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ABSTRACT 

 

 Microbial electrochemical cells (MxCs) are a novel technology that use anode-

respiring bacteria (ARB) to bioremediate wastewaters and respire an electrical current, 

which can then be used directly to produce value-added products like hydrogen peroxide 

(H2O2).   Ninety-five percent of the world’s H2O2 is currently produced using the 

anthraquinone process, whose production requires expensive and potentially carcinogenic 

catalysts and high amounts of electricity.  However, the amount of H2O2 that can be 

produced from these microbial peroxide-producing cells (MPPCs) has not been 

thoroughly investigated.  Predicting potential H2O2 production in MxCs is further 

complicated by a lack of mathematical models to predict performance utilizing complex 

waste streams like primary sludge (PS).    

 A reactor design methodology was developed for MPPCs to systematically 

optimize H2O2 production with minimal energy consumption.  H2O2 stability was 

evaluated with different catholytes, membranes, and catalysts materials, and the findings 

used to design and operate long-term a dual-chamber, flat-plate MPPC using different 

catholytes, ferrochelating stabilizers, and hydraulic retention times (HRT).  Up to 3.1 ± 

0.37 g H2O2 L
-1 was produced at a 4-h HRT in an MPPC with as little as 1.13 W-h g-1 

H2O2 power input using NaCl catholytes.  Attempts to improve H2O2 production by using 

weak acid buffers as catholytes or ferrochelating stabilizers failed for different reasons.    

 A non-steady-state mathematical model, MYAnode, was developed combinging 

existing wastewater treatment, anode biofilm, and chemical speciation models to predict 

MxC performance utilizing complex substrates.  The model simulated the large-scale 



 

ii 

trends observed when operating an MPPC with PS substrate.  At HRTs ≥ 12-d, the model 

demonstrated up to 20% Coulombic recovery.  At these conditions, ARB required 

additional alkalinity production by ≥ 100 mgVSS/L of acetoclastic methanogens to 

prevent pH inhibition when little influent alkalinity is available.  At lower HRTs, 

methanogens are unable to produce the alkalinity required to prevent ARB inhibition due 

to washout and rapid acidification of the system during fermentation.  At ≥ 100 mgVSS/L 

of methanogens, increasing the diffusion layer thickness from 500 to 1000 μm improved 

Coulombic efficiency by 13.9%, while increasing particulate COD hydrolysis rates to 

0.25/d only improved Coulombic efficiency by 3.9%.   
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CHAPTER 1 

 

Introduction 

 

1.1 Wastewater treatment and its critical impacts on society 

 Efficient and effective wastewater treatment is critical for sustainable human 

health and preservation of the environment.  Every day in the United States, more 

than 14,000 wastewater treatment plants (WWTPs) treat 33.2 billion gallons per day 

of wastewater for 238 million people (U.S. EPA, 2016).  Of those WWTPs, 84% of 

plants provide secondary treatment (i.e., removal of soluble and particulate chemical 

oxygen demand, or COD, using an activated sludge process and a secondary clarifier) 

or higher.  Secondary treated wastewater must meet minimum discharge standards of 

less than 30 mg BOD5/L and more than 85% removal of biochemical oxygen demand 

at day 5 (BOD5) and total suspended solids (TSS) (U.S. EPA, 2016).   

The quest for energy efficiency has become an industry-wide focus in 

wastewater treatment (WWT).  WWTPs account for ~1% of the United States’ (U.S.) 

electricity consumption (Carns, 2005; Reekie et al., 2013).  Not surprisingly, aeration 

accounts for ~50-54% of energy consumption in a typical activated sludge WWTP 

(U.S. EPA, 2008; O’Callaghan, 2009).  Energy usage continues to climb as 

technologies with higher energy consumption technologies, like ultraviolet (UV) 

disinfection and membrane filters, are implemented to help facilities meet more 

stringent treatment guidelines. 

WWTPs are also increasingly focused on reducing biosolids.  Approximately 

8 million dry tons of sludge were produced by U.S. wastewater treatment facilities in 

2005, with 51% being applied to land application, 28% being disposed of at landfills, 
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and 15% incinerated (Center for Sustainable Systems, 2016; U.S. EPA, 2016).  While 

sludge produced during WWT is nutrient-rich, solids must undergo energy-intensive 

reconditioning to be used as soil nutrients, incineration is energy intensive and 

produces greenhouse gases, and biosolids transportation has significant greenhouse 

gas emissions and life cycle impacts (Center for Sustainable Systems, 2016).   

Industry-wide, WWTPs seek more energy-efficient wastewater treatment and 

higher sludge stabilization to reduce operational costs (U.S. EPA, 2008; Rittmann, 

2013; Li et al., 2014; Lowrie, 2015). While activated sludge processes are used in 

COD and nitrogen removal, aerobic bacteria have high biomass yields, producing 

substantial sludge for disposal (Rittmann and McCarty, 2001; Rittmann, 2013).  

Anaerobic digestion (AD) is increasingly utilized a method of stabilizing biosolids 

while simultaneously producing methane (CH4) for on-site heat and power (Eastern 

Research Group, Inc. and Energy and Environmental Analysis, Inc., 2007; U.S. EPA 

Combined Heat and Power Partnership, 2008; Rittmann, 2013; Metcalf & Eddy, 

2014).  During AD, sludge is decomposed and converted to CH4 by a three-step 

process:  hydrolysis of solid and macromolecular organics, i.e., sludge stabilization; 

fermentation of the hydrolysis products to simple organic acids, alcohols, and 

hydrogen gas (H2); and methanogenesis of the fermentation products to CH4.  Sludge 

stabilization reduces the mass of solids required for disposal (Center for Sustainable 

Systems, 2016; Rittmann, 2013; Metcalf & Eddy, 2014; Lowrie, 2015).   
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1.2 Hydrogen peroxide (H2O2) and its role in water and wastewater treatment 

 H2O2 is an industrial chemical with a wide range of uses including as a 

bleaching agent for textiles and paper, a propellant, and an oxidant in chemical 

manufacturing (Campos-Martin et al., 2006).  Approximately 5% of the U.S.’s annual 

H2O2 usage is in the water and wastewater treatment (FMC Corp., 2012).  H2O2 is 

used in low concentrations with the Fenton process or UV treatment for advanced 

oxidation of complex organic chemicals and emerging contaminants (Campos-Martin 

et al., 2006; De la Cruz et al., 2012; Yang et al., 2014) and for disinfection (Glaze et 

al., 1987; Wagner et al., 2002; Ksibi, 2006; Kruithof et al., 2007; Snyder et al., 2008).  

H2O2 also is used in advanced oxidation processes to remove biological products or 

contaminants that contribute to taste and odor issues (Ksibi, 2006; Acero and von 

Gunten, 2000; Drogui et al., 2001).  H2O2 is utilized at WWTPs for hydrogen sulfide 

removal in scrubbing towers to reduce odor emissions (Charron et al., 2004; Metcalf 

& Eddy, 2014).  

Approximately 95% of the world’s annual H2O2 production is through the 

anthraquinone oxidation process (Campos-Martin et al., 2006).  During the 

anthraquinone oxidation process, anthraquinone is hydrogenated with hydrogen gas 

(H2) using palladium or nickel at catalysts to form anthrahydroquinone (Deed, 1998; 

Campos-Martin et al., 2006).  After the metal catalysts are filtered from the solution, 

the anthrahydroquinone solution is aerated using large blowers to produce H2O2 and 

anthraquinone.  The H2O2 is extracted in a distillation column at a 25-30 weight % 

solution, and the anthraquinone is recycled back to the hydrogenation step.  

Additional distillation steps are performed if higher H2O2 concentrations are desired.  

The anthraquinone oxidation process is estimated to use 2 to 10 W-h to produce one 
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gram of H2O2 (Althaus et al., 2007; Yang et al., 2014).  Within the last 15 years, 

anthraquinone and its byproducts have been under scrutiny for being suspected 

carcinogens.  In the mid-2000s, California added anthraquinone to its Proposition 65 

list due to its carcinogenic effects in animal studies (Hart and Rudie, 2014).  In 2013, 

the European Food Safety Authority limited anthraquinone residue levels to less than 

10 ppb in H2O2-bleached pulp and paper board that contacts food due to its suspected 

carcinogenic effects (Hart and Rudie, 2014).  Thus, a sustainable and efficient 

alternative for H2O2 production is required to satisfy the market’s needs. 

H2O2 is also produced by electrosynthesis in fuel cells.  Electrolysis of H2O2 

has been commercially available for more than 100 years but is economically 

disadvantageous versus the anthraquinone oxidation process due to large energy 

requirements (Campos-Martin et al., 2006).  Over the last 20 years, research has 

focused on electrosynthesis of H2O2 in fuel cells.  Ichiro Yamanaka’s group has been 

at the forefront of this fuel cell research, exploring H2O2 production at different 

electrolyte pH, improved oxygen gas (O2) delivery to the electrolyte, and cathode 

design (Otsuka and Yamanaka, 1990; Yamanaka et al., 2003; Yamanaka et al., 2011).  

Their research has achieved H2O2 concentrations up to 72 g/L in fuel cells operating 

at 60-93% cathodic efficiency and producing up to 3x10-4 W-h/g H2O2, but the cell 

requires a direct feed of H2 gas to the anode and O2 to the cathode leading to concerns 

regarding safe cell operations.  

 Chemical compatibility and storage of H2O2 are obstacles for any proposed 

H2O2 manufacturing process.  As a strong oxidant, H2O2 is highly susceptible to 

degradation in presence of a myriad of reduced compounds, including metals and 

organic compounds.  Commercially available H2O2 often includes either a metal 
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chelator to prevent its catalytic degradation or a sequestrant that produces protective 

colloids with H2O2 to minimize degradation.  The most common chelating agents used 

in H2O2 solutions include sodium pyrophosphate, ethylenediaminetetraacetic acid 

(EDTA), and organophosphonates, which chelate metals (Knotter et al., 1999; Rämö 

and Sillanpää, 2001; Campos-Martin et al., 2006).  Sodium stannate is the most 

common H2O2 sequestrant, but other sequestrants include sodium silicate and sodium 

nitrate (Colodette et al., 1989; Campos-Martin et al., 2006). 
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1.3 Microbial electrochemical cells and byproduct formation  

1.3.1 Overview 

 Microbial electrochemical cell (MxC) technology is a fledgling, 

transformative technology investigated over the last decade for wastewater treatment.  

Figure 1.1 is an illustration of a typical dual-chamber MxC.  In MxCs, anode-

respiring bacteria (ARB) consume volatile fatty acids (VFAs) like acetate (CH3COO-) 

and propionate or H2 as electron donor for energy and biomass synthesis (Kim et al., 

2010; Lee et al., 2008; Kannaiah Goud and Venkata Mohan, 2011).  Unlike most 

other bacteria, ARB respire electrons to a solid anode, which functions as the electron 

acceptor via a conductive biofilm matrix or a shuttling mediator through extracellular 

electron transfer (EET), producing an electrical current that flows to the cathode via 

an electrical circuit.  MxCs are operated as single-chambered systems (i.e., the anode 

and cathode are located in the same chamber) or dual-chambered systems (i.e., a 

membrane separates the anode and cathode chambers.  

 
Figure 1.1.  A schematic of the processes in a dual-chamber MxC. 
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ARB perform electrode respiration under anaerobic conditions and largely 

depend upon other microorganisms to biodegrade complex organic compounds to the 

simple substrates they can utilize (Rozendal et al., 2008; Parameswaran et al., 2009; 

Kiely et al., 2011; Parameswaran et al., 2011; Miceli et al., 2014).  Their place in the 

anaerobic food web is shown in Figure 1.2.  During hydrolysis, complex and 

particulate organic compounds undergo disintegration to carbohydrates, proteins, and 

lipids, which are further enzymatically hydrolyzed by fermenting bacteria to 

monosaccharides, amino acids, and long chain fatty acids (Vavilin et al., 2008).  The 

hydrolysis products are fermented by acidogenic or acetogenic bacteria to VFAs, 

alcohols, keytones, and H2 gas (Rittmann and McCarty, 2001; Bitton, 2005).  This 

step is critical to providing substrate to most common ARB (Kiely et al., 2011; 

Parameswaran et al., 2011; Miceli et al., 2014).  Acidogens metabolize fatty acids, 

amino acids, and sugars to VFAs like acetate, propionate, and butyrate, and to 

alcohols including ethanol, bicarbonate (HCO3
-), and H2.  Acetogens convert 

hydrolysis and fermentation products to acetate, HCO3
-, and H2 and are classified into 

two different groups:  H2-producing acetogens and homoacetogens.  H2-producing 

acetogens ferment VFAs and ethanol to acetate, while homoacetogens produce acetate 

directly from consumption of HCO3
- and H2.  Two sets of microorganisms compete 

for these fermentation products:  acetoclastic or hydrogenotrophic methanogens 

consume acetate and H2 and generate CH4 while ARB consume VFAs and H2 to 

respire electrons to an anode.  Large-scale MxCs applications likely will utilize 

complex waste streams with diverse microbial consortia to produce the fermentation 

products consumed by ARB but will also require system design and operation to 

control or minimize methanogenic activity (Rozendal et al., 2008; Kiely et al., 2011; 

Li et al., 2014). 
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Figure 1.2. The anaerobic food web that includes methanogenesis and anode 

respiration. 

 

Various products can be generated at the cathode through reduction reactions 

that use the electrons transmitted through the electrical circuit from the anode.  In 

microbial fuel cells (MFCs), the objective is to produce electrical energy through the 

4-electron reduction of O2 to water (H2O).  Theoretically, a 4-electron reduction 

produces ~1.1 V when coupled with acetate oxidation at the anode (Logan et al., 

2006).  In reality, inefficiencies in cell performance reduce the recovered energy to 

0.2-0.4 V (Rozendal et al., 2008; Li et al., 2014).  Causes of these cell inefficiencies 

include electrode catalysts that fail to significantly reduce the activation energy 

required for the chemical reaction to proceed; increased Ohmic resistances due to 

migration of counter ions over long distances to sustain electroneutrality; and 

concentration overpotentials due to large pH differences between the anolyte and 

catholyte (Bard and Faulkner, 2001; Logan et al., 2006; Torres, 2014; Popat and 

Torres, 2016).   
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In microbial electrochemical cells (MECs), a small amount of energy is put 

into the system to produce a valuable byproduct at the cathode.  One example of a 

valuable byproduct is H2 gas:  under anaerobic catholyte conditions, H2O is reduced 

to form H2 gas, which evolves from the liquid and is captured as the energy output.  

Theoretically, H2 can be produced at the cathode with as little as 0.14 V of applied 

energy (Rabaey and Verstraete, 2005; Logan and Regan, 2006), but the same kinds of 

Ohmic and concentration energy losses exhibited in MFCs reduce operating 

efficiency, resulting in the addition of > 0.2 V energy to reduce H2O to H2 (Logan et 

al., 2008; Kadier et al., 2014).  To mitigate cathode-related losses, MECs and MFCs 

use expensive catalysts like platinum or gold.   

1.3.2 Microbial Peroxide Producing Cells (MPPCs)  

One potentially energy-neutral application of MxC technology is cathodic 

electrosynthesis of H2O2 using microbial peroxide producing cells (MPPCs): 

O2 + 2H2O + 2e-  H2O2 + 2OH-       (Eo’ = +0.58 V)                   (Eqn. 1.1) 

 

High concentrations of H2O2 can be achieved using simple carbon catalysts.  

Researchers have had limited success producing H2O2 in batch MPPCs:  Either high 

concentrations of H2O2 were generated by adding energy into a MPPC, or very low 

H2O2 concentrations were produced along with a small output of electrical energy.  

Rozendal et al. (2009) produced 3.9 g H2O2/L-d and concentrations as high as 1.3 g/L 

but required 0.93 W-h/g H2O2.  Conversely, Fu et al. (2010) produced a low H2O2 

concentration of 79 mg/L but generated 0.06 W-h/g H2O2.  Modin and Fukushi (2013) 

produced 9 g/L H2O2 at a rate of 11.1 g/L-d while applying 3.0 W-h/g H2O2, 

demonstrating that high H2O2 concentrations can be achieved with significant energy 

input into the MPPC.   
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MPPC research has generally focused understanding the impact of one or two 

variables, rather than a systematic investigation of factors affecting the overall MPPC 

performance.  Fu et al. (2010), Modin and Fukushi (2013), Arends et al. (2014), and 

Sim et al. (2015) used different wastewater sources at different anode and cathode 

hydraulic retention times (HRTs) to maximize H2O2 production.  Modin and Fukushi 

(2012), Chen et al. (2014) and Li et al. (2016) explored different catalysts for 

improved H2O2 production.   

Significant gaps exist in MPPC research.  Only Li et al. (2016) demonstrated 

continuous production of H2O2 at the cathode chamber, and they achieved very low 

H2O2 concentrations of (8x10-5 g H2O2/L).  MPPCs have not been systematically 

investigated to minimize overpotentials, identify key material compatibility issues, 

characterize the efficiency of materials, and to design cells for long-term operations.   
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1.4 MxC Mathematical Modeling 

Mathematical models provide an important tool for wastewater treatment 

professionals.  Many models capture features typical of WWTPs, including mass 

transport, biological, and chemical phenomena.  Standard industry models like the 

Anaerobic Digestion Model (ADM), Activated Sludge Model (ASM), and the 

Benchmark Simulation Model (BSM) compartmentalize biological and chemical 

mechanisms to vessels with specific functions (Henze et al., 2000; Batstone et al., 

2002; Nopens et al., 2009).  These models focus on carbon, nitrogen, hydrogen and 

oxygen-based electron donors and acceptors and processes common to wastewater 

treatment:  aerobic oxidation, nitrification, denitrification, acidogenesis, acetogenesis, 

homoacetogenesis, and hydrogenotrophic and acetoclastic methanogenesis.  The 

models include the biological processes of bacterial growth and respiration and cell 

decay and the chemical process of chemical speciation.   

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) 

(Young et al., 2013b) provides the most comprehensive analysis of biological and 

chemical mechanisms without a priori assumptions of rate limiting steps as well as 

the inclusion of biomass-generated products like soluble microbial products (SMP) 

and extracellular polymeric substances (EPS).   

Others have modified the above-mentioned models to varying degrees for 

specific scenarios, including dynamic variations in flows for controls simulations 

(Solon et al., 2017), nutrient recovery (particularly phosphorus recovery and struvite 

precipitation) (Flores-Alsina et al., 2015), greenhouse gas emissions (Ni and Yuan, 

2015; Peng et al., 2016), and detailed bacterial growth and respiration pathways that 
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evaluate ATP and NADH in respiration (Jiang et al., 2011; Ni and Yuan, 2015; Peng 

et al., 2016).   

1.4.1 Anode models 

Many of the basic concepts applied in WWTP models are also applicable in 

MxCs.  As described in a previous section, the anode chamber of an MxC and 

anaerobic digestion depend on several upstream metabolic processes, including 

hydrolysis and fermentation, that are included in anaerobic digester models.  

However, MxC models must incorporate EET as part of ARB respiration to an anode.   

The earliest MxC models developed describe mediator-based transfer of 

electrons from ARB to an anode.  Zhang and Halme (1995) introduced one of the first 

MxC models, which utilizes diffusion of an external mediator to transfer electrons 

between ARB and an anode.  Substrate consumption and respiration are based on 

Monod kinetics and first order decay, respectively, while electrochemical reactions 

are described using the Nernst equation for open circuit potential, the Tafel equation 

to describe activation overpotential, and Ohm’s law to describe resistance 

overpotentials in the MEC.  Picioreanu et al. (2007, 2008, 2010) developed several 

two- and three-dimensional (2D, 3D) anode models describing the interactions 

between bulk liquid and biofilm.  The models use Monod kinetics to describe biomass 

growth and respiration.  The Butler-Volmer equation is used determine current 

density, taking into account Ohmic and activation losses within the cell.  Picioreanu et 

al.’s (2010) work culminates in the incorporation of ADM1 to describe substrate 

competition between ARB and methanogenic bacteria in the anode chamber.  

As research focus turned to mediator-less EET mechanisms, the works by 

Marcus et al. (2007, 2010, 2011) became the cornerstone of MxC anode and biofilm 
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modeling.  Marcus et al. (2007) introduced the Nernst-Monod model to describe ARB 

performance.  They utilized steady-state, dual-limitation kinetics using the Monod 

equation for biomass oxidation and respiration and the Nernst equation to describe 

electrical conduction of electrons to the electron acceptor, i.e., anode.  ARB kinetics 

are combined with mass balances and diffusion based on Fick’s law to describe 

current production in conductive biofilms.  Marcus et al. (2011) introduced 

PCBIOFILM, a steady-state, one-dimensional (1D) model that incorporates the 

Nernst-Monod model and diffusion with pH dependence and electrical neutrality.  

Since ARB produce an imbalance of charge from H+ at the anode, PCBIOFILM 

addresses the precarious balance between H+ diffusion from the biofilm and alkalinity 

diffusion into the biofilm to maintain electrical neutrality.  In PCBIOFILM, Marcus et 

al. utilize CCBATCH, a modeling platform that was developed to incorporate slow 

biological reactions with faster pH and chemical speciation reactions (VanBriesen and 

Rittmann, 1999).  Since H+ is the primary component produced at the anode, one 

advantage of utilizing the CCBATCH platform is its application of the proton 

condition (PC) to provide a mass balance on the change in H+ within the system.  

Marcus et al. (2010) expanded PCBIOFILM further to include the impact of ionic 

migration from the electric field produced due to EET.   

Over the last five years, a plethora of anode models were developed to 

describe anode phenomena ranging from the thermodynamic to the molecular to the 

mechanistic.  Merkey and Chopp (2012) expanded Marcus et al.’s (2010) model to a 

2D model to include a conductivity parameter for the biofilm, but neglected pH 

variation within the biofilm.  Oliveira et al. (2013) utilized EET kinetics as described 

by Marcus et al. (2007) developed an MFC model that couples mass, heat, and charge 

transfer with biofilm formation.  Oliveira et al. (2013) determined that heat dissipation 
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at the anode has little effect on anode chamber performance.  Several researchers have 

developed more detailed models of extracellular electron transfer combined with 

biofilm formation.  Pinto et al. (2010, 2011) developed several dynamic multispecies 

mathematical models of the anode chamber that include mass balances on 

intracellular electron transfer between redox mediators in ARB.   However, Pinto et 

al.’s models neglect the impacts of pH.  Renslow et al. (2013) developed a model that 

explored isolated and concurrent diffusion and conduction-based electron transfer 

mechanisms.  Building on Marcus et al. (2010), Jayasinghe et al. (2014) combined the 

extracellular electron transfer mechanism with intracellular metabolic model based on 

flux balances through ARB cells.  Korth et al. (2015) expand on Marcus et al. (2007) 

to describe intra- and extracellular electron transfer based on metallic-like 

conductivity through the biofilm. 

Many existing models omit important phenomena which can significantly 

affect ARB performance.  Excluding Marcus et al. (2010, 2011) and Picioreanu et al. 

(2007, 2008, 2010), models generally assume constant pH and neglect chemical 

speciation even though several works have demonstrated pH inhibition in ARB 

biofilms (Torres et al., 2008a, Franks et al., 2009).  Most models only include simple 

substrates like acetate or glucose, which are unrealistic for wastewater treatment 

modeling.  No prior model accounts for the formation of EPS and SMP, which can 

divert up to 24% of energy obtained from substrate utilization from the production of 

fermentation products fermenting bacteria (Noguera et al., 1994; Laspidou and 

Rittmann, 2002a; Ni et al., 2010; Xie et al., 2012).   
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1.4.2 Combined anode and cathode models 

Models that describe the anode and cathode generally are based on a mediator-

less EET.  Oliveira et al. (2013) developed a steady-state, 1D model of dual-chamber 

MFCs largely based on previous work modeling direct methanol fuel cells.  The 

Nernst-Monod equation is used to describe ARB respiration at the anode, which 

dictates oxygen reduction reaction (ORR) rates at the cathode since the cathode is 

considered non-rate-limiting.  Esfandyari et al. (2017) developed a dual-chamber cell 

model to determine the amount of current produced in the cell based on an ORR of O2 

to H2O.  The anode is modeled using Marcus et al. (2007) to determine theoretical 

current production based on three different models for specific growth rate:  the 

Monod, Blackman, and Tessier models.  Esfandyari et al. evaluate cathodic 

coulombic efficiency performance and the required O2 cathodic loading rate by 

subtracting anodic and cathodic Ohmic overpotential, activation, and concentration 

overpotentials from the theoretical cell potential based on the Nernst equation like 

Oliveira et al. (2013).  Esfandyari et al. assumes constant pH at the anode and cathode 

chambers, neglecting pH variations and concentration overpotential at either 

electrode, and no diffusion limitation through the membrane.   

Ou et al. (2016a, 2016b, 2017) have provided significant advances in holistic 

modeling for batch MFCs under non-advective conditions.  Ou et al. (2016a) 

developed a steady state, 1D model of a batch single-chamber MFC primarily to study 

the interrelationships between a bioanode and a biocathode.  The anode model was 

divided into three layers:  a metal current collector, the anode electrode, and the ARB 

biofilm.  The anode biofilm was modeled based on Marcus et al. (2010).  The cathode 

was modeled as four layers:  a polytetrafluoroethylene (PFTE)-coated gas diffusion 

layer, a carbon cloth cathode, a catalyst-coated layer on top of the carbon cloth, and a 
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multispecies biofilm.  At the anode and cathode, the values of several critical 

parameters, like limiting current density and the charge transfer coefficient, were 

assumed rather than quantified.  Unlike previous models, pH was assumed variable, 

affecting concentration overpotentials at the anode and cathode.  The cathodic biofilm 

performance and efficiency was determined by Monod kinetics.  Ou et al. (2016b) 

expanded on their earlier work to develop a transient model of biocathode formation 

with the assumption of steady-state conditions and pH at the anode.  In Ou et al. 

(2017), the authors added pH dependence at the anode and cathode, which affects 

overall cell performance.  A clear advancement over other models, Ou et al. (2016a, 

2016b, 2017) consider concentration overpotential at the anode and cathode using the 

Nernst equation; however, critical parameters--like limiting current density--were 

assumed rather than experimentally quantified.  In addition, representing the anode 

and cathode by a few discreet layers is speculative since a plethora of assumptions 

must be made for critical parameters.   
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1.5 Dissertation Objectives 

The main objective of my work is to provide a holistic mathematical model of 

MxCs using complex waste streams to produce different byproducts at the cathode, 

specifically H2O2.  This requires a comprehensive understanding of the impacts of 

catalyst, electrolytes, and cell performance on the production of H2O2 at the cathode 

chamber.   

My dissertation is organized into the following chapters: 

1. In Chapter 2, I discuss a methodology for designing MPPCs.  I systematically 

evaluate H2O2 production capability and loading of different catalysts and H2O2 

compatibility with different membranes and catholytes at varying pH.  These 

learnings are combined into a flat-plate, continuously-fed cathode MPPC that 

produces H2O2 at high concentrations and low energy input over a long 

operational period.  This chapter was published in ChemSusChem. 

2. In Chapter 3, I optimize the performance of the flat-plate MPPC discussed in 

Chapter 2.  I vary several operating conditions, including HRT, catholyte type and 

dose, and stabilizer concentration, to evaluate their influence on MPPC 

performance like H2O2 production rate, effluent H2O2 concentration, and power 

consumption.  I provide a perspective on these results that demonstrates that a 

medium-sized WWTP can produce 5-10x more H2O2 than is required for 

disinfection when coupled with UV treatment.  This chapter was published in 

Journal of Power Sources. 

3. In Chapter 4, I expand PCBIOFILM to provide a holistic mathematical model of 

anode chamber using a new model, MYAnode, which combines typical biological 

processes found in WWTPs (based on CASADM), chemical speciation and pH 
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changes (based on CCBATCH), and ARB substrate utilization and respiration at 

the anode (based on PCBIOFILM) to describe the influence of complex waste 

streams concentration on ARB electricity production.  Based on the work by Ki et 

al. (2017a), this chapter focuses on utilization of primary sludge for current 

production by ARB for one set of scenarios, i.e., a 12-d HRT for primary sludge 

in the anode chamber.  I explore the important role of alkalinity production by 

methanogens in low alkalinity waste streams, which is important for maintaining 

the appropriate pH range in ARB biofilms for respiration. 

4. In Chapter 5, I expand upon the work presented in Chapter 4 to determine the 

effect on MxC performance of varying diffusion layer (DL) thickness from 500 to 

1000 μm and particulate COD (PCOD) hydrolysis rates from 0.12 to 0.5/d.  I 

explore how DL thickness impacts acetate and HCO3
- concentrations availability 

for the ARB biofilm.  I also discover that faster hydrolysis rates do not necessarily 

translate into increased CH4 or current production. 

5. In Chapter 6, I expand upon the work presented in Chapters 4 and 5 to determine 

the impact of varying HRT from 6 to 15 d on MxC performance to explore the 

potential synergies between methanogens and ARB. 

6. In Chapter 7, I summarize the key findings in my research.  I also provide 

recommendations on future research for optimization and applications of MPPCs 

and holistic MxC modeling. 
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CHAPTER 2 

 

Tailoring microbial electrochemical cells for production of hydrogen peroxide at 

high concentrations and efficiencies 

This work was published in a modified version in ChemSusChem by Young et al. 

(2016). 

2.1 Introduction 

Hydrogen peroxide (H2O2) is an industrial chemical used in the water and 

wastewater industries in low concentrations coupled with the Fenton process or UV 

treatment for advanced oxidation of complex organic chemicals and emerging 

contaminants (Campos-Martin et al., 2006; De la Cruz et al., 2012; Yang et al., 2014) 

and for disinfection (Glaze et al., 1987; Wagner et al., 2002; Ksibi, 2006; Kruithof et 

al., 2007; Snyder et al., 2008).  For example, Badawy and Ali (2006) demonstrated 

that 550 mg/L H2O2 was sufficient for 92% COD removal and 100% color removal 

from wastewater diluted to 1600 mg COD/L.  H2O2 is also effective in advanced 

oxidation processes at removing biological products or contaminants contributing to 

taste and odor (Acero and von Gunten, 2000; Drogui et al., 2001; Ksibi, 2006).  

Rajala-Mustonen and Heinonen-Tanski (1995) achieved a 3 to 4 log-units reduction in 

coliphages when coupling H2O2 with UV radiation for disinfection.  Yang et al. 

(2014)’s review found many organic micropollutants can be remediated 99+% using 

H2O2 doses in the 50-150 mg/L range and moderate to high UV radiation doses (< 

5000 mJ/cm2). 

While H2O2 itself is considered environmentally friendly, 95% of the world’s 

H2O2 is produced using the energy-intensive anthraquinone-oxidation process, which 

uses dangerous compounds as catalysts (Campos-Martin et al., 2006).  One potential 
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technology for sustainable H2O2 production is microbial peroxide producing cells 

(MPPCs).  In MPPCs, ARB consume volatile fatty acids produced during 

fermentation and respire electrons to an anode, producing electrical current.  The 

electrons pass through an external circuit to a cathode, where they reduce different 

electron acceptors.  In cathodic ORR, O2 is completely reduced to hydroxide ions, 

OH-, to produce electrical power 

O2 + 2H2O + 4e-  4OH-        (Eo’ = +1.018 VAg/AgCl)             (Eqn. 2.1) 

 

or partially reduced to produce H2O2.   

O2 + 2H2O + 2e-  H2O2 + 2OH-       (E o’ = +0.424 VAg/AgCl)        (Eqn. 2.2) 

 

Above the pKa of 11.8, H2O2 is produced as HO2
- via 

O2 + H2O + 2e-  HO2
- + OH-                              (Eqn. 2.3) 

 

H2O2 synthesis is advantageous since it requires only a simple carbon catalyst and, 

depending upon the required rate of H2O2 production, has the potential to be produced 

with little or no energy input.   

Researchers have had limited success producing H2O2 in MPPCs using batch 

reactors, as summarized in Table 2.1.  Generally, either high concentrations of H2O2 

were generated by adding energy into the system, or low H2O2 concentrations were 

produced along with a small output of electrical energy.  Rozendal et al. (2009) 

produced 3.9 g H2O2/L-d and concentrations as high as 1.3 g/L but required 0.93 W-

h/g H2O2.  Conversely, Fu et al. (2010) produced a low H2O2 concentration of 79 

mg/L, but generated 0.06 W-h/g H2O2.  In an attempt to maximize H2O2 production, 

Modin and Fukushi (2013) produced 9 g/L H2O2 at a rate of 11.1 g/L-d while 

applying 3.0 W-h/g H2O2, demonstrating that high H2O2 concentrations can be 

achieved when enough energy is added to the system.   
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Most MPPC research has focused more on optimization of one or two 

variables, rather than a systematic investigation of factors affecting H2O2 production, 

net energy demand, and reactor design.  Fu et al. (2010), Modin and Fukushi (2013), 

Arends et al. (2014), and Sim et al. (2015) focused on maximizing H2O2 production 

from different wastewater sources at different anode and cathode HRTs.  Modin and 

Fukushi (2012) and Chen et al. (2014) focused on designing cathode catalysts for 

H2O2 production.  Li et al. (2016) had a continuous-flow cathode but focused 

primarily on optimizing abiotic catalyst performance.  

Several abiotic studies have demonstrated that H2O2 rapidly decomposes to 

H2O when exposed to platinum-carbon catalysts via (Otsuka and Yamanaka, 1990; 

Yamanaka et al., 2003; Rabaey and Rozendal, 2010)  

H2O2 + 2e- + 2H+  2H2O        (E = +1.508 VAg/AgCl)                   (Eqn. 2.4)  

 

While carbon-based electrodes can achieve high H2O2 concentrations and current 

efficiencies through Eqn. 2.1, carbon electrodes can degade the H2O2 to H2O, 

particularly when the catalyst layer is thick (Otsuka and Yamanaka, 1990; Foller and 

Bombard, 1995; Yamada et al., 1999; Li et al., 2016).  Paulus et al. (2001) used a 

rotating-ring disk electrode (RRDE) to understand catalyst reaction pathways at a 

variety of operating conditions and catalysts characteristics.   

pH can be an important source of overpotential in MPPCs.  When the pH in 

the cathode chamber increases one unit at standard temperature and pressure, the 

MPPC incurs a ~60 mV drop in voltage based on the Nernst equation (Bard and 

Faulkner, 2001).  Because ARB media is at their optimal pH of 7.0 (Lee et al., 2008), 

a pH 12 cathode incurs ~300 mV of concentration overpotential between the cathode 

and anode.  Cathodic pH control is confounded by OH- production during H2O2 

synthesis via Eqn. 2.2 and 2.3, increasing catholyte pH and overpotential.  Ki et al. 
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(2016) tested the effects of pH-reducing buffers at the cathode to reduce pH-related 

concentration overpotentials and or determined that the addition of bicarbonate buffer 

decreased catholyte pH from ~1 to ~7, reducing the applied voltage by 200 mV. 

The strong oxidant property of H2O2 further complicates MPPC design.  H2O2 

and its ions and radicals present chemical incompatibility problems with the materials 

typically used in MECs, including catalysts, binders, and membranes.  Furthermore, 

the reactions by which H2O2 attacks MPPC materials also lead to H2O2 

decomposition.  Until now, research has not been performed to determine the 

compatibility of typical MEC materials with H2O2 and at high pH. 

In previous works, Ki et al. (2016) designed a flat-plate, two-chamber MEC to 

maximize current densities and voltage efficiency by applying a high-surface area 

anode with buffered catholytes to reduce pH.  Applied potentials and current densities 

were greatly affected by two factors:  reduced distance between the anode and cathode 

and the use of buffered catholyte to reduce the pH gradient between the anode and 

cathode chambers.  Reducing the distance between anode and cathode to ~0.5 cm 

minimized Ohmic overpotentials between the electrodes.  In addition to these results, 

Ki et al. (2016) found that membrane selection had the smallest effect on system 

overpotentials. 

In this work, I outline a methodology for designing MECs for H2O2 

production.  I modify Ki et al. (2016)’s MEC design to construct an MPPC that 

achieves long-term, continuous H2O2 production.  I first evaluated various 

membranes, cathode materials, and catholytes for H2O2 compatibility.  I then apply 

my learnings to design and operate a continuous-flow cathode in a flat-plate MPPC to 

obtain a good balance of H2O2 concentration (>3.1 g/L H2O2) and a low power input 

(1.1 W-h/g H2O2).      
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Table 2.1. H2O2 production in MECs as reported in literature.  All reactors were dual-chamber systems. Anion exchange 

membranes are abbreviated as AEM and cation exchange membranes as CEM. 

 

Authors Cathode 

setup 

Membrane 

type 

Cathode 

HRT (h) 

Anolyte/ Buffer Catholyte Maximum H2O2 

concentration (g/L) 

H2O2 production 

rate (g/L-d) 

Maximum current 

and power/voltage 

applied 

Power input 

required (W-h/g 

H2O2) 

Arends et 

al. (2014) 

Batch AEM 4 Domestic and  

hospital 

wastewaters 

50 mM 

NaCl 

0.34 2.0 10 A/m2 at 0.6V 2.5 

Chen et al. 

(2014) 

Batch 3-D CEM 24 Domestic 

wastewater and 
12 mM acetate 

media/50 mM 

PBS 

50 mM 

NaSO4 

0.2 0.2 18.4 A/m3 at 0.04V 

produced 

0.09 power output 

Fu et al. 
(2010) 

Batch CEM 3 Glucose 
media/50 mM 

PBS 

50 mM 
K3Fe(CN)6 + 

PBS  

0.08 0.6 0.2 A/m2 at 0.4V 
produced 

0.06 power output 

Li et al. 

(2016) 

Continuous CEM 0.023 12 mM acetate 

media/50 mM 
PBS 

50 mM 

NaSO4 

8x10-5 0.1 6.1 A/m2 at 0.6V 56 

Modin & 

Fukushi 

(2012) 

Batch CEM 47 Acetate media 50 mM 

NaCl 

5 2.6 2.5 A/m2 at  3.8V 2.3 

Modin & 
Fukushi 

(2012) 

Batch CEM 21 Domestic 
wastewater 

50 mM 
NaCl 

0.08 0.1 0.4 A/m2 at 0.9V 1.8 

Modin & 

Fukushi 
(2013) 

Batch CEM 21 6 mM acetate 

media/10 mM 
PBS 

50 mM 

NaCl 

9.7 11.1 1.7 A/m2 at 11.8V 3.0 

Rozendal et 

al. (2009) 

Batch CEM 8 12 mM acetate 

media/190 mM 

PBS 

50 mM 

NaCl 

1.3 3.9 5.3 A/m2 at 0.5V 0.93 

Sim et al. 
(2015) 

Batch CEM 2-24 5 mM acetate 
media/50 mM 

PBS 

Deionized 
water 

1.4 7.9x10-4 7.7 A/m2 at 1V 
 

2.6 

Sim et al. 

(2015) 

Batch CEM 2-10 Raw domestic 

wastewater 

Deionized 

water 

0.15 8.5x10-5 0.56 A/m2 at 6.3V 28 

This 

chapter 

Continuous AEM 4 Acetate media 200 mM 

NaCl 

3.1 18.6 10.1 A/m2 at 0.31V 1.1 

2
3
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2.2 Materials and Methods 

2.2.1 H2O2 measurements and stability tests 

For membrane stability experiments, I measured H2O2 concentration using the 

National Diagnostics Hydrogen Peroxide Assay Kit.  For all other experiments, I 

analyzed H2O2 using the method of Graf and Penniston (1980).  Colorimetric 

measurements were performed using a Cary 50-Bio UV-Visible spectrophotometer 

(Varian, Palo Alto, CA).  When compared, these two methods demonstrated equivalent 

results (not presented here).   

I evaluated H2O2 stability with different electrolytes.  I prepared 200-mL solutions 

of 10 g/L H2O2 in five different electrolytes:  200 mM pH 4.5 phosphate buffer solution 

(PBS), 200 mM pH 7.5 PBS, 200 mM NaCl at pH 6.5, 200 mM NaCl at pH 12, and 200 

mM Na2CO3 at pH 11.5.  Sixty-five mL of each electrolyte combination were placed in 

three 100-mL glass serum bottles and corked with butyl-rubber stoppers (Bellco Glass, 

NJ) and aluminum caps.  I removed 2-mL samples using a needle and syringe from each 

bottle at 2, 4, 6, and 12 h and every 12 h subsequently for 120 h.  Samples were analyzed 

for pH and H2O2 concentration. 

2.2.2 Membrane stability tests 

I characterized five ion exchange membranes to determine their compatibility 

with H2O2:  three anion exchange membranes (AEMs) including AMI-7001 (Membranes 

International, Inc.), Excellion I-200 (SnowPure LLC), and fumasep® FAA (fumatech 

GmbH); and two cation exchange membranes (CEMs) including CMI-7000 (Membranes 

International, Inc.) and Nafion-117 (DupontTM).  I tested unconditioned membrane 
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stability in solutions with H2O2 and pH 7 and 12.  Membranes with surface areas of 9 cm2 

samples were cut, left at ambient lab conditions for 48 hours, and weighed.  The 

membranes were placed in 25-mL serum bottles filled with 20 mL of 100 mM NaCl at 

pH 12, 100 mM NaCl with 10 g/L H2O2 at pH 12, or 100 mM NaCl with 10 g/L H2O2 at 

pH 7.  I adjusted the electrolyte pH to 12, as it is the highest pH anticipated during MPPC 

operations.  Bottles were prepared in triplicate, capped with butyl rubber stoppers and 

aluminium crimps, and degassed regularly.  After 45 days, I emptied the bottles’ contents 

and analyzed the solutions for H2O2 concentration and pH.  Membranes were washed 

with deionized (DI) water and dried under ambient laboratory conditions prior to 

measuring the final mass. 

2.2.3 Catalyst/binder characterization 

 I performed RRDE tests using a RRDE-3A rotating ring disk electrode apparatus 

(ALS-Japan) to determine potential H2O2 production efficiency from different 

catalyst/binder combinations.  I used a Vulcan carbon catalyst-Nafion binder mixture to 

coat the catalyst layer on the disk electrode at catalyst loadings of 0.22, 0.44, 0.67, 0.89, 

and 1.12 mg/cm2.  The ring/disk electrode was rotated at 1200 rpm for ~30 minutes until 

the ink dried.  Once dried, the ring was submerged in 100-mM NaCl sparged with O2 for 

>30 minutes to saturate the solution.  I measured the ring and disk current densities at a 

disk speed of 1600 rpm and ring potential of 0.08 VAg/AgCl, and the disk potential was 

varied from -0.60 to 0 VAg/AgCl at a scan rate of 10 mV/s to determine the number of 

electrons transferred to O2.   
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2.2.4 MPPC setup and operation 

Figure 2.1 illustrates the two-chamber, flat-plate MPPC operated at 30°C.  The 

anode, cathode, and membrane had geometrical areas of 49 cm2.  The anode chamber 

volume was 200 mL.  The anode was composed of carbon fiber (24K Carbon Tow, Fibre 

Glast, OH, USA) woven through a titanium frame, as detailed in Ki et al. (2016).  An 

AMI-7001 membrane was preconditioned in 2 M NaCl for one day prior to use.  The 

cathode chamber consists of a 18-mL liquid serpentine flow cell and a serpentine air 

chamber supplied with 30 cm3/min air (EcoPlus® Eco Air 3 commercial pump).  The two 

cathode chambers are separated by the carbon cloth cathode (FuelCellsEtc GDL-CT).  

The liquid-exposed side of the cathode was coated with a slurry of 0.5 mg/cm2 Vulcan 

carbon powder using a paint brush.  The catalyst slurry consisted of 0.5 g Vulcan carbon 

powder, 3.5 mL 0.83 mL/cm2 of 5% Nafion dispersion in alcohol (D521; FuelCellStore).   

The air-exposed microporous layer side is coated with 2 layers of 16 mg/cm2 Teflon 

PTFE DISP 30 cured 15 minutes at 200°C and 1 hour at 280°C to improve cathode 

hydrophobicity.  The distance separating the anode and cathode was ~0.5 cm.  I used a 

Bioanalytical Systems, Inc. RE-5B Ag/AgCl reference electrode (+0.27 VSHE in acetate 

media at 30°C) and a Bio-Logic VMP3 potentiostat to control anode potential at -0.30 

VAg/AgCl and monitored current production.  I measured pH using Thermo Scientific, 

Inc.’s Orion 2 Star pH meter.    

I inoculated the anode chamber with effluent from operating MECs in the 

Biodesign Swette Center for Environmental Biotechnology laboratory to develop current-

producing biofilms.  The MPPC’s anode was poised at -0.3 VAg/AgCl and operated in batch 

mode until biofilms were formed and then placed into continuous-flow mode fed with 
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100-mM acetate medium (~pH 7; detailed in Parameswaran et al., 2012) at a 0.5-h HRT.  

The cathode was operated in continuous-flow mode and fed 200 mM NaCl catholyte with 

a 4-h HRT to the liquid chamber and 20 cm3/min air to the air chamber.  The MPPC 

operated in the peroxide-producing mode for more than three weeks.   

 

Figure 2.1.  A schematic of the MPPC configuration used to produce H2O2 in the liquid 

cathode chamber.  
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2.3 Results and Discussion 

2.3.1 H2O2 stability tests 

Figure 2.2 illustrates that H2O2 was more stable at lower pH in 120-h stability 

tests.  Phosphate buffers performed well, with pH 4.5 PBS resulting in no H2O2 

detectable degradation in 24 h and 7% degradation over 120 h, while pH 7.5 PBS resulted 

in 6% degradation over 24 h and 21% degradation over 120 h, which is consistent with 

Yang et al. (2014).  A NaCl solution at pH 6.5 also resulted in short-term stability of 

H2O2, as H2O2 degraded 13% in 24 h and 62% in 120 h.  H2O2 became increasingly 

unstable as pH increased to alkaline conditions in the presence of Na2CO3 and NaCl.  

H2O2 in pH 11.5 Na2CO3 degraded 31% within the first 2 h and 99% within 24 h.  

Similarly, 49% of H2O2 degraded in pH 12 NaCl within 24 h. The susceptibility of H2O2 

to degradation under alkaline conditions is consistent with Abbot and Brown (1990) and 

Qiang et al. (2002).  Worsening stability with CO3
2- may be attributed to increased H2O2 

decomposition rates caused by the formation of metal-hydrogen-carbonate complexes in 

alkaline conditions ( Nicoll and Smith, 1955; Csanyi and Galbacs, 1985; Navarro et al., 

1984; Lee et al., 2000).  

From a broader perspective, the decreasing stability of H2O2 at higher pH 

becomes a processing and storage issue.  My stability tests confirm that alkaline-

produced H2O2 cannot be stored long-term without significant degradation.  Thus, 

maintaining a relatively low or neutral pH at the cathode is optimal for H2O2 production 

and stability.  
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Figure 2.2.  H2O2 stability in different electrolytes at different pHs. 

 

2.3.2 Membrane materials selection 

Several factors are considered important in membrane selection.  Membrane 

compatibility with H2O2 is the most important factor as contaminants or functional 

groups on the membrane may potentially contribute to H2O2 degradation either 

catalytically or through a decomposition reaction with the membrane itself.  H2O2 

reacting with the membrane may destabilize the membrane’s integrity, leading to 

membrane failures.  Membrane compatibility at different pHs is also important since the 

OH- produced during the ORR (Eqn. 2.2) has the potential to significantly increase the 

catholyte pH, and H2O2 deprotonates to the more reactive HO2
- at the pKa of 11.8.   

Therefore, I evaluated H2O2 degradation and membrane weight loss over a 45-day 

exposure period at pH 7 and 12.  I used electrochemical impedance spectroscopy (EIS; 

detailed in the Appendix A) to evaluate membrane Ohmic overpotentials.  Finally, the 
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choice of using an AEM or CEM results in operational trade-offs.  HO2
- produced at high 

pH can potentially diffuse across an AEM.  However, a CEM provides preferential 

diffusion of cations other than H+ to the cathode to maintain electroneutrality, potentially 

lowering the pH below an acceptable threshold for ARB.   

AMI-7001, CMI-700, and FAA membranes were evaluated for stability in a 10 

g/L H2O2 solution at pH 7.  After 45 days of exposure, there was negligible H2O2 

degradation at pH 7 (Appendix Figure A.1a), and the membranes experienced negligible 

mass loss (Appendix Figure A.1b).  This stability was likely due to the membranes being 

well suited for use near neutral pH and increased H2O2 stability at pH 7.  

Since OH- production due to H2O2 formation at the cathode would likely increase 

catholyte pH during MPPC operations, membranes were evaluated for compatibility and 

H2O2 degradation at pH 12.  Appendix Figure A.2 illustrates that H2O2 was most stable in 

the presence of the Nafion membrane:  ~11% of the total H2O2 was degraded over 45 

days while the electrolyte pH decreased from pH 12 at day zero to pH 2.5 at day 45.  This 

degradation was significantly lower than the 91% degradation exhibited during H2O2 

stability tests without the membrane (Figure 2.2).  All other membranes exhibited >85% 

H2O2 degradation, values similar to the 91% degradation measured during H2O2/NaCl 

stability tests without a membrane without significant pH change between days 0 and 45.  

Thus, the lack of degradation with Nafion was likely due to acidification of the 

electrolyte.   

 H2O2 degradation did not necessarily correlate with membrane mass loss during 

the stability tests.  Figure 2.3 illustrates that all membranes had weight loss at pH 12, 

regardless of the presence of H2O2.  Except CMI-7000, all other membranes exposed to 
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H2O2 experienced higher weight loss than membranes exposed to electrolyte only.  The 

CEM membranes demonstrated lower differences in weights (< 5% for both CEMs) than 

AEMs, since the CEMs’ negatively charged active sites likely repelled HO2
- ions from 

the membrane.  For AEMs, the I-200 membrane had a 14% difference between the H2O2-

exposed and electrolyte-only masses, making it the AEM with the smallest change in 

mass when exposed to H2O2.  AMI-7001 and FAA lost 39% and 44% more mass, 

respectively, when exposed to H2O2 versus pH only.     

While FAA is rated by the manufacturer as stable at pH 12, FAA’s lower 

thickness (130 μm) may have contributed to a lower structural integrity, causing the 

membrane to disintegrate when exposed to H2O2 at pH 12 (Appendix Figure A.3).  AMI-

7001 experienced the lowest absolute mass loss (0.69 mg/cm2 with and 0.96 mg/cm2 

without H2O2), which I speculate is due to either AMI-7001 being a less reactive material 

or its greater thickness (3.5x thicker than FAA), which hampered H2O2 permeation into 

and, therefore, decomposition of the membrane.  Total organic carbon (TOC) analyses 

(detailed in Appendix A) revealed that membranes exposed to H2O2 and/or high pH 

consistently produced more TOC over the duration of the experiment, likely caused by 

the release of complex soluble organics into solution during polymer deterioration 

(Appendix Figure A.4). 

 



 

 32 

 

Figure 2.3.  (left axis) Percent reduction in membrane mass during batch bottle tests for 

membrane stabilities with 10 g/L H2O2 at pH 12 and (right axis) ratio of mass loss for 

membranes exposed to H2O2 versus membranes exposed to pH 12 only.  Values >1 

indicate that membranes exposed to H2O2 lost more weight than membranes exposed to 

electrolyte only.  Values <1 indicate that membranes exposed to electrolyte only lost 

more weight than membranes exposed to H2O2.  

 

Nafion, AMI-7001, and FAA demonstrated greater H2O2 stability in the short 

term, making them the most viable candidates for an MPPC.  In addition, all membranes 

exhibited low Ohmic losses <85 Ω-cm2 (detailed in Appendix A).  Based on this 

evaluation, I opted to use an AEM in the MPPC to provide easy regulation of anode pH.  

Based on its low reactivity with H2O2, I chose to utilize AMI-7001 for MPPC 

experiments.  If pH rises at the cathode, catholyte choice could help regulate the pH near 

neutral to reduce concentration overpotentials.   
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2.3.3 Cathode materials characterization 

 I utilized linear sweep voltammetry in a half-cell with 100-mM sodium 

perchlorate to narrow my catalyst and binder choices to Vulcan carbon and Nafion, 

respectively (method detailed in the Appendix A).  The Vulcan carbon had ~0.4V lower 

activation potential than graphite carbon using the same binder (Appendix Figure A.7).   

 I used RRDE testing to determine the optimal Vulcan carbon loading, as it 

distinguishes between 2-electron and 4-electron ORR.  Consistent with Bonakdarpour et 

al. (2008) and Paulus et al. (2001), lower catalyst loadings routed a higher number of 

electrons to H2O2, instead of to H2O.  From Figure 2.4 and between -0.37 to -0.57 

VAg/AgCl, loadings of 0.22 and 0.45 mg/cm2 provided the lowest average catalyst loading, 

0.22 mg/cm2, yielded an average of 2.04 ± 0.03 electrons per O2 reduced, or almost 100% 

delivery of electrons to the 2-electron reduction to H2O2.  The highest catalyst loading 

(1.12 mg/cm2) yielded an average of 2.72 ± 0.06 electrons per O2 reduced, or about two-

thirds of the electrons were routed to H2O.  At higher loadings, the produced H2O2 must 

be transported through a thick catalyst layer, providing additional catalyst-contact time 

that increases the likelihood H2O2 is reduced again through Eqn. 2.4 to H2O.  Figure 2.4 

also demonstrates the disk potentials because the cell required current input regardless of 

operating potential in order to operate.  At an EKA (the anode potential at one-half of the 

maximum current density) of -0.42 VAg/AgCl for Geobacter sulfurreducens, the MPPC will 

likely require some small power input to produce H2O2 (Torres et al., 2008a).  

To summarize, the Vulcan carbon/Nafion binder combination produced the lowest 

cathodic overpotentials with an optimal Vulcan carbon loading of ~0.45 mg/cm2 for the 
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highest H2O2 production over a wide range of cathode potentials.  Based on these results, 

I applied ~0.5 mg/cm2 Vulcan carbon to the cathode for MPPC operations. 

 

Figure 2.4.  Ring current density (dotted lines) and the number of electrons per O2 

reduced (n; solid lines) as a function of disk potential for Vulcan carbon catalyst loadings 

ranging from 0.22 to 1.12 mg/cm2. 

 

2.3.4 MPPC operation 

I assembled a MPPC using the optimal conditions from my previous testing:  200 

mM NaCl at pH 7, which demonstrated good stability with H2O2 in the short term; the 

AMI-7001 AEM, which demonstrated low mass loss; and 0.5 mg/cm2 of Vulcan carbon 

catalyst with Nafion binder, which maintained lowest cathodic overpotentials over the 

largest range while partitioning the highest number of electrons to H2O2.  I operated the 

MPPC continuously for 18 days with a 4-h HRT in the liquid cathode chamber and air 
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flow rates of 10, 20, and 30 cm3/min through the air cathode chamber.  Prior to anode 

inoculation, I quantified the total cell abiotic Ohmic overpotential using EIS as 75.0 Ω-

cm2.   

As demonstrated in Figure 2.5, the MPPC gave good performance with the 

optimized design variables.  Varying the air supply rate had minimal effect on H2O2 

concentration:  the average effluent H2O2 ranged from 2.5 ± 0.4 to 3.1 ± 0.4 g/L, with the 

highest H2O2 concentration (3.8 g/L) achieved at 20 cm3/min.  These high concentrations 

were achieved even though the effluent catholyte pH ranged from 12.1 to 12.4.  While the 

cathode potential decreased from -0.54 to -0.50 VAg/AgCl, the H2O2 concentration decrease 

from 20 to 30 cm3/min likely was due to the 1 A/m2 decrease in current density.  For 

comparison, my cell used 18% more energy to produce 3 times the amount of H2O2 

compared to Rozendal et al. (2009). 

I used cyclic voltammetry (CV) to understand my MPPC’s performance.  The 

CVs illustrated that the MPPC achieved higher energy-neutral current densities (i.e., the 

current at which the reactor experiences 0 V cell potential) than other systems due to 

reduced overpotentials, and cathodic overpotentials are still the limiting factor in MPPC 

performance.  Figure 2.6 shows a CV of my MPPC at a 1 mV/s scan rate.  Correcting for 

Ohmic losses in the system, the open-circuit potential was 0.20 V for all scans, which is 

lower than the theoretical potential of 0.56 V.  The ~0.3 V difference is associated with 

the equilibrium pH difference between the anode and cathode since there was a ~5 pH 

unit difference between the anode and cathode.  Energy neutral operations occurred at 

3.72 ± 0.29 A/m2, which is significantly larger than that achieved by Rozendal et al. 

(2009), at 1.6 A/m2, and Modin and Fukushi (2012), 0.54 A/m2.  The superior energy-
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neutral performance indicates that H2O2 could be produced at up to 3.72 A/m2 without 

requiring energy input, and the cell had significantly lower overpotentials versus previous 

studies.  Based on the theoretical potentials at the anode and cathode and not corrected 

for Ohmic losses, Figure 2.5a demonstrates that, at energy neutral conditions, the anode 

overpotential was 0.149 V and cathode overpotential was 0.379 V.  Concentration 

overpotential due to pH differences between the anode and cathode chambers account for 

0.27 V or 51% of cathode overpotentials.  Therefore, 0.029 V of Ohmic overpotential 

exists at energy neutral conditions, reiterating that my cell design significantly decreases 

Ohmic losses within the MPPC.  While small, these Ohmic losses significantly affected 

cell performance:  adjusted for Ohmic losses, Figure 2.5b shows that the anode and 

cathode overpotentials increase to 0.157 V and 0.403 V, respectively, and that the cell 

could operate at 4.58 A/m2 before drawing additional energy to produce H2O2.  At the 

operating current density of ~ 10 A/m2 and pH 12.08-12.43, the cathode overpotential 

increased to 0.524 V, of which 58% was due to pH differences between the anode and 

cathode chambers.  As discussed in Popat and Torres (2016), the production of OH- ions 

during the oxygen reduction reaction increases pH at the cathode, making it more 

difficult to reduce the cathode operating pH and, consequently, concentration 

overpotential.  

The superior performance of the MPPC I report here likely was due to a 

combination of several factors.  The improvement in energy-neutral operations was 

largely driven by the decreased distance between anode and cathode:  When the distance 

was decreased from 1 to 0.5 cm in the MPPC, the energy-neutral current density 

increased from 1.63 (± 0.03) to 3.72 A/m2 (Appendix Figure A.5).  Catalyst selection 
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tailored to H2O2 production resulted in low cathode potentials and good net cathodic 

efficiencies with little power input.  The use of AMI-7001 membrane provided long term, 

stable performance while having minimal effect on H2O2 production versus other 

membranes, as shown in Appendix Figure A.5.  Nevertheless, performance could be 

further improved by reducing the pH gradient between the anode and cathode chambers, 

consequently reducing the MPPC’s concentration overpotential.  
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Figure 2.5.  Performance during continuous operations with varying air flow rate:  (a) 

H2O2 concentration, (b) current density, (c) pH, (d) cathode potential, (e) percent net 

cathodic efficiency (as H2O2), and (f) power input required to produce 1 g of H2O2. 
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Figure 2.6.  Cyclic voltammetry of the MPPC for (a) unadjusted cell and (b) Ohmic 

corrected potentials, with cell (blue), anode (red), and cathode (green) potentials.  For the 

cell potentials, positive voltages represent power consumption and negative voltages 

represent power production. 
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2.4 Conclusions 

In this work, I outlined a methodology for designing MECs for H2O2 production.  

I described the materials characterization required to design MECs to continuously 

produce H2O2.  The Vulcan carbon/Nafion binder combination provided chemical 

stability with H2O2, while producing minimal activation overpotentials versus graphite 

catalyst.  Using RRDE, I determined that the optimal catalyst loading to achieve the 2-

electron ORR reaction was ~0.5 mg/cm2.  AEM membrane stability tests established 

AMI-7001 as the optimal membrane to resist H2O2 degradation and promote long-term 

MPPC performance due to its high structural integrity. 

I combined these findings into a continuous flow flat-plate MPPC, which I 

operated using 200-mM NaCl catholyte at different air flow rates to optimize H2O2 

concentration.  Air flow rate did not drastically change MPPC performance:  the MEC 

produced as high as 3.8 g/L H2O2 and an average of 2.5 ± 0.4 to 3.1 g/L H2O2 at the 

different air flow rates.  MPPC’s Ohmic overpotentials were small at 69.1 Ω-cm2.  

During operation, anodic overpotentials were ~42% lower than cathodic overpotentials, 

and >58% of cathodic overpotential was caused by the pH gradient between the anode 

and cathode chambers.  Thus, I assert that continuous H2O2 production in MECs is 

obtainable when materials are optimized for compatibility with and production of H2O2. 

For perspective, my MPPC is capable of producing H2O2 at concentrations more 

than adequate for water and wastewater treatment.  H2O2 concentrations of 2.5-3.0 g/L 

are 5- to10-fold higher than the doses required to remove 90+% COD from wastewater 

streams (Badawy and Ali, 2006; Ksibi, 2006), 20-fold greater than required for 99%+ 
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removal of micropollutants and 10 to 100-fold higher than required for UV disinfection 

(Rajala-Mustonen and Heinonen-Tanski, 1995; Snyder et al., 2008; Yang et al., 2014).    
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CHAPTER 3 

 

Understanding the Impact of Operational Conditions on Performance of Microbial 

Peroxide Producing Cells 

This work was published in a modified version in Journal of Power Sources by Young et 

al. (2017). 

3.1 Introduction 

H2O2 is an industrial chemical widely used in the water and wastewater industries 

for advanced oxidation of complex organic chemicals and emerging contaminants 

(Campos-Martin et al., 2006; De la Cruz et al., 2012; Yang et al., 2014) and for 

disinfection (Glaze et al., 1987; Wagner et al., 2002; Ksibi, 2006; Kruithof et al., 2007).  

Currently, 95% of the world's H2O2 is produced using the anthraquinone-oxidation 

process, which is energy intensive and uses potentially carcinogenic compounds as 

catalysts (Campos-Martin et al., 2006; Hart and Rudie, 2014). 

The MPPC is a technology for sustainable H2O2 production, particularly as part of 

wastewater treatment.  In MPPCs, ARB consume volatile fatty acids from fermentation 

of organic wastes and respire electrons to an anode, producing an electrical current that 

travels to the cathode.  At the cathode, oxygen (O2) can be reduced by 4 or 2 electrons.  

The 4-electron ORR is: 

O2 + 2H2O + 4e-  4OH-        (Eo’ = +0.81 VSHE)          (Eqn. 3.1) 

It is employed with power production as the goal. H2O2 is produced via the 2-electron 

ORR 

O2 + 2H2O + 2e-  H2O2 + 2OH-         (Eo’ = +0.28 VSHE)            (Eqn. 3.2) 
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below H2O2’s pKa ~11.8, or 

O2 + H2O + 2e-  HO2
- + OH-                                       (Eqn. 3.3) 

above the pKa. The 2-electron reduction has a smaller E0’, making power production 

difficult, but synthesizing H2O2 is advantageous since it requires only a simple carbon 

catalyst and generates a useful chemical product.  Ki et al. (2016) achieved H2O2 

synthesis with a cathodic overpotential < 0.2 V, making it possible to generate H2O2 with 

little or no energy input.  The MPPC technology is well suited for application in WWTPs, 

since the oxidation of biochemical oxygen demand (BOD) at the anode is accompanied 

by generation of H2O2 that can be used for disinfection later in the final stages of 

wastewater treatment, thereby reducing commodity costs. 

 Several researchers produced H2O2 using MPPCs with batch cathode chambers, 

and these studies demonstrated a clear tradeoff between H2O2 concentration and energy 

input.  For example, Rozendal et al. (2009) demonstrated 1.3 g H2O2/L production with 

an 8-h retention time but required 0.93 Wh/g H2O2.  Fu et al. (2010) produced 20 Wh/g 

H2O2 of energy but produced only 70 mg H2O2/L in 3 h of operation.  Modin and 

Fukushi (2013) produced 9 g H2O2/L using acetate media in 21 h but applied 2.9 Wh/g 

H2O2.  For comparison, the anthraquinone oxidation process uses 2 to 10 Wh to produce 

1 g of H2O2 (Althaus et al., 2007; Goor et al., 2000; Eul et al., 2001), and electrochemical 

processes require 4-5Wh of energy to produce 1 g of H2O2 (Foller and Bombard, 1995; 

Goor et al., 2000; Eul et al., 2001). 

Young et al. (2016) outlined a methodology for designing and operating a 

continuous MPPC to achieve high concentrations of H2O2 with low power input.  They 

demonstrated that several potential electrolytes, including NaCl, phosphate buffer, and 
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bicarbonate buffer, provide good short-term stability of H2O2 (< 6-h).  They tested a 

variety of catalysts, catalyst loadings, membranes, and catholytes in a flat-plate, 

continuous flow MPPC to determine their effects on H2O2 production.  Their novel 

design included a serpentine flow cathode chamber to help minimize hot spots (i.e., areas 

where the localized voltage is much higher or lower than the rest of the electrode due to 

inconsistencies in catalyst coating, lack of advection, etc.) at the cathode and provide 

adequate mixing to achieve an average H2O2 concentration of 3.1 g/L at 37% cathodic 

coulombic efficiency using 200-mM NaCl as the catholyte.  They also reduced the 

distance between the anode and cathode to ~0.5 cm to reduce Ohmic losses within the 

system. 

Despite Young et al. (2016) achieving a balance between high H2O2 

concentrations and lower power input, the catholyte pH was consistently > pH 12, 

meaning that H2O2 was present in its more reactive form (HO2
-) and that the 

concentration overpotential between the anode and cathode chambers was large. By 

substituting Eqn. 3.2 into the Nernst equation, the potential of the reaction (E) is: 

E = E0′ −  
RT

nF
log (

[Products]

[Reactants]
) = E0′ −

RT

2F
 log (

[H2O2][OH−]2

[O2]
)

= E0′ −
RT

F
 log (

[H2O2][OH−]

[O2]
) 

(Eqn. 3.4) 

where E0’ is the standard reaction potential at 298 K, R is the ideal gas constant, T is 

temperature, F is Faraday's constant, and n is the number of electrons involved in the 

reaction. The term RT/F simplifies to ~60 mV; thus, a one-unit increase in the pH 

difference between the anode and cathode chambers results in concentration overpotential 

of ~60 mV (Bard and Faulkner, 2001; Popat and Torres, 2016). Since ARB anolyte 
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medium typically has pH ~7, a cathode pH ≥ 12 incurs ~300mV of concentration 

overpotential between the cathode and anode. 

In this paper, I expand on the work presented in Young et al. (2016) to 

demonstrate long-term continuous production of H2O2 in an MPPC fed at the anode with 

acetate media to provide a comprehensive assessment of the effect of different operating 

conditions and parameters on MPPC performance, which comes from a balance between 

the rates of H2O2 production and auto-decay. The net decay rate is determined by the 

auto-decay rate and the catholyte hydraulic retention time. I begin by assessing 

performance with a typical electrolyte, NaCl, with varying HRT and concentration. Based 

on the opportunities identified in these trials, I expand my assessment to evaluate 

methods to increase H2O2 effluent concentration by using buffering electrolytes and an 

H2O2 stabilizer. I compare H2O2 production rates, coulombic efficiency, and required 

power input to determine the optimal conditions for long term MPPC operations. My 

results indicate that H2O2 concentrations >3.1 g/L can be sustained using NaCl, with less 

than 0.4 Wh/g H2O2 power input and as high as 78% net cathodic efficiency. At these 

production rates and using primary sludge (PS) or waste-activated sludge (WAS) as the 

substrate at the anode, a typical WWTP could provide 3- to 10-fold more H2O2 than 

required for UV coupled disinfection and micropollutant removal. I also document how 

anode and cathode phenomena confounded the benefits of buffering the pH and using an 

H2O2 stabilizer, EDTA, at the cathode. 
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3.2 Materials and Methods 

3.2.1 Analytical techniques 

H2O2 concentrations were determined using the blue starch-iodine colorimetric 

method summarized in Graf and Penniston (1980), with colorimetric measurements 

performed using a Cary 50-Bio UV-Visible spectrophotometer (Varian, Palo Alto, CA). 

COD was measured using high range HACH COD digestion vials (detection range 10-

1500 mg/L). I measured pH using the Thermo Scientific, Inc. Orion 2 Star bench top pH 

meter. 

To detect EDTA, anode samples were filtered through Acrodisc® 0.2-mm PVDF 

filters (Pall Life Sciences) and prepared for gas chromatography using Scandinavian 

Pulp, Paper and Board Test Committee's (2009) method based on derivatization of EDTA 

with boron trifluoride in methanol and chloroform. The solutions were analyzed using a 

Shimadzu GC-2010 with a flame ionization detector (GC-FID) (Columbia, Maryland) 

and a Restek Rxi®-1HT dimethyl polysiloxane column (30 m length, 0.25 mm ID, and 

0.25 mm film thickness). 

Chloride and phosphate concentrations were determined using the ICS-3000 

Dionex ion chromatography (IC) system equipped with an IonPac® AS-20 anion 

exchange column, AG-20 guard column, and 150 mg/L injection loop. The column is 

capable of detecting F-, Br-, and NO2
- at lower detection limits of 0.004 mM, Cl- at 0.003 

mM, and SO4
2-, NO3

-, and PO4
3- at 0.002 mM. Although I tested for all anions, only Cl- 

and PO4
3- ions were detected in my samples. 

Calculations for net cathodic coulombic efficiency and ionic current are discussed 

in Appendix B. 
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3.2.2 MEC design and operation 

Following Young et al. (2016), I operated a two-chamber, flat-plate MPPC with 

anode, cathode, and membrane geometrical areas of 49 cm2 at 30 ºC, shown in Figure 

3.1. The anode chamber volume was 200-mL and composed of a carbon fiber (24 K 

Carbon Tow, Fibre Glast, OH, USA) anode woven through a titanium current collector 

frame. The anode chamber and 18-mL liquid cathode chamber were separated by an 

AMI-7001 (Membranes International, Inc.) AEM. The cathode chamber consisted of two 

serpentine flow cells separated by the cathode to form a liquid chamber located between 

the AEM and cathode and a serpentine air chamber supplied with pumped air (EcoPlus® 

Eco Air 3).  The air cathode serpentine chamber provided extra stability to the cathode to 

prevent volume fluctuations from warping. Consequently, the catholyte and O2 are 

exposed to 31.4 cm2 of active surface area.  The liquid cathode chamber was separated 

from the air cathode chamber by a carbon cloth cathode (FuelCellsEtc.com GDL-CT) 

coated on the air side with 2 layers of 16 mg/cm2 of 30% PTFE dispersion 

(FuelCellStore) cured for 15 min at 200 ºC and 1-h at 280 ºC to improve cathode 

hydrophobicity and coated on the liquid-exposed side with 0.5 mg/cm2 Vulcan carbon 

powder (FuelCellStore) with a Nafion binder (10% Nafion in alcohol, Sigma-Aldrich). 

The distance between the anode and cathode was ~0.5 cm.  I used Bioanalytical Systems, 

Inc. RE-5B Ag/AgCl reference electrodes (+0.27 VSHE in the MxC medium and NaCl 

catholyte at 30 ºC).  The reference electrode was located in the anode chamber ~1 cm 

from the anode and ~1.5 cm from the cathode; thus, the anode functioned as the working 

electrode and the cathode as the counter electrode. All potentials are reported in reference 

to Ag/AgCl.  I operated the MPPC using the Bio-Logic VMP3 potentiostat to control the 
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anode potential at -0.3 V and monitored current production, counter electrode potential, 

and cell potential.  Data was collected using EC-Lab v.10.37 software. 

To inoculate the MPPC, I used 100-mL of inoculum grown from operating MEC 

reactors fed with acetate medium and 100-mL of 1-M acetate MEC media at pH 7 

(Parameswaran et al., 2012) to develop current-producing biofilms.  Once the biofilms 

achieved > 10 A/m2, I fed the anode continuously with 100-mM acetate medium with a 

0.5-day HRT to provide additional mixing to improve current production.  Throughout 

operations, the cathode was continuously fed with a catholyte solution.  The air side of 

the cathode was supplied with air from an EcoPlus® Eco Air commercial pump and 

regulated using a Dwyer RMA-151-SSV 0-50 cm3/min flow meter. 

The reactor operated for more than 7 months to determine long-term functionality 

and performance.  Appendix Figure B.1 summarizes the operating conditions and 

performance in terms of H2O2 concentration over the 7 months.  Several catholytes were 

evaluated for H2O2 production using a 4-h HRT and no EDTA: 100e500-mM NaCl at pH 

7; 100-mM H3PO4/KH2PO4 (PBS) at pH 2.5; 200-mM PBS at pH 2.5; 400-mM NaHCO3 

at pH 6.5; and 1-M NaHCO3 at pH 8.5.  I studied the effects of catholyte HRT from 1- to 

6-h using 200-mM NaCl and no EDTA.  I evaluated the use of EDTA as a stabilizer in 

200-mM NaCl catholyte at concentrations ranging from 0- to 2-mM at a 4-h HRT.  To 

obtain steady-state data, I waited at least 5 cathodic HRTs after each condition change 

prior to taking any H2O2 measurements.  (Experiment duration by run conditions is 

summarized in Appendix Table B.1.)  Reported cathode potentials were corrected for 

Ohmic resistance as established in Young et al. (2016). 
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I performed CV for different performance conditions to evaluate changes in cell 

overpotentials (Bard and Faulkner, 2001).  CVs were performed at a 1 mV/s rate from -

0.55 to -0.1 V with the anode as the working electrode. 

 

(a) 

 

(b) 

Figure 3.1. (a) The MPPC setup (from left to right): backing plate, anode chamber, 

anode, the liquid cathode chamber with AEM membrane attached between the anode and 

cathode, and the air cathode chamber with PTFE-coated cathode between the liquid and 

air cathode chambers. (b) A schematic of the serpentine cathode design.  
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3.3 Results and Discussion 

3.3.1 Effects of varying cathode HRT 

Based on the favorable results using NaCl as the catholyte in Young et al. (2016), 

I explored the impact of catholyte HRT with a fixed NaCl concentration of 200-mM on 

sustained performance.  Figure 3.2a illustrates excellent H2O2 production: the 

concentration increased almost linearly from 1.0 to 3.1 g H2O2/L as the catholyte HRT 

increased from 1- to 4-h at similar current densities (Figure 3.2c).  For perspective, these 

concentrations are more than adequate for disinfection (30-50 mg H2O2/L) and 

micropollutant removal (5-20 mg H2O2/L) when coupled with UV and Fenton processes 

(Rajala-Mustonen and Heinonen-Tanski, 1995; Yang et al., 2014).  The increases in H2O2 

concentration were coupled with pH increases from 11.8 to 12.3 (Appendix Figure B.5), 

since OH- was produced during O2 reduction and the catholyte was unbuffered. System 

overpotentials did not demonstrate any clear trends with HRT (Appendix Figure B.5).   

As expected, an optimal HRT existed due to a tradeoff between H2O2 production rate, 

which is highest at the lowest HRTs, and decay rate, which outpaces the production rate 

at longer HRTs.  Figure 3.2e illustrates that the net production rate of H2O2 decreased 

from 1.02 to 0.76 g/Lcathode/d as HRT increases from 1- to 4-h.  There was a 

corresponding decrease in Figure 3.2b shows the power required to produce H2O2 

increased from 0.42 to 1.13 Wh/g H2O2 and cathodic Coulombic efficiency (CCE; 

detailed in Appendix B.2) from 78% to 21%.  The decrease in net production rate with 

increasing HRT was a result of H2O2 decomposition that could have had several causes: 

(1) H2O2 dissociating to HO2
- at high pH and diffusing across the AEM, (2) H2O2 

reacting with the AMI membrane as illustrated in Young et al. (2016), and (3) H2O2 auto-
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decaying to H2O and O2 due to prolonged exposure to the carbon catalyst or metals 

(Drogui et al., 2001): 

H2O2  2H2O + O2                                         (Eqn. 3.5) 

Above a 4-h HRT, the effluent H2O2 concentration decreased to 2.3 g H2O2 /L, 

leading to a pH decrease to 12.2 via Eqn. 3.3, even though the cathode potential was 

consistent with the other HRTs (-0.52 V; Appendix Figure B.5) and current density was 

similar to the 2- and 3-h HRTs (8.5 A/m2).  The deteriorating performance likely was due 

to the reduction of H2O2 to H2O via the 2-electron ORR: 

H2O2 + 2e- 
 2OH-    (Eqn. 3.6) 

due to increased exposure to electrons at the cathode at the long HRT.  I observed 

membrane failures only during the experiment operated at the 6-h HRT.  The membrane 

failed twice in 6 days while operating at the 6-h HRT, and the total down time was 2% of 

the total operating time.  I suspect that the long HRT may have also promoted H2O2 auto-

decay by reacting with the membrane itself to form O2 by Eqn. 3.5. 

The MPPC design was efficient for sustained operation: the open-circuit potential 

was 0.18-0.20 V versus the theoretical value of 0.56 V, and the ~0.3 V difference was 

caused by the ~ 5-unit pH difference between the anode and cathode.  Consistent with 

Young et al. (2016), the MPPC achieved high current density in energy-neutral situations 

(i.e., when the reactor experiences 0 V cell potential) ranging from 3.24 A/m2 at 1-h and 

2-h HRT and 3.73 A/m2 at 4-h HRT. 
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Figure 3.2.  Results for the experiment with a range of HRT from 1- to 6-h using 200-

mM NaCl catholyte:  (a) H2O2 concentration, (b) power input, (c) current density, (d) net 

cathodic coulombic efficiency, and (e) H2O2 production.  The light gray boxes represent 

the first and third quartiles, and the black point represents the average value.  The 

whiskers represent the maximum and minimum data points. 
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3.3.2 Varying NaCl concentrations 

As expected, increasing the electrolyte concentration improved MPPC power 

efficiency, although H2O2 production did not change.  Figure 3.3a shows that NaCl 

concentration > 200-mM had little effect on H2O2 effluent concentration (2.4-3.1 g/L), 

but the required power input declined from 1.1 to 0.4 Wh/g H2O2 (Figure 3.3b).  This 

improvement was observed even though there was a small decrease in current density 

from 10.1 to 9.1 A/m2 (Figure 3.3c) and CCE stabilized between 37% and 43% (Figure 

3.3d).  100-mM NaCl catholyte produced a lower average H2O2 concentration than ≥200-

mM NaCl (~1.2 versus ~3.1 g/L), largely due to a limiting concentration of Cl- ions to 

maintain electroneutrality; on an electron basis, 100-mM of NaCl supports the production 

of 1.7 g H2O2/L (50-mM).  Above 100-mM, cathode potential improved as expected from 

-0.54 V at 200-mM to -0.33 V at 500-mM NaCl (Figure 3.3e) at similar current densities, 

indicating reduced Ohmic losses. 

Figure 3.3f shows that, regardless of NaCl concentration, OH- was the primary 

ion migrating from the cathode to the anode chamber, ranging from 56% to 60%.  OH- as 

the dominant anion also explains why all conditions achieved approximately the same pH 

(12.14-12.23): Cl- migrated from the cathode chamber until the catholyte achieved a 

stable pH ~12.2-12.3, at which concentration the OH- overcame the migration barrier to 

begin diffusing to the anode.  Cl- migration and/or diffusion increased 20-44% with 

increasing catholyte concentration and reduced ionic Ohmic overpotentials: Each 100-

mM of NaCl present in the catholyte led to a linear increase of ~6% in Cl- anions 

migrating to the anode and ~50 mV decrease in cathode overpotential.  The linear 

declines of Ohmic losses are consistent with the linear CVs in (Appendix Figure B.6b).  
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Consequently, reduced cathodic overpotentials led to a smaller power input for H2O2 

production. 

Since Cl- and OH- did not account for the total number of anions required to 

maintain electroneutrality in the cell, additional unidentified ions, identified as the 

“unknown” fraction in Figure 3.3f, must have diffused between the anion and cathode 

chambers.  These unidentified ions represented 17% of the migrating ions at 100-mM 

NaCl, but they steadily decreased to 0% at higher NaCl catholyte concentrations.  The 

unidentified ions could have been HO2
-, present at the cathode due to the pH being 

greater than the H2O2’s pKa, or counter diffusing cations like Na+ from the anode 

chamber.  It is more likely that HO2
- anions were migrating to the anode, since the 

concentration of unidentified ions linearly decreased from 17% at 100-mM NaCl to 0% at 

400-mM NaCl; if Na+ had dominated the unidentified ions, then having more Na+ in the 

anode chamber should have made them more important. 
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Figure 3.3.  Results for varied NaCl concentrations from 100- to 500-mM:  (a) H2O2 

concentration, (b) power input, (c) current density, (d) net cathodic coulombic efficiency, 

(e) cathode potential, (f) and the percent of anionic transport from the cathode chamber to 

the anode chamber required to maintain electroneutrality.  The light gray boxes represent 

the first and third quartiles, and the black point represents the average value.  The 

whiskers represent the maximum and minimum data points. 
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3.3.3 Effects of applying EDTA as an H2O2 stabilizer  

Metal chelators often are used to stabilize H2O2 solutions by preventing H2O2 

from oxidizing metals (Campos-Martin et al., 2006).  Based on stability testing in NaCl 

and PBS solutions in serum bottles (Young et al., 2016), EDTA increased H2O2 stability 

over a range of pH values in comparison with solutions without EDTA (Appendix Figure 

B.8).  Therefore, I hypothesized that EDTA addition to the catholyte would further 

stabilize and improve H2O2 production. 

Even though EDTA improved the CCE from 37 to 52% (Figure 3.4d), Figure 3.4a 

illustrates that the highest H2O2 concentrations were produced without EDTA: H2O2 

concentration decreasing from 3.1 to 2.0 g/L with increasing EDTA concentration due in 

part to current densities decreasing from 10.1 to 4.6 A/m2 (Figure 3.4c).  Nonetheless, 

EDTA addition improved the energy efficiency of the MPPC from 1.13 to 0.54 Wh/g 

H2O2 (Figure 3.4b).  The increased cathodic efficiency likely was due to EDTA slowing 

the decomposition of H2O2, improving CCE and power performance.  This reiterates the 

trade off in operating MPPC: without EDTA, the MPPC achieved higher effluent 

concentrations, but adding EDTA reduced power requirements. 

Decreased H2O2 concentrations were caused by EDTA diffusion to the anode, 

reducing current production.  At the cathode, effluent pH was in the range of 11.8-12.3 

(Appendix Figure B.8), meaning that EDTA was completely deprotonated and could 

diffuse through the AEM to the anode.  Figure 3.4e shows that GC-FID analysis detected 

EDTA in the anode chamber at concentrations ranging from 0.030- to 0.043-mM when 

EDTA was present in the catholyte.  In the anode chamber, EDTA likely chelated with 

Fe2+ supplied as a nutrient for ARB to facilitate extracellular electron transfer or with the 
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iron in the cells involved with EET (Estevez-Canales et al., 2015).  The detected EDTA 

concentrations exceeded the 0.021-mM concentration required to chelate all Fe2+ present 

in the anode medium.  In addition, Appendix Figure B4 illustrates little change in EKA at 

any concentration of EDTA, further indicating that the decrease in current likely was not 

due to modification of the metabolic EET pathway.  Iron has been identified as an 

important nutrient in the EET mechanism of a variety of ARB (Kato et al., 2013; 

Estevez-Canales et al., 2015; Shi et al., 2016).  Estevez-Canales et al. (2015) 

demonstrated decreased current production due to a reduction in c-type cytochromes in 

ARB cells when iron-containing media was supplemented with the metal chelator 2,2’-

bipyridine, and these cytochromes are critical for EET.  Based on the CV results, it is 

likely that reduced current production was a result of ferrochelation rather than a change 

in metabolic pathway, as in Estevez-Canales et al. (2015).  While EDTA can be effective 

when added to the catholyte after leaving the cathode chamber, it can harm MPPC 

performance if added in the catholyte.  Future research should explore the utilization of 

non-metal-chelating stabilizers to improve H2O2 concentrations. 
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Figure 3.4.  Results for the experiment varying EDTA concentrations from 0 to 2-mM:  

(a) H2O2 concentration, (b) power input, (c) current density, (d) net cathodic coulombic 

efficiency, and (e) EDTA concentrations in the catholyte and anolyte, where the black 

line represents the amount of EDTA required to chelate with all Fe2+ added in the 

anolyte.  The light gray boxes represent the first and third quartiles, and the black point 

represents the average value.  The whiskers represent the maximum and minimum data 

points. 
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3.3.4 Effects of buffering catholytes 

As shown in Eqn. 3.4, reducing the pH difference between the anode and cathode 

chambers decreases pH concentration overpotentials and potentially leads to increased 

energy efficiency for H2O2 production.  Based on this concept, I evaluated adding acid-

base buffers to the catholyte to reduce concentration overpotentials.  Although adding the 

buffers improved several performance variables – including pH, current density, and 

cathode potentials – acidic buffers failed to produce as much H2O2 as NaCl.  Figure 3.5b 

shows that PBS catholyte lowered the pH to 12.13 and 10.36 with 100- and 200-mM 

PBS, respectively, and to 11.4 and 9.4 with 400-mM and 1-M NaHCO3, respectively, 

which are lower than NaCl's pH of 12.3.  Cathode potentials improved to -0.49 V with 

200-mM PBS versus 200-mM NaCl (Figure 3.5c).  Current densities were 2-3 A/m2 

higher with NaHCO3 than NaCl (Appendix Figure B.7), since the NaHCO3 diffused to 

the anode and improved mass transport through the anode biofilm.  In addition, Figure 

3.5f illustrates that more phosphate anions and OH- anions were removed from the 

catholyte, versus with the NaCl electrolyte, which should have reduced Ohmic 

resistances in a method similar to that observed at the higher NaCl concentrations. 

Regardless of these improvements, Figure 3.5a shows that using PBS and 

NaHCO3 catholytes produced H2O2 concentrations ranging 0.3-2.5 g H2O2/L (p-value 

<0.003; detailed in the Appendix), values significantly less than 3.1 g H2O2/L with 200-

mMNaCl.  Since less H2O2 was produced, Figure 3.5d shows that the CCE decreased 

from 37% with 200-mM NaCl to 15% and 8% with 100- and 200-mM PBS and 26% and 

4% with 400- and 1000-mM NaHCO3. Correspondingly, power input was higher for all 

buffering catholytes versus NaCl (Figure 3.5e). 
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Because anode performance did not deteriorate (it even improved slightly), the 

poor performance for H2O2 production was caused by a net loss of H2O2 in the cathode 

chamber.  With the buffering catholytes, the net loss probably was due to increased auto-

decay of H2O2 to O2 or the 2-electron ORR of H2O2 to H2O at the influent end of the 

cathode chamber, where the pH was 2.5, even though the effluent pH exceeded 10.  At 

the entrance, pH 2.5 PBS is thermodynamically more favorable for the 4-electon and 2-

electron ORR reactions than at higher pHs.  Consequently, the kinetics of these reactions 

are faster, likely resulting in the reduction of H2O2 to H2O via Eqn. 3.6.  With NaHCO3, I 

hypothesize that H2O2 auto-decayed to O2 in the presence of carbonate and bicarbonate, 

since both compounds have been shown to decrease H2O2 stability (Nicoll and Smith, 

1955; Abbot and Brown, 1990; Qiang et al., 2002; Young et al., 2016).  Auto-decay of 

H2O2 to O2 is further supported by my observations of gas flowing out of the cathode 

chamber when NaHCO3 was used as the catholyte. 
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Figure 3.5. PBS and NaHCO3 catholyte experiments results:  (a) H2O2 concentration, (b) 

cathode effluent pH, (c) cathode potential, (d) net cathodic efficiency, (e) power input, 

and (f) the composition of anions that diffused from the cathode to the anode.  The light 

gray boxes represent the first and third quartiles, and the black point represents the 

average value.  The whiskers represent the maximum and minimum data points. 
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3.3.5 A perspective for the application of MPPCs in wastewater applications 

MPPCs have the potential to provide cost savings to WWTPs that utilize H2O2 for 

disinfection.  Since cathode performance is independent of the anode substrate content, I 

evaluated the potential for H2O2 production at WWTPs utilizing PS and WAS.  I 

estimated the amount of H2O2 produced in a MPPC treating either PS or WAS in a 10 

million L/d municipal WWTP based on the parameters summarized in Table 3.1.  

Detailed H2O2 calculations are included in the Appendix B.  Depending upon the 

catholyte HRT, a WWTP could produce 890-1900 kg/d of H2O2 (or 89-191 mg/d/L 

influent wastewater) while consuming 1200 kg COD/d from PS.  Similarly, a WWTP 

could produce 450-960 kg H2O2/d (or 45-96 mg/d/L of influent wastewater) while 

consuming 600 kg COD/d from WAS.  Notably, the highest production is at the lowest 

catholyte HRTs.  As expected, PS produces more H2O2, since it contains more COD that 

can be converted to current in a MPPC at higher current efficiencies.  The production of 

H2O2 would require the WWTP to consume an additional 860-1150 kWh/d in 

supplemental electricity for H2O2 from PS or 430-540 kWh/d for H2O2 using WAS.  By 

comparison, a 10 million L/d municipal WWTP with advanced treatment is estimated to 

consume 5000-9000 kWh/d (EPRI, 2002; de Haas and Dancey, 2015). 

For perspective, the amount of H2O2 produced from PS is enough that it provides 

excellent options for a variety of tertiary treatments.  Several researchers have 

demonstrated significant disinfection improvements using H2O2, including Drogui 

et al. (2001), who achieved 3-log reduction in coliform forming units, or CFUs, with 0.12 

g/L of wastewater effluent using electrolysis-produced H2O2 for disinfection.  Yang et 

al.’s (2014) review of organic micropollutant treatment found many micropollutants can 
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be remediated using H2O2 doses in the 5-15 mg/L range and moderate to high UV 

radiation doses (< 5000 mJ/cm2).  Primary sludge treatment also provides sufficient H2O2 

for COD and color removal when coupled with UV radiation (Ksibi, 2006; Badawy and 

Ali, 2006; Arends et al., 2014) versus WAS treatment which provides about half of the 

required H2O2 dose.  Thus, the amount of H2O2 produced, especially from PS is more 

than sufficient to provide most or all the H2O2 required for tertiary treatment for WWTPs.  

Foley et al.’s (2010) life cycle assessment, which concluded that on-site H2O2 production 

at similar conditions to those in this study, demonstrates significant environmental 

benefits through reduction of greenhouse gas emissions due to reduced transport of 

disinfectants for tertiary treatment at WWTPs. Foley et al. (2010) also concluded that the 

reduction in transportation outweighed the environmental impacts from the materials and 

construction of the WWTP. 



 

  

Table 3.1. Parameters used to estimate H2O2 production in a typical WWTP 

Parameter 1 h catholyte HRT 4 h catholyte HRT Source 

Plant influent flow rate (L d-1) 107  Metcalf & 

Eddy (2014) 

Influent TCOD concentration (mg L-1) 500 Metcalf & 

Eddy (2014) 

Cathodic coulombic efficiency 75% 35% This paper 

Power input (Wh g-1 H2O2) 0.45 1.2 This paper 

For PS treatment in MPPC    

Percentage of influent TCOD in PS 60% Metcalf & 

Eddy (2014) 

Percentage of PS converted to current  40% Ki et al. 

(2017a) 

H2O2 production based on catholyte HRT (mg L-1
influent WW 

flow d-1) 

190 89 This paper 

Amount of COD converted to H2O2 (kg d-1) 1200 This paper 

   

Energy required (kWh d-1) 860 1150 This paper 

For WAS treatment in MPPC    

Percentage of influent TCOD in WAS 30% Metcalf & 

Eddy (2014) 

Percentage of WAS converted to current 35% Kim et al. 

(2005); Zhang 

et al. (2012) 

H2O2 production based on catholyte HRT (mg L-1
influent WW 

flow d-1) 

96 45 This paper 

Amount of COD converted to H2O2 (kg d-1) 600 This paper 

Energy required (kWh d-1) 430 540 This paper 

    

6
4
 



 

65 

3.4 Conclusions 

The flat-plate MPPC design demonstrated continuous H2O2 production at 

concentrations (3.1 g/L) sufficient for disinfection and micropollutant removal and with 

low power input (1.1 Wh/g H2O2).  This H2O2 concentration is ~30-fold more than 

required for disinfection and micro-pollutant removal during water and wastewater 

treatment.  The MPPC performed well using a simple NaCl catholyte with a 1- to 4-h 

HRT and no stabilizers. At a 1-h HRT, the H2O2 production rate provides more than 3 

times the H2O2 required for disinfection and micro-pollutant removal at a power input 5- 

to 25-fold lower than required in the conventional anthraquinone process.  The addition 

of the metal-chelating stabilizer EDTA inhibited current production at the anode by 

chelating Fe2+ at the anode, reducing the amount of current produced by ARB and, 

consequently, reducing the number of electrons available for H2O2 production at the 

cathode.  In the current reactor configuration, weak acid buffers provided no performance 

benefit versus a NaCl catholyte, largely due to increasing H2O2 auto-decay either due to 

pH gradients along the cathode or the presence of compounds reducing H2O2 stability. 

Ultimately, the best conditions for MPPC operation will depend upon the 

operational goals of the process.  High HRTs generally favor higher effluent 

concentrations.  However, the MPPC will require larger power inputs to achieve the 

necessary concentration and operate at lower net cathodic coulombic efficiencies.  High 

production rates can be achieved at low HRTs with lower power inputs but produce lower 

effluent H2O2 concentrations.  WWTPs would benefit from operating at lower HRTs to 

produce more H2O2 for use in advanced oxidation processes or sludge pretreatment.  
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Regardless, the high pH resulting from H2O2 production and high salt concentrations for 

the electrolyte will impact downstream equipment performance. 
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CHAPTER 4 

 

A Model of a Microbial Electrochemical Cell Anode Chamber and Biofilm 

(MYAnode) Utilizing Complex Substrates 

4.1 Introduction 

 MxCs are novel technologies that can bioremediate wastewater while 

simultaneously producing an electrical current.  In MxCs, ARB consume volatile fatty 

acids and respire electrons extracellularly to an anode.  The electrons travel through an 

external circuit to the cathode, producing an electrical current.  MxC technology has 

advanced significantly over the last two decades (Torres, 2014; Jadhav et al., 2017; 

Santoro et al., 2017; Jain and He, 2018).   

MxC research has increasingly focused on treating complex organic waste 

streams like brewery effluent, swine wastes, and primary and secondary municipal 

wastewater sludges (Zhuang et al., 2012; Pous et al., 2013; Sevda et al., 2013; Ki et al., 

2015; Kim et al., 2016).  These anaerobic, complex waste streams present a variety of 

obstacles in MxC technologies.  While diverse communities are essential in providing the 

syntrophic functions required for production of VFAs for ARB consumption 

(Parameswaran et al., 2009), wastewater sludges host bacteria and Archaea that compete 

with ARB for acetate substrate, including heterotrophic bacteria performing 

denitrification using NO3
- and NO2

- as electron acceptors and acetoclastic methanogens 

(Xm) (Gray et al., 2002; Young et al., 2013a).  However, acetoclastic methanogens may 

provide a benefit:  the consumption of acetate, a relatively strong weak acid, which 

produces bicarbonate, which helps stabilize pH.   
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Alkalinity and pH can have profound impacts on the performance of biofilm 

anodes in MxCs, particularly for complex waste streams having low alkalinity, because 

ARB produce a large amount of protons (H+): 

CH3COO- + 3H2O → CO2 + HCO3
- + 8H+ + 8e-             (Eqn. 4.1) 

To prevent ARB inhibition due to low pH in the biofilm, alkalinity must diffuse into the 

biofilm from the bulk liquid.  Torres et al. (2008a) identified that alkalinity diffusion into 

the biofilm is important for enabling proton transport away from the anode, thereby 

allowing the ARB biofilm to maintain pHs favorable for respiration.  When treating 

primary sludge in MFCs, Ge et al. (2013) reported limited current and CH4 recovery due 

to low pH (< 5.6) at the end of each feeding cycle.  When Ge et al. added additional 

bicarbonate and phosphate buffer to the primary sludge, the pH was consistently > 6.5, 

which led to a doubling of current and CH4 production in the MFC.  However, Ge et al. 

were unable to determine the concentration of methanogens in the system.  Dhar and Lee 

(2014) documented that low alkalinity (200 mg as CaCO3/L) was important for the 

utilization organic matter in domestic wastewater in MxCs.  The breakdown of complex 

organic matter in anaerobic systems often releases NH3, which can act as a base, although 

it also can inhibit biomass growth and metabolisms if at a too-high concentrations. 

While some research has addressed complex substrates and fundamental 

processes, only a few mathematical models describe and predict MxC performance.  

Picioreanu et al. (2007, 2008, 2010) developed two- and three-dimensional (2D, 3D) 

models that incorporated using an external mediator for EET between the ARB and 

anode.  Picioreanu et al. (2007, 2008, 2010) also utilized increasingly complex substrates 

as the starting resource as established in the ADM1 (Batstone et al., 2002).  Picioreanu et 
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al. (2010), who reported results focused primarily on the impact on bulk conditions on the 

biofilm performance, assumed that acetoclastic methanogenesis and anode respiration 

using oxidized mediators were performed by the same biomass.  Thus, the impact on 

performance could not be determined for independent microbial entities.   

Mediator-less EET was represented by the models of Marcus et al. (2007, 2010, 

2011) and became the standard for describing high-performance biofilm anodes.  Marcus 

et al. (2007) introduced the Nernst-Monod model, which represents ARB kinetics and 

EET using a unique form of steady-state, dual-limitation kinetics.  While the Nernst-

Monod model includes the normal Monod equation for the donor concentration, it 

exploits the Nernst equation to represent the acceptor “concentration” via the anode 

potential, and it explicitly allows for electrical conduction of electrons to the anode 

surface.  The Nernst-Monod model was combined with mass balances and diffusive 

transport to describe current production in conductive biofilms, and experimental studies 

confirmed the validity of the Nernst-Monod model for conductive biofilms dominated by 

Geobacter sulfurreducens (Torres et al., 2008b).   

Marcus et al. (2010, 2011) developed PCBIOFILM, a conduction-based, steady-

state, 1D biofilm model that couples the Nernst-Monod model and diffusion with pH 

calculations, electrical neutrality, and ionic migration.  Within PCBIOFILM, Marcus et 

al. (2010) utilized CCBATCH, a modeling platform that incorporates kinetically-

controlled biological reactions with much faster pH and chemical speciation reactions 

using the proton condition (PC) (VanBriesen and Rittmann, 1999).  Utilizing the 

CCBATCH platform and the PC were beneficial for analyzing the large production rate 

of H+ during the ARB’s anode respiration.   
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Several models of the MFC anode chamber have expanded upon Marcus et al. 

(2007, 2010, 2011) to describe phenomena ranging from heat transfer due to EET 

(Oliveira et al., 2013) to the internal and external molecular mechanisms of EET (Pinto et 

al., 2010, 2011; Merkey and Chopp, 2012; Renslow et al., 2013; Jayasinghe et al., 2014; 

Korth et al., 2015).  Excepting Marcus et al. (2010, 2011) and Picioreanu et al. (2007, 

2008, 2010), the other models assume constant pH and neglect chemical speciation, even 

though several works have demonstrated pH inhibition in ARB biofilms (e.g., Torres et 

al., 2008a, Franks et al., 2009).  Most models also only include simple substrates like 

acetate or glucose, which are not appropriate for applications that involve complex 

organics, or neglect the complex microbial communities required to hydrolyze and 

degrade complex organics.  Furthermore, no prior model accounts for the formation of 

EPS and SMP, which can divert as much as 24% of the electron flow for energy and 

biomass synthesis (Noguera et al., 1994; Laspidou and Rittmann, 2002a; Ni et al., 2010; 

Xie et al., 2012).   

In this work, I first develop a novel non-steady-state mathematical model, 

MYAnode, which integrates the chemical and biological processes in the bulk liquid with 

substrate utilization and current production by ARB in the biofilm anode.  MYAnode 

combines CASADM, a comprehensive wastewater treatment modeling platform (Young 

et al., 2013b); CCBATCH, which combines rapid chemical speciation reactions with 

slower biological reactions (VanBriesen and Rittmann, 1999); and PCBIOFILM, which 

describes the chemical, biological, and transport mechanisms within the ARB biofilm 

affecting current production (Marcus et al., 2010; Marcus et al. 2011).   
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I then demonstrate the unique capabilities of MYAnode by exploring the 

interactions between ARB and acetoclastic methanogens.  In particular, I vary the 

influent concentration of methanogens entering the MxC under alkalinity-limited 

conditions typical of primary sludge.   I demonstrate that methanogens play an essential 

role by promoting bicarbonate that stabilizes pH in a range that is not inhibitory for ARB.    
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4.2 MYAnode formulation 

4.2.1 Modeling system and assumptions 

Table 4.1 summarizes the features of CASADM, PCIOBILM, and the PC 

incorporated into MYAnode.  The modeling foundation of the bulk liquid is based on 

CASADM, a non-steady-state model that describes typical aerobic, anoxic, and anaerobic 

biological phenomena exhibited in continuous stirred tank reactors in WWTPs (Young et 

al., 2013b).  CASADM assumes that all biological mechanisms can occur in parallel, 

rather than assuming a priori the rate-limiting steps.  For this work, CASADM was 

upgraded by using the framework of CCBATCH (VanBriesen and Rittmann, 1999) to 

efficiently link fast chemical speciation reactions, including acid-base equilibrium and 

complexation reactions, with slower microbial reactions.  Several critical assumptions are 

made in MYAnode.  The chemical formulas for various components include domestic 

wastewater are:  C10H19O3N for PCOD and soluble COD (SCOD); C5H7O2N for biomass, 

PCOD for biomass-associated products (BAP) and EPS; and C6H12O6 for utilization-

associated products (UAP) (Rittmann and McCarty, 2001; Metcalf & Eddy, 2014).  

During denitrification, the consumption of the electron acceptors NO2
- and NO3

- produces 

N2 gas directly without the production of intermediates (de Silva and Rittmann, 2000; 

Henze et al., 2000). 

The modeling foundation for the ARB biofilm is PCBIOFILM, which describes 

biological, chemical, and transport phenomena through an electricity-producing biofilm 

(Marcus et al., 2010; Marcus et al., 2011).  The biofilm anode is modeled as two 

domains: an idealized one-dimensional biofilm with constant thickness and uniform 

biofilm density that consists of ARB only, and a liquid-only DL.  These two domains are 
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located between the bulk liquid and anode surface.  ARB oxidize donor substrate and 

respire electron only when in a biofilm that is conductive and connected to an anode.  

PCBIOFILM includes the following assumptions:  the biofilm consists of ARB only; 

biomass synthesis is neglected, which allows the biofilm DL and biofilm thicknesses to 

be assumed as constant and modeled using ordinary differential equations (i.e., I neglect 

biofilm dynamics); no biological reactions occur within the DL; and EET occurs through 

a conductive matrix or direct contact with anode. 

Table 4.1.  A summary of model features that are incorporated into MYAnode 

 CASADM CCBATCH PCBIOFILM 

Types of 

reactions 

• Biological 

mechanisms 

typical to 

WWTPs 

• Hydrolysis 

• EPS and SMP 

• Fast 

chemical 

speciation of 

acids/bases 

• Fast chemical 

speciation of 

acids/bases  

• ARB 

metabolism 

• Electrical 

migration 

Transport 

phenomena 

• Bulk liquid 

transport 

• Gas/liquid phase 

equilibrium 

• No transport 

phenomena 

• Diffusion 

through a 

biofilm 

Biological 

mechanisms 

• Aerobic 

oxidation by 

heterotrophic 

bacteria 

• Nitrification 

• Denitrification 

• Acetogenesis 

• Acetoclastic 

methanogenesis 

• N/A • Anode 

respiration 

  

MYAnode is a multi-component, non-steady-state mathematical model that 

describes substrate utilization in the bulk anode chamber and in the biofilm, as illustrated 
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in Figure 4.1.  The reactor consists of two systems to be modeled:  the bulk liquid within 

the anode chamber and the biofilm on the anode.  Liquid flows into and out of the bulk 

liquid chamber.  MYAnode is presented as four parts:  (1) acid/base and chemical 

speciation using the PC, (2) biological processes in the bulk liquid, (3) processes in the 

biofilm  anode , and (4) the coupling of slow biological reactions with transport.  

 
Figure 4.1.  The reactors modelled, divided into two systems:  the bulk liquid and the 

biofilm anode. L represents the length of the diffusion layer.  Lf represents the length of 

the biofilm.  

 

4.2.2 Chemical speciation using the proton condition 

MYAnode calculates the concentrations of chemical species in the bulk liquid and 

biofilm anode using the PC.  The PC describes changes in acidity by performing a special 

mass balance on protons generated or consumed, rather than basing a mass balance on 

charge.  While not discussed in depth here, excellent references for utilizing the PC 

include Snoeyink and Jenkins (1980), VanBriesen and Rittmann (1999), and Benjamin 
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(2015).  As described in VanBriesen and Rittmann (1999) and Marcus et al. (2010), the 

model divides chemical species into two groups:  components and complexes.  A proton 

mass balance is calculated in relation to a “reference-level” for the protons and are 

neutral with respect to acidity, even though they are not necessarily neutral with respect 

to charge; these “reference-level” chemicals are the components.  Components are 

combined together to describe other chemical species, or complexes, in the system.  For 

simplicity, I chose components and complexes that can dissociate under acid/base 

conditions or are present as charge carriers, which affect ionic migration through the 

biofilm anode.   

For MYAnode, I expanded Marcus et al. (2011) to include all protonated forms of 

acetate (CH3COO-), phosphate, CO3
2-, NO2

-, and NH4
+; I also included the charged 

species NO3
-, Na+, and Cl-, which do not participate in acid-base reactions at relevant pH 

values.  The following are the component species:  H+, CH3COO-, HPO4
2-, HCO3

-, NO2
-, 

NH4
+, NO3

-, Na+, and Cl-.  The chemical speciation formulas and acid dissociation 

constants are summarized in Table 4.2 

A general form of the complexation reaction is defined in reference to the 

components: 

∑ νijĈj ↔ P̂i

Nc

j=1

 

(Eqn. 4.2) 

 

where νij is the stoichiometric coefficient giving the number of moles of component j in 

complex i, Ĉ is the chemical formula for component j (listed in the first row of Table 

4.2), and P̂ is the chemical formula for complex i (listed in the first column of Table 4.2), 
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and Nc is the number of components in the system.  For example, in row 1 of Table 4.2, 

one mole of H+ and one mole CH3COO- produce one mole of CH3COOH, or the reaction 

H+ + CH3COO- ↔ CH3COOH.   

Table 4.2.  Acid-base reactions and pKa information 

Reaction pKa
 a 

CH3COOH ↔ CH3COO- + H+ 4.76 

H2CO3 ↔ HCO3
- + H+ 6.35 

HCO3
- ↔ CO3

2- + H+ 10.33 

H3PO4 ↔ H2PO4
- + H+ 2.14 

H2PO4
- ↔ HPO4

2- + H+ 6.77 

HPO4
2- ↔ PO4

3- + H+ 11.57 

NH4
+ ↔ NH3 + H+ 9.25 

HNO2 ↔ NO2
- + H+ 4.50b 

H2O ↔ H+ + OH- 14.00 
a From Snoeyink and Jenkins (1980) unless otherwise stated 
b From da Silva et al. (2006) 

 

 Since the complexation reactions generally achieve thermodynamic equilibrium 

very rapidly, the concentration of complexes and components satisfy the law of mass 

action: 

pi = βi
c ∏ υijcj

Nc

j=1

 

(Eqn. 4.3) 

 

where pi is the concentration of complex i (M/L3), cj is the concentration of component j 

(M/L3), and βi
c is formation constant of complex i adjusted for the solution’s ionic 

strength (thus, the c coefficient).  The units of βi
c vary depending upon the reaction 

stoichiometry.  Several textbooks, including Snoeyink and Jenkins (1980) and Benjamin 

(2015), discuss correcting formation constants for ionic strength. 
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 The law of mass conservation requires that the total aqueous concentration of 

component j must equal the sum of component j and all complexes i in the system for all 

components in the system, or 

Cj = cj + ∑ υijpi

Np

i=1

       j = 1, … , Nc 

(Eqn. 4.4) 

 

where Cj is the total analytical concentration of component j and Np is the total number of 

complexes associated with component j.  For example, the mass conservation equation 

for bicarbonate is  

CHCO3
− = pH2CO3

+ cHCO3
− + pCO3

2− 

(Eqn. 4.5) 

The value of Cj is always positive.   

The PC has a key advantage in biological systems in that the tracking of protons 

integrates well with oxidation-reduction reactions, which produce and consume H+ ions.  

Variations in H+ can be used to determine changes in pH.  (Eqn. 4.4) is expanded to 

include protons 

CH+ = cH+ + ∑ υiH+pi

Np

i=1

 

(Eqn. 4.6) 

 

where CH+ is the total analytical concentration of H+ defined in reference to the 

component species and cH+is the concentration of uncomplexed H+ which is represented 

by the solution pH.  Since υiH+pi represents the amounts of protons in reference to the 

component species i, CH+  can be a positive or negative value.  Since electrochemical 

reactions result in electrical charge taking different paths in the anode and cathode 
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chambers, the PC is useful in the biofilm anode for estimating ionic current production at 

the anode and ionic migration (i.e., the impacts of ion transport due to an electric field) 

calculations. 

 Because the total analytical concentration is sufficient for calculating the 

concentrations of all components and complexes, I follow the precedent of previous 

works and use the total aqueous concentrations of the components as the primary 

dependent variables for pH and transport, while treating the complexes as secondary 

variables and calculating their values for biological reactions as needed (Steefel and 

McQuarrie, 1996; Parkhurst and Appelo, 1999; VanBriesen and Rittmann, 1999).  

Chemical complexation reactions are generally much faster than biological reactions; 

thus, they are treated as instantaneous values rather than time dependent variables.  



 

 

Table 4.3.  The tableau illustrating the relationship between components and complexes for the proton condition.  Blank cells 

are equal to zero. 

Complexes Components  Charge D (cm2/d) 

a H+ CH3COO- HPO4
2- HCO3

- NO2
- NH4

+ NO3
- Na+ Cl-  

CH3COOH 1 1         0 1.05 

H3PO4 2  1        0 1.00b 

H2PO4
- 1  1        -1 0.83 

PO4
3- -1  1        -3 0.71 

H2CO3 1   1       0 1.66 

CO3
2- -1   1       -2 0.80 

HNO2 1    1      0 1.00b 

NH3 -1     1     0 1.00b 

             

Charge +1 -1 -2 -1 -1 +1 -1 +1 -1    

D (cm2/d)a N/A 0.94 0.66 1.02 1.65 1.69 1.64 1.15 1.76    
a From Haynes et al. (2011) 
b Value not available -- assumed value 

 

  

7
9
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4.2.3 Bulk-liquid processes 

ARB perform anode respiration in anaerobic conditions and depend upon other 

microorganisms that are common to anaerobic wastewater treatment to hydrolyze and 

ferment complex organic compounds to simple substrates for their consumption 

(Rozendal et al., 2008; Parameswaran et al., 2009; Kiely et al., 2011; Parameswaran et 

al., 2011; Miceli et al., 2014).  During hydrolysis, complex and particulate organic 

compounds undergo disintegration to carbohydrates, proteins, and lipids, which are 

further enzymatically hydrolyzed by fermenting bacteria to monosaccharides, amino 

acids, and long chain fatty acids (Vavilin et al., 2008).  The hydrolysis products are 

fermented by fermenting bacteria via acidogenesis or acetogenesis to VFAs, alcohols, 

keytones, and H2 gas (Rittmann and McCarty, 2001; Bitton, 2005).  This step is critical to 

providing substrate to most common ARB (Kiely et al., 2011; Parameswaran et al., 2011; 

Miceli et al., 2014).  Acidogens metabolize fatty acids, amino acids, and sugars to VFAs 

like acetate, propionate, and butyrate, alcohols including ethanol, HCO3
-, and H2.  

Acetogens convert hydrolysis and fermentation products to acetate, HCO3
-, and H2 and 

are classified into two different groups:  H2-producing acetogens and homoacetogens.  

H2- producing acetogens metabolize VFAs and ethanol to acetate, consequently repiring 

H2.  Homoacetogens produce acetate directly from consumption of HCO3
- and H2.  Two 

sets of microorganisms compete for these fermentation products:  acetate and H2 are 

consumed by acetoclastic or hydrogenotrophic Xm to produce CH4, and ARB can 

consume VFAs and H2 to respire electrons to an anode.  Large-scale MxCs applications 

will likely utilize complex waste streams with diverse microbial consortia to produce the 

fermentation products consumed by ARB but will also require system design and 



 

 

operation to control or minimize methanogenic activity (Rozendal et al., 2008; Kiely et 

al., 2011; Li et al., 2014). 

I assume that the microbiological processes in the bulk liquid of the MEC are 

similar to those in biological wastewater treatment, which form the foundation of 

CASADM, a non-steady-state mathematical model of biological kinetics typically found 

in wastewater treatment.  CASADM is unique in that it assumes that all mechanisms can 

occur simultaneously rather than assuming a priori that any one rate is limiting and that it 

includes biomass-generated products like EPS and SMP, which are neglected in other 

models like ADM, ASM, and BSM (Henze et al., 2000; Batstone et al., 2002; Nopens et 

al., 2009).  While specifically implemented for the system described later, the 

stoichiometry and kinetics matrices detailed in Appendix C are easily modified to 

describe a variety of activated sludge, AD, ARB systems and any combination thereof.   

In MYAnode, I expand CASADM as summarized in Table 4.4.  For solid 

materials, the model includes six components of active biomass – heterotrophic bacteria, 

ammonium-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), fermenting 

bacteria, acetoclastic Archaea, and ARB – as well as EPS, inert (non-biodegradable) 

biomass, and PCOD.  The soluble components include SCOD, CH3COO-, UAP, BAP, 

NH4
+, NO2

-, NO3
-, O2, HCO3

-, Na+, and Cl-, as well as any complexes derived from them 

due to chemical speciation.  COD is assumed to have a slightly negative charge due to the 

organic matter containing acidic functional groups (Metcalf & Eddy, 2014).  Gas-phase 

materials include CO2, O2, N2, NH3, and CH4.  Although other models include H2 

production from fermentation (Batstone et al., 2002), I am consistent with others (Aquino 

and Stuckey, 2008), who omit H2 production during fermentation and consumption by 



 

 

hydrogenotrophic methanogens or ARB.  This simplification was made for a variety of 

reasons.  Kinetics for H2 production during fermentation are not well understood and can 

vary significantly with pH; thus, models like ADM assume a set stoichiometry for 

volatile fatty acid and H2 production from fermentation and relatively stable pH (Batstone 

et al., 2002; Siegrist et al., 2002).  As observed by Ki et al. (2017a), pH varied as much as 

1.5 pH units in the semi-continuous reactors fed daily, making it difficult to predict the 

production or utilization of H2.  Even with H2 formation, homoacetogens would quickly 

outcompete H2-utilizing ARB for H2, utilizing H2 to form acetate (Parameswaran et al., 

2009; Parameswaran et al., 2011).  The kinetics for H2 production from SMP utilization 

are poorly understood.  The relatively long solid retention times utilized in the anaerobic 

digestion and MEC systems allow acetoclastic methanogenesis to dominate in anaerobic 

systems versus hydrogenotrophic methanogens (Rittmann and McCarty, 2001).  Thus, I 

assume that the respiration product of fermentation is only acetate.   

As described in Young et al. (2013b) and with the exception of ARB, all biomass 

undergoes biomass synthesis based on Monod kinetics, first-order endogenous decay, and 

generation of EPS and UAP, as outlined in Laspidou and Rittmann (2002a, 2002b), but 

with two modifications:  (1) UAP and BAP can be utilized as substrate by fermenters and 

heterotrophs, and (2) UAP and BAP utilization can result in the formation of additional 

EPS and BAP.  Hydrolysis of PCOD and EPS to SCOD and BAP, respectively, can occur 

in any environment and follow first-order kinetics.  When applicable, substrate utilization 

adheres to dual-limitation Monod kinetics dictated by electron donor and electron 

acceptor kinetics.  I utilized the pH inhibition function developed by Park et al. (2007), in 



 

 

which the substrate utilization rate is multiplied by a factor, IpH, (unitless), according to 

the following conditions   

IpH = 0    for pH < pHopt – W            (Eqn. 4.7) 

 

IpH = 0.5*(1+cos(π(pH-pHopt)/W))       for pHopt – W < pH < pHopt + W    (Eqn. 4.8) 

 

IpH = 0    for pH > pHopt + W   (Eqn. 4.9) 

 

where pHopt is the optimal pH for the bacteria and W is one-half the value of the 

difference between the upper and lower pH limits.  I also utilize substrate limitation 

functions for reactions that can occur only when specific chemical components are not 

present, e.g., denitrification under anoxic conditions and fermentation and 

methanogenesis under anaerobic conditions.  The substrate limitation function, Sh,inh, 

component h is described as 

Sh,inh =
Kh,inh

Kh,inh + Ch
 

(Eqn. 4.10) 

 

where h is a chemical or biological components, Kh,inh is the inhibition factor (M/L3), and 

C is concentration (M/L3).   

Since the biological reactions are slower than the chemical-speciation reactions, 

the change in concentration over time is described as 

dCh

dt
= ∑ λhgrh

g= N

g=1

Ig,pHSg,inh 

(Eqn. 4.11) 

 

where g is a chemical or biological reaction, Ch is concentration (M/L3) of the solid or 

soluble components h, λhg is the stoichiometric coefficient of component h in reaction g, r 



 

 

is reaction rate (M/L3-t), Ig,ph is pH inhibition term for reaction g, and Sg,inh is the 

substrate limitation factor. 

Table 4.4.  Materials (including all components and complexes) in MYAnode.  Bolded 

entries delineate components for chemical-speciation calculations. 

 

Solid phase Heterotrophic bacteria 

Ammonium-oxidizing bacteria (AOB) 

Nitrite-oxidizing bacteria (NOB) 

Fermenters 

Acetoclastic methanogens 

Anode-respiring bacteria (ARB) 

EPS 

Inert biomass 

Particulate COD (PCOD) 

Liquid phase 

components and 

complexes 

Soluble COD (SCOD) 

UAP 

BAP 

Acetate/Acetic acid 

NH4
+/ NH3 

NO2
-/ HNO2 

NO3
- 

H2CO3/HCO3
-/ CO3

2- 

H3PO4/H2PO4
-/HPO4

2-/PO4
3- 

Na+ 

Cl- 

H+ 

O2 

N2 

CH4 

Gas phase O2 

CH4 

CO2 

N2 

NH3 

 

4.2.4 Biofilm-anode processes  

 Processes in the biofilm anode are based on PCBIOFILM (Marcus et al., 2010; 

Marcus et al., 2011), with minor modifications to the ionic components (i.e., adding NO2
-

, NO3
-, and NH4

+) that can diffuse into the biofilm to maintain electrical neutrality.  For 



 

 

ARB, all stoichiometry and kinetics are consistent with PCBIOFILM.  Since the biofilm 

thickness is assumed, ARB performance is dictated by Monod kinetics with acetate being 

the lone electron donor for ARB.  The effects of pH inhibition are corrected for using the 

inhibition functions described above.  To correct for the effect of fixed potentials (E; V) 

on substrate utilization, the maximum specific growth rate in the biofilm (q̂Xf; M/L3-t) 

was adjusted using the Nernst-Monod equation (Marcus et al., 2007; Torres et al., 2008b) 

(q̂Xf)|E =  [(q̂Xf)|EKA
]

1

1 + exp(−
F

RT
(E − EKA))

 

(Eqn. 4. 12) 

 

where F is Faraday’s constant (96,485 C/mol), R is the idea gas constant (8.314 J/mol K), 

T is temperature (K), and EKA (V) is the potential at which half of the maximum specific 

growth rate is achieved. 

 Within an ARB biofilm, two phenomena dictate the transport of ions:  mass 

transport via diffusion and migration due to the induced electric field.  The total flux of 

an ion, Jion (M/L2-t), within the system is described as 

Jion,k = Jdiff,k + Jmig,k 

(Eqn. 4.13) 

 

where k is the ion (component or complex), Jdiff is the diffusion flux (M/L2-t), and Jmig is 

the migration flux (M/L2-t).  Diffusive flux of components j and complexes i through the 

biofilm is described by Fick’s law 

−Jdiff,j = Dj

∂cj

∂x
+ ∑ (Di

∂pi

∂x
)

Nx

i=1

 

(Eqn. 4.14) 

 



 

 

where Jdiff,j is the total flux of component j (M/L2-t), D is the diffusion coefficient (L2/t), 

x is the spatial coordinate (L), and Nx is the number of complexes.  Since there can be 

large variations, I assign independent diffusivities for each complex and component.  

Derived in Marcus et al. (2010), migration of ions is due to changes in the electrostatic 

potential through the biofilm and is described as 

Jmig,k = zkckDkE∗ 

(Eqn. 4.15) 

 

where z is the charge of ion k, c is the concentration (M/L3), and E* is the apparent 

electric field (1/L).  E* can be calculated from  

E∗ =
F

RT
E 

(Eqn. 4.16) 

 

where E is the electric field (V/L).   

4.2.5 The coupling of kinetically controlled reactions and transport 

 A differential mass balance containing transport and reaction terms describes the 

total analytical concentration of each component within the system   

Vol
∂Ch

∂t
= QinCh,in − QoutCh,out + (SA) Jion,h + Vol ∑ λhgrh

Ng

g=1

Ig,pHSg,inh 

(Eqn. 4.17) 

 

where Vol is the anode chamber volume (L3), Q is the volumetric flow rate (L3/T), rh is 

the reaction rate for component h (M/L3-t), and SA is the surface area of the anode (L2).  

Within the DL and biofilm, a component’s total analytical concentration is subject to 

changes due to chemical speciation, biological reactions and diffusion.  Thus, (Eqn. 4.17 

within the biofilm and DL simplifies to  



 

 

∂Ch

∂t
=

(SA)Jion,h

Vol
+ ∑ λhgrh

Ng

g=1

Ig,pHSg 

(Eqn. 4.18) 

 

Assuming that length x = L + Lf is the boundary between the bulk and DL, x = Lf is the 

boundary between the DL and biofilm anode, and the anode surface is at x = 0, the 

following boundary conditions exist: 

(1) Continuity of flux between the bulk liquid, the DL, and biofilm anode: 

−Jbulk,h|
x=L+Lf

 = −Jion,h|
x=L

= Jion,h|
x=Lf

 

(Eqn. 4.19) 

 

(2) No flux at the anode surface: 

Jion,h = 0 

(Eqn. 4.20) 

 

Within the bulk liquid, advection, chemical speciation, and biological reactions affect a 

component’s concentration, simplifying (Eqn. 4.17 to 

∂Ch

∂t
=

1

Vol
(QinCh,in − QoutCh,out) + ∑ λhgrh

Ng

g=1

Ig,pHSg 

(Eqn. 4.21) 

 

 Gas-liquid phase equilibrium is described as 

dCi
L

dt
=

dCi
G

dt
=

Voli
L

Voli
G

KLai(Ci
L − Ci

LHiRT) 

(Eqn. 4.22) 

 

where L represents the liquid phase, G represents the gas phase, Ci is the concentration of 

species i, KLa is the mass transfer coefficient of species i (1/t), and H is species i’s 

Henry’s law constant (M/L3).  Since the Henry’s law constant for other species are 

relatively large, this model assumes that only the following species partition between gas 



 

 

and liquid phases:  CH4, CO2, H2, N2, NH3, and O2.  To simplify the model, I also assume 

no formation of gas within the DL to the biofilm or in the biofilm.  



 

 

4.3 Modeling approach and implementation 

MYAnode consists of three main programs, as illustrated in Figure 4.2:  

CASADM, PCBIOFILM, and a chemical speciation routine employed by CASADM and 

PCBIOFILM.  CASADM has 37 nonlinear ordinary differential equations (ODEs) that 

describe the flow through the anode chamber using the chemical and biological 

components and complexes described in Table 4.4.  The ODEs are solved using Euler’s 

method using initial value conditions equal to the influent composition and time steps ≤ 1 

min until the system obtains steady state (i.e., a relative difference between data points < 

10-4).  Mass balance checks are performed as part of each step’s execution for each 

element within the model, with < 10-8 relative error for any element.    

For the initial time point, the free-component and complex concentrations are 

calculated to determine the amount of H+ (also referred to as the “ACID” concentration) 

in the PC.  The PC solves 16 nonlinear equations simultaneously using a modified 

Newton-Raphson method (Marcus et al., 2011) for the components acetate, phosphate, 

carbonate, nitrite, ammonium, and H+.  The total analytical component concentrations 

were used to calculate the bulk liquid concentrations for each free component and 

complex in the bulk.  The bulk concentrations were used to evaluate the flux at the 

boundary layer between the bulk liquid and biofilm and concentrations of components 

with the biofilm using PCBIOFILM.  The model was executed until steady-state was 

reached. 



 

 

 
Figure 4.2.  Flow chart of the solution procedure for MYAnode.   

 

 PCBIOFILM’s solver routine, described in depth in Marcus et al. (2011), 

sequentially solves the mass action equations and mass conservation equations based on 

the boundary conditions.  The DL is represented as 10 nodes and the biofilm as 20 nodes, 



 

 

although the number of nodes can be changed if required.  The bulk components are 

speciated based on the bulk pH, and the initial amount of H+ at the boundary is 

determined using the proton condition and bulk liquid concentrations.  A finite-

differences method is used to transform the set of boundary conditions and mass 

conservation equations into a set of algebraic equations.  A modified Newton-Raphson 

method is used to find which component and complex concentrations will set the 

objective functions equal to zero, with the initial conditions from the bulk as the starting 

point.  Complex and component values are iterated on until the objective functions 

converge on the value of flux from the DL to the bulk is equal to the flux obtained from 

CASADM with a relative error of 10-6 in the objective functions.  The concentration 

values are then fed back to CASADM. 

To test the predictive ability of the model for realistic conditions, I utilized waste 

stream parameters outlined in Young et al. (2013b), Metcalf & Eddy (2014), and Ki 

(2017); the parameters are summarized in Table 4.5.  Ki et al. (2017a) operated a 0.5-L, 

dual-chamber MEC with two anodes and cathodes separated by anion exchange 

membranes.  In Ki et al. (2017a), the reactor was fed daily with focused pulse-treated 

primary sludge.  The anode geometric surface area was 200 cm2.  For the first part of the 

experiments, pH was adjusted daily with 5M NaOH to maintain the anode chamber bulk 

liquid pH at > 6.7.  Once all experiments were complete, Ki et al. (2017a) noted the final 

biofilm anode thickness ranged from 0.25 to 0.6 cm.   

To evaluate the simulation capacity of MYAnode, I modeled a scenario reported 

by Ki et al. (2017a).  For this, I assumed a uniform biofilm thickness of 250 μm, as it 

should be a sufficient thickness for that the acetate to become limited (i.e., a deep 



 

 

biofilm) assuming with sufficient alkalinity present.  It is my assertion that this thickness 

is not critical to the analysis of the system, as the biofilm is probably so deep that all 

acetate gets consumed well before the anode surface.  Since Ki et al. (2017a) experienced 

intermittent poor mixing, I assumed a relatively thick DL of 1000 μm versus other 

models (Marcus et al., 2010; Marcus et al., 2011).  To illustrate a dramatic interpretation 

obtained using MYAnode, I varied influent Xm concentration from 0 to 100 mg VSS/L 

while keep DL at 1000 μm and the hydrolysis rate at 0.25/d (consistent with Ki et al., 

2017a).   

  



 

 

Table 4.5.  Influent model parameters.   

Parameter Units Value 

Influent wastewater   

HRT* d 12 

Anode chamber volume* L 0.5 

Influent pH*  6.9 

Daily pH target*  7.5 

SCOD* mgCOD/L 550 

PCOD* mgVSS/L 4350 

Inert biomass* mgTSS/L 750 

NH4
+ **,† mgN/L 50 

NO2
- * mgN/L 0 

NO3
- * mgN/L 0.2 

Dissolved oxygen† mgO2/L 0.2 

HCO3
- * mgHCO3/L  360 

Cl-‡ mgCl-/L 142 

Heterotrophic biomass**,º mgVSS/L 300 

AOB**,º mgVSS/L 1 

NOB**,º mgVSS/L 1 

Fermenting bacteria**,º mgVSS/L 165 

Acetoclastic methanogens**,º,ºº mgVSS/L 0-200 

PCOD hydrolysis rate 1/d 0.25 

Anode and biofilm   

Anode surface area* cm2 200 

Anode potential* VSHE -0.03 

Substrate utilization rate‡ mmol Ace/(cm3 d) 17.5 

Half-maximum rate concentration‡ mmol Ace/cm3 0.002 

Biofilm thickness*,‡ μm 250 

Diffusion layer thickness‡ μm 1000 

pH optimal‡  7.5 

pH inhibition range for ARB‡  2.1 

       *Ki et al. (2017a), **Young et al. (2013a,2013b), †Metcalf & Eddy (2014),  
           ‡Marcus et al. (2010), ºNopens et al. (2009), ººGray et al. (2002).  
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4.4 Results and discussion 

4.4.1 Model evaluation  

MYAnode simulated the large-scale trends seen by Ki et al. (2017a) for current 

and CH4 production when the Xm value was well poised.  Figure 4.3 presents the 

experimental and model-generated electron-equivalent mass balances (as COD) and TSS, 

volatile suspended solids (VSS), and SCOD effluent concentrations at a 12-d HRT, khyd 

of 0.25/d, a DL thickness of 1000 μm, and a range of influent Xm concentrations (0-200 

mg Xm as VSS/L).  (Graphs of effluent concentrations and current densities are included 

in Appendix C.)  The most important insight from the modeling analysis is that the best 

fit occurred for Xm of at least 100 mg VSS/L.  For this Xm, the model captured the large-

scale data trends for the 12-d HRT:  The electron equivalents were distributed among 

effluent COD > CH4 > Coulombs, and effluent COD was dominated by VSS.   Lower Xm 

values achieved far too low CH4 and current recovery.   Xm concentrations in PS in 

literature range from 0.1 to 10 mg VSS/L (Batstone et al., 2002; Nopens et al., 2009); if 

this range is relevant for Ki et al. (2017a), the additional Xm are probably present in the 

anode’s biofilm, which is not included in the single-species biofilm model presented here.   

 Fig. 4.3a shows that MYAnode predicted a Coulombic recovery of 20% with Xm 

of 100 mg/L (compared to the experimental Coulombic recovery of 28%), and 94% of 

the current production occurred within 150 μm of the biofilm surface (Fig. 4.3b).  

Therefore, the assumption of a deep biofilm was reasonable.  As expected, more electrons 

were recovered as CH4 when the influent Xm concentration increased:  the experimental 

CH4 recovery was 32%, versus MYAnode results of 20% at Xm of 100 mg/L.  Model-
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predicted effluent COD was higher with the model (61 to 94%) than experimental 

observations (39%).   

 For the effluent COD distribution, Figure 4.3c shows that active VSS was by far 

the largest component, but MYAnode slightly over-estimated active VSS in the model at 

Xm values greater than 100 mgVSS/L:  MYAnode predicted 72% of effluent COD as 

VSS, versus experimental results of 69%.  SCOD from the model was 2% at Xm of 100 

mg/L, lower than the experimental observation of 8%.  MYAnode over-estimated the 

amount of inert suspended solids (SS) produced in the MxC by ~1%.  

The output with the 1000-μm DL thickness fits the experimental data well, but 

1000 µm is much large than typical DL thicknesses (Rittmann and McCarty, 2001; 

Wanner et al., 2006; Picioreanu et al., 2007; Picioreanu et al., 2008; Picioreanu et al., 

2010; Marcus et al., 2010; Marcus et al., 2011); thus, the physical meaning of the DL 

must be considered.  As observed by Ki et al. (2017a), the biofilm was thick and included 

a nonuniform layer of hydrolysable materials and other microorganisms near the 

boundary between the DL and biofilm.  This layer likely reduced the diffusivity of all 

chemicals, and the diffusion coefficient in such a composite DL is likely to lie between 

the diffusion coefficient in a DL outside the biofilm and the diffusion coefficient within 

the ARB biofilm.  Because MYAnode used the bulk-liquid diffusion coefficient, the DL 

thickness was relatively large to compensate. 
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(a)                                                                            (b) 

 
(c) 

 

Figure 4.3.  (a) Electron balances on respiration products based on TCODin at a 12-d 

HRT, khyd = 0.25/d, DL = 1000μm, and influent methanogens concentration of 1 to 100 

mg Xm as VSS/L.  “Actual” refers to the experimental data.  “Other” is unaccounted 

TCOD as reported in Ki et al. (2017a).  (b) The current density profile through the 

biofilm.  Effluent represents SCOD and TSS concentrations removed from the reactor.  

(c) The percentage of effluent COD as inert suspended solids (SS), VSS, and SCOD 

concentrations.     
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4.4.2 Current production depended upon bicarbonate alkalinity supplied by methanogens  

The influent Xm concentration controlled the HCO3
- alkalinity and pH.  For the 

scenarios presented, adequate alkalinity and, therefore, current production, were achieved 

only at Xm ≥ 100 mgVSS/L.  For Xm ≤ 25 mgVSS/L, Figure 4.4a shows a high acetate 

concentration at the biofilm surface at ~42 mM, but the high concentration did not result 

in high current production.  In fact, little acetate was oxidized in the biofilm.  Xm ≥ 100 

mg/L gave much higher current (Figure 4.4a), even though the acetate concentration was 

lower in the biofilm.    HCO3
-- and CO3

2--related alkalinity production in the bulk liquid 

was minimal, less than 1 mgCaCO3/d, for Xm ≤ 25 mg/L.  Coupled with less than 13 

mgCaCO3/d supplied in the influent stream and low alkalinity production from NH4
+ 

release by hydrolysis, alkalinity delivered to the biofilm was small, and the pH declined 

to 5.44 in the bulk liquid and 5.42 in the anode (Figure 4.4a).  This net flow of alkalinity 

into the biofilm is illustrated by the gradients in Figure 4.4c.  

The presence of Xm ≥ 100 mg/L provided greater pH stability by decreasing the 

amount of acetate, a relatively strong weak acid, in the bulk liquid, while simultaneously 

producing HCO3
-, a weaker weak acid and alkalinity; however, too great Xm competed 

for acetate with ARB.  The bulk HCO3
- from methanogenesis (Figure 4.4b) increased 

from negligible at 1 mg Xm/L to 1230-1500 mg CaCO3/d at 100-200 mg Xm/L, and this 

stabilized the pH of the bulk liquid to the 6.3-7.3 range (Figure 4.5a).  Specifically, 

HCO3
- alkalinity diffused into the DL and biofilm at 215-317 mg CaCO3/d, stabilizing 

the biofilm pH to a less inhibitory range of pH 6.31 to 6.43 (Figure 4.5b) prior to the 

daily reactor feeding.  
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           (a)                                                                (b) 

 
(c) 

Figure 4.4.  As a function of influent methanogens concentration (Xm, in mg VSS/L):  (a) 

the acetate profile from the bulk liquid to the anode surface immediately after the daily 

reactor feeding; (b) the production rate of HCO3
- + CO3

2- and NH4
+ alkalinity in the bulk 

liquid and the mass flow into the biofilm, with positive numbers representing flow into 

the biofilm and negative numbers representing flow out of the biofilm; and (c) H2CO3 

and HCO3
- concentrations in the diffusion layer and biofilm. 
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(a)      (b) 

 

Figure 4.5.  As a function of influent methanogens concentration (Xm, in mg VSS/L):   

(a) The bulk liquid pH over the course of 1 d; and (b) pH in the diffusion layer and 

biofilm prior to the daily feeding, where the black dashed line represents the biofilm 

surface. 

 

Having high Xm was not a panacea for MxC treatment of low-alkalinity streams, 

since acetoclastic methanogens compete with the ARB for acetate.  Even though the pH 

was maintained relatively high with Xm of 200 mg/L (Figure 4.5), an influent Xm of 200 

mg/L caused a decline in current that was commensurate with an increase in 

methanogenesis (Figures 4.3a and b).  Having more input methanogens decreased the 

flux of HCO3
- into the biofilm (Figures 4.4b and c), because the lower current production 

required less alkalinity to counterbalance H+ production from ARB oxidation of acetate. 
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4.5 Conclusion 

MYAnode is a novel mathematical model that combines chemical and biological 

wastewater treatment processes in the bulk liquid with substrate utilization and current 

production in electrically active biofilms.  In this work, MYAnode was applied to the 

anode of an MxC utilizing primary sludge.  The model accurately simulated the large-

scale trends in effluent concentrations, CH4 production, and Coulombic efficiency, as 

long as the influent concentration of acetoclastic methanogens (Xm) was properly poised 

at ~100 mg/L.  MYAnode explained the that influent Xm performed a critical role in 

providing alkalinity to prevent the pH from dropping to inhibitory levels for ARB and 

methanogens.  However, Xm also competed with ARB for acetate.  Thus, controlling the 

Xm input is key to providing adequate bicarbonate alkalinity to buffer the biofilm anode 

while minimizing CH4 production when the influent stream has naturally low alkalinity. 
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CHAPTER 5 

 

Understanding the Role of Diffusion Layer Thickness and Hydrolysis Rates in MxC 

Performance using MYAnode 

5.1 Introduction 

MxCs research constantly strives for improved current production and COD 

removal for successful scale up of the technology.  To this end, MxC research topics have 

ranged from reactor configuration to cathode-performance improvement to increased 

substrate bioavailability through substrate pretreatment.  For example, researchers have 

focused on improving MxC performance through faster hydrolysis rates in the MxC 

(Velasquez-Orta et al., 2011; Dhar et al., 2013; Li et al., 2013; Gao et al., 2014; Ki et al., 

2017a) or via prefermentation of complex waste streams (Oh and Logan, 2005; Zuo et al., 

2006; Kannaiah Goud and Venkata Mohan, 2011; Mahmoud et al,. 2014; Ki et al., 2015).  

MxCs have been suggested as a potential monitoring device for hydrolysis rates in 

anaerobic digesters, since ARB and methanogens consume acetate substrate and have 

similar pH limitations (Liu et al., 2011; Liu et al., 2014; Young et al., 2015).   

Most experiments have been performed under well-buffered conditions, including 

Rezaei et al. (2008) and Velasquez-Orta et al. (2011) with cellulose hydrolysis, Young et 

al. (2015) using alkaline- and thermally-pretreated waste activated sludge centrates, and 

Choi and Ahn (2014) using high rate anaerobic prefermentation of primary sludge.  

While few studies have studied hydrolysis rates of complex waste streams in low-

alkalinity conditions (Li et al., 2013; Ki et al., 2017a; Ki et al., 2017b; Colombo et al., 

2017), each of these studies mentioned significant variations in bulk liquid pH, which 
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dampened or inhibited current production.  Until now, modeling researchers have not 

focused on the impact of varied hydrolysis rates on MxC performance.   

Like hydrolysis rates, DL thickness is an important parameter dictating substrate 

availability to the biofilm.  While the benefits of decreasing the DL thickness continues 

to be thoroughly researched for the cathode, the effects of DL thickness have not been a 

focus in MxC-anode research.  Fick’s law states that the mass flux, Jdiff, through a 

medium is linear: 

Jdiff = −D
∂C

∂x
≈ −

D

L
(CB − CInt) 

(Eqn. 5.1) 

 

where CB is the concentration in the bulk liquid, CInt is the concentration at the DL and 

biofilm interface, D is the diffusion coefficient in the bulk liquid, and L is the DL 

thickness.  Therefore, the mass flux will be highest at the biofilm when the DL thickness 

is at its shortest.   Torres et al. (2008a,2008b) established that diffusion of buffer into and 

out of the biofilm is important to maximize current production in the biofilm.  Other 

works focused on measuring diffusion through the biofilm (ter Heijne et al., 2008; 

Renslow et al., 2013), understanding the impact of DL thickness on estimation of ARB 

kinetic parameters (Lee et al., 2009), and using forced flow through or away from the 

anode biofilm to change diffusion layer thicknesses (Sleutels et al., 2009; Sleutels et al., 

2011). 

Some mathematical models of the biofilm anode include DL and biofilm 

thicknesses as input parameters, but researchers have not modeled how DL thickness 

affects performance using complex waste streams.  Modelers have generally varied 

substrate concentration (Katuri and Scott, 2009) or buffer concentration (Picioreanu et al., 
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2008; Picioreanu et al., 2010; Marcus et al., 2010; Marcus et al., 2011) to improve 

diffusion and ion transport through the biofilm.  Merkey and Chopp (2012) used 2D 

modeling to explore the impact of diffusion layer thickness on current production from 

multiple rod anodes using acetate substrate, but neglected the microbial complexity, 

syntrophy, and competition that occurs in the complex waste streams like municipal or 

industrial wastewater.   

Developed by Marcus et al. (2010, 2011), PCBIOFILM defines two regions 

involving diffusion and migration:  a DL and a biofilm layer composed of active ARB.  

Although DL is usually used to represent mass transfer resistance external to a biofilm, a 

DL can be defined as any medium in which microbial reactions of interest are not 

occurring.  In my model, the microbial reaction of interest is the ARB reaction.  As 

observed by Ki et al. (2017a), the external layers of the anode biofilm can consist of a 

variety of hydrolysable materials and other microorganisms that likely reduce the 

diffusivity of all chemicals that must transport from the bulk liquid to the ARB near the 

anode surface.  Similar to Sabba et al. (2017), I define a “composite” DL that consists of 

a non-reactive layer of liquid next to a large layer of non-reactive biomass and PCOD.  

Different chemical species must diffuse through the composite layer to reach the anode 

biofilm.  For simplicity, I define one diffusion constant for the composite layer, with a  

value that probably lies between the diffusion coefficient in the DL outside the biofilm 

and the diffusion coefficient within the ARB biofilm.  Assuming that the value of D in 

Eqn. 5.1 is held constant, a composite DL requires that L increase to maintain the CB and 

CInt boundary conditions.  For example, Katuri and Scott (2009) accurately predicted the 

anode potential by utilizing a lumped mass-transfer coefficient for the combination of DL 
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and biofilm.  Varying the DL thickness for a composite biofilm allows a model to explore 

the impact of heterotrophic bacteria or methanogens on the metabolic activity of ARB.  

In this work, I utilize MYAnode, the mathematical model developed in Chapter 4, 

to examine the role of two operational parameters, DL thickness and substrate 

bioavailability from hydrolysis, on MxC performance.  Specifically, I vary the DL 

thickness and hydrolysis rates (khyd) for a MxC operated in alkalinity-limited conditions 

typical of primary sludge.   I demonstrate that DL thickness plays an important role in 

providing adequate substrate and alkalinity required to maintain ARB respiration and 

current production in the biofilm.  In contrast, acetate availability from hydrolysis plays a 

less important role in improving MxC performance. 
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5.2 Methods and modeling approach 

 I evaluated the effects of DL thickness and hydrolysis rate using MYAnode, 

which is discussed in depth in Chapter 4.  MYAnode is a novel non-steady-state 

mathematical model that integrates the chemical and biological processes common in 

wastewater treatment and ARB oxidation of acetate.  The model pulls three mathematical 

model foundations into one platform:   CASADM, a non-steady-state model that 

describes typical aerobic, anoxic, and anaerobic biological phenomena exhibited in 

continuous stirred tank reactors in WWTPs; CCBATCH, a steady-state model that links 

fast chemical speciation reactions, including acid-base equilibrium and complexation 

reactions, with slower microbial reactions; and PCBIOFILM, a non-steady-state model 

that describes transport from a bulk liquid and acetate utilization by an anode biofilm.  

The model system is the same as described in Figure 4.1:  a chemostat-like bulk-liquid 

chamber fed primary sludge, an anode populated with an ARB biofilm, and a membrane 

that separates the anode from the cathode chamber and allows for counter-diffusion of 

OH- molecules into the anode chamber to maintain electroneutrality due to electrons 

leaving the system as current.   

 MYAnode was implemented in MATLAB using the solution procedure outlined 

in Figure 4.2.  The ODEs were solved using Euler’s method, initial value conditions 

equal to the influent composition, and time steps ≤ 1 min until the system obtained steady 

state (i.e., a relative difference between data points < 10-8).  The chemical components 

and complexes are summarized in Table 4.4, and the same physical and operational 

parameters are summarized in Table 4.5 with a few modifications.  For models varying 

DL thickness, the DL thickness was varied from 500 to 4000 μm with an Xm 
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concentration of 100 mgVSS/L and a PCOD-hydrolysis rate of 0.25/d (optimal values 

from Chapter 4).  These DL thicknesses are larger than the typical values in various 

sources (Rittmann and McCarty, 2001; Wanner et al., 2006; Picioreanu et al., 2007; 

Picioreanu et al., 2008; Picioreanu et al., 2010; Marcus et al., 2010; Marcus et al., 2011), 

because the DL thickness represents a composite of an external diffusion layer and non-

ARB in the biofilm; the best-fit value of 1000 µm was obtained from performance 

observations in Ki et al. (2017a).  For models varying the hydrolysis rate, khyd was varied 

from 0.12 to 0.5/d at an Xm concentration of 100 mgVSS/L and DL thickness of 1000 

μm.  In all cases, the modeled reactor was fed daily with primary sludge with a 12-d HRT 

and simultaneously adjusted to pH 7.5 using NaOH in the anode chamber.  The anode 

geometric surface area was 200 cm2, and the biofilm thickness was assumed to be 250 

μm, which Chapter 4 demonstrated was essentially a deep biofilm when pH was not 

inhibitory. 
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5.3 Results and discussion 

5.3.1 Varying diffusion-layer thickness 

While decreasing DL thickness provided more acetate at the biofilm surface, the 

smallest DL tested did not provide the best performance due to pH inhibition in the rest 

of the system.  Figure 5.1a shows that the highest combined production CH4 and 

Coulombs, 40% of influent total COD (TCOD), was achieved at a 1000-μm DL 

thickness, versus the lowest, 7.8% of influent TCOD, at the 500-μm DL thickness.   

Increasing the DL thickness from 1000 to 4000 μm decreased Coulombic recovery from 

19.4 to 7.6%, which was counter-balanced by an increase in CH4 generation from 21 to 

30.6%.  The decline of current production with increasing DL thickness above 1000 µm 

was due to coupled decreases the concentrations of acetate and HCO3
- alkalinity at the 

biofilm surface.  The higher concentration of acetate at the biofilm surface at DL of 1000 

μm led to higher acetate consumption within the almost-deep biofilm, as illustrated in 

Figure 5.1b.  However, acetate consumption was possible only with concurrent 

availability of HCO3
- (Figure 5.1c):  At DL 1000 μm and larger, adequate HCO3

- was 

available to prevent to buffer H+ production and a decreased of biofilm pH below 6.0, 

which incurs low-pH inhibition for ARB (Torres et al., 2008a; Franks et al., 2009).    

The 500-μm DL thickness produced lower methane and Coulombs than the larger 

DL thicknesses, even though the bulk liquid had an acetate concentration 30-fold and 

200-fold higher at the anode and biofilm surfaces, respectively.  Figure 5.1d shows that 

the poor performance at the 500-μm DL thickness was due to the bulk pH decreasing 

from 7.5 to 5.93 within the one hour of reactor feeding and to 5.42 within 24 h; the latter 

pH value is inhibitory for Xm consumption of acetate (McCarty, 1964; Parkin and Owen, 
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1986; Appels et al., 2008).  Consequently, insufficient oxidation of acetate to HCO3
- by 

Xm lowered the amount of HCO3
- at the anode surface to only 0.25% of that present with 

1000-μm DL thickness; the ARB were severely inhibited by the low pH.   

The most common method to reduce the diffusion layer thickness is to increase 

the mixing intensity, which reduces the DL thickness.  However, it is difficult to predict 

the impact of reducing the DL thickness on the biofilm.  On the one hand, reducing the 

DL thickness will increase the shear stress and turbulence at the outer boundary of the 

biofilm, which can increase biofilm detachment and decrease the composite DL thickness 

(Stoodley et al., 2002; Laspidou and Ritmann, 2004; Flemming and Wingender, 2010; 

Merkey and Chopp, 2012).  In a complex waste stream like primary sludge where 

heterotrophic bacteria and methanogens dominating the outer layer composition (Ki et 

al., 2017a), increased detachment effectively removes the ARB’s competitors for acetate 

substrate, allowing more substrate to diffusion to the ARB and improve current 

production.   On the other hand, increasing shear stress in some biofilms leads to 

increased entanglement of biopolymers in the biofilm, causing either a consolidation of 

the biofilm or increased matrix stability, making it more difficult to remove the non-ARB 

microorganisms from the outer biofilm layer (Stoodley et al., 2002; Laspidou and 

Rittmann, 2004; Flemming and Wingender, 2010) and, consequently, a larger effective 

DL thickness.   
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(a)                                                                (b) 

 

(c)                                                                (d) 

Figure 5.1.  With a 12-d HRT and a hydrolysis rate of 0.25/d, the impact of DL thickness 

on (a) electron balances of respiration products normalized to the TCODin concentration.  

In the bulk liquid, at the biofilm surface, and at the anode surface, (b) acetate 

concentration after daily reactor feeding, (c) HCO3
- concentration after daily reactor 

feeding, and (d) pH prior to the daily reactor feeding.     
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5.3.2 Varying PCOD hydrolysis rates 

While a faster hydrolysis rate increased the concentration of acetate available in 

the bulk liquid, it did not necessarily translate into significant improvements in current 

production and even hindered MxC performance at higher hydrolysis rates.  Figure 5.2a 

illustrates that a PCOD hydrolysis rate of 0.25/d had the highest CH4 production and 

Coulombs recovery -- 21.0 and 19.4%, respectively -- which were slightly larger than the 

CH4 and Coulombs recoveries at 0.12/d (17.1% and 16.7%, respectively).  CH4 

production and Coulombs recovery percentages were significantly lower at a 0.5/d 

hydrolysis rate, which converted 5.6% of influent TCOD to current and 4.1% to CH4. 

Similar to the results obtained by varying Xm and DL thickness, the performance 

trends when varying the hydrolysis rate largely depended on the concentrations of acetate 

and HCO3
-.  Although more acetate was available with the higher lower hydrolysis rate of 

0.5/d (seen in Figure 5.2b), the oxidation of acetate by Xm produced more HCO3
- at 

hydrolysis rates of 0.12 and 0.25/d, 165 to 191 mg CaCO3/d of HCO3
-, respectively, 

compared with only 8 mg CaCO3/d produced at 0.5/d.  The higher HCO3
- concentrations 

in the bulk liquid (Figure 5.2c) led to more than 230-fold more HCO3
- buffer at the 

biofilm surface and throughout the biofilm for the two lower hydrolysis rates.  

Subsequently, Figure 5.2d shows that the bulk and biofilm pH were maintained above 

6.30 for the two lower hydrolysis rates, while the pH for the 0.5/d hydrolysis rate dropped 

from 7.5 to 6.1 within the first hour of feeding and to 5.43 within 24 h.  Low pH inhibited 

anode respiration and methanogenesis. 
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                                            (a)                                                                     (b) 

 

                                            (c)                                                                     (d) 

Figure 5.2.  At 12-d HRT and DL thickness of 1000 μm, the impact of hydrolysis rate on 

(a) electron balances on respiration products based on TCODin concentrations.  In the 

bulk liquid, at the biofilm surface, and at the anode surface, (b) acetate concentration 

after daily reactor feeding, (c) HCO3
- concentration after daily reactor feeding, and (d) 

pH prior to the daily reactor feeding.         
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5.4 Conclusion 

Using MYAnode, I defined optimal conditions for DL thickness and hydrolysis 

rate.  DL had a much larger effect.  Increasing the hydrolysis rates from 0.12 to 0.25/d in 

the reactor only marginally improved Coulombic efficiency and methane production, by 

2.6 and 3.9%, respectively.  Increasing the DL thickness from 500 to 1000 μm improved 

Coulombic efficiency and methane production by 13.9 and 18.6%, respectively.  

Performance improvements for the best DL and hydrolysis rates depended the production 

of HCO3
- alkalinity by Xm.  However, a too-high DL thicknesses (> 1000 μm) led to an 

increase in CH4 production, because less acetate was available at the biofilm surface due 

to external mass-transport resistance.  A too-high hydrolysis rates (> 0.25/d) produced too 

much acetate, causing the bulk pH to drop to inhibitory levels for Xm in the bulk liquid.  

Without acetate oxidation by Xm, insufficient HCO3
- was available to prevent pH 

depression and inhibition of ARB throughout the biofilm.  Thus, reactor design should 

prioritize decreasing the DL over increasing hydrolysis rates as a method of improving 

current production from MxCs.  DL probably can be made smaller by introducing more 

intense mixing in the anode chamber, but this trend is hypothesized, not proven.  In all 

cases, providing more alkalinity will improve performance.   
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CHAPTER 6 

 

Using MYAnode to Understand the Impact of Hydraulic Retention Time on a 

Microbial Electrochemical Cell Fed Primary Sludge  

6.1 Introduction 

MxCs provide a novel method of converting organic waste directly to electricity 

or other valuable outputs.  MxC research has increasingly focused on treating complex 

organic waste streams like brewery effluent, swine wastes, and primary and secondary 

municipal wastewater sludges (Zhuang et al., 2012; Pous et al., 2013; Sevda et al., 2013; 

Ki et al., 2015; Kim et al., 2016).  Complex waste streams present a variety of obstacles 

in MxC technologies.  First and foremost, complex waste streams require hydrolysis to 

hydrolyze the waste to soluble forms than can then be fermented to acetate or H2 for ARB 

consumption (Eastman and Ferguson, 1981; Vavilin et al., 2008; Parameswaran et al., 

2009).  Depending upon the hydrolysis rate, most VFAs produced from hydrolysis of 

primary sludge or waste-activated sludge are produced within 10-20 days (Rittmann and 

McCarty, 2001; Vavilin et al., 2008; Velasquez-Orta et al., 2011).  This HRT time range 

invites competition from diverse microorganism populations like facultative 

heterotrophic bacteria and methanogens (Xm) for the acetate and H2 produced during 

fermentation (Gray et al., 2002; Young et al., 2013a).   However, diverse communities 

are essential in providing the syntrophic functions required for production of VFAs) for 

ARB consumption (Parameswaran et al., 2009; Lee et al., 2009; Lee and Rittmann, 2009; 

Pant et al., 2010; Gao et al., 2014).   

To address some of these issues, several researchers have explored operating 

MxCs at HRTs ranging from hours to 15 d.  One method to minimize competition 
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between ARB and acetoclastic methanogens is to operate MxCs closer to the washout 

SRT for acetoclastic methanogens, ~ 4 d (Rittmann and McCarty, 2001; Gao et al., 2014; 

Ki et al., 2017a; Ki et al., 2017b).  Many authors found higher current densities, but lower 

coulombic recovery and COD removal with decreasing HRT (Liu et al., 2004; Choi and 

Ahn, 2014; Gao et al., 2014; Fazli et al., 2018).  Hours-long HRTs (< 12 h) encouraged 

H2-scavenging by homoacetogens and hydrogenotrophic methanogens, improving current 

production by ARB (Lee et al., 2009; Lee and Rittmann, 2010; Parameswaran et al., 

2011; Parameswaran et al., 2012).  However, these HRTs are inadequate for effective 

hydrolysis of primary sludge or WAS (Vavilin et al., 2008).   

Few models have explored the effect of HRT on MxC performance.  Several MxC 

mathematical models have explored the impact of limited microbial diversity in the bulk 

liquid (Picioreanu et al., 2010; Pinto et al., 2010, 2011).  Li and He (2016) and Zhao et al. 

(2016) explored modeling MxC performance at HRTs < 24 h HRTs under non-

competitive conditions using acetate media.  To date, no model has explored the impacts 

of varying HRT using complex communities and substrates.   

In this Chapter, I expand upon the analyzes in Chapters 4 and 5 by applying 

MYAnode for utilization of primary sludge at different anode HRTs.  I vary the influent 

Xm concentration between 0 and 200 mg VSS/L and the hydrolysis rate from 0.12 to 

0.5/d.  I demonstrate that, like in Chapter 4, the influent concentration of Xm plays an 

important role in anode performance by providing additional buffering capacity in the 

system.  Like in Chapter 5, hydrolysis rate plays a lesser role in improving MxC 

performance, and higher hydrolysis rates may be inhibitory for current production, as too 
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few Xm or ARB are present to prevent the acetate produced from lowering the bulk and 

biofilm pH values.  
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6.2 Methods and modeling approach 

Consistent with Chapters 4 and 5, I evaluated the effects of HRT using 

MYAnode.  As discussed previously, MYAnode is a novel non-steady-state mathematical 

model that combines the chemical and biological processes common to wastewater 

treatment (from CASADM) with ARB oxidation of acetate to produce current on an 

anode (from PCBIOFILM).  Based on CCBATCH, MYAnode also includes a steady-

state model that couples fast chemical speciation reactions, like acid-base equilibrium, 

with slower microbial reactions.  The model system is the same as described in Figure 

4.1:  an anode bulk chamber fed primary sludge, an anode populated with an ARB 

biofilm, and a membrane that separates the anode and cathode chambers and allows for 

counter-diffusion of OH- molecules into the anode bulk liquid to maintain 

electroneutrality.   

 Like in the previous modeling chapters, MYAnode was implemented in 

MATLAB using Euler’s method and 1-min. time steps until steady-state values were 

obtained (~150-200 d simulated; i.e., a relative difference between data points < 10-8).  

The biofilm fluxes were recalculated hourly.  The chemical components and complexes 

are summarized in Table 4.4.  The physical and operational parameters are the same as 

listed in Table 4.5, except that the HRT was varied from 6 to 15d and hydrolysis rates 

from 0.12 to 0.5/d at each HRT.  The DL thickness was 1000 μm, the optimal value 

obtained from Chapter 5.  Since the parameters evaluated here vary from the physical 

conditions documented by Ki et al. (2017a) at HRTs 6, 9, and 15, the data will not be 

directly compared but will be evaluated for the general trends. 
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6.3 Results and discussion 

6.3.1 Model validation and the effect of varying influent methanogens concentration 

 MYAnode simulated the large-scale trends demonstrated by Ki et al. (2016) at 

HRTs ≥ 12 d when the Xm value was well chosen.  The best modeling fits occurred at 

HRTs ≥ 12 d and at an influent Xm concentration of 100 mg VSS/L.  Like Ki et al. 

(2016), Figure 6.1a illustrates that, at a hydrolysis rate of 0.25/d, MYAnode predicted 

increasing CH4 production with increasing HRT, and the electron equivalents were 

distributed among effluent COD > CH4 > Coulombs.  (Data for other Xm values are 

presented in Appendix E.)  At all conditions, the model predicted higher concentrations 

of effluent COD than the experimental results.   

The model predicted major trends accurately at ≥ 12 d HRT.  At a 12-d HRT, the 

modeling results and experimental data predicted roughly the same ratio of electrons end 

up as CH4 and Coulombs: 16.7-17.1% for each product in the modeling results vs. 28%-

31% with the experimental data.  The model and experimental data were consistent in 

predicting that more CH4 would be produced at ≥ 12 d versus the shorter HRTs.  For the 

effluent COD distribution, Figure 6.1b shows that active VSS was by far the largest 

component, but MYAnode slightly over-estimated active VSS in the model at Xm values 

greater than 100 mgVSS/L:  MYAnode predicted 72-73% of effluent COD as VSS, 

versus experimental results of 69%.  SCOD from the model was 2% at Xm of 100 mg/L, 

lower than the experimental observation of 6-7%.  MYAnode over-estimated the amount 

of SS produced in the MxC by ~1-2%.  

At HRTs ≤ 9 d, the model significantly underestimated methane and current 

production.  For all influent Xm concentrations evaluated, the model predicted that, at a 6 
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d HRT, < 1% of influent TCOD converted to current or CH4, versus the experimentally 

determined 29% of influent TCOD converted to Coulombs and 12% to CH4.  At the 9 d 

HRT, the model predicted 5% of influent TCOD converted to current and < 1% to CH4 

versus the experimentally obtained 34% of influent TCOD converted to Coulombs and 

20% to CH4.  The effluent COD distribution illustrates that the model overestimated 

SCOD as 42-47% of effluent COD, versus 12-13% with the experimental data, and 

underestimated VSS as 38-42% of effluent COD. versus 67-70% in the experimental 

data.   

  
        (a)                                                                  (b) 

 

Figure 6.1.  (a) Electron balances on respiration products based on TCODin at an influent 

methanogens concentration of 100 mg Xm as VSS/L and a 0.25/d hydrolysis rate.  

“Other” is unaccounted TCOD, as reported in Ki et al. (2016).   (b) The percentage of 

effluent COD as inert suspended solids (SS), VSS, and SCOD concentrations. 
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6.3.2 High PCOD loading leads to pH inhibition at low HRTs and moderate Xm 

concentrations 

The model predicted low current and CH4 production at 6- and 9-d HRTs, 

primarily due to low bulk and biofilm pH values, regardless of hydrolysis rate and with 

Xm ≤ 200 mgVSS/L.  At the 6- and 9-d HRTs, the bulk-liquid pH decreased from 7.5 to 

less than 6.0 within an hour of the daily reactor feeding and pH adjustment and to less 

than 5.45 by the end of 24 h (Figure 6.2a), resulting in most of the day being at an 

inhibitory pH for ARB and Xm (McCarty, 1964; Parkin and Owen, 1986; Appels et al., 

2008; Torres et al., 2008a; Franks et al., 2009).  Approximately 520 and 340 mg 

COD/L/d, respectively, of PCOD were hydrolyzed to SCOD at 6- and 9-d HRTs, versus 

260 and 200 mg COD/L/d at 12- and 15-d HRT.  As discussed in depth in Chapter 4, pH 

inhibition was due to a combination of high acetate concentrations lowering the pH 

towards the pKa of 4.76 (Figure 6.2b) and either an insufficient population of Xm to 

maintain a population above washout or enough ARB (and anode surface area) to oxidize 

acetate to current and a relatively weaker acid HCO3
- (Figure 6.2c).   

The 6- and 9-d HRTs maintained acetate concentrations in the bulk liquid greater 

than 13 and 34 mM from the bulk liquid to the anode surface.  For comparison, acetate 

concentrations were less than 1.3 mM at the 12- and 15-d HRTs.  At the same time, the 

Xm concentrations in the bulk liquid were 100-101 mg VSS/L, which indicated little 

biomass growth and, thus, HCO3
- respiration by acetoclastic methanogens (< 1 mM 

HCO3
-).  Conversely, at the 12- and 15-d HRTs, Xm bulk concentrations range from 153 

to 156 mg VSS/L, respectively, indicating active respiration of 25-27 mmol/d HCO3
- 

from acetoclastic methanogenesis.   
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        (a)                                                                  (b) 

 
        (c)                                                                  (d) 

 

Figure 6.2.  (a) pH and (b) acetate concentration in the bulk, biofilm surface, and anode 

surface prior to daily feeding at 100 mg/L influent Xm.  (c) HCO3
- concentration in the 

diffusion layer and biofilm prior to daily feeding. 
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eventually result in adequate HCO3
- production to prevent pH inhibition of Xm and ARB.  

However, higher of Xm concentrations would likely result in significantly higher CH4 

production that would quickly outpace current production.  Thus, increasing alkalinity to 

maintain a more hospitable pH for ARB is a better control strategy for current production 

at the low HRTs. 

6.3.3 Increased hydrolysis rate can be detrimental to current production  

 Current and CH4 production were hindered at all hydrolysis rates for the 6- and 9-

d HRTs.  Figure 6.3 shows that performance was consistent for all hydrolysis rates and 

influent Xm concentrations evaluated at 6- and 9-d HRTs.  At a 6-d HRT, only 1-2% of 

electrons from influent TCOD were used to produce current and 0.1 to 0.6% to CH4 with 

increasing hydrolysis rate regardless of Xm concentration.  At a 9-d HRT, 3.5-5.1% of 

electrons from influent TCOD were used to current while CH4 production increased 0.4 

to 0.5% at 25 mg VSS/L influent Xm and 1.3 to 1.8% at 100 mg VSS/L influent Xm with 

increasing hydrolysis rate.  As previously discussed, the system was inhibited due to the 

bulk and biofilm pH decreasing to ~5.45 at even the slowest hydrolysis rates (Figure 

6.4a) due to combination of high acetate concentrations (13-15 mM at 6-d and 29-42 mM 

at 9-d HRTs) in the bulk (Figure 6.4b) and < 0.1 mM HCO3
- alkalinity conditions (Figure 

6.4c). 

In contrast with the lower HRTs, the 12- to 15-d HRTs demonstrated improved 

performance with increasing hydrolysis rate at higher influent Xm concentrations.  

Consistent with the 6- and 9-d HRTs, 25 mg VSS/L influent Xm concentrations 

demonstrated little performance difference at different hydrolysis rates:  CH4 and 

Coulombs products accounted for 1-2% and 5-7% respectively, of the electrons present 
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from the influent TCOD (Figure 6.1), largely due to the pH limitation as discussed 

previously.   

  

 
Figure 6.3.  Electron balances on respiration products normalized to the influent TCOD 

concentration at 25 and 100 mg VSS/L influent Xm concentrations and HRTs of 6 and 9 

d.   

 

MxC performance at the 12- and 15-d HRTs surmounted the pH and alkalinity 
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shown in Figure 5.2, the 0.25/d hydrolysis rate was optimal at a 12-d HRT due to 191 mg 

CaCO3/d of HCO3
- being able to adequately buffer the acetate produced versus the 8 mg 

CaCO3/d at 0.5/d hydrolysis rate.  The higher concentrations of HCO3
- in the bulk 

diffused through the biofilm to the anode surface, allowing the biofilm to maintain a pH > 

6.30.   
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                                        (a)                                                                    (b) 

 
(c) 

Figure 6.4.  At 25 mg VSS/L influent Xm concentrations and HRTs of 6 and 9 d, (a) pH 

at the bulk liquid, biofilm surface, and anode surface; and (b) acetate and (c) HCO3
- 

concentrations at the bulk liquid, biofilm surface, and anode surface.  100 mg VSS/L 

influent Xm concentrations values are shown in Figure 6.2.   
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Figure 6.5.  Electron balances on respiration products normalized to the influent TCOD 

concentration at 25 and 100 mg VSS/L influent Xm concentrations and HRTs of 12- and 

15-d.   
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HCO3
- alkalinity to prevent pH from decreasing below 6.5 even with the high acetate 

production rate (62 mM/d at 0.12/d hydrolysis rate and 77 mM/d at 0.25/d hydrolysis 

rate). 
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(a) 

  
(b) 

 
(c) 

Figure 6.6.  At a 15-d HRT, (a) acetate production rate and bulk liquid pH at 25 mg 

VSS/L influent methanogens concentration; (b) HCO3
- consumption rate; and (c) acetate 

production rate and bulk liquid pH at 100 mg VSS/L influent methanogens concentration.   
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6.4 Conclusions 

 Using MYAnode, I determined trends in operating efficiency for relevant ranges 

of HRT, hydrolysis rate, and influent Xm concentration.  The model demonstrated 

accurate trends at ≥ 12-d HRT but failed to predict Coulombic recovery at lower HRTs 

regardless of influent Xm concentrations.  Performance at lower HRTs was largely 

inhibited by insufficient alkalinity, which means that pH inhibition of ARB and 

methanogens was important.  The latter inhibition was especially critical, because 

methanogenesis of acetate produces the bicarbonate alkalinity needed to prevent a large 

pH drop.  Increasing hydrolysis rates improved Coulombic and CH4 recovery at 12- and 

15-d HRTs, largely due to the long HRTs allowing for more growth of methanogens and 

the increased methanogenesis needed to generate sufficient HCO3
- alkalinity to prevent 

pH from dropping below 6.2 within the first hours of feeding.  These first hours were 

particularly important for pH buffering, because that was when the highest rates of 

acetate production occurred (up to 20-times higher production than prior to the daily 

feeding).   
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CHAPTER 7 

 

Conclusions and Recommendations for Future Work 

7.1 Summary and conclusions 

 Water and wastewater treatment are energy-intensive services critical for healthy 

societies (Carns, 2005; Reekie et al., 2013; Rittmann, 2013).  Wastewater is ripe with 

embedded energy that currently is partially converted to either heat or power in medium 

to large WWTPs that utilize anaerobic digestion (U.S. Environmental Protection Agency 

Combined Heat and Power Partnership, 2008; Rittmann, 2013).  As they implement more 

energy-intensive, advanced technologies to improve effluent quality, water treatment 

plants and WWTPs seek more energy and cost-efficient methods to improve energy 

recovery from wastewater, reduce biosolids for landfilling, and efficiently perform 

advanced treatment prior to effluent discharge (Reekie et al., 2013; Rittmann, 2013; 

Center for Sustainable Systems, 2016) 

H2O2 is an industrial chemical has a large potential role in water and wastewater 

treatment to improve sludge stabilization, disinfection, micropollutant removal, and 

hydrogen sulfide removal for odor emissions control (Charron et al., 2004; Eskicioglu et 

al., 2008; Snyder et al., 2008; Dhar et al., 2011; Abelleira et al., 2012; Yang et al., 2014).  

H2O2 can be produced via electrosynthesis using fuel cells with high energy input.  One 

option for capturing energy from wastewater is the MxC.  In an MxC, ARB oxidize 

organics and respire the electrons to an anode; the current can be used to produce H2O2 at 

the cathode.  While previous researchers demonstrated modest H2O2 production in batch 

MxC reactors (Rozendal et al., 2009; Fu et al., 2010; Modin and Fukushi, 2013), a 
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systematic analysis of what is required to continuously produce H2O2 had not been 

attempted prior to this work.  This work provides a methodology for tailoring MPPCs for 

optimal H2O2 production and mathematical models to provide clarity to the underlying 

mechanisms effecting current recovery and H2O2 production in MPPCs. 

Chapter 2 provided a comprehensive methodology for the design of MPPCs.  The 

chapter focused on understanding the impacts of H2O2 on catholyte and membrane 

stability and optimizing H2O2 production at the cathode.  Since H2O2 is a strong oxidant, 

the choices of catholyte and materials are important factors in improving H2O2 recovery 

from the MPPC and long-term operation.  Without stabilizers present, H2O2 stability in 

different catholyte solutions decreased with increasing pH and time due to deprotonation 

of H2O2 above the pKa of 11.8.  All membrane materials experienced membrane 

degradation at pH 12, but percent degradation increased with H2O2 present.  Evaluating 

three different catalyst-binder combinations for demonstration, the chapter outlines how 

to utilize j-V curves and RRDE experiments to determine that the Vulcan carbon-Nafion 

binder combination provided lower Ohmic losses than other combinations and the 

optimal catalyst loading was ~0.5 mg/cm2 of Vulcan carbon for maximum H2O2 

production.   

 These finding were utilized to demonstrate continuous H2O2 production for the 

first time using of a continuous-flow, flat-plate MPPC.  The MPPC was operated using a 

catholyte having 200 mM NaCl and air flow rates ranging from 10 to 30 cm3/min.  The 

MPPC achieved long-term operation (18 days) without any downtime.  Varying air flow 

rates had minimal effect on MPPC performance:  H2O2 effluent concentrations ranged 

from 2.5±0.4 to 3.1±0.4 g/L, and effluent pH ranged from 12.1 to 12.4.  Cathodic 
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overpotentials were 1.7 times higher than anodic overpotentials, with > 58% of cathodic 

overpotential associated with concentration overpotentials due to the high pH gradient 

between the anode and cathode chambers.    

 The work in Chapter 3 expanded on Chapter 2 to further optimize the 

performance of a continuous-flow, flat-plate MPPC.  Several operational conditions were 

varied, including catholyte HRT, catholyte concentration, different catholytes, and the 

use of EDTA as a metal-chelating stabilizer for H2O2.  The MPPC produced its highest 

H2O2 concentrations -- 3.1±0.4 g/L -- using NaCl catholytes.  Energy input increased and 

net cathodic efficiency decreased with increasing cathodic HRT due to H2O2 decay, 

likely through a reaction with the membrane or other contaminants in the system.  

Similarly, an increase in NaCl concentration in the cathode reduced Ohmic losses due to 

better ion transport, which improved the MPPC’s net cathodic efficiency, although it 

failed to produce higher H2O2 concentrations.  Attempts to improve performance by 

using weak acid buffers catholytes to reduce pH gradients failed to produce higher H2O2 

concentrations, since the pH gradient either favored the formation of H2O instead of H2O2 

at the entrance to the cathode or the catholytes favored formation of O2 from H2O2 auto-

decay.  The addition of EDTA to the catholyte failed to increase H2O2 effluent 

concentration, because the ferrochelator diffused to the anode and reduced the ARB’s 

current production, either by inhibiting uptake of the nutrient iron or disrupting electron 

transfer by ARB to the anode surface. 

 Chapters 4-6 introduced MYAnode, a new mathematical model for anode 

chamber performance, and used it to evaluate MxC performance for a range of 

operational parameters.  In Chapter 4, the model combined three existing platforms – 
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CASADM, PCBIOFILM, and CCBATCH – to describe chemical and biological 

processes occurring in a bulk liquid modeled as typical wastewater and at an anode 

biofilm.  The model was evaluated against data obtained by Ki et al. (2017a), which 

treated primary sludge at a 12-d HRT in an MxC.  The model demonstrated a reasonable 

fit to experimental data when the acetoclastic methanogens concentration was well poised 

at 100 mg VSS/L influent Xm concentration:  The model predicted 20% Coulombic 

recovery and 20% CH4 recovery versus the experimental results of 28% and 32%, 

respectively.  Using MYAnode, I demonstrated little Coulombic or CH4 recovery at 

lower influent Xm concentrations (≤ 25 mg VSS/L) due to the pH decreasing to inhibitory 

levels.  The decrease in pH was caused by the formation of too much acetate, a relatively 

strong weak acid; a too low concentration of Xm, which were needed to produce HCO3
- 

from acetate oxidation; and too little acetate oxidation by ARB due to the limited surface 

area.  A too-high of influent Xm concentration (≥ 200 mg VSS/L) resulted in Xm 

outcompeting ARB for acetate, with the MxC producing more CH4 than Coulombs. 

 In Chapter 5, I explored the role of DL thickness and hydrolysis rate on MxC 

performance at a 12-d HRT and 100 mg VSS/L influent Xm concentration.  Reducing the 

DL thickness had greater impact on improving MxC performance than increasing the 

hydrolysis rate: Increasing the DL thickness from 500 to 1000 μm improved Coulombic 

efficiency and CH4 production by 13.9 and 18.6%, respectively, versus the 2.6 and 3.9% 

improvement, respectively, as hydrolysis rates from 0.12 to 0.25/d.  Like I the previous 

chapter, performance improvements largely depended upon HCO3
- production by Xm to 

help maintain pH above the inhibitory levels for ARB and Xm.  Too-high of DL 

thicknesses (> 1000 μm) led to increased CH4 production, because mass transport limited 
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the acetate concentration at the biofilm surface.  A too-high hydrolysis rates (> 0.25/d) 

produced too much acetate too quickly, causing the bulk pH to drop to inhibitory levels 

for Xm in the bulk liquid.   

 Chapter 6 explored MxC performance at 6- to 15-d HRTs for different Xm 

concentrations and hydrolysis rates.  The model trends were consistent with experimental 

data at ≥ 12-d HRT, although they failed to match Coulombic and CH4 recoveries at 

lower HRTs.  For example, the model predicted less than 1% Coulombic and CH4 

recoveries, respectively, at 6-d HRT, compared with the experimental data, which 

demonstrated 29 and 12% recoveries, respectively.  The model predicted that 

performance at lower HRTs was largely inhibited by insufficient HCO3
- production by 

Xm from acetate oxidation; too-little HCO3
- allowed the pH to decrease to inhibitory 

levels.  Increasing hydrolysis rates improved Coulombic and CH4 recovery at 12- and 15-

d HRTs.  Xm benefitted from the long HRTs, which provided adequate time for their 

growth and allowed them to produce sufficient HCO3
- alkalinity to prevent the pH from 

dropping below 6.2 within the first hours of feeding.  These first hours were particularly 

important to buffer, as it was when the highest rates of acetate production occurred (up to 

20-times higher production than prior to the daily feeding).   
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7.2 Recommendations for future work 

 In this section, I provide recommendations for futures studies into MPPCs and 

MxC modeling.  I begin by outlining studies to reduce cathodic Ohmic and concentration 

overpotentials.  I explore experiments that couple MPPCs with wastewater treatment for 

sludge stabilization, disinfection, and micropollutant removal.  Finally, I discuss 

incorporating MYAnode into a holistic MxC model.    

7.2.1 Reduce concentration overpotentials in MPPCs 

 Chapters 2 and 3 concluded that concentration overpotentials and pH gradients 

between the cathode surface and cathode bulk liquid and between the cathode and anode 

chambers led to significant voltages losses within the MPPC.  Attempts in this work to 

reduce cathode effluent pH by utilizing weak acid buffers as the catholyte were 

ineffective due to the creation of localized high pH gradients, which favored the 

production of H2O versus H2O2 or auto-decay of H2O2 with the buffer to O2.  Other 

researchers utilized strong acids like H2SO4 and HCl to reduce the pH variation over the 

cathode (Yamanaka et al., 2002; Kolyagin and Kornienko, 2003; Kolyagin et al., 2011), 

but practical problem preclude using strong acids at large scale:  strong acid catholytes 

provides safety issues in large-scale applications, must be neutralized prior to discharge, 

and are not compatible with most AEMs, which are not rated for use at a pH < 2.   

One method to reduce the pH gradient along the serpentine flow channel is to 

implement high-rate recirculation of the catholyte, which should provide more complete 

mixing and moderate the pH change in the system.  Preliminary results reported by 

Rumsey and Torres (2017) demonstrated that a 20-fold recirculation rate using 200 mM, 
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pH 2.5 PBS increased H2O2 effluent concentration 2-fold versus without recycle and 

reduced the effluent pH from 10.4 to 7.5.  However, high recirculation rates could have 

negative impacts on MPPC performance, including potentially increasing the pressure on 

the cathode, which may increase the likelihood of catholyte leaking through the cathode.  

Also, recirculation incurs pumping costs that offset the added value of the H2O2.  

Therefore, any modifications would require long-term evaluation to assess the system’s 

robustness. 

7.2.2 Develop MPPC systems for sludge stabilization, wastewater disinfection, and 

micropollutant removal 

 H2O2 has been explored for a variety of WWT applications, including as an 

additive to reduce hydrogen sulfide emissions (Charron et al., 2004; Dhar et al., 2011; 

Metcalf & Eddy, 2014), as a sludge pretreatment technology (Eskicioglu et al., 2008; 

Kim et al., 2009; Abelleira et al., 2012), and to improve disinfectant and micropollutant 

removal (Glaze et al., 1987; Wagner et al., 2002; Ksibi, 2006; Kruithof et al., 2007; 

Snyder et al., 2008; De la Cruz et al., 2012; Yang et al., 2014).  One potential application 

of MPPCs is to directly feed H2O2-rich catholyte to the anode chamber or produce 

cathodic H2O2 in a single chamber reactor to increase sludge stabilization, which also 

may reduce fecal coliforms and micropollutant concentrations.  Similarly, a catholyte 

stream containing H2O2 can be combined with the anolyte solution and passed through a 

tubular reactor surrounded by a UV lamp.  For further efficacy, iron ions can be added to 

the catholyte stream prior to addition to the UV reactor to promote Fenton oxidation of 

organic contaminants.  While the addition of iron may seem counterintuitive, since 

Fenton processes are inhibited at high pH, it may synergize well with municipal 
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wastewater treatment, in which iron-based coagulants are used in primary and secondary 

wastewater settling.  The effluent anolyte could also be supplemented with specific 

contaminants of concern, like pharmaceuticals and personal care products and pesticides 

(Klamerth et al., 2010; Kruithof et al., 2007), to determine the reactor’s removal efficacy. 

7.2.3 Gain greater understanding of the pH limitations modeled in MYAnode to better fit 

experimental data 

 Several improvements must be made to MYAnode to obtain better overall fits to 

the experimental data, especially at the 6- and 9-d HRTs.  Ki et al. (2017a) demonstrated 

significant current production and sludge stabilization at the 6- and 9-d HRTs, but 

MYAnode failed to reflect them because MYAnode predicted a significant pH drop due 

to limited alkalinity in the system.  Since the modeling fitting was worse for lower HRTs, 

one potential improvement is to add hydrogenotrophic methanogenesis and fermentation 

of propionate and butyrate to acetate and H2, which can consume CO2 in the former case 

and produce CO2 in the latter.  Another approach is to examine the largest biological 

consumer of alkalinity:  fermentation.  Approximately 2.5 mol of HCO3
- are consumed 

(mostly for EPS and UAP formation) during domestic wastewater fermentation to 

acetate, EPS, and UAP.  Changing the EPS and UAP kinetics or chemical formulas may 

result in less consumption of alkalinity, which Chapter 6 indicated in part leads to rapid 

inhibition of methanogens due to a rapid pH drop from acetate formation.  

7.2.4 Establish holistic mathematical models of MxCs 

 The modeling foundation in this dissertation provides separate anode and cathode 

models, but not a holistic MxC model.  While several holistic MxC models exist, as 



 

136 

reviewed in Chapter 1, many of these models do not evaluate the impact of pH and 

chemical speciation, complex waste streams, diffusion and migration at the anode and 

cathode, and diffusion through the membrane on MxC performance.  Developing a 

holistic MxC model with all these features requires extensive abiotic characterization of 

the membrane to determine ion diffusivity and conductivity.  Any abiotic experiments 

must evaluate common catholyte ions and OH- diffusion to the anode chamber, and 

common wastewater ions -- like acetate, bicarbonate, phosphate, and ammonium -- must 

be evaluated for diffusion from the anode to the cathode.  These ions can be detected 

using high performance liquid chromatography and IC, and the experiments are so 

straightforward they would provide an excellent research opportunity for an 

undergraduate researcher.  The diffusion of both anions and cations through the selected 

membrane must be evaluated – laboratory observations have demonstrated ammonium 

diffusing through the AMI-7001 AEM.  Ions should be evaluated at open circuit and with 

current applied to determine the effect of ionic migration on diffusivity. 

 Once the data are obtained, MYAnode could be incorporated into a larger model 

consisting of 5 compartments, as illustrated in Figure 7.1:  the bulk anode liquid, the 

anode and biofilm, the membrane, the bulk catholyte, and the cathode.  My opinion is 

that a cathode model should be designed to predict cathode overpotential, electrolysis 

products, and pH based on the current supplied from the anode.  In this case, 

PCBIOFILM cannot be directly applied because the program and, more importantly, 

numerical methods are centered on determining the current density versus overpotential, 

which requires the addition of activation and concentration overpotentials for H2O2 and 

HO2
- in the system that would require nested Newton-Raphson solver routines to obtain 
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the desired output variables.  Boundary conditions will need to be established.  The bulk 

liquid/diffusion layer interface boundary conditions are to those implemented in 

PCBIOFILM, with the flux between equal in magnitude on each sides of the boundary.  

The boundary condition at the cathode surface and diffusion layer will need to be 

modified to be equivalent to concentrations of H2O2 and HO2
- as dictated by activation 

and concentration overpotentials and the current supplied from the anode.  Ohmic and 

activation overpotential parameters for the cathode and catalyst were obtained as part of 

the experiments in Chapters 2 and 3, including exchange current density and the alpha 

fitting parameter from the Butler-Volmer equation. 

A membrane model could be formulated similarly to the proposed cathode model 

using Fick’s law and ionic migration to produce profiles of ionic transport through the 

membrane.  However, all membrane parameters would still need to be quantified, 

including diffusion through the membrane of salt, OH-, H2O2, and HO2
-, at open circuit 

and different operating potentials. 
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Figure 7.1.  The reaction in five systems to be modeled:  the bulk anolyte chamber, the 

anode and biofilm, the bulk catholyte chamber, the cathode, and the membrane. 
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A.1  Supplemental graphs 

 

(a)     (b) 

Figure A.1.  (a) Percent H2O2 degraded and (b) membrane weight loss for FAA, AMI, 

and CMI membranes at pH 7 and 10 g/L H2O2. 

 

 
Figure A.2.  H2O2 degraded during batch bottle tests for membrane stabilities at pH 12. 
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(a)       (b) 

 

Figure A.3.  FAA (a) before and (b) after pH 12 100-mM NaCl and 10 g/L H2O2 stability 

tests.  The stability tests used a 3 cm x 3 cm square that deteriorated to pieces by the end 

of the 45-day test.   

 

 

Figure A.4.  Total organic carbon (TOC) from batch bottle tests of membrane stabilities 

with and without 10 g/L H2O2 present in the solution at pH 12.  TOC measurements were 

obtained using a Shimadzu TOC-V CSH Total Organic Carbon analyzer.  Tests were not 

performed on CMI-7000 and I-200 at pH 12 only.   
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Figure A.5.  CVs of preliminary reactor design.  The MPPC CVs were performed with 

two different membranes (FAA and AMI-7001) and three different catholytes:  100 mM 

NaCl, pH 4.5 PBS, and pH 7.5 PBS. The MPPC was operated at a 4 hr HRT and 30 

cm3/min air flow rate.  The reactor design was the same as the reactor presented in this 

paper, except there was 1 cm distance between the anode and cathode.  The FAA 

membrane is ~1/3 the thickness of the AMI membrane and has a lower resistance. 
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A.2  EIS characterization of membrane resistances 

I tested the membranes in a 100-mM NaHCO3 solution using EIS to determine 

their ionic transport resistances.  EIS was performed at 100 kHz and 10 mV amplitude 

with the anode as the working electrode and the cathode as the counter electrode.  As 

illustrated in Figure A.6, heterogeneous membranes exhibited 45-85 ohm-cm2 in 

resistance.  Homogeneous membranes demonstrated resistances < 20 ohm-cm2.  For 

perspective, at 10 A/m2, the homogeneous membranes have Ohmic overpotential < 20 

mV and heterogeneous membranes between 50-85 mV.  

 
Figure A.6.  Area-specific resistances determined using electrochemical impedance 

spectroscopy for seven different heterogeneous and homogenous membranes in 100 mM 

NaHCO3. 
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A.3  Linear sweep voltammetry to determine activation overpotentials in 

catalyst/binder combinations 

I used gas-diffusion half-cells to evaluate differences between catalyst and binder 

performance.  I evaluated three catalyst/binder combinations:  50 g/L Vulcan carbon 

(FuelCellStore.com) in a 5% cationomer Nafion solution (10% Nafion in alcohol, Sigma-

Aldrich); 62.5 g/L of Vulcan carbon in an 3.13% anionmer AS-4 solution (5% AS-4 in 

alcohol, Tokuyama Corp.); and 87.7 g/L of graphite (Sigma-Aldrich) in a 8.77% Nafion 

solution.  The catalyst/binder was coated on a 9-cm2 hydrophobic carbon cloth 

(FuelCell.com) at a loading of 0.5 mg/cm2 and dried for 24 h.  The cathode and a 316-

stainless steel rod anode were placed in a 27 mL half-cell filled with 100-mM sodium 

perchlorate solution (Popat et al., 2014).  A standard calomel electrode (SCE, CH 

Instruments, Inc.) was used as the reference (+0.21 VSHE).   For experiments utilizing 

NaOH or H2O2 in solution at the start, I used a Nafion-117 membrane to separate the 

cathode and anode chambers.  The catalysts/binders were evaluated using linear sweep 

voltammetry (LSV) between -0.19 and 0.61 VSHE at 1 or 2 mV/s scan rate and 30°C.   

As illustrated in Appendix Figure A.6, the negatively-charged OH- and HO2
- 

produced at high pHs are more effectively transported from the cathode surface using the 

anionic AS-4 binder, resulting in lower concentration overpotential versus the cationic 

Nafion binder.  Membrane-stability tests (not presented here) demonstrated that anionic 

polymers like AS-4 are not stable with H2O2, especially at high pH, eliminating it as a 

potential binder.   
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Figure A.7. Cathode potentials (up to 20 A m-2) established using linear sweep 

voltammetry with three catalyst/binder combinations:  50 g/L Vulcan carbon in a 5% 

Nafion solution (labeled Vulcan (Nafion)); 62.5 g/L of Vulcan carbon in an 3.13% AS-4 

solution (labeled Vulcan (AS-4));  and 87.7 g/L of graphite in a 8.77% Nafion solution 

(labeled Graphite (Nafion)).   
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APPENDIX B 

 

SUPPLEMENTAL INFORMATION FOR CHAPTER 3 
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B.1  Supplemental graphs 

 
 

Figure B.1.  Graph summarizing the conditions during long-term MPPC operation.  The 

first two downtime events were associated with membrane failures.  The last downtime 

event was due to the catholyte chamber pump failing.   



 

Table B.1.  Run time information for data obtained at each experimental setup.  

  Duration prior to first 

measurement 

Duration of 

measurements 

 Total 

experiment 

duration (d) 

Number of 

samples 

taken   Number of 

HRTs 

Time 

(d) 

Number of 

HRTs 

Time 

(d) 
Downtime (d) 

Varying HRT  

 1-h HRT 6.1 0.3 69.4 2.9 0.0 3.1 10 

 2-h HRT 24.7 2.1 55.4 4.6 0.0 6.7 9 

 3-h HRT 6.8 0.9 89.3 11.2 0.0 12.0 9 

 4-h HRT 18.0 3.0 30.3 5.0 0.0 8.0 10 

 6-h HRT 14.7 3.7 61.7 15.4 2.1 23.8 9 

Varying NaCl concentration  

 100-mM 17.1 2.8 23.7 3.9 0.0 6.8 9 

 200-mM 18.0 3.0 30.3 5.0 0.0 8.0 10 

 300-mM 5.2 0.9 6.4 1.1 0.0 1.9 6 

 400-mM 16.4 2.7 18.4 3.1 0.0 5.0 6 

 500-mM 5.8 1.0 24.2 4.0 0.0 4.0 8 

Varying EDTA concentration  

 0-mM 18.0 3.0 30.3 5.0 0.0 8.0 10 

 0.2-mM 16.4 2.7 35.8 6.0 0.0 8.7 10 

 1-mM 6.5 1.1 84.0 14.0 0.0 15.1 11 

 2-mM 48.4 8.1 61.1 10.2 0.0 18.3 6 

Varying electrolyte concentration  

 200-mM NaCl 18.0 3.0 30.3 5.0 0.0 8.0 10 

 100-mM PBS 60.5 10.1 4.0 24.3 0.0 14.1 6 

 200-mM PBS 35.8 6.0 4.0 24.2 0.0 10.0 6 

 400-mM 

NaHCO3 

29.7 5.0 69.0 11.5 0.0 16.5 7 

 1000-mM 

NaHCO3 

5.2 0.9 18.1 3.0 0.0 3.9 8 

1
6
3
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Figure B.2.  Membrane cracking observed during operation with a 6-hr HRT and using a 

200-mM NaCl catholyte and 20 cm3 min-1 air flow rate. 
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(c)                                                                              (d) 

 

Figure B.3.  H2O2 stability in different electrolytes and with 0- to 6-mM EDTA over 5 

days:  (a) pH 4.5 PBS, (b) pH 7.5 PBS, (c) pH 7 200-mM NaCl, and (d) pH 12 200-mM 

NaCl.   
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Figure B.4.  Cyclic voltammetry of anode performance as a function of EDTA 

concentration. 
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Figure B.5.  Results for the experiment with a range of HRT from 1- to 6-h using 200-

mM NaCl catholyte:  (a) cathode effluent pH, (b) cathode potential, (c) net cathodic 

efficiency, and (d) cyclic voltammetry of cell performance.  The light gray boxes 

represent the first and third quartiles, and the black point represents the average value.  

The whiskers represent the maximum and minimum data points. 

  

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

1 2 3 4 5 6

C
a

th
o

d
e

 e
ff

lu
e
n

t 
p

H

HRT (h)
(a)

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

1 2 3 4 5 6

C
a

th
o

d
e

 p
o

te
n

ti
a

l 
(V

)

HRT (h)
(b)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4 6 8 10 12 14

C
e

ll
 p

o
te

n
ti

a
l 
(V

)

Current density (A m-2)

1 h HRT

2 h HRT

4 h HRT

(c)



 

169 

 
 

Figure B.6.  Results for varied NaCl concentrations from 100- to 500-mM: (a) cathode 

effluent pH and (b) the cathode CV.  The light gray boxes represent the first and third 

quartiles, and the black point represents the average value.  The whiskers represent the 

maximum and minimum data points. 

 

 
Figure B.7.  Current density for varied buffering electrolyte concentrations.  The light 

gray boxes represent the first and third quartiles, and the black point represents the 

average value.  The whiskers represent the maximum and minimum data points. 

 

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

100 200 300 400 500

C
a

th
o

d
e

 e
ff

lu
e
n

t 
p

H

NaCl concentration (mM)
(a)

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

-6 -4 -2 0 2 4 6 8 10 12 14

C
a

th
o

d
e

 p
o

te
n

ti
a

l 
(V

)

Current density (A m-2)

500 mM 400 mM

200 mM 100 mM

(b)

0
2
4
6
8

10
12
14
16

200 100 200 400 1000

NaCl PBS NaHCO3

C
u

rr
e

n
t 

d
e
n

s
it

y
 (

A
 m

-2
)

Concentration (mM)



 

170 

 

Figure B.8.  Results for the experiment varying EDTA concentrations from 0- to 2-mM:  

(a) cathode effluent pH and (b) cathode potential.  The light gray boxes represent the first 

and third quartiles, and the black point represents the average value.  The whiskers 

represent the maximum and minimum data points. 
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B.2  Experimental calculations 

 Net cathodic coulombic efficiency (CCE) is defined as the efficiency at which 

current produced by the MPPC is converted to H2O2 molecules.  First, I calculated the 

theoretical H2O2 concentration, Ctheory (g/L), i.e., the amount of H2O2 produced if all 

current is converted to H2O2: 

Ctheory =
I

F
∗

HRT

V
∗

3600 s

h
∗

mol H2O2

2 e−
∗

34 g H2O2

mol H2O2
 

(Eqn. B.1) 

 

where I is current (mA), F is Faraday’s constant (96485 C mol e--1), and V is cathode 

volume (mL).  I then calculated percent current efficient, εH2O2, as the ratio of actual 

H2O2 concentration, Cactual (g L-1), to Ctheory. 

                                       εH2O2= Cactual / Ctheory * 100%                                         (Eqn. B.2) 

 

 Similarly, power input follows the inverse trend of coulombic efficiency, since 

power input is inversely proportional to Cactual: 

P =
E ∗ I

Cactual ∗ V
 

(Eqn. B.3) 

 

where E is the cell potential (V). 

 Ionic current was determined based on IC and pH measurements for varying NaCl 

concentrations.  The concentration of charges that migrated to maintain electroneutrality 

between the anode and cathode chambers over a set HRT (s), Creq (mol charge L-1), is 

dictated by the amount of current produced: 

Creq =
I ∗ HRT

F ∗ V
 

(Eqn. B.4) 
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I assumed that OH- and Cl- anions could migrate across the AEM; therefore, the 

charge required to migrate to maintain electroneutrality, Creq
mig

 (mol charge L-1), was  

Creq
mig

= CCl−
mig

+ COH−
mig

 

(Eqn. B.5) 

 

The concentration of Cl- charge that migrated to the anode was  

CCl−
mig

= |zCl−|(CCl−
inf − CCl−

eff ) 

(Eqn. B.6) 

 

where Cmig is the concentration of charges that migrated (mol charge L-3), z is the charge 

of anion (-1 for Cl-), and Cinf and Ceff are the influent and effluent charge concentrations 

(M L-3), respectively.  The charge migration associated with OH- is based both on the 

charge present in the system and production via Eqn. 3.2 and 3.3 in the main text; 

however, H2O2 is subject to degradation at the cathode.  Assuming 100% of current is 

converted to H2O2 or HO2
-, the theoretical amount of OH- produced is 

COH−
prod

= 2 ∗ CH2O2
theoretical + CHO2−

theoretical =
Creq

2
+

Creq

1 +
10−𝑝𝐾𝑎

10−𝑝𝐻

 

(Eqn. B.7) 

 

where pKa is the 11.8 for H2O2 and pH is the effluent pH.  Since the influent OH- 

concentration is negligible as pH < 8 for all catholytes, the OH- charge migrated to the 

anode, COH−
mig

, is  

COH−
mig

= COH−
prod

− COH−
eff  

(Eqn. B.8) 

 

where COH−
eff  is the effluent OH- charge concentration (M). 

 To determine statistical significance, I performed two-sample two tail t-test using 

the Data Analysis add-on in Microsoft Excel 2010.  The t-test was performed assuming 
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equal and unequal variances to assess the impact of this assumption.  I applied an alpha 

equal to 0.05 (95% confidence level) and hypothesized mean difference equal to zero.   
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B.3  Determining H2O2 production from a typical wastewater treatment plant 

(WWTP) 

 I determined the amount of H2O2 that would be produced from a MEC applied at 

a municipal WWTP based on two different wastewater sources:   sludge from a primary 

settler and waste-activated sludge from a secondary clarifier.  Table 3.1 outlines the 

assumed values for this analysis.   

I assume a MEC is applied at a medium-sized WWTP treating 10 million L d-1 (or 

2.64 MGD).  The influent composition COD composition (500 mg L-1) is based on 

average influent value for a medium-strength municipal wastewater (Metcalf & Eddy, 

2014).  I assume that 60% of influent TCOD is captured as primary sludge (Metcalf & 

Eddy, 2014), and 40% of the primary sludge’s TCOD can be converted to current (Ki et 

al., 2017a).  Thus, the amount of primary sludge COD converted to current per day is 

calculated as 

(500
mgCOD

L
) (107

L

d
) (60% of influent TCOD)(40% efficiency) (

kg

106mg
)

= 1200
kg

d
COD 

(Eqn. B.9) 

 

If the cathode exhibits 30% coulombic efficiency for H2O2 production, the amount of 

H2O2 produced from primary sludge treatment is 

(1200
kg

d
COD) (

1000g

kg
) (

1 e − eq

8g COD
) (

1 mol H2O2

2 e − eq
) (

34 g H2O2

1 mol H2O2
) (30% efficiency)

= 765 
kg H2O2

d
 

(Eqn. B.10) 
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Since 60% of the influent COD is being captured in primary sludge, the remaining 

40% is undergoes secondary treatment and eventually subjected to further treatment in 

the MEC (i.e., waste-activated sludge or WAS).  If I assume that 25% of the available 

COD during secondary treatment is lost due to biomass uptake, then 30% of the influent 

COD (i.e., 40%*75%) can be utilized by an MEC.  For primary sludge, I assume that 

35% of WAS TCOD is converted to current (Kim et al., 2005; Jiang et al., 2009; Zhang 

et al., 2012).  The amount of secondary treatment COD converted to current is 

(500
mgCOD

L
) (107

L

d
) (30% of influent TCOD)(40% efficiency) (

kg

106mg
)

= 760
kg

L
COD 

  

(Eqn. B.11) 

 

If the cathode exhibits 30% coulombic efficiency for H2O2 production, the amount of 

H2O2 produced from WAS treatment is 

(1200
kg

L
COD) (

1000g

kg
) (

1 e − eq

8g COD
) (

1 mol H2O2

2 e − eq
) (

34 g H2O2

1 mol H2O2
) (30% efficiency)

= 383 
kg H2O2

d
 

(Eqn. B.12) 
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APPENDIX C 

 

SUPPLEMENTAL INFORMATION FOR CHAPTER 4 
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C.1 Supplemental Graphs 

 
 

Figure C.1.  Effluent composition at a 12-d anode chamber HRT, 0.25/d PCOD 

hydrolysis rate, and 1000 μm diffusion layer thickness.  Experimental data was obtained 

from Ki et al. (2017a). 

 

 

Figure C.2.  Effluent TCOD composition at a 12-d anode chamber HRT, 0.25/d PCOD 

hydrolysis rate, and 1000 μm diffusion layer thickness.  Experimental data was obtained 

from Ki et al. (2017a). 
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Figure C.3.  Daily current densities at a 12-d anode chamber HRT, 0.25/d PCOD 

hydrolysis rate, and 1000 μm diffusion layer thickness for influent methanogens 

concentrations of 0-200 mg VSS/L.  Experimental data was obtained from Ki et al. 

(2017a). 
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C.2 Modeling parameters  

Table C.1.  Kinetic parameters for the microorganisms.  Unless otherwise stated, all values were obtained from Rittmann and 

McCarty (2001). 

Kinetic Parameters Symbol Units Heterotrophs AOB NOB Fermenters Methanogens# 

Maximum 

utilization 

rate 

Substrate �̂� mgCOD/mgVSS-d 10 3.1 13 10 -- 

UAP*  mgCOD/mgVSS-d 1.8 -- -- 1.8 -- 

BAP*  mgCOD/mgVSS-d 0.5 -- -- 0.5 -- 

Acetate  mgAce/mgVSS-d 8.1 -- -- -- 7 

Half-

maximum 

rate 

concentration 

Substrate K mgCOD/L 10 1.5 2.7 10 -- 

Acetate  mgAce/L 168 -- -- -- 30 

DO  mgDO/L 0.2 0.5 0.68 -- -- 

UAP*  mgCOD/L 100 -- -- 100 -- 

BAP*  mgCOD/L 85 -- -- 85 -- 

NO2
-, NO3

-  mgN/L 0.2 1.5 2.7 -- -- 

True fraction 

of electrons 

to cell 

synthesis 

Substrate fs
0

 mgCOD/L 0.6 -- -- 0.18 -- 

Acetate  mgAce/L 0.6 -- -- -- 0.05 

UAP*  mgCOD/L 0.71 -- -- 0.71 -- 

BAP*  mgCOD/L 0.6 -- -- 0.18 -- 

NH4
+  mgN/L -- 0.14 -- -- -- 

NO2
-  mgN/L 0.5 -- 0.1 -- -- 

Biomass decay rate b 1/d 0.3 0.15 0.15 0.04 0.03 

Formation rate of UAP* kUAP mgCOD/mgCOD 0.05 

Formation rate of EPS* kEPS mgCOD/mgCOD 0.18 

Hydrolysis 

rate 

EPS* khydEPS 1/d 0.17 

PCOD kyd 1/d Model dependent 

 

1
7
9
 



 

180 

Table C.1 continued.  Kinetic parameters for the microorganisms.  Unless otherwise stated, all values were obtained from 

Rittmann and McCarty (2001). 

Kinetic Parameters Symbol Units Heterotrophs AOB NOB Fermenters Methanogens# 

Fraction of biodegradable 

biomass 

fd - 0.8 

Optimal pH range  - - - - 4.0-9.0 6.2-8.0** 

Switch or 

inhibition 

concentration 

O2 Kswitch mgO2/L 0.2 

NO2
- mgN/L 0.2 

NO3
- or Kinh  mgN/L 0.2 

HCO3
- mg HCO3

-/L 0.005^ 

       * Laspidou and Rittmann (2002a, 2002b)        
          ** McCarty (1964); Parkin and Owen (1986); Appels et al. (2008) 

       # Rittmann and McCarty (2001), Aquino and Stuckey (2008) 
          ^ Assumed 

 

 

 

 

 

  

1
8
0
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Table C.2.  Gas/liquid phase partitioning constants.  Unless otherwise stated, all values 

were obtained from Batstone et al. (2002).  The ratio of liquid volume to gas headspace 

volume is assumed to be 1. 

 Henry’s law constant 

(mol/L-bar) 

Partial pressure of 

gas (atm) 

Volumetric mass transfer 

rate coefficient (KLa, 1/d) 

CH4 0.0014 --  

CO2 0.035 --  

H2O -- 0.0411 50 ** 

N2 6.1 x 10-4 * --  

NH3 56 * --  
* Haynes (2011) 
** Rittmann and McCarty (2001) 
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C.3 Modeling methodology and stoichiometric relationships 

C.3.1 Switch and Inhibition Equations and Constants 

Nitrite switch: 

NO2
sw =

KNO2

switch

KNO2

switch + CNO2

 

(Eqn. C.1) 

Nitrate switch: 

NO3
sw =

KNO3

switch

KNO3

switch + CNO3

 

(Eqn. C.2) 

NOx switch: 

NOx
sw = NO2

switch + NO3
switch 

 

(Eqn. C.3) 

Dissolved oxygen (DO) switch: 

DOsw =
KDO

switch

KDO
switch + CO2

 

(Eqn. C.4) 

HCO3
- inhibition: 

CO2
inh =

CHCO3−

KHCO3−
inh + CHCO3−

 

(Eqn. C.5) 

NH4
+ inhibition: 

NH4
+  inh =

CNH4+

KNH4+
inh + CNH4+

 

(Eqn. C.6) 

 

C.3.2 Determining the half-reactions and full reactions for electron donor and acceptors 

 Because of the intricacies of the different biomass-electron donor-electron 

acceptor relationships in this model, I established a basic set of half reaction equations to 

be combined together to determine the overall reaction stoichiometry based on the 

method described in Rittmann and McCarty (2001).  I first determined the half-reaction 

stoichiometry for the compound CaHbOcNd
f (where f is the charge of the molecule) based 

on the assumption that H2O, HCO3
-, H+, and electrons (e-) as well as a nitrogen source 
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(NH4
+, NO3

-, or NO2
-) can be combined stoichiometrically to form any electron donor or 

acceptor.  For NH4
+ as the nitrogen source, the half-reaction is  

1

𝛽
𝐶𝑎𝐻𝑏𝑂𝑐𝑁𝑑

𝑓
→

𝑎

𝛽
𝐻𝐶𝑂3

− +
𝑑

𝛽
𝑁𝐻4

+ +
𝜆

𝛽
𝐻2𝑂 +

𝛼

𝛽
𝐻+ + 𝑒− 

(Eqn. C.7) 

 

where  

λ = c – 3a                                                (Eqn. C.8) 

α = b – 2λ – a – 4d                                        (Eqn. C.9) 

β = d + α – a – f                                          (Eqn. C.10) 

For NO2
- as the nitrogen source, the half-reaction becomes 

1

𝛽
𝐶𝑎𝐻𝑏𝑂𝑐𝑁𝑑

𝑓
→

𝑎

𝛽
𝐻𝐶𝑂3

− +
𝑑

𝛽
𝑁𝑂2

− +
𝜆

𝛽
𝐻2𝑂 +

𝛼

𝛽
𝐻+ + 𝑒− 

(Eqn. C.11) 

 

λ = c – 3a – 2d                                            (Eqn. C.12) 

α = b – 2λ – a                                             (Eqn. C.13) 

β = α – a – d – f                                         (Eqn. C.14) 

For NO3
- as the nitrogen source, the half-reaction becomes 

1

𝛽
𝐶𝑎𝐻𝑏𝑂𝑐𝑁𝑑

𝑓
→

𝑎

𝛽
𝐻𝐶𝑂3

− +
𝑑

𝛽
𝑁𝑂3

− +
𝜆

𝛽
𝐻2𝑂 +

𝛼

𝛽
𝐻+ + 𝑒− 

(Eqn. C.15) 

 

λ = c – 3a – 3d                                            (Eqn. C.16) 

α = b – 2λ – a                                             (Eqn. C.17) 

β = α – a – d – f                                           (Eqn. C.18) 

 

 The half-reactions are combined together to describe an overall reaction rate for 

growth, Rt, using the general equation  
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Rt = feRa + fsRc – Rd                                               (Eqn. C.19) 

where fs and fe are the fraction of electrons from the donor that are used for cell synthesis 

and cell energy, respectively, Ra is the electron acceptor half-reaction, Rc is the cell 

synthesis half-reaction, and Rd is the electron donor half-reaction.  The fraction of 

electrons must add to one, i.e., 

1 = fe + fs                                                   (Eqn. C.20) 

For example, using domestic wastewater (C10H19O3N) as the electron donor for 

fermentation of domestic wastewater to acetate and the fs values from Table C.1, the 

overall reaction is 

feRa:                      𝑓𝑒 [
2

8
𝐻𝐶𝑂3

− +
9

8
𝐻+ + 𝑒− →

1

8
𝐶𝐻3𝐶𝑂𝑂− +

4

8
𝐻2𝑂]         (Eqn. C.21) 

+fsRc:  𝑓𝑠 [
5

20
𝐻𝐶𝑂3

− +
1

20
𝑁𝐻4

+ +
24

20
𝐻+ + 𝑒− →

1

20
𝐶5𝐻7𝑂2𝑁 +

13

20
𝐻2𝑂]       (Eqn. C.22) 

-Rd:                       
1

50
𝐶10𝐻19𝑂3𝑁 +

27

50
𝐻2𝑂 →

10

50
𝐻𝐶𝑂3

− +
1

50
𝑁𝐻4

+ +
59

50
𝐻+ + 𝑒− 

 (Eqn. C.23) 

Rt:            0.02𝐶10𝐻19𝑂3𝑁 + 0.05𝐻𝐶𝑂3
− + 0.013𝐻2𝑂 → 

                              0.1025𝐶𝐻3𝐶𝑂𝑂− + 0.011𝑁𝐻4
+ + 0.0415𝐻+       (Eqn. C.24) 

 

Similarly, the amount of electron donor that is used for primary respiration, EPS, and 

UAP formation can be expressed as: 

Rt
total = (1-kUAP-kEPS)Rt

primary + kEPSRt
EPS + kUAPRt

UAP                      (Eqn. C.25) 

Using the modeling parameters summarized in this chapter, Table C.3 describes 

the overall reaction stoichiometry for each utilization rate equation. 

 

 

  

 



   

Table C.3.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 Heterotrophs AOB NOB Fermenters Acetoclastic 

methanogens 

Utilization rate equation 

Chemical 

formula 

C5H7O2N C5H7O2N C5H7O2N C5H7O2N C5H7O2N  

Symbol Xh XAOB XNOB Xf Xm rut 

1 1.1550     Heterotrophic aerobic utilization of domestic 

wastewater with NH4
+: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

2 0.7692     Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

3 0.8070     Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

4 -0.0500     Heterotrophic biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋ℎ(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

5    0.3465  Fermenters utilization of domestic 

wastewater with NH4
+: 

�̂�𝑆
𝑓

𝑋𝑓 (
𝐶𝑆

𝐶𝑆 + 𝐾𝑆
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

 

1
8
5
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 Heterotroph

s 

AOB NOB Fermenter

s 

Acetoclastic 

methanogen

s 

Utilization rate equation 

Chemica

l 

formula 

C5H7O2N C5H7O2

N 

C5H7O2

N 

C5H7O2N C5H7O2N  

Symbol Xh XAOB XNOB Xf Xm rut 

6   0.0059   NOB utilization of NO2
-: 

�̂�𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝑁𝑂𝐵) CO2

inh 

7  0.0298    AOB utilization of NH4
+: 

�̂�𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝑁𝐻4

𝐶𝑁𝐻4 + 𝐾𝑁𝐻4
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝐴𝑂𝐵) CO2

inh 

8 0.1848     Heterotrophic aerobic utilization of acetate with 

NH4
+: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

9 0.1100     Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

10 0.1185   

 

 

 

  

  

 

 

 

 

 

 

Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

1
8
6
 



 

187 

Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 Heterotroph

s 

AOB NOB Fermenter

s 

Acetoclastic 

methanogen

s 

Utilization rate equation 

Chemica

l 

formula 

C5H7O2N C5H7O2

N 

C5H7O2

N 

C5H7O2N C5H7O2N  

Symbol Xh XAOB XNOB Xf Xm rut 

11     0.0154 Methanogens utilization of acetate: 

�̂�𝑚𝑋𝑚 (
𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑚) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(NH4

+inh)𝐼𝑚
𝑝𝐻

 

12 0.6886     Heterotrophic aerobic utilization of UAP with 

NH4
+: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

13 0.4918     Heterotrophic aerobic utilization of UAP with 

NO3
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

14 0.5300     Heterotrophic aerobic utilization of UAP with 

NO2
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

15    0.6889  Fermenters utilization of UAP with NH4
+: 

�̂�𝑈𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

1
8
7
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 Heterotroph

s 

AOB NOB Fermenter

s 

Acetoclastic 

methanogen

s 

Utilization rate equation 

Chemica

l 

formula 

C5H7O2N C5H7O2

N 

C5H7O2

N 

C5H7O2N C5H7O2N  

Symbol Xh XAOB XNOB Xf Xm rut 

16 0.4620     Heterotrophic aerobic utilization of BAP with 

NH4
+: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

17 0.3526     Heterotrophic aerobic utilization of BAP with 

NO3
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

18 0.3601     Heterotrophic aerobic utilization of BAP with 

NO2
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

19    0.1386  Fermenters utilization of BAP with NH4
+: 

�̂�𝐵𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝐵𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

20      PCOD hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑃𝐶𝑂𝐷 

21 -0.0500     

 

 

 

Heterotrophic aerobic endogenous decay: 

𝑏ℎ𝑋ℎ (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

1
8
8
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 Heterotroph

s 

AOB NOB Fermenter

s 

Acetoclastic 

methanogen

s 

Utilization rate equation 

Chemica

l 

formula 

C5H7O2N C5H7O2

N 

C5H7O2

N 

C5H7O2N C5H7O2N  

Symbol Xh XAOB XNOB Xf Xm rut 

22 -0.0500     Heterotrophic anoxic endogenous decay with 

NO3
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) 

23 -0.0500     Heterotrophic anoxic endogenous decay with 

NO2
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) 

24  -0.0500    AOB endogenous decay: 

𝑏𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

25   -0.0500   NOB endogenous decay: 

𝑏𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

26    -0.0500  Fermenters endogenous decay: 

𝑏𝑓𝑋𝑓(DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh) 

27     -0.0500 Methanogens endogenous decay: 

𝑏𝑚𝑋𝑚(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

28      EPS hydrolysis: 

𝑘ℎ𝑦𝑑𝐸𝑃𝑆𝑋𝐸𝑃𝑆 

1
8
9
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 Heterotroph

s 

AOB NOB Fermenter

s 

Acetoclastic 

methanogen

s 

Utilization rate equation 

Chemica

l 

formula 

C5H7O2N C5H7O2

N 

C5H7O2

N 

C5H7O2N C5H7O2N  

Symbol Xh XAOB XNOB Xf Xm rut 

34  -0.05    AOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝐴𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

35   -0.05   NOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑁𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

36      Gas/liquid phase partitioning of CH4: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐶𝐻4 − 𝐻𝐶𝐻4𝐶𝐶𝐻4

𝑔
𝑅𝑇) 

37      Gas/liquid phase partitioning of CO2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐻2𝐶𝑂3 − 𝐻𝐶𝑂2𝐶𝐶𝑂2

𝑔
𝑅𝑇) 

38      Gas/liquid phase partitioning of NH3: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁𝐻3 − 𝐻𝑁𝐻3𝐶𝑁𝐻3

𝑔
𝑅𝑇) 

39      Gas/liquid phase partitioning of N2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁2 − 𝐻𝑁2𝐶𝑁2

𝑔
𝑅𝑇) 

Species only present in chemical speciation calculations are omitted (i.e., CO32
-, HNO2).  

1
9
0
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 EPS Inerts PCOD Domestic 

wastewater 

Utilization rate equation 

Chemical 

formula 

C5H7O2N C5H7O2N C10H19O3N C10H19O3N  

Symbol XEPS XI XPCOD CS rut 

1 0.45   -1 Heterotrophic aerobic utilization of domestic 

wastewater with NH4
+: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

2 0.5035   -1 Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

3 0.4905   -1 Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

4    0.0200 Heterotrophic biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋ℎ(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

5 0.4500   -1 Fermenters utilization of domestic wastewater with 

NH4
+: 

�̂�𝑆
𝑓

𝑋𝑓 (
𝐶𝑆

𝐶𝑆 + 𝐾𝑆
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

6 0.0179    NOB utilization of NO2
-: 

�̂�𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝑁𝑂𝐵) CO2

inh 

1
9
1
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 EPS Inerts PCOD Domestic 

wastewater 

Utilization rate equation 

Chemical 

formula 

C5H7O2N C5H7O2N C10H19O3N C10H19O3N  

Symbol XEPS XI XPCOD CS rut 

7 0.0497    AOB utilization of NH4
+: 

�̂�𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝑁𝐻4

𝐶𝑁𝐻4 + 𝐾𝑁𝐻4
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝐴𝑂𝐵) CO2

inh 

8 0.0720    Heterotrophic aerobic utilization of acetate with 

NH4
+: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

9 0.0720    Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

10 0.0720    Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

11 0.0720    Methanogens utilization of acetate: 

�̂�𝑚𝑋𝑚 (
𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑚) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(NH4

+inh)𝐼𝑚
𝑝𝐻

 

12 0.2274    Heterotrophic aerobic utilization of UAP with 

NH4
+: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

1
9
2
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 EPS Inerts PCOD Domestic 

wastewater 

Utilization rate equation 

Chemical 

formula 

C5H7O2N C5H7O2N C10H19O3N C10H19O3N  

Symbol XEPS XI XPCOD CS rut 

13 0.2274    Heterotrophic aerobic utilization of UAP with NO3
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

14 0.2274    Heterotrophic aerobic utilization of UAP with NO2
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

15 0.2274    Fermenters utilization of UAP with NH4
+: 

�̂�𝑈𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

16 0.1800    Heterotrophic aerobic utilization of BAP with 

NH4
+: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

17 0.2308    Heterotrophic aerobic utilization of BAP with NO3
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

18 0.2189    Heterotrophic aerobic utilization of BAP with NO2
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

19 0.1800    Fermenters utilization of BAP with NH4
+: 

�̂�𝐵𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝐵𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

1
9
3
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 EPS Inerts PCOD Domestic 

wastewater 

Utilization rate equation 

Chemical 

formula 

C5H7O2N C5H7O2N C10H19O3N C10H19O3N  

Symbol XEPS XI XPCOD CS rut 

20   -1 1 PCOD hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑃𝐶𝑂𝐷 

21  0.0100   Heterotrophic aerobic endogenous decay: 

𝑏ℎ𝑋ℎ (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

22  0.0100   Heterotrophic anoxic endogenous decay with NO3
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) 

23  0.0100   Heterotrophic anoxic endogenous decay with NO2
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) 

24  0.0100   AOB endogenous decay: 

𝑏𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

25  0.0100   NOB endogenous decay: 

𝑏𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

26  0.0100   Fermenters endogenous decay: 

𝑏𝑓𝑋𝑓(DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh) 

27  0.0100   Methanogens endogenous decay: 

𝑏𝑚𝑋𝑚(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

1
9
4
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions 

 EPS Inerts PCOD Domestic 

wastewater 

Utilization rate equation 

Chemical 

formula 

C5H7O2N C5H7O2N C10H19O3N C10H19O3N  

Symbol XEPS XI XPCOD CS rut 

28 -1    EPS hydrolysis: 

𝑘ℎ𝑦𝑑𝐸𝑃𝑆𝑋𝐸𝑃𝑆 

29    0.0200 AOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝐴𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

30    0.0200 NOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑁𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

31     Gas/liquid phase partitioning of CH4: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐶𝐻4 − 𝐻𝐶𝐻4𝐶𝐶𝐻4

𝑔
𝑅𝑇) 

32     Gas/liquid phase partitioning of CO2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐻2𝐶𝑂3 − 𝐻𝐶𝑂2𝐶𝐶𝑂2

𝑔
𝑅𝑇) 

33     Gas/liquid phase partitioning of NH3: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁𝐻3 − 𝐻𝑁𝐻3𝐶𝑁𝐻3

𝑔
𝑅𝑇) 

34     Gas/liquid phase partitioning of N2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁2 − 𝐻𝑁2𝐶𝑁2

𝑔
𝑅𝑇) 

Species only present in chemical speciation calculations are omitted (i.e., CO32
-, HNO2).  

1
9
5
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 UAP BAP Acetate Acetic acid Carbonic 

acid 

Utilization rate equation 

Chemical 

formula 

C6H12O6 C5H7O2N CH3COO- CH3COOH H2CO3  

Symbol CUAP CBAP Cace CHace CH2CO3 rut 

1 0.1042 0 0 0 0 Heterotrophic aerobic utilization of domestic 

wastewater with NH4
+: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

2 0.1165 0 0 0 0 Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

3 0.1135 0 0 0 0 Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

4 0 0 0 0 0 Heterotrophic biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋ℎ(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

5 0.1042 0 3.946 0 0 Fermenters utilization of domestic wastewater with 

NH4
+: 

�̂�𝑆
𝑓

𝑋𝑓 (
𝐶𝑆

𝐶𝑆 + 𝐾𝑆
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

6 0.0041 0 0 0 0 NOB utilization of NO2
-: 

�̂�𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝑁𝑂𝐵) CO2

inh 

1
9
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 UAP BAP Acetate Acetic acid Carbonic 

acid 

Utilization rate equation 

Chemical 

formula 

C6H12O6 C5H7O2N CH3COO- CH3COOH H2CO3  

Symbol CUAP CBAP Cace CHace CH2CO3 rut 

7 0.0115 0 0 0 0 AOB utilization of NH4
+: 

�̂�𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝑁𝐻4

𝐶𝑁𝐻4 + 𝐾𝑁𝐻4
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝐴𝑂𝐵) CO2

inh 

8 0.0167 0 -1 0 0 Heterotrophic aerobic utilization of acetate with 

NH4
+: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

9 0.0167 0 -1 0 0 Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

10 0.0167 0 -1 0 0 Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

11 0.0167 0 -1 0 0 Methanogens utilization of acetate: 

�̂�𝑚𝑋𝑚 (
𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑚) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(NH4

+inh)𝐼𝑚
𝑝𝐻

 

12 -1 0 0 0 0 Heterotrophic aerobic utilization of UAP with 

NH4
+: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

1
9
7
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 UAP BAP Acetate Acetic acid Carbonic 

acid 

Utilization rate equation 

Chemical 

formula 

C6H12O6 C5H7O2N CH3COO- CH3COOH H2CO3  

Symbol CUAP CBAP Cace CHace CH2CO3 rut 

13 -1     Heterotrophic aerobic utilization of UAP with NO3
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

14 -1     Heterotrophic aerobic utilization of UAP with NO2
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

15 -1  0.7101   Fermenters utilization of UAP with NH4
+: 

�̂�𝑈𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

16 0.0417 -1    Heterotrophic aerobic utilization of BAP with 

NH4
+: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

17 0.0534 -1    Heterotrophic aerobic utilization of BAP with NO3
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

18 0.0507 -1    Heterotrophic aerobic utilization of BAP with NO2
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

19 0.0417 -1 1.5785   Fermenters utilization of BAP with NH4
+: 

�̂�𝐵𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝐵𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

1
9
8

 



 

199 

Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 UAP BAP Acetate Acetic acid Carbonic 

acid 

Utilization rate equation 

Chemical 

formula 

C6H12O6 C5H7O2N CH3COO- CH3COOH H2CO3  

Symbol CUAP CBAP Cace CHace CH2CO3 rut 

20      PCOD hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑃𝐶𝑂𝐷 

21      Heterotrophic aerobic endogenous decay: 

𝑏ℎ𝑋ℎ (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

22      Heterotrophic anoxic endogenous decay with NO3
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) 

23      Heterotrophic anoxic endogenous decay with NO2
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) 

24      AOB endogenous decay: 

𝑏𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

25      NOB endogenous decay: 

𝑏𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

26   0.1   Fermenters endogenous decay: 

𝑏𝑓𝑋𝑓(DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh) 

27      Methanogens endogenous decay: 

𝑏𝑚𝑋𝑚(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

1
9
9
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 UAP BAP Acetate Acetic acid Carbonic 

acid 

Utilization rate equation 

Chemical 

formula 

C6H12O6 C5H7O2N CH3COO- CH3COOH H2CO3  

Symbol CUAP CBAP Cace CHace CH2CO3 rut 

28  1    EPS hydrolysis: 

𝑘ℎ𝑦𝑑𝐸𝑃𝑆𝑋𝐸𝑃𝑆 

29      AOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝐴𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

30      NOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑁𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

31      Gas/liquid phase partitioning of CH4: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐶𝐻4 − 𝐻𝐶𝐻4𝐶𝐶𝐻4

𝑔
𝑅𝑇) 

32     -1 Gas/liquid phase partitioning of CO2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐻2𝐶𝑂3 − 𝐻𝐶𝑂2𝐶𝐶𝑂2

𝑔
𝑅𝑇) 

33      Gas/liquid phase partitioning of NH3: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁𝐻3 − 𝐻𝑁𝐻3𝐶𝑁𝐻3

𝑔
𝑅𝑇) 

34      Gas/liquid phase partitioning of N2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁2 − 𝐻𝑁2𝐶𝑁2

𝑔
𝑅𝑇) 

 

2
0
0
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Bicarbonate Nitrite Nitrate Ammonium Ammonia 

(liquid) 

Utilization rate equation 

Chemical 

formula 

HCO3
- NO2

- NO3
- NH4

+ NH3  

Symbol CHCO3 CNO2 CNO3 CNH4 CNH3 rut 

1 1.35   -0.6050  Heterotrophic aerobic utilization of domestic 

wastewater with NH4
+: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

2 2.9374  -4.3340 -0.2461  Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

3 2.8317 -

7.0513 

 -0.2398  Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

4 0.0500   0.03  Heterotrophic biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋ℎ(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

5 -2.5000   0.2035  Fermenters utilization of domestic wastewater with 

NH4
+: 

�̂�𝑆
𝑓

𝑋𝑓 (
𝐶𝑆

𝐶𝑆 + 𝐾𝑆
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

6 -0.1438 -1 0.9941 -0.0179  NOB utilization of NO2
-: 

�̂�𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝑁𝑂𝐵) CO2

inh 

2
0
1
 



 

202 

Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Bicarbonate Nitrite Nitrate Ammonium Ammonia 

(liquid) 

Utilization rate equation 

Chemical 

formula 

HCO3
- NO2

- NO3
- NH4

+ NH3  

Symbol CHCO3 CNO2 CNO3 CNH4 CNH3 rut 

7 -0.4664 0.9205  -1  AOB utilization of NH4
+: 

�̂�𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝑁𝐻4

𝐶𝑁𝐻4 + 𝐾𝑁𝐻4
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝐴𝑂𝐵) CO2

inh 

8 0.6160   -0.2568  Heterotrophic aerobic utilization of acetate with 

NH4
+: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

9 0.9900  -0.726 -0.0720  Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

10 0.9477 -

1.1451 

 -0.0720  Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

11 0.7315   -0.0874  Methanogens utilization of acetate: 

�̂�𝑚𝑋𝑚 (
𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑚) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(NH4

+inh)𝐼𝑚
𝑝𝐻

 

12 1.4202   -0.9160  Heterotrophic aerobic utilization of UAP with 

NH4
+: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

2
0
2
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Bicarbonate Nitrite Nitrate Ammonium Ammonia 

(liquid) 

Utilization rate equation 

Chemical 

formula 

HCO3
- NO2

- NO3
- NH4

+ NH3  

Symbol CHCO3 CNO2 CNO3 CNH4 CNH3 rut 

13 2.4039  -1.6280 -0.2274  Heterotrophic aerobic utilization of UAP with NO3
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

14 2.2147 -

2.4233 

 -0.2274  Heterotrophic aerobic utilization of UAP with NO2
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

15    -0.9160  Fermenters utilization of UAP with NH4
+: 

�̂�𝑈𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

16 1.5400   0.3580  Heterotrophic aerobic utilization of BAP with 

NH4
+: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

17 1.7628  -1.6218 0.0641  Heterotrophic aerobic utilization of BAP with NO3
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

18 1.8007 -

2.7611 

 0.0608  Heterotrophic aerobic utilization of BAP with NO2
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

19    0.6814  Fermenters utilization of BAP with NH4
+: 

�̂�𝐵𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝐵𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

2
0
3
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Bicarbonate Nitrite Nitrate Ammonium Ammonia 

(liquid) 

Utilization rate equation 

Chemical 

formula 

HCO3
- NO2

- NO3
- NH4

+ NH3  

Symbol CHCO3 CNO2 CNO3 CNH4 CNH3 rut 

20      PCOD hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑃𝐶𝑂𝐷 

21 0.2000   0.0400  Heterotrophic aerobic endogenous decay: 

𝑏ℎ𝑋ℎ (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

22 0.2000  -0.1600 0.0400  Heterotrophic anoxic endogenous decay with NO3
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) 

23 0.2000 -

0.2667 

 0.0400  Heterotrophic anoxic endogenous decay with NO2
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) 

24 0.2000   0.0400  AOB endogenous decay: 

𝑏𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

25 0.2000   0.0400  NOB endogenous decay: 

𝑏𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

26    0.0400  Fermenters endogenous decay: 

𝑏𝑓𝑋𝑓(DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh) 

27 0.1000   0.0400  Methanogens endogenous decay: 

𝑏𝑚𝑋𝑚(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

2
0
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Bicarbonate Nitrite Nitrate Ammonium Ammonia 

(liquid) 

Utilization rate equation 

Chemical 

formula 

HCO3
- NO2

- NO3
- NH4

+ NH3  

Symbol CHCO3 CNO2 CNO3 CNH4 CNH3 rut 

28      EPS hydrolysis: 

𝑘ℎ𝑦𝑑𝐸𝑃𝑆𝑋𝐸𝑃𝑆 

29 0.0500   0.0300  AOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝐴𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

30 0.0500   0.0300  NOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑁𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

31      Gas/liquid phase partitioning of CH4: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐶𝐻4 − 𝐻𝐶𝐻4𝐶𝐶𝐻4

𝑔
𝑅𝑇) 

32      Gas/liquid phase partitioning of CO2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐻2𝐶𝑂3 − 𝐻𝐶𝑂2𝐶𝐶𝑂2

𝑔
𝑅𝑇) 

33     -1 Gas/liquid phase partitioning of NH3: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁𝐻3 − 𝐻𝑁𝐻3𝐶𝑁𝐻3

𝑔
𝑅𝑇) 

34      Gas/liquid phase partitioning of N2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁2 − 𝐻𝑁2𝐶𝑁2

𝑔
𝑅𝑇) 

Species only present in chemical speciation calculations are omitted (i.e., CO32
-, HNO2).  

2
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Dissolved 

oxygen 

Methane 

(liquid) 

Nitrogen 

(liquid 

phase) 

Protons Water Utilization rate equation 

Chemical 

formula 

O2 CH4 N2 H+ H2O
  

Symbol CDO CCH4 CN2 CH+ CH2O rut 

1 -3.8500   1.9550 2.8150 Heterotrophic aerobic utilization of domestic 

wastewater with NH4
+: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

2   2.1537 -1.1505 3.9452 Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

3   3.4968 -3.9780 5.3314 Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑆
ℎ𝑋ℎ (

𝐶𝑆

𝐶𝑆 + 𝐾𝑆
ℎ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

4    0.0200 -0.1100 Heterotrophic biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋ℎ(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

5    1.2428 0.3895 Fermenters utilization of domestic wastewater with 

NH4
+: 

�̂�𝑆
𝑓

𝑋𝑓 (
𝐶𝑆

𝐶𝑆 + 𝐾𝑆
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

6 -0.3445   -0.1318 0.0655 NOB utilization of NO2
-: 

�̂�𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝑁𝑂𝐵) CO2

inh 

2
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Dissolved 

oxygen 

Methane 

(liquid) 

Nitrogen 

(liquid 

phase) 

Protons Water Utilization rate equation 

Chemical 

formula 

O2 CH4 N2 H+ H2O
  

Symbol CDO CCH4 CN2 CH+ CH2O rut 

7 -0.9144   1.4541 1.1590 AOB utilization of NH4
+: 

�̂�𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝑁𝐻4

𝐶𝑁𝐻4 + 𝐾𝑁𝐻4
𝑁𝑂𝐵) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
𝐴𝑂𝐵) CO2

inh 

8 -0.6160   -0.1272 0.7704 Heterotrophic aerobic utilization of acetate with 

NH4
+: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

9   0.3080 -0.6640 0.7440 Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

10   0.5133 -1.1254 0.9663 Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

�̂�𝑎𝑐𝑒
ℎ 𝑋ℎ (

𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑎𝑐𝑒
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

11  0.7315  -0.1811 -0.4693 Methanogens utilization of acetate: 

�̂�𝑚𝑋𝑚 (
𝐶𝑎𝑐𝑒

𝐶𝑎𝑐𝑒 + 𝐾𝑚) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(NH4

+inh)𝐼𝑚
𝑝𝐻

 

2
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Dissolved 

oxygen 

Methane 

(liquid) 

Nitrogen 

(liquid 

phase) 

Protons Water Utilization rate equation 

Chemical 

formula 

O2 CH4 N2 H+ H2O
  

Symbol CDO CCH4 CN2 CH+ CH2O rut 

12 -1.4202   2.3362 2.7479 Heterotrophic aerobic utilization of UAP with 

NH4
+: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

13   0.5681 1.0033 2.2339 Heterotrophic aerobic utilization of UAP with NO3
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

14   0.9468 0.01889 2.6883 Heterotrophic aerobic utilization of UAP with NO2
-: 

�̂�𝑈𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

15    1.6261 2.7479 Fermenters utilization of UAP with NH4
+: 

�̂�𝑈𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝑈𝐴𝑃

𝐶𝑈𝐴𝑃 + 𝐾𝑈𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

16 -1.5400   1.182 -1.074 Heterotrophic aerobic utilization of BAP with 

NH4
+: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) (NH4

+inh) 

17   0.9872 0.0769 0.0897 Heterotrophic aerobic utilization of BAP with NO3
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) (DOsw) 

2
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Dissolved 

oxygen 

Methane 

(liquid) 

Nitrogen 

(liquid 

phase) 

Protons Water Utilization rate equation 

Chemical 

formula 

O2 CH4 N2 H+ H2O
  

Symbol CDO CCH4 CN2 CH+ CH2O rut 

18   1.5606 -1.0212 0.6579 Heterotrophic aerobic utilization of BAP with NO2
-: 

�̂�𝐵𝐴𝑃
ℎ 𝑋ℎ (

𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝑈𝐴𝑃
ℎ ) (

𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) (DOsw) 

19    0.8971 -2.0442 Fermenters utilization of BAP with NH4
+: 

�̂�𝐵𝐴𝑃
𝑓

𝑋𝑓 (
𝐶𝐵𝐴𝑃

𝐶𝐵𝐴𝑃 + 𝐾𝐵𝐴𝑃
𝑓

) (DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh)𝐼𝑓
𝑝𝐻

 

20      PCOD hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑃𝐶𝑂𝐷 

21 -0.2000   0.1600 -0.1200 Heterotrophic aerobic endogenous decay: 

𝑏ℎ𝑋ℎ (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

22   0.0800 2.22E-16 -0.0400 Heterotrophic anoxic endogenous decay with NO3
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂3

𝐶𝑁𝑂3 + 𝐾𝑁𝑂3
ℎ ) 

23   0.1333 -0.1067 0.0133 Heterotrophic anoxic endogenous decay with NO2
-: 

𝑏ℎ𝑋ℎ (
𝐶𝑁𝑂2

𝐶𝑁𝑂2 + 𝐾𝑁𝑂2
ℎ ) 

24 -0.2000   0.1600 -0.1200 AOB endogenous decay: 

𝑏𝐴𝑂𝐵𝑋𝐴𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Dissolved 

oxygen 

Methane 

(liquid) 

Nitrogen 

(liquid 

phase) 

Protons Water Utilization rate equation 

Chemical 

formula 

O2 CH4 N2 H+ H2O
  

Symbol CDO CCH4 CN2 CH+ CH2O rut 

25 -0.2000   0.1600 -0.1200 NOB endogenous decay: 

𝑏𝑁𝑂𝐵𝑋𝑁𝑂𝐵 (
𝐶𝐷𝑂

𝐶𝐷𝑂 + 𝐾𝐷𝑂
ℎ ) 

26    0.0600 -0.1200 Fermenters endogenous decay: 

𝑏𝑓𝑋𝑓(DOsw)(𝑁𝑂𝑥
𝑠𝑤)(CO2

inh) 

27  0.1000  0.0600 -0.2200 Methanogens endogenous decay: 

𝑏𝑚𝑋𝑚(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

28      EPS hydrolysis: 

𝑘ℎ𝑦𝑑𝐸𝑃𝑆𝑋𝐸𝑃𝑆 

29    0.0200 -0.1100 AOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝐴𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

30    0.0200 -0.1100 NOB biomass hydrolysis: 

𝑘ℎ𝑦𝑑𝑋𝑁𝑂𝐵(DOsw)(𝑁𝑂𝑥
𝑠𝑤) 

31  -1    Gas/liquid phase partitioning of CH4: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐶𝐻4 − 𝐻𝐶𝐻4𝐶𝐶𝐻4

𝑔
𝑅𝑇) 

32      Gas/liquid phase partitioning of CO2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝐻2𝐶𝑂3 − 𝐻𝐶𝑂2𝐶𝐶𝑂2

𝑔
𝑅𝑇) 

2
1
0
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Dissolved 

oxygen 

Methane 

(liquid) 

Nitrogen 

(liquid 

phase) 

Protons Water Utilization rate equation 

Chemical 

formula 

O2 CH4 N2 H+ H2O
  

Symbol CDO CCH4 CN2 CH+ CH2O rut 

33      Gas/liquid phase partitioning of NH3: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁𝐻3 − 𝐻𝑁𝐻3𝐶𝑁𝐻3

𝑔
𝑅𝑇) 

34   -1   Gas/liquid phase partitioning of N2: 

(
𝑉𝑙

𝑉𝑔
) 𝐾𝐿𝑎(𝐶𝑁2 − 𝐻𝑁2𝐶𝑁2

𝑔
𝑅𝑇) 

Species only present in chemical speciation calculations are omitted (i.e., CO32
-, HNO2).  2

1
1
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Carbon 

dioxide 

(gas) 

Ammonia 

(gas) 

Methane 

(gas) 

Nitrogen gas Utilization rate equation 

Chemical 

formula 

CO2 NH3 CH4 N2  

Symbol CCO2
g

 CNH3
g

 CCH4
g

 CN2
g

 rut 

1     Heterotrophic aerobic utilization of domestic 

wastewater with NH4
+: 

q̂S
hXh (

CS

CS + KS
h

) (
CDO

CDO + KDO
h

) (NH4
+inh) 

2     Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

q̂S
hXh (

CS

CS + KS
h

) (
CNO3

CNO3 + KNO3
h

) (DOsw) 

3     Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

q̂S
hXh (

CS

CS + KS
h

) (
CNO2

CNO2 + KNO2
h

) (DOsw) 

4     Heterotrophic biomass hydrolysis: 

khydXh(DOsw)(NOx
sw) 

5     Fermenters utilization of domestic wastewater with 

NH4
+: 

q̂S
f Xf (

CS

CS + KS
f

) (DOsw)(NOx
sw)(CO2

inh)If
pH

 

6     NOB utilization of NO2
-: 

q̂NOBXNOB (
CNO2

CNO2 + KNO2
NOB

) (
CDO

CDO + KDO
NOB

) CO2
inh 

2
1
2
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Carbon 

dioxide 

(gas) 

Ammonia 

(gas) 

Methane 

(gas) 

Nitrogen gas Utilization rate equation 

Chemical 

formula 

CO2 NH3 CH4 N2  

Symbol CCO2
g

 CNH3
g

 CCH4
g

 CN2
g

 rut 

7     AOB utilization of NH4
+: 

q̂AOBXAOB (
CNH4

CNH4 + KNH4
NOB

) (
CDO

CDO + KDO
AOB

) CO2
inh 

8     Heterotrophic aerobic utilization of acetate with 

NH4
+: 

q̂ace
h Xh (

Cace

Cace + Kace
h

) (
CDO

CDO + KDO
h

) (NH4
+inh) 

9     Heterotrophic aerobic utilization of domestic 

wastewater with NO3
-: 

q̂ace
h Xh (

Cace

Cace + Kace
h

) (
CNO3

CNO3 + KNO3
h

) (DOsw) 

10     Heterotrophic aerobic utilization of domestic 

wastewater with NO2
-: 

q̂ace
h Xh (

Cace

Cace + Kace
h

) (
CNO2

CNO2 + KNO2
h

) (DOsw) 

11     Methanogens utilization of acetate: 

q̂mXm (
Cace

Cace + Km) (DOsw)(NOx
sw)(NH4

+inh)Im
pH

 

2
1
3
 



 

214 

Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Carbon 

dioxide 

(gas) 

Ammonia 

(gas) 

Methane 

(gas) 

Nitrogen gas Utilization rate equation 

Chemical 

formula 

CO2 NH3 CH4 N2  

Symbol CCO2
g

 CNH3
g

 CCH4
g

 CN2
g

 rut 

12     Heterotrophic aerobic utilization of UAP with 

NH4
+: 

q̂UAP
h Xh (

CUAP

CUAP + KUAP
h

) (
CDO

CDO + KDO
h

) (NH4
+inh) 

13     Heterotrophic aerobic utilization of UAP with NO3
-

: 

q̂UAP
h Xh (

CUAP

CUAP + KUAP
h

) (
CNO3

CNO3 + KNO3
h

) (DOsw) 

14     Heterotrophic aerobic utilization of UAP with NO2
-

: 

q̂UAP
h Xh (

CUAP

CUAP + KUAP
h

) (
CNO2

CNO2 + KNO2
h

) (DOsw) 

15     Fermenters utilization of UAP with NH4
+: 

q̂UAP
f Xf (

CUAP

CUAP + KUAP
f

) (DOsw)(NOx
sw)(CO2

inh)If
pH

 

16     Heterotrophic aerobic utilization of BAP with 

NH4
+: 

q̂BAP
h Xh (

CBAP

CBAP + KUAP
h

) (
CDO

CDO + KDO
h

) (NH4
+inh) 

2
1
4
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Carbon 

dioxide 

(gas) 

Ammonia 

(gas) 

Methane 

(gas) 

Nitrogen gas Utilization rate equation 

Chemical 

formula 

CO2 NH3 CH4 N2  

Symbol CCO2
g

 CNH3
g

 CCH4
g

 CN2
g

 rut 

17     Heterotrophic aerobic utilization of BAP with NO3
-

: 

q̂BAP
h Xh (

CBAP

CBAP + KUAP
h

) (
CNO3

CNO3 + KNO3
h

) (DOsw) 

18     Heterotrophic aerobic utilization of BAP with NO2
-

: 

q̂BAP
h Xh (

CBAP

CBAP + KUAP
h

) (
CNO2

CNO2 + KNO2
h

) (DOsw) 

19     Fermenters utilization of BAP with NH4
+: 

q̂BAP
f Xf (

CBAP

CBAP + KBAP
f

) (DOsw)(NOx
sw)(CO2

inh)If
pH

 

20     PCOD hydrolysis: 

khydXPCOD 

21     Heterotrophic aerobic endogenous decay: 

bhXh (
CDO

CDO + KDO
h

) 

22     Heterotrophic anoxic endogenous decay with NO3
-: 

bhXh (
CNO3

CNO3 + KNO3
h

) 

2
1
5
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Carbon 

dioxide 

(gas) 

Ammonia 

(gas) 

Methane 

(gas) 

Nitrogen gas Utilization rate equation 

Chemical 

formula 

CO2 NH3 CH4 N2  

Symbol CCO2
g

 CNH3
g

 CCH4
g

 CN2
g

 rut 

23     Heterotrophic anoxic endogenous decay with NO2
-: 

bhXh (
CNO2

CNO2 + KNO2
h

) 

24     AOB endogenous decay: 

bAOBXAOB (
CDO

CDO + KDO
h

) 

25     NOB endogenous decay: 

bNOBXNOB (
CDO

CDO + KDO
h

) 

26     Fermenters endogenous decay: 

bfXf(DOsw)(NOx
sw)(CO2

inh) 

27     Methanogens endogenous decay: 

bmXm(DOsw)(NOx
sw) 

28     EPS hydrolysis: 

khydEPSXEPS 

29     AOB biomass hydrolysis: 

khydXAOB(DOsw)(NOx
sw) 

30     NOB biomass hydrolysis: 

khydXNOB(DOsw)(NOx
sw) 

2
1
6
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Table C.3 continued.  Stoichiometry matrix for MYAnode bulk liquid reactions.   

 Carbon 

dioxide 

(gas) 

Ammonia 

(gas) 

Methane 

(gas) 

Nitrogen gas Utilization rate equation 

Chemical 

formula 

CO2 NH3 CH4 N2  

Symbol CCO2
g

 CNH3
g

 CCH4
g

 CN2
g

 rut 

31   1  Gas/liquid phase partitioning of CH4: 

(
Vl

Vg
) KLa(CCH4 − HCH4CCH4

g
RT) 

32 1    Gas/liquid phase partitioning of CO2: 

(
Vl

Vg
) KLa(CH2CO3 − HCO2CCO2

g
RT) 

33  1   Gas/liquid phase partitioning of NH3: 

(
Vl

Vg
) KLa(CNH3 − HNH3CNH3

g
RT) 

34    1 Gas/liquid phase partitioning of N2: 

(
Vl

Vg
) KLa(CN2 − HN2CN2

g
RT) 

Species only present in chemical speciation calculations are omitted (i.e., CO32
-, HNO2). 

 

  

2
1
7
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D.1 Supplemental Graphs 

 
(a) 

 
(b) 

 

Figure D.1.  Effluent composition at a 12-d anode chamber HRT and 0-200 mg VSS/L 

influent methanogens concentrations (a) with varying diffusion layer thickness at a 0.25/d 

PCOD hydrolysis rate and (b) with varying hydrolysis rate at a 1000 μm diffusion layer 

thickness.  Experimental data was obtained from Ki et al. (2017a). 
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(a) 

 
(b) 

 

Figure D.2.  Effluent TCOD composition at a 12-d anode chamber HRT and 0-200 mg 

VSS/L influent methanogens concentrations (a) with varying diffusion layer thickness at 

a 0.25/d PCOD hydrolysis rate and (b) with varying hydrolysis rate at a 1000 μm 

diffusion layer thickness.  Experimental data was obtained from Ki et al. (2017a). 
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           (a)                                                                       (b) 

 

(c) 

 

Figure D.3.  Daily current densities at a 12-d anode chamber HRT, 0.25/d PCOD 

hydrolysis rate,  and 0-200 mg VSS/L influent methanogens concentrations with varying 

diffusion layer thicknesses: (a) 500 μm, (b) 2000 μm, and (c) 4000 μm.  The 1000 μm 

data is presented in Appendix C.  Experimental data was obtained from Ki et al. (2017a). 
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           (a)                                                                           (b) 

 

Figure D.4.  Daily current densities at a 12-d anode chamber HRT, 1000 μm diffusion 

layer thickness, and 0-200 mg VSS/L influent methanogens concentrations at hydrolysis 

rates of (a) 0.12/d and (b) 0.5/d.  The 1000 μm data is presented in Appendix C.  

Experimental data was obtained from Ki et al. (2017a). 
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E.1 Supplemental Graphs 

 
(a) 

 

 
(b) 

 

Figure E.1.  Effluent composition at different anode HRTs: (a) 6 d, (b) 9 d, and (c) 15 d.  

The 12-d HRT data is included in Appendices C and D.  The influent methanogens 

composition ranges from 0-200 mg VSS/L, and the hydrolysis rate varies from 0.12-

0.5/d.  
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(c) 

 

Figure E.1 continued.  Effluent composition at different anode HRTs: (a) 6 d, (b) 9 d, 

and (c) 15 d.  The 12-d HRT data is included in Appendices C and D.  The influent 

methanogens composition ranges from 0-200 mg VSS/L, and the hydrolysis rate varies 

from 0.12-0.5/d. 
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- 

 
(a) 

 
(b) 

 

Figure E.2.  Effluent TCOD composition at different anode HRTs: (a) 6 d, (b) 9 d, and 

(c) 15 d.  The 12-d HRT data is included in Appendices C and D.  The influent 

methanogens composition ranges from 0-200 mg VSS/L, and the hydrolysis rate varies 

from 0.12-0.5/d. 
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(c) 

 

Figure E.2 continued.  Effluent TCOD composition at different anode HRTs: (a) 6 d, (b) 

9 d, and (c) 15 d.  The 12-d HRT data is included in Appendices C and D.  The influent 

methanogens composition ranges from 0-200 mg VSS/L, and the hydrolysis rate varies 

from 0.12-0.5/d. 

  

0
500

1000
1500
2000
2500
3000
3500
4000

0 1

1
0

2
5

1
0
0

2
0
0 0 1

1
0

2
5

1
0
0

2
0
0 0 1

1
0

2
5

1
0
0

2
0
0

0.12 0.25 0.5

C
o
n
ce

n
tr

at
io

n
 (

m
g
 C

O
D

/L
)

Influent methanogens concentration (mgVSS/L)/Hydrolysis rate 

(1/d)

Inert SS VSS SCOD



 

228 

 

 
                                         (a)                                                                    (b) 

 
(c) 

 

Figure E.3.  Daily current densities at a 6 d HRT and (a) 0.12/d, (b) 0.25/d, and (c) 0.5/d 

hydrolysis rates.  The influent methanogens composition ranges from 0-200 mg VSS/L.  

The 12-d HRT data is included in Appendices C and D.   
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                                           (a)                                                                  (b) 

 
(c) 

 

Figure E.4.  Daily current densities at a 9 d HRT and (a) 0.12/d, (b) 0.25/d, and (c) 0.5/d 

hydrolysis rates.  The influent methanogens composition ranges from 0-200 mg VSS/L.  

The 12-d HRT data is included in Appendices C and D.   
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                                         (a)                                                                    (b) 

 
(c) 

 

Figure E.5.  Daily current densities at a 15 d HRT and (a) 0.12/d, (b) 0.25/d, and (c) 

0.5/d hydrolysis rates.  The influent methanogens composition ranges from 0-200 mg 

VSS/L.  The 12-d HRT data is included in Appendices C and D.   
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PERMISSIONS TO USE PREVIOUSLY PUBLISHED WORKS 
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F.1 Permission to reproduce the articles from publishers 
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F.2 Permission to use articles from co-authors. 

May you find this as silly and heartwarming as I did. 
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