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ABSTRACT

As the demand for wireless systems increases exponentially, it has become necessary

for different wireless modalities, like radar and communication systems, to share the

available bandwidth. One approach to realize coexistence successfully is for each

system to adopt a transmit waveform with a unique nonlinear time-varying phase

function. At the receiver of the system of interest, the waveform received for process-

ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the

presence of the waveforms that are matched to the other coexisting systems. This

thesis uses a time-frequency based approach to increase the SINR of a system by esti-

mating the unique nonlinear instantaneous frequency (IF) of the waveform matched

to the system. Specifically, the IF is estimated using the synchrosqueezing transform,

a highly localized time-frequency representation that also enables reconstruction of

individual waveform components. As the IF estimate is biased, modified versions of

the transform are investigated to obtain estimators that are both unbiased and also

matched to the unique nonlinear phase function of a given waveform. Simulations

using transmit waveforms of coexisting wireless systems are provided to demonstrate

the performance of the proposed approach using both biased and unbiased IF esti-

mators.
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Chapter 1

INTRODUCTION

1.1 Motivation

In a multimodal sensing system, it is often necessary for different wireless modali-

ties to share the available bandwidth to avoid spectrum congestion. An example of a

multimodal environment with joint wireless radar and communications systems is de-

picted in Figure 1.1. In order to enable spectrum sharing, the signaling scheme of one

system must be appropriately designed to minimize the high interference caused by

the other system. Recently, various such methods have been considered for coexisting

radar and communication systems. In [2], for example, the radar transmit waveform

was optimized using constraints on desirable levels of signal-to-interference-plus-noise

ratio (SINR) and radar power, whereas in [3], low-probability of intercept commu-

nications symbols were designed for high-power radar emissions. A radar waveform

selection approach was considered in [4, 5] based on the waveform-dependent SINR

threshold. In particular, the radar transmit waveforms were designed to have nonlin-

ear time-frequency (TF) signatures which were different from the linear TF signatures

of the waveforms normally used in wireless systems. At the receiver of the system

of interest, the received signal consisted of not only the system-matched waveform

but also interference due to the waveforms from the other systems. Knowledge of the

system’s transmit waveform unique TF characteristics is used at the receiver to de-

sign waveform agile processing methods to increase the system’s overall performance.

However, depending on the level of SINR, the problem of spectrum congestion may

not be completely resolved and pre-processing methods may need to be designed.
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Figure 1.1: Illustration of a multimodal environment with joint radar and communi-

cations systems. (The figure is taken from [1])

1.2 Proposed Work

Although waveform agile sensing methods have been used to enable spectrum

coexistence of wireless systems, system performance can be further increased using

TF pre-processing methods. In particular, as coexisting systems are designed to have

transmit waveforms with unique TF signatures, an appropriately designed TF method

could be used to separate a multicomponent received waveform into its components.

Such a TF method must be very highly localized in both time and frequency in

order to distinctively differentiate between TF signatures present in a waveform. The

method must also be able to accurately reconstruct individual components present

in a multicomponent waveform. In order to demonstrate the need for a method that

can provide very high TF resolution, assume that we have a coexisting radar and

communications multimodal system. The radar system of interest uses hyperbolic

frequency-modulated (FM) transmit waveforms, whereas the transmit waveforms of

communication users, that appear as high interference to the radar, are linear FM

waveforms. At the radar receiver, a TF pre-processing method must be designed to

resolve the nonlinear hyperbolic instantaneous frequency (IF) from the multiple linear

IFs that correspond to the communications interference before further processing at

the receiver. An illustration of such multiple IFs sharing the same spectrum in the TF

2



plane is demonstrated in Figure 1.2. As it can be seen, there are two different unique

TF signatures present, and high TF localization is essential for potential waveform

separation. Note that Figure 1.2 was obtained using the Matlab Time-Frequency

Toolbox freeware [6]. The plot shows an ideal TFR formed as the linear combination

of the IFs of a hyperbolic FM and three linear FM waveforms. The IF is not a linear

representation, so the TF plot does not represent the IF of the sum of the waveforms.
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Figure 1.2: Ideal TF representation of a hyperbolic FM and three linear FM wave-

forms sharing the same bandwidth in a coexisting system.

The TF method we consider is based on the synchrosqueezing transform (SST),

a TF representation (TFR) that has been shown to be robust to bounded signal per-
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turbations and additive white Gaussian noise. A synchrosqueezing wavelet transform

was first developed by Maes and Daubechies in [7] and then extended by Flandrin to

the SST that is based on the short-time Fourier transform linear TFR [8–11]. The

SST is highly localized in both time and frequency. In addition, it provides a natural

framework for reconstructing multicomponent waveforms into their linearly combined

components that consist of waveforms with linear or nonlinear phase functions [12].

Under certain conditions, the SST can be used to separate the components and pro-

vide an accurate estimate of the IFs of the waveforms. One of these conditions is that

the waveform components must have low frequency modulation. In particular, it has

been shown in [13] that the SST provides a biased estimate of the IFs of the waveforms

with high frequency modulation. In [13], versions of the synchrosqueezing transform

using different unbiased IF estimators were developed that are better matched to high

frequency modulation. Note, however, that these modified SST transforms are only

matched to linear FM waveforms.

In this work, we propose new modified SST TFRs that are matched to waveforms

with nonlinear IFs. In particular, these TFRs can be used to provide unbiased esti-

mates of IFs that are highly nonlinear, such as hyperbolic or power functions. If a

multicomponent waveform consists of both linear FM and hyperbolic FM waveforms,

for example, then only the new proposed TFR, appropriately designed to match hy-

perbolic TF signatures, can provide an unbiased IF as well as separate the hyperbolic

waveform component from the overall waveform. We derive the conditions needed

on the nonlinear IF function in order for the corresponding matched SST to yield

an unbiased IFE. We also demonstrate that these conditions are in agreement with

existing signaling schemes in coexisting multimodal systems for minimizing system

interference.

A matched unbiased SST can also be used as a pre-processing TF filtering ap-
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proach for reducing the number of false alarms at a radar receiver when only commu-

nications signals are present in the received signal. It could also be used to determine

the time frame that contains the radar received signal to reduce receiver processing

time.

Part of this work was published in [14].

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides some background on var-

ious TFRs and their localization properties in time and frequency. In particular, it

discusses the reassignment method that is a TFR with high TF resolution properties

but fails in signal reconstruction. This chapter also introduces the synchrosqueezing

transform (SST) as a TFR that not only satisfies high TF resolution properties but

it can also achieve signal reconstruction. The SST can be used to obtain a biased

instantaneous frequency estimate (IFE) of the linearly combined components of a

multicomponent waveform, as also discussed in Chapter 2. In Chapter 3, a modified

SST is examined that can be used to obtain unbiased IFEs but only for linear FM

waveforms. In Chapter 4, we present our proposed modified SST that can be used

to obtain unbiased IFEs for signals with nonlinear IF. This chapter demonstrates

the performance of both the the SST and the modified SST to obtain IFEs under

varying SINR conditions. We also consider a realistic scenario of a wireless coexisting

multimodal system consisting of a radar transmitting a waveform with nonlinear IF

and a communications system transmitting a waveform with linear IF. Chapter 5

summarizes our results and discusses future research directions.

In this thesis, we use the terms signal and waveform interchangeably to refer to a

function that conveys information.
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Chapter 2

WAVEFORM LOCALIZATION IN TIME AND FREQUENCY

Time-frequency representations (TFRs) are processing methods for analyzing time-

varying or non-stationary signals; these are signals whose frequency content changes

with time. In particular, a TFR can convey information about the time-varying

characteristics of each frequency component present in a given signal. TFRs can be

broadly classified into linear and quadratic signal transformations. The most com-

monly used linear TFR is the short-time Fourier transform (STFT), whereas some

quadratic TFRs include the spectrogram and the Wigner distribution [15, 16].

2.1 Linear and Quadratic Time-Frequency Representations

The STFT of a signal x(t), t∈R, is formed by taking the Fourier transform (FT)

of time-shifted windowed segments of the signal. Using an analysis window g(t) [17],

the STFT is defined as

Sx(t, f ; g) =

∫
x(τ) g(τ − t) e−j2πfτdτ . (2.1)

Due to the ease of its implementation, the STFT is commonly used in many applica-

tions. However, the STFT often provides incorrect information on the analysis signal

because its time-frequency (TF) localization is highly dependent on the selection of

its window. Specifically, the duration of the window determines the TF resolution

of the representation: a window with a short duration provides a highly localized

transform in time, whereas a window with a long duration provides a highly localized

transform in frequency. This follows from the uncertainty principle that states that

it is not possible to perfectly localize a signal in both time and frequency [15].
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Figure 2.1 shows the TF resolution trade-off of the STFT as a result of varying

the duration of its window during signal analysis. In particular, the spectrogram

(magnitude-squared of the STFT) is used to analyze the sum of two Gaussian sig-

nals, each of duration 1 second and bandwidth 1 kHz. The window used in (2.1) is

g(t) = e−πt
2/σ2

with duration Tg; the sampling frequency used is fs = 2.5 kHz. In Fig-

ures 2.1(a) and 2.1(b), the duration of the window was increased from 0.13 s to 0.5 s,

respectively. As it can be observed, when the long duration window is used in Figure

2.1(b), the high frequency resolution of the STFT results in the two Gaussian signals

appearing as one constant frequency signal, thus providing incorrect information. As

in this example, the STFT trade-off in TF resolution due to the window duration

may not always yield satisfactory analysis results.

The squared-magnitude of the STFT results in the spectrogram quadratic TFR,

that is given by

SPx(t, f ; g) =| Sx(t, f ; g) |2 .

The spectrogram has the advantage of removing any phase information or negative

components.

Another well-known quadratic TFR is the Wigner distribution (WD), which, for

a signal x(t), t∈R, is defined as

Wx(t, f) =

∫
x
(
t+

τ

2

)
x∗
(
t− τ

2

)
e−j2πfτ dτ .

The WD provides high TF localization, in addition to satisfying many other im-

portant signal properties. However, it suffers from cross or inteference terms when

analyzing multicomponent signals due to its quadratic nature. The cross terms can

be misinterpreted as additional signal components to an untrained signal analyst,

and thus the WD can lead to incorrect information. Various windowing or smoothing

7
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(a) Gaussian window with short duration
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(b) Gaussian window with long duration

Figure 2.1: Spectrogram of a signal consisting of the sum of two Gaussian signals

with varying duration Tg: (a) 0.13 s; (b) 0.5 s.
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versions of the WD have been introduced to suppress cross terms; these however lead

to TF resolution trade-off issues similar to those faced by the spectrogram [15]

In Figure 2.2(a), the WD is used to analyze two linear frequency-modulated (LFM)

signals. These correspond to waveforms whose frequency content changes linearly

with time. As shown in the figure, the WD perfectly localizes the two LFM signals

in the TF plane as they appear as lines whose slope corresponds to the frequency

modulation (FM) rate of each signal. Note that in this example, the FM rates of

the signals were selected to be the same, thus the WD TFRs form parallel lines.

Although TF localization is not a problem with the WD, the figure shows a third

linearly-varying term in the middle of the two auto terms; this term corresponds to

the undesirable cross-term between the two LFM signal components.

2.2 Reassignment Method

The reassignment method provides TFRs that are both highly localized in time

and frequency and that do not suffer from cross terms [18–20]. The reassignment

method was initially used with the spectrogram in [18] and then generalized to other

TFRs in [19, 20]. When computing the spectrogram or other smoothed WDs, window-

ing results in the attenuation of cross terms while simultaneously causes spreading in

time and frequency; this spreading results in a loss of TF resolution. In order to keep

the reduction of cross terms but remove the TF spreading, the reassignment method

is designed to move the TF center point of the averaging caused by a smoothed TFR

to a new point that corresponds to the TF center of gravity of that representation.

This TF shift to the center of gravity highly improves the readability of the resulting

reassigned TFR.

The reassigned spectrogram of a signal x(t), t∈R, using an analysis window g(t),

can be obtained as follows: (a) the spectrogram of the signal is first computed with

9
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Figure 2.2: TFRs of a signal consisting of the sum of two LFM waveforms: (a) Wigner

distribution; (b) Reassigned spectrogram.
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the given window; (b) the TF coordinate of the center of gravity of the spectrogram

is computed; and (c) the spectrogram is shifted in time and frequency to this new

TF coordinate. Specifically, the reassigned spectrogram is defined as

Rx(t, f ; g) =

∫ ∫
SPx(τ, ν; g) δ

(
t− ηx(τ, ν)

)
δ
(
f − ζx(τ, ν)

)
dτ dν

where SPx(t, f ; g) is the spectrogram of the signal and the TF coordinate of the center

of gravity of the spectrogram can be obtained as

ηx(t, f) = t−

∫ ∫
τ Wg(τ, ν)Wx(t− τ, f − ν) dτ dν∫ ∫
Wg(τ, ν)Wx(t− τ, f − ν) dτ dν

ζx(t, f) = f −

∫ ∫
ν Wg(τ, ν)Wx(t− τ, f − ν) dτ dν∫ ∫
Wg(τ, ν)Wx(t− τ, f − ν) dτ dν

,

where Wg(t, f) is the WD of the window g(t). Note that ηx(t, f) and ζx(t, f) are also

called the time and frequency reassignment operators, respectively [19].

The reassignment operators can also be computed using the derivative of the phase

function Φx(t, f ; g) of the STFT. In particular, by first expressing the STFT in (2.1)

in terms of its magnitude and phase,

Sx(t, f ; g) = |Sx(t, f ; g)| ej2πΦx(t,f ;g)

then, it can be shown that [16]

ηx(t, f) = − ∂

∂f
Φx(t, f ; g)

ζx(t, f) = f +
∂

∂t
Φx(t, f ; g) . (2.2)

Efficient methods were developed in [19, 20] to compute the derivatives of the phase

function of the STFT for use in real applications. Specifically, it can be shown that

∂

∂t
Φx(t, f ; g) = −Im

(
Sx(t, f ; gd)

Sx(t, f ; g)

)
11



where gd(t) =
d

dt
g(t) is the derivative of the window g(t) and Im(·) denotes the imag-

inary part, and

∂

∂f
Φx(t, f ; g) = −t+ Re

(
Sx(t, f ; gt)

Sx(t, f ; g)

)
where gt(t) = t g(t) and Re(·) denotes the real part. The resulting reassignment oper-

ators are thus given by

ηx(t, f) = t− Re

(
Sx(t, f ; gt)

Sx(t, f ; g)

)
(2.3)

ζx(t, f) = f + Im

(
Sx(t, f ; gd)

Sx(t, f ; g)

)
. (2.4)

Figure 2.2(b) shows the reassigned spectrogram of the two LFM waveforms that

were analyzed by the WD in Figure 2.2(a). As it can be seen, the reassigned spec-

trogram preserved the high localization of the WD without the presence of the cross

terms. Note than an adjustable version of reassignment was introduced in [21], where

the extent of TF localization can be controlled. Also, in order to facilitate the real

time implementation of the reassignment method, causal recursive filters were used

in [22].

2.3 Synchrosqueezing Transform

2.3.1 Synchrosqueezing Transform TFR

Although the reassignment method provides highly localized TFRs, it cannot

easily reconstruct the original signal [23]. The synchrosqueezing transform (SST),

on the other hand, can operate directly on the STFT to obtain the same high TF

resolution properties as the reassignment method and can also reconstruct the original

signal. The SST reassigns the value of the STFT only along the frequency axis.
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Specifically, the SST of a signal x(t), t∈R, is defined as

SSTx(t, f ; g) =

∫
Sx(t, ν; g) δ(f − ζx(t, ν)) ej2πtfdν , (2.5)

where Sx(t, f ; g) is the STFT of the signal with window g(t), and ζx(t, f) is the fre-

quency reassignment operator in Equation (2.4). Figure 2.3(a) shows the SST TFR of

a multicomponent signal consisting of one LFM waveform and one constant frequency

waveform. In this example, the available bandwidth is 1.25 kHz and the waveform

duration is 1 second. The sampling frequency used is fs = 2.5 kHz. As it can be seen,

the SST results in a highly localized TFR of the two signal components without any

cross terms.

2.3.2 SST Ridge Extraction

The SST signal reconstruction is achieved by estimating the IF or ridge of each

signal component. Specifically, the SST extracts the ridge of each signal component

and then reconstructs each component by integrating the SST TFR in the vicinity of

its corresponding ridge.

We assume that a multicomponent signal x(t) =
∑K

k=1 xk(t) is a linear combina-

tion of K components or modes. The kth mode is given by xk(t) =Ak(t) e
j2π φk(t),

with magnitude Ak(t) > 0 and phase function φk(t). An ideal representation of the

multicomponent signal would be one that is highly localized in TF and does not suffer

from cross terms. Such a TFR would consist of a linear combination of K instan-

taneous frequencies (IFs); the kth IF corresponds to the first derivative of the kth

phase function φ′k(t). Specifically, the ideal TFR of x(t) is

ITFRx(t, f) =
K∑
k=1

Ak(t) δ
(
f − φ′k(t)

)
. (2.6)
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Figure 2.3: TFRs of a signal consisting of the sum of an LFM waveform and a constant

frequency waveform: (a) SST; and (b) SST estimated IF.
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An ideal TFR assumes that the energy of each mode is concentrated along its cor-

responding ridge. As a result, a ridge extracted from a highly localized TFR could

be used to reconstruct its matched signal mode. Once all the ridges are extracted,

each mode can be reconstructed by inverting the TFR around the vicinity of its

corresponding ridge. The kth reconstructed signal mode is given by

x̂k(t) ≈
∫
{f,|f−φ′k(t)|<d}

SSTx(t, f ; g) df (2.7)

for some small parameter d.

If the number of mode components K is assumed known and the SST SSTx(t, f ; g)

is given, then a ridge or IF estimation method can be used to estimate φ′k(t) in (2.7)

before the mode retrieval. One such method is based on minimizing the energy

functional [24, 25]

Ex =
K∑
k=1

(
−
∫ ∣∣∣SSTx(t, ψk(t); g)

∣∣∣2dt+

∫ (
λψ′k(t)

2 + β ψ′′k(t)2
)
dt

)
. (2.8)

This is achieved by solving for smooth functions ψk(t) along which the magnitude of

the SST is maximum. The constants λ and β are optimization control parameters

that are used to trade off between function smoothness and energy maximization [25].

The minimization of (2.8) is approximated using methods such as simulated annealing

and the crazy climbers algorithm [24–26]. Simulated annealing performs particularly

well for finding a global maximum. However, to find the ridges, an algorithm that

is more suited towards finding local maxima and minima is required. The crazy

climbers algorithm initializes random points or climbers on the TF grid; the points

then evolve based on the local values of the magnitude of the TFR. Following [25],

we use an adaptation of the crazy climbers algorithm, described in Algorithm 1 [9].

Figure 2.3(b) shows the ridges extracted from the SST in Figure 2.3(a) using the

crazy climbers algorithm. In Figure 2.4(a), the components are reconstructed using

the estimated ridges and then compared to the original signal.
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Algorithm 1 Crazy Climbers Algorithm [9, 25]

Obtain SST TFR, SSTx(t, f ; g), t∈(0, N) and f ∈(0, B)

Divide TF plane into a grid T = {0, 1, . . . , N} × {0, 1, . . . , B}

Assign probability of moving forward or backward along time axis to be p= 0.5

Assign an integer value to M

Initialize a climber at TF point (t0, f0) = arg max
t∈(0,N), f∈(0,B)

∣∣∣SSTx(t, f ; g)
∣∣∣

for tn ← t0 to N do

Jump allowed in frequency at the next time step tn: fn = [−M+fn−1,M+fn−1]

Find next frequency bin fn at time tn by: arg max
(tn,fn∈[−M+fn−1,M+fn−1])

∣∣∣SSTx(t, f ; g)
∣∣∣

if | SSTx(tn, fn; g) |> γ then

Move climber to TF point (tn, fn)

else

End the movement of the climber at point (tn−1, fn−1)

end if

end for

for tn ← t0 to 0 do

Jump allowed in frequency in next time step tn: fn = [−M + fn−1,M + fn−1]

Find next frequency bin fn at time tn by: arg max
(tn,fn∈[−M+fn−1,M+fn−1])

∣∣∣SSTx(t, f ; g)
∣∣∣

if | SSTx(tn, fn; g) |> γ then

Move climber to TF point (tn, fn)

else

End the movement of the climber at point (tn−1, fn−1)

end if

end for

Zero out the region around the extracted ridge in SSTx(t, f ; g).

Perform ridge extraction for remaining components in TF plane.
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Figure 2.4: (a) Reconstructed waveform (from Figure 2.3) using SST estimated ridges

with d= 4. (b) SST denoising performance: output vs input SNR of a signal in AWGN

noise when analyzed using the SST.
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2.3.3 Assumptions for SST Mode Reconstruction

The SST mode reconstruction is not valid for all signals. In particular, some

assumptions must hold on the phase functions of the multicomponent signal modes.

These assumptions were derived in [8] and summarized next.

(a) The signal modes must be well-separated in frequency; specifically, for a given

Gaussian window g(t;σ) with bandwidth 2B=
√

2 log 2/σ, the following in-

equality must hold∣∣∣φ′k(t)− φ′`(t)∣∣∣ ≥ 2B, ∀t, k, ` = 1, . . . , K, k 6= `

where φ′k(t), the first derivative of the phase function φk(t), is the IF of the kth

signal mode.

(b) All signal modes must have weak frequency modulation; specifically, assuming

small ε > 0, the following must hold

σ2
∣∣φ′′k(t)∣∣ ≤ 2 ε and

∣∣A′k(t)∣∣ ≤ ε φ′k(t) , ∀t, k = 1, . . . , K

where φ′′k(t) is the second derivative of the phase function φk(t)

2.3.4 Denoising Performance

As the SST provides highly accurate estimates of the IF of a signal, under the

aforementioned assumptions, it can be used as a tool for signal denoising. It was

shown in [23] that the SST exhibits a better denoising performance than block thresh-

olding techniques. As this advantage of the SST is important in all real applications

we demonstrate the its denoising performance with an example. We consider a lin-

ear FM signal in additive white Gaussian noise (AWGN) and vary the signal-to-noise

ratio (SNR) (or SNRin). The SST based denoising simply estimates the ridges and re-

constructs the signal as in (2.7). The output SNR is obtained using the reconstructed
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signal as

SNRout =

∫
x2(t) dt∫ (

x(t)− x̂(t)
)2

dt

.

Figure 2.4(b) shows the output SNR for varying input SNR values. As it can be seen,

the SST denoising performance increases with increasing input SNR.
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Chapter 3

LINEAR INSTANTANEOUS FREQUENCY ESTIMATION

3.1 Biased Estimator for Linear Instantaneous Frequency

The synchrosqueezing transform (SST) discussed in Section 2.3 is defined in (2.5)

using the frequency reassignment operator ζx(t, f). Following this definition, the use-

fulness of the SST for signal reconstruction depends on the accuracy with which the

SST can estimate the instantaneous frequency (IF) of each signal component. As dis-

cussed in Section 2.3.3, one of the assumptions needed for mode reconstruction is that

all modes are required to have weak frequency modulation. When this assumption

does not hold, then the reconstruction is not accurate as it can be shown that the

resulting IF estimate (IFE) obtained using the SST is biased. This is demonstrated

next using a signal with a high frequency modulation.

We consider a linear frequency-modulated (LFM) signal given by

x(t) = A(t) ej2π φ(t) = A(t) ej2π c t
2

where c ∈R is the frequency modulation (FM) rate of the signal. We assume that

the amplitude modulation A(t) =Ae(t−µ)2/(2σ2), A > 0, is a Gaussian function. An

unbiased estimate of the LFM is given by the first derivative of the phase function

φ(t) = c t2, given by φ′(t) = 2 c t. The IFE based on the SST is given by the frequency

reassignment operator ζx(t, f) in Equation (2.4).

To obtain the SST IFE, we take the first derivative of the signal x(t), as that is

the step used to obtain Equation (2.2). The derivative of x(t) can be written as

∂

∂t
x(t) =

(
∂

∂t
A(t) + j2π

∂

∂t
φ(t)

)
x(t) = (ax t+ bx)x(t) (3.1)
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where ax =−1/σ2 +j2π(2 c) and bx =µ/σ2. Note that the imaginary part of the term

ax t+ bx =−(t−µ)/σ2 + j2π(2 c t) is the IF of x(t). From (2.2), the IFE estimate can

be written as ζx(t, f) = f+
∂

∂t
Φx(t, f ; g), where Φx(t, f ; g) is the phase function of the

short-time Fourier transform (STFT) of the signal, Sx(t, f ; g) = |Sx(t, f ; g)| ej2πΦx(t,f ;g),

with analysis window g(t). Taking the derivative of the STFT results in

∂

∂t
Sx(t, f ; g) = Sx(t, f ; gd) = −ax Sx(t, f ; gm) + (ax t+ bx − j2πf)Sx(t, f ; g), (3.2)

where gd(t) = d
dt
g(t), gm(t) = t g(t), and Sx(t, f ; gd) and Sx(t, f ; gm) are the STFTs

of x(t) with windows gd(t) and gm(t), respectively. Dividing Equation (3.2) with

Sx(t, f ; g), and rearranging the terms, results in

j2π f +
Sx(t, f ; gd)

Sx(t, f ; g)
= ax

(
t− Sx(t, f ; gm)

Sx(t, f ; g)

)
+ bx . (3.3)

From (3.1), the imaginary part of axt+ bx is the IF of the LFM. So, taking the imag-

inary part of Equation (3.3), and using the definition of the reassignment operators

in Equations (2.3) and (2.4), results in the SST IFE as

ζ̂x(t, f) = 2 c η̂x(t, f) . (3.4)

As it can be seen from Equation (3.4), the estimated IF ζ̂x(t, f) is biased since it is

calculated at time η̂x(t, f) instead of at time t.

This is also evident from the fact that the second assumption in Section 2.3.3,

given by σ2
∣∣φ′′k(t)∣∣ ≤ 2 ε, for small ε > 0 and using a Gaussian window g(t) with

parameter σ2, does not hold for large FM rates c. Specifically, φ′′(t)2 = 4c2, and for

large values of c, 4σ2 c2 > 2 ε.

3.2 Unbiased Linear Instantaneous Frequency Estimation

In [27], a second order SST was introduced that is matched to signals with higher

frequency modulation. It was then used in [13] to derive unbiased IF estimates for
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LFM signals. We consider the LFM signal from Section 3.1, x(t) =A(t) ej2πct
2
, where

A(t) =Ae(t−µ)2/2σ2
. If we differentiate Equation (3.2) with respect to time, we obtain

Sx(t, f ; gdd) = −ax S(t, f ; gmd) + (ax t+ bx − j2πf)Sx(t, f ; gd) (3.5)

where Sx(t, f ; gmd) and Sx(t, f ; gdd) are the STFTs of x(t) computed using analysis

windows gmd(t) = t
d

dt
g(t) and gdd(t) =

d2

dt2
g(t), respectively. Equations (3.2) and (3.5)

form a system of two linear equations with variables ax and (ax t+bx−j2πf). Solving

the system of linear equations and taking the imaginary part of (ax t + bx − j2πf)

provides an unbiased IFE that is given by

ζ̂(2)
x (t, f) = f + Im

(
Sx(t, f ; gdd)Sx(t, f ; gm)− Sx(t, f ; gmd)Sx(t, f ; gd)

Sx(t, f ; gd)Sx(t, f ; gm)− Sx(t, f ; gmd)Sx(t, f ; g)

)
, (3.6)

where Im(·) represents the imaginary part. The IFE in Equation (3.6) is known as

the second order synchrosqueezing operator and it is discussed in detail in [28].

In general, higher orders of unbiased IFEs can also be derived by taking higher

order derivatives, order n ≥ 2, of Equation (3.5). This results in

∂n

∂tn
Sx(t, f ; g) = Sx(t, f ; gd,n)

= −ax Sx(t, f ; gmd,n−1) + (ax t+ bx − j2πf)Sx(t, f ; gd,n−1) ,(3.7)

where gd,n(t) =
∂n

∂tn
g(t), gd,n−1(t) =

∂n−1

∂tn−1
g(t), and gmd,n−1(t) = t

∂n−1

∂tn−1
g(t). Solving

Equations (3.2) and (3.7) results in the nth order unbiased IFE given by

ζ̂(n)
x (t, f) = f + Im

(
Sx(t, f ; gd,n)Sx(t, f ; gm)− Sx(t, f ; gmd,n−1)Sx(t, f ; gd)

Sx(t, f ; gd,n−1)Sx(t, f ; gm)− Sx(t, f ; gmd,n−1)Sx(t, f ; g)

)
. (3.8)

If the signal x(t) has constant amplitude modulation, then the corresponding

unbiased IFE in (3.6) can be shown to be [13]

ζ̂(2)M
x (t, f) = f − Re(Sx(t, f ; gd)S

∗
x(t, f ; gm))

Im(Sx(t, f ; g)S∗x(t, f ; gm))
. (3.9)
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Similarly, the corresponding nth order unbiased IFE in (3.8) for an LFM with no

amplitude modulated can be shown to be

ζ̂(n)M
x (t, f ;n) = f −

Re
(
Sx(t, f ; gd,n)S∗x(t, f ; gmd,n−1)

)
Im
(
Sx(t, f ; gd,n−1)S∗x(t, f ; gmd,n−1)

) (3.10)

(3.11)

3.3 Modified Synchrosqueezing Transform

The unbiased IFEs in the previous section, derived for either Gaussian amplitude

modulated or constant amplitude LFM signals, can be used to modify the SST.

The resulting highly localized modified synchrosqueezing transforms (MSST) that

are matched to LFM signals and provide unbiased IFEs when the signals have high

frequency modulation. The MSST can be given by

MSSTx(t, f ; g) =

∫
ν

Sx(t, ν; g) δ(f − rx(t, ν)) ej2πft dν (3.12)

where rx(t, ν) = ζ̂
(2)
x (t, f) in Equation (3.6) or rx(t, ν) = ζ̂

(n)
x (t, f) in Equation (3.8) for

Gaussian amplitude modulated LFM signals. For constant amplitude LFM signals,

rx(t, ν) = ζ̂
(2)M
x (t, f) in Equation (3.9) or rx(t, ν) = ζ̂

(n)M
x (t, f) in Equation (3.10).

In Figure 3.1(a), the MSST of an LFM signal with no amplitude modulation

and 25 dB SNR is shown. Figure 3.1(b) shows the MSST of an LFM signal with

Gaussian amplitude modulation and 25 dB SNR. The available bandwidth is 40 MHz

and the signal duration is 20 µs. The sampling frequency used is 100 MHz. Figure

3.2 demonstrates the reconstruction performance of the biased SST and the unbiased

MSST with the ζ̂
(2)
x (t, f) IFE in (3.6). For this example, we used an LFM signal

with Gaussian amplitude modulation, 1 kHz bandwidth, 1 s duration, and 2.5 kHz

sampling frequency. The biased SST and unbiased MSST are shown in Figures 3.2(a)

and 3.2(b), respectively. After ridge extraction, the component is reconstructed using

23



d= 1 in Equation (2.7). Figure 3.2(c) is the reconstructed signal from the biased SST

and Figure 3.2(d) is the reconstructed signal from the unbiased MSST. As it can be

observed, the unbiased MSST results in a more accurate reconstructed signal for the

given value of d.

24



0 2 4 6 8 10 12 14 16 18

Time(s) 10
-6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
re

q
u

e
n

c
y
(H

z
)

10
7

(a)

0 2 4 6 8 10 12 14 16 18

Time(s) 10
-6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
re

q
u

e
n

c
y
(H

z
)

10
7

(b)

Figure 3.1: TFR analysis of high frequency modulated LFM signal in 25 dB SNR using

MMST computed with (a) unbiased IFE φK1
x (t, f); and (b) unbiased IFE φt2x (t, f).
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Figure 3.2: TFR analysis (zoomed in) of linear FM using (a) SST generated using

ζ̂x(t, f) in (2.4) and (b) MSST generated using ˆ̇φt2(t, f) in (3.6). linear FM signal

reconstruction using (c) biased SST and (d) unbiased MSST.
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Chapter 4

NONLINEAR INSTANTANEOUS FREQUENCY ESTIMATION

4.1 Unbiased Nonlinear IF Estimation

The advantage of using highly nonlinear frequency-modulated (NFM) waveforms

to increase the performance of multimodal coexisting systems has already been demon-

strated [1, 4, 5, 29]. It is thus important to be able to design unbiased instanta-

neous frequency (IF) estimators for waveforms other than linear frequency-modulated

(LFM) ones, as in Chapter 3. In this work, we propose the design of such unbi-

ased NFM IF estimators that make use of the modified synchrosqueezing transform

(MSST) discussed in Section 3.3 and warping axis tranformations [16, 30–34].

Consider a nonlinear FM waveform

x(t) = Aej2π c φx(t)

with constant amplitude A > 0, frequency modulation (FM) rate c, nonlinear time-

varying phase function φx(t), and IF given by the derivative of the phase function,

νx(t) = c
d

dt
φx(t). The design steps for estimating the nonlinear IF involve of the NFM

is to first warp the time axis of the NFM signal x(t) to obtain an LFM signal y(t);

to use the already discussed methods in Chapter 3 for estimating the linear IF of the

LFM; and to warp the axis of the linear IF to match the nonlinearity in the phase

function of the original signal x(t). Specifically, the following steps can be used to

provide an unbiased modified synchrosqueezing transform (MSST) IFE for the NFM

signal.
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W1. Warp the time-axis of the nonlinear FM signal x(t) using the warping operator

W to obtain

y(t) = (Wx)(t) = x
(
φ−1
x (t2)

)
= Aej2πc t

2

. (4.1)

Assuming that φx(t) is an invertible function, then Equation (4.1) holds since

it can be shown that x
(
φ−1
x (t2)

)
=Aej2π c φx

(
φ−1
x (t2)

)
=Aej2πc t

2
.

W2. Compute the MSST in Equation (3.12) with rx(t, ν) = ζ̂
(2)M
x (t, f) in Equation

(3.9) or rx(t, ν) = ζ̂
(n)M
x (t, f) in Equation (3.10). Ridge extraction, as discussed

in Section 2.3.2, can then be used on the MSST to obtain an unbiased estimate

of the IF of y(t) as ν̂y(t) ≈ 2 c t. Note that the unbiased IFE provides an

estimate of the unknown FM rate c.

W3. Warp the time axis of the IFE of y(t) using

ν̂x(t) = ν̂y

(
1

2

d

dt
φx(t)

)
(4.2)

to obtain the unbiased estimate of the IF of x(t). In particular, using the IF

axis warping in (4.2), it can be shown

ν̂y

(
1

2

d

dt
φx(t)

)
= 2 c

1

2

d

dt
φx(t) = c

d

dt
φx(t) = ν̂x(t)

For the above warping process to be possible, some conditions on the nonlinearity

of the phase function φx(t) must be satisfied. In particular, the following conditions

must hold.

C1. The inverse function φ−1
x (t) of the phase function φ(t) must exist for t ∈R+;

that is, φ−1
x (φx(t)) = t, ∀t.

28



C2. The function φx(t) must be a continuous differentiable function that satisfies

φ′x(t) =
d

dt
φx(t) > 0, ∀t.

C3. Given a maximum available bandwidth B, then the maximum frequency of the

warped NFM signal, which is the resulting LFM signal y(t) in (4.1), cannot

exceed B. This can be ensured when the following condition is satisfied

2Td
φ′x(Td)

≤ 1 ,

where Td is the duration of both the LFM and NFM signals.

The warping steps W1-W3 are demonstrated in Figure 4.1 using a power FM

signal, x(t) = ej2π c t
3

of 20 µs duration, 40 MHz bandwidth, and 100 MHz sampling

frequency; the FM rate used is c= 3.33×16 Hz3. After the power FM signal is warped

in Step W1 using φx(t) = t3, the resulting signal y(t) is an LFM; the IF of this signal is

shown in Figure 4.1(a) to be linear, as expected after the warping. After Step W3, the

time axis of the linear IF is warped to obtain the expected nonlinearity φ′x(t) = 3 t2,

as demonstrated in Figure 4.1(b).

4.2 Simulation Examples of Linear and Nonlinear IF Estimation

We demonstrate the performance of the various biased and unbiased IF estimation

methods for different linear and nonlinear FM signals, as discussed in Chapter 3 and

in this chapter, using simulations. We also consider a realistic scenario of coexisting

radar and communications systems with different IF signatures and varying signal-

to-noise ratio (SNR) conditions.
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Figure 4.1: (a) IF of a warped power FM signal; (b) warped time axis of the IF of

the signal in (a).
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4.2.1 Linear Frequency-Modulated Waveforms

We consider an LFM signal of Td = 20 µs duration, B= 40 MHz bandwidth and

100 MHz sampling frequency. The FM rate of the LFM signal x(t) = ej2πc t
2

is c= B
2Td

.

We consider two SNR values, 10 dB and 20 dB, and we run 40 Monte Carlo (MC)

simulations. Figure 4.2(a) shows the biased SST IFE in (2.4) of the LFM in 20 dB

SNR, whereas Figure 4.2(b) shows the unbiased MSST IFE in (3.6) of the same signal.

Figures 4.3(a) and 4.3(b) show the corresponding ridges extracted for the biased SST

and the unbiased MSST, respectively. As it can be seen, the biased SST in Figure

4.3(a) does not result in as accurate an IF estimate as the unbiased MSST one in

Figure 4.3(b). In Figure 4.4, we compare the mean-squared error (MSE) between the

estimated and actual IFs for 20 dB and 10 dB SNR for both the biased SST and

unbiased MMST IFEs. The MSE for the unbiased MSST IFE is 20 dB lower when

compared to the corresponding one for the biased SST IFE.

4.2.2 Power Frequency-Modulated Waveforms

We consider a power FM signal, x(t) = ej2πct
3
, with Td = 20 µs duration, B= 40

MHz bandwidth and 100 MHz sampling frequency. Figures 4.5(a) 4.5(b) show the

SST and the MMST of the signal; the MMST is formed using (3.6) which is well-

matched to LFM signals. Figures 4.6(a) and 4.6(b) show the estimated ridges obtained

using the biased SST and unbiased MSST. The MSE obtained between the estimated

and true IFs is shown in Figure 4.7(a). Note that, although both of these IFEs are

matched to LFMs and not power FMs, the best performance is shown by the unbiased

MSST at high SNR. At low SNR values, both IFEs do not perform well. Figure 4.7(b)

compares the MSE of only the unbiased MSST but for both the LFM and the power

FM signals for 20 dB and 10 dB SNR. Note that the best performance is achieved
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Figure 4.2: TFRs for LFM in 20 dB SNR: (a) SST using biased IFE in (2.4); (b)

MSST using unbiased IFE in (3.6).
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Figure 4.3: LFM signal ridges extracted from the: (a) unbiased SST in Figure 4.2(a)

and (b) unbiased MSST in Figure 4.2(b).
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Figure 4.4: MSE of LFM estimated ridges using biased SST and unbiased MMST

IFEs for 20 dB and 10 dB SNR.

by the unbiased MSST with the LFM signal at 20 dB SNR; this is expected as the

unbiased MSST is designed to match LFM signals.

4.2.3 Signaling Scheme of Coexisting Scheme

We consider a realistic scenario of a coexisting multimodal system that includes

a radar and a communications system, both at 20 dB SNR. The radar transmit

waveform has nonlinear IF, given by νx(t) = 3 c t2, and it is the signal of interest that

needs to be extracted at the receiver. The communications system is designed to use

LFM transmit signals; at the radar receiver, the LFM signals act as interference to

the radar signal of interest. The signaling scheme is shown by the biased SST and

unbiased MSST in Figures 4.8(a) and 4.8(b), respectively. Figures 4.9(a) and 4.9(b)

show the ridges extracted using the biased SST and unbiased MSST. As it can be
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Figure 4.5: TFRs for power FM in 20 dB SNR: (a) SST using biased IFE in (2.4);

(b) MSST using unbiased IFE in (3.6).
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Figure 4.6: Power FM signal ridges extracted from the (a) biased SST in Figure 4.5(a)

and (b) unbiased MSST in Figure 4.5(b).
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Figure 4.7: (a) MSE of power FM estimated ridges for 20 dB and 10 dB SNR using

biased SST IFE and unbiased MMST IFE; (b) MSE of LFM and power FM estimated

ridges for 20 dB and 10 dB SNR using unbiased MMST IFE.

37



seen, the MSST provides a better IF estimate; this estimate is then used to extract

only the radar waveform, as shown in Figure 4.10.
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Figure 4.8: TFRs for the linear and power FM signals at 20 dB SNR in the multimodal

system: (a) SST and (b) MSST.
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Figure 4.9: LFM and power FM signal ridges extracted from the (a) biased SST and

(b) unbiased MSST.
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Figure 4.10: Extracted nonlinear IF of the signal matched to the radar receiver.

41



Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis demonstrates the use of highly localized time-frequency (TF) repre-

sentation to resolve components in a coexisting multimodal wireless system. We show

that the synchrosqueezing transform (SST) produces a highly localized TF represen-

tation but was a biased instantaneous frequency estimate (IFE) for high frequency

modulation (FM) waveforms. This resulted in inaccurate instantaneous frequency

(IF) estimation by the ridge extraction algorithm. The unbiased IFE matched to

a linear frequency modulation (LFM) waveform was explored and applied to obtain

accurate IF estimates. For a LFM wavefrom, we compare the performance of the

modified SST (MSST) which uses the unbiased IFE matched to LFM with the biased

SST for varying signal-to-noise ratios (SNR). The unbiased IFE matched to LFM

performs exceedingly well when compared to biased IFE. The unbiased IFE mathced

to a LFM is used to then compute MSST of a nonlinear frequency modulation (NFM)

waveform like a power FM. For high SNR conditions, the unbiased IFE matched to

LFM did perform better than the biased IFE. However, the unbiased IFE matched

to LFM is a biased IFE for a NFM waveform model.

We proposed a new technique based on warping of NFM waveform. We demon-

strate for a power FM waveform with unknown chirp rate, the signal can be warped

to a LFM waveform by time-axis warping. Now that we have a LFM waveform after

the warping operation, we can compute the MSST for the warped NFM waveform

using the unbiased IFEs that are matched to LFM waveform. After estimation of
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the IF using ridge extraction algorithm, the IF of the NFM can be computed using

the reverse warping operator. We derive the conditions on the phase function of the

NFM waveform for the above warping process to be possible.

5.2 Future Work

In this thesis we show the warping operation for a power FM, a future direction

for IF estimation includes extending it to different nonlinear FM like a hyperbola.

The MSST best matched to a LFM waveform can be used to increase the signal-

to-interference-and-noise ratio at the radar receiver, where the communication users

with LFM waveforms are observed as interference. In some signaling schemes, where

the IF of the radar waveform intersects the IF of the communication users waveforms,

and in order to estimate the IF of the radar waveform an adaptive technique can be

developed to use the TF separation algorithm explored in this thesis, to be applied

only in specific regions of the TF plane where only the radar waveform is present. To

better estimate IF, a forward or backward smoothing operation can be considered to

reduce the oscillatory behaviour of the TF representation at low frequency modulation

regions.
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