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ABSTRACT 

 Neural interfacing applications have advanced in complexity, with needs 

for increasingly high degrees of freedom in prosthetic device control, sharper 

discrimination in sensory percepts in bidirectional interfaces, and more precise localization 

of functional connectivity in the brain.  As such, there is a growing need for reliable 

neurophysiological recordings at a fine spatial scale matching that of cortical columnar 

processing.  Penetrating microelectrodes provide localization sufficient to isolate action 

potential (AP) waveforms, but often suffer from recorded signal deterioration linked to 

foreign body response.  Micro-Electrocorticography (µECoG) surface electrodes elicit 

lower foreign body response and show greater chronic stability of recorded signals, though 

they typically lack the signal localization necessary to isolate individual APs.  This 

dissertation validates the recording capacity of a novel, flexible, large area µECoG array 

with bilayer routing in a feline implant, and explores the ability of conventional µECoG 

arrays to detect features of neuronal activity in a very high frequency band associated with 

AP waveforms. 

Recordings from both layers of the flexible µECoG array showed frequency 

features typical of cortical local field potentials (LFP) and were shown to be stable in 

amplitude over time.  Recordings from both layers also showed consistent, frequency-

dependent modulation after induction of general anesthesia, with large increases in beta 

and gamma band and decreases in theta band observed over three experiments.  Recordings 

from conventional µECoG arrays over human cortex showed robust modulation in a high 

frequency (250-2000 Hz) band upon production of spoken words.  Modulation in this band 

was used to predict spoken words with over 90% accuracy.  Basal Ganglia neuronal AP 
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firing was also shown to significantly correlate with various cortical µECoG recordings in 

this frequency band.  Results indicate that µECoG surface electrodes may detect high 

frequency neuronal activity potentially associated with AP firing, a source of information 

previously unutilized by these devices.  
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Chapter 1  

 

INTRODUCTION 

 

Electrocorticography grids are designed to record neuronal activity from the 

cerebral cortex, whose basic functional unit is the cortical column, a grouping of neurons 

with similar receptive fields and processing preferences with a diameter on the order of 

hundreds of microns (Mountcastle, 1997).  The spatial extent of the local field potential 

(LFP) signals recorded from micro-electrocorticography (µECoG) arrays falls in a similar 

range; size estimates of the region of neural tissue contributing to the LFP signal range 

from hundreds of microns to a millimeter or more (Katzner, 2009; Xing, 2009; Leski, 

2013).  Micro-scale Electrocorticography electrodes, with diameters on the order of 100 

µm or sometimes less, allow for examination of these LFP signals at a submillimeter scale, 

finer than what is possible using larger, clinical ECoG electrodes with diameters of several 

mm (Kellis, 2016).  This finer scale allows for examination of lower-level computational 

processes in the cortex and may improve the signal specificity needed for neuroprosthetics 

applications that involve multiple degrees of freedom, such as volitional control of 

individual finger movements or real-time decoding of speech from neural signals.   

Although intracortical penetrating microelectrodes record neural signals at the 

finest spatial scale and specificity, their usage inevitably causes some degree of tissue 

damage as the cortical surface is pierced.  The tissue response to these devices may include 

disruption of vasculature, a chronic inflammatory response leading to glial scarring around 

the device surface, and neuronal degeneration in the implant area (Biran et al 2005, 

McConnell et al 2009).  This tends to cause reduction in signal quality over time, both in 
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the number of neurons recorded and their signal amplitude (Schwartz et al 2006, Chestek 

et al 2011, Jorfi, 2015).  Substantial loss of signal quality from intracortical multielectrode 

arrays often happens within a timeframe of 6-12 months (Ryu, 2009).  Additionally, fibrous 

encapsulation and meningeal tissue proliferation may on occasion dislodge the implanted 

microelectrode device (Barrese 2013).      

Cortical surface arrays, by contrast, are often assumed not to elicit a substantial 

biological reaction as their usage does not penetrate the cortex, avoiding disruption of the 

blood-brain barrier and lessening the mechanical strain inherent to the interaction between 

rigid electrodes implanted in soft cortical tissue.  However, while few studies have assessed 

long-term host-tissue response to epidural or subdural grids, some foreign body response 

has nevertheless been observed.  Post-mortem histological examination of rat brains 

subdurally implanted with µECoG arrays has revealed mild, chronically granulated 

inflammation in the leptomeninges around the implant area (Henle 2011).  Studies 

examining tissue growth around epidural ECoG arrays using cranial window imaging 

found substantial vascular changes as well as dural thickening under the arrays and tissue 

encapsulation over the top of the array (Schendel 2013; Schendel 2014).  A study of ECoG 

electrodes implanted in a Rhesus Macaque for 22 months found macrophages and foreign 

body giant cells at the tissue-array interface and collagenous tissue encapsulation of the 

grid (Degenhart 2016).  However, in spite of the stereotypical foreign body response, this 

study found that damage to the cortex underneath the implant was minimal, microglia were 

not actively responding to trauma, and importantly, recordings 18 months post implant still 

showed robust signal modulation during a hand movement task.  Additionally, despite the 
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encapsulation, the array was removed from the fibrous tissue with little resistance, 

indicating minimal adhesion between encapsulation tissue and the device.   

In addition to the reduced tissue response of surface electrodes compared to 

penetrating electrodes, Local Field Potentials, which can be recorded from surface 

electrodes or penetrating electrodes, can show greater long-term stability than the action 

potential waveforms recorded from penetrating electrodes.  A decoder of arm motion from 

surface electrodes in monkeys showed stability over months without drift in accuracy or 

recalibration (Chao, 2010).  Depending on the frequency band, LFP signals recorded from 

penetrating microelectrodes may show insignificant reduction in mean power over time, or 

reduction at a rate much slower than the concurrent decrease in spike count and signal-to-

noise ratio of isolated action potential waveforms and multiunit activity from the same 

electrodes (Wang 2014; Perge 2014; Zhang 2018).  Movement-related information in LFP 

signals can remain high even when spikes can no longer be detected from the same 

electrode (Flint, 2012).  Overall, µECoG surface electrode arrays represent a balance 

between the localization of specific neural signals with a level of invasiveness and 

longevity suitable for chronic applications in brain-computer interfaces or the study and 

monitoring of neurological disorders in human subjects.   

While µECoG arrays have conventionally been used only to record and analyze 

low-frequency neural signals below approximately 200 Hz, features of neuronal spiking 

are thought to “bleed” into the upper frequencies of conventional LFP bands (Manning, 

2009; Ray, 2011).  Given that volume conduction in neural tissue may have primarily 

resistive rather than frequency-dependent properties (Logothetis, 2007), it is possible that 

even higher frequency bands may contain more direct features of spiking activity when 
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recorded by surface µECoG electrodes.  Action potentials arguably form the main form of 

communication in the nervous system (Khodagholy, 2015), and their detection from 

surface µECoG arrays would effectively provide these arrays with some of the localization 

and specificity advantages of intracortical arrays without requiring as much invasiveness.   

The specificity and localization of recordings from surface electrodes may also be 

improved through the design of thin and conformable arrays that can better match the 

curved geometry of the cortical surface.  Flexible arrays that more closely match the 

mechanical impedance of neural tissue could also potentially reduce tissue irritation 

(Lacour, 2010), possibly improving device performance and longevity.  Micro-

Electrocorticography grids tailored to the mechanical and electrophysiological properties 

of neural tissue at fine spatial scales could potentially allow for greater detection of aspects 

of neuronal spiking activity, expanding the categories of information available for control 

signals in neuroprosthetics applications that use surface electrodes.  Applications for 

clinical monitoring or study of neurological disorders could similarly benefit from access 

to potential features of action potential spiking activity as recorded from surface electrodes, 

possibly containing biomarkers of cortical pathology, without needing to penetrate the 

cortical surface. 
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Chapter 2  

 

VALIDATION OF A MECHANICALLY COMPLIANT, LARGE AREA, HIGH 

RESOLUTION MICRO-ELECTROCORTICOGRAPHY ARRAY WITH BILAYER 

ROUTING 

ABSTRACT 

 Thin, mechanically compliant micro-Electrocorticography (µECoG) arrays have 

the potential to improve the quality and reliability of brain-computer interfaces in a variety 

of applications.  Compared to commercially available macro or micro-scale 

Electrocorticography grids, micro-scale flexible surface electrode arrays may potentially 

achieve improved proximity to the curved cortical tissue surface.  Access to cortical sulci, 

which compose up to 2/3 of the human cortex, may be achieved more easily with 

mechanically compliant arrays.   Greater proximity to the cortical surface may improve 

signal specificity and integrity (Kellis, 2011), while reduced mechanical impedance 

mismatch between a flexible substrate and the small elastic modulus of neural tissue may 

result in lessened tissue response, potentially improving device longevity and reliability.  

While µECoG electrodes offer a sub-millimeter spatial recording scale (Kellis, 2011) 

comparable to the reach of local field potentials and suitable for interfacing with cortical 

columnar structures, applications such as epileptic foci localization require broad cortical 

coverage.  Many µECoG arrays are insufficient for these applications, covering only tens 

of mm2, albeit at a fine spatial resolution.     

 To address these needs, the prototype µECoG electrode array used in this study 

employs a novel bilayer construction, routing gold wire traces over two stacked levels with 

the goal of increasing electrode density and number on a flexible Polydimethylsiloxane 

(PDMS) substrate.   To validate the recording and stimulation characteristics of the bilayer 
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routing design, three iterations of arrays were implanted in feline models, targeting the 

motor cortex for regular recording sessions and stimulation experiments.  Neural signals 

recorded from both layers of the device showed elevated mid-frequency structure typical 

of local field potential (LFP) signals that was stable in amplitude over implant duration, 

and also exhibited consistent frequency-dependent modulation after anesthesia induction 

by Telazol in three separate experiments.  Cortical stimulation through the device, 

however, was not successful in evoking muscle twitches, possibly due to very high 

impedance or open circuits in the early device iterations coupled with a potential lack of 

viable electrodes over the relevant areas of cortex.  Overall, the bilayer routing technique 

shows promise as a method to increase density of electrode routing on flexible substrates, 

and the issues with impedance and connectivity discovered in this study could be possibly 

improved upon with alternate methods of connecting the wire traces to a head stage 

INTRODUCTION 

 Electrophysiological recordings in both clinical and neuroprosthetics research 

applications must compromise between signal localization at fine spatial scales and the 

invasiveness required to obtain more local signals.  The basic functional unit of the cortex 

is the cortical column (Mountcastle 1997), which is formed of a grouping of neurons with 

similar receptive fields and processing preferences.  The size of cortical columns is on the 

order of hundreds of microns.  Similarly, the spatial extent of the local field potential (LFP) 

signals recorded from µECoG arrays ranges from hundreds of microns to a millimeter or 

more (Leski, 2013).  Micro-scale Electrocorticography (µECoG) electrode arrays, with 

electrode diameters around 100 µm, allow for examination of these LFP signals at a 

millimeter to submillimeter scale, finer than what is possible using larger, clinical macro-
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scale ECoG electrodes with diameters of several mm that record the summed activity of 

correspondingly larger volumes of neural tissue (Kellis, 2016).  Although intracortical 

penetrating microelectrodes record neural signals at the finest spatial scale and specificity, 

they typically cause some degree of tissue damage, foreign body response and degradation 

of neural signal over time (Jorfi, 2015); substantial loss of signal quality from intracortical 

multielectrode arrays often happens within a timeframe of 6-12 months (Ryu, 2009).  

Epicortical electrode arrays do not puncture the cortical surface and thus represent a 

balance between the localization of specific neural signals with a level of invasiveness and 

longevity suitable for chronic applications in brain-computer interfaces or the study and 

monitoring of neurological disorders.   

There is a need for thin and mechanically compliant µECoG arrays in both 

clinical and neuroprosthetics research applications.  The human cortex is highly 

gyrencephalic, with around two thirds of its surface buried in sulci and only one third 

exposed in the gyri (Ribas, 2010).  Focal cortical dysplasia lesions causing epilepsy can 

develop within fissures and sulci, increasing the difficulty of diagnosis (Besson, 2008).  

Large portions of the auditory cortex in humans and macaques are in the lateral sulcus 

(Hackett, 2011), and areas of V1 cortex corresponding to peripheral and parafoveal vision 

lie within the calcarine and saggital fissures (Christie, 2016).  These sulci are inaccessible 

to conventional clinical subdural ECoG arrays (Khodagholy, 2015), but thin, flexible 

µECoG arrays have recently been used to record LFP signals from cerebral sulci in 

macaque monkeys (Matsuo, 2011; Fukushima, 2014). 
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  Currently available µECoG grids are often stiff and do not conform well to the 

curvilinear cortical surface, which can decrease device stability and efficacy.  Lack of array 

conformance may also introduce cerebrospinal fluid between the device and the cortex, 

giving a degree of electrical continuity between electrodes and effectively reducing signal 

localization and spatiotemporal detail (Kellis, 2011).  Flexible µECoG array designs could 

thereby potentially improve electrode conformance and proximity to the cortical surface, 

and thereby improve the specificity and integrity of the recorded neural signals.  Recently, 

highly localized action potential waveforms were recorded from a thin, flexible, micro-

scale array with 10 µm diameter electrodes.   (Khodagholy, 2015).  Additionally, thin and 

flexible designs may reduce tissue irritations by lowering the mechanical impedance of the 

device closer to the small elastic modulus of cells and biological tissue (Lacour, 2010).     

While many applications of neural interfaces benefit from the high signal integrity 

and specificity offered by micro-scale electrodes, some applications require coverage of 

large areas of cortex (80mm x 80mm), such as localization of epileptogenic zones.  Brain-

computer interfaces requiring specific, localized signals may also benefit from µECoG 

arrays with high spatial resolution over large areas, as the location of functional areas of 

the cortex may vary by at least 5mm across subjects (Viventi, 2011), and commercially 

available µECoG grids are often only 4mm on a side.  The µECoG array in this study is 

designed to address both needs with a scalable design of 96 micro-scale (100-300 µm) 

recording sites on a flexible polydimethylsiloxane (PDMS) grid with a 2mm electrode 

pitch.  The total number and density of electrodes may scale upwards by separating the 

routing of thin gold film wire traces in a bi-level metallization process.  The primary 
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purpose of this study was to validate the recording and stimulation capabilities of the 

bilayer device design in chronic feline implantations.       

METHODS 

Array design and fabrication. A 96-channel microelectrode array was made by 

patterning a thin gold film onto a polydimethylsiloxane (PDMS) substrate with a thermal 

evaporator.  Bi-level metallization split the wire routing onto two PDMS layers to increase 

electrode density.  Electrode contact sites were formed with 100-300 µm diameters and 

2mm spacing on a 20mm x 20mm PDMS grid.  The gold film traces connect to contact 

points on a printed circuit board using silver paste to mediate electrical contact, and the 

assembly was physically secured by compression bonding with a second PCB.  The 

assembly connects to an acquisition system via a Tucker-Davis Technologies Zero 

Insertion Force connector.  A pedestal was 3D printed with a titanium base (Protolabs, 

Maple Plain, MN) and a lightweight plastic lid and wall to house the PCB and secure it to 

the skull, and the assembly was potted with medical epoxy to prevent ingress of fluid.  
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Figure 2.1. Bilayer Organization and Assembled Array.  Gold wire traces were patterned 

onto stacked PDMS substrate layers.  Exposed electrode contacts are 200 µm in diameter 

and spaced 2mm apart.  Layer 2, situated on top of Layer 1, contains the proximal half of 

the electrodes relative the PCB attachment  Its PDMS substrate terminates halfway down 

the grid, shown in the center of the left image, leaving Layer 1 uncovered in the distal half 

of the grid.  

Surgical Implant. For each feline implant, a craniotomy was performed between 

the lambdoidal and frontal sutures, extending approximately 15-20 mm anterior – 

posteriorly and 18mm laterally from the edge of the sagittal suture.  The craniotomy 

exposed the majority of one cortical hemisphere The electrode grid was trimmed 

intraoperatively when necessary to fit the size of the craniotomy, which varied between 

animals based on the constraints of suture location.  The electrode array was placed on the 

cortical surface with electrodes in the most medial and anterior corner targeting 

sensorimotor cortical areas (Figure 2.2) and the bone flap was reattached with a titanium 

strip after securing the pedestal to the skull (Figure 2.3).    
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Figure 2.2. Schematic of Implant Location.   The red outline indicates the approximate size 

and implant location of the 1st implant, which had only 48 electrodes, of which all but 23 

were trimmed off due to minimal area between sutures and the resulting small allowable 

craniotomy size in the first feline. 

 

 

Figure 2.3. Pedestal Schematic and Surgical Implant.  The pedestal body was 3D printed 

from titanium, while the lid and wall components were 3D printed from lightweight plastic 

to reduce the weight carried by the animal.  The image on the right shows implant 
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placement during surgery, with the craniotomy for the electrode grid positioned just lateral 

of the sagittal suture and just caudal of the frontal suture in order to target motor cortical 

areas. 

 Stimulation.  To evoke muscle twitches, epicortical stimulation pulses were 

delivered through individual electrodes of the bilayer array.  Biphasic, charge-balanced 

stimulus trains of 0.6 ms phase duration and 0.3ms phase delay were delivered with a pulse 

frequency of 300 Hz in stimulus trains lasting 400 ms.  Stimulus amplitude began at 1 µA 

and increased in 50 µA increments until a maximum of 300 µA was reached.  EMG 

recordings were simultaneously taken from the contralateral hind limb of the anesthetized 

animal to confirm the presence of muscle twitches upon stimulus delivery.     

Analysis.  Electrophysiological recordings during the awake state began after the 

animal had recovered from surgical implant, and were taken at a sampling rate of 10 kHz.  

Multi-taper spectral estimates with a time-bandwidth product of 5 were used to compute 

frequency spectrums of recorded signals, and mean spectrum intensity was calculated in 

five LFP frequency bands: Theta band (θ, 3-8 Hz); Alpha band (α, 7-16 Hz); Beta band (β, 

15-32 Hz); Gamma band (γ, 31–80 Hz); and Chi band (χ, 79-161 Hz).   Impedance 

measurements were taken using a TDT PZ5 NeuroDigitizer probing at 1120Hz.   

To validate the neural origin of the recorded signals, recordings were taken during 

the emergent recovery period approximately 1 hour after induction of general anesthesia 

via 10 mg/kg Telazol injection to compare against the awake state.  For comparisons of 

spectrums from electrodes on different array layers and for comparisons between awake 

and anesthetized states, spectrum distributions were sampled by segmenting 1-minute 
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portions of continuous recordings into 12 nonoverlapping 5-s windows, and spectrums 

were computed for each window.  Comparisons between awake and anesthetized states on 

the same electrodes were tested for significant change in each frequency band using a 

nonparametric, paired difference Wilcoxon signed-rank test.  Comparisons between 

electrodes from different layers were tested for significant difference in distribution using 

a nonparametric Wilcoxon rank-sum test.  Significance was defined at α = .05, and 

Bonferroni correction was applied for the number of tests per frequency band.  For each 

layer, viable electrodes were defined as those that registered an impedance value on the 

PZ5 NeuroDigitizer on any session.  Electrodes that failed to register an impedance value 

below the device cutoff of 536 kOhm were excluded from analysis.   

  Chronic stability of recorded neural signals from viable electrodes was assessed for 

each frequency band in both layers via linear regression on the median spectrum amplitude 

over time.  A Linear Hypothesis Test was performed on each regression result to determine 

trends significantly different from flat slope.   

 

RESULTS 

Troubleshooting.  The recordings taken from the first feline implanted showed 

large groups of adjacent channels with identical or strongly correlated recordings, 

indicating electrical continuity between electrodes.  Disassembly of another 1st iteration 

prototype grid revealed spreading of the silver paste caused by the compression bonding 

technique (Figure 2.4).  To reduce the shorting between adjacent wire contact sites, laser-

cut masks were used in future device iterations along with reduced electrode density.  

Impedance testing on the first device showed all impedances greater than the TDT 536 
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kOhm cutoff, and attempts to evoke muscle twitches through cortical stimulation in the 

anesthetized feline were unsuccessful. However, stimulus artifacts from the cortical array 

were detected from an EMG recording setup with fine-wire electrodes placed in the 

animal’s hind limb.   

 

Figure 2.4. Electrical Shorting Between Channels.  Left, signals recorded from the 

implanted first iteration array showed a substantial number of channels with nearly 

identical or similar recordings, indicating some electrical continuity between channels.  

Right, disassembly of a 1st generation array revealed spreading of the silver paste, caused 

by the compression bonding technique.  

 

The 2nd generation array with more precise silver paste application had fewer 

electrically shorted channels, but was also unsuccessful at evoking muscle twitches by 
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cortical stimulation, despite having successfully recorded sinusoidal signals from a 

function generator through a saline medium during in vitro pre-implant testing.     Further 

testing of the explanted array revealed very low amplitude of a test sinusoidal electrical 

signal passed through each electrode separately and recorded by a probe with input 

impedance in the mega-Ohm range, consistent with impedances also in the mega-Ohm 

range for electrode contact sites (Figure 2.5).  Electroplating of electrodes on the assembled 

device was performed in the 3rd iteration array to reduce electrode contact impedance.  

 

Figure 2.5.  2nd Iteration Array Stimulation Testing.  A 1 kHz sinusoidal signal from a 

function generator was passed through the electrode array in a saline medium and recorded 

by a probe with input impedance in the MOhm range.  No electrodes except the large 

reference pads were able pass a signal through the saline at a probe voltage greater than 

50% of the source signal, with all but nine electrodes at less than 10%, indicating 

impedances in the MOhm range or open circuit for electrode contact sites.  

After electroplating of the 3rd generation array, stimulation testing for the 3rd 

iteration electrode array showed 36 of 65 electrodes that could pass the in vitro saline 
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stimulation test at or near input voltage (Figure 2.6), consistent with electrode impedances 

in the tens to low hundreds of kOhms.  These electrodes with low impedance included nine 

in a corner of the array suitable for placement over motor cortex (ch. 45, 31, 38, 37, 48, 34, 

47, 26, 40; Figure 2.7), although these electrodes and many others showed drastically 

lowered stimulation testing amplitudes after pedestal mount (Figure 2.7; Figure 2.8).  

However, while most changes were reductions in amplitude, eight channels actually 

increased in amplitude after mounting to the pedestal.  It was then discovered that solder 

contact pads for newly added backup reference wires were bending the PCB, preventing 

flush attachment to the pedestal (Figure 2.9).  The array assembly was removed from the 

pedestal, the solder contact pads and attached backup reference wires were removed from 

the PCB, and the array was again tested for stimulation capacity of its electrodes.  After 

confirmation that stimulation capacity had been restored to many of the affected electrodes, 

including all in the corner targeting motor cortex except channels 31 and 47 (Figure 2.10, 

left), the assembly was again mounted to the pedestal.  The second pedestal mounting 

resulted in some channels again losing stimulation capacity, while several others actually 

improved stimulation capacity relative to the second unmounted state, e.g. channel 31 

(Figure 2.10; Figure 2.11).  As several electrodes in the corner of the array targeting motor 

cortex were still able to pass a stimulation signal at high amplitude, this configuration was 

implanted in the third feline. 
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Figure 2.6. Stimulation testing for 3rd Generation Array.  A 1kHz signal from a function 

generator was passed through the electrode array in a saline medium.  36 of 65 electrodes 

passed the 3V signal to a high input impedance probe through a saline medium at 2.5 V or 

higher, consistent with electrode impedances in the tens to low hundreds of kOhms.  
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Figure 2.7. Stimulation Testing for 3rd Generation Array, 1st Pedestal Mount. Left, the 

recorded output of the stimulation test for the 3rd iteration array is shown before pedestal 

mount.  Right, stimulation output amplitude was reduced for many electrodes after pedestal 

mount, including those in the lower left corner targeting motor cortex upon implant 

(Channels 45, 31, 38, 37, 48, 34, 47, 26, 40).  Red outlined subplots indicate electrodes that 

exhibited electrical continuity with other electrodes. 

 

 

 

Figure 2.8. Change in Stimulation Amplitude After First Pedestal Mount.  Left, the 

stimulation output amplitudes are shown for the 3rd generation array prior to mounting to 

the pedestal (blue) and after mounting to the pedestal (red).  Right, the difference in stim 

amplitude output after mounting to the pedestal a second time is shown for each electrode.  

While most changes are reductions in amplitude, eight channels actually showed increases 

after the PCB was mounted to the pedestal in a bent configuration (Figure 2.9).   
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Figure 2.9. Strained PCB after Pedestal Mount.  The first pedestal mount of the 3rd 

generation device resulted in reduced stimulation test amplitude on many channels.  It was 

discovered that solder pads for backup reference wires were preventing the PCB assembly 

from making flush alignment with the pedestal and bending the bottom of the array, 

necessitating the removal of the PCB assembly, removal of the solder pads and backup 

reference wires, and remounting of the PCB assembly.  
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Figure 2.10. Stimulation Testing for 3rd Generation Array, Second Pedestal Mount.  Left, 

the recorded output of the stimulation test for the 3rd iteration array is shown after removal 

from the first pedestal mount and prior to mounting for the second time.  After removal, 

many channels regained stimulation capacity that had been lost after the first pedestal 

implant (Figure 2.7), notably channels 45, 37, 48, 34, 26, and 40 in the lower-left corner 

targeting motor cortex.  Right, stimulation output amplitude after remounting the assembly 

to the pedestal shows reduction in some channels.  Five channels in the lower left corner 

targeting motor cortex (ch. 31, 48, 34, 26, 40) were still able to pass high amplitude 

stimulation signal after the second pedestal mounting.  Of these, channel 31 actually 

regained stimulation capacity compared to the prior unmounted state, showing more than 

2V of increase in peak-to-trough amplitude after remounting to the pedestal. 

 

 

Figure 2.11. Change in Stimulation Amplitude After Second Pedestal Mount.  Left, the 

stimulation output amplitudes are shown for the 3rd generation array after removal from the 

1st pedestal mount (blue) and after mounting to the pedestal a second time (red).  Right, the 

difference in stim amplitude output after mounting to the pedestal a second time is shown 
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for each electrode.  While most changes were reductions in amplitude, three channels 

actually showed increases. 

For the 3rd generation implanted array, 27 of 65 electrodes registered valid 

impedance measurements below the TDT PZ5 cutoff of 536 kOhm on at least one 

recording session.  The 27 electrodes included 10 of 32 electrodes in Layer 1, and 17 of 33 

electrodes in Layer 2 (Figure 2.12).  A connection issue manifested 28 days post implant, 

causing most measurements to fail to register beneath the device maximum, although no 

interruption in recorded signals was observed at this time.  Prior to 28 days post implant, 

of the five channels in the most medial and anterior corner targeting motor cortex, channels 

31, 48, and 34 registered mean impedances of 63.3 kOhm, 96.3 kOhm, and 64 kOhm, 

respectively.  The remaining two channels, 26 and 40, did not register impedances beneath 

536 kOhm, despite previously successful stimulation testing after the final pedestal mount.  

Prior to 28 days post implant, viable electrodes on layer1 had a median impedance of 50.2 

kOhm (37.4 – 61.9 kOhm for 25th and 75th percentiles), while viable electrodes on layer 2 

had a median impedance of 31.7 kOhm (23.1 – 56.1 kOhm for 25th and 75th percentiles).   
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Figure 2.12. Electrode Impedances across Implant Duration.  Rows correspond to 

electrodes and columns represent recording sessions.  10 electrodes in layer 1 and 17 

electrodes in layer 2 registered impedances beneath the 536 kOhm device cutoff on at least 

one session.  A connection issue manifested 28 days post implant, although no interruption 

in recorded signals was observed at this time.    

 

 Recording Characteristics.  The recordings taken from the implanted bilayer 

array in the 3rd feline implant qualitatively showed increased amplitude in the mid-

spectrum areas relative to a straight-line slope in 1/f scaling.   This structure is apparent as 

a mid-spectrum “knee” or change in slope (Figure 2.13, left), similar to data recorded in a 

separate experiment from a conventional PMT µECoG array implanted over human cortex 

(Kellis, 2010).  This mid-spectrum structure typical of cortical surface potentials (Miller, 

2009) was observed on both layers of the bilayer array.  An example recording taken 22 

days post implant showed no statistically significant differences (Wilcoxon rank-sum test, 
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p > .05 in all comparisons) in mean spectrum amplitude in any frequency band between 

viable electrodes from layers 1 and viable electrodes from layer 2 (Figure 2.13, right).  

 

Figure 2.13. Mean spectra of sample LFP recordings.  Spectrums of recordings were 

averaged across electrodes and further sampled from non-overlapping time windows.  

Shaded area represents ± 1 standard deviation.  Data from the bilayer array were collected 

22 days post-implant.   Left, normalized mean spectrum from viable electrodes on layer 1 

of the bilayer µECoG array in a feline implant (cyan) are plotted along with mean spectrum 

from electrodes on a conventional PMT µECoG array implanted over cortex in a human 

with epilepsy (magenta) as a reference.  Spectrums from both µECoG types show a mid-

spectrum “knee” from change in log-scale slope, typical of cortical surface signals (Miller, 

2009).  Right, mean spectrum from electrodes on layer 1 of the bilayer array (cyan) is 

shown with mean spectrum from electrodes on layer 2 (green).  No significant differences 

in mean spectrum amplitude between Layer 1 and Layer 2 were observed in any of the 

frequency bands (Wilcoxon rank-sum test, p > .05 for all comparisons). 
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Figure 2.14. Representative Recordings from Both Layers.  Left column contains plots for 

an electrode from Layer 1 (channel 78), while right column contains plots for an electrode 

from Layer 2 (channel 22).  Top row shows 5 second recordings of continuous data for 

each electrode.  Second row shows frequency spectrum from multi-taper spectral estimate 

of each 5 second recording.  The 3rd row shows heat maps of spectrums from each 

recording session across implant duration.  The 4th row shows spectrums from awake and 

anesthetized state after Telazol injection in experiment #1 (22 days post-implant).    
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Despite the improvements to electrode impedance in the 3rd iteration array, cortical 

stimulation experiments were still unsuccessful in evoking muscle twitches in the 

anesthetized feline.  In order to further validate a neural origin of the recorded signals in 

the absence of successful stimulation, the response of recorded signals to induction of 

general anesthesia via Telazol injection was analyzed for both layers of the array.  

Frequency spectrums from electrodes in both layers showed robust, frequency band-

dependent modulation in recordings taken 1 hour after induction of anesthesia via Telazol 

injection, and the modulation consistently occurred in three separate experiments taking 

place 22 days post-implant, 44 days post-implant, and 73 days post-implant (Figure 2.15).  

The frequency-band-dependent modulation included a large increase in amplitude in the 

beta and gamma frequency bands and decreased amplitude in theta band for both layers in 

all 3 experiments, with spectrum crossovers occurring in alpha and chi bands.  The 

spectrum amplitude changes observed in theta, beta and gamma bands were statistically 

significant for both layers in all three experiments (Wilcoxon signed-rank paired difference 

test at α = .05; amplitude change and significance summarized in Table 2.1).  The 

distributions of spectrum amplitude change in each frequency band were often similar for 

layer 1 and layer 2; a Wilcoxon rank-sum test failed to reject the null hypothesis of different 

distributions of Telazol-induced change at α = .05 in 9 of 18 total comparisons for layer 1 

vs layer 2 (summary in Table 2.2).  In addition to the change in spectrum amplitude in the 

five analyzed LFP bands, a decrease in spectrum amplitude was observed to extend until 

the noise floor, as high as 1-2 kHz.   
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Figure 2.15. Effect of Telazol on Frequency Spectrums.  Top row shows spectrums of 

signals recorded from viable electrodes in Layer 1, while bottom row shows spectrums 

from viable electrodes in Layer 2.  Solid line represents mean spectrum across viable 

electrodes, with shaded area at 1 standard deviation.  Red spectrums are from the awake 

state prior to induction of general anesthesia via Telazol injection, while blue spectrums 

are from the anesthetized state roughly 1 hour post injection.  Induction of anesthesia was 

replicated across 3 experiments, corresponding to plot columns.  Spectrums from both 

layers in all experiments consistently showed a large, significant increase in amplitude in 

the beta and gamma frequency bands, with decreased amplitude in theta band and spectrum 

crossovers occurring in alpha and chi bands.  Summary of statistical comparisons of awake 

vs anesthetized state for separate layers using Wilcoxon signed-rank paired difference test 

in Table 2.1; summary of statistical comparisons of differences in Telazol-induced change 

between layer 1 vs layer 2 spectrums using Wilcoxon rank-sum test in Table 2.2.         
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Figure 2.16. Comparison of Distributions of Telazol-Induced Change in Intensity. Results 

are shown for an example frequency band (Theta, 4-7 Hz).  Spectrums were calculated for 

all viable electrodes in each layer during 12 non-overlapping, 5-second time segments for 

awake and anesthetized conditions.  Left, distributions of mean spectrum change in theta 

band from the awake state to the anesthetized state are shown for layer 1 (top row) and 

layer 2 (bottom row) in 3 anesthesia induction experiments (columns 1 – 3).  Red dotted 

line marks distribution median change, with the black dotted line at 0 change.  Each 

distribution was tested against no change in a Wilcoxon signed-rank paired difference test 

(complete results in Table 3), with significance indicated by bold red axes.   Right, 

distributions of mean spectrum change in theta band for layer 1 (green) and layer 2 (brown) 

are superimposed for each experiment.  The layer distributions were compared in a 

Wilcoxon rank-sum test (complete results in Table 2), with significantly different 

distributions indicated by bold red axes. 
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Table 2.1. Statistical Comparison of Awake vs Anesthetized States.  Telazol-induced 

change in mean spectral power is shown by frequency band, layer and experiment number.  

The median change in mean spectral power and the p-value for the corresponding 

Wilcoxon signed-rank paired difference test (vs no change) are reported for each frequency 

band, layer of bilayer µECoG array, and experiment (induction of general anesthesia via 

Telazol injection).  Asterisk indicates significance vs null hypothesis of no change at α = 

.05 (p-value of .0083 with Bonferroni correction for 6 comparisons per frequency band). 
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Table 2.2. Comparison of Telazol Effect across Layers.  Difference in Telazol-induced 

change of mean spectral power in layer 1 vs layer 2 is shown for each experiment.  The p-

value for the Wilcoxon rank-sum test for difference in distributions of mean Telazol-

induced change for layer 2 vs layer 1 electrodes is reported along with the corresponding 

difference in median change of mean spectral power.  Asterisk indicates significance vs 

null hypothesis of equal distributions at α = .05 (p-value of .0167 with Bonferroni 

correction for three comparisons per frequency band).   
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Figure 2.17.  Longitudinal Signal Amplitude.  For each frequency band, boxplots are 

shown for each recording with connecting line at median value for all viable electrodes in 

layer 1 (left) and in layer 2 (right).  Linear regressions were calculated for each frequency 

band using a Linear Hypothesis Test vs a flat slope (complete results in Table 2.2).  No 

significant negative trends were detected for any frequency bands on either layer at α = .05. 

 

Spectrum amplitude was stable in each frequency band across recording sessions 

spanning 77 days.  Linear hypothesis testing did not find any significant negative trends in 

any frequency band at α = .05.  Figure 2.17 provides a visualization of longitudinal 

spectrum amplitude by frequency band, while Table 2.2 summarizes linear regression 

output and significance. 

 

DISCUSSION 

 A new design was demonstrated for a flexible µECoG array with bilayer 

routing on a PDMS substrate.  Both layers yielded electrodes that were capable of recording 
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neural signals of similar amplitude and frequency content from the cortical surface, with 

stable amplitudes across all frequency bands for 77 days post-implant.  The mid-spectrum 

“knee” observed in the frequency spectrums of electrodes from both layers is characteristic 

of field potentials recorded from the surface of the brain across a variety of factors, 

including cortical area and local neural activity, and is reflective of underlying 

synchronized oscillations of neural tissue (Miller, 2009).    

Despite improvements to electrode impedance and the success of in vitro 

stimulation testing in saline prior to implant, the 3rd generation array was still unsuccessful 

in eliciting muscle twitches through epicortical stimulation.  One possible reason for this 

is that the minority of electrodes that could register valid impedances might not have been 

over the correct motor areas of the cortex.  Putative sensorimotor areas in feline cortex are 

in the anterior portions of the brain (Figure 2.2), unlike the more centrally located 

sensorimotor cortical areas in humans and nonhuman primates, due to a comparatively 

small prefrontal lobe.  The overlap between array placement and the most anterior-medial 

portion of the array presents a small target that may have been largely missed.  It is also 

possible that any electrodes that did cover this region may still not have been sufficiently 

low in impedance for effective stimulation, particularly given the drop in test output 

amplitude that occurred after the assembly was physically manipulated for the pedestal 

mount (Figure 2.7 and Figure 2.8).  A study using similarly sized electrodes implanted in 

awake Rhesus Macaques to elicit visual percepts via epicortical micro-stimulation found 

effective stimulation amplitudes were in the range of 300 µA (Oswalt, 2016).  The TDT 

IZ2 stimulator used in both studies limits stimulation voltage to 12 V, allowing 300 µA 

only on electrodes of 40 kOhm or less.  Of the five channels in the lower left corner 
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targeting motor cortex that continued to show high stimulation amplitude after the second 

pedestal mount (ch. 31, 48, 34, 26, 40), none registered impedances less than 50 kOhm in 

the implanted array.  Many other electrodes registered impedances below 40 kOhms, and 

stimulus artifact from the cortical array was observed in fine-wire EMG electrodes in the 

hind limb even when no muscle twitches were evoked.  Given these observations, it may 

be possible that the arrays in this study were indeed passing current into the body, but only 

at subthreshold levels, or in cortical areas less likely to evoke muscle twitches when 

stimulated.   

Roughly half of the electrodes on the array did not register valid impedances 

beneath the TDT PZ5 cutoff of 536 kOhm.  It is possible that this is a consequence of the 

methods used to connect the bilayer array to the PCB and recording hardware, rather than 

a direct consequence of the bilayer routing technique.  When the PCB assembly was 

physically manipulated or bent during pedestal mount, many channels were observed to 

have substantial reduction in stimulation output amplitude.  However, not only did many 

of these channels regain capacity for stimulation when the array was unmounted, but some 

previously low amplitude channels actually experienced increased amplitude when the 

PCB assembly was again handled and attached to the pedestal.  These observations are in 

line with inconsistent or unstable connections between the wire contact sites on the PDMS 

substrate and the contact sites on the compression-bound PCB layers.  It is possible that an 

alternate method of connecting the wire traces to a head stage, rather than compression 

bonding with silver paste, could result in more channels with low impedances and 

potentially resolve the shorting between channels as well. 
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Although successful stimulation was not demonstrated for the device, the signals 

recorded through the duration of the implant are indicative of a neural origin on both layers 

of the array, suggesting successful recording capabilities of the novel bilayer routing 

method.  Electrodes from both layers were also able to consistently record frequency-

dependent signal modulation induced by general anesthesia via Telazol injection.  While 

anesthesia has been often been assumed to generally suppress brain activity (Friedman 

2010), recent studies have indicated that anesthetic agents may actually modulate the 

dynamics of broad neuronal networks (Cimenser 2011, Lewis 2012).  The effect of 

different anesthetic agents on mesoscopic-scale LFP dynamics, such as those recorded by 

µECoG arrays, has not been widely studied.  However, recent studies have found that 

anesthetic modulation of local field potentials may differ by cortical area and layer, with 

anesthesia by isoflurane inducing frequency-specific peaks in V1 visual cortex, and 

broadband enhancement of LFP power in wide areas of prefrontal cortex in ferrets (Sellers 

2013).  The emergent recovery state from general anesthesia has been observed to generate 

neural activity with different dynamics from loss of consciousness or sleep, thought to be 

part of a possible “boot-up” sequence driven by ascending arousal centers (Flores 2017; 

Lewis 2018).  One feature that has been observed during the emergent state is elevated 10-

40 Hz power across a broad cortical region (Lewis 2018).  The broad increase in power in 

beta and gamma bands observed in this study (~15-80 Hz) may be part of a similar 

emergent network dynamic phenomenon.  Anesthesia by propofol in cats has been shown 

to occur with reduced action potential firing (Hanrahan 2013).  As high gamma and some 

broadband spectrum changes have been linked to local action potential firing (Manning, 

2009; Ray, 2011; Miller, 2014), the decrease seen in this study as high as 1 kHz may be 
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related to a decrease in action potential firing caused by anesthesia.  Differences in 

frequency-specific modulation among studies may be due to differences such as anesthetic 

agent, model species, cortical region, and the scale and specificity of signals recorded by 

different devices.  Regardless of specific network dynamics, the robust presence of 

frequency-specific modulation of the recorded signal in this study upon induction of 

anesthesia is likely indicative of a neural origin of the recorded signals from electrodes in 

both layers. 
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Chapter 3  

DETECTION AND USAGE OF HIGH FREQUENCY FEATURES OF NEURAL 

ACTIVITY IN A SPEECH DECODING ALGORITHM 

 

 

ABSTRACT 

 While non-penetrating surface electrodes tend to provide recording longevity and 

minimal tissue response, penetrating electrodes must normally be used to detect and isolate 

individual action potentials from cortical neurons. However, general spiking activity may 

contribute to increased energy from 300 - 6000 Hz in the frequency spectrum.  Recently, 

surface electrodes have been developed that were able to record isolated spikes with 

features of superficial cortical neurons (Khodagholy, 2015).  Here, data were re-examined 

that had previously been recorded from subdural micro-electrocorticography (µECoG) 

arrays implanted in a human patient over the face-motor cortex, which is associated with 

direct production of speech, and over Wernicke’s area, which is associated with the 

comprehension and processing of language.  Classification of spoken words had previously 

been achieved by decoding local field potential (LFP) data recorded from these arrays 

(Kellis, 2010).  The study in this chapter found that several channels exhibited a consistent 

increase in frequency spectrum energy extending as high as 2 kHz, well above classically 

recognized LFP bandlimited components and potentially indicating action potential (AP) 

spiking activity.  The amount of increases in high frequency power differed across 

electrode and word pairs, providing a descriptive feature set for classification algorithms.  

A K-Nearest Neighbor classifier algorithm was used to predict spoken words from high 
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frequency spectral power increases with 94.5% accuracy, indicating the presence of 

informative neural activity from 250-2000 Hz recorded from surface µECoG electrodes 

that may potentially reflect features of AP firing in local neuronal populations.  

 

INTRODUCTION 

 Several factors generally prevent the detection of action potential waveforms from 

nonpenetrating surface electrodes.  Currently available conventional surface micro-

Electrocorticography (µECoG) arrays fail to conform to the curved cortical surface, and 

their electrodes record the aggregate activity of relatively large neuronal populations due 

to the electrode size and distance from cortical neurons (Miller, 2009b).  However, while 

individual waveforms from action potentials are typically not resolvable from surface 

recordings, neuronal spiking correlates with a broadband (0-200 Hz) increase in local field 

potential (LFP) power (Manning, 2009; Ray, 2011; Miller, 2014).  Additionally, the high 

gamma band (~60-150 Hz) of LFP recordings has been hypothesized to include 

components of firing from nearby neurons, including neurons too distant from the 

microelectrode to have resolvable waveforms (Ray, 2011).    

The amplitude of extracellular potentials in the brain tends to decrease with 

frequency as described by an inverse power law (Miller, 2009a).  The particularly high 

amplitude and spatial reach of low-frequency LFP signals is largely thought to be due to 

synchrony and resonance in the aggregate oscillations of postsynaptic potentials from many 

neurons, while higher frequency content is believed to be less synchronous and more 

localized.    Some studies have proposed that the lower spatial reach of high frequency 

signals is due to biophysically based low pass filtering in cortical tissue caused by 
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capacitive properties of neural tissue (Bedard, 2004).  However, direct in vivo testing of 

impedance characteristics of neural tissue in Macaques indicates purely resistive 

properties, regardless of frequency or direction or depth of measurement.  (Logothetis, 

2007).  Broadband spectral increase during task onset has been noted to sometimes lack a 

definitive upper bound (Miller, 2014), and this broadband signal is sometimes extracted up 

to around 200 Hz with with the assumption that this captures the majority of the variance 

associated with asynchronous neuronal spiking. However, frequency spectrums of 

individual action potentials show peaks in intensity at frequencies from 400 Hz to 1+ kHz, 

and the spectrums of longer recordings containing these action potentials show clear 

activity in these frequency bands (Figure 3.1).  A recent study analyzing wavelet 

decomposition of neural features in different frequency bands of recordings from 

penetrating microelectrodes found both greater stability and information density in mean 

wavelet power from 234-3750 Hz compared to voltage threshold techniques for multi-unit 

activity, up to 3 years post-implant (Zhang, 2018).   Given these observations, it is possible 

that recordings taken from surface µECoG arrays may also include high-frequency features 

of neuronal action potential activity in the hundreds or even thousands of Hz.  Recently, 

action potential waveforms were even isolated from recordings taken from the cortical 

surface using a novel, conformable array with micro-scale (10 µm length) electrodes 

(Khodagholy, 2015). 
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Figure 3.1. Action Potential Spectrums. Multi-taper power spectral density estimates are 

shown for isolated, single action potentials recorded in another study (Baker 2009; Egan 

2012) from penetrating microelectrodes.  Peak spectral power of single action potential 

waveforms is observed at frequencies from 400 Hz to 1+ kHz depending on action potential 

waveform shape and duration. Right, spectra of 1-minute recordings containing the 

respective action potentials show increased amplitude in frequency ranges similar to the 

peaks of the corresponding AP waveforms.   

 

Penetrating intracortical microelectrode arrays are typically used when recordings 

containing isolatable action potential waveforms from single neurons are desired, but these 

devices introduce several problems by piercing the pial surface.  Chronic implantations can 

lead to persistent tissue inflammation and possible encapsulation of electrode tips by glial 

cells (Polikov, 2005), which may play a role in the loss of signal amplitude and number of 

viable channels often observed on a timescale of 6-12 months (Ryu, 2009).  Analysis of 
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the very high frequency bands corresponding to the highest amplitude spectral peaks of 

action potential waveforms could potentially provide a more direct measure of neuronal 

spiking than the surrogate measure provided by the high gamma band.  Improved detection 

of neuronal spiking activity from µECoG arrays would impart a degree of the signal 

specificity inherent to intracortical electrode arrays without requiring their invasiveness.  

This could potentially open a new category of neural signal information to applications in 

neuroprosthetics or clinical monitoring that are constrained to surface electrodes for 

reasons of safety or longevity.   

This study examined very high frequency (250-2000 Hz) components of recordings 

previously taken from subdural µECoG arrays implanted in a human patient over the face-

motor cortex and Wernicke’s area in order to extract a descriptive feature set for speech 

classification algorithms.  Wernicke’s area is associated with the processing and 

comprehension of both spoken and written language, while the face-motor cortex is 

involved in the direct, mechanical control of articulation of words (Terao 2007).  LFP 

signals taken from the arrays over these areas had previously been used to predict words 

spoken by the patient in this study (Kellis, 2010).  To validate the presence of informative, 

high-frequency features of neuronal activity in the same recordings, a K-Nearest Neighbor 

classification algorithm was used with only high-frequency content as input to demonstrate 

proof of concept. 

 

METHODS 
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 Experimental setup and data collection: A human subject undergoing 

extraoperative ECoG monitoring for refractory epilepsy had two µECoG arrays implanted 

subdurally over face-motor cortex and Wernicke’s area (Figure 3.2).  Recording sites in 

each microelectrode array (PMT Neurosurgical, Chanhassen, MN) were formed from the 

terminations of 40-µm diameter wires arranged in a 4x4 grid with 1 mm spacing.  A list of 

ten words was selected: “yes”, “no”, “hot”, “cold”, “hungry”, “thirsty”, “hello”, 

“goodbye”, “more”, and “less”.  The patient was instructed to repeatedly articulate each 

word, with a visual cue to speak given approximately 1 second after the end of each 

repetition.  Data from the µECoG arrays were bandpass filtered from .3-7500 Hz and 

sampled at 30 kHz.   

 

Figure 3.2. Placement of µECoG Array over Cortical Speech Areas.  Two µECog arrays 

were subdurally implanted in conjunction with a macro-scale ECoG array used for clinical 

epilepsy monitoring.  One array was placed over Wernicke’s area, associated with language 

processing, while the other was placed over face-motor cortex. 
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Feature extraction: Initially, to ascertain the presence of informative, decodable 

content in the frequency band from 250-2000 Hz, spectrums were calculated for the 

recording segments from -0.25 s to +0.5 s relative to speech onset for each spoken word.  

Spectrums were also calculated from the 0.75 s recording segments immediately preceding 

each spoken work.  Mean frequency spectrum change during spoken word production was 

computed by dividing the trial spectrums by the preceding period spectrograms, 

elementwise across frequency bins, and averaging across trials. 

Afterwards, to generate a time-varying signal from the high-frequency components 

of the recordings suitable for use in a decoding algorithm, spectrograms were generated 

from the signals using a 0.5 s window and a 0.05 s step size, or spectrum sampling at 20 

Hz.  A multi-taper windowing function was used with a time bandwidth product of 9. As 

high frequency components of neural recordings drop off quickly due to power-law scaling 

(Miller, 2009), the spectrograms for each channel were normalized with respect to the mean 

spectrum for that channel across the recording.  This frequency normalization may help 

prevent the intrinsically higher amplitude low frequency components from dwarfing the 

activity in higher frequencies in a given frequency band.  The resulting normalized time-

frequency matrix was averaged over frequency bins in the 250-2000 Hz range to create a 

time-varying, instantaneous measurement of high-frequency spectral power for each 

channel.   

Feature evaluation in a speech classification algorithm: A simple classification 

algorithm, Gaussian kernel weighted k-nearest neighbor (KNN) classification, was used to 

decode spoken words from the instantaneous high-frequency spectral power index from all 
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32 channels across the two implanted µECoG arrays.  KNN is a simple supervised learning 

method, i.e. an algorithm with a distinct training phase to form a hypothesis to map inputs 

to outputs, that can be applied in both classification and regression problems.  For every 

point in time, sampled at 20 Hz, the estimates of instantaneous, frequency-normalized, 

mean spectral power from 250-2000 Hz were taken from every channel and used as inputs 

to the KNN classifier, with the ten spoken words and the baseline inter-trial interval 

forming 11 output categories.  In the training phase of the algorithm, high-frequency 

feature vectors of the training examples were stored along with their output word category.  

In the test phase, when predicting a test instance for a given time sample, the mode of the 

class labels of the k nearest neighbors in feature space was the output for classification.  

An exhaustive search method was used when locating nearest samples.  The KNN 

algorithm in this study used a standardized Euclidean distance metric to the 15 nearest 

training samples.  A Gaussian kernel operator gave increased weight to training samples 

based on proximity to the test sample by the equation:   

𝐾(𝑑) = exp (−
𝑑2

2𝜎2
) 

where d represents the Standardized Euclidean Distance, and σ was set to 15.  Data points 

for training and testing were sampled at the reciprocal of the spectrogram moving window 

step size, or 20 Hz.  The data points from -0.25 s to +0.5 s relative to the markers for speech 

onset were assigned to the word spoken during that window, with all other data points 

assigned to the inter-trial interval category.  A 10-fold cross-validation was used to assess 

the KNN classifier accuracy, with one test fold and nine training folds for each iteration.  

Classification accuracies above chance indicate the detection and utilization of 
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behaviorally pertinent features of high-frequency neuronal communication instead of 

stochastic physiological data.    

 

 

RESULTS 

Spectrums of .75 second recording segments taken during speech production 

showed frequency-dependent amplitude differences compared to spectrums of recording 

segments during preceding periods, including  a broadband increase in power extending as 

high as 2 kHz for some electrodes and words. (Figure 3.3).  The relative change in the 

speech spectrum compared to the silent spectrum, averaged across trials, could similarly 

show a broad increase across frequencies that peaked in high gamma (~100 Hz) but 

continued to 2 kHz with possible additional small peaks around 400 Hz and above 1 kHz.   

 

Figure 3.3. Frequency Spectrum Change During Speech.  Data are from a representative 

electrode from the µECoG grid implanted subdurally over face-motor cortex.  Left, trial-
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averaged (n = 51) spectrums are shown for .75 s recording segments extracted from -0.25 

s to +0.5 s relative to onset of speech during trials of production of the word “Yes”, and 

for segments extracted from the immediately preceding, silent baseline period.  In addition 

to the patterns of LFP activity below 200 Hz, a small but consistent increase in power 

during speech trials is visible as high as 2 kHz.  Right, the relative spectrum change from 

baseline is averaged across trials.  Spectrum increase extends as high as 2kHz and shows 

possible peaks around 400 Hz and above 1 kHz.         

 Instantaneous mean spectral power from 250-2000 Hz, computed by 

averaging across frequency-normalized spectrograms, also showed strong modulation in 

amplitude relative to onset of speech trials for some channels and words (Figure 3.4 and 

Figure 3.5).  Cortical high-frequency content recorded by electrodes over face-motor cortex 

showed a larger average increase in amplitude upon speech onset compared to electrodes 

over Wernicke’s area (Figure 3.6), which showed less increase in amplitude on average 

upon speech production.  Electrodes over Wernicke’s area could additionally sometimes 

show increased high frequency activity during relaxed periods in between blocks of trials 

(Figure 3.5).  Trial-Averaged change from baseline amplitude of instantaneous high 

frequency power showed distinct patterns across combinations of words and electrodes 

(Figure 3.7) 
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Figure 3.4. Instantaneous High Frequency Power from Face-Motor Cortex.  Data are 

shown for an example electrode over face-motor cortex with preferential response for the 

word “Yes”.  Spectral power density normalized across frequencies, averaged from 250-

2000 Hz, and calculated over time with a 0.5 s moving window shows robust amplitude 

variation with trial onset for “Yes” (green lines) but not for “No” (red lines). 
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Figure 3.5. Instantaneous High Frequency Power from Wernicke’s area.  Data are shown 

for an example electrode over Wernicke’s area with little preference exhibited for rote 

repetition of spoken trials of “Yes” or “No.  Increased activity was observed during the 

longer breaks between blocks of trials and instructions. 
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Figure 3.6. PSTHs of Instantaneous Spectral Power from 250-2000 Hz.   Trial-Averaged, 

normalized spectral power over time provides a visualization of mean trends in cortical 

high-frequency neural activity relative to onset of speech production.  Shaded region 

represents ± 1 standard deviation.  Left, the preferential response of the example electrode 

for trials speaking “Yes”.  Right, the response of the same electrode relative to trials 

speaking “No” shows much weaker modulation.   
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Figure 3.7. Trial-Averaged High Frequency Modulation for all Words and Channels.  

Trial-averaged changes from baseline show distinct variation across different channel and 

word combinations. Electrodes 1-16 recorded from the array over face-motor cortex, while 

electrodes 17-32 recorded from the array over Wernicke’s area   

 

The K-Nearest Neighbor algorithm achieved an overall accuracy of 94.5 % in using 

instantaneous high frequency power from all electrodes to classify points in time as 

belonging to one of eleven speech classes.  After 10-fold cross-validation, each word 

category was classified at 90% accuracy or higher, with the bulk of the error in 

distinguishing between speech and inter-trial intervals (Figure 3.8), compared to 9% 

accuracy expected by chance classification of data points from 11 categories.   
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Figure 3.8. Classification Algorithm Results.  A Gaussian kernel weighted k-nearest 

neighbor classifier with k=15 neighbors used the time-varying high-frequency spectral 

power mean from all electrodes to classify points continuously sampled in time as 

belonging to 11 speech classes (10 spoken words + inter-trial intervals).  The above 

confusion matrix contains the cross-validated results from 10 fold validation.  Overall 

classification accuracy was 94.5%.   

 

DISCUSSION 

The high-frequency features of neural activity recorded from subdural surface 

electrodes can provide a robust source of information correlating with spoken words. 

Though the high-frequency spectrum is much lower in amplitude than LFP signals, it 

exhibited a consistent relative change in power that varied across channel and word 

combinations, yielding an informative feature set for decoding and classification 

algorithms. Using this feature set, a Gaussian kernel weighted k-nearest neighbor classifier 
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was able to achieve 94.5% overall accuracy for 11 speech classes, compared to 9% 

expected by chance.  This classification accuracy was for one day of recording during a 

speech task with one implanted patient, and is not directly comparable to previous 

classification results from this dataset as different metrics were used.  Additionally, there 

were a limited number of trials; apart from “Yes” and “No”, which had 51 and 45 trials, 

respectively, no other word had more than 10 repetitions.  Nevertheless, success of a 

classification decode algorithm using only high frequency content from surface electrodes 

serves to establish a proof of concept that the frequency band of 250-2000 Hz may contain 

informative, decodable data even when recorded from nonpenetrating surface electrode 

arrays.   

Frequency content in this high range has not typically been used in recordings from 

surface electrode arrays, and could thus potentially increase the amount of neural 

information available to such devices.  However, there may be compromises as well.  The 

advantages of neural interfaces utilizing surface electrode arrays include not just reduced 

tissue response and greater signal longevity compared to penetrating electrodes, but also 

lower requirements for bandwidth, computational speed, and battery life in designs for 

long-term implants, precisely because LFP signals can be sampled much more slowly than 

action potentials.  The analysis of high frequency content from surface electrode arrays 

may thus forfeit one of their advantages in certain applications.    

The high gamma band has been hypothesized to include components of firing from 

nearby neurons, including neurons too distant from the microelectrode to have resolvable 

waveforms (Ray 2011; Miller 2014).  While the results of this study are consistent with 

contributions to the recorded surface signal from potentially more direct, higher frequency 
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components of action potential spiking, further work would be necessary to investigate the 

amount of independence between the 250-2000 Hz frequency band and the upper bands of 

LFP signals. However, since spoken words correlated with consistent changes in frequency 

spectrum power extending well beyond 1 kHz, action potential spiking activity near the 

surface electrodes might contribute to the high-frequency content of the recording, 

representing a source of information potentially distinct from LFP spectra and a generally 

useful signal for neural prostheses. 
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Chapter 4  

DETECTION OF  HIGH FREQUENCY FEATURES OF NEURAL ACTIVITY IN THE 

STUDY OF FUNCTIONAL CONNECTIVITY AND NEUROPATHOLOGY  

 

ABSTRACT 

Parkinson’s Disease is associated with the disruption of normal function in cortico-

basal ganglia – cortico loops, leading to various movement disorders. Electrophysiological 

recordings taken using macro-scale Electrocorticography electrodes have shown aberrant 

coupling between cortical regions and subcortical structures, such as between beta and 

gamma bands in deep basal ganglia structures and the primary motor cortex (de Hemptinne, 

2013).  Recordings taken using micro-electrocorticography (µECoG) electrodes may 

potentially characterize patterns of functional connectivity, or temporal correlations 

between spatially remote neurophysiological events, at a finer spatial scale.  This study 

used µECoG arrays and penetrating FHC microelectrodes to investigate fine-scale 

functional connectivity between basal ganglia structures and areas of premotor cortex in 

patients with Parkinson’s Disease.  In addition to analysis of five classical local field 

potential (LFP) bands (Theta, Alpha, Beta, Gamma, and Chi), this study sought to detect 

patterns of functional connectivity in a high-frequency (250-2000 Hz) range matching the 

peaks in frequency content of action potential waveforms.   

 Spike-triggered averages (STAs) were computed between individual neurons in 

basal ganglia structures and cortical µECoG surface recordings using data from eight 

patients with Parkinson’s disease who were undergoing standard clinical Deep Brain 

Stimulator (DBS) implantation.  Time-frequency matrices were computed for the STAs, 

normalized by mean frequency spectrum, and averaged across each frequency band 
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separately.  Peaks in spectral power, localized from roughly 800 -1600 Hz, were frequently 

observed in the STA waveforms.  Significant spike-centered trends in these frequency 

bands relative to surrogate baseline activity generated from jittered spike times were 

detected in theta and alpha bands, and most commonly in the high frequency band.  Overall, 

19% of all basal ganglia neuron to cortical surface STAs exhibited significant trends in the 

250-2000 Hz range, with power in this range peaking most frequently at 50 ms post spike 

time, compared to 40 ms pre-spike in Alpha band and 270 ms pre-spike in Theta band.  

These results indicate that patterns of functional connectivity in a frequency range high 

enough to match spectral peaks of action potential waveforms may be recorded using 

surface µECoG arrays.  This technique may potentially provide a localized index of spike-

to-spike communication between spatially discrete regions of neural tissue in the study of 

cortical function and neuropathology.  

 

INTRODUCTION 

 

 Parkinson’s Disease is a degenerative neurological disorder afflicting the motor 

system, associated with impairments such as bradykinesia, tremor, and impaired balance.  

The exact mechanisms causing these symptoms are unknown (Mink, 2003), but their 

progression is associated with the loss of dopaminergic cells in the Substantia Nigra.  

Parkinson’s Disease is implicated in the disruption of normal function in cortico-basal 

ganglia – cortico loops (Lanciego, 2012).  The Basal Ganglia are a system of subcortical 

nuclei situated at the base of the forebrain that form multiple parallel modulatory feedback 

loops with many wide areas of the cerebral cortex (Figure 4.1).  These feedback systems 
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may contribute to movement selection, initiation, amplitude, and termination, as well as 

motor learning and the reward system of the brain.  In the focusing model, the direct 

pathway permits activation of certain movement circuits by removing inhibition of 

thalamocortical cells, while the indirect pathway simultaneously suppresses various 

undesired movements through increased inhibition of related thalamocortical cells (Albin 

et al, 1989).  This “center-surround” functional model does not explain the learning, 

reward-related, or habit formation functions of the basal ganglia, and it does not perfectly 

match basal ganglia structural anatomy.  However, it is consistent with certain symptoms 

of movement pathologies such as those in Parkinson’s Disease (Obeso, 2000), where cell 

death in the Substantia Nigra and the subsequent decrease in dopamine production may 

potentially result in reduced activity of the direct pathway and increased activity in the 

indirect pathway (DeLong, 1990; Obeso et al. 2000; Lanciego et al, 2012).  This 

pathological interruption could impede movement amplitude at a given level of effort as 

well as movement selectivity.   
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Figure 4.1. Basal Ganglia-Thalamocortical Circuits.  Excitatory connections are shown in 

green, while inhibitory connections are shown in red.  Image adapted from Kandel et al, 

2013, Systems of Neural Science 

 

Several pathological oscillations of neural signals are associated with Parkinson’s 

Disease.  Upon reduction of dopamine production, a pathological beta-band (12-30 Hz) 

oscillation appears in the cortex (Brown, 2007) and between the cortex and basal ganglia 

(Lalo, 2008).  Patients with Parkinson’s disease also exhibit prominent activity within STN 

in the beta band, which attenuates with dopaminergic treatment, while STN activity in the 

gamma (60-80 Hz) and theta (4-8 Hz) bands may increase.  High-frequency oscillations 

(HFO, ~300 Hz) initially diminish with treatment, but can recover within minutes in a 

higher frequency range and with a more broad distribution (Lopez-Azcarate, 2010).  
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Dopaminergic therapy frees these HFOs from beta-band coupling, and their amplitude 

modulates with movement.  Synchronization between neuronal action potential firing in 

STN and cortical field potentials recorded from primary motor cortex (M1) using macro-

scale Electrocorticography (ECoG) electrodes (Shimamoto et al, 2013).  Aberrant phase-

amplitude coupling has also been observed in the Parkinsonian state between beta and 

gamma bands in deep basal ganglia structures and the primary motor cortex (de Hemptinne, 

2012).  In the healthy state, M1 broadband gamma activity displays phase modulation with 

low-frequency signals in a dynamic, task and site-specific manner.  By contrast, excessive 

Parkinsonian phase-amplitude coupling may restrict the cortex to monotonous activity 

patterns that may disrupt its ability to respond to signals from other brain areas.  This model 

possibly provides a basis for akinesia, a chief clinical sign of Parkinson’s Disease.   Deep 

brain stimulation can disrupt excessive cortico-subthalamic feedback and coupling patterns 

while simultaneously ameliorating some movement disorders associated with Parkinson’s 

Disease.     

  

Electrophysiological functional connectivity describes the temporal correlations 

between neurophysiological events that are spatially remote, regardless of any physical or 

anatomical connectivity that may or may not be apparent between them.  The functional 

relationships between neural activity in basal ganglia structures and cortical neuronal 

populations may potentially be more precisely characterized through more localized and 

specific surface recordings.  Neural recordings matching the cortical columnar scale of 

computation in the cerebral cortex may help identify new patterns of aberrant neuronal 

activity among different, smaller functionally coupled regions of the brain.  The 
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aforementioned studies of cortico-basal ganglia synchronization typically recorded surface 

potentials from macro-scale, clinical ECoG grids, whose electrodes are millimeters in size 

and detect the aggregate activity of large neuronal populations.  In contrast, micro-scale 

Electrocorticography (µECoG) arrays allow analysis of local field potential (LFP) signals 

at a millimeter to sub-mm scale, closer to the cortical columnar scale (Kellis 2016).  This 

study employed µECoG arrays and penetrating FHC microelectrodes to investigate 

relationships between premotor cortical neuronal population activity and single neurons in 

basal ganglia in patients with Parkinson’s Disease.  The spike-triggered average (STA) of 

LFP signals is one method of detecting functional connectivity, assessing the strength of 

postsynaptic activity in a cortical region potentially affected by spiking in a different 

location (Jin 2008; Nauhaus 2009; Ray 2011).    

In addition to recording a finer scale of cortical field potentials recorded, the smaller 

electrodes in µECoG arrays record from correspondingly smaller volumes of tissue, and 

consequently do not require as broad a degree of neuronal synchronization to achieve 

change in summed potentials (Kellis, 2016).  The upper bound of LFP signals, high gamma, 

has been hypothesized to include components of firing from nearby neurons, including 

neurons too distant from the microelectrode to have resolvable waveforms (Ray, 2011)  

Purpose-built surface micro-electrodes with diameters as small as 10 µm have been used 

to detect and isolate waveforms of individual action potentials from superficial cortical 

neurons (Khodagholy, 2015).  It is thus likely that the µECoG arrays in this study may 

record finer, more localized representations of neuronal activity, particularly in the high 

frequency bands corresponding to spectral peaks of action potential waveforms.  This study 

used spike-triggered averages between single neurons in basal ganglia structures and 
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cortical µECoG surface recordings to search for patterns of functional connectivity in a 

high frequency (250-2000 Hz) range matching the peaks in frequency content of individual 

action potential waveforms, referred to hereafter as the AP band for the sake of brevity.  

The ability to detect features of action potential spiking using surface electrodes could be 

particularly useful in clinical applications and research involving human subjects, since 

penetrating microelectrodes are used much less frequently in these settings due to the 

inherent tissue damage. 

 

METHODS 

 

 Experimental setup and data collection.  Eight Parkinsonian patients underwent 

standard clinical, anesthetized bilateral DBS implant surgery at Barrow Neurological 

Institute (Phoenix, AZ) (Table 4.1).  A burr hole was formed over the dorsal frontal lobe 

at the entry to the descent tract for the therapeutic DBS electrode.  Prior to insertion of the 

DBS electrode, a 4x4 µECoG array (75 um diameter, 2 mm spacing, PMT Neurosurgical, 

Chanhassen, MN) (Figure 4.2) was slid epicortically over motor association cortex.   
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Figure 4.2. PMT surface µECoG. The array used in this study to record cortical local field 

potentials is shown photographed with a quarter for scale.  Electrodes had a 75 µm diameter 

with 2mm inter-electrode spacing.   

 

A penetrating microelectrode (FHC, Bowdoin, ME) was inserted ipsilaterally through the 

therapeutic target tracts, pausing at various depths to record neuronal activity including 

action potentials from subcortical structures, including anterior thalamus, substantia nigra 

pars reticula, and subthalamic nucleus (tract for STN therapeutic target), or external and 

internal globus pallidus (tract for GPi therapeutic target).  The penetrating microelectrode 

and the surface µECoG array were then removed, and the therapeutic DBS electrode was 

inserted along the same tract.   
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Data from the cortical µECoG array and the subcortical penetrating microelectrode 

were recorded at 24.4 kHz with a PZ5 data acquisition system (Tucker-Davis 

Technologies, Alachua, FL). At each pause of the descent, markers for the insertion depth 

of the penetrating microelectrode and the corresponding basal ganglia structure were 

manually added to the recording file. 

 

Data analysis.   LFP data recorded from the surface µECoG array were 

downsampled to 4800 Hz for analysis. 60 Hz line noise and harmonics were filtered using 

3rd order Butterworth notch filters. The subcortical microelectrode recordings were 

highpass filtered above 200 Hz to isolate action potential waveforms.  Positive and negative 

voltage spikes beyond 3 times the RMS value of the recording were extracted into 1.6 ms 

Subject Age Sex 
Target 

Structure 
Implantation 

Years 
Diagnosed 

Recorded 
Hemisphere 

2016PB01 62 M STN Bilateral 4 Right 

2016PB02 65 M STN Bilateral 12 Left 

2016PB04 66 F GPi Bilateral 10 Right 

2016PB05 65 M STN Bilateral 6 Right 

2016PB06 67 M STN Bilateral 6 Right 

2017PB01 55 M STN Bilateral 7 Right 

2017PB02 55 M GPi Bilateral 15 Right 

2017PB03 62 M GPi Bilateral 14 Right 

 

Table 4.1.  Patient Demographics 
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snippets as candidate action potentials.  Candidate snippets were projected into principal 

component space using the top three principal components.  Initial sorting of AP 

waveforms from neurons at each subcortical recording depth was performed using an 

automated algorithm based on mixtures of multivariate t-distributions (Shoham, 2003).  

Cluster grouping and separation was adjusted from the automated process by manual visual 

inspection of the clusters and their Mahalanobis ellipsoids in PCA space, the interspike 

interval distributions, spike locations in the voltage time series recording and the collective 

experience of the researchers conducting the study.   

For each isolated subcortical neuron, the spike-triggered average of the surface 

local field potential was computed for every electrode on the µECoG array from -0.5 to 

+0.5 seconds relative to subcortical spike times.  Electrode 1 was excluded from analysis 

due to the presence of artifactual contamination from the penetrating microelectrode caused 

by the recording hardware.  Bootstrap resampling of subcortical spike times was performed 

500 times at 25% dropout, and a spike-triggered average was generated from each subset 

of resampled spike times. To generate surrogate baseline data for statistical comparisons, 

an additional spike-triggered average was generated at each resampling using altered spike 

times.  The alteration of spike times was performed using basic random jitter from 0 - 0.5 

seconds in either direction in order to disrupt fine temporal patterns correlated with spike 

times while preserving slower trends.  

For each of the resampled spike-triggered average waveforms, from true and from 

jittered spike times, instantaneous mean spectral power was computed for six frequency 

bands.  The first five frequency bands are associated with band-limited components of LFP 

oscillations -  Theta (4-7 Hz), Alpha (8-15 Hz), Beta (16 – 30 Hz), Gamma (31-80 Hz), 
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and Chi (81-160 Hz) -  and the sixth frequency band, AP (250-2000 Hz), was chosen for 

its potential to contain high-frequency features of nearby action potential spikes.  To 

perform this analysis, multi-taper power spectral density estimates were computed from 

the spike-triggered averages using 0.25 s windows, 80 Hz sampling rates, and a single taper 

to maximize the frequency resolution.  The resulting time-frequency matrices were 

normalized across frequencies with respect to the average spectrum in order to minimize 

masking of low amplitude, high frequency signals by higher amplitude, lower frequency 

signals in each frequency band.  Subsets of the resulting normalized time-frequency 

matrices corresponding to each frequency band were extracted and averaged over 

frequency bins to create a time-varying index of spike-triggered average spectral power for 

each frequency band, electrode, and resampling iteration. 

For each frequency band, to determine if the spike-triggered average spectral power 

was different from the surrogate baseline, the resampled spike-triggered average spectral 

power vectors made from true spike times were projected into Principal Component space 

along with the STA vectors made from jittered spike times.  The first three principal 

components were used in this projection.  Mahalanobis ellipsoids were generated for each 

STA cluster at 1.96 standard deviations from centroid location, and the two clusters were 

considered significantly separable if their Mahalanobis ellipsoids did not intersect.  

Subcortical spike-triggered averages of cortical surface activity that differ significantly 

from baseline may represent patterns of functional connectivity between individual 

subcortical neurons and small populations of cortical neurons. 
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RESULTS 

 

 In total, action potential waveforms from 127 neurons were isolated from 73 

recording depths across 5 basal ganglia structures in 8 Parkinsonian patients undergoing 

standard clinical bilateral DBS implant surgery (Table 4.1).  The results of the spike sorting 

process are shown for an example recording depth with 3 neurons in figures 4.3 and 4.4.  

 Spike-triggered average LFP waveforms showed considerable amplitude reduction 

compared to raw LFP recordings, dropping from tens or hundreds of µV to single-digit µV 

amplitudes (Figure 4.5).  Modulation in amplitude of activity in various frequency bands, 

particular Alpha band and the AP band, could be seen both in the spike-triggered average 

LFP waveforms (Figure 4.5) as well as their corresponding frequency-normalized 

spectrograms and frequency band-averaged instantaneous spectral power vectors (Figure 

4.6).   

 The increase in high-frequency power observed in spike-triggered average 

waveforms computed from true spike times went away when spike times were randomly 

jittered.  Results for an example neuron with a large AP band response are shown in Figure 

4.7.  Significance testing for the difference in activity between resampled spike-triggered 

averages from true spike times and from jittered spike times was computed via 

Mahalanobis ellipsoid overlap in PCA space for all neurons, channels, and frequency 

bands.  Results of significance testing for the example neuron with large AP band response 

are shown in Figure 4.8.  Spectrograms of spike-triggered average waveforms are shown 

for all channels for an example neuron with significant activity in both alpha and AP bands 

in Figure 4.9, and the corresponding instantaneous mean spectral power for true and jittered 
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spike-triggered averages is shown for all channels for each frequency band in Figure 4.10.  

The example data in Figures 4.9 and 4.10 are reflective of the general trends observed in 

Alpha band and in AP band across patients and basal ganglia structures: increases in 

cortical alpha band power tended to lead subcortical spike times (mode time difference = -

40 ms), while cortical power in AP band tended to lag subcortical spike times (mode time 

difference = +50 ms) (Figure 4.11).  A total of 356 significant spike-triggered average 

functional couplings were observed between subcortical neurons and activity in AP band 

from cortical surface electrodes, roughly one order of magnitude more than observed in the 

next closest frequency range, Alpha band with 34.   Table 4.2 summarizes the number of 

significant functional couplings found by basal ganglia structure and frequency band.   
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Figure 4.3. AP Waveform Sorting.  Top, Principal Component Analysis was performed on 

all extracted waveform snippets, which were then projected into PCA space using the top 

3 principal components.  Mahalanobis ellipsoids are superimposed for each cluster to help 

visualize cluster separation. Cluster grouping and separation was adjusted from an 

automated process by manual visual inspection of the distribution in PCA space, the 

interspike interval distributions, spike locations in the voltage time series recording (Figure 

4.4).  Middle row, mean time series waveforms are shown for each sorted neuron, with 

shaded area representing ± 1 standard deviation.  Bottom row, normalized histogram of 

inter-spike intervals is shown for each sorted neuron.   
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Figure 4.4. Sorted Spikes in Subcortical recording. A representative recording from the 

subcortical penetrating microelectrode is shown with isolated action potentials from 3 

neurons. The same recording segment is shown three times, with spike times highlighted 

for a different neuron in each plot. 

 

 

Figure 4.5. Raw Surface LFP and Spike-Triggered Average.  Left, a representative 1-

second sample recording is shown from an electrode on the surface µECoG array.  Right, 
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the surface potential recorded from the same electrode is shown after averaging from 

aligning on subcortical action potentials.    The dotted black line at t = 0 indicates 

subcortical spike time.  The spike-triggered averaging process reduced signal amplitude in 

this instance from around 100 µV to around 1 µV, a reduction of 2 orders of magnitude.  

In the spike-triggered average waveform, prominent alpha band oscillations peak 10-20 ms 

before spiketime.  High frequency activity is also visible from 20-150 ms post spike time.   

 

 

Figure 4.6. STA Spectral Power by Frequency Band.  Top, a frequency-normalized 

spectrogram of the representative spike-triggered average waveform from Figure 4.5 

shows the six frequency bands for which instantaneous mean spectral power was 
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computed.  Spike time is indicated by the dotted black line at t = 0, while horizontal solid 

black lines indicate boundaries of frequency bands.  Frequency is plotted on a logarithmic 

scale to facilitate viewing of all frequency bands together.  Increases in spectral power 

relative to subcortical spike time can be seen in alpha band and the high frequency band 

potentially associated with action potential spectra, AP band.  Bottom, instantaneous mean 

spectral power is shown for each of the six frequency bands 

  

 

 

Figure 4.7. Spectrograms of STAs from True and Jittered Spike Times.  Data are shown 

for a representative subcortical neuron with a particularly robust response in AP band in a 

cortical surface recording.  Left, the spectrogram is shown for the STA generated from true 

spike times.  Dotted line at t=0 indicates subcortical spike time.  Right, the spectrogram is 

shown for the STA generated using surrogate spike times, jittered randomly from 0.5s in 

either direction from true spike times.  The increase in high frequency power relative to 

spike time is not present the STA generated from jittered spike times.  Instantaneous mean 

spectral power in AP band and significance testing shown in Figure 4.8. 
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Figure 4.8. Significance Testing for STA Spectral Power for a Representative Neuron.  The 

data are computed from the same channel recording as the spectrograms shown in Figure 

4.7.  Left, the mean waveforms of resampled STA spectral power in AP band are shown 

for true spike times (blue) and for surrogate spike times, jittered randomly from 0.5s in 

either direction from true spike times (black).  Shaded areas are ± 1.96 standard deviations 

of the resampled vectors from the mean.  Right, the resampled STA spectral power vectors 

are projected into Principal Component Space using the first 3 principal components.  

Mahalanobis Ellipsoids are shown at 1.96 standard deviations for the clusters in PCA space 

from STAs made from true spike times (blue) and from jittered spike times (black).  The 

STA spectral power from true spike times was classified as significantly different from 

baseline as the ellipsoids do not intersect. 
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Figure 4.9. Frequency-Normalized Spectrograms of STA LFP.  Time-frequency plots from 

surface recordings are shown relative to subcortical spike times for an example neuron in 

STN.  Subplots correspond to physical location of electrodes on the surface µECoG array.  

Electrode 1 (upper left) was excluded from analysis due to recording artifacts.  Several 

channels show increases in power in localized bands ranging from 800 – 1600 Hz 

approximately centered on subcortical spike time, including all electrodes in the third 

column.  Frequency is plotted on a linear scale to facilitate viewing of activity in AP band.  

Instantaneous mean spectral power and significance by frequency band and channel are 

shown below in Figure 4.10.   
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Figure 4.10. Significantly Coupled STA Spectral Power Means. Data are shown for an 

example subcortical neuron in STN.  Increases in power roughly centered on subcortical 

spike time can be seen in cortical surface recordings in Alpha band and the very high 

frequency band.  Subplots for each frequency band correspond to physical location of 

electrodes on the surface µECoG array.  Blue time series plots represent mean spectral 

power for spike-triggered averages resampled from true spike times, while black plots 

represent mean spectral power averaged and resampled from surrogate, jittered spike times.  

Shaded areas are ± 1.96 standard deviations of the resampled vectors from the mean.  Red 

bolded subplots indicate mean STA spectral power vectors that were significantly different 

from the surrogate baseline vector, i.e. resampled distributions whose clusters in PCA 

space did not overlap at 2 Mahalanobis standard deviations.   

 

Table 4.2. Summary of Significant Functional Couplings.  The top section tabulates by 

Basal Ganglia structure the total number of recorded depths and isolated neurons, and again 

for the recordings and neurons that had any significant functional couplings between 

subcortical spikes and cortical surface recordings for at least one neuron, in at least one 

frequency band, on at least one channel.  The bottom section shows the summary by 
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frequency band for the neurons with significant functional coupling on at least one channel 

in at least one frequency band.   

 

 AT STN SNr GPe GPi Total 

Total subcortical recording depths 3 32 5 15 18 73 

Total recorded neurons (Table 4.1) 7 54 14 19 33 127 

Subcortical recordings correlated with 
cortical LFP 2 29 4 6 14 55 

Neurons correlated with cortical LFP 3 42 10 7 21 83 

Significantly coupled neurons by frequency:  
Theta 0 9 2 1 0 12 

Alpha 0 10 0 0 1 11 

Beta 0 1 1 1 2 5 

Gamma 0 2 0 1 3 6 

Chi 1 14 1 2 1 19 

AP Band 1 25 3 4 9 42 
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Figure 4.11. Normalized STA Power for All Significant Pairings in all Channels.  Across 

all patients and Basal Ganglia structures, the AP band (250-2000 Hz) showed significant 

coupling in 356 pairs of subcortical neuron to cortical surface recordings, out of 1,905 total 

pairs per frequency band.  Alpha band showed the next greatest amount, at 34 significantly 

coupled pairs.  Increases in STA spectral power had modes of -270 ms relative to 

subcortical spike time in Theta band, -40 ms in Alpha Band, and +50 ms in AP Band.  

Distributions of spectral power increase in Beta, Gamma and Chi bands did not show a 

clear central tendency.     
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DISCUSSION 

356 significant spike-triggered trends were observed among all subcortical neuron 

to surface electrode pairs in the AP band, out of 1,905 total pairs, or 19%.  This is an order 

of magnitude higher than the number of significant trends observed in any other frequency 

band.  This discrepancy might be related to fundamental differences between the nature of 

action potential spiking and the bandlimited synchronous oscillations in LFP signals, and 

the amplitude reduction induced by the spike-triggered averaging process.  LFP waveforms 

averaged by alignment on spike times inherently undergo large amounts of destructive 

interference from averaging out-of-phase snippets together, driving the averaged amplitude 

towards 0.  STA waveforms in this study showed amplitudes 2 orders of magnitude lower 

than raw LFP signals.  Similar amplitude reduction has been observed in STA waveforms 

recorded from penetrating microelectrodes in macaques, and the reduction was noted to 

increase with increasing LFP frequency and greater distance between electrodes (Ray 

2011).  Phase locking of action potentials to a certain frequency band of the LFP signal 

results in attenuation of the destructive interference as the spike-centered snippets are 

overall more synchronous, resulting in greater amplitude of the average waveform in that 

frequency band relative to spike time.  Spike-triggered trends in LFP frequency bands thus 

reflect patterns in signal phase relative to spike time, and not just patterns in amplitude of 

the signal in the frequency band.  

Action potentials, however, are orders of magnitude shorter-lived than LFP 

oscillations (commonly sub-ms for single AP waveforms, vs an approximately 100 ms 

period for 1 oscillation of Alpha band) and are effectively only one “cycle” long, as 
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opposed to the continuous oscillations of LFP signals.  Signal interference of individual 

action potential waveforms, destructive or constructive, would require correspondingly 

tighter temporal alignment of individual spike-centered snippets in order to occur.  

Additionally, action potential waveforms often exhibit a much larger positive than negative 

phase (or vice versa, depending on factors such as electrode orientation relative to the cell 

body) (Buzsaki, 2012), which could limit the amount of destructive interference even upon 

exact temporal alignment of positive and negative phases.  It is therefore possible that 

spike-triggered average waveforms could be less affected by synchrony of continuous 

oscillations in the very high (250-2000 Hz) frequency range compared to the sensitivity of 

STA waveforms to synchrony of continuous oscillations in other, lower frequency bands.  

Rather than reflecting synchrony of oscillations between 250-2000 Hz, spike-triggered 

trends in the presumed AP band could reflect the total amount of spiking from the local 

neuronal population, or gross local firing rate. 

Surprisingly, almost no significant trends were observed in Beta band between 

subcortical neurons and surface field potentials, despite aberrant coupling in beta band 

being a hallmark of Parkinsonian pathology.  One possible explanation could be that 

anesthesia has been noted to have pronounced effects on brain activity (Rojas, 2006; Potez, 

2008).  Anesthesia has been noted to have several particular effects on functional 

connectivity in different subcortical and cortical regions.  Propofol has been observed in 

BOLD fMRI studies to reduce functional connectivity between thalamus and cortex, (Liu, 

2013), while sevoflurane has been seen to reduce significant voxels in functional 

connectivity maps by up to 98% in deep anesthesia (Peltier 2005).  Biophysical models of 

neuronal dynamics have indicated that beta oscillations can be generated by the effect of 
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propofol in cortex alone, without necessarily requiring thalamic participation (McCarthy 

2008).  Anesthesia has been associated with wider synchronization in the brain, particularly 

in low-frequency rhythms, which have been linked to layer specific pyramidal neurons 

acting as local pacemakers (Bollimunta, 2008).     

The spectrograms of cortical surface STAs show frequency localization of the 

increase in AP band activity; rather than a broadband increase tapering off from lower 

frequency bands such as gamma or chi, distinct peaks were typically observed between 

800-1600 Hz.  Additionally, increases in cortical AP band activity showed tight temporal 

coupling relative to subcortical spike times, with a mode lag time of 50 ms across patients 

and basal ganglia structures, with less variance than observed in lower frequency bands.  

One possible explanation for the low variance and consistently short lag from subcortical 

spike to cortical peak in AP band power is that propagation time of axons, synaptic 

neurotransmitter diffusion, and reciprocally coupled neuron recursion time have been 

observed to be on the order of 10 ms or less (Shepherd 2004; Sabatini 1996; Koch 2004; 

Ray 2008).    While far from definitive, the frequency localization and tight temporal 

coupling of the 250-2000 Hz frequency band are consistent with a possible contribution of 

action potential waveforms in a local population recorded from the surface electrodes.  

Rather than representing spike-field coupling, significant coupling in the high frequency 

band from 250-2000 Hz could instead possibly represent a form of rapid spike-to-spike 

coupling.     
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