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ABSTRACT 

     In medical imaging, a wide variety of methods are used to interrogate structural and 

physiological differences between soft tissues. One of the most ubiquitous methods in 

clinical practice is Magnetic Resonance Imaging (MRI), which has the advantage of 

limited invasiveness, soft tissue discrimination, and adequate volumetric resolution. A 

myriad of advanced MRI methods exists to investigate the microstructural, physiologic 

and metabolic characteristics of tissue.  For example, Dynamic Contrast Enhanced (DCE) 

and Dynamic Susceptibility Contrast (DSC) MRI non-invasively interrogates the 

dynamic passage of an exogenously administered MRI contrast agent through tissue to 

quantify local tracer kinetic properties like blood flow, vascular permeability and tissue 

compartmental volume fractions. Recently, an improved understanding of the biophysical 

basis of DSC-MRI signals in brain tumors revealed a new approach to derive multiple 

quantitative biomarkers that identify intrinsic sub-voxel cellular and vascular 

microstructure that can be used differentiate tumor sub-types. One of these characteristic 

biomarkers called Transverse Relaxivity at Tracer Equilibrium (TRATE), utilizes a 

combination of DCE and DSC techniques to compute a steady-state metric which is 

particularly sensitive to cell size, density, and packing properties. This work seeks to 

investigate the sensitivity and potential utility of TRATE in a range of disease states 

including Glioblastomas, Amyotrophic Lateral Sclerosis (ALS), and Duchenne’s 

Muscular Dystrophy (DMD). The MRC measures of TRATE showed the most promise 

in mouse models of ALS where TRATE values decreased with disease progression, a 

finding that correlated with reductions in myofiber size and area, as quantified by 

immunohistochemistry. In the animal models of cancer and DMD, TRATE results were 
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more inconclusive, due to marked heterogeneity across animals and treatment state. 

Overall, TRATE seems to be a promising new biomarker but still needs further 

methodological refinement due to its sensitivity to contrast to noise and further 

characterization owing to its non-specificity with respect to multiple cellular features 

(e.g. size, density, heterogeneity) that complicate interpretation. 
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CHAPTER 1 
INTRODUCTION 

Magnetic Resonance Imaging Basics 

     Over the course of recent decades advances in medical imaging has created new 

opportunities to non-invasively interrogate the human body. One of the most prominent 

and ubiquitous methods is Magnetic Resonance Imaging (MRI), developed in the 1970s 

stemming from earlier research in physics investigating the polarization of nuclear spins, 

like protons, and their net magnetization when placed in a strong magnetic field as well 

as their response to radiofrequency (RF) radiation [1]. In general, MRI relies on the 

excitation of spins using radiofrequency pulses and detection of the subsequent RF 

radiation that occurs during spin relaxation.  The proton signal is measured via a RF coil, 

leveraging Faraday’s Law of Induction. Spatial localization can be achieved through the 

application of magnetic gradient fields that introduce spatially dependent frequency and 

phase of proton spins in a main magnetic field. After these perturbations, the recovery, 

also known as the relaxation, of the protons depends on the specific characteristics of the 

local proton environment and tissue composition. Since the body is comprised of 90% 

water molecules from soft tissues that are diverse in chemical structure and composition, 

it is possible to discriminate between soft tissues based on the proton populations in each 

tissue. For example, consider the difference in proton concentration between the 

cerebrospinal fluid (CSF) and grey matter.  In the CSF, a high proportion of hydrogen 

protons are present due to the fluid which provides a brighter signal compared to the grey 

matter containing a lower proportion of protons. In addition to soft tissue discrimination, 
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advance MRI techniques allow for the interrogation of factors such as water movement, 

chemical composition, and hemodynamic properties.  

      Before continuing to more advance techniques such as dynamic contrast imaging, it is 

useful to review the concepts of relaxation first. In the presence of a large magnetic field 

the magnetic moments of proton spins will align creating a net magnetization that is 

preferentially aligned in the direction of the applied field. After application of the RF 

pulse, the net magnetization is rotated away from this main field, which is conventionally 

defined as the Z-direction, and into the transverse (X-Y) plane. In MRI there are two 

main types of relaxation observed and measured as the net magnetization recovers to 

equilibrium.  First, T1 relaxation, or longitudinal relaxation time, characterizes the rate at 

which the net magnetization recovers to the original magnitude and alignment along the 

Z-axis prior to perturbation. As shown in Figure 1.1 the recovery of the Z-magnetization 

as a function of time after the application of the RF pulse (a) as well as the equation 

characterizing the relaxation (b).  

 

Figure 1.1 -Example of T1 Evolution with governing Equations 

 Biophysically, T1 relaxation occurs as the system of protons lose the energy imparted 

through the RF pulse and, accordingly, can be considered thermal relaxation. The energy 

is transferred to surrounding molecules in the external environment through collisions 
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and other electromagnetic interactions. The efficiency of this energy loss depends on the 

local biochemical composition of the tissue [2]. T1 weighted imaging is often used to 

determine structural and anatomic characteristics of tissue such as bulk atrophy in muscle 

and cerebellum, and cortical thickness of grey matter in the brain [2-4].  

 The second type of relaxation is T2 relaxation, which characterizes the rate of the 

decay of the magnetization in the transverse (X-Y) plane of signal. Biophysically, T2 

relaxation occurs through spin-spin interactions, diffusion and dephasing in the presence 

of local (microscopic) static field disturbances. In practice, the transverse magnetization 

decays much faster than dictated by T2 due to macroscopic field inhomogeneities or 

susceptibility induced field distortions. Thus, the observed T2 is defined as T2* and both 

times can be quantified through appropriate pulse sequence design. The general time 

course for T2 decay can be seen in Figure 1.2. 

 

Figure 1.2 - Example of T2 Decay with governing Equations 

 The T1, T2, and T2* relaxation times are the primary contrast mechanisms leveraged 

in the vast majority of clinical imaging. The times can be quantified through specialized 

pulse sequences that repeatedly sample the signal recovery (in the case of T1) or decay (in 
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the case of T2 and T2*) over time. The resulting time profiles can be fit to well 

established logarithmic models of the decay(T2/T2*) or recovery (T1).  

    While these relaxation mechanisms are used to generate soft-tissue contrast in 

anatomic MR, the underlying biophysical basis of MR spin physics and contrast 

mechanism affords numerous opportunities to interrogate many additional relevant 

biological features. Key techniques used in clinical and research practice are MR 

Spectroscopy (MRS), Diffusion Imaging, functional MRI (fMRI), and Perfusion 

Imaging. In each of these sub-types there are a diverse set of techniques to glean more 

information from the proton signal. For example, consider diffusion imaging in which the 

voxel-wise Brownian motion of water movement can be measured by acquiring images 

with specially designed diffusion sensitive gradients [2].  Diffusion Imaging can also be 

leveraged to visualize white matter fiber tracks using the method known as Diffusion 

Tensor Imaging. Magnetic resonance spectroscopy can be used to interrogate the 

chemical composition within tissue by analyzing the chemical shift of molecules that 

have detectable spins (e.g. 1H, 31P, 13C). The MRS technique has been particularly 

useful in analyzing brain tumor environments and progression through monitoring of 

Choline (Cho) and N-acetyl aspartate (NAA) levels and ratios [5]. MRI is not only 

limited to assessing inherent features. With fMRI, composite changes in local blood 

oxygenation, blood flow and blood volume in response to different brain states or 

response to stimuli can be evaluated through dynamic measures of T2*-weighted MRI 

signals. With this technique it is possible to map specific regions of activation in relation 

to speech and language to aid in determining resection boundaries for surgery. 
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     It is the combination of all these techniques, that is used in current clinical practice 

and research. Unlike most other imaging modalities, MRI is able to provide a more 

comprehensive assessment of tissue anatomy, microstructure, physiology and 

biochemical composition, enabling physicians to make more confident diagnosis and 

plans of care. The extraordinary range of contrast mechanisms provided by MRI also 

serves as the basis for the development and application of novel biomarkers investigated 

in the studies described herein. 

Perfusion Imaging Basics 

     Dynamic imaging is often used to characterize the changes in a tissue’s MRI signal 

over time as paramagnetic contrast agent flows through the vasculature, into the 

extravascular space and back again. Intrinsic heterogeneity and pathology-induced 

changes in tissue microstructure give rise to differences in local contrast agent kinetics. 

Original work conducted in 1987 by Villrigner and colleges showed with T2 weighted 

imaging as Gd(DPTA)2- passed through the capillaries that the MRI signal intensity 

decreases [6]. This effect was determined to be caused by a difference between the 

magnetic susceptibility between the capillaries containing contrast and the surrounding 

tissue, inducing field gradients that decreased spin phase coherence and T2* [6]. This 

gave rise to the field that is now called Dynamic Susceptibility Contrast (DSC) MRI,  

which continues to leverage contrast agent induced signal decreases to interrogate local 

hemodynamics, primarily in the brain. Alternatively, it is possible to use Dynamic 

Contrast Enhanced (DCE) MRI which involves a T1 weighted imaging approach to detect 

concentrations of paramagnetic contrast agent and its dynamic passage through tissue. By 

utilizing the shortening effects of contrast agents on T1 relaxation it possible to detect 
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differences in the physiology and pathology of the tissue after the contrast agent is 

allowed to interact with the local environment causing an increase in signal intensity 

from the shortened T1 recovery [7].  

     An important consideration for both DSC-MRI and DCE-MRI are the quantitative 

tools that are needed to determine parameters such as concentration, Cerebral Blood Flow 

(CBF), Cerebral Blood Volume (CBV), Mean Transit Time (MTT), vascular 

permeability and/or the volume fraction of the extravascular, extracellular space (EES). 

For both methods these parameters can be extracted by applying pharmacokinetic models 

of tracer passage through the tissues of interest. Many of these models consider an array 

of hemodynamics features that can change the observed curve such as transfer of contrast 

agent between intravascular, extravascular, intracellular, and extracellular compartments 

[7-10]. Figure 1.2 shows an example two compartment model of contrast agent passage 

in the vasculature. Where kin and kout are the rate constants characterizing the influx and 

efflux of contrast agent into the system. The k1,2 and k2,1 transfer constants describe the 

passage of contrast agent between EES and blood-plasma.  

 

Figure 1.3– Generic Two Compartment Model of Tracer Kinetics 
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Another important caveat of perfusion imaging with MRI is that, as a modality, it does 

not directly detect the administered contrast agent. Rather, it detects the influence of the 

contrast agent on the intrinsic MR relaxation times. Consequently, in order to measure 

the voxel-wise contrast concentration it is necessary to characterize the relationship 

between the relaxivity of the tracer and the change in longitudinal and/or transverse 

relaxation rate ΔR1 and ΔR2, where R1 = 1 /T1 and R2 = 1/T2 [7]. As an example, 

Equation 1.1 shows the relationship between contrast agent concentration, R1 relaxation 

rate change, and the contrast agent relaxivity, where C(t) is the concentration in a given 

voxel at a point in time after contrast has been injected, R1(t) is the relaxation rate time 

profile, r1 is the longitudinal relaxivity of the contrast agent, and R10 is the baseline or 

pre-contrast longitudinal relaxation rate. Note that r1 is a constant that defines how 

effective a contrast agent is at inducing changes in T1. A similar constant and relationship 

can be described for contrast agent based T2 relaxation ranges.  

𝑅"(𝑡) = 𝑟" ∙ 𝐶(𝑡) + 𝑅"+		        (Eq.1.1) 

     A feature that is unique to MRI is that it is not only limited to interrogating the 

passage of contrast agent for hemodynamic characterization, but it can also be used to 

glean inherent microstructural and morphological differences due to the biophysical basis 

of susceptibility-based contrast mechanisms. For example, by utilizing the contrast-agent 

changes in R2 and R2* it possible to obtain measures of mean vessel size in a voxel as 

shown by Tropès group [11]. Sensitivity to these structural characteristics originate from 

the susceptibility differences between tissue compartments (e.g. blood vessels and the 

EES), their volume fractions, their architecture and the induced magnetic field changes in 

response to contrast agent. As theorized by Yablonskiy and Haacke, the resulting signal 
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observed has a dependence on volume fraction, susceptibility of the medium and objects, 

local magnetic field, and the main magnetic field [12]. A subtlety to susceptibility 

contrast MRI methods involves the sensitivity of spin echo (SE) and gradient echo (GRE)  

pulse sequences to the radius of the underlying structures (e.g. vessels). Specifically, 

Kiselev et al. showed in Monte Carlo simulations that GRE sequences are sensitive to 

vessels of all sizes, whereas SE sequences are maximally sensitive to capillary sized 

vessels. [28]. The advantage of combining the two echo sequences provides a sensitivity 

to both large vessel and small vessel radii and enables interrogation of mean vessel size 

in a voxel. 

     The fields of DCE-MRI and DSC-MRI continue to push forward in utilizing 

innovations in hardware and pulse sequence design to allow for improved spatial and 

temporal resolution, extraction of new biomarkers, and standardizing acquisition and 

post-processing approaches to generate more reliable and reproducible results [13-14]. 

These efforts have increased the general use of these methods in both clinical practice 

and research, particularly in the fields of cancer and stroke imaging.  With the increased 

availability of higher field MRI, improved biophysical characterization of contrast 

mechanism and development of  and new types of contrast agents it is expected that this 

mature field will continue to experience the development of new methodologies and 

techniques. 

Magnetic Resonance Cytography 

     Historically, biophysical consideration of DSC-MRI contrast mechanisms focuses on 

the impact of contrast agents confined within vascular structures, because it is assumed 

that contrast agents do not extravasate. While this is typically true in normal brain, in 
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pathologies like cancer, the BBB is disrupted as part of the tumor angiogenic process. 

When this occurs the contrast agent is dynamically distributed between the vasculature 

and extravascular extracellular space. This contrast agent redistribution and its impact on 

perfusion measures required a new theoretical investigation in order to understand the 

factors that influenced the acquired DSC-MRI signals [15-16]. These efforts revealed that 

DSC-MRI data in tissues with a disrupted BBB are heavily influenced by both the 

vascular structure as well as the cellular microstructure (e.g. cell size, spacing, density, 

etc) [17]. This sensitivity to cellular features formed the underlying basis for what we 

now term Magnetic Resonance Cytography.  

Quarles et al developed a heuristical analytic model that characterizes the factors that 

contribute to ΔR2* data collected in brain tumors, including the extravascular 

extracellular (EES), extravascular intracellular (EIS), vascular space, the contrast agent 

concentration in each compartment, T2 contrast agent relaxivity, and the T2* contrast 

agent relaxivity that accounts for the microstructural properties of the vascular and 

extravascular compartment [15]. Soon after the administration of contrast agent, the 

concentration in the vascular space (Cp) and extravascular extracellular space (Ce) will be 

different. But after some time, the tissue of interest reaches a steady-state where Cp and 

Ce reach equilibrium [17]. At equilibrium (when Cp = Ce) there is no longer a 

susceptibility difference between the vascular and extravascular space and they are 

effectively as a single compartment, whose structure is defined by the three-dimensional 

distribution of cells. Note that clinical MRI contrast agents do not enter cells so there 

always remains a susceptibility difference between the vasculature and/or EES and the 

EIS. Another benefit of focusing on equilibrium is that we only need to consider the total 
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tissue contrast agent concentration rather than trying to separately measure the 

concentration in the vessels and in the EES. At equilibrium, the R2* simplifies to 

Equation 1.2, and is a function of tissue contrast agent concentration, volume fractions, 

and compartmentalized relaxivities, where, r2 is the T2 relaxivity of the contrast agent, vi 

is the EIS volume fraction, ve is the EES volume fraction, vp is the vascular volume 

fraction, r*2p and r*2e are the T2* relaxivities of contrast agent in the vascular space and 

EES respectively, and Ct is the concentration in the voxel [17]. 

Δ𝑅2∗ = 0𝑟1 +
23

24526
7𝑣9𝑟19∗ + 𝑣:𝑟1:∗ ;< 𝐶=        (Eq. 1.2) 

The bracketed term in Equation 1.2 consists only of static terms and serves as an effective 

transverse relaxivity that we term the transverse relaxivity at tracer equilibrium (r*2t,eq) or 

TRATE [17]. With this notation TRATE can be computed as:  

𝑇𝑅𝐴𝑇𝐸 = 𝑟1=,:B∗ = CDE∗

FG
    (Eq. 1.3) 

Experimentally, a specialized MRI protocol needs to be employed (beyond 

straightforward single-echo DSC-MRI) for MRC measures of TRATE, which requires 

the simultaneous quantification of ΔR2* (that is free of T1 effects) and ΔR1 so that Ct can 

be directly measured, using the conventional notation found in DCE-MRI (Ct= ΔR1/r1). 

To simultaneously measure ΔR2* and ΔR1 we can utilize a dynamic multi-echo 

acquisition strategy and also collect a pre-contrast T1 map.       

Using computational simulations, Semmineh et al. showed that TRATE is highly 

sensitive to variations in cell size and density. With in-vivo data and ex-vivo histologic 

validation, TRATE was found to significantly differ between brain tumor animal models 

that exhibit dissimilar cellular features. These initial efforts provided the basis for the use 
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of TRATE as a biomarker of cytographic features in a range of pathologies and organs, as 

evaluated herein. 
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CHAPTER 2 

AMYOTROPHIC LATERAL SCLEROSIS MODEL 

Disease Introduction 

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a 

neurodegenerative disease characterized by the progressive loss of upper and lower motor 

neuron function. This loss of function leads to symptoms such as muscular weakness and 

abnormalities early on, then developing into fatal difficulty of breathing and swallowing 

[16,17]. ALS prevalence is 5 cases per 100,000 in the U.S, this may be due to longer life 

expectancies and increased awareness of the disease from advances in medicine [16,18]. 

From onset, the life expectancy of patients tends to be 30 months to 5-10 years and varies 

depending on the type, and anatomic location of onset atrophy [19]. Even so, there are 

many therapies in development and ongoing research that is aimed at stopping 

degeneration of motor neurons or halting the process to extend lifespans [18]. 

     Biomarkers for ALS have been difficult to find and implement [16]. Current 

diagnostic techniques involve electro-conductivity studies, cerebrospinal fluid analysis, 

and neuroimaging [16,20]. Imaging techniques range from analysis of the structure of 

cortico-spinal tracts, cortical thickness and volumetric measurement of the afflicted 

muscle [16,20-23,26]. These techniques include analyzing the differences between 

healthy and diseased tissue utilizing T2 and T2* weighted magnetic resonance imaging 

(MRI) for identifying fat infiltration and ADC [24,25]. In similar disease states where 

muscle dystrophy occurs, MRI has been used to study structural changes associated with 

muscle degeneration [26,27]. 
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      When considering the physiological effects of this disease it is important to 

understand what atrophy does to muscles. Muscle atrophy is considered an active process 

controlled by signaling pathways, in which degradation of muscle growth factors that are 

used in protein synthesis are targeted [29]. Complex signaling pathways and factors are 

involved in normal muscle growth, but in muscular atrophy there are many signaling 

factors that are either inhibited or missing leading to a decrease muscle mass, myo-fiber 

size, and their distribution [29]. In ALS, the loss of α-motor neuron signaling leading to 

atrophy occurs at later stages of the disease where symptoms are already onset, detecting 

the progression of this atrophy is important for prognosis and quality of care. This 

detection of atrophy, is a prime opportunity for TRATE to be utilized for the assessment 

of myofiber changes. 

Methods 

Animal Model 

     In this study 8 SOD1 mice with strain B6.Cg-Tg(SOD1*G93A)1Gur/J and 8 Control 

mice where obtained from Jackson Laboratories. The mice were then imaged at 9 weeks, 

12 weeks, and 15 weeks old to observe onset to late stage progression.  All experiments 

and care for the mice were carried out in accordance with our institution’s animal care 

and use polices. At each time point a control mouse and an ALS mouse were sacrificed 

for histology. Histological analysis was used to quantify the distribution of myofiber 

diameters, and myofiber area and number.  

Image Acquisition 

      The mice were imaged with a 7 Tesla Bruker Scanner utilizing a 72mm transmit and 

read volume coil. Similar to the protocol applied in Semmineh et al. a pre-contrast T1 
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images was acquired using a Variable Recovery Time (VTR) sequence with parameters: 

Repetition Time (TR) = [350ms, 500ms, 1000ms, 1500ms, 3000ms, 5000ms], Echo Time 

(TE) = 11ms, Field of View (FOV) = 30 mm2, Slice Thickness = 1.5mm, Flip Angle (FA) 

= 90°, Matrix = 150x150x6. Once the T1 was acquired, we collected dynamic MRC data 

using  a multi-Echo gradient and spin echo sampling of the FID (GESFIDE) with the 

following parameters: TR = 350ms, 8 Echoes with spacing 1.96ms with start TE1 = 2.4ms 

and end TE8 = 23.7ms, FOV = 30mm2, Slice Thickness = 1.5mm, FA = 90°, Dynamics = 

40, Matrix = 98x98x6x40. A 0.2mM/kg dose of Gadavist (0.1mM/mL concentration) was 

administered after the 5th dynamic.  To administer the contrast agent, a tail vein 

catheterization was performed to allow for an injection administered from a Genie Touch 

Syringe Pump (Lucca Technologies) at a rate of 1ml/min. MRC data was acquired for a 

total of 22 minutes after contrast agent injection. A GRE and SE sequence was utilized in 

order to determine, for the first time, if spin echo based TRATE values could be detected 

in muscle tissues. We focused our analysis in this study on the GRE data. 

Data Analysis 

      In order to obtain relevant T2, T2*, and T1 values, scans underwent a voxel-wise non-

linear fitting utilizing a Levenberg-Marquardt algorithm with MATLAB’s built-in 

lsqcurvefit function to determine relaxation values. In the case of the T1 VTR scan, the 

resulting pre-contrast T1 map was used to obtain dynamic T1 values from the GESFIDE 

sequence. By utilizing the spoiled gradient recalled equation to find instantaneous R1 a 

dynamic curve can be obtained from the first echo of the DSC signal, which has minimal 

T2* contribution [10]. Calculation of pre-contrast T1 signal S0 from the GESFIDE 

sequence is shown in equation 2.1 where α is Flip Angle, TR is repetition time of the 
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GESFIDE sequence, S_ is average baseline signal from the GESFIDE of the first echo 

TE1, and T1 is the pre-contrast T1 map. 

𝑆+ = 𝑆I
JK"I:

LMNMOPQR	STU

JK"I:
LMNMOT∗(RVWS	)U

      (Eq. 2.1) 

From this calculation we can obtain an instantaneous R1 value at each dynamic to 

calculate a ΔR1 value in given voxel with the TE1 signal of the GESFIDE sequence at 

each time timepoint t. 

𝑅1(𝑡) = I"
YD
ln \](=) ^_` SI]a `bc S

](=)I]a`bcS
	d        (Eq. 2.2) 

With ΔR1 values we can use Equation 1.1 and the r1 relaxivity for Gadavist to calculate 

the concentration (Ct) in the voxel at each dynamic. By utilizing the last 5 dynamics of 

the GESFIDE data (approximately four minutes) as our equilibrium time frame we are 

able to calculate voxel-wise TRATE with Equation 1.3. To ensure data quality, 

thresholds are applied for specific signal to noise ratios (SNR) and contrast to noise ratio 

(CNR) minimums. Regions of Interests (ROI) were drawn to encompass the whole 

gastrocnemius, lateral gastrocnemius, and medial gastrocnemius making sure to avoid 

bone.  

Results 

     Figure 2.1 shows the extracted concentration and ΔR2* dynamic time profiles in 15-

week-old SOD1 and control mice. These curves are averaged across voxels in the whole 

gastrocnemius muscle. Note that the magnitude of the curves are not necessarily due to 

physiological differences but because of an unexpected experimental confound that led to 

dose variability. This dose variability does not confound the estimation of TRATE 
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(assuming sufficient CNR) because its calculation accounts for the delivered dose. It is 

important to note from these curves that we see robust concentration and ΔR2* values at 

time points well past the initial tracer delivery (e.g. >15 minutes) where equilibrium can 

reasonably be expected. It is also important to distinguish that equilibrium does not 

necessarily imply a constant Ct but rather that Cp = Ce.   

 

Figure 2.1 – Comparison of characteristic concentration and ΔR2* curves in the 
gastrocnemius muscle 
  

 

Figure 2.2 – Comparison of TRATE maps of the Gastrocnemius 
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In Figure 2.2 we see the spatial distribution of TRATE values in the gastrocnemius 

between a characteristic control and ALS mouse at 12-weeks-old where the range is from 

0-1000 (mmol-s)-1. Colored voxels are the voxels with reasonable SNR and CNR to be 

used in comparisons. Two main observations are that in both control and ALS mice the 

distribution of TRATE values is very heterogenous, and that there appears to be a larger 

amount of high TRATE values in the control mice when compared to the ALS mice.  

 

Figure 2.3 – Histogram distribution of TRATE values at 15-Weeks 

Figure 2.3 illustrates the histogram of TRATE values in 15-week-old control and ALS 

mice across all voxels. Note the shift in the ALS mice towards lower TRATE values as 

compared to controls which are centered around 300 (mmol-s)-1. 
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Figure 2.4 – Boxplot of Average TRATE Values Over Time 

Figure 2.4 shows the range of TRATE values in 9-week, 12-week, and 15-week old 

control mice, most commonly varied between 300 to 400 (mmol-s)-1.  As expected, 

TRATE values remained constant over the course of the study (p = 0.483). It is critically 

important to note that the magnitude of these TRATE values far exceed to reported T2 

relaxivity of Gadovist (~ 4 (mmol-s)-1), indicating that the measured T2* effects are 

originating from the much stronger susceptibility effects that give rise to TRATE.  The 

TRATE values in the ALS group at 9 weeks were comparable to controls (which is 

consistent with known histopathology) but are observed to decrease significantly over 

time (p = 0.003), with values ranging from 100 – 200 (mmol-s)-1 at 15 weeks.  Sample 

sizes were 9-weeks (Control n = 8, ALS n = 8), 12-weeks (Control n = 5, ALS = 6), and 

15-weeks (Control n = 4, ALS = 5).  
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Figure 2.5- Immunofluorescence Imaging of Muscle Sample using DAPI (Blue), 

Laminin(Green), and Heavy Chain Myosin Stain (Red). 

Figure 2.5 shows Immunofluorescence DAPI, and CD98 antibodies staining for nuclei 

and plasma membrane of myofibers in the gastrocnemius at 15-weeks of disease 

progression. As compared to control mice, the myofibers in ALS mice were smaller in 

diameter and much less uniform.  Figure 2.6 shows the quantitative analysis of individual 

myofiber data and further confirms the reduction in cell area and minimum fiber 

diameter. 
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Figure 2.6 – Histologic Analysis of Cell Area and Minimum fiber diameter. 

Discussion  

     These results indicate that TRATE is sufficiently sensitive to tissue cytographic 

features such that it is able to detect progressive myofiber degeneration in mouse models 

of ALS.  Histological analysis confirmed the expected reductions in myofiber area and 

size, and provide a mechanistic underpinning for the measured TRATE changes. These 

results are also consistent with previous simulations in our lab demonstrating that 

TRATE decreases with cell size. 

As this was the first application of MRC outside the brain a number of experimental 

challenges were observed and had to be overcome. First, as noted above, tail vein bolus 

injections yielded highly variable doses across mice, which was confirmed by 

investigating contrast agent concentration in voxels within arterial vessels. In cases where 

the dose was lower than desired, the CNR within muscle was, at times, prohibitive for 

MRC analysis, requiring the development of systematic voxel-wise quality control 

measures. These measures ensured that only voxels exhibiting robust T1 and T2* changes 

were considered for analysis. In the next round of experiments, we are addressing this 

issue using a continuous infusion approach with a predetermined contrast agent 

concentration threshold within the muscle as a stopping point for the infusion. 

Another challenge presented in the ALS mouse was reliable methods for ROI 

delineation due to the progressive degeneration and wasting of the muscle, resulting in 

substantially reduced muscle volumes. Finally, we expect that a potential source of the 

marked (and unexpected) heterogeneity in TRATE values in both control and ALS mice 

is the spatially dependent orientation of individual myofibers with respect to the main 
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magnetic field. Biophysically, it is well known that magnetic fields surrounding 

perturbers, like a long cylinder, are dependent on the angle of the perturber with respect 

to the applied field. The orientation dependency could be exacerbated if the legs of each 

animal were not reproducibility positioned during each scan.  Future studies will seek to 

explore the biophysical basis of this as it would inform future clinical implementation.    

Conclusion  

The results of this longitudinal experiment support the use of TRATE as a 

biomarker for muscle atrophy in a preclinical model of ALS. Further work is needed to 

identify when TRATE is able to identify the earlier stages of muscle degeneration.  

Histological analysis indicates that TRATE changes originate, in part, from reduced 

myofiber size. Further validation of TRATE’s sensitivity to muscle degeneration would 

enable the use of MRC as a biomarker for preclinical pharmaceutical and biologic 

therapy targeting atrophy. Moving forward, it will be important to combine this technique 

with whole body imaging to consider the sporadic and random nature of initial onset 

locations of atrophy, while also observing the atrophy progression of critical areas such 

as the glossopharyngeal muscles, diaphragm and heart.  

 

 

 

 

 

 

 



  22 

CHAPTER 3 

GLIOBLASTOMA MODEL 

Disease Introduction 

     Observing the progress of cancer research over the past few decades is remarkable 

when considering the short time span and the amount of knowledge learned. 

Understanding of tumor genetics, microenvironment, progression, and causal factors has 

spurred a new respect for the complexity of the disease. A major variant of cancer that is 

in the spotlight and a focus of research is the Glioblastoma which can range in severity 

from Grade I – IV. Glioblastoma is one the most lethal forms of brain cancers which can 

have a survival rate of 1-2 years for Grade III-IV. There are many variations and sub-

types of glioblastoma tumors, treatments that may work for some may not work for 

others. Classifications for many of the sub-types of Glioblastoma is based on their 

genetic, histologic, and apparent structural or functional characteristics [31]. 

Understanding of the genetics and tumor microenvironment (TME) presented by Quail 

and Joyce point out many of the players in the TME that allow for growth and survival, 

particularly the compromised cells like astrocytes, macrophages, microglia, and 

lymphocytes that are essentially hijacked to promote tumor survival and evolution by 

regulating expression pathways and evading the natural immune response [32]. Tumor 

survival is dependent of the amount of nutrients it can receive to grow, and this is 

achieved, in part, via upregulated angiogenesis [32].  

     There are many MRI techniques possible for the characterization of brain tumors from 

MRS to static contrast enhanced T1 weighted images. Currently perfusion imaging is 

used to make parametric maps to aid in resection of the tumor, and to reliably identify 
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tumor progression and treatment response [13]. As noted in Chapter 1, the disruption of 

the BBB due to tumor associated angiogenesis is often a challenge for robust DSC-MRI 

measures of CBV.  The disrupted BBB and immature vasculature allow for contrast agent 

to extravasate, introducing additional simultaneous T1 and T2* changes that can be 

leveraged for estimating MRC parameters like TRATE.  In the original model in which 

TRATE was developed for Semmineh et al. showed the capability of TRATE to 

differentiate between C6 and 9L tumors in rats [15].  

     A key use of MRI in brain tumor patient care is the detection and monitoring of 

glioblastomas’ response to treatment. Whether it’s determining the response to 

chemotherapy or post-resection, it is important to detect a tumor recurrence early for 

better patient outcomes. One chemotherapeutic used commonly is temozolomide (TMZ) 

which utilizes the methylation of DNA to destroy tumor cells [33]. Effective TMZ 

treatment has been known to lower CBV values in the U251 brain tumor animal model 

implanted in rats [34]. In addition, TMZ has been shown to arrest growth of tumor cells, 

reduced proliferation, and induced apoptosis [35]. Although these examples are in rat 

models, similar results have been shown in mice [36]. 

Methods 

Animal Model 

     In this study 12 immunodeficient mice (Taconic Laboratories) had tumors induced via 

intracranial injection with human glioblastoma cell line ATCC-U87 tumor cells at 6-

weeks-old and were allowed to proliferate for two-weeks before treatment with TMZ 

began. The treatment regime consisted of a dose protocol of 50mg/kg five days a week. 

The control cohort included vehicle treatment with Orablend. All mice were imaged at 8-
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weeks-old to assess tumor progression and at 11-weeks-old to determine tumor response 

to therapy. All experiments and care for the mice were carried out in accordance with our 

institution’s animal care and use polices. 

Image Acquisition 

     The mice were imaged with a 7 Tesla (T) Bruker Scanner utilizing a 72mm transmit 

and read surface coil. Similar to the protocol applied in Semmineh et al. a pre-contrast T1 

images was acquired using a Variable Recovery Time (VTR) sequence with parameters: 

Repetition Times TR = [250ms, 500ms, 1000ms, 1500ms, 3000ms, 5000ms] TE = 11ms, 

FOV = 20 mm2, Slice Thickness = 0.5mm, FA = 90°, Matrix = 200x200x4. Once the T1 

map was acquired, a DSC sequence was acquired using a multi-Echo GESFIDE sequence 

was acquired with the following parameters: TR = 350ms, 8 Echoes with spacing 4.86ms 

with start TE1 = 3.8ms and end TE8 = 46.6ms, FOV = 20mm2, Slice Thickness = 0.5mm; 

FA = 90°, Dynamics = 45, Matrix = 100x100x4x45. A 0.2mM/kg dose of the contrast 

agent, Gadavist, was injected during the scan. To administer the contrast, a tail vein 

catheterization was performed to allow for an injection administered from a Genie Touch 

Syringe Pump (Lucca Technologies) at a rate of 1ml/min. The contrast was administered 

after an adequate baseline around 5-10 dynamics or 8-9min into the scan, and scanning 

was complete after 45 dynamics or 26 minutes. 

Data Analysis 

     A similar analysis to that used in Chapter 2 was implemented, except ROIs were 

drawn to encompass signal enhancing regions of the brain. Care was taken to avoid 

necrotic regions, in some cases necrosis of the region was too advanced causing the data 

point to be removed. 
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Results 

 

 

Figure 3.1 – Representative concentration and ΔR2* time profiles in enhancing tumor 

region. 

Figure 3.1 shows examples of the dynamic concentration and ΔR2* curves obtained.  

Concentration profiles are reasonable and match prior studies but, interestingly, the 

magnitude of the T2* effects in brain tumors decay much more rapidly than observed in 

muscle (Figure 2.1). Similar to the challenges noted in the ALS study, the administered 

doses were variable and those represented in the figure were selected from each group 

based on the distance from the mean of the distribution.  
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Figure 3.2 –TRATE maps in Non-TMZ treated and TMZ treated sample mice 

From Figure 3.2 we can see the TRATE spatial distribution for one mouse in each group.  

 

Figure 3.3 – Bar Graphs of Tumor Size and Averaged ROI TRATE Values 

Figure 3.3 shows the bar graphs of tumor size and averaged TRATE values in the signal 

enhancing region where Scan 1 had six Control and five TMZ treated, and Scan2 had five 

Controls and TMZ treated mice. From the tumor size graph, we are seeing comparable 

results to that of Rao et. al. where the untreated mouse tumors are growing significantly 

and the TMZ treated mouse tumor growth was halted. Pre-treatment TRATE values 

between the two cohorts of animals were consistent. Surprisingly, TRATE values 

exhibited a non-significant decrease in both cohorts of animals after treatment with both 
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vehicle and TMZ.  Despite this change in average scores for TRATE between the two, a 

two-sample t-test with 0.05 significance values yielded a failure to reject to the null 

hypothesis of the means being equal.

 

Figure 3.4 – Hematoxylin and Eosin Stain of Tumor Samples 

Figure 3.4 provides the histology for the treated and untreated tumors. In the control case 

we can see smaller tumor cells and a sparse distribution, while in the TMZ case we see 

larger tumor cells and a more clustered cell grouping. It is still not clear, whether there is 

a significant structural difference between the two. 

Discussion 

     Considering the results, it is difficult to determine whether TRATE is detecting the 

cellular changes in response to Temozolomide. It is clear that a more detailed analysis of 

the histologic features and their differences before and after vehicle and TMZ treatment 

is necessary in order to fully interpret the TRATE results. Unfortunately, we do not have 

pre-treatment histology images for comparison in each cohort which makes it impossible 

to know if the underlying pathology changed between time points.   It is feasible that the 

use of region of interest analysis in this study confounds the use of TRATE as a marker 

of treatment response because information about regional and individual heterogeneity is 
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lost. For example, animal models of brain cancer have increasing amounts of focus 

necrosis during tumor growth and that would tend to reduce TRATE values and could 

mimic treatment-induced cell death. Voxel-wise changes in biomarker data, a method 

called parametric response mapping, has shown increased predictive ability in brain 

cancer patients undergoing therapy, as compared to traditional ROI analysis. Future 

studies will seek to implement this method for the TRATE data collected herein. 

Conclusion  

     TRATE has shown the capability of differentiating between brain tumor cell types in 

prior studies but did not show efficacy for detecting treatment induces changes. If 

TRATE ultimately provides sensitivity to treatment response in future studies, it can 

easily be acquired as part of a multi-echo perfusion scan that are acquired routinely.  

Ultimately, while preclinical studies of this nature are useful for characterizing the 

biophysical basis of contrast mechanisms like MRC, clinical studies are required to 

assess their true potential to alter therapeutic decisions. Interestingly, such clinical studies 

are surprisingly easier than the animal studies conducted herein due to easier contrast 

agent injections, higher contrast to noise and much larger tumor volumes. 

 

 

 

 

 

 

 



  29 

CHAPTER 4 

CONCLUSION 

     The development of minimally invasive biomarkers is an important field of research 

for prognosis and detection. Non-invasive means such as MRI allow for a higher 

frequency of sampling patient’s disease progression. TRATE should be seen a biomarker 

that adds sub-voxel cellular structural information to already established quantitative 

assays of diseased tissues. In the case of muscle dystrophies, TRATE can be utilized as a 

prognosis tool to assess the degree of atrophy or wasting on the cellular level. In the field 

of the cancer, TRATE can be seen as an additional classification tool to established 

quantitative markers that interrogate tumors. While TRATE cannot replace histology, it is 

possible to glean a sense of underlying cellular structure and use this information to 

determine care prior to biopsy of tumor or serum analysis. TRATE has a series of 

milestones to achieve prior to being widely accepted, such as clinical validation, 

advanced histologic conformation, and applications in other disease states. To TRATE’s 

benefit it does not require major changes in imaging protocols in the case of gliomas to 

be adopted since quantitative perfusion imaging is already implemented in many 

treatment routines. Moving forward, it will be important to create more efficacy and 

validation experiments to further understand the nuances of this technique. Currently, 

TRATE is being applied to human ALS studies and is showing promising and parallel 

results to the study conducted in this work. Overall, TRATE is in a nascent stage of 

development but shows tremendous promise and potential impact.  
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function [] = fidreader; 
%%%%%%%%%%%%%%%%Generates Signals and Parameters files for all relevent 
scans 
%%%%%%%%%%%%%%AF Q1 2018 Adaptation from BrukerImageProcessor AM Stokes 
%%%%%%%%%%%%Make sure fid is 16 bit otherwise manually read the file as 
%%%%%%%%%%%%32bit with fread function 
%Get the current directory (Mouse/Patient File) 
dirname = pwd; 
%%% Search through directory for scans 
    for a = 1:40 
        try 
            BRUKER_FILE1=[dirname '/' num2str(a) 
'/pdata/1/2dseq'];   %This program uses the processed 2dseq file. 
            pars = readnmrpar([BRUKER_FILE1(1:end-13) 'method']); 
            display(['The method for scan number ' num2str(a) ' is ' 
pars.Method '.']);        
        catch 
        end 
    end 
%%%%%Choose the scans you want processed 
scans = input('Enter the Scan number you would like processed in a 
vector ex : [ 1 ...n]'); 
%%%Processing For loop 
for k = 1: length(scans) 
    clear BRUKER_FILE1 pars Nechoes 
    BRUKER_FILE1=[dirname '/' num2str(scans(k)) '/pdata/1/2dseq']; 
    pars = readnmrpar([BRUKER_FILE1(1:end-13) 'method']); 
    visu = readnmrpar([BRUKER_FILE1(1:end-5) 'visu_pars']); 
    NpointRD=pars.PVM_Matrix(2);       %Size of read direction matrix 
    NpointPE=pars.PVM_Matrix(3);      %Number of phase encode steps 
    ns = pars.PVM_SPackArrNSlices(2); %Slices 
    if length(pars.PVM_Matrix) > 3 %%for 3D acq 
        ns=pars.PVM_Matrix(4); 
    end 
%%% Account for the Possible Inputs 
switch pars.Method 
    case 'gESFIDE' 
        Nechoes = pars.NEchoes; 
        dyn = pars.PVM_NRepetitions; 
    case 'MGE' 
        Nechoes = pars.PVM_NEchoImages; 
        dyn = pars.PVM_NRepetitions; 
    case 'MSME' 
        Nechoes = pars.NEchoes; 
        dyn = pars.PVM_NRepetitions; 
    case 'RAREVTR' 
        Nechoes = pars.MultiRepetitionTime(1); 
        dyn = pars.PVM_NRepetitions; 
        pars.RECO_wordtype(2:3) = '16'; 
    case 'RARE' 
        dyn = pars.PVM_NRepetitions;      
    case 'EPI' 
        dyn = 0; 
        Nechoes = pars.PVM_NRepetitions; 
    case 'DtiStandard' 
        dyn = 0; 
        ns = pars.PVM_SPackArrNSlices(2); %Slices 
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        Nechoes = pars.PVM_DwNDiffExp; 
        NpointRD=visu.VisuCoreSize(2);       %Size of read direction 
matrix 
        NpointPE=visu.VisuCoreSize(3); 
    case 'DtiEpi' 
        dyn = 0; 
        ns = pars.PVM_SPackArrNSlices(2); %Slices 
        Nechoes = length(pars.PVM_DwEffBval)-1; 
        NpointRD = pars.PVM_Matrix(3); 
        NpointPE = pars.PVM_Matrix(2); 
         
  
         
end 
%%%%Assigning bit integer 
try  
    pars.RECO_wordtype; 
catch 
    pars.RECO_wordtype(2:3) = '16'; 
end 
%%%%%%Read Fid 
fid1=fopen(BRUKER_FILE1,'r','l');   %Open fid 
fidmix1=fread(fid1,inf,['int' pars.RECO_wordtype(2:3)]);    %Read fid 
data as single line 
if dyn>2 
        
signal=reshape(fidmix1,NpointRD,NpointPE,Nechoes,ns,dyn);    %Reshape 
data into read and phase encode directions 
        else 
        signal=reshape(fidmix1,NpointRD,NpointPE,ns,Nechoes);%Reshape 
data into read and phase encode directions 
end 
signal = imrotate(signal,270);  %Rotate image 270 degrees 
signal = fliplr(signal);        %Flip image left to right 
cd([dirname '/' num2str(scans(k))]) 
twodseqcorr(signal,pars) 
cd([dirname]) 
  save([dirname '/' num2str(scans(k)) '/signal.mat'],'signal','pars') 
end 
    clear k 
end  
function [T2data] = T2mapp(signal,pars) 
%% 2dseq Correct 
function [] = twodseqcorr(signal,pars) 
Size = size(signal); 
Visu = readnmrpar('pdata/1/visu_pars'); 
VisuSlopeConsant = Visu.VisuCoreDataSlope(2:end); 
VisuOffeset = Visu.VisuCoreDataOffs(2:end); 
if length(Size)>4 
    [nx, ny, ne, nz, dyn] = size(signal); 
    VisuSlopeConsant = reshape(VisuSlopeConsant,[ne nz dyn]); 
    VisuOffeset = reshape(VisuOffeset,[ne nz dyn]); 
    VisuSlopeMatrix = ones(nx,ny,ne,nz,dyn); 
    VisuOffesetMatrix = ones(nx,ny,ne,nz,dyn); 
    for j  = 1:dyn 
        for k = 1:nz 
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            for l = 1:ne 
               VisuSlopeMatrix(:,:,l,k,j) = 
squeeze(VisuSlopeMatrix(:,:,l,k,j)) *VisuSlopeConsant(l,k,j); 
            end 
        end 
    end 
     for j  = 1:dyn 
        for k = 1:nz 
            for l = 1:ne 
               VisuOffesetMatrix(:,:,l,k,j) = 
squeeze(VisuOffesetMatrix(:,:,l,k,j)) *VisuOffeset(l,k,j); 
            end 
        end 
    end 
else 
    [nx, ny, nz, ne] = size(signal); 
    VisuSlopeConsant = reshape(VisuSlopeConsant,[nz ne]); 
    VisuOffeset = reshape(VisuOffeset,[nz ne]); 
    VisuSlopeMatrix = ones(nx,ny,nz,ne); 
    VisuOffesetMatrix = ones(nx,ny,nz,ne); 
    for l = 1:ne 
        for k = 1:nz 
        VisuSlopeMatrix(:,:,k,l) = squeeze(VisuSlopeMatrix(:,:,k,l)) 
*VisuSlopeConsant(k,l); 
        end 
    end 
    for l = 1:ne 
        for k = 1:nz 
        VisuOffesetMatrix(:,:,k,l) = 
squeeze(VisuOffesetMatrix(:,:,k,l)) *VisuOffeset(k,l); 
        end 
    end 
end 
Final2dseq = signal.*VisuSlopeMatrix+VisuOffesetMatrix; 
signal = Final2dseq; 
save('signalcorr.mat','pars','signal') 
function []  = T1mapp(signal,pars) 
  
%% T1 Processing 
%%%%%%%%%%%%%%%%%%%AF Q1 2018 Adaptation of BrukerImageProccessor A.M 
Stokes %%%%%%%%%%%%%%%%% 
%Takes in VTR volume and fits a T1 curve using lsqcurvefit 
%You need an ROI, Signal Volume, and parameter file 
%Get ROI using ROIgen %Get Signal Volume and Pars from FID2Sig  
%% Pre allocating 
TR = pars.MultiRepetitionTime(2:end); 
NTR = pars.NumT1Exps; 
[nx, ny, ns, ne] = size(signal); 
T1_map = zeros(nx,ny,ns); 
S0_map = zeros(nx,ny,ns); 
error_map = zeros(nx,ny,ns); 
LB = []; 
UB = []; 
options = optimset('TolFun',1e-9,'Tolx',1e-
9,'MaxIter',1000,'Display','off','Algorithm','levenberg-marquardt'); 
%% For Loop 
        parfor z = 1:ns 
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            disp(z) 
            for x = 1:nx 
                for y = 1:ny 
                        data= squeeze(signal(x,y,ns,:));                
                        voxel_data = data; 
                        params = [2000 max(voxel_data)]; %initial 
guesses [T1 So]               
                        [output, resid] = 
lsqcurvefit('t1_vtr_cf',params,TR',voxel_data,LB,UB,options); 
                        T1_map(x,y,z) = output(1); 
                        S0_map(x,y,z) = output(2); 
                        error_map(x,y,z) = resid;                      
                end 
            end 
        end 
        figure;imagesc(T1_map(:,:,3),[0 4000]);title(['T_1 map for 
slice ' num2str(2)]);colorbar; axis square off; 
        disp('Finished processing T1 maps, saving now') 
        dirname = pwd; 
        save([dirname '/T1map.mat'],'T1_map','S0_map','error_map'); 
    end 
  
  
 
 
%% T2 Processing 
%%%%%%%%%%%%%%AF Q1 2018 Adaptation of Bruker Image Processor A.M 
Stokes 
%Takes in GESFIDE Volume and fits for T2 and T2* using lsqcurve and 
%Piecewise Equation Ma. Wheril  
%% Pre Allocating 
[nx, ny, ne, ns, NTR] = size(signal); 
S1m = nan(nx,ny,ns,NTR); 
S2m = nan(nx,ny,ns,NTR); 
R2sm = nan(nx,ny,ns,NTR); 
R2m = nan(nx,ny,ns,NTR); 
NGE = pars.GESFIDE_NGE; 
NpSE = pars.GESFIDE_NpSE; 
SE_TE_ms = pars.GESFIDE_EchoTimeSE;                   
xdata = pars.EffectiveTE(2:end); 
LB = [0 0 0 0]; 
UB = [Inf Inf Inf Inf]; 
options = optimset('TolFun',1e-9,'Tolx',1e-
9,'MaxIter',2000,'Display','off'); 
%% Fitting  
%4p for baseline 
% R2 and R2* output in 1/s 
    parfor zz = 1:NTR 
        disp(zz) 
        for z = 1:ns 
           
            for y = 1:ny 
                for x = 1:nx 
                    if isnan(signal(x,y,1,z,zz)) 
                
                    else  
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                      map = squeeze(signal(x,y,:,z,zz)); 
                      x0 = [max(map) max(map) 20 40]; %initial guesses 
[S1, S2, R2*, R2]                   
                      ydata = squeeze(signal(x,y,:,z,zz)); 
                      [par4, resnorm] =  
lsqcurvefit('gesfide4p',x0,xdata,ydata',LB,UB,options,SE_TE_ms,NGE,NpSE
); 
                      S1m(x,y,z,zz) = par4(1); 
                      S2m(x,y,z,zz) = par4(2); 
                      R2sm(x,y,z,zz)= par4(3); 
                      R2m(x,y,z,zz) = par4(4); 
                      %resnormew(x,y,z,zz) = resnorm; 
                    end 
                end 
            end 
        end 
    end    
dirname = pwd; 
%Creating Structure to save T2 T2* R2 R2* S1 S2 
T2data.S1 = S1m; 
T2data.S2 = S2m; 
T2data.R2 = R2m; 
T2data.R2s = R2sm; 
%T2data.resnom = resnormew; 
%Saving Strucuture 
%save([dirname  '/T2datacorrbothlegs.mat'], 'T2data') 
%fprintf('Mapping Complete and Files Saved') 
end 
 
function [Conc] = Conc(T1,S1,T2pars) 
%%%%%%%%%%%%%%%%%%%%%%Concetration and DR1 Calculator%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%AF Q2 2018%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%Takes in T1map and S1 from GESFIDE Output to Calculate DR1 and 
%%%%%%%Concentration. This Currently is applied for Gadvist Relaxivity 
%%%%%%%change accordingly 
[S1nx, S1ny, S1nz, S1r] = size(S1); 
r1 = 3.2;%relaxivity mmol/s 
TR = (T2pars.PVM_RepetitionTime); %ms 
alpha = str2double(T2pars.ExcPulse(11:12));%degrees 
NT1 = zeros(S1nx,S1ny,S1nz); 
NT1 = T1; 
%Refocusepulse = str2num(pars.RefPulse(27:29)); 
%TE = T2pars.PVM_EchoTime;%ms 
%Resizing T1map to Fit T2map 
  
%NT1(:,:,k) = imresize3(T1, [S1nx S1ny S1nz],'Method','linear');%ms 
  
S_ = squeeze(mean(S1(:,:,:,1:4),4));%Acquiring Signal Baseline Average 
of 10 Dynamics   
psi = S_.*(1-(exp(-TR./NT1).*cosd(alpha)));%Numerator of S0 equation 
usp = (1-exp(-TR./NT1).*sind(alpha));%Denominator of S0equation 
S0 = (psi./usp); 
parfor j = 1:S1r 
    disp(j) 
            %R1calc 
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             R1(:,:,:,j) = -(1/TR).*log((((S0.*sind(alpha) - 
S1(:,:,:,j)))./(S0.*sind(alpha)-S1(:,:,:,j).*cosd(alpha))));          
  
                   
end 
R10 = squeeze(mean(R1(:,:,:,1:4),4));%R1 pre 
clear j 
parfor j = 1:S1r 
DR1(:,:,:,j) = squeeze(R1(:,:,:,j))-R10;% 
end 
Conc = DR1.*1000/r1; 
%save('conc.mat','R1','DR1','Conc','r1') 
  
end 
%% 
 
%%%%%%%%%%%%%% TRATE Map%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%% AF Q1 2017%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
clc 
load('4/T1map.mat'); 
load('5/T2data.mat'); 
for k = 1:4 
NT1(:,:,k) = imresize(T1_map(:,:,k), [98 98]); 
end 
R2s = 1./T2data.T2s;%ms 
BRUKER_FILE1=['5/pdata/1/2dseq'];  
pars = readnmrpar([BRUKER_FILE1(1:end-13) 'method']); 
%% Calculate S0 of GE for R1 Solving 
%Landis Eq (4) Solving for S0 
S1 = T2data.S1; 
[nx, ny, nz, r]  =size(S1); 
%Constants 
TR = (pars.PVM_RepetitionTime); %ms 
alpha = 90; %degrees 
TE = (pars.PVM_EchoTime); %ms 
disp('R1calc') 
%S0 Clac 
%Baseline Signal 
 S_ = squeeze(mean(S1(:,:,:,1:10),4));    
 %Getting T1 
 T1 = NT1(:,:,:);%ms 
 %Calculating Numerator 
 psi = S_.*(1-(exp(-TR./T1).*cosd(alpha))); 
 %Calculating Denominator 
 usp = (1-exp(-TR./T1))*sind(alpha); 
 %S0 
 S0 = (psi./usp); 
 %R1 Calculation 
parfor j = 1:r 
    disp(j) 
            %R1calc 
            %Numerator 
            psi2 = (S0.*sind(alpha)-squeeze(S1(:,:,:,j)).*cosd(alpha)); 
            %Denominator 
            usp2 = (S0.*sind(alpha)-squeeze(S1(:,:,:,j))); 
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            %R1 
            R1(:,:,:,j) = 
(1/TR).*log((psi2./usp2).*exp(TE.*squeeze(R2s(:,:,:,j))));%1/ms         
%%% Compare with T2s and w/o 
end 
clear j g h k 
%R10 
    R10 = squeeze(mean(R1(:,:,:,1:10),4)); 
disp('DR1 Calc') 
parfor j = 1:r 
disp(j) 
%Calcualte Delta R1 
DR1(:,:,:,j) = squeeze(R1(:,:,:,j))-R10; 
end 
%% 
r1 = 3.2; %Same paper as before but the concentration 4mol at 7T Units 
~ 1/mmol-s 
%Eq 12.1  Yankeelov Pickens Price Quantitative MRI in Cancer Using 
Signal from S1 (90 flip Echo) of Gesfide Output 
Conc= (DR1.*1000)./r1; % (1/ms)/(1/mMol-s) -->*1000 ---> (1/s)/(1/mmol-
s) --> mmol   
disp('DR2scalc') 
%R20 Calculation 10 base line points 
R2s0 = squeeze(nanmean(R2s(:,:,:,1:8),4)); 
DR2s = R2s-R2s0; 
%TRATE 
TrateDR2s = squeeze(mean(DR2s(:,:,:,end-5:end),4)).*1000; 
TrateConcmap = abs(squeeze(mean(Conc(:,:,:,end-5:end),4))); 
TrateConc = squeeze(mean(Conc(:,:,:,end-5:end),4)); 
Trate= abs(TrateDR2s./TrateConc); 
%save('Tratemap.mat','Trate') 
%% Plotting Sanity Check 
figure 
imagesc(abs(Trate(:,:,2)),[0 300]) 
figure 
histogram(abs(Trate),'BinLimits',[5 250]) 
 
 
function [] = TRATE(Conc,R2s) 
%%%%%%%%%%%%%%%%%%%%%%%TRATE Calculator%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% AF Q2 2018%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%Takes in Concentration time curve and DR2s Time Curve to 
%%%%%%%%%%calculate a map of TRATE values 
[nx, ny, nz, dyn] = size(R2s); 
R2ss = nan(nx,ny,nz,dyn); 
%Temporal Smoothing MWA size 3 
for k = 1:nz 
    for h = 1:ny 
        for g = 1:nx 
            R2ss(g,h,k,:) = smooth(R2s(g,h,k,:)); 
        end 
    end 
end 
%Concentration Filter Removing Outliers 
Conc = real(Conc); 
Cmax = squeeze(max(Conc,[],4)); 
Cmaxm = nanmean(reshape(Cmax,[98*98*6 1])); 
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Cmaxstd = nanstd(reshape(Cmax,[98*98*6 1])); 
Cmax(Cmax>(Cmaxm+Cmaxstd)) = nan; 
Cmax(Cmax<(Cmaxm-Cmaxstd)) = nan; 
Cmaxm2 = nanmean(reshape(Cmax,[98*98*6 1])); 
Cmaxstd2 = nanstd(reshape(Cmax,[98*98*6 1])); 
B = nan(98,98,6); 
B(Cmax>0) = 1; 
R2ss0 = squeeze(nanmean(R2ss(:,:,:,1:7),4)); 
for k = 1:dyn 
    DR2ss(:,:,:,k) = R2ss(:,:,:,k)-R2ss0; 
end 
A = nanmean(DR2ss(:,:,:,end-7:end),4)- nanmean(DR2ss(:,:,:,1:7),4); 
%Removing Negative Curves 
A(A<0) = nan; 
A(A>0) = 1; 
%Combining Filters 
A = A.*B; 
for k = 1:dyn 
    DR2ss(:,:,:,k) = DR2ss(:,:,:,k).*A; 
end 
for k = 1:dyn 
    Conc(:,:,:,k) = Conc(:,:,:,k).*A; 
end 
%TRATE Calculation 
TrateDR2ss = squeeze(nanmean(DR2ss(:,:,:,end-3:end),4)); 
TrateConc = squeeze(nanmean(Conc(:,:,:,end-3:end),4)); 
Trate= TrateDR2ss./TrateConc; 
save('TRATEresultpatch.mat','Trate','TrateConc','TrateDR2ss') 
end 
 
 


