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ABSTRACT

Models using feature interactions have been applied successfully in many areas such

as biomedical analysis, recommender systems. The popularity of using feature in-

teractions mainly lies in (1) they are able to capture the nonlinearity of the data

compared with linear effects and (2) they enjoy great interpretability. In this thesis,

I propose a series of formulations using feature interactions for real world problems

and develop efficient algorithms for solving them.

Specifically, I first propose to directly solve the non-convex formulation of the weak

hierarchical Lasso which imposes weak hierarchy on individual features and interac-

tions but can only be approximately solved by a convex relaxation in existing studies.

I further propose to use the non-convex weak hierarchical Lasso formulation for hy-

pothesis testing on the interaction features with hierarchical assumptions. Secondly,

I propose a type of bi-linear models that take advantage of interactions of features for

drug discovery problems where specific drug-drug pairs or drug-disease pairs are of

interest. These models are learned by maximizing the number of positive data pairs

that rank above the average score of unlabeled data pairs. Then I generalize the

method to the case of using the top-ranked unlabeled data pairs for representative

construction and derive an efficient algorithm for the extended formulation. Last but

not least, motivated by a special form of bi-linear models, I propose a framework that

enables simultaneously subgrouping data points and building specific models on the

subgroups for learning on massive and heterogeneous datasets. Experiments on syn-

thetic and real datasets are conducted to demonstrate the effectiveness or efficiency

of the proposed methods.
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Chapter 1

BACKGROUND AND INTRODUCTION

1.1 Basics for Models Using Feature Interactions

Feature interactions have been widely used and studied in communities of statis-

tics, machine learning and data mining. However, the concept of interaction can be

ambiguous and general. Existing study (Jakulin, 2005) categorizes the meanings of

interaction to two senses: 1) ontic sense which refers to an ambiguous or bidirectional

causal relationship and 2) epistemic sense which refers to a type of association, cor-

relation or entanglement. This thesis focuses on the interactions in epistemic sense.

An feature interaction may involve multiple features and it can be flexibly defined

in mathematical form. A k-way interaction for k features x1, x2, . . . , xk can be defined

by a function I : Rk → R:

x1,2,...,k = I(x1, x2, . . . , xk). (1.1)

The most commonly used operator to define feature interaction is the multiplication

operator. For example, the interaction of k features can be written as x1 · x2 · . . . · xk,

which can be viewed as a k-th order monomial term. I mainly focus on the interactions

defined by multiplicative operator in this thesis.

Consider a linear regression model with the outcome variable y and d features

x1, . . . , xd:

y = w0 +
d∑
i=1

xiwi + ε, (1.2)

where w0 is the bias term, wi, i = 1 . . . , d is the coefficient and ε ∼ N(0, σ2) is

the noise term. In many real-world applications, a simple linear regression model is

1



not sufficient for predictive or explanatory purposes. One strategy to capture the

nonlinearity of the data which has recently received increasing attention in statistics

and machine learning community is to include higher-order interaction terms into the

model (Hastie et al., 2009; Montgomery et al., 2012). For example, the regression

model including terms of order-2 and lower has the following form:

y = w0 +
d∑
i=1

xiwi +
1

2

d∑
i=1

d∑
j=1

xixjWi,j + ε, (1.3)

where the cross-product term xixj, i 6= j refers to as the 2-way interaction variable

(one may view x2
i as a special interaction variable), and w′is and W ∈ Rd×d are

called the main effect and interaction effect coefficients respectively. In matrix form,

equation (1.3) can be written as:

y = w0 + wTx +
1

2
xTWx + ε, (1.4)

where x = [x1, x2, . . . , xd]
T ∈ Rd, w = [w1, w2, . . . , wd]

T ∈ Rd and the intercept term

w0 is ommited here for notational simplicity. Besides the benefits of increasing the

complexity of a linear model, an interaction term enjoys great interpretability. That

is, an interaction xi ·xj represents the effect that is produced by changing one feature

(say xi) depends on the level of the other feature (xj) (Montgomery et al., 2012).

A bi-linear regression model can be viewed as a general model for two-way inter-

actions of which the formulation is written as

y = w0 +
d∑
i=1

xiwi +

p∑
j=1

ziui +
d∑
i=1

p∑
j=1

xizjWi,j + ε, (1.5)

where coefficient wi, uj model the linear terms xi, zj, Wi,j models the interaction

xi · zj and ε is the error term. Analogeously, one may write (1.5) in a matrix form:

y = w0 + wTx + uTz + xTWz + ε, (1.6)

2



where y is the outcome variable, x = [x1, x2, . . . , xd]
T ∈ Rd and z = [z1, z2, . . . , zp]

T ∈

Rp are the feature vectors, w = [w1, w2, . . . , wd]
T ∈ Rd and u = [u1, u2, . . . , up]

T ∈ Rp

are coefficient vectors. It is straightforward that model (1.5) can be degenerated to

(1.3)with z replacd by x.

Applications with interaction regression models are omnipresent. For example, in

psychological study, the effectiveness of using 3-way interactions was demonstrated

in testing psychological hypothesis (Dawson and Richter, 2006); there are strong evi-

dences found that genetic-environment interactions have significant effects on conduct

disorders (Cadoret et al., 1995); Eley et al. (2004) found a couple of evidences of gene-

environment interactions in predicting depression status; the interaction between con-

tinuance commitment and affective commitment was found significant in predicting

job withdraw intentions and absenteeism (Somers, 1995); Gatt et al. (2009) discov-

ered that brain-derived neurotrophic factor interacts with early life stress in predicting

cognitive features of depression and anxiety.

1.2 Hierarchical Structures for Modeling Feature Interactions

The use of higher order interaction terms leads to data of high dimensionality.

For instance, for regression model (1.2), if one wants to add all terms of order-k

and lower, then there will be a total of O(dk) variables, which is computationally

demanding for parameter estimation even when k and d are fairly small. Thus, an

efficient approach that is able to deal with huge dimensionality is desired in such

cases, and the sparse learning methodology is one promising approach for tackling

such problem (Tibshirani, 1996; Koh et al., 2007; d’Aspremont et al., 2004; Candes

and Romberg, 2006; Zou et al., 2006).

In general, not all of the main effects and interactions are of interest, thus it is

critical to select the variables of great significance. One simple approach for high

3



dimensional interaction regression is to directly apply the Lasso (Tibshirani, 1996).

In the case of 2-way interactions, the “all-pairs Lasso” (Bien et al., 2013) optimizes

the following objective:

min
w0,w,W

1

2n

n∑
i=1

‖yi − w0 −wTxi +
1

2
xTi Wxi‖2

2 + λ‖w‖1 + λ‖W‖1, (1.7)

where n is the sample size, ‖w‖1 =
∑

i |wi|, ‖W‖1 =
∑

i,j |Wi,j| and λ is the penalty

parameter. The l1-norm pernalties (also known as the Lasso penalties (Tibshirani,

1996)) are well known to result in sparse solutions to the coefficients. However, the

all-pairs Lasso estimator does not account for any hierarchical structural information

between main effects and interactions which has been shown to be very effective

in constraining the search space and identifying important individual features and

interactions (Bien et al., 2013; Zhao et al., 2009; Radchenko and James, 2010; Yuan

et al., 2009; Choi et al., 2010). Specifically, the hierarchical constraint requires that

an interaction term xixj is selected in the model only if the main (parent) effects xi

and/or xj are included. The herarchical structures are usually categorized into two

types (Chipman, 1996). The strong hierarchy requires that the interaction effects are

non-zero only if the corresponding main effects are non-zero. In the example of two-

way interactions, strong hierarchy indicates that Wi,j 6= 0 only if wi 6= 0 AND wj 6= 0.

Different from the strong hierarchy, the weak hierarchy between the main effects and

the interaction effects requires that an interaction is included in the model only if at

least one of the main effects is included in the model, i.e., Wi,j 6= 0 only if wi 6= 0

OR wj 6= 0. The weak hierarchy can be considered as a structure in between the

strong hierarchy and no hierarchical structure (Bien et al., 2013; Yuan et al., 2009;

Zhao et al., 2009). Specifically, weak hierarchy allows those interactions with only

one significant “parent” (main effect) to be included in the model. Strong theoretical

properties have been established for such hierarchical model (Yuan et al., 2009; Zhao

4



et al., 2009). The hierarchical structure is supported by the argument that large main

effects may result in interactions of more importance, and it is desired in a wide range

of applications in engineering and underlying science.

Traditional approaches to fit such a model typically follow the following two-step

procedures (Montgomery et al., 2012):

• Fit a linear regression model that only includes the main effects and then select

the significant features;

• Fit the reformulated model with the identified individual features and the in-

teractions constructed via domain knowledge.

Since even a small d may lead to a huge amount of interaction variables, the two-step

procedure is still time-consuming in many applications. Recently, there have been

growing research efforts on imposing the hierarchical structure on main effects and

interactions in the regression model with novel sparse learning methods.

Yuan et al. (2009) proposed a type of non-negative garrote method to achieve the

strong and weak hierarchical structures by imposing constraints

wi ≥ 0, Wi,j ≥ 0, Wi,j ≤ min(wi, wj)

and

wi ≥ 0, Wi,j ≥ 0, Wi,j ≤ wi + wj

to the regression objective respectively. Zhao et al. (2009) proposed the Composite

Absolute Penalties (CAP) family which take advantege of the properties of norm

penalties at overlapping and non-overlapping groups to impose heredity structures

for interaction models. The core principle of hierarchical CAP is to penalize both the

groups of the desendents effects without their parents and the groups the descendent

effects and their parents appear together. The former non-overlapping group penalty

5



enables variable selection while the latter overlapping group penalty achieves the

hierarchical structures. In the example of 2-way interactions, the CAP uses the

following overlapping group pattern to achieve the hierarchichal structures:

λ
∑
i 6=j

(|Wi,j|+ ‖[wi, wj,Wi,j]) ‖γ,

where γ > 1, λ controls the penalty amount. Motivated by closing ideas, Radchenko

and James (2010) invented the VANISH algorithm which adopts a analogous principle

to penalize nested groups

d∑
j=1

(λ1‖ [wj,W·,j] ‖2 + λ2‖W·,j‖1) ,

to achieve the hierarchical structure between the interaction effects and main effects.

Recently, Bien et al. (2013) have proposed the strong hierarchical Lasso to achieve

both strong heredity structural solutions and simultaneous feature selection which

adds a set of constraints, i.e.,

W = W T , ‖W·,j‖1 ≤ |wj|, j = 1, . . . , d,

to the all pairs Lasso formulation (1.7). Meanwhile, they remove the symmetric

constraints to obtain a solution with the weak hierarhical structure. The hierarchical

constraints can be equally expressed as a penalty in the form of

λ
∑
j

(
max(|wj|, ‖W·,j‖1) +

1

2
‖W·,j‖1‖

)
which is closing to the spirit of CAP and VANISH. In contrast to the above works

which fulfill the hierarchical structure via solving convex problems, Choi et al. (2010)

proposed a non-convex formulation for strong hierarchy by modeling the coefficient

of an interaction term is a product of a scalar and main effect coefficients, i.e.,

Wi,j = γi,jwiwj,
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where γi,j is newly introduced coefficient. The Lasso penalty is applied on both

coeffciients γi,j’s and w which results in strong hierarchical structures. The non-

convex formulation is solved via alternating update strategies.

1.3 Drug Discovery Problems - From Data Pair Interactions to Feature Interactions

Drug discovery is a time-consuming and laborious process. By conservative esti-

mates, it now takes at least 10 to 15 years and $500 million to $2 billion to bring a

single drug to market (Adams and Brantner, 2006). Furthermore, there is a widening

productivity gap: research and development spending continues to increase, yet the

number of new therapeutic chemical and biological entities approved by the US FDA

has been declining since the late 1990s. The lack of efficacy (i.e., whether the drug

works better than alternatives) and safety issues (i.e., whether the drug brings serious

adverse event and/or drug-drug interactions) are the two major reasons for which a

drug fails clinical trials, each accounting for around 30% of failures (Hopkins, 2008).

Thus the development of computational techniques to predict drug effects and drug-

drug interactions holds great promise for reducing the attrition rate and improving

the drug discovery process.

Drug repositioning is the process of finding additional indications (i.e., diseases)

for existing drugs. At the same time, as the number of approved drugs is continuously

increasing, Drug-Drug Interaction (DDI) has become a serious health and safety issue

which draws great attention from both academia and industry. Numerous methods

have also been developed for predicting potential DDIs in the last decade (Iyer et al.,

2014; Tatonetti et al., 2011; Luo et al., 2014).

Both drug repositioning and DDI prediction can be regarded as a binary dyadic

prediction problem, which aims to predict the “label” of a data pair. For the drug

repositioning problem, a data pair would be composed of a drug and a disease, and its
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label is +1 if the drug can treat the disease, and −1 otherwise. For DDI prediction,

a data pair includes two different drugs, and its label is +1 if there is an interaction

between the two drugs, and −1 otherwise. In both problems, the most general setting

is that we have a small set of positive (i.e., +1 labeled) data pairs, while the labels

of the remaining data pairs are unknown. Most of the existing computation based

methodologies treat those unknown data pairs’ labels in analogous applications as −1

(Natarajan and Dhillon, 2014; Gonen and Kaski, 2014).

For the dyadic prediction problem, the learning task is to find a function f :

Rd1 × Rd2 → R for a data pair (x, z) ∈ Rd1 × Rd2 :

y = f(x, z), (1.8)

where y is the label to be predicted. The common choice for function f is the bilinear

function, i.e.,

f(x, z) = xTWz, (1.9)

where W ∈ Rd1×d2 is the coeffcieint matrix. Many real-world applications achieve

successful prediciton performances by adopting the bilinear models. Natarajan and

Dhillon (2014) introduced an inductive matrix completion method (Jain and Dhillon,

2013) to predict the associations of gene-disease pair using a bilinear model where

the coefficient matrix is fatorized as

W = UHT (1.10)

and the unknown U , H are solved via alternating minimization. Analogously, Yan

et al. (2014) proposed to modeling the click through rate (CTR) problem with a

bilinear model where the user feature vector and the advertisement feature vector

consist of a data pair. The coefficient matrix W was also factorized as (1.10) but

penalized with group-Lasso penalties. One may observe that the bilinear model es-
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sentially makes predictions of data pairs (x, z) using their feature interactions xizj’s

based on (1.5).
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Chapter 2

THE WEAK HIERARCHICAL LASSO

2.1 Introduction

Our previous empirical studies have demonstrated the stronger predictive power

of weak hierarchical model in biomedical applications (Li et al., 2014a). By imposing

restrictions of the weak hierarchy and taking advantage of the Lasso penalty (Tib-

shirani, 1996) that leads to sparse coefficients, the weak hierarchical Lasso is able to

simultaneously attain a hierarchical solution and identify important main effects and

interactions. However, the set of constraints restricting hierarchical structures make

the problem non-convex; the algorithm proposed by (Bien et al., 2013) aims to solve

a convex relaxation. The convex relaxation, however, requires additional conditions

to guarantee the weak hierarchy, which is not desirable.

In this thesis, we propose to directly solve the weak hierarchical Lasso using

the GIST (General Iterative Shrinkage and Thresholding) optimization framework

recently proposed by (Gong et al., 2013a). The GIST framework has been shown to

be highly efficient for solving large-scale non-convex problems. The most critical step

in GIST is to compute a sequence of proximal operators (Parikh and Boyd, 2013).

We first show that the proximal operator related to weak hierarchical Lasso admits

an analytical form solution by factorizing unknown coefficients into sign matrices and

non-negative coefficients. However, a naive method of computing the subproblem of

the proximal operator leads to a quadratic time complexity, which is not desirable for

large-size problems. To this end, we further develop an efficient algorithm for solving

the subproblems, which achieves a linearithmic time complexity. We evaluate the
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efficiency and effectiveness of the proposed algorithm and compare it with the convex

relaxation (Bien et al., 2013) and other state-of-the-art methods using synthetic and

real data sets. Our empirical study demonstrates the high efficiency of our algorithm

and the superior predictive performance of weak hierarchical Lasso over the competing

methods.

Furthermore, we propose to directly use the non-convex formulation for hierarchi-

cal testing of interactions (Bien et al., 2015). Significance testing of interactions has

always been an important but challenging problem in statistics. Starting from “back-

ward model”, Simon and Tibshirani (2012) proposed a permutation-based method,

called TMIcor, for the testing of pairwise interactions for binary classification prob-

lems. In particular, an interaction between feature i and feature j is tested as signif-

icant if the absolute difference of the Fisher transformed sample correlation between

two classes is greater than a threshold. The test statistics in TMIcor can be modeled

as the largest Lasso penalty resulting in nonzero coefficients. In order to incorporate

structural information to the testing of interactions, Bien et al. (2015) proposed the

convex hierarchical testing framework which adopts the convex relaxation of weak

hierarchical Lasso. In this thesis, instead of using convex relaxation, we propose to

directly use the non-convex formulation for hierarchical testing of interactions and

show the test statistics in this framework admit closed form solutions. We conduct

simulation studies to compare the non-convex formulation with the convex relaxation

and the results show the superiority of the non-convex formulation when a weak

hierarchical structure exists in the data.

The remaining of this chapter is organized as follows: we give a brief review of

the weak hierarchical Lasso and its convex relaxation. Then we derive the closed

form solution to the proximal operator of the original weak hierarchical Lasso by

decomposing the unknown coefficients into signs and the non-negative coefficients.
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We next show how the associated proximal operator can be computed efficiently. We

introduce the non-convex formulation for hierarchical testing of interactions and show

the closed form solutions to corresponding test statistics and report the experimental

results at the end.

2.2 The Weak Hierarchical Lasso

In this section, we briefly review the weak hierarchical Lasso and its corresponding

convex relaxed formulation (Bien et al., 2013). Suppose we are given n pairs of data

points {(xi, yi)}ni=1 ⊂ Rd × R. Let y ∈ Rn be the vector of outcome and X ∈ Rn×d

be the design matrix. Let Z ∈ Rn×(d·d) be the matrix of interactions where

Z =
[
Z(1), Z(2), . . . , Z(d)

]
,

Z(i) ∈ Rn×d and each column of Z(i), i = 1, . . . d is an interaction, i.e., Z
(i)
·,j = X·,i ◦

X·,j (◦ is the operator of element-wise product). Thus, Z(i) captures the pairwise

interactions between the i-th feature and all d features. Note that, we include the

quadratic terms x2
i in the interaction model for clearer presentation, however our

analysis is still applicable if they are not included in the model. By assuming that

y is centered and X,Z are column-wise normalized to zero mean and unit standard

deviation, we can set the bias term w0 = 0. Thus, in matrix form, the pairwise

interaction regression model can be expressed as

y = Xw +
1

2
Z · vec(W ) + ε, (2.1)

where ε ∼ N(0, σ2I) and “vec” is the vectorization operator that transforms a matrix

to a column vector by stacking the columns of the matrix. Thus, the least square loss

function of (2.1) is given by:

` (w,W ) =
1

2

∥∥∥∥y −Xw − 1

2
Z · vec(W )

∥∥∥∥2

2

. (2.2)
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Then, the weak hierarchical Lasso formulation takes the form of (Bien et al., 2013):

min
w,W

` (w,W ) + λ‖w‖1 +
λ

2
‖W‖1

s.t. ‖W·,j‖1 ≤ |wj| for j = 1, . . . , d,

(2.3)

where ‖W‖1 =
∑

i,j |Wi,j| and λ is the Lasso penalty parameter.

Note that the constraints in (2.3) guarantee the weak hierarchical structure since

the coefficient Wi,j of interaction xixj is non-zero only if at least one of its main effects

is included in the model, i.e., wi 6= 0 or wj 6= 0. However, the imposed hierarchical

constraints make problem (2.3) non-convex. Instead of solving (2.3), Bien et al. (2013)

proposed to solve the following relaxed version:

min
w+,w−,W

`
(
w+ −w−,W

)
+ λ1T (w+ + w−) +

λ

2
‖W‖1

s.t. ‖W·,j‖1 ≤ w+
j + w−j

w+
j ≥ 0

w−j ≥ 0


for j = 1, . . . , d,

(2.4)

where 1 represents a column vector of all ones. In view of (2.4), we can see that

‖w‖1 is relaxed to w+ + w−. Problem (2.4) is convex and can be solved by many

efficient solvers such as FISTA (Beck and Teboulle, 2009). However, Bien et al.

(2013) showed that problem (2.4) needs an additional ridge penalty to guarantee the

weak hierarchical structure of the estimator. In this article, we propose an efficient

algorithm which directly solves the non-convex weak hierarchical Lasso formulation

in (2.3).

2.3 The Proposed Algorithm

In this section, we propose an efficient algorithm named “eWHL”, which stands

for “efficient Weak Hierarchical Lasso”, to directly solve the weak hierarchical Lasso.
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eWHL makes use of the optimization framework of GIST (General Iterative Shrinkage

and Thresholding) due to its high efficiency and effectiveness for solving non-convex

sparse formulations. One of the critical steps in GIST is to compute the proximal

operator associated with the penalty functions. As one of our major contributions, we

first factorize the unknown coefficients into the product of their signs and magnitudes;

and then show that the proximal operator of (2.3) admits a closed form solution. We

further present an efficient algorithm for computing the proximal operator associated

with the non-convex weak hierarchical Lasso. The time complexity of solving each

subproblem of the proximal operator can be reduced from quadratic to linearithmic.

2.3.1 The Closed Form Solution to the Proximal Operator

In this section, we show how to derive the closed form solution to the proximal

operator associated with (2.3) in detail. Let

P =
{

(w,W ) , w ∈ Rd, W ∈ Rd×d
∣∣∣ ‖W·,j‖1 ≤ |wj|, j = 1, . . . , d

}
and the indicator function be defined by

R(w,W ) =


λ‖w‖1 +

λ

2
‖W‖1 , if (w,W ) ∈ P

+∞, if (w,W ) /∈ P
. (2.5)

Thus, problem (2.3) can be solved by iteratively generating a sequence
{
w(k),W (k)

}
by:

(
w(k+1),W (k+1)

)
= arg min

w, W
`
(
w(k),W (k)

)
+
〈
∇w`

(
w(k),W (k)

)
, w −w(k)

〉
+
〈
∇W `

(
w(k),W (k)

)
, W −W (k)

〉
+
t(k)

2

∥∥w −w(k)
∥∥2

2

+
t(k)

2

∥∥W −W (k)
∥∥2

F
+R(w,W ),

(2.6)
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where t(k) > 0.

Simple algebraic manipulation leads to

(
w(k+1),W (k+1)

)
= arg min

w, W

1

2

∥∥w − v(k)
∥∥2

2
+

1

2

∥∥W − U (k)
∥∥2

2
+

1

t(k)
R(w,W ), (2.7)

where

v(k) =w(k) −∇wL
(
w(k),W (k)

)
/t(k),

U (k) =U (k) −∇WL
(
w(k),W (k)

)
/t(k).

Problem (2.7) is the proximal operator problem associated with weak hierarchical

Lasso. Because R(w,W ) is an indicator function, we can rewrite the proximal oper-

ator (2.7) as

arg min
w, W

1

2
‖w − v‖2

2 +
1

2
‖W − U‖2

F +
λ

t
‖w‖1 +

λ

2t
‖W‖1

s.t. ‖W·,j‖1 ≤ |wj| for j = 1, . . . , d.

(2.8)

We omit the superscripts for notational simplicity.

The vector of main effect coefficients can be written as

w = s(0) ◦ w̃,

where w̃j = |wj|, j = 1, . . . , d and s(0) ∈ Rd is a column vector whose j-th element is

the sign of wj, i.e., s
(0)
j = sign(wj). We define

sign(w) =


1 if w > 0

−1 if w < 0

0 if w = 0

, (2.9)

and we assume in this article that the sign operator is applied on vectors or matrices

elementwise. Similarly, we factorize each column of the interaction coefficient matrix
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as W·,j = s(j) ◦ W̃·,j, j = 1 . . . , d, where W̃i,j = |Wi,j| and s(j) ∈ Rd is the sign vector.

Then, the proximal operator (2.8) is equivalent to

arg min
w, W

1

2
‖w − v‖2

2 +
1

2
‖W − U‖2

F +
λ

t
‖w‖1 +

λ

2t
‖W‖1

s.t. ‖W·,j‖1 ≤ |wj|

wj = s
(0)
j ◦ w̃j

W·,j = s(j) ◦ W̃·,j

w̃j ≥ 0

W̃·,j � 0


for j = 1, . . . , d,

(2.10)

where W̃ , w̃ and s(j), j = 0, . . . , d are the unknown variables, � is defined as the

element-wise “greater than or equal to” comparison operator, i.e., for a,b ∈ Rd, a �

b ⇔ ai ≥ bi, i = 1 . . . , d. Therefore, the solutions to the original weak hierarchical

Lasso can be obtained by iteratively solving (2.10). Note that the amounts of l1

penalties on w and W can be different. Here we use the same penalty parameter λ

for notational simplicity and consistency with the original formulation of weak hierar-

chical Lasso (2.3) studied in (Bien et al., 2013). Though the factorization introduces

more variables and constraints, we show that the resulting proximal operator admits

a closed form solution. More importantly, we show that each sub-problem of the

proximal operator can be solved by the proposed eWHL algorithm in linearithmic

time. Indeed, the factorization of w and W into their signs and magnitudes is the

first key to directly solve the original weak hierarchical Lasso.

The proximal operator in (2.10) can be decoupled into d subproblems as follows:

arg min
w̃j ,s

(0)
j ,W̃·,j ,s(j)

1

2

(
s

(0)
j w̃j − vj

)2

+
1

2

∥∥∥s(j) ◦ W̃·,j − U·,j
∥∥∥2

2
+
λ

t
w̃j +

λ

2t
1T W̃·,j

s.t.
1T W̃·,j ≤ w̃j

W̃·,j � 0

 , for j = 1, . . . , d.

(2.11)
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Next, we show that (2.11) has a closed form solution. Since

1

2
(wj − vj)2 =

1

2

(
s

(0)
j w̃j − vj

)2

=
1

2

(
s

(0)
j

(
s

(0)
j w̃j − vj

))2

=
1

2

(
w̃j − s(0)

j vj

)2

and w̃j ≥ 0, s
(0)
j must have the same sign as vj, that is, wj has the same sign as vj.

Otherwise, the value of 1
2

(
w̃j − s(0)

j vj

)2

will not achieve the minimum. Similarly, one

can show that s
(j)
i , i.e., the sign of Wi,j, must be the same as the sign of Ui,j. Thus,

we have s(0) = sign(v) and s(j) = sign (U·,j) for j = 1, . . . , d. Next, we show how to

compute w̃ and W̃ .

By letting ṽj = s
(0)
j vj and Ũ·,j = s(j) ◦U·,j, each subproblem (2.11) is equivalent to

arg min
w̃j ,W̃·,j

1

2
(w̃j − ṽj)2 +

1

2

∥∥∥W̃·,j − Ũ·,j∥∥∥2

2
+
λ

t
w̃j +

λ

2t
1T W̃·,j

s.t.
1T W̃·,j ≤ w̃j

W̃·,j � 0

.

(2.12)

It can be verified that solving problem (2.12) is equivalent to:

min
w̃j ,W̃·,j

1

2
(w̃j − qvj)

2 +
1

2

∥∥∥W̃·,j − qU·,j

∥∥∥2

2

s.t.
1T W̃·,j ≤ w̃j

W̃·,j � 0

,

(2.13)

where qvj = ṽj − λ
t
1 and qU·,j = Ũ·,j − λ

2t
1.

We solve (2.13) by deriving its dual problem. Let γ ≥ 0 be the Lagrangian

multiplier dual variable of the first inequality constraint. Define the Lagrangian

function of (2.13) as:

L(γ, w̃, q̃) =
1

2
(w̃ − qv)2 +

1

2
‖q̃− qu‖2

2 + γ
(
1T q̃− w̃

)
where we write q̃ for W̃·,j and qu for qU·,j and omit the subscripts on w̃ and ṽ for

simplicity with slight abuse of notation. Since the constraint 1T q̃ ≤ w̃ is affine, the
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strong duality holds for the minimization problem (2.13). Thus, the dual problem of

(2.13) is:

max
γ≥0

min
w̃,q̃�0

1

2
(w̃ − qv)2 +

1

2
‖q̃− qu‖2

2 + γ
(
1T q̃− w̃

)
. (2.14)

By rearranging the terms, (2.14) is equivalent to:

max
γ≥0

min
w̃,W̃�0

1

2
(w̃ − (qv + γ))2 +

1

2
‖q̃− (qu− γ1)‖2

2 + h(γ), (2.15)

where

h(γ) = −qvγ − 1

2
γ2 + γ1T qu− 1

2
γ21T1.

For fixed γ, in order to obtain the minimum of the objective function in (2.15), we

conclude that

w̃ = max(qv + γ, 0),

q̃ = max(qu− γ, 0).

(2.16)

Therefore, if we obtain a dual optimal solution γ∗ that maximizes the dual problem

(2.15), then we can readily compute the closed form solution to (2.11) and thus to

(2.10). That is, w∗ = s(0) ◦ w̃∗, W ∗
·,j = s(j) ◦ W̃ ∗

·,j where s(0) = sign(vj), s(j) =

sign (U·,j) , j = 1, . . . , d, w̃∗ and columns of W̃ ∗ are obtained via (2.16) at the optimal

dual solution γ∗.

2.3.2 The Dual Optimal Solution

Next, we show how to efficiently compute the dual optimal solution γ∗. First, we

sort −qv and qui, i = 1, . . . , d in ascending order. Without loss of generality, we assume:

qu1 ≤ . . . ≤ quL ≤ −qv ≤ quL+1 ≤ . . . ≤ qud. (2.17)

There are four possible cases about the locations of γ. We discuss how to identify

the optimal dual solution γ∗ in each of the four cases.
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Case 1 :

When . . . ≤ quG ≤ γ ≤ quG+1 ≤ . . . ≤ −qv ≤ . . ., the objective in (2.15) at γ∗ becomes

1

2

G∑
i=1

(qui − γ)2 +
1

2
(qv + γ)2 + h(γ)

=
1

2

G∑
i=1

qu2
i +

d∑
i=G+1

γqui −
d−G

2
γ2 +

1

2
qv2.

(2.18)

Function (2.18) is a quadratic function with respect to γ and the unconstrained

maximum is achieved at the axis of symmetry point
∑d

i=G+1 qui
d−G ≥ quG+1. Since γ falls

in the interval [quG, quG+1], we set

γ = quG+1

to achieve the maximum objective value of (2.15). It can be further concluded that,

in Case 1, among all the intervals on the left of −qv, the maximum objective value of

(2.15) is achieved at the quG.

Case 2:

When . . . ≤ quL ≤ γ ≤ −qv ≤ quL+1 ≤ . . ., it turns out that the objective value in

(2.15) at γ is similar to (2.18):

1

2

L∑
i=1

qu2
i +

d∑
i=L+1

γqui −
d− L

2
γ2 +

1

2
qv2. (2.19)

By a similar argument, we can set γ = −qv to achieve the maximum. Combining the

results of Case 1 and Case 2, we conclude that, we may only consider γ in the range

[max (−qv, 0) ,+∞]. Note that when L = d, that is qud ≤ γ ≤ −qv, (2.19) is a constant

1
2

∑d
i=1 qu2

i + 1
2
qv2, and thus γ can be any value in the interval [qud,−qv].

Case 3:

When . . . ≤ quL ≤ −qv ≤ γ ≤ quL+1 ≤ . . ., the value of the objective function in (2.15)
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at γ∗ becomes

1

2

L∑
i=1

(qui − γ)2 + h(γ)

=
1

2

L∑
i=1

qu2
i + γ

(
d∑

i=L+1

qui − qv

)
− d+ 1− L

2
γ2.

(2.20)

Again, (2.20) is a quadratic function of γ and
∑d

i=L+1 qui−qv

d+1−L ≥ −qv. If
∑d

i=L+1 qui−qv

d+1−L ≥ quL+1,

the maximum is achieved at

γ = quL+1,

otherwise the maximum is achieved at

γ =

∑d
i=L+1 qui − qv

d+ 1− L
.

Case 4:

When . . . ≤ −qv ≤ . . . ≤ quG ≤ γ ≤ quG+1 ≤ . . ., the objective value in (2.15) is similar

to (2.20):

1

2

G∑
i=1

qu2
i + γ

(
d∑

i=G+1

qui − qv

)
− d+ 1−G

2
γ2. (2.21)

If
∑d

i=G+1 qui−qv

d+1−G ≥ quG+1, then the maximum is achieved at

γ = quG+1;

If
∑d

i=G+1 qui−qv

d+1−G ≤ quG, then the maximum is achieved at

γ = quG;

If quG ≤
∑d

i=G+1 qui−qv

d+1−G ≤ quG+1, the maximum is achieved at

γ =

∑d
i=G+1 qui − qv

d+ 1−G
.
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Since we know exactly the value of γ for all the four cases, one naive way to

find the optimal γ∗ is to enumerate all the possible locations and pick the one that

maximizes the objective function value in (2.15). However, evaluating the objectives

for all possible locations from max (−qv, 0) to qud leads to a quadratic time algorithm

for solving (2.15). Interestingly, we show below that the time complexity of solving

(2.15) can be reduced to O(d log(d)).

Let us first list some useful properties as follows:

Given the ordered sequence (2.17):

• Property 1:

The maximum objective value of (2.15) in Case 3 is larger than the one in Cases

1 & 2;

• Property 2:

In Case 4, for a pair of adjacent intervals [quG−1, quG] and [quG, quG+1], if
∑d

i=G+1 qui−qv

d+1−G ≥

quG+1 for [quG, quG+1], then
∑d

i=G qui−qv

d+1−(G−1)
≥ quG for [quG−1, quG];

• Property 3:

In Case 4, if
∑d

i=G+1 qui−qv

d+1−G ≥ quG+1 for [quG, quG+1], the maximum objective value of

(2.15) in [quG, quG+1] is larger than or equal to the one in [quG−1, quG].

• Property 4: In Case 4, for a pair of adjacent intervals [quG−1, quG] and [quG, quG+1],

if we have
∑d

i=G qui−qv

d+1−(G−1)
≤ quG−1 for [quG−1, quG], then

∑d
i=G+1 qui−qv

d+1−G ≤ quG for [quG, quG+1].

• Property 5:

In Case 4, if
∑d

i=G qui−qv

d+1−(G−1)
≤ quG−1 for [quG−1, quG], the maximum objective value of

(2.15) in [quG−1, quG], is larger than or equal to the one in [quG, quG+1].

• Property 6:

In Case 4, if quG ≤
∑d

i=G+1 qui−qv

d+1−G ≤ quG+1 for [quG, quG+1], then
∑d

i=G qui−qv

d+1−(G−1)
≥ quG for
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[quG−1, quG] and
∑d

i=G+2
qUi−qv

d+1−(G+1)
≤ quG+1 for [quG+1, quG+2], and the maximum value of

(2.15) in the interval [quG, quG+1] is larger than or equal to the ones in its neighbor

intervals.

Properties 2-6 also apply for adjacent intervals [−qv, quL+1] and [quL+1, quL+2] dis-

cussed in Case 3.

We omit the proof of Properties 1-6 since they are direct applications of 1-D

quadratic optimization. Property 1 indicates that it is sufficient for the algorithm to

start searching γ∗ from Case 3. Properties 2 & 3 imply that, for some interval, if the

axis of symmetry is on the right hand side of the interval, then one only needs to

consider the intervals to the right. Similarly, Properties 4 & 5 indicate that, for some

interval, if the axis of symmetry is on the left hand side of the interval, then one only

needs to consider the intervals to the left. Property 6 combined with Properties 1-5

imply that, for certain interval, if it contains the axis of symmetry, then γ∗ is the axis

of symmetry point. Thus, we can draw the following conclusion:

(1) if max (qud,−qv) < 0, then

γ∗ = 0;

(2) if −qv > qud, then

γ∗ = max(−qv, 0);

(3) if quG ≤
∑d

i=G+1 qui−qv

d+1−G ≤ quG+1 for a certain interval [quG, quG+1], then

γ∗ = max

(∑d
i=G+1 qui − qv

d+ 1−G
, 0

)
.

At each move, the axis of symmetry
∑d

i=G+1 qui−qv

d+1−G can be calculated by a constant

operation based on the value from the last step, and the time complexity of searching

γ∗ reduces from quadratic to O(d log(d)) as the computation is dominated by the

sorting operation. Once γ∗ is determined, we can compute w̃∗ and W̃ ∗ by (2.16). Note
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Algorithm 1: Computation of the Proximal Operator of Weak Hierarchical

Lasso
Input: v ∈ Rd, U ∈ Rd×d, t ∈ R+, λ ∈ R+

Output: w ∈ Rd, W ∈ Rd×d

1: qv = sign(v) ◦ v − λ
t
1; qU = sign(U) ◦ U − λ

2t
11T ;

2: for j = 1 to d do

3: c = −qvj;

4: Sort qU·,j to get a sequence S in ascending order where S1 ≤ S2 ≤ . . . ≤ Sd;
5: if Sd < 0 and c < 0 then

6: w̃j = 0; W̃·,j = 0;

7: else

8: if Sd < c then

9: γ = max(c, 0);

10: else

11: k = d;

12: while 1 do

13: c = c+ Sk; k = k − 1; γ = c/(d+ 1− k);

14: if γ ≥ 0 then

15: if γ ≥ Sk then

16: break;

17: end if

18: else

19: γ = 0; break;

20: end if

21: end while

22: end if

23: w̃j = max(qvj + γ,0); W̃·,j = max
(

qU·,j − γ,0
)

;

24: end if

25: end for

26: w = sign(v) ◦ w̃; W = sign(U) ◦ W̃ ;
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that, the subproblem of the proximal operator associated with the convex relaxation

(Bien et al., 2013) is solved by searching for the dual variable in a different way with

time complexity O(d2).

Algorithm 2: The Efficient Weak Hierarchical Lasso Algorithm (eWHL)

Input: X ∈ Rn×d, Z ∈ Rn×(d·d), λ ∈ R+, η > 1

Output: w ∈ Rd, W ∈ Rd×d

1: Initialize k ← 0 and starting points w(0) and W (0);

2: repeat

3: Choose the step size t(k) by the BB Rule

4: repeat

5: v(k) = w(k) −∇w`
(
w(k),W (k)

)
/t(k);

U (k) = U (k) −∇W `
(
w(k),W (k)

)
/t(k);

Solve
(
w(k+1),W (k+1)

)
by Algorithm 1 with input

(
v(k), U (k), t(k), λ

)
;

t(k) ← ηt(k);

6: until line search criterion is satisfied

7: k ← k + 1

8: until stop criterion is satisfied

In summary, we reformulate the proximal operator for the original weak hier-

archical Lasso by factorizing the unknown coefficients. The reformulated proximal

operator is shown to admit a closed form solution, which enables directly solving the

weak hierarchical Lasso problem. Moreover, the subproblem of the proximal opera-

tor can be computed efficiently with a time complexity of O(d log(d)). The detailed

algorithm for solving the proximal operator (2.10) is described in Algorithm 1. We

give the details of eWHL algorithm in Algorithm 2. Following (Gong et al., 2013a),

we choose the step size t(k) by the Barzilai-Borwein (BB) Rule.
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2.4 Hierarchical Testing

Recently, a permutation-based method named TMIcor, for testing interactions has

been proposed for binary classification problems (Simon and Tibshirani, 2012). In

contrast to model-based methods which select conditional interactions, TMIcor starts

from considering interactions from the “backward model” and identifies marginal

interactions instead (Simon and Tibshirani, 2012). In TMIcor, the null hypothesis

for an interaction between feature i and feature j is that the correlations between

them in the two classes are the same, and the test statistic is the size of the difference

of Fisher transformed sample correlation. Significant interactions in TMIcor are those

with test statistic greater than a certain threshold and the cutoff value is chosen to

meet a predefined false discovery rate (FDR) which is estimated via permutation.

Based on TMIcor, the optimization based testing framework named Convex Hi-

erarchical Testing (CHT) was proposed for testing pairwise interactions in binary

classification problems (Bien et al., 2015). By imposing hierarchical constraints, the

test statistics of main effects and interactions obtained from CHT satisfy weak hi-

erarchical structures. Specifically, given feature x ∈ Rd and outcome y ∈ {+1,−1},

the conditional distribution is modelled as (Simon and Tibshirani, 2012; Bien et al.,

2015):

x|y = C ∼ Nd

(
µ(C),Σ(C)) ,

where µ(C) ∈ Rd and Σ(C) ∈ Rd×d are the class specific mean vector and covariance

matrix. The null hypotheses of main effects and interactions are:

H0,i : µ
(+1)
i = µ

(−1)
i for 1 ≤ i ≤ d (main effects)

H0,ij : ρ
(+1)
i,j = ρ

(−1)
i,j for 1 ≤ i < j ≤ d (interactions)

where ρ
(C)
i,j =

(
Σ

(C)
i,i Σ

(C)
j,j

)− 1
2

Σ
(C)
i,j is the class specific correlation.
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For testing H0,i, the t-statistic is

vi =
x̄

(+1)
i − x̄(−1)

i√
s

(+1)
i /n(+1) + s

(−1)
i /n(−1)

,

where n(C) is the sample size of class C,

x̄
(C)
i =

1

n(C)

∑
k:yk=C

Xki

and

s
(C)
i =

1

n(C) − 1

∑
k:yk=C

(
Xki − x̄(C)

i

)2

are the class specific sample mean and variance. For testing H0,ij, the Fisher trans-

formed statistic would be

Ui,j =

(
1

n(+1) − 3
+

1

n(−1) − 3

)[
arctan

(
ρ̂

(+1)
i,j

)
− arctan

(
ρ̂

(−1)
i,j

)]
,

where

ρ̂
(C)
i,j =

(
n(C) − 1

)−1 ∑
k:yk=C

(
X

(C)
ki − x̄

(C)
i

)(
X

(C)
kj − x̄

(C)
j

)
/
(
s

(C)
i s

(C)
j

)
is the class specific sample correlation.

Suppose the testing of interactions is modeled via the Lasso formulation, i.e.,

min
w,W

1

2

d∑
j=1

(wj − vj)2 +
1

2

d∑
i,j=1

(Wi,j − Ui,j)2 + λ‖w‖1 + λ
d∑

i,j=1

|Wi,j|, (2.22)

and define λmax as the largest λ resulting in nonzero coefficient of the corresponding

main effect or interaction:

λmax,i := sup{λ ≥ 0 : ŵi(λ) 6= 0},

λmax,ij := sup{λ ≥ 0 : Ŵi,j(λ) 6= 0, Ŵj,i(λ) 6= 0},

where ŵi(λ) and Ŵi,j(λ) are the solutions to (2.22) given λ. Then, λmax’s for main

effects and interactions would be the sizes of t-statistics |vj|, 1 ≤ j ≤ d and Fisher
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transformed statistics, i.e., |Ui,j|, 1 ≤ i, j ≤ d. Note that λmax’s for interactions

in (2.22) are exactly the test statistics used in TMIcor. However, the drawback of

formulation (2.22) lies in the failure of incorporating structural information between

main effects and interactions. Inspired by the relation between λmax’s and the statistic

sizes, Bien et al. (2015) proposed to introduce hierarchical structures to the testing of

pairwise interactions for two-class problems. When the weak hierarchical constraints

are imposed to problem (2.22), i.e.,

min
w,W

1

2

d∑
j=1

(wj − vj)2 +
1

2

d∑
i,j=1

(Wi,j − Ui,j)2 + λ‖w‖1 + λ

d∑
i,j=1

|Wi,j|

s.t.
d∑
i=1

|Wi,j| ≤ |wj| for j = 1, . . . , d.

(2.23)

and the test statistics for main effects and interactions are defined as the correspond-

ing λmax’s, then a weak hierarchical structure exists among the test statistics, i.e.,

λmax,ij ≤ max (λmax,i, λmax,j) .

Instead of directly solving problem (2.23), Bien et al. (2015) relaxed the non-

convex constraints and propose its convex relaxation:

min
w+,w−,W

1

2

d∑
j=1

(
w+
j − w−j − vj

)2
+

1

2

d∑
i,j=1

(Wi,j − Ui,j)2

+ λ

d∑
j=1

(
w+
j + w−j

)
+ λ

d∑
i,j=1

|Wi,j|

s.t.
d∑
i=1

|Wi,j| ≤ w+
j + w−j ,

w+
j ≥ 0,

w−j ≥ 0 for j = 1, . . . , d.

(2.24)

Note that the formulation of CHT is essentially equivalent to that of the proximal op-

erator associated with the convex weak hierarchical Lasso. Bien et al. (2015) derived

the closed form expression of the test statistics for CHT.
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Instead of using the convex relaxation (2.24), we propose to adopt the non-convex

formulation (2.23) directly and use the corresponding λmax’s for the significance test-

ing of pairwise interactions. As problem (2.23) is essentially equivalent to the proximal

operator problem (2.10) associated with weak Hierarchical Lasso (2.3), we can directly

solve it as detailed in Section 3. We name the testing framework using formulation

(2.23) as the non-Convex Hierarchical Testing (nCHT).

For solving (2.23), we have shown that

sign(vi) = sign(wi),

sign(Wi,j) = sign(Ui,j),

(2.25)

and thus we only need to solve

min
w�0,W�0

1

2

d∑
j=1

(wj − |vj|)2 +
1

2

d∑
i,j=1

(Wi,j − |Ui,j|)2 + λ1Tw + λ
d∑

i,j=1

Wi,j

s.t.
d∑
i=1

Wi,j ≤ wj for j = 1, . . . , d.

. (2.26)

Since the solutions to (2.26) are the magnitudes of those to (2.23), the λmax’s are

equivalent for the two formulations. Therefore, it is sufficient to only study the

solution path of problem (2.26).

Again, a brute force search for λmax’s is computationally intensive. We will show

that the λmax’s for both main effects and interactions admit closed-form solutions

which can greatly speed up the computation of test statistics. Similar to the analysis

of problem (2.10), problem (2.26) can be decoupled to d subproblems:

min
w≥0,q�0

1

2
(w − |v|)2 +

1

2

d∑
i=1

(qi − |ui|)2 + λw + λ

d∑
i=1

qi

s.t.
d∑
i=1

qi ≤ w

, (2.27)

where we simplify the notations by omitting the subscript j on w and v and write

q,u ∈ Rd for W·,j and U·,j respectively. We first state the basic observations of λmax
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in different cases in Lemma 2.4.1 and show the closed-form solutions to λmax’s in

Theorem 2.4.2 .

Lemma 2.4.1. The λmax’s for both w and q have the following forms:

1. If ‖u‖∞ ≤ |v|, then

λwmax = |v|

λqimax =


|ui| if |ui| ≥ λ̄

1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
+

if |ui| < λ̄

2. If ‖u‖∞ > |v|, then

λwmax =
1

2
(|v|+ ‖u‖∞)

λWi
max =

1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
+

where (·)+ is the thresholding operator, i.e. (α)+ = α if α ≥ 0 and (α)+ = 0 if α < 0,

and λ̄ is defined as:

λ̄ := max

{
0 ≤ λ ≤ ‖u‖∞ :

d∑
i=1

(|ui| − λ)+ + λ ≥ |v|

}
.

Proof. In the proof, we denote qv = |v| − λ and qui = |ui| − λ and assume the sizes of

the elements in u are in an ascending order, i.e., |u1| ≤ |u2| ≤ . . . ≤ |ud−1| ≤ |ud|. We

next discuss the solutions to problem (2.27) with varying penalty parameter value λ.

CASE I: ‖u‖∞ ≤ |v|.

(i) ‖u‖∞ ≤ |v| ≤ λ:

In this case, we have −qv ≥ 0 > qud. It is straightforward to verify that

w = 0 and qi = 0, i = 1, . . . , d. (2.28)

(ii) ‖u‖∞ < λ < |v|:
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‖u‖∞ < λ < |v| if and only if qud and −qv are both negative, which results in γ∗ = 0

based on previous analysis. Therefore, according to (2.16), we have

w = |v| − λ > 0 and qi = (|ui| − λ)+ = 0. (2.29)

So far, we have considered the case where λ > ‖u‖∞. Before discussing the case

where λ ≤ ‖u‖∞ ≤ |v|, we list the following facts that are straightforward to verify:

0 ≤ λ̄ ≤ |ud−1| if ‖u‖1 ≥ |v|

λ̄ ∈ ∅ if ‖u‖1 < |v|
.

(iii) 0 ≤ λ ≤ ‖u‖∞ ≤ |v|:

(a) 0 ≤ λ ≤ ‖u‖∞ ≤ |v| ≤ ‖u‖1:

When λ > λ̄,
∑d

i qui−qv

d+2−i < 0 and γ∗ = 0. It can be verified that

w > 0 and qi = (|ui| − λ)+. (2.30)

Thus, one must have λ = |ui| > λ̄ to make qi = 0.

When 0 ≤ λ ≤ λ̄, γ∗ =
∑d

i qui−qv

d+2−i ≥ 0. In this case, we have

w > 0 and qi = (|ui| − λ− γ∗)+. (2.31)

If γ∗ > qui for some qui, then qi = 0 always holds. If γ∗ ≤ qui for some qui, then

λ ≤ 1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
.

As λ is non-negative, we have

1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
≥ 0.

Also, since γ∗ is non-negative, we have qui ≥ 0, i.e., |ui| ≥ λ. When

|ui| ≥
1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
,
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i.e., |ui| ≤ λ̄, we obtain that λ needs to be 1
2

(
|v|+ |ui| −

∑d
j=i (|uj| − |ui|)

)
such that

qi = 0. If |ui| < 1
2

(
|v|+ |ui| −

∑d
j=i (|uj| − |ui|)

)
, i.e., |ui| > λ̄, then qi > 0 always

holds.

(b) 0 ≤ λ ≤ ‖u‖∞ ≤ ‖u‖1 ≤ |v|

In this case, we have
∑d

i qui−qv

d+2−i < 0. It follows that

w > 0 and qi = (|ui| − λ)+, (2.32)

and λ needs to be |ui| such that qi = 0.

Based on (2.28), (2.29), (2.30), (2.31), (2.32), when ‖u‖∞ ≤ |v| we obtain that

λwmax = |v|

λqimax =


|ui| if |ui| ≥ λ̄

1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
+

if |ui| < λ̄

CASE II: ‖u‖∞ > |v|.

(i) |v| < 1
2
(|v|+ ‖u‖∞) ≤ λ ≤ ‖u‖∞:

When λ ≥ 1
2
(|v|+ ‖u‖∞), we have −qv ≥ qud, and

w = 0 and qi = 0. (2.33)

(i) |v| ≤ λ < 1
2
(|v|+ ‖u‖∞) < ‖u‖∞:

In this case, it can be verified that w 6= 0 always holds. We can make analogous

conclusions for the solutions of qi’s based on similar analysis for CASE I with λ ≤

‖u‖∞. Note that, with ‖u‖∞ > |v|, λ̄ = ‖u‖∞ and therefore 1
2
(|v| + ‖u‖∞) ≤ λ̄

always holds.

Thus, when ‖u‖∞ > |v|, we obtain that

λwmax =
1

2
(|v|+ ‖u‖∞)

λqimax =
1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
+

.
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We thus complete the proof.

We can directly obtain the following theorem from Lemma 2.4.1.

Theorem 2.4.2. The λmax’s for coefficients w and q have the following closed-form

solution:

λwmax = max

(
|v|, |v|+ ‖u‖∞

2

)

λqimax = min

|ui|, 1

2

(
|v|+ |ui| −

d∑
j=i

(|uj| − |ui|)

)
+

.
For the testing of pairwise interactions for two-class problems, the hypotheses are

rejected if their test statistics (i.e., λmax’s for w and W ) are greater than the threshold

at which the FDR is estimated to achieve a satisfied criterion. FDR is estimated by a

scheme of permutation (Bien et al., 2015; Simon and Tibshirani, 2012; Tusher et al.,

2001). At each permutation, we randomly shuffle the class labels y and re-compute

vi’s and Ui,j’s. The permutation is made B times and the test statistics λmax,ij
(b)’s at

the b-th permutation is computed. Then, the FDR at λ is estimated as

F̂DR(λ) = min

{
1
B
∑

i,j,b Iλmax,ij
(b)>λ∑

i,j Iλmax,ij>λ

, 1

}
, (2.34)

where I is the indicator function of which function value is 1 if the corresponding

condition is satisfied and 0 otherwise. In practice, FDRs are estimated at multiple λ’s

and the threshold is chosen as the one achieving a predefined FDR value (or below).

2.5 Experimental Results

In this section, we evaluate the efficiency and effectiveness of the proposed algo-

rithm on both synthetic and real data sets. In our first experiment, we compare the

efficiency of our proposed algorithm and the convex relaxation of weak hierarchical

Lasso (Bien et al., 2013) on synthetic data sets where the weak hierarchical struc-

ture holds between main effects and interaction effects. In our second experiment, we
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compare the classification performance of the weak hierarchical Lasso with other clas-

sifiers and sparse learning techniques on the data collected from Alzheimer’s Disease

Neuroimaging Initiative (ADNI) 1 .

2.5.1 Efficiency and Effectiveness Comparison on Synthetic Data Sets

In this experiment, we compare the efficiency of the proposed eWHL algorithm

with the convex relaxation on synthetic data sets. Our algorithm is built upon the

GIST framework which is available online (Gong et al., 2013b). The source code of

the convex relaxed weak hierarchical Lasso (cvxWHL) was available in the R pack-

age “hierNet” (Bien and Tibshirani, 2013) where the optimization procedure was

implemented by C. Since the proposed algorithm in this article directly solves the

non-convex weak hierarchical Lasso (2.3), and the eventual goal of the convex relaxed

weak hierarchical Lasso is also to find a good “relaxed” solution to the original prob-

lem, we compare the two algorithms in terms of the objective function in (2.3). In

the experiment, entries of X ∈ Rn×d are i.i.d generated from the standard normal

distribution, i.e., Xi,j ∼ N(0, 1). The matrix of interactions, Z, is then generated via

the normalized X where Z =
[
Z(1), Z(2), . . . , Z(d)

]
, Z(i) ∈ Rn×d, Z

(i)
·,j = X·,i◦X·,j. The

ground truths w ∈ Rd×1 and W ∈ Rd×d are generated based on the weak hierarchical

structure ‖W·,j‖1 ≤ |wj|, j = 1, . . . , d. In addition, we vary the ratio of coefficient

sparsity, i.e., the portion of zero entries in w and W , from 30% to 85%. Then, the

outcome vector y is constructed as

y = Xw +
1

2
Z · vec(W ) + ε

where X and Z are normalized to zero mean and unit standard deviation and ε ∼

N(0, 0.01 ·I). We use sample size n = 100 and 200 and we choose the number of main

1http://www.adni-info.org/
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effects d from {100, 200, 300, 400, 500, 600}. The parameter of the l1 penalty, λ,

is chosen from {1, 3, 5, 10, 20}. All algorithms are executed on a 64-bit machine

with Intel(R) Core(TM) quad-core processor (i7-3770 CPU @ 3.40 GHz) and 16.0 GB

memory. We terminate the algorithm when the maximum relative difference of the

coefficients between two consecutive iterations is less than 1e−5. We run 20 trials for

each setting and report the average execution time. The detailed results are shown

in Tables 2.1, 2.2 and 2.3.

From Tables 2.1, 2.2 and 2.3, we observe that eWHL is significantly faster than

cvxWHL. Our algorithm is up to 25 times faster than the competing algorithm. As

the dimension increases, the running time of cvxWHL increases much faster than our

proposed algorithm. Specifically, when the number of individual features increases to

400 (corresponds to 80200 interactions), cvxWHL may take more than one thousand

seconds, while the proposed eWHL is reasonably fast even when the number of total

variables is around two hundred thousands.

To make further comparisons of efficiency, we randomly generate three synthetic

datasets where the weak hierarchical structure between main effects and interactions

holds. The three datasets are of the same sample size n = 100 and the number

of individual features is d = 300. The ratios of zero entries in the ground truth

are 85%, 60% and 30% respectively. The regularization parameters are chosen from

{0.5, 1, 2, 4, 6, 8, 16, 32, 64}. On each dataset, we first run cvxWHL, and then

the objective value of (2.3) in the final step is recorded. Then, we run the proposed

eWHL and terminate the algorithm when the objective value of (2.3) is less than the

one obtained by cvxWHL. The running time and the number of iterations needed to

achieve the same objective value of both algorithms are reported in Figure 2.1. We

observe from that the proposed eWHL is much faster than cvxWHL.

Moreover, we also conduct an experiment to compare the recovery performance
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Figure 2.1: Comparison of the running time and the number of iterations by the two

algorithms. Three synthetic data sets are generated where the portions of zeros in

the ground truth are 85%, 60%, 30% respectively. The plots in the same column

correspond to the same data set. The plots in the first row present the running time

and those in the second row show the number of iterations.

of eWHL and cvxWHL. We generate synthetic data sets with sample size n = 100

and the number of individual features is d = 50 (1225 cross interactions). The

number of non-zero main effects varies from {3, 4, 5, 6, 7} and the number of non-zero

interaction effects is from {2, 4, 5, 8, 10}, respectively. For each setting, ten synthetic

data sets are generated with noise ε ∼ N(0, 0.01·I). We run both eWHL and cvxWHL

with parameter selected via 5-fold cross-validation. Then we compute the sensitivity

and specificity of recovery (where non-zero entries are positive and zero entries are

negative). The means of sensitivity and specificity are plotted in Figure 2.2. We can

observe that both algorithms achieve high recovery rate while directly solving the

original weak hierarchical Lasso leads to slightly better performance in recovering the

38



non-zero effects.

Figure 2.2: Comparison of eWHL and cvxWHL in terms of recovery on synthetic

data sets.

2.5.2 Classification Comparisons on ADNI Data

In this experiment, we compare the weak hierarchical Lasso with its convex relax-

ation as well as other classifiers on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data set.

In Alzheimer’s Disease (AD) research, Mild Cognitive Impairment (MCI) is an

intermediate state between normal elderly people and AD patients Petersen (2003).

The MCI patients are considered to be at high risk of progression to AD. Many recent

work focus on how to accurately predict the MCI-AD conversion and identifying

significant bio-markers for the prediction (Davatzikos et al., 2011; Devanand et al.,

2007; Fennema-Notestine et al., 2009; Li et al., 2014a; Llano et al., 2011; Ye et al.,

2012; Zhou et al., 2013; Gong et al., 2012).

In this experiment, we compare the classification performance of the proposed

eWHL with the convex relaxation and other classifiers on the task of discriminating

the MCI subjects who convert to dementia (i.e., MCI converter) within a three-
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Table 2.4: The statistics of the ADNI data set used in our experiment. The MCI con-

verters (MCI-cvt) are characterized as positive samples and the MCI non-converters

(MCI non-cvt) are used as negative samples.

Total (+) MCI-cvt (-) MCI non-cvt

# of samples 133 71 62

# of main effects 36

# of interactions 630

year period from the MCI subjects who remain at MCI (i.e., MCI non-converter).

The features used in the experiment (provided by our clinical collaborators) involve

demographic information such as age, gender, years of education, clinical information

such as scores of mini mental state examination (MMSE), Auditory Verbal Learning

Test (A.V.L.T.), and the bio-markers including status of Apolipoprotein E, volume

of hippocampus, thickness of Mid Temporal Gray Matter. There are 133 samples

in total and the number of individual features is 36 (corresponds to 630 two way

interactions). The interactions are generated by the normalized individual features

and are normalized before entering the model. Since this is a classification task with

binary labels, we replace the least square loss with logistic loss in the weak hierarchical

Lasso. Besides the non-convex and convex weak hierarchical Lasso, we apply random

forest (RF), Support Vector Machine (SVM) and sparse logistic regression on main

effects, and on both main effects and interactions, respectively. We report the means

and standard deviations of accuracy, sensitivity and specificity obtained from 10-fold

cross-validation. The penalty parameters are tuned via 5-fold cross-validation in the

training procedure. The sample statistics are shown in Table 2.4 and the classification

performance is reported in Table 2.5.
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From Table 2.5, we can observe that, if we only use individual features for clas-

sification, then all the classifiers are biased towards the positive class, i.e., MCI

converter. When interactions are included, we observe that the performances of ran-

dom forest and SVM become worse. One possible reason is that the large number

of variables brought by the interactions weakens their discriminative power. This

is not the case for sparse logistic regression, which demonstrates the importance of

feature selection. We can observe from the table that the convex relaxed weak hi-

erarchical Lasso and the non-convex weak hierarchical Lasso achieve much better

classification performance than the competitors. The improvement of the classifica-

tion performance demonstrates the effectiveness of imposing hierarchical structures

in interaction models. In addition, the superior classification performance (around

77% accuracy, sensitivity and specificity) of the proposed eWHL demonstrates that

directly solving the non-convex weak hierarchical Lasso leads to solutions of higher

quality than the convex relaxation.

2.5.3 Simulation Studies for Hierarchical Testing

In this experiment, we compare the testing power of nCHT, CHT and the method

using only Lasso type formulation on synthetic data where the weak hierarchy holds.

Specifically, we generate 300 data points in total from Gaussian distribution where

half of them belong to the positive class (+1) and the remaining half belongs to the

negative class (−1). The number of main effects d is chosen from {30, 60, 100, 150}.

The number of underlying nonzero main effects is set to 5 and the number of un-

derlying nonzero interactions is 15. We set µ(−1) = 0 ∈ Rd and Σ(−1) = Id. We

set

µ
(+1)
j =


3 if j = 1, . . . , 5

0 if j = 6, . . . , d

,
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and

Σ
(+1)
i,j =


0.15 if (i, j) or (j, i) ∈ Ω

Σ
(−1)
i,j otherwise

,

where Ω ⊂ {1, . . . , 5}× {6, . . . , d} is the index set of the 15 nonzero interactions. We

conduct 1000 simulations and show the performance of discovering nonzero interac-

tions, i.e., the portion of nonzero interactions discovered. The experimental results

are shown in Figure 2.3. We observe that, when the weak hierarchy holds between

Figure 2.3: Comparison of nCHT, CHT and all pairwise Lasso in terms of recovering

underlying nonzero interactions based on test statistic λmax.

main effects and interactions, the hierarchical frameworks significantly outperform

the all pair Lasso method, which is consistent with the observations in (Bien et al.,

2015). The non-convex hierarchical testing method has the same recovery perfor-
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mance as the convex one for large thresholds but it can discover more underlying

nonzero interactions when the threshold is small.
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Chapter 3

DYADIC POSITIVE UNLABELED LEARNING

3.1 Introduction

Labeling unknown data pairs as negative may not be appropriate in the real world.

For example, an unknown drug-disease pair does not mean the drug cannot be used

to treat the disease. It is just not validated or tested, because there is a huge number

of distinct drug-disease pairs. We have the same problem for DDI prediction, where

in most cases only positive DDIs can be detected.

To address these challenges we propose a general learning framework called Dyadic

Positive-Unlabeled (DyPU) learning. The basic setting for DyPU is as follows: we

are given a set of data pairs and there is a binary label associated with each pair, some

of which are known as positive (+1) with the rest unknown; how can we make use of

this small portion of positive data pairs together with the rest unlabeled data pairs

to identify positive pairs from the unlabeled data pairs. Inspired by the “ranking at

the top” problem (Li et al., 2014b; Agarwal, 2011; Boyd et al., 2012), we introduce

a scoring function that assigns ranking scores to each data pair. The ranking scores

of positive pairs are required to be higher than those of negative pairs. Different

from the classic binary classification or bipartite ranking problem where binary labels

or pairwise relations are known, we develop a novel model that enables detecting

positive data interactions in positive-only and unlabeled settings by forcing positive

pairs rank to “on top of” (i.e., having a higher score than) the average score of the

unlabeled pairs. Moreover, our model can make full use of information from the two

data points in a data pair that may come from two totally different feature domains.
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Our proposed framework is able to incorporate different scoring functions, e.g., the

linear function, the sigmoidal function and the rectifier function. When the rectifier

function is chosen as the ranking function, the primal optimization problem is hard

to solve. We derive the dual formulation of each convex subproblem and show that

the associated non-trivial proximal operator of the dual problem admits a closed

form solution. We conduct extensive comparison experiments to demonstrate the

superiority of the proposed DyPU framework on both drug repositioning and DDI

prediction tasks on real world data sets. Before introducing the proposed framework,

we will briefly review the related work.

3.1.1 PU Learning

Positive-Unlabeled (PU) Learning (Liu et al., 2003; Liu, 2007; Elkan and Noto,

2008) refers to a set of learning problems based on positive data points and unlabeled

data points. Since there are an unknown portion of positive data points unobserved,

directly modelling PU learning problem as a binary classification will lead to highly

biased models, which is undesirable. Traditional PU learning approaches can be di-

vided into two categories: the two-step approach and the direct approach (Liu, 2007).

The general idea of the two-step approach is to first identify a set of “reliable nega-

tives” from unlabeled data points and then build binary classifiers on positives and

those identified “reliable negatives”. The direct approach mainly refers to a weighted

classifier where larger weights are imposed on positive errors and smaller weights

are imposed on unlabeled errors. The weights are tuning parameters which may be

impractical in real-world applications since the distribution of unlabeled positives is

unknown. Traditional PU learning approaches are not suitable for incorporating infor-

mation from multiple domains and thus are not applicable for detecting interactions

of data points.
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Sellamanickam et al. (2011) applied pairwise ranking SVM (RSVM) (Joachims,

2005; Chapelle and Keerthi, 2010) for PU learning where the ranking scores of posi-

tives are required to be larger than those of unlabeled scores. For two-class scenario,

pairwise ranking SVM is closely related to “ranking at the top” approach (Li et al.,

2014b; Agarwal, 2011) which maximizes the number of positives ranking above any

negative data points, and they show similar performance in empirical studies (Sella-

manickam et al., 2011). In the PU learning setting, the pairwise ordering information

is not complete, therefore directly applying pairwise ranking approaches may lead to

biased models.

3.1.2 Detecting Interaction of Data Points

Atias and Sharan (2011) combined prediction scores from Canonical Correlation

Analysis (CCA) and label propagation model to predict associations between drugs

and their side effects, which is not able to use multi-domain information. There has

been an increasing amount of works on recovering gene-disease associations using

network-based algorithms (Wu et al., 2008; Lee et al., 2011; Singh-Blom et al., 2013)

which however require new data points to be included in the network and thus are

limited for prediction purpose.

Gonen and Kaski (2014) proposed Kernelized Bayesian Matrix Factorization (KBMF)

to predict drug-target interactions by making use of the information from multiple

domains via kernel methods. The Multiple Similarities Collaborative Matrix Fac-

torization (MSCMF) (Zheng et al., 2013), was proposed for drug-target interaction

prediction which approximates the indicator matrix by the product of projection ma-

trices of drug and target similarity matrices. To enable out-of-matrix predictions,

the matrix factorization type methods rely on kernel/similarity matrices which may

be noisy and of poor quality. Moreover, all matrix factorization type methods are
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not suitable for the PU learning setting since they treat the unlabeled data points as

negatives which suffers from the same problem as binary classification.

Natarajan and Dhillon (2014) applied an inductive matrix completion method

(Jain and Dhillon, 2013) to predict gene-disease associations with a bilinear model

incorporating features from both domains. Theoretical analysis of inductive ma-

trix completion for PU learning has been recently provided by (Hsieh et al., 2015).

However, inductive matrix completion for predicting positive interactions essentially

equals to matrix factorization approaches which may confront the same problems of

mistakenly categorizing unobserved positive data interactions as “negatives”.

Notations: In DyPU there are two data domains, (e.g., drug and disease for

drug repositioning, drug and drug for DDI prediction). Assume there are N1 data

points from the first domain and N2 data points from the second domain. Let

X = [x1,x2, . . . ,xN1 ]
T ∈ RN1×d1 and Z = [z1, z2, . . . , zN2 ]

T ∈ RN2×d2 be the data

matrices of the two domains respectively. Y ∈ RN1×N2 represents the indicator ma-

trix where Yi,j is 1 if there is an interaction between data points xi and zj, and 0 if

the interaction between them is not observed. We denote the index set of positive

interactions as P = {(i, j)|Yi,j = 1, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} and the index set of un-

observed interactions as U = {(i, j)|Yi,j = 0, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}. Let NP = |P|

and NU = |U|. [·]+ denotes the rectifier/thresholding function where [x]+ = x if

u > 0, and 0 if u ≤ 0. I(·) denotes the indicator function where I(x) = 1 if x > 0,

and 0 if x ≤ 0.

3.2 Scoring Functions

We consider the pairwise interaction detection where the two data points in each

pair may come from the same feature domain or totally different feature domains. In

general, we define the real-valued scoring function f : Rd1 × Rd2 → R for a data pair
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(x, z) ∈ Rd1 × Rd2 as:

f(x, z) = g
(
xTWz

)
, (3.1)

where g(·) is an arbitrary monotonic non-decreasing function. When g(·) is the iden-

tity function, i.e., g(x) = x, f(x, z) is a regular bilinear predictor function of x and

z. Other examples of function g(·) include the sigmoid function g(x) = 1
1+exp(−x)

, the

rectifier function g(x) = [x]+ etc. When the data pairs come from the same feature

domain, we require the coefficient matrix W to be symmetric, i.e., W = W T , as a non-

symmetric W in (3.1) will lead to inconsistent predictions, i.e., f (xi,xj) 6= f (xj,xi).

Compared with other approaches such as similarity-based methods, the modelling

of a scoring function enables the “cold-start” type prediction, which means the pre-

diction is not dependent on any existing training data. Moreover, compared with

factorization type approaches, the bilinear model is also able to produce interpretable

results. To see this, we can rewrite the scoring function as

f(x, z) = g

(∑
i,j

Wi,jxizj

)
, (3.2)

which is essentially a function of the linear combination of feature interactions xizj.

In other words, the scores assigned to data pairs are determined by their feature

interactions. For example, if the coefficient matrix W is sparse, i.e., only a small

number of Wi,j’s are non-zero, then one may identify relevant feature interactions for

detecting data interactions.

3.3 Proposed Framework for Positive Interaction Detection

Since an unknown amount of positives are mixed together with unlabeled instances

in PU learning, instead of forcing each positive to scores at the absolute top as

commonly done in classification/ranking at the top problem studied in (Li et al.,

2014b; Boyd et al., 2012; Rudin and Schapire, 2009; Agarwal, 2011), we propose a
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novel loss formulation that maximizes the number of positives ranking higher than

the average score of unlabeled samples.

Then, our proposed optimization problem is:

min
W

1

NP

∑
(i,j)∈P

I

 1

NU

∑
(k,l)∈U

g
(
xTkWzl

)
− g

(
xTi Wzj

) , (3.3)

which aims to minimize the fraction of positive interactions ranked below the average

score of unobserved interactions. Note that the proposed problem (3.3) is completely

different from existing methodologies for data interaction detection since it does not

impose any assumption on the data distribution of unobserved interactions. The

objective function in (3.3) is discontinuous and non-convex, which makes the opti-

mization problem difficult to solve. Therefore, we propose to minimize the following

convex problem by replacing the indicator function with its convex surrogate:

min
W

1

NP

∑
(i,j)∈P

`

 1

NU

∑
(k,l)∈U

g
(
xTkWzl

)
− g

(
xTi Wzj

) := L(W ), (3.4)

where `(·) is a convex loss function that is non-decreasing and differentiable. Can-

didates of such loss functions include the truncated quadratic loss function `(x) =

[1 + x]2+, the exponential function `(x) = exp(x), the logistic loss function `(x) =

log(1 + exp(x)) and so on. To prevent the overfitting problem, we solve the following

regularized problem instead of directly minimizing (3.4):

min
W

L(W ) + λR(W ) (3.5)

where R(W ) is a regularizer imposed on W . Typically, we assume R(·) is convex (not

necessarily smooth). Common choices of R(·) include the squared Frobenius norm

‖ · ‖2
F which is equal to the summation of square of entries in the matrix W , the trace

norm ‖ ·‖∗ which is defined as the summation of singular values of the matrix W , and

the matrix l1 norm which is the summation of the absolute value of matrix entries
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etc. Imposing trace norm as the regularizer leads to a low-rank solution where only

a small number of underlying latent factors are assumed to contribute to the model.

Using the squared Frobenius norm as the regularizer, each element of the solution

is required not to be too large. The matrix l1 norm penalty results in a sparse and

interpretable solution which is suitable for large dimensional data.

3.3.1 General Optimization Methods

In general, the proposed framework DyPU considers the case when the problem

is for detecting interactions between data points coming from two different feature

domains. The convexity of the objective is dependent on the choice of the scoring

function. If the scoring function is chosen as a bilinear function, i.e., f(x, z) = xTWz,

then the objective (3.5) is convex, which consists of a convex smooth loss function

and a convex regularizer (may or may not be smooth). If the regularizer is one of

trace norm, Frobenius norm and the matrix l1 norm, problem (3.5) can be efficiently

solved by well-known optimization methods such as accelerate gradient descent (ACG)

(Nesterov, 2004, 1983) and Alternating Direction Method of Multipliers (ADMM)

(Boyd et al., 2011). In particular, when the trace norm is used for regularization, one

may assume that the coefficient matrix W can be factorized into the product of two

low-rank matrices U ∈ Rd1×r and V ∈ Rd2×r where r � min(d1, d2), i.e., W = UV T .

Moreover, the trace norm of W can be equivalently defined as (Fazel et al., 2001;

Srebro et al., 2004):

‖W‖∗ = min
W=UV T

1

2

(
‖U‖2

F + ‖V ‖2
F

)
.

Thus we can solve the problem by alternately minimizing U with V fixed, and mini-

mizing V with U fixed. When the sample interaction detection is considered within

only one feature domain, a symmetric prediction is required as discussed in subsection

3.2. The optimization problem with the symmetric constraint W = W T can be solved
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via ADMM (Boyd et al., 2011). For regularizers such as trace norm, l1 norm, one can

adopt the proximal splitting methods (Sra, 2011) to efficiently solve the non-convex

problem, which is guaranteed to achieve convergence.

3.4 Dual Formulation with the Rectifier Scoring Function

When the rectifier function [·]+ is chosen as the scoring function, the empirical

loss in (3.4) would become

1

NP

∑
(i,j)∈P

`

 1

NU

∑
(k,l)∈U

[
xTkWzl

]
+
−
[
xTi Wzj

]
+

 . (3.6)

Note that in (3.6), the rectifier function also truncates the scores of positive data

pairs, which leads to a smaller loss when the bilinear score function makes a negative

score for a positive data pair and thus essentially weakens the requirement of “positive

ranking at the top” and results in a solution of poor quality. To resolve this issue,

we remove the max operator in [·]+ for positive data pairs in the objective and thus

obtain the following empirical loss:

1

NP

∑
(i,j)∈P

`

 1

NU

∑
(k,l)∈U

[
xTkWzl

]
+
− xTi Wzj

 . (3.7)

When the squared Frobenius norm is used as the regularizer, we have

min
W

1

NP

∑
(i,j)∈P

`

 1

NU

∑
(k,l)∈U

[
xTkWzl

]
+
− xTi Wzj

+
λ

2
‖W‖2

F . (3.8)

The loss part in objective (3.8) is convex because it is the composite of two convex

functions. However, the empirical loss function is non-smooth and thus difficult to

solve. To overcome the difficulty brought by the rectifier function, we derive the dual

form of (3.8) when the quadratic truncated function [·]2+ is chosen for loss function,

which is stated in the following theorem.
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Theorem 3.4.1. Let

`(a) = max(1 + a, 0)2.

Then the dual form of problem (3.8) is

min
(α,η)∈Ω

1

2λ

∥∥∥∥∥∥ 1

NP

∑
(i,j)∈P

α(i,j)xiz
T
j −

∑
(k,l)∈U

η(k,l)xkz
T
l

∥∥∥∥∥∥
2

F

+
1

NP

∑
(i,j)∈P

`∗
(
α(i,j)

)
. (3.9)

where α(i,j)’s and η(k,l)’s are dual variables associated with positive data pairs (i, j) ∈ P

and unlabeled sample pairs (k, l) ∈ U respectively; `∗(·) is the conjugate function of

`(·) defined as follows:

`∗(β) = sup
u
{uβ − l(u)} = −β +

β2

4
, β ≥ 0;

the domain Ω is defined as

Ω =
{
α ∈ RNP ,η ∈ RNU : α(i,j) ≥ 0, for (i, j) ∈ P

0 ≤ η(k,l) ≤
1

NPNU

∑
(i,j)∈P

α(i,j), for (k, l) ∈ U
}
,

where elements of α and η correspond to α(i,j)’s and η(k,l)’s, respectively. Let α∗ and

η∗ be the optimal solution to the dual problem (3.9). Then, the optimal solution W ∗

to the primal problem (3.8) is given by

W ∗ =
1

λ

 1

NP

∑
(i,j)∈P

α∗(i,j)xiz
T
j −

∑
(k,l)∈U

η∗(k,l)xkz
T
l

 . (3.10)

Proof. It can be verified that the conjugate function of `(·) is

`∗(β) = sup
u
{uβ − `(u)} = −β +

β2

4
, β ≥ 0.

Since `(·) is convex and closed, we can rewrite it in terms of its convex conjugate

form, i.e.,

`(u) = max
β≥0

βu− `∗(β).
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Thus, the formulation

min
W

1

NP

∑
(i,j)∈P

`

 1

NU

∑
(k,l)∈U

[
xTkWzl

]
+
− xTi Wzj

+
λ

2
‖W‖2

F (3.11)

can be rewritten as

min
W

max
α≥0

1

NP

∑
(i,j)∈P

α(i,j)

 1

NU

∑
(k,l)∈U

[
xTkWzl

]
+
− xTi Wzj


− 1

NP

∑
(i,j)∈P

`∗
(
α(i,j)

)
+
λ

2
‖W‖2

F .

(3.12)

Since problem (3.12) is convex in W and concave in α and its feasible domain is

convex, the strong max-min property is satisfied (Boyd and Vandenberghe, 2004).

Hence, we swap the min and max operator and obtain

max
α≥0

min
W

1

NP

∑
(i,j)∈P

α(i,j)

 1

NU

∑
(k,l)∈U

[
xTkWzl

]
− xTi Wzj


− 1

NP

∑
(i,j)∈P

`∗
(
α(i,j)

)
+
λ

2
‖W‖2

F .

(3.13)

We first consider the minimization problem, i.e.,

min
W

1

NP

∑
(i,j)∈P

α(i,j)

 1

NU

∑
(k,l)∈U

[
xTkWzl

]
+
− xTi Wzj

+
λ

2
‖W‖2

F , (3.14)

where we omit the term − 1
NP

∑
(i,j)∈P `∗(α(i,j)) which is constant with respect to W .

To handle the max operator in [·]+, we introduce slack variables ξ(k,l) ≥ 0, (k, l) ∈

U for the NU scores of unlabeled data pairs, and rewrite formulation (3.14) as

min
W

1

NP

∑
(i,j)∈P

α(i,j)

 1

NU

∑
(k,l)∈U

ξ(k,l) − xTi Wzj

+
λ

2
‖W‖2

F ,

s.t. xTkWzl ≤ ξ(k,l), ξ(k,l) ≥ 0, (k, l) ∈ U .

(3.15)
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The Lagrangian function of problem (3.15), L(W, ξ,η,γ), is

1

NP

∑
(i,j)∈P

α(i,j)

 1

NU

∑
(k,l)∈U

ξ(k,l) − xTi Wzj

+
λ

2
‖W‖2

F

+
∑

(k,l)∈U

η(k,l)

(
xTkWzl − ξ(k,l)

)
−
∑
(k,l)

γ(k,l)ξ(k,l).

(3.16)

Then the dual problem associated with (3.15) is

max
η,γ≥0

min
W,ξ
L(W, ξ,η,γ). (3.17)

By deriving the optimality conditions for minimizing L(W, ξ,η,γ) with respect to W

and ξ, we obtain

W =
1

λ

 1

NP

∑
(i,j)∈P

α(i,j)xiz
T
j −

∑
(k,l)∈U

η(k,l)xkz
T
l


0 ≤ η(k,l) ≤

1

NPNU

∑
(i,j)∈P

α(i,j)

γ(k,l) =
1

NPNU

∑
(i,j)∈P

α(i,j) − η(k,l)

(3.18)

By plugging the last equation of (3.18) into (3.17), we obtain

max
η≥0

min
W
− 1

NP

∑
(i,j)∈P

α(i,j)x
T
i Wzj +

∑
(k,l)∈U

η(k,l)x
T
kWzl +

λ

2
‖W‖2

F . (3.19)

Considering the first equation in (3.18), we obtain that the objective function in (3.19)

can be written as

tr

−
 1

NP

∑
(i,j)∈P

α(i,j)zjx
T
i −

∑
(k,l)∈U

η(k,l)zlx
T
k

T

W

+
λ

2
‖W‖2

F

=− λ‖W‖2
F +

λ

2
‖W‖2

F = −λ
2
‖W‖2

F .

(3.20)

Plugging the first equation in (3.18) into problem (3.20), the dual problem (3.17) thus
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can be written as

max
η,α

− 1

2λ

∥∥∥∥∥∥ 1

NP

∑
(i,j)∈P

α(i,j)xiz
T
j −

∑
(k,l)∈U

η(k,l)xkz
T
l

∥∥∥∥∥∥
2

F

− 1

NP

∑
(i,j)∈P

`∗(α(i,j))

:= D(α,η)

s.t. α(i,j) ≥ 0, (i, j) ∈ P

0 ≤ η(k,l) ≤
1

NPNU

∑
(i,j)∈P

α(i,j), (k, l) ∈ U

(3.21)

Changing the negative signs and replacing the max operator with min operator com-

pletes the proof.

We observe that the objective function of the dual problem (3.9) is smooth. Thus

(3.9) can be efficiently solved by proximal (projected) gradient methods (Nesterov,

2004, 1983; Ji and Ye, 2009; Beck and Teboulle, 2009; Gong et al., 2013a; Wright

et al., 2009) which were demonstrated to be very efficient for solving regularized

(constrained) optimization problems. A critical step for proximal (projected) gradient

methods is to compute the proximal operator (projection) problem associated with

the constraints. We next show that the non-trivial proximal operator (projection)

problem 1 associated with problem (3.9) admits a closed form solution.

3.4.1 Efficient Algorithm for Computing the Proximal Operator

We propose to use proximal algorithms to solve problem (3.9) which computes a

sequence of proximal operators. For clearer presentation, we simplify the notations

and write the proximal operator problem associated with problem (3.9) at the k-th

1For a constrained optimization problem, the subproblem is a projection problem which can be
viewed as a special case of the proximal operator problem. Thus, we only mention the proximal
operator problem in the sequel.
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step as

min
η,α

1

2
‖η − u‖2

2 +
1

2
‖α− v‖2

2

s.t. 0 ≤ ηj ≤
1

mn

∑
i

αi, j = 1, . . . , n

αi ≥ 0, i = 1, . . . ,m

(3.22)

where n represents NU , m represents NP , dual variables η ∈ Rn and α ∈ Rm, and

u = η − t(k)∇ηD(α,η)

v = α− t(k)∇αD(α,η)

, (3.23)

t(k) is the stepsize. The proximal operator problem (3.22) is highly non-trivial because

of the affine constraints on dual variables. For problem (3.22), we have the following

property:

Theorem 3.4.2. Let κ := 1
mn

∑m
i=1 αi. Then problem (3.22) is equivalent to mini-

mizing the following function:

q(κ, s) =
1

2

n∑
j=1

[uj − κ]2+ +
1

2s

(
s∑
i=1

vi −mnκ

)2

+
1

2

m∑
i=s+1

v2
i , (3.24)

where

s = max

{
s ∈ {1, . . . ,m} : vs −

1

s

(
s∑
i=1

vi −mnκ

)
> 0

}
.

Proof. Notice that 0 ≤ ηj ≤ κ = 1
mn

∑m
i=1 αi. Thus, we have

min
η

1

2
‖η − u‖2

2 =
1

2

n∑
j=1

[uj − κ]2+ +
1

2

n∑
j=1

[−uj]2+. (3.25)

We next focus on the following problem:

min
α

1

2
‖α− v‖2

2

s.t.
1

mn

m∑
i=1

αi = κ,

αi ≥ 0, i = 1, . . . ,m.

(3.26)
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Without loss of generality, we assume that vi, i = 1, . . . ,m are sorted in descending

order. It has been shown in (Duchi et al., 2008) that problem (3.26) admits the

following closed-form solution:

αi = max(vi − γ, 0), (3.27)

where

γ =
1

s

(
s∑
i=1

vi −mnκ

)
,

and

s = max

{
s ∈ {1, . . . ,m} : vs −

1

s

(
s∑
i=1

vi −mnκ

)
> 0

}
. (3.28)

Plugging (3.27) into (3.26), we obtain that the optimum objective value of (3.26) is

1

2s

(
s∑
i=1

vi −mnκ

)2

+
1

2

m∑
i=s+1

v2
i , (3.29)

which together with (3.25) and (3.28) implies the conclusion.

Based on the above theorem, we can transform the proximal operator problem in

(3.22) to the following optimization problem:

min
κ,s

q(κ, s)

s.t. s = max

{
s ∈ {1, . . . ,m} : vs −

1

s

(
s∑
i=1

vi −mnκ

)
> 0

}
,

(3.30)

where constant items are omitted. The constraint in the above optimization problem

can be rewritten as

s = {s ∈ {1, . . . ,m− 1} : h(s) < κ ≤ h(s+ 1)}

where h(s) =
1

mn

(
s∑
i=1

vi − svs

)
,

(3.31)

which immediately indicates that q(κ, s) is a piecewise quadratic function with respect

to κ and the points where it changes from one quadratic function to another one are
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included in the following set:

C = {u1, · · · , un, h(1), · · · , h(m)}. (3.32)

By sorting the entries of C in ascending order, we know that for any adjacent entries c`

and c`+1 (` = 1, · · · ,m+ n− 1), q(κ, `) is quadratic with respect to κ in the interval

[c`, c`+1]. Thus, it is easy to obtain a minimum solution of q(κ, `) in the interval

[c`, c`+1], that is

κ?` = arg min
κ
q(κ, `), s.t. κ ∈ [c`, c`+1].

Therefore, the global solution of q(κ, s) is

(κ?, s?) = arg min
κ,s

q(κ, s), s.t. κ = κ?s, s = 1, · · · ,m+ n− 1.

Thus, the optimal solution to (3.22) can be written as

α?i = max (vi − γ?, 0) , i = 1, · · · , n,

η?j = min (κ?,max (uj, 0)) , j = 1, · · · ,m.

where

γ? =
1

s?

(
s?∑
i=1

vi −mnκ?
)
.

One may adopt the accelerate gradient descent (ACG) algorithm (Nesterov, 2004,

1983; Ji and Ye, 2009; Beck and Teboulle, 2009) to solve the optimization problem,

which enjoys a convergence rate of O(1/k2). The computation of solving problem

(2.10) takes O(NP + NU) and thus the time complexity of computing the proximal

operator (2.8) is dominated by the sorting step which is O((NP+NU) log(NP+NU)).

3.5 Experimental Results of Drug Discovery Problems

3.5.1 Data Description

In the study, we collect 1255 drug molecules from DrugBank (Wishart et al., 2008)

and we use chemical structure information as the data features in the experiments. We
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use a fingerprint corresponding to the 881 chemical substructures to encode the drug

chemical structure. Each drug is represented by an 881-dimensional binary profile

whose elements encode for the presence or absence of each PubChem substructure by

1 or 0, respectively. A description of the 881 chemical substructures can be found at

the website of PubChem 2 .

We collect known uses of drugs from MEDI database (Wei et al., 2013), which is an

ensemble medication indication resource based on multiple commonly used medication

resources (e.g., RxNorm, MedlinePlus, and Wikipedia). Indications in MEDI are

coded as International Classification of Diseases, 9th edition (ICD9) codes. We group

ICD9 codes based on their first 3 digits to avoid trivial predictions (i.e., re-purpose a

drug from a disease to very similar diseases). Also, we exclude ill-defined ICD9 groups

and rare diseases, and obtain 300 ICD9 groups as diseases in our drug repositioning

study. Between our 1255 drugs and 300 diseases, there are 12,493 distinct drug-disease

interactions in the dataset. We also construct a disease association matrix based on

a real-world Electronic Medical Records (EMR) data warehouse, which includes a

longitudinal EMR of 223,091 patients over 4 years. We use the possibility for co-

occurrence of two given diseases within a 30-day window in the same individual as

the association score between two diseases, and obtain a 300 by 300 matrix to denote

disease associations.

We obtain DDIs from DrugBank (Wishart et al., 2008), which are extracted from

drug’s package inserts, as our known set of DDIs. Among our 922 drugs, there are

9,253 distinct pairwise DDIs in the dataset.

2PubChem substructure description. Retrieved February 11, 2016 from
ftp : //ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem fingerprints.txt
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3.5.2 Experiment Settings and Performance Evaluation

In our experiments, we compare our proposed DyPU with rectifier scoring func-

tion (DyPU) and other four state-of-the-art approaches including inductive matrix

completion (IMC) with logistic loss (Natarajan and Dhillon, 2014; Hsieh et al., 2015),

Kernelized Bayesian Matrix Factorization factorization (KBMF) (Gonen and Kaski,

2014), and the two-step PU learning using Naive Bayes Classifiers for both the iden-

tification of reliable negatives and classification (Liu et al., 2003). We also include

the support vector machine (SVM) as the baseline approach to investigate the per-

formances of classical binary classification. In SVM, we use the stack of the features

of each data point in a data pair as the input feature vector. The implementation

of KBMF 3 is released by the authors and we use liblinear to implement SVM 4 .

The IMC approach is able to use the information from both drugs and diseases and

they both make low-rank assumptions. The squared Frobenius norm is used as the

regularizer for the proposed DyPU approaches. In our empirical studies, the pre-

diction performance of low-rank approaches is insensitive to the number of ranks and

achieves the highest in the range between 5 and 15, thus we only report the results

when the rank of coefficient matrix is set as 10.

Since the negatives are completely unknown for PU learning problems, using mea-

surements such as AUC will lead to misleading results which essentially assume un-

known labels as negatives and is, however, adopted in most existing literatures. Also,

for the detection of positive interactions between data points, it is desired that pos-

itives always enjoy higher ranking scores than negatives and a good model is always

able to recover more true positives than others. Therefore, besides the F1 score which

is a standard evaluation metric used in PU learning, we also use the measurements

3http://research.cs.aalto.fi/pml/software/kbmf/

4https://www.csie.ntu.edu.tw/ cjlin/liblinear/
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from learning to rank to evaluate the performances. Specifically, we adopt the mean

precision at top k (mPrec@k), the mean recall at top k (mRecall@k), the mean aver-

age precision at top k (mAP@k) and the mean F1 at top k (mF1@k). In real-world

drug discovery, only a small number of confident predictions are of interest due to the

limitation of resources for clinical validation. Thus, we set the number k as 1 and 3.

The reported performances are obtained from 5 rounds of experiments on different

splits of data pairs where 50% data pairs are used for training and the rest are used

for testing.

A competent model for detecting positive interactions of data points is supposed to

be robust to the ratio of observed positive interactions. Also, in practice, it is typically

difficult to observe a validated positive sample interactions. Both drug repositioning

and DDI prediction tasks need huge clinical efforts to validate. Therefore, a model

that is able to make accurate predictions and insensitive to the number of observed

positive data pairs is highly desired. Thus, to test the robustness of the proposed

model, we randomly conceal a% of the positive data pairs in the training data by

treating them as unobserved. Then we train all the models on the data with a% of

positive data pairs as unlabeled and compare their performances on the testing data.

Note that we only flip the labels of positive pairs in the whole training data and keep

the testing data the same as before. Therefore, by decreasing the number of observed

positive data pairs in training data, we evaluate the robustness of models in terms of

recovering true positive interactions of data points in the model. In the experiment,

the ratio of positive pairs to be concealed, a%, varies from {0%, 30%, 60%, 90%} where

0% corresponds to the original training data.
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3.5.3 Drug Repositioning

In drug repositioning problems, an interaction between a drug and a disease ex-

ists if the drug can be used to treat the disease. We compare our proposed methods

with competing approaches on detecting such drug-disease interactions. In the experi-

ments, we extract the top 60 principal components from the disease association matrix

(described in section 3.5.1) as the latent feature of disease. Since the traditional task

of drug repositioning focuses on discovering potential effective drugs for each known

disease, we fix all the diseases and conduct validation procedures by randomly split-

ting drugs. The prediction performance achieved by different methods with different

ratios of flipped positive pairs is shown in Figure 3.1. From the figure, we observe

that the proposed DyPU and IMC approaches outperform baseline methods includ-

ing the Two-Step Naive Bayes and SVM significantly indicating the importance of

taking advantage of the information of feature interactions. For the original data set

or the data set with a small number of concealed positive data pairs, our proposed

method achieves comparable prediction performance with IMC. However, as the num-

ber of positive pairs decreases and useful information becomes scarcer, the prediction

performances of all models decreases in different extents, which is expected. Among

all the models, the proposed DyPU with the rectifier function is the most stable

model which is not sensitive to the ratio of positive data pairs. The fast decay of

performance obtained by the baseline methods validates the hypothesis that mistak-

enly categorizing unlabeled data pairs as negatives will yield biased models. We also

observe that, the traditional two-step PU learning with Naive Bayes Classier achieves

a fairly stable performance when the conceal-ratio is 90%, which also indicates the

importance of differentiating the settings of PU learning and binary classification.

Besides testing the methods for traditional drug repositioning problem, we are
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Figure 3.1: Performance comparison of five methods with increasing ratios of con-

cealed positive data pairs on drug repositioning tasks when diseases are observed.
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also interested in the ability of predicting the interaction between a new drug and a

new disease, which is a much harder problem. In this experiment, we split the data

in both drug-wise and disease-wise manner. We train models on the pairs between

training drug data points and training disease data points and test the model on

the pairs where neither the drug or the disease is seen in the training stage. The

validation setting mimics a real-world setting: once rare/unknown diseases without

any treatment information arise, a competent drug repositioning method should pre-

dict potential new treatments based on characteristics of the new drug molecules and

comorbidities of the new diseases. The prediction performance achieved by different

methods with different ratios of concealed positive pairs is shown in Figure 3.2.

The performance patterns are very similar to the scenario where the testing dis-

eases are known in the training stage. We observe that the robustness of the proposed

DyPU is more remarkable in this setting. For example, even when only 10% of posi-

tive interactions are used, the proposed DyPU can still achieve a comparable mean

average precision@3 of using 70% of positive data pairs for training while the perfor-

mance of IMC decays faster than before. Note that, in such case, traditional two-step

PU learning method is not applicable.

3.5.4 Drug-Drug Interaction

In this experiment, we use the chemical structure features to predict the positive

DDIs. The problem of DDI prediction is restricted to only one domain (i.e., members

of a data pair are drugs), therefore traditional approaches are not directly applicable

in this scenario. We implement our proposed DyPU with the rectifier scoring func-

tion and compare it with the IMC methods (Natarajan and Dhillon, 2014; Jain and

Dhillon, 2013). To achieve symmetric predictions, the coefficient matrix W in the

models of IMC is factorized into a product of a low-rank matrix U and its transpose
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Figure 3.2: Performance comparison of four methods with increasing ratios of con-

cealed positive data pairs on drug repositioning tasks when diseases are unknown.

UT , i.e., W = UUT , and we solve the formulations with proximal splitting methods.

We are interested in the general predictive power of predicting the interactions
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Figure 3.3: Performance comparison of four methods with increasing ratios of con-

cealed positive data pairs on DDI prediction tasks.
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between arbitrary drug pairs which could be those of a newly developed drug (i.e.,

without any known DDI) and existing drugs. We design an experiment to compare

the prediction abilities of our proposed framework with the IMC approach, KBMF

and SVM. We randomly split the drugs into equally sized training and testing sets

and train models based on the data pairs among half of the drugs, and then test

their performance of predicting the positive interactions on the remaining half of the

data. Similarly, for each drug in the testing set, we compute the average precision@k,

precision@k, recall@k and F1@k and obtain the mean values by averaging the scores

over all testing drugs. The predictive performance is shown in Figure 3.3, which shows

the advantages of our proposed DyPU in DDI prediction. Overall, it outperforms

other baseline methods when an increasing number of positive data pairs are con-

cealed, which further demonstrates the superiority of the DyPU in the PU learning

setting. The IMC approach exhibits unstable prediction performance for different

ratios of concealed positive data pairs, which further demonstrates that treating un-

labeled data pairs as negatives will result in biased models. The DyPU with the

rectifier function has an overall higher predictive power in terms of detecting positive

interactions between drugs, which has the potential to alert the public to possible

dangerous DDIs even before a drug officially enters the market.

3.6 Genralizing Ranking Above Average to Ranking Above Average of the

Top-ranked

In the framework of DyPU, a model is trained to discover positive data pairs

by requiring positve data pairs to rank above the average score of unknown data

pairs. Can we find a better representation of unknown data pairs than their average

ranking score? An intuitive idea is to use the score of the topmost or the top-ranked

unknown data pairs instead of the whole data to form the representation, which is
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closely related to top ranking problems in the area of bipartite ranking (Li et al.,

2014b; Agarwal, 2011; Tsochantaridis et al., 2005; Boyd et al., 2012; Clémençon and

Vayatis, 2007; Christakopoulou and Banerjee, 2005; Burges et al., 2007).

In many applications such as recommendation system, information retrieval and

drug discovery, only instances (e.g., data pairs in drug discovery settings stated previ-

ously) ranked at the top of the list are of interest due to limited time or resources for

further examination. To learn a well-performing ranking model, the classic approach

is to use pairwise ranking methods (Joachims, 2002; Freund et al., 2003; Herbrich

et al., 1999; Burges et al., 2005) which optimize the preference orders of sample pairs.

However, these methods usually cannot guarantee the ranking performance at the top

of the ranking list. Moreover, the computation complexity of most pairwise models

is quadratic in sample size thus not scalable on large-scale datasets. Recently, in-

creasing attention has been paid to designing methods to optimize the the ranking

performance at the top of a list (Li et al., 2014b; Agarwal, 2011; Tsochantaridis et al.,

2005; Boyd et al., 2012; Clémençon and Vayatis, 2007; Christakopoulou and Banerjee,

2005; Burges et al., 2007).

The approaches to the above top ranking problem can be roughly categorized into

two types. The first type of approach directly optimizes the ranking measurements

that emphasize top relevant instances such as average precision (Yue et al., 2007),

discounted cumulative gain (DCG) (Cossock and Zhang, 2008; Xu and Li, 2007;

Chapelle et al., 2007; Taylor et al., 2008; Chapelle and Wu, 2010; Chakrabarti et al.,

2008), mean reciprocal rank (MRR) (Chakrabarti et al., 2008), and partial AUC

(Narasimhan and Agarwal, 2013a). The main challenge in these approaches is the non-

convexity of their formulation. One may have to compromise to solve a relaxed convex

surrogate. Some methods need to solve quadratic programming with exponential

number of constraints and thus are not efficient enough.
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The second type of approach (Li et al., 2014b; Agarwal, 2011) seeks to maximize

the accuracy at the absolute top of the ranking list. The InfinitePush (Agarwal, 2011),

viewed as an extreme case of P -norm Push (Rudin, 2009), uses max-margin principle

to construct a scoring function where the largest fraction of relevant-first-irrelevant-

last violations for each irrelevant instance is minimized. It has shown promising per-

formance in recommendation systems (Christakopoulou and Banerjee, 2005). How-

ever, the InfinitePush needs to evaluate all relevant-irrelevant pairs which is compu-

tationally expensive. To alleviate the computational burden, the TopPush algorithm

(Li et al., 2014b) minimizes the number of relevant instances ranked lower than the

topmost irrelevant instance. The TopPush has been shown to learn an equivalent

ranking model to the InfinitePush but only needs to evaluate dual variables in linear

number of training instances, thus enjoying high efficiency. However, the over-reliance

on the topmost irrelevant instance is suspected to be sensitive to outliers and may

lead to less robust predictions.

The fragility of the TopPush is due to its excessive emphasis on the single topmost

irrelevant instance. To improve the robustness and find a reliable representation of

the top-ranked unknown instances, we propose a novel approach, called SortPush,

which minimizes the fraction of relevant instances ranked lower than a representative

of multiple top-ranked irrelevant instances instead of the topmost one. Specifically,

SortPush automatically identifies the top-ranked irrelevant instances according to a

pre-specified set of weights and uses their weighted combination as the representative

of the top irrelevant instances for modeling. For example, one may pre-specify k

positive weights so that k irrelevant instances will be selected and linearly combined

for modeling. The proposed model includes the TopPush model as a special case

when only one of the weights is set to be positive. Also, the proposed model includes

the previously proposed “ranking above average” as a special case when all of the
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weights are set to be one over the size of unknown instances. The weighted top-k

scheme allows us to overcome the all-zero solution in the TopPush and is therefore a

non-trivial extension.

The proposed formulation is challenging to solve as the model is based on the

ranking order of the irrelevant instances which is also unknown. In this thesis, we

adopt the Alternating Direction Method of Multipliers (ADMM) framework (Boyd

et al., 2011) where the updating steps involve two optimization subproblems: one is

a non-smooth unconstrained problem and the other one is a non-smooth constrained

problem. The improved dual updating step is a one-dimensional bisection root find-

ing problem. The dual problem of the non-smooth unconstrained problem can be

efficiently solved via accelerated gradient type methods (Beck and Teboulle, 2009;

Nesterov, 1983) where the associated proximal operator is shown to admit a closed

form solution. As the main technical contribution of this section, we show that the

multivariate dual problem of the highly non-trivial non-smooth constrained problem

can be converted to a one dimensional concave maximization problem and thus can

be efficiently solved by methods such as bisection root finding in logarithmic time.

In the remainder of this section, we first propose the SortPush framework and

then derive the optimization procedures. We then report the results of empirical

experiments on several ranking benchmark datasets.

3.7 Using Top-ranked unlabeled instances

In dyadic settings, one may construct all feature interactions and rewrite x̃W z̃ as

wTx where x represents all the interactions between x̃ and z̃, and w is the vector

reshaped from W . In the following, we consider ranker wTx for clear presentation.

Please note that besides the dyadic positive unlabeled learning problems, the proposed

method can be applied for arbitrary bipartite ranking problems. We propose to
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estimate the scoring function f(·) by minimizing the following ranking loss:

min
f

1

m

m∑
i=1

`

(
n∑
j=1

αjf(x−(j))− f(x+
i )

)
, (3.33)

where − represents the irrelevant (unlabeled) class, + represents the relevant (pos-

itive) class, f(x−(1)) ≥ f(x−(2)) ≥ . . . ≥ f(x−(m)) are the ordered statistics of scores

f(x−), and αj’s are a sequence of pre-specified non-negative weights sorted in de-

scending order:

α1 ≥ α2 ≥ . . . ≥ αn ≥ 0,
n∑
j=1

αj = 1. (3.34)

� denotes the elementwise greater than or equal to operator. Possible loss functions

include logistic loss log(1+ex), hinge loss [1+x]+ , max(1+x, 0), etc. Intuitively, the

formulation in (3.33) computes a representative score linearly combining the ranking

scores of unlabeled instances according to the sorted weights αj’s. Then it minimizes

the cost of the violations where the representative score is larger than the ranking

scores of positive instances.

We name the family of algorithms using the loss (3.33) as SortPush. One special

case is to form a representative score of top-k ranked unlabeled instances by assigning

positive weights to α1, . . . , αk and setting the remaining n − k weights αk+1, . . . , αn

to zero. For example, when α1 = α2 = α3 = 1
3
, the formulation in (3.33) uses the

average score of the top-3 unlabeled instances as the representative of top ranked

unlabeled instances for model construction.

In the following, let αj’s be defined as in (3.34). The optimization problem for

SortPush can be written as:

min
w

λ

2
‖w‖2 +

1

m

m∑
i=1

`

(
n∑
j=1

αjw
Tx−(j) −wTx+

i

)
, (3.35)

where wTx−(1) ≥ wTx−(2) ≥ . . . ≥ wTx−(m). We first show that Eq.(3.35) is convex when

αj’s are in descending order based on the following proposition (Usunier et al., 2009).
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Proposition 3.7.1. Let α = (α1, α2, . . . , αn) be a sequence of n non-negative numbers

and the sorted weighting function sα : Rn → R be defined as

sα(t) =
n∑
i=1

αjt(j),

For α1 ≥ α2 ≥ . . . ≥ αn ≥ 0, then

sα(t) = max
σ∈Ξ

n∑
j=1

αjtσ(j),

where Ξ is set of permutation mappings, and therefore sα(·) is convex.

The conclusion above is a direct result from the rearrangement inequality. There-

fore,
∑n

j=1 αjw
Tx−(j) is a convex function of w as it is the composition of a convex

function and an affine function of w. Hence, the convexity of problem (3.35) follows

from the fact that both `2 norm and loss `(·) are convex (Boyd and Vandenberghe,

2004).

The ADMM Algorithm for Solving SortPush

We consider the hinge loss function, i.e., `(x) = [1 + x]+ and propose to use the

ADMM to solve the problem (3.35). Denote X− ∈ Rn×d as the data matrix for

unlabeled instances where X−j,· = x−j
T

, and X+ ∈ Rm×d as the data matrix for

positive instances where X+
i,· = x+

i
T

. Let . Let b = X−w ∈ Rn and

`H(w,b) =
1

m

m∑
i=1

[
1 +

n∑
j=1

αjb(j) −wTx+
i

]
+

. (3.36)

Then problem (3.35) is equivalent to the following constrained minimization problem:

min
w,b

λ

2
‖w‖2

2 + `H(w,b) , S(w,b)

s.t. b = X−w

(3.37)
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where b(1) ≥ b(2) ≥ . . . ≥ b(n) are the order statistics of the entries of b, namely, the

values of bi’s are sorted in descending order. Define

∆(w,b, ξ) ,
ρ

2

∥∥X−w − b + ξ
∥∥2

2
.

The ADMM procedure at iteration t consists of the following three steps:

w(t+1) = arg min
w

S(w,b(t)) + ∆(w,b(t), ξ(t))

b(t+1) = arg min
b

S(w(t+1),b) + ∆(w(t+1),b, ξ(t))

θ(t+1) = θ(t) +X−w(t+1) − b(t+1)

(3.38)

θ ∈ Rn,θ � 0 is the Lagrangian dual variable and ρ > 0 is the tuning parameter.

Next, we present the details for solving subproblems associated with w and b in

(3.38).

Updating w

We consider a simpler form of the optimization problem associated with w in (3.38) :

min
w

1

m

m∑
i=1

[
π −wTx+

i

]
+

+
λ

2
‖w‖2

2 +
ρ

2

∥∥X−w + ν
∥∥2

2
, (3.39)

where π := 1 +
∑n

j=1 αjb
(t)
(j), and ν := −b(t) + θ(t).

By introducing the slack variables ζi’s, problem (3.39) can be transformed to the

following constrained quadratic programming problem:

min
w,ζ

1

m

m∑
i=1

ζi +
λ

2
‖w‖2

2 +
ρ

2

∥∥X−w + ν
∥∥2

2

s.t.
ζi ≥ π −wTx+

i

ζi ≥ 0,

 , i = 1, . . . ,m.

(3.40)

From the first-order optimality condition of its Lagrangian function, one can remove

the slack variables ζ and obtain

w =
(
λI + ρX−

T
X−
)−1

m, (3.41)
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and the dual problem of (3.40):

min
δ

1

2
mT

(
λI + ρX−

T
X−
)−1

m− πδT1

s.t. 0 ≤ δi ≤
1

m
, i = 1, . . . ,m.

(3.42)

where δ is the dual variable, δi ≥ 0, i = 1, . . . , n, m =
(
X+Tδ − ρX−Tν

)
and

I ∈ Rn×n is the identity matrix. It can be easily verified that the proximal operator

associated with problem (3.42) admits a closed form solution. Therefore, after we

obtain a dual optimal solution δ∗ that maximizes the problem (3.42), we can readily

compute the closed form proximal operator w∗ via the closed form solution of w

in (3.41) and problem (3.42) can thus be efficiently solved via accelerated gradient

algorithms (Beck and Teboulle, 2009; Nesterov, 1983). Note that the matrix inversion

only needs to be computed once through out the algorithm.

3.7.1 Updating b

We simplify the notations of the optimization problem associated with b and have:

min
b

1

m

m∑
i=1

[
n∑
j=1

αjb(j) − ui

]
+

+
ρ

2
‖b− v‖2

2 , (3.43)

where u := −1 + X+w(t+1), and v := X−wt+1 + θ(t). Since the `2 norm is invariant

of permutation, we make the following assumption without loss of generality:

Assumption 1. The vector v ∈ Rn obeys v1 ≥ v2 ≥ . . . ≥ vn.

Note that one can always obtain the solution of b by applying the inverse of the

permutation that sorts v in descending order.

Proposition 3.7.2. Under Assumption 1, the solution b to problem (3.43) satisfies

b1 ≥ b2 ≥ . . . ≥ bn.
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Proof. for Proposition 3.7.2 The proof is analogous to the proof of Proposition 2.2

stated in (Bogdan et al., 2013).

Suppose that bi < bj for i < j (and vi > vj), and form a copy b′ of b with entries

i and j exchanged. Letting L be the objective functional in (3.43), we have

f(b)− f(b′) =
1

2
(vi − bi)2 +

1

2
(vj − bj)2 − 1

2
(vi − bj)2 − 1

2
(vj − bi)2. (3.44)

This follows from the fact that the sorted linear combination in Part I takes on the

same value at b and b′ and that all the quadratic terms cancel but those for i and j.

This gives

f(b)− f(b′) = (bi − bj)(vj − vi) > 0, (3.45)

which shows that the objective of b′ is strictly smaller, which contradicts to the

optimality of b.

Therefore, problem (3.43) can be transformed to the constrained problem:

min
b

1

m

m∑
i=1

[
n∑
j=1

αjbj − ui

]
+

+
ρ

2
‖b− v‖2

2

s.t. b1 ≥ b2 ≥ . . . ≥ bn.

(3.46)

As the first term in (3.46) is non-smooth, we introduce the slack variables ξi’s and

transform problem (3.46) to the constrained quadratic programming problem:

min
b,ξ

1

m

m∑
i=1

ξi +
ρ

2
‖b− v‖2

2

s.t. b1 ≥ b2 ≥ . . . ≥ bn,

ξi ≥
n∑
j=1

αjbj − ui

ξi ≥ 0,

 , i = 1, . . . ,m

. (3.47)

The Lagrangian function associated with the problem (3.47) is given by

L(b, ξ,γ,η) =
1

m

m∑
i=1

ξi +
ρ

2
‖b− v‖2

2 −
m∑
i=1

γi

(
ξi −

n∑
j=1

αjbj + ui

)
−

m∑
i=1

ηiξi (3.48)
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where γi ≥ 0, ηi ≥ 0, i = 1, . . . , n are Lagrangian dual variables. The first-order

optimality condition ∂`
∂ξi

= 0 results in

0 ≤ γi ≤
1

m
, i = 1, . . . , n. (3.49)

Then, the Lagrangian function (3.48) can be simplified as

`(b,γ) =
ρ

2
‖b− v‖2

2 +
m∑
i=1

γi

(
n∑
j=1

αjbj − ui

)
. (3.50)

Thus, the dual problem of (3.47) becomes

max
γ

min
b

ρ

2
‖b− v‖2

2 +
m∑
i=1

γi

(
n∑
j=1

αjbj − ui

)

s.t. b1 ≥ b2 ≥ . . . ≥ bn,

0 ≤ γi ≤
1

m
, i = 1, . . . , n

(3.51)

We next show that problem (3.51) can be transformed to an equivalent one dimen-

sional optimization problem.

First, we write the objective of minimization problem (3.51) as a function of

c =
∑n

i=1 γi:

g1(c) := min
b

ρ

2
‖b− v‖2

2 + c
n∑
j=1

αjbj

s.t. b1 ≥ b2 ≥ . . . ≥ bn

. (3.52)

Then, problem (3.51) is equivalent to the following maximization problem w.r.t γ

and c:

max
γ,c

g1(c)−
m∑
i=1

γiui

s.t. c =
m∑
i=1

γi, 0 ≤ γi ≤
1

m
, i = 1, . . . ,m

. (3.53)
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Furthermore, the affine function of γi’s can be written as another function of c, i.e.,

g2(c) := min
γ

m∑
i=1

γiui

s.t.
m∑
i=1

γi = c,

0 ≤ γi ≤
1

m
, i = 1, . . . ,m

. (3.54)

Therefore, problem (3.51) can be rewritten as the following:

max
c
G(c) = max

c
g1(c)− g2(c)

s.t. 0 ≤ c ≤ 1

(3.55)

To this end, we transform the multivariate optimization problem (3.51) to a one

dimensional optimization problem. We summarize the properties of problem (3.55)

in the following theorem.

Theorem 3.7.3. Problem (3.55) is a one dimensional concave maximization problem

and

• g1(c) is a concave function and has a continuous derivative;

• g2(c) is a piecewise linear function of c and is a convex function.

Proof. for Theorem 3.7.3 First of all, since function g1(c) is a pointwise infimum of

affine functions of c, it follows that g1(c) is concave (Boyd and Vandenberghe, 2004).

Based on similar analysis of Lemma 2 in (Chapelle et al., 2002), given c = c0, one

can compute the the derivative of g1(c), i.e.,

∂g1(c)

∂c

∣∣∣∣
c=c0

=
n∑
j=1

αjb
∗
j , (3.56)

where b∗ is the optimal solution to problem (3.52) at c = c0. For a fixed c, the exact

solution to problem (3.52) can be computed in O(n) time which is obtained in a way
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analogous to the algorithm for the proximal operator problem stated in (Bogdan et al.,

2013). As g1(c) is concave and differentiable w.r.t c everywhere in the range [0, 1], its

derivative ∂g1(c)
∂c

is continuous according to Theorem 25.5 in (Rockafellar, 1970). We

next prove that function g(c) defined in (3.54) is a piecewise linear function. We first

assume ui’s have already been sorted in descending order without loss of generality,

i.e.,

u1 ≤ u2 ≤ . . . ≤ um.

And we denote q = bcmc and r = c − bcmc
m

. Then, for a given c, the solution

to (3.54) would be γ1 = 1
m
, γ2 = 1

m
, . . . , γq = 1

m
, γq+1 = r and γi = 0 for i =

q + 2, . . . ,m. Thus, it is obvious that for c ∈ [0, 1], the function value g(c) is a

piecewise linear function in intervals
[
i−1
m
, i
m

]
with slopes ui, i = 1, . . . ,m. Moreover,

let zi = 1
m

∑i−1
j=1 uj −

i−1
m
ui, i = 1, . . . ,m, then g2(c) can be expressed as

g2(c) = max
i=1,...,m

uic+ zi. (3.57)

Hence, g2(c) is convex (Boyd and Vandenberghe, 2004) and −g2(c) is thus concave.

Since the constraint function in (3.55) is linear and the objective is a linear combi-

nation of two concave functions, problem (3.55) is a one dimensional concave maxi-

mization problem, which completes the proof.

Based on the result above, we convert problem (3.55) to a root finding problem

and propose a modified bisection algorithm to solve it. For intervals
(
i−1
m
, i
m

)
, i =

1, . . . ,m, the derivative of F(c) is

∂G(c)

∂c
=
∂g1(c)

∂c
− ∂g2(c)

∂c
, (3.58)

where ∂g1(c)
∂c

is computed via (3.56) and

∂g2(c)

∂c
= ui. (3.59)
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For the breakpoints c ∈
{
i
m

: i = 1, . . . ,m− 1
}

where g2(c) is non-differentiable, we

know the corresponding subdifferential satisfies

∂g2(c)

∂c
∈ [ui, ui+1]. (3.60)

And for the boundary points 0 and 1, the subdifferential is in (−∞, u1] and [um,∞)

seperately. Therefore, ∂G(c)
∂c

is guaranteed to be monotonically decreasing. The de-

tailed algorithm for solving problem (3.55) is summarized in Algorithm 3. The details

of computing ∂G(c)
∂c

are also elaborated in the supplement. Once c is found by Algo-

rithm 3, we will obtain the optimal solution to problem (3.43), i.e., b∗ that solves

problem (3.52).

3.7.2 The Choice of Weighting Scheme

The weighting coefficients αi controls the loss penalty when a mistake is made in

the top-k instances. Here we focus on the top-k polynomial weighting scheme:

αi =


i−p/(

∑k
j=1 j

−p) 1 ≤ i ≤ k

0 i > k

.

When p→∞, SortPush reverts to TopPush; when p = 0, SortPush averages the top-

k negative instances. It is possible to set p < 0. In this case, SortPush will tolerate

mistake on the topmost negative instance, and try to optimize the k-th negative

instance in the top of the ranking list. This allows SortPush to be more robust to

noise, especially when the data is not linearly separable. By setting p < 0, SortPush

will pay more attention to negative instances that are beyond the noise margin and

ignore instances within the noise margin.
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Algorithm 3: Computing c in (3.55)

Input: scalar ρ, vector u, v and α sorted in descending order

Output: c̄

1:
∂G(c)
∂c = ∂g1(c)

∂c −
∂g2(c)
∂c at c1 = 0, c2 = 1

2: if ∂G(c)
∂c

∣∣
c=c1

and ∂G(c)
∂c

∣∣
c=c2

have the same sign then

3: Choose c̄ = arg maxc∈{c1,c2} G(c)

4: else

5: c̄ = c1+c2
2 ;

6: while 0 /∈ ∂G(c)
∂c

∣∣
c=c̄

do

7: Compute ∂G(c)
∂c at c̄ = c1+c2

2

8: if ∂G(c)
∂c

∣∣
c=c̄

has different sign from ∂G(c)
∂c

∣∣
c=c1

then

9: c2 = c̄; ∂G(c)
∂c

∣∣
c=c2

= ∂G(c)
∂c

∣∣
c=c̄

;

10: else

11: c1 = c̄; ∂G(c)
∂c

∣∣
c=c1

= ∂G(c)
∂c

∣∣
c=c̄

;

12: end if

13: end while

14: end if

3.8 Experiments on comparing SortPush with other bipartite ranking methods

For more comprehensive comparisons, we compare the proposed SortPush model

with the popular baseline methods for bipartite ranking on four well-known bench-

mark datasets for learning to rank.

3.8.1 Data Description

The benchmark datasets used in our study are the TREC 2003 and TREC 2004

(called TD2003 and TD2004 from LETOR 2.0) dataset, and the TREC 2007 and

TREC 2008 (called MQ2007 and MQ2008 from LETOR 4.0) dataset which are pub-
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Table 3.1: Dataset Statistics: d is the dimension, m is the number of positive in-

stances, n is the number of negative instances

Dataset d n+m m n

TD2003 44 49171 516 48655

TD2004 44 74170 444 73726

MQ2007 41 69623 3863 65760

MQ2008 40 15211 931 14280

licly available for download from Microsoft Research 5 . The relevance scores in

TD2003 and TD2004 datasets are from {0, 1} while those in MQ2007 and MQ2008

range from {0, 1, 2}. As we examine the performance for the bipartite ranking, we

group items with relevance score 2 into the set of relevant instances in the experiment.

All the features are normalized using z-score where each feature is subtracted by its

mean and divided by its standard deviation. Detailed data statistics are shown in

Table 3.1.

3.8.2 Experiment Settings

We compare the proposed SortPush with six baseline methods: TopPush (Li

et al., 2014b) and Support Vector Machine (SVM), SVMpAUC (Narasimhan and

Agarwal, 2013b), RankNet (Burges et al., 2005) that optimizing mAP (RN-mAP)

/ NDCG (RN-NDCG) / Precision (RN-Prec). The implementation of TopPush 6

and SVMpAUC 7 are released by the authors. We use liblinear to implement SVM

5http://research.microsoft.com/en-us/um/beijing/projects/ letor/

6http://lamda.nju.edu.cn/code TopPush.ashx

7http://clweb.csa.iisc.ernet.in/harikrishna/Papers/SVMpAUC/
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8 . The SVMpAUC is released by the author The algorithm RankeNet used is from

software package RankLib 9 .

We evaluate the ranking performance using a variety of metrics including the

mean Average Precision (mAP), NDCG and AUC score. To examine the results on

top of the ranking list, we also compute these scores restricted to the top τ instances,

denoted as ‘mAP@τ ’ or ‘NDCG@τ ’. All datasets are randomly split into 60% train-

ing set and 40% testing set. All experiments are repeated 5 times and the mean and

standard deviation of the above metrics are reported. For SVM, we tune the pa-

rameter C from the set {1, 10, 102, 103, 104, 105}. For the setting of SVMpAUC, the

parameter C is chosen from the set {10−3, 10−2, 10−1, 1, 10, 102, 103}. The number of

layers in RankNet is tuned from 1 to 5, and the metric NDCG and Precision are op-

timized at τ = 10. For SortPush, we choose the top-k parameter from top 1% to top

100% with 20 equally spaced values. Parameter p in the top-k polynomial weighting

scheme is tuned from the set {0,±0.5,±1,±2,±4}. The parameter λ in TopPush and

SortPush are tuned the same as SVM with λ = 1/C. Due to the slow convergence

rate of TopPush, we set the maximum number of iteration in TopPush to be 5× 105.

All parameters are selected via cross-validation based on the measurement of mean

average precision.

3.8.3 Ranking Performance

We report the ranking performance of SortPush in Table 3.2 and Table 3.3. Meth-

ods such as SortPush, SVMpAUC, RankNet generally perform better than SVM, in-

dicating the necessity of optimizing a specific metric for top ranking. Moreover, in

most cases, the performances of SortPush are significantly better than those of other

8http://www.csie.ntu.edu.tw/ cjlin/liblinear/

9https://people.cs.umass.edu/ vdang/ranklib.html
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baseline method.The poor performance achieved by TopPush shows its fragility to

datasets which may be contaminated by outliers/noises. We discover that, in our

experiment, TopPush typically converges to all-zero solution for the real datasets,

which indicates the vulnerability to outliers. Also, we observe that the variance of

the performance of SortPush is usually smaller than the baseline approaches, which

indicates the stability of the SortPush. For example, on TD2004, the variance of

mAP of SortPush is only 0.6%, while SVM is 7.2% and TopPush is 9.8%.

3.8.4 SortPush Performance under Different Parameters

In order to understand how the parameters affect the ranking performance of Sort-

Push, we plot the performance curves obtained by SortPush under different parameter

settings in Figure 3.4. The plots the mean average precision of SortPush where the

x-axis is the top-k parameter. We use different line colors to indicate different p in

the polynomial weighting scheme for SortPush. In the figure, we highlight the per-

formance of SVM and TopPush for reference. In Figure 3.4, when p = 4, SortPush

will revert to TopPush and we observe that the performance drops dramatically as

expected. To achieve the best performance, one needs a small p and a sufficiently

large k. On the MQ2008 dataset, we observe that the highest prediction performances

concentrate around k ≥ 80% indicating that the majority of the instances is needed to

learn a good ranker. Interestingly, SortPush usually achieves the best performance at

p = 0.5. One possible reason is that it considers top instances and non-top instances

with smoothly changing weights and thus fully takes advantage of the information of

the data.
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Figure 3.4: The mean average precision curves achieved by the SortPush with vairous

top-k% and p in polynomial weighting scheme.
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Chapter 4

LEARNING WITH SUBGROUPING

4.1 Introduction

Nowadays, data has been growing larger and more heterogeneous in many areas

such as social media, finance, healthcare, agriculture, transportation. These big and

heterogeneous data brings new challenges for biulding powerful predictive models with

conventional methods. One straightforward solution to this challenge is to divide

the data into multiple subgroups that show more homogeneity and build models

individually for each subgroup. The development and research of this idea has been

recognized for a long time. A simple regression model with a 0-1 dummy variable

interacted with other independent variables can be viewed as a direct applicaiton.

Consider a regression model,

y = w0 +
d∑
i=1

wixi + ε, (4.1)

where y is a scalar label, w0, w1, . . . , wd are the unknown regression coefficients and

x0, x1, . . . ,xd correspond to the features, ε is the error term. Let xI ∈ {0, 1} be an

indicator variable (e.g., indicator of gender). By including xI and its interactions

with other variables in the regression model, one may obtain

y = w0 +
d∑
i=1

wixi + u0xI +
d∑
i=1

uixixI + ε, (4.2)

where u0, u1, . . . , ud are the unknown regression coefficients for xI and the interaction

terms. As one can observe, for samples with xI = 0, the model turns into

y = w0 +
d∑
i=1

wixi + ε. (4.3)
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For samples with xI = 1, the model turns into

y = w0 + u0 +
d∑
i=1

(wi + ui)xi + ε. (4.4)

This observation implies that the regression model using interactions composed by

an indicator variable essentially learns two models at the same time: one is for the

group of xI = 0 where the intercept and slope coefficeints are w0, w1, . . . , wd and the

other one is for the group of xI = 1 where the intercept and slope coefficeints are

w0 +u0, w1 +ud, . . . , wd+ud. If the indicator variables and its interactions are of great

importance, it implies that this prior division of data according to the indictor may

lead to two seperate groups which are dissimilar but show more homogeneity within

the group and thus fitting them with seperate models would be preferred. There are

many real-world applications where subgrouping samples play an importance role on

data analysis or modeling. For example, it is well known that many diseases show

very different patterns in terms of gender.

However, determining a good data division using interactions composed by in-

dicator variables requires strong prior knowledge. Moroever, the number of factors

resulting in the data division can be large and thus using interaction models needs

testing all the possible combinations which is disastrous for the computation. Cluster-

wise regression was originally proposed to simultaneously clustering (grouping) and

regression (Späth, 1979, 1982, 2014). In clusterwise regression, the size of cluster K

is predefined and it solves the following optimization problem:

min
fk;Ck

K∑
k=1

∑
(xi,yi)∈Ck

`(fk(xi), yi) (4.5)

where `(·) is the loss function, Ck ∩ Ck′ = ∅, ∪Kk=1Ck is the whole dataset, fk(·) cor-

responds to a regression model for the k-th cluster. A typical algorithm for solving

this objective consists of the following procedures: first, randomly initialize K clus-

ters; second, build models for each cluster and shift data points to the cluster that
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achieves minimum risidual error; repeat the second procedure until convergence. The

original version of clusterwise regression is based on K-Means (KM) which therefore

inherited the disadvantages of KM such as sensitive to initializations. Driven by a

closing motivation, Deodhar and Ghosh (2007) proposed a framework named Simul-

taneous Co-Clustering and Learning (SCOAL) for customer-product recommendation

where the clustering method is applied on both customer and product dimensions.

Zhang (2003) proposed to improve the stability by using harmonic means. DeSarbo

and Cron (1988) introduced conditional mixtures to clusterwise regression problem

and adopted EM algorithms for parameter estimations which recieved great attention

(Hennig, 2000b,a, 1999). Muruzábal et al. (2012) proposed a nueral network method

for clusterwise regression. As the KM-type clusterwise regression requires residuals

for clustering, it is difficult to predict a new instance of which the groundtruth label is

unknown. While the algorithms adopting mixture models need extra assumptions and

therefore more parameters to estimate, which is not favorable in practice. Moreover,

the underlying clustering (grouping) principles of the classic clusterwise regression

algorithms are usually not interpretable.

Motivated by the properties of interaction models, we propose a framework in

this thesis that enables simultaneously subgrouping data points and building learning

models for each separate subgroup. There are two basic assumptions for the proposed

framework: (1) subgrouping of the data set is determined by a small portion of fea-

tures; (2) all models built on the subgrouped data share the same model assumption

(e.g., linearity in regression). Compared to the classic clusterwise regression, the pro-

posed framework predicts an unseen data point by adopting a model-based method

for the group assignment procedure. Furthermore, the proposed framework is able to

identify a group of variables that are critical to the subgrouping procedure. More im-

portantly, our proposed framework has the ability to offer a mechanism to fully utilize
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Figure 4.1: Motivation illustration in the regression setting. The top figure: the

visualization of all the original data points; The bottom figure: by subgrouping all

the data points into three subgroups and fitting regression model separately will gives

one satisfactory prediction results.

the information provided across subgroups and not treat subgroups independently.

Recently, multi-task learning (Caruana, 1997) has been recieved increasing attention

which aims to improve the generalization performance by learning multiple tasks si-

multaneously and exploiting the intrinsic relations among the tasks. Our proposed

framework can easily embed various multi-task learning techniques and thus it can

extract relatedness or common knowledge among seperate/independent subgroups.

In the remainder of this section, we first propose the framework for simultaneous

subgrouping and learning and then introduce the optimization procedues. We report

the experimental results at the end.
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4.2 Simultaneous Subgrouping and Learning

4.2.1 The proposed framework

In this section, all the matrices are represented by uppercase letters (e.g., A),

vectors are represented by boldface lowercase letters (e.g., a), and entries of a vector

or matrix is represented by regular lowercase letters (e.g., ai, Ai,j). In the following,

we consider the setting of regression. The proposed method and conclusions can be

easily extended to the classification setting. We denote y as the scalar outcome and

x = (x1, x2, . . . , xd)
T ∈ Rd as the d-dimensional column feature vector. Suppose we

are given n data pairs {(x1, y1) , (x2, y2) , . . . , (xn, yn)} ⊂ Rd × R and assume that

there are K underlying subgroups G1,G2, . . . ,GK . Then, a regression model for the

subgroup Gk is as follows:

y = xTuk + ε, (4.6)

where ε is the noise term following normal distribution, uk ∈ Rd is the coefficient

vector for the k-th subgroup. Note that outcome y and feature vector x’s are assumed

to be centered and thus the bias term is omitted. Let g ∈ RK be the subgroup

indicator variable where the k-th entry is 1 if the data point belongs to subgroup Gk

and 0 otherwise. Let U = [u1,u2, . . . ,uK ] ∈ Rd×K and we can represent all models

for different subgroups in the following equation:

y = xTUg + ε. (4.7)

If one knows exactly which subgroup a data point is assigned, one can learn the

above model via techniques developed from the multi-task learning framework which

has already been well studied. Unfortunately, the pattern of subgroups is typically

unknown in many applications. To our best knowledge, there has not been an ap-

proach that simultaneously learns the pattern of subgrouping and builds learning
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models individually on each subgroup. We next propose to model this problem in

one framework. Assume that the subgroup label g can be represented by the linear

combinations of the features, that is:

g ≈ V Tx, (4.8)

where V = [v1,v2, . . . ,vK ] ∈ Rd×K is the coefficient matrix for subgrouping. One

can also model the subgrouping via sigmoid function, i.e.,

g ≈ 1

1 + exp (−V Tx)
, (4.9)

which can be solved in a similar way. As we mentioned before, subgrouping is typically

determined by a small amount of features and thus can we assume that coefficient

matrix V is row-wise sparse, i.e., there are rows of V being all zeros. Let G =

[g1,g2, . . . ,gn]T ∈ Rn×K be the subgroup indicator matrix for all the n data points.

Then, the loss of learning regression models would be:

`r (U,G) =
1

n

n∑
i=1

(
yi − xTi Ugi

)2
. (4.10)

The loss of subgrouping would be:

`s (G, V ) =
1

n

n∑
i=1

(
gi − V Txi

)2
. (4.11)

To control the model complexity, we apply the frobenius norm on the model coefficient

matrix U and we use the group lasso penalty on the subgrouping coefficient matrix

V for feature selection. Thus, the regularization term has the following form:

Ω(U, V ) = λ1‖U‖2
F + λ2‖V ‖2,1, (4.12)

where ‖V ‖2,1 =
∑d

i=1 ‖Vi,:‖2, λ1 and λ2 are the tuning parameters.

93



Then, the proposed objective is as follows:

min
U,V,G

η`r(U,G) + (1− η)`s(G, V ) + Ω(U, V )

s.t. G1 = 1

Gi,j ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , K,

(4.13)

where scalar η is in (0, 1) and controls the tradeoff between the loss of modeling and

the loss of subgrouping, 1 ∈ RK is a column vector of all ones and the first constraint

guarantees that each data point is assigned to exactly one subgroup.

4.2.2 Optimization and Prediction

The proposed formulation (4.13) is non-convex due to the coupled unknown vari-

able U and gi’s and we propose to solve it via alternating minimization. That is,

we minimize the objective (4.13) over variable U with V and G fixed, minimize the

objective over V with U and G fixed and minimize the objective over G with U and

V fixed. The optimization with respect to variable U and V is well studied in the

literature. We next briefly discuss the optimization over variable G. For the problem

(4.13), the constraints are imposed on each data point and therefore we can obtain

G by solving the following n subproblems for unknown variable gi’s separately:

min
gi

η
(
yi − xTi Ugi

)2
+ (1− η)

(
gi − V Txi

)2

s.t. gTi 1 = 1

gi,j ∈ {0, 1}, j = 1, . . . , K,

(4.14)

where gi,j represents the j-th element in gi. One can solve the subproblem (4.14) by

enumerating all possible cases of gi and picking up the one with minimum objective

value.
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4.3 Experiments

In this section, we conduct experiments on the Yelp Open Dataset 1 to demon-

strate the effectiveness of the proposed method for simultaneous subgrouping and

learning. Yelp founded in 2005 created a platform for users to rate and review local

businesses. It released the Yelp Open Dataset containing a subset of business, review

and user data to the public for academic purposes. This dataset offers huge opportu-

nities for many research topics such as community detection, recommender systems,

sentiment analysis and so on. We here consider a simple regression task related to

sentiment analysis where the users’ text reviews are used to predict the rating score

of a business. In the Yelp Open Dataset, there are total 1, 326, 101 user reviews in the

format of text. We first preprocess the text reviews by removing punctuations, con-

verting all characters to lowercase and removing stop words and then vectorize each

user review using the term frequency-inverse document frequency (TF-IDF) (Salton

and Buckley, 1988). We build the vocabulary in TF-IDF and ignore terms that have

a document frequency strictly lower than 0.1%, which results in a feature vector of

dimension 4, 791. We let each user to appear only once and obtain 1, 060, 880 items

of user reviews. The rating scores of businesses are ranging from 0 to 5.

For the regression task, the data is expected to be heterogeneous due to variety

of the businesses. For instance, the reviews or descriptions of restaurants and home

services could be far different. Putting them together and learning a unified rating

model may not yield satisfactory performances, and a model determining the fond-

ness of a user by only relying on words like “love” or “hate” is not desired in practice.

In this experiment, we compare our proposed method with ridge regression, Lasso

regression, ridge regresion using interactions (inter-Ridge), Lasso using interactions

1https://www.yelp.com/dataset
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Table 4.1: Comparisons of rMSEs achieved on Yelp Reviews dataset by Ridge, Lasso,

KM-Ridge, KM-Lasso and the proposed methods with different K’s and η’s.

method Ridge Lasso KM-Lasso

rMSE±std 0.868± 0.001 0.892± 0.001 0.886± 0.004

method KM-Ridge inter-Lasso inter-Ridge

rMSE±std 0.858± 0.002 0.888± 0.001 0.829± 0.001

method K = 2 η = 0.9 K = 4 η = 0.9 K = 5 η = 0.9

rMSE±std 0.808± 0.011 0.819± 0.010 0.825± 0.012

method K = 8 η = 0.9 K = 12 η = 0.9 K = 20 η = 0.9

rMSE±std 0.862± 0.011 0.906± 0.011 0.942± 0.011

method K = 3 η = 0.6 K = 3 η = 0.7 K = 3 η = 0.8

rMSE±std 0.849± 0.013 0.846± 0.021 0.822± 0.016

method K = 3 η = 0.9 K = 3 η = 0.95 K = 3 η = 0.99

rMSE±std 0.807± 0.013 0.820± 0.018 0.853± 0.006

(inter-Lasso) and the one first clustering with K-means and then building seperate

ridge/Lasso regression models (named KM-Ridge and KM-Lasso). We conduct 5

rounds of experiments on different splits of the dataset where 5% is for training and

the rest for testing. The parameters are selected by 3-fold cross validation. The

parameters for ridge regression are ranging from [0.1, 1, 10, 50, 100, 200, 500]. The pa-

rameters for Lasso regression are chosen from [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05].

The K-means runs with 5 different centroid seeds and the maximum number of it-
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erations of K-means for a single run is set as 300. For our proposed method, the

λ1 is chosen from [1, 1.5, 10, 15, 20] and the λ2 is fixed to 0.1. We test the proposed

method by choosing K from [2, 3, 4, 5, 8, 12, 20] with the objective tradeoff parameter

in Eq.(4.13) η fixed to 0.9. We also test the proposed method with η’s varying from

[0.6, 0.7, 0.8, 0.9, 0.95, 0.99] under K is set as3. The means and standard deviations

of the root of mean squared error (rMSE) obtained in 5 rounds of experiments are

reported.

From the Table 4.1, we observe that ridge regression outperforms other baseline

methods. The high rMSE obtained by KM-Ridge and KM-Lasso in this experiment

indicating that the clustering/subgrouping and modeling independently may easily

fail to find groups that behave homogeneously in prediction tasks. For fixed η = 0.9,

we observe that the models with K = 2 and K = 3 achieve similar low rMSEs com-

pared with other methods and dividing data points into 3 subgroups achieves the

lowest mean rMSE. The performances are getting worse as the subgroup number K

increases which indicates that segmenting data points with finer granularity vulner-

ates the gernerlization. When the subgroup number K is fixed to 3, we observe that

the rMSE first decreases as η increases, achieves the lowest at η = 0.9, indicating

that the loss of regression task is getting dominant and a good subgrouping leads to

improving fitting results. As the η continues to increase, the prediction performance

tend to be worse as the weight for subgrouping loss is too small to obtain a proper

subgrouping. We further investigate the subgrouping results obtained by the pro-

posed method. Each business in a review has multiple category tags. For example,

a category tag may be like “Restaurants”, “home service”, “Brunch” etc. We first

use the model obtained with K = 3 and η = 0.9 that shows the lowest mean rMSE

in the first round of experiment to subgroup the whole dataset into 3 groups. We

then calculate the frequencies of category tags of the businesses in each subgroup and
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Figure 4.2: The Sankey diagram depicting the majority of categories (with common

categories removed) in the three subgroups made by the proposed method.

select the top 12 frequent categories in each subgroup. In order to visualize the differ-

ence of the three subgroups, we remove the common tags appearing in all subgroups

including “Restaurants”, “Nightlife”, “Bars”, “Hotels”, “Event Planning”, “Food”.

We plot the tags distributions of the three subgroups in a Sankey diagram (Figure

4.2). The figure indicates that the three subgroups show different patterns in terms

of the majority of category tags. For example, the top frequent category tags in sub-

group 0 are “Home services”, “Shopping”, “Local Services” while tags of “Breakfast”,

“Brunch” appear frequently in subgroup 1 and the majority tags in subgroup 2 are

“Entertainment”,“Arts”,“Travel”. This observation shows that our proposed method

is able to divide the data points into groups that behave differently across groups but

similarly within group.
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Chapter 5

CONCLUSIONS AND POSSIBLE FUTURE WORK

In this chapter, I summarize major contributions of this theis and discuss possible

future works.

This thesis is built aroud the topic of mining data using models with interactions.

Hierarchical Lasso methods in existing literature are proposed to achieve both sparse

and hierarchical structural solutions which enables selecting important features and

making models interpretable. However, the formulation of weak hierarchical Lasso is

non-convex and the original work solved it by tackling a relaxed version. We first pro-

pose an efficient algorithm, eWHL, to directly solve the non-convex weak hierarchical

Lasso. One critical step in eWHL is to compute the proximal operator associated

with the non-convex penalty functions. As one of our major contributions, we show

that the proximal operator associated with the regularization function in weak hier-

archical Lasso admits a closed form solution. Furthermore, we develop an efficient

algorithm which computes each subproblem of the proximal operator with a time

complexity of O(d log d). The technique can be easily extended to solving the strong

hierarchical Lasso formulation by using non-convex ADMM methods which is worth

for future explorations. Extensive experiments on both synthetic and real data sets

demonstrate the superior performance of the proposed algorithm in terms of efficiency

and accuracy. We then extend the non-convex formulation for the hierarchical test-

ing and show the closed form solutions to the test statistics. The simulation studies

demonstrate the superiority of the proposed non-convex hierarchical testing frame-

work. Extending the non-convex weak hierarchical Lasso and hierarchical testing

methods to other challenging applications such as depression study (Liu et al., 2013)
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is an important future work.

We then concentrate on modeling drug discovery problems with bi-linear mod-

els which predict the label of a data pair using feature interactions from the two

data points. Specifically, we first propose a novel framework named Dyadic Positive-

Unlabeled learning that ranks positive drug-disease/drug-drug interactions at the top.

Different from most existing methodologies that treat unlabeled interactions as neg-

atives, the proposed framework is able to detect more positive interactions by forcing

the scores of positives to rank above the average score of unlabeled samples. More-

over, we derive the dual formulation of the proposed framework with the rectifier

scoring function and show that the associated proximal operator admits a closed

form solution. We conduct extensive experiments on real datasets and the experi-

mental results show that our proposed framework achieves superior predictive perfor-

mance compared with the state-of-the-art methods. Our method could help identify

drug repositioning opportunities and predict potentially hazardous drug interactions,

which will benefit patients by offering more effective and safer treatments. We further

generalize the idea of “ranking above average” to “ranking above the top-ranked” by

proposing a novel robust algorithm, named SortPush. We show that the proposed

formulation can be efficiently solved using the ADMM framework. We show that

the multivariate dual problem of the non-smooth constrained subproblem in ADMM

can be converted to a one-dimensional concave maximization problem that can be

efficiently solved via binary search. We demonstrate the effectiveness of SortPush

against several baseline ranking at the top models on large-scale benchmark datasets.

Our numerical study shows strong evidence that the sorted weighting is critical in

designing a well-performed bipartite ranking model. It would be interesting to design

a smarter adaptive weighting scheme in the SortPush under various noise distribution

oracles and we leave these as open problems for future research.
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At the end of this thesis, we propose a framework that enables simultaneous

subgrouping and learning for heterogeneous data motivated by the interpretation of

models using feature interactions. Compared to the classic clusterwise regression, our

proposed model-based framework is free from the problem of assigning an unseen data

point to a group, and is able to identify important variables critical to subgrouping

and thus discover extra knowledge. We conduct empirical studies on user reviews

dataset and the results show that the proposed method is able to find homogeneous

subgroups and beat baseline methods in terms of generalization performance. One

future research direction is to investigate multi-task learning techniques that can be

embedded in the proposed framework to explore relatedness among the simultaneous

learned subgroups for knowledge mining and improving generalization performance.
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Muruzábal, J., D. Vidaurre and J. Sánchez, “Somwise regression: a new clusterwise
regression method”, Neural Computing and Applications 21, 6, 1229–1241, URL
https://doi.org/10.1007/s00521-011-0536-3 (2012).

Narasimhan, H. and S. Agarwal, “A structural SVM based approach for optimizing
partial AUC”, in “ICML”, pp. 516–524 (2013a).

Narasimhan, H. and S. Agarwal, “Svmpauctight: A new support vector method for
optimizing partial auc based on a tight convex upper bound”, in “ACM SIGKDD”,
pp. 167–175 (2013b).

Natarajan, N. and I. S. Dhillon, “Inductive matrix completion for predicting gene–
disease associations”, Bioinformatics 30, 12, i60–i68 (2014).

Nesterov, Y., “A method of solving a convex programming problem with convergence
rate o (1/k2)”, in “Soviet Mathematics Doklady”, vol. 27, pp. 372–376 (1983).

Nesterov, Y., Introductory lectures on convex optimization, vol. 87 (Springer Science
& Business Media, 2004).

106

https://doi.org/10.1007/s00521-011-0536-3


Parikh, N. and S. Boyd, “Proximal algorithms”, Foundations and Trends in optimiza-
tion 1, 3, 123–231 (2013).

Petersen, R. C., “Mild cognitive impairment clinical trials”, Nature Reviews Drug
Discovery 2, 8, 646–653 (2003).

Radchenko, P. and G. M. James, “Variable selection using adaptive nonlinear interac-
tion structures in high dimensions”, Journal of the American Statistical Association
105, 492, 1541–1553 (2010).

Rockafellar, R. T., Convex analysis, no. 28 (Princeton University Press, 1970).

Rudin, C., “The p-norm push: A simple convex ranking algorithm that concentrates
at the top of the list”, The Journal of Machine Learning Research 10, 2233–2271
(2009).

Rudin, C. and R. E. Schapire, “Margin-based ranking and an equivalence between
adaboost and rankboost”, The Journal of Machine Learning Research 10, 2193–
2232 (2009).

Salton, G. and C. Buckley, “Term-weighting approaches in automatic text retrieval”,
Information processing & management 24, 5, 513–523 (1988).

Sellamanickam, S., P. Garg and S. K. Selvaraj, “A pairwise ranking based approach
to learning with positive and unlabeled examples”, in “Proceedings of the 20th
ACM international conference on Information and knowledge management”, pp.
663–672 (ACM, 2011).

Simon, N. and R. Tibshirani, “A permutation approach to testing interactions in
many dimensions”, arXiv preprint arXiv:1206.6519 (2012).

Singh-Blom, U. M., N. Natarajan, A. Tewari, J. O. Woods, I. S. Dhillon and E. M.
Marcotte, “Prediction and validation of gene-disease associations using methods
inspired by social network analyses”, PLoS ONE 8 (2013).

Somers, M. J., “Organizational commitment, turnover and absenteeism: An exami-
nation of direct and interaction effects”, Journal of Organizational Behavior 16, 1,
49–58 (1995).
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