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ABSTRACT

Information forensics and security have come a long way in just a few years thanks to

the recent advances in biometric recognition. The main challenge remains a proper

design of a biometric modality that can be resilient to unconstrained conditions, such

as quality distortions. This work presents a solution to face and ear recognition under

unconstrained visual variations, with a main focus on recognition in the presence of

blur, occlusion and additive noise distortions.

First, the dissertation addresses the problem of scene variations in the presence of

blur, occlusion and additive noise distortions resulting from capture, processing and

transmission. Despite their excellent performance, deep methods are susceptible to

visual distortions, which significantly reduce their performance. Sparse representa-

tions, on the other hand, have shown huge potential capabilities in handling problems,

such as occlusion and corruption. In this work, an augmented SRC (ASRC) frame-

work is presented to improve the performance of the Spare Representation Classifier

(SRC) in the presence of blur, additive noise and block occlusion, while preserving its

robustness to scene dependent variations. Different feature types are considered in

the performance evaluation including image raw pixels, HoG and deep learning VGG-

Face. The proposed ASRC framework is shown to outperform the conventional SRC

in terms of recognition accuracy, in addition to other existing sparse-based methods

and blur invariant methods at medium to high levels of distortion, when particu-

larly used with discriminative features. In order to assess the quality of features

in improving both the sparsity of the representation and the classification accuracy,

a feature sparse coding and classification index (FSCCI) is proposed and used for

feature ranking and selection within both the SRC and ASRC frameworks.

The second part of the dissertation presents a method for unconstrained ear recog-

nition using deep learning features. The unconstrained ear recognition is performed
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using transfer learning with deep neural networks (DNNs) as a feature extractor fol-

lowed by a shallow classifier. Data augmentation is used to improve the recognition

performance by augmenting the training dataset with image transformations. The

recognition performance of the feature extraction models is compared with an ensem-

ble of fine-tuned networks. The results show that, in the case where long training

time is not desirable or a large amount of data is not available, the features from pre-

trained DNNs can be used with a shallow classifier to give a comparable recognition

accuracy to the fine-tuned networks.
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Chapter 1

INTRODUCTION

This chapter presents the motivations behind this work and briefly summarizes the

contributions and organization of the dissertation.

1.1 Motivation

Accurate biometrics play a critical role in personal authentication and in forensic

and security applications. A useful biometric modality has several desirable char-

acteristics: uniqueness, ease of data collection, and preservation of privacy, among

others. Uniqueness ensures that the biometric can be used to uniquely identify a

person. Ease of data collection enables the biometric to be used in large scale surveil-

lance applications. Privacy preservation is increasingly important as many subjects

may not want their personal identity easily accessible. While the ear biometric meets

all of the aforementioned desirable characteristics, the face biometric satisfies all of

these requirements except for the privacy preservation.

Despite of its impressive growth, face recognition is still receiving a lot of atten-

tion because of its high relevance to biometrics, information security, law enforcement

needs and surveillance systems, to name a few. One important challenge that limits

the effectiveness of face recognition technology is image quality [12]. In real-world

environments, the acquired face image quality varies due to lens resolution, focus,

distance, noise, illumination, storage, and transmission, to name a few. This may

greatly affect the performance of face recognition algorithms. While face recognition

has already achieved a very good performance over large-scale galleries that include

traditional scene dependent distortions, such as large pose variations, extreme ambi-
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ent illumination [13, 14, 15, 16, 17, 18, 19], and partial occlusions due to obstacles

and disguise [18, 19, 20, 21, 22], there still exist many more challenges related to

variations in image quality, such as additive noise, blur and block occlusion due to

packet loss. These types of distortions, which result from capture, processing, and

transmission, are commonly present in images and videos acquired by surveillance

cameras and increasingly by mobile handheld devices. In such scenarios, it is very

likely that the captured image contains a noisy or a blurred face. Moreover, while

transmitting compressed face images over lossy packet networks, it is possible that

one or more of the packets will not reach the destination. This type of data packet

loss during transmission can result in partial occluding blocks, thereby hiding major

facial features.

In face recognition, the Sparse Representation Classifier (SRC) method [23] has

proved that it could overcome the challenging scene dependent variations including il-

lumination changes, random pixel corruption, and small-size occlusion/disguise. The

SRC method assumes that a test image can be represented by a linear combination

of sample images from the same subject, which form the basis elements of an over-

complete dictionary, via l1-minimization. In both cases of localized random pixel

corruption and low-level occlusion, the error corrupts only a small fraction of the

image pixels and is therefore sparse, which can be handled uniformly within the SRC

framework, where the component of the test image arising due to occlusion/corruption

is naturally separated from the component arising from the identity of the test sub-

ject. The authors of [23] show that the choice of features to represent the samples is

not important in the SRC framework and, therefore, they simply use raw image pixels

as features. Although the SRC shows promising results for clean images and images

affected by sparse noise (random pixel corruption and small-size occlusion/disguise),

this work shows that under non-sparse image quality distortions that commonly occur
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under real-world conditions (e.g., blur, additive noise and relatively large-size occlu-

sions), the choice of features becomes important. Moreover, the SRC framework does

not address such distortions in its design and evaluation.

Although ear biometrics have been recently introduced to the forensics field, many

approaches have been developed with the aim to improve ear detection and recogni-

tion capabilities for reliable deployment in surveillance and commercial applications

[24, 25, 26, 27, 28, 29]. These approaches follow a traditional pipeline of normaliza-

tion, feature extraction and classification. In these works, the main challenge remains

a proper selection of feature descriptors that can be resilient to unconstrained con-

ditions, such as illumination changes, occlusion and quality distortions. More recent

works (e.g., [30, 31]) use deep neural networks (DNNs) to end-to-end learn a classi-

fier instead of designing a feature-classifier pipeline. This work explores the use of

transfer learning with deep neural networks as feature extractors in the more tradi-

tional feature-classifier pipeline approach and compares it to a complete end-to-end

system. It should be noted that features from pre-trained DNNs have been used

in combination with shallow classifiers for a variety of computer vision tasks [32].

This work shows that features from pre-trained networks achieve a strong baseline

for unconstrained ear recognition.

1.2 Contributions

The main contribution of this work is in proposing a solution to face recognition

under quality distortions, such as blur, additive noise and block occlusion. Since

the SRC performs well under traditional scene-dependent variations, the proposed

method consists of improving the SRC framework in the presence of such visual

quality distortions. No previous work has evaluated the impact of blur on the SRC

classifier. Furthermore, it is known that the SRC is not resilient to large distortion
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impairments such as contiguous occlusion or random pixel corruption, as these violate

the sparse representation assumption that usually holds for modest levels of occlu-

sion/corruption [23]. This work explores the effect of Gaussian blur, realistic blur

resulting from camera shake, additive white noise and block occlusion on the SRC

and proposes an improved Augmented SRC-based framework (ASRC) that is more

robust to blur and noise for any selected feature by accounting for the blur distortion

as part of the dictionary construction. Furthermore, the proposed ASRC framework

is extended to target block occlusion due to packet loss by replacing blur distortion

with block occlusion as part of the dictionary design. A novel Feature Sparse Coding

and Classification Index (FSCCI) is proposed to assess both the sparse coding as well

as the classification performance of the considered features. This work also proposes

a feature selection method based on the FSCCI to better harness the discriminative

ability of features when used within the SRC and ASRC frameworks. Rigorous ex-

perimentation is conducted on three face recognition benchmarks, namely the ORL

[33], Extended Yale B [2], and Labeled Faces in the Wild (LFW) [3] after adding

blur, white noise and block occlusion separately to the images at different distortion

levels. The obtained results show that the proposed ASRC performs better than SRC

at medium to high blur, noise and occlusion levels and that it performs better than

other state-of-the-art sparse representation based classification methods [20, 18, 22]

and blur invariant methods [34, 35, 36]. The robustness of the proposed ASRC to

unseen distortions is also demonstrated by testing its performance in the presence of

realistic blur resulting from camera shake.

This work also presents a transfer learning based unconstrained ear recognition

method that utilizes existing DNNs pre-trained on the large ImageNet dataset [37]

and adapt them for unconstrained ear recognition. The pre-trained feature represen-

tations provide a starting point for creating robust classifiers for unconstrained ear
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recognition, where they are used to train a shallow classifier. DNN features from five

different deep DNN architectures are explored as part of this work: AlexNet [38],

VGG16 [39], VGG19 [39], ResNet18 [40], and ResNet50 [40]. The best performance

is achieved with the ResNet18 models, which provide consistent performance across

the tested datasets.

1.3 Organization

The dissertation is organized as follows. Chapter 2 presents the background in

unconstrained face/ear recognition, with a focus on deep learning and sparse-based

methods. Chapter 3 introduces a novel Augmented SRC (ASRC) framework for

unconstrained face recognition in the presence of blur, occlusion and additive noise

distortions. Chapter 4 introduces an unconstrained ear recognition based on deep

features extraction. Chapter 5 concludes the dissertation and discusses future work

directions.
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Chapter 2

BACKGROUND AND RELATED WORK

For years, biometrics played a significant role in forensic science and information

security. An increasing number of biometric-based identification systems are being

deployed for commercial and safety-oriented applications. Understanding the per-

formance of biometric systems in different real-world environments is key to their

application.

A biometric recognition system can be divided into three main stages, namely

biometric detection, feature extraction and biometric recognition (Figure 2.1). A

biometric recognition system typically starts with detecting the biometric attribute in

an image. This step becomes difficult if variations in illumination, position, occlusion

and disguise are present. The step of feature extraction is critical for the recognition

of the subject’s identity, as it consists of computing a robust feature representation

for the considered biometric, which can be used to reliably determine the uniqueness

of the identity by discriminating between biometrics belonging to different subjects.

Finally, the biometric recognition is generally part of either a matching system or an

identification system. Matching consists of comparing a biometric with another to

approve or reject the matching of identities, while identification compares a biometric

with several other given biometrics to find the exact identity among the different

subjects.

In this chapter, an overview of the main research methods and issues underlying

biometric-based identification systems is given with a focus on ear and face recogni-

tion.
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Figure 2.1: Biometric recognition scheme. The process applies to various types of
biometric attribute including fingerprint, iris, face and ear.

2.1 Biometric Detection Challenges

A recognition system requires the existence of a detection sub-system. The premise

is very simple: subjects cannot be recognized if they cannot first be detected. To-

day, state-of-the-art recognition/detection systems operate relatively robustly in in-

door environments with controlled lighting conditions while in outdoor environments,

the performance of these systems degrades substantially, mainly due to uncontrolled

lighting effects. Current detection and recognition technologies present a challenging

problem in the field of image analysis and computer vision in real-world scenarios,

and as such a remarkably wide variety of methods have been developed to overcome

these challenges. In addition to lighting conditions, there are many equally important

factors that cause the appearance of a subject to vary. Examples of such sources of

variation follow below:

Age Change: This variation is solely related to face recognition. The shape

and texture of the human being face vary with age. Between childhood and teenage,

the shape of the skull in addition to the skin texture largely vary resulting in face

recognition problems.

Facial Expression: Facial expressions, such as smile, anger, closed eyes/mouth

modify the face geometry and texture. Thus, it becomes harder to recognize the

identity of the subject.

Lighting Variations: Illumination can be considered a complex problem in both

indoor and outdoor recognition. It is well known that lighting changes can cause
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Figure 2.2: The extended Yale B dataset images are affected by extreme illumination
variations [2]. The same person seen under different lighting conditions can appear
extremely different. In the left image, the light source is from above and to the left;
in the right image, the light source is all over the face.

more significant variations of the biometric than those resulting from different subject

identities (Fig. 2.2).

Pose Change: Pose variation is mainly due to a rotation out of the plane. The

differences in images caused by the change of poses are sometimes larger than the

inter-subject images differences. In applications, such as passport control, the images

are required to have near frontal poses for the face/ear. However, in uncontrolled

environments, like non-intrusive monitoring, faces/ears can be captured in different

pose positions, causing a rotation out of the plane.

Presence of Occlusions/Disguise: The use of accessories (sunglasses, scarves,

hats, etc.), which partially obstruct the face/ear area, are main factors of occlusion

resulting in a loss of information. Moreover, while transmitting compressed face/ear

images over lossy packet networks, it is possible that one or more of the packets will

not reach the destination. This type of data packet loss during transmission results

in partial occluding blocks covering the face/ear.

Blur: Out-of-focus, atmospheric turbulence and relative motion between the sen-
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sor and the captured objects represent frequent factors of blur distortion. The blur-

ring process is determined by a point spread function (PSF). A Gaussian distribution

function is a special case where the PSF is written as:

hσ(u, v) =
1

2πσ2
e−
u2 + v2

2πσ2

and where (u, v) denotes the pixel location at which the blur PSF is defined. The

Gaussian blur PSF accounts for blur due to mainly out-of-focus. For simplicity, the

lexicographically ordered hσ(u, v) will be referred to as hσ, where the blur level is

controlled by the variance σ2. yb represents the blurred version of y after convolving

the blur kernel hσ with y:

yb = y ∗ hσ (2.1)

Noise: Gaussian noise is a common noise type, which is primarily caused by

the presence of thermal noise. The latter is inherent in the sensor and arises during

capture due to sensor’s own temperature in addition to circuitry heating. In many

scenarios, a clean image y can be corrupted by additive noise w, where w is a collec-

tion of independent identically distributed real-valued random variables following a

Gaussian distribution with mean m = 0 and variance σ2 as:

yn = y + w (2.2)

where yn is the noisy test sample.

The Viola Jones detector [41] is a widely used real-time face detector. It has been

applied to detect the faces of the Labeled Faces in the Wild (LFW) dataset [3]. The

LFW dataset is one of the first benchmark face recognition databases to include a

wide variety of real-world facial variations. Some of these variations are displayed in

Fig. 2.3.
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Figure 2.3: Sample images from the unconstrained LFW dataset [3]. Variations in
the images include ethnicity, gender, facial expression, pose, occlusion, disguise and
lighting.

2.2 Feature Extraction

In the literature, the choice of feature extraction is essential to properly separate

object classes in a more discriminative space, also known as feature space. A central

issue has been the question of which features are the most important or informative

for recognition. The previously-mentioned limitations motivated researchers to deploy

feature-based methods that are less sensitive to image variations. These methods are

described next and their main advantages and inconveniences are mentioned.

2.2.1 Global Methods

In these approaches, the holistic biometric object is viewed as a vector in the high

dimensional image space. This vector is also known as a raw image. Global methods

try to find a set of projecting vectors best discriminating different classes. This can be

achieved by maximizing the between-class scatter matrix and minimizing the within-

class scatter matrix in the projective feature space. These global methods, also known

as subspace learning methods, have been widely used with simple classifiers, such

as Nearest Neighbor (NN), Nearest Space (NS) and linear Support Vector Machines

(SVM). Although these approaches are easy to implement, they are sensitive to image
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variations, as any change in the face image results in a change of pixel values.

2.2.1.1 Linear Subspaces

Eigenfaces [4] and Fisherfaces [5] are some examples of popular linear subspace basis

vectors that have been widely applied for face recognition under varying illumination

and facial expressions changes. The high dimensional data space is projected to a

low dimensional feature space using linear projection methods, such as the Princi-

pal Component Analysis (PCA) [4] and the Linear Discriminant Analysis (LDA) [5]

(Figure 2.4).

Eigenfaces are eigenvectors corresponding to the largest eigenvalues of the covari-

ance matrix computed from the probability distribution over the high-dimensional

face space. They form a basis set of all images, such that the original training im-

ages are described by a linear combination of the Eigenfaces basis set, producing a

dimension reduction that maximizes the total scatter across all classes. If the linear

transformation mapping from the original n-dimensional image space xk ε Rn into

the reduced m-dimensional feature space is considered, where m < n, then the new

feature vectors yk ε Rm are defined by the linear transformation as follows:

yk = W Txk, k = 1, 2, ..., N (2.3)

where N is the number of sample images and W T ε Rm×n is the linear transformation.

If µ is the mean of the input image vectors and if the total scatter matrix is defined

by:

ST =
N∑
k=1

(xk − µ)(xk − µ)T (2.4)

the optimal projection Wopt is chosen to maximize the determinant of the total

scatter matrix of the projected samples such as: Wopt = arg maxW |W TSTW | =
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[w1 w2 ... wm], where {wi|i = 1, 2, ...,m} is the set of n-dimensional eigenvectors of

ST corresponding to the m largest eigenvalues.

While Eigenfaces provide a good representation for the training images, Fisher-

faces perform a better classification by improving the scatter to make it more reliable.

This method selects W in such a way that the ratio of the between-class scatter and

the within class scatter is maximized. The between-class scatter matrix is defined as:

SB =
c∑
i=1

Ni(µi − µ)(µi − µ)T (2.5)

and the within-class scatter matrix is defined as:

SW =
c∑
i=1

∑
xkεXi

(xk − µi)(xk − µi)T (2.6)

where µi is the mean image of class Xi and Ni is the number of samples in class

Xi. Wopt is chosen as the matrix which maximizes the ratio of the determinant of

the between-class scatter matrix of the projected samples to the determinant of the

within-class scatter matrix of the projected samples:

Wopt = arg maxW
|WTSBW |
|WTSWW |

= [w1 w2 ... wm]

(2.7)

where {wi|i = 1, 2, ...,m} is the set of n-dimensional eigenvectors of SB and SW

corresponding to the m largest eigenvalues λi: SBwi = λiSWwi, i = 1, 2, ...,m.

2.2.1.2 Non-Linear Subspaces

The linearity of the previous subspace methods limits their robustness when applied

on complex data, as they are unable to capture non-linear structures. Several non-

linear techniques based on the kernel trick have been proposed in the literature, such

as K-PCA [42] and K-LDA [43].
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Figure 2.4: Example of subspace learning methods used on the Yale face images.
First row corresponds to Eigenfaces [4] and last row corresponds to Fisherfaces [5].

If {xi|i = 1, 2, ..., n} is a set of n input data samples where xi ε X and X is the

input space, a given nonlinear function φ maps the input data xi to a feature space

F with usually very high dimensionality. Let φ denote the map from X to F , then:

K(xi,xj) = 〈φ(xi), φ(xj)〉, 1 < i, j < n (2.8)

where 〈, 〉 is an inner product in the space F . A kernel based algorithm allows to

apply linear methods in the high dimensional space F for the mapped data φ(xi). In

other words, the linear algorithms can be recovered by simply using the linear kernel

in the kernel based methods.

In the Kernel Principal Component Analysis (K-PCA) algorithm [42], for example,

the input data is projected onto the high-dimensional space F by using the nonlin-

ear function φ. Then, the standard PCA is performed on the projected space after

applying φ. The covariance matrix SφT and the test sample y in the projected space

F are computed via the kernel function:

SφT =
N∑
i=1

(φ(xi)− µφ)(φ(xi)− µφ)T (2.9)

y = P Tφ(x) (2.10)

where µφ is the mean of the transformed input samples φ(xi), i = 1, 2, ..., N , and P T

is the set of the eigenvectors of SφT corresponding to the m largest eigenvalues.
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2.2.1.3 Moment Invariants

Moment invariants were introduced by Hu [44] who derived his seven famous invari-

ants to rotation of 2-D vectors. Since then, numerous works have been deployed

to improve Hu’s invariants and to apply them in many image analysis applications

[45, 46, 47, 48, 49].

Moments are essentially known to be of two main types, geometric and complex.

A geometric moment mpq of an image f(x, y) and of order p + q, where p and q are

non-negative integers, is defined as:

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy (2.11)

The corresponding central moment µpq and the normalized moment νpq are defined

as:

µpq =

∫ ∞
−∞

∫ ∞
−∞

(x− xc)p(y − yc)qf(x, y)dxdy (2.12)

νpq =
µpq
µω00

(2.13)

where the coordinates (xc, yc) correspond to the centroid of f(x, y) and ω = (p+ q +

2)/2. The complex moment cpq of the image f(x, y) in its turn is defined as:

cpq =

∫ ∞
−∞

∫ ∞
−∞

(x+ iy)p(x− iy)qf(x, y)dxdy (2.14)

where i denotes the imaginary unit. The corresponding central and normalized mo-

ments are defined as in (2.12) and (2.13). Hu [44] published seven rotation invariants

consisting of second and third order moments, where the first four moments invariants
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Figure 2.5: Example of eyes width measurement [6]. The measurement between the
rough eyes positions (circles) allow to compute the size and location of the window
that will locate the accurate central points of the eyes (crosses).

are:

φ1 = µ20 + µ02

φ2 = (µ20 − µ02)
2 + 4µ2

11

φ3 = (µ30 − µ12)
2 + 3(µ21 − µ03)

2

φ4 = (µ30 + µ12)
2 + (µ21 + µ03)

2

(2.15)

Other moment invariants have been proposed, such as invariants to affine transform

[50, 51] and convolution [45, 47, 48, 49, 34].

2.2.2 Local Methods

These methods are known as local approaches because they extract local features

at specific regions instead of considering the holistic biometric attribute. This type

of features, also known as hand-crafted features, can be classified into two main

categories as described next.

2.2.2.1 Interest Point Features

These methods rely on locating interest points or keypoints in each image, and cal-

culating a feature description from the pixel region surrounding the interest point.

Keypoints may include corners, edges or contours, and larger features or regions

such as blobs. Some of these methods use directly the face/ear characteristic points

[52, 28, 7], while the other methods develop more elaborated representations of infor-

mation carried by the biometric characteristic points, rather than just the geometric
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Figure 2.6: The Iannarelli ear system [7]. (a) Anatomy, (b) Measurements.

characteristics [53, 54, 55, 56, 57, 58, 59]. For face recognition, geometric features,

such as the width of the head, the distance between the eyes (Figure 2.5), etc., are

extracted [6, 60, 61]. For ear recognition, the Iannarelli System of Ear Identification

[7] is an example where geometric-based measurements around the ear are computed

for a unique ear characterization (Fig. 2.6). Interest point features can be effectively

used for recognition where only one reference image is available. However, their per-

formance depends on many effective detectors for locating facial feature points. In

practice, detecting an accurate characteristic point is not easy, especially in cases

where the shape or appearance of a facial image can vary widely [62].

2.2.2.2 Feature Descriptors

The image is divided into small regions (or patches) where local characteristics are

computed and extracted. Alternatively, patches are taken around detected interest

points. The vectors that are generated to describe these characteristics or features

are called descriptors. The commonly-used feature descriptors are: Gabor coefficients

[52], Haar wavelets [41], Fourier transforms, scale-invariant feature transform (SIFT)
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Figure 2.7: The LBP feature descriptor: (a) the basic LBP operator applied to one
pixel in the ear image; (b) the resulting LBP concatenated feature histogram.

[63], local binary pattern (LBP) [64], histogram of oriented gradients (HOG) [65],

local phase quantization (LPQ) [66] and binarized statistical image features (BSIF)

[67].

Some of these descriptors represent features as binary bit vectors [64, 68, 67]. To

compute the features, pairs of image pixels are compared and the results are stored as

binary values in a vector. The LBP [64], for instance, creates a descriptor or texture

model using a set of histograms of the local texture neighborhood surrounding each

pixel. In this case, local texture is the feature descriptor, which makes the LBP a

computationally simple texture metric. The basic LBP operator thresholds the 3× 3
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neighborhood of each pixel with the center value and represents the result as a binary

code. The histogram of these binary values is then derived to compute the LBP

feature descriptor. A uniform LBP, which contains at most two bitwise transitions,

accounts for most of the patterns in object recognition. The 58 different uniform

patterns are assigned to different bins when generating the histogram, while all the

non-uniform patterns are assigned to one bin. Therefore, the dimension of the LBP

descriptor is 59. Usually, the image is subdivided into blocks or local regions where

the LBP histograms are computed and then concatenated into one representative

feature descriptor. Fig. 2.7 illustrates the LBP computation for an ear recognition

application. Local binary pattern methods achieve very good accuracy and robustness

compared to other methods.

The other descriptors, also called spectral descriptors, involve more intense com-

putations and algorithms, as they measure light intensity, color, local area gradients,

local area statistical features and moments, surface normals, and histograms of local

gradient direction. A spatial-frequency analysis is often desirable to extract local

features that are robust against image variations and distortions.

Among various wavelet bases, Gabor wavelets are popular for measuring local spa-

tial frequencies. A family of Gabor wavelets of different orientations and frequencies

are applied to the image. The magnitudes of the Gabor wavelet coefficients at each

location in the image are used for feature representation.

The SIFT [63], which is the most well-known method for finding interest points

and feature descriptors, provides invariance to scale, rotation, illumination, affine

distortion, perspective and similarity transforms, and noise.

The HoG method [65] is commonly used for image classification, and relies on

computing local region gradients over a dense grid of overlapping blocks. Fig. 2.8

illustrates the different steps of computing the HoG descriptor for an ear recognition
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Figure 2.8: The HoG feature descriptor. (a) The ear image. (b) The subdivided
ear image into blocks. (c) The gradient orientations. (d) The histogram of gradient
orientations at every block. (e) The concatenation of histograms.

application. HoG descriptors can be found in two main variants, the Dalal et al.

[65] original variant and the slightly improved Felzenszwalb et al. [69] UIUC variant.

The detection window includes overlapping blocks of size 16 × 16 with a stride of

8× 8 pixels. Each block is composed of 2× 2 cells where the cell size is 8× 8 pixels.

The original variant of HoG computes a 36-dimensional feature vector that accounts

for a linear gradient voting into 9 undirected orientation bins. On the other hand,

the adopted UIUC variant of HoG computes the directed gradients as well as a four

dimensional texture-energy feature for each cell. The histogram of orientations, which

includes 9 bins for the undirected orientations, and the four-dimensional texture-

energy are augmented with both contrast sensitive and contrast insensitive features,

leading to a 31-dimensional feature vector. Gradient magnitude histogram values

are normalized to unit length to provide illumination invariance. This variant [69]

accounts more than the original one [65] for rotations and translations by considering

directed orientations. It also includes the texture-energy feature, which improves the

performance in capturing local information in the images.

The LPQ descriptor [66] was designed to be robust to image blur, and it leverages
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the blur insensitive property of Fourier phase information. LPQ is reported to provide

robustness for uniform blur, as well as uniform illumination changes. It also provides

equal or slightly better accuracy on non-blurred images than LBP and Gabor filter

bank methods. While mainly used for texture description, LPQ can also be used

for local feature description to add blur invariance by combining LPQ with another

descriptor method such as SIFT.

Haar features became popular in the field of computer vision by the Viola Jones

[41] algorithm. They are based on specific sets of rectangle patterns, which approxi-

mate the basic Haar wavelets by averaging the pixel values within the rectangle. This

is efficiently computed using integral images. However, Haar features have drawbacks,

since rectangles by nature are not rotation invariant for angles beyond 15 degrees.

Also, the integration of pixel values within the rectangle destroys fine detail.

Feature descriptors have proven to work well for recognition applications in con-

strained environments.

2.2.3 Deep Learning Methods

More recently, deep learning methods, specifically convolutional neural networks

(CNN), also known as deep neural networks (DNNs), have achieved high recognition

accuracies in the field of computer vision. The architecture of these DNNs is described

next and their different advantages and drawbacks are indicated.

AlexNet [38] was the first deep neural network to achieve success on the large scale

ImageNet dataset [37]. The model architecture, which has 60 million parameters and

500,000 neurons, consists of five convolutional layers and three fully connected layers

with a final 1000-way softmax.

The VGG networks [39] extend the AlexNet framework by adding more layers

between the pooling stages. Compared with AlexNet, a single convolutional layer
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between pooling stages is replaced with multiple stacked convolutional layers, which

are followed by three fully connected layers. The final layer is the softmax layer. The

VGG style networks, which include 133 million to 144 million parameters, use small

3 × 3 size filters to reduce the number of parameters and consequently reduce over-

fitting. There are many variants of VGG numbers of layers, with the most popular

variants being the 16 layer VGG16 model and the 19 layer VGG19 model.

As the networks become deeper, the gradients can vanish (or explode). ResNet

[40] networks use ”skip” connections between convolutional blocks in order to create

much deeper neural networks while ensuring that there is no vanishing (or explod-

ing) gradient problem. The layers are formulated as learning residual functions with

respect to the layer inputs, instead of learning more simple feed-forward functions.

Despite of their large depth, ResNets have much less number of parameters varying

between 11.7 million (18 layers) and 60.2 million (152 layers).

Deep neural networks evolved to meet the requirements of unconstrained face

recognition. The literature proposed several high performing face deep networks

that were almost able to approach humans on challenging face benchmarks such as

LFW [3].

DeepFace uses a deep CNN trained to classify faces using a dataset of 4 million

images corresponding to 4000 different identities. It also uses a siamese network ar-

chitecture, where the same CNN is applied to pairs of faces to obtain descriptors that

are then compared using the Euclidean distance. The goal of training is to minimise

the distance between pairs of faces portraying the same identity and maximise the

distance between pairs that belong to different identities. In addition to using a very

large amount of training data, DeepFace uses an ensemble of CNNs, as well as a

pre-processing phase in which face images are frontalized using a 3D model.

DeepID is referred to as Deep hidden IDentity (DeepID). Unlike DeepFace whose
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Figure 2.9: Details of the VGG-Face deep neural network architecture A as described
in [8].

features are learned by one single big CNN, DeepID is learned by training an ensemble

of small CNNs, used for network fusion. The patches of facial images are input to

every single CNN and the features learned by all CNNs are concatenated to form one

powerful feature descriptor. Both RGB and greyscale patches, which are extracted

around facial points, are used to train the DeepID. The length of the DeepID feature

is 2 (RGB and Greyscale) × 60 (patches) × 160 (feature length of one network) =

19,200. Each network consists of 4 convolutional layers, 3 max pooling layers and 2

fully connected layers.

The VGG-Face CNN architecture A, as described in Parkhi et al. [8], is shown in

full detail in Figure 2.9. It is based on the VGG-Very-Deep-16 CNN architecture. It

comprises 11 blocks, each containing a linear operator followed by one or more non-

linearities such as ReLU and maxpooling. The first eight blocks are convolutional, as

the linear operator is a bank of linear convolution filters. The last three blocks are

Fully Connected (FC) in the sense that they are also convolutional, but the size of

the filters matches the size of the input data, such that each filter reads data from

the entire image. The first two FC layers output are 4,096 dimensional and the last

FC layer has either N = 2,622 or N = 1,024 dimensions, depending upon the loss

functions used for optimisation, either N-way class prediction.

The FaceNet architecture, as described in Figure 2.10, is designed by Google

22



Figure 2.10: Outline of the FaceNet deep neural network architecture as described in
[9]. This network consists of a batch input, a deep CNN followed by l2 normalization,
and finally a triplet loss during training.

researchers and consists of convolutional layers that are inspired from GoogLeNet

inception models. The FaceNet returns a 128 dimensional vector embedding for each

face. Having been trained with triplet loss to reinforce the similarity of images be-

longing to the same identity and the difference of images corresponding to different

subjects, the 128 dimensional embedding can effectively cluster faces. Hence, the

embedding vectors would be closer for similar faces and more distant for dissimilar

faces. The FaceNet architecture is trained over a dataset with a very large number

of labeled faces belonging to numerous subjects and including different variational

conditions, such as pose and illumination.

SphereFace [70] is the latest state-of-the-art in deep face recognition. The authors

in [70] propose the angular softmax (A-Softmax) loss that enables convolutional neu-

ral networks (CNNs) to learn angularly discriminative features. Geometrically, A-

Softmax loss can be viewed as imposing discriminative constraints on a hypersphere

manifold, which intrinsically matches the prior that faces also lie on a manifold. More-

over, the size of the angular margin can be quantitatively adjusted by a parameter

m.

In their original work, ’deep’ methods have only been evaluated on clean images

that do not include any visual quality distortions, such as blur, noise, compression

and contrast. Despite of their excellent performance on sharp undistorted images,

deep learning methods do not perform well in the presence of visual distortions.

Dodge and Karam [71] provide an evaluation of state-of-the-art DNN models for
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image classification under quality distortions where they show that the performance of

these DNNs is significantly reduced in the presence of blur, noise, contrast, JPEG, and

JPEG2000 compression. Grm et al. show equally in their work [72] that high levels of

noise, blur, missing pixels, and brightness have a detrimental effect on the verification

performance of deep models, such as AlexNet [38], VGG-Face [8], GoogleNet [73] and

SqueezeNet [74].

2.3 Recognition Methods

Recognition can be viewed as classifying the probe images into identifiable classes

via the extraction of significant features of the biometric attributes.

Normally, the recognition process makes use of one of the following two classifica-

tion strategies: i. Supervised classification in which the probe image is identified as

a member of a predefined class. ii. Unsupervised classification (clustering) in which

the image is assigned to an unknown class.

The well-known approaches that are widely used to solve pattern recognition prob-

lems including clustering technique (k-means algorithm), statistical pattern classifiers

(k-nearest neighbour classifier and Bayesian classifier) and ensemble learning classi-

fiers (bagging, boosting and stacking) are equally used for recognizing face/ear pat-

terns. There will be a focus in this section on two supervised classifiers that are of

high use in this work (Chapter 3 and Chapter 4), the support vector machines (SVM)

and the sparse representation classifier (SRC).

2.3.1 Support Vector Machines

Support vector machines (SVMs) [75] are powerful tools of classification in the

machine learning community. Initially, SVMs are linear classifiers that are designed

to support binary classification problems. Later, the one-against-one technique is
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Figure 2.11: SVM binary classification around the optimal hyperplane where the
margin is maximal.

used for mutli-class classification. It fits all binary subclassiers and finds the correct

class by a voting mechanism. The binary classification approach will be described

next.

Suppose that a linearly separable set of training samples {S = (x1, y1), ..., (xn, yn)}

exists, where x ε Rd×n denotes the input space that includes input sample vectors of

dimension d each, and y = {−1,+1} is the output space indicating the class of binary

classification. The linear SVM computes an optimal linear hyperplane that separates

between the two classes by maximizing the margin between the classes closest points

(Fig. 2.11). The points lying on the boundaries are called support vectors while the

middle of the margin is the optimal separating hyperplane. The points x, which lie

on the hyperplane satisfy: wx + b = 0, where w defines a direction perpendicular to

the hyperplane, while varying the value of b moves the hyperplane parallel to itself.
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Usually, two parallel hyperplanes are selected to separate the two classes of data,

such that the distance between them is as large as possible. The region bounded by

the two hyperplanes is called the margin. The sample points that are located on the

wrong side of the separating hyperplane are weighted down to reduce their influence

on the classification. The hinge loss function is used for this purpose:

max(0, 1− yi(wxi + b)), 1 ≤ i ≤ n (2.16)

For the samples on the wrong side of the hyperplane, the function’s value is propor-

tional to the distance from the margin. Thus, the SVM classification is implemented

by minimizing the following equation:

1

n

n∑
i=1

max(0, 1− yi(wxi + b)) + λ||w||22 (2.17)

where λ determines the tradeoff between increasing the margin-size and ensuring

that the samples points lie on the correct side of the margin. If a linear separating

hyperplane cannot be found, sample points are projected into a high dimensional

space F where the sample points can become linearly separable:

φ : Rd → F φ : xi → φ(xi) (2.18)

φ is a non-linear mapping where the dot product 〈., .〉 is defined in F by: 〈φ(xi), φ(xj)〉

= K(xi, xj). K is a kernel function that represents the data in the reproducing kernel

Hilbert space where they can be linearly separable.

2.3.2 Sparse Representation Classifier (SRC)

The Sparse Representation Classifier (SRC) method [23] has proved that it could

overcome the challenging scene dependent variations including illumination changes,

random pixel corruption, small size face occlusion/disguise. The SRC method as-

sumes that a test image can be represented by a linear combination of sample images
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from the same subject, which form the basis elements of an overcomplete dictionary,

via l1-minimization. The authors of [23] show that the choice of features to represent

the samples is not important in the SRC framework and, therefore, they simply use

raw image pixels as features.

Consider a set of training samples corresponding to M object classes with mi

samples {Di
1,D

i
2, · · · , Di

mi
} ε Rd×mi in the ith object class, 1 ≤ i ≤M . The dictionary

D is formed by inserting the training samples Di
j of all M object classes as entries,

resulting in:

D = {D1
1, · · · , D1

m1
| · · · |DM

1 , · · · , DM
mM
} (2.19)

Given a sufficient number of training samples in the ith object class, a test sample

vector yt ε Rd×1 from the same class can be represented as a sparse linear combination

of the training samples in D as follows:

yt = D.α∗ (2.20)

where α∗ ε RK×1 is the sparse coefficient vector and K =
∑M

i=1mi is the number of

training samples in D. The sparse vector α∗ is computed by solving the following

constrained l1-norm minimization problem:

α∗ = arg minα ||yt −D.α||22 + λ||α||1 (2.21)

where ||.||1 and ||.||2 denote the l1-norm and l2-norm respectively, and 0 ≤ λ ≤ 1 is a

sparsity coefficient.

Once (2.21) is solved, the representation residual for the ith object class is com-

puted as follows:

ri = ||yt −D.δi(α∗)||22 (2.22)
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where δi(α
∗) ε RK×1 is a vector whose non-zero entries are the entries in α∗ that are

associated with the ith class.

The test sample yt will be assigned to the class i∗ corresponding to the minimum

representation residual:

i∗ = arg min
i

(ri), i = 1, ...,M (2.23)

The authors in [23] try to understand geometrically how the choice of the feature

affects the ability of the l1-minimization to recover the correct sparse solution α∗. If

Pγ denotes the l1-ball of radius γ:

Pγ = {α : ||α||1 ≤ γ} ⊂ RK (2.24)

The unit l1-ball P1 is mapped to the polytope P = D(P1) ⊂ Rd consisting of all y that

satisfy y = Dα for some α whose l1-norm is ≤ 1. Geometrically, finding the minimum

l1-norm solution α∗ is equivalent to expanding the l1-ball Pγ until the polytope D(Pγ)

first touches y. The value of γ at which this occurs is exactly ||α∗||1. If D maps all

t-dimensional facets of P1 to facets of P , the polytope P is referred to as t-neighborly

[76]. The neighborliness of the polytope P increases with the feature dimension d.

Although the most data-dependent features popular in face recognition might give

highly neighborly polytopes P , the authors in [23] reveal that if the solution α∗ is

sparse enough, it can be correctly recovered via l1-minimization from any sufficiently

large number d of linear measurements. If α∗ has t << K nonzeros, the minimum

required value of d is given as:

d ≥ 2t log(K/d) (2.25)

where K is the total number of training samples.

28



Chapter 3

AUGMENTED SPARSE CLASSIFIER (ASRC) FOR FACE RECOGNITION

UNDER QUALITY DISTORTIONS

In the last two decades, numerous methods have been developed to offer a for-

mulation to the face recognition problem under scene-dependent conditions, such as

illumination/pose variations, random pixel corruption and disguise. However, these

methods have not considered image quality degradations resulting from capture, pro-

cessing and transmission, such as blur, additive noise and occlusion due to packet

loss, under the same scene variations. Although deep neural networks are achiev-

ing state-of-the-art results on face recognition, the existing networks are susceptible

to quality distortions. In this work, the performance of a well-known face recogni-

tion framework, namely the sparse representation classifier (SRC), is explored in the

presence of blur, additive noise, and block occlusions, in both constrained and un-

constrained environments. The SRC has shown a good performance in the presence

of different interclass variations. While the SRC was shown to be a framework in-

dependent of the extracted features for sparse representation, this work shows that

feature extraction within SRC is important when quality distortions are present. To

this end, a Feature Sparse Coding and Classification Index (FSCCI) is presented in

this work, such that it is capable of assessing the quality of features in terms of recog-

nition accuracy while preserving the sparsity of the representation. In the evaluation

of the SRC framework, three main types of features are considered including image

raw pixels, HoG and deep learning VGG-Face. Next, an Augmented SRC (ASRC)

framework is proposed to improve the performance of the original SRC in the pres-

ence of Gaussian blur, while preserving its robustness to scene dependent variations.
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It is further proposed to apply the ASRC framework to recognize faces that have

been corrupted by block occlusion and additive noise, as the SRC has proved that it

could only overcome a limited level of face occlusion/corruption. Additionally, the

robustness of the model to unseen real-world distortions, such as camera shake blur,

is demonstrated. The obtained performance results show that the proposed method

outperforms state-of-the-art sparse-based methods, including SRC, and blur invariant

methods.

3.1 Introduction

Face recognition is still receiving a lot of attention because of its high relevance

to biometrics, information security, law enforcement needs and surveillance systems,

to name a few. One important challenge that limits the effectiveness of face recogni-

tion technology is image quality [12]. In real-world environments, the acquired face

image quality varies due to lens resolution, focus, distance, noise, illumination, stor-

age, and transmission, to name a few. This may greatly affect the performance of

face recognition algorithms. While face recognition has already achieved a very good

performance over large-scale galleries that include traditional scene-dependent distor-

tions, such as pose variations, extreme ambient illumination [13, 14, 15, 16, 17, 19],

and partial occlusions due to obstacles and disguise [23, 19, 18, 22, 21, 20], there

still exist many more challenges related to variations in image quality, such as blur,

additive noise, and block occlusions due to packet loss. These types of distortions,

which result from capture, processing, and transmission, are commonly present in

images and videos acquired by surveillance cameras and increasingly by mobile hand-

held devices or transmitted over IP and wireless networks. In such scenarios, it is

very likely that the captured/transmitted image contains a noisy or a blurred face.

Moreover, while transmitting compressed face images over lossy packet networks, it is
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Table 3.1: Main Factors in Capture and Transmission for Image Quality Degrada-
tion.

Noise Blur Block Occlusion

Thermal Out of focus Transmission errors/loss

Shot Motion (camera/subject) Low device performance

Quantization Shallow depth of field Software issues

High ISO/long exposure Turbulent medium (fog/rain) Faulty hardware

possible that one or more of the packets will not reach the destination. This type of

data packet loss during transmission results in partial occluding blocks, thereby hid-

ing major facial features. Other common reasons for occlusion are scene-dependent

obstacles and disguise accessories that cover one or more random regions in the face.

Table 3.1 lists some of the main factors for image quality degradation during capture

and transmission.

Sparse representations have shown huge potential capabilities in handling prob-

lems such as image denoising [77, 78, 79, 80, 81, 82, 83, 84]. The literature has shown

that the need for sparse representations may arise when noise exists in image data

since sparse representations extract the sparse image components, which are regarded

as useful information, and disregard the representation residual, which is considered

as the image noise term. Finally, the image can be reconstructed by employing

the obtained sparse components resulting in a noise-free image [78, 79, 80, 81]. In

face recognition, the Sparse Representation Classifier (SRC) method [23] has proved

that it could overcome challenging scene-dependent variations including illumina-

tion changes, random pixel corruption, and small-size occlusion/disguise. The SRC

method assumes that a test image can be represented by a linear combination of sam-

ple images from the same subject, which form the basis elements of an overcomplete

dictionary, via l1-minimization. In both cases of random pixel corruption and low-
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level occlusion, the error corrupts only a fraction of the image pixels and is therefore

sparse, which can be handled uniformly within the SRC framework, where the com-

ponent of the test image arising due to occlusion/corruption is naturally separated

from the component arising from the identity of the test subject. The authors of [23]

show that the choice of features to represent the samples is not important in the SRC

framework and, therefore, they simply use raw image pixels as features. Although

the SRC shows promising results for clean images and images affected by sparse noise

(random pixel corruption and small-size occlusion/disguise), it is argued and shown in

this work that under non-sparse image quality distortions that commonly occur under

real-world conditions (e.g., blur, additive noise and relatively large-size occlusions),

the choice of features becomes important.

Numerous sparse representation-based classification methods followed later with

the sole aim of improving the robustness of the SRC method to appearance variations,

such as the extended sparse representation classifier (ESRC) [22], robust sparse coding

(RSC) [18], and structurally incoherent low-rank matrix decomposition (LRSI) [20].

Although the above methods show promising results with images affected by sparse

noise, they have not considered acquisition and transmission distortions, such as blur

and non-sparse noise (additive noise and relatively large-size occlusions), as part of

their design. Furthermore, these methods require that the training images be well

aligned for reconstruction purposes. However, the alignment methods involve apriori

knowledge of facial landmarks, which become inaccurate when the face quality is

degraded with blur and non-sparse noise, as subtle features will become masked while

other misleading ones will be introduced.

Blur invariant methods have been proposed to reduce the sensitivity of images to

blur distortion. Several authors proposed different blur invariants that were mainly

based on image moments without the need of image restoration. Flusser et al. [47]
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and Flusser and Suk [45] proposed a system of blur invariants, which are recursive

functions of geometric moments of the image and proved their invariance under a

convolution with arbitrary centrosymmetric kernel. Flusser and Zitova [46] developed

further the concept of blur invariants by introducing combined invariants to convo-

lution and rotation that were successfully used in satellite image registration. Zhang

et al. [85] and Suk and Flusser [86] proposed combined invariants to convolution

and affine transform. These invariants were used in different non-face recognition

applications, such as aircraft silhouette recognition and sign language recognition.

Other researchers developed blur invariants that are based on orthogonal moments

instead of geometric moments. Legendre moments [48, 87, 88, 89], Zernike moments

[90, 91, 92], and Chebyshev moments [93] are some examples. Some other authors

proposed blur invariants in Fourier domain. Ojansivu and Heikilla [94, 95] and Tang

et al. [96] used blur-invariant properties of Fourier transform phase for image regis-

tration and matching. Later, Pedone et al. [97, 98] generalized the same idea. The

popular method of local phase quantization (LPQ) [66] also belongs to the same cat-

egory. Although the Gaussian kernel is a special case of symmetric kernels, these

blur invariant methods do not work well with Gaussian blur. Few attempts to derive

invariants to Gaussian blur have been reported. Xiao et al. [99] derived invariants to

Gaussian blur but did not use the Gaussian form explicitly. Instead, they used the

circular symmetry property. Gopalan et al. [100] derived blur invariants but did not

make any assumption on the parametric shape of the kernel. Zhang et al. [34] derived

a blur invariant distance that is specifically designed for Gaussian blur. Although the

blur invariants are not explicitly defined, the invariant distance measure was used for

object classification. Flusser et al. [35] developed new invariants to Gaussian blur for

face recognition based on the same concept of Zhang’s distance [34]. These invariants

are based on projection operators in the Fourier domain and on image moments in
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the image domain. The authors showed that the proposed invariants outperformed

the blur-invariant Zhang’s distance [49, 34] and the local phase quantization (LPQ)

blur-invariant features [66]. Nevertheless, the method in [35] is not a good design for

blurred face recognition as the authors have assumed the use of the same images for

training and testing with the latter being blurred. On the other hand, Vageeswaran

et al. [36] proposed a blur-robust algorithm (rDRBF) for unconstrained blurred face

images, which showed a significant improvement over the LPQ algorithm of [66] for

large levels of Gaussian blur. The method in [36] solves a convex l1-norm problem

to create artificially blurred versions of the gallery images where the blurred probe

image is matched to them. A major constraint of the latter method is that it applies

blur estimation for every gallery image, which is computationally complex.

More recently, deep learning methods, specifically convolutional neural networks

(CNN), also known as deep neural networks (DNNs), have achieved high accuracies in

face recognition, such as DeepFace [101], DeepID [102], VGG-Face [8], and FaceNet

[9]. Despite their excellent performance, ’deep’ methods are susceptible to visual

distortions. Dodge and Karam [71] provide an evaluation of state-of-the-art DNN

models for image classification under quality distortions where they show that the

performance of these DNNs is significantly reduced in the presence of blur and noise

distortions. Grm et al. show equally in their work [72] that high levels of noise and

blur have detremental effect on DNNs such as AlexNet [38], VGG-Face [8], GoogleNet

[73] and SqueezeNet [74]. Fernandez studies in [103] the performance of state-of-the-

art DNNs on objects that have been occluded by different block sizes. The author

shows that the performance of theses networks decreases sharply in the presence of

an increasing occlusion size.

The main contribution of this work is in proposing a solution to face recognition

under quality distortions, such as blur, non-sparse additive noise and relatively large-
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size block occlusions. Since the SRC performs well under traditional scene-dependent

variations, the proposed method consists of improving the SRC framework in the

presence of such visual quality distortions. No previous work has evaluated the im-

pact of blur on the SRC classifier. Furthermore, it is known that the SRC is not

resilient to large distortion impairments such as contiguous occlusion or non-sparse

random pixel corruption, as these violate the assumption that the considered images

have sparse representation with respect to the extended identity matrix dictionary

that usually handles well modest levels of occlusion/corruption [23]. Therefore, as

part of this work, the effect of blur, additive noise and occlusion on the SRC is ex-

plored and an improved Augmented SRC-based framework (ASRC) is proposed that

is more robust to blur and non-sparse noise/occlusion for any selected feature by

accounting for these distortions as part of the dictionary construction. Moreover, a

novel Feature Sparse Coding and Classification Index (FSCCI) is proposed to assess

both the sparse coding as well as the classification performance of the considered

features. This work also proposes a feature selection method based on the FSCCI

to better harness the discriminative ability of features when used within the SRC

and ASRC frameworks. Rigorous experimentation is conducted on three face recog-

nition benchmarks, namely the ORL [33], Extended Yale B [2], and Labeled Faces in

the Wild (LFW) [3] after adding Gaussian blur, camera shake blur, white noise and

block occlusions separately to the images at different distortion levels. The obtained

results show that the proposed ASRC performs better than state-of-the-art sparse

representation-based classification methods [20, 18, 22], including the standard SRC

[23], and blur invariant methods [34, 35, 36].

The rest of this chapter is organized as follows. Section 3.2 describes the SRC

classifier’s limitations in the presence of visual distortions. Section 3.3 presents the

proposed method in detail. The experimental setup and results are presented in
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Section 3.4. Finally, Section 3.5 concludes with some final remarks and discussions.

3.2 SRC Limitations

The SRC framework described in Section 2.3.2 shows that a test sample y can be

sufficiently represented using only the training samples from the same class as shown

in (2.20) if the representation is naturally sparse. The more sparse the recovered α∗

is, the easier will it be to accurately determine the identity of the test sample y. The

authors in [23] indicate that the choice of features is not critical enough to affect the

sparsity of the representation as long as the feature dimension surpasses a threshold

that is predicted by the theory of sparse representation. Thus, the SRC framework in

[23] was implemented using only raw pixels as features. However, under unconstrained

variations and large distortions, the raw pixels are not informative enough to recover

the sparse representation. In this work, it is shown that features that are more

resilient to scene-dependent variations, [65, 104, 8, 101, 38, 102, 105], help in keeping

the framework classes distinct, and can result in a significant performance gain under

quality distortions.

Wright et al. [23] considered in their work the effect of random pixel corruption

and occlusion by modifying the model described in (2.20) to explicitly account for

additive noise w:

y = D.α∗ + w (3.1)

where w ε Rd×1. A fraction ρ of w’s entries are non-zero corresponding to the cor-

rupted or occluded pixels in y. (3.1) can be rewritten as [23]:

y =

[
D I

]α∗
w

 = A.w0 (3.2)
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where A = [D I] and w0 = [α∗ w]T . w0 has at most ni + ρd non-zero entries, where

ni is the number of non-zero entries of α∗ for the ith class and ρd is the number

of non-zero entries of w. As stated in [23], we might recover w∗0 as the sparsest

solution for (3.2) by solving the l1-norm minimization problem (2.21) as long as the

fraction of occlusion is less than 33 percent of the image size d (i.e., ρ < 33%).

This implies that if the occlusion covers a large portion of the image (more than 33

percent coverage), the SRC framework cannot provide the sparsest solution for (3.2),

and thus, its performance decreases.

3.3 Augmented SRC (ASRC)

The different distortion types that are considered in this work are first described

and their effect on sparse representations is derived. A modification to SRC is then

proposed, namely ASRC, to further enhance the classification performance under

these types of distortion.

3.3.1 Effect of Distortions on Sparse Representations

Let y ε Rd×1 be a raw pixel test sample that can be sparsely represented in terms

of the training samples in D ε Rd×K as given in (2.20). If Di ε Rd×1 is the ith atom

entry vector of D and xi is the ith entry element of α∗ ε RK×1, (2.20) can then be

rewritten as:

y = x1D1 + x2D2 + ...+ xKDK (3.3)

Let F(.) be an operation representing the distortion applied to y and whose output

is ŷ, the distorted version of y, as follows:

ŷ = F(y) = F(x1D1 + x2D2 + ...+ xKDK) (3.4)
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If the operation F(.) is linear, ŷ can be expressed as:

ŷ = x1D̂1 + x2D̂2 + ...+ xKD̂K (3.5)

Let D̂ ∈ Rd×K be the dictionary whose atoms vectors are D̂i = F(Di), 1 ≤ i ≤ K.

From (3.3) and (3.5), it follows that if y is sparsely represented in terms of the

elements in D, the distorted version ŷ = F(y) will be sparsely represented in terms of

the elements in D̂. Furthermore, y and ŷ will have the same sparse coefficient vector

α∗.

To illustrate the distortions that can be described by a linear operation, the cases

of blur and block occlusion are considered. The case of non-sparse additive noise is

also described in addition of how this case can be handled.

3.3.1.1 Effect of Blur

The blurring process can be represented using a point spread function (PSF) where

a special case is a Gaussian distribution function, which is written as:

h(u, v) =
1

2πσ2
e−
u2 + v2

2πσ2
(3.6)

where σ is the standard deviation and (u, v) denotes the pixel location at which

the blur PSF is defined. The Gaussian blur PSF accounts for blur due to mainly

atmospheric turbulence, such as fog or rain. For convenience, it will be referred to

the lexicographically ordered h(u, v) as h, where the blur level is controlled by the

variance σ2, and to ∗ as a 2D convolution followed by a lexicographic ordering. The

blur distortion can thus be represented using the linear operation F(y) = y ∗ h.

Consequently, using (3.5), the blurred image ŷ can be expressed as:

ŷ = x1(D1 ∗ h) + x2(D2 ∗ h) + ...+ xK(DK ∗ h) (3.7)
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The SRC framework described in Section 2.3.2 shows that a test sample y can be

sufficiently represented using only the training samples from the same class as in

(2.20) if the representation is naturally sparse. The more sparse the recovered α∗ is,

the easier will it be to accurately determine the identity of the test sample y. Under

the condition that the considered blur level preserves sufficient separation between the

M classes to keep these distinct, (3.7) indicates that if the clean image y is sparsely

represented in terms of the clean training samples in the dictionary D, then blurring

the atoms in D at the same blur level σ as the blurred test sample ŷ will maintain

the sparsity of the representation.

3.3.1.2 Effect of Block Occlusions

In many practical face recognition scenarios, the test image y could be partially oc-

cluded by one or several blocks due to the loss of data packets during the transmission

of compressed images over lossy packet networks. Face recognition is particularly af-

fected if the blocks are obstructing major facial features. In [23], the SRC framework

is designed to uniformly handle small-size sparse occlusions by considering such occlu-

sions with an additive operation as in (3.1). In this work, to investigate the resilience

of the SRC framework to less sparse occlusions (covering more than 33 percent of the

image size), these are represented as a linear pointwise vector multiplication opera-

tion. Let y ε Rd×1 be a raw-pixel test sample that can be sparsely represented in terms

of the training samples in D ε Rd×K as given in (3.3). A single block occlusion of size

k is modeled by considering an occlusion kernel b(u, v), where b(u, v) = c(u, v) 6= 1

for u1 ≤ u ≤ u2, v1 ≤ v ≤ v2, (u2 − u1)(v2 − v1) = k, and b(u, v) = 1 elsewhere.

(u, v) denotes the pixel location at which the kernel is defined. For example, a black

occlusion occurs if c(u, v) = 0. b(u, v) can represent multiple block occlusions as the

sum of two or more single block occlusions. For convenience, it will be referred to
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the lexicographically ordered b(u, v) as b and to × as a 2D pointwise multiplication

followed by a lexicographic ordering. As such, the block occlusion distortion can be

represented by a linear operation F(y) = y × b.

From (3.5), it follows that the occluded image ŷ can be expressed as:

ŷ = x1(D1 × b) + x2(D2 × b) + ...+ xK(DK × b) (3.8)

Under the assumption that the considered occlusion preserves sufficient separation

between the M classes to keep these distinct, (3.8) indicates that if the clean image

y is sparsely represented in terms of the clean training samples in the dictionary D,

then adding occlusion to the atoms in D at the same block position and with the same

size k as the occluded test sample ŷ will maintain the sparsity of the representation.

It is worth mentioning that representing the atoms using features that are more

resilient to blur or occlusion, as compared to raw pixels, will help in keeping the

classes distinct at higher blur/occlusion levels.

3.3.1.3 Effect of Additive Noise

In many scenarios, the corrupted image ŷ results from a pointwise additive operation

ŷ = F(y) = y +w. A distortion resulting from a Gaussian white noise is an example

of an additive operation where w is a collection of independent identically distributed

real-valued random variables following a Gaussian distribution with mean m = 0 and

variance σ2.

An additive distortion is handled well by the SRC, as long as the corruption

coverage of w does not exceed 33 percent of the image size, which is required to

preserve the sparsity of the SRC representation as explained previously in Section

3.2. The way to handle larger non-sparse additive noise will be discussed in Section

3.3.2.
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3.3.2 Proposed Method

In the following, the Augmented SRC method (ASRC) is presented in details. The

proposed method aims at improving the performance of the original SRC [23] under

blur, block occlusion, and non-sparse additive noise.

3.3.2.1 ASRC under Blur and Occlusion

In this section, the ASRC model is proposed for the blur and block occlusion dis-

tortions. The discussion here applies as well to other types of distortions that can

be described or approximated using linear operations. From (3.7) and (3.8), it can

be seen that the distorted raw image test sample ŷ can be sparsely represented in

terms of the distorted atoms F(Di), 1 ≤ i ≤ K, if the clean test sample y is sparsely

represented in terms of the atoms Di, 1 ≤ i ≤ K, and if the classes are kept distinct

after applying the operation F(.) to the dictionary atoms. This brings the impor-

tance of representing the atoms with features that are more resilient to blur/occlusion

distortion as compared to raw pixels, as discussed in more details later in this work.

For the blur distortion, in order to accommodate various blur levels, it is proposed

to augment the dictionary D with training samples that have been blurred with Nd

Gaussian blur kernels of increasing variance σ2 and size (including absence of blur).

For the occlusion distortion, and in order to accommodate various occlusion positions,

it is proposed to augment the dictionary D with training samples, which have been

occluded at Nd different occlusion positions with a specified occlusion size (including

absence of occlusion). In either case, it is opted to assign the group of atoms that

corresponds to a specific distortion level (blur) or distortion position (occlusion), for

a particular identity i, 1 ≤ i ≤M , to a separate object class j, 1 ≤ j ≤ NdM , in the

resulting dictionary that will be denoted by D̂. For simplicity, in the remainder of this
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section, both the blur level and the occlusion position will be denoted by distortion

level l, 0 ≤ l ≤ Nd − 1, for short.

It is assumed that the original dictionaryD consisting of the clean training samples

is given by:

D =

[
D̄1 |D̄2 |... |D̄M

]
(3.9)

where D̄i = {Di
1,D

i
2, · · · ,Di

mi
}, 1 ≤ i ≤ M , is the set of training samples for the

ith object class. Let Fl(.) be a linear operation representing the distortion at level

l, 0 ≤ l ≤ Nd − 1. Also let Fl(D̄i) = {Fl(Di
1),Fl(Di

2), · · · ,Fl(Di
mi

)}. The proposed

dictionary D̂ is given by:

D̂ =

[
D̂1 |D̂2 |... |D̂NdM

]
(3.10)

where Nd corresponds to the number of represented distortion levels and D̂j, 1 ≤ j ≤

NdM , is given by:

D̂j = [Fl=(j−1)modNd
(D̄(j−1)\Nd+1)] (3.11)

In (3.11), \ and mod correspond to the integer division and modulo operations, re-

spectively, and l = 0 corresponds to the absence of distortion. The SRC is applied

using the proposed dictionary to classify test samples based on the class-wise mini-

mum reconstruction error as in (2.24). Nevertheless, as the subject belongs to either

one of the Nd possible levels (including absence) of distortion, the subject identity i

is obtained as follows:

i = ((j∗ − 1)\Nd) + 1 (3.12)

where j∗ is computed using (2.24), except that the residual rj is now computed with

respect to the new constructed dictionary D̂ and M is replaced by NdM . Algorithm 1

summarizes the procedure of the ASRC method for the blur and occlusion distortions.
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Algorithm 1: The ASRC Algorithm for Blur and Occlusion

Input: Training samples D = |D̄1 D̄2 ... D̄M | for M subjects and test sample

ŷ , where D̄i = {Di
1,D

i
2, · · · ,Di

mi
}, 1 ≤ i ≤M , is the set of training

samples for the ith object class.

1 Step1: Distort (blur and/or occlude) the training samples of D by applying Nd

levels of distortions represented by linear operations Fl(.), 0 ≤ l ≤ Nd − 1, to

each training sample in D:

2 for j = 1 : NdM do

3 D̂j = F(j−1)modNd
(D̄(j−1)\Nd+1);

4 end

5 Step 2: Generate the distortion-augmented dictionary D̂:

6 D̂ = [D̂1 D̂2 ... D̂NdM ]

7 Step 3: Use SRC to classify ŷ:

8 α∗ = arg minα ||ŷ− D̂α||22 + λ||α||1

9 for j = 1 : NdM do

10 rj = minj(||ŷ− D̂δj(α
∗)||22)

11 end

12 j∗ = arg minj (rj)

Output: identity(y) ← (j∗ − 1)\Nd + 1

3.3.2.2 ASRC under Additive Noise

The proposed method is extended to solve the additive noise distortion F(y) applied

to a clean test sample y, as described in Section 3.3.1.3 resulting in a noisy test

ŷ = y +w, where w is the additive noise. In this case, a lowpass filter hlp of variance
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Algorithm 2: The ASRC Algorithm for Additive Noise

Input: Training samples D = [D̄1 D̄2 ... D̄M ] for M subjects and test sample

ŷ, where D̄i = {Di
1,D

i
2, · · · ,Di

mi
}, 1 ≤ i ≤M , is the set of training

samples for the ith object class.

1 Step 1: Denoise the test sample ŷ by applying a lowpass filter hlp with

variance σ2
n:

2 ỹ = ŷ ∗ hlp

3 Step 2: Perform Steps 1 and 2 of Algorithm 1 for the blur case

4 Step 3: Perform Step 3 of Algorithm 1 where ŷ is replaced by the denoised test

sample ỹ.

Output: identity(y) ← (j∗ − 1)\Nd + 1

σ2
n is first applied to the noisy test sample in order to reduce the noise:

ỹ = ŷ ∗ hlp (3.13)

The variance of the applied lowpass filter hlp is computed using a noise level estimation

method, such as [106, 107, 108]. ỹ is a denoised blurred version of the original test

image y. In this way, the non-sparse additive noise problem can be transformed into

a blur problem, which can be effectively handled using the proposed ASRC method.

The resulting test sample ỹ is sparsely represented in terms of the proposed dictionary

D̂, as described previously in Section 3.3.2.1. Algorithm 2 summarizes the procedure

of the ASRC method for the additive noise.

3.3.3 The Effect of Feature Extraction

The choice of feature extraction is essential to properly separate object classes in

a more discriminative space, also known as feature space. Feature extraction meth-

ods are mainly subdivided into three main groups. The subspace learning group,
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which includes raw image values, Eigenfaces [4], Fisherfaces [5], and Laplacianfaces

[109], is a conventional class of linear features where training samples form a single

class are modeled to lie on a linear subspace. This type of features has been widely

used with classifiers, such as Nearest Neighbor (NN), Nearest Space (NS) and linear

Support Vector Machines (SVM). The subspace learning methods have been replaced

later by the hand-crafted non-linear approaches, which use the local orientation in-

formation. These features have proven to work well on face recognition applications

in constrained environments. They include features, such as Local Binary Patterns

(LBP) [104], Local Phase Quantisation (LPQ) [66], Histogram of Oriented Gradients

(HoG) [65], and Fisher vectors [105]. More recently, DNN-based models have achieved

high performance in terms of accuracy in the face recognition domain. They consist

of layers of convolutional filters where the weights of the filters can be learned using a

gradient descent-based optimization procedure. Deep features extracted from DNNs,

such as DeepFace [101], DeepID [102], VGG-Face [8], and FaceNet [9], are discrimina-

tive enough to recognize clean face images that have been captured in unconstrained

environments.

In [23], the authors designed and tested the SRC framework on subspace learning

features for ease of presentation. Wright et al. [23] argue that, if the sparsity is well

harnessed, the choice of the features is not important, as long as the dimension of the

feature exceeds a specific bound [23].

In this work, a performance evaluation of the SRC and ASRC frameworks is pro-

vided by selecting different feature types. For this purpose, hand-crafted features

(HoG), as well as deep learning features (VGG-Face) are considered for two main

reasons. Hand-crafted features are effective at detecting local information, namely

contour and texture, specifically in constrained environments. The deep learning fea-

tures are robust in unconstrained environments, as the DNN layers have configurable
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parameters that can be learned from the processed data across the layers. In Section

3.4, the experimental results verify that the choice of these two types of features affect

the performances of the SRC and ASRC frameworks by improving their recognition

accuracy rates compared to raw image features.

A feature transformation Φ : Rd → Rm maps data from the image space of dimen-

sion d to a high-dimensional feature space of dimension m, where d << m. Conse-

quently, SRC is performed by solving the following constrained l1-norm minimization

problem:

α∗ = arg min
α
||Φ(y)− Φ(D).α||22 + λ||α||1 (3.14)

where Φ(D) = [Φ(D̄1)|Φ(D̄2)| · · · |Φ(D̄M)] and D is defined as in (3.9). The feature-

domain ASRC framework is modeled using (3.14) where D is replaced with D̂, such

that Φ(D̂) = [Φ(D̂1)|Φ(D̂2)| · · · |Φ(D̂NdM)], and where D̂ is defined as in (3.10).

3.3.4 Feature Selection and Proposed Feature Sparse Coding and Classification

Index (FSCCI)

In order to assess the quality of features in improving the sparsity of the repre-

sentation, a method of feature selection is proposed based on the sparsity and the

fidelity of the proposed ASRC framework.

The validity of a sample depends on the sparsity of its coefficient vector α∗, which

can be measured using the sparsity concentration index (SCI). A valid test image

has a sparse representation with nonzero entries concentrated mostly on one subject,

whereas an invalid image has a sparse representation with coefficients spread among

a wide range of multiple subjects. The SCI index of a coefficient vector α is defined

as a measure of how concentrated the coefficients are on a single class in the dataset

46



and is computed as follows:

SCI(α) =
M maxi ||δi(α)||1/||α||1 − 1

M − 1
(3.15)

where M is the total number of distinct classes.

For a solution α∗ as found in (2.21), SCI(α∗) varies between 0 and 1, where

higher values correspond to sparser representations. As in [23], a threshold τ ε (0, 1)

is chosen and a sparse representation is accepted as valid if SCI(α∗) ≥ τ .

The most discriminative feature should not only ameliorate the sparsity of the

representation, but it must also improve the representation accuracy. The residual

r is used to measure the fidelity of the representation by measuring the similarity

between the test sample and each individual class.

Given an application with a validation dataset, it is aimed to rank the features

based on their ability to increase the sparsity of the proposed framework representa-

tion while improving its identification performance. For this purpose, a feature sparse

coding and classification index (FSCCI) is proposed for feature selection.

It is proposed to capture the number of valid images that are correctly classified

(True Positive Rate or TPR) and the number of valid images that are incorrectly

classified (False Positive Rate or FPR) for each threshold τ ε (0, 1). For a given

distorted validation data set Y ε Rd×N with N total samples, the following labels

{z1, z2, ..., zi, ..., zN} are assigned to each sample yi ε Y and each τ value, where

zi = {−1, 0, 1}. All valid and correctly classified samples are labeled 1, all invalid

samples are labeled 0, and all valid and incorrectly classified samples are labeled -1.

The number of true positives (TP) is computed as the total number of samples

labeled 1 and the number of false positives (FP) as the total number of samples

labeled -1. The TPR and FPR are subsequently calculated as follows:
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TPR =
TP

TP + FN
(3.16)

FPR =
FP

FP + TN
(3.17)

In (3.16) and (3.17), FN and TN are, respectively, the numbers of false negatives

and true negatives and their sum is the total number of samples labeled 0. While FN

corresponds to the number of invalid and correctly classified samples, TN corresponds

to the number of invalid and incorrectly classified samples.

For each feature, the area under the receiver operating-characteristic (ROC) curve

(AUC) is computed as the FSCCI to capture the feature discriminatory ability. There-

fore, FSCCI values vary from 0 (lowest feature rank) to 1 (highest feature rank).

3.4 Experimental Setup and Results

3.4.1 Datasets

The experiments are performed on three publicly available face recognition datasets:

ORL [33], Extended Yale B [2], and LFW [3]. The first two datasets consist of images

that are captured in a controlled environment where the image parameters that are

allowed to change are limited to expression, pose, illumination and simple disguise,

such as eyeglasses. The third dataset is more challenging, as it includes images that

are captured in the ”wild” under realistic unconstrained conditions.

3.4.1.1 ORL Dataset

The dataset includes 400 face images taken from 40 subjects (10 face images for

each subject) [33]. For some subjects, the images were taken at different times, with
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varying lighting, facial expressions, and facial details. All the images were taken

against a dark homogeneous background with the subjects in an upright, frontal

position with tolerance for some side movement (Fig. 3.1). The size of each image is

92x112 pixels, with 256 gray levels per pixel.

3.4.1.2 Extended Yale B Dataset

The dataset contains 2,432 front face images of 38 individuals and each subject having

around 64 near frontal images under different illuminations [2]. The main challenge

of this dataset is to overcome extreme varying illumination conditions that were

laboratory-controlled [110] (Fig. 3.2). The facial portion of each original image was

cropped to a 192× 168 image by the original authors.

3.4.1.3 LFW Dataset

The dataset [3] contains 13,233 images of 5,749 people captured and designed for

unconstrained face recognition with dramatic variations of pose, illumination, expres-

sion, misalignment, and occlusion (Fig. 3.3(a)). The faces are collected from the web

and detected by the Viola-Jones face detector.

3.4.2 Experimental Protocols

The procedure to produce the training and test datasets of the three considered

face benchmarks is described next.

To evaluate the performance of the proposed method on the ORL dataset, half

of the images is randomly selected from each class for training and the remaining for

testing.

For the Extended Yale B, the face images are resized to 96 × 84 to reduce the

computational cost. The dataset is randomly splitted into two halves. One half (32
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Figure 3.1: Example images randomly selected from the ORL dataset for a subject.
(a) Training images. (b) Test images.

(a)

(b)

Figure 3.2: Example images randomly selected from the Extended Yale B dataset
for a subject. (a) Training images. (b) Test images.

(a)

(b)

Figure 3.3: Example training images randomly selected from the identification LFW
dataset for a subject. (a) Original LFW images. (b) Cropped and frontalized LFW
images [10].
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(a)

(b)

(c)

Figure 3.4: Corrupted images selected from the ORL dataset for a subject. (a)
From left to right. Original image and its corresponding Gaussian blurred corrupted
images at levels 1 to 4. (b) From left to right. Original image and its corresponding
camera shake blurred corrupted images at 4 camera shake blur levels. (c) From left
to right. Original image and its corresponding White noise corrupted images at levels
1 to 4.

(a)

(b)

(c)

Figure 3.5: Corrupted images selected from the Extended Yale B database for
a subject. (a) From left to right. Original image and its corresponding Gaussian
blurred corrupted images at levels 1 to 4. (b) From left to right. Original image
and its corresponding camera shake blurred corrupted images at 4 camera shake blur
levels. (c) From left to right. Original image and its corresponding White noise
corrupted images at levels 1 to 4.
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(a)

(b)

(c)

Figure 3.6: Corrupted images selected from the LFW face identification dataset for
a subject. (a) From left to right. Original image and its corresponding Gaussian
blurred corrupted images at levels 1 to 4. (b) From left to right. Original image
and its corresponding camera shake blurred corrupted images at 4 camera shake blur
levels. (c) From left to right. Original image and its corresponding White noise
corrupted images at levels 1 to 4.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.7: The 8 blur kernels extracted from Levin et al. [1]. They are used to
simulate realistic blur resulting from camera shake at eight distortion levels. Kernel
sizes from left to right. (a) 13× 13. (b) 15× 15. (c) 17× 17. (d) 19× 19. (e) 21× 21.
(f) 23× 23. (g) 23× 23. (h) 27× 27.

images from each class) for training and the other half for testing.

The original LFW dataset, which was constructed for face matching rather than

identification, is rearranged to generate a face identification dataset, which consists of

5,088 images corresponding to 255 subjects. 70% samples per subject are randomly

selected for training, and the rest for testing. The images are cropped and frontalized

using the method proposed in Hassner et al. [10] (Fig. 3.3(b)). Then, the images are

converted to grayscale, and resized to half their size from 90 × 90 to 45 × 45. The
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(a) (b)

Figure 3.8: Occluded images selected from the Extended Yale B dataset for a sub-
ject. (a) From top to bottom single occluded images where each occlusion block size
is 10%, 15%, and 25% of the image size, respectively. (b) From top to bottom double
occluded images where each total occlusion size is 30%, 40%, and 50% of the image
size, respectively.

constructed LFW face identification dataset will be made available at ivulab.asu.edu.

The proposed ASRC is tested on two main feature descriptors in addition to

image raw pixels: HoG (hand-crafted) and VGG-Face (deep learning). HoG features

have been successfully applied to face recognition [111, 112] for their geometric and

photometric invariance property. HoG features can be found in two main variants,

the Dalal et al. [65] original variant and the slightly improved Felzenszwalb et al. [69]

UIUC variant. In this work, the UIUC HoG formulation [69] is used, which computes

both the directed and undirected local gradients as well as a four dimensional texture-

energy feature for each cell, resulting in a larger HoG feature’s dimension as compared

to [65]. The histogram of orientations includes 9 bins for the undirected orientations

and 27 for the directed ones. The final dimension of the HoG feature for one block

is projected down to 31 dimensions as described in [69]. This variant accounts more

than the original one for rotations and translations by considering both directed and

undirected orientations. It also includes the texture-energy feature, which improves

the performance in capturing local information in the face images. In this work,
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for an image consisting of N blocks, N HoG feature vectors are computed, each of

dimension 31. The final HoG descriptor is generated from the lexicographic ordering

of the N HoG feature vectors. In our implementation, a block size of 8× 8 was used

as in [69].

VGG-Face deep features are also extracted to evaluate the performance of the

proposed method. The VGG-Face CNN architecture A described in [8], which is

trained on a large diverse dataset of face images, is particularly adopted to transfer

its extracted features to the face recognition problem. The deep features are extracted

from the last convolutional layer of the 16-layer deep network. As the neural network

operates on a 224×224×3 size input, the original images are resized to this dimension

before feeding them to the network. The VGG-Face mean image is additionally

subtracted from the input images of the image dataset that was used in [8] to train

the VGG-Face network.

To evaluate the performance, three metrics are computed: the recognition rate ac-

curacy in addition to the mean SCI and the proposed FSCCI, as described in Section

3.3.4. While the recognition rate evaluates how well the representation approximates

the test sample by relying on the residuals, the SCI evaluates how good the repre-

sentation itself is based on the localization of the sparse coefficients. The proposed

FSCCI combines both previous metrics by measuring the representation sparsity and

the reconstruction fidelity.

3.4.3 Addition of Distortions to Datasets

A Gaussian blur function is simulated as in (3.7) and convolved with the face

images. The filter size of the Gaussian filter is set in number of pixels as [5, 5,

7, 9] for the different blur levels represented by the blur variance values [1, 2, 4, 8],
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respectively. The levels of distortions are carefully chosen to generate images covering

a broad range of quality, from imperceptible levels to high levels of impairment. The

dictionary is augmented with the same four Gaussian blur levels in addition to the

original clean images.

Next the robustness of the ASRC is tested to unseen distortions by considering

camera shake blur, which is more general than the previously considered Gaussian

blur, because the blur kernel is not symmetric. The 8 blur kernels provided by [1],

which were captured from a real camera, are used and convolved with the test images

of the three considered datasets ((Figs. 3.4(b), 3.5(b) and 3.6(b)). The blur kernels

have different shapes and different sizes including 13× 13, 15× 15, 17× 17, 19× 19,

21 × 21, 23 × 23 and 27 × 27, as shown in Fig. 3.7. The kernels in Figs. 3.7(f)

and 3.7(g) have the same size but different shape. These 8 blur kernels result from

the relative motion of a camera mounted on a tripod (z-axis) with loosened x and

y handles. The motion is an in-plane rotation (rotation around the z-axis), which

is a significant component of human hand shake. For the camera shake distortions,

the robustness of the ASRC framework is tested to unseen distortions by using the

Gaussian blur ASRC (GB-ASRC) dictionary structure. The GB-ASRC augments the

ASRC dictionary with Gaussian blurred images at the same four distortion levels as

described before. Then, a camera shake blur ASRC (CSB-ASRC) dictionary structure

is considered. The CSB-ASRC augments the ASRC dictionary with realistic camera

shake blurred images resulting from four of the 8 blur kernels of Levin et al. [1]. The

sizes of the four selected blur kernels are 13× 13, 17× 17, 21× 21 and 27× 27.

Several block occlusion sizes are simulated ranging from 10 percent to 50 percent,

by replacing one or two blocks in each test image with one or two black boxes at major

facial locations, including the eyes, the nose and the mouth, as in Fig. 3.8. Therefore,

the considered occlusions are either single (Fig. 3.8(a)) or double (Fig. 3.8(b)).
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Moreover, single contiguous blocks are also randomly added to the face images. The

dictionary in all the considered cases is augmented, in addition to the original images,

with four single-block occluded images at four specified positions including the left

eye, the right eye, the nose and the mouth. To test the robustness of the ASRC to

unseen occlusions, the size of the block occlusion in the ASRC dictionary is fixed to

10 percent of the image size.

Finally, the additive Gaussian noise is simulated with zero mean and variance σ2

(Section 3.3.1.3). Four levels of white Gaussian noise are added to the face images,

where the variance values are [5, 10, 20, 40] (Fig. 3.4(a) to Fig. 3.6(a)). Again, the

levels of distortions are carefully chosen to generate images covering a broad range

of quality, from imperceptible levels to high levels of impairment. The dictionary

is augmented with the same previous four Gaussian blur levels in addition to the

original clean images.

3.4.4 Results

3.4.4.1 Feature Selection and its Impact on Sparse Representation

The feature choice and its impact on the performance of SRC is evaluated for the

feature space dimensions 30, 56, 120, 504, 1,000, 2,000, 4,000 and 8,000. In [23],

the authors use linear feature transformations, such as Eigenfaces, Laplacianfaces

and Fisherfaces, in addition to raw image pixels. For the raw image pixels, the

feature space dimension is reduced by downsampling the images appropriately. In

this work, the feature dimension size is reduced for all the considered feature types

using Principal Component Analysis (PCA), while keeping the same initial image size.

Fig. 3.9 shows the SRC recognition performance for the various features (Raw, HoG,

VGG-Face) in addition to the randomly sampled faces (Randomfaces) [23], which are

56



(a) ORL (b) Extended Yale B

(c) LFW

Figure 3.9: Recognition rate (%) of raw, Randomfaces, HoG and VGG-Face features
for different dimension sizes. (a) ORL (b) Extended Yale B (c) LFW. Different colors
and symbols represent the different feature types.

considered as a less-structured counterpart to classical face features.

In the case of the ORL dataset, it is observed that, while the recognition accu-

racy increases for the raw, HoG and Randomfaces features and becomes stable for

a dimension size larger than 530, the VGG-Face demonstrates a steady performance

of 100% for all the considered dimension sizes. It is also worth noting that the HoG

feature outperforms the raw and Randomfaces starting from a dimension size of 400.

Applying (2.25) with t = 5 (number of training samples per class) and K = 200 (to-

tal number of training images) shows that a min dimension of d of 14 is required to
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have a sparse solution that can be correctly recovered via l1-minimization regardless

of the feature type. However, the results show that the performance of the different

feature types becomes steady for a dimension larger than 500. Moreover, it is worth

noting that the recognition accuracies of VGG-Face and HoG features are better than

the raw and RandomFaces features and that they do not depend on the computed

dimension size of (2.25).

For the Extended Yale B dataset, the raw, RandomFaces and HoG features show

a steady similar performance for a dimension size of 2,000. However, the VGG-Face

feature shows a different trend with a recognition accuracy that is lower than the other

features for all dimension sizes and that becomes stable starting from a dimension

size of 503. Applying (2.25) with t = 38 (number of training samples per class) and

K = 1, 181 (total number of training images) shows that the required dimension size

to have a sparse enough solution is 90.

Finally, for the LFW dataset, while the raw, Randomfaces and HoG features show

a similar performance starting from a dimension size of 503, the VGG-Face feature

outperforms the other features at all dimension sizes. Computing the min required

dimension size using (2.25) with t = 14 (average number of training samples per class)

and K = 3, 577 (total number of training images) gives a value of 52.

In the next series of experiments, the effect of feature choice is evaluated on the

performance of the ASRC framework in the presence of different levels of Gaussian

blur. For these experiments, the representation ability of each feature (raw, HoG and

VGG-Face) is analyzed with respect to the blur level. To quantify the observations,

the mean SCI is first computed, which measures the average sparsity level of the

representations for every blur level. The proposed feature sparse coding and classifi-

cation index (FSCCI) is also evaluated, which is compared to the mean SCI. Finally,

the results are validated by displaying the accuracy values for the three considered
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Table 3.2: Mean SCI, FSCCI and Recognition Accuracy (%) for the ASRC frame-
work Using Raw, HoG and VGG-Face Features on ORL, Extended Yale B and LFW
Datasets. The Gaussian Blur Level in the Test Images Varies from an Imperceptible
Level (1) to a High Impairment Level (4). Bold Entries Show the Highest Values for
the Mean SCI, the FSCCI and the Recognition Accuracy for Each Blur Level.

Mean SCI FSCCI Accuracy (%)

Blur level Blur level Blur level

Dataset Method level 1 level 2 level 3 level 4 level 1 level 2 level 3 level 4 level 1 level 2 level 3 level 4

ORL ASRC+raw 0.5706 0.5686 0.5562 0.5358 0.9263 0.9284 0.9338 0.9371 92.50 93.00 93.50 93.50

ASRC+HoG 0.6109 0.6313 0.6439 0.6262 0.9905 0.9948 0.9792 0.9436 97.00 96.50 96.00 97.50

ASRC+VGG-Face 0.7740 0.8001 0.7938 0.7236 0.9975 0.9975 0.9975 0.9975 100.0 100.0 100.0 100.0

Extended Yale B ASRC+raw 0.4707 0.4632 0.4430 0.4164 0.9769 0.9736 0.9616 0.9508 98.71 98.23 97.35 95.82

ASRC+HoG 0.4044 0.4096 0.4123 0.4009 0.9784 0.9807 0.9747 0.9747 98.79 98.71 98.23 97.59

ASRC+VGG-Face 0.4582 0.4537 0.4356 0.3943 0.9543 0.9508 0.9416 0.9393 81.01 80.93 78.60 74.09

LFW ASRC+raw 0.1836 0.1828 0.1744 0.1633 0.8405 0.8393 0.8479 0.8563 45.40 44.41 41.76 38.19

ASRC+HoG 0.1537 0.1550 0.1561 0.1494 0.8153 0.8118 0.8301 0.8353 38.12 38.39 36.14 35.21

ASRC+VGG-Face 0.3445 0.3595 0.2983 0.2136 0.9211 0.9209 0.9231 0.8890 81.01 83.39 71.48 59.63

datasets. The cases where the test samples have been blurred at four different Gaus-

sian blur levels, varying from an imperceptible level (1) to a highly impaired level (4)

are considered. The corresponding results are listed in Table 3.2.

For the ORL dataset, the ASRC achieves the best recognition rates with VGG-

Face at different blur levels followed by HoG and raw images. This is reflected by

the mean SCI and FSCCI values, which are the highest with VGG-Face. For the

Extended Yale B dataset, it is observed that, at all four blur levels, HoG’s recognition

accuracy is the highest as compared to the raw images and the VGG-Face features.

With the Extended Yale B dataset, which is impaired with extreme light variations,

HoG proves its photometric invariance property. From Table 3.2, it can be seen that

the VGG-Face representation is the most affected by these variations, as it is even

outperformed by raw images. Furthermore, while the proposed FSCCI is able to

correctly rank the features (highest for HoG and lowest for VGG-Face), the mean

SCI is not a good indicator for the best feature to use. Finally, for the LFW dataset,

the ASRC achieves the best recognition accuracy with the VGG-Face features at
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Table 3.3: Mean SCI, FSCCI and Recognition Accuracy (%) for the ASRC Frame-
work Using Raw, HoG and VGG-Face Features on ORL, Extended Yale B and LFW
Datasets. The Occlusion Level in the Test Images Varies from 10 Percent to 25 Per-
cent of the Image Size. Bold Entries Show the Highest Values for the Mean SCI, the
FSCCI and the Recognition Accuracy for Each Occlusion Size.

Mean SCI FSCCI Accuracy (%)

Occlusion size Occlusion size Occlusion size

Dataset Method 10% 15% 25% 10% 15% 25% 10% 15% 25%

ORL ASRC+raw 0.3788 0.3462 0.2816 0.9360 0.9243 0.8443 85.50 83.37 71.00

ASRC+HoG 0.5341 0.5002 0.4313 0.9646 0.9519 0.9560 96.37 96.00 94.37

ASRC+VGG-Face 0.7710 0.6987 0.5571 1.000 0.9979 0.9867 99.50 99.37 98.50

Extended Yale B ASRC+raw 0.3900 0.3575 0.2753 0.9655 0.9481 0.9035 96.68 94.97 86.49

ASRC+HoG 0.4206 0.3951 0.3180 0.9772 0.9691 0.9414 98.27 97.91 94.69

ASRC+VGG-Face 0.3613 0.3326 0.2768 0.9114 0.9091 0.8783 77.03 73.39 65.06

LFW ASRC+raw 0.1483 0.1316 0.1129 0.8509 0.8451 0.8087 42.53 39.21 32.94

ASRC+HoG 0.1543 0.1452 0.1449 0.8437 0.8234 0.7864 36.68 32.54 26.36

ASRC+VGG-Face 0.2483 0.2199 0.1709 0.8945 0.8743 0.8625 71.04 67.09 58.23

all blur levels. This consolidates the robustness of the deep features when used for

unconstrained image recognition. In all cases, the proposed FSCCI is able to correctly

rank the features in terms of their discriminative ability and detection accuracy.

In the third series of experiments, the effect of the feature choice on the per-

formance of the ASRC framework is evaluated in the presence of different levels of

block occlusion. For these experiments, the representation ability of each feature is

analyzed with respect to the occlusion level. Again, to quantify the observations, the

mean SCI is first computed, which measures the average sparsity level of the repre-

sentations for every occlusion size and is compared with the proposed FSCCI. Finally,

the results are validated by displaying the accuracy values for the three considered

datasets. The cases where the test samples have been occluded at four different po-

sitions including the left eye, the right eye, the nose and the mouth are considered.

The considered occlusions sizes vary from 10 percent to 25 percent of the image size.
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(a) blur level 1 (b) blur level 2

(c) blur level 3 (d) blur level 4

Figure 3.10: ROC curves of raw, HoG and VGG-Face for the ORL dataset. The
test samples are blurred at (a) level 1 (b) level 2 (c) level 3 and (d) level 4. Different
colors and symbols represent the different feature types. The ROC curves show that
the VGG-Face feature better separates the classes by providing the highest AUC.

The corresponding results are listed in Table 3.3.

For the ORL dataset, both the mean SCI and the FSCCI values are the largest

for the VGG-Face feature, which proves again that the VGG-Face feature is the most

representative of the ORL dataset, followed by HoG, and then raw images. For the

Extended Yale B, the mean SCI and FSCCI values show that HoG performs the best

while VGG-Face performs the least. Again, this confirms the previous results for the

blur distortion. Finally, for the LFW dataset, the mean SCI and the FSCCI values
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(a) blur level 1 (b) blur level 2

(c) blur level 3 (d) blur level 4

Figure 3.11: ROC curves of raw, HoG and VGG-Face for the Extended Yale B
dataset. The test samples are blurred at (a) level 1 (b) level 2 (c) level 3 and (d) level
4. Different colors and symbols represent the different feature types. The ROC curves
show that the HoG feature better separates the classes by providing the highest AUC.

are the largest for VGG-Face. However, while the FSCCI shows that the raw images

feature performs better than HoG, the mean SCI does not follow the same trend. This

proves one more time that the proposed FSCCI is more accurate for feature selection

than the mean SCI. All FSCCI results are confirmed by the recognition accuracy

values in Table 3.3 for the same considered feature types.

In the proposed framework, for a given application, the proposed FSCCI can be

used first to determine the best performing feature based on the training set for that
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(a) blur level 1 (b) blur level 2

(c) blur level 3 (d) blur level 4

Figure 3.12: ROC curves of raw, HoG and VGG-Face for the LFW dataset. The
test samples are blurred at (a) level 1 (b) level 2 (c) level 3 and (d) level 4. Different
colors and symbols represent the different feature types. The ROC curves show that
the VGG-Face feature better separates the classes by providing the highest AUC.

application.

For a better visualization of the FSCCI score, the ROC curves are displayed for

each feature type and blur level where the three different datasets are considered in

turn. Fig. 3.10, Fig. 3.11 and Fig. 3.12 show the ROC curves for the ORL, Extended

Yale B and LFW datasets, respectively. The ROC curves comply with the FSCCI

results in Table 3.2 where the highest values correspond to VGG-Face (ORL), HoG

(Extended Yale B) and VGG-Face (LFW). Similarly, the ROC curves are displayed
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(a) occlusion size 10%

(b) occlusion size 15%

(c) occlusion size 25%

Figure 3.13: ROC curves of raw, HoG and VGG-Face for the ORL dataset. The
test samples are occluded at occlusion (a) size 10% (b) size 15% and (c) size 25%.
Different colors and symbols represent the different feature types. The ROC curves
show that the VGG-Face feature better separates the classes by providing the highest
AUC.

64



(a) occlusion size 10%

(b) occlusion size 15%

(c) occlusion size 25%

Figure 3.14: ROC curves of raw, HoG and VGG-Face for the Extended Yale B
dataset. The test samples are occluded at occlusion (a) size 10% (b) size 15% and
(c) size 25%. Different colors and symbols represent the different feature types. The
ROC curves show that the HoG feature better separates the classes by providing the
highest AUC.
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(a) occlusion size 10%

(b) occlusion size 15%

(c) occlusion size 25%

Figure 3.15: ROC curves of raw, HoG and VGG-Face for the LFW dataset. The test
samples are occluded at occlusion (a) size 10% (b) size 15% and (c) 25%. Different
colors and symbols represent the different feature types. The ROC curves show that
the VGG-Face feature better separates the classes by providing the highest AUC.
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Table 3.4: Pearson Correlation Coefficient (PCC) of FSCCI and Mean SCI with
Respect to Recognition Accuracy for the ASRC Framework using Raw, HoG and
VGG-Face Features on the ORL, Extended Yale B and LFW Datasets. The Results
are Displayed for the Blur and Occlusion Distortions. Bold Entries show the Highest
Values for the PCC for Each Feature Type in a Dataset and for Each Distortion.

PCC of FSCCI PCC of Mean SCI

Dataset Method Blur Occlusion Blur Occlusion

ORL ASRC+raw 0.9300 0.9998 0.7925 0.9802

ASRC+HoG 0.7998 0.9882 0.5335 0.9880

ASRC+VGG-Face 0.9827 0.9996 0.4495 0.9761

Extended Yale B ASRC+raw 0.9896 0.9930 0.9982 0.9927

ASRC+HoG 0.8144 0.9921 0.4454 0.9888

ASRC+VGG-Face 0.9867 0.9716 0.9985 0.9992

LFW ASRC+raw 0.9821 0.9757 0.9955 0.9898

ASRC+HoG 0.9967 0.9986 0.5467 0.8201

ASRC+VGG-Face 0.9918 0.9809 0.9959 0.9979

for each feature type and occlusion level for the three considered datasets. Again,

Fig. 3.13, Fig. 3.14 and Fig. 3.15 show the same trend as with the Gaussian blur

and comply with the FSCCI results in Table 3.3.

Finally, in order to evaluate the effectiveness of the proposed FSCCI in measuring

the ability of a feature to preserve the sparsity and accuracy of the representation,

the Pearson correlation coefficient (PCC) is calculated for the FSCCI with respect

to the obtained recognition accuracy. Similarly, to compare the effectiveness of the

FSCCI and mean SCI at relating to the feature performance, the PCC is calculated

for the mean SCI with respect to the obtained recognition accuracy.

Table 3.4 displays the PCC of the FSCCI and mean SCI for the ASRC framework

using raw, HoG and VGG-Face features on the ORL, Extended Yale B and LFW
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datasets. The results are displayed for the blur and occlusion distortions. It is shown

that the FSCCI is more correlated than the mean SCI to the recognition accuracy

where higher values of the PCC are observed for FSCCI for almost all the considered

cases. It is also worth noting that for the few cases where the PCC is lower for the

FCSSI as compared to the mean SCI, the obtained PCC values are very close, which

indicates similar correlation of both metrics with respect to the recognition accuracy.

3.4.4.2 ASRC Evaluation under Gaussian Blur

The results of the proposed ASRC framework are analyzed with respect to the con-

ventional SRC framework, in addition to other state-of-the-art sparse-based methods

and blur invariant methods, in the presence of different levels of Gaussian blur. The

recognition accuracy rates are computed for the considered models when tested on the

ORL, Extended Yale B and LFW datasets at four different Gaussian blur levels, vary-

ing from an imperceptible level (1) to a highly impaired level (4). The corresponding

results are listed in Table 3.5

Comparison with Sparse-Based Methods: For the ORL dataset, when considering

the raw, HoG and VGG-Face features, it is observed that the ASRC framework

shows a better performance than the SRC and other sparse-based methods for all

blur levels. This indicates that the proposed ASRC is capable of improving the

SRC sparsity if the SRC representation is naturally sparse. In particular, the ASRC

outperforms all other sparse-based methods at the highest blur level with all three

considered features, as reported by the recognition accuracies in Table 3.5. For the

Extended Yale B, the ASRC exhibits a consistent higher recognition accuracy over

the SRC framework. When comparing the SRC and ASRC frameworks, the latter

achieves higher recognition accuracies when used with all three features at all blur

levels. It is worth noting that the performance of the ASRC is the highest when
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used with the HoG feature. Similarly, it is observed that the ASRC outperforms

other sparse-based methods at all blur levels, when it is particularly used with HoG

features. For the unconstrained LFW dataset, it can be seen from Table 3.5 that

the raw features are not discriminative enough to generate a sparse representation

resulting in a poor recognition performance. This is clearly reported by the low

recognition accuracy values for both SRC and ASRC. In Table 3.5, a similar trend

is observed with the HoG features whose low mean SCI and FSCCI values (Table

3.2) reflect the inability to preserve the sparsity of the representation, which in turn

leads to a poor recognition performance. From Table 3.2, it can be seen that the

deep VGG-Face features are more robust and provide a sparser representation as

reflected by the mean SCI and FSCCI values. Furthermore, Table 3.5 shows that

while the conventional SRC (SRC+raw) results in a poor recognition performance

at all blur levels, replacing the raw features with the feature corresponding to the

highest FSCCI (VGG-Face feature from Table 3.2) leads to a significant improvement

in recognition performance at lower blur levels (levels 1 and 2). At higher blur levels,

the observed accuracy decrease with VGG-Face is alleviated by the ASRC, which

shows a better performance as compared to the SRC. Furthermore, the ASRC exhibits

a more consistent performance across all blur levels. From Table 3.5, it can be seen

that, while the SRC recognition accuracy decreases by 54% between blur levels 1

and 4, the ASRC recognition accuracy decreases only by 26%. Similarly, the ASRC

outperforms the other sparse-based methods at all blur levels when it is used with

VGG-Face features.

Based on these results, the ASRC demonstrates an improvement over the SRC

and the other sparse-based methods on the three different datasets when particularly

used with the HoG and VGG-Face features in the presence of high levels of Gaussian

blur. This proves that representing the images with features that are more resilient
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to image variations, as compared to raw pixels, is harnessed by the ASRC framework

structure that makes these features resilient to blur as well.

Comparison with Blur-Invariant Methods: In Table 3.5, it is observed that for

the ORL dataset, the ASRC performs better than other blur-invariant methods when

used with the HoG and deep features. For the Extended Yale B dataset, the ASRC

outperforms all the other methods when used with raw and HoG features at all blur

levels. Finally, for the LFW dataset, the ASRC proves to be better than the other

blur invariant methods, when used with VGG-Face features.

It is worth noting that Table 3.5 shows that the ASRC performs the best with all

features and across all blur levels, as compared to the existing ID [35] and Zhang’s

[34] distance methods. These two blur invariant methods are global methods that

are originally designed to be invariant to blur but not to scene variations challenges.

Their serious drawback is the fact that a local change of image affects the values of

their invariant feature vectors. This is why global invariants cannot be used when

the face is partially occluded or its appearance varies widely. However, the rDRBF

performs better than ASRC with raw features when applied on the ORL and LFW

datasets. This is mainly due to the fact that the rDRBF uses the local LBP features.

Compared to raw pixels, LBP is a powerful texture operator and a robust approach

to describing local structures and thus, is better suited to the face recognition uncon-

trolled challenges. Nevertheless, the ASRC with raw features performs better than

rDRBF on the Extended Yale B, as the latter method is affected by the extreme

illumination changes of the dataset.

3.4.4.3 ASRC Evaluation under Realistic Camera Shake Blur

In the next series of experiments, the proposed ASRC framework is evaluated on

realistic blurred images resulting from camera shake, as described in Section 3.4.3.
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Table 3.5: Recognition Accuracy (%) of the Proposed ASRC Method and Compar-
ison with Sparse-Based Methods and Blur-Invariant Methods Under Different Levels
of Gaussian Blur on ORL, Extended Yale B and LFW Datasets. Bold Entries Are
the Best Performers for Each Blur Level in Each Dataset.

ORL Extended Yale B LFW

Blur level Blur level Blur level

level 1 level 2 level 3 level 4 Average level 1 level 2 level 3 level 4 Average level 1 level 2 level 3 level 4 Average

Sparse-Based Method

RLSI [20] 90.50 90.50 91.50 91.50 91.00 97.26 97.10 96.78 95.66 96.70 63.47 63.14 58.77 52.75 59.53

ESRC [22] 91.94 91.94 91.35 91.40 91.65 98.31 97.99 97.43 96.24 97.49 60.95 60.75 54.53 44.28 55.12

RSC [18] 90.50 89.50 89.00 90.50 89.87 96.78 96.94 96.78 96.30 96.70 64.06 64.13 59.83 49.24 59.31

SRC [23] 92.50 93.00 92.00 92.00 92.37 94.93 95.17 94.85 94.05 94.75 50.69 49.77 45.53 42.62 47.15

SRC+HoG 98.00 98.00 97.00 94.50 96.87 98.95 98.71 97.99 96.86 98.12 37.46 36.60 35.94 30.05 35.01

SRC+VGG-Face 100.0 100.0 100.0 96.50 99.12 82.46 80.29 76.59 69.99 77.33 82.53 85.44 69.23 37.79 68.74

ASRC+raw 92.50 93.00 93.50 93.50 93.12 98.71 98.23 97.35 95.82 97.52 45.40 44.41 41.76 38.19 42.44

ASRC+HoG 97.00 96.50 96.00 97.50 96.75 98.79 98.71 98.23 97.59 98.33 38.12 38.39 36.14 35.21 36.96

ASRC+VGG-Face 100.0 100.0 100.0 100.0 100.0 81.01 80.93 78.60 74.09 78.65 81.01 80.93 78.60 74.09 73.87

Blur-Invariant Method

ID [35] 79.00 77.50 74.50 76.00 76.75 49.24 49.32 48.51 48.19 48.81 34.75 35.14 34.15 32.53 34.14

Zhang’s distance [49] 85.75 86.50 84.25 80.75 84.31 55.99 55.99 54.71 53.66 55.08 31.51 21.31 21.31 20.35 23.62

rDRBF [36] 95.50 96.50 96.00 97.00 96.25 86.56 86.00 85.52 84.55 85.65 60.62 61.02 58.84 55.86 59.08

Table 3.6: Recognition Accuracy (%) of ASRCra raand SRC under 8 Different Levels
of Realistic Blur [1] on the ORL Dataset. GB-ASRC Corresponds to the ASRC
Dictionary Augmented with Gaussian Blurred Images and RB-ASRC Corresponds to
the ASRC Dictionary Augmented with Realistic Blurred Images. Bold Entries Are
the Best Performers.

Blur level

Method level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 Average

SRC [23]+raw 90.50 91.50 90.50 91.50 91.50 88.00 87.00 80.00 88.81

SRC+HoG 97.00 97.50 94.50 96.00 96.00 93.00 89.50 84.00 93.43

SRC+VGG-Face 100.0 100.0 48.50 86.00 86.00 77.50 42.00 11.00 68.87

GB-ASRC+raw 91.50 91.50 92.50 92.00 92.00 90.00 92.00 83.50 90.62

GB-ASRC+HoG 96.00 96.00 96.50 96.00 96.00 96.00 94.00 88.00 94.81

GB-ASRC+VGG-Face 100.0 100.0 98.50 100.0 100.0 96.50 86.00 68.00 93.62

RB-ASRC+raw 100.0 100.0 100.0 100.0 100.0 94.50 95.00 90.50 97.50

RB-ASRC+HoG 100.0 100.0 100.0 100.0 100.0 100.0 98.50 96.00 99.31

RB-ASRC+VGG-Face 100.0 100.0 100.0 100.0 100.0 99.50 100.0 92.50 99.00
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Table 3.7: Recognition Accuracy (%) of ASRC and SRC under 8 Different Levels
of Realistic Blur [1] on the Extended Yale B dataset. GB-ASRC Corresponds to the
ASRC Dictionary Augmented with Gaussian Blurred Images and RB-ASRC Corre-
sponds to the ASRC Dictionary Augmented with Realistic Blurred Images. Bold
Entries Are the Best Performers.

Blur level

Method level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 Average

SRC [23]+raw 94.61 94.85 93.24 93.89 74.74 84.55 80.29 61.14 84.66

SRC+HoG 98.23 98.39 95.74 96.70 94.29 93.40 91.07 84.15 93.99

SRC+VGG-Face 78.28 77.96 59.69 65.25 68.82 54.63 42.24 39.18 60.75

GB-ASRC+raw 97.43 97.91 94.53 95.49 81.09 86.00 82.94 69.27 88.08

GB-ASRC+HoG 98.31 98.31 97.02 97.18 94.21 93.89 92.36 86.08 94.67

GB-ASRC+VGG-Face 78.76 79.49 66.45 71.20 71.60 59.53 49.88 48.67 65.69

RB-ASRC+raw 97.59 97.75 94.21 94.93 96.22 94.05 92.92 92.76 95.05

RB-ASRC+HoG 98.23 98.23 97.10 97.51 96.46 94.05 92.92 92.84 95.91

RB-ASRC+VGG-Face 79.49 79.32 69.59 71.52 71.92 61.38 55.43 58.97 68.45

The performance of the proposed ASRC framework is demonstrated with respect to

the conventional SRC in the presence of eight different levels of blur distortion [1].

Two different cases are explored for the ASRC dictionary structure. In the first case,

the GB-ASRC augments the ASRC dictionary with Gaussian blurred images at the

same four distortion levels as described in Section 3.4.4.2. In the second case, the

RB-ASRC augments, this time, the ASRC dictionary with realistic blurred images

resulting from four of the 8 blur kernels of Levin et al. [1]. The sizes of the four

selected blur kernels are 13 × 13, 17 × 17, 21 × 21 and 27 × 27. The recognition

accuracy results are displayed in Table 3.6, Table 3.7 and Table 3.8 for the ORL,

Extended Yale B and LFW datasets, respectively.

For the ORL dataset, when used with the SRC, the deep features show a sharp

decrease in performance at high blur levels where they are outperformed by the HoG
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Table 3.8: Recognition Accuracy (%) of ASRC and SRC under 8 Different Levels
of Realistic Blur [1] on the LFW Dataset. GB-ASRC Corresponds to the ASRC
Dictionary Augmented with Gaussian Blurred Images and RB-ASRC Corresponds to
the ASRC Dictionary Augmented with Realistic Blurred Images. Bold Entries Are
the Best Performers.

Blur level

Method level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 Average

SRC [23]+raw 60.69 58.31 51.29 54.93 21.64 31.04 26.41 13.63 40.84

SRC+HoG 58.23 54.78 47.65 49.82 18.51 27.38 23.67 11.21 36.40

SRC+VGG-Face 83.92 77.04 68.36 41.96 60.62 40.83 25.94 10.06 51.84

GB-ASRC+raw 57.25 54.60 47.58 49.11 27.86 34.08 32.30 20.32 40.38

GB-ASRC+HoG 56.77 52.34 45.18 46.71 25.14 31.42 30.06 18.16 38.22

GB-ASRC+VGG-Face 83.98 79.48 72.41 59.96 63.07 45.93 31.11 22.90 57.32

RB-ASRC+raw 52.42 51.22 47.78 49.83 45.47 44.41 45.20 41.89 47.24

RB-ASRC+HoG 50.18 49.83 46.58 47.78 44.12 41.07 40.16 38.19 44.73

RB-ASRC+VGG-Face 82.06 77.96 70.59 59.10 68.30 50.89 41.10 40.44 61.30

and raw images features. However, when used with the ASRC, the deep features

demonstrate a noticeable amelioration in terms of recognition accuracy at the same

high blur levels, especially in the case of the RB-ASRC, where the dictionary is

augmented with the same type of blur as in the test samples. In this case, VGG-Face

and HoG features have a similar high performance at all blur levels (Table 3.6).

For the Extended Yale B, the HoG features prove to have a consistent performance

at all blur levels compared with raw images and VGG-Face features. However, the

best performance is achieved with the ASRC framework, especially, the RB-ASRC,

as shown in Table 3.7.

Finally, being an unconstrained dataset, the LFW proves once again that the

choice of features is major in providing a good recognition accuracy when used with

SRC and ASRC. Therefore, the VGG-Face features show that they have the best
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Table 3.9: Recognition Accuracy (%) of SRC and ASRC under Different Sizes of
Single Block Occlusion on the ORL, Extended Yale B and LFW Datasets. Bold
Entries Are the Best Performers for each Occlusion Size in Each Dataset.

ORL Extended Yale B LFW

Occlusion size % Occlusion size % Occlusion size %

Method 10 15 25 Average 10 15 25 Average 10 15 25 Average

SRC [23]+raw 83.75 78.00 62.25 74.66 95.07 92.27 78.04 88.46 44.32 34.29 18.33 32.31

SRC+HoG 96.75 95.62 92.25 94.87 96.68 95.81 93.30 95.26 39.03 33.22 25.48 32.57

SRC+VGG-Face 99.62 97.62 89.25 95.50 66.13 62.47 55.49 61.36 66.77 58.27 42.26 55.77

ASRC+raw 85.50 83.37 71.00 79.95 96.68 94.97 86.49 92.71 42.53 39.21 32.94 38.23

ASRC+HoG 96.37 96.00 94.37 95.58 98.27 97.91 94.69 96.95 36.68 32.54 26.36 31.86

ASRC+VGG-Face 99.50 99.37 98.50 99.12 77.03 73.39 65.06 71.82 71.04 67.09 58.23 65.45

performance in this case. However, this type of features is easily affected by the

presence of high blur levels, especially when used with the SRC. Their performance

is, nonetheless, largely improved when used with the ASRC as shown in Table 3.8.

It is worth noting that both ASRC structures (GB-ASRC and RB-ASRC) out-

perform the SRC framework for all three feature types, especially at high blur levels.

Thus, although the ASRC performs the best at high blur levels when the same type

of blur is used in the dictionary as in the test samples, the ASRC maintains a sparser

representation than the SRC regardless of the blur type.

3.4.4.4 ASRC Evaluation under Block Occlusion

In this series of experiments, the proposed ASRC framework is evaluated in the

presence of different sizes and locations of block occlusion. The performance of the

proposed ASRC framework is demonstrated with respect to the conventional SRC in

the presence of single and double occlusions.

Fig. 3.16 to Fig. 3.18 show the recognition rate across the entire range of single

occlusion positions for various feature types for the ORL, Extended Yale B and LFW

datasets, respectively. For this purpose, the block occlusion size in the test images is
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Table 3.10: Average Recognition Accuracy (%) of SRC and ASRC under Different
Sizes of Double Block Occlusions on the ORL, Extended Yale B and LFW Datasets.
Bold Entries Are the Best Performers for Each Occlusion Size in Each Dataset.

ORL Extended Yale B LFW

Occlusion size % Occlusion size % Occlusion size %

Method 30 40 50 Average 30 40 50 Average 30 40 50 Average

SRC [23]+raw 69.50 62.75 45.50 59.25 89.01 75.74 42.11 68.95 29.05 13.63 12.21 18.29

SRC+HoG 94.50 92.00 87.50 91.30 92.39 85.80 73.65 83.94 27.23 18.89 17.93 21.35

SRC+VGG-Face 86.25 75.50 63.00 74.91 44.41 38.66 30.61 37.89 34.68 28.06 19.55 28.03

ASRC+raw 80.75 74.25 53.75 69.58 95.33 84.71 45.05 75.03 37.26 21.97 18.96 26.06

ASRC+HoG 96.00 95.50 91.00 94.16 97.22 94.81 84.19 92.07 32.40 20.38 17.57 23.45

ASRC+VGG-Face 99.25 91.00 73.25 87.83 70.15 64.24 48.87 61.09 56.58 49.33 40.07 48.66

varied from 10 percent to 25 percent of the image size at four different positions, as

illustrated in Fig. 3.8(a). For the double occlusion, the total block occlusion is varied

from 30 percent to 50 percent of the image size at the same four different positions

as illustrated in Fig. 3.8(b). Tables 3.9 and 3.10 show the average recognition rate

for single occlusion and for double occlusion.

For the ORL dataset, the single occlusion recognition rate is the highest for ASRC,

as compared to SRC, when used with raw pixels and VGG-Face features at all sizes

of occlusion (Table 3.9 and Fig. 3.16). When used with HoG, the ASRC and SRC

accuracies are close in values for less than the 25 percent occlusion size. A sharp de-

crease in accuracy of 10.75% is specifically observed between the 10 percent occlusion

size and the 25 percent occlusion size when using SRC with VGG-Face. In contrast,

the accuracy remains steady with a variation of only 1.5% between the 10 percent oc-

clusion size and the 25 percent occlusion size when using ASRC with VGG-Face. For

the double occlusion average recognition rate (Table 3.10), it is observed again that

ASRC outperforms SRC for all feature types and occlusion sizes. For the Extended

Yale B dataset, the ASRC demonstrates a consistent superiority in its performance

with respect to the SRC when considering the three different features at all occlusion
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sizes. The ASRC with the HoG feature achieves the best recognition accuracies for all

occlusion sizes (Table 3.9 and Fig. 3.17). For the double occlusion, the ASRC follows

again the same trend as the single occlusion case, where it performs the best with

the HoG features (Table 3.10). For the LFW dataset, for the single occlusion case,

it can be seen from Table 3.9 and Fig. 3.18, that the proposed ASRC+VGG-Face

consistently outperforms SRC for all occlusion sizes. In addition, the proposed ASRC

exhibits a smoother degradation in performance as compared to SRC. From Table

3.9, it is observed a decrease in accuracy of 77.39% for SRC as compared to only

41.2% for ASRC between the 10 percent occlusion size and the 25 percent occlusion

size. Table 3.10 shows the results for the double occlusion case, where the ASRC

proves to be again better than SRC at all occlusion levels. The VGG-Face features

perform the best due to the unconstrained nature of the LFW images, where the raw

and HoG features are not discriminative enough.

The obtained results show that the ASRC model shows a significant improvement

over the SRC framework when used with features, such as HoG and VGG-Face, in

the presence of large sizes of occlusion exceeding 30 percent. This proves that the

proposed model, which represents the occlusion distortion with a linear pointwise

multiplication operation instead of an additive operation, can handle better block

occlusions covering more than 33 percent of the image size. Moreover, while the VGG-

Face features perform poorly with the SRC in the presence of large occlusion sizes,

they exhibit a higher robustness to occlusion when used with the ASRC framework.

Table 3.11 shows the recognition rate for single occlusion at random positions for

various feature types on the ORL, Extended Yale B and LFW datasets, respectively.

For this purpose, the block occlusion size in the test images is varied from 15 percent

to 35 percent of the image size at random different positions.

For the ORL dataset, the occlusion recognition rate is the highest for ASRC, as
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(a) Raw

(b) HoG

(c) VGG-Face

Figure 3.16: Recognition rate of SRC and ASRC for the ORL dataset where the oc-
clusion block size varies from 10% to 25% of the image size. Performance is evaluated
for different feature types (a) Raw, (b) HoG and (c) VGG-Face. The performance
curves show that the ASRC better recognizes the occluded faces.
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(a) Raw

(b) HoG

(c) VGG-Face

Figure 3.17: Recognition rate of SRC and ASRC for the Extended Yale B dataset
where the occlusion block size varies from 10% to 25% of the image size. Performance
is evaluated for different feature types (a) Raw, (b) HoG and (c) VGG-Face. The
performance curves show that the ASRC better recognizes the occluded faces.
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(a) Raw

(b) HoG

(c) VGG-Face

Figure 3.18: Recognition rate of SRC and ASRC for the LFW dataset where the oc-
clusion block size varies from 10% to 25% of the image size. Performance is evaluated
for different feature types (a) Raw, (b) HoG and (c) VGG-Face. The performance
curves show that the ASRC better recognizes the occluded faces.
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Table 3.11: Recognition Accuracy (%) of SRC and ASRC under Different Sizes
of Single Block Occlusion at Random Positions on the ORL, Extended Yale B and
LFW Datasets. Bold Entries Are the Best Performers for Each Occlusion Size in
Each Dataset.

ORL Extended Yale B LFW

Occlusion size % Occlusion size % Occlusion size %

Method 15 25 35 Average 15 25 35 Average 15 25 35 Average

SRC [23] 70.50 57.00 20.00 49.16 96.00 79.57 65.73 80.40 30.44 16.48 07.08 18.00

SRC+HoG 96.50 94.50 70.50 87.16 95.22 93.89 87.45 92.18 33.82 25.22 16.41 25.15

SRC+VGG-Face 98.50 93.00 28.50 73.33 63.07 48.91 34.43 48.80 59.89 40.04 16.08 38.67

ASRC+raw 69.50 61.00 23.00 51.16 91.00 83.99 73.93 82.97 32.96 26.80 15.49 25.08

ASRC+HoG 93.00 92.50 73.00 86.16 96.22 94.37 89.78 93.45 29.19 23.10 16.81 23.03

ASRC+VGG-Face 100.0 99.00 56.50 85.16 71.52 63.72 54.95 63.39 71.04 67.09 58.23 51.51

compared to SRC, when used with raw pixels and VGG-Face features at all sizes

of occlusion (Table 3.11). When used with HoG, the ASRC and SRC accuracies

are close in values for less than the 25 percent occlusion size. A sharp decrease

in accuracy of 64.91% is specifically observed between the 15 percent occlusion size

and the 25 percent occlusion size when using SRC with VGG-Face. In contrast,

the accuracy decreases only by 1% between the 15 percent occlusion size and the 25

percent occlusion size when using ASRC with VGG-Face.

For the Extended Yale B dataset, the ASRC demonstrates a consistent superiority

in its performance with respect to the SRC when considering the three different

features at all occlusion sizes. The ASRC with the HoG feature achieves the best

recognition accuracies for all occlusion sizes (Table 3.11).

For the LFW dataset, it can be seen from Table 3.11, that the proposed ASRC+VGG-

Face consistently outperforms SRC for all occlusion sizes. In addition, the proposed

ASRC exhibits a smoother degradation in performance as compared to SRC. From

Table 3.11, it is observed that a decrease in accuracy of 76.74% occurs for SRC as

compared to only 11.37% for ASRC between the 10 percent occlusion size and the

80



Table 3.12: Average Recognition Accuracy (%) of SRC and ASRC under Different
Sizes of Single Block Occlusion at Random Positions on the ORL Dataset for 25
Iterations. Bold Entries Are the Best Performers for Each Occlusion Size.

Occlusion size %

Method 15 25 35 Average

SRC [23] 73.13 53.58 32.95 53.22

SRC+HoG 96.37 93.55 88.62 92.84

SRC+VGG-Face 99.23 92.67 72.42 88.10

ASRC+raw 69.03 63.80 49.50 60.77

ASRC+HoG 93.65 91.95 90.73 92.11

ASRC+VGG-Face 99.85 97.97 87.17 94.99

35 percent occlusion size. The VGG-Face features perform the best due to the un-

constrained nature of the LFW images, where the raw and HoG features are not

discriminative enough.

To improve the accuracy of the previous results, the same series of experiments

is repeated for the ORL dataset, where the proposed ASRC framework is evaluated

in the presence of the same sizes of random block occlusion for 25 iterations instead

of one. Table 3.12 shows the average recognition rate for single occlusions at random

positions for the ORL dataset. Therefore, the block occlusion size in the test images

is varied from 15 percent to 35 percent of the image size at random different positions

and the average recognition rate is considered over 25 different experimental test sets.

It can be noted that the occlusion recognition rate is the highest for ASRC, as

compared to SRC, when used with raw pixels at 25% and 35% occlusion sizes (Table

3.12). When used with HoG, the ASRC and SRC accuracies are close in values for less

than the 35 percent occlusion size. A large improvement in accuracy is specifically

observed for the VGG-Face feature for both SRC and ASRC compared with the

previous results in Table 3.11. Moreover, the ASRC outperforms the SRC for all

occlusions sizes by up to 20% for the 35% occlusion size.
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3.4.4.5 ASRC Evaluation under Additive White Noise

In the last set of experiments, the results of the proposed ASRC framework are

analyzed in the presence of different levels of white noise. As described in Section

3.3.2.2 and Algorithm 2, the non-sparse white noise case is handled by first applying

a lowpass filter to the noisy images. The lowpass filtered images are then input to

the proposed ASRC. In the implementation, a 5 × 5 Gaussian lowpass filter with a

variance of 4 is applied to the noisy test images.

The performance of the proposed ASRC framework is first demonstrated with

respect to the conventional SRC in the presence of white noise. Table 3.13 shows the

recognition accuracy rate for the SRC and ASRC frameworks for different features,

when the white noise level varies from an imperceptible level (1) to a highly impaired

level (4). For comparison, Table 3.13 also shows the recognition accuracy rate for

existing sparse-based methods.

For the ORL dataset, the accuracy is the highest for ASRC as compared to SRC

for all the considered features (raw pixels, HoG and VGG-Face) at high levels of white

noise. At lower noise levels, the ASRC and SRC achieve both a high performance

when the VGG-Face features are used. A sharp decrease in accuracy of 88.5% is

specifically observed between noise level 1 and level 4 when using SRC with VGG-

Face. In contrast, the accuracy remains steady with a variation of only 1% between

level 1 and level 4 when using ASRC with VGG-Face. It is interesting to note that the

proposed ASRC achieves a higher performance than SRC for all noise levels when raw

pixels and HoG are used as features. Compared with other sparse-based methods, the

ASRC performs the best with all features at all noise levels. For the Extended Yale B

dataset, the ASRC demonstrates a consistent superiority in performance with respect

to the SRC when considering the three different features. The ASRC with raw pixels
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Table 3.13: Recognition Accuracy (%) of the Proposed ASRC Method and Com-
parison with Sparse-Based Methods under Different Levels of White Noise on ORL,
Extended Yale B and LFW Datasets. Bold Entries Are the Best Performers for Each
White Noise Level in Each Dataset.

ORL Extended Yale B LFW

Noise level Noise level Noise level

Method level 1 level 2 level 3 level 4 Average level 1 level 2 level 3 level 4 Average level 1 level 2 level 3 level 4 Average

RLSI [20] 89.50 88.50 90.00 85.00 88.25 95.17 92.20 88.74 82.94 89.76 65.85 65.52 64.26 55.79 62.85

ESRC [22] 92.47 92.47 92.51 91.44 92.22 97.51 95.66 91.79 86.36 92.83 63.60 62.34 57.31 40.17 55.85

RSC [18] 91.00 91.50 89.00 90.00 90.37 95.74 93.31 92.04 90.27 92.84 65.45 66.31 64.66 55.92 63.08

SRC [23] 91.50 92.00 92.50 92.50 92.12 95.01 93.32 90.27 84.79 90.84 49.83 49.77 49.77 48.58 49.48

SRC+HoG 98.00 98.50 97.00 82.00 93.87 85.26 78.76 70.39 55.83 72.56 37.46 36.60 35.94 30.05 35.01

SRC+VGG-Face 100.00 100.00 99.50 11.50 77.75 72.65 67.58 55.75 21.16 54.28 87.29 85.11 66.98 10.72 62.52

ASRC+raw 93.50 93.50 93.00 92.50 93.12 97.43 96.38 95.09 90.90 94.95 45.53 45.47 44.34 44.41 44.93

ASRC+HoG 96.00 95.50 96.00 96.50 96.00 90.19 81.90 74.09 65.00 77.79 38.98 38.19 37.00 31.44 36.40

ASRC+VGG-Face 100.00 100.00 100.00 99.00 99.75 73.85 70.47 64.84 45.45 63.65 84.58 82.99 80.68 66.51 78.69

achieves the best recognition accuracies at all noise levels compared with SRC and

the other sparse-based methods. It is worth noting that when used with VGG-Face,

the SRC accuracy decreases by 70.47% between noise level 1 and level 4, while the

ASRC accuracy decreases by only 38.45% between the same two levels. For the LFW

dataset, as discussed in Section 3.4.4.2 and Section 3.4.4.4, the raw and HoG features

cannot adequately sparsely represent the LFW dataset test images. Thus, using

raw and HoG features with SRC or ASRC results in a poor recognition performance

at all noise levels. When both frameworks are used with VGG-Face features, ASRC

outperforms SRC, particularly at medium and high white noise levels. The ASRC also

achieves a more consistent performance across all levels where a decrease in accuracy

of 87.72% is observed for SRC as compared to only 21.36% for ASRC between noise

level 1 and level 4. From Table 3.13, it can be seen that the ASRC outperforms other

sparse-based methods when used with the VGG-Face features at all noise levels.

From the obtained results, one can conclude that the ASRC performance shows

a significant improvement over the SRC framework when used with features that
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preserve the sparsity of the representation in the presence of additive white noise.

3.5 Conclusions and Discussions

In this chapter, an Augmented SRC (ASRC) is proposed for face recognition under

blur, non-sparse additive noise and block occlusion distortions. Since the ASRC

framework represents the visual distortions using linear operations, augmenting its

dictionary with these distortions makes the ASRC more robust to quality distortions

than the conventional SRC by preserving the representation sparsity, when specifically

used with discriminant features. While the blur distortion (Gaussian and camera

shake) is represented by the proposed method using a linear convolution operation,

the additive noise is represented using the same linear operation after converting the

noise problem into a blur problem, and the block occlusion is represented using a

linear pointwise vector multiplication. It is also showed that the feature space choice

is important to enhance the performance of sparse representation-based classifiers. To

aid in feature selection, a novel feature quality assessment index is presented, called

Feature Sparsity Concentration and Classification Index (FSCCI) that is capable of

assessing the feature quality in terms of both sparsity concentration and recognition

accuracy. The ASRC sparse-based framework is evaluated on three constrained and

unconstrained benchmark face datasets. In the evaluations, the raw images are used as

features, in addition to the hand-crafted HoG and the deep VGG-Face. However, the

ASRC framework can be also used with other features as well. The ASRC framework

was shown to outperform popular sparse-based methods, including the conventional

SRC,and blur-invariant methods, especially at medium to high distortion levels, and

when particularly used with discriminative features, such as HoG and VGG-Face, as

also validated by the proposed FSCCI.
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Chapter 4

UNCONSTRAINED EAR RECOGNITION USING DEEP NEURAL NETWORKS

FEATURES

The material covered in this chapter has been published in [11]. In this work,

unconstrained ear recognition is performed using transfer learning with deep neural

networks (DNNs). First, it is shown how existing DNNs can be used as a feature

extractor. The extracted features are used by a shallow classifier to perform ear

recognition. Performance can be improved by augmenting the training dataset with

small image transformations. Next, the performance of the feature-extraction models

is compared with fine-tuned networks. However, because the datasets are limited in

size, a fine-tuned network tends to over-fit. Comparing with a deep learning based

averaging ensemble that reduces the effect of over-fitting is proposed. Performance

results are provided on unconstrained ear recognition datasets, the AWE and CVLE

datasets as well as a combined AWE+CVLE dataset. It is shown that, in the case

where long training time is not desirable or a large amount of data is not available,

the features from pre-trained DNNs can be used with a shallow classifier to give a

similar performance as fine-tuned networks.

4.1 Introduction

Accurate biometrics play a critical role in personal authentication and in forensic

and security applications. A useful biometric modality has several desirable char-

acteristics: uniqueness, ease of data collection, and preservation of privacy, among

others. Uniqueness ensures that the biometric can be used to uniquely identify a

person. Ease of data collection enables the biometric to be used in large scale surveil-
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lance applications. Privacy preservation is increasingly important as many subjects

may not want their personal identity easily accessible. Several biometrics meet these

requirements to various degrees: face, iris, fingerprint, and ear. Face as a biometric

meets the uniqueness and ease of collection criteria, but does not protect privacy.

Iris as a biometric is unique and protects privacy, however may be difficult to collect.

Fingerprints are unique and protect privacy, but also may be difficult to collect. This

leaves us with ear, which is perhaps less often used than faces, but offers several

unique advantages.

Just like a face or a fingerprint, the ear has a unique structure that can be used to

identify the subject. However, compared with faces, the ear features are stable and

are not affected by external factors, such as aging and expression. This is because the

ear shape matures early in life and later changes occur gradually [113]. Compared

with fingerprint recognition, ear recognition does not require the expensive capture

of prints, and can be utilized in a visual surveillance application. Compared with iris

recognition, ear recognition does not require subject cooperation. The main drawback

of ear recognition is that the ear may be partially or fully occluded by hair, earrings,

or other head-ware. However, it should be noted that face recognition has similar

problems with occlusions due to glasses or head-ware. An additional benefit of ear

recognition, instead of face recognition, is that there may be less privacy concerns

when an image of an ear is captured and stored instead of an image of a face. Ears

share more in common with fingerprints in that, although they have unique statistics

that can be used to identify an individual, at a glance it is difficult for a human

subject to recognize the identity using only the ear image.

Many approaches have been developed with the aim to improve ear detection and

recognition capabilities for reliable deployment in surveillance and commercial ap-

plications [24, 25, 26, 27, 28, 29]. These approaches follow a traditional pipeline of
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normalization, feature extraction and classification. In these works, the main chal-

lenge remains a proper selection of feature descriptors that can be resilient to uncon-

strained conditions, such as illumination changes, occlusion and quality distortions.

More recent works (e.g. [30, 31]) use deep neural networks (DNNs) to end-to-end

learn a classifier instead of designing a feature-classifier pipeline.

The use of DNNs as a feature extractor is explored in the more traditional feature-

classifier pipeline approach. It is worth noting that features from pre-trained DNNs

have been used in combination with shallow classifiers for a variety of computer vision

tasks [32]. In this work, it is shown that features from pre-trained networks achieve

a strong baseline for unconstrained ear recognition. Finally, they are compared with

the performance of fine tuned deep networks that are expected to achieve greater

performance.

This chapter is organized as follows. Section 4.2 discusses the related work on ear

biometric recognition. Section 4.3 presents the proposed feature-based SVM model.

Section 4.4 describes the experimental setup and results. Finally, Section 4.5 con-

cludes the work.

4.2 Previous Work

Early ear recognition methods were structural methods based on physiological fea-

tures such as shape, wrinkles, and ear points. The Iannarelli System of Ear Identifica-

tion [7] was introduced in 1949 as one of the first systems to use the ear as a biometric

modality for forensic science. The system consists of taking a certain number of mea-

surements around the ear for a unique ear characterization. Much later, Moreno et

al. [114] combined the results of several neural classifiers, which were trained on var-

ious ear geometrical features. Mu et al. [115] proposed an edge-based feature vector

consisting of the ear’s inner and outer structure and shape. Choras [58] computed
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the centroid of ear curves to form concentric circles. Using the points between con-

centric circles and ear contours, two feature vectors were proposed. Later, Choras

and Choras [59] added two more geometric feature vectors using representation of ear

contours and a geometrical parametric method. Anwar et al. [28] proposed a method

for ear recognition based on geometrical features extraction including shape, mean,

centroid and Euclidean distance between pixels. While these methods are simple to

implement, they achieve limited performance due to the challenging extraction of the

shape features, which sometimes require manual measurements and graph matching

techniques [116, 117].

Subspace learning methods, including Principal Components Analysis (PCA), Lin-

ear Discriminant Analysis (LDA) and force field [118], are also popular approaches

to ear recognition. Chang et al. [119] applied PCA to both face and ear recognition

and could achieve a significant improvement in performance when combining both

biometrics. Hurley et al. [118] used force field feature extraction, which maps the ear

to an energy field. The extracted features represent ”potential wells” and ”potential

channels”. More recently, Hanmandlu and Mamta [25] used the Local Principal Inde-

pendent Components (LPIC) as an extension of PCA to improve the ear recognition

performance. Zhang et al. [120] combined Independent Components Analysis (ICA)

with a Radial Basis Function (RBF) to improve the performance of PCA. However,

these subspace learning methods are not sufficiently resilient to image variations and

thus, they perform poorly under unconstrained conditions.

Spectral approaches, which are based on extracting features from the spectral do-

main representation, use the local orientation information for ear recognition. Abate

et al. [121] used a rotation invariant descriptor, the Generic Fourier Descriptor (GFD),

to represent ear features. Sana et al. [122] used a Haar wavelet transform to rep-

resent the texture of the ear image and calculated the matching scores using the
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Hamming distance. Wang et al. [123] used a Haar wavelet transform and Uniform

Local Binary patterns (ULBPs). They decomposed the ear using the Haar wavelet

transform, then they combined ULBPs with block-based and multi-resolution meth-

ods for texture feature extraction. They finally classified the features using the near-

est neighbor classifier. Zhao and Mu [124] used a 2D wavelet transform to generate

low frequency images, then they applied the orthogonal centroid algorithm [125] to

extract the features. Kumar and Zhang [126] used log-Gabor wavelets for feature

extraction and a Hamming distance for classification. Kisku et al. [127] used a Gaus-

sian Mixture Model to develop an ear skin model. Tariq et al. [29] extracted features

through Haar wavelets followed by ear identification using fast normalized cross cor-

relation. Murukesh et al. [128] used a contourlet transform for feature extraction and

Fisher’s Linear Discriminant Analysis (FLDA) for classification. Kumar and Chan

[27] used the sparse representation of local gray level orientations to efficiently rec-

ognize the ear’s identity. Benzaoui et al. [24] showed that the binarized statistical

image features (BSIF) in association with the KNN classifier yield good performance

on constrained images. Jacob and Raju [26] investigated the combination of Gray

Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and Gabor Fil-

ter features for efficient ear recognition. Despite their popularity, spectral methods,

which rely on hand-crafted features, are problem specific and cannot adapt easily to

changing environments.

More recently, deep neural network (DNN) based models have achieved impres-

sive performance in many problem domains. A DNN usually consists of layers of

convolutional filters where the weights of the filters can be learned using a gradient

descent based optimization procedure. This layered approach, with the addition of

large amounts of training data and GPU power, was shown to yield accurate systems

for classification in many application domains. AlexNet [38] was the first DNN that
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achieved impressive performance on the large scale ImageNet dataset [37]. AlexNet

includes techniques such as dropout for regularization, and ReLu non-linearities that

still see widespread use. The VGG models [39] extend the AlexNet framework by

adding more layers between pooling stages. VGG networks can be trained efficiently

because all of the convolutional layers use small 3× 3 filters. This also can help with

over-fitting. More recently, ResNet architectures [40] build very deep networks by

utilizing skip connections instead of the traditional sequential architecture. Although

ResNet can be much deeper than VGG, the model size is substantially smaller due

to the use of global average pooling rather than fully-connected layers.

Nevertheless, deep learning has only recently been utilized for ear recognition

[30, 74, 31, 129]. One difficulty for ear recognition problems is the limited amount of

labeled training data. Emersic et al. [30] overcame this by using data augmentation.

For each training image, many similar training images were generated with slight

translations, rotations, color transforms, etc. This data augmentation allowed DNNs

to be fine-tuned. To further combat over-fitting caused by limited data, the work

proposed selective learning, where only a subset of layers of the network were learned.

AlexNet, VGG16, and SqueezeNet [74] were considered, with SqueezeNet yielding the

best performance of 62% rank-1 accuracy. The authors evaluated their approach on

an unconstrained ear dataset where they combined the AWE and CVLE datasets [130]

in addition to 500 ear images of 50 subjects collected from the web, in order to have

more data available to work with. Note that the authors did not consider the more

recently introduced ResNet [40], which might achieve better performance. Galdamez

et al. [31] built a custom neural network for recognizing ears, instead of utilizing

existing pre-trained networks. The motivation for building a custom network is that

it would be faster than the large pre-trained networks, however it may achieve less

accuracy. Tian and Mu [131] also built a custom network with three convolutional
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layers and evaluated it on the constrained USTB ear database [132]. Omara et al.

[129] utilized pre-trained features from the VGG-m model [133] to classify the USTB

constrained ear images using a pairwise SVM classifier.

Several new methods were recently presented at the Unconstrained Ear Recogni-

tion Challenge (UERC) [134]. The UERC introduced a new dataset for the challenge,

based on the AWE dataset. Surprisingly, the winning entry relied on a hand crafted

feature based on Chainlets [135]. Other entries attempted various methods of fine

tuning or training deep networks from scratch.

4.3 Ear Recognition using Transfer Learning

Existing DNNs pre-trained on the large ImageNet dataset [37] are utilized and

adapted for unconstrained ear recognition. The pre-trained feature representations

provide a starting point for creating robust classifiers for unconstrained ear recogni-

tion.

4.3.1 Deep Neural Networks

DNN features from five different deep DNN architectures are explored as part

of this work: AlexNet [38], VGG16 [39], VGG19 [39], ResNet18 [40], and ResNet50

[40]. Table 4.1 presents a summary of the five DNN models’ characteristics. These

networks have been pre-trained on the ImageNet dataset [37] that includes over 1.2

million images for 1,000 object classes.

AlexNet [38] is a DNN architecture that won the 2012 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) for image classification. The model architecture,

which has 60 million parameters and 500,000 neurons, consists of five convolutional

layers and three fully connected layers with a final 1000-way softmax.

VGG network architectures [39] are much deeper than AlexNet and were the
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Table 4.1: Main Characteristics of Considered DNN Architectures: Design Year,
Number of Parameters in Millions (Mill.), Number of Convolutional (Conv.) Layers
and Number of Fully Connected (FC) Layers.

Network Year Parameters (Mill.) Conv. layers FC layers

AlexNet 2012 60 5 3

VGG16 2014 138 13 3

VGG19 2014 144 16 3

ResNet18 2015 11.7 17 1

ResNet50 2015 25.6 49 1

winner of the 2014 ILSVRC for image localization and classification. Compared

with AlexNet, a single convolutional layer between pooling stages is replaced with

multiple stacked convolutional layers, which are followed by three fully connected

layers. The final layer is the softmax layer. The VGG style networks, which include

133 million to 144 million parameters, use small 3×3 size filters to reduce the number

of parameters and consequently reduce over-fitting. In this work, the VGG16 and

VGG19 architectures are used, where 16 and 19 refer to the number of trainable

layers.

ResNet [40], which won the 2015 ILSVRC, made the concept of training very deep

neural networks possible and less challenging. The network uses ”skip” connections

between convolutional blocks in order to create much deeper neural networks. The

skip connections ensure that there is no vanishing gradient problem. The layers are

formulated as learning residual functions with respect to the layer inputs, instead of

learning more simple feed-forward functions. Despite of their large depth, ResNets

have much less number of parameters varying between 11.7 million (18 layers) and

60.2 million (152 layers). In this work, the 18-layer ResNet18 and 50-layer ResNet50

models are used.
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4.3.2 Extracting Deep Features

Features extracted from DNNs have been shown to achieve good performance on

many different problem domains [32]. When a network is trained on a large diverse

dataset such as ImageNet, features extracted from network layers can be transferred

to other problems, in this case ear recognition.

Similar to [129], a linear SVM is trained using features extracted from the DNNs

described in Section 4.3.1. However, different from [129], the unconstrained ear recog-

nition problem is considered in this work. Since this is more difficult than the con-

strained problem addressed in [129], data augmentation techniques are incorporated

to improve the accuracy. Additionally, the performance is evaluated using five dif-

ferent network architectures, where it is shown that the choice of architecture can

significantly affect the resulting classification accuracy. Furthermore, features ex-

tracted from different layers of the same network can give different classification ac-

curacies. An exhaustive search on the layers is performed and results with the layer

that gives the highest accuracy are reported using the AWE and CVLE datasets [130].

It is found that the best performance corresponds to the last convolutional layer for

AlexNet and VGG16, the second to last convolutional layer for VGG19, and the last

convolutional layer of the third residual block for the ResNets. The LibSVM library

[136] is used to train a one-against-one multi-class linear SVM using the extracted

features. The very high dimensionality of the extracted features makes SVM train-

ing computationally expensive, so Principal Component Analysis (PCA) is used to

reduce the dimensionality of the features while retaining 99% of the feature variance.
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4.3.3 Fine Tuning

The work in this section has been performed by the co-authors in [11]. For com-

pleteness of the proposed unconstrained ear recognition method, this work is described

next.

While the features from the fixed pre-trained networks can be useful for ear recog-

nition, a more accurate classifier can be trained by fine-tuning the parameters of the

neural network. Fine-tuning is essentially training the network for several more it-

erations on a new dataset. This process will adapt the generic filters trained on the

ImageNet dataset to the ear recognition problem.

The same networks described in Section 4.3.2 are used. For each network, the last

fully connected layer is replaced with a new fully connected layer where the number

of units is equal to the number of classes in the dataset. The parameters of the new

fully connected layer are initialized by Glorot initialization [137]. The network is

trained for 25 epochs using stochastic gradient descent. At around 25 epochs, all of

the network architectures achieve near 100% accuracy on the training set, so no more

improvement in training can be achieved. The learning rate of the last layer is set to

0.1 and the learning rate of all of the other pre-trained layers are set to 0.01. This is

because the last layer is trained from scratch whereas the other layers are initialized

with pre-trained weights.

This fine-tuning approach is different from [30]. The method of [30] performs

“selective” learning where the early layers are fixed and later layers are fine-tuned.

This approach allows the early layers to adapt, but at a smaller learning rate than the

last layer. This is also different than the “full training” of [30] because the learning

rates of different layers are not all the same.

The networks are fine-tuned using data augmentations as explained in Section
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Figure 4.1: Structure of ensemble models [11]. The ensemble consists of n models.
The parameters of the last fully connected layer of each model are initialized with
different random values and each model is trained separately. During testing, the
soft-max outputs of the constituent models are averaged to yield the final output
prediction.

4.4.3. However, even with data augmentation, the fine-tuned deep networks may

over-fit the new training data. This is particularly a problem in ear recognition

because the datasets are relatively small. An averaging ensemble is used, in addition

to data augmentation, to reduce the effect of over-fitting. Ensembles of five models

are tested, where the last layer of each ensemble member is initialized with different

random values. The different initializations yield different local minima after the

network has been trained. To obtain a final output prediction during testing, the

average of the soft-max outputs of the ensemble members is taken. The final predicted

label is the argmax of the averaged soft-max outputs. The full ensemble model can

be seen in Figure 4.1.

4.4 Experimental Setup and Results

In the experiments, the results are reported for all five CNN architectures. Results

for deep feature extraction and fine tuning are presented, as described in Section

4.3. The results with and without data augmentation are compared for deep feature
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extraction, but for all of the fine-tuning experiments, the augmented datasets are

used.

4.4.1 Datasets

The experiments are performed on two publicly available unconstrained ear datasets:

AWE and CVLE [130]. Both datasets consist of images captured ”in the wild” of the

ears of public figures collected by a web crawler. The images include realistic vari-

ations, such as contrast/illumination, occlusion, head rotations, gender, race, visual

quality distortions and image resolution. These datasets are considered challenging

for automatic ear recognition applications.

The AWE dataset includes 1000 images of 100 persons (10 images/person), while

the CVLE dataset includes 804 images for 16 persons (on average 50.25 images/person).

For both datasets, the images come in different sizes varying from 15 × 29 pixels to

473× 1022 pixels. All images are tightly cropped and do not include the face. Figure

4.3 and Figure 4.4 show sample images from both datasets.

Additionally, the AWE and CVLE datasets are combined to form a third dataset

(AWE+CVLE). For this dataset, the same train and test splits are used as in the

respective datasets.

4.4.2 Experimental Protocols

The given training/testing split provided in the AWE toolbox [130] is used. The

training set consists of 60% of the images and the testing set includes the remaining

40%. For the CVLE dataset, the dataset is randomly split into 60% training images

and 40% testing images.

As in [30], identification experiments are performed with a closed-set experimental

protocol, where the proposed models should predict the class to which the input image
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Figure 4.2: Sample images from the AWE dataset. Each row corresponds to the
images of one subject. The images include variations of head rotation, illumination,
gender, race, occlusion, blurring and image resolution.

Figure 4.3: Sample images from the CVLE dataset. Each row corresponds to the
images of one subject. The images include variations of head rotation, illumination,
gender, occlusion and image resolution.

belongs. There are 100 classes for AWE, 16 classes for CVLE and 116 classes for the

combined dataset (AWE+CVLE). For performance evaluation, rank-1 and rank-5

recognition rates, as well as Cumulative Match-score Curves (CMC) are used. The

Cumulative Match-score Curve is formed by computing the recognition rate using the

top i predictions from the model, where i varies from 1 to m, and m is the number

of classes.

For the single fine-tuned models, average performance is reported over five random

seeds. These five models are the same models used in the averaging ensemble.

All of the neural networks operate on a 224× 224× 3 size input. Thus, the orig-
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inal images are resized to this dimension before feeding them to the neural network.

Both bilinear and bicubic interpolation are considered for resizing the images. Both

methods were found to produce similar results in terms of classification performance.

The mean of the ImageNet dataset is additionally subtracted from the input images.

Original Horizontal Rotation Histogram Adaptive Wavelet

Flip Equalization Histogram Normalization

Equalization

Table 4.2: Data Augmentation Examples. Each Row Corresponds to a Single Source
Image of One Subject. The Third to Sixth Images Include Rotated Images with An-
gles +3, -3, +6, and -6 Degrees using Nearest Neighbor Interpolation. The Remaining
Images Include the Other Four Augmentation Variations in Addition to the Original
Image.

4.4.3 Data Augmentation

The datasets are relatively small, so it is easy for models to over-fit and not gen-

eralize well on testing data. To alleviate this problem, the dataset is augmented

by a factor of 9 with several image transformations as shown in Figure 4.2. Image

transformations are selected to introduce spatial as well as pixel value variations.

Noting that the head rotation in the source images is not constant, augmentation is

considered with moderate rotations using nearest neighbor interpolation (-6, -3, +3,
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Table 4.3: Rank-1 and Rank-5 Accuracy (%) of Models Trained and Tested on the
AWE Dataset. Bold Entries Denote Best Performers and Underlined Entries Denote
Second Best Performers.

Rank-1 Rank-5

Deep Deep Fine-tune Fine-tune Deep Deep Fine-tune Fine-tune

Features Features Single Ensemble Features Features Single Ensemble

(augmentation) (augmentation)

AlexNet 34.25 46.75 37.50 45.00 55.50 73.50 62.70 71.00

VGG16 31.25 49.25 50.70 66.00 53.75 70.25 74.65 81.50

VGG19 40.25 56.25 50.25 65.75 64.25 76.75 74.45 84.75

ResNet18 31.75 61.50 56.35 68.50 57.50 85.00 74.80 83.00

ResNet50 40.75 63.00 48.40 56.25 66.50 80.25 70.65 77.50

+6 degrees) to increase the classifier’s robustness to rotation. Although the left and

right ears are not necessarily the same, horizontal flipping is applied to expose the

classifier to more variations of ear structures. Next, three normalization techniques

are considered to introduce pixel value variations: histogram equalization, adaptive

histogram equalization, and wavelet-based normalization. These three latter trans-

formations are applied to grayscale versions of the source image. Grayscale images

force the classifier to use texture information, rather than rely on color information.

The histogram equalization methods spread image intensities in the spatial domain,

while the wavelet-based illumination method enhances the contrast in the wavelet

domain. For each grayscale image, the grayscale channel is replicated such that the

resulting image is of size 224×224×3. This is done so that both the grayscale images

and the color images can be fed to the networks.

4.4.4 Feature Extraction Results

In the first series of experiments, the performance of the five DNN architectures

is evaluated by assessing the representation ability of their respective deep features.

Experiments are constructed as described in Section 4.3.2. For these experiments,
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Table 4.4: Rank-1 and Rank-5 Accuracy (%) of Models Trained and Tested on the
CVLE Dataset. Bold Entries Denote Best Performers and Underlined Entries Denote
Second Best Performers.

Rank-1 Rank-5

Deep Deep Fine-tune Fine-tune Deep Deep Fine-tune Fine-tune

Features Features Single Ensemble Features Features Single Ensemble

(augmentation) (augmentation)

AlexNet 77.57 79.13 85.86 89.10 96.57 98.13 97.76 97.82

VGG16 79.13 81.93 90.16 93.15 95.02 97.82 99.37 99.38

VGG19 86.29 86.60 89.41 92.52 96.57 98.75 98.07 99.69

ResNet18 87.54 93.46 90.59 93.46 93.46 99.38 99.19 99.38

ResNet50 86.92 92.83 91.40 94.08 97.51 99.03 98.87 99.69

the effect of data augmentation on the deep networks’ performance is analyzed.

Tables 4.3, 4.4, and 4.5 show the rank-1 and rank-5 accuracies for the feature

extraction-based models trained with original and augmented versions of the AWE,

CVLE, and combined AWE+CVLE datasets, respectively. Overall, the network fea-

tures perform better on CVLE compared with AWE due to the lower number of

classes and larger number of training images per class for the CVLE dataset. Data

augmentation is able to improve the accuracies by an average of 30% for AWE, 3% for

CVLE, and 30% for their combination. The impact of data augmentation is larger on

the AWE dataset than on the CVLE dataset due to the lack of sufficient training sam-

ples per class for the AWE dataset. Fig. 4.4 shows the CMC curves for the ResNet18

features performance on the three considered datasets. ResNet18 features show bet-

ter performance when the training set is augmented for all considered datasets. This

trend is also seen for all the other considered networks’ features.

ResNet features consistently perform the highest across the three datasets. For

the augmented AWE (Table 4.3) and combined (Table 4.5) datasets, ResNet50 fea-

tures achieve the highest rank-1 accuracies of respectively 63% and 65.6%. For the

augmented CVLE (Table 3), ResNet18 features achieve the highest rank-1 accuracy
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Table 4.5: Rank-1 and Rank-5 Accuracy (%) of Models Trained and Tested on
the Combined AWE + CVLE Dataset. Bold Entries Denote Best Performers and
Underlined Entries Denote Second Best Performers.

Rank-1 Rank-5

Deep Deep Fine-tune Fine-tune Deep Deep Fine-tune Fine-tune

Features Features Single Ensemble Features Features Single Ensemble

(augmented) (augmented)

AlexNet 41.89 55.76 58.39 66.16 66.71 79.47 79.53 84.74

VGG16 43.00 54.37 68.99 77.95 64.91 78.64 86.29 90.29

VGG19 49.38 64.49 68.90 78.92 73.51 82.39 86.43 90.29

ResNet18 46.19 64.91 71.87 80.03 69.35 84.33 86.68 93.48

ResNet50 58.11 65.60 69.90 75.73 76.84 84.88 85.55 90.85

Table 4.6: Rank-1 and Rank-5 Accuracy (%) of Models Trained on the Combined
AWE+CVLE Dataset, and Tested only on the Images from the AWE Dataset. Bold
Entries Denote Best Performers and Underlined Entries Denote Second Best Perform-
ers.

Rank-1 Rank-5

Deep Deep Fine-tune Fine-tune Deep Deep Fine-tune Fine-tune

Features Features Single Ensemble Features Features Single Ensemble

(augmented) (augmented)

AlexNet 15.75 35.75 42.75 51.75 45.50 67.25 70.00 77.50

VGG16 14.25 30.75 56.85 68.00 42.75 64.75 80.00 85.00

VGG19 21.75 45.25 55.60 68.75 57.00 72.75 79.25 84.75

ResNet18 44.50 44.75 57.25 69.25 67.25 73.25 78.95 88.75

ResNet50 36.00 45.00 54.75 63.00 60.50 73.50 77.75 85.50

of 93.46%.

The scenario where the training set is the combined AWE+CVLE dataset is also

tested, but the test set is restricted to only the AWE dataset. The results are pre-

sented in Table 4.6. It can be seen from Table 4.6 that the performance of all feature

extraction-based models decreases by an average of 20% as compared to using the

AWE training set (Table 4.3). This shows that the SVM is unable to utilize the extra
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data to increase classification accuracy. In fact, the presence of extra classes intro-

duces more avenues for error. Since the LibSVM uses a one-against-one technique

for multi-class classification, binary SVMs trained with AWE class pairs remain the

same, but the addition of binary SVMs trained with AWE-CVLE class pairs can in-

troduce error. Additionally, the CVLE dataset has more training images per class,

which may bias the classifier to erroneously predict CVLE classes when AWE classes

should be predicted.

4.4.5 Fine-Tuning Results

In the second series of experiments, the previous results are compared with the

results of the fine-tuning procedures on all five DNN networks. For these results,

augmented training sets are only used. The results (Tables 4.3 to 4.5) show that

the ensemble method significantly outperforms the single model performance by an

average of 20% for AWE, 3% for CVLE, and 12% for the combined AWE+CVLE

dataset. The CMC curves show the difference in performance between a single model

and the five-member ensemble for the ResNet18 model (Figure 4.5). Among the

five model architectures, ResNet18 achieves the best performance for the AWE and

combined (AWE+CVLE) datasets with respectively rank-1 recognition accuracies of

58.35% and 71.87% for the single model, 68.5% and 80.03% for the ensemble model.

ResNet50 performs the best for the CVLE dataset with rank-1 recognition accuracies

of 91.85% and 94.08% for the single and ensemble models, respectively.

Surprisingly, the fine-tuned DNNs do not always give better performance than

the feature extraction-based models. For example, on the AWE dataset, the rank-

1 accuracy of each feature extraction-based model is nearly always better than the

corresponding single fine-tuned model (except for the VGG16 model). For exam-

ple, the ResNet18 feature-based model achieves 61.50% rank-1 accuracy while the
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Figure 4.4: CMC curves for ResNet-18 feature-based SVM models. The models
perform better for all ranks when the training data is augmented.
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Figure 4.5: CMC curves for the fine-tuned single ResNet18 model and five member
ensemble ResNet18 model. The ensemble model performs better than the single
ResNet18 model for all ranks.
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single fine-tuned model achieves only a 56.35% rank-1 accuracy. However, for the

combined dataset, the fine-tuned networks always outperform the corresponding fea-

ture extraction-based model. For the combined dataset, the ResNet18 feature-based

model gives a much lower 44.75% rank-1 accuracy, while the ResNet18 single fine-

tuned model gives a 57.25% rank-1 accuracy. The five member ensemble model gives

a much higher rank-1 accuracy of 69.25%. These results show that the single fine-

tuned models perform best when there is a larger amount of data. For small datasets,

feature extraction-based models may be more appropriate as compared to single fine-

tuned models, because they are not as susceptible to over-fitting. The ensemble DNN

model outperform both feature-based and single fine-tuned models in almost all cases

even for small datasets.

For the combined dataset, the trained fine-tuned single and ensemble models are

separately evaluated on the AWE dataset (Table 4.6). The network trained on the

combined datasets has the advantage of having more data to potentially learn better

feature representations. Compared with the results in Table 4.3, the networks yield

higher accuracy, despite the increased number of classes in the training set. This is

in contrast to the feature extraction-based models that could not use the increased

data to learn better feature representations.

4.5 Conclusion and Future Work

A method for utilizing DNNs for unconstrained ear recognition is proposed. Five

state-of-the-art DNNs are utilized, however, the methods presented in this work could

be used with newer DNN architectures to achieve better performance. It is shown

that, in the case where long training time is not desirable or a large amount of data is

not available, the features from pre-trained DNNs can be used with a shallow classifier

to give a comparable performance to fine-tuned networks. If more accuracy is desired
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and a relatively large amount of training data is available, the pre-trained networks

can be fine-tuned by training on the ear datasets. Further increases in classification

accuracy is achieved, independent of the size of the datasets, by creating an ensemble

of fine-tuned networks. Overall, the best results are achieved with an ensemble of

ResNet18 models, which provides consistent performance across the tested datasets.

This indicates that the residual connections used in ResNets are useful for the ear

recognition. On average, the ResNet18 ensemble outperforms the ResNet50 ensemble

because of the ResNet18 model fewer parameters, which makes it less susceptible to

overfitting.
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Chapter 5

CONCLUSION

This dissertation presents robust methods for biometric (face/ear) images under un-

constrained conditions. The work mainly focuses on three main quality distortions,

which are blur, occlusion and noise. This chapter summarizes the main contributions

of this work and suggests possible future research directions.

5.1 Contributions

The main contributions of this work are as follows:

• Based on the popular SRC, an Augmented SRC-based framework (ASRC) that

is more robust to blur, occlusion and noise for a selected feature is proposed.

The proposed model accounts for the blur/occlusion distortion as part of the

dictionary construction. The ASRC is a novel sparse-based framework for face

recognition in the presence of visual quality distortions.

• While SRC can handle the additive occlusion/corruption covering less than 33

percent of the image size, the occlusion distortion is represented in this work

as a linear pointwise multiplicative operation instead of an additive one and is

used as part of the dictionary construction in the proposed ASRC framework.

The proposed ASRC results in a significantly higher classification performance,

as compared to SRC, and is shown to be able to handle block occlusions much

larger than 33 percent of the image size.

• The importance of feature selection is explored under various levels of blur,

occlusion and noise for the SRC classifier. A Feature Sparse Coding and Classi-
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fication Index (FSCCI) is proposed as a metric that measures the sparse coding

ability and the classification performance of features used within the SRC and

the proposed ASRC frameworks. The FSCCI can be used for feature selection

in order to maximize the classification performance of SRC and ASRC.

• A new LFW dataset is constructed for face identification including five subsets

of images: clean images, Gaussian blur distorted images (4 levels of distortion),

realistic blur distorted images (8 levels of distortion), single/double occluded

distorted images (3 levels of distortion) and white noise distorted images (4

levels of distortion). The constructed LFW face identification dataset will be

made available at ivulab.asu.edu.

• A solution to unconstrained ear recognition is proposed by transfer learning

based on features from pre-trained DNNs.

5.2 Future Work

There are several directions that can be explored in future work:

• The ASRC framework can be extended to solve other uncontrolled image vari-

ations issues, such as extreme pose changes. A possible direction would be

to augment the dictionary this time with different pose variations at different

angles and consider each level as a separate object class. This remains an in-

teresting direction for future work, as this type of variations is not well handled

by the SRC model.

• Similar to face recognition, the unconstrained ear recognition can be investi-

gated in the presence of high levels of noise, blur and occlusion on the AWE

and CVLE unconstrained ear datasets and the proposed ASRC method can be

evaluated on the distorted ear datasets.
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• As deep neural networks are not resilient to quality distortions, distortion-robust

DNN architectures can be designed to mitigate the effects of high levels of blur,

occlusion and additive noise.

• Recognition methods for misaligned unconstrained face/ear images can be im-

proved by designing an alignment method that works on distorted images.
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dihedral blur. IEEE Transactions on Image Processing, 24(3):1036–1045, 2015.

[99] B. Xiao, J. F. Ma, and J. T. Cui. Combined blur, translation, scale and rota-
tion invariant image recognition by radon and pseudo-fourier–mellin transforms.
Pattern Recognition, 45(1):314–321, 2012.

[100] R. Gopalan, S. Taheri, P. Turaga, and R. Chellappa. A blur-robust descriptor
with applications to face recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(6):1220–1226, 2012.

[101] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to
human-level performance in face verification. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1701–1708, 2014.

[102] Y. Sun, X. Wang, and X. Tang. Deep learning face representation from pre-
dicting 10,000 classes. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1891–1898, 2014.

[103] Enrique Fernandez. Performance analysis of deep neural networks on objects
with occlusions. Technical report, Massachussets Institute of Technology, Dec
2016.

[104] T. Ahonen, A. Hadid, and M. Pietikäinen. Face recognition with local binary
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The original LFW dataset [3] consists of 5,749 subjects with images per subject
ranging from 1 to 350 to yield a total of 13,233 images. This dataset, which was con-
structed for face matching rather than identification, is rearranged to generate a face
identification dataset by only selecting the subjects with at least 5 images. There-
fore, the resulting LFW identification dataset consists of 5,088 images corresponding
to 255 subjects. The images are cropped to a size of 45 × 45 and frontalized using
the method proposed in Hassner et al. [10].

In the identification LFW dataset, in addition to the original images, the LFW im-
ages are subjected to different types and levels of distortions, simulating visual quality
distortions that can occur under real-world conditions, including impairments due to
blur, block occlusion and noise. For blur and noise visual impairment types, the level
of impairments were chosen such that the whole range of visual quality is represented
from Poor (strong perceived impairment as compared to original source) to Excellent
(no perceived impairment, original source). Four different levels of impairments are
used for each impairment type, besides the original source. For the block occlusion
impairment type, specific-location and random location contiguous block occlusions
are added with three different sizes, in addition to the original source.

Addition of Distortions

Gaussian Blur

A Gaussian blur function is simulated as in (3.7) and convolved with the test face
images of the three considered datasets. The filter size of the Gaussian blur kernel is
set in number of pixels as [5, 5, 7, 9] for the different blur levels represented by the blur
variance values [1, 2, 4, 8], respectively. The levels of distortions are carefully chosen
to generate images covering a broad range of quality, from imperceptible levels to
high levels of impairment. The dictionary is augmented with the same four Gaussian
blur levels in addition to the original clean images.

Camera Shake Blur

Next unseen distortions, such as camera shake blur, are added. They are more
general than the previously considered Gaussian blur, because the blur kernel is not
symmetric. The 8 blur kernels provided by [1] are used, which were captured from a
real camera, and are convolved with the test images of the three considered datasets.
The blur kernels have different sizes including 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21
× 21, 23 × 23 and 27 × 27. The before last 2 kernels have the same size but different
form. These 8 blur kernels result from the relative motion of a camera mounted on
a tripod (z-axis) with loosened x and y handles. The motion is an in-plane rotation
(rotation around the z-axis), which is a significant component of human hand shake.

Block Occlusions

Several block occlusion sizes ranging from 10 percent to 50 percent are added,
by replacing one or two blocks in each test image with one or two black boxes at
major facial locations, including the eyes, the nose and the mouth. Therefore, the
considered occlusions are either single or double. In addition, random location single
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block occlusions are also added.

White Noise

Finally, the additive Gaussian noise is simulated with zero mean and variance σ2.
Four levels of white Gaussian noise are added to the face images, where the variance
values are [5, 10, 20, 40]. Again, the levels of distortions are carefully chosen to
generate images covering a broad range of quality, from imperceptible levels to high
levels of impairment.
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