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ABSTRACT

Robotic swarms can potentially perform complicated tasks such as exploration

and mapping at large space and time scales in a parallel and robust fashion. This

thesis presents strategies for mapping environmental features of interest – specifi-

cally obstacles, collision-free paths, generating a metric map and estimating scalar

density fields– in an unknown domain using data obtained by a swarm of resource-

constrained robots. First, an approach was developed for mapping a single obstacle

using a swarm of point-mass robots with both directed and random motion. The

swarm population dynamics are modeled by a set of advection-di↵usion-reaction

partial di↵erential equations (PDEs) in which a spatially-dependent indicator func-

tion marks the presence or absence of the obstacle in the domain. The indicator

function is estimated by solving an optimization problem with PDEs as constraints.

Second, a methodology for constructing a topological map of an unknown envi-

ronment was proposed, which indicates collision-free paths for navigation, from

data collected by a swarm of finite-sized robots. As an initial step, the number

of topological features in the domain was quantified by applying tools from al-

gebraic topology, to a probability function over the explored region that indicates

the presence of obstacles. A topological map of the domain is then generated

using a graph-based wave propagation algorithm. This approach is further ex-

tended, enabling the technique to construct a metric map of an unknown domain

with obstacles using uncertain position data collected by a swarm of resource-

constrained robots, filtered using intensity measurements of an external signal.

Next, a distributed method was developed to construct the occupancy grid map of

an unknown environment using a swarm of inexpensive robots or mobile sensors

with limited communication. In addition to this, an exploration strategy which

combines information theoretic ideas with Lévy walks was also proposed. Finally,
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the problem of reconstructing a two-dimensional scalar field using observations

from a subset of a sensor network in which each node communicates its local

measurements to its neighboring nodes was addressed. This problem reduces to

estimating the initial condition of a large interconnected system with first-order

linear dynamics, which can be solved as an optimization problem.
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9.6 Information correlated Lévy walk exploration and distributed

mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.7 Scalar field estimation using a sensor network . . . . . . . . . . . . . . . . . . . 188

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

APPENDIX

A ADJOINT EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B GRADIENT EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

C DERIVATION OF FORMULA TO COMPUTE I[CI,A; ZI,A
⌧ ] . . . . . . . . . . . . . . 208

D PROOF OF CONSENSUS THEOREM (THEOREM 1 IN CHAPTER 7) . 211

x



LIST OF TABLES

Table Page

5.1 Comparison of our approach to several probabilistic sparse map

generation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



LIST OF FIGURES

Figure Page

1.1 Topological map given by a Generalized Voronoi Graph of a domain

with three obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Snapshots of the simulated swarm moving through a domain with

a rectangular feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 K(~x) estimated from 6 data sets for a domain that contains a rectangle. 41

3.3 K(~x) estimated from 6 data sets for a domain that contains an inclined

rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 K(~x) estimated from 6 data sets for a domain that contains a triangle . 42

3.5 K(~x) estimated from 4 data sets for a domain that contains a small

triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 K(~x) estimated from 4 data sets for a domain that contains a square

at the center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 K(~x) estimated from 8 data sets for a domain that contains a square

at the center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 K(~x) estimated from 8 data sets for a domain that contains a square

in the corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 K(~x) estimated from 6 data sets for a domain that contains a non-

convex L shaped object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Objective function value vs. number of iterations for the di↵erent

scenarios examined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 comparison between data g(t) and
R
⌦

udx for a particular trail . . . . . . . 44

4.1 An example barcode diagram of a filtration formed from a Rips

complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Snapshots of a simulated swarm moving through di↵erent domains. 56

xii



Figure Page

4.3 Contour plots of pf
i in Type I scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Contour plots of pf
i in Type I scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Point clouds computed over domains in Type I scenarios. . . . . . . . . . . . 57

4.6 Point clouds computed over domains in Type II scenarios. . . . . . . . . . . 57

4.7 Landmark points selected over domains in Type I scenarios. . . . . . . . . 58

4.8 Landmark points selected over domains in Type II scenarios. . . . . . . . . 58

4.9 Barcodes computed for domains in Type I scenarios. . . . . . . . . . . . . . . . . 58

4.10 Barcodes computed for domains in Type II scenarios. . . . . . . . . . . . . . . . 59

4.11 Computed number of features versus swarm deployment time pe-

riod T (in seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Computed numbers of connected components versus number of

robots N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 The experimental arena with four Pheeno robots for DARS 2016 . . . . . 63

4.14 Experimental results from a Type II environment containing two

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.15 Computed numbers of connected components versus swarm de-

ployment time period T (in seconds) (experiment) . . . . . . . . . . . . . . . . . . . 65

4.16 Computed numbers of connected components versus number of

robots N (experiment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Filtration used to generate the barcode diagram Figure 5.6b. . . . . . . . . . 73

5.2 Illustration of K means clustering algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Stages of the wave propagation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Snapshots of a simulated swarm moving through di↵erent domains. 84

5.5 Contour plots of pf
i for various domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiii



Figure Page

5.6 Barcode diagram for each domain in Figure 5.4 . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Obstacle segmentation for domains in Figure 5.4 . . . . . . . . . . . . . . . . . . . . 85

5.8 Obstacles and AGVD (black lines) constructed from the probabilities

pf
i in each domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Simulation results for a large, complex environment. . . . . . . . . . . . . . . . . 86

5.10 The experimental arena with its AGVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Multi-robot experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Filtration used to generate the barcode diagram Figure 6.5c for the

domain shown in Figure 6.2c. The red triangles are the 2-simplices

that are constructed from the centers of the grid cells in the domain

discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Snapshots of di↵erent domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Unoccupancy probability contour plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Filtered unoccupancy probability filtered plots . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Barcode diagrams for thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Thresholded occupancy grid map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7 Absolute error value plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.8 The outputs of the mapping procedure for a complex domain. . . . . . . . 112

6.9 E↵ect of number of robots on mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.10 E↵ect of the deployment time on mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.11 E↵ect of swarm size for low time of deployment . . . . . . . . . . . . . . . . . . . . . 113

6.12 Results from 20 simulations on each domain in Figure 6.2. . . . . . . . . . . . 114

6.13 Topological maps generated for a complex domain. . . . . . . . . . . . . . . . . . 114

6.14 Simulation on a domain with five small square obstacles. . . . . . . . . . . . . 115

xiv



Figure Page

6.15 Plots showing e↵ect of the noise of the signal on the map estimation

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Sub-functions used in um(mi
j, x

i
k, z

i
k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 An example barcode diagram of a filtration constructed from cubical

complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Environments used for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Occupancy grid maps generated by a robot for various environments 147

7.5 Screenshots of robots exploring the cave shown in Figure 7.3a . . . . . . . 148

7.6 The occupancy map stored in the robot marked with a green dotted

circle in Figure 7.5 at di↵erent time instants. . . . . . . . . . . . . . . . . . . . . . . . . 149

7.7 Consensus in the occupancy grid maps stored in various robots of a

swarm of 50 robots after exploring for an hour . . . . . . . . . . . . . . . . . . . . . . 150

7.8 Comparison of variation of occupancy grid map’s entropy[142] over

time of exploration, when robots explored the domain using Lévy
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Chapter 1

INTRODUCTION

1.1 Swarm Robotics

In recent years, there has been an increasing focus on the development of robot

platforms that can be deployed in swarms to perform tasks autonomously over

large spatial and temporal scales. In fact, robotic swarms have already become

a reality with large numbers of robots being deployed to perform desired tasks.

The Kiva System uses hundreds to thousands of autonomous robots to manage

storage warehouses [30]. In addition, swarms of nanoscale structures and de-

vices such as nanoparticles, molecular machines, and magnetic nanocarriers are

being developed for biomedical applications such as imaging and targeted drug

delivery [143]. Many potential applications for robotic swarms, including explo-

ration, environmental monitoring, disaster response, search-and-rescue, mining,

and intelligence-surveillance-reconnaissance will require the robots to operate in

dynamic, uncertain environments. Moreover, the robots’ highly restricted onboard

power may preclude the use of GPS and communication devices, or the robots

may be located in GPS-denied environments where communication is impractical

or unreliable. Despite these limitations, it may still be necessary for the swarm to

characterize its surroundings; for instance, to map obstacles, payloads for trans-

port, or hazardous areas to avoid. Nanoscale swarms, which will have extremely

limited capabilities, may be used to map cellular structures inside the human body.

A major challenge in designing any kind of control strategies for swarm robotic

systems is to make the strategies scale with the number of agents, i.e., the com-

1



plexity of the strategy should not increase considerably for a larger number of

robots. This challenge has motivated researchers to develop scalable strategy de-

sign frameworks for swarm robotic systems. In 2004, Erol Şahin proposed the

following definition of swarm robotics:

Definition 1.1.1. Swarm robotics is the study of how a large number of relatively simple

physically embodied agents can be designed such that a desired collective behavior emerges

from the local interactions among agents and between the agents and the environment

[118].

Şahin’s criterion in [118] has motivated many researchers to develop scalable

control strategies for robotic swarms. [13, 36, 94, 95]. Swarm robotic systems are ca-

pable of executing tasks in parallel and adapt to their surroundings; enabling them

to solve problems in large, unknown, possibly hazardous environments. The thesis

also introduces and solves the problem of reconstructing a two-dimensional scalar

field using measurements from a subset of a network with local communication

between nodes in a sensor network.

1.2 Robotic Mapping Techniques

A common task involved in most of the robotic applications is generating a map

of the environment where the swarm of robots operate. Size and cost constraints

limit individual robots in the swarm from having su�cient resources to map the en-

tire unknown environment using existing mapping techniques collectively known

as simultaneous localization and mapping (SLAM) [142]. SLAM is the process of

mapping an unknown domain and constructing a map consistent with the domain

through an appropriate fusion of robot’s sensory data. Although numerous al-

gorithms for SLAM have been proposed, in general, all these algorithms can be
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categorized into the following main categories:

Feature-based mapping: [126] also known as landmark based mapping is a method

in which the environment is represented using a list of global positions of

various features or landmarks present in the environment. Consequently, the

algorithms in this category require feature extraction and data association.

Occupancy grid mapping uses an array of cells to represent the unknown envi-

ronment. This class of algorithms was first introduced in Elfes et al. [44] and

is the most commonly used method in robotics mapping applications. Oc-

cupancy grid maps are very e↵ective in representing 2D environment, but it

su↵ers from the curse of dimensionality. The cells in an occupancy grid map

are modeled as binary random variables that give probability of occupancy

of a cell by an object.

Topological mapping [25] procedures generate a topological map which is a com-

pact sparse representation of an environment. A topological map encodes all

of an environment’s topological features such as holes that signify the pres-

ence of obstacles; and provides a collision-free path through the environment

in the form of a roadmap. A topological map is generally a graph in which the

vertices correspond to particular obstacle-free locations in the domain and the

edges correspond to collision-free paths between these locations. Figure 1.1

shows an example of a topological map in the form of a Generalized Voronoi

Diagram (GVD) .

Chapter 3, Chapter 4, Chapter 5, Chapter 6 and Chapter 7 in this thesis presents

various scalable strategies for mapping and exploring unknown environments

using a swarm of resource-constrained robots. The thesis primarily focuses on
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generating occupancy grid maps and topological maps in a scalable fashion. In

Chapter 7, a novel exploration strategy for exploration of unknown environments

by a robotic swarm is presented. The exploration technique combines information

theoretic concepts with Lévy walks.

1.3 Scalar field estimation

Figure 1.1: Image from [59]. The figure

shows the topological map of a domain

with three obstacles (the solid black re-

gions). The black lines represent the topo-

logical map, constructed as a Generalized

Voronoi Diagram.

Large networks of robots or sensors

can perform a range of distributed sens-

ing and estimation tasks such as en-

vironmental monitoring, field surveil-

lance and reconstruction, multi-target

tracking, and geo-scientific exploration

[68, 4]. Applications of sensor networks

which require scalar field estimation are

so wide and important that it is essen-

tial to consider them as a problem to be

solved in itself. The environment to be

sampled by the network may be remote

or hazardous, allowing measurements

to be directly accessed from only a sub-

set of the robots/sensors at any given time. A common characteristic of most scalar

fields is that the sensor measurements are valid only locally. In other words, the

correlation in measurements between sensor nodes is inversely proportional to

the distance between them [161]. In general, estimation of scalar fields where no

sensor nodes are deployed is performed by interpolation measurements from the

neighboring sensor nodes. The estimation accuracy can be further improved if the
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sensors shared their measurements with their neighbors. The important question

to ask is: ”what network topology of the sensor network would increase the accu-

racy of the estimation of a scalar field?”. The primary motivation of this work is to

quantify the fundamental performance limitations that emerge in these scenarios

due to the chosen inter-robot/sensor communication topology of the network. This

topology can be implemented in stationary networks through the configuration

of the robots/sensors. Also it can be enforced in mobile networks using strategies

such as formation control [31] or in tra�c control for platoons [6].This thesis not

only solves the problem of scalar field estimation by posing it as an optimization

problem with linear network dynamics as constraints but also proposes a metric to

measure the scalar field estimation capability of a given sensor network.

1.4 Contributions of the thesis

The novel contributions of this work can be summarized as follows:

• A partial di↵erential equation (PDEs) based approach to mapping a region

of interest using observations from a robotic swarm without localization was

introduced. The robots have local sensing capabilities, no communication,

and they exhibit stochasticity in their motion. The swarm population dynam-

ics is modeled with a set of advection-di↵usion-reaction partial di↵erential

equations. The map of the environment is incorporated into this model using

a spatially-dependent indicator function that marks the presence or absence

of the region of interest throughout the domain. To estimate this indica-

tor function, the solution of an optimization problem is defined in which

we minimize an objective functional that is based on temporal robot data.

The optimization is performed numerically o✏ine using a standard gradient

descent algorithm. The approach is validated through simulations.
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• A novel automated approach to quantifying the topological features of an un-

known environment using a swarm of robots with local sensing and limited or

no access to global position information was proposed. The robots randomly

explore the environment and record a time series of their estimated position

and the covariance matrix associated with this estimate. After the robots’

deployment, a point cloud indicating the free space of the environment is

extracted from their aggregated data. Tools from topological data analysis,

in particular the concept of persistent homology, are applied to a subset of

the point cloud to construct barcode diagrams, which are used to determine

the numbers of di↵erent types of features in the domain. It is demonstrated

that the approach can correctly identify the number of topological features in

simulations with zero to four features and in multi-robot experiments with

one to three features.

• A novel procedure is presented for constructing a topological map of an

unknown environment from data collected by a swarm of robots with limited

sensing capabilities and no communication or global localization. Topological

maps are sparse roadmap representations of environments that can be used

to identify collision-free trajectories for robots to navigate through a domain.

Like the previous contribution, this method also uses uncertain position data

obtained by robots during the course of random exploration to construct

a probability function over the explored region that indicates the presence

of obstacles. Techniques from topological data analysis, in particular the

concept of persistent homology, are again applied in a di↵erent manner to the

probability map to segment the obstacle regions. Finally, a graph-based wave

propagation algorithm is applied to the obstacle-free region to construct the
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topological map of the domain in the form of an approximate Generalized

Voronoi Diagram. The e↵ectiveness of the approach is demonstrated in a

variety of simulated domains and in multi-robot experiments on a domain

with two obstacles, and an analysis of its computational time complexity is

also performed.

• The procedure mentioned in the previous contribution was extended to con-

struct a metric map of an unknown domain with obstacles using uncertain

position data collected by a swarm of resource-constrained robots. The robots

obtain this data during random exploration of the domain by combining on-

board odometry information with noisy measurements of signals received

from transmitters located outside the domain. This data is processed o✏ine

to compute a density function of the free space over a discretization of the

domain. Persistent homology techniques from topological data analysis are

used to estimate a value for thresholding the density function, thereby seg-

menting the obstacle-occupied region in the unknown domain. The approach

is substantiated with theoretical results to prove its completeness and to an-

alyze its time complexity. The e↵ectiveness of the procedure is illustrated

with numerical simulations conducted on six di↵erent domains, each with

two signal transmitters.

• A novel distributed method to construct occupancy grid map of an unknown

environment using a swarm of inexpensive robots or mobile sensors with

limited communication was proposed. A team of robots that explore an

unknown domain and create local maps based on robots’ laser range sensor

measurement was considered. Simultaneously, each robot updates its local

occupancy grid map using its laser range sensor measurements and using
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map information broadcasted by robots residing in the robot’s neighborhood.

Thus each robot’s occupancy grid map eventually converges to the global

map of the unknown environment. Under reasonable assumptions on the

connectivity of robot interaction graph, the distributed mapping strategy is

proved to converge each robot’s occupancy grid asymptotically to the global

map. An exploration strategy which combines information theoretic ideas

with Lévy walks was also proposed. In addition, it was demonstrated that a

topological data analysis technique developed as part of earlier contribution for

generating topological maps can be easily extended for adaptive thresholding

of occupancy grid maps. The e↵ectiveness of the distributed mapping and

exploration strategy was validated through a series of numerical simulations

and experiments.

• Formulated the problem of reconstructing a two-dimensional scalar field us-

ing measurements from a subset of a network with local communication

between nodes as an optimization problem that is constrained by first-order

linear dynamics on a large interconnected system. A gradient descent ap-

proach was used to solve the optimization problem. The gradient of the

objective function for the optimization problem was derived analytically.

Bounds on the trace of the observability Gramian of the large interconnected

system was also derived, this can be used to quantify and compare the field

estimation capabilities of any undirected networks. The derived bounds were

used to compare the field estimation capabilities of chain and grid networks.

A comparison based on a performance measure related to the H2 norm of

the system is also used to study the robustness of the network topologies.

The results are validated in simulation using both Gaussian scalar fields and
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actual ocean salinity data.

1.5 Organization of the thesis

This section outlines the contents described in various chapters of this report.

Each chapter from Chapter 3 to Chapter 8 in the thesis talk about separate prob-

lem statements and literature review associated with each problem statement is

detailed in the corresponding chapter. It is to be noted that the notations used in

each chapter are local to the chapter and are not be confused with notations used

in other chapters. The reminder of the dissertation is organized as follows: Chap-

ter 2 provides a concise mathematical background for in-depth understanding of

the various techniques used in this work. Chapter 3 proposes an optimal control

of partial di↵erential equation approach for mapping a feature of interest in an

unknown environment using a swarm of resources constrained robots. A prob-

abilistic topological technique to quantify the number of features in an unknown

environment is introduced in Chapter 4. The technique uses uncertain position

data obtained from robots that explored the unknown domain using random walk.

Tools from algebraic topology were used to quantify the number of features from

the uncertain position data. Chapter 5 extends the approach presented in Chapter 4

to generate a topological map of the domain using the uncertain position data. The

approach is further extended in Chapter 6 to generate a metric map of the explored

environment. Position data from robots with bounded uncertainty were used for

metric map generation of the environment. It is also proven in Chapter 6 that a met-

ric map of the environment can also be constructed from the position data of robots

as long as its uncertainty is bounded. A distributed mapping approach for map-

ping an unknown environment using a swarm of robots is detailed in Chapter 7.

The chapter also describes a novel exploration strategy for robotic swarms which
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combines information theoretic concepts with Lévy walks. Chapter 8 investigates

the problem of reconstructing a two-dimensional scalar field using measurements

from a subset of a network with local communication between nodes. Finally,

conclusions and future works are provided in Chapter 9.
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Chapter 2

BACKGROUND

In this chapter, the basic concepts of optimization theory, topology and infor-

mation theory are introduced. The material presented in this chapter does not

constitute any novel research contribution by this dissertation.

2.1 Topology

This section outlines some basic concepts from the mathematical field known as

topology. The topics described in this section provide the necessary background to

understand the topological techniques presented in Chapter 4, Chapter 5, Chapter 6

and Chapter 7.

2.1.1 Point-set Topology

Definition 2.1.1. A set is a collection of objects. Mathematical analysis mostly deals with

sets having infinite uncountable number of objects. For example, the set of real numbers.

However, set theory alone does not provide any information about the relation-

ship between elements in a set. In other words, a set is just a collection of elements

and does not provide information like whether a particular element in the set is

closer to the second element in comparison to another element in the set. This is

where the notion of topology comes to the rescue. A topology of a set gives the set

an additional structure which helps to define the notion of closeness of elements in

the set.

Definition 2.1.2. Topology [91]. A topology on a set X is a collection, T, of subsets of

X, containing both X and ;, and closed under the operations of intersection and union.

11



The tuple (X,T) is referred as a topological space, open sets of a topological space are the

elements of T.

The concept topology also helps in defining the notion of continuity of a function

between sets.

Definition 2.1.3. Continuity of function between topological spaces [91]. Let f : X1 ! X1

be a function between the topological spaces, (X1,T1) and (X2,T2). Then f is a continuous

function if for every open set V 2 T2, the set f �1(V) 2 T2

Using these basic definitions, one can construct a topological space from another.

The same idea can also be used to establish relationships between topological

space such as equivalence relations and embedding. This is the primary goal of

point-set topology. Sometimes the relationship can be gauged much more easily by

performing a little algebra. This is where algebraic topology gets introduced.

Now some fundamental equivalence relations among topological space can be

introduced. The first to introduce is the notion called Homeomorphism . Topologi-

cally speaking, two topological spaces are homeomorphic if they basically the same

topological space. Informally, two topological spaces are homeomorphic if one can

be continuously deformed into the other without causing cuts or tears in the space.

In other words, under a homeomorphic map open sets remain as open sets.

Definition 2.1.4. Homeomorphism [91]. Let X1 and X1 be two topological spaces. Then

these spaces are said to homeomorphic, if there exists a bijective function such that both

the function and its inverse are continuous. The function is referred as a homeomorphism

between the spaces.

Homotopy is a fundamental equivalence relation that exists among continuous

functions defined between two fixed topological spaces.
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Definition 2.1.5. Homotopy [60]. Let f1, f2 : X1 ! X1 be continuous functions between

the topological space X1 and X2. If there exists a continuous function F : X1 ⇥ [0, 1]! X1

such that F(x1, 0) = f1(x1) and F(x1, 1) = f2(x1),8x1 2 X1 then the functions f1 and f2 are

homotopic. The function F is called a homotopy between the functions.

An interesting question to ask is: given a topological space X and a subspace Y

(subspace is a subset endowed with subspace topology), can the space X be continu-

ously deformed to its subspace Y without tearing or cutting. This question motives

the idea of a deformation retract.

Definition 2.1.6. Deformation Retract [60, 26]. A subspace Y is called a deformation

retract of a space X if there exists a continuous map D : X ⇥ [0, 1]! X such that

1. D(x, 0) = x, 8x 2 X

2. D(y, t) = y, 8y 2 Y, t 2 [0, 1], and

3. D(x, 1) 2 Y, 8x 2 X.

The map F becomes the deformation retraction from X to Y. F can also be interpreted as

a homotopy between the identity map and the map F(·, 1) whose image is in Y. This is

because Y is a subspace of X.

The idea of deformation retract requires that the topological space Y is a sub-

space of X. This concept can be generalized to define equivalence relation between

arbitrary spaces and generalization is called homotopy equivalence. Intuitively speak-

ing, the basic idea behind homotopy equivalence is that instead of explicitly refer-

ring a subspace Y of X, continuous identity functions of X through a second space Z

is examined. If this combination map is homotopic to the identity map on X. Also

consider the same process with the role of X and Z interchanged. If the answer
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is positive in both scenarios then the topological spaces X and Z are homotopy

equivalents.

Definition 2.1.7. Homotopy Equivalence [60]. Two topological spaces A and B are

homotopy equivalent if there exists continuous functions a : A ! B and b : B ! A such

that b � a is homotopic to the identity map on A, and a � b is homotopic to the identity map

on Y.

If a topological space is a deformation retract of another topological space, then

they are homotopy equivalents. However the converse is not true. A special kind

of homotopy equivalent topological space is a contractible space.

Definition 2.1.8. Contractible space [60]. A topological space X is called contractible if

the identity map on X is homotopic to a constant map.

The intuition behind the concept of contractible space is that the topological

space can be contracted continuously to a point contained in the space.

In this subsection a number of equivalence relationships between topological

spaces were stated which can be used to classify these spaces. In general it is di�cult

to come up with functions to prove homeomorphism or homotopic equivalents for

arbitrary topological space. Algebraic topology tries to circumvent the problem of

analyzing topological spaces by imparting certain algebraic structures(primarily

group) to a topological space, and allows interpretation of the structure of the

topological space by analysis of the algebraic structures. In this thesis an applied

version of algebraic topology known as topological data analysis(TDA) is used. For

this reason a detailed background of algebraic topology is not introduced instead

only the concepts required for TDA are discussed in Chapter 4, Chapter 5, Chapter 6

and Chapter 7. An in-depth treatment of algebraic topology can be found in [60].
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2.2 Optimization Theory for Infinite dimensional spaces

This section introduces some of the mathematical concepts required for the in-

depth understanding of materials presented in Chapter 3. The reader would require

concepts from functional analysis, partial di↵erential equations and optimization

theory described in the following subsection in order to follow the derivation of

the gradient in Chapter 3. The information presented in section has been adapted

from [46, 145, 84] and [79].

2.2.1 Functional Analysis

Definition 2.2.1. A normed space is a vector space with a metric defined by a norm. A

norm generalizes the notion of length of a vector in a plane or in three-dimensional space.

Definition 2.2.2. A normed space {X, || · ||} is said to be a complete metric space if every

Cauchy sequence in X converges to an element in X. A Banach space is a normed space

which is a complete metric space.

Definition 2.2.3. A Hilbert space is a Banach space which is endowed with an inner

product < ·, · >. The inner product induces the norm for space defined as ||x|| = (< x, x >) 1
2

Definition 2.2.4. A linear mapping A from a normed space X into a normed space Y is

called an linear operator if

A(ax + by) = aA(x) + bA(y) (2.1)

8x, y 2 X and a, b 2 R

Definition 2.2.5. A linear functional is a linear mapping from a normed space into a scaler

field R or C.

Bounded linear operators and bounded linear functionals are of particular impor-

tance since they are continuous and take advantage of the vector space structure.
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Definition 2.2.6. A linear operator A : X! Y is said to be bounded if

kAk B sup
�kA(x)kY | kxkX  1

 
< 1 (2.2)

It is a well known theorem that a linear operator is continuous if and only if it is bounded[79].

Definition 2.2.7. L(X,Y) denotes the normed vector space of all linear bounded mappings

from X to Y. If X = Y, then we write L(X,Y) B L(X).

Definition 2.2.8. Dual space of X is the space X⇤ of linear functionals on X, X⇤ B L(X,R).

Dual space is also a normed space with the associated norm,

��� f
���

X⇤
= sup
kxk=1

��� f (x)
��� (2.3)

The notation < ·, · >X⇤,X refers to the dual pairing between X⇤ and X defined as

< f , x >X⇤,X= f (x).

Theorem 1. Reisz Representation theorem. Let {H, < ·, · >} be a real Hilbert space, then

for any element G 2 H⇤ there exists a uniquely g 2 H such that kGkX⇤ =
���g

���
X

and

G(h) =< g, h > 8h 2 H

Definition 2.2.9. Let 1  p < 1 and suppose ⌦ is a Lesbesgue measurable subset of R

then the following function spaces are defined,

Lp(⌦) =

8>>><>>>:
f : ⌦! R, p

s Z

⌦

��� f
���p dx

!
< 1

9>>>=>>>;
(2.4)

and

L1(⌦) =
(

f : ⌦! Rn, ess sup
x2⌦

��� f (x)
��� < 1

)
. (2.5)

Also,

Lp
loc(⌦) =

�
f : ⌦! R,8 compact ! ⇢ ⌦ f 2 Lp(!)

 
(2.6)
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Theorem 2. (Fischer-Riesz) The function spaces Lp(⌦) are Banach spaces. The function

space L2(⌦) is a Hilbert space with the inner product structure defined as:

< f , g >L2(⌦)B
Z

⌦

f gdx (2.7)

2.2.2 Partial Di↵erential Equations

Definition 2.2.10. Let ⌦ ⇢ Rn be open and let f 2 Lp
loc(⌦). If there exists a function

w 2 Lp
loc(⌦) such that,

Z

⌦

w� = (�1)↵
Z

⌦

f D↵�dx, 8� 2 C10 (⌦) (2.8)

then D↵ f B w is called ↵-th weak partial derivative of f . C10 (⌦) is the set of infinitely

di↵erentiable test functions on ⌦ which vanish on the boundary of ⌦.

Definition 2.2.11. Let ⌦ ⇢ Rn. The Sobolev space Wk,p is defined as,

Wk,p =
�
f 2 Lp(⌦) | D↵ f 2 Lp(⌦) 8 |↵|  k

 
(2.9)

For k 2N0, p 2 [1,1). The space is endowed with the norm

��� f
���

Wk,p (⌦) = p

vut0
BBBBB@
X

|↵|k

Z

⌦

���D↵ f (x)p
��� dx

1
CCCCCA (2.10)

A space of particular interest is Hk(⌦) B Wk,2(⌦), which is a Hilbert space.

Using definition of Wk,p,

H1(⌦) =
n

f 2 L2(⌦) | D1 f 2 L2(⌦)
o

(2.11)

The space H1(⌦) is endowed with the norm

��� f
���

H1(⌦)
=

sZ

⌦

✓
f 2 +

���r f
���2
◆

dx (2.12)
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being a Hilbert space H1(⌦) has the following inner product structure,

< f , g >H1(⌦)=

Z

⌦

f gdx +
Z

⌦

r f .rgdx (2.13)

Consider a separable Banach space X.

Definition 2.2.12. s : [0,T]! X is a simple function if it possess the form

s(t) =
mX

i=1

1Ei(t)yi (2.14)

where Ei ⇢ [0,T] are Lesbesgue measurable sets and yi 2 X

f : [0,T] ! X is a strongly measurable function if there exist a sequence of simple

functions sk : [0,T]! X such that,

Definition 2.2.13. For a separable Banach space X, the function space Lp([0,T]; X) is

defined for 1  p < 1 as

Lp([0,T]; X) B
(

y : [0,T]! X | y is strongly measurable,
Z T

0

���y(t)
���p

X
dt < 1

)
(2.15)

also,

L1([0,T]; X) B
8><>:y : [0,T]! X | y is strongly measurable, ess sup

t2[0,T]

���y(t)
���

X
< 1

9>=>;

(2.16)

Definition 2.2.14. Weak time derivative. v 2 L1([0,T]; X) is the weak time derivative of

y 2 L1([0,T]; X)(yt = v) if
Z T

0
�0(t)y(t)dt = �

Z T

0
�(t)v(t)dt 8� 2 C10 ((0,T)) (2.17)

Theorem 3. The dual space of Lp([0,T]; X) can be identified with Lq([0,T]; X⇤), for 1 

p < 1 and 1
p +

1
q = 1 using the pairing,

< v, y >Lq([0,T];X⇤),Lp([0,T];X)=

Z T

0

⌦
v(t), y(t)

↵
X⇤,X dt (2.18)
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If the space X is a separable Hilbert space then L2([0,T]; X) is a Hilbert space with inner

product defined as

< v, y >Lq([0,T];X)B
Z T

0

⌦
v(t), y(t)

↵
X dt (2.19)

Definition 2.2.15. W([0,T]; H,V) is the linear space of all y 2 L2([0,T]; V) having a

distributional time derivative y0 2 L2([0,T]; V⇤), where H, V are separable Hilbert spaces

with continuous and dense embedding V ,! H. If H is identified with its dual H⇤, then

the following continuous and dense embedding is obtained,

V ,! H � H⇤ ,! V⇤ (2.20)

This relation is called Gelfand Triple.

Theorem 4. For a Gelfand Triple V ,! H ,! V⇤ there exists a continuous embedding

W([0,T]; H,V) ,! C([0,T]; H). Moreover, for all y, p 2 W([0,T]; H,V) the following

formula can be obtained

⌦
y(T), p(T)

↵
H �

⌦
y(0), p(0)

↵
=

Z T

0

⌦
y0(t), p(t)

↵
V⇤,V dt +

Z T

0

⌦
p0(t), y(t)

↵
V⇤,V dt (2.21)

2.2.3 Optimization Theory

Definition 2.2.16. Let G : U ⇢ X! Y be an operator with a non empty subset U as the

domain. If the limit

dG(u, h) B lim
t!0

G(u + th) � G(u)
t

(2.22)

exists in V, then it is called the directional derivative of G at u along the direction h. If the

limit exists for all directions h 2 U, then the mapping h ! dG(u, h) is termed as the first

variation of G at u.
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Definition 2.2.17. If the first variation of G at u 2 U exists and if there exists a continuous

linear operatorA : X! Y in the form,

dG(u, h) = Ah 8h 2 X (2.23)

Then G is Gateaux di↵erentiable at u and the operator A becomes the Gateaux derivative

of the function at u. Alternately,A = G0(u).

Theorem 5. Let X be a Banach space and C ⇢ X be a non empty and convex subset. Also,

let J : X ! R be defined on an open neighborhood of C. If x⇤ is a local solution to

the problem minx2X J(x) s.t x 2 C at which J is Gateaux-di↵erentiable, then the following

optimality condition holds,

hJ0(x⇤), x⇤ � xiX⇤,X � 0 8x 2 C (2.24)

2.3 Information Theory

Information theory studies the quantification, storage, and communication of

information [28]. It was originally proposed by Claude E. Shannon in 1948 to find

fundamental limits on signal processing and communication operations such as

data compression, in a landmark paper entitled ”A Mathematical Theory of Com-

munication”. A key measure in information theory is entropy. Entropy quantifies

the amount of uncertainty involved in the value of a random variable. In Chapter 7

an information theoretic gain metric called mutual information is used to direct a

swarm of robots towards unexplored regions in an unknown environment. The

information presented in this section are adopted from [28, 151]

2.3.1 Probability theory

Given a sample space ⌦, a ��algebra F ⇢ 2⌦, and a probability measure P,

let the triple (⌦,F ,P) denote a probability space. Given a random variable X
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that maps ⌦ to an alphabet set � such that X : ⌦ ! �, let P(X = x) denote the

probability density when X takes the value x 2 �. P(X) is the shorthand notation

for P(X = x). Let Y : ⌦! � be a second random variable, then P(X,Y) denote the

joint probability, i.e., P({X = x}[ {Y = y}) with x 2 � and y 2 �. From Kolmogorov’s

definition of conditional probabilities of X given Y : P B P(X,Y)/P(Y). The

expected value of a real random variable A : ⌦ ! R denoted as E(A) is given by

E(A) B
R
⌦

A dP.

Given two independent theoretical experiments E(1) and E(2) that are statistically

identical, and let
⇣
⌦(1),F (1),P(1)

⌘
denote the probability space associated with the

experiment E(1). Likewise,
⇣
⌦(2),F (2),P(2)

⌘
is defined for experiment E(2). As the

two experiments are statistically identical, the two probability spaces are identical.

Let X1 and X2 be random variables defined on
⇣
⌦(1),F (1),P(1)

⌘
and

⇣
⌦(2),F (2),P(2)

⌘

respectively. The two random variables are statistically identical, meaning, they

are identical as a function from the ��algebra to the appropriate range space.

Let the product probability space [129] of
⇣
⌦(1),F (1),P(1)

⌘
and

⇣
⌦(2),F (2),P(2)

⌘
be

denoted by
⇣
⌦(3),F (3),P(3)

⌘
. Formally speaking, the product sample space is given

by⌦(3) = ⌦(1)⇥⌦(2), the resultant sigma algebraF (3) ⇢ 2⌦(3) is the smallest ��algebra

such that F (3) contains F (1) ⇥ F (2), and the probability measure P(3) is such that,

for any event E(3) = E(1) ⇥ E(2) ⇢ F (3) with E(1) ⇢ F (1) and E(2) ⇢ F (2), it satisfies

P
(3)(E(3)) = P(1)(E(1)) ⇥ P(2)(E(2)).

2.3.2 Mutual Information

Given a random variable X, let H(X) denote the entropy defined as

H(X) B �E[log(P(X))] (2.25)

21



Using the above definition entropy of a discrete random Xd that can take values

in the set � = {x1, · · · , xN} becomes,

H(Xd) = �
X

x2�
P(Xd = x) log(P(Xd = x)) (2.26)

In general, H(Xd) is non-negative and zero if and only if Xd is deterministic. The

idea entropy can be extended to the case of continuous random variables. Let Xc be

a continuous random variable, then its di↵erential entropy(entropy of a continuous

random variable is termed as di↵erential entropy) is given by:

H(Xc) = �
Z
P(Xc = x) log(P(Xc = x)) dx (2.27)

Contrary to the entropy of discrete random variables di↵erential entropy can be

negative. Also, di↵erential entropy is not the limiting case of discrete entropy [28].

Despite these di↵erences, di↵erential entropy is conceptually similar to discrete

entropy and the two concepts are used interchangeably.

Let X(1), · · · ,X(n) be a finite collection of random variables, then the joint entropy

is defined as,

H(X(1), · · · ,X(n)) = �E[log(P(X(1), · · · ,X(n)))] (2.28)

It is shown in [28] that,

H(X(1), · · · ,X(n)) 
nX

i=1

H(X(i)) (2.29)

and equality in the inequality above holds if and only if the random variables

are independent.

An interesting question in information theory is ” how is the uncertainty of a

random variable is a↵ected by a di↵erent random variable if the outcome of the
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latter is given?”. Formally speaking, if X and Y are two random variables then how

to compute the quantity H(X|Y). It is important to note that, this quantity is di↵erent

from H(X|Y = y); which is simply the entropy of the distribution P(X|Y = y). The

di↵erence is that, for H(X|Y) Y is also a random variable. H(X|Y) is known as the

conditional entropy of X over Y defined as

H(X|Y) = E(H(X|Y = y)) (2.30)

Similarly, conditional di↵erential entropy can also be defined for continuous

random variables where appropriate sums are replaced by integrals.

Conditional entropy and entropy can be used to define a new quantity known as

mutual information. Mutual information measures the likely decrease in uncertainty

of a random variable. The mutual information between random variable X and Y

is defined as:

IMI[X; Y] = H(X) �H(X|Y) (2.31)

= H(Y) �H(Y|X) (2.32)

Mutual information is always non-negative and is zero if and only if the random

variables are independent. Some interesting properties of mutual information are:

1. IMI[X; Y] = IMI[Y; X]

2. IMI[X; Y] = H(X) +H(Y) �H(X,Y)

3. IMI[X(1), · · · ,X(n); Y] =
Pn

i=1 IMI[X(i); Y|X(1), · · ·X(i�1)] where

IMI[X(i); Y|X(1), · · ·X(i�1)] = H(X(i)|X(1), · · ·X(i�1)) �H(X(i); Y|X(1), · · ·X(i�1))
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From the last property it is easy to show that,

IMI[X(1), · · · ,X(n); Y] 
nX

i=1

IMI[X(i); Y] (2.33)

As before equality holds if and only if the random variable are independent.

Mutual information can also expressed in terms of the Kullback-Leibler di-

vergence(KL divergence or KLD)[24]. KLD is a pseudo-metric to measure the

”distance” between two probability density functions. KL divergence between

two probability density functions f and g is defined as:

DKL[ f ||g] =
Z

f (x) log
 

f (x)
g(x)

!
dx (2.34)

The mutual information between two random variables X and Y can also be

written as:

IMI[X; Y] = DKL [P(X,Y)||P(X)P(Y)] (2.35)
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Chapter 3

AN ADVECTION-DIFFUSION-REACTION BASED APPROACH TO MAPPING

AN ENVIRONMENTAL FEATURE

Source: Ragesh K. Ramachandran et al. [132]

Funding: NSF Awards CMMI-1363499 and CMMI-1436960

ABSTRACT

This chapter presents an approach to mapping a region of interest using observa-

tions from a robotic swarm without localization. The robots have local sensing

capabilities and no communication, and they exhibit stochasticity in their motion.

The swarm population dynamics is modeled with a set of advection-di↵usion-

reaction partial di↵erential equations (PDEs). The map of the environment is

incorporated into this model using a spatially-dependent indicator function that

marks the presence or absence of the region of interest throughout the domain.

To estimate this indicator function, the solution of an optimization problem is de-

fined in which we minimize an objective functional that is based on temporal robot

data. The optimization is performed numerically o✏ine using a standard gradient

descent algorithm. Simulations show that the approach can produce fairly accu-

rate estimates of the positions and geometries of di↵erent types of regions in an

unknown environment.
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This chapter presents a method for mapping a feature of interest in an unknown

environment using a swarm of robots with local sensing capabilities, no localization,

and no inter-robot communication. The chapter considers scenarios where the

robots exhibit significant randomness in their motion due to sensor and actuator

noise or, at the nanoscale, the e↵ects of Brownian motion and chemical interactions.

The mapping approach proposed in this chapter is scalable with the number of

robots, so that arbitrary swarm populations can be used.

The proposed method relies on developing a continuous abstraction of the

swarm population dynamics in the form of an advection-di↵usion-reaction PDE

model, which is referred to as the macroscopic model. This model describes the

spatial and temporal evolution of the population densities of robots in di↵erent

states throughout the domain. To represent individual robots, a microscopic model

is defined that describes how each robot moves and responds upon encountering

a feature of interest. The state transition of a robot is modeled as an irreversible

chemical reaction with a high reaction rate. The macroscopic model becomes a

more accurate model of the microscopic model as the number of robots increases.

In other words, the macroscopic model is a limiting case of the microscopic model

as the robot population size tends to infinity.

The mapping problem is posed as the computation of a spatially varying func-

tion that represents the map of the feature of interest. To estimate this function, the

temporal data that is recorded by the robots during their exploration of the envi-

ronment is used. This data yields the time evolution of the number of robots that

are still exploring the domain; i.e., robots that have not encountered the feature.

In practice, this data could be collected from the robots after their deployment

by retrieving their recorded times of encounter with the feature. In biomedical

imaging applications with nanoscale swarms, this data could be obtained from a
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measurable signal that corresponds to the density of the population that is still in

the exploring state.

Once this data is obtained, techniques from optimal control are used to compute

the function that represents the feature map. In general, optimal control entails the

minimization or maximization of an objective functional that is defined in a finite-

dimensional space and is subject to a set of ordinary or partial di↵erential constraint

equations, which govern the system of interest. From a computational perspective,

optimal control methods are more e↵ective than black box techniques, such as

genetic algorithms and particle swarm optimization, in terms of the number of

objective functional evaluations per cycle. This computational advantage mainly

arises from their use of the problem structure to calculate the gradient of the control-

to-state maps using the adjoint equation. The feature map is defined as the solution

of an optimization problem that minimizes an objective functional which is based

on the robot data.

This optimization problem is solved numerically o✏ine using standard tech-

niques such as gradient descent algorithms. The approach is validated in simula-

tion for features of varying shape, size, orientation, and location.

Division of Work Karthik Elamvazhuthi helped with formulation of the objective

function for the optimal control problem. The author coded up the simula-

tions in Matlab and validated the method.

3.1 Related Work

In the literature, there have been exhaustive studies on mapping and exploring

an environment using robots. SLAM (simultaneous localization and mapping)

[111, 82], probabilistic mapping [136, 15], and topological and metric map building
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[137, 80] are some of the techniques that have been developed for environmen-

tal mapping by robots. These techniques have been used for path planning and

mapping in small multi-robot groups. However, the problem of scaling these

approaches to larger groups becomes intractable for swarms of hundreds or thou-

sands of robots, due to their limitations on communication bandwidth and their

spatially distributed nature. In addition, these techniques require the robots to

have sophisticated sensing and processing capabilities, which are not feasible in

swarm robotic platforms.

Mapping an environment using a robotic swarm is a relatively new area of

research in the robotics community. An approach to this problem is given in

[147, 33], in which a robotic swarm is used to identify the topological features

of an environment from information about the times at which robots encounter

other robots and environmental features. This work borrows tools from algebraic

geometry and topological data analysis to compute a metric that can be used to

classify the topological structure of the environment. The approach requires some

minimal inter-robot communication, unlike our strategy which is communication-

free.

Our mapping approach uses methods from [42], a stochastic task allocation

approach that achieves target spatial distributions of robot activity without using

communication or localization. Also, our approach is inspired by, a method for

reconstructing environmental features from minimal robot data using compressed

sensing techniques. In contrast to the scenarios that we consider, the robots in [42]

can move over the features to be mapped, which allows the mapping problem to

be formulated as the inversion of a linear operator. Approaches with a similar

mathematical framework for parameter estimation have been used extensively in

the area of biomedical imaging, especially with MRI and CT scan images. In

29



these approaches, the system is excited with a stimulus such as a magnetic field,

X-rays, or ultrasound, and the system response is used to identify and estimate a

spatially-dependent parameter that corresponds to the image [148].

3.2 Problem Statement

We consider a scenario in which N robots are deployed into an unknown,

bounded environment to map a single feature of interest. We exclude cases in which

the feature is located very close to the domain boundary, since robot collisions with

this boundary and the high di↵usion of swarms that start far from the feature will

degrade the estimation. If a robot encounters the feature, it stops moving and

records the time at which it stopped. Using data on the number of robots that are

still moving at each instant, we aim to estimate the position and geometry of the

encountered feature. We can improve the accuracy of this estimate by deploying

the swarm in di↵erent directions from various locations, which will ensure greater

coverage of the domain and result in robot collisions with a larger portion of the

feature boundary. This approach may be used to map multiple sparsely distributed

features by reconstructing each individual feature from its corresponding data set

and computing the entire map as a linear combination of single-feature maps.

Robot capabilities: The robots are assumed have su�cient power to complete the

mapping operation. The power requirement for the robots is low, since they

are not equipped with communication devices or GPS. The robots have local

sensing capabilities and can identify the feature at distances within their sens-

ing range. We may also assume that the robots can detect other robots within

their sensing range and perform collision avoidance maneuvers, although we

do not simulate collision avoidance in this work. Each robot is equipped with

a compass and thus can move in a specified heading. Additionally, the robots
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have su�cient memory to store the time of their encounter with the feature.

Robot controller: The robots begin at a specified location in the domain. During a

swarm deployment, the robots move with a predetermined time-dependent

velocity, v(t) 2 R2. This velocity is designed to guide the center of mass of

the swarm along a desired trajectory through the environment. The velocity

field may be initially transmitted to the robots by a computer at their starting

location, or the robots may be directed according to the field using external

stimuli such as magnetic fields or radiation. The robots’ motion is a↵ected

appreciably by sensor and actuator noise, due to lack of feedback. If a robot

detects a feature within its sensing range, it stops moving and records the time.

At a predefined time t f , the stationary robots around the feature boundary

return to the starting point of the deployment and upload their encounter

times to a computer. The computer then applies the optimal control method

described in Section 3.6 to estimate the map of the feature using this robot

data.

3.3 Microscopic Model

This model is used to simulate a robot’s motion and its response to an encounter

with a feature in its path. The change in a robot’s state that is triggered by an

encounter is modeled as an irreversible chemical reaction,

A k�! P, (3.1)

where the species A represents an active (moving) robot, P represents a passive

(stationary) robot, and k is the reaction rate constant, which in this case is a fixed
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probability per unit time. This constant is assigned a high value to enforce a high

probability of transitioning from active to passive.

We model the robots as point masses with negligible size compared to the area

of the domain. A particular robot i has position Xi(t) = [xi(t) yi(t)]T at time t. The

deterministic motion of the robot is directed by the time-dependent velocity field

v(t) = [vx(t) vy(t)]T. The noise in the robot movement is modeled as a Brownian

motion that drives di↵usion with an associated di↵usion coe�cient D. We assume

that the robots’ navigation error can be modeled as di↵usive noise and that the

value of D can be estimated. The displacement of robot i over a time step �t is

given by the standard-form Langevin equation [50]:

Xi(t + �t) = Xi(t) + (
p

2D�t)Z(t) + v(t)�t, (3.2)

where Z(t) 2 R2 is a vector of independent standard normal random variables

that are generated at time t. The robots avoid collisions with the domain boundary

by performing a specular reflection when they encounter this boundary.

3.4 Macroscopic Model

The macroscopic model governs the time evolution of the expected spatial

distribution of the robotic swarm. For a swarm whose members move according

to Equation 3.2, the macroscopic model is given by an advection-di↵usion PDE, as

described in [27]. Since our microscopic model includes robot state changes that

can be represented as chemical reactions, our macroscopic model takes the form of

an advection-di↵usion-reaction (ADR) PDE. The model is defined over a domain

⌦ ⇢ R2 with Lipschitz continuous boundary @⌦ and over a time interval [0,T]. We

define L = ⌦⇥ [0,T] and � = @⌦⇥ [0,T]. The state of the macroscopic model is the
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population density field u(x, t) of active robots in the domain at points x 2 ⌦ and

times t 2 [0,T]. We specify a spatially varying indicator function, K(x) : ⌦ ! {0, 1},

that equals 0 at points x where the feature of interest is absent and equals 1 at points

where it is present. The reaction term of the macroscopic model is determined by

the rate constant k in Equation 3.1, which is switched on or o↵ by the indicator

function K(x) depending on whether the feature of interest occupies point x. This

term models the switching of individual robots from the active state to the passive

state when they are in the vicinity of the feature. The advection term of the

macroscopic model is governed by the velocity field v(t) that is defined in the

microscopic model.

From the above definition, the macroscopic model is given by:

@u
@t
= r · (Dru � v(t)u) � kK(x)u in L (3.3)

with the no-flux boundary condition

~n · (Dru � v(t)u) = 0 on �, (3.4)

where ~n 2 R2 is the outward normal of the boundary @⌦. We specify that all robots

start in the active state and set the initial condition,

u(~x, 0) = u0, (3.5)

to a Gaussian density centered at a point x0, which we assume is far from the

feature. The macroscopic model is numerically solved using the explicit finite-

volume method that is described in [42].

Our approach relies on the close correspondence of the macroscopic model

solution to the average swarm density over an ensemble of microscopic model

simulations. Therefore, the approach is robust to robot malfunctions and external
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disturbances as long as these factors do not significantly a↵ect the model correspon-

dence. This implies that the number of failed robots should be small compared to

the total swarm size, and that the robots’ trajectory drift due to wind, currents, and

other environmental influences should be small relative to their modeled motion.

In scenarios that violate these conditions, it would be necessary to improve the

accuracy of the macroscopic model by estimating the components of v, D, and k

that are a↵ected by unmodeled dynamics and disturbances. This is a topic of future

work.

3.5 Mathematical Preliminaries

We study the solution to PDEs in the weak sense, which can be found in the

Sobolev space H1(⌦) =
n
y 2 L2(⌦) : @y

@x1
2 L2(⌦), @y

@x2
2 L2(⌦)

o
. Here, the spatial

derivative is to be understood as a weak derivative defined in the distributional

sense. The space is equipped with the common Sobolev space norm,
���y

���
H1(⌦)

=
r✓���y

���2

L2(⌦)
+

P2
i=1

���� @y
@xi

����
2

L2(⌦)

◆
. We also define V = H1(⌦), which has the dual space

V⇤ = H1(⌦)⇤.

We consider the general system for Equation 3.3-Equation 3.5:

@u
@t
= Au +

2X

i=1

viBiu � K(~x)u + f in L,

~n · (Dru � vu) = g on �,

u(~x, 0) = u0, (3.6)

where A is a formal operator and Bi is an operator defined as Bi : L2(0,T; V) !

L2(0,T; L2(⌦)), K(~x) 2 L2(⌦), f 2 F = L2(0,T; L2(⌦)) is the forcing function in the

system, g 2 G = L2(0,T; L2(@⌦)), and u0 2 L2(⌦). The variational form of the

operator A, called Ag, is defined as Ag : L2(0,T; V)! L2(0,T; V⇤). The solution of the

system in the weak sense is given by u 2 U = L2(0,T; V) with ut 2 U⇤ = L2(0,T; V⇤)
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if it satisfies the equation:

*
@u
@t
,�

+

U⇤,U
=

D
Ag,�

E
U⇤,U
+

2X

i=1

D
viBiu,�

E
F
�

D
K(~x)u,�

E
F
+

D
f ,�

E
F

(3.7)

for all � 2 L2(0,T; V). The boundary conditions are equipped with Ag in the

variational formulation using Green’s theorem. This is essentially the variational

form of the Laplacian,

D
Agu,�

E
U⇤,U
= �

D
Dru,r�

E
L2(⌦)
+

Z

@⌦

�
g + ~n · vu

�
�dx. (3.8)

In the macroscopic model Equation 3.3-Equation 3.5, we define A = r2, Bi =
@
@xi

,

f = 0, and g = 0.

3.6 Optimal Control Approach to Mapping Features

The feature reconstruction problem is framed as an optimal control problem. A

gradient descent algorithm is used to compute the optimal control for the problem.

An adjoint state equation approach is used to compute the gradient required for

the algorithm [16]. The key advantage of this approach is that it derives an explicit

formula for the gradient of the objective functional with respect to the control,

subject to the constraints. The Hamiltonian and Pontryagin maximum principle can

be to used to derive the adjoint equation for finite-dimensional systems. However,

in the case of infinite-dimensional systems, the existence of the Hamiltonian has

been proven only for a limited class of systems [47]. This motivated us to derive the

directional directive of the control-to-state mapping and use the generalized chain

rule of di↵erentiation of composite mappings in Banach spaces, as is found in the

literature [11, 146]. In order to make the derivatives of certain maps well-defined,

an appropriate choice of spaces is made for the parameters and the solutions

satisfying the system of di↵erential equations. We present a Lagrangian-based
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analysis of these derivatives in the Appendices A and B. The proof for the existence

of optimal control for the problem is the same as the one shown in [43].

The optimization procedure uses data on the ratio of the number of active

robots at each instant of time to the initial number of active robots at the start of the

swarm deployment. To ensure su�cient coverage of the domain, the swarm can be

deployed from multiple starting positions and directed along di↵erent trajectories.

Once this data is obtained, the optimization procedure is performed to find the

feature map that would produce data that is similar to the data obtained from the

deployments. The computational cost increases greatly with the number of data

sets (one from each deployment) that are used for optimization, since the number

of PDEs to be solved per iteration varies linearly with the data sets. However, we

can obtain a better estimate of the feature map with more data. Hence, there is a

tradeo↵ between the computational cost of the optimization and the accuracy of

the estimate. In order to resolve this issue, we discard data sets from deployments

in which few robots undergo a state transition compared to the other deployments.

A paucity of state transitions indicates that the swarm trajectories infrequently

intersect the feature. In addition, our procedure can be easily parallelized since the

most computationally intensive part is the solution of the PDEs.

The optimal control problem is formulated as follows. Each of the i swarm

deployments yields a sequence of times at which active robots encounter the feature

and switch to the passive state. From this data, we can determine the fraction gi(t) 2

L2([0,T]) of active robots in the swarm at each time t during deployment i. The

solution ui(~x, t) of the corresponding macroscopic model Equation 3.3-Equation 3.5

can be used to compute the integral
R
⌦

ui(~x, t)d~x, the expected fraction of active

robots in the domain at time t. We assume that the swarm size is su�ciently large

for gi(t) to closely match this integral if the feature map, represented by the function
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K(~x) in Equation 3.3, is known. Therefore, we can frame our optimization objective

as the computation of the input K(~x) that minimizes the function

Ji(ui) =
1
2

�����

Z

⌦

ui(~x, t)d~x � gi(t)
�����

2

L2([0,T])
. (3.9)

Suppose that the data from N deployments are selected to compute the optimal

controls. The swarm velocity and initial distribution for deployment i are given

by vi(t) and ui
0, respectively. The macroscopic model with these parameters is

considered to be the ith set of constraints, which we denote by  i(ui,K) as in

[146]. The solution to this model is given by ui, and the set of solutions for all

N deployments is u := {u1,u2, ...,ui, ...,uN}. We define the space of macroscopic

model solutions as U = C([0,T]; L2(⌦)) and the space of admissible input functions

as ⇥ad = {K(~x) 2 L2(⌦); Kmin  K(~x)  Kmax}. Furthermore, Wi is a weight that

quantifies the significance of the data from deployment i relative to data from the

other deployments, and � is the Tikhonov regularization parameter [77]. Using

these definitions, we can frame the optimal control problem as:

min
(~u,K(~x))2UN⇥⇥ad

J(~u,K) =
NX

i=1

WiJi(ui) +
�
2
kK(~x)k2L2(⌦), (3.10)

subject to the constraints i(ui,K), i = 1, ...,N.

We must compute the gradient of the objective functional J(~u,K) with respect

to the control inputs in order to perform the gradient descent algorithm for mini-

mizing this functional. We introduce the Lagrangian functional L and Lagrangian

multipliers pi, with p := {p1, p2, ..., pi, ..., pN}:

L(u,p,K) = J(u,K) +
NX

i=1

hpi, i(ui,K)i. (3.11)
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The functions pi, also known as the adjoint variables, express the sensitivity of the

objective functional to variations in the input control variable K(x). The necessary

condition for optimality is rL = 0, which implies the following three conditions:

(1) ruL = 0, the adjoint equation; (2) rpL = 0, the state equation in weak form;

and (3) rKL = 0, the optimal control constraint. These three equations are used

to compute the gradient of J(~u,K). The derivation of the adjoint and gradient

equations is described in appendix A and appendix B respectively.

The solution to an optimization problem that is obtained by a gradient descent

algorithm is sensitive to the choice of the initial guess and may be a local mini-

mum of the objective functional rather than the global minimum. To increase the

likelihood of obtaining the global minimum, we choose an initial guess for the

feature map, represented by K(x), that is guaranteed to include the actual map. The

simulation results discussed in Section 3.7 verified that choosing the initial guess

in this manner helps in e↵ectively recovering the map of the domain. This initial

guess is that the feature covers the entire area traversed by the swarm during each

of its i deployments (in actuality, the feature will occupy a subset of this area).

Formally, we define �i := [0, 1] ! R2 as the trajectory of the swarm center during

the ith deployment and B2(�i(⌧), �) as a ball with radius � centered at the point �i(⌧),

and we initially set K(~x) = 1 for all ~x 2
⇣
[N

i=1B2(�i(⌧), �)
⌘
\⌦, ⌧ 2 [0, 1]. We choose �

to be 3 times the standard deviation of the initial Gaussian swarm distribution.

3.7 Simulated Mapping Scenarios

We developed microscopic and macroscopic models of a robotic swarm for six

mapping scenarios, each with a single feature in the domain. The six features

varied in position, size, shape, and orientation. We applied the method described

in Section 3.6 to reconstruct each feature from the simulated robot data on feature
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encounter times. For each simulation, we used a swarm of 1000 robots in a nor-

malized domain of size 1 m ⇥ 1 m. The value of k was chosen to be 1/dt, where

dt is the time step of the microscopic model, in order to ensure that robots always

switched to the passive state when they encountered the feature boundary. For

simplicity, the designated velocity fields vi(t) of the robots were each assigned a

constant heading. The robots moved at a speed of 0.012 m/s with a di↵usion coe�-

cient of D = 5⇥ 10�4 m2/s, and each simulation ran for 80 s. The microscopic model

was simulated in a 26⇥ 26 grid, while the macroscopic model was solved in a finer

grid of 51 ⇥ 51 grid cells to account for numerical di↵usion. In the optimization

procedure, K(~x) was bounded between Kmin = 0 and Kmax = 1.

Figure 3.1 shows snapshots of the active robots in a swarm at various times

t during a sample deployment. The robots behave according to the microscopic

model and move through a domain that contains a rectangular feature. Robots that

have switched to the passive state are not shown. The population of active robots

decreases as the robots move eastward and encounter the feature in their path.

Figure 3.2 through figure 3.10 illustrate the results of our mapping procedure for

the six scenarios that we investigated. Each figure shows the actual feature, the map

of the feature given by the estimated K(~x), and the error between these two plots.

In the plots of the actual features, the white arrows indicate the starting points and

directions of the swarm center of mass during deployments, each of which yields

one data set. Figure 3.2, figure 3.3 , and figure 3.4 show that we can obtain a fairly

accurate map of a rectangle at two di↵erent orientations and a triangle using 6 data

sets for each scenario. We consider smaller features in the next four figures. From

figure 3.6 and figure 3.7, we see that the map of a feature increases in accuracy when

more non-redundant data sets are used in the optimization procedure. Figure 3.5

shows that the technique is able to detect the position of the tiny triangle even
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Figure 3.1: Snapshots of the simulated swarm moving through a domain with a

rectangular feature.

though it is unable to accurately map its shape. Figure 3.8 represents a worst-

case scenario, in which the map is estimated using data from swarms that start at

locations far from the feature, which is in one corner of the domain. The swarms

are highly di↵used by the time they reach the vicinity of the square; however, 8

data sets yield a relatively accurate map. Lastly, figure 3.9 shows that 6 data sets

yield a fairly poor estimate of a non-convex L-shaped feature; thus, further work is

required on extending the technique to mapping non-convex shapes. Figure 3.10

shows that for each scenario considered, the optimal control approach e↵ectively

minimizes the objective function by driving it close to zero from its initial value.

Figure 3.11 compares data on the fraction of active robots gi(t) and the integral
R
⌦

ui(x, t)dx during a particular swarm deployment i corresponding to the K(~x)

shown in figure 3.4a.
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Figure 3.2: K(~x) estimated from 6 data sets for a domain that contains a rectan-

gle. The white arrows show the starting locations and directions of the swarm

deployments.
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Figure 3.3: K(~x) estimated from 6 data sets for a domain that contains an inclined

rectangle
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Figure 3.4: K(~x) estimated from 6 data sets for a domain that contains a triangle
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Figure 3.5: K(~x) estimated from 4 data sets for a domain that contains a small

triangle
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Figure 3.6: K(~x) estimated from 4 data sets for a domain that contains a square at

the center
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Figure 3.7: K(~x) estimated from 8 data sets for a domain that contains a square at

the center
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Figure 3.8: K(~x) estimated from 8 data sets for a domain that contains a square in

the corner
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Figure 3.9: K(~x) estimated from 6 data sets for a domain that contains a non-convex

L shaped object
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Chapter 4

A PROBABILISTIC TOPOLOGICAL APPROACH TO QUANTIFYING

ENVIRONMENTAL FEATURES

Source: Ragesh K. Ramachandran et al. [133]

Funding: NSF Award CMMI-1363499 and DARPA Young Faculty Award D14AP00054.

ABSTRACT

This chapter presents a novel automated approach to quantifying the topological

features of an unknown environment using a swarm of robots with local sensing

and limited or no access to global position information. The robots randomly

explore the environment and record a time series of their estimated position and

the covariance matrix associated with this estimate. After the robots’ deployment,

a point cloud indicating the free space of the environment is extracted from their

aggregated data. Tools from topological data analysis, in particular the concept of

persistent homology, are applied to a subset of the point cloud to construct barcode

diagrams, which are used to determine the numbers of di↵erent types of features in

the domain. It is demonstrate that the approach can correctly identify the number

of topological features in simulations with zero to four features and in multi-robot

experiments with one to three features.
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The work described in this chapter, originally presented in [133], is an initial

step toward constructing a map with metric information [133]. In this chapter, we

present an automated method for computing the number of topological features in

an unknown domain from data obtained by a swarm of inexpensive robots with

local sensing, no inter-robot communication, and limited or no access to global

position information. The features represent obstacles or other regions of interest

that robots do not pass through. The data consist of robots’ position estimates

and the covariance matrices of these estimates, recorded by the robots during

random exploration of the domain. The robots collect this data autonomously

and independently during their deployment, without relying on input from a

supervisory agent. We assume that after a set period of time, the robots navigate

to an easily identifiable landmark (e.g., a beacon), where they transfer this data to

a central computer. The computer then processes the data from the entire swarm

to extract a point cloud that covers the domain’s free space and applies tools from

Topological Data Analysis (TDA), namely persistent homology, to identify the numbers

of di↵erent types of topological features. Our approach scales with the number of

robots and is robust to the failure of a small portion of the swarm.

Division of Work Dr. Sean Wilson conducted the experiments for Section 4.7. The

author devised the method to quantify features in the environments. Simu-

lation were coded in python by the author to simulated robots’ interaction

with the environment. Data obtained from these simulations were analyzed

by the author in Matlab to validate the technique.

4.1 Related Work

Existing techniques for environmental mapping such as occupancy grid map-

ping [136], simultaneous localization and mapping (SLAM) [111, 136], and Proba-
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bility Hypothesis Density (PHD) filtering [160] are not feasible to implement for our

problem due to the limited sensing and computational capabilities of the robots.

Although topological mapping has been extensively studied, TDA has only re-

cently been applied in robotics for environmental characterization. For a scenario

with a single robot, [25] presents a method for topological SLAM that encodes

the topology of the environment in a generalized Voronoi graph. Few works ad-

dress the problem of mapping an environment using a robotic swarm with limited

sensing, no inter-robot communication, and no global localization. In [132], we

presented an optimal control approach to mapping a GPS-denied environment

with a robotic swarm using a partial di↵erential equation model of the swarm pop-

ulation dynamics. This strategy works best when the domain contains only a few

sparsely distributed features, whereas the approach presented here can be applied

to domains that are more densely populated with features.

In [107], the authors propose an algorithm that covers the free space of the

environment with robots and then constructs an approximate generalized Voronoi

graph of the covered region. This algorithm requires the robots to communicate

with a central server that commands their actions. In contrast, our approach does

not require a centralized decision maker during the robots’ operation. Alterna-

tively, [53] obtains a simplicial approximation of a region of interest as a topolog-

ical map using dual pairs of nerves that are constructed using relevant visibility

and observation covers. Contrary to our strategy, [53] requires the robots to have

the ability to detect and maintain a record of landmarks in the domain, such as

obstacle corners and edges. The mapping approach in [34] is similar to ours in

that it generates a point cloud of the domain’s free region and uses persistent ho-

mology to compute topological features in the environment. However, unlike our

strategy, this approach requires each robot to have an identification label that can
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be recognized by other robots.

4.2 Background

Topological Data Analysis (TDA) [18] is an emerging field that aims to pro-

vide algorithmic and mathematical tools for studying topological and geometric

attributes of data. The fundamental idea underlying TDA is that data has an in-

herent shape that encodes important information regarding the connectivity of the

data and yields insight into its global structure. TDA exploits the mathematical

framework of algebraic topology [60], especially the concept of persistent homology

[39], to characterize the topological structure of data. In many applications, data

is obtained as a point cloud consisting of noisy samples of an intensity map in a

Euclidean space. Prominent topological features of a point cloud can be computed

using TDA and presented in the form of compact representations such as persis-

tence diagrams [38] and barcode diagrams [54]. TDA has been extensively applied to

problems in computer vision and image processing [124], sensor networks [23, 55],

robotics [12, 105], localization [113], and map comparison [5].

We provide a brief introduction to persistent homology, which is central to

our mapping methodology. More detailed treatments of the associated theory

and computations are given in [38, 73, 162]. Persistent homology is a method of

analyzing homological information gathered across di↵erent scales. This technique

enables the identification of topological features that are present over a large range

of scales, as opposed to those which are only temporarily present (short-scale

features). Homology is a robust tool that facilitates the study of global attributes of

spaces and functions from local computations on noisy data. Let T be a topological

space which admits a simplicial decomposition, then one can a�liate a sequences

of vector spaces with it called homology groups, denoted by Hk(T), k = 0, 1, 2, ..., each
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of which encodes a particular topological feature of T. In persistent homology,

these features are characterized using Betti numbers, which are the ranks of the

homology groups. These numbers are topological invariants. Intuitively speaking,

the kth Betti number of T, denoted by �k, is the rank of Hk(T) and represents the

number of independent k-dimensional cycles in T. For example, if T ⇢ R2, then �0

is the number of connected components in T and �1 is the number of holes in T. If

T ⇢ R3, then �0, �1, and �2 are the numbers of connected components, tunnels, and

voids in T, respectively.

In a typical TDA application, a finite set of samples from a metric space M

is available. These samples, along with the metric associated with M, comprise

the point cloud C of the space. In TDA, the metric is used to map C onto a

collection of simplices called a simplicial complex. Simplices are combinatorial

objects constructed from the subsets of C. A k-simplex� = [v0, v1, ..., vk] is an ordered

list of k + 1 elements {v0, v1, ..., vk} 2 C, called vertices. The simplicial complex

provides a discrete representation of the underlying topological space using a

combinatorial structure that can be represented algebraically using linear operators

(matrices). It is this combinatorial structure that permits us to develop algorithms

for homological computation. There are various ways to build a simplicial complex

from a point cloud. The simplest way is to choose a parameter � > 0 and add a k-

simplex to the simplicial complex if every vertex in the simplex is within a distance

� from every other. The simplicial complex constructed in this manner is called the

Vietoris-Rips complex [52] or Rips complex for short, often denoted as Rips(C, �).

For large datasets, the number of simplices in the simplicial complex can be enor-

mous, making the computations highly ine�cient. We reduce the computational

requirements by choosing a subset of the point cloud consisting of landmark points,

denoted by L ⇢ C, as vertices for the Rips complex. These landmark points were

50



H0

H1

d

d

Figure 4.1: An example barcode diagram of a filtration formed from a Rips complex.

�k(�i) is the number of horizontal segments in the barcode for Hk(T) that intersect

the dashed line at � = �i. The arrows in H0 and H1 indicate the persistent topological

features. The shaded regions contain the 2-simplices (triangles).

selected using a greedy inductive selection process called a sequential max-min

algorithm [2]. In order to compute persistent Betti numbers, we require a filtration,

defined as a family of Rips(C, �) parametrized by � such that Rips(C, �1) ✓ Rips(C, �2)

for all �1 > 0, �2 > 0 where �1  �2.

The persistent topological features of T over multiple values of � can be identi-

fied using a barcode diagram, which is a graphical representation of Hk(T) in terms

of the homology generators. The Betti number �k gives the number of generators

of Hk(T). A barcode plots a set of horizontal line segments on a graph whose

x-axis spans a range of � values and whose y-axis depicts an arbitrary ordering of

homology generators. The numbers of arrows in the barcode for dimension 0 and

dimension 1 indicate the numbers of connected components and features in the

domain, respectively. A barcode diagram can be computed automatically using

algorithms that find the homology generators of the homology that is constructed
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on a point cloud. Figure 4.1 illustrates a barcode diagram that is obtained from an

example point cloud.

4.3 Problem Statement

We consider a scenario in which N robots are deployed into a bounded, un-

known, GPS-denied 2D environment in order to collect data that can be used to

determine the number of topological features in the domain. The robots have

local sensing capabilities and can identify features and other robots at distances

within their sensing range to perform collision avoidance maneuvers. Each robot

is equipped with a compass and wheel encoders, which enable it to estimate its

position and orientation with uncertainty.

The robots perform correlated random walks in the domain, avoiding features

and other robots. During its motion, each robot estimates its position in a global

reference frame using its onboard odometry and a Kalman filter. Methods for

estimating position using noisy odometry motion models and various types of

sensor information have been studied extensively in the literature [142]. At fixed

time intervals, the robot records its estimated position and the covariance matrix

corresponding to the uncertainty of the estimate. After a time span T, all robots

travel to a common location where their stored data is retrieved and processed. We

assume that T is su�ciently large for the robots to thoroughly cover the domain

and that the robots have su�cient memory to store the data that they obtain during

their deployment.

The robots follow the motion model described in [142]. Each robot has a con-

stant translational speed v and an orientation ✓(t) at time t with respect to a global

frame. We define a robot’s velocity vector at time t as V(t) = [vx(t), vy(t)]T =

[v cos(✓(t)), v sin(✓(t))]T and its position vector as X(t) = [x(t), y(t)]T. The displace-
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ment of a robot over a time step �t is given by

X(t + �t) = X(t) +V(t)�t +W(t), (4.1)

where W(t) 2 R2 is a vector of independent, zero-mean normal random variables

that are generated at time t to model the randomness in the robot’s motion due to

sensor and actuator noise. At the beginning of a time step, each robot generates a

random number between 0 and 1. If this number is below a predefined threshold

pth, the robot randomly chooses a new ✓(t) 2 [�⇡,⇡]. At time t = 0, the start of a

deployment, each robot is assigned the parameters v and pth and obtains accurate

measurements of its position X(0) and orientation ✓(0).

We consider two types of scenarios. In Type I scenarios, robots receive accurate

estimates of their global positions when they are close to the boundary of the

domain. For example, robots on the exterior of a building will have access to GPS

measurements that are unavailable to robots inside. In Type II scenarios, robots

do not receive global position updates anywhere in the domain, which may for

instance be located underground or underwater.

4.4 Feature Extraction Methodology

During a deployment, the data that robot j 2 {1, ...,N} obtains at time tk 2 [0,T],

k 2 {1, ...,K}, consists of the element dj
k = {µ

j
k,⌃

j
k}, where µ j

k 2 R2 is the mean of

the robot’s estimate of its (x, y) position at time tk, and ⌃ j
k 2 R2⇥2 is the covariance

matrix of its position estimate at this time. In this section, we present a three-step

methodology for extracting the topological features of the domain from this data.

In the first step, we discretize the domain into a high-resolution uniform grid,

as in the occupancy grid mapping algorithms described in [142]. Let mi denote the

grid cell with index i 2 {1, ...,M} and M = {mi} denote the set of all grid cells. The
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goal of this step is to use the robots’ data to assign each grid cell mi a probability pf
i

of being free, or unoccupied by a topological feature. Toward this end, we compute

pijk, the probability that robot j occupied grid cell mi at time tk, for all robots, cells,

and measurement times. This probability is obtained by numerically integrating

the Gaussian distribution with mean µ j
k and covariance matrix ⌃ j

k over the region

[xl
i, x

u
i ] ⇥ [yl

i, y
u
i ] occupied by the cell:

pijk =

Z yu
i

yl
i

Z xu
i

xl
i

N(µ j
k,⌃

j
k) dx dy (4.2)

Next, we assign a score si 2 [0,1) to each grid cell mi according to the formula

si =
NX

j=1

KX

k=1

log
 

1
1 � pijk

!
(4.3)

We rescale each score si to a value sC
i 2 [0,C], where C is chosen such that the value

of 1 � exp(C)�1 is close to one. This rescaling improves numerical stability when

converting the scores to probabilities, especially values near zero and one. Finally,

the probability of each grid cell being free is computed as pf
i = 1 � exp(sC

i )�1.

4.5 Point Cloud Extraction and Landmark Selection

In the second step, we extract a point cloud C and select a subset L of these points

as landmark points. The procedure for this step is summarized in algorithm 1.

The point cloud is constructed by sampling a dense, uniformly random set of

points from the domain and rejecting those points that are inside a grid cell mi for

which pf
i is below a given threshold (i.e., there is a high probability of cell mi being

occupied by a feature). In this work, we set the threshold heuristically. Landmark

points are selected from the point cloud using the sequential max-min algorithm [2].

This algorithm initially chooses a random point in C as the first landmark. Given

a set of i � 1 landmarks denoted by Li�1, the algorithm selects the ith landmark as
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Algorithm 1 Point cloud computation
Input: {p(mi)}, NO OF SAMPLES - no of samples, THRESHOLD - threshold for

rejection.

Output: point cloud - point cloud.

Global Variables: domain = {x0, y0, length, width} - Structure containing domain

origin and dimensions

1: function PCLOUD({p(mi)}, NO OF SAMPLES, THRESHOLD)

2: point cloud = [ domain.x0 + domain.length * rand(NO OF SAMPLES,1),

domain.y0 + domain.width * rand(NO OF SAMPLES,1)] . Random sampling

of the domain

3: for i = 0 to NO OF SAMPLES - 1 do

4: prob = getProb({p(mi)}, point cloud[i,:])

5: if prob < THRESHOLD then

6: delete point cloud[i,:] . deleting the point which is probably not free

7: end if

8: end for

return point cloud

9: end function

the point c 2 C that maximizes the function d(c,Li�1) = min{kc � lk : l 2 Li�1}. The

landmarks chosen in this manner tend to cover the point cloud.

Finally, we use the landmark points to construct a filtration using the tools

discussed in Section 4.2, and we extract barcode diagrams from this filtration. We

chose the Rips complex as a basis for constructing the filtration [54] and used the

MATLAB-based JavaPlex package [3] to perform all persistent homology compu-

tations and generate the barcodes. We computed persistent homology only for
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(a) No feature (b) One feature (c) Two features (d) Three fea-

tures

(e) Four fea-

tures

Figure 4.2: Snapshots of a simulated swarm moving through di↵erent domains.

(a) No feature (b) One feature (c) Two features (d) Three fea-

tures

(e) Four fea-

tures

Figure 4.3: Contour plots of pf
i , the probability that grid cell mi is free, over all grid

cells of discretized domains in Type I scenarios. Colorbar values range from 0 to

0.9.

(a) No feature (b) One feature (c) Two features (d) Three fea-

tures

(e) Four fea-

tures

Figure 4.4: Contour plots of pf
i , the probability that grid cell mi is free, over all grid

cells of discretized domains in Type II scenarios. Colorbar values range from 0 to

0.9.

dimensions zero and one, since higher dimensions are not relevant for our appli-

cation.
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Figure 4.5: Point clouds computed over domains in Type I scenarios.
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Figure 4.6: Point clouds computed over domains in Type II scenarios.
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Figure 4.7: Landmark points selected over domains in Type I scenarios.

4.6 Simulations

We applied the methodology described in Section 4.4 to estimate the number

of topological features in the simulated environments shown in Figure 4.2 for both

Type I and Type II scenarios. The simulations were coded in Python, and all other

computations were performed in MATLAB. The simulated swarm consisted of 30
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Figure 4.8: Landmark points selected over domains in Type II scenarios.
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Figure 4.9: Barcodes computed for domains in Type I scenarios.

point robots, each with a sensing radius of 5 cm, an average speed of v = 20 cm/sec,

and pth = 0.2. The robots explored a 200 cm ⇥ 200 cm domain over a time period

T = 200 sec. At the start of each simulation, the robots were placed at random

locations near the domain boundary. The robots dispersed throughout the domain

according to the model Equation 4.1, where the covariance matrix of the random

variables in W(t) was set to be a diagonal matrix with 0.1 on the diagonal. Upon

encountering a feature, the domain boundary, or another robot within a distance of

5 cm, a robot would randomly choose a di↵erent direction to avoid a collision. After

each simulated swarm deployment, we randomly sampled 16,000 points from the
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Figure 4.10: Barcodes computed for domains in Type II scenarios.

domain, extracted a point cloud C by using a threshold of 0.2 for pf
i , and selected a

set L of 1,000 landmark points from C. The maximum filtration value (maximum

value of �) used for the barcode computation was heuristically chosen to be 3�,

where � = max{d(c,L) : c 2 C}.

Figure 4.3 to Figure 4.10 plot the outputs of the di↵erent steps of our method-

ology for both Type I and Type II scenarios: contour plots of pf
i (Figure 4.3 and

Figure 4.4), point clouds (Figure 4.5 and Figure 4.6), landmark points (Figure 4.7

and Figure 4.8), and barcode diagrams (Figure 4.9 to Figure 4.10). The contour

plots of pf
i in the Type I scenarios are more accurate than the plots in the Type

II scenarios, in the sense that they display higher probabilities of free space in

areas that are actually unoccupied by features. However, the plots in the Type II

scenarios do correctly estimate very low probabilities of free space in areas that are

occupied by features.

The barcode arrows for both Type I and Type II scenarios give the correct

numbers of connected components and features for each simulated environment.

These results show that our methodology can accurately extract topological features
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Figure 4.11: Computed number of fea-

tures versus swarm deployment time pe-

riod T (in seconds) for simulations with

30 robots on the domains shown in fig-

ure 4.2 for Type II scenarios. The e↵ect

on the approach for Type II scenarios

when varying the time period of deploy-

ment of the swarm for various domains

featured in figure 4.2. The numbers of

features are computed for the data ob-

tained from each deployment for all the

four domains. In this figure the X-axis

represents the time period of deploy-

ment in seconds and Y-axis represents

the computed number of features in the

domain.
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Figure 4.12: Computed numbers of con-

nected components (top) and features

(bottom) versus number of robots N for

simulations with T = 200 sec on the

domains shown in figure 4.2 for Type

II scenarios.The e↵ect on the approach

for Type II scenarios when varying the

number of robots in swarm for various

domains featured in figure 4.2. The num-

bers of features are computed for the

data obtained from each deployment for

all the four domains. In this figure the

X-axis represents the number of robots

in swarm for each deployment; the Y-

axis of the top and bottom figures repre-

sent the computed number of connected

components and the computed number

of features in the domain respectively.
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even when the robots do not receive accurate estimates of their global positions.

We also examined the e↵ect of the quantity of robot position data on the accuracy

of our approach for Type II scenarios. Larger quantities of robot data can be

obtained by extending the time period T of the swarm deployment or by deploying

a larger number of robots, N. We ran simulations with 30 robots over the four

domains shown in Figure 4.2 with deployment times T that varied from 40 sec

to 240 sec, at intervals of 20 sec. At the end of each deployment, the number of

topological features was computed from the resulting barcode diagram. Figure 4.11

plots the computed number of features in each domain for every value of T. The

Figure shows that the correct number of features is identified in each domain when

T � 100 sec. For shorter deployments, the robots do not always cover a su�ciently

large area of the domain for their recorded position data to yield an accurate count

of the number of features. Hence, Figure 4.11 shows that the shortest possible time

period over which the swarm should be deployed in the simulated scenarios is

T 2 (80 sec, 100 sec]. We also ran simulations over the four domains in Figure 4.2

with robot population sizes N 2 {5, 10, 20, 30, 40, 50} and T = 200 sec and computed

the numbers of connected components and topological features in each domain.

Figure 4.12 plots these numbers for every value of N and shows that they are

accurate when data is obtained by N � 30 robots. In practice, such simulations can

be performed to determine estimates of the minimum values of T and N that will

yield accurate counts of the number of features in an environment.

We also note that the e↵ectiveness of our approach depends on the degree

of uncertainty in the robots’ position estimates, as quantified by the covariance

matrices associated with the position data. A large covariance indicates a highly

uncertain position estimate and results in a low probability pf
i of the corresponding

grid cell being free. This low value reduces the likelihood that the central computer
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will misidentify the grid cell as being free (i.e., a possible location for a robot) if it

is already known to be occupied by an obstacle. In addition, since covariances in

robot positions will increase over time, newly acquired position data will not result

in significant changes in the value of pf
i .

4.7 Multi-Robot Experiments

In addition to simulations, we validated our methodology through experiments

with four Pheeno mobile robot platforms [154] in a Type II scenario with one to three

features. The robots were initially placed at random locations in a 1.5 ⇥ 2.1 meter

rectangular arena that was bounded by wooden walls, as shown in Figure 4.13. The

robots were controlled to move at 10 cm/sec with an avoidance radius of 10 cm.

Whenever a robot detected a feature, wall, or another robot, it avoided a collision

by moving according to a specular reflection from the detected object and then

continued in a straight line. The robots were marked with 2D binary identification

tags to enable real-time tracking of their positions and orientations by an overhead

camera (Microsoft Life Cam, resolution of 1920 ⇥ 1080 pixels). A control computer

broadcast each robot’s initial state x = [x, y,�]T over WiFi, where x and y are the

robot’s position coordinates in the arena and � is its heading. Each robot used an

Extended Kalman Filter (EKF) to estimate its state at intervals of 200 ms. This state

was updated according to a kinematic unicycle model and a measurement state

vector, z = [�de, ��e, �c]T, where �de is the encoders’ measurement of the linear

distance traveled, ��e is the change in heading angle measured by the encoders,

and �c is the orientation of the robot in the global frame measured by the compass.

The state error covariance matrix P, process covariance matrix Q, and measurement

covariance matrix R were set to P = diag(0.2, 0.2, 0.1), Q = diag(2, 2, 4), and R =

diag(0.1, 5, 0.4). These matrices were chosen to favor the robot’s measurements over
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(a) (b) (c)

Figure 4.13: The experimental arena with four Pheeno robots and (a) one feature,

(b) two features, or (c) three features. At the start of the experiment, the control

computer identifies the robots’ positions and orientations, indicated by the red dots

and cyan lines, from the robots’ 2D binary identification tags. This identification

is done using the thresholding, boxpoint, and contouring OpenCV libraries on a

Windows computer.

the kinematic motion model. The initial state estimate covariance was chosen to

reflect errors in tag placement on the robots and camera discretization error. The

EKF was implemented on Pheeno’s Arduino Pro Mini microcontroller (3.3V 8MHz),

while the state data and covariance matrices were stored onboard its Raspberry Pi

2 Model B.

The results in Figure 4.14a - Figure 4.14d confirm that our methodology cor-

rectly extracts one connected component and two topological features from the

robots’ data after being deployed in the environment in Figure 4.13b. The plots in

Figure 4.15 and Figure 4.16 show that given a su�ciently long deployment time T

and a su�ciently large number of robots N, our approach produces accurate counts

of the numbers of connected components and features in environments with one,

two, and three features. There is a trade-o↵ between the robots’ deployment time

and the reliability of their position data, since the EKF state estimates will drift due
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Figure 4.14: Experimental results from a Type II environment containing two

objects.

to the robots’ wheel slip and sensor noise. These factors cause the covariances of the

position estimates to eventually grow larger than the environment and thus yield

no useful information for mapping. This uncertainty can be reduced in a Type 1

scenario by correcting the drift with direct GPS measurements or with estimates

of global position using local measurements of known objects in the environment.

From our experiments, it is evident that larger numbers of robots yield more accu-

rate mapping results, since there is a higher chance of robots exploring small gaps

between features before the covariances of their position data grow too large to

provide useful information.
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Figure 4.15: Computed numbers of con-

nected components (top) and features

(bottom) versus swarm deployment time

period T (in seconds) for experiments

with four robots on the domains shown

in Figure 4.13 for Type II scenarios. Ex-

perimental validation of the approach

for Type II scenarios when varying the

time period of deployment of four robots

for various domains having one to three

features. The numbers of features are

computed for the data obtained from

each deployment for three domains. In

this figure the X-axis represents the time

period of deployment; the Y-axis of the

top and bottom figures represent the

computed number of connected compo-

nents and the computed number of fea-

tures in the domain respectively.
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Figure 4.16: Computed numbers of con-

nected components (top) and features

(bottom) versus number of robots N for

experiments with T = 180 sec on the

domains shown in Figure 4.13 for Type

II scenarios. Experimental validation

of the approach for Type II scenarios

when varying the number of robots in

swarm for three minutes in various do-

mains having one to three features. The

numbers of features are computed for

the data obtained from each deployment

for three domains. In this figure the X-

axis represents the number of robots in

swarm for each deployment; the Y-axis

of the top and bottom figures represent

the computed number of connected com-

ponents and the computed number of

features in the domain respectively
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Chapter 5

A PROBABILISTIC APPROACH TO CONSTRUCTING TOPOLOGICAL MAPS

OF AN ENVIRONMENT

Source: Ragesh K. Ramachandran et al. [134]

Funding: NSF Award CMMI-1363499 and DARPA Young Faculty Award D14AP00054.

ABSTRACT

In this chapter, a novel procedure is presented for constructing a topological map

of an unknown environment from data collected by a swarm of robots with limited

sensing capabilities and no communication or global localization. Topological

maps are sparse roadmap representations of environments that can be used to

identify collision-free trajectories for robots to navigate through a domain. This

method described in this chapter uses uncertain position data obtained by robots

during the course of random exploration to construct a probability function over

the explored region that indicates the presence of obstacles. Techniques from

topological data analysis, in particular the concept of persistent homology, are

applied to the probability map to segment the obstacle regions. Finally, a graph-

based wave propagation algorithm is applied to the obstacle-free region to construct

the topological map of the domain in the form of an approximate Generalized

Voronoi Diagram. The e↵ectiveness of the approach is demonstrated in a variety of

simulated domains and in multi-robot experiments on a domain with two obstacles,

and we conduct an analysis of its computational time complexity.
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This chapter describes work that was first presented in [134]. In this work, we

address the specific problem of finding safe robot trajectories through an unknown

environment using uncertain localization data acquired by robots with onboard

odometry. Toward this end, we use the robots’ data to construct a topological map

(or graph), which is a sparse representation of an environment that encodes all

of its topological features, such as holes that represent obstacles, and provides a

collision-free path through the environment in the form of a roadmap [140]. If

the domain is embedded in R2, then the topological map can be mathematically

described as a one-dimensional deformation retract of the domain [52]. A topological

map can be constructed in the form of a Generalized Voronoi Diagram (GVD), also

called a Generalized Voronoi Graph (GVG) [8]. A GVD provides all possible path

homotopies in an environment containing obstacles and indicates the maximum

clearances from obstacles and the domain boundary. In addition, since GVDs are

graphs, standard graph search algorithms can be used for planning on GVDs. Due

to the computational complexity of computing exact GVDs, algorithms have been

developed to generate approximate GVDs (AGVDs) in practice [65].

In this work, we present a novel automated procedure for generating the topo-

logical map of an unknown, GPS-denied environment using data from a swarm of

robots with limited sensing capabilities and no inter-robot communication. This

procedure is an extension of our work in Chapter 4, which presents an approach

to estimating the number of topological holes in a domain by constructing a Rips

complex filtration [52] on its free space. As in this previous work, our procedure

begins with the deployment of a swarm of robots into the environment, which they

randomly explore while recording estimates of their positions and the covariance

matrices of these estimates. The robots are then retrieved, and their data are used

to derive a probabilistic map of the domain. We adopted a similar deployment
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strategy to map GPS-denied environments in Chapter 3, which only requires robot

data on encounter times with features of interest but, unlike the work presented

here, is limited in application to domains with a few sparsely distributed features.

We employ tools from topological data analysis (TDA) to segment the obstacle

regions in the domain by constructing a probability-based filtration on the domain’s

free space, thereby simultaneously computing the optimal filtration parameter and

estimating the number of topological features in the domain. TDA has previously

been used for super-level set estimation of probability densities [104]. Next, we use

a graph-based wave propagation algorithm [107] to construct the topological map of

the domain in the form of an AGVD. This map can then be used by humans or more

expensive robots to navigate safely through the environment. The data-gathering

portion of our procedure is decentralized, in that the robots act autonomously and

a central supervisor is not required to control their individual operations. After this

phase, a central server is needed to construct the AGVD from the collected robot

data, since the robots do not have the resources to perform these computations

onboard. While we only consider 2D environments in this paper, our techniques

can be extended to 3D environments as well.

Division of Work Dr. Sean Wilson conducted the experiments for Section 5.8. The

author devised the method to generate the topological map of the environ-

ments. Simulations were coded in python by the author to simulated robots’

interaction with the environment. Data obtained from these simulations were

analyzed by the author in Matlab to validate the technique.

5.1 Related Work

Most of the existing work on using robots to generate topological maps requires

the robots to have sophisticated sensing and localization capabilities [25, 75]. Other
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work on exploration and topological mapping uses robots with limited sensing ca-

pabilities, but does not scale well in a swarm robotic framework [144]. A similar

approach to ours is presented in [107], which constructs an AGVD of a domain by

combining a graph search algorithm with a coverage algorithm based on concepts

from algebraic topology. Unlike our procedure, this approach requires each robot

to communicate with a central server that commands its actions. In [53], a sim-

plicial approximation of a region of interest is obtained as a topological map by

constructing dual pairs of nerves using relevant visibility and observation covers.

This strategy requires the robots to detect, identify, and store landmarks in the do-

main such as obstacle corners and edges, and therefore requires the robots to have

higher sensing and processing capabilities than in our procedure. The approach

in [35] generates a point cloud of the domain’s free space in a coordinate-free

manner and employs persistent homology to compute topological features in the

domain. This strategy requires inter-robot communication, and each robot must

have a unique identifier that is recognized by other robots.

5.2 Background

Topological Data Analysis (TDA) [18] provides algorithmic and mathematical

tools for studying topological and geometric attributes of noisy data in a coordinate-

free manner. Detailed treatments of the theoretical and computational aspects of

TDA are given in [38, 73, 162, 60]. A basic introduction to TDA and algebraic topology

is given in Section 4.2. We now revisit the concept of a simplicial complex in order to

provide background for the subsequent sections.

A key concept in algebraic topology is the abstract simplicial complex. Although

this complex is in general defined on arbitrary sets, here we restrict its definition

to subsets of Euclidean spaces and use notation from [38]. We say that vectors
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v0, v1, ..., vk 2 Rn are a�nely independent if the vectors v1 � v0, ..., vk � v0 are linearly

independent. A k-simplex � ⇢ Rn can be defined as the convex hull of k + 1

a�nely independent vectors {v0, v1, ..., vk}, called vertices, and is often represented

as � = [v0, v1, ..., vk]. A face ⌧ of the simplex � is the convex hull of a non-empty

subset of {v0, v1, ..., vk}. This relationship is commonly denoted as ⌧  �. A simplicial

complex  is defined as a finite collection of simplices � such that (1) � 2 , (2) ⌧  �

implies that ⌧ 2 , and (3) �, �0 2  implies that �\ �0 is empty or is a face of both �

and �0.

Simplicial complexes provide discrete representations of an underlying topo-

logical space using a combinatorial structure, which can be expressed algebraically

with linear operators (matrices). This algebraic structure can be exploited to de-

velop algorithms for homological computations. If f : ! R is a function such that

⌧  � implies that f (⌧)  f (�), then f �1((�1, �]) is a simplicial complex denoted by

� and �1  �2 implies that �1 ✓ �2 , yielding a filtration of simplicial complexes with �

as the filtration parameter. The persistent homology is obtained by varying the value

of the filtration parameter, computing the generators of homology groups (the basis

of the homology group vector spaces) for each simplicial complex obtained for the

parameter value, and identifying the persistent homology generators.

5.3 Problem Statement

We consider the problem of generating a topological map of a bounded, un-

known, GPS-denied 2D environment using data collected by a swarm of N robots.

We assume that each robot can identify features and other robots that fall within

its local sensing range, enabling it to avoid collisions, and can estimate its position

and orientation with uncertainty using measurements from a compass and wheel

encoders. After the swarm is deployed into the domain, each robot performs
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a correlated random walk while estimating its global position using its onboard

odometry and refining its measurements using a Kalman filter. At fixed time inter-

vals, each robot records its estimated position and the associated covariance matrix

corresponding to the uncertainty of the estimate. After a time T, which we assume

is su�ciently large for the robots to thoroughly cover the domain, all robots travel

to a common location where their stored data is retrieved.

Similar to the strategy in Chapter 4, the robots follow the standard odometry

motion model described in [142]. Each robot has a constant speed v and an orienta-

tion ✓(t) at time t with respect to a global frame. The velocity and position vectors

of a robot at time t are defined as V(t) = [vx(t), vy(t)]T = [v cos(✓(t)), v sin(✓(t))]T

and X(t) = [x(t), y(t)]T, respectively. At time t = 0, the beginning of a deployment,

each robot is provided with accurate measurements of its position X(0) and orien-

tation ✓(0). At the start of every time step �t during the deployment, each robot

generates a uniform random number between 0 and 1 and randomly chooses a

new orientation ✓(t) 2 [�⇡,⇡] if the number is below a predefined threshold pth.

During a time step, the displacement of a robot is described by the equation

X(t + �t) = X(t) +V(t)�t +W(t), (5.1)

where W(t) 2 R2 is a vector of independent, zero-mean normal random variables

that are generated at time t. These variables model randomness in the robot’s

motion due to sensor and actuator noise.

5.4 Topological Map Generation Procedure

In this section, we present a three-step procedure for extracting a topological

map of the domain in the form of an AGVD from the data obtained by the robots.
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(b) Simplicial com-

plex, � = 0.3
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(c) Simplicial com-

plex, � = 0.4
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(d) Simplicial com-

plex, � = 0.5
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(e) Simplicial com-

plex, � = 0.6
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(f) Simplicial com-

plex, � = 0.7

X
-100 -50 0 50 100

Y

-100

-80

-60

-40

-20

0

20

40

60

80

100
δ = 0.8

(g) Simplicial com-

plex, � = 0.8
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plex, � = 0.9

Figure 5.1: Filtration used to generate the barcode diagram Figure 5.6b for the

domain shown in Figure 5.4b. The red triangles are the 2-simplices that are con-

structed from the centers of the grid cells in the domain discretization.

5.4.1 Estimation of the Number of Obstacles

We first discretize the domain into a high-resolution uniform grid of M cells,

as in occupancy grid mapping algorithms [142], and use the robots’ data to assign

a probability pf
i to each grid cell mi, i 2 {1, ...,M}, of being free, or unoccupied by

an obstacle. We first presented this computation in Chapter 4 and summarize

it here. During a deployment, the data obtained by robot j 2 {1, ...,N} at time

tk 2 [0,T], k 2 {1, ...,K}, consists of the tuple dj
k = {µ

j
k,⌃

j
k}, where µ j

k 2 R2 is the

mean of the robot’s estimate of its position in Cartesian coordinates at time tk,

and ⌃ j
k 2 R2⇥2 is the covariance matrix of its position estimate at this time. The

probability pijk that robot j occupied grid cell mi at time tk is computed for all robots,

cells, and measurement times. This discrete probability is calculated by integrating
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the Gaussian distribution with mean µ j
k and covariance matrix ⌃ j

k over the region

[xl
i, x

u
i ] ⇥ [yl

i, y
u
i ] occupied by cell mi. A score si 2 [0,1) is then assigned to cell mi

according to the equation

si =
NX

j=1

KX

k=1

log
 

1
1 � pijk

!
. (5.2)

This score is rescaled to a value sC
i 2 [0,C], where C is chosen such that the value

of 1 � exp(C)�1 is close to one. The rescaling improves numerical stability when

converting the scores to probabilities, especially for values near zero and one.

Finally, we compute the probability of cell mi being free as pf
i = 1 � (exp(sC

i ))�1.

Next, we identify the persistent topological features in the domain and find the

optimal threshold ↵opt for which all grid cells with pf
i < ↵opt belong to an obstacle.

As discussed in Chapter 5, we generate a filtration of simplicial complexes based

on a parameter � in order to compute the persistent homology. Let ↵ denote a

given threshold for identifying grid cells mi that belong to obstacles (the “obstacle

grid cells”), according to pf
i < ↵. We define the filtration parameter � as 1 � ↵

in order to be consistent with the conditions described in Chapter 5. Thus, the

value of � varies from 0.1 to 0.9 when the threshold ↵ varies from 0.9 to 0.1. We

construct the simplicial complex � by selecting the center points of the grid cells

with pf
i � ↵ = 1� � and constructing 1-simplices and 2-simplices from these points

(the 0-simplices). The 1-simplices are generated by taking each element of the

0-simplices and pairing it with its immediate vertical, horizontal, and diagonal

neighbors (8-connectivity [57]) if the neighbors are elements of the 0-simplices.

Thereafter, the 2-simplices are constructed by taking every subset of three elements

in the 1-simplices that form a triangle. Figure 5.1 shows the filtration constructed

for the domain in Figure 5.4b, which was used in the multi-robot experiments

described in Section 5.8.
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Barcode diagrams are extracted from these filtrations, and the number of bar-

code arrows in each homology group corresponds to the number of topological

features in the domain that are encoded by that particular group. The optimal filtra-

tion parameter �opt is defined as the minimum value of � for which all the topological

features are captured by the corresponding simplicial complex. Alternately, it is

the value of � for which there exists no barcode segment other than arrows in any

of the homology groups for all values of the filtration parameter greater than this

value. Thus, the optimal threshold can be defined as ↵opt = 1 � �opt. In practice,

we can compute �opt by taking the maximum value of � that is spanned by the

non-arrow barcode segments in all the homology groups.

We used the MATLAB-based JavaPlex package [3] to perform the persistent

homology computations and generate the barcode diagrams. Persistent homology

was computed only for dimensions zero and one, since higher dimensions are not

relevant for our application.

5.4.2 Obstacle Segmentation

In the second step, we use the information gathered in the previous step to

segment the portion of the domain that is occupied by obstacles and identify the

obstacle grid cells. By definition, the grid cells with pf
i < ↵opt belong to an obstacle.

Since we have determined the number of obstacles NO in the domain (the number of

arrows in H1 in the barcode diagram), a straightforward approach would be to use

a K means clustering algorithm on the center points of these grid cells. However,

since K means techniques are highly sensitive to the choice of randomly initialized

points, it is di�cult to guarantee the correct classification of the obstacle grid cells.

This is illustrated in figure 5.2.

Instead, to classify the grid cells in each obstacle, we develop an algorithm that
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(a) Correct clustering (b) Incorrect clustering

Figure 5.2: K means clustering algorithm applied to the same point cloud twice.

Di↵erent colors indicate di↵erent clusters and the filled circles are the positions of

the cluster centers.

takes as input (1) the number of obstacles in the domain, and (2) an obstacle graphGO

whose vertices are the center points of the obstacle grid cells. Denoting the set of

these points by C, the edges ofGO are defined by pairing every element in C with its

immediate vertical and horizontal neighbors (4-connectivity [57]) if the neighbors

are elements of C. We initialize an open list L with all the elements in C and loop

through the following procedure NO times. We choose an element randomly from

L and perform a breadth-first search on GO with this element as starting point. The

resulting set of elements, denoted by V, consists of the grid cells contained in a

single obstacle. Then L is updated by removing those elements in L which are also

in V. After the obstacles are segmented in this way, the boundaries of each obstacle

are identified as the elements in C that belong to the same obstacle and have fewer

than four neighbors, according to GO. We denote the set of elements along the

boundary of the ith obstacle by @Oi. The pseudocode for this step is outlined in

algorithm 2.
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Algorithm 2 Obstacle Segmentation
Input: Obstacle graph GO having vertex set V(GO), NO OF OBS - number of

obstacles in the domain.

Output: obstacle segmented - list of lists containing the points in each obstacle.

1: function obstacle segment(GO, NO OF OBS)

2: L = V(GO) . initializing the open list

3: for i = 0 to NO OF OBS - 1 do

4: //selecting a random element from L

5: index = (length(L) - 1)*rand()

6: //performing Breadth first search from L[index]

7: V = breadth first search(GO, L[index])

8: //adding V to the output list

9: obstacle segmented[i] = V

10: L = L - V . updating the open list

11: end for

return [obstacle segmented, label] . label = [0,..., NO OF OBS - 1]

12: end function

5.4.3 Voronoi Diagram Construction

In the third step, we develop a new implementation of the wave propagation

algorithm to generate the approximate Generalized Voronoi Diagram (AGVD). Let

@D j denote the set of grid cell centers that are closest to the jth edge of the domain

boundary. Since we have assumed that the domain boundary is known, we have

prior knowledge of the@D j . We define a free region graphG f whose vertex set V(G f )

contains the center points of grid cells that lie in the union of the obstacle-free region
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with the obstacle boundary sets, @Oi. This graph is constructed in the same manner

as the obstacle graph in Section 5.4.2. We also define the sets {Bk} = {@Oi} [ {@D j}

for each obstacle i and each boundary edge j. The distance between v,w 2 V(G f )

is given by a known function dist(v,w), which is based on the discretization of the

domain.

The pseudocode of the algorithm is outlined in algorithm 3[107]. The inputs to

the algorithm are the free region graph G f and the set {Bk}. The algorithm starts by

initializing an open list with the vertices of G f . Then the src-value of each element

in {Bk}, defined as the distance from the element to the closest obstacle or domain

boundary edge, is set to zero and a label is assigned to it based on which Bk 2 {Bk}

it belongs to (lines 7-14). The remainder of the algorithm is a modified form of

Dijkstra’s algorithm [120]. Until the open list is non-empty, at every iteration we

choose the element with the minimum src-value from the open list and check

whether any of the neighbors of this element can be a part of the AGVD (lines

21-25). We update the src-values of the neighbors of this element and copy its

label to its neighbors. The algorithm outputs the set of vertices in V(G f ), which

constitutes the topological map of the domain in the form of a discrete AGVD.

Figure 5.3 illustrates the progress of the algorithm when it is applied to the domain

in Figure 5.4b.

5.5 Computational Complexity

The computational complexity of an algorithm is a key factor in determining

its feasibility for real-time implementation. Here, we analyze the complexity of

each of the main computational blocks in our procedure. From our analysis, we

conclude that the worst-case complexity of our approach isO(M2.372), which is same

as the worst-case computational complexity of the method in [35], a state-of-the-
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Algorithm 3 Topological Map Generation
Input: Free region graph G f with vertex set V(G f ), {Bk} = {@Oi} [ {@Di}

Output: gvd nodes: subset of V(G f ) which constitutes the discrete AGVD (topo-

logical map)

1: L = V(G f ) . Initialize the open list

2: . L is a min heap with1 priority 8 elements at start

3: src[v] =1 for all v 2 L . Distance to obstacles and domain boundaries

4: label[v] = -1 for all v 2 L . Label variable

5: gvd nodes = ;

6: mark = 0

7: for Bk 2 {Bk} do

8: for v 2 Bk do

9: label[v] =mark . Label the obstacle and domain boundaries

10: src[v] = 0 . Set distance to 0

11: L[v] = 0 . Decrease priority of v

12: end for

13: mark =mark + 1

14: end for

15: while L , ; do

16: n = arg min
n̂2L

src[n̂] .Min element of L

17: if src[n] ==1 then

18: break

19: end if
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20: L = L � n . Remove the min element

21: q = arg min
q̂2nbh(n)

{src[q̂] | label[q̂] , �1 & label[q̂] , label[n]}

22: . Find element in nbh, the expanded neighbor set, with a di↵erent label

23: if (src[q] + 1 == src[n]) or (src[q] == src[n]) then

24: add q to gvd nodes . Vertex of AGVD

25: end if

26: U = {u 2 nbh(n) | u 2 L, src[u] > src[n] + dist(n,u)}

27: for u 2 U do

28: src[u] = src[n] + dist(n,u) . Update distance

29: label[u] = label[n] . Assign same label to neighbor

30: L[u] = src[n] + dist(n,u) . Change priority

31: end for

32: end while

33: return gvd nodes

art mapping technique for a swarm of resource-constrained robots with stochastic

motion and no global localization.

5.5.1 Probability map generation

In order to generate the probability map of the domain, we need to process

the data from each robot for every grid cell. Therefore, if N robots each collect K

items of data over a domain that is discretized into M grid cells, and we use this

data to compute the probability map, then the cost of computation for this block

is O(NKM). This cost can be reduced by processing the data from each robot in

parallel.
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Figure 5.3: Stages of the wave propagation algorithm for constructing an AGVD of

the domain shown in Figure 5.4b.

5.5.2 Simplicial complex construction and barcode generation

The simplicial complex generated from the centers of the M grid cells will have

a size proportional to M. The worst-case computational complexity of persistent

homology is O(M2.372), but for most practical applications it is close to O(M) [40].

5.5.3 Obstacle segmentation

The most computationally expensive part in this block is the breadth-first search

(BFS) performed on the obstacle graph. The computational complexity of BFS on

a graph with V vertices and E edges is O(V + E) [120]. Since the obstacle graph is

constructed from a subset of the grid cells of the domain, the number of vertices

in the obstacle graph will be a constant factor times M. Thus, the resulting cost

becomes O(M + E). Since the obstacle graph is planar, the number of edges will be

a constant factor times V, reducing the cost to O(M).
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5.5.4 AGVD extraction using the wave propagation algorithm

The cost of this block can be evaluated by analyzing algorithm 3. The most

computationally expensive part of the algorithm is the loop from lines 15 to 32. As

before, the number of vertices in the free region graph is a constant factor times

M. Extracting the minimum element in line 21 will cost O(log M) due to the heap

implementation [120]. During each iteration, a vertex is popped out, and the loop

ends when all the vertices are popped. Since the statements inside the loop each

have a sub-linear cost, the overall cost of this block is O(M log M).

5.6 Comparison to Other Mapping Algorithms

Table 5.1 compares key properties of our approach to those of several existing

probabilistic sparse map methods. The properties of these methods are described

as in [138]. In the table, the uncertainty field states how uncertainty is represented in

the resulting map. The convergence field describes the convergence properties of the

algorithms under suitable assumptions. The incremental field indicates whether an

algorithm can build the map incrementally or not. The correspondence field specifies

whether the method can accommodate mapping similar features in the environ-

ment. Lastly, the handles raw data field states whether the method can construct

maps from raw sensor data, or whether the data first requires pre-processing and

filtering.

5.7 Simulations

We applied the procedure described in Section 5.4 to generate the topological

maps of the simulated environments shown in figure 4.2. All computations and

simulations except for persistent homology computations were done in Python.
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Table 5.1: Comparison of our approach to several probabilistic sparse map gener-

ation methods described in [138]

Kalman Hybrid
Occupancy

Grid
Dogma

Our

Approach

Map representation
landmark

locations

point

obstacles

occupancy

grids

occupancy

grids

occupancy

grids

Robot sensor noise Gaussian any any any any

Requires exact robot poses no no yes yes no

Uncertainty

posterior

poses and

map

maximum

likelihood

map

posterior map posterior map posterior map

Convergence strong no strong weak weak

Incremental yes yes yes no yes

Correspondence no yes yes yes yes

Handles raw data no yes yes yes yes

The simulated robotic swarm consisted of 50 point robots, each with a sensing

radius of 0.06 m, an average speed of v = 0.2 m/s, and pth = 0.2. The robots

explored a 2 m ⇥ 2 m domain over a time period of 160 s. At the beginning of each

simulation, the robots were placed at random positions near the domain boundary.

The robots followed the motion model Equation 5.1 while dispersing throughout

the domain, with the covariance matrix of the random variables in W(t) set to a

diagonal matrix with 0.1 on the diagonal. Upon encountering an obstacle, the

domain boundary, or another robot within its sensing radius, a robot randomly

chose a di↵erent direction to avoid a collision. The robot data obtained after each

simulated swarm deployment was used to construct the AGVD of the domain.

The outputs at di↵erent stages of the procedure for each domain are displayed
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(a) One obstacle (b) Two obstacles (c) Three obstacles (d) Four obstacles

Figure 5.4: Snapshots of a simulated swarm moving through di↵erent domains.

(a) One obstacle (b) Two obstacles (c) Three obstacles (d) Four obstacles

Figure 5.5: Contour plots of pf
i , the probability that grid cell mi is free, over all grid

cells of discretized domains. Colorbar values range from 0 to 0.9.

in Figure 5.5–Figure 5.8: the contour plots of pf
i (Figure 5.5), the barcode diagrams

(Figure 5.6), the obstacle segmentation (Figure 5.7), and the computed AGVD

(Figure 5.8). As mentioned previously, the numbers of arrows in the barcode dia-

gram for dimension 0 (H0) and dimension 1 (H1) indicate the numbers of connected

components and features (obstacles) in the domain, respectively. The results in Fig-

ure 5.6 estimate the correct number of topological features and report the value of

�opt for each case. Figure 5.7 demonstrates that the obstacle segmentation technique

described in Section 5.4.2, based on the ↵opt obtained from Figure 5.6, successfully

identifies each distinct obstacle in the domains. Finally, Figure 5.8 displays the

AGVD topological maps generated for each domain, which display collision-free

trajectories among the obstacles as expected. These results show that our procedure

can accurately construct topological maps for di↵erent scenarios, even though it
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(a) One obstacle;

�opt = 0.6

(b) Two obstacles;

�opt = 0.6

(c) Three obstacles;

�opt = 0.7

(d) Four obstacles;

�opt = 0.6

Figure 5.6: Barcode diagram for each domain in Figure 5.4, generated from the

filtration described in Section 5.4.1, with �opt computed for each case.

(a) One obstacle (b) Two obstacles (c) Three obstacles (d) Four obstacles

Figure 5.7: Obstacles in each domain, segmented based on the probabilities pf
i using

values of↵opt obtained from the barcode diagrams in Figure 5.6. Each colored region

represents the interior of an obstacle, with the obstacle boundary marked in black.

relies on uncertain robot position data.

To study the failure cases of our approach, we also simulated a complex 20 m

⇥ 20 m domain explored by 300 point robots for 200 s. All other parameters were

the same as in the previous simulations. The results are presented in Figure 5.9.

The topological map generated from the robot data does not reveal the narrow gap

between the two rectangular obstacles in the center of the domain, since there is

a low probability of robots passing through the gap while recording localization

estimates. Also, the large size of the domain prevents the robots from obtaining

reliable localization data about certain regions before their odometry noise become

too high for the associated robot position data to provide any useful information.
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(a) One obstacle (b) Two obstacles (c) Three obstacles (d) Four obstacles

Figure 5.8: Obstacles and AGVD (black lines) constructed from the probabilities pf
i

in each domain.

(a) Actual map (b) Contour plot of

p f
i ; colorbar values

range from 0 to 0.9

(c) Segmented obsta-

cles

(d) Topological map

Figure 5.9: Simulation results for a large, complex environment.

As Figure 5.9c shows, the lack of reliable data about these regions causes the

procedure to incorrectly identify free space in these regions as obstacles. Although

the resulting map in Figure 5.9d does not accurately represent the deformation

retract of the domain, it does provide a conservative set of collision-free trajectories

for the robots. A possible way to obtain accurate topological maps over large

domains is to construct the maps locally and patch them together, similar to the

approach in [35].

5.8 Multi-Robot Experiments

We further validated our procedure through experiments with four Pheeno

mobile robot platforms [154] that explored a 1.5⇥ 2.1 meter rectangular arena with
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(a) (b)

Figure 5.10: (a) (This figure first appeared in [133].) The experimental arena with

four Pheeno robots and two obstacles (the box and the recycling bin). The control

computer identifies the robots’ configurations from their 2D binary identification

tags. This identification is done using the thresholding, boxpoint, and contouring

OpenCV libraries on a Windows computer. Each robot’s position and orientation

are displayed with the red dots and cyan lines. These positions and orientations

are broadcast to the robots at the start of each experiment so that the robots have

a unified global reference frame. (b) Topological map overlaid on the experiment

arena.

two features. We first analyzed this experimental data in [133] using the approach

to topological feature identification presented in that paper. The robots’ initial

position states were randomly assigned, as shown in Figure 5.10a. The robots were

controlled to move with a linear velocity of 10 cm/s with an avoidance radius of

20 cm. Whenever a robot detected a feature, wall, or another robot, it avoided

a collision by moving according to a specular reflection from the detected object

and then continued in a straight line. The robots were marked with 2D binary

identification tags to enable real-time tracking of their positions and orientations

by an overhead camera (Microsoft Life Cam, resolution of 1920 ⇥ 1080 pixels). A
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(a) Contour plot of

p f
i ; colorbar values

range from 0 to 0.9

(b) Barcode from

filtration, yielding

�opt = 0.9

(c) Segmented ob-

stacles

(d) Topological map

(AGVD)

Figure 5.11: Multi-robot experimental results.

control computer was used to identify each robot’s initial configuration in a global

reference frame. The state vector, x = [x, y,�]T, was broadcast over WiFi, where

x and y are the robot’s position coordinates in the arena and � is its heading in

the global frame. Each robot used an Extended Kalman Filter (EKF) to update the

estimate of its state at intervals of 200 ms.

The EKF was implemented using a kinematic unicycle motion model for each

robot and a measurement state vector, z = [�de, ��e, �c]T, where �de is the en-

coders’ measurement of the linear distance traveled, ��e is the change in heading

angle measured by the encoders, and �c is the orientation of the robot in the

global frame measured by the compass. The state error covariance matrix P,

process covariance matrix Q, and measurement covariance matrix R were set to

P = diag(0.2, 0.2, 0.1), Q = diag(2, 2, 1), and R = diag(0.05, 10, 0.4).

These matrices were chosen to favor the robot’s measurements over the kine-

matic motion model. The initial state estimate covariance was chosen to reflect

errors in tag placement on the robots and camera discretization error. The EKF

was implemented on Pheeno’s Arduino Pro Mini microcontroller (3.3V 8MHz),
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while the state data and covariance matrices were stored onboard its Raspberry Pi

2 Model B. The results in Figure 5.10b and Figure 5.11 show that our procedure is

e↵ective at building the topological map (AGVD) of the experimental arena.
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Chapter 6

AUTOMATED CONSTRUCTION OF METRIC MAPS USING A STOCHASTIC

ROBOTIC SWARM LEVERAGING RECEIVED SIGNAL STRENGTH

Source: Ragesh K. Ramachandran and Berman [131]

Funding: Arizona State University Global Security Initiative

ABSTRACT

In this chapter, a novel automated procedure for constructing a metric map of

an unknown domain with obstacles using uncertain position data collected by a

swarm of resource-constrained robots is presented. The robots obtain this data

during random exploration of the domain by combining onboard odometry in-

formation with noisy measurements of signals received from transmitters located

outside the domain. This data is processed o✏ine to compute a density function

of the free space over a discretization of the domain. Persistent homology tech-

niques from topological data analysis are used to estimate a value for thresholding

the density function, thereby segmenting the obstacle-occupied region in the un-

known domain. The approach is substantiated with theoretical results to prove its

completeness and to analyze its time complexity. The e↵ectiveness of the procedure

is illustrated with numerical simulations conducted on six di↵erent domains, each

with two signal transmitters.
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The work in this chapter was first presented in [131]. In this work [131], we

develop an automated procedure for constructing a metric map of an unknown,

GPS-denied environment with obstacles using uncertain localization data acquired

by a swarm of robots with local sensing and no inter-robot communication. The

procedure is scalable with the number of robots. Each robot generates the local-

ization data by combining its onboard odometry information with the measured

strength of signals that are emitted by transmitters located outside the domain. For

example, in a disaster response scenario, the robots may be able to detect radio sig-

nals only from the area outside the domain from which they were deployed. Our

procedure is also applicable to indoor environments; even though signal propa-

gation through such environments has high unpredictability [48], much research

has been devoted to the use of received signal strength intensity (RSSI) for indoor

localization of robots [114]. In [106], a technique is presented for multi-robot lo-

calization that could be used for mapping environments without global position

information. Similar to our approach, this technique uses robot measurements of

external signals; however, unlike our approach, it requires robots to distinguish

neighboring robots from obstacles and communicate explicitly with them. We

prove that our procedure will generate a metric map under specified assumptions

on the coverage of the domain by the robots.

Previous chapters Chapter 4 and Chapter 5 presented procedures for estimating

the number of obstacles in an unknown domain and extracting a topological map

of the domain, respectively. The methodology presented in Chapter 5 generates

a topological map in the form of a Voronoi diagram by applying clustering and

wave propagation algorithms to a probabilistic map and does not incorporate RSSI

measurements. Also Chapter 3 described an optimal control method for mapping

GPS-denied environments using a swarm of robots with both advective and dif-
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fusive motion. Although this method only requires measurements of encounter

times with obstacles, it relies on an accurate partial di↵erential equation model of

the swarm dynamics, and it is ine↵ective on domains with multiple obstacles.

The procedure is fundamentally an occupancy grid mapping method, which

represents the unknown domain using a set of evenly-spaced binary random vari-

ables that each indicate the presence or absence of an obstacle at that location in

the domain. Occupancy grid mapping methods has been studied extensively in

robotics literature both in single robot [141, 87] and multi-robot settings[116, 14].

However, our occupancy grid mapping strategy distinguishes itself from other

approaches in light of the fact that we prove the probabilistic completeness of our

strategy. In words, using Theorem 6 we guarantee that with our approach would

result in the map of the explored unknown environment with probability one as

long as the assumptions associated with Theorem 6 are satisfied. The first step in

our procedure, namely, data collection by a swarm of robots during exploration of

the domain, is a decentralized process. In the subsequent step, the collected data is

processed o✏ine to compute a probability of occupancy on the grid cells. The com-

putations from this step onward are executed by a central computer that generates

the domain map from the computed density function. This is the only centralized

component of our mapping procedure, and it is scalable with the number of robots

since the map computation can be parallelized. Tools from topological data anal-

ysis (TDA) are used to compute a threshold density value in order to identify the

obstacle-filled region in the occupancy grid. This computation is performed by con-

structing a probability-based filtration on the free space in the domain. We direct

the reader to Section 5.2 for the necessary background on the topological concepts

that are used in this paper. An important contribution of our paper is Theorem 6,

a proof of the completeness of our mapping procedure, which was absent in our
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earlier work presented in Chapter 5. Our result in Lemma 1, which is needed to

prove Theorem 6, cannot be proved for the system considered in Chapter 5 since it

is unobservable. This provides insight into why our approach in Chapter 5 cannot

be used for metric mapping.

The reason for computing the map o✏ine is twofold. First, the robots localize

in the domain with uncertainty that increases over time due to noise in their

actuators, sensors, and RSSI measurements. Even though we prove in Lemma 1

that this uncertainty is bounded, the bound could be large for a particular robot

depending on the random path that it follows, which would make its localization

data unreliable. Hence, each individual robot can only generate an uncertain

map of the region that it explores. However, our approach constructs an accurate

estimate of the map of a region by fusing data o✏ine from multiple robots that

explore the region. Second, in order for each robot to construct the map of the

domain online, it should individually cover the entire domain and have su�cient

computational capabilities to perform all the map generation calculations onboard.

In our strategy, this is infeasible due to the low computational resources of the

robots that we consider. As an alternative, the robots could construct local maps,

communicate these maps to other robots that they encounter during the course of

exploration, and merge the maps that they receive from the other robots. However,

this would require the robots to have communication capabilities, which we do not

assume in our scenario.

6.1 Problem Statement

We consider the problem of estimating the metric map of a closed, bounded, path

connected, GPS-denied domain D ⇢ Rd with obstacles using uncertain localization

data acquired by a swarm of N robots while exploring the domain. We restrict
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our analysis to domains with boundaries having regularity of at least Lipschitz

continuity. Although here we only consider the case d = 2, it is straightforward

to extend our procedure to the case where d > 2. We exclude scenarios where an

obstacle is located very close to the domain boundary, since it is highly unlikely

that the robots will enter the gap between the boundary and obstacle. We assume

that such gaps are at least twice a robot’s sensing diameter.

Each robot is equipped with a compass, wheel encoders, and a received signal

strength indicator (RSSI) device such as Atheros [156], and it can detect obstacles

and other robots within its local sensing radius and perform collision avoidance

maneuvers. Two radio transmitters are located outside the domain, and the robots’

RSSI devices can measure their signals anywhere inside the domain. As the proof

of Theorem 6 shows, our strategy requires at least two transmitters to map a

two-dimensional domain. We assume that the robots have su�cient memory to

store the data that they collect during exploration. We also assume that after a

su�ciently large time T, the robots have covered the domain according to the

coverage definition given in Section 6.3.1. After time T, the robots move to a

common location for extraction of the stored data.

The robots move with a constant speed v and a heading ✓(t) at time t with

respect to a fixed global frame. The position and velocity state vectors of a

robot in this frame are defined as X(t) = [x(t), y(t)]T and V(t) = [vx(t), vy(t)]T =

[v cos(✓(t)), v sin(✓(t))]T, respectively. At the initial time t = 0, the start of the

exploration phase, a precise estimate of X(0) and ✓(0) is provided to each robot.

During the deployment, each robot generates a uniform random number U 2 [0, 1]

at the start of every time step �t. If U  pth, where pth is a specified value, then the

robot randomly chooses a new heading ✓(t) 2 [�⇡,⇡]. We define Wx(t) 2 R2 and

Wv(t) 2 R2 as vectors of independent, zero-mean normal random variables that are
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generated at time t. These vectors model randomness in the robots’ motion due to

wheel actuation noise. We define the vector W(t) 2 R4 as W(t) = [Wx(t) Wv(t)] and

note that W(t) ⇠ N(0,Q), Q 2 R4⇥4.

Using this notation, we model each robot as a point mass that follows the

standard linear odometry motion model [142, 26], whose state space form can be

written as:
2
66666664
X(t + �t)

V(t + �t)

3
77777775
=

2
66666664
I �tI

0 I

3
77777775

2
66666664
X(t)

V(t)

3
77777775
+

2
66666664
Wx(t)

Wv(t)

3
77777775
, (6.1)

where I is the identity matrix. We denote the system matrix of Equation 6.1 by A.

While performing this correlated random walk through the domain, each robot

uses an extended Kalman filter [142] to estimate its global position and the asso-

ciated covariance matrix from its onboard odometry and RSSI measurements of

the signals emitted by the two transmitters. The robot records this estimated posi-

tion and covariance matrix at fixed time intervals. Although exploration through

random walking gives only weak guarantees on complete coverage of the do-

main, it is a simple motion strategy that can be implemented on robots with the

limitations that we consider. It should be noted that any exploration strategy

that accommodates these limitations can be substituted for random walking. We

specify that the line joining the two transmitters lies outside the domain (see The-

orem 6). The signal strength attenuation of a radio signal from a transmitter i is

a function of distance from the transmitter location Xi [121]. We adopt the model

Si(X(t)) = KiPowi||X(t) � Xi||�↵ presented in [96], where ↵ 2 [0.1, 2], Powi is the trans-

mitted signal voltage of transmitter i, and Ki is the corresponding proportionality

constant. We set ↵ = 2, as is commonly done in the literature [121]. We define

S(X(t)) = [S1(X(t)), ..., Sl(X(t))]T, where l is the number of transmitters (here, we

set l = 2). We also define NS(t) 2 Rl and NV(t) 2 R2 as vectors of independent,
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(a) Simpli-

cial complex,

� = 0.4

(b) Simpli-

cial complex,

� = 0.5

(c) Simpli-

cial complex,

� = 0.6

(d) Simpli-

cial complex,

� = 0.7

(e) Simpli-

cial complex,

� = 0.8

Figure 6.1: Filtration used to generate the barcode diagram Figure 6.5c for the do-

main shown in Figure 6.2c. The red triangles are the 2-simplices that are constructed

from the centers of the grid cells in the domain discretization.

zero-mean normal random variables that are generated at time t. These vectors

model noise in the robots’ RSSI devices and wheel encoders, respectively.

Let Z(t) denote the vector of sensor measurements received by a robot at time t.

Then the output equation of the system can be written as,

Z(t) =

2
66666664
S(X(t))

V(t)

3
77777775
+

2
66666664
NS(t)

NV(t)

3
77777775
. (6.2)

From the proof of Theorem 6, we can see that if we use two transmitters, it is

required that line joining the transmitters should lie outside the domain of interest.

6.2 Map Generation Procedure

This section describes a procedure for extracting a metric map of the domain as

an occupancy grid map using the noisy localization data collected by the swarm of

robots.
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6.2.1 Computation of the Density Function of Free Space on a Discretization of

the Domain

As in other occupancy grid mapping algorithms [142], our first step is to dis-

cretize the domain into a fine grid of M cells. The objective of this step is to use the

robots’ recorded data on their estimated positions to compute a density function

pf : mi ! [0, 1] that encodes the probability of a cell mi, i 2 1, ...,M being unoccupied

by an obstacle, or free. We use the notation pf
i instead of pf (mi) for brevity. Here we

summarize our approach to computing pf
i . Although it is similar to the approaches

in earlier chapters Chapter 4 and Chapter 5, the probabilistic occupancy grid map

computation in this paper uses a di↵erent equation for si (Equation 6.3), the score

assigned to each grid cell i, than the computation in our previous works.

While each robot j 2 {1, ...,N}moves randomly through the unknown environ-

ment, it records data at times tk 2 [0,T], k 2 1, ...,K. This data consists of the tuple

dj
k = {µ

j
k, �

j
k}, where µ j

k 2 R2 and � j
k 2 R2⇥2 are the mean and covariance matrix,

respectively, of the robot’s estimate of its position in Cartesian coordinates at time

tk. We define pijk as the discrete probability that the jth robot occupied the cell mi at

time tk. This probability is calculated for all robots, cells, and times tk by integrating

the Gaussian distribution with mean µ j
k and covariance matrix � j

k over the part of

the domain occupied by cell mi. We then filter out probabilities pijk that are obtained

from Gaussian distributions which are centered far from each grid cell mi. Toward

this end, we define the set Pi = {pijk | pijk > ⇢}, where ⇢ > 0 is a tolerance. In this

paper, we set ⇢ = 0.05 based on the heuristic that, pijk < 0.05 is obtained from a

Gaussian distribution which is centered far from the grid cell mi. We compute pf
i

for each cell mi using a technique similar to the log odds computation that is com-

monly employed in the robot SLAM literature [142]. A score si 2 [0,1) is assigned
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to each grid cell mi according to the equation

si =
1
|Pi|

X

pijk2Pi

log
 

1
1 � pijk

!
. (6.3)

We then compute the probability that cell mi is free using the formula pf
i = 1 �

(exp(si))�1. pf
i could be interpreted as the probability that a grid cell mi of being free

or unoccupied by an obstacle.

Next, we apply a moving average linear filter, a common technique in image

processing, to the probabilities pf
i . This ensures that the automated thresholding

step, described in the next section, is e↵ective even if the robots fail to cover a few

free grid cells in the domain. For each grid cell mi, we replace pf
i with the mean

of pf
i and the pf

j of its neighboring grid cells mj. This eliminates any pf
i value that

is unrepresentative of its neighborhood. The simulations in Section 6.4 use a 3 ⇥ 3

square neighborhood for filtering. Strictly speaking, this step can be skipped if the

assumption on the coverage of the domain by the swarm is satisfied.

6.2.2 Thresholding the Density Function to Generate the Map

In this step, we threshold each pf
i to classify the corresponding grid cell mi as

a free or obstacle-occupied cell. The existence of a threshold for this classification

is proven in Theorem 6. We apply persistent homology [39], a topological data

analysis (TDA) technique based on algebraic topology [60], to automatically find

a threshold based on the pf
i of each grid cell. An implicit assumption required for

this technique is that each obstacle contains at least one grid cell with pf
i = 0. This

TDA-based technique provides an adaptive method for thresholding an occupancy

grid map of a domain that contains obstacles at various length scales. In fact, it

can be used with other occupancy grid mapping methods to implement automated

thresholding. We describe The technique is described in full in Section 5.4.1 and
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we summarize it here for completeness.

First we select the center points of the grid cells with pf
i > � = 1 � �. These

points become the 0-simplices subset S0 of the simplicial complex � that we are

constructing. Let e0 2 S0. Then a 1-simplex is constructed by pairing e0 with its

adjacent vertical, horizontal, and diagonal neighbors (8-connectivity) [57] if the

neighbors are elements of S0. A set of 1-simplices S1 ⇢ � is generated using

the elements in S0. Similarly, a set of 2-simplices S2 ⇢ � is constructed from the

elements in S1, choosing every subset of three elements in S1 that form a triangle.

Figure 6.1 illustrates a filtration constructed for the domain in Figure 6.2c.

Once a filtration is constructed, Next, a barcode diagram is used to identify the

number of topological features in the domain, which is given by the number of

barcode arrows in each homology group. The �cls corresponding to the threshold

�cls for classification of the grid cells is defined as the minimum value of � for which

all the topological features are captured by the corresponding simplicial complex.

In other words, �cls is the value of � for which all the barcode segments except

the arrow are annihilated for all values of � greater than this value. Therefore,

the threshold �cls for classification of the grid cells is 1 � �cls. This computation

is done in practice by taking the maximum value of � that is spanned by the

terminating barcode segments in all the homology groups. In this chapter, the

persistent homology computation was done using the MATLAB-based JavaPlex

package [3]. Since the results presented in this chapter are only for two-dimensional

domains, we restricted the persistent homology computations to dimensions zero

and one.
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6.3 Analysis of the Mapping Procedure

6.3.1 Probabilistic completeness of the Procedure

In this section, we analyze the completeness of the approach in a probabilistic sense,

meaning that the procedure described in Section 6.2 will result in a probabilistic

occupancy map of the unknown domain that distinguishes between occupied and

free grids cells, provided that the inputs to the procedure satisfy certain assump-

tions with probability one. The approach may fail to produce the desired output if

the assumptions do not hold. The simulation results in Section 6.4 demonstrate the

e↵ectiveness of our procedure even when the required assumptions are not fully

satisfied.

The most important assumption required for the completeness of our approach

is that the domain is completely covered by the swarm of robots. By this, we mean

that the recorded localization data includes at least one data tuple per free grid cell

whose µ lies inside the grid cell. We assume that even if some of the robots fail to

return after exploring the domain, su�cient data is obtained from the recovered

robots to achieve complete coverage of the domain.

We begin our analysis by proving the existence of a threshold on the density

function, which serves as a decision variable to distinguish between free and oc-

cupied grid cells. Toward this end, we first state the following lemma, which

gives a result that is required to prove Theorem 6. The result in Lemma 1 follows

trivially when both the robot dynamics and measurement models are linear. How-

ever, proving this result requires a careful analysis when either the dynamics or

measurement models are nonlinear, as in our case.

Lemma 1. The error in the robots’ position estimates is bounded with probability one,
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with a common bound for all robots, if each robot follows the motion model Equation 6.1

and estimates its state vector using an extended Kalman filter based on the outputs in

Equation 6.2.

Proof. Let S(X)X denote the first-order derivative of S(X) with respect to X in Equa-

tion 6.2. Note that we have dropped the variable t for conciseness. We also define

X̂ as the estimate of X. Assuming that S(X) is analytic in a neighborhood of an

estimate X̂, we can write the first-order Taylor-series expansion of S(X) about X̂ as,

S(X) = S(X̂) + S(X)X̂(X � X̂) + o(||X � X̂||2). (6.4)

If h = (X�X̂), then the higher-order terms in Equation 6.4 are represented by o(||h||2),

whose norm tends to zero faster than khk2 does as khk ! 0, by the definition of

o(||h||2). In other words, limkhk!0
ko(||h||2)k
khk2 ! 0. This implies that there exists an open

ball of radius ✏ around h such that if khk2 < ✏, where ✏ > 0, then
���o(khk2)

��� < khk2 < ✏.

Thus, the inequality

���S(X) � S(X̂) � S(X)X̂(X � X̂)
��� <

���X � X̂
���2

(6.5)

is satisfied in some neighborhood of X̂ if S(X̂) is analytic in that neighborhood.

From Theorem 3.1 in [108], we know that the estimation error ⇣k =
���Xk � X̂k

���

of an extended Kalman filter at the kth time step, where k 2 {1, 2, ...,K}, is bounded

with probability one as long as the following conditions hold:

1. ⇣0  ✏ for some ✏ � 0.

2. Define Xs
k = [Xk; Vk] as the state vector in Equation 6.1, f (Xs

k) as the state map,

and Ak =
@ f
@Xs

k
(X̂s

k). The matrix Ak is nonsingular for all k � 0.
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3. Let h(Xs
k) be the output map given in Equation 6.2 and Hk =

@h
@Xs

k
(X̂s

k). Define

the functions � and � as:

�(Xs
k, X̂

s
k) = f (Xs

k) � f (X̂s
k) �Ak(X̂s

k)
⇣
Xs

k � X̂s
k

⌘
, (6.6)

�(Xs
k, X̂

s
k) = h(Xs

k) � h(X̂s
k) �Hk(X̂s

k)
⇣
Xs

k � X̂s
k

⌘
. (6.7)

There exist real numbers ✏�, ✏�,K�,K� > 0 such that

����(Xs
k, X̂

s
k)
���  K�

���Xs
k � X̂s

k

���2  K�✏2
�, (6.8)

����(Xs
k, X̂

s
k)
���  K�

���Xs
k � X̂s

k

���2  K�✏2
�. (6.9)

4. There are positive real numbers ā, h̄, p̄, p > 0 such that

kAkk  ā, (6.10)

kHkk  h̄, (6.11)

pI  Pk  p̄I, (6.12)

where Pk is the covariance matrix at the kth time step.

To prove the lemma, we will now show that these four conditions are satisfied.

Conditions (1) and (2) are satisfied because ⇣0 = 0 and Ak is the constant matrix A,

which is nonsingular. Equation 6.8 is satisfied trivially, since �(Xs
k, X̂

s
k) is zero when

Ak is a constant matrix. In condition (3), we need to determine whether the bounds

described in Equation 6.9 are fulfilled with h(Xs
k) = [S(X(t)); V(t)] in Equation 6.7.

To verify this, it is enough to show that a condition analogous to Equation 6.7 is

satisfied when the output map is restricted to the signal map. In other words, we

need to check whether Equation 6.7 is satisfied when h(Xs
k) = S(X). Equation 6.5

shows that this condition is true locally at every point as long as S(X) is analytic,

which is true for all points inside the domain in our case, since the transmitters are

located outside the domain.
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Examining condition (4), we find that computation of Hk is required for further

analysis. Given the definition h(Xs
k) = [S(X(t)); V(t)] from Equation 6.2, we can

compute the Jacobian of h(Xs
k) as,

Hk(Xs
k) =

2
66666664
Sk(Xk)X 0

0 I

3
77777775
, (6.13)

where

Sk(Xk)X =

2
666666666664

�↵K1Pow1(xk�xt1)

((xk�xt1)2+(yk�yt1)2)
2+↵

2

�↵K1Pow1(yk�yt1)

((xk�xt1)2+(yk�yt1)2)
2+↵

2

�↵K2Pow2(xk�xt2)

((xk�xt1)2+(yk�yt1)2)
2+↵

2

�↵K2Pow2(yk�yt2)

((xk�xt1)2+(yk�yt1)2)
2+↵

2

3
777777777775
. (6.14)

Here, (xti, yti) are the Cartesian position coordinates of the ith transmitter.

Equation 6.10 and Equation 6.11 are trivially satisfied. Now it is left to prove that

the constraint described using Equation 6.12 is also in agreement. This inequality

is related to the observability of the system. Using Theorem 4.1 in [108], we deduce

that Equation 6.12 is satisfied if the linearized system is observable for every n; i.e.,

if the observability matrix of the linearized system Ok = [Hk; HkAk; HkA2
k ; HkA3

k]

has full rank for all k.

Ok can be computed to be

Ok =

2
6666666666666666666666666666666666666666666666666664

Sk(Xk)X 0

0 I

Sk(Xk)X �tSk(Xk)X

0 I

Sk(Xk)X 2�tSk(Xk)X

0 I

Sk(Xk)X 3�tSk(Xk)X

0 I

3
7777777777777777777777777777777777777777777777777775

, (6.15)
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where 0, I 2 R2⇥2.

After row transformations of Ok using Gaussian elimination, we obtain

Ok =

2
66666666666666666666664

Sk(Xk)X 0

0 I

0 �tSk(Xk)X

0

3
77777777777777777777775

, (6.16)

where the large 0 is a matrix of zeros. Since �t , 0, it is evident from Equation 6.16

that Ok is not full rank if and only if Sk(Xk)X is not full rank. It can be shown that

the points (xk, yk) at which Sk(Xk)X is not full rank obey the following equation:

(xk � xt1)
(yk � yt1)

=
(xk � xt2)
(yk � yt2)

= constant. (6.17)

These points comprise the line joining the two transmitters. Therefore, if we en-

sure that this line does not pass through the domain, then the system is observable.

Alternately, we could make the system observable by introducing a third transmit-

ter which is non-collinear to the other two transmitters. Under these constraints,

condition (4) is satisfied, implying that the state estimation error for each robot is

bounded. Therefore, the estimation error of the robot positions is also bounded,

since it is a part of the state. The maximum of all the robots’ position estimation

errors serves as a uniform bound for these errors. ⇤

Finally, we prove the existence of a threshold value of pf
i that distinguishes the

free grid cells from the occupied cells.

Theorem 6. Under the assumption of complete coverage of the domain, a grid cell mi is

free if and only if there exists a threshold � 2 [0, 1] for which p f
i > � with probability one.
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Proof. We begin by proving the su�cient part of the statement; i.e., that there exists a

threshold� 2 [0, 1] such that a grid cell mi is free if pf
i > �. Lemma 1 shows that there

exists an estimation error bound on the position estimate for all robots uniformly.

Thus, the uncertainty associated with position is also bounded. Also, for every free

grid cell mi, there is at least one data tuple dj
k that is centered inside the grid due to the

assumption on coverage. The boundedness of the uncertainty ensures the existence

of a two-dimensional symmetric Gaussian distribution function with an associated

covariance matrix having a finite norm �max. The integral of this function over the

grid cell is less than or equal to the integral of the Gaussian function associated

with dj
k. Without loss of generality, we assume that the grids cells are square with

area [�s, s]⇥[�s, s] for simplicity. After some algebraic manipulation, we can derive

that

1
|Pi|

X

pijk2Pi

log
 

1
1 � pijk

!
>

1
|Pi|

log
 

1
1 � (p)i

!
(6.18)

where,

(p)i =
1

2⇡�2
max

Z s

�s
exp(�1

2
(

x2

�2
max

)dx
Z s

�s
exp(�1

2
(

y2

�2
max

)dy. (6.19)

Let t = xp
2�max

, then
p

2�maxdt = dy. Substituting x and y in the above equation

with t would result in the following equation:

(p)i =
1p
⇡

Z sp
2�max

� sp
2�max

exp(�t2)dt
1p
⇡

Z sp
2�max

� sp
2�max

exp(�t2)dt (6.20)

Which can be rewritten as:

(p)i =

0
BBBBB@

1p
⇡

Z sp
2�max

� sp
2�max

exp(�t2)dt

1
CCCCCA

2

(6.21)
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From [19], 1p
⇡

R s

�s exp(�t2) is the error function [1] denoted as er f (s). er f (s) can

also be defined as 1 � er f c(s), where er f c(s) is the complementary error function

expressed as er f c(s) = 2p
⇡

R 1
s exp(�t2)dt.

Therefore, Equation 6.21 can be expressing using er f (s) as :

(p)i =

 
er f (

sp
2�max

)
!2

(6.22)

Using Corollary 1 in [20] we can estimate er f c(s) as:

er f c(s)  exp(�s2) (6.23)

1 � er f c(s) � 1 � exp(�s2) (6.24)

or

er f (s) � 1 � exp(�s2) (6.25)

Using the above result (p)i can be estimates as:

(p)i >

 
1 � exp

 
� s2

2�2
max

!!2

. (6.26)

We now combine Equation 6.26 and Equation 6.18 and use the formula pf
i = 1 �

(exp(si))�1 to compute pf
i , as mentioned in Section 6.2.1. After some algebraic

simplification, we obtain the following inequality:

pf
i > 1 �

0
BBBB@1 �

 
1 � exp

 
� s2

2�2
max

!!21CCCCA

✓
1
|Pi |

◆

. (6.27)

Note that the threshold, given by the right side of the above inequality, is bounded

between zero and one, and that it increases as �max decreases and vice versa.
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Now we prove the condition of necessity of the statement; i.e., that there exists a

threshold � such that pf
i > � implies that the grid cell mi is free, for all grid cells. We

use proof by contradiction to establish this. First, suppose that this proposition is

false. Then for any chosen �, pf
i > �does not imply that the grid cell mi is free, for all

grid cells. In other words, for every � chosen, there exists at least one occupied grid

cell for which pf
i > �. Let us choose � to be the right-hand side of Inequality 6.27.

Now assume that an occupied grid cell Obsmi satisfies the condition pf (Obsmi) > �.

This can happen in two possible cases. First, there may exist at least one data point

dj
k which is centered inside Obsmi. This cannot occur, since we assume that the

robot cannot move over obstacles. Second, �max may be unbounded, which is also

not true according to Lemma 1. Therefore, we have confirmed that there exists a

threshold that filters occupied grid cells. In other words, we were wrong to assume

that the proposition was false. Thus, the proposition is true. ⇤

Remark: Lemma 1 cannot be proven in the strategy presented in our previous

paper [134], since the system there is unobservable (for this case, Sk(Xk)X = 0 in

Equation 6.16). Thus, the strategy presented in that paper does not guarantee metric

map generation of the domain. Instead, it generates only a conservative topological

map [25]. In addition, note that the lower bound on pf
i from Inequality 6.27 increases

as |Pi| increases, indicating that as more robots visit a grid cell i, its probability of

being free increases.

A TDA-based technique is used to estimate the threshold �, because the thresh-

old computed using Inequality 6.27 works only with complete coverage. If �true

and �est are the true threshold and estimated threshold computed using the method

described in Section 6.2.2, respectively, then �est � �true, since the metric and topo-

logical information coincide once the filtration parameter exceeds the value 1��true.
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(a) No obsta-

cles

(b) One obsta-

cle

(c) Two obsta-

cles

(d) Three ob-

stacles

(e) Four obsta-

cles

Figure 6.2: Snapshots of a simulated swarm of robots (red squares) moving through

di↵erent domains with obstacles (blue shapes).

6.3.2 Computational Complexity Analysis

We analyze the computational complexity of the procedure using a similar ap-

proach to that in Section 5.5. Based on our analysis, the worst-case complexity of

our procedure is O(M2.372). The first step of our procedure is the computation of

the density function. This computation varies linearly with the amount of data and

the number of grid cells. That is, if N robots each collect K elements of data while

exploring a discretized domain containing M grid cells, then the cost of computing

the density function is of the order O(NKM). This step can be parallelized by pro-

cessing data from each robot in parallel, resulting in a reduced computational cost

of the order O(KM). The thresholding step is the most computationally expensive

part of the procedure. This is because it requires the generation of a simplicial

complex, whose size is linear in M, and a persistent homology computation that

has a worst-case complexity of O(M2.372), although for most practical scenarios it

approaches O(M) [40].
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(a) No obsta-

cles

(b) One obsta-

cle

(c) Two obsta-

cles

(d) Three ob-

stacles

(e) Four obsta-

cles

Figure 6.3: Contour plots of pf
i , the probability that grid cell mi is free, over all grid

cells of the discretized domains generated after the step described in Section 6.2.1.

Colorbar values range from 0 to 0.9.

(a) No obsta-

cles

(b) One obsta-

cle

(c) Two obsta-

cles

(d) Three ob-

stacles

(e) Four obsta-

cles

Figure 6.4: Contour plots of the filtered pf
i shown in Figure 6.3, as described in

Section 6.2.1.

6.4 Simulation Results

In this section, we validate the mapping procedure in Section 6.2 by constructing

metric maps of six simulated domains, each with two signal transmitters. Swarms

of point robots in each domain were simulated in Python, and all other compu-

tations were performed in MATLAB. The robots have a sensing radius of 0.06 m

and an average speed of v = 0.2 m/s. The simulations were initialized by placing

the robots at random points near one of the domain boundaries. The robots follow

the motion model Equation 6.1, in which W(t) is a diagonal matrix with 0.1 on the
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(a) No obsta-

cles

(b) One obsta-

cle

(c) Two obsta-

cles

(d) Three ob-

stacles

(e) Four obsta-

cles

Figure 6.5: Barcode diagram for each domain, generated from the filtration de-

scribed in Section 6.2.2, with �cls computed for each case as �cls = 0.75.

(a) No obsta-

cles

(b) One obsta-

cle

(c) Two obsta-

cles

(d) Three ob-

stacles

(e) Four obsta-

cles

Figure 6.6: Contour plots of the thresholded map based on the thresholds computed

using the TDA technique described in Section 6.2.2.

(a) No obsta-

cles

(b) One obsta-

cle

(c) Two obsta-

cles

(d) Three ob-

stacles

(e) Four obsta-

cles

Figure 6.7: Contour plots of the absolute error between Figure 6.2 and Figure 6.6.

diagonal. The robots employ a simple collision avoidance policy, for which pth =

0.2, by choosing a new random direction upon encountering the domain boundary,
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(a) Complex

domain

(b) Computed p f
i (c) Filtered p f

i (d) Map (e) Absolute er-

ror

Figure 6.8: The outputs of the mapping procedure for a complex domain.
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Figure 6.9: Plots showing the e↵ect of the number of robots N on the threshold and

map estimation error with T = 300s.

an obstacle, or another robot.

For the 2 m ⇥ 2 m domains shown in Figure 6.2, swarms of N = 50 robots were

simulated over a deployment time of T = 300 s. The outputs at various stages of

the mapping procedure for these domains are displayed in Figure 6.3-Figure 6.7:

the contour plots of the computed pf
i (Figure 6.3), the filtered pf

i (Figure 6.4), the

barcode diagrams (Figure 6.5), the thresholded maps (Figure 6.6), and the absolute

error in the maps (Figure 6.7). These results show that the procedure generates

an accurate metric map of each domain. To further evaluate the performance
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Figure 6.10: Plots showing the e↵ect of the deployment time T on the threshold

and map estimation error.
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(b) Estimation error for various N

Figure 6.11: Plots showing the e↵ect of the number of robots N on the threshold

and map estimation error with T = 160s.
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(b) Map estimation error

Figure 6.12: Results from 20 simulations on each domain in Figure 6.2.

(a) Topological map from Chapter 5 (b) Topological map using current approach

Figure 6.13: Topological maps generated for a complex domain.
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(a) Actual domain (b) Absolute error

Figure 6.14: Simulation on a domain with five small square obstacles.

of our procedure, we ran 20 simulations on each domain in Figure 6.2 with the

same parameters. Figure 6.12 shows the average threshold value � with its 95%

confidence interval and the mean absolute error (MAE) of the map estimation error

with the corresponding 95% confidence interval for each domain. We used MAE

rather than root-mean-squared error, since each error contributes proportionally in

MAE. The plots confirm the e↵ectiveness of our approach, since the average MAE

lies between 5% to 8% and the error bars are relatively small.

We also conducted simulations in a larger, more complex domain of size 20 m

⇥ 20 m, in which N = 200 robots were deployed for T = 1200 s. These results

are presented in Figure 6.8 and show that the procedure still generates an accurate

map. A topological map for this domain was also constructed using the technique

described Chapter 5 and compared with the one presented in that paper. From

Figure 6.13, we see that our current approach results in an improved topological

map.
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Figure 6.15: Plots showing e↵ect of the noise of the signal on the map estimation

error.

Finally, in order to examine the e↵ectiveness of our strategy on domains with

small obstacles, we performed a simulation on a domain of size 2 m ⇥ 2 m with five

square obstacles, each of size 4 cm ⇥ 4 cm, using 50 robots with a deployment time

of 300 s. The maximum standard deviation of the normal distribution associated

with the robot’s position was approximately 2.8 cm in both the x and y directions.

The results of this simulation, plotted in Figure 6.14, show that our technique is able

to generate a reasonably accurate map of the domain, even when the uncertainty

in the robots’ position is comparable to the size of obstacles in the domain.

We also investigated the e↵ect of the number of robots N and the deployment

time T on the performance of the procedure. For each of the 5 domains in Fig-

ure 6.2, we ran 10 simulations each with N 2 {20, 30, 40, 50, 60} and T = 300 s

(Figure 6.9), and 10 simulations each with T 2 {800, 1000, 1200, 1400, 1600} s and

N = 40 (Figure 6.10). The legends in subfigures (b) and (d) of Figures 6.9-6.10 show

the number of obstacles in the domain corresponding to each plot. In addition,

the error bars in Figures 6.9-6.12 represent the 95% confidence interval of the true
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value. Figure 6.9a and Figure 6.10a show that the resulting mean threshold �with

its 95% confidence interval, computed from the 50 simulations over all domains

for each parameter set, increases with increasing N and T, respectively. The corre-

sponding plots of the mean � for each domain, Figure 6.9b and 6.10b, exhibit the

same trend. Figure 6.9c and Figure 6.10c plot the mean MAE of the map estimation

error with its 95% confidence interval versus N and T, respectively, from the 50

simulations for each parameter set. The mean map error does not vary significantly

with N, possibly because the deployment time T = 300 s is su�cient to thoroughly

cover the domains, and it decreases with increasing T, as would be expected since

more localization data is gathered during the deployment. To test this hypothe-

sis, we reran the 50 simulations with 5 swarm sizes and T = 160 s (Figure 6.11).

Figure 6.11b indeed shows that for this low T, the MAE of the map estimation

error decreases as N increases. The mean map error for each domain versus N

and T are shown in Figure 6.9d and Figure 6.10d, respectively. Finally, Figure 6.9e

and Figure 6.10e show the dependence on N and T of the percentage of the 50

simulations for each parameter set in which the topological technique described in

Section 6.2.2 successfully identifies the number of obstacles (topological features)

in the five domains. As expected, the success rate increases with increasing N and

T. In addition, we also investigated the e↵ect on noise of the received signal on the

map estimation error and the results are presented in Figure 6.15. The results in

the figure were obtained by running 50 simulation trails on the 5 domain for each

standard deviation of noise from {0.2, 0.4, 0.4, 0.8}. It is important to note that NS(t)

in Equation 6.2 was a diagonal matrix with 0.1 along the diagonal during the trails.

The results in Figure 6.15 demonstrate our method’s e�cacy in estimating the map

even when the signal models are inaccurate.
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Chapter 7

INFORMATION CORRELATED LÉVY WALK EXPLORATION AND

DISTRIBUTED MAPPING USING A SWARM OF ROBOTS

Source: Ragesh K. Ramachandran et al. [135]

Funding: Arizona State University Global Security Initiative.

ABSTRACT

In this chapter, we present a novel distributed method for constructing an occu-

pancy grid map of an unknown environment using a swarm of robots with global

localization capabilities and limited inter-robot communication was presented. The

robots explore the domain by performing Lévy walks in which their headings are

defined by maximizing the mutual information between the robot’s estimate of its

environment in the form of an occupancy grid map and the distance measurements

that it is likely to obtain when it moves in that direction. Each robot is equipped

with laser range sensors, and it builds its occupancy grid map by repeatedly com-

bining its own distance measurements with map information that is broadcast by

neighboring robots. Using results on average consensus over time-varying graph

topologies,we prove that all robots’ maps will eventually converge to the actual

map of the environment.In addition, we demonstrate that a technique based on

topological data analysis, developed in our previous work for generating topolog-

ical maps, can be readily extended for adaptive thresholding of occupancy grid

maps. We validate the e↵ectiveness of our distributed exploration and mapping

strategy through a series of 2D simulations and multi-robot experiments.
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In this chapter, we propose an approach in which the robots explore the domain

while simultaneously building a map online from their own distance measure-

ments and from maps communicated by other robots that they encounter. We

present a distributed algorithm for sharing occupancy grid maps among robots in

such a way that eventually each robots’ occupancy grid map converges to the same

global map. As in most occupancy grid mapping strategies, we assume that each

robot is either capable of accurately estimating its pose or is equipped with a local-

ization device. It would be an interesting future work to examine how our work

translates into the scenario where robots are equipped with only weak localization

capabilities, meaning pose information with bounded uncertainty. We also intro-

duce an exploration strategy for the robotic swarm which combines elements from

information theory[28] with Lévy walk. We combine random exploration with an

information-based approach to obtain the advantages of both methods. We follow

the information theoretic approach described in [22, 72] and extend the idea to

swarm robotic scenario by combining it with Lévy walks. Finally, we illustrate that

a topological data analysis based technique used for generating topological map

in Chapter 5 can also be used for adaptive thresholding of occupancy grid maps

with a slight modification. The threshold separates occupied grid cells from the

unoccupied ones in the map by using tools from algebraic topology[60]. A signifi-

cant di↵erence between our earlier topological approach and the one present in this

chapter is the use of cubical complex[73] instead of simplicial complex[38]. Unlike

works presented in Chapter 4, Chapter 5 and Chapter 6. Also, unlike our previous

works, this mapping strategy computes the map online. The contributions of the

paper are enumerated as follows:

• We present a new scalable swarm robotic exploration strategy that combines

information-theoretic approaches with Lévy walks.
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• We develop a completely decentralized strategy for occupancy grid mapping

of unknown environments using a swarm of robots. This strategy does not

require robots to have unique identities.

• We demonstrate that a technique based on topological data analysis (TDA),

used to generating topological maps in Chapter 5, can be extended for adap-

tive thresholding of occupancy grid maps.

We validate our mapping approach through 2D simulations using the swarm

robot simulator Stage [149] on various environments with di↵erent sizes and lay-

outs. Furthermore, we conducted experiments to validate our strategy using the

commercially available Turtle 3 Burger robots.

Division of Work Zahi Kakish conducted the experiments for Section 7.7. The

author devised an exploration strategy and a distributed mapping method

to map an unknown environment. The simulations were run by the author

on the multi-robot simulation platform Stage. Data obtained from these

simulations were analyzed by the author in Matlab to validate the technique.

7.1 Related Work

Many existing multi-robot control strategies are extensions of single-robot tech-

niques under centralized schemes or all-to-all communication among robots. An

important contribution in this line of work is the generalization of particle filter

based approaches to multi-robot systems, with the assumption that robots broad-

cast their local observations and controls [67]. Another approach is the extension

of the Constrained Local Submap Filter technique to multi-robot settings. In this

approach, the robots build a local submap and transmit it to a central leader that

constructs the global map [152]. Distributed approaches are often required to
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design swarm robotic control strategies, due to the limited communication capa-

bilities of individual robots and the requirement to accommodate disconnected

and switching robot interaction graph topologies, restricted communication band-

width, and random link failures. Hence, researchers have pursued numerous

e↵orts in developing distributed techniques for multi-robot mapping. The paper

[117] gives an overview of various multi-robot SLAM approaches. A notable work

in distributed feature-based multi-robot mapping is Aragues et al. [7]. In this

work, the authors present and formally analyze a fully distributed feature-based

map merging problem in dynamic robot networks. In brief, the solution to this

problem is a distributed Kalman filter expressed in information matrix form. There

is also an ample amount of work in the literature on distributed strategies for occu-

pancy grid mapping [58, 115, 70, 19]. In contrast to our work, these works focus on

finding approximate relative transformation matrices among the occupancy grid

maps from di↵erent robots and fusing the maps together through various image

processing techniques. In our work, the robots update their occupancy grid maps

based on their laser range sensor measurements and from the occupancy grid maps

obtained from their neighbors. We also prove that the robots’ occupancy grid maps

eventually converge to a common map. Since every robot comes to a consensus

regarding the map, this map can be obtained by extracting stored occupancy map

information from a few robots, and theoretically only one. In this regard, our ap-

proach is robust to robot failures. An important aspect of our distributed mapping

strategy is that it is a robot label-free approach, meaning that the robots need not

identify their neighbors based on any identification labels during communication.
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7.2 Problem Statement

We address the problem of estimating the map of an unknown domain D ⇢ Rd

using distance measurements acquired by a swarm of NR robots while exploring the

domain. We consider bounded, closed, path-connected domains that contain static

obstacles. In this chapter, we describe a strategy in which the robots explore an

unknown domain using an information correlated Lévy walk, and build the map of

the environment online based on its laser range sensor data and by communicating

with other robots present locally. Also the robots are unlabeled and have limited

communication capabilities. Although in this chapter we only consider the case

d = 2, our procedure can be easily extended to the case where d > 2.

7.2.1 Robot capabilities

We assume that the robots have the following capabilities. Each robot acquires

noisy distance measurements using a laser range sensor such as a SICK LMS200

laser rangefinder [123]. Using this data, a robot can detect its distance to obstacles

and other robots within its local sensing radius and perform collision avoidance

maneuvers if needed. Each robot broadcasts its stored map information, and other

robots that are within a distance br of the robot can use this information to update

their own maps. We assume that each robot can estimate its own pose with no

uncertainty. This assumption can be relaxed to the case where the robots are only

capable of weak localization, which we define as pose estimation with bounded

uncertainty, using a received signal strength indicator (RSSI) device [156] or ultra-

wideband (UWB) sensors [106]. The extension of our mapping approach to the case

of weak localization is a direction for future work. It is important to note that the

robots are not equipped with any sensors that can distinguish between obstacles
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and other robots. The robots also do not have unique identifiers.

7.2.2 Representation of the domain as an occupancy grid map

Every robot models the unknown environment as an occupancy grid map,

which does not require any a priori information about the size of the domain and can

be expanded as the robot acquires new distance measurements [142]. Each grid cell

of an occupancy grid map is associated with a value that encodes the probability of

the cell being occupied by an obstacle. Let Mi
t denote the occupancy grid map stored

by robot Ri at time t, where i 2 {1, ...,NR}. We specify that each robot discretizes the

domain with the same resolution. At this resolution, a map of the entire domain

D ⇢ R2 is discretized uniformly into |D| grid cells, labeled mi
1, ...,m

i
|D|. During

the mapping procedure, each robot augments its map based on its own distance

measurements and map information from nearby robots, e↵ectively adding grid

cells to its current map. The occupancy grid map of robot i at time t is represented

by the grid cells mi
1, ...,m

i
|Mi

t|
, where |Mi

t| denotes the number of grid cells in the

robot’s map at time t. Henceforth, we will usually drop the subscript t from Mi
t to

simplify the notation, with the understanding that the map Mi depends on time.

Let mi
j, j 2 {1, ..., |Mi|}, be a Bernoulli random variable that takes the value 1 if

the region enclosed by grid cell mi
j is occupied by an obstacle, and 0 if it is not.

Thus, P(mi
j = 1) is the probability that grid cell mi

j is occupied, called its occupancy

probability. A standard assumption for occupancy grid maps is the independence

of the random variables mi
j. As a result, the probability that map Mi belongs to

a domain which is completely occupied is given by P(Mi) =
Q|Mi|

j=1 P(mi
j = 1). For

the sake of brevity, we will use the notation Pmi
j
⌘ P(mi

j = 1) and PMi ⌘ P(Mi)

throughout the paper. We also define the set P̄Mi =
⇢
Pmi

j

�|Mi|

j=1
, which is the collection

of the occupancy probabilities of all grid cells in map Mi. Finally, the entropy H(Mi)
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of the map Mi, which quantifies the uncertainty in the map, is defined as [142]:

H(Mi) =
|Mi|X

j=1

X

k={0,1}
P(mi

j = k) log2

⇣
P(mi

j = k)
⌘

(7.1)

7.2.3 Mapping approach and evaluation

Our mapping approach consists of the following steps. All robots explore

the domain simultaneously using the random walk strategy that is defined in

Section 7.3. While exploring, each robot updates its occupancy grid map with

its own distance measurements, broadcasts this map to neighboring robots, and

then modifies its map with the maps transmitted by these neighboring robots

using a predefined discrete-time, consensus-based protocol, which is discussed in

Section 7.4. We prove that the proposed protocol guarantees that every robot’s

map will eventually converge to a common map. A technique for post-processing

the occupancy grid map based on topological data analysis (TDA) is presented in

Section 7.5. We evaluate the performance of our mapping approach according to

two metrics: (1) the percentage of the entire domain that is mapped after a specified

amount of time, and (2) the entropy of the final occupancy grid map, as defined in

Equation 7.1.

7.3 Exploration Based On Information Correlated Lévy Walk

In this section, we describe the motion strategy used by robots to explore the

unknown domain. Exploration strategies for robotic swarms generally use random,

guided, or information-based approaches [142, 58]. Random exploration approaches

are often based on Brownian motion (e.g., [51, 32, 155]) or Lévy walks (e.g., [34, 128,

49]), which facilitate uniform dispersion of the swarm throughout a domain from

any initial distribution. Moreover, these approaches do not rely on centralized

motion planning or extensive inter-robot communication, which can scale poorly

125



with the number of robots in the swarm. Information-based approaches, such

as [22, 72], guide robots in the direction of maximum information gain based on

a specified metric, which can increase the e�ciency of exploration compared to

random approaches. Mutual information (or information gain), a measure of the

amount of information that one random variable contains about another [28], is a

common metric used to assess the information gain that results from a particular

action by a robot. This metric can be used to predict the increase in certainty about a

state of the robot’s environment that is associated with a new sensor measurement

by the robot.

We specify that each robot in the swarm performs a combination of random and

information-based exploration approaches, in order to benefit from the advantages

of both types of strategies. We refer to this exploration strategy as an information

correlated Lévy walk and describe its implementation in this section.

To execute a Lévy walk, a robot repeatedly chooses a new heading and moves

at a constant speed [159] in that direction over a random distance that is drawn

from a heavy-tailed probability distribution function p(l), of the form

p(l) / l�↵, (7.2)

where ↵ is the Lévy exponent. The case ↵ � 1 signifies a scale-free superdi↵usive

regime, in which the expected displacement of a robot performing the Lévy walk

over a given time is much larger than that predicted by random walk models

of uniform di↵usion. This superdi↵usive property disperses the robots quickly

toward unexplored regions.

We define the heading chosen by the robot before each step in the Lévy walk as

the direction that maximizes the robot’s information gain about the environment.

This is computed as the direction that maximizes the mutual information between
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the robot’s current occupancy grid map and the distance measurements that it is

likely to obtain when it moves in that direction, based on the forward measurement

model of a laser range sensor [142] over a finite time horizon. These measurements

are expected to decrease the entropy of the robot’s occupancy grid map, defined in

Equation 7.1. Therefore, the computed robot heading is more likely to direct the

robot to unexplored regions than a uniformly random heading. The calculation of

this heading is described in the following subsections.

7.3.1 Laser range sensor forward measurement model

We assume that the laser range sensor of each robot Ri has Nl laser beams that all

lie in a plane parallel to the base of the robot. The distance measurement obtained

by the ath laser beam of robot Ri at time ⌧ is a random variable that will be denoted

by zi,a
⌧ . The random vector of all distance measurements obtained by robot Ri at

time ⌧ is represented as zi
⌧ = [zi,1

⌧ · · · zi,a
⌧ · · · zi,Nl

⌧ ]T.

Define smin and smax as the minimum and maximum possible distances, respec-

tively, that can be measured by the laser range sensor. In addition, let � denote the

actual distance of an obstacle that is intersected by the ath laser beam of robot Ri.

The Gaussian distribution function with mean µ and variance �2 will be written as

N(µ, �2). We define the probability density function of the distance measurement

zi,a
⌧ , given the actual distance �, as the forward measurement model presented in

[22, 125],

P(zi,a
⌧ | �) =

8>>>>>>>>><>>>>>>>>>:

N(0, �2), �  smin

N(smax, �2), � � smax

N(�, �2), otherwise,

(7.3)

where �2 is the variance of the range sensor noise in the radial direction of the laser
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beam. Although this model does not incorporate range sensor noise in the direction

perpendicular to the laser beam, the experimental results in [22] and our results in

Section 7.7 demonstrate that the model captures su�cient noise characteristics for

generating accurate maps from the sensor data.

7.3.2 Robot headings based on mutual information

The mutual information between two random variables A and B is defined as

the Kullback-Leibler distance [28] between their joint probability distribution,P(A,B),

and the product of their marginal probability distributions, P(A)P(B):

I[A; B] = KLD (P(A,B)||P(A)P(B)) (7.4)

This quantity measures how far A and B are from being independent. In other

words, I[A; B] quantifies the amount of information that B contains about A, and

vice versa. For example, if A and B are independent random variables, then no

information about A can be extracted from the outcomes of B, and consequently,

I[A; B] = 0. On the other hand, if A is a deterministic function of B, then the

entropies of both random variables are equal to the expected value of � log2(P(A)),

and I[A; B] is equal to this quantity, which is its maximum value.

During each step in its random walk, every robot performs the following com-

putations and movements. A new step may be initiated either when the robot

completes its previous step, or when the robot encounters an obstacle (or other

robot) during its current step. Suppose that the next step by robot Ri starts at time

⌧. At this time, the robot computes the duration T of the step by generating a

random distance based on the Lévy distribution (Equation 7.2) and dividing this

distance by its speed si, which is constant. Also at time ⌧, the robot computes the

velocity vi
�t that it will follow during the time interval �t B [⌧ ⌧ + T]. This com-
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putation involves several variables, which we introduce here. The pose of robot

Ri at time ⌧ is denoted by xi
⌧. We define a sequence of this robot’s poses during

the time interval �t as Xi
�t B [xi

⌧ · · · xi
⌧0 · · · xi

⌧+T], where ⌧0 2 �t. We also define

Zi
�t B [zi

⌧, · · · , zi
⌧0 , · · · , zi

⌧+T] as a set of random vectors modeling laser range sensor

measurements that the robot is expected to receive as it moves during this time

interval. At time ⌧, robot Ri calculates its velocity vi
�t as the solution ⇤vi

�t to the

following optimization problem, with the objective function defined as in [22, 71] :

⇤vi
�t = arg max
kvi
�tk=si, \vi

�t2[�⇡,⇡]

I[Mi; Zi
�t | Xi

�t]
C(vi

�t)
, (7.5)

where I[Mi; Zi
�t | Xi

�t] represents the mutual information between the robot’s oc-

cupancy grid map and its distance measurements given a sequence of the robot’s

poses. The term C(vi
�t) in Equation 7.5 penalizes the robot for large deviations

from its current heading when multiple velocities generate di↵erent paths with the

same mutual information. We define C(vi
�t) as the Euclidean norm of the di↵erence

between vi
�t and the robot’s current velocity. Based on the current occupancy grid

map Mi of robot Ri and its set of expected poses Xi
�t under its velocity command vi

�t,

Ri can compute the probability distribution of its laser range sensor measurements

using the forward measurement model Equation 7.3.

7.3.3 Computing mutual information

In this section, we describe the computation of the objective function in Equa-

tion 7.5 and discuss techniques for solving the associated optimization problem.

We first focus on computing I[Mi; zi,a
⌧ ], the mutual information between the mea-

surement zi,a
⌧ obtained by the ath laser beam of robot Ri at time ⌧ and the robot’s

current occupancy grid map Mi. Grid cells in the map that do not intersect the

beam do not to contribute to the mutual information. Hence, the task of comput-
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ing I[Mi; zi,a
⌧ ] reduces to computing I[ci,a

⌧ ; zi,a
⌧ ], where ci,a

⌧ is the collection of Bernoulli

random variables mi
j modeling the occupancy of grid cells in the map of robot Ri

that are intersected by the ath beam at time ⌧. This quantity is defined as:

I[ci,a
⌧ ; zi,a

⌧ ] =
Z

z2zi,a
⌧

X

c2ci,a
⌧

P(c, z) log2

 
P(c, z)
P(c)P(z)

!
dz, (7.6)

whereP(c, z) is the joint probability distribution of c and z, andP(c) andP(z) are the

probability distributions of the occupancy probabilities of the intersected grid cells

and the range sensor distance measurements, respectively. We show in Appendix C

that I[ci,a
⌧ ; zi,a

⌧ ] can be expressed as:

I[ci,a
⌧ ; zi,a

⌧ ] = �
Z

zi,a
⌧

P(z) log2(P(z))dz + K, (7.7)

where K = � log(
p

2⇡�) � 0.5. Since K is not a function of the map or the distance

measurements, it does not a↵ect the solution to the optimization problem in Equa-

tion 7.5 and therefore does not need to be included in this problem. The e↵ect of ci,a
⌧

on I[ci,a
⌧ ; zi,a

⌧ ] is through the probability distribution P(z) in Equation 7.7. We now

compute this distribution. From the forward measurement model Equation 7.3,

P(z) is completely determined by the distance � from the laser range sensor to the

closest occupied cell in ci,a
⌧ . Let ep denote a binary sequence of length |ci,a

⌧ | in which

each of the first p � 1 elements is 0 and the pth element is 1. The remainder of the

elements in the sequence can be either 0 or 1. This sequence is a possible realization

of ci,a
⌧ , in which the first p � 1 intersected grid cells are unoccupied, the pth cell is

occupied, and the remaining cells may or may not be occupied. For compactness

of notation, we define e0 as the sequence in which all elements are 0; that is, no

intersected grid cells are occupied.

Then, we have that

P(z) =
|ci,a
⌧ |X

p=0

P(z | ci,a
⌧ = ep)P(ci,a

⌧ = ep) (7.8)
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We direct the reader to [22, 72] for a detailed description of such sensor models.

We can now extend our computation of the mutual information for a single

distance measurement at a given time to I[Mi; Zi
�t | Xi

�t], the mutual information for

all distance measurements taken by robot Ri over a sequence of times. Since the

exact computation of this quantity is intractable, we adopt a common technique

used in the robotics literature: we select several laser beams on the robot and

assume that the measurements from these beams are independent of one another

[78, 72]. We defineZi
�t as the set of distance measurements obtained at times ⌧0 2 �t

from the selected laser beams on robot Ri, indexed by a0 2 {1, ...,Nl}. Then, we can

approximate I[Mi; Zi
�t | Xi

�t] as the following sum overZi
�t:

I[Mi; Zi
�t | Xi

�t] ⇡
X

zi,a0
⌧0 2Z

i
�t

I[Mi; zi,a0
⌧0 ] (7.9)

In general, finding Zi
�t ✓ Zi

�t that best approximates the formula in Equa-

tion 7.9 is an NP-hard problem [22]. Therefore, no approximation algorithm can be

designed to find thisZi
�t in polynomial time. In spite of this, generatingZi

�t using

greedy algorithms has shown promising results [78, 72, 22], which prompted us

to use a similar technique of selecting the laser beams having an information gain

above a predefined threshold [78]. Now that we have obtained an expression for

I[Mi; Zi
�t | Xi

�t], we can solve the optimization problem in Equation 7.5 and thereby

find the robot heading which maximizes the information gain.

An alternate approach to solving the optimization problem in Equation 7.5 is

to compute the gradient of the objective function and define the robot’s heading as

the direction of gradient ascent. However, since the computations are performed

on a discrete occupancy grid map, it is not clear that the objective function has a

well-defined gradient. Although prior attempts have been made to compute the

gradients of information-based objective functions under particular assumptions
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[71, 21], the gradient computation relies on numerical techniques such as finite

di↵erence methods.

7.4 Occupancy grid map updates by each robot

While exploring the environment, each robot updates its occupancy grid map

based on its laser range sensor measurements and the occupancy grid map in-

formation broadcast by robots that are within a distance br. In this section, we

describe how robot Ri updates P̄Mi , the collection of occupancy probabilities of all

cells in its map, using both its distance measurements and the sets P̄Mn̂ , n̂ 2 Ni
⌧,

where Ni
⌧ denotes the set of robots that are within distance br of robot Ri at time

⌧. We present a discrete-time, consensus-based protocol for modifying the occu-

pancy map of each robot and prove that this protocol guarantees that all robots

eventually arrive at a consensus on the map of the environment. As explained in

Section 7.4.4, our method for updating the occupancy map is resilient to false posi-

tives, meaning that even if a robot incorrectly assigns a high occupancy probability

Pmi
j
to a free grid cell j due to noise in its distance measurement, the impact of this

noisy measurement on Pmi
j

is eventually mitigated due to the averaging e↵ect of

our map modification protocol. Since occupancy grid mapping algorithms require

the robots’ pose information, we assume that each robot can estimate its own pose

using an accurate localization technique.

7.4.1 Updating occupancy map based on laser range sensor measurements

The forward sensor measurement model Equation 7.3 represents the probability

that a robot obtains a particular distance measurement given the robot’s map of the

environment and the robot’s pose. The parameter � in the model can be computed

from the robot’s map and pose. Commonly used occupancy grid mapping algo-
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rithms [142, 44] use an inverse sensor measurement model to update the occupancy

probabilities of the grid cells. This type of model gives the probability that a grid

cell is occupied, given the laser range sensor measurements and the pose of the

robot. Although forward sensor measurement models can be easily derived for

any type of range sensor, inverse sensor measurement models are more useful for

occupancy grid algorithms [142]. Methods such as supervised learning algorithms

and neural networks have been used to derive inverse sensor models based on a

range sensor’s forward model [139]. Pathak et al. [103] describe a rigorous ap-

proach to deriving an analytical inverse sensor model for a given forward sensor

model. Although inverse sensor models derived from forward sensor models can

be used to e�ciently estimate an occupancy grid map, it is di�cult to develop a

distributed version of such models, since either their computation is performed

o✏ine [139] or the mapping between the forward and inverse sensor models is

nonlinear [103]. These di�culties preclude us from exploiting these techniques in

our mapping approach.

Instead, we propose a heuristic inverse range sensor model for which a dis-

tributed version can be easily derived. We specify that each robot estimates its

pose and obtains distance measurements at discrete time steps, to reflect the fact

that sensor measurements are recorded at finite sampling rates. Let xi
k denote the

pose of robot Ri at time step k, and let zi
k be the vector of its distance measurements

at this time step. Our inverse sensor model, which we refer as an update rule, is

a function u : (mi
j, x

i
k, z

i
k) ! [0, 1]. This function assigns an occupancy probability

to grid cell mi
j based on the robot’s pose and all of its distance measurements at

time step k. Robot Ri uses this function to modify P̄Mi based on its distance mea-

surements. We define the update rule in terms of a function l : (mi
j, x

i
k, z

i,a
k )! [0, 1],

which assigns an occupancy probability to grid cell mi
j based on the robot’s pose
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and its ath laser beam’s distance measurement at time step k. The function can be

applied only to those grid cells mi
j that are intersected by the ath beam at time step k.

We define l as one of two functions, lr and lu, depending on whether the robot esti-

mates that (?) its ath laser beam is reflected (lr) or not reflected (lu). These functions

depend on sa
mi

j
, the distance from the center of cell mi

j to the ath laser range sensor

of robot Ri, and constants pa, pf , and phit. The functions l, lr, and lu are defined as

follows:

l(mi
j, x

i
⌧, z

i,a
k ) =

8>>>>><>>>>>:

lr(sa
mi

j
, zi,a

k ) zi,a
k  smax � �

lu(sa
mi

j
) zi,a

k > smax � �
(7.10)

lr(sa
mi

j
, zi,a

k ) =

8>>>>><>>>>>:

pa�p f

smax
sa

mi
j
+ pf sa

mi
j
< zi,a

k � �

phit sa
mi

j
� zi,a

k � �
(7.11)

lu(sa
mi

j
, smax) =

8>>>>><>>>>>:

pa�p f

smax
sa

mi
j
+ pf sa

mi
j
< smax � �

pa sa
mi

j
� smax � �

(7.12)

Figure 7.1 illustrates the functions lr and lu that are defined in Equation 7.11 and

Equation 7.12, respectively.

Now using the function l, we can define our update rule. We describe the

mapping from the input to the output of the update rule in the pseudocode in

4. Steps 2 to 4 in the algorithm identifies and store the distance measurements

in a set ⇣, for which the corresponding laser beams’ path’s horizontal projection

intersected with the input grid cell mi
j. To make the update rule well defined for

any input grid cell, we define u(mi
j, x

i
k, z

i
k) = 1 if none of the measurements in zi

k

provide any information about mi
j (Step 5). Finally, Step 5 of 4 returns the maximum
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pa

pf

(a) unreflected model

phit

pf

(b) reflected model

Figure 7.1: Illustrative plots of the functions (a) lu and (b) lr. The x-axis in both

plots measures the distance between the ath laser range sensor of robot Ri and any

grid cell that intersects the beam from this laser, which yields the measurement zi,a
⌧ .

value of l(mi
j, x

i
⌧, z) when evaluated over all elements z in set ⇣. Our simulation and

experimental results, presented in Section 7.6 and Section 7.7, demonstrate the

e↵ectiveness of our proposed update rule.

7.4.2 Occupancy grid map sharing among robots

During exploration of the unknown environment, each robot in addition to

updating its occupancy grid map based on its laser range sensor measurements,

broadcasts its current occupancy grid map locally and receives occupancy grid

maps from robots in its local neighborhood. It is important to note that the maps

each robot receives do not contain any information about the robots which broad-

casted those maps. As mentioned earlier, an important property of our distributed

mapping approach is that it is robust to failure of a subset of robots. This is due

to the fact that by following our discrete time consensus based map modification
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Algorithm 4 Update rule function: um(mi
j, x

i
k, z

i
k)

Input: mi
j(grid cell of interest), xi

k(pose of ith robot at kth epoch),zi
k(laser sensor

measurements of ith robot at kth epoch)

Output: a value from the interval [0,1].

1: function um(mi
j, xi

k, zi
k)) . L This function returns the probability of occupancy

of grid cell mi
j based on xi

k and zi
k. By definition the function returns one if the

occupancy of mi
j can be inferred from xi

k and zi
k.

2: ⇣ = ; . a set to store the laser beam measurements results from laser beams

that either passed through mi
j or was reflected by an obstacle covering mi

j

3: for zi,a
k 2 zi

k do . Iterate through every laser measurement in zi
k

4: if contains hori proj(mi
j, zi,a

k ) then

5: ⇣ ⇣ [ zi,a
k

6: end if

7: end for

8: if ⇣ == ; then . mi
j does not contain the horizontal projection path of any

laser beam. Therefore, zi
k can not used to infer the occupancy of mi

j.

9: return 1

10: end if . If ⇣ is non empty return the maximum value of the single laser

beam occupancy probability assignment function evaluated over the set ⇣

11: return max
z2⇣
{l(mi

j, x
i
⌧, z)}

12: end function
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protocol Equation 7.13, each robot’s map eventually converges to a common map

and therefore the structure of the explored environment can be reconstructed using

the map information stored in a few surviving robots (theoretically, only one robot

needs to survive).

LetG(k) = (V,E(k)) be the undirected time varying communication graph. The

nodes represent robot indices, V = {1, ..., i, ...,NR}. At a time step k, if two robots

Ri,Rn̂ are in broadcasting range of each other and exchange information, then there

is an edge (i, n̂) 2 E(k). We formally defineNi
k, the neighbor robots’ indices set of

Ri: Ni
k = {n̂|(i, n̂) 2 E(k), i , n̂}. Before we describe the method by which Ri updates

P̄Mi based on the occupancy grid map from its neighbors, we give an overview

about average consensus over time-varying graph topologies. This forms the basis

for our discrete-time, consensus-based protocol for map modification.

7.4.3 Average consensus over time-varying graph topologies

Linear consensus protocols over time-varying graphs have been well-studied in

the literature [98, 109, 89, 76]. The main results of these works assume the existence

of a time interval during which the union of communication graphs contains a

spanning tree, which is required in order to reach consensus. In this work, we use

results from Kingston et al. [76], which focuses on average consensus in a discrete-

time setting. We use notation from [56] to explain the graph-theoretic concepts.

The notation is local to this subsection and should not be confused with notation

used elsewhere in this paper.

Let A[k] = [aij(k)] be the adjacency matrix associated with the time varying

undirected communication graph G(k) = V,E(k) at time step k. V = 1, ...,n is

the vertex set of G and edge from node i to j exists at time step k if and only if

aij , 0. The neighbors of node i at time step k can be determined by the elements
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in row i of A[k] which are nonzero. If a node i stores a real scalar information

xi, then V is said to be in average consensus if xi = xj =
1
n
P

i xi[0] for all i, j.

This can be achieved if every node updates its information xi to some weighted

linear combination of its neighbors values and xi. This information dynamics

can be written as x[k + 1] = A[k]x[k]. It is proved in [76, Theorem 1] that the

information dynamics reaches average consensus asymptotically provided that

A[k] is doubly stochastic, meaning that the rows and columns ofA[k] sum to unity,

and if there exists a time interval such that the union of communication graphs

over this time interval is connected. We use these results to prove an important

result in Section 7.4.4.

7.4.4 Consensus based occupancy grid map sharing

In this section, we will describe our discrete time consensus based map mod-

ification protocol and prove its asymptotic convergence. As mentioned earlier,

each robot explores the unknown domain based on the strategy delineated in Sec-

tion 7.3. Besides exploring the unknown environment, at every time step each robot

updates its internally stored occupancy grid map based on its laser range sensor

measurements and occupancy grid maps received from its neighboring robots. The

following equation rigorously formulates our discrete-time, consensus-based map

modification protocol when applied to the map’s grid cell mi
j:

Pmi
j
(k + 1) =

Y

n̂2Ni
k[i

✓
Pmn̂

j
(k)

◆ai,n̂(k)
⇥ u(mi

j, x
i
k, z

i
k) (7.13)

If we stack the outputs of u(mi
j, x

i
k, z

i
k) corresponding to every robot at kth time

step, we obtain a vector which we denote as u j[k]. We define d as a subsequence

of the discrete infinite sequence {0, 1, ....,1}, such that d = {d| u j[d] , 1}. By using

the notation u j[d] , 1 we mean that at least one of the elements in vector u j[d] is
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not unity. < · >gm is a geometric mean operator which takes a vector as an input

and return geometric mean of its elements. If q = [q1, q2, ..., qn] then < q >gm=

n
pq1 · q2 · · · qn. Pmj[k] denotes the vector obtained by stacking Pmi

j
(k) 8i 2 V. Now

we are in position to state the theorem which is an important result of this paper.

Theorem 7. If each robot updates its occupancy grid according to the update rule shown

in Equation 7.13 then under the assumptions stated below( Assumption 1 - Assumption 3)

yields,

lim
k!1
Pmi

j
[k] =< Pmj[0] >gm ·

Y

d2d
< u j[d] >gm (7.14)

Proof. See Appendix D ⇤

Assumption 1. There exists a time interval such that the union of interaction graph G

over this time interval is connected.

Assumption 2. At every instant of time , each robot interacts pairwise with its neighbors

and with ai,n̂(k) = 0.5 or ai,n̂(k) = 1(ifNi
k = ;). In other words,Ni

k is a singleton or a null

set at each time step k.

Assumption 3. The set d is finite.

Assumption 1 is required to use the results from [76, Theorem 1]. In reality, it is

hard to prove that this assumption would hold true for robots exploring arbitrary

domains. But one could guess that the assumption is almost surely satisfied as NR

tends to infinity and the results in Section 7.6 and Section 7.7 support our intuition.

The pairwise interaction assumption(Assumption 2) is one way to ensure that

adjacency matrix corresponding to G(k) is doubly stochastic, which is required to

prove Theorem 7. Suppose at a time step k there are multiple robots around a

particular robot within its information transmission range, then in order to make
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the Assumption 2 hold, the robot updates its map using the information from one

of the neighbors only at that time step. The last assumption(Assumption 3) is

used in the proof shown in Appendix D to establish convergence of a sequence

summation. In practice Assumption 3 can be realized by programming the robots

to update its Pmi
j

using its laser range measurements at the most U, a fixed finite

number. The results presented in Section 7.6 and Section 7.7 throws light on the

fact that, in practice it is not required to impose Assumption 3 explicitly, as we did

not enforce any such condition while conducting simulations and experiments for

this chapter.

Theorem 7 delineates that if each robot Ri updates itsPmi
j
according to the update

rule Equation 7.13, then Pmi
j
8i 2 {1, ...,NR}, j 2 {1, ...,Mi} would eventually reach a

value which is proportional to
Q

d2d < u j[d] >gm. The proportionality constant

is geometric mean of elements of the vector Pmj[0]. The proportionality constant

can be made unity if we choose Pmi
j
= 1 as initial condition for the update rule

Equation 7.13. In this manner, the asymptotic behavior of update rule Equation 7.13

is only dependent on the laser range sensor measurements made by the robots.

Asymptotic value of Pmi
j

is proportional to the geometric mean of laser range

sensor measurements made by all robots at various time steps. As a result, the

asymptotic value of Pmi
j

will converge to a probability value indicating the true

occupancy of the grid cell even if a few robots reported highly noise or incorrect

measurements.

7.5 Post Processing of occupancy grid maps

In this section, we propose a technique for post processing the occupancy grid

map generated by the robots. Post processing of occupancy grid map refers to

inferring the most likely occupancy grid map of the explored environment based

140



on the probability of occupancy of each grid. A common approach to occupancy

grid map inference problem is through a procedure called Maximum A Posterior

(MAP) occupancy grid mapping[142]. MAP procedure computes the occupancy

grid map which has maximum probability of occurrence based on probability of

occupancy of each grid cell in the map. In general, the MAP problem is posed as

an optimization problem and the solution is computed using gradient based hill

climbing methods. The approach is computational expensive as one has to perform

gradient ascent from di↵erent initial conditions to escape from local minima. Also

the search space is exponential in the number of grids cell because for a given set

of n grid cells there exist a set containing 2n possible occupancy grid maps[142].

Alternately, our approach is based on concepts from algebraic topology[60] and

for most practical purpose has a time complexity which is linear in the number of

grid cells(O(M))[134]. Our approach is based on topological data analysis(TDA)[38],

an applied version of algebraic topology. In the next section, we provide the reader

with the basic concepts of TDA and algebraic topology required to understand our

work. An in depth treatment of these subjects can be found in [38, 60, 73, 54].

7.5.1 Algebraic topology and TDA

Recently there has been a lot of success in estimating the underlying structure

and shape of the data using tools from algebraic topology [18]. Understanding the

underlying shape of data a priori would aid in its e�cient analysis using statistical

techniques like regression [39]. Topological data analysis (TDA) is a collection of

algorithms constructed using algebraic topology [60] for performing coordinate free

topological and geometric analysis of noisy data. In general, for most applications,

data are obtained by noisy sampling of an intensity map supported on a Euclidean

domain. This noisy sampled data are referred as a point cloud. The dominant
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H0

H1

Filtration Parameter

Filtration Parameter

Figure 7.2: An example barcode diagram of a filtration constructed from cubical

complex. The arrows in H0 and H1 indicate the persistent topological features over

variation of the filtration parameter. The shaded regions contain the 2 dimensional

elementary cubes(squares). In this illustration, one can find that the cubical complex

has one persistent topological feature corresponding to each homology H0 and H1.

topological features of the domain from which the point cloud is sampled can be

computed using TDA. A compact graphical representation of this information is

presented using barcode diagrams [54] and persistence diagrams [39].

The vanguard concept of TDA is persistent homology, which basically enables

the study of global topological facets of a space by performing computations locally

on the noisy point cloud obtained by sampling the space. Topological features

that persist over a longer range of scale can be identified using persistent homol-

ogy. Unlike our previous works [133, 134], we focus on cubical homology rather
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that simplicial homology. Let T be a topological space which admits a simplicial

decomposition, then one can a�liate a sequences of vector spaces with it called

homology groups, denoted by Ht(T), t = 0, 1, 2, .... Every topological feature infor-

mation regarding T is encoded in every one of these vector spaces. The dimension

of Ht(T) quantifies the number of independent topological features encoded by

Ht(T). These topologically invariant quantities denoted by �t has the nomencla-

ture Betti numbers [54]. Intuitively speaking, �t gives the number of independent

k-dimensional cycles in the topological space. �0 and �1 gives the number of con-

nected components in T and number of holes in T respectively, if T is embedded

in R2, denoted by T ,! R2.

We now define the most basic building block of cubical complex termed as

elementary interval[73]. An elementary interval is a closed interval I ⇢ R of the

form I = [l, l + 1] or I = [l, l] for some l 2 Z. Elementary intervals are called

degenerate if it contains only one point, alternately those with unit length are

termed nondegenerate. A cube or elementary cube Q is constructed by taking finite

product of elementary interval: Q =
Qdim

t=1 It ⇢ Rdim, where each It is an elementary

interval[73]. A set X ⇢ R is a cubical set or cubical complex if X can decomposed as

a finite union of elementary cubes. If Q and O are elementary cubes and Q ⇢ O,

then Q is a face of O. For a topological space T , let t-cube (⇤t) be a continuous

map ⇤t : [0, 1]t ! T [81]. As mentioned earlier one can create a cubical complex

by connecting t-cubes of di↵erent dimensions. A t-cube consists of 2t faces which

are t � 1 dimensional cubes. Like in the case of simplicial complex [52], cubes in a

cubical complex also must fit together in some nice fashion. In order for K to be a

cubical complex, it must meet the following the requirements: 1) a face ⇤t�1 of cube

⇤t 2 Kmust also be inK, 2) the intersection of any two cubes ⇤t and ⇤0t is either an

empty set or a common face to both ⇤t and ⇤0t.
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Let f :  ! R be a function such that ⌘  ◆ implies that f (⌘)  f (◆). Then

f �1((�1,$]) is a cubical complex denoted by $, and$1  $2 implies that $1 ✓ $2 ,

thus yielding a filtration of cubical complexes with $ as its filtration parameter. One

can generate a persistent homology by varying the value of filtration parameter

and computing the basis of homology group vector spaces for each simplicial com-

plex corresponding to the filtration parameter value. A graphical representation of

Ht(T) based on its homology group vector space basis is called a barcode diagram.

A barcode diagram helps to recognize the persistent topological features of a topo-

logical space. Figure 7.2 illustrates an example of a barcode diagram for a cubical

complex. The diagram plots a set of horizontal line segments whose x-axis spans

a range of $ (filtration parameter values) and whose y-axis depicts the homology

group vector space basis in an arbitrary ordering. The number of arrows in the

diagram indicates the count of persistent topological features of T.

7.5.2 Separating occupied and unoccupied grid cells with adaptive thresholding

Now we describe our technique of separating occupied grid cells from free ones

applying persistent homology [39], a topological data analysis (TDA) technique

based on algebraic topology [60], to automatically find a threshold based on an

occupancy map’s Pmi
j
. This TDA-based technique provides an adaptive method

for thresholding an occupancy grid map of a domain that contains obstacles at var-

ious length scales. In fact, it can also be used with other occupancy grid mapping

methods for automated thresholding of the occupancy grid map. In this approach,

we threshold Pmi
j

at various levels, compute the numbers of topological features

(obstacles) in the domain corresponding to each level of thresholding, and identify

the threshold value above which topological features persist. As mentioned in

[73], a filtration of cubical complexes based on a parameter called the filtration
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parameter is required to compute the persistent homology. In order to be consis-

tent with definition of filtration, Pmi
j

of the unexplored cells are set to unity. We

define the filtration parameter $ as a threshold for identifying obstacle-free grid

cells mi
j if Pmi

j
< $. The methods starts by adding those 2-cubes(square ⇤2) to a

cubical complex whose all four vertices(⇤0) belong to the center of grid cells with

probability of occupancy is less than $. This process is repeated for increasing

sequence of $ values, which results in a filtration. It is to be noted that a 2-cube

is added to the cubical complex only if it is not previously present in the complex.

Once a filtration is constructed, a barcode diagram is used to identify the number

of topological features in the domain, which is given by the number of barcode

arrows in each homology group. The threshold $cls for classification of the grid

cells is defined as the minimum value of$ for which all the topological features are

captured by the corresponding cubical complex. In other words, $cls is the value

of $ for which all the barcode segments except the arrows are annihilated for all

values of $ greater than this value. This computation is done in practice by taking

the maximum value of $ that is spanned by the terminating barcode segments in

all the homology groups.

The persistent homology computation were done using the C++ program

Perseus [92] and barcode diagram plots were generated using MATLAB. Since

Perseus accepts only integers as filtration parameter, Pmi
j
values of each map were

scaled between 0 and 255 before inputing the data into software. Since the results

presented in this paper are only for two-dimensional domains, we restricted the

persistent homology computations to dimensions zero and one.
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(a) (b) (c) (d) (e)

Figure 7.3: Environments used for simulation. (a) a cave environment (b) a plain

environment (c) floor plan of an autonomy lab (d) rough sketch of university of

Frieburg (e) floor of a robotics lab in University of Auckland. All these maps were

taken from [150]

7.6 SIMULATION RESULTS

In this section, the proposed approach of information based exploration and

distributed mapping technique is assessed in simulation and the results obtained

are presented. We implemented the proposed methodology using kinematic robots

equipped with on-board laser range sensors on a swarm robot simulator known

as Stage simulator [149]. Figure 7.3 depicts various environments used for simula-

tions. The robots were controlled through velocity commands and had maximum

speed of 40 cm/s. Also the simulated robots has an on-board laser range sensor

with a maximum range of 2 meters. In order for the robots to perform the informa-

tion correlated Lévy walk in the super di↵usive regime, the Lévy exponent ↵ was

chosen to be 1.5.

Figure 7.4 shows the post exploration map stored in a robot belonging to the

swarm which explored the domains depicted in Figure 7.3. Each map in Figure 7.4

are outcomes of exploring domains of various size, shapes and layouts, as given in

the description of Figure 7.4. It very clear from Figure 7.4 that the resulting maps

estimate for the environments shown in Figure 7.3 reasonably well.
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(a) (b) (c) (d) (e)

Figure 7.4: Occupancy grid maps generated by a robot for various environments

through information based exploration and our distributed mapping strategy. The

black regions indicate a low probability of obstacle occupancy. Gray region indi-

cates the unexplored region. Evidently, the white regions show high probability

of obstacle occupancy (a) map generated when 5 robots explored a domain having

dimensions 16m ⇥ 16m with the layout depicted in Figure 7.3a for 1200s (b) map

generated when a single robot explored a domain having dimensions 16m ⇥ 16m

with the layout depicted in Figure 7.3b for 1800s (c) map generated when 20 robots

explored a domain having dimensions 40m ⇥ 30m with the layout depicted in Fig-

ure 7.3c for 900s (d) map generated when 50 robots explored a domain having

dimensions 90m ⇥ 80m with the layout depicted in Figure 7.3d for 3600s (e) map

generated when 10 robots explored a domain having dimensions 40m ⇥ 20m with

the layout depicted in Figure 7.3e for 1500s.

Figure 7.5 shows the snapshot of simulation for a cave type environment (Fig-

ure 7.3a) at various time instants. Also the occupancy grid map constructed by

the robot shown in a green dotted circle at these time instants are displayed in

Figure 7.6. The accompanying multimedia attachment shows the video of this

simulation with the occupancy grid map of two robots overlaid at the corners of

the simulated environment. From the video attachment and Figure 7.6, it is inter-

esting to examine how the robot’s occupancy map gets updated when it receive
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(a) 0s (b) 65s (c) 95s (d) 133s (e) 138s

(f) 460s (g) 470s (h) 771s (i) 800s (j) 897s

Figure 7.5: Screenshots of robots exploring the cave shown in Figure 7.3a. Caption

under each figure specify the time(in seconds) at which the screenshots were taken.

Figure 7.5a, Figure 7.5i and Figure 7.5j gives the top view of the simulation envi-

ronment. Figure 7.5b to Figure 7.5h portraits a perspective view of the simulation

arena. The red dotted lines among robots in the figures indicate that they are in

communication range of each other.

new laser range sensor measurements and when it interacts with its neighbors. In

order to understand asymptotic consensus on the occupancy grid map, we con-

ducted simulations using a swarm of 50 robots explored an environment of size

90m⇥80m having a layout as shown in Figure 7.3d for an hour. Figure 7.11a shows

the normalized 2 � norm of the 2D matrix P̄Mi(rearranged as a 2D matrix) of all

50 robots after the exploration time. The normalization is performed by dividing

2 � norm of P̄Mi with the maximum of the P̄Mi 2 � norm of values over all robots.

The plots show that norms of the occupancy grid maps of all robots are quite close.

The occupancy grid maps of some of the robots are shown in Figure 7.7. The e↵ect

of size of swarm robots on covering a domain having same size and layout as in

148



(a) 0s (b) 65s (c) 95s (d) 133s (e) 138s

(f) 460s (g) 470s (h) 771s (i) 800s (j) 897s

Figure 7.6: The occupancy map stored in the robot marked with a green dotted

circle in Figure 7.5 at di↵erent time instants.

Figure 7.3d is depicted in Figure 7.11b. Robot swarm of sizes 10, 20, 30, 40 and 50

were deployed for time interval of 3600s. The experiment was repeated 10 times

for each swarm size and the outcomes are portrayed in Figure 7.11b. Y-axis show

the percentage coverage of the domain by robots. X-axis represent the number of

robots deployed for exploration and mapping. The percentage coverage is calcu-

lated as the ratio of amount of area covered by the robot to total area of the domain

times 100.The error bars in the plot represent 25th and 75th percentile of the data

over the trails. From results shown in Figure 7.11b we find the converge increases

with increase in population size.

Figure 7.8 compares the variation of occupancy grid map’s entropy[142] over

time of exploration, when robots explored the domain through Lévy walk strategy

and with our exploration strategy(Section 7.3). The simulated experiments were

repeated 10 times. In all the three cases shown in the Figure 7.8, entropy of the

occupancy map is reduced faster by our information based exploration strategy
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(a) 1 (b) 4 (c) 8 (d) 9

(e) 12 (f) 14 (g) 37 (h) 45

Figure 7.7: Consensus in the occupancy grid maps stored in various robots of a

swarm of 50 robots after exploring for an hour. A swarm of fifty robots explored

an environment of size 90m ⇥ 80m having a layout as shown in Figure 7.3d. The

captions of under each figure indicates label of the robot that constructed the map.

when compared to standard Lévy walk based exploration. Similarly, Figure 7.9,

delineate the variation for domain converge over time of exploration for the two

exploration strategies considered earlier. By careful inspection of Figure 7.9 we find

that, our exploration strategy perform better in covering the domain compared to

Lévy walk. From Figure 7.8 and Figure 7.9 we find the performance of our strategy

is not very significant in case of cave and plain environment. This should be

because the domain is small and robots’ planning metric could be giving similar

value for all its generated paths, forcing them to have a more Lévy walk kind of

behavior.

Finally, in order to demonstrate usefulness of the TDA based adaptive threshold-

ing on occupancy grid maps to isolate occupied grid cells from free ones described
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(a) cave environment

0 100 200 300 400 500 600 700 800 900

Time of Exploration

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

E
n

tr
o

p
y
 o

f 
th

e
 m

a
p

106

Levy walk

MI Levy walk

levy walk 25th

levy walk 75th

MI levy walk 25th

MI levy walk 75th

(b) autonomy lab
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(c) plain environment

Figure 7.8: Comparison of variation of occupancy grid map’s entropy[142] over

time of exploration, when robots explored the domain using Lévy walk strategy

and with our exploration strategy(Section 7.3). The simulated experiments were

repeated 30 times. The x-axis of the plots indicates time of exploration. Y-axis

represents the entropy of occupancy grid map. Legends of the plots are as follows;

solid blue line : mean entropy for Lévy walk strategy, solid red line : mean entropy

for our information based exploration strategy(indicated as MI levy walk in plot

legends), dash with circle blue line : 25th percentile value of trails in the case of

Lévy walk, dash with square blue line : 75th percentile value of trails in the case of

Lévy walk, dash with circle red line : 25th percentile value of trails in the case of our

strategy(MI levy walk), dash with square blue line : 75th percentile value of trails

in the case of our strategy(MI levy walk). (a) Results of the simulations conducted

on a cave environment with layout Figure 7.3a and size 16m⇥ 16m, using a swarm

of 5 robots. (b) Results of the simulations conducted on an autonomy lab with

layout Figure 7.3c and size 40m ⇥ 30m, using a swarm of 20 robots. (c) Results of

the simulations conducted on a plain with layout Figure 7.3b and size 16m ⇥ 16m.

, using a swarm of 5 robots.

in Section 7.5. We apply the technique on maps shown Figure 7.4a and Figure 7.4c

and results are shown in Figure 7.10. Figure 7.10a and Figure 7.10b has one long
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(a) cave environment
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(b) autonomy lab
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(c) plain environment

Figure 7.9: Comparison of variation of domain’s coverage vs time of exploration,

when robots explored the domain using Lévy walk strategy and with our explo-

ration strategy(Section 7.3). The simulated experiments were repeated 30 times.

The x-axis of the plots indicates time of exploration. Y-axis represents the percent-

age coverage of the domain. Legends of the plots are as follows; solid blue line

: mean percentage coverage of the domain for Lévy walk strategy, solid red line

: mean percentage coverage of the domain for our information based exploration

strategy(indicated as MI levy walk in plot legends), dash with circle blue line :

25th percentile value of trails in the case of Lévy walk, dash with square blue line

: 75th percentile value of trails in the case of Lévy walk, dash with circle red line :

25th percentile value of trails in the case of our strategy(MI levy walk), dash with

square blue line : 75th percentile value of trails in the case of our strategy(MI levy

walk). (a) Results of the simulations conducted on a cave environment with layout

Figure 7.3a and size 16m⇥ 16m, using a swarm of 5 robots. (b) Results of the simu-

lations conducted on an autonomy lab with layout Figure 7.3c and size 40m⇥ 30m,

using a swarm of 20 robots. (c) Results of the simulations conducted on a plain

with layout Figure 7.3b and size 16m ⇥ 16m. , using a swarm of 5 robots.

arrow and four long arrows indicating that Figure 7.4a the map of Figure 7.3a has

one connected component and four obstacles respectively. Since when comparing
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Figure 7.10: Barcodes of the maps generated for two environments. X-axis of the

graphs represents filtration parameter ($), which varies from 0 to 250 representing

the pixel intensity of the occupancy grid map. The pixel intensity of mi is a scaled

value of Pmi
j

scaled between 0 and 255. The y-axis shows number of Homology

generators for dimensions zero(Figure 7.10a & Figure 7.10c) and one(Figure 7.10b

& Figure 7.10d). Figure 7.10a and Figure 7.10b are barcode diagrams generated

for map shown in Figure 7.4a. Comparing the termination points of the line seg-

ments(non arrows) in Figure 7.10a and Figure 7.10b, we find that grid cells with

pixel intensity greater than 204 should occupied. Figure 7.10c and Figure 7.10d

are barcode diagrams generated for map shown in Figure 7.4c. Again compar-

ing the termination points of the line segments(non arrows) in Figure 7.10c and

Figure 7.10d, we find that grid cells with pixel intensity greater than 204 should

occupied.

Figure 7.10a and Figure 7.10b, we find that the maximum filtration value for which

all the line segments(non-arrow) representing non persistent topological features
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Figure 7.11: (a) Consensus over the occupancy grid map constructor by 50 robots

which explored an environment of size 90m ⇥ 80m having a layout as shown in

Figure 7.3d, for a time period of 3600s. Each point in the plot represent the nor-

malized 2 � norm of the 2D matrix P̄Mi(rearranged as a 2D matrix) of robot Ri. The

normalization is performed by dividing 2 � norm of P̄Mi with the maximum of the

P̄Mi 2� norm of values over all robots. The plots show that norms of the occupancy

grid maps of all robots are quite close. The occupancy grid maps of some of the

robots are shown in Figure 7.7. (b) The e↵ect of size of swarm robots on covering

a domain having same size and layout as in Figure 7.11a. Robot swarm of sizes

10, 20, 30, 40 and 50 were deployed for time interval of 3600s. The experiment was

repeated 10 times for each swarm size. Y-axis show the percentage coverage of the

domain by robots. X-axis represent the number of robots deployed for exploration

and mapping. The percentage coverage is calculated as the ratio of amount of area

covered by the robot to total area of the domain times 100.The error bars in the plot

represent 25th and 75th percentile of the data over the trails.

terminate is 204. Therefore, any grid cell whose probability of occupancy is greater

than or equal to 0.8 is occupied. We arrive at a similar conclusion while examining

Figure 7.10c and Figure 7.10d.
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Figure 7.12: The experimental arena with obstacles. To minimize early robot

interaction, the robots were placed in specific starting locations. For consistency in

testing, the same positions were used for each trial.

7.7 EXPERIMENTS

To validate the theory and simulations established in the previous sections, a

physical experiment using a group of Lidar equipped, di↵erential-drive robots was

formulated. We will expand upon the equipment, obstacle setup, assumptions, and

results used in the following sections.

7.7.1 Experimental Setup

For the experiment, a 2.6 m x 1.6 m arena filled with obstacles of varying size,

shown in Figure 7.12, was created. The height of each obstacle was consistent with
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the bordering walls of the arena. To monitor the robots, a Microsoft LifeCam was

mounted to the ceiling of the laboratory and connected to a central computer. It

should be noted that the size of the arena was restricted due to the ceiling height on

which the overhead camera was mounted and having the camera option restrictions

arising from the OS on the central computer (Ubuntu).

Three Turtlebot 3 Burger robots were used to conduct the experiment. The

robot is equipped with a Raspberry Pi 3 for higher-level computation, an OpenCR

controller board containing a microcontroller and numerous sensors, and a 360�

Lidar. The robot maneuvers by means of two Dynamixal XL430-W250 actuators

in a di↵erential-drive configuration. For the higher level control, each robot runs

the Kinetic Kame version of the Robot Operating System (ROS) middleware on

Ubuntu Mate 16.04 installed on their respective Raspberry Pi 3.

The code used in simulation was modified to work in each robot and for other

experimental conditions presented by the arena. For example, the small arena

space required each robot’s Lidar range to be limited to 40 cm in front of the robotic

agent instead of the default 2 m range. The sensor range of the Lidar was limited

to 180� instead of the full 360�. A 3D printed mount was created to easily place

an ArUco fiducial marker on top of the robot without disrupting the Lidar sensor

readings.

Each robot was placed in di↵erent locations in the arena to prevent interactions

and information exchange at the beginning of the experiment. Figure 7.12 shows

the starting locations of each agent in the arena. The robots may move anywhere

in the arena and will avoid obstacles that are within their 180� sensing range.
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(a) Iteration 1 (b) Iteration 20

Figure 7.13: Generated maps by each robot (top to bottom: robot 1, robot 2, and

robot 3) over the course of a 10 minute trial. Every 30 seconds a map is saved along.

(a) are the first maps saved by the robots, and (b) are the last.
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Figure 7.14: Experimental results of the data taken from a robot after ten trails. (a)

The x-axis of the plot indicate time of exploration. Y-axis represent the entropy

of occupancy grid map. The solid blue line indicate the 50th percentile of the

data at various times. dash with circle blue line and dash with square blue line

represent the 25th and 75th percentile value of trails respectively. (b) The x-axis of

the plot indicate time of exploration. Y-axis represent the percentage coverage of

the domain. The solid blue line indicate the 50th percentile of the data at various

times. dash with circle blue line and dash with square blue line represent the 25th

and 75th percentile value of trails respectively.

7.7.2 Software Architecture

By using ROS, we were able to distribute much of the computing necessary for

the experiment. To do this, ROS utilizes the concept of Nodes, which contain code

for computing certain tasks. The information generated from these nodes can then

be sent to other nodes or can be self-contained. For our experiment, we distributed
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nodes across the multiple robots and in our central computer to better demonstrate

a distributed algorithm.

The central computer acted as a ROS Master, which connects nodes distributed

across multiple machines, and contained nodes pertaining to information acquisi-

tion from the overhead camera used to monitor the robots and to disseminate that

information to the robots. The ArUco markers on the robots are used to calculate

both position and orientation by the overhead camera node. Each robot requires

this information when building their maps and to identify neighbors who are in

their vicinity for sharing maps.

Each Turtlebot 3 Burger contained two nodes: one to send-receive information

sent to-and-from the OpenCR controller board, and another that provided high-

level control pertaining to the algorithm. All three agents communicate with the

central computer using the on-board WiFi modules located on the Raspberry Pi 3.

7.7.3 Experimental Results

A total of 10 experiment were run lasting 10 minutes each. The same robot

configuration was used for every test to keep the data generated consistent. After

every test, the maps generated every 30 seconds and entropy and coverage data

were collected from each robot for analysis. Figure 7.14a and Figure 7.14b shows

the variation of entropy of the occupancy map stored in a robot and percentage

coverage of the domain shown in Figure 7.12 over time of exploration respectively.
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Chapter 8

SCALAR FIELD ESTIMATION BY LARGE SENSOR NETWORKS WITH

PARTIALLY ACCESSIBLE MEASUREMENTS

Source: Ragesh K. Ramachandran and Berman [130]

Funding: NSF Awards CMMI-1363499

ABSTRACT

This chapter studies the problem of reconstructing a two-dimensional scalar field

using measurements from a subset of a network with local communication between

nodes. The problem considered in this chapter is the communication network of

the nodes to form either a chain or a grid topology. The reconstruction problem

is formulated as an optimization problem that is constrained by first-order linear

dynamics on a large interconnected system. To solve this problem, an optimization-

based scheme is employed that uses a gradient-based method with an analytical

computation of the gradient. The main contribution of the chapter is a derivation

of bounds on the trace of the observability Gramian of the system, which can be

used to quantify and compare the field estimation capabilities of chain and grid

networks. A comparison based on a performance measure related to theH2 norm

of the system is also used to study the robustness of the network topologies. The

results are validated in simulation using both Gaussian scalar fields and actual

ocean salinity data.
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The work in this chapter was first presented in [130]. In this work [130], we

investigate the e↵ect of network topology on the accuracy and robustness of a

method that we devise for reconstructing a static scalar field from partial obser-

vations. We note that our method can also be adapted to estimate a time-varying

scalar field whose dynamics are slower than the network information dynamics.

This method uses temporal data collected by the accessible nodes in the network

to estimate the initial measurements of the field that were obtained by the full

set of nodes. The nodes share their measurements with their neighbors through

a fixed communication network. The network is assigned either a grid or chain

topology, which are common candidates for approximating 1D and 2D domains

in practical applications. We specify that the information flow in the network is

governed by a first-order linear dynamical model. This simple model of infor-

mation dynamics represents the case where no data is stored in the nodes and a

single item of information is transmitted between nodes at a time. In addition, this

model yields di↵usive information dynamics that eventually approach a steady

state, which allows us to determine a time at which the data values at the nodes

have largely stabilized and thus gives a fixed time interval over which the data can

be retrieved. From a control theory perspective, the estimation problem addressed

by our method is equivalent to finding the initial condition of a linear dynamical

system given its inputs and outputs. The solution to this problem is associated

with the observability of the system.

We adopt a quantitative measure of observability, based on the trace of the

observability Gramian, that is similar to [102, 101, 157, 45, 90], departing from

the graph-theoretic methods used in [69, 83, 97, 100]. Our analysis makes use

of necessary and su�cient conditions for the observability spectral properties of

chain and grid networks, which are well-understood [97, 41]. In the main result
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of this paper, we derive bounds on the trace of the observability Gramian of an

undirected network and use these bounds to compare the estimation performance

of networks with either grid or chain topologies. We evaluate this performance

for our novel method of estimating the initial condition of a large network with

linear dynamics, which constitutes another contribution of this paper. We use an

optimization framework to address this estimation problem and derive the gradient

required to solve it. A third contribution of the paper is our characterization of a

network’s robustness to noise using a performance measure based on theH2 norm

of the system. We find that even with simple first-order information dynamics,

the topology of the network significantly a↵ects its estimation performance and

its robustness to noise. We illustrate our approach on both simulated and actual

two-dimensional scalar fields.

8.1 Related Work

Although there is a great deal of literature on optimal control, little work has

addressed the optimal estimation of initial conditions other than through the in-

version of the observability Gramian [74]. In general, the observability of a lin-

ear dynamical system can be verified by using the Kalman rank condition [62].

However, checking the rank condition for large interconnected systems is compu-

tationally intensive due to the high dimensionality of the observability Gramian.

For this reason, a less computationally intensive graph-theoretic characterization

of observability has been more widely used than a matrix-theoretic characteriza-

tion for large complex networked systems. The observability of complex networks

is studied in [83] using a graph-based approach, which presents a general result

that holds true for most of the chosen network parameters (the edge weights). In

[69], a graph-theoretic approach based on equitable partitions of graphs is used to
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derive necessary conditions for observability of networks. Alternately, [158] uses

a matrix-theoretic approach to develop a maximum multiplicity theory to charac-

terize the exact controllability of a network in terms of the minimum number of

required independent controller nodes based on the network spectrum.

8.2 Mathematical Preliminaries

A graph G can be defined as the tuple (V(G),E(G)), where V(G) is a set of N

vertices, or nodes, and E(G) =
�
(i, j) : i , j, i, j 2 V(G)

 
is a set of M edges. Nodes i

and j are called neighbors if (i, j) 2 E(G). The set of neighbors of node i is denoted

by Ni =
�
j : j 2 V(G), (i, j) 2 E(G)

 
. The degree di of a node i is defined as |Ni|. We

assume that G is finite, simple, and connected unless mentioned otherwise.

A graph G is associated with several matrices whose spectral properties will be

used to derive our results. The incidence matrix of a graph with arbitrary orientation

is defined as B(G) = [bij] 2 RN⇥M, where the entry bij = 1 if i is the initial node of

some edge j of G, bij = �1 if i is the terminal node of some edge j of G, and

bij = 0 otherwise. It can be shown that the left nullspace of B(G) is c1N, c 2 R,

where 1N is the N ⇥ 1 vector of ones [56]. The degree matrix �(G) of a graph is

given by �(G) = Diag(d1, ..., dN). The adjacency matrix A(G) = [aij] 2 RN⇥N has

entries aij = 1 when (i, j) 2 E(G) and aij = 0 otherwise. The graph Laplacian can

be defined from these two matrices as L(G) = �(G) � A(G). The Laplacian of an

undirected graph is symmetric and positive semidefinite, which implies that it has

real nonnegative eigenvalues �i(G), i = 1, ...n. The eigenvalues can be ordered as

�1(G)  �2(G)  ...  �N(G), where �1(G) = 0. The eigenvector corresponding to

eigenvalue �1(G) can be computed to be 1N. By Theorem 2.8 of [86], the graph is

connected if and only if �2(G) > 0.

Several other matrices will be defined as follows. An n1⇥n2 identity matrix will
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

20 19 18 17 1623 22 2129 28 27 26

41 42 43 44 4536 37 38 39 4031 32 33 34 35

50 49 48 47 4655 54 53 52 5160 59 58 57 56

71 72 73 74 7566 67 68 69 7061 62 63 64 65

80 79 78 77 7685 84 83 82 8190 89 88 87 86

101 102 103 104 10596 97 98 99 10091 92 93 94 95

30 25 24

(a) Chain topology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

26 27 28 29 3023 24 2517 18 19 20

41 42 43 44 4536 37 38 39 4031 32 33 34 35

56 57 58 59 6051 52 53 54 5546 47 48 49 50

71 72 73 74 7566 67 68 69 7061 62 63 64 65

86 87 88 89 9081 82 83 84 8576 77 78 79 80

101 102 103 104 10596 97 98 99 10091 92 93 94 95

16 21 22

(b) Grid topology

Figure 8.1: Illustration of the chain and grid network topologies. The blue circles

are nodes and are labeled by numbers. Nodes in the yellow region are accessible

nodes.

be denoted by In1⇥n2 , and an n1 ⇥ n2 matrix of zeros will be denoted by 0n1⇥n2 . The

matrix JN is defined as JN = 1N1T
N.

8.3 Problem Statement

Consider a set of N nodes with local communication ranges and local sensing

capabilities. The nodes are arranged in a bounded domain as shown in figure 8.1.

Each node is capable of measuring the value of a scalar field at its location and

communicating this value to its neighbors, which are defined as the nodes that
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are within its communication range. The nodes take measurements at some initial

time and transmit this information using a nearest-neighbor averaging rule, which

is described in Section 8.4. As shown in figure 8.1, we assume to have direct

access only to the measurements of a small subset of the nodes, which we call the

accessible nodes, which for instance may be closer to a particular boundary of the

domain. We also assume that the node positions are predetermined and that the

nodes employ feedback mechanisms to regulate their positions in the presence of

external disturbances.

We address the problem of reconstructing the initial measurements taken by all

the nodes from the measurements of the accessible nodes. This can be formulated as

the problem of determining whether the information flow dynamics in the network

are observable with respect to a set of given outputs. As discussed in the beginning

of this chapter, we restrict our investigation to chain and grid communication

topologies, whose structural observability properties are well-studied [97, 100].

We will focus on comparing the chain and grid topologies in terms of their utility

as communication networks to be used in reconstructing an initial set of data.

8.4 Network Model

The communication network among the N nodes is represented by an undi-

rected graph G = (V(G),E(G)), where vertex i 2 V(G) denotes node i, and nodes i

and j can communicate with each other if (i, j) 2 E(G). Let xi(t) 2 R be a scalar data

value obtained by node i at time t. We define the information flow dynamics of

node i as
dxi

dt
=

X

(i, j)2Ni

(xj � xi). (8.1)

The vector of all nodes’ information at time t is denoted by X(t) = [x1(t) x2(t) ...

xN(t)]T. Using Equation 8.1 to define the dynamics of xi(t) for each node i, we can
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define the information flow dynamics over the entire network as

Ẋ(t) = �L(G)X(t),

X(0) = X0, (8.2)

where X0 2 RN contains the unknown initial values of the data obtained by the

nodes at time t = 0, which is the information that we want to estimate.

We define Id = {I1, I2, ..., Ik} ✓ V(G) as the index set of the accessible nodes. The

output equation for the linear system Equation 8.2 is given by

Y(t) = CX(t), (8.3)

where Y(t) 2 Rk and C = [cij] 2 Rk⇥N is a sparse matrix whose entries are defined

as cij = 1 if i = j and i 2 Id, cij = 0 otherwise. If we number the nodes in such a way

that the first k output nodes are ordered from 1 to k, then C =
h
Ik⇥k 0k⇥(N�k)

i
.

As previously discussed, we focus on the case where the network has a chain or

grid communication topology. The type of topology a↵ects the network dynamics

through its associated graph Laplacian L(G). Let Gc and Gg represent communica-

tion networks with a chain topology and a grid topology, respectively. When the

nodes in each network are labeled as shown in figure 8.1a and figure 8.1b, then it

can be shown that L(Gc) and L(Gg) [41] have the following structures:

L(Gc) =

2
6666666666666666666666666666666666666666666666666664

1 �1 0 · · · · · · · · · · · · 0

�1 2 �1 . . .
...

0 �1 2 �1 . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . �1 2 �1 0

...
. . . �1 2 �1

0 · · · · · · · · · · · · 0 �1 1

3
7777777777777777777777777777777777777777777777777775

(8.4)
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and

L(Gg) =

2
6666666666666666666666666666666666666666666666666664

D1 �I 0 · · · · · · · · · · · · 0

�I D2 �I . . .
...

0 �I D2 �I . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . �I D2 �I 0

...
. . . �I D2 �I

0 · · · · · · · · · · · · 0 �I D1

3
7777777777777777777777777777777777777777777777777775

, (8.5)

where

D1 =

2
666666666666666666666666666664

2 �1 · · · · · · 0

�1 3 �1
...

...
. . . . . . . . .

...
... �1 3 �1

0 · · · · · · �1 2

3
777777777777777777777777777775

,

D2 =

2
666666666666666666666666666664

3 �1 · · · · · · 0

�1 4 �1
...

...
. . . . . . . . .

...
... �1 4 �1

0 · · · · · · �1 3

3
777777777777777777777777777775

.

Here, L(Gg) is a (l1l2) ⇥ (l1l2) matrix and D1,D2 are both l1 ⇥ l1 matrices, with

l1l2 = N. Without loss of generality, we assume that the grid is square, meaning

that l1 = l2 = l. We direct the reader to [10] for a numerical example of L(Gg).

The graph Laplacians L(Gc) and L(Gg) are constructed based on the numbering

of the vertex sets V(Gc) and V(Gg) that is shown in figure 8.1. Graphs that are con-

structed by reordering the vertices of the graphs shown in figure 8.1 are isomorphic

168



to the graphs in the figure. Isomorphic graphs are also isospectral [153].

Since the system Equation 8.2 is linear, its solution is [62]

X(t) = e�L(G)tX0. (8.6)

By combining Equation 8.3 and Equation 8.6, we obtain the map between the

unknown initial data X0 and the measured output Y(t) as

Y(t) = Ce�L(G)tX0. (8.7)

8.5 Scalar Field Reconstruction

The problem of scalar field reconstruction can now be framed as an inversion

of the map given by Equation 8.7. From linear systems theory, the property of

observability refers to the ability to determine an initial state X0 from the inputs and

outputs of a linear dynamical system [62]. For systems defined by Equation 8.2

with an associated chain or grid topology, the conditions for observability are well-

studied [97]. This ensures that the reconstruction problem can be solved for the

types of networks that we consider.

We solve the scalar field reconstruction problem by posing it as an optimization

problem. The optimization procedure uses observed data Ŷ(t) from the accessible

nodes over the time interval t 2 [0 T] to recover X0. The goal of the optimization

routine is to find the state X0 that minimizes the normed distance between this

observed data, Ŷ(t), and the output Y(t) computed using Equation 8.7. Therefore,

we can frame our optimization objective as the computation of X0 that minimizes

the functional J(X0), defined as

J(X0) =
1
2

Z T

0

���Y(t) � Ŷ(t)
���2

2
dt +

�
2
kX0k2 , (8.8)

subject to the constraint given by Equation 8.7. Here, � is the Tikhonov regular-

ization parameter, which is added to the objective function to prevent X0 from
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becoming large due to noise in the data [17].

The convexity of J(X0) ensures the convergence of gradient descent methods to

its global minima. We use one such method to compute the X0 that minimizes this

functional. The method requires us to compute the gradient of J(X0) with respect

to X0. This is done by combining Equation 8.7 and Equation 8.8, then taking the

Fréchet derivative of the resulting expression with respect to X0 [84]. Defining

 (t) = Ce�L(G)t, the gradient of J(X0) can be computed in this way as:

�J(X0) =
Z T

0
( (t))⇤

⇣
 (t)X0 � Ŷ(t)

⌘
dt + �X0, (8.9)

where ( (t))⇤ is the Hermitian adjoint of  (t), which in this case is simply the

Hermitian transpose [84].

The most computationally intensive part of calculating Equation 8.9 is comput-

ing the matrix exponential in  (t). There has been a great deal of literature about

approximate computation of the matrix exponential [64, 99], which by definition is

an infinite matrix series. In general, finding the matrix exponential is a computa-

tionally hard problem for very large matrices and computing it can be error-prone

if not done carefully, especially if spectral decomposition [127] of the matrix is not

possible [88]. We can calculate the gradient by noting that Y(t) =  (t)X0 by Equa-

tion 8.7, applying a change of variables ⌧ = T�t to the integral term in Equation 8.9,

and defining û(⌧) ⌘ Y(T � ⌧) � Ŷ(T � ⌧):
Z T

0
( (t))⇤

⇣
 (t)X0 � Ŷ(t)

⌘
dt

=

Z T

0
( (T � ⌧))⇤

⇣
Y(T � ⌧) � Ŷ(T � ⌧)

⌘
d⌧

=

Z T

0
e�L⇤(G)(T�⌧)C⇤û(⌧)d⌧.

This expression can be thought of as the solution P(⌧) of the following di↵erential
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(c) Absolute value of error

Figure 8.2: Gaussian function estimation using 100 nodes with a chain communi-

cation topology. Temporal data is acquired from 30 nodes over a time period of 50

sec.

equation at time ⌧ = T [62]:

dP
d⌧
= �L⇤(G)P(⌧) + C⇤û(⌧), P(0) = 0. (8.10)

Using this result, the gradient Equation 8.9 can be written as

�J(X0) = P(T) + �X0. (8.11)

To compute the gradient, we can solve Equation 8.10 forward to find P(T).

8.6 Simulations

We applied the method described in Section 8.5 to reconstruct a Gaussian scalar

field using 100 nodes, whose communication network either has a chain topology

or a grid topology. The simulations were performed on a normalized domain of

size 1 m ⇥ 1 m. The field was reconstructed using data collected over a time period

of 50 sec from a set of 30 accessible nodes. Figure 8.2 and Figure 8.3 illustrate the

results from using the chain and grid topologies, respectively. Each figure shows

the contour plots of the actual field, the estimated field, and absolute value of the
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Figure 8.3: Gaussian function estimation using 100 nodes with a grid communica-

tion topology. Temporal data is acquired from 30 nodes over a time period of 50

sec.
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Figure 8.4: Estimation of salinity (psu) over a section of the Atlantic Ocean at a

depth of 25 m. The network consists of 100 nodes with a grid communication

topology. Temporal data is acquired from 30 nodes over a time period of 50 sec.

error between these plots. From these plots, it is evident that the grid topology

yields a much more accurate reconstruction of the field than the chain topology,

even though both networks can be characterized as observable.

In order to test the performance of our method in a practical scenario, we applied

it in simulation to a set of real salinity data (psu), obtained from [93], over a section

of the Atlantic Ocean at a depth of 25 m. The salinity field was reconstructed
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over a time period of 50 sec using 100 nodes with a grid communication topology

and 30 accessible nodes whose temporal data were sampled at 10 Hz. During

the simulation, each node measured the salinity at its position and transmitted

this information to its neighboring nodes according to Equation 8.2. The temporal

observations by the accessible nodes, obtained over 50 sec according to Equation 8.3,

were used to reconstruct the salinity measurements taken by all the nodes using

the techniques described in Section 8.5. The contour plots in Figure 8.4 show that

the estimated salinity field reproduces the key features of the actual field with

reasonable accuracy.

8.7 E↵ect of Network Topology on Estimation Performance

In this section, we analyze the e↵ect of network topology on the accuracy of the

field estimation as the number of nodes in the network increases. Comparing the

results in Figure 8.2 and Figure 8.3, it is evident that there is some fundamental

limitation arising from the network structure which makes the system with the

chain topology practically unobservable. In the control theory literature, the degree

of observability is used as a metric of a system’s observability [90]. The observability

Gramian WO(0,T) can be used to compute the initial state of an observable linear

system from output data over time t 2 [0 T] [62]. This makes it a good candidate

for use in quantifying the relative observability among di↵erent systems. Due to

the duality of controllability and observability, the results associated with one of

these properties can be used for the other if interpreted properly. Commonly used

measures of the degree of observability (controllability) are the smallest eigen-

value, the trace, the determinant, and the condition number of the observability

(controllability) Gramian [101, 157, 45]. For large, sparse networked systems, the

Gramian can be highly ill-conditioned, which makes numerical computation of its
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Figure 8.5: Comparison of the degree of observability based on the trace of the

observability Gramian and its bounds. The trace shown in Figure 8.5a is computed

numerically using the eigenvectors of L(G).

minimum eigenvalue unstable. Although researchers have computed bounds on

the minimum eigenvalues of the Gramian [102], these bounds did not help to us

arrive at a conclusion since they were too close together.
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These factors prompted us to use the trace of the observability Gramian as

our metric for the degree of observability. Analogous to the interpretation of the

controllability Gramian in [102], the trace of the observability Gramian can be

interpreted as the average sensing e↵ort applied by a system to estimate its initial

state. For a communication network represented by G with information flow

dynamics given by Equation 8.2, the trace of the observability Gramian WO(0,T) is

defined as

Trace(WO(0,T)) = Trace
 Z T

0
e�L(G)⇤tC⇤Ce�L(G)tdt

!
. (8.12)

Following steps similar to those in [102], we use Theorem 8 below to derive

upper and lower bounds on the trace of the observability Gramian for networks

with chain and grid topologies. Figure 8.5 compares these lower and upper bounds

for two network sizes as a function of the sensor-to-total-node ratio, where the

sensors are defined as the accessible nodes. It is clear from the plots that the average

sensing e↵ort required by the chain network is greater than that of the grid network

for a given measurement energy, which is defined as kY(t)k2L2([0 T],Rk) [102], where

Y(t) is obtained from Equation 8.3.

Theorem 8. Let G be an unweighted, undirected graph that represents the communica-

tion network of a set of N nodes with information dynamics and output map given by

Equation 8.2 and Equation 8.3, respectively. If we label V(G) such that k  N sensor

nodes in V(G) are labeled as 1, 2, ..., k, then C =
h
Ik⇥k 0k⇥(N�k)

i
. Assuming that L(G) is

diagonalizable and that �1 � �2 � ... � �N are its eigenvalues, there exist real constants

c1  c2  ...  cN such that
kX

i=1

ci  Trace (WO(0,T)) 
k�1X

i=0

cN�i, (8.13)

where ci =
R T

0 e�2�itdt.
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Proof. From the definition of the trace operator, it can be shown that the trace and

integral operators are commutative. Using this property and the property that

the trace operator is invariant under cyclic permutation [66], Equation 8.12 can be

written as

Trace(WO(0,T))

=

Z T

0
Trace

⇣
e�L(G)⇤tC⇤Ce�L(G)t

⌘
dt

=

Z T

0
Trace

⇣
C⇤Ce(�L(G)t�L(G)⇤t)

⌘
dt.

Since the Laplacian of an unweighted, undirected graph is a Hermitian matrix, this

equation becomes

Trace(WO(0,T)) =
Z T

0
Trace

⇣
C⇤Ce�2L(G)t

⌘
dt.

Let L(G) = V⇤V⇤ such that⇤ = Diag(�1,�2, ...,�N) and the columns of V 2 RN⇥N are

given by the corresponding eigenvectors of L(G). Then using the decomposition

of the matrix exponential [127], the equation becomes

Trace(WO(0,T)) =
Z T

0
Trace

⇣
C⇤CVe�2⇤tV⇤

⌘
dt

Trace(WO(0,T)) = Trace
 
C⇤CV

 Z T

0
e�2⇤tdt

!
V⇤

!
.

The matrix exponential
R T

0 e�2⇤tdt is a diagonal matrix given by

Diag
⇣R T

0 e�2�1tdt,
R T

0 e�2�2tdt, ...,
R T

0 e�2�Ntdt
⌘
. We define ci =

R T

0 e�2�itdt. Then, since

�1 � �2 � ... � �N, by definition we have that c1  c2  ...  cN.

Let M = V
✓R T

0 e�2⇤tdt
◆

V⇤. Then we see that M is a Hermitian matrix with

eigenvalues c1, c2, ..., cN and the same eigenvectors as L(G). Also, we find that C⇤C

is a diagonal matrix with the first k diagonal elements equal to 1 and the rest equal
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to 0. Defining P = C⇤C, we obtain a compact form for the trace of the observability

Gramian,

Trace (WO(0,T)) = Trace (PM) . (8.14)

Equation 8.14 can be reduced to:

Trace (WO(0,T)) = Trace (PM) =
kX

i=1

Mii,

where Mii denotes the ith diagonal entry of M.

From Theorem 1 of [29], we obtain the following lower bound:

Trace (WO(0,T)) =
kX

i=1

Mii �
kX

i=1

ci. (8.15)

Now by applying Von Neumann’s trace inequality [66] to Equation 8.14 and the

fact that WO(0,T) is at least positive semidefinite, we find that

Trace (PM) 
n�1X

i=0

� (P)n�i � (M)n�i

where �(·)i is the ith singular value of a matrix. The singular values are arranged

in increasing order, �(·)1  �(·)2  ...  �(·)N, and here they coincide with the

eigenvalues of the matrices. Note that only the last k eigenvalues of P are nonzero

and are equal to 1. Thus, we obtain the upper bound:

Trace (WO(0,T)) 
k�1X

i=0

cN�i. (8.16)

⇤

Since we can obtain the eigenvalues of L(Gc) and L(Gg) analytically [41], we

can use Theorem 8 to analyze and compare the scaling properties of the chain and

grid network topologies in a more precise fashion. For each type of network, we

specify that k of the N total nodes in the network are sensors (accessible nodes),
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where k <
p

N. Without loss of generality, we assume that the grid is square

to simplify the analysis. By Theorem 8, the upper bound on Trace (WO(0,T)) is

given by
Pk�1

i=0 cN�i, where cN�i =
R T

0 e�2�N�itdt. Let �c
N�i and �g

N�i denote the (N � i)th

eigenvalue of L(Gc) and L(Gg), respectively. Then from [41], �c
N�i = 4 sin2

⇣
⇡i
2N

⌘
and

�g
N�i = 4 sin2

⇣
⇡i

2
p

N

⌘
for i 2 {0, 1, ..., k � 1}. Since k <

p
N implies that k

N <
1p
N

, for

networks with large N we have that �c
N�i ⇡ (⇡i

N )2 and �g
N�i ⇡ ( ⇡ip

N
)2. Therefore, the

upper bound on Trace (WO(0,T)) for the chain network is given by:

k�1X

i=0

cc
N�i =

k�1X

i=0

Z T

0
e�2 ⇡

2i2
N2 tdt, (8.17)

which can be simplified to

k�1X

i=0

cc
N�i = T +

N2

2⇡2

0
BBBBB@

k�1X

i=1

1 � e�2 ⇡
2i2

N2 T

i2

1
CCCCCA . (8.18)

Similarly, the upper bound on Trace (WO(0,T)) for the grid network can be reduced

to:
k�1X

i=0

cg
N�i = T +

N
2⇡2

0
BBBBB@

k�1X

i=1

1 � e�2 ⇡
2i2
N T

i2

1
CCCCCA . (8.19)

From Equation 8.18 and Equation 8.19, we observe that the upper bound on the

average sensing e↵ort required by the chain network scales quadratically with the

total number of nodes N, whereas this upper bound for the grid network scales

linearly with N.

8.8 E↵ect of Network Topology on Robustness to Noise

In this section, we analyze the e↵ect of noise on the output of first-order linear

dynamics that evolve on chain and grid network topologies. We assume that the

data at each node in the network is a↵ected by white noise with zero mean and unit

covariance. Therefore, the augmented system dynamics described by Equation 8.2
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can be written as

Ẋ(t) = �L(G)X(t) +W, (8.20)

where W 2 RN denotes a zero mean, unit covariance white noise process. The

output equation is the same as Equation 8.3.

As defined in the robust control literature, the H2 norm of a system gives the

steady-state variance of the output when the input to the system is white noise

and when �L(G) is Hurwitz [37]. However, for unstable systems, the finite steady-

state variance can be computed only when the unstable modes are unobservable

from the outputs [9]. For L(G), zero is the only unstable mode with corresponding

eigenvector 1N, which does not a↵ect the steady-state variance of the output. If we

can make the zero mode unobservable, then it is still possible to use the H2 norm

as a measure to quantify the e↵ect of noise on the system output.

In order to do so, we follow the approach in [122], which uses the first-order

Laplacian energy. This quantity is essentially theH2 norm of a system if the matrix

C in Equation 8.3 is chosen in such a way that it annihilates the vector 1N. This can

be done by defining C to be an incidence matrix of a graph Gk. Denoting this new

C by Ĉ, we have that L(Gk) = ĈTĈ. Then L(Gk)1N = 0, which implies that Ĉ1N = 0

since ker(Ĉ) = ker(ĈTĈ). Note that Ĉ need not necessarily be the incidence matrix

of a graph Gk; the only condition required is that ĈTĈ = L(Gk).

Now, if Gk is chosen to be a weighted complete graphKN whose edges all have

weight 1
N , then L(Gk) = IN⇥N � 1

N JN. The first-order Laplacian energy, H (1)
KN

(L(G)),

for the corresponding C can be defined from [122] as

H (1)
KN

(L(G)) =
N�1X

i=1

1
2�i
, (8.21)

where �1 � �2 � ... � �N = 0 are the eigenvalues of L(G).

In figure 8.6, we compare H (1)
KN

(L(G)) for graphs with grid and chain network
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Figure 8.6: Performance measure based on the first-order Laplacian energy.

topologies as a function of the total number of nodes in the network. The plot

shows that the grid network is more e↵ective than the chain network at mitigating

the e↵ect of noise on the system output for a given number of nodes.
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Chapter 9

CONCLUSION AND FUTURE WORK

This thesis has presented approaches for solving the problem of exploring and

mapping an unknown environment using resource-constrained robotic swarms,

outlined in Chapter 1. The thesis also introduces and solves the problem of re-

constructing two-dimensional scalar field using measurements from a subset of a

network with local communication between nodes in a sensor network. Chapter 3

describes an approach to mapping the geometry of a single region of interest using

observations from a swarm of robots without communication or the ability to mea-

sure or estimate their location. The approach solves the mapping problem by

formulating it as an optimal control problem for a set of partial di↵erential equa-

tions. Chapter 4 and Chapter 5 focuses on quantifying the topological features

and generating the map of an unknown environment respectively using uncertain

position data from the swarm of robots that explored the unknown environment.

The approaches presented in Chapter 4 and Chapter 5 use concepts from algebraic

topology to perform the task. Also, Chapter 6 extended the strategy presented in

Chapter 5 to construct a metric map of the unknown environment using data from

the robots that explored the unknown environment. For the scenario described in

this chapter, the robots use the data obtained during random exploration of the

domain by combining onboard odometry information with noisy measurements

of signals received from transmitters located outside the domain. The approach is

substantiated with theoretical results to prove its completeness and to analyze its

time complexity. A novel exploration strategy which combines information theo-

retic concepts with Lévy walk is delineated in Chapter 7. This chapter also outlines
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an occupancy grid map based distributed mapping technique which invokes the

ideas behind average consensus in time-varying networks. Unlike other mapping

strategies presented in this thesis, the distributed mapping computes the map of

the explored domain online. The strategy also ensures that the local occupancy

grid map stored in each robot converges to the global map of the domain. Finally, in

Chapter 8 the problem of mapping a two-dimensional scalar field using measurements

from a subset of a network with local communication between nodes is studied.

Apart from this the chapter also derives bounds on the trace of the observability

Gramian of the large network system, which can be used to quantify and compare

the field estimation capabilities of chain and grid networks. A comparison based on

a performance measure related to theH2 norm of the system is also used to study

the robustness of the network topologies. All strategies described in this thesis are

validated through simulations. The strategies presented in Chapter 4 and Chap-

ter 5 were experimentally validated using robotic platform Pheeno. The exploration

and distributed mapping strategies present in Chapter 7 were validated using the

Turtlebot 3 Burger robots. The following sections describe conclusions and possible

future research directions that pertain to the work in Chapter 3 to Chapter 8.

9.1 An Advection-Di↵usion-Reaction Based Approach to Mapping an

Environmental Feature

Chapter 3 presented a method for mapping an environmental feature using a

robotic swarm that exhibits di↵usive motion and lacks localization and inter-robot

communication. The approach employs optimal control techniques to reconstruct

a spatially varying function that represents the feature of interest. This function is

estimated using temporal data on the proportion of active robots, which have not

encountered the feature, at each instant of time. The simulation results indicate that
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this methodology can accurately reconstruct the feature when the data is obtained

from multiple swarm deployments that originate at di↵erent locations throughout

the domain.

A major factor that contributes to mapping inaccuracies in the work presented

in Chapter 3 is the decrease in number of active robots during a swarm deployment

as robots encounter a feature of interest. This decrease in active robots can reduce

the correspondence between the density fields of active robots in the macroscopic

and microscopic models. This decrease can be prevented if the robots perform an

obstacle avoidance maneuver upon encountering a feature, staying in the active

state rather than entering the passive state. The corresponding macroscopic PDE

model of the swarm population dynamics would need to include this avoidance

behavior. An approach to incorporate the obstacle avoidance behavior in the PDE is

to model the set of obstacles as a spatially-dependent potential function �(x) called

a navigation function [110]. In the microscopic model, the negative gradient of the

potential function would generate a component of the robots’ velocity that guides

the robots away from obstacles. In the macroscopic model, this obstacle avoidance

would be implemented by modifying the right-hand side of Equation 3.3 to be

r · (Dru � v(t)u + r�(x)u). Then the problem of mapping the domain can be

reduced to finding �(x) or the support of this function [79] from the arrival times

of robots near the boundary of the domain.

An experimental verification of the PDE based strategy would be an interesting

future work. Since the robot capability requirements for the strategy is minimal,

the experiment can be conducted using a swarm of nanoparticles [61] that advect

and di↵use through fluid flow in a microfluidic channel with a circular obsta-

cle (Figure 9.1), which represents a cellular structure of interest such as a tumor.

The primary goal of these experiments is to estimate the distance of the obsta-
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(a) Circular obstacle (b) Nanoparticles near the circular obstacle

Figure 9.1: Left: Grayscale image of a circular obstacle in a microfluidic channel,

as seen under an electron microscope. Right: 2µm Nanoparticles (in red) near the

obstacle. The image is a superposition of a time-lapse series and was taken using

an inverted fluorescent microscope. Images are from the Bristol Robotics Laboratory,

directed by Prof. Sabine Hauert.

cle from the entrance to the channel using observations of the nanoparticles over

time. Nanoparticles are a suitable platform for testing this mapping approach:

they can be deployed in massive numbers, thus justifying the use of a macroscopic

PDE model, and they can be approximated as point-mass robots, given their ex-

tremely small dimensions in comparison to their environment. Unlike the scenario

described in Section 3.2, the nanoparticles do not have the ability to identify the ob-

stacle and store their encounter times with it. To implement the mapping strategy,

the nanoparticles will need to be engineered to adhere to the obstacle upon contact,

and the number of “active” (i.e., moving) nanoparticles over time will need to be

counted using image processing software.
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9.2 A Probabilistic Topological Approach to Quantifying Environmental

Features

Chapter 4 described the formulation of a new approach to identifying the num-

bers of topological features in an unknown domain by applying tools from Topo-

logical Data Analysis (TDA) to data collected by a robotic swarm. The proposed

methodology was shown to be e↵ective through simulations on di↵erent domains

and experiments with mobile robots. It may be noted that the point cloud gener-

ated in the procedure is embedded with a metric, making it a metric space. In future,

this metric could be incorporated into the approach to constructing a metric map

of the unknown environment.

9.3 A Probabilistic Approach to Constructing Topological Maps of an

Environment

In Chapter 5 a novel approach for automated generation of the topological

map of an unknown environment using data collected by a robotic swarm without

global localization or communication was formulated. The procedure combines

tools from topological data analysis with graph-based algorithms to construct

an approximate Generalized Voronoi Diagram, which yields collision-free paths

through the environment for safe robot navigation. The proposed methodology

was validated through simulations of domains with di↵erent numbers of obstacles

and experiments with mobile robots.
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9.4 Automated Construction of Metric Maps using a Stochastic Robotic Swarm

Leveraging Received Signal Strength

A technique for automatically generating the metric map of an unknown envi-

ronment as an occupancy grid map using data collected by a robotic swarm without

global localization or inter-robot communication was proposed in Chapter 6. This

data combines the robots’ odometry information with their noisy measurements

of signals from transmitters outside the domain. The approach was validated

through simulations on domains with di↵erent numbers of obstacles and robots

and di↵erent deployment times. We plan to validate our method with multi-robot

experiments and investigate the e↵ect of distance-varying sensor noise models on

the map accuracy.

9.5 Future work for topological approach to mapping

In future, topological methods presented in Chapter 4 to Chapter 6 can be ex-

tended to develop alternate mapping techniques using Signal Embedding Theorem

proved in [112]. Signal Embedding Theorem states that a set of five signals that

vary smoothly within an environment can be used to localize a receiver in the envi-

ronment. Examples of signals that could be used are the intensity of a radio signal

or a smoothly-varying heat profile. Based on the theorem mapping strategy that

uses topological data analysis techniques to compute the topological features of an

unknown domain from measurements of five distinct types of signals that are re-

ceived by a swarm of robots during random exploration can developed. One could

use a non-linear dimensionality reduction technique like laplacian eigenmaps[85]

to invert the map from two dimensional coordinates to five dimensional signals.

Schwartz et. al [119] approaches the localization problem in a similar way by com-
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bining the non-linear dimensionality reduction techniques with artificial neural

networks.

9.6 Information correlated Lévy walk exploration and distributed mapping

In Chapter 7, a novel methodology to map an unknown environment in form

of occupancy grid map using a swarm of robots in a distributed fashion was devel-

oped. We also developed an exploration strategy based on information correlated

Lévy walk, which directed Lévy walking robots to regions with more information

gain. Finally, we demonstrated that our TDA based approach developed in our

early works which was initially used to construct topological maps of unknown

domains can also be used for adaptively thresholding occupancy grid maps. The

various techniques developed in this paper is validated through simulation and

experiments on domains with di↵erent size and shapes. Overall, we believe this to

be an e↵ective distributed mapping approach for robot swarms due to its scalability

and robustness to robot failures. In future work, it would be interesting to extend

our mapping strategy to the case of weak or no global localization information and

also analysis the technique to understand the kind of guarantee our strategy can

provide in a weak localization setting. This could become a viable technology in

future as our approach can then be coupled with existing ultra wide band(UWB)

or received signal strength indicator(RSSI) technologies to perform mapping on

large complex environments. We would also like to derive analytic equations de-

scribing the evolution of robot population dispersing in a domain according to our

information correlated Lévy walk strategy.
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9.7 Scalar field estimation using a sensor network

A methodology to estimate the initial state of a large networked system of nodes

with first-order linear information dynamics using output measurements from a

subset of the nodes was presented in Chapter 8. The work in Chapter 8 outlines

the advantages of a grid network over a chain network in the estimation of a two-

dimensional scalar field, even though both networks can be made observable by

construction. A performance measure based on the H2 norm of the network was

used to characterize the robustness of the network dynamics based on its structure.

As an extension to the work presented in Chapter 8, the e↵ect of sensor network

topology on distributed estimation of scalar fields by a network can be investigated.

This work would require the application of graph theoretic methods to derive

conditions on the network topology that will enable distributed estimation of a

scalar field. The goal of this work would be to investigate the ability of a particular

communication network topology to perform distributed estimation of scalar field

in a robust fashion. In steady state, each node would have an estimate of the whole

network field.
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of complex systems. Proc. of the National Academy of Sciences, 110(7):2460–2465,
2013. doi: 10.1073/pnas.1215508110. URL http://www.pnas.org/content/
110/7/2460.abstract.

[84] David G. Luenberger. Optimization by Vector Space Methods. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1997. ISBN 047118117X.

[85] Yunqian Ma and Yun Fu. Manifold Learning Theory and Applications. CRC
Press, Inc., Boca Raton, FL, USA, 1st edition, 2011. ISBN 1439871094,
9781439871096.

[86] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods for Multiagent Net-
works. Princeton University Press, Princeton, NJ, USA, 1st edition, Sept.
2010.

[87] Daniel Meyer-Delius, Maximilian Beinhofer, and Wolfram Burgard. Occu-
pancy grid models for robot mapping in changing environments. In Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI’12,
pages 2024–2030. AAAI Press, 2012. URL http://dl.acm.org/citation.
cfm?id=2900929.2901014.

[88] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49,
2003. doi: 10.1137/S00361445024180. URL http://dx.doi.org/10.1137/
S00361445024180.

[89] L. Moreau. Stability of multiagent systems with time-dependent communi-
cation links. IEEE Transactions on Automatic Control, 50(2):169–182, Feb 2005.
ISSN 0018-9286. doi: 10.1109/TAC.2004.841888.

195

https://books.google.com/books?id=osXw-pRsptoC
http://www.pnas.org/content/110/7/2460.abstract
http://www.pnas.org/content/110/7/2460.abstract
http://dl.acm.org/citation.cfm?id=2900929.2901014
http://dl.acm.org/citation.cfm?id=2900929.2901014
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180


[90] P. C. Müller and H. I. Weber. Analysis and optimization of certain qualities
of controllability and observability for linear dynamical systems. Automatica,
8(3):237–246, May 1972. ISSN 0005-1098. doi: 10.1016/0005-1098(72)90044-1.
URL http://dx.doi.org/10.1016/0005-1098(72)90044-1.

[91] J.R. Munkres. Topology: A First Course. Prentice-Hall, 1988.
ISBN 9780876922903. URL https://books.google.co.in/books?id=

wFpYPwAACAAJ.

[92] Vidit Nanda. Perseus, the persistent homology software. http://www.sas.
upenn.edu/˜vnanda/perseus, May 2018.

[93] National Centers for Environment Information. Salinity of Atlantic
ocean. http://ecowatch.ncddc.noaa.gov/thredds/catalog/amseas/

catalog.html, Sept. 2015.
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The adjoint equation ruL = 0 implies that [ru1L, ...,ruiL, ...,ruNL] = 0. From
Equation 3.11,

ruiL = ruiJ(u,K) + rui

NX

j=1

hpj, j(uj,K)i

= ruiJ(ui,K) + ruihpi, i(ui,K)i, (A.1)

since a term in the sum is a function of ui only when i = j. By Equation 3.10,

ruiJ(ui,K) = rui

NX

j=1

WjJj(uj) =Wirui Ji(ui). (A.2)

From Equation 3.9,

rui Ji(ui) = rui

✓1
2

���(Dui)(t) � gi(t)
���2

L2([0,T])

◆
, (A.3)

where D := U ! L2([0,T]) and (Dui)(t) =
R
⌦

ui(~x, t)d~x. Then, by the chain rule of
di↵erentiation [63, 16], the directional derivative of Ji(ui), rui Ji(ui), is given by

hrui Ji(ui), siU = h(Dui)(t) � gi(t),DsiL2([0,T]) = hD⇤((Dui)(t) � gi(t)), siU. (A.4)

Here, D⇤ := L2([0,T]) ! U and (D⇤ f )(t) = f (t) · ~1⌦(~x), where f (t) 2 L2([0,T]) and
~1⌦ is the indicator function of ⌦ ⇢ R2. We can show that hDy, f i = hy,D⇤ f i 8y 2
U, f 2 L2([0,T]). Therefore,

rui Ji(ui) = D⇤((Dui)(t) � gi(t)). (A.5)

By definition,

hpi,rui i(ui,K)si = hrui i(ui,K)⇤pi, si 8s 2 U, (A.6)

where rui i(ui,K)⇤ is the adjoint operator of rui i(ui,K) corresponding to the inner
product of the Hilbert space. Now, by taking the directional derivative of i(ui,K)
at ui in the direction of s, we obtain

rui i(ui,K)s =
@s
@t
� (r · (Drs � vi(t)s) � kK(~x)s). (A.7)

Substituting Equation A.7 into Equation A.6 yields

hpi,rui i(ui,K)si =
Z T

0
hpi,
@s
@t
iL2(⌦) � hpi,Dr2si + hpi,r · vi(t)si + hpi, kK(~x)si.

Using integration by parts on the integral term in the equation above, we get
Z T

0
hpi,
@s
@t
iL2(⌦) = hpi(T), s(T)i � hpi(0), s(0)i �

Z T

0
hs, @pi

@t
iL2(⌦).

As this is true for all s 2 U, we could choose the s with s(0) = 0 and construct pi(T)
such that

R T

0 hpi, @s@t iL2(⌦) =
R T

0 h�
@pi
@t , siL2(⌦). Thus, we choose the final condition of the

adjoint equation as pi(T) = 0. We now make use of the following lemma:
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Lemma 2. Let L and L⇤ be operators defined by L : L2(0,T; V) ! L2(0,T; V⇤) and
L⇤ : L2(0,T; V)! L2(0,T; V⇤), respectively. The variational form of L is:

hLu,�iV⇤,V = �
D
Dru,r�

E
L2(⌦)
� hv · ru,�iL2(⌦) +

Z

@⌦

~n · (vu�)dx

8� 2 V. Also, by Lagrange’s identity, hLu, piV⇤,V = hu,L⇤piV,V⇤ 8u, p 2 L2(0,T; V). We
use the zero-flux boundary condition in Equation 3.4 to compute the variational form of the
operator L⇤ to be hL⇤p,�iV⇤,V = �

D
Drp,r�

E
L2(⌦)
+ hv · rp,�iL2(⌦) 8p 2 L2(0,T; V) and

8� 2 V.

Using the variational form of the Laplacian as in Equation 3.8 and applying
lemma 2 and integration by parts, we can show that �hpi,Dr2si + hpi,r · vi(t)si
can be transformed into � hDr2pi, si � hr · vi(t)pi, si with the boundary condition
~n · rpi = 0. Finally, we observe that hpi,K(~x)si = hpiK(~x), si. By combining these
results with Equation A.1, Equation A.4, and Equation A.6, we obtain

hrui Ji(ui), si + h�
@pi

@t
�Dr2pi � r · vi(t)pi + pikK(~x), si = 0.

Thus, the set of adjoint equations for the system defined by the ith set of constraints,
 i(ui,K), with respect to the objective functional, J, is given by

�@pi

@t
= r · (Drpi + vi(t)pi) � pikK(~x) � rui Ji(ui) in L (A.8)

with the Neumann boundary conditions

~n · rpi = 0 on �, pi(T) = 0, i = 1, ...,N. (A.9)

Here, Equation A.8 with Equation A.9 has a solution in the weak sense.
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Using a similar analysis to the one in appendix A, we find that rKL reduces to

rKL = rKJ(u,K) +
NX

i=1

rKhpi, i(ui,K)i. (B.1)

From Equation 3.10, we can derive the following expressions:

rKJ(u,K) = rK
�
2
kK(~x)k2L2(⌦), hrKJ(u,K), si = h�K(~x), si. (B.2)

As in appendix A, we could express hpi,rK i(ui,K)si as hrK i(ui,K)⇤pi, si 8s 2
L2(⌦), where rK i(ui,K)⇤ is the adjoint operator of rK i(ui,K) corresponding to
the inner product of the Hilbert space. Now, by taking the directional derivative of
 i(ui,K) at K in the direction of s, we find that rK i(ui,K)s = kuis. Therefore, with
further simplification, we can show that

hrK i(ui,K)⇤pi, si = h(⌅(kuipi))(~x), siL2(⌦), (B.3)

where ⌅ := L2(0,T;⌦)! L2(⌦) and (⌅ f )(~x) =
R T

0 f dt for all f 2 L2([0,T];⌦) and ~x 2
⌦. By combining Equation B.1-Equation B.3, we formulate the objective functional
derivative as

J0 =
NX

i=1

(⌅(kuipi))(~x) + �K(~x). (B.4)

Thus, the computation of J0 requires ui and pi, which can be obtained by solving
 i(ui,K) forward and solving Equation A.8, Equation A.9 backward.
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By definition,

I[ci,a; zi,a
⌧ ] =

Z

z2zi,a
⌧

X

c2ci,a

P(c, z) log
 
P(c, z)
P(c)P(z)

!
dz

this can be rewritten as,

I[ci,a; zi,a
⌧ ] =

Z

z2zi,a
⌧

X

c2ci,a

P(c, z) log (P(z, c)) dz

�
Z

z2zi,a
⌧

X

c2ci,a

P(c, z) log (P(z)P(c)) dz

Let

P1 =
Z

z2zi,a
⌧

X

c2ci,a

P(c, z) log (P(z, c)) dz

and

P2 =
Z

z2zi,a
⌧

X

c2ci,a

P(c, z) log (P(z)P(c)) dz

Now we focus on P1, expanding P1 using Equation 7.8 yields,

P1 =

Z

z2zi,a
⌧

|ci,a|X

p=0

(P(z|ep)P(ep) log
⇣
P(z|ep)

⌘

+ P(z|ep)P(ep) log (P(z)))dz

rearranging,

P1 =
|ci,a|X

p=0

P(ep)
Z

z2zi,a
⌧

P(z|ep) log(P(z|ep))dz

+
|ci,a|X

p=0

P(ep) log(P(ep))
Z

z2zi,a
⌧

P(z|ep)dz

using the fact that
R

z2zi,a
⌧
P(z|ep)dz is unity and plugging in P(z|ek) in the Gaussian

forward sensor model(Equation 7.3 )in the above equation, after simplification give
rise to,
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P1 = � log(
p

2⇡�) � 0.5 +
|ci,a|X

p=0

P(ep) log(P(ep)) (C.1)

Looking at P2, the expression can be split as a summation of two terms:

P2 =

Z

z2zi,a
⌧

X

c2ci,a

P(c, z) log(P(c))dz

+

Z

z2zi,a
⌧

X

c2ci,a

P(c, z) log(P(z))dz

We denote the first and second terms of P2 as P2a and P2b respectively. By using
Equation 7.8 P2a can be written as

P2a =
|ci,a|X

p=0

P(ep) log(P(ep))
Z

z2zi,a
⌧

P(z|ep)dz

As
P

c2ci,a P(c, z) reduces to P(z)(marginalization) . P2b can be expressed as,

P2b =

Z

z2zi,a
⌧

P(z) log(P(z))dz

Finally P1�P2 and using fact the
R

z2zi,a
⌧
P(z|ep)dz is one, obtains the desired result:

I[ci,a; zi,a
⌧ ] = �

Z

z2zi,a
⌧

P(z) log(P(z))dz

+ � log(
p

2⇡�) � 0.5 (C.2)

⇤
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Proof. We begin by taking the negative log of Equation 7.13, then the equation can
be expressed as,

LPmi
j
(k + 1) =

X

n̂2Ni
k[i

ai,n̂(k)
✓
LPmn̂

j
(k)

◆
+ Lui, j

e (k) (D.1)

WhereLPmi
j
(k+1) andLui, j

e (k) are given by� log
✓
Pmi

j
(k + 1)

◆
and� log

⇣
um(mi

j, x
i
k, z

i
k)
⌘

respectively.
If we stack the variables LPmi

j
(k) and Lui, j

e (k) for every robot index i 2 {1, ...,NR}
into a column vectors denoted asLPmj[k] andLu j

e[k] respectively, then Equation D.1
can be converted to the following matrix equation:

LPmj[k + 1] = A[k]LPmj[k] + Lu j
e[k] (D.2)

Where A[k] is the adjacency matrix[56] of the time varying robot interaction
graph G(k).

Now if we define �A[k, k0] = A[k]A[k � 1] · · ·A[k0] then at each time step k the
information dynamics can be described by

LPmj[k + 1] = �A[k, 0]LPmj[0] +
X

d2d
�A[k, d]Lu j

e[d] (D.3)

From [76, Theorem 1] we obtain that, if Assumption 1 holds andA[k] is doubly
stochastic matrix for each k then,

lim
k!1
�A[k, k0] =

1
NR

11T

1 is a column vector of NR ones. Assumption 2 and choosing ai,n̂(k) = 0.5
wheneverNi

k is non empty ensure thatA[k] is doubly stochastic for all k.
Taking lim of Equation D.3 and using the above result yields,

lim
k!1
LPmj[k] = 1

✓ 1
NR

1T
LPmj[0]

◆

+ 1

0
BBBBB@
X

d2d

1
NR

1T
Lu j

e[d]

1
CCCCCA

Applying 1
NR

1T on a column vector with NR elements is equivalent to taking the
arithmetic mean of the elements of the corresponding column vector. Therefore, if
we denote < · > as the arithmetic mean operator, then we can rewrite the above
equation in compact form as,
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lim
k!1
LPmj[k] = 1

D
LPmj[0]

E
+ 1

X

d2d

D
Lu j

e[d]
E

Assumption 3 is required to ensure the convergence of the sum
P

d2d
D
Lu j

e[d]
E
.

Reducing the above equation for the ith robot yields,

lim
k!1
LPmi

j
(k) =

D
LPmj[0]

E
+

X

d2d

D
Lu j

e[d]
E

Finally, by taking the negative exponential of the above equation we obtain the
desired result:

lim
k!1
Pmi

j
[k] =< Pmj[0] >gm ·

Y

d2d
< u j[d] >gm

⇤
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