the 

anterior commissure, and caudally where the anterior commissure recedes into the 

temporal pole containing the anterior, anteromedial, anterolateral, and intermediate 

subregions of the nucleus basalis. Dissections did not include the hypothalamus, ventral 

globus pallidus, or the ventral putamen. Frozen tissue samples containing the nbM were 

denatured in sodium dodecyl sulfate (SDS) loading buffer to a final concentration of 5 

mg/ml. Proteins (50 μg/sample) were separated by 4-20% SDS–polyacrylamide gel 

electrophoresis (SDS-PAGE; Lonza, Rockland, ME) and transferred to polyvinylidene 

fluoride membranes (Immobilon P, Millipore, Billerica, MA) electrophoretically (Counts, 

Nadeem et al. 2004; Mufson, He et al. 2012). Membranes were first blocked in tris-

buffered saline (TBS)/0.05%Tween-20/5% milk for 60 minutes at room temperature and 

primary antibodies against HDACs 1, 2, 3, 4, HDAC6, and SIRT1 were added to the 

blocking buffers. Membranes were incubated at room temperature for 30 minutes; and 

then incubated overnight at 4°C. After membranes were washed in TBS/0.05% Tween-

20, they were incubated for 1 hour at room temperature with horseradish peroxidase-

conjugated goat anti-rabbit and anti-mouse IgG secondary antibodies (1:5,000 and 

1:3,000, respectively). Immunoreactivity was visualized by enhanced chemiluminescence 

(Pierce, Rockford, IL) on a Kodak Image Station 440CF (Perkin-Elmer, Wellesley, MA) 

and bands quantified with Kodak 1D Image Analysis Software (Eastman Kodak, 

Rochester, NY). Basal forebrain protein immunoreactive signals were normalized to β-

tubulin signals. Samples were analyzed in three independent experiments, and a single 
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band was visualized at the appropriate kilodalton (kDa) weight for each antibody. 

Controls included elimination of primary antibodies, resulting in no observable 

immunoreactivity. 

 Samples were stained for total protein detection using the LI-COR REVERT
TM

 

Kit according to the manufacturer’s instructions. Briefly, serial dilutions (10-150 μg) of 

pooled basal forebrain samples were loaded and after transfer membranes were incubated 

in REVERT for 5 minutes, washed 2x for 30 seconds each in the wash solution (6.7% 

(v/v) glacial acetic acid, 30% (v/v) methanol, in water) and imaged using the 700 nm 

channel of the Odyssey imaging system (LI-COR). Densitometry of total protein staining 

was measured in a rectangular area automatically defined by the software. Manual 

adjustments were made to contain all detectable signal for a lane and background was 

subtracted from the lane data. All linear ranges of quantification were obtained by 

graphing intensities of serial dilutions and choosing a range of dilutions with the highest 

linearity. A protein concentration of 50 μg was chosen as the desired protein load since it 

exhibited linearity for all of the antibodies examined. 

3.3.5 HDAC2 Immunohistochemistry 

Free-floating basal forebrain sections containing the cholinergic subfields Ch4 

anteromedial, anterolateral, and intermediate were used for immunohistochemical 

analysis (Mesulam, Mufson et al. 1983). Serial 40-μm thick sections were washed in PBS 

and TBS, and then incubated in 0.1 mol/L sodium metaperiodate for 20 minutes (Sigma, 

St. Louis, IL) to inactivate endogenous peroxidase activity. Tissue was washed in a TBS 

solution with 0.25% Triton X (Thermo Fisher Scientific, Waltham, MA) and placed in 
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TBST/Triton 3% goat serum for 1 hour. Sections were then incubated with an HDAC2 

rabbit polyclonal antibody (1:500 dilution) overnight in a solution of 0.25% Triton X-100 

and 1% goat serum. All washes and incubations were performed at room temperature on 

a shaker table. Sections were then washed in TBS and 1% goat serum before incubation 

with a biotinylated secondary antibody goat anti-rabbit IgG (1:200, Vector Laboratories, 

Burlingame, CA) for 1 hour. After TBS washes, HDAC2 staining was amplified using 

the Vectastain ABC kit (Vector Laboratories) for 1 hour, rinsed in a 0.2 mol/L sodium 

acetate solution, 1.0 mol/L imidazole buffer (pH 7.4) and developed in an acetate-

imidazole buffer containing 0.05% DAB (Sigma, St. Louis, IL) and 0.0015% H2O2. 

Cytochemical reaction was terminated in an acetate-imidazole buffer, then tissue was 

mounted on slides and dehydrated through graded alcohols (70%-95%-100%), cleared in 

xylene, and cover-slipped using DPX mounting medium (Biochemica Fluka, Buchs, 

Switzerland). Immunohistochemical controls included deletion of the primary antibody, 

resulting in no observable immunoreaction. Additional HDAC2-immunoreactive 

(HDAC2-ir) sections were counterstained with cresyl violet to aid cytoarchitectural 

analysis. For each antibody, staining of all sections was performed at the same time to 

reduce reagent batch-to-batch variability. 

3.3.6 Quantitation of HDAC2 Immunoreactivity 

Quantitative HDAC2-ir was performed in 11 NCI, 11 MCI, 10 mAD, and nine 

sAD cases, with an average of six slides per case and 50 cells per slide. More than 50% 

of these cases overlapped with the cohort used for western blotting. Measurements were 

performed blinded to clinical and pathological diagnosis. Cholinergic neurons containing 
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nuclei positive for HDAC2-ir were identified by location and morphology using parallel 

sections counterstained with cresyl violet. HDAC2-ir nuclear area and intensity 

measurements were obtained using a Nikon Microphot-FXA microscope (Nikon 

Instruments, Melville, NY) at 40 × magnification. An average background value was 

obtained from 5 microscopic fields lacking HDAC2-ir profiles to yield an average 

background value, which was subtracted from HDAC2-ir measurements. 

3.3.7 Dual p75
NTR

 and AT8 Immunohistochemistry 

Adjacent sections were dual immunostained for the pan neurotrophin receptor, 

p75
NTR

, an excellent marker for human nbM neurons (Mufson, Bothwell et al. 1989), and 

with the tau pretangle marker AT8 (phosphorylated at Ser202 and Thr205). After 

development of the first antigen (p75
NTR

, 1:500), tissue was soaked in an avidin/biotin 

blocking kit (Vector Laboratories). Prior to co-staining, any remaining peroxidase 

activity was further quenched with 3% H2O2 for 30 minutes at room temperature. 

Blocking buffer was reapplied for 1 hour at room temperature, and tissue was then 

incubated with the AT8 antibody (1:800) overnight at room temperature. Tissue was then 

incubated with the appropriate biotinylated secondary antibody (1:200) for 1 hour and 

placed in an ABC solution as described above. All tissue was developed with the Vector 

SG Substrate Kit (blue-gray reaction product, Vector Laboratories). Tissue was mounted 

on slides, dehydrated through a graded series of alcohols, and coverslipped. 

Immunohistochemical controls were performed to rule out any cross-reactivity or non-

specific staining, including omission of the primary and secondary antibodies. Controls 
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were negative for immunoreactivity (data not shown). The tissue was not prepared for 

unbiased stereological counting. 

3.3.8 Quantitation of nbM NFT Profiles 

Counts of single p75
NTR

, AT8, and double AT8/p75
NTR

 neurons within the nbM 

were performed in the same cases used for single HDAC2 immunostaining. An average 

of 5 sections per case was analyzed using the Nikon Microphot-FXA microscope at 20× 

magnification. For each antibody, counts of all AT8- and AT8/p75
NTR

-labeled neurons 

were averaged per case, as described previously (Perez, Getova et al. 2012), and 

normalized to the total number of p75
NTR

-positive neurons. Fiduciary landmarks were 

used to prevent repetitive counting of labeled profiles. 

3.3.9 Triple Immunofluorescence and Thioflavin-S Histochemistry 

Immunofluorescence was conducted using additional free-floating nbM sections 

from the same cases used for single HDAC2 and dual p75
NTR

/AT8 

immunohistochemistry. Sections were washed 3× for 10 minutes each in PBS, TBS, and 

TBS/Triton (0.25%), blocked in TBS/Triton/3% donkey serum for 1 hour at room 

temperature, and incubated overnight in TBS/Triton/1% donkey serum and the primary 

antibodies (p75
NTR

, HDAC2, AT8, or TauC3), washed in TBS/1% donkey serum, and 

incubated in TBS/1% donkey serum containing the appropriate secondary antibody for 3 

hours at room temperature. Sections were then washed, mounted on glass slides, and 

dried overnight in the dark. The following day, the sections were defatted in equal parts 

chloroform and 100% ethanol for 1 hour, rehydrated through graded alcohols (10 

seconds), and then placed in dH2O for 5 minutes. Slides were then incubated in 0.02% 
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Thioflavin-S for 20 minutes in the dark, differentiated in 80% ethanol for 30 minutes, 

incubated with an autofluorescence eliminator reagent to eliminate lipofuscin 

autofluorescence (Millipore, Temecula, CA), and coverslipped with Aqua-Mount (Lerner 

Laboratories, Cheshire, WA). 

HDAC2 immunofluorescent nuclear intensity was measured in nbM neurons 

positive for p75
NTR

, p75
NTR

/AT8, p75
NTR

/TauC3, p75
NTR

/AT8/Thioflavin-S, and 

p75
NTR

/TauC3/Thioflavin-S. Immunofluorescence images were acquired using an Echo 

Revolve R4 microscope (San Diego, CA) at 40× magnification and HDAC2 intensity was 

analyzed with ImageJ 1.47v. Background measurements were taken and subtracted from 

all nuclear measurements as described above. Photomicrographs were acquired using a 

Zeiss LSM 710 confocal microscope (Carl Zeiss Meditec, Oberkochen, Germany) at 40× 

and 63× magnifications. 

3.3.10 Statistical Analysis 

The Kruskal-Wallis test was used to compare differences between clinical groups, 

age at death, education, postmortem interval, brain weight at autopsy, and time between 

last clinical assessment and autopsy, as well as immunoblotting data, neuronal counts, 

immunoreactive intensity, and nuclear area. Chi-squared analysis was used to determine 

whether frequency differences for sex, apolipoprotein E (APOE) ε4 carrier status, Braak 

stage, CERAD diagnosis, and NIA-Reagan diagnosis were present across clinical groups. 

The Conover-Iman test was used to discern statistically significant groupwise 

comparisons. Associations between nuclear area and immunoreactive intensity with 

demographic, cognitive, and neuropathological variables were assessed using Spearman 
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correlations. The false discovery rate (FDR) was used to correct for multiple comparisons 

in the correlation analyses to maintain a significance level of p < 0.05 (Glickman, Rao et 

al. 2014). FDR adjustments were applied to all comparisons to avoid type I error.  

 

3.4 RESULTS 

3.4.1 Demographic, Clinical, and Neuropathological Characteristics 

Demographic, cognitive, and postmortem characteristics of each clinical group 

are presented in Table 3.2. The sAD group had a significantly younger age at death 

(78.75±9.10 years) compared with the MCI group (89.97±4.71 years, p = 0.01) and the 

mAD group (89.90±5.18 years, p = 0.01). Since the sAD group had a significantly 

younger age of death compared to the MCI and mAD groups, it is important to note that 

the current study was not just comparing different stages in disease progression, but also 

different disease trajectories/ages of onset. For example, a 78-year-old sAD represented 

the most aggressive trajectory and the 89-year-old MCI the least aggressive. No 

statistically significant differences in groups were found for frequency of sex (p = 0.10), 

APOE ε4 carrier status (p = 0.28), years of education (p = 0.87), postmortem interval (p = 

0.54), and brain weight at autopsy (p = 0.26). Limited demographic information was 

available for the RADC sAD cases. The mean postmortem interval for the sAD group 

was 6.78±4.24 (range 2-17.3) hours, 50% were female, and the mean brain weight was 

1,077.30±134.71 (range 925-1325) grams. 

Although the mAD group displayed significantly lower MMSE and GCS test 

scores than the NCI and MCI groups (p < 0.001, Table 3.2), the latter 2 groups were not 
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significantly different (p = 0.07). A similar relationship was noted for episodic memory, 

with the mAD group scores significantly lower than those of the NCI and MCI groups (p 

< 0.001), whereas the MCI scores were significantly lower than those of the NCI group 

(p = 0.01). For semantic memory and visuospatial ability, the NCI group had 

significantly higher scores than both the MCI and mAD cases (p < 0.001). For working 

memory, the NCI group had significantly higher scores than both the MCI (p = 0.04) and 

mAD individuals (p < 0.001), whereas the MCI scores were not significantly different 

from those in the mAD group (p = 0.06). No significant differences were noted for 

perceptual speed between the NCI and MCI groups (p = 0.87), whereas mAD had 

significantly lower scores than both the MCI and NCI groups (both p < 0.001). Limited 

cognitive data were available for the RADC sAD group. The mean MMSE score for this 

group was 2.50 ± 3.57 (range 0-9). 

 Neuropathological data for the NCI, MCI, and mAD groups are shown in Table 

3.3. No significant differences were found for total neuritic (p = 0.18) or diffuse (p = 

0.23) plaque counts, total NFT counts (p = 0.28), CERAD (p = 0.31), Braak Stage (p = 

0.17), or NIA Reagan (p = 0.37) among groups. Limited neuropathological data were 

available for the sAD group. More than 70% of sAD cases were determined to be Braak 

IV, the rest were Braak stage V. 
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Table 3.2 Demographic and Cognitive Variables 

 

AD, Alzheimer’s disease; ApoE, apolipoprotein E; PMI, Postmortem Interval; MCI, mild cognitive impairment; MMSE, Mini-Mental 

State Examination; NCI, no cognitive impairment.*One individual did not APOE genotype data.  

 NCI     MCI mAD p-value Groupwise Comparisons 

      
N 20 13 12 - - 

      

Age at Death (years) 86.02±6.18 89.97±4.71 89.90±5.18 0.01 MCI>NCI 

      

Sex (Male/Female) 12/8 3/10 3/9 0.10 - 

      

ApoE ε4 (Carrier/Non-Carrier) 4/15* 1/12 4/8 0.28 - 

      

Education (years) 17.60±4.39 17.38±2.47 17.67±3.34 0.87 - 

      

MMSE 28.15±1.49 25.76±2.84 18.67±5.37 <0.001 NCI, MCI>mAD 

      

Global Cognitive Score (z-score) 0.25±0.43 -0.56±0.35 -1.49±0.56 <0.001 NCI, MCI>mAD 

      

Episodic Memory (z-score) 0.58±0.52 -0.46±0.62 -1.51±0.99 <0.001 NCI, MCI>mAD 

      

Semantic Memory (z-score) 0.22±0.58 -0.46±0.63 -1.06±0.92 <0.001 NCI>MCI, NCI>mAD 

      

Working Memory (z-score) 0.00±0.54 -0.49±0.65 -1.24±0.93 <0.001 NCI>MCI, NCI>mAD 

      

Perceptual Speed (z-score) -0.35±0.84 -0.77±0.75 -1.96±0.92 <0.001 NCI>mAD, MCI>mAD 

      

Visuospatial (z-score) 0.23±0.62 -0.97±0.73 -0.79±0.70 <0.001 NCI>MCI, NCI>mAD 

      

Post-Mortem Interval (hours) 5.98±1.58 5.61±2.23 5.45±2.33 0.54 - 

      

Brain Weight at Autopsy (grams) 1,225.05±175.00 1,156.77±96.46 1,117.09±102.32 0.26 - 
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Table 3.3 Neuropathological Characteristics  

 

Median [25th %ile, 75th %ile]; AD, Alzheimer’s disease; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; MCI, 

mild cognitive impairment; NCI, no cognitive impairment; NIA, National Institute on Aging. 

 NCI MCI mAD p-value 

     
Total Neuritic Plaque Count 17.50 [0, 43] 33 [0, 90.25] 55.50 [3, 132.50] 0.18 

     

Total Diffuse Plaque Count 18 [0, 65] 25 [0.75, 52.50] 66 [11.50, 91] 0.23 

     

Total Neurofibrillary Tangle Count 17.50 [7.50, 44] 28 [20.75, 66.50] 44.50 [5.50, 106] 0.28 

     

CERAD Neuropathological Diagnosis 

 

No AD 

Possible AD 

Probable AD 

Definite AD 

 

 

9 

7 

2 

2 

 

 

4 

5 

1 

3 

 

 

3 

2 

1 

6 

  

 

 

 0.31 

     

Braak Stage 

 

0 

I 

II 

III 

IV 

V 

 

 

1 

2 

4 

4 

9 

0 

 

 

0 

1 

0 

5 

5 

2 

 

 

0 

2 

2 

1 

3 

4 

 

 

 

 

0.17 

NIA Reagan Diagnosis     

Not AD 

Low Likelihood 

Intermediate Likelihood 

High Likelihood 

1 

11 

8 

0 

0 

6 

5 

2 

0 

4 

5 

3 

 

0.37 
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3.4.2 Reduction in Basal Forebrain HDAC2 and ChAT Protein Levels During AD 

Progression 

Semi-quantitative western blotting was used to identify alterations in HDAC and 

SIRT protein levels in the basal forebrain region containing the nbM (Figure 3.1). 

HDAC1, HDAC3 (p = 0.29; p = 0.92, respectively, Figure 3.1A, C), HDAC4 (p = 0.18, 

Figure 3.1D), HDAC6 (p = 0.46, Figure 3.2A), and SIRT1 (p = 0.20, Figure 3.2B) levels 

were stable, whereas HDAC2 levels were significantly decreased in the sAD group 

compared with the NCI, MCI, and mAD groups (p = 0.03, Figure 3.1B). HDAC2 levels 

in mAD did not reach significance, however, there was a trend for an increase compared 

to NCI and MCI (p = 0.12, Figure 3.1B). ChAT levels (Figure 3.2C) were significantly 

decreased in the sAD group compared with the NCI (p < 0.001) and MCI (p = 0.04) 

groups. ChAT levels were not significantly different between the mAD and sAD groups 

(p = 0.07). 
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Figure 3.1 HDACs 1-4 Immunoblots and Boxplots 

 

Representative immunoblots and box plots of levels of (A) HDAC1, (B) HDAC2, (C) 

HDAC3, and (D) HDAC4 in the basal forebrains of non-cognitively impaired (NCI), 

mild cognitively impaired (MCI), mild/moderate AD (mAD), and severe AD (sAD). 

Immunoreactive signals obtained by densitometry were normalized to levels of β-tubulin. 

(A) HDAC1 levels were stable across clinical groups. (B) HDAC2 levels were 

significantly decreased in the sAD group compared with those in the NCI group (p = 

0.03). (C) HDAC3 and (D) HDAC4 levels did not change significantly across groups. 

Circles in box plots indicate outliers. Asterisk indicates p < 0.05.  
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Figure 3.2 HDAC6, SIRT1 and ChAT Immunoblots and Boxplots 

 

Representative immunoblots and box plots of (A) HDAC6, (B) SIRT1, and (C) ChAT 

basal forebrain levels in the non-cognitively impaired (NCI), mild cognitive impairment 

(MCI), mild/moderate AD (mAD), and severe AD (sAD) groups. Immunoreactive signals 

obtained by densitometry were normalized to levels of β-tubulin. HDAC6 (A, p = 0.46) 

and SIRT1 (B, p = 0.20) levels were stable across clinical groups. (C) ChAT levels were 

significantly decreased in the sAD group compared with those in the NCI (p < 0.001) and 

MCI (p = 0.04) groups. Circles in box plots indicate outliers. One asterisk indicates p < 

0.05. Two asterisks indicate p < 0.001. 
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3.4.3 HDAC2 Immunoreactivity Decreases in the nbM in Mild and Severe AD 

Since HDAC2 nuclear levels are reduced in entorhinal and hippocampal neurons 

in persons with AD (Mastroeni, Grover et al. 2010), we evaluated alterations in this 

protein in the nuclei of individual nbM neurons during AD progression (Figure 3.3). 

HDAC2-ir nuclei lost their rounded shape, becoming ovoid, flattened, and displaced to 

the periphery of the soma in the MCI, mAD, and sAD groups (Figure 3.3B-D). HDAC2-

ir nuclear intensity was significantly lower in sAD than in the other clinical groups (p < 

0.001, Figure 3.3E), whereas HDAC2-ir intensity was significantly lower in mAD than in 

the NCI and MCI groups (both p < 0.001, Figure 3.3E). HDAC2-ir intensity in the NCI 

and MCI groups was not significantly different (p = 0.54, Figure 3.3E). Significant group 

differences were noted for nuclear area: those in the sAD group were significantly 

smaller (153.32±13.95 µm
2
) than NCI (184.93±17.55 µm

2
, p < 0.001), MCI 

(175.91±13.07 µm
2
, p < 0.001), and mAD (166.13±22.66 µm

2
, p = 0.04, Figure 3.3F). 

The mAD group also had significantly smaller HDAC2-ir nuclear area than the NCI 

cases (p = 0.03, Figure 3.3F). HDAC2-ir glial profiles were observed surrounding 

cholinergic neurons in MCI, mAD, and sAD cases, which was confirmed by their smaller 

HDAC2 nuclear area compared to nbM nuclei positive for HDAC2 (10.71±2.08 µm
2
). 
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Figure 3.3 HDAC2 Nuclear Immunoreactivity and Area During AD Progression 

(A-D) Photomicrographs of sections stained for HDAC2 and cresyl violet, and (E and F) 

box plots of HDAC2 nuclear intensity and area in non-cognitively impaired (NCI), mild 

cognitive impairment (MCI), mild/moderate AD (mAD), and severe AD (sAD) groups. 

Nuclei positive for HDAC2 (black arrows) lost their rounded shape (A) and were 

displaced to the periphery of the soma in the MCI, mAD, and sAD groups (B, C, and D). 

(E) HDAC2-ir was significantly decreased in mAD compared to NCI and MCI (p < 

0.001), and sAD compared to NCI, MCI, and mAD (p < 0.001). (F) The area of the 

nuclei positive for HDAC2-ir was significantly decreased in mAD compared to NCI (p = 

0.03) and in sAD compared to NCI (p < 0.001), MCI (p < 0.001), and mAD (p = 0.04) 

groups. Circles in box plots indicate outliers. One asterisk indicates p < 0.05; two 

asterisks indicate a p < 0.001. Scale bars: 10µm. 
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Since HDAC2 is involved in the aberrant expression of genes involved in learning 

and memory, we examined the association between nbM HDAC2 intensity and area with 

cognitive test performance (Table 3.4). After correcting for multiple comparisons, we 

found significant correlations between HDAC2-ir intensity and working memory (r = 

0.56, p = 0.003, Figure 3.4A) and GCS (r = 0.54, p = 0.004, Figure 3.4B). 

3.4.4 Quantitation of AT8 and p75
NTR

 nbM Neuron Numbers Across Clinical Groups 

Neuronal counts were performed to determine the number of single p75
NTR 

versus 

AT8-positive and p75
NTR

/AT8-positive nbM neurons within the NCI, MCI, mAD, and 

sAD groups (Figure 3.5). Analysis of variance revealed that the percentage of p75
NTR

-

positive neurons was significantly greater in NCI and MCI compared with mAD and sAD 

groups (p < 0.001, Figure 3.5E), whereas the percentage of AT8-positive nbM neurons 

increased significantly in mAD and sAD (p < 0.01, Figure 3.5E) compared to NCI and 

MCI. However, no significant differences in the percentage of p75
NTR

/AT8-positive 

neurons were detected across the groups (p = 0.05, Figure 3.5E). AT8-positive neuropil 

threads were also scattered within the basal forebrain. Increased HDAC2 nuclear staining 

strongly correlated with p75
NTR

-ir neuronal counts across clinical groups (r = 0.65, p < 

0.001, Figure 3.6A). Counts of AT8-positive perikarya were negatively correlated with 

HDAC2-ir (r= −0.60, p < 0.001, Figure 3.6B). AT8/p75
NTR

-positive neuronal counts were 

negatively correlated with HDAC2-ir in the nbM (r= −0.59, p < 0.001, Figure 3.6C). 

HDAC2-ir nuclear area was not correlated with AT8 (r= −0.33, p = 0.06) or AT8/p75
NTR

 

(r= −0.17, p = 0.32) neuronal counts. The percentage of AT8-positive cells in the nbM 

was negatively correlated with semantic memory z-scores (r= −0.50, p = 0.008, Table  
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Table 3.4 Correlations Between HDAC2 Immunoreactivity, Percentages of p75
NTR

 and AT8-ir Neurons and Cognitive 

Domains 

 

False Discovery Rate significance level = 0.01. Bolded r and p values denote statistical significance after correcting for multiple 

comparisons. MMSE, Mini-Mental state examination; GCS, Global Cognitive score.  

  

 

 

 

 

MMSE GCS 
Episodic 

Memory 

Semantic 

Memory 

Working 

Memory 

Perceptual 

Speed 

Visuospatial 

Ability 

        

HDAC2 immunoreactivity 
0.45 

p = 0.02 
0.54 

p = 0.004 

0.40 

p = 0.04 

0.35 

p = 0.07 
0.56 

p = 0.003 

0.37 

p = 0.06 

0.18 

p = 0.38 

        

HDAC2 nuclear area 
0.23 

p = 0.25 

0.36 

p = 0.07 

0.19 

p = 0.33 

0.33 

p = 0.09 

0.19 

p = 0.34 

0.13 

p = 0.52 

0.29 

p = 0.14 

        

% p75NTR  
0.28 

p = 0.16 

0.40 

p = 0.04 

0.32 

p = 0.10 

0.37 

p = 0.06 

0.23 

p = 0.25 

0.15 

p = 0.46 

0.18 

p = 0.38 

        

% AT8 
-0.36 

p = 0.07 

-0.44 

p = 0.02 

-0.39 

p = 0.05 
-0.50 

p = 0.008 

-0.17 

p = 0.39 

-0.36 

p = 0.06 

-0.04 

p = 0.85 

        

% p75NTR/AT8 
-0.08 

p = 0.69 

-0.23 

p = 0.26 

-0.08 

p = 0.67 

-0.16 

p = 0.43 

-0.14 

p = 0.49 

0.06 

p = 0.77 

-0.06 

p = 0.77 
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Figure 3.4 Scatter Plots Depicting Correlations Between HDAC2 and Cognitive Tests 

(A, B) Scatter plots depicting correlations between HDAC2-ir intensity and cognitive test scores. (A) HDAC2 nuclear intensity 

correlated positively with working memory z-scores (r=0.56, p = 0.003) and (B) Global cognitive scores (r=0.54, p = 0.004) across 

disease progression. Cognitive data were not available for sAD cases. NCI, circles; MCI, squares; mAD, triangles. 
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Figure 3.5 Quantitation of AT8 and p75
NTR

 Positive nbM Neurons Across AD 

Progression 

 

Photomicrographs of nbM tissue dual immunostained for p75
NTR

 (brown) and AT8 (dark 

blue/black) in (A) NCI, (B) MCI, (C) mAD, and (D) sAD groups. Note the presence of 

more p75
NTR

/AT8-positive (closed arrow) and AT8-positive perikarya (open arrow) in 

(B) MCI, (C) mAD, and (D) sAD. The percentage of p75
NTR

-positive neurons (red 

circles, E) was significantly greater in the NCI and MCI groups than in the mAD and 

sAD groups (p < 0.001). The percentage of AT8-positive perikarya (green circles, E) 

increased significantly in the mAD and sAD groups (p < 0.01) compared to the NCI and 

MCI groups. No significant differences in the percentage of p75
NTR

/AT8-positive 

neurons (blue triangle, E) were detected across the groups (p = 0.05). One asterisk 

indicates p < 0.05; two asterisks indicate a p < 0.001. Scale bars: 50 µm, 10 µm for inset. 
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Figure 3.6 Nuclear HDAC2-ir Correlates with the Loss of p75
NTR

 and Gain of AT8 

Phenotype in AD 

 

Scatterplots depicting correlations between HDAC2 nuclear intensity and percentages of 

single-labeled and dual-labeled p75
NTR

/AT8 perikarya and cognitive measures.HDAC2-ir 

was positively correlated with the percentage of single-labeled p75
NTR

-ir neurons (r=0.65, 

p < 0.001, A) and was negatively correlated with the percentage of single-labeled AT8-ir 

(r= −0.60, p < 0.001, B) and double-labeled p75
NTR

/AT8-ir perikarya (r= −0.59, p < 

0.001, C). The percentage of AT8-ir perikarya was negatively correlated with semantic 

memory z-score (r= −0.50, p = 0.008, D). NCI, circles; MCI squares; mAD, triangles; 

sAD, diamonds.  
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3.4, Figure 3.6D). In addition, the percentage of p75
NTR

 positive nbM neurons was 

negatively correlated with neuritic plaques (NPs, r= -0.68, p <0.001), diffuse plaques 

(DPs, r= -0.64, p <0.001), and NFT load (r= -0.51, p = 0.006) in the midfrontal cortex in 

the same cases (Table 3.5). Counts of single AT8 positive neurons in the nbM were 

positively correlated with NPs (r=0.68, p<0.001), DPs (r=0.61, p = 0.001), and NFT 

counts (r=0.56, p = 0.002). Double p75
NTR

/AT8 positive neurons were positively 

correlated with NPs (r=0.52, p = 0.005) and DPs (r= 0.56, p = 0.002). 
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 NP Load DP Load NFT Load 

    

HDAC2 –ir intensity 
-0.13 

p = 0.51 

-0.24 

p = 0.22 

0.25 

p = 0.22 

    

HDAC2-ir nuclear area 
-0.08 

p = 0.68 

-0.04 

p = 0.83 

-0.17 

p = 0.40 

    

% p75
NTR

-ir neurons 
-0.68 

p<0.001 

-0.64 

p<0.001 

-0.51 

p = 0.006 

    

% AT8-ir neurons 
0.68 

p<0.001 

0.61 

p = 0.001 

0.56 

p = 0.002 

    

 % p75
NTR

/AT8-ir neurons 0.52 

p = 0.005 

0.56 

p = 0.002 

0.44 

p = 0.02 
    

Table 3.5 Protein Correlations with Plaque and Tangle Load 

 

False Discovery Rate significance level = 0.01. Bolded r and p values denote statistical significance 

after correcting for multiple comparisons. NP, neuritic plaque; DP, diffuse plaque; NFT, 

neurofibrillary tangle. 
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3.4.5 HDAC2 Levels Decline in AT8- and TauC3-Positive nbM Neurons 

We examined whether HDAC2 nuclear levels were related to the development of 

NFTs within nbM neurons during disease onset. We identified whether changes in 

HDAC2-ir nuclei were associated with the early phosphorylation-dependent (AT8) or the 

later stage caspase cleavage-dependent (TauC3) tau isoform. In addition, we also used 

Thioflavin-S histochemistry to reveal the presence of β-pleated sheet structures in NFT-

bearing cholinergic neurons. Data related to HDAC2 nuclear immunoreactivity in tangle 

and non-tangle bearing cholinergic neurons is summarized in Table 3.6 and Figure 3.7. 

HDAC2-ir was significantly decreased in non-NFT–bearing p75
NTR

-positive neurons 

across disease progression (p < 0.001, NCI>mAD and sAD; MCI>mAD and sAD; 

mAD>sAD, Figure 3.7A, F, K, P, respectively). Moreover, cholinergic neurons, which 

were AT8-positive (Figure 3.7B, G, L, Q) or TauC3-positive (Figure 3.7D, I, N, S), 

displayed even less HDAC2 nuclear immunoreactivity across clinical groups (p < 0.001, 

NCI, MCI, and mAD>sAD, Figure 3.7B-E, G-J, L-O, Q-T, respectively). Similarly 

AT8/Thioflavin-S–positive and TauC3/Thioflavin-S–positive cholinergic nbM neurons 

showed a greater decrease in HDAC2-ir during disease progression (p < 0.001, 

NCI>sAD, MCI>mAD>sAD; NCI, MCI, and mAD>sAD, respectively, Table 3.6). A 

within-group analysis across all clinical groups revealed that HDAC2 nuclear 

immunoreactive levels were highest in single p75
NTR

 neurons negative for AT8, TauC3, 

AT8/Thioflavin-S, or TauC3/Thioflavin-S (p < 0.05, Table 3.6). In the MCI group, 

HDAC2-ir was greater in cholinergic neurons bearing AT8, TauC3, or AT8/Thioflavin-S 

than in those bearing TauC3/Thioflavin-S (p < 0.05, Table 3.6). In the mAD group, 
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HDAC2-ir was greater in AT8-positive orTauC3-positive neurons than in 

AT8/Thioflavin-S–positive or TauC3/Thioflavin-S–positive neurons (p < 0.05, Table 

3.6). Cholinergic neurons, which were AT8 positive, had greater HDAC2-ir than neurons 

bearing AT8/Thioflavin-S or TauC3/Thioflavin-S in the sAD group (p < 0.05, Table 3.6). 

Interestingly, nuclear HDAC2-ir in cholinergic nbM neurons labeled for AT8 (p = 0.03) 

or TauC3/Thioflavin-S (p < 0.05) was significantly lower in females than males across 

clinical groups. We previously reported sex differences in trkA mRNA in cholinergic 

nbM neurons during AD onset (Counts, Che et al. 2011). After correcting for multiple 

comparisons, within-group correlations revealed a significant correlation between 

HDAC2-ir intensity in AT8 positive neurons with working memory scores in MCI (r = -

1.0, p < 0.0001), and a significant correlation between HDAC2 nuclear intensity in 

TauC3 positive cholinergic neurons with visuospatial scores in NCI (r = -1.0, p< 0.0001). 
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Table 3.6 HDAC2 Nuclear Immunoreactivity in Tangle and Non-tangle Bearing nbM Neurons 

 

Mean ± standard deviation; mAD, mild/moderate Alzheimer’s disease; MCI, mild cognitive impairment; NCI, no cognitive 

impairment, sAD, severe Alzheimer’s disease; HDAC2, histone deacetylase 2; p75
NTR

, pan neurotrophin receptor; T, Thioflavin-S.

HDAC2-ir NCI MCI mAD sAD p-value Groupwise Comparisons 

p75NTR 139.03±19.97 139.46±5.98 116.34±7.97 89.84±8.92 <0.001 
NCI>mAD, sAD  
MCI>mAD, sAD  

mAD>sAD 

p75NTR/AT8 81.90±13.91 85.93±12.05 74.64±11.40 41.58±10.13 <0.001 NCI, MCI, mAD>sAD 

p75NTR/TauC3 93.80±19.14 95.02±6.26 78.13±14.68 36.52±22.26 <0.001 NCI, MCI, mAD>sAD 

p75NTR/AT8/T 72.15±26.85 84.24±12.16 52.50±7.59 18.91±6.97 <0.001 

NCI>sAD 

MCI>mAD, sAD 
mAD>sAD 

p75NTR/TauC3/T 69.90±20.25 64.24±13.15 46.90±15.70 18.20±6.74 <0.001 NCI, MCI, mAD>sAD 

Within-Group 

Comparisons 

 

p75NTR  > other 

groups 

p75NTR  > other groups; 

p75 NTR /AT8, p75 NTR 
/TauC3, 

p75NTR/AT8/T > p75 NTR 

/TauC3/T 

p75NTR > other groups; 

p75 NTR /AT8, p75 NTR /TauC3 
>  p75NTR/AT8/T, 

p75NTR/TauC3/T 

 

p75NTR  > other groups 

p75 NTR /AT8 > 
p75NTR/AT8/T, 

p75NTR/TauC3/T 

 

p < 0.05 N/A 
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Figure 3.7 HDAC2 Levels Decline in AT8- and TauC3-Positive nbM Neurons 

 

(A-T) Fluorescent photomicrographs of p75
NTR

-ir nbM tissue stained for HDAC2 (cyan), 

p75
NTR

 (green), AT8 (red), TauC3 (red), and Thioflavin-S (blue). HDAC2-ir decreases in 

nbM neurons labeled for p75
NTR

 and AT8 from (A) NCI, (F) MCI, to (K) mAD, and (P) 



 

122 

 

sAD (arrow identifies HDAC2-ir nucleus shown in greyscale inset). Nuclear HDAC2-ir 

declines in p75
NTR

-positive neurons labeled for AT8/HDAC2 and HDAC2 alone (arrow 

identifies same nucleus in black and white images) in NCI (B, C), MCI (G, H), mAD (L, 

M), and sAD (Q, R) and in nbM neurons triple-labeled for p75
NTR

/HDAC2/TauC3, and 

HDAC2 alone in NCI (D, E), MCI (I, J), mAD (N, O), and sAD (S, T). Note 

displacement and shrinkage of nuclei positive for HDAC2-ir in tangle-bearing 

cholinergic nbM neurons. Scale bars: 50 µm (A, F, K, P); 10 µm (B-E, G-J, L-O, Q-T). 
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3.5 DISCUSSION 

 

HDACs are dynamic enzymes capable of altering chromatin structure and shifting 

the epigenetic landscape of the brain. These proteins have multiple cellular functions, 

including gene transcription important for learning, memory, and neuroinflammation 

(Guan, Haggarty et al. 2009; Graff, Rei et al. 2012; Hsing, Hung et al. 2015; Peng, Zhao 

et al. 2015), regulation of genome stability (Pan, Penney et al. 2014), and cellular toxicity 

(Coppede 2014). Increasing evidence from animal studies suggests not only that HDAC2 

plays a negative role in hippocampus-dependent cognition in aging but also that protein 

alterations are present in multiple regions in the AD brain (Julien, Tremblay et al. 2009; 

Mastroeni, Grover et al. 2010; Graff and Tsai 2013; Mahady, Nadeem et al. 2018). Our 

data demonstrate that cholinergic nbM HDAC2 levels are selectively altered in AD, 

correlating with impaired cognitive performance, and are concomitant with NFT 

formation during disease progression. 

Semi-quantitative western blotting revealed that basal forebrain HDAC1, 

HDAC3, HDAC4, HDAC6, and SIRT1 levels were stable, whereas HDAC2 levels were 

significantly decreased in the sAD group compared with those in the NCI, MCI and mAD 

groups. Recent investigations suggest that changes in epigenetic markers are not similar 

across brain regions in AD. A clinical pathological investigation identified significant 

increases in protein levels of HDAC1 and HDAC3 in MCI and mAD and a decrease in 

sAD compared with NCI individuals in the frontal cortex (Mahady, Nadeem et al. 2018). 

However, HDAC2 levels in the frontal cortex remained stable across clinical groups. 

HDAC4 was significantly increased in MCI and mAD, but not in sAD compared with 
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NCI cases. HDAC6 increased significantly during disease onset, whereas SIRT1 

decreased in the MCI, mAD, and sAD groups compared with the NCI group (Mahady, 

Nadeem et al. 2018). These latter results suggest that epigenetic changes differ across 

brain regions during the progression of AD. This regional specificity of HDAC 

alterations could differentially affect the suggested epigenetic blockade of 

neuroplasticity-related gene expression by which memory may become permanently 

impaired in AD. Functionally, HDAC2 is a modulator of chromatin plasticity that forms 

co-repressor complexes with HDAC1 to alter gene expression. HDAC2 negatively 

regulates structural and functional synaptic plasticity (Akhtar, Raingo et al. 2009), 

altering synaptic transcript levels, immediate early gene expression, and the neuronal 

survival protein brain-derived neurotrophic factor (Guan, Haggarty et al. 2009; Graff, Rei 

et al. 2012). In addition, HDAC2 regulates the expression of neuroinflammatory genes, 

and in combination with other transcription factors mediates the cellular response to 

oxidative stress and neuronal apoptosis (Hsing, Hung et al. 2015; Peng, Zhao et al. 2015). 

Thus, HDAC2 is situated in an important position to control expression of multiple 

proteins important for neuronal survival and programmed cell death in AD.  

ChAT mRNA and protein levels are epigenetically regulated via hyperacetylation 

of the core promoter region of the ChAT gene in NG108-15 neuronal cultures (Aizawa, 

Teramoto et al. 2012). Despite a reduction in HDAC2 nuclear levels in cholinergic nbM 

neurons in MCI, ChAT protein levels were significantly decreased only in AD compared 

with NCI and MCI levels; suggesting that the downregulation of HDAC2 does not affect 

ChAT activity in nbM neurons early in the disease process. The maintenance of basal 
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forebrain ChAT levels until sAD supports our previous findings showing a reduction in 

cortical ChAT activity in sAD compared to that in NCI and MCI subjects (DeKosky, 

Ikonomovic et al. 2002). The stability of ChAT activity in both the basal forebrain and 

frontal cortex lends support to the suggestion that the cholinergic system displays a 

neuroplasticity response during the early stages of the disease (DeKosky, Ikonomovic et 

al. 2002; Mufson, Malek-Ahmadi et al. 2016), which is not affected by changes in 

HDAC2 levels. 

This reduction in HDAC2 within cholinergic nbM neurons is similar to the 

reduction seen in entorhinal cortex layer II neurons and other methylation factors in AD 

(Mastroeni, Grover et al. 2010). HDAC2 but not HDAC1 or HDAC3 has been found to 

be increased in CA1 hippocampal and entorhinal cortex nuclei in AD compared with 

non-cognitively impaired aged controls (Graff, Rei et al. 2012). The discrepancy between 

these findings may be related to the case selection criteria used in each study. Graff et al. 

indicated that their cases were chosen based upon a Braak tangle score (Graff, Rei et al. 

2012), whereas the method of selection was not clearly stated by Mastroeni et al 

(Mastroeni, Grover et al. 2010). Moreover, there is limited clinical information about the 

control and AD cases in each study. In addition, in MCI we observed a 95% reduction of 

HDAC2-ir nuclear diameter compared with that in NCI cases. In mAD and sAD, 

HDAC2-ir nuclear diameter was reduced to 89% and 81%, respectively. Our findings are 

similar to a reported 79% reduction in the nbM nuclear area of AD patients compared 

with that of controls (Rinne, Paljarvi et al. 1987). With regard to cognition, impaired 

spatial and associative memory in murine models of neurodegeneration is rescued by 
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short-hairpin knockdown of neuronal HDAC2, which has been suggested to accumulate 

and block transcription of memory-related genes in the rodent hippocampus (Guan, 

Haggarty et al. 2009; Graff, Rei et al. 2012). We found that nbM HDAC2 levels were 

correlated positively with working memory and global cognitive z-scores, which indicate 

that preserved HDAC2 levels in the basal forebrain may be indicative of better cognitive 

function, thereby supporting the use of HDAC drugs for the treatment of AD. 

The decline in nbM nuclear HDAC2 levels is exacerbated by the presence of NFT 

pathology. The current findings agree with previous reports of a reduction in HDAC2 

nuclear reactivity in the entorhinal cortex in AD (Mastroeni, Grover et al. 2010) and its 

association with early NFT formation (Graff, Rei et al. 2012). We also found that as the 

number of p75
NTR

 neurons decreased across disease stages, there was a concomitant 

decrease in HDAC2 nuclear immunoreactivity. Furthermore the reduction in HDAC2 

nuclear immunoreactivity inversely correlated with an increase in the number of AT8-

positive nbM neurons. Quantitative analysis of the intensity of HDAC2 nuclear 

immunoreactivity revealed a significant reduction in non-tangle bearing p75
NTR

-positive 

neurons in the mAD and sAD groups compared with those in the NCI and MCI groups. 

Cholinergic nbM neurons triple-labeled for p75
NTR

, AT8, or TauC3 displayed an even 

greater reduction in HDAC2 immunoreactivity in the mAD and sAD groups compared 

with the non-tangle bearing p75
NTR

 neurons at each disease stage. Within-group analyses 

indicated that HDAC2 immunoreactivity was highest in non-tangle bearing cholinergic 

neurons in each clinical group. Interestingly, HDAC2 nuclear immunoreactivity was 

further reduced in cholinergic nbM neurons co-labeled for either 
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HDAC2/AT8/Thioflavin-S or HDAC2/TauC3/Thioflavin-S in the MCI and mAD groups. 

These findings suggest that although a reduction in HDAC2 occurs before the onset of 

fibrillar tau pathology; this reduction is exacerbated by the presence of phosphorylated 

and conformational tau epitopes during the progression of AD. Since cholinergic nbM 

neurons contain oligomeric tau early in the disease process (Tiernan, Mufson et al. 2018), 

the role that oligomeric tau plays in the reduction of HDAC2 before the development of 

NFTs remains to be determined. 

Abnormal phosphorylation and truncation of tau has not been directly linked to 

HDAC2 dysregulation in AD; however, aberrant kinase and caspase activation has been 

associated with alterations in HDAC2 expression (Graff, Rei et al. 2012). In this regard, 

proline-directed serine/threonine tau kinases, which include cyclin-dependent kinase 5 

(Cdk5) (Johnson and Stoothoff 2004) affect tau phosphorylation at Ser202/Thr205 (AT8) 

and Ser396/Ser404 (PHF-1) sites (Plattner, Angelo et al. 2006). Cdk5 also functions as a 

glucocorticoid receptor kinase, and when bound to the glucocorticoid responsive element 

within the proximal HDAC2 promoter region, stimulates HDAC2 expression (Graff, Rei 

et al. 2012; Graff and Tsai 2013). Thus Cdk5 may be involved in both tau 

hyperphosphorylation and HDAC2 transcript regulation via glucocorticoid receptor 

kinase activity in AD. This interaction may underlie the reduction in HDAC2 reactivity 

observed in AT8-bearing neurons. However, further examination of the relationship 

among Cdk5, AT8, and HDAC2 in AD is required. 

In each clinical group, HDAC2 nuclear immunoreactivity was the lowest in 

cholinergic TauC3/Thioflavin-S–positive neurons. TauC3 is a caspase-dependent 
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cleavage epitope associated with apoptotic events and the phenotypic loss of p75
NTR

 in 

nbM neurons (Vana, Kanaan et al. 2011). Epigenetic shifts are thought to orchestrate 

entry or reentry into the cell cycle, which would lead to apoptosis in postmitotic neurons, 

including those in AD (Golubnitschaja 2007). The role of HDAC2 in apoptotic signaling 

in cancer is well established. Downregulation of HDAC2 expression inhibits cell 

proliferation, arrests the cell cycle at the G0/G1 phase, and induces cell apoptosis in cell 

culture models of cancer (Li, Wang et al. 2017). Activation of caspase 3 and caspase 7 is 

significantly increased in vivo upon depletion of HDAC2 (Schuler, Fritsche et al. 2010); 

silencing HDAC2 is sufficient to decrease NF-κB activity induced by tumor necrosis 

factor-α (TNFα) and to sensitize cells to TNFα-induced apoptosis (Kaler, Sasazuki et al. 

2008). Thus, either HDAC2 changes in combination with the loss of DNA methylation or 

other factors may explain the reported neuronal cell cycle reentry, apoptosis, or caspase 

activation in AD (Yang, Mufson et al. 2003). 

The current findings indicate that nuclear HDAC2 levels are initially altered in 

cholinergic nbM neurons in MCI, which suggest that HDAC2 may be a potential 

preclinical AD biomarker. Neuroepigenetic imaging has recently become available with 

the advent of HDAC positron emission tomography tracers such as [11C] Martinostat, 

which detects class I and II HDACs (Wang, Yu et al. 2013; Schroeder, Wang et al. 2014; 

Wang, Schroeder et al. 2014; Wey, Gilbert et al. 2016). These imaging tools may be used 

to identify regional HDAC changes in the human brain in light of the apparent complex 

multiregional response of epigenetic dysregulation observed in the entorhinal cortex 

(Mastroeni, Grover et al. 2010; Graff, Rei et al. 2012), hippocampus (Graff, Rei et al. 
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2012), frontal cortex (Mahady, Nadeem et al. 2018), and basal forebrain (current study). 

Mapping epigenetic alterations in different brain regions and uncovering the molecular 

and cellular mechanisms related to disease pathogenesis may provide the basis for novel 

therapeutic platforms for the treatment of dementia. 
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Figure 3.8 Serial Basal Forebrain Protein Dilutions for Linear Dynamic Range 

 

Representative immunoblots (A) of basal forebrain homogenate serial dilutions (10-150 

μg) probed for HDAC4, HDAC2, and β-tubulin. (B) Immunoblot stained for total basal 

forebrain protein.  
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Figure 3.9 Linear Dynamic Ranges for HDAC4, HDAC2, β-tubulin, and Total 

Protein 

 

(A-D) Basal forebrain homogenates were pooled and dilutions of 10-150 μg total protein  

were used to determine the linear dynamic range of HDAC4, HDAC2, and β-tubulin. The 

linear dynamic range for HDAC4 (A) is 10-120 μg, for HDAC2 (B) the range is 10-60 

μg, and for β-tubulin (C) the range is 10-70 μg. The linear dynamic range for total protein 

was wider than β-tubulin (D) with linearity from 10-100 μg. 
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Figure 3.10 HDAC2 and HDAC4 Total Protein Normalization and Quantification 

 

(A) Representative immunoblots probed for HDAC4 and HDAC2 normalized to total 

basal forebrain protein (B), and quantification across clinical groups HDAC4 (C), and 

HDAC2 (D). There was no significant change in HDAC4 levels across disease 

progression (p = 0.84; A, C), while HDAC2 levels decreased in the basal forebrain in 

sAD compared to NCI (p = 0.02; A, D).  
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CHAPTER 4 

DISCUSSION 

The etiology and molecular pathogenesis of AD is complex, including remarkable 

heterogeneity of genetic and environmental risk factors, alterations in gene expression, 

neuropathologic processes, and perhaps most telling, none of these risk factors have 

complete penetrance in AD (Mastroeni, Grover et al. 2011). Epigenetic modifications can 

orchestrate gene transcription in numerous cell types and thus may be at the heart of 

multifactorial diseases such as AD. The studies presented here are the first to investigate 

epigenetic alterations in the basocortical cholinergic system in AD and provide a 

foundation for investigating pharmacological treatments targeting chromatin modifiers 

that alter the cellular pathogenesis underlying the progression of AD. The demonstration 

of early HDAC dysregulation in the frontal cortex and nuclei of cholinergic nbM neurons 

suggests that these proteins may be therapeutic targets for AD; perhaps in combination 

with cholinomimetics and anti-tau and amyloid therapies. Moreover, the present 

investigations emphasize the importance of applying a “systems biology” approach to 

tissue obtained from cases that receive extensive premortem clinical and postmortem 

neuropathological evaluation. These studies recognize the multifactorial, dynamic, and 

connectivity-based nature of AD and provide novel information about the complex 

cellular dysfunction that occurs during the course of AD.  
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4.1 DEACETYLASE LEVELS IN THE BASOCORTICAL CHOLINERGIC 

SYSTEM DURING THE ONSET OF AD  

Although numerous RNA-related and DNA methylation changes are reported in 

AD, alterations to HDAC proteins are perhaps the best characterized and are highly 

interactive with other epigenetic mechanisms (Mastroeni, Grover et al. 2011). In the 

frontal cortex (FC), a diverse number of HDAC classes were altered across disease 

progression. Cortical HDAC1 and HDAC3 levels were significantly increased in MCI 

and mAD, while basal forebrain levels of both proteins were unchanged. This may 

suggest regional differences in these proteins in the AD brain. The upregulation of 

HDAC1 and HDAC3 in the frontal cortex may be indicative of a neuroplastic response to 

prodromal/mild AD or the activation of cellular death pathways (Bardai, Price et al. 

2012). In vivo and in vitro studies indicate that an increased interaction between HDAC1 

and HDAC3 in neurons is neurotoxic (Bardai, Price et al. 2012). Our data revealed a 

strong positive correlation between cortical levels of HDAC1 and HDAC3 suggesting 

that this parallel upregulation reflects an increased interaction between these proteins in 

MCI and AD. In addition, we observed a downregulation of FC SIRT1 levels in 

prodromal and mAD.  This reduction of SIRT1 may prevent HDAC1 deacetylation and 

contribute to genomic instability in combination with the neurotoxic effect of an 

increased HDAC1-HDAC3 interaction (Dobbin, Madabhushi et al. 2013). It will be 

important to determine in the future which cortical cell types contribute to the global 

increase in HDAC1 and HDAC3.  
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HDAC1 and HDAC3 have been shown to deacetylate non-histone proteins, 

notably transcription factors, indicating an additional layer of gene regulation. HDAC1 

binds and deacetylates p53 (Juan, Shia et al. 2000; Luo, Su et al. 2000), YY1, Signal 

transducer and activator of transcription 3, androgen receptor, Myogenic differentiation 

1, E2F transcription factor 1, and Smad family member 7 (Peart, Smyth et al. 2005). Non-

histone transcription factor targets for HDAC3 include Smad7, Myocyte enhancer factor 

2 (MEF2), Mitogen-activated protein kinase phosphatase-1 (MKP-1), nuclear factor-

kappaB (NFkB) (Chen, Fischle et al. 2001; Peart, Smyth et al. 2005; Jeong, Du et al. 

2014), with MKP-1 and NFkB being associated with inflammatory processes. A recent 

report identified that deacetylation by axonal HDAC1 of the dynactin subunit p150
Glued

 

mediates retrograde degenerative signaling by p75
NTR 

(Pathak, Stanley et al. 2018). 

Although HDAC1 is considered a nuclear protein, this deacetylase has been shown to  

translocate out of the nucleus into axons of hippocampal and cortical neurons when 

exposed to TNF and glutamate toxicity (Kim, Shen et al. 2010). In addition, axonal 

HDAC1 disrupts mitochondrial transport through binding to kinesins KIF2a and KIF5 

(Kim, Shen et al. 2010). Cholinergic basocortical neurons rely on mitochondrial function 

and retrograde neurotrophic signaling for survival, and thus would be selectively 

vulnerable to HDAC1-mediated degenerative cellular mechanisms. However, further 

studies are necessary to establish if HDAC1 contributes to alterations in p75
NTR

 signaling 

pathways and mitochondrial dysfunction in the AD brain.  

HDAC4 is found in the cytoplasm under normal conditions, and changes in 

subcellular localization of this protein may contribute to dysregulation of various 
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signaling pathways. In the frontal cortex, HDAC4 levels were significantly increased in 

MCI compared to controls and mAD, whereas levels in the basal forebrain were 

unchanged. HDAC4 is dephosphorylated and translocated to the nucleus in AD, and 

accumulates in cortical layer III nuclei (Shen, Chen et al. 2016). In addition, treatment 

with the neuronal survival factor BDNF suppresses HDAC4 nuclear translocation in 

cerebellar granule neurons, whereas a pro-apoptotic CaMK inhibitor stimulates HDAC4 

nuclear accumulation (Bolger and Yao 2005). Although basal forebrain HDAC4 levels 

were stable, it is possible that HDAC4 is dephosphorylated in cholinergic neurons and the 

subcellular location is altered in AD. Moreover, ectopic expression of HDAC4 led to 

neuronal apoptosis and repressed the transcriptional activities of the neuronal survival 

factors MEF2 and CREB (Bolger and Yao 2005). In contrast, inactivation of HDAC4 by 

small interfering RNA or HDAC inhibitors suppresses neuronal cell death (Bolger and 

Yao 2005). Together these data suggest that HDAC4 dysregulation may also contribute 

to neuronal apoptosis in the AD cortex.  

HDAC4 interacts with miR-29b and miR-125 in cellular models of cancer and 

these miRNAs are dysregulated in AD (Sala Frigerio, Lau et al. 2013; Kiko, Nakagawa et 

al. 2014; Müller, Jäkel et al. 2016).  Whether HDAC4 interacts with miR-29b and miR-

125 in AD remains to be determined, but may have importance since these miRNAs are 

suggested to be CSF biomarkers of AD (Müller, Jäkel et al. 2016). Interestingly, levels of 

HDAC4 and the cytoplasmic deacetylase HDAC6 were strongly correlated in the cortex, 

whether these two proteins interact in AD or are linked by their membership to Class II 

deacetylases is unknown.  
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HDAC6 is a cytoplasmic deacetylase that interacts with numerous non-histone 

targets. HDAC6 deacetylates tubulin and the microtubule network in vivo (Hubbert, 

Guardiola et al. 2002; Matsuyama, Shimazu et al. 2002; Zhang, Li et al. 2003). In 

addition, HDAC6 facilitates the clearance of misfolded ubiquitinated proteins, promoting 

their accumulation in aggresomes, and protects cells from stress induced by misfolded 

proteins (Kawaguchi, Kovacs et al. 2003). At the same time, HDAC6 controls induction 

of heat-shock proteins in response to accumulation of ubiquitinated protein aggregates 

(Boyault, Sadoul et al. 2007). In the frontal cortex, HDAC6 levels increase in MCI and 

sAD, while basal forebrain levels remain stable across clinical groups. HDAC6 levels 

have been shown to increase in the hippocampus in AD (Ding, Dolan et al. 2008). In 

addition, evidence suggests that increased levels of HDAC6 indicate an initial response to 

disease onset, which may be indicative of cellular stress. HDAC6 has been linked to 

suppression of mRNA translation and relocalization of mRNPs into cytoplasmic stress 

granules, where they are remodeled and protected from degradation (Anderson and 

Kedersha 2006; Kwon, Zhang et al. 2007). HDAC6 is a critical factor for stress granule 

assembly, where it binds ubiquitin and dynein motor proteins and acts as an adaptor in 

both stress granules and the recruitment of misfolded proteins to the aggresome. Perhaps 

the increase in cortical HDAC6 levels in MCI and AD is an effort by the cell to increase 

protein clearance and degrade or recycle mRNAs (Kwon, Zhang et al. 2007). This 

hypothesis would support previous work demonstrating lysosomal/endosomal and 

autophagic upregulation in the cortex, hippocampus, and basal forebrain in MCI and AD 



 

138 

 

(Ginsberg, Mufson et al. 2010; Nixon and Yang 2011; Orr and Oddo 2013; Perez, He et 

al. 2015).  

Both HDAC6 and SIRT1 are implicated in tau processing (Cook, Gendron et al. 

2012; Tseng, Xie et al. 2017).  HDAC6 binds tau directly via its microtubule-binding 

(MTBR) domain, and HDAC6 levels positively correlate with tau burden, while 

overexpression of HDAC6 promotes accumulation of PHF1-tau (pS396/S404) (Cook, 

Gendron et al. 2012). Conversely, loss of SIRT1 has been linked to tau accumulation in 

AD (Julien, Tremblay et al. 2009). In the frontal cortex, SIRT1 levels steadily decreased 

from MCI to mAD and sAD. Others have demonstrated decreased SIRT1 expression in 

early Braak stages in the prefrontal cortex (Bossers, Wirz et al. 2010), and SIRT1 mRNA 

and protein are decreased in the parietal cortex in AD and parallel NFT accumulation 

(Julien, Tremblay et al. 2009). SIRT1 deacetylates tau in transgenic tauopathy mouse 

models and in the human brain (Min, Chen et al. 2015; Min, Sohn et al. 2018). A recent 

study demonstrated that SIRT1 brain-specific deletion in transgenic tauP301S mice 

resulted in a significant loss of synaptophysin in the FC and hippocampus, while SIRT1 

overexpression significantly reduced spread of MC1-positive tau pathology to the 

contralateral hippocampus compared with control animals (Min, Sohn et al. 2018). Here 

we found that SIRT1 levels in the FC were negatively correlated with cortical NFT 

counts, thus SIRT1 loss in the cortex may be linked to NFT proliferation and may 

contribute to synaptic loss during AD progression. SIRT1’s role in synaptic loss and 

pathogenic tau during the early stages of AD remain undetermined. Although SIRT1 
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levels in the basal forebrain were not significantly altered, there was a trend for decreased 

SIRT1 levels across the clinical groups.  

Numerous studies implicate a reduction in SIRT1 with impaired cognitive 

abilities, including immediate memory, classical conditioning and spatial learning (Gao, 

Wang et al. 2010; Michan, Li et al. 2010; Ng, Wijaya et al. 2015; Cao, Yan et al. 2017; 

Min, Sohn et al. 2018). In the current studies, we found significant positive correlations 

between FC SIRT1 levels and cognitive measures including perceptual speed, GCS, 

episodic memory, and MMSE. Interestingly, SIRT1 loss in the parietal cortex was 

correlated with GCS (Julien, Tremblay et al. 2009), indicating that loss of SIRT1 protein 

in cortical regions may affect cognitive functions during disease progression.  

4.2 HDAC2 NUCLEAR LOSS IN CHOLINERGIC NBM NEURONS  

A significant decline in HDAC2 basal forebrain protein and cholinergic nbM 

nuclear levels were observed across the clinical groups. In basal forebrain homogenates, 

HDAC2 levels did not decline until sAD, while cholinergic nbM nuclear HDAC2 levels 

were significantly decreased in mAD and sAD.  The discrepancy between the western 

blot and immunocytochemical cellular data may be due to an upregulation in HDAC2 in 

other cells types included in basal forebrain homogenates. For example, we found 

HDAC2 positive glial staining surrounding nbM neurons and these cells were not 

included in the immunocytochemical cellular analysis. In contrast, cortical HDAC2 levels 

were stable across clinical groups suggesting that this region is not susceptible to HDAC2 

dysregulation. Alternatively, it is possible that HDAC2 levels are altered in discrete 

cortical layers or cell types which are not detectable by analyzing whole FC 
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homogenates. Future studies of cortical neuronal and glial HDAC2 levels are needed to 

pin point which cell types within specific cortical layers demonstrate HDAC2 

dysregulation, and highlight the importance of studying these complex changes in 

multiple regions and cellular classes.  

Nuclear HDAC2 loss was first described in entorhinal cortex layer II neurons in 

AD patients (Mastroeni, Grover et al. 2010). In the nbM, both the intensity and area of 

HDAC2 nuclear immunoreactivity was reduced in mAD and sAD. However, further 

analysis identified that HDAC2 nuclear levels are highest in neurons that maintain their 

cholinergic phenotype and did not display NFT pathology across all clinical groups. A 

recent study demonstrated a significant increase in tau oligomeric complex 1 (TOC1) 

immunoreactivity in parallel with a decrease in the number of p75
NTR

 positive nbM 

neurons during the transition from MCI to AD (Tiernan, Mufson et al. 2018). Although 

HDAC2 levels were not significantly altered in pretangle-bearing nbM neurons in MCI, 

the effect that TOC1 or other tau oligomeric isoforms have upon HDAC2 or other 

epigenetic markers remain unknown. Future studies will examine the relationship 

between TOC1 in cholinergic nbM neurons and HDAC2 nuclear levels to examine if 

nuclear HDAC2 loss is present earlier during tangle formation. 

In cholinergic neurons degeneration and cell loss follows a rostrocaudal 

topographic progression within the subfields of the nbM, with the posterior Ch4 subfield 

being the earliest and most severely affected (Arendt, Bigl et al. 1983; Wilcock, Esiri et 

al. 1983; Mufson, Bothwell et al. 1989; Iraizoz, Guijarro et al. 1999; Liu, Chang et al. 

2015; Tiernan, Mufson et al. 2018). Since the current study analyzed HDAC2 nuclear 
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levels in the anterior and intermediate cholinergic subfields of the nbM, it would be 

interesting to examine the posterior subfields. Unfortunately, tissue from this region was 

not consistently available. 

Analysis of cholinergic HDAC2 immunoreactive nuclei within the nbM revealed 

a decrease in size, eccentric location with the soma, and often a flattened appearance in 

the AD brain in contrast to their large and rounded shape in age-matched cognitively 

normal individuals. These alterations were first observed in pretangle-bearing neurons, 

and were exacerbated in nbM neurons containing more mature NFTs that displayed β-

pleated sheet structures across disease progression. Displacement of nuclei to the 

periphery of the soma in cholinergic nbM neurons has been reported before in AT8 

positive perikarya (Sassin, Schultz et al. 2000), as has shrinkage of nuclear diameter 

(Rinne, Paljarvi et al. 1987). The consequences of these cellular alterations on the 

structural and functional integrity of the nucleus remain unknown. In relation to these 

findings, a recent report demonstrated that full-length tau interacts with nuclear pore 

protein Nup98 and to a lesser extent with Nup62 in postmortem AD tissue, transgenic 

mouse models, and in vitro (Eftekharzadeh, Daigle et al. 2018). Evidence of nuclear pore 

complex (NPC) structural and functional impairments, including Ran mislocalization, 

alterations in fluorescent protein trafficking, and defects in dextran exclusion was 

observed in phospho-tau-positive cells obtained from AD patients and rTg4510 

transgenic mice (Eftekharzadeh, Daigle et al. 2018). Thus, neurons exposed to exogenous 

AD brain-derived tau show altered nuclear cytoplasmic Ran distribution and disturbed 

NPC function and integrity, consequently altering both nuclear protein export and import 
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(Eftekharzadeh, Daigle et al. 2018). Proteomic analysis of the mammalian NPC identified 

HDAC2 as a non-NPC core protein that can be considered a nuclear matrix- or chromatin 

associated protein and therefore may be directly or indirectly associated with NPC 

function (Cronshaw, Krutchinsky et al. 2002; Pyrzynska, Pilecka et al. 2009). Whether 

nbM neuronal HDAC2 dysregulation is involved with loss of NPC function or impaired 

nucleocytoplasmic transport and pathogenic tau is a timely and important area of 

investigation. Future studies will examine the relationship of nuclear pore structural 

alterations and HDAC2 nuclear changes in cholinergic nbM neurons during NFT 

formation. 

Cholinergic nbM neurons triple-labeled for p75
NTR

, AT8, or TauC3 displayed a 

greater reduction in HDAC2 immunoreactivity in mAD and sAD compared with non-

tangle bearing p75
NTR

 immunoreactive neurons. HDAC2 nuclear immunoreactivity was 

further reduced in cholinergic nbM neurons labeled for either HDAC2/AT8/Thioflavin-S 

or HDAC2/TauC3/Thioflavin-S in MCI and mAD. Thus, although a reduction in HDAC2 

occurs before the onset of fibrillar tau pathology, this reduction is exacerbated by the 

presence of phosphorylated and conformational tau epitopes during the progression of 

AD. Recent evidence suggests that alterations to HDAC2 induce hyperphosphorylation of 

tau in AD animal models (Liu, Tang et al. 2017). HDAC2 overexpression mediates 

hyperphosphorylation of tau indirectly through deacetylation of a transcription factor 

HNF-4, which suppresses miR-101b expression (Liu, Tang et al. 2017). The loss of miR-

101b prevents binding to its target, AMP-activated protein kinase (AMPK), and results in 

increased AMPK expression, activity, and abnormal hyperphosphorylation and 
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aggregation of tau (Vingtdeux, Chandakkar et al. 2011). MiR-101 is downregulated in 

temporal and parietal cortices in AD (Hebert, Horre et al. 2008), however, whether this 

miRNA is dysregulated and contributes to tau hyperphosphorylation in the cholinergic 

nbM is unknown.   

Another tau kinase, casein kinase 2 (CK2) not only phosphorylates HDAC2, 

altering its enzymatic activity and complex formation (Tsai and Seto 2002), but is 

significantly increased in NFTs in hippocampal neurons in AD (Rosenberger, Hilhorst et 

al. 2016), and at the ultrastructural level CK2 is immunolocalized to paired helical 

filaments within NFTs and neuropil threads (Masliah, Iimoto et al. 1992). Proline-

directed serine/threonine tau kinases including cyclin-dependent kinase 5 (Cdk5) affects 

tau phosphorylation at Ser202/Thr205 (AT8) and Ser396/Ser404 (PHF-1) sites. Cdk5 

functions as a glucocorticoid receptor kinase, and when bound to the glucocorticoid 

responsive element within the proximal HDAC2 promoter region, stimulates HDAC2 

expression. It is possible that aberrant kinase activation is a link between changes in 

HDAC2 and NFT pathology in the cholinergic nbM and may explain why HDAC2 and 

the pretangle marker AT8 are inversely related in these neurons. However, further 

examination of the relationship among HDAC2, hyperphosphorylated tau isoforms, and 

kinase activity is required to establish this association.  

HDAC2 nuclear immunoreactivity was the lowest in cholinergic 

TauC3/Thioflavin-S–positive neurons across all four clinical groups. TauC3 is a caspase-

dependent cleavage epitope associated with apoptotic events and the phenotypic loss of 

p75
NTR

 in nbM neurons (Vana, Kanaan et al. 2011). While HDAC2 has not been 
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associated in AD with apoptotic signaling or caspase activation, its role in oxidative 

stress and neuronal death in cancer has been elucidated. Downregulation of HDAC2 

inhibits cell proliferation, arrests cell cycle at G0/G1 phase, and induces apoptosis in 

cancer cells (Li, Wang et al. 2017). In neurons, HDAC2 forms a complex with the 

transcription factor FOXO3a which is involved in neuronal apoptosis (Peng, Zhao et al. 

2015).  Activation of caspase 3 and caspase 7 is significantly increased in vivo upon 

depletion of HDAC2; silencing HDAC2 is sufficient to decrease NF-κB activity induced 

by TNFα and to sensitize cells to TNFα-induced apoptosis (Kaler, Sasazuki et al. 2008). 

Thus, HDAC2 has multiple levels of interaction with apoptotic proteins and effectors, 

and loss of this deacetylase during AD affects neuronal cell cycle reentry, apoptosis, and 

caspase activation in AD. HDAC2 nuclear levels were significantly correlated with 

higher z-scores for working memory and global cognitive score, indicating like 

experimental animal models of HDAC2 knockdown have shown, HDAC2’s role in 

downstream expression of genes important for learning and memory (Guan, Haggarty et 

al. 2009; Graff, Rei et al. 2012). Future studies will examine single nbM transcript levels 

of HDAC2 and levels of synaptic and neuroplasticity-related gene transcripts to identify 

if these targets are downregulated in cholinergic nbM neurons during AD progression. 

Overall my thesis spanned from the identification of global basocortical 

deacetylase dysregulation to the discovery that HDAC2 is selectively dysregulated in 

cholinergic nbM neurons in AD. The importance of these findings are directly related to 

recent studies indicating that volumetric reduction of the forebrain region containing the 

nbM predicts and precedes cortical pathology and memory impairment in prodromal AD 
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and that changes in nbM grey matter volume are apparent even in clinically silent stages 

of probable AD (Schmitz and Spreng 2016). These data support the need to develop 

therapeutic strategies that target epigenetic changes in the basocortical cholinergic system 

as way of preventing or slowing basal forebrain degeneration. A number of studies have 

identified HDAC inhibitors as treatments for AD (Tariot, Schneider et al. 2011; Xu, Dai 

et al. 2011; Cacabelos and Torrellas 2015), specifically in the context of improving 

learning and memory function (Guan, Haggarty et al. 2009). The data presented in this 

thesis outlines the importance of studying HDAC levels in multiple regions in prodromal, 

mild, and severe AD. Inhibition of HDAC2 may be detrimental to cholinergic nbM 

neuronal function, but may be necessary for cortical or hippocampal function in AD. It is 

also possible that the upregulation of certain HDACs is neuroprotective and may be a 

novel biomarker for AD susceptibility. Until specific regional/cell based epigenetic 

therapies are available, pan-HDAC inhibitors should be used with caution in AD. 

However, the availability of epigenetic imaging in the brain with the selective class I/IIb 

HDAC PET tracer [
11

C]Martinostat (Schroeder, Wang et al. 2014; Wang, Schroeder et al. 

2014), may allow for early detection and management of epigenetic dysregulation in the 

MCI and AD brain. 
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