
Algorithm Architecture Co-Design

for

Dense and Sparse Matrix Computations

by

Saurabh Animesh

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2018 by the
Graduate Supervisory Committee:

Chaitali Chakrabarti, Chair
John Brunhaver

Fengbo Ren

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

With the end of Dennard scaling and Moore’s law, architects have moved towards

heterogeneous designs consisting of specialized cores to achieve higher performance

and energy efficiency for a target application domain. Applications of linear alge-

bra are ubiquitous in the field of scientific computing, machine learning, statistics,

etc. with matrix computations being fundamental to these linear algebra based so-

lutions. Design of multiple dense (or sparse) matrix computation routines on the

same platform is quite challenging. Added to the complexity is the fact that dense

and sparse matrix computations have large differences in their storage and access

patterns and are difficult to optimize on the same architecture. This thesis addresses

this challenge and introduces a reconfigurable accelerator that supports both dense

and sparse matrix computations efficiently.

The reconfigurable architecture has been optimized to execute the following lin-

ear algebra routines: GEMV (Dense General Matrix Vector Multiplication), GEMM

(Dense General Matrix Matrix Multiplication), TRSM (Triangular Matrix Solver),

LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector Multiplication),

SpMM (Sparse Matrix Matrix Multiplication). It is a multicore architecture where

each core consists of a 2D array of processing elements (PE).

The 2D array of PEs is of size 4×4 and is scheduled to perform 4×4 sized matrix

updates efficiently. A sequence of such updates is used to solve a larger problem inside

a core. A novel partitioned block compressed sparse data structure (PBCSC/PBCSR)

is used to perform sparse kernel updates. Scalable partitioning and mapping schemes

are presented that map input matrices of any given size to the multicore architecture.

Design trade-offs related to the PE array dimension, size of local memory inside a core

and the bandwidth between on-chip memories and the cores have been presented. An

optimal core configuration is developed from this analysis. Synthesis results using a

i

7nm PDK show that the proposed accelerator can achieve a performance of upto

32 GOPS using a single core.

ii

ACKNOWLEDGMENTS

I would first like to express my sincere gratitude to my thesis advisor Dr. Chaitali

Chakrabarti, for her continuous guidance, motivation and patience throughout my

thesis work. I am also thankful to my commitee members Dr. John Brunhaver and

Dr. Fengbo Ren for their time and for providing me critical feedback on my research.

Lastly but most importantly, I would like to thank my parents, sister and friends

for their unconditional love and support throughout my masters studies.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Application Specific Hardware Accelerators . 1

1.2 The Application . 2

1.3 Motivation . 4

1.4 Contributions . 5

1.5 Methodology and Organization . 6

2 BACKGROUND: ALGORITHMS AND IMPLEMENTATIONS. 7

2.1 Algorithm Descriptions . 7

2.1.1 GEneral Matrix Vector Multiplication (GEMV) 7

2.1.2 GEneral Matrix Matrix Multiplication (GEMM) 8

2.1.3 TRiangular Matrix Solver (TRSM) . 10

2.1.4 L U Decomposition (LUD) . 11

2.1.5 Matrix Inverse . 13

2.1.6 Sparse Matrix Vector Multiplication (SpMV) 14

2.1.7 Sparse Matrix Matrix Multiplication (SpMM) 15

2.2 Existing Hardware Solutions . 17

2.2.1 GEMV . 19

2.2.2 GEMM . 21

2.2.3 TRSM . 23

2.2.4 LU Decomposition . 25

2.2.5 Matrix Inversion . 27

iv

Page

2.2.6 SpMV. 29

2.2.7 SpMM . 30

3 PROPOSED UNIFIED ARCHITECTURE . 32

3.1 The Architecture: Overview . 32

3.2 Mapping Dense Linear Algebra Programs . 34

3.2.1 GEMV . 34

3.2.2 GEMM . 37

3.2.3 TRSM . 40

3.2.4 LUD . 42

3.2.5 Matrix Inverse . 46

3.3 Mapping Sparse Linear Algebra Programs . 47

3.3.1 SpMV. 48

3.3.2 SpMM . 50

4 DESIGN TRADE-OFFS . 53

4.1 Core Configuration (Nr) . 53

4.2 Memory Size . 55

4.3 Bandwidth vs Local Memory Size . 57

4.4 Hardware Implementation . 58

5 CONCLUSIONS AND FUTURE WORK . 60

5.1 Conclusions . 60

5.2 Future Work . 62

REFERENCES . 63

APPENDIX . 67

v

LIST OF TABLES

Table Page

4.1 PE Utilization Ratio . 54

4.2 Core Configurations . 58

5.1 Existing Linear Algebra Accelerators . 61

vi

LIST OF FIGURES

Figure Page

2.1 Dense Matrix Vector Multiplication: cn×1 = An×m × bm×1 7

2.2 Dense Matrix Matrix Multiplication: C = Am×p ×Bp×n 9

2.3 Parallel Triangular System Solution: A×X = B . 11

2.4 Compressed Sparse Rows . 15

2.5 Sparse Matrix Matrix Multiplication . 16

2.6 PE in the CGRA . 19

2.7 GEMV with a reconfigurable window size . 20

2.8 LAC with 2× 2 PEs . 22

2.9 Blocked TRSM . 23

2.10 LAC with an augmented Reciprocal Unit . 24

2.11 Triangular Matrix Inverse . 25

2.12 3x3 PE array with Memory and LUT based Divider 26

2.13 Parallel Processing along Columns for Matrix Inverse 27

2.14 PE inside the SpMV accelerator . 30

2.15 OuterSpace Architecture . 30

2.16 3-D Stacked Logic in Memory . 31

3.1 Block Diagram of the unified architecture (Nr = 4) 33

3.2 Partitioning GEMV input to multiple cores . 35

3.3 GEMV Panel Update in a column of PEs (Nr = 4) 36

3.4 GEMV Mapping for Block Updates (k = 2Nr) . 36

3.5 Partitioning GEMM input to multiple cores . 37

3.6 GEMM Panel Update in a PE array (Nr = 3) . 38

3.7 GEMM Mapping for Block Updates (m = 2Nr) . 39

3.8 TRSM Panel Update in a PE array (Nr = 4) . 41

vii

Page

3.9 Sequential TRSM using GEMM . 41

3.10 TRSM Block Updates (k = 3Nr) . 42

3.11 LUD Panel Update in a PE array Nr = 4) . 43

3.12 Sequential LUD using GEMM and TRSM . 44

3.13 LUD Block Updates (k = 3Nr) . 44

3.14 Partitioning for a large LU Decomposition problem 45

3.15 Dense 4× 4 sized block creation using fill-ins. 47

3.16 Partitioning SpMV input to multiple cores . 49

3.17 SpMV Mapping for Block Updates (row = Nr and col = 2Nr) 50

3.18 Partitioning SpMM input to multiple cores . 51

3.19 SpMM Mapping for Block Updates (rowA = colB = Nr and

colA = rowB = 2Nr) . 52

4.1 Effect of Core Configuration on PE Utilization . 54

4.2 Effect of Local Memory size on Core Utilization . 56

4.3 Local memory size vs Bandwidth . 57

4.4 Control Word . 59

4.5 Power vs Delay . 59

viii

Chapter 1

INTRODUCTION

1.1 Application Specific Hardware Accelerators

Starting with the first commercially available microprocessor Intel 4004 in 1971

up until the early 2000s, achieving better performance for an application required less

effort from the programmers. Moore’s law provided enough transistors to implement

complex hardware logic and software developers mostly had a free lunch. Clock

frequencies kept rising until the last decade and software automatically became faster

on newer generation processors. Dennard Scaling ensured that the power dissipation

per unit area on chip did not increase with the shrinking transistors. So, hardware

designers had an abundance of faster transistors at their disposal.

In those three decades, several innovative micro-architectural techniques such as

branch prediction, out-of-order execution, etc. were employed. Instruction Level

parallelism (ILP) was exploited and higher instructions per cycle became synonymous

with better performance. But soon Dennard scaling stopped and processors hit the

power wall. When clock frequencies for a single core stopped to scale, multicores

came to the rescue. Multiple cores increased the performance by exploiting Thread

Level Parallelism (TLP).

Today, we see the emergence of heterogeneous systems where processors exist

with specialized accelerators for achieving higher performance. Tensor Processing

Unit (Google), NVDLA (Nvidia), Neural Engine (Apple), etc. represent alternative

techniques for achieving higher performance. The path forward is to create specialized

hardware that targets a specific application domain. Recent research has shown that

1

achieving better performance of 10-100X and higher energy efficiency is possible only

through application specific hardware design with custom compute units, memory,

interconnect and datapath. In this work we sought to build specialized hardware that

accelerates dense and sparse matrix computations that are common in Basic Linear

Algebra Subprograms (BLAS) used in linear algebra libraries.

1.2 The Application

Linear algebra is the branch of mathematics that deals with linear functions and

linear equations such as: a1x1 + a2x2 + a3x3 + + anxn = b and their repre-

sentations through matrices and vectors. Linear algebraic computations are used in

scientific computing, engineering simulations, image processing, statistical analysis,

machine learning, etc.

The performance of linear algebra subroutines is highly dependent on the imple-

mentation techniques and also the platform chosen for running the programs. This

platform dependence of linear algebra routines gave rise to a standard application for

performance-critical linear algebra kernels, called the Basic Linear Algebra Subpro-

grams (BLAS)[22]. These are software routines that provide standard building blocks

for performing basic vector and matrix operations. Level 1 BLAS performs scalar-

vector and vector-vector operations, Level 2 BLAS performs matrix-vector operations,

and Level 3 BLAS performs matrix-matrix operations.

The BLAS routines are efficient, portable, and widely available and thus are com-

monly used in the development of high quality linear algebra software. The earliest

mathematical software packages such as LAPACK[2], ScaLAPACK[3] have relied on

the underlying BLAS to provide portability and scalability[8]. With the development

of deeper levels of memory hierarchies, computer vendors had to come up with their

own finely tuned implementations, e.g MKL (Math Kernel Library)[18] for Intel pro-

2

cessors and CuBLAS[26] for Nvidia based GPU cards. These are hand-optimized for

target architectures and hence fail to provide portability.

The development of ATLAS (Automatically Tuned Linear Algebra Software)[45]

provided a new approach where the open source software automatically generated

optimized implementations for any given architecture based on generic BLAS and

LAPACK subroutines. This technique provides portability but tends to trail behind

its platform dependent variants when it comes to performance.

Another successful open source implementation was the GotoBLAS[15] which has

been optimized to obtain peak performances on specific processors. Other examples

of this category are MAGMA[7], BLASX[44], PLASMA[4], etc. which are specifically

targeted for Multicores and GPGPUs but they still fail to achieve high performance

because of lack of support from underlying platforms. Certain specialized libraries

like the LAPACKrc[14] have also been developed for FPGAs which provide high

performance but pose a problem in terms of scalability.

Many scientific computing and engineering problems have to deal with sparse ma-

trices. Sparse BLAS interface was developed along with the traditional BLAS (dense)

to provide routines for such unstructured sparse matrix computations. Vendor spe-

cific libraries such as Intel MKL, CuSparse[27] (Nvidia), support sparse computations

through sparse BLAS interfaces. However they fail to achieve maximum performance

as they are bandwidth limited on these architectures. ClSPARSE[16] (AMD) is an

example of open source sparse library which has its performance benefits but is opti-

mized for GPUs and lacks interoperability.

A challenging problem is implementing both sparse and dense computations on

a single platform efficiently. Many complexities arise from non obvious and often

unpredictable interactions between the compute engine (the processors) and the data

upon which they perform calculations[13]. Techniques that prove helpful for dense

3

matrix based computations do not provide the same performance benefits when ap-

plied to sparse matrices. This is largely because of the irregular data structures that

are used to represent sparse matrices in compressed form.

1.3 Motivation

Scientists have traditionally aimed to increase the performance of a single kernel

such as Matrix Matrix Multiplication or Matrix Decomposition through algorithm-

aware architecture design. However there is new push towards architectures that

could support multiple linear algebra routines. Several attempts have been made to

implement matrix computations on reconfigurable cores[32][25] which provide high

performance and power efficiency with programmability. Architectures that could

support both dense and sparse matrix computations have not been explored with

the exception being a reconfigurable Sparse/Dense Matrix Vector Multiply unit[5]

developed at TU Delft.

The objective of this work is to design a reconfigurable architecture that sup-

ports a wide range of kernels from both Sparse and Dense BLAS and to study the

design trade-offs in such a unified architecture. Our work builds upon the Linear

Algebra Core[31] designed at UT Austin and the REDEFINE[1] CGRA based Lin-

ear Algebra Accelerator[25] designed at IISc Bangalore. Both of these reconfigurable

architectures provide evidence that an optimized accelerator for dense linear algebra

can be designed with careful attention to the algorithms. These designs were shown

to achieve higher performance and energy efficiency compared to implementations on

state of the art multicores and GPUs.

4

1.4 Contributions

The main contribution of this thesis is the design of a unified architecture for

performing multiple dense and sparse matrix computations.

• A reconfigurable multicore architecture is proposed which performs the following

matrix computations: GEMV (Dense General Matrix Vector Multiplication),

GEMM (Dense General Matrix Matrix Multiplication), TRSM (Triangular Ma-

trix Solver), LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector

Multiplication), SpMM (Sparse Matrix Matrix Multiplication). The accelerator

is scalable in terms of number of cores. It is designed to work with matrices of

any given size and sparsity.

• Each core in the architecture consists of multiple processing elements and per-

forms kernel updates on small matrix blocks. A large problem size is distributed

into multiple cores and further into multiple processing elements inside each

core. The partitioning and mapping schemes for each of the kernels is presented.

Multiple levels of memory hierarchy and distributed control are proposed to al-

leviate the need for synchronization between the individual cores.

• Design trade-offs related to the number of processing elements inside a core, the

size of local memory in the core and bandwidth between the on-chip memory

and the core are presented. The utilization of a single core is maximized based

on these trade-offs and an optimal core configuration is derived.

• A core with 4× 4 PEs capable of performing updates on 4× 4 sized matrices or

16 × 1 sized vectors has been implemented at the RTL level in SystemVerilog.

Synthesis results using a 7nm PDK have been used to show that a performance

of upto 32 GOPS can be achieved using a single core.

5

1.5 Methodology and Organization

The research strategy adopted in this thesis can be categorized into 3 phases.

The first phase presented in Chapter 2 describes each of the selected kernels. We go

through a brief overview of the algorithms, followed by a comparison drawn between

the existing works related to each of the kernels. The second phase presented in

Chapter 3 describes the unified architecture that can support all the algorithms. We

explain the updates performed to a small matrix block on the core for each of these

algorithms. We also propose our mapping schemes for folding larger problems onto

our core. Finally in Chapter 4, various design trade-offs are observed for such an

architecture, followed by the implementation results of a single core. We conclude

the thesis with possible future extensions to our design.

6

Chapter 2

BACKGROUND: ALGORITHMS AND IMPLEMENTATIONS

In this chapter we first give brief descriptions of a few selected BLAS programs.

These include GEMV (Dense General Matrix Vector Multiplication), GEMM (Dense

General Matrix Matrix Multiplication), TRSM (Triangular Matrix Solver), LU De-

composition, Matrix Inverse, SpMV (Sparse Matrix Vector Multiplication), SpMM

(Sparse Matrix Matrix Multiplication). This is followed by a summary of existing

hardware implementations of these algorithms.

2.1 Algorithm Descriptions

2.1.1 GEneral Matrix Vector Multiplication (GEMV)

The product of a dense matrix and a dense vector is calculated by using the

GEMV subroutine, which is a part of Level-2 BLAS, represented by c = αAb + βc

[10]. The input matrix An×m and vector bm×1 are multiplied to generate the output

vector cn×1 [Fig. 2.1]. Specifically, C[i] =
∑m

k=1A[i][k]×B[k] , where 1 ≤ i ≤ n.

Figure 2.1: Dense Matrix Vector Multiplication: cn×1 = An×m × bm×1

7

Algorithm 1: GEMV

for i = 1 → n do

ci = 0;

for j = 1 → m do

ci = ci + Ai,j × bj

end

end

The sequential algorithm for GEMV requires O(n2) computations and O(n2) data

movements. There is a high data level and instruction level parallelism in this sub-

routine. It has low arithmetic intensity and its performance is memory bandwidth

limited. Reducing memory bandwidth requirement is important and it is achieved

through blocking data.

The above algorithm is the inner product variant where vector b is accessed re-

peatedly. To allow for complete reuse of a block of b, the outer product variant can be

used. Interchanging the loops gives an outer product form for GEMV where vector c

is updated in each iteration.

2.1.2 GEneral Matrix Matrix Multiplication (GEMM)

The product of two dense matrices is calculated using the GEMM subroutine,

which is part of Level-3 BLAS, represented by C = αAB + βC [9]. The two input

matrices Am×p and Bp×n are multiplied to generate the output matrix Cm×n[Fig. 2.2].

Specifically, C[i][j] =
∑p

k=1A[i][k]×B[k][j] ; where 1 ≤ i ≤ m , 1 ≤ j ≤ n.

8

Figure 2.2: Dense Matrix Matrix Multiplication: C = Am×p ×Bp×n

Algorithm 2: GEMM

Input: matrices A and B; Output: matrix C;

for i = 1 → m do

for j =1 → n do

sum = 0;

for k = 1 → p do

sum = sum+ Ai,k ×Bk,j

end

Ci,j = sum;

end

end

The sequential implementation of GEMM involves n3 multiplications and n3−n2

additions and has a time complexity of O(n3). GEMM exhibits both instruction and

data level parallelism and hence it is important that the parallelism be fully exploited.

Since it requires O(n3) computations and O(n2) data movements, it is desirable to

overlap computations with data transfers. GEMM based Level-3 BLAS approach [20]

is widely used to implement all Level-3 BLAS functions. Thus its performance is a

representative of dense BLAS performance on a given architecture.

9

2.1.3 TRiangular Matrix Solver (TRSM)

The Level-3 BLAS subroutine TRSM [9] solves a system of linear equations of

the form AX = B, where A is a nonsingular upper or lower triangular matrix; X

and B are dense matrices. Solving triangular linear systems is an important step

in implementing Linear Algebra operations such as LU Decomposition, Cholesky

factorization, Matrix Inversion, etc.

Algorithm 3: TRSM

An×nXn×m = Bn×m (A is a lower triangular matrix)

for k = 1 → m do

X1,k = B1,k/A1,1;

for i = 2 → n do

s = Bi,k;

for j = 1 →(i-1) do

s = s− Ai,j ×Xj,k

end

Xi,k = s/Ai,i

end

end

The sequential algorithm for solving such a system uses forward or backward

substitution depending on whether the matrix A is lower or upper triangular. This

approach has a time complexity of O(n3). Here division is the most expensive com-

putation and is done m times. There is a sequential dependency in the two inner

loops as seen from the pseudo-code. However, the outermost loop can be unrolled to

obtain parallel solutions along the columns as shown in Figure 2.3. The white and

gray column blocks of B can be processed in parallel to produce the corresponding

column blocks of X.

10

Figure 2.3: Parallel Triangular System Solution: A×X = B

2.1.4 L U Decomposition (LUD)

LU Decomposition of a square matrix A refers to factorization of A into a Lower

triangular matrix L and an Upper triangular matrix U and is denoted by A = LU

[40]. LUD is useful for solving linear system of equations and inverting matrices.


a11 a12 a13

a21 a22 a23

a31 a32 a33

=


l11 0 0

l21 l22 0

l31 l32 l33

×

u11 u12 u13

0 u22 u23

0 0 u33


The algorithm for solving LU Decomposition is a modified version of the Gaussian

elimination technique. Decomposition of A can be done in-place, meaning that matrix

A is overwritten with a lower and an upper triangular matrix without using extra

memory. For such a solution the diagonal elements lii are kept as 1 and not stored

explicitly.

11

Algorithm 4: LU Decomposition

for k = 1 → n do

for j = k → n do

Aj,k = Aj,k/Ak,k

end

for j = k+1 → n do

for i = k+1 → n do

Ai,j = Ai,j − Ai,k ∗ Ak,j

end

end

end

The computations are again O(n3) similar to other Level-3 BLAS but data level

parallelism is limited. A larger matrix A, can be divided into blocks and solved for L

and U at the block level using LUD, GEMM and TRSM calls.

A11 A12

A21 A22

=

L11 0

L21 L22

×
U11 U12

0 U22



A1,1 = L1,1 × U1,1 LUD

A2,1 = L2,1 × U1,1 TRSM followed by GEMM

A1,2 = L1,1 × U1,2 TRSM followed by GEMM

A2,2 − L2,1 × U1,2 = L2,2 × U2,2 GEMM followed by LUD

12

2.1.5 Matrix Inverse

The inverse of a matrix is defined by a matrix that when multiplied by the original

matrix results in the identity matrix.

A−1n×n × An×n = In×n; An×n × A−1n×n = In×n;

where A, A−1 and I are square matrices and I is the identity matrix. A square matrix

may not always be invertible and such a matrix is called a singular matrix or degener-

ate and its determinant is zero. Matrix inversion is extremely useful in 3-D graphics

rendering, transformations and physical simulations. It also plays a crucial role in

Multiple Input Multiple Output (MIMO) technology in wireless communications.

There are several methods to invert a matrix. Gauss-Jordan Elimination applies

a series of row operations to obtain the identity matrix from the given matrix by

serially reducing all non-diagonal elements to zero. When the same operations are

applied to an identity matrix we obtain the inverse matrix. Another method uses

GEMM, Triangular Matrix Inversion (similar to TRSM) and LU Decomposition to

obtain the inverse as follows:

A = L× U LUD

L×X = I TRSM: X = L−1

U × Y = I TRSM: Y = U−1

A−1 = Y ×X GEMM

Other popular methods are based on eigen decomposition, Cholesky decomposition,

etc. Analytical solution for matrix inversion uses the formula:

A−1 =
1

det(A)
× adj(A)

13

adj(A) is the adjugate matrix of A and det(A) is the determinant of matrix A.

2.1.6 Sparse Matrix Vector Multiplication (SpMV)

A Sparse Matrix is a matrix in which the majority of the elements is zero. The

SpMV[11] kernel calculates the product of a sparse matrix A and a dense vector b to

generate a dense vector c and is represented by:

cn×1 = An×m × bm×1

If the equation is solved using the sequential algorithm for a dense matrix vector prod-

uct, the efficiency is very low. So only non-zero entries are stored and all operations

are done on the non-zero entries.

The conventional implementation of SpMV, that performs dot products across

each row in the matrix, is highly irregular. It suffers from branch mispredictions, and

is limited by memory bandwidth. Various data structures that compress the non-zero

elements are used to reduce the memory bandwidth requirement. The most common

data structures used to store sparse matrices are COO (COOrdinate), CSR (Com-

pressed Sparse Row)[Fig. 2.4], CSC (Compressed Sparse Column), ELL (ELLpack),

etc. None of these data structures absolutely stand out in terms of performance for

the SpMV kernel. In fact, the performance of this kernel depends on how the non-zero

elements are distributed in the sparse matrix and also on the hardware architecture

being used to perform the SpMV computations. The parallelism exists only along

the rows which are used to calculate the dot products.

The CSR format stores all the non-zero elements in a Value array (val) and stores

the column indices of the elements from val array in the Index array (ind). A pointer

array (ptr) stores pointers to consecutive row beginnings.

14

Figure 2.4: Compressed Sparse Rows

Algorithm 5: SpMV

for i = 1 → n do

c[i] = 0;

for k = ptr[i] → ptr[i+ 1] do

c[i] = c[i] + val[k]× b[ind[k]];

end

end

2.1.7 Sparse Matrix Matrix Multiplication (SpMM)

Sparse Matrix Matrix Multiplication is simply the product of two sparse matrices

that produces a dense or a sparse matrix as the product. Sparse Matrices are useful

in many applications such as modelling, engineering simulations, graph analytics, etc.

While the product of two dense matrices shows high level of data and instruction level

parallelism, the SpMM[11] subroutine is extremely irregular.

Consider a CSR representation for matrix A and a CSC representation for matrix B.

Let valA and valB store the non-zero elements of A and B, respectively. The col

indices of valA are stored in indA while the row indices of valB stored in indB. Use

15

Figure 2.5: Sparse Matrix Matrix Multiplication

ptrA and ptrB to demarcate rows of A and columns of B, respectively:

Algorithm 6: SpMM

for i = 1 → n do

for j = 1 → n do

Ci,j = 0 ;

for k = ptrA[i] → ptrA[i+ 1] do

If (indB[p] == indA[k]); p varying from ptrB[j] to ptrB[j+1]

Ci,j = Ci,j + valA[k]× valB[indB[p]];

end

end

end

Similar to GEMM and GEMV, the product can be calculated by inner product

which produces the product matrix, one row or one column at a time. The inner

product method as seen above needs to buffer an entire row of B for generating

a single element of C. To reduce the communication computation gap, the outer

product variant of the algorithm is used. In the outer product method, a column of

A and the corresponding row of B are used to generate partial C matrix which is

updated in each iteration to obtain the final matrix C.

16

2.2 Existing Hardware Solutions

CPU platforms rely heavily on vendor-specific libraries which are not portable

to other platforms. On the other hand using open-source libraries is also inefficient

because the packages do not fully utilize a given processor in terms of lower bound

of CPI (Cycles per Instruction). The peak throughput is only a fraction of what

can be obtained by the architectures. Improving performance on general purpose

processors requires techniques like cache and register blocking, instruction reordering,

loop unrolling and prefetching. Sparse matrix computations on CPUs require separate

vendor optimized libraries such as ClSparse (AMD) and Sparse MKL as they do

not exhibit predictable behavior like the dense computations. These sparse libraries

conform to the Sparse BLAS standards[11].

GPUs have been a popular target for linear algebra problems since they make use

of the available parallelism. A number of fundamental dense linear algebra algorithms

have been accelerated in the MAGMA[7] library for a single GPU. Libraries such as

PLASMA[4] and MAGMA incorporate tiled algorithms that are capable of exploiting

the memory hierarchy efficiently. While GPUs perform the computations very ef-

ficiently there is a large overhead due to synchronization and data transfer within

a heterogeneous (CPU+GPU) system[42]. GPU implementations fail to achieve

peak throughput because of insufficient communication/computation overlapping and

lower utilizations. Recent implementations of BLAS operations on multi-GPU sys-

tems have shown promising results with libraries such as BLASX[44] which minimizes

the global communication through two level hierarchical tile cache structures. BLASX

also contains better load balancing techniques compared to other GPU based libraries.

The huge power consumption in GPUs is a major drawback compared to other archi-

tectures. Sparse computation support exists through libraries such as CuSparse[27]

17

which use compressed data structures to utilize maximum possible bandwidth.

FPGAs have been explored for Linear Algebra Computations either as a dedi-

cated hardware or in combination with a flexible host architecture. Custom Designs

on FPGAs provide both high performance and power efficiency. FPGA based linear

algebra solvers like LAPACKrc[14] have also been developed to speedup GEMM and

other BLAS functions but due to the limited resources available on FPGAs these have

poor performance. There are also scalability issues in high performance computing.

Large designs lead to routing complexities which lower the achievable clock speeds.

Systolic Arrays serve as an interesting platform for special-purpose processing[43].

Matrix computations can be implemented on a 2-D or 1-D systolic array with either

unidirectional or bidirectional data flow[30]. They provide regularity and modularity

but suffer a major drawback in terms of scalability[29]. Systolic architectures have

been relatively less explored in the past and no commercially successful processor

utilized systolic arrays until very recently[19].

CGRAs are very popular as they provide programmability while consuming low

power. They have emerged as scalable embedded accelerators for High Performance

Computing. The performance gain comes from using a selected number of data-paths

from all the possible paths. Several data-paths are realized on a reconfigurable ASIC

and thus CGRAs occupy middle ground between ASICs and FPGAs. The general

configuration is a tile of processors connected to each other through a Network on

Chip (NOC). Some contemporary implementations for solving linear algebra problems

have made efficient use of CGRAs such as REDEFINE[1] and Layers[39]. In CGRAs

like REDEFINE custom functional units are placed inside the PEs and they are

modified to accelerate specific kernels[24] while Layers architecture provides a scalable

and parameterized CGRA platform. Both REDEFINE and Layers employ manual

mapping of the kernels onto the architecture.

18

ASICs have been traditionally used to accelerate a single algorithm. Recently

architects have started designing efficient programmable accelerators that allow the

hardware to solve multiple problems. An interesting example of such an approach

is the LAC (Linear Algebra Core)[34] which offers enough flexibility to support mul-

tiple matrix computations. Theoretical evaluation of the LAC suggests that using

efficient micro-architectural enhancements and mapping techniques, highly effective

accelerators can be obtained for a class of operations.

We will now study a few existing hardware implementations for each of the algo-

rithms of Section 2.1 and identify the key features of the architectures.

2.2.1 GEMV

2.2.1.1 CGRA Implementation-1 [25]

GEMV was implemented using a custom Processing Element(PE) in the REDEFINE

CGRA architecture [1]. The PE comprises of Floating Point Arithmetic Units along-

side a Custom Function Unit (CFU) which orchestrates data flowing in and out of

the PEs [Fig. 2.6]. The Register File stores 64 entries in double precision floating

point format and the Instruction Memory has a size of 16 KB.

Figure 2.6: PE in the CGRA

The PEs in this architecture executed a series of Dot Product calls in parallel to

obtain the product vector. A reconfigurable dot product unit was the key to achieving

high performance on this architecture. Starting with a naive implementation, several

19

micro-architectural enhancements were implemented to increase the throughput of

the PEs and eventually these PEs were attached in the CGRA to show the scalability

of the approach.

2.2.1.2 CGRA Implementation-2[36]

The Layers CGRA[38] was used to implement GEMV. In this implementation rows

are processed in parallel. Individual rows also utilize multiple execution units by

running parallel multiplications for a reconfigurable window size and accumulating

the results on reaching a row boundary [Fig. 2.7]. The execution window is shown in

blue and the accumulation result for a row in yellow.

Figure 2.7: GEMV with a reconfigurable window size

Observations:

• GEMV can be easily parallelized using multiple execution units which allows

the design of scalable architectures for this kernel.

• Blocking, pre-fetching and pipelining are used to achieve higher performance on

custom architectures.

20

2.2.2 GEMM

GEMM based BLAS realization is a widely used technique for maximum resource

utilization, hence we studied two existing GEMM implementations in detail.

2.2.2.1 CGRA Implementation[25]

A REDEFINE CGRA based implementation of GEMM was done together with the

GEMV implementation. This architecture was explained in Section 2.2.1.1. The

various architectural improvements were:

(a) Overlapping Communication and Computation by running a Load Store Unit

in CFU alongside the PEs. Each of the arithmetic units inside the PEs were

pipelined.

(b) The PEs were modified further for executing complex instructions such as a

vector dot product and also making it reconfigurable to perform the dot product

on 2, 3 or 4 elements to support different matrix sizes.

(c) Blocked load and store was adopted to support larger matrices which do not

completely fit inside the register files of the PEs.

(d) Loops were restructured which allowed for prefetching data required by a PE

in a subsequent iteration to fully exploit the pipelined units.

2.2.2.2 ASIC Implementation[32]

The accelerator core here consists of a 2-D array of Processing Elements (PEs). Each

PE has a MAC (Multiply Accumulate) unit with a local accumulator, local storage,

simple distributed control, and bus interfaces to communicate data through row and

column broadcasts. The MAC unit is fully pipelined and achieves a throughput of

21

one MAC per cycle. The Linear Algebra Core (LAC) [Fig. 2.8] computes a 2 × 2

block of the output matrix C with each element of the block residing inside a PEs

accumulator. Data reuse inside the LAC is ensured by sharing the input matrix

elements among the PEs using column and row broadcast channels.

Figure 2.8: LAC with 2× 2 PEs

The optimization strategies that enhanced GEMM performance on the LAC are:

(a) Blocking data was a necessity as the size of LAC core was limited. Also the

blocking scheme alleviated the need for high bandwidth communication

(b) Broadcasting helped in full utilization of the input data currently inside all PEs

(c) Prefetching was also employed to keep the execution units busy

(d) The MAC units performed delayed normalization in order to achieve a through-

put of one MAC per cycle which improved the throughput of the overall system

Observations:

Both implementations [25] and [32] were similar in terms of data blocking, prefetch-

22

ing, pipelining execution units and overlapping communication with computation.

The differences between the two architectures are:

• Mapping : In [25] a block was mapped onto a single PE, thus making the CGRA

implementation scalable as each block can be computed independently, while in

[32] a single block was mapped onto the entire LAC (n×n PEs) thus to obtain

a scalable solution, multiple LACs would be required.

• Data Reuse: Implementation [25] did not attempt to exploit data reuse in

GEMM, hence a block of the input matrix needs to be supplied to multiple

PEs. In [32] however the focus was to reuse input matrix blocks completely

before fetching a new block. Also data reuse was employed at the local memory

and cache memory level.

2.2.3 TRSM

2.2.3.1 CPU-GPU Implementation[23]

The approach was based on a block recursive algorithm that aims to reduce the

computations to matrix multiplication (GEMM) in order to benefit from the well-

known Strassen’s algorithm[41] for Matrix Matrix Multiplications.

Figure 2.9: Blocked TRSM

Each node of the heterogeneous CPU-GPU system solves multiple columns of X using

23

forward or backward substitution. Matrix A is replicated for each node while column

blocks of matrix B are distributed among the nodes [Fig. 2.9]. The key features of

this implementation are:

• No communication is needed between the nodes i.e, they can function in parallel.

• Large memory requirements for each of the nodes as triangular matrix has to

be replicated.

2.2.3.2 ASIC Implementation[32]

The LAC described in Section [2.2.2.2] is augmented with an inverse unit that com-

putes f(x) = 1/x and communicates with all diagonal PEs [Fig. 2.10]. The com-

putation for a small TRSM problem of size 2 × 2 is performed in place. For a large

TRSM problem, the computation is split into GEMM and small TRSM operations.

Figure 2.10: LAC with an augmented Reciprocal Unit

Observations:

• Both implementations [23] and [32] use GEMM based TRSM approach by break-

ing down a large TRSM problem into large GEMM and small TRSM problems.

24

• Each node in [23] works independently with its own copy of triangular matrix

and computes column blocks of X in parallel (size of block is proportional to

each node’s capacity). Implementation [32] can be made scalable by replicating

the core and employing a suitable partitioning scheme for input data.

Figure 2.11: Triangular Matrix Inverse

• Triangular Matrix Inverse

Any TRSM implementation can be used to obtain the inverse of a triangular

matrix by replacing B with identity matrix I such that the equation AX = B

transforms to AA−1 = I, where X is the inverse matrix. This method was

discussed in [23] and Figure 2.11 shows the blocked version.

2.2.4 LU Decomposition

2.2.4.1 FPGA Implementation[21]

An FPGA based parallel architecture was developed based on the sequential LU

Decomposition Algorithm [Fig. 2.12].

The PEs comprise of MAC units. Separate data storage units are used to provide

inputs to the PEs. The memory banks are accessed by PEs in an entire row or

column. (Memory interface for all PEs are not shown in the figure to maintain clarity

of image). LUT based dividers were used in N − 1 PEs, where N is the number of

PEs in a row/column.

25

Figure 2.12: 3x3 PE array with Memory and LUT based Divider

2.2.4.2 ASIC Implementation[33]

The LAC architecture used to implement TRSM was shown to be sufficient for im-

plementing LUD. Multiple iterations of row and column broadcast combined with

reciprocal and MAC operations were performed following the sequential LUD algo-

rithm [Section 2.1.4] to obtain inplace LU Decomposition.

Observations:

• Implementation [21] uses a divider unit while [33] uses a simpler reciprocal unit.

• PEs in [33] have local data storage memory while those in [21] uses separate

data memories for each of the columns.

• The PEs do not communicate with each other in [21] whereas [33] has inter-PE

communication through broadcast busses.

• FPGA implementations are not scalable in terms of number of PEs and most of

the PEs are under utilized because of the sequential nature of LUD solutions.

26

2.2.5 Matrix Inversion

2.2.5.1 InvArch Implementation[6]

Gauss-Jordan Elimination was used to perform matrix inversion on a custom hardware

[Fig. 2.13]. The datapath consists of multiple normalization and elimination blocks.

Each of the blocks has a pipelined floating point multiplier and a pipelined floating

point subtractor. It stores a column of the matrix to be inverted. Multiple rows

are normalized in parallel. The diagonal elements of the matrix are stored in a

separate memory (R-RAM). A single floating point divider is used since only one

row is processed every cycle. The data-path control is handled through a dispatch

state-machine along with multiple counters and pipelines for the control signals. The

counters keep track of the iteration number, row index and the range of columns

being processed and help in achieving the overall synchronization.

Figure 2.13: Parallel Processing along Columns for Matrix Inverse

Hardware-efficiency was improved by minimizing the number of floating point

multiplication units. Floating-point computation blocks were pipelined to increase the

throughput and stalls were removed by reordering the operations. Multiple custom

units could be used in parallel, making the architecture scalable.

27

2.2.5.2 FPGA Implementation[37]

A QR decomposition based matrix inversion was implemented in this work. The

QR decomposition was performed using Gram-Schmidt method. QR decomposition

factorizes a matrix A = QR, where Q is an orthogonal such that QT ∗Q = I and R

is an upper triangular matrix. The inverse matrix A−1 is computed in 3 steps: First

the factors Q and R are obtained, followed by a triangular matrix inversion of the

upper triangular matrix R. Finally a matrix matrix multiplication is performed to

obtain A−1 = QT ×R−1

The datapath consists of LUT based dividers, square root units and vector mul-

tipliers. The 3 step algorithm was implemented using state machines and then the

separate units for QRD, triangular inverse and matrix multiplication were stitched

together to realize the matrix inversion unit. 5 RAM modules were used to store the

data and compute resources were time shared whenever possible. The pipelined im-

plementation was shown to have low error, however it could only support very small

matrix sizes upto 23× 23.

Observations:

• Implementation in [6] was computationally cheaper whereas [37] had better

accuracy at the cost of complex arithmetic units such as a square root unit.

• Neither of the implementations are scalable in terms of large matrix inversion

problems as they both had limited hardware resources.

28

2.2.6 SpMV

2.2.6.1 Reconfigurable Hardware Implementation[35]

A hardware accelerator unit was designed for SpMV to improve the performance of

two iterative algorithms namely, conjugate gradient and Jacobi solver. CSR data

structure was used to store the sparse matrix. The accelerator design has a dot-

product core and a pipelined adder in addition to local buffers and memory. The

main limitation with this design is the number of simultaneous memory reads from the

local memory and also the limited compute resources of the FPGA. The accelerator

achieves speedup of 2 times.

2.2.6.2 Pipelined SpMV Accelerator[17]

The accelerator designed for SpMV uses a novel compression scheme which parti-

tioned the sparse matrix and stored the submatrices in a two level storage format.

Row blocks are parallely processed by the PEs. Each PE [Fig. 2.14] consists of a Col-

umn Index Decoder, multiple-input multiple-output MAC and reduction unit. The

accelerator was implemented on a Xilinx Virtex-7 FPGA platform and was shown to

have high bandwidth utilization. It could handle sparse matrices with arbitrary size

and sparsity pattern because of the hardware friendly compression format.

Observations:

• Both the architectures are custom designed for working with their exclusive

sparse compression formats.

• Inner product approach requires large dot product units and tree of adders.

29

Figure 2.14: PE inside the SpMV accelerator

2.2.7 SpMM

2.2.7.1 Outer-Product based Implementation[28]

An outer product based SpMM was implemented on a reconfigurable multicore ar-

chitecture [Fig. 2.15], called Outerspace.

Figure 2.15: OuterSpace Architecture

The outer product operation is broken into a multiply and a merge phase and

the entire computation is distributed among multiple PEs in a hierarchical fashion.

The architecture consists of multiple tiles, where each tile consists of a linear array

of PEs. A reconfigurable cache is used by the PEs which also serves as a Scratchpad

memory (SPM). Data reusability and asynchronous workload sharing are the key

30

features of this architecture. Through the reconfigurable memory hierarchy, access to

main memory is limited.

2.2.7.2 3-D stacked LiM Implementation[46]

A 3-D stacked Logic in memory (LiM) architecture [Fig. 2.16] was used to accelerate

SpMM. The proposed computing system has logic layers stacked in between DRAM

dies which communicate with each other vertically using through silicon vias (TSVs).

The novelty lies in a 3D-stacked DRAM which offers high bandwidth and low latency

data transfer via TSV and a stacked LiM layer that is customized for sparse matrix

multiplication through a fine-grain integration of logic, CAM and SRAM.

Figure 2.16: 3-D Stacked Logic in Memory

Observations:

• Outer product based implementation for SpMM leads to lesser memory band-

width requirements and more parallelism.

• Fine grained logic memory integration can be used to achieve high performance

using algorithm architecture co-design.

31

Chapter 3

PROPOSED UNIFIED ARCHITECTURE

In Chapter 2, we analyzed the characteristics of each of the algorithms and the cor-

responding existing hardware implementations. Several of these designs followed the

CGRA approach and introduced some level of programmability so that they could

support more than one algorithm. Examples of such an approach were Linear Alge-

bra Core[32], REDEFINE[1] and Layers[39]. In this chapter, we introduce a unified

architecture that supports a selected set of dense and sparse linear algebra programs,

namely, GEMM, TRSM, LUD, Inverse, GEMV, SpMV and SpMM. The overview of

the proposed architecture is presented in Section 3.1, followed by mappings for dense

kernels in Section 3.2 and mappings for sparse kernels in Section 3.3

3.1 The Architecture: Overview

The proposed architecture, shown in Figure 3.1 is a multicore design, where the

cores work asynchronously. A large problem is partitioned into smaller subproblems

and each subproblem is assigned to a core. Blocks of data are sequentially mapped

from the on-chip memory of a core to its local memories. Each core is designed to

perform kernel updates on an Nr × Nr sized matrix or an N2
r × 1 sized vector; the

corresponding computation is referred to as a panel update. Multiple panel updates

are executed sequentially to perform a kernel update on the entire block of data re-

siding in the local memory of a core; the corresponding computation is referred to as

a block update.

32

Figure 3.1: Block Diagram of the unified architecture (Nr = 4)

PE array with Broadcast Buses: Each core consists of a 2-D array (Nr × Nr)

of Processing Elements (PE). The PEs share data with each other through row and

column broadcast busses. All the PEs are identical except the diagonal PEs which

have an additional reciprocal unit. The row broadcast busses are also used to transfer

data in and out of the core.

Memory Hierarchy: There are 4 levels of memory in this architecture. The ex-

ternal memory is the shared off-chip memory. The on-chip memory for each core is

connected to the external memory through crossbars. The local memory inside a PE

is a single ported SRAM which is essential for blocking. A register file, with 2 read

33

ports and 1 write port, is also present inside the PEs to provide inputs to the ALU.

Central Control Unit: This unit is responsible for partitioning a large problem

into subproblems and assigning them to the local controllers.

Local Control Unit: The Local Control Unit schedules panel update instructions

and data flow from on-chip memory to the local memory of a core. It is also used to

synchronize the PEs inside a core while running sparse computations.

PE Design: Each PE consists of an ALU, local memory, row and column broadcast

buffers, register file and an FSM controller. All the PEs have a MAC unit. The

diagonal PEs also have a divider implemented by a reciprocal unit and a multiplier.

Each PE consists of a Finite State Machine controller that coordinates computations

for panel updates. It translates a panel update instruction provided by the local

controller into a unique sequence of load-store and ALU operations for each PE.

3.2 Mapping Dense Linear Algebra Programs

We shall now describe the operations in panel update and in block update for

each of the algorithms. We fix the bandwidth between on-chip memory and core as

Nr elements per cycle.

3.2.1 GEMV

Partitioning: In matrix-vector multiplication (GEMV), the dense matrix A and

the dense output vector c are partitioned into blocks and distributed among the

cores. Dense vector b is replicated in each core as shown in Figure 3.2. There is equal

load distribution and no synchronization is required between the cores.

34

Figure 3.2: Partitioning GEMV input to multiple cores

Panel Update: The N2
r ×1 vector update for GEMV is achieved by Nr columns of

PEs inside the core, each column working in parallel. A column of PEs updates Nr×1

elements of c and hence the Nr columns together update the N2
r × 1 sized vector c.

To explain the update, we demonstrate how a single column of PEs operates.

Figure 3.3 shows the operations taking place in a single column of the PE array,

where Nr = 4. A 4 × 4 sized matrix A and a 4 × 1 sized vector b are mapped to a

column of PEs such that each PE stores 4 elements of A and 1 element of b. In the

1st cycle, b1 is broadcast by the PE in row 1 to all the PEs in the column. In the

2nd cycle, all the PEs perform MAC operations using b1: c1+ = a11b1, c2+ = a21b1,

c3+ = a31b1 and c4+ = a41b1. In the same cycle, b2 is broadcast, by the PE in row 2.

In subsequent cycles, MAC operations and column broadcasts are overlapped. After

the 4th cycle all the 4 elements of vector b and all the 4×4 elements of matrix A have

been used. Thus, it takes Nr + 1 cycles to update the Nr × 1 vector c in a column.

During these Nr + 1 cycles, each column of PEs works on a different 4 × 4 sized

matrix A but on the same 4× 1 sized vector b which is replicated to each column of

PEs. Thus, Nr×Nr array of PEs update N2
r ×1 elements of vector c in Nr +1 cycles.

35

Figure 3.3: GEMV Panel Update in a column of PEs (Nr = 4)

Figure 3.4: GEMV Mapping for Block Updates (k = 2Nr)

Block Update: Since our core can only work on small panels of size Nr × Nr, a

large problem is broken down as shown in Figure 3.4. To explain the decomposition,

36

we start with a subproblem c1 = A1×b1 which has been assigned to a single core. The

product vector c1 is computed by multiple iterations of matrix vector multiplications.

In each iteration, k columns of A1 and k rows of b1 are processed to produce a partial

product vector c′. This partial product is accumulated over multiple iterations to

produce the final product vector c1.

Since elements of vector c′ are accessed multiple times, it is important to overlap

their data access with computation. Since we have a bandwidth of Nr elements per

cycle, it takes Nr cycles to transfer an updated N2
r × 1 panel of c′ and another Nr

cycles to fetch the next panel of c′. Hence, we extend the panel update operations

inside a column of PEs from cNr×1 = ANr×Nr × bNr×1 to cNr×1 = ANr×k × bk×1 to

increase the panel update duration in the core from Nr cycles to k cycles, where

k ≥ 2Nr. This allows us to overlap the writing of a previously updated panel of c′ to

the on-chip memory and prefetching of elements of c′ for the next panel update with

the panel update computations taking place inside a core.

3.2.2 GEMM

Partitioning: In matrix-matrix multiplication, the dense output matrix C is par-

titioned into blocks and distributed among the cores. The dense input matrices A

and B are partitioned and replicated to multiple cores as shown in Figure 3.5. There

is equal load distribution and no synchronization is required between the cores.

Figure 3.5: Partitioning GEMM input to multiple cores

37

Panel Update: The Nr ×Nr matrix update for GEMM is explained in Figure 3.6

using the 2-D PE array, where Nr = 3. A 3×3 sized matrix A is replicated inside each

of the column of PEs such that each PE in row (i) stores a copy of all the elements

from row (i) of the matrix A. A 3 × 3 sized matrix B is mapped to the PE array

such that, PE(i, j) stores a single element of B, i.e B(i, j). In the 1st cycle, B1,i is

broadcast by the PEs in row 1 to all the PEs in column (i). In the 2nd cycle, all the

PEs perform MAC operations using B(1, i), e.g PE(2, 2) updates C2,2+= A2,1×B1,2.

In the same cycle, B2,i is broadcast by the PEs in row 2 to all the PEs in column i.

In subsequent cycles, MAC operations and column broadcasts are overlapped. After

the 3rd cycle, all the elements of matrices A and B have been used. Thus, it takes

Nr + 1 cycles to update the Nr ×Nr matrix C in the core.

Figure 3.6: GEMM Panel Update in a PE array (Nr = 3)

Block Update: A decomposition strategy similar to GEMV was used to break

down a large GEMM problem into small panel updates as shown in Figure 3.7. In

order to solve the subproblem C1 = A1×B1 assigned to a core, the output matrix C1

is computed by multiple iterations of matrix matrix multiplications. In each iteration,

38

m columns of A1 and m rows of B1 are processed to produce a partial product matrix

C ′. This partial product is accumulated over multiple iterations to produce the final

product matrix C1.

Figure 3.7: GEMM Mapping for Block Updates (m = 2Nr)

Similar to the block update in GEMV, the extended panel update operation for

GEMM is performed as: CNr×Nr = ANr×m ×Bm×Nr , where m ≥ 2Nr. This allows us

to schedule the writing of a previously updated panel of C ′ to the on-chip memory

and prefetching of elements of C ′ for the next panel update while the current panel

update computations are taking place inside a core.

During a single iteration of the GEMM block update, n×m elements of matrix A1

39

are accessed repeatedly if the entire m×n block of matrix B1 is not present inside the

core. Hence we map a larger m× k block of matrix B1 to the core to reduce repeated

access to elements of A1, where k is dependent on the available local memory size in

the PEs in a core.

3.2.3 TRSM

Partitioning: As shown in Figure 2.3, a large TRSM problem (A × X = B) can

be partitioned for parallel execution. Column blocks of matrix B are distributed

among the cores and matrix A is copied in the on-chip memory of each core. Each of

the cores compute an exclusive portion of the result matrix X. There is equal load

distribution and no synchronization is required between the cores.

Panel Update: An Nr×Nr sized panel of a lower triangular matrix A is replicated

in all the columns of the PE array such that each PE in row (i) stores a copy of all

the elements from row (i) of the matrix A. An Nr×Nr panel of matrix B is mapped

to the core such that, PEij stores a single element of B, i.e Bij. The initialization

step calculates the reciprocal of Aii (rii = 1/Aii) in all diagonal PEs. The reciprocal

rii is then broadcast along the ith row. This is followed by a multiplication in row 1

(X1i = B1i× r11) to obtain the solution in the first row. Next, two steps are repeated

for Nr − 1 iterations. Let m denote the iteration number:

Step-1: MAC update in all PEs below row(m): Bij− = Aim.Xmj; where X is received

through column broadcast from row(m) and i > m.

Step-2: Multiplication update in all PEs in row(m+ 1) to update

Xm+1,j = Bm+1,j.rm+1,m+1; (in place solution: b→ x)

It takes 3 cycles for initialization and (Nr − 1) × 3 cycles for (Nr − 1) iterations

of broadcast→ MAC → multiplication. Hence, 3Nr cycles are required in total for

40

a TRSM panel update.

Figure 3.8: TRSM Panel Update in a PE array (Nr = 4)

Figure 3.8 shows the 2nd iteration(m = 2) for a 4×4 panel update. Step-1 updates

all elements of matrix B in rows 3 and 4. The elements of matrix A are already present

in the PEs and X is received from row 2. Step-2 updates X in row 3.

Block Update: A TRSM problem assigned to a core is solved sequentially, as

shown in Figure 3.9, through multiple blocked GEMM and blocked TRSM updates.

Figure 3.9: Sequential TRSM using GEMM

41

Step-1: A11 ×X1 = B1 blocked TRSM

Step-2: B2− = A21 ×X1 blocked GEMM

Step-3: A22 ×X2 = B2 blocked TRSM

Figure 3.10: TRSM Block Updates (k = 3Nr)

For block TRSM update, k × k sized block of B is mapped to the local memories of

the core. Nr ×Nr sized panels of A are streamed in and out of the core to produce a

block of X through multiple panel updates.

Figure 3.10 shows an intermediate stage of blocked TRSM where blue panels of B1

have been processed to produce corresponding panels of X1 by TRSM panel updates.

The yellow panels of B1 are being updated using the blue panels present on the core

and the streaming green panel of A11 by GEMM panel updates.

3.2.4 LUD

Panel Update: An Nr × Nr sized panel of matrix A is mapped to the core, such

that each PEi,j stores a single element of A, i.e aij. The initialization step calculates

the reciprocal of aii (rii = 1/aii) in all diagonal PEs except the last one (i 6= Nr).

42

The reciprocal rii is then broadcast along the ith column. Next, two steps [Fig. 3.11]

are repeated for Nr − 1 iterations to obtain L and U in place of A. The elements of

L or U generated in a PEi,j are referred to as lij or uij. Let m denote the iteration

number:

Step-1: Multiplication updates in PEi,m: lim = aim × rmm; where i > m

Step-2: MAC updates in all PEs aij− = lim× umj ; where lim is received through the

row broadcast from column(m) and u through the column broadcast from row(m);

where i, j > m.

Figure 3.11: LUD Panel Update in a PE array Nr = 4)

It takes 2 cycles for initialization and (Nr − 1) × 3 cycles for (Nr − 1) iterations

of multiplication→ broadcast→MAC. Hence, 3Nr − 1 cycles are required in total

for an LUD panel update.

Figure 3.11 shows the 2nd iteration(m = 2) for a 4 × 4 panel update. Step-1

updates elements of the lower triangular matrix L below the diagonal PE2,2, ie. l32

and l42. Step-2 updates elements of matrix A: aij− = li2 × u2j; where li2 values are

received through the row broadcast from column 2, j2,j values a re received through

the column broadcast from row 2 and i, j > 2.

43

Block Update: An LUD problem assigned to a core is solved sequentially, as shown

in Figure 3.12, through multiple blocked LUD, blocked TRSM and blocked GEMM

updates.

Figure 3.12: Sequential LUD using GEMM and TRSM

Step-1: A11 = L11 × U11 blocked LUD

Step-2: L11 × U12 = A12; L21 × U11 = A21 blocked TRSM

Step-3: A22− = L21 × U12 blocked GEMM

Step-4: A22 = L22 × U22 blocked LUD

Figure 3.13: LUD Block Updates (k = 3Nr)

44

For a block LUD update, k × k sized block of A is mapped to the local memories of

the core. Through a sequence of GEMM, TRSM and LUD panel updates, an in-place

solution is obtained in the core. Figure 3.13 shows an intermediate step of blocked

LUD where the green panel has been processed by LUD panel update. The yellow

panels are being updated using the green panel by TRSM panel updates. This would

be followed by GEMM update of white panels using the yellow and green panels.

Figure 3.14: Partitioning for a large LU Decomposition problem

Partitioning: The LU Decomposition solution is inherently sequential. As such

it cannot be partitioned for parallel processing using multiple cores. However, a

large matrix A can be decomposed by recursively applying the sequential LUD −→

TRSM −→ GEMM −→ LUD method discussed earlier. This presents opportunity

for utilizing the multi-core architecture during the TRSM and GEMM phase [Fig.

3.14]. This partitioning scheme has an imbalance during the solution of the first LUD

subproblem when only one core will be used. The subsequent TRSM, GEMM and

LUD sub-problems can be solved by using all the cores.

45

3.2.5 Matrix Inverse

A large matrix inversion problem can be solved in 3 phases: (i) LU Decomposition

of the matrix, (ii) two TRSM calls for finding inverse of the lower and upper triangular

matrices and (iii) GEMM to obtain the inverse of the original matrix.

A = L× U ; (LUD)

L×X = I; U ×X = I; (TRSM)

A−1 = U−1 × L−1 (GEMM)

This approach allows us to utilize all the cores during each of the LUD, TRSM

and GEMM phases. When more than one cores are being used, the output data after

each phase has to be brought back to the external memory to begin with the next

phase. The time complexity of this routine is the sum of individual time complexities

of LUD, TRSM and GEMM.

46

3.3 Mapping Sparse Linear Algebra Programs

Sparse Matrix Compression: It is well known that sparse matrices arising from

higher-order discretizations and those encountered in Finite Element Analysis exhibit

a dense block substructure in which the blocks are constant-sized and aligned[12].

Such block sparse patterns are also common in small world network connectivity

graphs which are globally sparse but locally dense. This suggests that preprocessing

the sparse matrices into a block compressed form can be done while maintaining a

high fill ratio [Eqn. 3.1] for many important problem domains.

Fill Ratio =
Number of nonzero elements

Number of Stored V alues
(3.1)

(Stored V alues = nonzero elements+ fill in)

Figure 3.15: Dense 4× 4 sized block creation using fill-ins

Figure 3.15 shows a sparse matrix where the black dots are non-zero elements.

grey dots are fill-ins which are treated as non-zero elements in spite of being zeroes to

create dense blocks. It can be seen that larger block size would lead to lower fill ratio

47

in general and thus poor performance. There are partitioned data structures that

support distribution of a large size problem into multiple cores. Two partitioned-

block compressed formats, namely, Partitioned Block Compressed Row(PBCSR) and

Partitioned Block Compressed Column(PBCSC) were used for sparse matrix represen-

tation in our mapping schemes. Sparse matrices are preprocessed to create row× col

sized dense blocks before partitioning; these dense blocks are referred to as dblks in

the following sections.

PBCSR representation:

Val : [B1, B2, B3, B4, B5, B6]

Part ptr: [0, 4]

BlkRow ptr: [0, 2, 4, 5]

BlkCol id: [0, 2, 1, 3, 0, 3]

PBCSC representation:

Val : [B1, B5, B3, B2, B4, B6]

Part ptr: [0, 3]

BlkCol ptr: [0, 2, 3, 4]

BlkRow id: [0, 2, 1, 0, 1, 3]

3.3.1 SpMV

Partitioning: The partitioned data structure allows distribution of a large problem

among multiple cores as shown in Figure 3.16. Dense vector b is shared among the

cores. Equal load distribution is not guaranteed in this method but no synchronization

is required between the cores. The central controller is responsible for load balancing

that might arise because of unequal partitions.

Panel Update: With row = col = Nr for the dblks in the compressed format, the

N2
r × 1 vector update for SpMV can be achieved by Nr columns of PEs inside the

core as in the GEMV panel update [Fig. 3.3]. It takes Nr + 1 cycles for the SpMV

panel update. However since we are working with a compressed data structure of A,

vector c would be corrupted if multiple columns of the PE array try to update the

same elements of c. The local controller would need to stall the PEs in such cases

48

Figure 3.16: Partitioning SpMV input to multiple cores

and this could lead to 2Nr cycles for SpMV panel update in the worst case.

Block Update: Since our core can only work on small panels, a large problem is

broken down as shown in Figure 3.17. To explain the decomposition, we start with a

subproblem c1 = A1× b1 which has been assigned to a single core; where A1 is stored

in BCSC format. The local controller stores the BlkCol ptr and BlkRow id which is

used for index matching when loading elements of c′ to the core. The product dense

vector c1 is computed by multiple iterations of sparse matrix vector multiplication.

In each iteration, multiple row × col sized dblks of A1 and col elements of b1 are

processed to produce a partial product vector c′. The partial product is accumulated

over multiple iterations to produce the final product vector c1.

Similar to GEMV block update, the extended panel update operation for SpMV

inside a column of PEs: cNr×1 = ANr×k×bk×1; where k ≥ 2Nr allows to hide the time

taken to transfer elements of c′. However here we strictly limit k to 2Nr because a

larger size of dblks would lead to smaller fill-ratio which is not favourable.

49

Figure 3.17: SpMV Mapping for Block Updates (row = Nr and col = 2Nr)

3.3.2 SpMM

Partitioning: The partitioned data structure allows distribution of a large prob-

lem among multiple cores as shown in Figure 3.18. The dense output matrix C is

distributed among the cores. Similar to SpMV, the central controller is responsible

for load balancing in case of unequal partitions.

Panel Update: With row = col = Nr for dblks in the compressed format, the

Nr×Nr matrix update for SpMM is performed in the core as in GEMM panel update

[Fig. 3.6]. It takes Nr + 1 cycles for the SpMM panel update.

50

Figure 3.18: Partitioning SpMM input to multiple cores

Block Update: Since our core is designed to work on small panels, a large problem

is decomposed as shown in Figure 3.19. We start with a subproblem C1 = A1 × B1

which has been assigned to a core; where A1 is stored in BCSC format and B1 in

BCSR format. The local controller stores the BlkCol ptr and BlkRow id for matrix

A and the BlkRow ptr and BlkCol id for matrix B, which is used for index matching

when loading elements of C ′ to the core. The product matrix C is computed in

multiple iteration of sparse matrix matrix multiplication. In each iteration, multiple

rowA×colA sized dblks of A1 and multiple rowB×colB sized dblks of B1 are processed

to produce a partial product matrix C ′. This partial product is accumulated over

multiple iterations to produce the final matrix C1.

Similar to GEMM block update, the extended panel update operation for SpMM

inside the core is given by: CNr×Nr = ANr×m×Bm×Nr , where m ≥ 2Nr allows to hide

the time taken to transfer elements of C ′. Again we strictly limit m to 2Nr because

a larger size of dblks would lead to smaller fill-ratio.

During a single iteration of the SpMM block update, dblks in a compressed column

51

Figure 3.19: SpMM Mapping for Block Updates (rowA = colB = Nr and
colA = rowB = 2Nr)

of matrix A1 are accessed repeatedly if all the dblks of the corresponding compressed

row of matrix B1 are not present inside the core. Hence we map a large number (k)

of dblks to the core in order to reduce repeated access to dblks of A1, where k is

dependent on the available local memory in the PEs in a core.

52

Chapter 4

DESIGN TRADE-OFFS

In this chapter we investigate the trade-offs associated with the architecture in terms

of number of PEs in the core, local memory size and the bandwidth between the on-

chip memory and the core. Hardware implementation results for a single core have

also been presented later in the chapter which show the feasibility of our design.

4.1 Core Configuration (Nr)

A higher count of PEs inside a core provides more parallelism by running Nr×Nr

computations in parallel. However all the PEs may not be active in every cycle. This

means that all the execution units available inside a core would not be utilized in

every cycle. To ensure that PEs are not under-utilized for the selected core configu-

ration, we studied the PE Utilization Ratio for each of the panel updates in the PE

array.

PEUtil =

∑p
k=1 no. of active PEs in the k

th cycle

p×N2
r

(4.1)

where p is the no. of cycles required for an Nr ×Nr panel update. (Nr ≥ 2)

The PEUtil is 1 for all the panel updates with a single PE inside a core (Nr = 1).

We evaluated the PEUtil based on Equation 4.1 for each of the kernels [Appendix].

The results have been shown in Table 4.1. Based on these results we obtained a plot

that shows the variation of PEUtil with the number of processing elements.

53

Kernel p (cycles for panel update) PEUtil (utilization ratio)

GEMV Nr + 1 1

GEMM Nr + 1 1

TRSM 3Nr
2+Nr

3Nr

LUD 3Nr − 1 ≈ 3+2Nr

3(3Nr−1)

INV 10Nr
18+11Nr

30Nr

SpMV Nr + 1 1

SpMM Nr + 1 1

Table 4.1: PE Utilization Ratio

Figure 4.1: Effect of Core Configuration on PE Utilization

As the PE count increases, we observe a deterioration in the PEutil for TRSM,

LUD, and INV kernels [Fig. 4.1]. Thus, a lower value of Nr such as 2, 3 or 4 ensures

a higher PE utilization. We selected Nr = 4 to maintain a minimum PEutil of 0.33

for LUD, and ≈ 0.5 for TRSM and INV. This configuration allows 16 parallel MAC

updates for GEMV, GEMM, SpMV and SpMM.

54

Another argument in support of a lower value of Nr arises from the block com-

pressed data structure where the dense block (dblks) size was fixed as (Nr × 2Nr).

Thus, keeping Nr low ensures higher fill ratio [Equation 3.1] for any arbitrary sparse

matrix where dense block sub-structures do not exist naturally.

The updates inside a core assumed that the on-chip memory could transfer data

to/from the core through row broadcast busses at Nr elements/cycle [Section 3.2].

Hence the bandwidth between on-chip memory and the core for Nr = 4 is BWin = 4

elements/cycle.

4.2 Memory Size

The Local Memory (LM) acts as a buffer and supports data reuse. A larger LMsize

reduces the time spent in accessing data and thus increases a core’s utilization.

COREUtil =
Compcycles

Compcycles + Commcycles

(4.2)

The block update techniques described in Chapter-3, indicate that the performance

for most of the kernels is largely dictated by that of GEMM. Thus, for selecting the

optimal LMsize we maximize COREUtil for GEMM. Figure 3.7 showed that n × k

MAC updates for matrix C requires a transfer of 2Nr × k elements of B and n× 2Nr

elements of A.

55

Commcycles =
(n× 2Nr + 2Nr × k)elements

BWin

=
(2n+ 2k)(Nr)elements

Nr
elements
cycle

= (2n+ 2k) cycles

Compcycles =
2nk

Nr

COREUtil =
nk
Nr

n+ k + nk
Nr

Figure 4.2: Effect of Local Memory size on Core Utilization

For GEMM updates, LMsize = 2k
Nr

elements per PE. We plotted the effect of

LMsize on COREUtil for n = 256, 512 and 1024 with Nr = 4. We choose k = 512

since it provides a very high COREUtil [Fig. 4.2].

56

4.3 Bandwidth vs Local Memory Size

The previous section assumed a fixed bandwidth BWin = Nr elements per cycle.

If the bandwidth is kept variable, Equation 4.2 reduces to the following:

COREUtil =
nk
Nr

(n+k)Nr

BWin
+ nk

Nr

We fix Nr = 4 and a COREUtil = 0.99 in the above equation and plot the effect of

LMsize(=
2k
Nr

= k
2
) on bandwidth BWin for multiple values of n considering a GEMM

update as earlier.

Figure 4.3: Local memory size vs Bandwidth

Thus, it can be seen from Figure 4.3 that a very high core utilization can be

maintained with a smaller local memory size, provided there is sufficient bandwidth

between the core and its on-chip memory.

57

Element Size 4 Bytes

PE Count 4× 4

Register File Size 64 Bytes

Local Memory Size 1 KB

On-chip Memory Size 1 MB

Memory Bandwidth 16 Bytes/cycle

Table 4.2: Core Configurations

We fix LMsize = 256 elements per PE or k = 512. Also, based on the mappings

explained in Chapter-3, the maximum number of elements stored in the register file

is always below 3Nr = 12, so we fix the Register File as 16 elements wide (a power of

2). We also fix the on-chip memory size as 1 MB, which is sufficient to store square

matrices A, B and C of sizes as large as 256× 256. Table 4.2 summarizes an optimal

core configuration for our accelerator.

4.4 Hardware Implementation

A 4 × 4 PE array capable of performing panel updates for all the 7 kernels was

implemented in SystemVerilog. Local memory was not required for implementing the

panel updates. The implementation was a flat design. The PEs contain an ALU, 8

registers (sufficient to support all the panel updates) and an FSM controller. The

reciprocal operation is considered as a single cycle read from an LUT stored inside

the PE, however the LUT was not used in the RTL design. The FSM controller inside

each PE produces a unique control word every cycle. The control word depends on

the particular kernel update in progress and a PE’s location in the 2D array. Thus,

the datapath is reconfigured for running different panel updates inside the core.

58

Figure 4.4: Control Word

A control word is 14 bits long [Fig. 4.4]. It has 2 control bits for the column buffer

and the row buffer to read from or write to the broadcast busses. There are 6 bits

for two read addresses and 3 bits for one write address of the register file which also

has 1 bit for the enable signal. There are 2 bits for controlling the ALU operation.

Figure 4.5: Power vs Delay

We verified the functionality of the core based on 32bit integer values using simu-

lation results. The core was also synthesized using a 7nm PDK and a clock period of

500ps was chosen based on the power-delay curve [Fig. 4.5]. The power consumption

was 1mW and area for the core (excluding Local Memory and LUT) was 0.076mm2.

Thus, with 16 parallel MAC units a single core clocked at 500ps can achieve a maxi-

mum throughput of 32 GOPS.

59

Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

A multicore architecture capable of executing multiple dense and sparse linear al-

gebra computations, namely GEMV (Dense General Matrix Vector Multiplication),

GEMM (Dense General Matrix Matrix Multiplication), TRSM (Triangular Matrix

Solver), LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector Multipli-

cation), SpMM (Sparse Matrix Matrix Multiplication) was presented. The selected

linear algebra kernels represent both Level-2 and Level-3 dense and sparse BLAS.

Table 5.1 summarizes the scope of this work and compares it with competing imple-

mentations such as [32], [25], [5], and [39].

The unified architecture consists of multiple cores which are used to perform 4×4

sized panel updates for the selected kernels. Multiple panel updates are executed

sequentially by the core to solve a larger problem size. Mapping and scheduling

schemes for each of the kernels was presented which ensured that the architecture

can be used to work with any given input size.

The detailed analysis of the selected kernels showed that they all relied on the

same execution units, i.e a MAC unit and a reciprocal unit. Optimization techniques

such as data blocking and prefetching were used.

Design trade-offs related to the number of PEs inside a core, the local memory

size inside each PE and the bandwidth between the on-chip memory and the core

were analyzed. Based on the trade-offs, PE array utlization and core utilizations

were maximized and an optimal core configuration was derived. An RTL level im-

60

plementation for a single core with 4 × 4 processing elements was done and results

for the panel updates were verified. Synthesis results using a 7nm PDK were used to

demonstrate that a single core could achieve a performance of upto 32GOPS.

Table 5.1: Existing Linear Algebra Accelerators

61

5.2 Future Work

The work presented in this thesis is an initial exploration of a unified architecture

design for multiple matrix computation kernels.

• The design presented in this work can be extended to target a specific domain

of application by selecting the specific algorithms used in that domain and

systematically mapping them to this architecture.

• Using the already mapped kernels more complex algorithms can be implemented

with minimum software overhead, e.g Conjugate Gradient algorithm can be

performed on this architecture using the SpMV mapping.

• Mapping more bandwidth limited kernels from Level-1 BLAS could transform

the architecture to a unified BLAS accelerator with the addition of Floating

point arithmetic units.

• The processing elements can be optimized for performance by pipelining the

execution units and increasing the bandwidth can allow for more computation

communication overlap.

• The partitioning schemes for LUD, and Matrix Inverse can be improved to

reduce the transfer of intermediate results from the on-chip memory to the

external memory.

• The design of a local controller was not explored in this work and it must

be studied in future extensions to present a realistic power and performance

analysis of the entire core.

62

REFERENCES

[1] Alle, M., K. Varadarajan, A. Fell, R. R. C., N. Joseph, S. Das, P. Biswas,
J. Chetia, A. Rao, S. K. Nandy and R. Narayan, “Redefine: Runtime reconfig-
urable polymorphic asic”, ACM Trans. Embed. Comput. Syst. 9, 2, 11:1–11:48
(2009).

[2] Anderson, E., Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,
S. Hammarling, J. Demmel, C. Bischof and D. Sorensen, “Lapack: A portable
linear algebra library for high-performance computers”, in “Proceedings of the
1990 ACM/IEEE Conference on Supercomputing”, Supercomputing ’90, pp. 2–
11 (1990).

[3] Blackford, L. S., J. Choi, A. Cleary, A. Petitet, R. C. Whaley, J. Demmel,
I. Dhillon, K. Stanley, J. Dongarra, S. Hammarling, G. Henry and D. Walker,
“Scalapack: A portable linear algebra library for distributed memory comput-
ers - design issues and performance”, in “Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing”, Supercomputing ’96 (1996).

[4] Buttari, A., J. Langou, J. Kurzak and J. Dongarra, “A class of parallel tiled
linear algebra algorithms for multicore architectures”, Parallel Comput. 35, 1,
38–53, URL http://dx.doi.org/10.1016/j.parco.2008.10.002 (2009).

[5] Calderon, H. and S. Vassiliadis, “Reconfigurable fixed point dense and sparse
matrix-vector multiply/add unit”, in “IEEE 17th International Conference on
Application-specific Systems, Architectures and Processors (ASAP’06)”, pp.
311–316 (2006).

[6] Cheema, U. I., G. Nash, R. Ansari and A. A. Khokhar, “Invarch: A hardware
eficient architecture for matrix inversion”, in “2015 33rd IEEE International
Conference on Computer Design (ICCD)”, pp. 180–187 (2015).

[7] Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov and I. Ya-
mazaki, “Accelerating numerical dense linear algebra calculations with gpus”,
Numerical Computations with GPUs pp. 1–26 (2014).

[8] Dongarra, J. and D. Walker, “Software libraries for linear algebra computa-
tions on high performance computers”, SIAM Review 37, 2, 151–180, URL
https://doi.org/10.1137/1037042 (1995).

[9] Dongarra, J. J., J. Du Croz, S. Hammarling and I. S. Duff, “A set of level 3
basic linear algebra subprograms”, ACM Trans. Math. Softw. 16, 1, 1–17, URL
http://doi.acm.org/10.1145/77626.79170 (1990).

[10] Dongarra, J. J., J. Du Croz, S. Hammarling and R. J. Hanson, “An extended
set of fortran basic linear algebra subprograms”, ACM Trans. Math. Softw. 14,
1, 1–17, URL http://doi.acm.org/10.1145/42288.42291 (1988).

63

[11] Duff, I. S., M. A. Heroux and R. Pozo, “An overview of the sparse
basic linear algebra subprograms: The new standard from the blas
technical forum”, ACM Trans. Math. Softw. 28, 2, 239–267, URL
http://doi.acm.org/10.1145/567806.567810 (2002).

[12] Eberhardt, R. and M. Hoemmen, “Optimization of block sparse matrix-vector
multiplication on shared-memory parallel architectures”, in “2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW)”,
pp. 663–672 (2016).

[13] Elmroth, E., F. Gustavson, I. Jonsson and B. Kgstrm, “Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software”, SIAM Re-
view 46, 1, 3–45, URL https://doi.org/10.1137/S0036144503428693 (2004).

[14] Gonzalez, J. and R. C. Nez, “Lapackrc: Fast linear algebra kernels/solvers for
fpga accelerators”, Journal of Physics: Conference Series 180, 1, 012042 (????).

[15] Goto, K. and R. A. v. d. Geijn, “Anatomy of high-performance matrix multipli-
cation”, ACM Trans. Math. Softw. 34, 3, 12:1–12:25 (2008).

[16] Greathouse, J. L., K. Knox, J. Po, K. Varaganti and M. Daga, “clsparse: A
vendor-optimized open-source sparse blas library”, in “Proceedings of the 4th
International Workshop on OpenCL”, IWOCL ’16, pp. 7:1–7:4 (ACM, New York,
NY, USA, 2016), URL http://doi.acm.org/10.1145/2909437.2909442.

[17] Guo, S., Y. Dou, Y. Lei and G. Wu, “A deeply-pipelined fpga-based spmv accel-
erator with a hardware-friendly storage scheme”, IEICE Electronics Express 12,
11, 20150161–20150161 (2015).

[18] Intel, “Intel R© MKL, Developer Reference”, URL
https://software.intel.com/en-us/articles/mkl-reference-manual
(2009).

[19] Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of
a tensor processing unit”, in “Computer Architecture (ISCA), 2017 ACM/IEEE
44th Annual International Symposium on”, pp. 1–12 (IEEE, 2017).

[20] K̊agström, B., P. Ling and C. van Loan, “Gemm-based level 3
blas: High-performance model implementations and performance evalu-
ation benchmark”, ACM Trans. Math. Softw. 24, 3, 268–302, URL
http://doi.acm.org/10.1145/292395.292412 (1998).

[21] Khan, F. A., R. A. Ashraf, Q. H. Abbasi and A. A. Nasir, “Resource efficient
parallel architectures for linear matrix algebra in real time adaptive control al-
gorithms on reconfigurable logic”, in “2008 Second International Conference on
Electrical Engineering”, pp. 1–9 (2008).

[22] Lawson, C. L., R. J. Hanson, D. R. Kincaid and F. T. Krogh, “Basic linear
algebra subprograms for fortran usage”, ACM Trans. Math. Softw. 5, 3, 308–
323, URL http://doi.acm.org/10.1145/355841.355847 (1979).

64

[23] Mahfoudhi, R., S. Achour and Z. Mahjoub, “Parallel triangular matrix system
solving on cpu-gpu system”, in “2016 IEEE/ACS 13th International Conference
of Computer Systems and Applications (AICCSA)”, pp. 1–6 (2016).

[24] Merchant, F., A. Maity, M. Mahadurkar, K. Vatwani, I. Munje, M. Krishna,
S. Nalesh, N. Gopalan, S. Raha, S. K. Nandy and R. Narayan, “Micro-
architectural enhancements in distributed memory cgras for lu and qr factor-
izations”, in “2015 28th International Conference on VLSI Design”, pp. 153–158
(2015).

[25] Merchant, F., T. Vatwani, A. Chattopadhyay, S. Raha, S. K. Nandy
and R. Narayan, “Accelerating BLAS on custom architecture through
algorithm-architecture co-design”, CoRR abs/1610.06385, URL
http://arxiv.org/abs/1610.06385 (2016).

[26] Nvidia, “CUBLAS Library User Guide”, URL
http://docs.nvidia.com/cublas (2016).

[27] Nvidia, “CUSPARSE Library User Guide”, URL
https://docs.nvidia.com/cuda/cusparse/index.html (2018).

[28] Pal, S., J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim,
D. Blaauw, T. Mudge and R. Dreslinski, “Outerspace: An outer product based
sparse matrix multiplication accelerator”, in “2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA)”, pp. 724–736
(2018).

[29] Papa, G. and J. Šilc, “Linear algebra in one-dimensional systolic arrays”, Infor-
matica 24, 2, 249–257 (2000).

[30] Peddawad, S. C. and A. Goel, “Matrix-matrix multiplication using systolic array
architecture in bluespec team”, (2015).

[31] Pedram, A., “Algorithm/architecture codesign of low power and high perfor-
mance linear algebra compute fabrics”, in “2013 IEEE International Symposium
on Parallel Distributed Processing, Workshops and Phd Forum”, pp. 2214–2217
(2013).

[32] Pedram, A., A. Gerstlauer and R. A. v. d. Geijn, “A high-performance, low-power
linear algebra core”, in “ASAP 2011 - 22nd IEEE International Conference on
Application-specific Systems, Architectures and Processors”, pp. 35–42 (2011).

[33] Pedram, A., A. Gerstlauer and R. A. van de Geijn, “Floating point architecture
extensions for optimized matrix factorization”, in “2013 IEEE 21st Symposium
on Computer Arithmetic”, pp. 49–58 (2013).

[34] Pedram, A., R. A. van de Geijn and A. Gerstlauer, “Codesign tradeoffs for
high-performance, low-power linear algebra architectures”, IEEE Transactions
on Computers 61, 12, 1724–1736 (2012).

65

[35] Prasanna, V. K. and G. R. Morris, “Sparse matrix computations on reconfig-
urable hardware”, Computer 40, 3, 58–64 (2007).

[36] Rákossy, Z. E., D. Stengele, A. Acosta-Aponte, S. Chafekar, P. Bientinesi and
A. Chattopadhyay, “Scalable and efficient linear algebra kernel mapping for low
energy consumption on the layers cgra”, in “International Symposium on Applied
Reconfigurable Computing”, pp. 301–310 (Springer, 2015).

[37] Rosado, A., T. Iakymchuk, M. Bataller and M. Wegrzyn, “Hardware-efficient
matrix inversion algorithm for complex adaptive systems”, in “2012 19th IEEE
International Conference on Electronics, Circuits, and Systems (ICECS 2012)”,
pp. 41–44 (2012).

[38] Rkossy, Z. E., T. Naphade and A. Chattopadhyay, “Design and analysis of lay-
ered coarse-grained reconfigurable architecture”, in “2012 International Confer-
ence on Reconfigurable Computing and FPGAs”, pp. 1–6 (2012).

[39] Rkossy, Z. E., D. Stengele, G. Ascheid, R. Leupers and A. Chattopadhyay, “Ex-
ploiting scalable cgra mapping of lu for energy efficiency using the layers ar-
chitecture”, in “2015 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC)”, pp. 337–342 (2015).

[40] Schwarzenberg-Czerny, A., “On matrix factorization and efficient least squares
solution.”, 110, 405 (1995).

[41] Strassen, V., “Gaussian elimination is not optimal”, Numer. Math. 13, 4, 354–
356, URL http://dx.doi.org/10.1007/BF02165411 (1969).

[42] Volkov, V. and J. W. Demmel, “Benchmarking gpus to tune dense linear alge-
bra”, in “SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercom-
puting”, pp. 1–11 (2008).

[43] W. M. Gentleman, H. T. K., “Matrix triangularization by systolic arrays”, URL
https://doi.org/10.1117/12.932507 (1982).

[44] Wang, L., W. Wu, Z. Xu, J. Xiao and Y. Yang, “Blasx: A high performance
level-3 blas library for heterogeneous multi-gpu computing”, in “Proceedings of
the 2016 International Conference on Supercomputing”, ICS ’16, pp. 20:1–20:11
(2016).

[45] Whaley, R. C. and J. J. Dongarra, “Automatically tuned linear algebra software”,
in “Proceedings of the 1998 ACM/IEEE Conference on Supercomputing”, SC
’98, pp. 1–27 (IEEE Computer Society, Washington, DC, USA, 1998), URL
http://dl.acm.org/citation.cfm?id=509058.509096.

[46] Zhu, Q., T. Graf, H. E. Sumbul, L. Pileggi and F. Franchetti, “Accelerating
sparse matrix-matrix multiplication with 3d-stacked logic-in-memory hardware”,
in “2013 IEEE High Performance Extreme Computing Conference (HPEC)”, pp.
1–6 (2013).

66

APPENDIX

PE UTILIZATION RATIO FOR PANEL UPDATES

67

In this appendix, we provide the mathematical derivations of the PE utilization

ratios for panel updates of GEMV, GEMM, SpMV, SpMM, TRSM, LUD, and INV.

PEUtil =

∑p
k=1 no. of active PEs in the k

th cycle

p×N2
r

where p is the no. of cycles required for an Nr ×Nr panel update. (Nr ≥ 2)

GEMV/GEMM/SpMV/SpMM: For these kernels, p = Nr + 1 and all the PEs

are utilized throughout the entire panel update operation.

PEUtil =

∑Nr+1
k=1 (Nr ×Nr)

(Nr + 1)×N2
r

= 1 (for GEMV/GEMM/SpMV/SpMM)

TRSM: For a panel update of this kernel, p = 3Nr. It takes 3 cycles for initial-

ization. In the 1st cycle Nr diagonal PEs are active, in the 2nd cycle all the PEs are

active and in the 3rd cycle only the first row of PEs is active. After the initialization,

two steps repeated for Nr − 1 iteration. In an iteration i, broadcasts are required for

the first step during which all PEs of row r (r ≥ i) are active, all PEs below row (i)

are active in the first step and all PEs of row (i+ 1) are active in the second step.

68

PEUtil =
Nr +N2

r +Nr +
∑Nr−1

i=1 (Nr(Nr + 1− i) +Nr(Nr − i) +Nr)

(3Nr)×N2
r

=
2Nr +N2

r +Nr(
∑Nr−1

i=1 ((Nr + 1− i) + (Nr − i) + 1))

(3Nr)×N2
r

=
2Nr +N2

r + 2Nr(
∑Nr−1

i=1 (Nr + 1− i))
(3Nr)×N2

r

=
2Nr +N2

r + 2Nr(2 + 3 + 4 + ..+Nr)

(3Nr)×N2
r

=
2Nr +N2

r +Nr(N
2
r +Nr − 2)

(3Nr)×N2
r

=
2Nr +N2

r +N3
r +N2

r − 2Nr

(3Nr)×N2
r

=
2 +Nr

3Nr

(for TRSM)

LUD: For a panel update of this kernel, p = 3Nr − 1. It takes 2 cycles for initial-

ization. In the 1st cycle Nr − 1 diagonal PEs are active and in the 2nd cycle all the

PEs below these Nr − 1 diagonal PEs are active. After the initialization, two steps

repeated for Nr − 1 iteration. In an iteration i all PEs below the diagonal PE(i, i)

are active in the first step, broadcasts are required for the second step during which

the sub-array of PEs bounded by row(i − 1) and column(i − 1) is active except the

diagonal PE(i, i). In the second step, the sub-array of PEs bounded by row(i) and

column(i) is active.

69

PEUtil =
Nr − 1 + (2 + 3 + 4 + ..+Nr) +

∑Nr−1
i=1 ((Nr − i) + (Nr + 1− i)2 − 1 + i2)

(3Nr − 1)×N2
r

=
Nr − 1− 1 +

∑Nr

i=1(i) +
∑Nr−1

i=1 (i) +
∑Nr−1

i=1 ((Nr + 1− i)2 + i2)−Nr + 1

(3Nr − 1)×N2
r

=

∑Nr

i=1(i) +
∑Nr−1

i=1 (i) +
∑Nr−1

i=1 ((Nr + 1− i)2 + i2)− 1

(3Nr − 1)×N2
r

=
N2

r +
∑Nr−1

i=1 ((Nr + 1− i)2 + i2)− 1

(3Nr − 1)×N2
r

=
N2

r +
∑Nr

i=2(i
2) +

∑Nr−1
i=1 (i2)− 1

(3Nr − 1)×N2
r

=
N2

r − 1 + 2N3
r+Nr

3

(3Nr − 1)×N2
r

=
(2N3

r + 3N2
r) + (Nr − 3)

3(3Nr − 1)×N2
r

≈ 3 + 2Nr

3(3Nr − 1)
(for LUD)

(Sum of squares of natural numbers:
∑n

1 (i2) = n(n+1)(2n+1)
6

)

INV: For a panel update of this kernel, LUD −→ TRSM −→ TRSM −→ GEMM

panel updates are performed sequentially. We use the PEUtil ratios for GEMM,

TRSM and LUD to find the PEUtil for Inverse.

PEUtil =
(Nr + 1)× 1 + 2× (3Nr)× 2+Nr

3Nr
+ (3Nr − 1)× 3+2Nr

3(3Nr−1)

10Nr × 1

=
Nr + 1 + 2(2 +Nr) + 3+2Nr

3

10Nr

=
18 + 11Nr

30Nr

(for INV)

70

