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ABSTRACT

Coordination and control of Intelligent Agents as a team is considered in this thesis.

Intelligent agents learn from experiences, and in times of uncertainty use the knowl-

edge acquired to make decisions and accomplish their individual or team objectives.

Agent objectives are defined using cost functions designed uniquely for the collective

task being performed. Individual agent costs are coupled in such a way that group ob-

jective is attained while minimizing individual costs. Information Asymmetry refers

to situations where interacting agents have no knowledge or partial knowledge of cost

functions of other agents. By virtue of their intelligence, i.e., by learning from past

experiences agents learn cost functions of other agents, predict their responses and

act adaptively to accomplish the team’s goal.

Algorithms that agents use for learning others’ cost functions are called Learn-

ing Algorithms, and algorithms agents use for computing actuation (control) which

drives them towards their goal and minimize their cost functions are called Control

Algorithms. Typically knowledge acquired using learning algorithms is used in con-

trol algorithms for computing control signals. Learning and control algorithms are

designed in such a way that the multi-agent system as a whole remains stable during

learning and later at an equilibrium. An equilibrium is defined as the event/point

where cost functions of all agents are optimized simultaneously. Cost functions are

designed so that the equilibrium coincides with the goal state multi-agent system as

a whole is trying to reach.

In collective load transport, two or more agents (robots) carry a load from point

A to point B in space. Robots could have different control preferences, for example,

different actuation abilities, however, are still required to coordinate and perform

load transport. Control preferences for each robot are characterized using a scalar

parameter θi unique to the robot being considered and unknown to other robots.
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With the aid of state and control input observations, agents learn control preferences

of other agents, optimize individual costs and drive the multi-agent system to a goal

state.

Two learning and Control algorithms are presented. In the first algorithm(LCA-

1), an existing work, each agent optimizes a cost function similar to 1-step receding

horizon optimal control problem for control. LCA-1 uses recursive least squares as

the learning algorithm and guarantees complete learning in two time steps. LCA-1 is

experimentally verified as part of this thesis.

A novel learning and control algorithm (LCA-2) is proposed and verified in sim-

ulations and on hardware. In LCA-2, each agent solves an infinite horizon linear

quadratic regulator (LQR) problem for computing control. LCA-2 uses a learning al-

gorithm similar to line search methods, and guarantees learning convergence to true

values asymptotically.

Simulations and hardware implementation show that the LCA-2 is stable for a

variety of systems. Load transport is demonstrated using both the algorithms. Ex-

periments running algorithm LCA-2 are able to resist disturbances and balance the

assumed load better compared to LCA-1.
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Chapter 1

INTRODUCTION

1.1 Multi-agent Systems

Agents in a Multi-agent system(MAS) are subsystems in their own right, with

their own states, dynamics, inputs, and outputs. Agents can simply be software

agents e.g. threads running simultaneously, physical engineered systems like robots,

or systems occurring in nature like birds in a flock, fish in a schooling or a team of

ants moving a load. Two or more such agents may decide to cooperate and perform

tasks which otherwise are not possible. Dynamics of interactions between cooperating

subsystems and their control is dealt with in MAS. Agent-Agent interactions affect

shared states between agents or agent specific states. In some instances, a group

of active agents (agents with actuation) comes together to work on a passive system

(agent with no actuation) changing its state as desired. An example of such a scenario

is the case of Collective load transport, where a group of robots works on moving a

large mass. Agents in a MAS can be continuously interacting with each other or can

have event triggered interactions. A team of ants rolling a heavy load are interacting

with each other in a continuous fashion, whereas autonomous cars on road interact

only for safety when one car moves into the area of influence of another.

1.2 Intention Estimation

Agents sense outputs of interest and act to alter shared states during the interac-

tion. In some cases, agents know the intention of other agents, whereas in rest agents

are required to estimate intentions of other agents. Knowledge of agent intention is
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paramount since agents are cooperating with each other. If agents don’t have knowl-

edge of other agent intentions, they can’t cooperate. In the case of a homogeneous

group like bird flock, where every bird knows what the other birds are trying to do,

there is little intention left to be estimated. Consider the case of an autonomous

car interacting with a manually driven car. Both systems, manual and auto need to

constantly estimate each other’s intention and act accordingly. This is referred to as

Human-Robot Interaction (HRI). The same is the case when two autonomous robots

interact with each other, termed as Robot-Robot Interaction (RRI).

As opposed to a bird in a bird flock, a driver in a HRI or RRI is more ”selfish”

in the sense that the needs of the driver are put first and the needs of an interacting

driver are accommodated only to an extent that their safety is guaranteed. In HRI

and RRI, objectives of individual agents, agents they interact with, and the topology

of interactions are constantly changing. Hence a fixed control law for all agents will

be detrimental to system stability and performance. However, if the MAS involves

”bird” like agents, where all agents are identical, have the same goal, are less ”selfish”,

and there is no need for intention estimation, fixed decentralized control laws can

be defined for all agents to make the MAS work e.g., Consensus Algorithms (Yu

and Nagpal (2011),Ren et al. (2007), Mesbahi and Egerstedt (2010), Ren and Beard

(2008), Fax and Murray (2004)).

1.3 MAS control using Cost Functions

For HRI and RRI interactions modeled as multi-agent interactions, it is desired

that MAS is controlled by defining and solving individual cost functions (Semsar-

Kazerooni and Khorasani (2009)) capturing agent preferences. Individual cost func-

tions are designed in such a way that the desired behavior evolves out of agent in-

teractions. Cost functions offer more flexibility in terms of adapting to changing
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environment compared to fixed distributed control laws. When two agents come into

contact for the first time, they may have no or only partial knowledge of cost functions

of other agents. Such a scenario is termed ”Information Asymmetry”, a term from

economics theory. Agents require knowledge of other agent cost functions to estimate

agent intentions. Hence a control algorithm and a learning algorithm are employed

at each agent for estimating cost functions of interacting agents and control. Control

algorithms make use of cost functions defined at each agent and knowledge of other

agent cost functions in computing control inputs to be applied at each agent. At

each agent, the learning and control algorithms work hand in hand ensuring collec-

tive task execution, individual objective satisfaction, and stability of the MAS. Two

such learning and control algorithms are presented and evaluated.

1.4 Problem with Information Asymmetry

Under Information Asymmetry, agents simultaneously estimate each others’ inten-

tions and act upon estimated values. Simultaneous estimation may result in scenarios

where agent intention estimates don’t converge to true intentions with time. This can

arise due to two factors: 1. The agent’s wrong estimation (wrong prediction) and 2.

Other agents’ wrong estimation and subsequent improper actions (Liu et al. (2016)).

With simultaneous estimation in a MAS, all agents can be shooting in the dark all

the time with their estimates, making the system useless in a transient state for per-

petuity. The only way to make a MAS with Information Asymmetry work is to have

all agent estimates agree upon a certain reference value at all agents, even if it isn’t

the true intention. Agents can compare the estimated reference value with obser-

vations and compute corrections needed for each agent intention estimation. This

is achieved by having the same learning algorithm run at all agents with the same

initial estimates, and with agents estimating their own intentions in addition to esti-

3



mating others. Agents estimate their own intentions even though they know them to

understand how they are being incorrectly estimated at other agents.

1.5 Modelling Agent Intention

Quadratic costs are assumed in both LCAs’. All agents have the same state

penalizing cost term, while their control penalizing cost terms differ. The sum of state

and control penalizing costs is solved for a control input which minimizes the cost at

each agent. A scalar θi defined for each agent i differentiates agent cost functions.

It is assumed that parameter θi for each agent models its preferences or intentions.

When agents are learning other agent intentions or preferences they are essentially

estimating other agent θi parameter values. The objective of learning algorithms is

thus to estimate the values θi at all agents for all agents iteratively or otherwise and

ensure their convergence to true values.

1.6 The First Learning and Control Algorithm

First LCA (Liu et al. (2016)) works for all control-affine systems including non-

linear systems. Control algorithm solves a one-step receding horizon optimal cost

function with different θi values at each agent (Mattingley et al. (2011)) for every

time step. Learning algorithm in this approach guarantees θi estimation convergence

in two time steps of all agents, at all agents. Parameter updates at each time step can

be computed all at once, with an analytic expression. Learning and control algorithms

run at the same rate. Agents participate in a simultaneous cooperative dynamic game

at all time steps. Individual cost functions are optimized for an estimate of other agent

θi’s. Control inputs computed at every instant are thus the best an agent do with its

estimates. When all estimates converge to true θi values, the control inputs converge

to a Nash equilibrium (Marden and Shamma (2018)), where agents cannot have a

4



lower cost by deviating from their control computed alone. The Nash equilibrium is

designed to be stable by an appropriate choice of state weighting cost matrix.

1.7 The Second Learning and Control Algorithm

Second LCA requires that the MAS is Linear and Time Invariant (LTI). Control

algorithm at each agent solves a cost function that resembles Infinite Horizon Discrete

Linear Quadratic Regulator (IHDLQR (Lewis et al. (2012))) for the whole system with

estimates for other agent parameters, however applies the control input applicable to

the agent from the whole system control computed. Since the control computation

considers all time steps to infinity as compared to only one step in the first LCA, the

second LCA has better stability bounds. This makes it better suited for collective

load transport. As with the first LCA, the same learning algorithm runs at all agents

and for all agents with the same initial estimates. Learning algorithm guarantees

asymptotic convergence to true values. The learning algorithm can be run multiple

times per a run of control algorithm, i.e., per an observation of true control and

state values, the learning algorithm can be run multiple times for faster convergence.

There is no analytic expression for parameter estimate updates for all agents at once,

agents learn parameters of each agent one by one. With the cost function considered,

the system reaches Nash equilibrium, where every agent is optimal for ever other

agents’ control when there is parameter convergence to true values and all agents

are essentially solving the same IHDLQR and generating the same outputs for all

agents. As a Discrete Linear Quadratic Regulator always results in a stable closed

loop state feedback system for controllable and observable open loop systems, the

second LCA guarantees closed loop stability as soon as parameter estimates converge

to true values at all agents.
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1.8 Collective Load Transport and Considerations

The objective of collective load transport as a task is that the load is transported

from point A to point B in space by a team of agents which can be a team of Mobile

robots, Quadcopters, or natural agents like ants. A requirement of load transport

is that the agents don’t deviate as much from their relative starting positions that

their evolving relative deviations don’t make load carrying a physically impossible

task. For example, in a two agent case, with just one degree of motion possible,

the allowed lateral difference between two robot positions during the entire course of

motion is limited by the dimensions of a load being carried. Lyapunov local stability

(Slotine et al. (1991)) definition applies to relative deviation between individual agent

positions in collective load transport. The control algorithm should guarantee that

for a given load dimension, there are threshold initial relative position deviations,

which when not violated will always lead to a stable system.

1.9 Problem statement and Motivation

With increase in Human-Robot interactions and Robot-Robot interactions fore-

seen in future, there is a need for learning and control algorithms which estimate

intentions and compute controls facilitating agent interactions in carrying out tasks

collectively. The goal of this thesis is to analyze and evaluate learning and control

algorithms in the literature, propose, analyze, evaluate new learning and control al-

gorithms, and provide a comparative analysis between existing and new algorithms.

The algorithms are chosen with practical applicability (Hardware implementation) in

mind. This work is motivated in large parts from the work presented in Liu et al.

(2016).
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1.10 Contributions of the Work

• Implementation of work presented in Liu et al. (2016) on a team of mobile

robots. Evaluation of the work’s practical implementation for the application

of collective load transport.

• A new learning and control algorithm is presented and implemented on a team

of mobile robots. It is found that since the new algorithm considers infinite step

predictions from the current instant, it offers better stability compared to the

first algorithm.

• The new algorithm required inquiry of several fundamental questions related to

Linear Quadratic Regulator and its related theory. The observations presented

will find use in many applications given the extensive use of LQR optimal control

in industry.

• By a simple change in cost functions to track a trajectory instead of origin,

the new algorithm proposed can be extended to tracking optimal multi-agent

system control applications.

The rest of the document is organized as follows: Chapter 2 details upon LCA-

1 and LCA-2 - theory and intuition behind each method are explained; Chapter 3

presents robot modeling and experimental setup used; Chapter 4 presents simulation

and experimental results of LCA-1 and LCA-2, and their comparative analysis; Chap-

ter 5 summarizes and concludes present work. Possible directions for improvement

are also presented.
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Chapter 2

LEARNING AND CONTROL ALGORITHMS FOR MAS WITH INFORMATION

ASYMMETRY

2.1 NOMENCLATURE

q Observed value of physical quantity q

qo (k) Optimal value of quantity q at time instant k

q̂, q̃ Estimated value of quantity q, Error in the estimate of q

q̂ij Estimated value of quantity q at agent i for agent j

2.2 The Multi-agent Model

Consider a n state MAS comprised of N agents, with dynamics described by the

equation:

x(k + 1) = f(x(k)) +
N∑
i=1

hi(x(k))ui(k), (2.1)

where x ∈ Rn×1 denotes system state, ui ∈ Rri×1 is the control input of agent i,

and hi ∈ Rn×ri control affine matrix of agent i. f(x(k)) ∈ Rn×n is the system’s

characteristic function. For a linear system this reduces to a matrix.

An equivalent representation is given by the equation:

x(k + 1) = f(x(k)) + B (k)U (k) , (2.2)

where B ∈ Rn×r is formed by all individual control affine matrices - h′is stacked

laterally, Bi (k) = hi (k), U ∈ Rr×1 is all individual control inputs - u′is stacked

vertically, and r =
∑

i ri. Another representation when the MAS considered is linear

8



is given by

x (k + 1) = Ak [x (k)] +
N∑
i=1

hi [x (k)]ui (k) = Ak [x (k)] + B (k)U (k) , (2.3)

where Ak ∈ Rn×n is the system characteristic matrix. It is assumed that the system

state is accessible to all agents at all instants of time. It is assumed that control input

ui (k) applied at agent i is visible at agent j at time instant k+1. For a time invariant

linear system, the matrices Ak and B (k) of 2.3 don’t change with time. Agents solve

cost functions defined for each agent of the generic form:

ui = argmin
ui

Ji(x, ui, u−i, Gi), (2.4)

where u−i is the control input of all agents other than agent i, and Gi ∈ Rn×1 denotes

the goal state of agent i. It is assumed that Gi is same for all agents given by G.

In regulation problems G is assumed to be at the origin without loss of generality.

For tracking problems, G is time varying. Regulation problem is considered in this

thesis, however it can easily be extended to tracking problem with minor changes in

cost function. In cases where system states are not accessible, the MAS output as a

whole Y is related to the state by the static output equation:

Y (k) = Cx (k) +DU (k) , (2.5)

where C is the output matrix and D is the feed forward matrix of the system as a

whole.

2.3 Simultaneous Dynamic Game, Response Curves and Nash Equilibrium

Consider equation 2.4, it is clear that the solution ui (k) is a function of u−i (k)

at all other agents. i.e., at all agents the control input chosen is a function of control

inputs chosen at other agents. If agent j decides to choose a random uj (k) to be its
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control, it will impact solutions to controls (equation 2.4) at all other agents. This is

a simultaneous dynamic game and the curves ui, control input at agent i as functions

of u−i, control inputs agent all agents except i, called response curves. Consider two

agents’ case for simplicity. Let u1 and u2 be the control inputs computed at each

agent as solutions of equation 2.4. The plot of u1, obtained by solving equation 2.4

when u−1 (which is u2) is varied from a min to a max allowed values is the response

curve for agent 1. As the name indicates, response curves plot the optimal choice

(control input) an agent can make as a response to control action choices made by

interacting agents. Figure 2.1 shows response curves for agents 1 and 2. The point

Figure 2.1: Response curves and Nash equilibrium Liu et al. (2016)

of intersection of response curves is the Nash equilibrium of the system. The point

of intersection is the point where agent 1 control response (uo1) optimizes value J1 for

u2 = uo2 and vice versa. i.e., uo2 is the optimizes the value J2 for u1 = uo1. Agents

can’t achieve a lower cost by deviating from the Nash equilibrium point alone. While

Nash equilibrium gives a profile of controls that simultaneously optimizes individual

agent costs, it is not guaranteed to be stable.
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2.3.1 Complications of Simultaneous Estimation and Action in MAS

With estimation and subsequent control action in conventional systems, typically

one of the subsystems knows or can learn the absolute truth about the world around

it. Observations made at such subsystems are used for correcting estimates made at

interacting subsystems which are still figuring out the world around them. Centralized

design philosophies such as Adaptive control (Landau et al. (1998) and Reinforcement

learning (Littman (1994) work well such scenarios (Liu et al. (2016)). In situations like

the one described, the subsystem that is still figuring things assumes that the other

subsystems are optimal given their observations. i.e., the observation made at ground

truth system is their optimal value and any deviation in the estimation of ground truth

system’s quantity of interest from observations is considered to be an estimation fault

of the fledgling subsystem. It (subsystem that is learning) essentially takes the blame

on itself for the error in estimation. This is termed as the BLAME ME strategy (Liu

et al. (2016)). With simultaneous estimation and control in MAS, learning strategies

should consider the fact that all agents are imperfect and are to be blamed for errors

in estimates. Convergence of Estimates to true values is possible when all sources of

error in estimates are accounted for in the learning model. This approach where all

interacting agents are blamed for estimation error is called the BLAME ALL (Liu

et al. (2016)) strategy. In the case of MAS, where all agents(subsystems) are still

figuring out the world around them BLAME ME strategy for learning will lead to

instability as described in the following paragraph.

Consider Figure 2.2. The MAS considered has two agents. The agents try to be at

Nash Equilibrium every time instant, where each of them is optimal given the others

control input (Marden and Shamma (2018)). As opposed to a conventional system,
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Figure 2.2: BLAME ME learning strategy Liu et al. (2016)

where one subsystem knows the absolute truth, here both the agents are required to

estimate others. Solid black and red lines represent the response curves of agent 1

and agent 2 respectively. Dashed black and red lines represent the response curves

estimated at agent 1 and agent 2 for agent 2 and agent 1 respectively. Agent 1 wants

the MAS to get to Nash Equilibrium and the possibility it sees is the black solid dot

shown in the left (a) Figure and hence chooses its control action to be u1. Agent

2 follows the same reasoning and chooses u2. The Yellow dot in part-a of Figure

2.2 represents the Action pair at time step k which is an ordered pair of actions

taken by all agents at the considered instant. The blue dot represents the true Nash

Equilibrium the MAS would achieve if there were no information asymmetry. Since

in Blame-me strategy it is assumed that an agent is optimal given its observation,

agent 1 updates its estimate of agent 2’s response curve to go through the action pair.

This is because agent 1 observed that at it’s chosen optimal value u1, the optimal

value of agent 2 is u2. Hence agent 1 as per blame all strategy knows for a fact that

its estimate of agent 2’s response curve should go through the action pair (u1, u2).

Agent 2 follows the same reasoning strategy and updates its estimate of Agent 1’s

response curve to go through the action pair point at time step k as shown in part
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b of the Figure 2.2. At time step k + 1 Agent 1 considers the point of intersection

of updated agent 2 estimated response with its own response curve to be the Nash

equilibrium and decides to apply to control input u1 as shown in part b of the Figure.

Agent 2 follows the same strategy. As a result, the action pair at time-step k + 1

moved farther from Nash Equilibrium. This approach hence may drive the system

away from Nash equilibrium, with response estimates never converging to their true

values.

Figure 2.3: BLAME ALL learning strategy Liu et al. (2016)

Consider Figure 2.3. In BLAME ALL strategy, all agents are considered to be

imperfect. Agents are optimal given their estimates of other agents. To predict the

action of an agent accurately, how it estimates ’me’ should be considered (Liu et al.

(2016)). Hence agents in addition to estimating response curves of others estimates

their own as well. Estimation of response curve for an agent at all agents start with

the same initial value and employ the same learning algorithm. Therefore, response

curve estimates for an agent at all agents will all be the same as the same observations

are made at every agent. The red and black dotted lines shown in part (a) of the
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Figure are estimated responses of Agent 1 and Agent 2, accessible at all agents. The

point of intersection of estimated responses of all agents is called the virtual Nash

equilibrium (light blue dot in part(a) of the Figure 2.3). The best action an agent can

take is to assume all agents take to their respective control profiles at virtual Nash

equilibrium and choose the corresponding action on its response curve. Agent 1 and

Agent 2 follows this approach and choose an action pair (yellow dot) as shown in part

(a) of the Figure. At time step k, Agent 1’s belief is that u2 corresponding to virtual

Nash equilibrium is the optimal value for Agent 2. However, It observes that observed

u2 is different from its expectation. In the BLAME ALL strategy, agent 1 knows that

its estimate of agent 2 differs from true value due to two reasons: 1. Agents 1’s wrong

estimate of agent 2 and 2. Agent 2’s wrong action based on a wrong estimate of Agent

1, which agent 1 observes (Liu et al. (2016)). The second factor is already taken care

of when agent 1 estimated how agent 2 estimated agent 1. What is left is for agent

1 to correct its own wrong estimate. Hence at time step k + 1 agent 1 updates the

response curve of agent 2 by the difference it observed between it’s estimated Nash

equilibrium value and true observed value in u2 direction. Agent 2 follows the same

approach and the new action pair converges to true Nash equilibrium at time step

k + 1 in part (b) of the Figure. Learning and control algorithms for multi-agent

systems with information asymmetry therefore, should adopt BLAME ALL strategy

for guaranteed convergence to Nash Equilibrium of the system. Acronyms LAC and

LCA are used exchangeably for learning and control algorithms.

2.4 Learning and Control Algorithm 1

Learning and control algorithm 1(LCA-1) is presented in Liu et al. (2016). Key

equations from the reference are presented in this section. The system being consid-
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ered is defined in 2.1. The cost function Ji chosen at each agent is given by:

Ji (k) = xT (k + 1)Px(k + 1) + uTi (k)ui(k)θi, ∀i, (2.6)

where θi encodes the preference or intention of agent i which is not known to others,

P ∈ Rn×n is a positive definite matrix chosen such that the closed loop system

under Nash Equilibrium is globally asymptotically stable around the origin. Define

R = diag (θ1Ir1 , ..., θNIrN ) ∈ Rr×r, where r1, r2... are as defined in section 2.2. The

optimal control law for each agent, obtained by optimizing 2.6 is given by:

ui(k) = −[θiIri +BT
i PBi]

−1BT
i P [f(x(k)) +

∑
j 6=i

Bjû
(i)
j (k)], (2.7)

where x and ûj are observed value of state x and estimated control input of agent j,

estimated at agent i respectively. i.e., to compute control at agent i, for instant k,

estimated values of u−i (k) are required in agreement with 2.4. The optimal control

law 2.7 is thus a linear combination of a state feedback control and a predictive

control law. At Nash equilibrium, agents have complete knowledge of parameters

(θ′is) of other agents and hence can estimate their control inputs accurately. i.e., at

Nash equilibrium, predictions û
(i)
j (k) at all agents converge had converged to true

values. The profile of control laws at Nash equilibrium obtained from 2.7 by stacking

all u′is together as given in the equation:

U o(k) =


uo1(k)

...

uoN(k)

 = −[R +BTPB]−1BTPf(x(k)). (2.8)

The closed loop system under Nash equilibrium is thus given by:

x(k + 1) = [I −BK]f(x(k)), (2.9)

where K = −[R + BTPB]−1BTP , is the system’s feedback gain. Agent i′s feedback

gain is defined as Ki = −TiK, where Ti = [0, ...0, Iri , 0, ...0] ∈ Rri×n. Matrix P in
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2.6 is chosen such that the closed loop system in 2.9 is globally asymptotically stable

about the origin as mentioned before. An equivalent form of equation 2.7 is given by

the equation

ui(k) = −Ti[R̂(i) +BTPB]−1BTPf(x(k)), (2.10)

where R̂(i) is diag
(
θ̂1Ir1, .., θiImi

., θ̂NImN

)
. In Blame all strategy, all agents start with

the same initial values for θi estimates, use the same learning algorithm and maintain

the R̂ (k) matrix across all agents. The Virtual Nash equilibrium is then given by the

equation:

Û(k) = −[R̂(k) +BTPB]−1BTPf(x(k)). (2.11)

Agent i′s response corresponding to Virtual Nash equilibrium 2.11 is given by

ui(k) = −[θiIri +BT
i PBi]

−1BT
i P [f(x(k)) + (B −BiTi)Û(k)]. (2.12)

Learning algorithm is given by following two equations:

θ̂
(i)
j (k + 1) = θ̂

(i)
j (k) + e

(i)
j (k + 1)uTj (k)uj(k)F (k) (2.13)

e
(i)
j (k + 1) = −uTj (k)BT

j Px(k + 1)− θ̂(i)j (k)uTj (k)uj(k) (2.14)

Choosing multiplication factor F (k) =
(
uTj (k)uj (k)

)−2
if uj (k) 6= 0 and 0 oth-

erwise. It can be proved easily as in (Liu et al. (2016)) that parameters θ′is converge

to true values in two time steps. For more details on this algorithm refer Liu et al.

(2016).

2.5 Learning and Control Algorithm 2

In an implementation on a team of 2 mobile robots, it is found that LCA-1 algo-

rithm wasn’t enabling the system to satisfactorily recover from disturbances. Hence

it is decided to consider multiple steps in the future for optimizing rather than one

step as considered in LCA-1. Following subsection summarizes techniques, inferences

and intuitions which motivated learning and control algorithm 2 (LCA-2).
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2.5.1 Preliminaries

Infinite Horizon Discrete Linear Quadratic Regulator (DLQR) optimizes a cost

function of the form:

J (k) =
∞∑
k=0

[
xT (k)Qx (k) + UT (k)RU (k)

]
, (2.15)

for a centralized system described by

X (k + 1) = AX (k) +BU (k) , (2.16)

where A is the system characteristic matrix, B is the system control gain matrix, U

is the vector of inputs acting on the system, Q is a Positive semi-definite matrix and

R is a Positive definite-matrix. It is called infinite horizon since the summation is to

infinity in the cost function 2.15. The U at instant k that optimizes 2.15 is given by

Uk = −K∞xk, K∞ =
(
BTS∞B +R

)−1
BTS∞A, (2.17)

where S∞ is the steady state solution of Discrete Algebraic Riccati equation given by

S = AT
[
S − SB

(
BTSB +R

)−1
BTS

]
A+ P (2.18)

Lewis et al. (2012). If the System 2.16 is controllable and observable its Discrete

Algebraic Riccati equation will have a unique solution (Lewis et al. (2012), Kučera

(1972)). The unique solution to 2.18 can be found analytically or numerically using

several algorithms (Laub (1979), Arnold and Laub (1984) etc.).

In the article Wan (1991), the behavior of Riccati solution to a Linear Quadratic

regulator is analyzed using a first order system. Inferences drawn from the behavior

of Riccati solution for first order systems is extended to higher order systems. Using a

similar argument, for a first order system, the variation of LQR gain K with variation

in R, both of which will be scalars for stable and unstable systems is analyzed. As
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Figure 2.4: LQR gain variation with R for a stable system

seen in Figures 2.4, 2.5, it is inferred that, when all other interfering parameters are

kept constant, the LQR gain and hence the control output decreases monotonically

with increment in the value of R. This key observation will be used in devising LCA-2.

Learning and control algorithm 2 (LCA-2) is developed using ideas in Liu et al.

(2016), presented in section 2.4. LCA-2 considers infinite steps ahead for optimization

as opposed to LCA-1 which considers only one step. LCA-2 addresses issues involved

with simultaneous estimation and action in an approach similar to LCA-1 by employ-

ing a learning strategy similar to BLAME ALL. Agent i estimates its own preference

while estimating others to know how others are performing its intention estimation.

In LCA-2, the same learning algorithm with the same initial conditions runs at all
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Figure 2.5: LQR gain variation with R for an unstable system

agents for intention estimation. However, the learning algorithm runs multiple times

per an observed control input ui (k) sample. i.e., the learning loop runs faster than

control loop. LCA-2 additionally assumes that the agent parameters lie between a

minimum θmin and maximum θmax values, known at all agents.

For a MAS comprised of agents with just one input, R matrix is the diagonal

matrix formed by agent parameters θi,∀i. For MIMO (Multi Input Multi Output)

agent MAS, R = diag (θ1Ir1 , ..., θNIrN ) as in LCA-1. At each time step k, each agent

maintains different R matrices for learning and control. For clarity, the algorithm is

detailed for a MAS with one input per system. It, however, can easily be extended

to multi-input agent systems as explained later.
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2.5.2 Process steps - Control Algorithm:

• At instant k = 0, agent i initializes parameters θ−i of all other agents to be

unity. Hence the learning matrix R̂ (k) at k = 0 is an Identity matrix. R̂ (k),

the learning matrix will be the same at all agents at all time steps. For a 3

agent system with true parameters θ1, θ2, θ3, the learning matrix at an instant

will be

R̂ (k) =


θ̂1 (k) 0 0

0 θ̂2 (k) 0

0 0 θ̂3 (k)

 .

• At every step, for agent i, the control matrix is obtained by taking the learning

matrix R̂ (k) at the instant and replacing the diagonal element corresponding

to agent i with its true parameter value. Agent i knows its own parameter θi.

Control matrix Ri (k) for agent i at instant k is used for R in the cost function

2.19 and solved for control. The control matrix at agent 1 for a 3 agent system

described before will be

R1 (k) =


θ1 0 0

0 θ̂2 (k) 0

0 0 θ̂3 (k)

 .

• At every time step, agent i solves a cost function given by

Ji [k] =
∞∑
j=0

[
xT (k + j)Qx (k + j) + UT (k + j)Ri (k)U (k + j)

]
, (2.19)

where Q is positive semi-definite matrix similar to P in LAC-1. If the MAS is

described by a C matrix, the output matrix in Y = CX +DU in general state

space representation of a system, Q = CTC or some scalar multiplied CTC.

This ensures that the output state is optimized.
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• Cost function 2.19 is the DLQR, described in 2.5.1. The solution 2.17 and all

its related properties apply to the control sequence that minimizes cost function

2.19.

• From Ui (k) Agent i extracts the control ui (k) applicable to it and applies it on

the MAS. MAS states evolve as a result, when all agents act on the MAS.

• control ui (k) applied on the system by agent i, is observed at all agents at time

step k + 1. The observed value ui (k) is used for updating θ estimates at all

agents in the learning algorithm.

• When parameters θ̂i, ∀i in R̂ (k) converges to true parameters, all agents will be

solving the same DLQR cost and hence generating same control outputs ui for

all agents.

As mentioned before, every agent estimates every other agent parameter θ, including

itself.

2.5.3 Process steps - Learning Algorithm:

Since the same learning process is carried out at all agents for all agents, agent

suffixes are dropped from symbols during explanation of the algorithm. The key idea

of the learning algorithm is approximating the variation of u with θ for an agent

between two known points, while all other agent parameters θ−i are held constant,

to straight line. Using the line approximation, an updated θ is computed, the u for

which is different to observed u. The updated θ and its corresponding u form a new

end point, with which another line is drawn and the process repeated, the steps for

which are explained in detail below:
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• Agent i takes R̂ (k), obtains umax and umin corresponding to θmax and θmin

values for θi in R̂ (k) using the equation 2.17.
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Figure 2.6: Learning Process - Scenario 1

• Slope between points (umax, θmax) and (umin, θmin) is determined to check if u vs

θ is a monotonically increasing or decreasing curve. As mentioned in subsection

2.5.1, slope will be negative.

• Based on the monotnocity, determine if θ for u lies between [θmin, θest] or

[θest, θmax]. θest is the current estimate of θ. At time step k = 0, θest will

be 1 and at other steps, it will be the final update made at a prior step, which

becomes the initial value for current step. Initial value of θ for a given update

cycle is denoted θinit as in Figures 2.6 and 2.7. i.e.,at the beginning of an update

cycle, θest = θinit, in the next instant θest = θ2, in the next instant θest = θ3 and

so on. Each time step can have multiple updates depending on computational

ability available.
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Figure 2.7: Learning Process - Scenario 2

• If θ for observed u lies in the interval [θmin, θest] , the events described in Figure

2.6 take place.

• The curve between endpoints ((θinit, uinit)) and ((θmin, umin)) is approximated

to be a straight line Line 1. θ2 corresponding to where the line cuts the observed

value u is taken to be next update.

• u corresponding to θ2 is obtained using the equation 2.17. Line 2 is drawn from

θ2 updated point to ((θmin, umin)). θ3, θ4 etc. are obtained using the same

process.

• If θ for u lies in the interval [θest, θmax] , the events described in Figure 2.7 take

place.

• Figures 2.6, 2.7 are summarized: as find equation of line 1, find the θ2 where

the line cuts u, draw line 2, find θ3, draw line 3, find θ4 and so on. In the first
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scenario the end point ((θmin, umin)) remains constant, where as in the second

scenario, the initial estimate for the iteration ((θinit, uinit)) remains constant.

• The limiting case in both scenarios is when the θ update coincides with the true

value of θ corresponding to u.

• Since there is no explicit relation available between u and θ, a straight line

equivalent to the curve is used to close down on the value of θ being estimated.

This approach has a faster convergence rate compared to methods like bisection.

• Since only one diagonal control cost weight element θi corresponding to the

agent being estimated is varied while others are held constant in R̂, the mono-

tonicity described in subsection 2.5.1 holds.

• Agent i repeats this process for all agents with corresponding observed values

and updates R̂ for the next instant. Updated R̂ shall be used in determining

control to be applied at each agent.

• For a MAS with multi-input agents, ui will be a vector. In the learning algorithm

described, replace vector u with its norm at all places. Instead of a diagonal

element θi for agent i, a block matrix θiIri is used in control matrix Ri (k), and

in learning matrix R̂ (k).

From the Figures, 2.6, 2.7, it is seen that the estimates converge to true values

asymptotically even if the updates are spread between two control iterations.
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Chapter 3

EXPERIMENTAL SETUP

LCA-1 and LCA-2 described in chapter-2 are implemented on two mobile robots for

agents. Hercules robot, shown in figure 3.1, a 4 wheel skid-steer robot designed for

indoor load transport is used as an agent. Its a two input system: motors on the left

and motors on the right are driven by two PWM voltage signals that vary from (-100

- 100). Robot runs on an Arduino Duemilanove w/ ATmega328 for microcontroller.

PWM inputs greater than 100 in magnitude are set to 100 before applying to the robot

in robot drivers. Negative control inputs are interpreted as signals for the robot to go

in the reverse direction and are accordingly implemented in its driver. A robot thus

can accept two signals in the range [-100, 100] without actuation saturation.

Figure 3.1: Hercules Robot

The arduino running on hercules is interfaced with a powerful embedded com-

puting device Edison from Intel, through serial communication. Arduino running on

hercules robot is programmed to receive actuation signals from Edison for starting,
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stopping at a speed.

3.1 Modelling of Hercules Robot

Skid-steer mobile robots are hard to model as they are steered using friction and

since skidding is involved. Models developed for skid-steer robots in (Wang et al.

(2009), Caracciolo et al. (1999)) attest to this fact. To precisely model the robot,

friction coefficients of wheel surfaces, and slip characteristics, which vary from surface

to surface are needed. Since the main focus of this thesis is on high level learning

and control planning algorithms, the robot motion is restricted to one-dimension to

obtain a linear model of the robot. The left and right motors are actuated with the

same value of PWM input making the system a single input system. Experimental

trials showed that the 1-D dynamics can be modeled by a first order system. Robots

are subjected to step inputs in the range [0 - 100] and responses were recorded.

SYSTEMID on the step response data yielded a continuous model:

x(s)

pwm(s)
=

0.2003

s+ 12.1
, (3.1)

where x and pwm are the position in the dimension considered and pwm input re-

spectively. The model 3.1 is converted to an equivalent State Space representation in

continuous domain, and later to a discrete domain based on sampling rate used.

3.2 Position data

Attempts were made to have the robot estimate its own position by sensor fusion

using encoders on-board the robot and an Inertial measuring unit by a Kalman filter.

However, since the LCA algorithms don’t take stochastic nature of measurements

in to account, it is decided to not use the fused measurements while running the

experiments.
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Robot position is obtained in real time using VICON Motion capture system at

100 HZ. Reflection markers are placed on each robot, which the VICON system iden-

tifies and broadcasts position data. Robot Operating System (ROS) is used to obtain

the streamed data from Motion capture system on to a machine running Linux. Al-

gorithms are evaluated on the computer and control inputs computed are transmitted

via Wi-Fi to two Edison computers on-board two Hercules robots. Position coordi-

nates obtained from motion capture system are converted to experiment coordinate

system before usage. A separate coordinate system for experiment is needed in view

of less area of coverage available in motion capture lab and for freedom of choosing

any initial condition. Occlusion can happen in some instances when there are ob-

structions in line of sight from Mocap cameras to markers and result in unpredictable

behaviour of the algorithm and are handled in the implementation. Whenever occlu-

sion happens, the system model is used in obtaining state evolution and hence the

outputs that were occluded.

A 3rd order model captured Hercules step response dynamics better than the first

order dynamics given in 3.1. However, with a third order system representing one

Hercules robot, the two robot system became a sixth order system, with observations

available for two outputs. The six states were internal states obtained during state

space conversion and couldn’t be assigned a physical meaning. While the system

obtained was observable, a filter to estimate the states from observations was required.

Since this would introduce additional delay in the loop, which already had delays from

the network, from motion capture system and due to occlusion sometimes, it is decided

to stick to a first order system representing a robot given in 3.1. With a first order

model for the robots, the states of the system were readily available from outputs

without the need for additional filtering. It is also to be noted that the rate at which

VICON Motion capture system streams data is not constant and varied from (80 -

27



100) Hz. The second order and sixth order two robot systems were however simulated

in MATLAB with both algorithms for verification. The 3-pole Single Input Single

Output representation of the system is given by

x(s)

pwm(s)
=

229.1

s3 + 50.41s2 + 1608s+ 1.386e04
(3.2)

3.3 Two Robot System

Figure 3.2: Two Robot team

Robots as shown in figure 3.2 are made to move in straight line parallel to each

other. Instead of having the robots carry an actual joining beam, with an intelligent

choice of outputs, algorithms LCA-1 and LCA-2 are implemented for collective load

transport. The outputs chosen are :

• Midpoint of the line joining markers on both robots, y1. This ensures that the

robot team as a whole reaches the target, origin.

• Lateral distance between the robots, y2. This is to ensure that the lateral

distance is maintained as close to zero as possible so that the load doesn’t fall
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of the robots.

The discrete two robot system, in state space representation, discretized at 80 Hz

sampling rate is given by:

A =

 0.8597 0

0 0.8597

B =

 0.0116 0

0 0.0116

C =

 0.1001 0.1001

−0.2003 0.2003


D is a null-matrix. States aren’t directly accessible as outputs. States were calculated

from y = Cx by inverting C matrix.

3.4 Choice of matrices P or Q, Initial conditions and Preferences

P is the state weighting matrix in the cost function equation 2.6 and Q is from

equation 2.19. Algorithms LCA-1 and LCA-2 don’t consider any constraints on either

states or control inputs. However actuation in all real systems is bounded within a

range, which when exceeded results in making the system unresponsive. Hercules

robots can only react well to actuation with in the range [20, 80] or [-80, -20], with

positive PWM corresponding to forward direction and negative PWM corresponding

to reverse direction. Hence to demonstrate control algorithms, the matrices P and Q,

along with the agent preferences θ1, θ2, and starting position yinit and corresponding

xinit were picked using trial and error and some commonsense in simulations to obtain

values where they result in the control inputs computed lie in the ranges mentioned.
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Chapter 4

SIMULATION AND EXPERIMENTAL RESULTS

The control ui (k) applied by an agent running LCA-2 is given by equation 2.17

for the Ri (k) control matrix it forms at the considered instant k. In LCA-2 each

agent uses a different control matrix Ri (k) derived from a common learning matrix

R̂ (k) by using its true θi or θiIri as described in Chapter 2. Thus control vector U

applied on the MAS is formed by stacking DLQR solutions 2.17 for different values

of Ri,∀i. For a 3 agent MAS, the control U (k) is given by
u1 (k)

u2 (k)

u3 (k)

 =


−T1

(
BTS∞1 (k)B +R1 (k)

)−1
BTS∞1 (k)Axk

−T2
(
BTS∞2 (k)B +R2 (k)

)−1
BTS∞2 (k)Axk

−T3
(
BTS∞3 (k)B +R3 (k)

)−1
BTS∞3 (k)Axk

 , (4.1)

where S∞1 (k) , S∞2 (k) , S∞3 (k) are steady state solutions of riccati equations

formed by matrices R1 (k) , R2 (k) , R3 (k) respectively, and Ti = [0, ...0, Iri , 0, ...0] ∈

Rri×n. Ti matrices extract ui from U . Given the complexity of equation 4.1, for a

N-agent MAS, the stability of LCA-2, as it’s learning algorithm makes R̂ converge to

R with time, could not be proved mathematically.

To prove the effectiveness of LCA-2, it is applied to different kinds of systems,

system responses obtained are analyzed and compared to responses with LCA-1.

In addition, the worst case scenarios possible with LCA-1 and LCA-2 are compared,

which is when the learning algorithm fails altogether and don’t change initial estimates

of R̂ at each agent. Stability of multi-agent systems running LCA-1 and LCA-2

for a different P/Q - the state weighting cost matrices is checked. Experimental

implementation results for both LCA-1 and LCA-2 are presented at the end.
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LCA-1 considers one step ahead for optimization, whereas LCA-2 considers infinite

steps. LCA-1 is thus Shortsighted compared to LCA-2. Accordingly, it is found, once

learning is complete that any disturbances applied to the MAS are absorbed gradually

with LCA-2 compared to LCA-1. LCA-1 tries to compensate for the disturbance in

just one step, whereas LCA-2 compensates in more steps. It is found in general that

LCA-2 performs better compared to LCA-1 in reacting to disturbances once learning

is complete. During the learning process, however, LCA-1 is found to have a better

response as far as variation in states and control inputs is concerned.

4.1 Simulation Results and Comparison

4.1.1 System - 1

The system considered is an open loop unstable discrete time system. It is control-

lable and observable. It has cross-coupling among states via the characteristic matrix

A and there is weight cross coupling among states in the cost function via matrix

Q/P . Matrices A, B of the system state space representation and state weighting

matrix Q in the cost function are given below. The parameters chosen are θ1 = 5,

θ2 = 15, θmax = 100 and θmin = 0.1

A =

 0.5 0.1

3 0.9

B =

 1 2

3 7

Q =

 2 1

1 4



Some observations from the plots for System - 1:

• As seen in Figure 4.1 the system goes to the goal state within 6 iterations.

Overshoot in states can be altered by tuning weights in Q matrix. The MAS is

therefore stable.

• Parameters θ1, θ2 converged to their true values by third control iteration as
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System-1-State Evolution LCA-1
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Figure 4.1: State Evolution Comparison LCA-1 v LCA-2

shown in Figure 4.3. It should however be noted that the learning algorithm is

run ten times per observation for faster convergence.
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System-1-Control Input sequence with LCA-2
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Figure 4.2: Control Evolution Comparison LCA-1 v LCA-2

• Control inputs shown in Figure 4.2 became zeros along with states as expected

by 6th iteration.
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Figure 4.3: System-1 Parameter Learning Evolution with LCA-2

• Compared to LCA-2, the variation of applied controls u1, u2 is more in LCA-1

as shown in the Figure 4.2. State variation is about the same in both cases.

34



4.1.2 System - 2

The system considered is an open loop stable discrete time system. It is control-

lable and observable. It has no cross-coupling among states via the characteristic

matrix A and no weight cross coupling among states in the cost function via matrix

Q. Matrices A, B of the system state space representation and state weighting matrix

in the cost function Q are given below. It is a two state system. The parameters

chosen are θ1 = 25, θ2 = 40, θmax = 100 and θmin = 0.1

A =

 0.5 0

0 0.9

B =

 1 2

3 7

Q =

 2 0

0 4

 .

Plots and observations are given below:
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Figure 4.4: State Evolution Comparison LCA-1 v LCA-2

Some observations from System -2 ’s plots:

• As seen in Figure 4.4 the system goes to the goal state within 4 iterations.
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Figure 4.5: System-2 Parameter Learning Evolution with LCA-2

Overshoot in states can be altered by tuning weights in Q matrix. The MAS is

therefore stable.

• Parameters θ1, θ2 converged to their true values by fifth control iteration as

shown in Figure 4.5. This is because the the parameters chosen for the system

θ1, θ2 are distant from their minimum and maximum values compared to system-

1. Learning loop is run 10 times per observation.

• Control inputs as in Figure 4.6 became zeros along with states as expected by

4th iteration.

• It is seen from Figure 4.4, and Figure 4.6 that with LCA-1 evolution of state and

control are gradual compared to LCA-2 even though not by a large magnitude
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System-2-Control Input sequence with LCA-2
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Figure 4.6: Control Evolution Comparison LCA-1 v LCA-2
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4.1.3 System-3

The system considered is an open loop marginally stable discrete time system.

Matrices A, B of the system state space representation and the state weighting matrix

in the cost function Q are given below. The parameters chosen are θ1 = 5, θ2 = 15,

θmax = 100 and θmin = 0.1.

A =

 1 0

0 1

B =

 1 2

3 7

Q =

 2 0

0 4



Some observations on plots of System - 3:

• As seen in Figure 4.7, with LCA-2, the system considered is sluggish since the

open loop system is marginally unstable. Convergence to goal state is at almost

70 steps.

• Parameter evolution as seen in Figure 4.9 is complete in 3 steps. Learning loop

is run 10 times per observation.

• As expected, shown in Figure 4.8 control inputs don’t get to zeros until about

iteration 70, as with the state convergence.

• For system-3, as seen in Figure 4.7, state evolution is even more sluggish than

with LCA-2. This reflects the Shortsightedness of LCA-1 compared to LCA-2.

A similar behavior with control evolution is observed as shown in Figure 4.8.

• For system-3 it can be concluded that LCA-2 has better performance compared

to LCA-1.
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Figure 4.7: State Evolution Comparison LCA-1 v LCA-2
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System-3-Control Evolution LCA-2
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Figure 4.8: Control Evolution Comparison LCA-1 v LCA-2
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Figure 4.9: System-3 Parameter Learning Evolution with LCA-2
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4.1.4 System - 4

The system considered is an open loop unstable 3rd order system with 2 inputs

per agent and 2 Agents. Matrices A, B of the system state space representation and

state weighting matrix in the cost function Q are given below. The parameters chosen

are θ1 = 50, θ2 = 90, θmax = 100 and θmin = 0.1

A =


1 3 2

3 1 5

2 9 7

B =


1 4 2 5

3 5 7 3

2 7 1 2

Q =


20 0 0

0 30 0

0 0 50


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Figure 4.10: System-4 State Evolution with LCA-2

Some observations on plots of System-4:

• As seen in Figure 4.10, states are driven to the origin in 5 time-steps. The
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Figure 4.11: System-4 Parameter Learning Evolution with LCA-2

algorithm LCA-2 thus works well even for multi-input agent systems.

• It is seen that the learning algorithm converges faster to true parameter θ values

with multi-input agent systems. As seen in Figure 4.11, convergence happened

in just two steps. The learning algorithm is run 5 times per observation.
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Figure 4.12: System-4 Control Input Sequence with LCA-2

4.1.5 Simulation results for the 2-Agent mobile robot model

The system matrices are already presented in Chapter 3. Plots for the system are

as follows. Agent specific parameters θ1 = 0.6, θ2 = 0.3, the state weighting matrix

Q in cost function is given by

Q =

 5.0138 −3.0083

−3.0083 5.0138


Some observations from the plots:

• As seen in Figure 4.13 both states start at -300, -300 and reach origin in about

40 iterations. -300, -300 are the initial states set so that the system has control
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Figure 4.13: Mobile Robot Simulation - State Evolution LCA-2
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Figure 4.14: Mobile Robot Simulation - Parameter Learning LCA-2

inputs in the range of actuation as described in chapter 3.
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Figure 4.15: Mobile Robot Simulation - Output Evolution LCA-2
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Figure 4.16: Mobile Robot Simulation - Control Evolution LCA-2
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• The main plot of interest is Figure 4.15. As it is seen, both robots start with

zero lateral difference and maintain it throughout their journey, regardless of

the fact that they are solving different cost functions and learning each other

parameters while doing so.

• From the Figure 4.16, it is seen that the control inputs to robots in simulation

start and end in the range [0,70], perfect range for Hercules robot actuation

4.1.6 Data from Experiments - LCA-2

The two robot system, using the experimental setup described in Chapter-3 and

the values for Q, θ1, θ2 and xinit, yinit chosen as described in the section Simulation

results for the 2-Agent mobile robot model, are put through experiments to check if

LCA-2 can be implemented in real systems. Multiple trials are conducted. Occlusions

of the robots in Mocap system were a source of external unpredictable disturbance.

Trial-1 is unaffected by occlusions. Trials - 2,3 and 4 are all affected by occlusion.

In addition, in trial-4 the system is subjected to an intentional disturbance and its

behavior observed.
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Plots obtained and observations are given below for all trials:
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Figure 4.17: Trial-1 Mobile Robot Experiment - State Evolution
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Figure 4.18: Trial-1 Mobile Robot Experiment - Parameter Evolution
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Figure 4.19: Trial-1 Mobile Robot Experiment - Output Evolution
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Figure 4.20: Trial-1 Mobile Robot Experiment - Control Input Evolution
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Figure 4.21: Trial-2 Mobile Robot Experiment - State Evolution
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Figure 4.22: Trial-2 Mobile Robot Experiment - Parameter Evolution
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Figure 4.23: Trial-2 Mobile Robot Experiment - Output Evolution
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Figure 4.24: Trial-2 Mobile Robot Experiment - Control Input Evolution

56



0 50 100 150 200 250 300

Iterations

-300

-250

-200

-150

-100

-50

0
Trial - 3 -Mobile Robot Experiment--Stable State evolution LCA-2

Figure 4.25: Trial-3 Mobile Robot Experiment - State Evolution
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Figure 4.26: Trial-3 Mobile Robot Experiment - Parameter Evolution
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Figure 4.27: Trial-3 Mobile Robot Experiment - Output Evolution
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Figure 4.28: Trial-3 Mobile Robot Experiment - Control Input Evolution
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Figure 4.29: Trial-4 Mobile Robot Experiment - State Evolution

61



0 50 100 150 200 250 300

Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Trial - 4 - Mobile Robot Experiment-Parameter Learning LCA-2

Figure 4.30: Trial-4 Mobile Robot Experiment - Parameter Evolution
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Figure 4.31: Trial-4 Mobile Robot Experiment - Output Evolution
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Figure 4.32: Trial-4 Mobile Robot Experiment - Control Input Evolution
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Experimental results obtained resemble delayed simulation results presented in

previous section. This can be attributed to delays introduced in the system during

data transmission. As seen in trial -2 and trial-3, the system was able to recover from

disturbances due to occlusions. Trial-4 demonstrates the robustness of the algorithm

to external disturbances. The system is subjected to disturbances due to occlusion,

which are random, as well as a deterministic disturbance applied to the system.

The last deviation from origin in Figure 4.29 is due to a deterministic disturbance

applied, while others are due to occlusion. As evident, the system was able to resist

disturbances and get back to goal state as discussed. It is, therefore, concluded that

LCA-2 is suitable for real-time applications.

4.1.7 Data from Experiments - LCA-1

Experimental data obtained by running LCA-1 is presented in this section. Agent

preference parameters θ1, θ2, and the state weighting matrix P in the cost function

2.6 chosen are different to experiment trials conducted for LCA-2. This is to ensure

that the control outputs generated are with in actuation limits applicable for Hercules

robots. Values chosen are θ1 = 0.2, θ2 = 0.4,

P =

 15.04203 −9.030024

−9.030024 15.04203

 .
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Results are given below:
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Figure 4.33: Mobile Robot Experiment - State Evolution
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Figure 4.34: Mobile Robot Experiment - Output Evolution

67



0 200 400 600 800 1000 1200

Iterations

0

10

20

30

40

50

60

70

80

90
LCA-1 -Mobile Robot Experiment-Control inputs applied

Figure 4.35: Mobile Robot Experiment - Control Input Evolution
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As seen, without any occlusions, LCA-1 experimental evolution is smoother com-

pared to LCA-2. However, LCA-1 failed to resist disturbances and the system became

unstable with occlusion as well as with added disturbances.

4.1.8 Comparison: LCA-2 v LCA-1

4.1.9 Reaction to disturbances after learning

Since LCA-2, as mentioned is farsighted compared to LCA-1, when subjected to

a disturbance after learning, MAS running LCA-2 reacts better compared to MAS

running LCA-1. Consider a 2 agent 2 state system with parameters θ1 = 40, θ2 = 80,

θmax = 100 and θmin = 0.1, at initial state [-100; -120] and matrices

A =

 0.5 0.1

3 0.9

B =

 1 2

3 7

Q =

 0.2 0.1

0.1 0.4


. After the initial learning phase, when the agents are at Nash equilibrium, a distur-

bance is applied and the state of the system is moved from origin to [3000;5000] at

time step 100. Reaction of a MAS running LCA-1 and LCA-2 are shown in Figure

4.36. As seen, MAS with LCA-1 overreacts compared to LCA-2. A similar behavior

is observed with multiple system examples. It is observed that during initial learning

phase, LCA-1 provides gradual change in states and controls compared to LCA-2,

whereas after learning LCA-2 provides a gradual change in states and controls in

response to disturbances. During learning, however, the rate of change in states and

controls obtained with LCA-2 are not prohibitively bad for load transport.
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Figure 4.36: Reaction to a Disturbance LCA-1 v LCA-2
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4.1.10 Stability of MAS with small P or Q elements

Closed-loop dynamics of MAS running LCA-1 are given by equation 2.9. The

characteristic matrix of the closed-loop system tends to an Identity matrix when

elements of P or Q matrices are made smaller. This makes the closed-loop system

unstable/marginally stable. The same systems, however, can be stabilized when

using LCA-2. Following examples demonstrate this behavior. Consider the system

presented in the subsection Reaction to disturbances after learning with P or Q state

cost weighting matrix as

P =

 0.02 0.01

0.01 0.04

 .

Figure 4.37 compares state evolution with LCA-1 and LCA-2. Consider another MAS

with following parameters and matrices: θ1 = 50, θ2 = 90, θmax = 100 and θmin = 0.1,

A =


1 3 2

3 1 5

2 9 7

B =


1 4 2 5

3 5 7 3

2 7 1 2

Q =


0.02 0 0

0 0.03 0

0 0 0.05

 .

State dynamics with LCA-2 and LCA-1 are shown in Figure 4.38. MAS which are

unstable with LCA-1 are asymptotically stable with LCA-2. This is as a result of

farsightedness v shortsightedness of LCA-2 and LCA-1 respectively.
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E.g.1-Stable system with small P matrix-LCA-2
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Figure 4.37: Example 1: Stability for Small P,Q Matrices - LCA-1 vs LCA-2
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E.g.2-Stable system - small P matrix-LCA-2

0 10 20 30 40 50
-8000

-6000

-4000

-2000

0

2000

4000

6000
Stable State evolution with LCA-2

E.g.2-Unstable system - small P matrix-LCA-1

0 10 20 30 40 50
-8

-7

-6

-5

-4

-3

-2

-1

0
10 52 Unstable State evolution with LCA-1

Figure 4.38: Example 2: Stability for Small P,Q Matrices - LCA-1 vs LCA-2
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4.1.11 LCA-2 v LCA-1 under learning failure

LCA-1 and LCA-2 behaviors when learning algorithm fails altogether is analyzed

in this section. Figures 4.39, 4.40, and 4.41 present state evolution of multi-agent

systems System - 1, System - 2 and System - 4 presented in Simulation Results and

Comparison subsection with LCA-2 and LCA-1 algorithms. As seen in Figure 4.39

and Figure 4.40 , Systems 1, 2 running LCA-2 asymptotically converge to goal state

even without any learning, whereas the same systems running LCA-1 are unstable.

However for System - 4, as shown in 4.41, both LCA-1 and LCA-2 are unstable without

learning. Thus even with no learning some systems running LCA-2 are stable, whereas

with learning failure all systems running LCA-1 are becoming unstable. Reason as to

why System-4 with learning failure became unstable with LCA-2 needs to be analyzed.
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System-1-State evolution with no learning LCA-2 - Worst case
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Figure 4.39: System-1 Learning Failure LCA-1 vs LCA-2
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System-2-State evolution with no learning LCA-2 - Worst case
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Figure 4.40: System-2 Learning Failure LCA-1 vs LCA-2
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System-4-State evolution with no learning LCA-2 - Worst case
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System-4-State evolution with no learning LCA-1 - Worst case
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Figure 4.41: System-4 Learning Failure LCA-1 vs LCA-2
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Chapter 5

SUMMARY AND FUTURE WORK

5.1 Summary

This thesis work accomplished the following tasks:

• A new algorithm LCA-2 for Multi Agent Systems with information asymmetry

is proposed and tested out in simulations and on a real system.

• The algorithm LCA-2 is found to be asymptotically stable for all systems con-

sidered.

• The new algorithm used BLAME-ALL methodology for successful learning.

• Hardware implementation of the algorithm is successfully carried out on two

mobile robots. Results are encouraging. Real-time experimental data matched

closely with simulated data.

• Discrete Linear Quadratic regulator output as a function of control cost weight-

ing parameters (θi - diagonal elements of R matrix in standard LQR cost func-

tion (2.15)) of each agent is analyzed. In all the trials carried out it is found

that, with all other except one parameter constant, the corresponding agent’s

control output decreases monotonically with increase in parameter value θi.

• Algorithm LCA-2 is compared with LCA-1. LCA-2 outperforms LCA-1 in the

following aspects. It is to be noted that this is a exploratory comparison analysis

between LCA-1 and LCA-2.
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– After the completion of learning process, when the Multi-Agent system

is in Nash equilibrium, LCA-2 is found to react better to disturbances

compared to LCA-1

– Multi-Agent systems with state cost weighting matrix (P/Q) elements close

to zero are found to exhibit instability with LCA-1. The same systems are

stabilized with LCA-2. Thus the choice of state cost weighting matrix

(P/Q) elements is limited with LCA-1 compared to LCA-2.

– Under learning failure it is seen that a Multi Agent system running LCA-2

can still be asymptotically stable. However, with learning failure a Multi

Agent system running LCA-1 is always unstable.

– It can be concluded that both algorithms LCA-1 and LCA-2 have their own

advantages and disadvantages over the other and are suited for different

applications.

• Load transport using two mobile robots is successfully demonstrated albeit in-

directly, when it is found that the lateral difference between robots running

LCA-2 don’t change as much. Load transport is demonstrated using LCA-1 as

well.

5.2 Future work

The following mathematical proofs are required to be able to confirm the usability

of LCA-2

• Monotonicity of ui with θi variation needs to be proved.

• A hard guarantee on the learning algorithm needs to be obtained, in the form

of number of time steps needed to get learning error down to a threshold.
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• The stability of the MAS running LCA-2 needs to be proved.

• The algorithm can be extended to trajectory tracking by changing the cost

functions used at each agent.

• Algorithm can be extended to work for Human-Robot interaction where one

robot operated manually and the other autonomously.

• Several assumptions are made in algorithms LCA-1 and LCA-2, the most gen-

eral case of these algorithms would be when agents have no clue of what other

other agent cost functions are. Work can be carried out in this direction.
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APPENDIX A

PYTHON PROGRAMS USED FOR EXPERIMENTAL VERIFICATION
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A.1 Python code used for running Learning and Control Algorithm 2:

#!/usr/bin/env python2.7
from __future__ import division
from control.matlab import dare
from numpy import dot, sum, tile, linalg
from numpy.linalg import inv
from numpy import linalg as LA
import numpy as np
from time import gmtime, strftime
from scipy.linalg import block_diag
import time, sys, signal, atexit
import math
import pdb
import scipy.io as sio
from numpy.linalg import multi_dot
import zmq
import rospy
import os
from vicon_bridge.msg import Markers
from geometry_msgs.msg import Point

moment=strftime("%Y-%b-%d__%H_%M_%S",time.localtime())
# to write states to a matlab file:
matfile1 = 'states'+moment+'.mat'

# to write learnt R as it evolves to a matrix:
matfile2 = 'LearntR'+moment+'.mat'

# to write control inputs actually applied to the robots:
matfile3 = 'AppliedControl'+moment+'.mat'

# to write outputs to a matlab file:
matfile4 = 'Outputs'+moment+'.mat'

messageProcessingIndex = 0
trueIndex = 0
port = "5556"
context = zmq.Context()
socket = context.socket(zmq.PUB)

#needs to be the same as current IP
socket.bind("tcp://192.168.1.4:%s" % port)

A = np.array([[0.8597,0.0],[0.0,0.8597]])
B = np.array([[0.0116, 0.0],[0.0, 0.0116]])
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C = np.array([[0.1001, 0.1001],[ -0.2003, 0.2003]])
D = np.array([[0.0,0.0],[0.0,0.0]])
Q = 100*dot(C.T,C)

Cinv = inv(C) # will be used in extracting X from Y, the observations

# variable to store learnt R matrices:
Learnt_Rstorage = [np.array([[1.0,1.0]])]
X = np.array([[0.0],[0.0]])
#Y = dot(C,X)
u1_observed = 0
u2_observed = 0

X_iter = [] # to store states iteratively as a list
Y_iter = [] # to store states iteratively as a list
U_applied = [] # to store the sequence of U's applied to the system as a list

traMat = np.eye(2)

# to count the times when occlusion happened because of MOCAP system
Occlusioncounter = 0

def findTransfromationMatrix(robot1MocapCoordinates, robot2MocapCoordinates):
# multiply all incoming position coordinates with the transformaton matrix

global traMat
global messageProcessingIndex

r1M = robot1MocapCoordinates # assume r1M to be a 2x1 vector
r2M = robot2MocapCoordinates

try:

tempMat = inv(np.array([[r1M[0,0], r1M[1,0]],
[r2M[0,0], r2M[1,0]]]))

dInt = LA.norm(r1M - r2M) # distance between two points
ab1 = dot(tempMat, np.array([[-60],[-60]]))
ab2 = dot(tempMat, np.array([[dInt/2],[-dInt/2]]))
transfromationMatrix = np.array([[ab1[0,0], ab1[1,0]],

[ab2[0,0], ab2[1,0]]])

except IndexError as ie:
print ('transformation matrix cant be found since \

input data is empty')
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messageProcessingIndex = 0
raise ie

print('transfromationMatrix:')
print(transfromationMatrix)
return transfromationMatrix

def findTransfromationMatrixdiff(robot1MocapCoordinates\
, robot2MocapCoordinates):

# multiply all incoming position coordinates with the transformaton matrix
global traMat
global messageProcessingIndex

r1M = robot1MocapCoordinates # assume r1M to be a 2x1 vector
r2M = robot2MocapCoordinates

try:

tempMat = inv(np.array([[r1M[0,0], r1M[1,0]],
[r2M[0,0], r2M[1,0]]]))

# dInt = LA.norm(r1M - r2M) # distance between two points
dInt = abs(r1M[0,0] - r2M[0,0]) # distance between two points
ab1 = dot(tempMat, np.array([[-65],[-55]]))
ab2 = dot(tempMat, np.array([[dInt/2],[-dInt/2]]))
transfromationMatrix = np.array([[ab1[0,0], ab1[1,0]],

[ab2[0,0], ab2[1,0]]])

except IndexError as ie:
print ('transformation matrix cant be found since input \

data is empty')
messageProcessingIndex = 0
raise ie

print('transfromationMatrix:')
print(transfromationMatrix)
return transfromationMatrix

def agentlearning(A,B,Q,R_est,u_obs,X,theta_max,theta_min,ForAgent):

# for now considering only one input at each agent
# this function provides an update for learnt theta's for each agent
# this is the crux of learning algorithm
# ForAgent - for whom learning is taking place
# estimation for u1 is done at agent 1 as well,
# it doesn't matter where the
# learning is being carried out.
# running the learning loop 10 times per one iteration of control loop
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# u_obs - observed value of (ForAgent) control by (atAgent).
# Observation will be same everywhere

# It starts from 0.
# (N_iter+1) times learning loop runs per a run of control loop
N_iter = 10

# Est_R is the R matrix used for estimation in the function:
Est_R = np.copy(R_est, order='k')
[Sinf_thetaEst,L_thetaEst,G_thetaEst] = dare(A,B,Q,Est_R,S=None, E=None)
U_est = - dot(G_thetaEst , X)
u_est = U_est[ForAgent,0]

if (abs(u_est - u_obs) < 1e-5): # set precision for estimation
return Est_R

Est_R_MAX = np.copy(R_est, order='k')
# agent indexing should start from 0
Est_R_MAX[ForAgent,ForAgent] = theta_max
[Sinf_thetaMax,L_thetaMax,G_thetaMax] = dare(A,B,Q,Est_R_MAX\

,S=None, E=None)

Est_R_MIN = np.copy(R_est, order='k')
Est_R_MIN[ForAgent,ForAgent] = theta_min
[Sinf_thetaMin,L_thetaMin,G_thetaMin] = dare(A,B,Q,Est_R_MIN\

,S=None, E=None)

# finding exteremes and intial slope

U_max = - dot(G_thetaMax , X)
u_max = U_max[ForAgent,0]
U_min = - dot(G_thetaMin , X)
u_min = U_min[ForAgent,0]

# multiplication factor, takes values 1 or -1 dep on some rules
mulfac = 1
theta_est = R_est[ForAgent,ForAgent]

slope = (u_max - u_min)/(theta_max - theta_min)
endpoint1 = np.array([[theta_est],[u_est]])

if (slope > 0) and (u_obs < u_est):
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mulfac = -1

if (slope < 0) and (u_obs > u_est):
mulfac = -1

if (mulfac == 1):
endpoint2 = np.array([[theta_max],[u_max]])

if (mulfac == -1):
endpoint2 = np.array([[theta_min],[u_min]])

for i in range(0, N_iter):
Invslope = (endpoint2[0,0] - endpoint1[0,0])\
/(endpoint2[1,0] - endpoint1[1,0])
theta_est_new = endpoint1[0,0] + Invslope\
* (u_obs - endpoint1[1,0])
Est_R[ForAgent,ForAgent] = theta_est_new
[Sinf_thetaEst,L_thetaEst,G_thetaEst] = \
dare(A,B,Q,Est_R,S=None, E=None)
U_est_new = - dot(G_thetaEst , X)
u_est_new = U_est_new[ForAgent,0]

if (((u_est_new) - (u_obs)) \
* ((u_obs) - (endpoint2[1,0]))) > 0 :
endpoint1 = np.array([[theta_est_new],[u_est_new]])

else:
endpoint2 = np.array([[theta_est_new], [u_est_new]])

theta_est = theta_est_new # not being used anywhere

return Est_R

def callback(Data):
global messageProcessingIndex
global Occlusioncounter
global X_iter
global Y_iter
global Learnt_Rstorage
global U_applied
global traMat
global matfile1
global matfile2
global matfile3
global X
global Y
global u1_observed
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global u2_observed
global trueIndex
occlusionflag = 0

theta_max = 100
theta_min = 0.001;
theta1 = 0.6
theta2 = 0.3
R1_control = block_diag(theta1, 1) # for the control matrix at agent 1
R2_control = block_diag(1, theta2) # for the control matrix at agent 2

#todo ensure that marker 0 is always one robot and marker 1 is the other one

try:
robot1Pose = np.array([[Data.markers[0].translation.x]\

,[Data.markers[0].translation.y]])
robot2Pose = np.array([[Data.markers[1].translation.x]\

,[Data.markers[1].translation.y]])

robot1Pose = robot1Pose*0.001 #to convert mocap coordinates to meters
robot2Pose = robot2Pose*0.001
messageProcessingIndex = messageProcessingIndex + 1

except IndexError:
print('Occlusion happened. Ensure markers are in \

the field of view of VICON')
occlusionflag = 1
Occlusioncounter = Occlusioncounter + 1

try:
if messageProcessingIndex == 1:

# find the transformation matrix
traMat = findTransfromationMatrix(robot1Pose, robot2Pose)

if messageProcessingIndex > 1: # perform learning as soon as you observe
R_hat = block_diag(Learnt_Rstorage[(trueIndex -1)][0,0]\

,Learnt_Rstorage[(trueIndex -1)][0,1])
# Theta 1 learning, agents start at 0. So agent 0
Rhat_theta1_update = agentlearning(A,B,Q,R_hat,u1_observed,X\

,theta_max,theta_min, 0)
# Theta 2 learning, agents start at 0. So agent 1
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Rhat_theta2_update = agentlearning(A,B,Q,R_hat,u2_observed,X\
,theta_max,theta_min, 1)

Learnt_Rstorage.append(np.array([[Rhat_theta1_update[0,0]\
,Rhat_theta2_update[1,1]]]))

#X_iter = np.concatenate((X_iter, X))
X_iter.append(X.T)
#Y_iter = np.concatenate((Y_iter, Y))
Y_iter.append(Y.T)
# form correct control matrices
R1_control[1,1] = Rhat_theta2_update[1,1]
R2_control[0,0] = Rhat_theta1_update[0,0]

if occlusionflag == 1 and messageProcessingIndex > 1:
# using predicted value for the state
X = dot(A,X) + dot(B,np.array([[u1_observed],[u2_observed]]))
Y = dot(C,X)

if occlusionflag == 0:
# robot one pose in Experiment coordinate system:
ro1ExpPos = dot(traMat, robot1Pose)
# robot two pose in Experiment coordinate system
ro2ExpPos = dot(traMat, robot2Pose)
Y = np.array([[0.5*(ro1ExpPos[0,0] + ro2ExpPos[0,0])],

[(ro2ExpPos[0,0] - ro1ExpPos[0,0])]])
X = dot(Cinv, Y)

if messageProcessingIndex > 0:
[Sinf_ag1,L_ag1,G_ag1] = dare(A,B,Q,R1_control,S=None, E=None)
[Sinf_ag2,L_ag2,G_ag2] = dare(A,B,Q,R2_control,S=None, E=None)
U1_observed = - dot(G_ag1 , X) # 2 x 1 vector
U2_observed = - dot(G_ag2 ,X) # 2 x 1 vector
u1_observed = U1_observed[0,0] # control to be applied at agent 1
u2_observed = U2_observed[1,0] # control to be applied at agent 2
# sending control to robots:
socket.send_string("%4.3f %4.3f" % (u1_observed, u2_observed))
U_applied.append(np.array([[u1_observed, u2_observed]]))
trueIndex = trueIndex + 1

if trueIndex == 400:
# sending control to robots:
socket.send_string("%4.3f %4.3f" % (-30, 0))

except KeyboardInterrupt:
print ('Interrupted due to abnormal robot behaviour or \

intentionally')
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sio.savemat(matfile1, mdict={'states' : X_iter}, oned_as = 'row')
sio.savemat(matfile4, mdict={'Outputs' : Y_iter}, oned_as = 'row')
sio.savemat(matfile2, mdict={'LearntR' : Learnt_Rstorage}\

, oned_as = 'row')
sio.savemat(matfile3, mdict={'AppliedControl' : U_applied}\

, oned_as = 'row')
for dummy in range(50):

socket.send_string("%4.3f %4.3f " % (0, 0))
socket.send_string("0.0 0.0")

try:
sys.exit(0)

except SystemExit:
os._exit(0)

def main():

# to start camera and motion capture system for recording the trial
time.sleep(90)

try:
rospy.init_node('subscriber', anonymous =True)
sub = rospy.Subscriber('/vicon/markers',Markers\

,callback,queue_size=1)
rospy.spin()
print ('Interrupted due to abnormal robot behaviour')
for dummy in range(50):

socket.send_string("%4.3f %4.3f " % (0.0, 0.0))
socket.send_string("0.0 0.0")

print ('Occlusioncounter:')
print (Occlusioncounter)
sio.savemat(matfile1, mdict={'states' : X_iter}\

, oned_as = 'row')
sio.savemat(matfile2, mdict={'LearntR' : Learnt_Rstorage}\

, oned_as = 'row')
sio.savemat(matfile3, mdict={'AppliedControl' : U_applied}\

, oned_as = 'row')
sio.savemat(matfile4, mdict={'Outputs' : Y_iter}\

, oned_as = 'row')

try:
sys.exit(0)

except SystemExit:
os._exit(0)
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except rospy.ROSInterruptException:
print('scrwed')
pass

if __name__ == '__main__':
main()

A.2 Python code used for running Learning and Control Algorithm 1:

#!/usr/bin/env python2.7
from __future__ import division
from numpy import dot, sum, tile, linalg
from numpy.linalg import inv
from numpy import linalg as LA
import numpy as np
from time import gmtime, strftime
from scipy.linalg import block_diag
import time, sys, signal, atexit
import math
import pdb
import scipy.io
from numpy.linalg import multi_dot
import zmq
import sys
import time
import rospy
import os
from vicon_bridge.msg import Markers
from geometry_msgs.msg import Point

moment=strftime("%Y-%b-%d__%H_%M_%S",time.localtime())
matfile1 = 'states'+moment+'.mat' # to write states to a matlab file
matfile2 = 'LearntR'+moment+'.mat' # to write learnt R as

#it evolves to a matrix
matfile3 = 'AppliedControl'+moment+'.mat' # to write control inputs actually

# applied to the robots
matfile4 = 'Outputs'+moment+'.mat' # to write outputs to a matlab file

messageProcessingIndex = 0
port = "5556"
context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.bind("tcp://192.168.1.4:%s" % port)
A = np.array([[0.8597,0.0],[0.0,0.8597]])
B = np.array([[0.0116, 0.0],[0.0, 0.0116]])
B1 = np.array([[0.0116],[0.0]])
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B2 = np.array([[0.0],[0.0116]])

C = np.array([[0.1001, 0.1001],[ -0.2003, 0.2003]])
D = np.array([[0.0,0.0],[0.0,0.0]])
P = 300*dot(C.T,C)
Cinv = inv(C) # will be used in extracting X from Y, the observations
T1 = np.array([[1.0,0.0]])
T2 = np.array([[0.0,1.0]])
X_iter = [] # to store states iteratively
U_iter = [] # to store control input, in this case velocity
U_hat_iter = [] # to store virtual nash equilibrium values
u1_hat_iter = [] # to store virtual nash equilibrium values
u2_hat_iter = [] # to store virtual nash equilibrium values
# Parameters
theta1 = .2
theta2 = .4

theta=np.array([[theta1],[theta2]])
theta1_hat = 1
theta2_hat = 1

R = block_diag(theta1 * np.eye(1) , theta2 * np.eye(1))
R_hat = block_diag(theta1_hat * np.eye(1) , theta2_hat * np.eye(1))

G1 = dot(B.T, P)
G2 = dot(G1, B)
G3 = dot(B1.T, P)
G4 = dot(G3, B1)
G5 = dot(B2.T, P)
G6 = dot(G5, B2)
G7 = B - dot(B1, T1)
G8 = B - dot(B2, T2)
#traMat = np.eye(1)
Occlusioncounter = 0

def findTransfromationMatrix(robot1MocapCoordinates\
,robot2MocapCoordinates):

# multiply all incoming position coordinates with the transformaton matrix
global traMat
global messageProcessingIndex

r1M = robot1MocapCoordinates # assume r1M to be a 2x1 vector
r2M = robot2MocapCoordinates
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try:

tempMat = inv(np.array([[r1M[0,0], r1M[1,0]],
[r2M[0,0], r2M[1,0]]]))

dInt = LA.norm(r1M - r2M)
ab1 = dot(tempMat, np.array([[-60],[-60]]))
ab2 = dot(tempMat, np.array([[dInt/2],[-dInt/2]]))
transfromationMatrix = np.array([[ab1[0,0], ab1[1,0]],

[ab2[0,0], ab2[1,0]]])

except IndexError as ie:
print ('transformation matrix cant be found since input data\

is empty')
messageProcessingIndex = 0
raise ie

print('transfromationMatrix:')
print(transfromationMatrix)
return transfromationMatrix

def findTransfromationMatrixdiff(robot1MocapCoordinates\
, robot2MocapCoordinates):
# multiply all incoming position coordinates with the transformaton matrix
global traMat
global messageProcessingIndex

r1M = robot1MocapCoordinates # assume r1M to be a 2x1 vector
r2M = robot2MocapCoordinates

try:

tempMat = inv(np.array([[r1M[0,0], r1M[1,0]],
[r2M[0,0], r2M[1,0]]]))

# dInt = LA.norm(r1M - r2M) # distance between two points
dInt = abs(r1M[0,0] - r2M[0,0]) # distance between two points
ab1 = dot(tempMat, np.array([[-65],[-55]]))
ab2 = dot(tempMat, np.array([[dInt/2],[-dInt/2]]))
transfromationMatrix = np.array([[ab1[0,0], ab1[1,0]],

[ab2[0,0], ab2[1,0]]])

except IndexError as ie:
print ('transformation matrix cant be found since\
input data is empty')
messageProcessingIndex = 0
raise ie
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print('transfromationMatrix:')
print(transfromationMatrix)
return transfromationMatrix

def callback(Data):
global messageProcessingIndex
global Occlusioncounter
global X_iter
global U_iter
global U_hat_iter
global R_hat
global theta1_hat
global theta2_hat
global traMat
global u1_hat_iter
global u2_hat_iter
global matfile1
global matfile2
global matfile3
global matfile4

print('theta1_hat:')
print(theta1_hat)
print('theta2_hat:')
print(theta2_hat)

try:
robot1Pose = np.array([[Data.markers[0].translation.x]\

,[Data.markers[0].translation.y]])
robot2Pose = np.array([[Data.markers[1].translation.x]\

,[Data.markers[1].translation.y]])

robot1Pose = robot1Pose*0.001 #to convert mocap coordinates to meters
robot2Pose = robot2Pose*0.001 #to convert mocap coordinates to meters
messageProcessingIndex = messageProcessingIndex + 1
if messageProcessingIndex == 1:

# find the transformation matrix
# traMat = findTransfromationMatrix(robot1Pose, robot2Pose)

traMat = findTransfromationMatrixdiff(robot1Pose, robot2Pose)
# findTransfromationMatrixdiff
#Karthik
# if messageProcessingIndex == 30:
# raise KeyboardInterrupt

# if messageProcessingIndex == 15:
# raise IndexError
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# robot one pose in Experiment coordinate system:
ro1ExpPos = dot(traMat, robot1Pose)

# robot one pose in Experiment coordinate system:
ro2ExpPos = dot(traMat, robot2Pose)

Y = np.array([[0.5*(ro1ExpPos[0,0] + ro2ExpPos[0,0])],
[(ro2ExpPos[0,0] - ro1ExpPos[0,0])]])

X = dot(Cinv, Y)

X_iter.append(X.T)

f_X = dot(A,X) # f(X(k)) defined in the paper

# virtual nash equilibrium calculation
U_hat = -1 * multi_dot([inv(R_hat + G2) , G1, f_X])
U_hat_iter.append(U_hat.T)
local1 = (f_X + dot(G7,U_hat))
local2 = (f_X + dot(G8,U_hat))

# calculating corresponding control inputs for agent1 & 2
u1 = -1 * multi_dot([inv((theta1 * np.eye(1)) + G4), G3,local1])
u1_hat_iter.append(u1)

u2 = -1 * multi_dot([inv((theta2 * np.eye(1)) + G6), G5,local2])
# print('u2:')
# print(u2)

u2_hat_iter.append(u2)

socket.send_string("%4.3f %4.3f" % (u1[0,0], u2[0,0]))

e1 = (-1 * multi_dot([u1.T, G3, (local1 + dot(B1,u1))]))\
- theta1_hat * dot(u1.T, u1)
theta1_hat = theta1_hat + e1 * pow(dot(u1.T, u1), -1)

# update of paramter estimates in robot 1
e2 = (-1 * multi_dot([u2.T, G5, (local1 + dot(B2,u2))]))\
- theta2_hat * dot(u2.T, u2)
theta2_hat = theta2_hat + e2 * pow(dot(u2.T, u2), -1)

# updated parameter block diagonal matrix
R_hat = block_diag(theta1_hat * np.eye(1) , theta2_hat\
* np.eye(1))
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except IndexError:
print('Occlusion happened')
Occlusioncounter = Occlusioncounter + 1

# below piece of code can be removed. It doesn't serve any purpose

except KeyboardInterrupt:
print ('Interrupted due to abnormal robot behaviour')
scipy.io.savemat(matfile1, mdict={'states' : X_iter}\

, oned_as = 'row')
scipy.io.savemat(matfile2, mdict={'u1hat' : u1_hat_iter}\

, oned_as = 'row')
scipy.io.savemat(matfile4, mdict={'u2hat' : u2_hat_iter}\

, oned_as = 'row')
scipy.io.savemat(matfile3, mdict={'UhatIter' : U_hat_iter}\

, oned_as = 'row')
for dummy in range(50):

socket.send_string("%4.3f %4.3f" % (0.0, 0.0))
socket.send_string("0.0 0.0")

try:
sys.exit(0)

except SystemExit:
os._exit(0)

# X_iter.append(X.T)

def main():

time.sleep(90)

try:
rospy.init_node('subscriber', anonymous =True)
sub = rospy.Subscriber('/vicon/markers',Markers,callback\

,queue_size=1)
rospy.spin()
print ('Interrupted due to abnormal robot behaviour')
for dummy in range(50):

socket.send_string("%4.3f %4.3f" % (0, 0))
socket.send_string("0.0 0.0")

scipy.io.savemat(matfile1, mdict={'states' : X_iter}, \
oned_as = 'row')

scipy.io.savemat(matfile2, mdict={'u1hat' : u1_hat_iter}\
, oned_as = 'row')

scipy.io.savemat(matfile4, mdict={'u2hat' : u2_hat_iter}\
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, oned_as = 'row')
scipy.io.savemat(matfile3, mdict={'UhatIter' : U_hat_iter}\

, oned_as = 'row')
print ('Occlusioncounter:')
print (Occlusioncounter)

try:
sys.exit(0)

except SystemExit:
os._exit(0)

except rospy.ROSInterruptException:
print('scrwed')
pass

if __name__ == '__main__':
main()
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