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ABSTRACT

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid

stage, which starts after the appearance of disease symptoms. The disease virus

attacks the central nervous system, and then it migrates from peripheral nerves to

the spinal cord and brain. At the time when the rabies virus reaches the brain, the

incubation period is over and the symptoms of clinical disease appear on the victim.

From the brain, the virus travels via nerves to the salivary glands and saliva.

A mathematical model is developed for the spread of rabies in a spatially dis-

tributed fox population to model the spread of the rabies epizootic through middle

Europe that occurred in the second half of the 20th century. The model considers both

territorial and wandering rabid foxes and includes a latent period for the infection.

Since the model assumes these two kinds of rabid foxes, it is a system of both par-

tial differential and integral equations (with integration over space and, occasionally,

also over time). To study the spreading speeds of the rabies epidemic, the model is

reduced to a scalar Volterra-Hammerstein integral equation, and space-time Laplace

transform of the integral equation is used to derive implicit formulas for the spreading

speed. The spreading speeds are discussed and implicit formulas are given for latent

periods of fixed length, exponentially distributed length, Gamma distributed length,

and log-normally distributed length. A number of analytic and numerical results are

shown pertaining to the spreading speeds.

Further, a numerical algorithm is described for the simulation of the spread of

rabies in a spatially distributed fox population on a bounded domain with Dirichlet

boundary conditions. I propose the following methods for the numerical approxima-

tion of solutions. The partial differential and integral equations are discretized in the

space variable by central differences of second order and by the composite trapezoidal

rule. Next, the ordinary or delay differential equations that are obtained this way are
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discretized in time by explicit continuous Runge-Kutta methods of fourth order for

ordinary and delay differential systems. My particular interest is in how the parti-

tion of rabid foxes into territorial and diffusing rabid foxes influences the spreading

speed, a question that can be answered by purely analytic means only for small basic

reproduction numbers. I will restrict the numerical analysis to latent periods of fixed

length and to exponentially distributed latent periods.

The results of the numerical calculations are compared for latent periods of fixed

and exponentially distributed length and for various proportions of territorial and

wandering rabid foxes. The speeds of spread observed in the simulations are compared

to spreading speeds obtained by numerically solving the analytic formulas and to

observed speeds of epizootic frontlines in the European rabies outbreak 1940 to 1980.

For instance, when I assume that all rabid foxes are territorial and the latent period

has fixed length, the spreading speed c∗ is found to be about 28.3 [km/year], but when

all rabid foxes diffuse with exponentially distributed length of the latent period, the

spreading speed c∗ is about 105.2 [km/year]. These spreading speeds compare quite

well with those found in nature and in the literature. In addition, the spreading speeds

show that the epidemic model on a bounded domain Ω with Dirichlet boundary

conditions shows a less severe epidemic outbreak than the epidemic model on Rn,

and the spread of the disease modeled on Ω is not as fast as the spread of the disease

modeled on Rn. Furthermore, the numerical results for c∗ confirm that the latent

period with fixed length always gives the smallest spreading speeds among the latent

periods with arbitrary length distribution and same mean length.
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Rabies was reported in all continents excluding Antarctica (see, e.g., Beyer et al.

(2011); Childs and Real (2007); Leslie et al. (2006); Ruan (2017); Sparkes et al.

(2016); Vial et al. (2006); World Health Organization (WHO), What is rabies (2015);

Zhang et al. (2012)). In the United States, bats, skunks, foxes, and raccoons are the

main wildlife sources of rabies (see (Childs and Real, 2007, Fig.4.2); (Rees et al., 2011,

Fig.1)). Bats, skunks, and foxes are the most common infected species in Arizona (see

(Arizona Department of Health Services, AZ Rabies Control and Bite Management

Manual, 2018, Table 1); Arizona Department of Health Services, Rabies in AZ (2018);

Borchering et al. (2012); Childs and Real (2007); Hass and Dragoo (2005); Leslie et al.

(2006)), while raccoons and bats are the most popular reservoirs of rabies in Florida

(Florida Department of Health, Rabies (2018)). In Asia and Africa, domestic dogs

are consider to be the most common reservoir of rabies (Beyer et al. (2011); Ruan

(2017); Vial et al. (2006); World Health Organization (WHO), What is rabies (2015);

Zhang et al. (2012)).

In the last century, a rabies epizootic also expanded over parts of Europe. A

number of scholars have investigated the epizootic of rabies in the past (Anderson

et al. (1981); Andral et al. (1982); Artois et al. (1991); Bögel et al. (1976); Bourhy

et al. (1999); David et al. (1982); Källén et al. (1985); Lloyd (1980); Macdonald (1980);

Moegle et al. (1974); Murray et al. (1986); Murray (1989); Murray and Seward (1992);

Thieme (1980); Toma and Andral (1977); White et al. (1995)) and recently (Alanazi
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et al. (2018a, 2019, 2018b); Holmala and Kauhala (2006); Liu (2013); Ou and Wu

(2006); Smith and Wilkinson (2003)). Rabies was mainly carried by foxes (Anderson

et al. (1981); Murray et al. (1986)), started in Poland in 1939 or 1940 and moved

westward reaching Denmark in 1964, Belgium, Luxembourg, and Austria in 1966,

Switzerland in 1967, France in 1968, and Holland in 1974 (Toma and Andral (1977)).

It also moved to the east, to Hungary, the former Czechoslovakia and the former

Soviet Union (Toma and Andral (1977)). Its speed ranged from 30 to 60 [km/year]

according to (Toma and Andral (1977); van den Bosch et al. (1990)) and from 20 to

60 [km/year] according to (Lloyd (1980)). There were important variations where the

epidemic front retreated at times in certain areas and moved up to 100 [km] in a given

direction in other areas in a single year (Toma and Andral (1977)). A study performed

in three areas in the state of Baden-Württemberg (Germany) from January 1963 to

March 31, 1971, found that the center of the frontwave moved at about 27 [km/year]

(Bögel et al. (1976)) while the mean distance of new cases ahead of the frontline within

a month was approximately 4.8 [km] (Bögel et al. (1976); Moegle et al. (1974)).

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid

stage, which starts after the appearance of disease symptoms (Arizona Department

of Health Services, AZ Rabies Control and Bite Management Manual (2018); Centers

for Disease Control and Prevention (CDC), Rabies (2015); World Health Organiza-

tion (WHO), Rabies (2015)). The disease virus attacks the central nervous system,

and then it migrates from peripheral nerves to the spinal cord and brain (Arizona

Department of Health Services, AZ Rabies Control and Bite Management Manual

(2018); Centers for Disease Control and Prevention (CDC), Rabies (2015)). At the

time when the rabies virus reaches the brain, the incubation period is over and the

symptoms of clinical disease appear on the victim (Arizona Department of Health

Services, AZ Rabies Control and Bite Management Manual (2018); World Health
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Organization (WHO), What is rabies (2015)). From the brain, the virus travels via

nerves to the salivary glands and saliva (Arizona Department of Health Services, AZ

Rabies Control and Bite Management Manual (2018)).

The disease virus is transmitted from an infectious fox to a susceptible fox by

bite. Then, the susceptible fox becomes infected and the latent period starts. Since

the rabies virus appears in the saliva one or two days before symptoms are evident

in the infected fox (Lloyd, 1980, p.247), the latent period is slightly shorter than the

incubation period. Fox rabies has a relatively long latent period with highly variable

duration (from 12 to 110 days (Anderson et al. (1981))) and a relatively short infection

period (from 3 to 10 days (Anderson et al. (1981))). While the literature seems to

agree on the mean length of the infectious period (which is ended by the death of the

fox), 5 days, there seems to be disagreement on the mean length of the latent period:

35 days ((van den Bosch et al. (1990)) and the references therein) and 28 days Moegle

et al. (1974) and 28 to 30 days (Anderson et al. (1981)), and 25 and 26.5 days and

one month according to various sources cited in (Toma and Andral (1977)).

The above-mentioned fox epizootic has motivated quite a few mathematical stud-

ies (Liu (2013); Murray (1989); Ou and Wu (2006); Thieme (1980); van den Bosch

et al. (1990)). Like this one, they all assume that foxes that are susceptible or are in

the latent period have home-ranges (unless they are migrating juveniles looking for

new home-ranges (Ou and Wu (2006))). Differently from previous studies, our model

assumes that some of the rabid foxes essentially behave like susceptible and exposed

foxes and keep their home-ranges, while the other rabid foxes loose the attachment

to their home-range and disperse by diffusion. We call the first ones territorial ra-

bid foxes and the second ones diffusing (wandering (Toma and Andral (1977))) rabid

foxes. Since our model assumes these two kinds of rabid foxes, it is a system of both
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partial differential and integral equations (with integration over space and, occasion-

ally, also over time) (Section 2.2).

Mathematical models have so far assumed that either all rabid foxes are territorial

(van den Bosch et al. (1990)) or all rabid foxes diffuse (Källén et al. (1985); Liu (2013);

Murray et al. (1986); Murray (1989); Murray and Seward (1992); Ou and Wu (2006)).

The radio-tracking in (Andral et al. (1982)) supports the existence of territorial rabid

foxes, while the distances of new rabies cases in (Bögel et al., 1976, Table 2) seem to

support the existence of diffusing foxes.

To study the spreading speeds of the rabies epidemic, we reduce the model to a

scalar Volterra Hammerstein integral equation (Section 2.3) and apply the concept of

asymptotic speeds of spread (Thieme (1979a); Thieme and Zhao (2003)) (Section 2.5,

Section 2.6). This concept had been originally developed by (Aronson (1977); Aronson

and Weinberger (1975, 1978)) for partial differential equations in population dynamics

and then used by (Aronson and Weinberger (1975)) for certain epidemic models and

extended to larger classes of population and epidemic models by (Diekmann (1978,

1979)), (Thieme (1977, 1979a)), and by (Thieme and Zhao (2003)). The spreading

speeds are discussed and calculated for latent periods of fixed length, exponentially

distributed length, Gamma distributed length, and log-normally distributed length

(Chapter 4). For further developments and some applications, see (Beaumont et al.

(2012); Garnier (2011); Gourley and Kuang (2004); Jones et al. (2012, 2013, 2016);

Kot (2001); Liang and Zhao (2007); Metz et al. (2000); Rass and Radcliffe (2003);

Ruan (2007); Smith and Thieme (2011); Thieme (2006); Weinberger et al. (2007);

Thieme and Zhao (2003); van den Bosch et al. (1990); Wang (2011); Wang and Wu

(2010); Zhao and Xiao (2006)) and the references therein. For recent progress, we

refer the reader to (Fang et al. (2017); Garnier and Lewis (2016); Shu et al. (2018);

Shigesada et al. (2015); Tian and Yuan (2017); Wu and Zhao (2018); Xu (2016)).
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Numerically, we describe a numerical algorithm for the simulation of the spread of

rabies in a spatially distributed fox population on a bounded domain with Dirichlet

boundary conditions. We propose the following methods for the numerical approx-

imation of solutions. The partial differential and integral equations are discretized

in the space variable by central differences of second order and by the composite

trapezoidal rule (Section 5.3 and Section 6.3). Next, the delay or ordinary differential

equations that are obtained this way are discretized in time by explicit continuous

Runge-Kutta methods of fourth order for delay and ordinary differential systems

(Section 5.4 and Section 6.4). The continuous Runge-Kutta method was derived by

Owren and Zennaro (Owren and Zennaro (1991, 1992b,a)), and it is discussed in

(Bellen and Zennaro (2003)). The continuous Runge-Kutta method was recently ap-

plied by (Alanazi et al. (2018a, 2019); Bartoszewski et al. (2015); Jackiewicz et al.

(2014)). Our particular interest is in how the partition of rabid foxes into territorial

and diffusing rabid foxes influences the spreading speed, a question we cannot answer

by purely analytic means. We will restrict the numerical analysis to latent periods

of fixed length (Chapter 5) and to exponentially distributed latent periods (Chapter

6). The models in Chapter 5 and Chapter 6 are derived and discussed in Chapter

3. For numerical methods of solving and studying differential equations, we refer the

reader to the work by (Bartoszewski and Jackiewicz (2002, 2007, 2008)), (D’Ambrosio

and Jackiewicz (2010, 2011)), (Jackiewicz and Zennaro (1992); Jackiewicz and Zubik-

Kowal (2006, 2009)), (Recktenwald (2000)), (Schiesser (2013); Schiesser and Griffiths

(2009)), (Shampine et al. (2003)), and by (Stanoyevitch (2005)).
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1.2 Thesis Plan

A mathematical model is developed for the spread of rabies in a spatially dis-

tributed fox population to model the spread of the rabies epizootic through middle

Europe that occurred in the second half of the 20th century. The model considers both

territorial and wandering rabid foxes and includes a latent period for the infection.

Since the model assumes these two kinds of rabid foxes, it is a system of both par-

tial differential and integral equations (with integration over space and, occasionally,

also over time). To study the spreading speeds of the rabies epidemic, the model is

reduced to a scalar Volterra-Hammerstein integral equation, and space-time Laplace

transform of the integral equation is used to derive implicit formulas for the spreading

speed. The spreading speeds are discussed and implicit formulas are given for latent

periods of fixed length, exponentially distributed length, Gamma distributed length,

and log-normally distributed length. A number of analytic and numerical results are

shown pertaining to the spreading speeds. Our particular interest is in how the par-

tition of rabid foxes into territorial and diffusing rabid foxes influences the spreading

speed.

The dissertation is organized as follows. In Chapter 2, a rabies model is derived

with both territorial and diffusing rabid foxes. The model is reduced to a scalar

Volterra-Hammerstein integral equation, and space-time Laplace transform of the

integral equation is used. In Chapter 3, two sub-models are formulated. The first

model includes a latent period with fixed length, and the second model includes a

latent period with exponentially distributed length. Chapter 4 discusses analytic

results and numerical estimations of the asymptotic speeds of spread c∗ of fox rabies.

Numerical simulations of spread of rabies when the latent period has fixed length and

when the latent period has exponentially distributed length with a bounded domain
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of R are discussed in Chapter 5 and Chapter 6, respectively. The work in Chapter

3, Chapter 5, and Chapter 6 was published in Alanazi et al. (2018a). The work in

Chapter 2 and Chapter 4 has submitted to a journal for publication (Alanazi et al.

(2018b)).

If someone is interested in numerical simulations of the spread of rabies in two-

dimensional space, we refer the reader to the pubished paper in Alanazi et al. (2019).
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Chapter 2

A RABIES MODEL WITH DISTRIBUTED LATENT PERIOD AND

TERRITORIAL AND DIFFUSING RABID FOXES

2.1 Abstract

We build a model that helps to study analytically the spatial spread of rabies on

Rn. The model assumes that some of the rabid foxes essentially behave like healthy

and susceptible foxes and keep their territories, while the other rabid foxes change

their behavior and wander. Since we consider these two kinds of rabid foxes, the model

consists of partial and integral equations. In addition, the model considers continuous

latent periods with arbitrary length distributions for the infection. We reduce our

model to a single scalar Hammerstein Volterra integral equation and use the Laplace

transform to find a candidate for the spreading speeds c∗. We use theorems developed

by (Thieme (1977, 1979a)), and by (Thieme and Zhao (2003)) to say that c∗ is indeed

the spreading speed of our solutions. Next, we show a number of analytic results

pertaining to the spreading speeds c∗.

2.2 The Model

To study the spread of rabies in a spatially distributed fox population, we consider

Rn which represents the habitat of the foxes.

We consider an epidemic outbreak and assume that it is short enough that the

natural turnover of the fox population can be ignored: No foxes are born, and the

only deaths are those of rabid foxes dying from rabies.
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We assume that susceptible and exposed foxes have home-ranges. Home ranges

of settled foxes may partly or largely overlap those of other foxes though parts of

them may be defended from encroachment by other foxes ((Lloyd, 1980, p.149)).

Therefore, it seems to be not only a convenient but also justifiable approximation of

reality to model the locations of susceptible and incubating foxes by the centers of

their home-ranges in a spatial continuum.

Further, we assume that some of the rabid foxes essentially behave like susceptible

and exposed foxes and keep their home-ranges, while the other rabid foxes loose the

attachment to their home-range and disperse by diffusion. We call the first territorial

rabid foxes and the second diffusing rabid foxes.

Mathematical models have so far assumed that either all rabid foxes are territorial

(van den Bosch et al. (1990)) or all rabid foxes diffuse (Källén et al. (1985); Liu (2013);

Murray et al. (1986); Murray (1989); Murray and Seward (1992); Ou and Wu (2006)).

The radio-tracking in (Andral et al. (1982)) supports the existence of territorial rabid

foxes, while the distances of new rabies cases in ((Bögel et al., 1976, Table 2)) seems

to support the existence of diffusing foxes.

Let S(x, t) denote the density of susceptible foxes (which are all territorial) at time

t whose home-ranges center at location x ∈ Rn. Further R1(x, t) are the diffusing

rabid foxes at location x and time t and R2(x, t) the territorial rabid foxes at time t

whose home-ranges center at location x. Finally, E(x, t, a) is the density of infected

foxes in the incubation period (which are also all territorial) at time t that have

infection age a and whose home-ranges center at x.

Let κ1(x, z) denote the rate at which a fox with home-range center x visits the

location z ∈ Rn, where κ1 is assumed to be continuous and
∫
Rn κ1(x, y)dy = 1. The

rate at which a susceptible fox with home-range center x meets a territorial rabid fox
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with home-range center z is given by

κ2(x, z) =

∫
Rn
κ1(x, y)κ1(z, y)dy, (2.2.1)

which means that it is the rate at which they both visit some common point y ∈ Rn

(Compare equation (5.1) in (van den Bosch et al. (1990))). The model takes the form,



∂tS(x, t) = −βS(x, t)
∫
Rn [κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)]dz

=: −B(x, t),

∂tR1(x, t) = D∆xR1 + p1

∫∞
0
θ(a)E(x, t, a)da− ν1R1(x, t),

∂tR2(x, t) = p2

∫∞
0
θ(a)E(x, t, a)da− ν2R2(x, t),

(2.2.2)

with given initial conditions

S(x, 0) = S0(x), R1(x, 0) = R◦1(x), R2(x, 0) = R◦2(x), x ∈ Rn. (2.2.3)

Here, ∆x is the Laplace operator such that ∆xR1 =
∑n

i=1
∂2R1(x,t)

∂x2
i

. D is the fixed

diffusion rate. θ(a) is the rate at which infected foxes with infection age a exit

the latent period, and ν1 and ν2 are the per capita rabies death rate of diffusing

and territorial rabid foxes, respectively. p1 is the chance of a rabid fox to diffuse,

and p2 the chance to be territorial so that p1 + p2 = 1. β is the chance that a

meeting of a susceptible and a rabid fox leads to the infection of the susceptible fox.

B(x, t) is the incidence of the disease, i.e., the number of new cases per unit of time.

The nonnegative continuous functions S0, R◦1 and R◦2 are the initial densities of the

susceptible and diffusing and territorial rabid foxes.

The infected foxes in the latent period are described by the system
(∂t + ∂a)E(x, t, a) =− θ(a)E(x, t, a),

E(x, t, 0) =B(x, t),

E(x, 0, a) =E0(x, a).

(2.2.4)
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Here E(x, t, a), and B(x, t) are as above.

Remark 2.2.1. We have modeled the duration of the rabid, infectious, stage in

the simplest possible way, namely as exponentially distributed, i.e., by a constant

per capita rate of dying from the disease. The duration of the latent period will be

modeled by an arbitrary distribution because this will provide very interesting insights

(Chapter 4). We could have done something similar for the rabid stage and let the

disease-death rate and even the diffusion rate of diffusing rabid foxes depend on the

time since becoming infectious (Liu (2013)). We do not do so because this would add

a layer of complexity that may obscure the interplay of diffusing and territorial rabid

foxes. Instead of separating the latent and the rabid period, we could have looked

only at the class of infected foxes and their infection age (Ducrot and Magal (2009);

Liu (2013)). We did not do this in order to use the information about the length of

the latent period and the rabid period that is available.

Remark 2.2.2. Alternatively to the diffusion equation, the wandering rabid foxes

could be modeled by a differential-integral equation

∂tR1(x, t) =
∫
Rn κ3(x, z)R1(z, t)dz −R1(x, t)

∫
Rn κ3(x, z)dz

+
∫∞

0
θ(a)E(x, t, a)da− ν1R1(x, t),

κ3(x, y) = κ3(y, x).

(2.2.5)

This would make it possible to include studying the effects of fat-tailed kernels κ3

which should lead to accelerating solutions as in (Bouin et al. (2018); Garnier (2011)).

While in a few areas rabies has spread with considerable higher speed than in most

others (Toma and Andral (1977)), it is not clear whether this is caused by fat kernels

(the main example for this seems to be rapid plant migration) or rather by spatial

heterogeneities which are not considered in this work. Yet another cause of anomalous
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high spreading speeds is the interaction of different species (Weinberger et al. (2007)).

A mathematical reason for not venturing into the area of fat-tailed kernels is that

they do not appear to lead to formulas for the spreading speed that are amenable to

a qualitative analysis of how the spreading speed depends on rabies-relevant model

parameters.

2.3 Transformation to a Single Volterra Hammerstein Integral Equation

In this section, we are working to reduce the model (2.2.2) to a single nonlinear

Volterra-Hammerstein integral equation. We begin by integrating along the charac-

teristics to reduce the system in (2.2.4) to one equation (see, e.g., (Smith and Thieme

(1991); Thieme and Zhao (2001, 2003))). Let

v(x, r, a) = E(x, r + a, a) (2.3.1)

be the foxes in the incubation period that were infected at time r ≥ 0 with infection

age a ≥ 0. It follows that

∂av(x, r, a) = [∂tE(x, t, a) + ∂aE(x, t, a)]t=r+a

= −θ(a)E(x, r + a, a) = −θ(a)v(x, r, a),

v(x, r, 0) = E(x, r, 0) = B(x, r).

(2.3.2)

Then, we obtain

v(x, r, a) = B(x, r) exp

(
−
∫ a

0

θ(s)ds

)
. (2.3.3)

Let

w(x, t, r) = E(x, t, t+ r), (2.3.4)
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which is the individuals at time t that had been infected before time 0 and had

infection age r at time 0. Then

∂tw(x, t, r) = [∂tE(x, t, a) + ∂aE(x, t, a)]a=t+r

= −θ(t+ r)E(x, t, t+ r) = −θ(t+ r)w(x, t, r),

w(x, 0, r) = E(x, 0, r) = E0(x, r).

(2.3.5)

So, we obtain

w(x, t, r) = E0(x, r) exp

(
−
∫ t

0

θ(s+ r)ds

)
. (2.3.6)

Let t > a ≥ 0, then

E(x, t, a) =v(x, t− a, a) = B(x, t− a)Υ(a),

Υ(a) = exp

(
−
∫ a

0

θ(s)ds

)
,

(2.3.7)

where Υ(a) is the probability that infected foxes with infection age a are still in the

latent period. Then Υ : R+ → [0, 1] is decreasing and Υ(0) = 1. We assume that θ:

[0,∞) → [0,∞) is a continuous function, and there exist numbers σ2 > σ1 > 0 such

that for a ∈ (σ1, σ2),

θ(a) > 0,

∫ ∞
0

θ(a)da =∞. (2.3.8)

For a > t ≥ 0, we have

E(x, t, a) =w(x, t, a− t) = E0(x, a− t)F(a, t),

F(a, t) = exp

(
−
∫ t

0

θ(s+ a− t)ds

)
.

(2.3.9)

We do a change of variables, we have

F(a, t) = exp
(
−
∫ a

a−t
θ(r)dr

)
= Υ(a)/Υ(a− t). (2.3.10)
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Then we have

E(x, t, a) =


E0(x, a− t) Υ(a)

Υ(a−t) , a > t ≥ 0,

B(x, t− a)Υ(a), t > a ≥ 0,

(2.3.11)

where E0(x, a − t) is the number of infected foxes that already were in the latent

period and not yet become rabid at time t that have infections age a and whose home

ranges center at x. Υ(a)
Υ(a−t) is the conditional probability that the infected foxes at

infection age a are still in the latent period with the condition of having been in the

latent period already at age a− t.

Now, we want now to solve for R1(x, t), which is the diffusing rabid foxes at location

x and time t. From (2.2.2), the density of diffusing rabid foxes satisfies

∂tR1(x, t) =D∂2
xR1(x, t) + p1

∫ ∞
0

θ(a)E(x, t, a)da− ν1R1(x, t),

R1(x, 0) =R◦1(x).

(2.3.12)

Set

f(x, t) =

∫ ∞
0

θ(a)E(x, t, a)da = f1(x, t) + f0(x, t), (2.3.13)

where

f1(x, t) =

∫ t

0

θ(a)E(x, t, a)da =

∫ t

0

θ(a)B(x, t− a)Υ(a)da, (2.3.14)

and

f0(x, t) =

∫ ∞
t

θ(a)E(x, t, a)da =

∫ ∞
t

θ(a)E0(x, a− t)F(a, t)da. (2.3.15)

Now, the model (2.3.12) shall be

∂tR1(x, t) + ν1R1(x, t) =D∂2
xR1(x, t) + p1f(x, t), (2.3.16)
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So, the solution for the non-homogeneous PDE is

R1(x, t) =p1

∫ t

0

∫
Rn

Γn(D(t− s), x− y)e−ν1(t−s)f(s, y)dyds

+

∫
Rn

Γn(Dt, x− y)R◦1(y)e−ν1tdy.

(2.3.17)

By doing a change of variable s→ t− s, we have

R1(x, t) =p1

∫ t

0

∫
Rn

Γn(Ds, x− y)e−ν1sf(t− s, y)dyds

+

∫
Rn

Γn(Dt, x− y)R◦1(y)e−ν1tdy.

(2.3.18)

Here, Γn is the fundamental solutions associated with the differential operator ∂t−∆x

for n space dimensions, and it is given by

Γn(x, t) =
1

(
√

4πt)n
e
−|x|2

4t , x ∈ Rn, (2.3.19)

where | · | is the Euclidean norm on Rn, and it is given by

|x| =

√√√√ n∑
j=1

x2
j . (2.3.20)

Substituting (2.3.13) into (2.3.18), we have

R1(x, t) =p1

∫ t

0

∫
Rn

Γn(Ds, x− y)e−ν1s
(
f1(t− s, y) + f0(t− s, y)

)
dyds

+

∫
Rn

Γn(Dt, x− y)R◦1(y)e−ν1tdy.

(2.3.21)

That is

R1(x, t) =R1
0(x, t) + p1

∫ t

0

∫
Rn

Γn(Ds, x− y)e−ν1sf1(t− s, y)dyds, (2.3.22)

where

R1
0(x, t) =p1

∫ t

0

∫
Rn

Γn(Ds, x− y)e−ν1sf0(t− s, y)dyds

+

∫
Rn

Γn(Dt, x− y)R◦1(y)e−ν1tdy.

(2.3.23)
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Similarly, we work to find a formula for R2(x, t), so someone can easily find

R2(x, t) =R2
0(x, t) + p2

∫ t

0

f1(t− s, x)e−ν2sds, (2.3.24)

where

R2
0(x, t) =p2

∫ t

0

f0(t− s, x)e−ν2sds+R◦2(x)e−ν2t. (2.3.25)

Solving for S(x, t), that is in (2.2.2), gives us

S(x, t) =S0(x)e−u(x,t), (2.3.26)

where

u(x, t) = β

∫ t

0

∫
Rn

[κ1(x, z)R1(z, s) + κ2(x, z)R2(z, s)]dzds (2.3.27)

is the cumulative rate of rabid foxes meet the susceptible foxes. Let us first divide

(2.3.27) into two parts U1(x, t) and U2(x, t) such that

u(x, t) = U1(x, t) + U2(x, t), (2.3.28)

where

U1(x, t) = β

∫ t

0

∫
Rn
κ1(x, z)R1(z, s)dzds,

and

U2(x, t) = β

∫ t

0

∫
Rn
κ2(x, z)R2(z, s)dzds.

Also, for the foxes that already were infected at the beginning, we set

u0(x, t) =U10(x, t) + U20(x, t), (2.3.29)

where

U10(x, t) = β

∫ t

0

∫
Rn
κ1(x, z)R1

0(z, s)dzds,
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and

U20(x, t) = β

∫ t

0

∫
Rn
κ2(x, z)R2

0(z, s)dzds.

The following result will be used a couple of times.

Lemma 2.3.1. Let φ2 : R+ → R be continuous and

φ1(t) =

∫ t

0

κ(r)φ2(t− r)dr,

for t > 0, and Φj(t) =
∫ t

0
φj(s)ds the anti-derivative of φj. Then

Φ1(t) =

∫ t

0

κ(s)Φ2(t− s)ds,

for t > 0.

Proof. We substitute the formula for φ1 into Φ1, so we get

Φ1(t) =

∫ t

0

(∫ t

0

κ(r)φ2(s− r)dr

)
ds, t > 0.

By changing the order of integration, we obtain

Φ1(t) =

∫ t

0

κ(r)

(∫ t

r

φ2(s− r)ds

)
dr.

That is

Φ1(t) =

∫ t

0

κ(r)Φ2(t− r)dr.

Let r → s, then

Φ1(t) =

∫ t

0

κ(s)Φ2(t− s)ds, for t > 0.

From (2.3.23), U10(x, t) shall be

U10(x, t) =β

∫ t

0

∫
Rn
κ1(x, z)

(
p1

∫ t

0

∫
Rn

Γn(Ds, z − y)e−ν1sf0(s− r, y)

dydr +

∫
Rn

Γn(Ds, z − y)R◦1(y)e−ν1sdy
)
dzds.

(2.3.30)
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We interchange the order of integration and use Lemma 2.3.1,

U10(x, t) =β

∫ t

0

∫
Rn
κ1(x, z)

(
p1

∫
Rn

Γn(Ds, z − y)e−ν1s

(∫ t−s

0

f0(r, y)dr

)
dy

+

∫
Rn

Γn(Ds, z − y)R◦1(y)e−ν1sdy
)
dzds.

(2.3.31)

That is

U10(x, t) =βp1

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)e−ν1s

(∫ t−s

0

f0(r, y)dr

)
dydzds

+ β

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)R◦1(y)e−ν1sdydzds.

(2.3.32)

From (2.3.15), we have∫ t

0

f0(y, s) =

∫ t

0

∫ ∞
0

θ(a+ s)E0(y, a)F(a+ s, s)dads. (2.3.33)

We substitute (2.3.33) into (2.3.32)

U10(x, t) =βp1

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)e−ν1s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(y, a)F(a+ r, r)dadr

)
dydzds

+ β

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)R◦1(y)e−ν1sdydzds.

(2.3.34)

From (2.3.25), U20(x, t) shall be

U20(x, t) =p2β

∫ t

0

∫
Rn
κ2(x, z)e−ν2s

(∫ t−s

0

f0(r, z)dr

)
dzds

+ β

∫ t

0

∫
Rn
κ2(x, z)R◦2(z)e−ν2sdzds.

(2.3.35)
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We substitute (2.3.33) into (2.3.35)

U20(x, t) =p2β

∫ t

0

∫
Rn
κ2(x, z)e−ν2s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(z, a)F(a+ r, r)dadr

)
dzds

+ β

∫ t

0

∫
Rn
κ2(x, z)R◦2(z)e−ν2sdzds.

(2.3.36)

From (2.3.34) and (2.3.36), u0(x, t) shall be

u0(x, t) =βp1

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)e−ν1s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(y, a)F(a+ r, r)dadr

)
dydzds

+ β

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)R◦1(y)e−ν1sdydzds

+ p2β

∫ t

0

∫
Rn
κ2(x, z)e−ν2s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(z, a)F(a+ r, r)dadr

)
dzds

+ β

∫ t

0

∫
Rn
κ2(x, z)R◦2(z)e−ν2sdzds.

(2.3.37)

Now, from (2.3.22), we have

R1(x, t)−R1
0(x, t) =p1

∫ t

0

∫
Rn

Γn(Ds, x− y)e−ν1sf1(t− s, y)dyds. (2.3.38)

Also, we have

U1(x, t)− U10(x, t) = β

∫ t

0

∫
Rn
κ1(x, z)

(
R1(z, s)−R1

0(z, s)
)
dzds. (2.3.39)

So, after changing the order of integration and use Lemma 2.3.1, we obtain

U1(x, t)− U10(x, t) =

β

∫ t

0

∫
Rn
κ1(x, z)

(
p1

∫
Rn

Γn(Ds, z − y)e−ν1s

(∫ t−s

0

f1(r, y)dr

)
dy
)
dzds

=p1β

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)e−ν1s

(∫ t−s

0

f1(r, y)dr

)
dydzds.

(2.3.40)
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By (2.3.14), ∫ t

0

f1(y, s)ds =

∫ t

0

∫ s

0

θ(a)Υ(a)B(y, s− a)dads

=

∫ t

0

θ(a)Υ(a)

∫ t

a

B(y, s− a)dsda

=

∫ t

0

θ(a)Υ(a)

∫ t−a

0

B(y, s)dsda

=

∫ t

0

θ(a)Υ(a)

∫ t−a

0

B(y, r)drda.

(2.3.41)

From the fundamental theorem of calculus and (2.2.2), we have∫ t−a

0

B(y, r)dr = −
∫ t−a

0

∂rS(y, r)dr

= −[S(y, t− a)− S(y, 0)] = S0(y)− S(y, t− a).

(2.3.42)

From (2.3.26),∫ t−a

0

B(y, r)dr = S0(y)[1− e−u(y,t−a)] = S0(y)F (u(y, t− a)), (2.3.43)

where

F (u) = 1− e−u, u ≥ 0. (2.3.44)

Substituting (2.3.43) into (2.3.41), we have∫ t

0

f1(y, s)ds =

∫ t

0

θ(a)Υ(a)S0(y)F (u(y, t− a))da. (2.3.45)

Substituting (2.3.45) into (2.3.40), we have

U1(x, t)− U10(x, t) = p1β

∫ t

0

∫
Rn

∫
Rn
κ1(x, z)Γn(Ds, z − y)e−ν1s(∫ t−s

0

θ(a)Υ(a)S0(y)F (u(y, t− s− a))da

)
dydzds.

(2.3.46)

We change the order of integration and use the substitution a = r − s in the interior

integral, so we obtain

U1(x, t)− U10(x, t) =p1β

∫ t

0

e−ν1sds

∫ t

s

∫
Rn

∫
Rn
θ(r − s)Υ(r − s)S0(y)

F (u(y, t− r))κ1(x, z)Γn(Ds, z − y)dydzdr.

(2.3.47)
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After another change of variables, we have

U1(x, t)− U10(x, t) = p1β

∫ t

0

∫ r

0

∫
Rn

∫
Rn
θ(r − s)Υ(r − s)S0(y)

F (u(y, t− r))e−ν1sκ1(x, z)Γn(Ds, z − y)dydzdsdr,

(2.3.48)

which can be written as

U1(x, t)− U10(x, t) =

∫ t

0

∫
Rn
ξ1(x, y, r)F (u(y, t− r))dydr, (2.3.49)

where

ξ1(x, y, r) =

∫
Rn
η1(r, z, y)κ1(x, z)dz, (2.3.50)

and

η1(r, z, y) = p1β

∫ r

0

θ(r − s)Υ(r − s)S0(y)e−ν1sΓn(Ds, z − y))ds. (2.3.51)

We also have that

U2(x, t)− U20(x, t) = β

∫ t

0

∫
Rn
κ2(x, z)[R2(z, s)−R2

0(z, s)]dzds. (2.3.52)

Substituting (2.3.24) into (2.3.52) and using Lemma 2.3.1, we have

U2(x, t)− U20(x, t) = p2β

∫ t

0

∫
Rn
κ2(x, z)e−ν1s

(∫ t−s

0

f1(r, z)dr

)
dzds. (2.3.53)

Substituting (2.3.45) into (2.3.53), we have

U2(x, t)− U20(x, t) = p2β

∫ t

0

∫
Rn
κ2(x, z)e−ν1s(∫ t−s

0

θ(a)Υ(a)S0(z)F (u(z, t− s− a))da

)
dzds.

(2.3.54)

We change the order of integration and use the substitution a = r − s in the interior

integral,

U2(x, t)− U20(x, t) = p2β

∫ t

0

e−ν1s∫ t

s

∫
Rn
θ(r − s)Υ(r − s)S0(z)F (u(z, t− r))κ1(x, z)dzdrds.

(2.3.55)
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After another change of variables, we have

U2(x, t)− U20(x, t) =

p2β

∫ t

0

∫ r

0

∫
Rn
θ(r − s)Υ(r − s)S0(z)F (u(z, t− r))e−ν1sκ2(x, z)dzdsdr,

(2.3.56)

which can be written as

U2(x, t)− U20(x, t) =

∫ t

0

∫
Rn
ξ2(x, z, r)F (u(z, t− r))dzdr, (2.3.57)

where

ξ2(x, z, r) = η2(r, z)κ2(x, z), (2.3.58)

and

η2(r, z) = p2β

∫ r

0

θ(r − s)Υ(r − s)S0(z)e−ν2sds. (2.3.59)

We have from (2.3.28) and (2.3.29) that

u(x, t)− u0(x, t) =
(
U1(x, t)− U10(x, t)

)
+
(
U2(x, t)− U20(x, t)

)
. (2.3.60)

Substituting (2.3.49) and (2.3.57) into (2.3.60), we obtain

u(x, t)− u0(x, t)

=

∫ t

0

∫
Rn

[
ξ1(x, z, r)F (u(z, t− r)) + ξ2(x, z, r)F (u(z, t− r))

]
dzdr

=

∫ t

0

∫
Rn
ξ(x, z, r)F (u(z, t− r))dzdr,

(2.3.61)

where

ξ(x, z, r) = ξ1(x, z, r) + ξ2(x, z, r). (2.3.62)

We need to assume that S0 is a constant and κ1(x, z) must be replaced by κ1(x− z).

So, from (2.2.1), we have

κ2(x, z) =

∫
Rn
κ1(x− y)κ1(z − y)dy = κ̃2(x− z), (2.3.63)
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with

κ̃2(z) =

∫
Rn
κ1(y + z)κ1(y)dy. (2.3.64)

Therefore, (2.3.50) and (2.3.51) shall be

ξ1(y, r) =

∫
Rn
η1(r, y − z)κ1(z)dz, (2.3.65)

and

η1(r, y) = p1β

∫ r

0

θ(r − s)Υ(r − s)S0e
−ν1sΓn(Ds, y − z))ds. (2.3.66)

After we drop the tilde, (2.3.58) and (2.3.59) shall be

ξ2(y, r) = η2(r)κ2(y), (2.3.67)

and

η2(r) = p2β

∫ r

0

θ(r − s)Υ(r − s)S0e
−ν2sds. (2.3.68)

Also, we rewrite (2.3.61) as

u(x, t) =u0(x, t) +

∫ t

0

∫
Rn
ξ(x− z, r)F (u(z, t− r))dzdr,

=u0(x, t) +

∫ t

0

∫
Rn
ξ(z, r)F (u(x− z, t− r))dzdr.

(2.3.69)

Thus, u(x, t) satisfies

u(x, t) =u0(x, t) +

∫ t

0

∫
Rn
G(u(x− z, t− r), z, r)dzdr, (2.3.70)

where

G(u, x, r) = ξ(x, r)F (u), (2.3.71)

F (u) = 1− e−u, u ≥ 0,
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ξ(x, r) = ξ1(x, r) + ξ2(x, r),

ξ1(x, r) =

∫
Rn
η1(x, r)κ1(z)dz,

η1(x, r) = p1β

∫ r

0

θ(r − s)Υ(r − s)S0e
−ν1sΓn(Ds, x))ds,

ξ2(x, r) = η2(r)κ2(x),

η2(r) = p2β

∫ r

0

θ(r − s)Υ(r − s)S0e
−ν2sds.

The Volterra-Hammerstein integral equation (2.3.70) describes the development of

the population (Thieme (1979b)). So, u is the cumulative rate of rabid foxes meet

the susceptible foxes. η1 and η2 are the densities of diffusing and territorial rabid

foxes, respectively. ξ1 and ξ2 are the contribution of diffusing and territorial rabid

foxes, respectively, to the infection rate. u0 combines the various initial conditions,

and it is given in (2.3.37).

2.4 Properties of κ1 and κ2

We assume κ1(x, z) = κ̃1(x− z) ≥ 0. By (2.2.1)

κ2(x, z) =

∫
Rn
κ̃1(x− y)κ̃1(z − y)dy = κ̃2(x− z). (2.4.1)

After a substitution

κ̃2(z) =

∫
Rn
κ̃1(y + z)κ̃1(y)dy. (2.4.2)

For simplicity, we are dropping the tildes from κ1 and κ2. We also assume κ1 is

isotropic and ∫
Rn
κ1(y)dy = 1,

∫
Rn
e−λy1κ1(y)dy <∞, λ > 0. (2.4.3)

Definition 2.4.1. (Thieme and Zhao, 2003, p.434) A function ψ : Rn → R is said to

be isotropic if ψ(x) = ψ(y) whenever |x| = |y|.
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Definition 2.4.2. (Thieme and Zhao, 2003, p.434) A function ξ : [0,∞) × Rn → R

is said to be isotropic if ξ(s, ·) is isotropic for almost all s > 0.

Lemma 2.4.3. Assume κ1 is isotropic, and ‖x‖ = 1. Let κ2(x) be defined as κ2(x) =∫
Rn κ1(y + x)κ1(y)dy, then κ2 is isotropic.

Proof. Assume ‖x‖ = ‖u‖ = ‖e1‖, where e1 is the first column of the standard basis

for Rn. Then, there exists an orthogonal matrix A such that x1 = x = Ae1, and there

exists an orthogonal matrix B such that u1 = u = Be1. The orthogonal matrices A

and B can be constructed using Gram-Schmidt process. Since B is an orthogonal

matrix, BT = B−1. So, we have that e1 = BTu, and then x = ABTu, where ABT is

an orthogonal matrix. Thus,

κ2(x) = κ2(ABTu) =

∫
Rn
κ1(y + ABTu)κ1(y)dy.

We make a substitution y = ABT z, then

κ2(x) = κ2(ABTu) =

∫
Rn
κ1(ABT z + ABTu)κ1(ABT z)|detABT |dz.

Since ABT is an orthogonal matrix,

κ2(x) =

∫
Rn
κ1(ABT (z + u))κ1(ABT z)dz.

Since κ1 is isotropic,

κ2(x) =

∫
Rn
κ1(z + u)κ1(z)dz = κ2(u). (2.4.4)

So, whenever ‖x‖ = ‖u‖, we have κ2(x) = κ2(u). Therefore, κ2 is isotropic.

Lemma 2.4.4. Assume κ is isotropic, and ‖u‖ = 1. Then,
∫
Rn κ(z)eλ(u·z)dz =∫

Rn κ(z)eλz1dz.
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Proof. Assume ‖u‖ = ‖e1‖, where e1 is the first column of the standard basis for Rn.

Then, there exists an orthogonal matrix A such that u1 = u = Ae1. After we make a

substitution z = Ay, then we get∫
Rn
κ(z)eλ(u·z)dz =

∫
Rn
κ(Ay)eλ(Ae1·Ay)|detA|dy.

Since A is an orthogonal matrix,∫
Rn
κ(z)eλ(u·z)dz =

∫
Rn
κ(Ay)eλ(e1·y)dy.

Since κ is isotropic,∫
Rn
κ(z)eλ(u·z)dz =

∫
Rn
κ(y)eλ(e1·y)dy =

∫
Rn
κ(y)eλy1dy =

∫
Rn
κ(z)eλz1dz.

Proposition 2.4.5. Assume κ1 is isotropic. Let κ2(x) be defined as κ2(x) =
∫
Rn κ1(y+

x)κ1(y)dy, then

1.
∫
Rn κ2(x)dx =

(∫
Rn κ1(y)dy

)2
.

2.
∫
Rn e

−λx1κ2(x)dx =
(∫

Rn e
−λy1κ1(y)dy

)2
.

Proof. 1. ∫
Rn
κ2(x)dx =

∫
Rn

(∫
Rn
κ1(y + x)κ1(y)dy

)
dx.

We change the order of integration,∫
Rn
κ2(x)dx =

∫
Rn
κ1(y)

(∫
Rn
κ1(y + x)dx

)
dy.

The result follows after a change of variables in the interior integral. Therefore,∫
Rn
κ2(x)dx =

(∫
Rn
κ1(y)dy

)2

.
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2. For this part we have,∫
Rn
e−λx1κ2(x)dx =

∫
Rn
e−λx1

(∫
Rn
κ1(y + x)κ1(y)dy

)
dx.

That is,∫
Rn
e−λx1κ2(x)dx =

∫
Rn
e−λ(x1+y1)

(∫
Rn
eλy1κ1(y + x)κ1(y)dy

)
dx.

We change the order of integration,∫
Rn
e−λx1κ2(x)dx =

∫
Rn
eλy1κ1(y)

(∫
Rn
e−λ(x1+y1)κ1(y + x)dx

)
dy.

By a change of variables x→ u− y,∫
Rn
e−λx1κ2(x)dx =

∫
Rn
eλy1κ1(y)

(∫
Rn
e−λu1κ1(u)du

)
dy.

The claim now follows Since κ1 is isotropic. So,∫
Rn
e−λx1κ2(x)dx =

(∫
Rn
e−λy1κ1(y)dy

)2

.

2.5 Spreading Speeds

A number c∗ > 0 is called the asymptotic speed of spread for a function u :

R+ × Rn → R+ if limt→∞,|x|>ct u(t, x) = 0 for every c > c∗, and if there exists

some ε > 0 such that lim inft→∞,|x|≤ct u(t, x) ≥ ε for every c ∈ (0, c∗) (Aronson and

Weinberger (1975, 1978); Diekmann (1978); Thieme and Zhao (2003)). With that

being said, if we move in any direction with speed c that is not exceeding c∗, then we

will not be able to out run the spreading virus. In the other hand, if we travel with

speed c > c∗, then we are going to escape from the spreading virus. In this section,

we are going to analyze (2.3.70) for spreading speeds based on theories developed on

(Thieme (1979a); Thieme and Zhao (2003)).
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2.5.1 Space-Time Laplace Transform

We use the space-time Laplace transform Ξ(c, λ) to study of the asymptotic behav-

ior of solutions of Eq. (2.3.70) (see, e.g., (Thieme and Zhao (2003); Thieme (1979a))).

Ξ(c, λ) is defined as

Ξ(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ(y, r)dydr (2.5.1)

where y1 is the first coordinate of y (Thieme and Zhao (2003)). We have

Ξ(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ(y, r)dydr

=

∫ ∞
0

∫
Rn
e−λ(cr+y1)

(
ξ1(y, r) + ξ2(y, r)

)
dydr

=

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ1(y, r)dydr

+

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ2(y, r)dydr = Ξ1(c, λ) + Ξ2(c, λ),

(2.5.2)

where

Ξ1(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ1(y, r)dydr, (2.5.3)

and

Ξ2(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ2(y, r)dydr. (2.5.4)

For Ξ1(c, λ), we have

Ξ1(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ1(y, r)dydr. (2.5.5)

Substituting (2.3.65) and (2.3.66) into (2.5.5), we obtain

Ξ1(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)(

p1β

∫
Rn

∫ r

0

θ(r − s)Υ(r − s)S0e
−ν1sΓn(Ds, y − z))κ1(z)dsdz

)
dydr.

(2.5.6)
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We change the order of integration,

Ξ1(c, λ) =p1βS0

∫ ∞
0

e−λcr∫
Rn

∫ r

0

θ(r − s)Υ(r − s)e−ν1s

(∫
Rn
e−λy1Γn(Ds, y − z))dy

)
κ1(z)dsdzdr.

(2.5.7)

We change the order of integration another time,

Ξ1(c, λ) =p1βS0

∫ ∞
0

e−λcr∫ r

0

θ(r − s)Υ(r − s)e−ν1s

∫
Rn

(∫
Rn
e−λy1Γn(Ds, y − z))dy

)
κ1(z)dzdsdr.

(2.5.8)

Now, we make a change of variables y → z + y,

Ξ1(c, λ) =p1βS0

∫ ∞
0

e−λcr∫ r

0

θ(r − s)Υ(r − s)e−ν1s

∫
Rn

(∫
Rn
e−λ(z1+y1)Γn(Ds, y)dy

)
κ1(z)dzdsdr.

(2.5.9)

That is,

Ξ1(c, λ) =p1βS0

∫ ∞
0

∫ r

0

θ(r − s)Υ(r − s)e−ν1se−λcr
(∫

Rn
e−λy1Γn(Ds, y)dy

)
dsdr

∫
Rn
e−λz1κ1(z)dz.

(2.5.10)

Proposition 2.5.1. (Proposition 4.2 in Thieme and Zhao(2003)). Let Γ(t, x) be the

fundamental solution associated with the partial differential operator ∂t −∆x. Then∫
Rn
eλx1Γ(x, t)dx = eλ

2t, t ≥ 0.

By Proposition (2.5.1), (2.5.10) shall be

Ξ1(c, λ) =p1βS0

∫ ∞
0

(∫ r

0

θ(r − s)Υ(r − s)e−ν1se−λcreλ
2Dsds

)
dr∫

Rn
e−λz1κ1(z)dz.

(2.5.11)
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We change the order of integration and do another change of variables, so we get

Ξ1(c, λ) =p1βS0

∫ ∞
0

e(λ2D−λc−ν1)sds

∫ ∞
0

θ(r)Υ(r)e−λcrdr∫
Rn
e−λz1κ1(z)dz.

(2.5.12)

Since Υ(r) = exp
(
−
∫ r

0
θ(s)ds

)
,Υ′(r) = −θ(r)Υ(r). So, (2.5.12) shall be

Ξ1(c, λ) =p1βS0

∫ ∞
0

e(λ2D−λc−ν1)sds

(∫ ∞
0

−Υ′(r)e−λcrdr

)
∫
Rn
e−λz1κ1(z)dz.

(2.5.13)

Evaluating the integral, we obtain

Ξ1(c, λ) =
p1βS0

ν1 + λc− λ2D

(∫ ∞
0

−Υ′(r)e−λcrdr

)∫
Rn
e−λz1κ1(z)dz. (2.5.14)

if ν1 + λc− λ2D > 0, and Ξ1(c, λ) =∞ otherwise.

For Ξ2(c, λ), we have

Ξ2(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)ξ2(y, r)dydr. (2.5.15)

Form (2.3.67) and (2.3.68), we have

Ξ2(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cr+y1)

(
p2β

∫ r

0

θ(r − s)Υ(r − s)S0e
−ν2sdsκ2(y)

)
dydr.

(2.5.16)

We change the order of integration,

Ξ2(c, λ) =p2βS0

∫ ∞
0

e−λcr
(∫ r

0

θ(r − s)Υ(r − s)e−ν2sds

)
dr

∫
Rn
e−λy1κ2(y)dy.

(2.5.17)

That is

Ξ2(c, λ) =p2βS0

∫ ∞
0

(∫ r

0

θ(r − s)Υ(r − s)e−ν2se−λcrds

)
dr

∫
Rn
e−λy1κ2(y)dy.

(2.5.18)
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By changing the order of integration and doing a change of variables, we shall have

Ξ2(c, λ) =p2βS0

∫ ∞
0

e(−ν2−λc)sds

∫ ∞
0

θ(r)Υ(r)e−λcrdr

∫
Rn
e−λy1κ2(y)dy

=p2βS0

∫ ∞
0

e(−ν2−λc)sds

(∫ ∞
0

−Υ′(r)e−λcrdr

)∫
Rn
e−λy1κ2(y)dy.

(2.5.19)

Evaluating the integral, we get

Ξ2(c, λ) =
p2βS0

ν2 + λc

(∫ ∞
0

−Υ′(r)e−λcrdr

)∫
Rn
e−λy1κ2(y)dy. (2.5.20)

By Proposition (2.4.5), we have

Ξ2(c, λ) =
p2βS0

ν2 + λc

(∫ ∞
0

−Υ′(r)e−λcrdr

)(∫
Rn
e−λz1κ1(z)dz

)2

. (2.5.21)

Let

κ̂1(λ) =

∫
Rn
e−λz1κ1(z)dz,

then from (2.5.14) and (2.5.21) we conclude that

Ξ(c, λ) =
( p1κ̂1(λ)

ν1 + λc− λ2D
+
p2(κ̂1(λ))2

ν2 + λc

)
βS0

(∫ ∞
0

−Υ′(r)e−λcrdr

)
(2.5.22)

if ν1 + λc− λ2D > 0, otherwise Ξ(c, λ) =∞.

2.5.2 Generalization of Space-Time Laplace Transform

Since Υ is decreasing, it is of bounded variation (Thieme, 2003, Sec.B.1). So,

we use the Stieltjes integral to generalize space-time Laplace transform such that

Υ′(r) = dΥ(r). Therefore,

Ξ(c, λ) =
(
− p1κ̂1(λ)

ν1 + λc− λ2D
− p2(κ̂1(λ))2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r) (2.5.23)

if ν1 + λc− λ2D > 0, otherwise Ξ(c, λ) =∞, where

κ̂1(λ) =

∫
Rn
e−λz1κ1(z)dz.
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2.5.3 The Basic Reproduction Number of Rabies R0

The basic reproduction number of rabies is given by

R0 = Ξ(0, 0) =
(p1

ν1

+
p2

ν2

)
βS0. (2.5.24)

Here, 1/νj is the average time a rabid fox has available for infecting others before

disease-inflicted death if it is territorial or diffusing, respectively. The weighted aver-

age of these,
(
p1/ν1 + p2/ν2

)
is the time available for a typical rabid fox. S0 is the

density of susceptible foxes available to be infected, and β is the transmission rate.

2.5.4 Assumptions on G, ξ, and F

We start by stating the assumptions that (Thieme and Zhao (2003)) have imposed

on G, ξ, and F. These function are given in (2.3.70).

(A) There exists a function ξ : R+ × Rn → R+ such that

(A1) ξ∗ :=
∫∞

0

∫
Rn ξ(y, r)dydr <∞.

(A2) 0 ≤ G(u, x, r) ≤ uξ(x, r), ∀ u, r ≥ 0, x ∈ Rn.

(A3) For every compact interval I in (0,∞), there exists some ε > 0 such that

G(u, x, r) > εξ(x, r), ∀ u ∈ I, r > 0, x ∈ Rn.

(A4) for every ε > 0, there exists some δ > 0 such that

G(u, x, r) > (1− ε)uξ(x, r), ∀ u ∈ [0, δ], r > 0, x ∈ Rn.

(A5) for every w > 0, there exists some Λ > 0 such that

|G(u, x, r)−G(v, x, r)| 6 Λ|u− v|ξ(x, r), ∀ u ∈ [0, w], r > 0, x ∈ Rn.

The assumptions on ξ are:

(B) The function ξ : R+ × Rn → R+ is borel measurable such that
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(B1) ξ∗ :=
∫∞

0

∫
Rn ξ(y, r)dydr ∈ (1,∞).

(B2) There exists some λ0 > 0 such that∫∞
0

∫
Rn e

λ0yξ(y, r)dydr <∞

(B3) There exist numbers δ2 > δ1 > 0, p > 0 such that

ξ(y, r) > 0, ∀ r ∈ (δ1, δ2), |y| ∈ [0, p).

(B4) ξ is isotropic.

The following assumptions are about F (u) ,

(C) The function F : R+ → R+ is a Lipschitz continuous function such that

(C1) F (0) = 0 and F (u) > 0, ∀ u > 0.

(C2) F is differentiable at u = 0, F ′(0) = 1 and F (u) 6 u,∀u > 0.

(C3) limu→∞
F (u)
u

= 0.

(C4) There exists a positive solution u∗ of u = ξ∗F (u) such that ξ∗F (u) > u,

∀u ∈ (0, u∗), and ξ∗F (u) < u, ∀u > u∗.

We start by verifying the assumptions (A).

(A1) See (B1).

(A2) From (2.3.43), we have that F (u) = 1 − e−u, and so F (0) = 0. So, F (u) is

differentiable, and thus it is continuous. Since F : [0,∞) → R+ is differenetiable

and continuous on [0,∞), we can use the mean value theorem. So, there exists some

ω ∈ [0,∞), such that

F (u)− F (0) = F ′(ω)(u− 0) = uF ′(ω) ≤ u.

Therefore, 0 ≤ G(u, x, r) = F (u)ξ(x, r) ≤ uξ(y, r), ∀ u, r ≥ 0, x ∈ Rn.

(A3) For every compact interval I ∈ (0,∞), F (u) has a minimum. That is there
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exists some ε > 0, such that F (u) ≥ ε. Therefore, G(u, x, r) = F (u)ξ(x, r) > εξ(x, r),

∀ u ∈ I, r > 0, x ∈ Rn.

(A4) From (A2), we have F (u) = uF ′(ω), where ω, u ∈ [0, δ], and F ′(ω) = e−ω. We

can choose δ > 0 such that δ < − ln(1− ε) such that

F ′(ω) = e−ω > e−δ > eln(1−ε) = 1− ε.

Hence, for every ε > 0, there exists some δ > 0 such that

G(u, x, r) = F (u)ξ(x, r) = uF ′(ω)ξ(x, r) > (1− ε)uξ(x, r), ∀ u ∈ [0, δ], r > 0, x ∈ Rn.

(A5) By the mean value theorem, there exists p ∈ [0, ω], where ω > 0, such that

|F (u)− F (v)| = |F ′(p)(u− v)|.

But F ′(p) = e−p ≤ 1 = Λ, hence

|F (u)− F (v)| = |F ′(p)(u− v)| 6 Λ|u− v|.

From that we get,

|G(u, x, r)−G(v, x, r)| =|F (u)ξ(x, r)− F (v)ξ(x, r)|

=|F ′(p)(u− v)ξ(x, r)|

≤|F ′(p)||(u− v)|ξ(x, r)

≤Λ|(u− v)|ξ(x, r).

Therefore, for every w > 0, there exists some Λ > 0 such that

|G(u, x, r)−G(v, x, r)| 6 Λ|u− v|ξ(x, r), ∀ u ∈ [0, w], r > 0, x ∈ Rn.

In the following lines, we verify the assumptions on (B).

(B1) We assume ν1, ν2 > 0, then from (2.5.23)

ξ∗ = Ξ(0, 0) =
(p1

ν1

+
p2

ν2

)
βS0 <∞. (2.5.25)
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Choosing ν1 = ν2 = β and S0 > 1, we can achieve that ξ∗ > 1.

(B2) Assume ν1 − λ2D > 0. Notice that∫ ∞
0

∫
Rn
eλ0y1ξ(y, r)dydr = Ξ(0, λ).

Then by (2.5.23), we have

Ξ(0, λ) =
( p1κ̂1(λ)

ν1 − λ2D
+
p2(κ̂1(λ))2

ν2

)
βS0

(∫ ∞
0

−Υ′(r)dr

)
, (2.5.26)

where

κ̂1(λ) =

∫
Rn
e−λz1κ1(z)dz.

Υ(a) is the probability that an infected fox is still in the latent stage a time units

after infection. Then Υ is decreasing and Υ(0) = 1. Also, as a → ∞, we assume

Υ(a)→ 0. So, we have∫ ∞
0

−Υ′(r)dr = −(Υ(∞)−Υ(0)) = 1.

By (2.4.3), we have

Ξ(0, λ) =
( p1κ̂1(λ)

ν1 − λ2D
+
p2(κ̂1(λ))2

ν2

)
βS0 <∞. (2.5.27)

(B3) Let δ2 > δ1 > 0, p > 0, r ∈ (δ1, δ2), and r > s > 0. From (2.3.65), (2.3.66),

(2.3.67), and (2.3.68), we have

ξ(y, r) =p1β

∫
Rn

∫ r

0

S0θ(r − s)Υ(r − s)e−ν1sΓn(Ds, y − z)κ1(z)dsdz

+ p2βS0

∫ r

0

θ(r − s)Υ(r − s)e−ν2sdsκ2(y).

Assume there is some ρ ∈ (0,∞) such that κ(r) > 0 for all r ∈ [0, ρ). Then, by (2.3.8)

and (2.4.3), we conclude that ξ(y, r) > 0, ∀ r ∈ (δ1, δ2), and |y| ∈ [0, p).

(B4) Assume κ1 is isotropic, then κ2 is isotropic by Lemma 2.4.3. Since Γn is isotropic,

we conclude that ξ is isotropic.
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In the following lines, we verify the assumptions on (C).

(C1) We have F (u) = 1−e−u, and clearly e−u < 1, for all u > 0. Therefore, F (0) = 0,

and F (u) > 0, ∀ u > 0.

(C2) See (A2) for details.

(C3) Clearly, we have limu→∞
1−e−u
u

= 0.

(C4) From (B1), we have ξ∗ ∈ (1,∞). Set, E(u) = ξ∗(1 − e−u) − u. Then, clearly,

if u∗ = ln(ξ∗), then ξ∗e−u
∗ − 1 = 0. That is, for ∀u ∈ (0, u∗), ξ∗e−u

∗
> 1 and E(u)

is increasing on (0, u∗). Therefore, ξ∗F (u) > u, ∀u ∈ (0, u∗). In the other hand,

∀u > u∗, ξ∗e−u
∗
< 1, and E(u) is decreasing ∀ u > u∗. Therefore, ξ∗F (u) < u, ∀

u > u∗.

2.6 Results

Since we have verified the assumptions on A, B, C, and D, Theorem 2.2 and

Lemma 2.1 in (Thieme and Zhao (2003)) hold and so Proposition 2.3 in (Thieme and

Zhao (2003)) holds. We can say that the spreading speed (aka asymptotic speed of

spread) is defined by

c∗ := inf{c ≥ 0; ∃λ > 0 : Ξ(c, λ) < 1}, (2.6.1)

(Diekmann (1978, 1979); Thieme (1979a)), where Ξ(c, λ) is given by (2.5.1).

2.6.1 General Results

Lemma 2.6.1. Let Υ(r) be defined as in (2.3.7), which is the probability that infected

foxes with infection age r are still in the latent period. Then
∫∞

0
−Υ′(r)e−λcrdr is

non-negative.

Proof. Since Υ(0) = 1 > Υ(t) for sufficiently large t > 0, then we have∫ ∞
0

−Υ′(r)e−λcrdr ≥
∫ t

0

−Υ′(r)dre−λct =
(
Υ(0)−Υ(t)

)
e−λct > 0. (2.6.2)
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Lemma 2.6.2. Given that c, λ > 0, with Ξ1(c, λ) < 1 and Ξ2(c, λ) < 1, then we have

the following holds:

1.
∫
Rn κ1(z)e−λz1dz < ν1+λc−λ2D

p1βS0

1∫∞
0 −Υ′(r)e−λcrdr

.

with ν1 + λc− λ2D > 0.

2.
∫
Rn κ2(z)e−λz1dz < ν2+λc

p2βS0

1∫∞
0 −Υ′(r)e−λcrdr

.

Proof. 1. For all c, λ > 0, we have that

Ξ1(c, λ) < 1

where Ξ1(c, λ) is defined in (2.5.5), so by (2.5.14),

p1βS0

ν1 + λc− λ2D

(∫ ∞
0

−Υ′(r)e−λcrdr

)∫
Rn
e−λz1κ1(z)dz < 1.

Therefore, ∫
Rn
κ1(z)e−λz1dz <

ν1 + λc− λ2D

p1βS0

1∫∞
0
−Υ′(r)e−λcrdr

with ν1 + λc− λ2D > 0.

2. For all c, λ > 0, we have that

Ξ2(c, λ) < 1

where Ξ2(c, λ) is defined in (2.5.15). So, by (2.5.20),

p2βS0

ν2 + λc

(∫ ∞
0

−Υ′(r)e−λcrdr

)∫
Rn
e−λy1κ2(y)dy < 1.

Therefore, ∫
Rn
κ2(z)e−λz1dz <

ν2 + λc

p2βS0

1∫∞
0
−Υ′(r)e−λcrdr

.
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2.6.2 Admissible u0

We have found that

u0(x, t) = u01(x, t) + u02(x, t) + u03(x, t) + u04(x, t), (2.6.3)

where 

u01(x, t) = βp1

∫ t
0

∫
Rn
∫
Rn κ1(x− z)Γn(Ds, z − y)e−ν1s

(∫ t−s
0

∫∞
0
θ(a+ r)E0(y, a)F(a+ r, r)dadr

)
dydzds,

u02(x, t) = β
∫ t

0

∫
Rn
∫
Rn κ1(x− z)Γn(Ds, z − y)R◦1(y)e−ν1sdydzds

u03(x, t) = p2β
∫ t

0

∫
Rn κ2(x− z)e−ν2s

(∫ t−s
0

∫∞
0
θ(a+ r)E0(z, a)F(a+ r, r)dadr

)
dzds,

u04(x, t) = β
∫ t

0

∫
Rn κ2(x− z)R◦2(z)e−ν2sdzds.

Definition 2.6.3. (Thieme and Zhao, 2003, p.436) We say that u0 is admissible if

for every c, λ > 0 with Ξ(c, λ) < 1, there is some γ > 0 such that u0(t, x) 6 γeλ(ct−|x|),

∀ t > 0 , x ∈ Rn.

In the next theorem, we want to show u0 is admissible.

Theorem 2.6.4. Let (B), and (C) hold, and κ1 is isotropic. Assume that E0 :

R+ × Rn → R+ is a continuous function with the property that for every λ > 0,

there exists some γ > 0 such that
∫∞

0
E0(y, a)da ≤ γe−λ|y|, ∀ y ∈ Rn. Also, for any

λ > 0, we assume R◦1, R
◦
2 : Rn → R+ are continuous functions with the property that

R◦1(y) ≤ γe−λ|y| and R◦2(y) ≤ γe−λ|y|, ∀ y ∈ Rn. Then the following holds:

1. u0 is admissible.

2. The unique solution u(t, x) of (2.3.70) satisfies limt→∞,|x|>ct u(t, x) = 0 for every

c > c∗.
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Proof. 1. we have

u01(x, t) =βp1

∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)e−ν1s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(y, a)F(a+ r, r)dadr

)
dydzds.

(2.6.4)

From (2.3.10), we have F(a, t) = Υ(a)/Υ(a− t). Then,

u01(x, t) =βp1

∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)e−ν1s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(y, a)
Υ(a+ r)

Υ(a)
dadr

)
dydzds.

(2.6.5)

Note that ∫ t−s

0

∫ ∞
0

θ(a+ r)E0(y, a)
Υ(a+ r)

Υ(a)
dadr

=

∫ ∞
0

(∫ t−s

0

θ(a+ r)Υ(a+ r)dr

)
E0(y, a)

Υ(a)
da

=

∫ ∞
0

(∫ t−s

0

−Υ′(a+ r)dr

)
E0(y, a)

Υ(a)
da

=

∫ ∞
0

(
Υ(a)−Υ(a+ t− s)

) E0(y, a)

Υ(a)
da

≤
∫ ∞

0

Υ(a)
E0(y, a)

Υ(a)
da =

∫ ∞
0

E0(y, a)da.

(2.6.6)

Thus, (2.6.5) shall be

u01(x, t) ≤βp1

∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)e−ν1s(∫ ∞

0

E0(y, a)da

)
dydzds.

(2.6.7)

By the assumption on E0(y, a), there exists some γ > 0 such that∫ ∞
0

E0(y, a)da ≤ γe−λ|y|, for all a ≥ 0, y ∈ Rn.

Then, it follows that

u01(x, t) ≤γβp1

∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)e−ν1se−λ|y|dydzds. (2.6.8)
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Note that for every u ∈ Rn with | u |= 1, there holds − | y |≤ u · y ≤| y |

(Thieme and Zhao (2003)). So,

u01(x, t) ≤γβp1

∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)e−ν1seλu·ydydzds. (2.6.9)

We change the order of integration, then let z → x− z,

u01(x, t) ≤γβp1

∫ t

0

∫
Rn

∫
Rn
κ1(z)Γn(Ds, x− z − y)e−ν1seλu·ydydzds. (2.6.10)

We change the order of integration another time, and do another change of

variables,

u01(x, t) ≤γβp1e
−λu·x

∫ t

0

∫
Rn

∫
Rn
κ1(z)Γn(Ds, y)e−ν1seλu·(z−y)dydzds. (2.6.11)

By Lemma(2.4.4), we have that

u01(x, t) ≤γβp1e
−λu·x

∫ t

0

e−ν1s

(∫
Rn

Γn(Ds, y)eλy1dy

)
ds∫

Rn
κ1(z)eλz1dz.

(2.6.12)

Multiply both sides by e−λct, we have

e−λctu01(x, t) ≤γβp1e
−λu·xe−λct

∫ t

0

e−ν1s

(∫
Rn

Γn(Ds, y)eλy1dy

)
ds∫

Rn
κ1(z)eλz1dz

≤ γβp1e
−λu·x

∫ t

0

e(−ν1−λc)s
(∫

Rn
Γn(Ds, y)eλy1dy

)
ds∫

Rn
κ1(z)eλz1dz

= γβp1e
−λu·x

∫ t

0

e(−ν1−λc+λ2D)sds

∫
Rn
κ1(z)eλz1dz

≤ γβp1e
−λu·x

∫ ∞
0

e(−ν1−λc+λ2D)sds

∫
Rn
κ1(z)eλz1dz

=
γβp1

ν1 + λc− λ2D
e−λu·x

∫
Rn
κ1(z)eλz1dz.

(2.6.13)
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That is

u01(x, t) ≤ γβp1

ν1 + λc− λ2D
eλ(ct−u·x)

∫
Rn
κ1(z)eλz1dz. (2.6.14)

By using Lemma(2.6.2), we obtain

u01(x, t) ≤ γ

S0

1∫∞
0
−Υ′(r)e−λcrdr

eλ(ct−u·x). (2.6.15)

Letting u = x
|x| , then we obtain

u01(x, t) ≤ γ

S0

1∫∞
0
−Υ′(r)e−λcrdr

eλ(ct−|x|), for all t ≥ 0, x ∈ Rn. (2.6.16)

Now, we work on u02(x, t),

u02(x, t) =β

∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)R◦1(y)e−ν1sdydzds. (2.6.17)

By the assumption on R◦1(y), there exists some γ > 0 such that

R◦1(y) ≤ γe−λ|y|, for all y ∈ Rn.

Then, it follows that

u02(x, t) ≤γβ
∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)e−λ|y|e−ν1sdydzds. (2.6.18)

That is

u02(x, t) ≤γβ
∫ t

0

∫
Rn

∫
Rn
κ1(x− z)Γn(Ds, z − y)eλu·ye−ν1sdydzds. (2.6.19)

We change the order of integration, then do a change of variables z → x − z,

then

u02(x, t) ≤γβ
∫ t

0

∫
Rn

∫
Rn
κ1(z)Γn(Ds, x− z − y)eλu·ye−ν1sdzdyds. (2.6.20)
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We change the order of integration, then do another change of variables

u02(x, t) ≤γβ
∫ t

0

∫
Rn

∫
Rn
κ1(z)Γn(Ds, y)eλu·(z−x−y)e−ν1sdydzds

= γβe−λu·x
∫ t

0

(∫
Rn

Γn(Ds, y)e−λu·ydy

)
e−ν1sds∫

Rn
κ1(z)eλu·zdz.

(2.6.21)

By Lemma( 2.4.4),

u02(x, t) ≤γβe−λu·x
∫ t

0

(∫
Rn

Γn(Ds, y)e−λy1dy

)
e−ν1sds∫

Rn
κ1(z)eλz1dz

=γβe−λu·x
∫ t

0

e(λ2D−ν1)sds

∫
Rn
κ1(z)eλz1dz.

(2.6.22)

Multiply both sides by e−λct,

e−λctu02(x, t) ≤γβe−λu·xe−λct
∫ t

0

e(λ2D−ν1)sds

∫
Rn
κ1(z)eλz1dz

≤γβe−λu·x
∫ t

0

e(λ2D−ν1−λc)sds

∫
Rn
κ1(z)eλz1dz

≤γβe−λu·x
∫ ∞

0

e(λ2D−ν1−λc)sds

∫
Rn
κ1(z)eλz1dz

=
γβ

ν1 + λc− λ2D
e−λu·x

∫
Rn
κ1(z)eλz1dz.

(2.6.23)

That is

u02(x, t) ≤ γβ

ν1 + λc− λ2D
eλ(ct−u·x)

∫
Rn
κ1(z)eλz1dz. (2.6.24)

Using Lemma(2.6.2), we have

u02(x, t) ≤ γ

p1S0

1∫∞
0
−Υ′(r)e−λcrdr

eλ(ct−u·x). (2.6.25)

Letting u = x
|x| , then we get

u02(x, t) ≤ γ

p1S0

1∫∞
0
−Υ′(r)e−λcrdr

eλ(ct−|x|), for all t ≥ 0, x ∈ Rn. (2.6.26)
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For u03(x, t), we have

u03(x, t) =p2β

∫ t

0

∫
Rn
κ2(x− z)e−ν2s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(z, a)F(a+ r, r)dadr

)
dzds.

(2.6.27)

By (2.3.10), we have

u03(x, t) =p2β

∫ t

0

∫
Rn
κ2(x− z)e−ν2s(∫ t−s

0

∫ ∞
0

θ(a+ r)E0(z, a)
Υ(a+ r)

Υ(a)
dadr

)
dzds.

(2.6.28)

By (2.6.6), we have

u03(x, t) =p2β

∫ t

0

∫
Rn
κ2(x− z)e−ν2s

(∫ ∞
0

E0(z, a)da

)
dzds. (2.6.29)

By the assumption on E0(z, a), there exists some γ > 0 such that∫ ∞
0

E0(z, a)da ≤ γe−λ|z|, for all a ≥ 0, z ∈ Rn.

Then, we obtain

u03(x, t) ≤γp2β

∫ t

0

∫
Rn
κ2(x− z)e−ν2se−λ|z|dzds. (2.6.30)

That is

u03(x, t) ≤γp2β

∫ t

0

∫
Rn
κ2(x− z)e−ν2seλu·zdzds. (2.6.31)

We do a change of variables, we then have

u03(x, t) ≤ γp2β

∫ t

0

∫
Rn
κ2(z)e−ν2seλu·(x−z)dzds

= γp2βe
λu·x

∫ t

0

e−ν2sds

∫
Rn
κ2(z)e−λu·zdz.

(2.6.32)

By Lemma(2.4.4),

u03(x, t) ≤ γp2βe
λu·x

∫ t

0

e−ν2sds

∫
Rn
κ2(z)e−λz1dz. (2.6.33)
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Multiply both sides by e−λct,

e−λctu03(x, t) ≤ γp2βe
λu·xe−λct

∫ t

0

e−ν2sds

∫
Rn
κ2(z)e−λz1dz

≤ γp2βe
λu·x

∫ t

0

e−(ν2+λc)sds

∫
Rn
κ2(z)e−λz1dz

≤ γp2βe
λu·x

∫ ∞
0

e−(ν2+λc)sds

∫
Rn
κ2(z)e−λz1dz

=
γp2β

ν2 + λc
eλu·x

∫
Rn
κ2(z)e−λz1dz.

(2.6.34)

That is

u03(x, t) ≤ γp2β

ν2 + λc
eλ(ct−u·x)

∫
Rn
κ2(z)e−λz1dz. (2.6.35)

Using Lemma(2.6.2) and letting u = −x
|x| , then we obtain

u03(x, t) ≤ γ

S0

1∫∞
0
−Υ′(r)e−λcrdr

eλ(ct−|x|), for all t ≥ 0, x ∈ Rn. (2.6.36)

Lastly, we want to verify u04(x, t) is admissible, so we have

u04(x, t) =β

∫ t

0

∫
Rn
κ2(x− z)R◦2(z)e−ν2sdzds. (2.6.37)

By the assumption on R◦2(z), there exists some γ > 0 such that

R◦1(z) ≤ γe−λ|z|, for all z ∈ Rn.

Then, it follows that

u04(x, t) ≤γβ
∫ t

0

∫
Rn
κ2(x− z)e−λ|z|e−ν2sdzds

≤γβ
∫ t

0

∫
Rn
κ2(x− z)eλu·ze−ν2sdzds.

(2.6.38)

Let z → x− z,

u04(x, t) ≤γβ
∫ t

0

∫
Rn
κ2(z)eλu·(x−z)e−ν2sdzds. (2.6.39)
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By Lemma(2.4.4),

u04(x, t) ≤γβeλu·x
∫ t

0

∫
Rn
κ2(z)e−λz1e−ν2sdzds. (2.6.40)

Multiply both sides by e−λct,

e−λctu04(x, t) ≤γβeλu·xe−λct
∫ t

0

e−ν2sds

∫
Rn
κ2(z)e−λz1dz

≤γβeλu·x
∫ t

0

e−(ν2+λc)sds

∫
Rn
κ2(z)e−λz1dz

≤γβeλu·x
∫ ∞

0

e−(ν2+λc)sds

∫
Rn
κ2(z)e−λz1dz

=
γβ

ν2 + λc
eλu·x

∫
Rn
κ2(z)e−λz1dz.

(2.6.41)

That is

u04(x, t) ≤ γβ

ν2 + λc
eλ(ct+u·x)

∫
Rn
κ2(z)e−λz1dz. (2.6.42)

Using Lemma(2.6.2) and letting u = −x
|x| in the last inequality, we obtain

u04(x, t) ≤ γ

p2S0

1∫∞
0
−Υ′(r)e−λcrdr

eλ(ct−|x|) for all t ≥ 0, x ∈ Rn. (2.6.43)

By (2.6.16), (2.6.26), (2.6.39) and (2.6.43), it follows that u0(t, x) is admissible.

2. By ((Thieme and Zhao, 2003, Theorem. 2.1)), the statement holds.

2.6.3 Results for Spreading Speeds

Let Ξ1 be Ξ with p1 = 1 and p2 = 0 and Ξ2 be Ξ with p1 = 0 and p2 = 1 and

c∗j be the spreading speed associated with Ξj by (2.6.1) with Ξj replacing Ξ. Then

Ξ = p1Ξ1 + p2Ξ2. So, we have the following theorem.

Theorem 2.6.5. c∗ ≥ min{c∗1, c∗2}.
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Proof. We can assume that c∗j > 0 for j = 1, 2. Set c• = min{c∗1, c∗2}. Let c ∈ (0, c•).

By (2.6.1) Ξj(c, λ) ≥ 1 for all λ ≥ 0. So Ξ(c, λ) ≥ 1 for all λ ≥ 0. By (2.6.1), c∗ ≥ c.

Since c ∈ (0, c•) has been arbitrary, c∗ ≥ c•.

Remark 2.6.6. It is an open problem whether c∗ ≤ max{c∗1, c∗2}.

Theorem 2.6.7. Let ξ1, ξ2 :→ R+ × R → R+ be integral kernels, and Ξi be the

associated space-time Laplace transforms and c∗i the associated spreading speeds. If

Ξ1(c, λ) ≥ Ξ2(c, λ) for all c > 0 and λ ≥ 0, then c∗1 ≥ c∗2.

Proof. Let Ξ1(c, λ) ≥ Ξ2(c, λ). Let’s define Ξ∗1 and Ξ∗2 to be Ξ∗1 = {c ≥ 0 : Ξ1(c, λ) <

1 for some λ > 0} and Ξ∗2 = {c ≥ 0 : Ξ2(c, λ) < 1 for some λ > 0}. Let’s choose

c̃1 > 0 and λ1 ≥ 0 such that Ξ1(c̃1, λ1) < 1. Since Ξ1(c, λ) ≥ Ξ2(c, λ) holds for all

c > 0 and λ ≥ 0, we have Ξ2(c̃1, λ1) 6 Ξ1(c̃1, λ1) < 1. So, clearly we conclude that

Ξ∗1 ⊆ Ξ∗2. It follows that

inf(Ξ∗1) > inf(Ξ∗2). (2.6.44)

Therefore, c∗1 ≥ c∗2 for all c > 0 and λ ≥ 0.

Theorem 2.6.8. The spreading speed c∗ is monotone increasing function of β, S0,

b, and D.

Proof. Clearly if we increase β, S0, b, or D, then Ξ(c, λ) in (2.5.23) will increase. By

Theorem (2.6.7), the spreading speed c∗ is a monotone increasing function of β, S0,

b, and D.

Theorem 2.6.9. The spreading speed c∗ is monotone decreasing function of ν1, and

ν2.

Proof. Clearly if we increase ν1 or ν2, then Ξ(c, λ) in (2.5.23) will decrease. By

Theorem (2.6.7), the spreading speed c∗ is a monotone decreasing function of ν1, and

ν2.
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Theorem 2.6.10. The spreading speed c∗ is monotone decreasing function of Υ.

Proof. After integration by parts, (2.5.23) shall be

Ξ(c, λ) =
( p1κ̂1(λ)

ν1 + λc− λ2D
+
p2(κ̂1(λ))2

ν2 + λc

)
βS0

(
1− λc

∫ ∞
0

Υ(r)e−λcrdr

)
, (2.6.45)

where

κ̂1(λ) =

∫
Rn
e−λz1κ1(z)dz.

So, clearly if we increase Υ, then Ξ(c, λ) will decrease. By Theorem (2.6.7), the

spreading speed c∗ is a monotone decreasing function of Υ.

2.7 Discussion and Conclusions

We reduce (2.2.2) to a scalar Volterra-Hammerstein integral equation

u(x, t) = u0(x, t) +

∫ t

0

∫
Rn
ξ(r, |x− z|)F (u(z, t− s))dzdr. (2.7.1)

The integral kernel ξ essentially consists of convolutions of κ1 and of the fundamental

solution of the partial differential operator ∂t −D∆x and of Υ, and F (u) = 1− e−u.

u0 combines the various initial conditions such that

u0(x, t) = u01(x, t) + u02(x, t) + u03(x, t) + u04(x, t),

where 

u01(x, t) = βp1

∫ t
0

∫
Rn
∫
Rn κ1(x− z)Γn(Ds, z − y)e−ν1s

(∫ t−s
0

∫∞
0
θ(a+ r)E0(y, a)F(a+ r, r)dadr

)
dydzds,

u02(x, t) = β
∫ t

0

∫
Rn
∫
Rn κ1(x− z)Γn(Ds, z − y)R◦1(y)e−ν1sdydzds

u03(x, t) = p2β
∫ t

0

∫
Rn κ2(x− z)e−ν2s

(∫ t−s
0

∫∞
0
θ(a+ r)E0(z, a)F(a+ r, r)dadr

)
dzds,

u04(x, t) = β
∫ t

0

∫
Rn κ2(x− z)R◦2(z)e−ν2sdzds.
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Here, u is the cumulative rate of rabid foxes meet the susceptible foxes. ξ is the

contribution of diffusion and territorial rabid foxes to the infection rate. The space-

time Laplace transform is found to be

Ξ(c, λ) =
(
− p1κ̂1(λ)

ν1 + λc− λ2D
− p2(κ̂1(λ))2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r)

if ν1 + λc− λ2D > 0, otherwise Ξ(c, λ) =∞, where

κ̂1(λ) =

∫
Rn
e−λz1κ1(z)dz.

The basic reproduction number of rabies is given by

R0 = Ξ(0, 0) =
(p1

ν1

+
p2

ν2

)
βS0.

We show that u0 is admissible if E0 and R◦j for j = 1, 2 are continuous on Rn, and

if there exists some γ > 0 such that
∫∞

0
E0(y, a)da ≤ γe−λ|y|, R◦1(y) ≤ γe−λ|y|, and

R◦2(y) ≤ γe−λ|y| for every λ > 0 and y ∈ Rn. Also, we show that for every c > c∗,

lim
t→∞, |x|≥ ct

u(x, t)→ 0,

and for every c ∈ (0, c∗),

lim
t→∞

inf
|x|≤ ct

u(x, t) ≥ u∗,

where u∗ > 0 is the unique solution of R0(1 − e−u
∗
) = u∗. Therefore, c∗ is the

spreading speed of our solution u. With that being said, if we move in any direction

with speed c that is not exceeding c∗, then we will not be able to out run the spreading

virus. In the other hand, if we travel with speed c > c∗, then we are going to escape

from the spreading virus.

If R0 > 1, the spreading speed c∗ > 0 is uniquely determined as the solution of the

system

Ξ(c∗, λ) = 1,
d

dλ
Ξ(c∗, λ) = 0.
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Otherwise, if R0 ≤ 1, we define c∗ := 0.

In addition, we have proved analytically that the spreading speed of rabies c∗ is a

monotone increasing function of β, S0, b, and D, and c∗ is a monotone decreasing

function of Υ, ν1, and ν2. At this moment, we are not able to confirm whether c∗ is

a monotone decreasing or increasing function of the proportion of wandering rabid

foxes p1.
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Chapter 3

DERIVATION OF MODELS WITH LATENT PERIODS OF FIXED AND

EXPONENTIALLY DISTRIBUTED LENGTH

3.1 Abstract

We derive two different sub-models based on two different choices of the latent

period. For the first model, we assume the latent period has a fixed length. For the

second model, we assume the latent period has exponentially distributed length. We

show that the latent period with arbitrary distributed length can be used to derive

these two models. Existence and uniqueness of solutions are also discussed.

3.2 The Model

In order to include and study more cases especially when the latent period has

fixed duration and when the latent period is exponentially distributed, the model

in (2.2.2) must reformulate. We consider an open subset Ω of Rn to represent the

habitat of the foxes. We also consider an epidemic outbreak and assume that it is

short enough that the natural turnover of the fox population can be ignored: No foxes

are born, and the only deaths are those of rabid foxes dying from rabies.

Let S(x, t) denote the density of susceptible foxes (which are all territorial) at

time t whose home-ranges center at location x ∈ Ω. Further R1(x, t) are the diffusing

rabid foxes at location x and time t and R2(x, t) the territorial rabid foxes at time

t whose home-ranges center at location x. Finally, L(x, t) are the foxes with home-

range center at x at time t that are in the latent period (they are all territorial), and

I(x, t) is the transition rate at which foxes in the latent period become infectious.
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Let κ1(x, z) denote the rate at which a fox with home-range center x visits the

location z ∈ Ω. The rate at which a susceptible fox with home-range center x meets

a territorial rabid fox with home-range center z is given by

κ2(x, z) =

∫
Ω

κ1(x, y)κ1(z, y)dy, (3.2.1)

which means that it is the rate at which they both visit some common point y ∈ Ω

(Compare equation (5.1) in (van den Bosch et al. (1990))). The model takes the form,

∂tS(x, t) = −βS(x, t)

∫
Ω

[
κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)

]
dz

=: −B(x, t),

∂tR1(x, t) = D∇2
xR1(x, t) + p1I(x, t)− ν1R1(x, t),

∂tR2(x, t) = p2I(x, t)− ν2R2(x, t),

(3.2.2)

with given initial conditions

S(x, 0) = S0(x), R1(x, 0) = R◦1(x), R2(x, 0) = R◦2(x), x ∈ Ω. (3.2.3)

If Ω 6= Rn, the partial differential equation for R1 is accompanied by boundary

conditions.

The parameters ν1 > 0 and ν2 > 0 are the per capita rabies death rates of diffusing

and territorial rabid foxes, respectively. p1 is the chance of a rabid fox to diffuse, and

p2 the chance to be territorial, pj ≥ 0 and p1 + p2 = 1. β > 0 is the rate at which

the meeting of a susceptible and rabid fox leads to the infection of the susceptible

fox. B(x, t) is the incidence of the disease, i.e., the number of new cases per unit

of time. D > 0 is the diffusion constant and ∇2
x =

∑n
i=1 ∂

2
xi

the Laplace operator.

The nonnegative continuous functions S0, R◦1 and R◦2 are the initial densities of the

susceptible and diffusing and territorial rabid foxes.
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3.3 Latent Period of Fixed Length

If τ > 0 is the fixed length of the latent period, then the individuals transiting

from the latent to the infectious state at time t > τ are exactly those that were

infected τ time units ago, at time t− τ ,

I(x, t) = B(x, t− τ) = −∂tS(x, t− τ), t > τ. (3.3.1)

For simplicity of exposition and numerical calculation, we assume that the epizootic

is started at time 0 by rabid foxes with no foxes being in the latent stage, i.e.,

I(x, t) = 0, 0 ≤ t < τ. (3.3.2)

Therefore, for 0 ≤ t < τ, we obtain a model of ordinary differential equations

∂tS(x, t) = −βS(x, t)

∫
Ω

[
κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)

]
dz

=: −B(x, t),

∂tR1(x, t) = D∇2
xR1(x, t)− ν1R1(x, t), 0 ≤ t < τ

∂tR2(x, t) = −ν2R2(x, t),

(3.3.3)

By combining (3.3.1) and (3.3.2) with (3.2.2), we obtain a model delay differential

equations for t > τ

∂tS(x, t) = −βS(x, t)

∫
Ω

[
κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)

]
dz

=: −B(x, t),

∂tR1(x, t) = D∇2
xR1(x, t) + p1B(x, t− τ)− ν1R1(x, t), t > τ

∂tR2(x, t) = p2B(x, t− τ)− ν2R2(x, t),

(3.3.4)

with given initial conditions

S(x, 0) = S0(x), R1(x, 0) = R◦1(x), R2(x, 0) = R◦2(x),
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x ∈ Ω. We will use the system of ordinary differential equations in (3.3.3) and the

system of delay differential equations (3.3.3) with the given initial conditions to do

the numerical experiment in chapter 5.

3.4 Latent Period with Exponentially Distributed Length

Let θ > 0 be the constant per capita rate at which infected foxes transit from the

latent to the rabid (infectious) stage. In this case, we formulate a submodel for the

infected foxes in the latent stage the number of which, at location x and time t, is

denoted by L(x, t). Since foxes are infected at rate B(x, t) and do not die during the

latent period, we have

∂tL(x, t) = B(x, t)− θL(x, t) = −∂tS(x, t)− θL(x, t). (3.4.1)

As before, we assume that there are no foxes in the latent period at time 0, i.e.,

L(x, 0) = 0. (3.4.2)

Since the rate of change of L(x, t) in time is the difference of the entry and exit rates

of the latent stage and B(x, t) is the entry rate, we obtain

I(x, t) = θL(x, t). (3.4.3)

By (3.4.1), I satisfies the differential equation,

∂tI(x, t) = θB(x, t)− θI(x, t) = −θ∂tS(x, t)− θI(x, t), (3.4.4)
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with the initial condition I(x, 0) = 0. We combine (3.4.4) and I(x, 0) = 0 with (3.2.2),

which lead to the model

∂tS(x, t) = −βS(x, t)

∫
Ω

[
κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)

]
dz

=: −B(x, t),

∂tR1(x, t) = D∇2
xR1(x, t) + p1I(x, t)− ν1R1(x, t),

∂tR2(x, t) = p2I(x, t)− ν2R2(x, t),

∂tI(x, t) = θB(x, t)− θI(x, t),

(3.4.5)

with given initial conditions

S(x, 0) = S0(x), R1(x, 0) = R◦1(x), R2(x, 0) = R◦2(x), I(x, 0) = I0(x), x ∈ Ω.

We will use the system of ordinary differential equations in (3.4.5) with the given

initial conditions to do the numerical experiment in chapter 6.

3.5 Latent Periods with General Length Distribution

Let L(x, t) be again the number of foxes in the latent stage. Since foxes are

infected at rate B(x, t) and, by assumption, do not die during the latent period,

∂tL(x, t) = B(x, t)− I(x, t), (3.5.1)

where I(x, t) is the transition rate of foxes from the latent period to the rabid period

appearing in (3.2.2).

Let Υ(a) be the probability that an infected fox is still in the latent stage a time

units after infection. Then Υ is decreasing and Υ(0) = 1.

We again assume that there are no foxes in the latent stage at time 0; so all foxes

in the latent stage at time t > 0 have been infected at some t−a with 0 ≤ a ≤ t, and

L(x, t) =

∫ t

0

B(x, t− a)Υ(a)da. (3.5.2)

54



After a substitution,

L(x, t) =

∫ t

0

B(x, s)Υ(t− s)ds. (3.5.3)

Assume for a moment that Υ is continuously differentiable. By Leibnitz differentiation

rule, L has partial derivatives with respect to time and we have

∂tL(x, t) = B(x, t) +

∫ t

0

B(x, s)Υ′(t− s)ds = B(x, t) +

∫ t

0

B(x, t− a)Υ′(a)da.

If Υ is not continuously differentiable, one can show that L(x, t) is absolutely contin-

uous with respect to t and

∂tL(x, t) = B(x, t) +

∫ t

0

B(x, t− a)dΥ(a),

for almost all t > 0, where the integral is a Stieltjes integral ((Thieme, 2003, Lem.B.29)).

By (3.5.1),

I(x, t) = −
∫ t

0

B(x, t− a)dΥ(a). (3.5.4)

This formula needs to be added to (2.2.2), if a latent period with general length

distribution is considered.

If the latent period has a fixed length τ ,

Υ(a) =

 1, 0 ≤ a < τ,

0, a > τ,
(3.5.5)

and Υ(τ) can be any number in [0, 1]. By (3.5.3),

L(t, x) =

∫ t

0

B(x, s)ds, 0 ≤ t ≤ τ,

L(t, x) =

∫ t

t−τ
B(x, s)ds, t > τ.

(3.5.6)

L is differentiable for 0 ≤ t 6= τ , and

∂tL(x, t) =B(x, t), 0 ≤ t < τ,

∂tL(x, t) =B(x, t)−B(x, t− τ), t > τ.

(3.5.7)
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By (3.5.1),

I(x, t) =0, 0 ≤ t < τ,

I(x, t) =B(x, t− τ), t > τ,

(3.5.8)

the same equations as (3.3.1) and (3.3.2).

If the latent period has exponentially distributed length with constant exit rate

θ, then

Υ(a) = e−θa, (3.5.9)

and (3.5.3) is the solution to (3.4.1).

3.6 Comparison to Spatial Spread on a Bounded Domain

If one wants to see how solutions of (3.2.2) look like, one cannot solve it on Rn

but rather solves it on a bounded domain Ω of Rn with sufficiently smooth bound-

ary and Dirichlet boundary conditions. A Dirichlet condition represents a hostile

absorbing boundary, alternatively a Neumann boundary conditions would represent

a non-hostile reflecting boundary. It is not quite clear to us whether a seashore is a

hostile or reflecting boundary for foxes. We choose Dirichlet boundary conditions for

mathematical reasons because we can prove that the solutions on a bounded domain

with Dirichlet boundary condition are dominated by the solutions of the homogeneous

solutions on Rn while we have no good idea of how the solutions are related if the

Dirichlet condition is replaced by a Neumann boundary condition.

The auxiliary variable u(x, t) = ln(S0/S(x, t)) ≥ 0 still satisfies a Volterra-

Hammerstein integral equation, but now of the form

u(x, t) =

∫ t

0

∫
Ω

ξ(x, y, s)F (u(y, t− s))dsdy + u0(x, t). (3.6.1)

Here ξ incorporates the Green’s function associated with ∂t − D∆x and Dirichlet

boundary conditions (Garroni and Menaldi (1992)) rather than the fundamental so-
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lution. Again, this equation has a unique nonnegative solution u by the contraction

mapping theorem ((Thieme, 1979a, Theorem 2.2)) which implies that (3.2.2) with

Dirichlet boundary conditions has a unique solution.

By the maximum principle, the Green’s function lies below the fundamental solu-

tion on its domain of definition. This implies that the integral kernel ξ associated with

the Green’s function lies below the integral kernel associated with the fundamental

solution. Since F (u) = 1 − e−u is an increasing function of u, monotone iteration

shows that the solution u of (3.6.1) lies below the solution u of (2.7.1). So the epi-

demic model on a bounded domain Ω with Dirichlet boundary conditions shows a less

severe epidemic outbreak than the epidemic model on Rn, and the spread of the dis-

ease modeled on Ω is not as fast as the spread of the disease modeled on Rn (Alanazi

et al. (2018a)).

3.7 Discussion and Conclusions

We derived sub-models of delay and ordinary differential equations. When we

assume the latent period of fixed length, we have a model of delay differential equa-

tions (see (3.3.3) and (3.3.4)). When the latent period has exponentially distributed

length, we come up with a system of ordinary differential equations (see (3.4.5)).

To find the solution numerically, one does not use (3.6.1), but discretizes (3.3.3),

(3.3.4), and (3.4.5), first in space and then in time. So, the numerical simulations of

(3.3.3), (3.3.4) and (3.4.5) with Dirichlet boundary conditions are in Chapter 5 and

Chapter 6. Since we will work on bounded domains for the numerical experiments in

Chapter 5 and Chapter 6, we will have a less severe epidemic outbreak. That is the

speeds of rabies will not be as fast as the speeds we have in Chapter 4.
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Chapter 4

SPREADING SPEEDS

4.1 Abstract

This chapter is devoted to a study of spreading speeds c∗ of rabies. It also addresses

the effects of the model parameters on the spreading spreads c∗. We show a number

of analytic and numerical results regarding the spreading spreads c∗. For numerical

computations of the spreading speeds c∗, we assume that the movements of territorial

foxes about the center of their home-range are normally distributed. We do our

analytic and numerical analysis of c∗ to latent periods of fixed length, exponentially

distributed length, Gamma distributed length, and log-normally distributed length.

4.2 Overview

If R0 > 1, the spreading speed (aka asymptotic speed of spread) is defined by

c∗ := inf{c ≥ 0; ∃λ > 0 : Ξ(c, λ) < 1}, (4.2.1)

(Diekmann (1978, 1979); Thieme (1979a)) where, in general,

Ξ(c, λ) =

∫ ∞
0

∫
Rn
e−λ(cs+y1)ξ(s, |y|)dsdy. (4.2.2)

Ξ(c, λ) is found to be

Ξ(c, λ) =
(
− p1κ̂1(λ)

ν1 + λc− λ2D
− p2(κ̂1(λ))2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r) (4.2.3)

if ν1 + λc− λ2D > 0, otherwise Ξ(c, λ) =∞, where

κ̂1(λ) =

∫
Rn
e−λz1κ1(z)dz

(see Section 2.5.2). If R0 ≤ 1, we define c∗ := 0.
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4.3 κ1 is Normally Distributed

For the numerical computation of c∗, we assume that the movements of territorial

foxes about the center of their home-range are normally distributed, i.e.,

κ1(z) = Γn(z, b) = (4πb)−n/2e−|z|
2/(4b), z ∈ Rn, (4.3.1)

where | · | is the Euclidean norm on Rn, b > 0, and Γn is the fundamental solutions

associated with the differential operator ∂t−∆x for n space dimensions. Then κ̂1(λ) =

ebλ
2

in (4.2.3), (see, Proposition 2.5.1), and

Ξ(c, λ) = −
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r). (4.3.2)

Notice that Ξ does not depend on the space dimension! This observation is important

because our numerical simulations will be in one space dimension while the foxes live

in two dimensional space and the parameters b and D need to be estimated from

two-dimensional data (Alanazi et al. (2018a)).

4.4 Latent Period of Fixed Length

By assuming that the movements of territorial foxes about the center of their

home-range are normally distributed, Ξ(c, λ) takes the form

Ξ(c, λ) = −
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r) (4.4.1)

with arbitrarily distributed length of the latent stage, as discussed in Section 2.5.2

and Section 4.3. If the latent period has a fixed length τ ,

Υ(r) =

 1, 0 ≤ r < τ,

0, r > τ,
(4.4.2)

then

−
∫ ∞

0

e−λcrdΥ(r) = e−λcτ . (4.4.3)

59



Therefore,

Ξ(c, λ) =
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0e

−λcτ , (4.4.4)

if ν1 + λc − λ2D > 0, otherwise Ξ(c, λ) = ∞. A plot of Ξ(c, λ) versus λ for various

values of c is given in Fig. 4.4.1. So, Fig. 4.4.1 depicts some of the properties of Ξ(c, λ)

such that Ξ(c, λ) is a convex function of λ, Ξ(c, λ) is a decreasing convex function of

c, and Ξ(c, λ) < Ξ(c, 0) = R0 for some λ > 0, (see (Thieme and Zhao, 2003, Lemma.

2.1)).

Figure 4.4.1: Graph of Ξ(c, λ) versus λ for various values of c with p1 = p2 = 0.5 and

fixed length of the latent period. The numerical values of the parameters are in 4.1.

4.4.1 The Importance of Latent Periods with Fixed Length

Among all arbitrary length distributions with mean length τ , the distribution

with fixed length τ is associated with the smallest spreading speed. This follows
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from (4.2.1) and the fact that Ξ(c, λ) in (4.2.2) is a decreasing function of c and from

Jensen’s inequality (Rudin, 1966, Thm.3.3) (Thieme, 2003, Thm.B.35). Since the

exponential function is convex, by Jensen’s inequality,

−
∫ ∞

0

e−λcadΥ(a) ≥ exp
(∫ ∞

0

λca dΥ(a)
)

= e−λcτ , (4.4.5)

where

τ = −
∫ ∞

0

adΥ(a) =

∫ ∞
0

Υ(a)da (4.4.6)

is the mean length of the latent stage (Thieme, 2003, Sec.12.2). (Compare with

equation (4.4.3)). We assumed a× 0→ 0 as a→∞.

This means that the spatial spread is sped up if the length of the latent period

has some variation rather than no variation at all. Whether the spreading speed is an

increasing function of the variation of the length of the latent period seems an open

problem. As we will see in the next sections, this is the case for Gamma distributed

lengths, but we could neither prove it in general nor find a counterexample.

4.4.2 Numerical Estimation of c∗

We can determine the solution (c∗, λ) uniquely by solving the system,

Ξ(c∗, λ) = 1,
d

dλ
Ξ(c∗, λ) = 0 (4.4.7)

(van den Bosch et al. (1990); Thieme and Zhao (2003)), where Ξ(c∗, λ) is given in

(4.4.4) with c = c∗. Therefore, by (4.4.4) and (4.4.7),

p1βS0

ν1 + λc∗ − λ2D
eλ

2be−λc
∗τ +

p2βS0

ν2 + λc∗
e2λ2be−λc

∗τ = 1, (4.4.8)

and

d

dλ

[
p1βS0

ν1 + λc∗ − λ2D
eλ

2be−λc
∗τ +

p2βS0

ν2 + λc∗
e2λ2be−λc

∗τ

]
= 0. (4.4.9)
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The equation in (4.4.8) can be written as

p1βS0e
λ2be−λc

∗τ (ν2 + λc∗) + p2βS0e
2λ2be−λc

∗τ (ν1 + λc∗ − λ2D)

= (ν2 + λc∗)(ν1 + λc∗ − λ2D),

(4.4.10)

and the derivative in (4.4.9) is

− p1βS0(c∗ − 2λD)e−λc
∗τ+λ2b

(ν1 + λc∗ − λ2D)2
− p2βS0c

∗e−λc
∗τ+2λ2b

(ν2 + λc∗)2

+
p1βS0(2λb− c∗τ)e−λc

∗τ+λ2b

(ν1 + λc∗ − λ2D)
+
p2βS0(4λb− c∗τ)e−λc

∗τ+2λ2b

(ν2 + λc∗)
= 0.

(4.4.11)

Therefore, (c∗, λ) is the unique solution of the equations (4.4.10) and (4.4.11). The

numerical values of the parameters are given in Table 4.1.

Parameter Brief description Values Units References

S0 The initial number of susceptible foxes 4.6 [fox/km2] (Murray et al. (1986); Murray

(1989); Murray and Seward (1992))

β Disease transmission coefficient 73 [km2/year] Estimated, see Section 5.6

D diffusion coefficient of R1 200 [km2/year] (Murray et al. (1986); Murray

(1989); Murray and Seward (1992))

b The constant of κ1 and κ2 5/π2 [km2] Estimated, see Section 5.6

τ Latent period fixed length 28 [day] (Anderson et al. (1981); Källén

et al. (1985); Murray (1989))

1/ν1 The mean length of infectious period of dif-

fusing rabid foxes

5 [day] (Anderson et al. (1981); Murray

et al. (1986))

1/ν2 The mean length of infectious period of ter-

ritorial rabid foxes

5 [day] (Anderson et al. (1981); Murray

et al. (1986))

Table 4.1: Numerical values of the model parameters.

We use Mathematica to solve the equations (4.4.10) and (4.4.11), so the unique

solutions of the equations (4.4.10) and (4.4.11) are

(c∗, λ) ≈ (0.0774794 [km/day], 1.20104) ≈ (28.28 [km/year], 1.20104)

when p1 = 0,

(c∗, λ) ≈ (0.121047 [km/day], 0.566099) ≈ (44.1821 [km/year], 0.566099)

when p1 = 0.3,

(c∗, λ) ≈ (0.129782 [km/day], 0.548928) ≈ (47.3705 [km/year], 0.548928)
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when p1 = 0.5,

(c∗, λ) ≈ (0.136702 [km/day], 0.538601) ≈ (49.8961 [km/year], 0.538601)

when p1 = 0.7, and

(c∗, λ) ≈ (0.145169 [km/day], 0.529397) ≈ (52.9868 [km/year], 0.529397)

when p1 = 1. A plot of c∗ versus p1 when the latent period has a fixed length is

presented on Fig. 4.10.1.

4.4.3 Results

Theorem 4.4.1. The spreading speed c∗ is monotone decreasing function of τ .

Proof. Clearly if we increase τ , then Ξ(c, λ) in (4.4.4) will decrease. By Theorem

(2.6.7), the speed of spread c∗ is a monotone decreasing function of τ .

4.5 Latent Period of Exponentially Distributed Length

We learn form Section 2.5.2 and Section 4.3 that Ξ(c, λ) takes the form

Ξ(c, λ) = −
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r) (4.5.1)

with arbitrarily distributed length of the latent stage. If the latent period has expo-

nentially distributed length with constant exit rate θ, then

Υ(r) = e−θr, (4.5.2)

and

−
∫ ∞

0

e−λcrdΥ(r) =

∫ ∞
0

e−λcrθe−θrdr =
θ

θ + λc
. (4.5.3)

Since the mean length of the latent period is τ = 1/θ, we conclude

Ξ(c, λ) =
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

) βS0

1 + τλc
(4.5.4)
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if ν1 + λc − λ2D > 0, otherwise Ξ(c, λ) = ∞. A plot of Ξ(c, λ) versus λ for various

values of c is given in Fig. 4.5.1. Fig. 4.5.1 illustrates some of the properties of Ξ(c, λ)

which are given in (Thieme and Zhao, 2003, Lemma. 2.1) such that Ξ(c, λ) is a convex

function of λ, Ξ(c, λ) is a decreasing convex function of c, and Ξ(c, λ) < Ξ(c, 0) = R0

for some λ > 0.

Figure 4.5.1: Graph of Ξ(c, λ) versus λ for various values of c with p1 = p2 = 0.5

and exponentially distributed length of the latent period. The numerical values of

the parameters are in Table 4.1.

4.5.1 Numerical Estimation of c∗

We can determine the solution (c∗, λ) uniquely by solving the system,

Ξ(c∗, λ) = 1,
d

dλ
Ξ(c∗, λ) = 0 (4.5.5)
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(van den Bosch et al. (1990); Thieme and Zhao (2003)), where Ξ(c∗, λ) is given in

(4.5.4) with c = c∗. Therefore, by (4.5.4) and (4.5.5),

p1βS0

ν1 + λc∗ − λ2D

θ

θ + λc∗
eλ

2b +
p2βS0

ν2 + λc∗
θ

θ + λc∗
e2λ2b = 1, (4.5.6)

and

d

dλ

[
p1βS0

ν1 + λc∗ − λ2D

θ

θ + λc∗
eλ

2b +
p2βS0

ν2 + λc∗
θ

θ + λc∗
e2λ2b

]
= 0. (4.5.7)

The equation in (4.5.6) can be written as

p1βS0e
λ2bθ(ν2 + λc∗) + p2βS0e

2λ2bθ(ν1 + λc∗ − λ2D)

= (ν2 + λc∗)(ν1 + λc∗ − λ2D)(θ + λc∗),

(4.5.8)

and the derivative for (4.5.7) is

− p1βc
∗S0θe

λ2b

(ν1 + λc∗ − λ2D)(θ + c∗λ)2
− p2βc

∗S0θe
2λ2b

(ν2 + λc∗)(θ + c∗λ)2

− p1βS0θ(c
∗ − 2λD)eλ

2b

(ν1 + λc∗ − λ2D)2(θ + λc∗)
+

2p1bβS0θλe
λ2b

(ν1 + λc∗ − λ2D)(θ + λc∗)

− p2βS0θc
∗e2λ2b

(ν2 + λc∗)2(θ + λc∗)
+

4p2bλβS0θe
2λ2b

(ν2 + λc∗)(θ + λc∗)
= 0.

(4.5.9)

Therefore, (c∗, λ) is the unique solution of the equations (4.5.8) and (4.5.9). The

values of the parameters τ, β, S0, p1, p2, ν1, and ν2 are given in Table 4.1. We use

Mathematica to solve the equations (4.5.8) and (4.5.9), so the unique solutions of the

system of equations are

(c∗, λ) ≈ (0.182245 [km/day], 0.773071) ≈ (66.5195 [km/year], 0.773071)

when p1 = 0,

(c∗, λ) ≈ (0.235233 [km/day], 0.550237) ≈ (85.86 [km/year], 0.550237)

when p1 = 0.3,

(c∗, λ) ≈ (0.253677 [km/day], 0.522531) ≈ (92.592 [km/year], 0.522531)
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when p1 = 0.5,

(c∗, λ) ≈ (0.268893 [km/day], 0.504089) ≈ (98.146 [km/year], 0.504089)

when p1 = 0.7, and

(c∗, λ) ≈ (0.288236 [km/day], 0.484747) ≈ (105.206 [km/year], 0.484747)

when p1 = 1. A plot of c∗ versus p1 when the length of the latent period is exponen-

tially distributed is given in Fig. 4.10.1.

4.5.2 Results

Theorem 4.5.1. The spreading speed c∗ is monotone decreasing function of τ .

Proof. Clearly if we increase τ , then Ξ(c, λ) in (4.5.4) will decrease. By Theorem

(2.6.7), the spreading speed c∗ is a monotone decreasing function of τ .

4.6 Latent Period of Gamma Distributed Length

We know form Section 2.5.2 and Section 4.3 that Ξ(c, λ) takes the form

Ξ(c, λ) = −
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r). (4.6.1)

If we assume the length of the latent period is Gamma distributed, then

Υ(r) =

∫ ∞
r

γ̂(x; q, h)dx, γ̂(x; q, h) =
q(qx)h−1

Γ̂(h)
e−qx, x ≥ 0, (4.6.2)

where q is the scale parameter, and h is the shape parameter with q, h > 0. Γ̂(h)

is the Gamma function, and it is defined by Γ̂(h) =
∫∞

0
e−tth−1dt (Bhattacharya

and Burman (2016)). The mean of the Gamma distribution is τ = h/q, which

represents the average length of the latent period. In addition, the variance of the

Gamma distribution is σ2 = τ/q, which represents the variance of the latent period
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(Bhattacharya and Burman (2016); Jones et al. (2016); Smith and Thieme (2012)).

Clearly,we have that h = τ 2/σ2. Note that when h = 1, the length of the latent period

is exponentially distributed. We have

−
∫ ∞

0

e−λcrdΥ(r) =

∫ ∞
0

qhrh−1

Γ̂(h)
e−r(q+λc)dr =

(
h

h+ τλc

)h
, (4.6.3)

(see (Thieme, 2003, p.235)). Therefore,

Ξ(c, λ) =

(
p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

(
h

h+ τλc

)h
(4.6.4)

if ν1 + λc − λ2D > 0, otherwise Ξ(c, λ) = ∞. Fig. 4.6.1 demonstrates some of the

properties of Ξ(c, λ) for h = 2 and h = 5. Ξ(c, λ) is a convex function of λ, Ξ(c, λ) is

a decreasing convex function of c, and Ξ(c, λ) < Ξ(c, 0) = R0 for some λ > 0, (see

(Thieme and Zhao, 2003, Lemma. 2.1)).
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Figure 4.6.1: Graph of Ξ(c, λ) versus λ for various values of c and h with p1 = p2 = 0.5

and Gamma distributed length of the latent period. The numerical values of the

parameters are in Table 4.1.
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4.6.1 Numerical Estimation of c∗

We can determine the solution (c∗, λ) uniquely by solving the system,

Ξ(c∗, λ) = 1,
d

dλ
Ξ(c∗, λ) = 0, (4.6.5)

where Ξ(c∗, λ) is given in (4.6.4) with c = c∗. When h = 1, the latent period is

exponentially distributed, and the speeds of spread c∗ are given in Section 4.5.1. We

use Mathematica to solve the system of equations (4.6.5) for h = 2 and h = 5 where

the values of the parameters τ, β, S0, p1, p2, ν1, and ν2 are given in Table 4.1. So, the

unique solutions of the system of equations (4.6.5) when h = 2 are

(c∗, λ) ≈ (0.125647 [km/day], 0.880659) ≈ (45.8612 [km/year], 0.880659)

when p1 = 0,

(c∗, λ) ≈ (0.17323 [km/day], 0.551591) ≈ (63.2288 [km/year], 0.551591)

when p1 = 0.3,

(c∗, λ) ≈ (0.186926 [km/day], 0.526517) ≈ (68.2278 [km/year], 0.526517)

when p1 = 0.5,

(c∗, λ) ≈ (0.198078 [km/day], 0.509931) ≈ (72.2984 [km/year], 0.509931)

when p1 = 0.7, and

(c∗, λ) ≈ (0.212109 [km/day], 0.492723) ≈ (77.4196 [km/year], 0.492723)

when p1 = 1. A plot of c∗ versus p1 when the length of the latent period is Gamma

distributed and h = 2 is given in Fig. 4.10.1.

When h = 5, the system (4.6.5) has the following solutions

(c∗, λ) ≈ (0.0958041 [km/day], 1.01582) ≈ (34.9685 [km/year], 1.015829)
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when p1 = 0,

(c∗, λ) ≈ (0.140481 [km/day], 0.558589) ≈ (51.2754 [km/year], 0.558589)

when p1 = 0.3,

(c∗, λ) ≈ (0.151185 [km/day], 0.537392) ≈ (55.1824 [km/year], 0.537392)

when p1 = 0.5,

(c∗, λ) ≈ (0.159787 [km/day], 0.523766) ≈ (58.3222 [km/year], 0.523766)

when p1 = 0.7, and

(c∗, λ) ≈ (0.170476 [km/day], 0.510225) ≈ (62.2238 [km/year], 0.510225)

when p1 = 1.

4.6.2 Results

Theorem 4.6.1. The spreading speed c∗ is monotone decreasing function of τ .

Proof. Clearly if we increase τ , then Ξ(c, λ) in (4.6.4) will decrease. By Theorem

(2.6.7), the spreading speed c∗ is a monotone decreasing function of τ .

Theorem 4.6.2. The spreading speed c∗ is monotone decreasing function of h if the

mean length of the latent period τ is fixed.

Proof. Assume the mean length of the latent period τ is fixed. From (4.6.4), we set

ω(x) =

(
h

h+ τx

)h
.

Similarly as in (Jones et al., 2013, Sec. 6), we have

∂

∂h
logω(x) =

r

1 + r
− log(1 + r) < 0,

where r = xτ/h. Therefore, Ξ(c, λ) in (4.6.4) is a decreasing function of h. By Theorem

(2.6.7), the speed of spread c∗ is a monotone decreasing function of h.
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Theorem 4.6.3. The spreading speed c∗ is monotone increasing function of the vari-

ance of the latent period v = σ2 if the mean length of the latent period τ is fixed.

Proof. Assume the mean length of the latent period τ is fixed. Since the shape

parameter of Gamma distribution h = τ 2/v, we have that

ω(x) =

(
h

h+ τx

)h
=

(
τ

τ + xv

)τ2/v

.

By (Jones et al., 2013, Sec. 6),

∂

∂v
logω(x) =

τ 2

v2

(
log(1 + r)− r

1 + r

)
> 0,

where r = xv/τ. Therefore, Ξ(c, λ) in (4.6.4) is an increasing function of the variance

v = σ2. By Theorem (2.6.7), the speed of spread c∗ is a monotone increasing function

of the variance v = σ2.

Theorem 4.6.4. The spreading speed c∗ is monotone decreasing function of the mean

length of the latent period τ if the variance of the latent period v = σ2 is fixed.

Proof. Assume the variance of the latent period v = σ2 is fixed. We have

ω(x) =

(
h

h+ τx

)h
=

(
τ

τ + xv

)τ2/v

.

By (Jones et al., 2013, Sec. 6),

∂

∂τ
logω(x) =

τ

v

(
− log(1 + r)−

(
log(1 + r)− r

1 + r

))
< 0,

where r = xv/τ. Therefore, Ξ(c, λ) in (4.6.4) is a decreasing function of τ. By Theorem

(2.6.7), the spreading speed c∗ is a monotone decreasing function of τ.

4.7 Latent Period of Log-normally Distributed Length

Ξ(c, λ) takes the form

Ξ(c, λ) = −
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r), (4.7.1)
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(see Section 2.5.2 and Section 4.3). Following Sartwell (Sartwell (1950, 1966)), we

assume the length of the latent period is log-normally distributed such that

Υ(r) =

∫ ∞
ln(r)

exp

(
−1

2

[
x− ln(m)

σ

]2
)

1

σ
√

2π
dx. (4.7.2)

So, the mean length of the latent period is τ = meσ
2/2, and the variance is m2eσ

2
(eσ

2−

1) (Thieme, 2003, p.204). Therefore,

−
∫ ∞

0

e−λcrdΥ(r) =

∫ ∞
0

1

rσ
√

2π
exp

−1

2

[
ln( r

m
)

σ

]2
 e−λcrdr

=
1

σ
√

2π

∫ ∞
0

1

t
exp

(
−1

2

[
ln(t)

σ

]2
)
e−λcmtdt

=
1

σ
√

2π

∫ ∞
−∞

exp

(
−1

2

[
s

σ

]2
)
e−λcme

s

ds

=
1√
2π

∫ ∞
−∞

exp

(
−1

2
t2
)
e−λcme

σt

dt

=
1√
2π

∫ 0

−∞
exp

(
−1

2
t2
)
e−λcme

σt

dt+
1√
2π

∫ ∞
0

exp

(
−1

2
t2
)
e−λcme

σt

dt

=
−1√
2π

∫ 0

∞
exp

(
−1

2
t2
)
e−λcme

−σt
dt+

1√
2π

∫ ∞
0

exp

(
−1

2
t2
)
e−λcme

σt

dt

=
1√
2π

∫ ∞
0

exp

(
−1

2
t2
)
e−λcme

−σt
dt+

1√
2π

∫ ∞
0

exp

(
−1

2
t2
)
e−λcme

σt

dt

=
1√
2π

∫ ∞
0

exp

(
−1

2
t2
)(

e−λcme
−σt

+ e−λcme
σt
)
dt.

(4.7.3)

So, the space-time Laplace transform is now of the form,

Ξ(c, λ) =

(
p1e

λ2b

ν1 + λc− λ2D
+
p2e

2λ2b

ν2 + λc

)
βS0(

1√
2π

∫ ∞
0

exp

(
−1

2
t2
)(

e−λcme
−σt

+ e−λcme
σt
)
dt

) (4.7.4)

if ν1 + λc− λ2D > 0, otherwise Ξ(c, λ) =∞.

4.7.1 Results

Theorem 4.7.1. The spreading speed c∗ is monotone decreasing function of m.
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Proof. If we increase m, Ξ(c, λ) will decrease. So, by Theorem (2.6.7), the speed of

spread c∗ is a monotone decreasing function of m.

4.8 Monotone Dependence on the Proportion of Diffusing Rabid Foxes

We assume that diffusing and territorial rabid foxes die from rabies at the same

rate ν1 = ν2 =: ν. In Section 4.3, we assume that the movements of territorial foxes

about the center of their home-range are normally distributed, i.e.,

κ1(z) = Γn(z, b) = (4πb)−n/2e−|z|
2/(4b), z ∈ Rn, (4.8.1)

where | · | is the Euclidean norm on Rn, b > 0. In Section 5.6, we find that b = r2
0/π,

where r0 is the mean maximum distance of a territorial fox from the center of its

home-range. Then, we have the following result.

Theorem 4.8.1 (Alanazi et al. (2018b)). If bν > D, the spreading speed decreases

as a function of the proportion of p1 of diffusing rabid foxes provided that R0 > 1 is

sufficiently close to 1.

if bν < D, the spreading speed increases as a function of the proportion of p1 of

diffusing rabid foxes provided that R0 > 1 is sufficiently close to 1.

Let assume, for instance, that the length of the latent period has a fixed length.

If ν1 = ν2 =: ν, then from (2.5.24) R0 = βS0

ν
, and

Ξ(c, λ) =
( p1e

bλ2

ν + λc− λ2D
+
p2e

2bλ2

ν + λc

)
νR0e

−λcτ . (4.8.2)

A plot of Ξ(c, λ) versus p1 for bν > D and bν < D is given in Fig. 4.8.1. The numerical

results in Fig. 4.8.1 suggest that R0 may not need to be very close to 1 for the results

in Theorem 4.8.1 to hold.
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(a) (b)

Figure 4.8.1: Different monotonicity in the dependence of the spreading speed c∗ on

p1. We use (4.8.2) to solve (4.4.7). Here, 1/ν = 5 [day], τ = 28 [day], R0 = 4.6,

bν = 36.98 [km2/year], (a)D = 30 [km2/year] and (b)D = 50 [km2/year].

4.9 Numerical comparison to a model with diffusing foxes only but with

population turnover

The rabies model in (Murray, 1989, Sec.20.4) Murray et al. (1986); Murray and

Seward (1992) incorporates the turnover of the fox population into an epidemic model

with diffusing rabid foxes and exponentially distributed length of the latent period.

Newborn foxes enter the population at a fixed per capita rate and all foxes are subject

to a natural density-dependent per capita death rate. We have not included this

turnover in order to be able to analyze a model that includes territorial rabid foxes.

In reality, fox reproduction is seasonal. In Britain, e.g., most cubs are born be-

tween mid-March and mid-April (Lloyd, 1980, p.115) as it seems to be the case in

continental Europe (Toma and Andral, 1977, III.A.2).

In order to have an educated guess about the impact of population turnover, we

look at the special case of our model with the same assumptions, including that
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susceptible and incubating foxes stay at the center of their home-ranges all the time.

For p1 = 1, (4.5.4) takes the form

Ξ(c, λ) =
( 1

ν1 + λc− λ2D

) βS0

1 + τλc
(4.9.1)

if ν1 + λc − λ2D > 0, otherwise Ξ(c, λ) = ∞. In Table 4.2, we compare spreading

speeds that have been determined by numerically solving system (4.5.5) with the

minimum wave speeds calculated in (Murray, 1989, Sec.20.4) Murray et al. (1986);

Murray and Seward (1992). The results agree qualitatively and are not too different

quantitatively.

This encourages us to believe that the qualitative behavior of the spreading speed

is not affected by the omission of population turnover and that the quantitative results

contain useful information as long as they are seen as approximations.

S0 [fox/km2] c∗ [km/year] The speeds as in (Murray et al., 1986, Table 3)

and (Murray and Seward, 1992, Table 2)

1.5 36 35

2.0 52 50

2.5 65 70

3 76 80

4.6 103 103

Table 4.2: Spreading speed c∗ dependence on S0 when the latent period has exponen-

tially distributed length, p1 = 1, and β = 80 [km2/year]. The initial fox density S0 is

equal to the fox carrying capacity K in Murray (1989); Murray et al. (1986); Murray

and Seward (1992). The other parameters are chosen as therein though the symbols

may be different, and they are given in Table 4.1.
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4.10 Discussion and Conclusions

By assuming that the movements of territorial foxes about the center of their

home-range are normally distributed, Ξ(c, λ) takes the form

Ξ(c, λ) = −
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r) (4.10.1)

with arbitrarily distributed length of the latent stage, as discussed in Section 2.5.2

and Section 4.3. When the latent period has a fixed length τ , we show that the

space-time Laplace transform is given by

Ξ(c, λ) =
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0e

−λcτ . (4.10.2)

In this case, rabies spreads with speeds c∗ ranging from 28.28 [km/year] when p1 = 0

up to 52.9868 [km/year] when p1 = 1.

When we assume the length of the latent periods is Gamma distributed, we obtain

Ξ(c, λ) =

(
p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

(
h

h+ τλc

)h
. (4.10.3)

If h = 1, the length of the latent period is exponentially distributed (see (4.5.4)),

and we find that rabies propagates with asymptotic speeds c∗ = 66.5195 [km/year]

for p1 = 0 and c∗ = 105.206 [km/year] for p1 = 1. Also, rabies spreads with speed

ranging from c∗ = 45.8612 [km/year] to

c∗ = 77.4196 [km/year] when h = 2, while the speed’s range decreases to be from c∗ =

34.9685 [km/year] to c∗ = 62.2238 [km/year] when h = 5. In addition,
(

h
h+τλc

)h
→

e−λcτ as h → ∞. Therefore, as h → ∞ in (4.10.3), the length of the latent period

converges to a distribution of fixed length τ .
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When we assume the latent period is log-normally distributed, we obtain

Ξ(c, λ) =

(
p1e

λ2b

ν1 + λc− λ2D
+
p2e

2λ2b

ν2 + λc

)
βS0(

1√
2π

∫ ∞
0

exp

(
−1

2
t2
)(

e−λcme
−σt

+ e−λcme
σt
)
dt

)
.

(4.10.4)

Therefore, as σ → 0, we have

Ξ(c, λ)→

(
p1e

λ2b

ν1 + λc− λ2D
+
p2e

2λ2b

ν2 + λc

)
βS0e

−λcm. (4.10.5)

So, as σ → 0 in (4.10.4), the length of the latent period converges to a distribution of

fixed length m. In this case, it is so complicated to find an estimate for the asymptotic

spreading speeds of rabies c∗.

The numerical results of c∗ confirm that the latent period with fixed length gives

the smallest spreading speeds (see Section 4.4.1). In addition, the numerical compu-

tations of c∗ confirm that Theorem 2.6.5 in Section 2.6.3 holds.

Furthermore, it has been proved analytically that the spreading speed of rabies c∗

is a monotone increasing function of β, S0, b, and D, and c∗ is a monotone decreasing

function of Υ, ν1, and ν2. When the length of the latent period is fixed, c∗ is a

monotone decreasing function of the mean length of the latent period τ. For the case

where the latent period has Gamma distributed length, c∗ is monotone decreasing

function of the mean length of the latent period τ and of h if the mean length of the

latent period τ is fixed, and c∗ is monotone increasing function of the variance of the

latent period σ2 if the mean length of the latent period τ is fixed. When the length of

the latent period is log-normally distributed, we find that c∗ is monotone decreasing

function of m.

Also, c∗ increases as we increase the proportion of wandering rabid foxes p1 when

the latent period has fixed length, exponentially distributed length, and Gamma

distributed length, as demonstrated by the numerical simulations shown in Fig. 4.10.1.
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The last happens for what we believe is a realistic choice of parameters b and D. In

general, the monotone behavior of c∗ as a function of p1 depends on the relation

between b and D, as depicted in Fig. 4.8.1. In addition, the numerical results in

Fig. 4.8.1 suggest that R0 may not need to be very close to 1 for the results in

Theorem 4.8.1 to hold.

Figure 4.10.1: Spreading speed c∗ dependence on p1.We solve (4.4.7) for latent periods

of fixed length, exponentially distributed length, and Gamma distributed length.

Here, h = 2 and the values of the other parameters are in Table 4.1.
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Chapter 5

NUMERICAL SIMULATIONS OF SPREAD OF RABIES: LATENT PERIOD

WITH FIXED LENGTH

5.1 Abstract

We describe a numerical algorithm for the simulation of the spread of rabies

in a spatially distributed fox population. As we know, the model considers both

territorial and wandering rabid foxes and includes a latent period for the infection.

The resulting systems are mixtures of partial differential and integral equations. They

are discretized in the space variable by central differences of second order and by

the composite trapezoidal rule. In a second step, the ordinary or delay differential

equations obtained this way are discretized in time by explicit continuous Runge-

Kutta methods of fourth order for ordinary and delay differential systems. The results

of the numerical calculations are compared for latent periods of fixed distributed

length and for various proportions of territorial and wandering rabid foxes. The speeds

of spread observed in the simulations are compared to spreading speeds obtained by

analytic methods and to observed speeds of epizootic frontlines in the European rabies

outbreak 1940 to 1980.

5.2 The Model

We consider the models in (3.3.3) and (3.3.4) with Ω to be a bounded domain on

R, which represents the habitat of the foxes. So, when 0 ≤ t < τ , the spread of rabies
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is described by

∂tS(x, t) = −βS(x, t)

∫
Ω

[
κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)

]
dz

=: −B(x, t),

∂tR1(x, t) = D∂2
xR1(x, t)− ν1R1(x, t), 0 ≤ t < τ

∂tR2(x, t) = −ν2R2(x, t),

(5.2.1)

By combining (3.3.1) and (3.3.2) with (2.2.2), we obtain a model delay differential

equations for t > τ

∂tS(x, t) = −βS(x, t)

∫
Ω

[
κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)

]
dz

=: −B(x, t),

∂tR1(x, t) = D∂2
xR1(x, t) + p1B(x, t− τ)− ν1R1(x, t), t > τ

∂tR2(x, t) = p2B(x, t− τ)− ν2R2(x, t),

(5.2.2)

with given initial conditions

S(x, 0) = S0(x), R1(x, 0) = R◦1(x), R2(x, 0) = R◦2(x),

x ∈ Ω. We assume the following boundary conditions

R1(x, t) = w(x, t), x ∈ ∂Ω, t > 0. (5.2.3)

S(x, t) denote the density of susceptible foxes at time t whose home-ranges center at

location x ∈ R. Further, R1(x, t) are the diffusing rabid foxes at location x and time t,

R2(x, t) are the territorial rabid foxes at time t whose home-ranges center at location

x. The parameters ν1 > 0 and ν2 > 0 are the per capita rabies death rates of diffusing

and territorial rabid foxes, respectively. p1 is the chance of a rabid fox to diffuse, and

p2 the chance to be territorial, pj ≥ 0 and p1 + p2 = 1. β > 0 is the rate at which
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the meeting of a susceptible and rabid fox leads to the infection of the susceptible

fox. B(x, t) is the incidence of the disease, i.e., the number of new cases per unit of

time. D > 0 is the diffusion constant. κ1(x, z) denotes the rate at which a fox with

home-range center x visits the location z ∈ Ω. The rate at which a susceptible fox

with home-range center x meets a territorial rabid fox with home-range center z is

given by

κ2(x, z) =

∫
Ω

κ1(x, y)κ1(z, y)dy, (5.2.4)

which means that it is the rate at which they both visit some common point y ∈ Ω.

The nonnegative continuous functions S0, R◦1 and R◦2 are the initial densities of the

susceptible and diffusing and territorial rabid foxes.

5.3 Discretization in Space

We use the method of lines to come up with algebraic approximations that we

could use to replace all the spatial derivatives only with finite differences (see, e.g.,

Schiesser (2013); Schiesser and Griffiths (2009)). So, we discretize the partial differ-

ential equation PDE by using central in space second order scheme. The integrals in

(5.2.1) and (5.2.2) are approximated using composite trapezoid rule. Then, we use

the continuous explicit Runge-Kutta methods of order four and three to solve the

systems of nonlinear ordinary and delay differential equations as in the next section.

The continuous Runge-Kutta method was derived by Owren and Zennaro (Owren

and Zennaro (1991, 1992b,a)), and it is discussed in (Bellen and Zennaro (2003)).

The continuous Runge-Kutta method was recently applied by (Alanazi et al. (2018a,

2019); Bartoszewski et al. (2015); Jackiewicz et al. (2014)).

Henceforth, we use the notations R1,i(t), R2,i(t), and Si(t), and Qi(t), for the

approximations of R1(xi, t), R2(xi, t), S(xi, t), and Q(xi, t), respectively.
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We consider Ω = [−a, a] to be a bounded domain on R to represent the habitat

of foxes. Let xi to be a sequence of uniformly spaced points on [−a, a], such that

xi = −a+ ih, where h = 2a
N+1

is the spacing stepsize and i = 0, ..., N + 1. In addition,

we define zk be a sequence of uniformly spaced points on [−a, a], such that zk =

−a+ kh, k = 0, ..., N + 1, and h = 2a
N+1

. We replace x with xi for i = 1, ..., N, and set

Qi(t) =

∫
R
[κ1(xi − z)R1(z, t) + κ2(xi − z)R2(z, t)]dz. (5.3.1)

To find an approximation for Qi(t), we use composite trapezoid rule on [−a, a] ⊂ R,

where a > 0 is sufficiently large. Qi(t) shall be

Qi(t) =

∫
R
[κ1(xi − z)R1(z, t) + κ2(xi − z)R2(z, t)]dz

'
∫ a

−a
[κ1(xi − z)R1(z, t) + κ2(xi − z)R2(z, t)]dz +O(h2)

= h[
1

2
κ1(xi − z0)R1(z0, t) +

N∑
k=1

κ1(xi − zk)R1(zk, t)

+
1

2
κ1(xi − zN+1)R1(zN+1, t)]

+ h[
1

2
κ2(xi − z0)R2(z0, t) +

N∑
k=1

κ2(xi − zk)R2(zk, t)

+
1

2
κ2(xi − zN+1)R2(zN+1, t)] +O(h2)

= Q1,i(t) +Q2,i(t) +O(h2),

(5.3.2)

where

Q1,i(t) = h

[
1

2
κ1(xi − z0)R1(z0, t) +

N∑
k=1

κ1(xi − zk)R1(zk, t)

+
1

2
κ1(xi − zN+1)R1(zN+1, t)

]
,

Q2,i(t) = h

[
1

2
κ2(xi − z0)R2(z0, t) +

N∑
k=1

κ2(xi − zk)R2(zk, t)

+
1

2
κ2(xi − zN+1)R2(zN+1, t)

]
,

(5.3.3)
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(see, e.g., (Recktenwald, 2000, p.605-612)). Another approach to approximate (5.3.1)

is by using Gauss-Hermite quadrature rule (see, e.g., Jackiewicz et al. (2006)). We

discretize the PDE in (5.2.1) and (5.2.2) using second-order central approximation

such that

∂2R1,i(t)

∂x2
i

≈ R1,i+1(t)− 2R1,i(t) +R1,i−1(t)

h2
. (5.3.4)

Therefore, when 0 ≤ t ≤ τ , we obtain

S ′i(t) =− βSi(t)Qi(t),

R′1,i(t) =D
R1,i+1(t)− 2R1,i(t) +R1,i−1(t)

h2
− ν1R1,i(t),

R′2,i(t) =− ν2R2,i(t).

(5.3.5)

where Qi(t) = Q1,i(t) + Q2,i(t), i = 1, ..., N. When foxes exit the latent period and

become rabid such that t > τ , the system in (5.2.2) start to contribute to the dynamics

of the fox population. Therefore, when i = 1, ..., N and t > τ , we have the following

numerical schemes for the model in (5.2.2)

S ′i(t) =− βSi(t)Qi(t),

R′1,i(t) =D
R1,i+1(t)− 2R1,i(t) +R1,i−1(t)

h2
+ p1βSi(t− τ)Qi(t− τ)

− ν1R1,i(t),

R′2,i(t) =p2βSi(t− τ)Qi(t− τ)− ν2R2,i(t).

(5.3.6)

We assume that (5.3.5) and (5.3.6) satisfy the following boundary conditions

R1(−a, t) = w1(t), R1(a, t) = w2(t), t ≥ 0,

where w1(t) and w2(t) are given functions.

For 0 ≤ t ≤ τ and when i = 1, R1,0(t) = w1(t) and the scheme for R1 shall be

R′1,1(t) =D
R1,2(t)− 2R1,1(t)

h2
+
D

h2
w1(t)− ν1R1,1(t), (5.3.7)
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and when i = N , R1,N+1(t) = w2(t) and the scheme for R1 shall be

R′1,N(t) =D
R1,N−1(t)− 2R1,N(t)

h2
+
D

h2
w2(t)− ν1R1,N(t). (5.3.8)

For t > τ, when i = 1, R1 scheme shall be after we use the boundary conditions

R′1,1(t) =D
R1,2(t)− 2R1,1(t)

h2
+
D

h2
w1(t) + p1βS1(t− τ)Q1(t− τ)

− ν1R1,1(t).

(5.3.9)

and at i = N, R1 scheme shall be

R′1,N(t) =D
R1,N−1(t)− 2R1,N(t)

h2
+
D

h2
w2(t) + p1βSN(t− τ)QN(t− τ)

− ν1R1,N(t).

(5.3.10)

The initial conditions are

Si(0) =S0(xi),

R1,i(0) =R◦1(xi),

R2,i(0) =R◦2(xi),

(5.3.11)

for i = 1, ..., N.

5.4 Discretization in Time

We use the following matrix forms for our notations,

S(t) =


S1(t)

...

SN(t)

 , R1(t) =


R1,1(t)

...

R1,N(t)

 , R2(t) =


R2,1(t)

...

R2,N(t)

 ,
then we let

y(t) =


S(t)

R1(t)

R2(t)

 , y0 =


S(0)

R1(0)

R2(0)

 .
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In addition, for 0 ≤ t ≤ τ , we define f(y(t)) to be the right hand side of the system

in (5.3.5). For t > τ , we let the right hand side of (5.3.6) to be g(y(t), y(t − τ)).

Therefore, we rewrite the systems in (5.3.5) and (5.3.6) with the initial conditions in

(5.3.11) as the following

y′(t) = f(y(t)), 0 ≤ t ≤ τ,

y′(t) = g(y(t), y(t− τ)), t > τ,

y(0) = y0 ∈ R3N ,

(5.4.1)

where f : R3N → R3N , and g : R3N × R3N → R3N .

We solve the system in (5.4.1) by using the continuous explicit Runge-Kutta

method of order p = 4 with s = 6 stages, and the embedded discrete Runge-Kutta

method of order p = 3(see, Owren and Zennaro (1991, 1992b,a)). We use the em-

bedded discrete Runge-Kutta method to estimate the local discretization error of the

method with order p = 4. The coefficients of the continuous and discrete Runge-Kutta

method of order p with s stages are given by the following Butcher table (Table 5.1),

In Table 5.1, ci = Σs
j=1aij, for i = 1, · · · , s. bi(θ) are called the continuous weights,

and A is strictly lower triangular matrix such that A =
[
aij

]s
i,j=1

. ŷn+1 is the discrete

Runge-Kutta method of order p− 1, and b̂i are the weight vector of ŷn+1.

Table 5.2 gives us the coefficients of the continuous explicit Runge-Kutta method

of order p = 4 with s = 6 stages and the coefficients of the embedded discrete Runge-

Kutta method of order p = 3.
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c A

yh b(θ)

ŷn+1 b̂

=

c1 = 0

c2 a2,1

c3 a3,1 a3,2

c4 a4,1 a4,2 a4,3

...
...

...
...

. . .

cs as,1 as,2 as,3 · · · as,s−1

yh(tn + θhn) b1(θ) b2(θ) b3(θ) b4(θ) · · · bs(θ)

ŷn+1 b̂1 b̂2 b̂3 b̂4 · · · b̂s

Table 5.1: The coefficients of continuous and discrete Runge-Kutta method of order

p with s stages.

c A

yh b(θ)

ŷn+1 b̂

=

0

1
6

1
6

11
37

44
1369

369
1369

11
17

3388
4913

−8349
4913

8140
4913

13
15

− 36764
408375

767
1125

− 32708
136125

210392
408375

1 1697
18876

0 50653
116160

299693
1626240

3375
11648

yh(tn + θhn) b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ)

ŷn+1
101
363

0 − 1369
14520

11849
14520

0 0

Table 5.2: The coefficients of the optimal pair of continuous and discrete Runge-Kutta

method of order p = 4 with s = 6 stages.
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The continuous weights bi(θ) are given by

b1(θ) = −866577
824252

θ4 + 1806901
618189

θ3 − 104217
37466

θ2 + θ,

b2(θ) = 0,

b3(θ) = 12308679
5072320

θ4 − 2178079
380424

θ3 + 861101
230560

θ2,

b4(θ) = − 7816583
10144640

θ4 + 6244423
5325936

θ3 − 63869
293440

θ2,

b5(θ) = −624375
217984

θ4 + 982125
190736

θ3 − 1522125
762944

θ2,

b6(θ) = 296
131

θ4 − 461
131

θ3 + 165
131

θ2.

(5.4.2)

To implement this pair for delay differential equations we have to compute the ap-

proximate solution yh(tn−τ), where tn−τ is not, in general, a grid point. To compute

this approximate solution we search for the index q such that tn − τ ∈ (tq, tq+1], and

compute yh(tn − τ) from the formula

yh(tn − τ) = b1(θ)F1,q + b2(θ)F2,q + b3(θ)F3,q + b4(θ)F4,q + b5(θ)F5,q + b6(θ)F6,q

if 0 ≤ tn − τ ≤ τ , or

yh(tn − τ) = b1(θ)G1,q + b2(θ)G2,q + b3(θ)G3,q + b4(θ)G4,q + b5(θ)G5,q + b6(θ)G6,q

if tn − τ > τ . Here, bi(θ) are given by (5.4.2),

θ =
tn − τ − tq
tq+1 − tq

∈ (0, 1],

Fk,q = f
(
yh(tq + ckhq)

)
,

Gk,q = g
(
yh(tq + ckhq), yh(tq + ckhq − τ)

)
,

k = 1, 2, 3, 4, 5, 6, hq = tq+1 − tq, and c = [c1, c2, c3, c4, c5, c6]T .

The embedded pair of Runge-Kutta methods was implemented in a variable step-

size environment with the estimates of the local discretization errors computed ac-

cording to the formula

EST(tn+1) =
∥∥ŷn+1 − yh(tn+1)

∥∥
2
.
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Following (Gladwell et al. (1987); Shampine and Gordon (1975)) the initial stepsize

h0 was computed from the formula

h0 = min

{
0.01 τ,

TOL1/5

‖f(0, y0)‖2

}
,

where TOL is the accuracy tolerance prescribed by the user of the code. Then for

n = 0, 1, . . ., the stepsize hn from tn to tn+1 = tn + hn is accepted if

EST(tn+1) ≤ TOL,

and a new stepsize hn+1 from tn+1 to tn+2 = tn+1 +hn+1 is computed from the formula

hn+1 = η hn

(
TOL

EST(tn+1)

)1/5

,

where η is a safety coefficient to avoid too many rejected steps. In our implementation

of the code we have chosen η = 0.8. If

EST(tn+1) > TOL,

the stepsize is rejected, and the computations are repeated with a halved stepsize

hn/2.

The construction of embedded pairs of continuous and discrete Runge-Kutta meth-

ods employed in this section, and their convergence and order properties, are discussed

in (Owren and Zennaro (1991, 1992b,a)) and in the monographs (Bellen and Zennaro

(2003); Hairer et al. (1993)).

5.5 Units Check

Before we go further, we need to check units throughout the equations in (5.2.1)

and (5.2.2) for consistency (Schiesser (2013)).The units of the dependent and inde-

pendent variables of the equations in (5.2.1) and (5.2.2) are in Table 5.3. In addition,
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Variable Units

S [fox/km]

R1 [fox/km]

R2 [fox/km]

t [day]

x [km]

Table 5.3: Units of the model dependent and independent variables.

Parameters Units

b [km2]

β [fox/day]

ν1 [1/day]

ν2 [1/day]

D [km2/day]

Table 5.4: Units of the model parameters.

the units of the parameters in (5.2.1) and (5.2.2) are in Table 5.4.

Form the Table 5.3 and Table 5.4, the units of the equation of susceptible foxes in

(5.2.1) and (5.2.2) are

fox/km

day
=
km

day

(
fox/km

) [(
fox/km

)
+
(
fox/km

)]
(5.5.1)

Therefore, the consistency of the units is hold throughout the equation (5.5.1), (fox/km
day

).

The units of R1(x, t) in (5.2.1) are

fox/km

day
=
km2

day

fox/km

km2
+
fox/km

day
− 1

day
(fox/km). (5.5.2)

89



So, the units are consistent for R1(x, t). From Table 5.3 and Table 5.4, the units of

R2(x, t) in (5.2.1) are

fox/km

day
=
fox/km

day
− 1

day
(fox/km). (5.5.3)

The equation (5.5.3) shows the units are consistent for territorial rabid foxes. We

now check the units of R1(x, t) in (5.2.2); so we have

fox/km

day
=
km2

day

fox/km

km2
+
km

day

(
fox/km

) [(
fox/km

)
+
(
fox/km

)]
− 1

day
(fox/km).

(5.5.4)

Units are consistent for R1(x, t) in (5.2.2) as it is clear from the equation (5.5.4).

Lastly, we check the units for R2(x, t) in (5.2.2). So, we get

fox/km

day
=
km

day

(
fox/km

) [(
fox/km

)
+
(
fox/km

)]
− 1

day
(fox/km).

(5.5.5)

That clearly shows the net units of both sides of equation (5.5.5) are (fox/km
day

).

5.6 Numerical Experiments and Simulations

We compute approximations to the systems (5.3.5) and (5.3.6) for x ∈ [−a, a],

a = 50 [km], and t ∈ [t0, tend], t0 = 0 [day], tend = 180 [day]. We choose N = 199

unless otherwise specified. We choose the homogeneous Dirichlet boundary conditions

such that

R1(−a, t) = w1(t) = 0 [fox/km], R1(a, t) = w2(t) = 0 [fox/km], t ∈ [0, 180], (5.6.1)

and initial conditions

R1,i(0) = R◦1(xi), R2,i(0) = R◦2(xi),
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i = 1, 2, . . . , N , where the functions R◦1(x) and R◦2(x) are defined by

R◦1(x) =

 0.2 [fox/km], −5 ≤ x ≤ 5,

0 [fox/km], otherwise,

R◦2(x) = 0 [fox/km], x ∈ [−a, a].

Murray et al let S0 = 4.6 [fox/km2], as in (Murray et al., 1986, Fig.2). So, since we are

working on R, S0 = 4.6 [fox/km] will be used. The rabid foxes have a long incubation

period and a short life expectancy (Anderson et al. (1981); Murray (1989); van den

Bosch et al. (1990)). The average duration of the latent period for the diffusing and

territorial rabid foxes is about τ = 28 [day] (Anderson et al. (1981); Källén et al.

(1985); Murray (1989)). The mean length of the infectious periods of diffusing rabid

foxes 1/ν1 and territorial rabid foxes 1/ν2 are 5 [day] (Anderson et al. (1981); Murray

et al. (1986)). The diffusion coefficient D, which measures the distance rabid foxes can

cross after the onset of clinical disease, is chosen to be D = 200 [km2/year] (Murray

et al. (1986); Murray (1989); Murray and Seward (1992)).

The chance that a meeting of a susceptible and a rabid fox leads to the infection

of the susceptible fox β is hard to estimate (Murray (1989)). Anderson et al.(1981)

has estimated β by using indirect expression to be about 79.69 [km2/year] (Anderson

et al. (1981)). From the formula of the basic reproduction number, ST is defined by

ST =
1

β

( ν1ν2

ν2p1 + ν1p2

)
=
ν1

β
. (5.6.2)

Following (Anderson et al. (1981)), we will use the formula of ST with ST = 1 [fox/km2]

(Anderson et al. (1981); Murray et al. (1986)) and the parameters values above to find

an estimate of the disease transmission parameter β. That gives β = 73 [km2/year].

Again since we are working on R, β = 73 [km/year] will be used. We also assume

κ1(z) = Γ1(z, b) =
1√
4πb

e−z
2/4b, (5.6.3)
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(see Section 4.3). After dropping the tilde from (2.3.64), κ2 shall be

κ2(z) =

∫
R
κ1(y + z)κ1(y)dy =

∫
R

Γ1(y + z, b)Γ1(y, b)dy. (5.6.4)

By the Chapman-Kolmogorov equation,

κ2(z) = Γ1(z, 2b). (5.6.5)

Now, we are working to find an estimate to b. We assume that foxes are circling

around the center of their home-ranges. So, the areas of these circles are equal the

average territory size A. We let Γ2(t, x) to be the fundamental solution of ∂t − ∆x

in two space dimensions. Then the mean maximum distance of a territorial fox from

the center of its home-range (the mean radius of its home-range) is given by

r0 =

∫
R2

|z|Γ2(z, b)dz =

∫
R2

|z|(4bπ)−1e−|z|
2/(4b)dz,

where | · | being the Euclidean norm in R2. We translate the integral into polar

coordinates (z1, z2) = (r cos θ, r sin θ), where 0 ≤ r ≤ ∞ and θ ∈ [0, 2π), so we shall

have

r0 =
1

4πb

∫ 2π

0

∫ ∞
0

r2e−r
2/(4b)drdθ =

1

2b

∫ ∞
0

r2e−r
2/4bdr.

We substitute r = s
√

4b,

r0 = 4
√
b

∫ ∞
0

s2e−s
2

ds.

By integration by parts and Fubini’s theorem,∫ ∞
0

s2e−s
2

ds = −(1/2)

∫ ∞
0

s
d

ds
e−s

2

ds = (1/2)

∫ ∞
0

e−s
2

ds = (1/4)

∫
R
e−s

2

ds

=(1/4)
(∫

R2

e−|x|
2

dx
)1/2

= (1/4)
(

2π

∫ ∞
0

re−r
2

dr
)1/2

= (1/4)π1/2.

So

r0 = b1/2π1/2.
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So the mean area of the home range is

A = πr2
0 = bπ2.

So b = Aπ−2 [km2]. A is between 2 and 8 [km2] according to (Toma and Andral

(1977)), the average area is taken as 5 [km2] by (Källén et al. (1985)) and (Murray

et al. (1986)). Then b is 5π−2 [km2] ≈ 0.506605918 [km2]. A summary of numerical

values of the model parameters are in Table 4.1.

In the coming cases, we study the spread of rabies for various proportions of

territorial and wandering rabid foxes. For the first case, we assume that the chance

for a rabid fox to diffuse or to be territorial is equal, i.e., p1 = p2 = 0.5. In the second

case, we assume that the chance for a rabid fox to diffuse is p1 = 0.3, and the chance

for a rabid fox to be territorial is p2 = 0.7. In the third case, we assume that the

chance for a rabid fox to diffuse is p1 = .7, and the chance for a rabid fox to be

territorial is p2 = 0.3. In the fourth case, we assume that all rabid foxes diffuse, i.e.,

p1 = 1. In the fifth case, we assume that all rabid foxes are territorial, i.e., p2 = 1.

5.6.1 I. p1 = p2 = 0.5

In the first case, we assume that the chance for a rabid fox to diffuse is equal the

chance for a rabid fox to be territorial such that p1 = p2 = 0.5. To ensure the spread

of rabies, the basic reproduction number of rabies R0 shall be larger than one. With

this choice of parameters (see Table 4.1),

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1,

so rabies is going to spread among the fox population.

The results of numerical simulations on the model (5.3.5) and (5.3.6) are presented

on Fig. 5.6.1–5.6.5. Fig. 5.6.1 and Fig. 5.6.2 show the dynamics of susceptible foxes,
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diffusing rabid foxes, and territorial rabid foxes at specific times. Surface plots of

approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t) are

presented on Fig. 5.6.3. Fig. 5.6.4 depicts contour plots of susceptible foxes, diffusing

rabid foxes, and territorial rabid foxes. The contour plots in Fig. 5.6.4 demonstrate

that rabies spreads with asymptotic speed

c♦ ≈ 43 [km/year].

We also present in Fig. 5.6.5 the stepsize pattern for the algorithm described in

Section 5.4 for the accuracy tolerances TOL = 10−3, 10−6, 10−9, and 10−12. On these

figures the rejected steps are denoted by ‘×’.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6.1: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = p2 = 0.5.
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Figure 5.6.2: Approximations of fox population densities at different times when

p1 = p2 = 0.5.
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Figure 5.6.3: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = p2 = 0.5 and N = 59.

97



Figure 5.6.4: Contour plots of approximations Sh(x, t) (top), R1,h(x, t) (middle), and

R2,h(x, t) (bottom) to S(x, t), R1(x, t), and R2(x, t) when p1 = p2 = 0.5.
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(a) (b)

(c) (d)

Figure 5.6.5: Variable stepsize pattern for the algorithm based on continuous Runge-

Kutta method of fourth order with N = 119, p1 = p2, and Tol = 10−3(a),

10−6(b), 10−9(c), 10−12(d). Rejected steps are denoted by ‘×’.
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5.6.2 II. p1 = 0.3, p2 = 0.7

In the second case, we assume that the chance for a rabid fox to be territorial is

higher than the chance for the rabid foxes to diffuse such that p1 = 0.3, and p2 = 0.7.

The basic reproduction number of rabies is

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The results of numerical simulations on the model (5.3.5) and (5.3.6) are presented

on Fig. 5.6.6–5.6.9. Fig. 5.6.6 and Fig. 5.6.7 show the dynamics of susceptible foxes,

diffusing rabid foxes, and territorial rabid foxes at specific times. Surface plots of

approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t) are

presented on Fig. 5.6.8. Fig. 5.6.9 depicts contour plots of susceptible foxes, diffusing

rabid foxes, the territorial rabid foxes. The contour plots in Fig. 5.6.9 demonstrate

that rabies spreads with asymptotic speed

c♦ ≈ 37 [km/year].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6.6: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 0.3 and p2 = 0.7.
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Figure 5.6.7: Approximations of fox population densities at different times when

p1 = 0.3 and p2 = 0.7.
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Figure 5.6.8: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 0.3, p2 = 0.7, and N = 59.
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Figure 5.6.9: Contour plots of approximations Sh(x, t) (top), R1,h(x, t) (middle), and

R2,h(x, t) (bottom) to S(x, t), R1(x, t), and R2(x, t) when p1 = 0.3 and p2 = 0.7.
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5.6.3 III. p1 = 0.7, p2 = 0.3

In this case, we assume that the chance for a rabid fox to diffuse is higher than the

chance for the rabid foxes to be territorial such that p1 = 0.7, and p2 = 0.3. To ensure

the spread of rabies, the basic reproduction number of rabies R0 shall be larger than

one. We have

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The results of numerical simulations on the model (5.3.5) and (5.3.6) are presented

on Fig. 5.6.10–5.6.13. Fig. 5.6.6 and Fig. 5.6.11 show the dynamics of susceptible

foxes, diffusing rabid foxes, and territorial rabid foxes at specific times. Surface plots

of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t)

are presented on Fig. 5.6.12. Fig. 5.6.13 depicts contour plots of susceptible foxes,

diffusing rabid foxes, the territorial rabid foxes. The contour plots in Fig. 5.6.13

demonstrate that rabies spreads with asymptotic speed

c♦ ≈ 45 [km/year].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6.10: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 0.7 and p2 = 0.3.
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Figure 5.6.11: Approximations of fox population densities at different times when

p1 = 0.7 and p2 = 0.3.
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Figure 5.6.12: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 0.7, p2 = 0.3, and N = 59.
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Figure 5.6.13: Contour plots of approximations Sh(x, t) (top), R1,h(x, t) (middle), and

R2,h(x, t) (bottom) to S(x, t), R1(x, t), and R2(x, t) when p1 = 0.7 and p2 = 0.3.
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5.6.4 IV. p1 = 1, p2 = 0

We assume that all rabid foxes diffuse. The basic reproduction number of rabies

R0 is

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The results of numerical simulations on the model (5.3.5) and (5.3.6) are presented

on Fig. 5.6.14–5.6.17. Fig. 5.6.14 and Fig. 5.6.15 show the dynamics of susceptible

foxes, diffusing rabid foxes, and territorial rabid foxes at specific times. Surface plots

of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t)

are presented on Fig. 5.6.16. Fig. 5.6.17 depicts contour plots of susceptible foxes,

diffusing rabid foxes, the territorial rabid foxes. The contour plots in Fig. 5.6.17

demonstrate that rabies spreads with asymptotic speed

c♦ ≈ 47 [km/year].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6.14: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 1 and p2 = 0.
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Figure 5.6.15: Approximations of fox population densities at different times when

p1 = 1 and p2 = 0.
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Figure 5.6.16: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 1, p2 = 0, and N = 59.
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Figure 5.6.17: Contour plots of approximations Sh(x, t) (top) and R1,h(x, t) (bottom)

to S(x, t) and R1(x, t) when p1 = 1 and p2 = 0.
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5.6.5 V. p1 = 0, p2 = 1

In the fifth case, we assume all infectious foxes are residential. Also for this case,

the basic reproduction number of rabies is

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The results of numerical simulations on the model (5.3.5) and (5.3.6) are presented

on Fig. 5.6.18–5.6.21. Fig. 5.6.18 and Fig. 5.6.19 show the dynamics of susceptible

foxes, diffusing rabid foxes, and territorial rabid foxes at specific times. Surface plots

of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t)

are presented on Fig. 5.6.20. Fig. 5.6.21 depicts contour plots of susceptible foxes,

diffusing rabid foxes, the territorial rabid foxes. The contour plots in Fig. 5.6.21

demonstrate that rabies spreads with asymptotic speed

c♦ ≈ 26 [km/year].

115



(a) (b)

(c) (d)

(e) (f)

Figure 5.6.18: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 0 and p2 = 1.
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Figure 5.6.19: Approximations of fox population densities at different times when

p1 = 0 and p2 = 1.
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Figure 5.6.20: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 0, p2 = 1, and N = 59.
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Figure 5.6.21: Contour plots of approximations Sh(x, t) (top), R1,h(x, t) (middle), and

R2,h(x, t) (bottom) to S(x, t), R1(x, t), and R2(x, t) when p1 = 0 and p2 = 1.
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5.7 Discussion and Conclusions

When the latent has a fixed length, the unique solutions of the system (4.4.7) are

(c∗, λ) ≈ (0.0774794 [km/day], 1.20104) ≈ (28.28 [km/year], 1.20104)

when p1 = 0,

(c∗, λ) ≈ (0.121047 [km/day], 0.566099) ≈ (44.1821 [km/year], 0.566099)

when p1 = 0.3,

(c∗, λ) ≈ (0.129782 [km/day], 0.548928) ≈ (47.3705 [km/year], 0.548928)

when p1 = 0.5,

(c∗, λ) ≈ (0.136702 [km/day], 0.538601) ≈ (49.8961 [km/year], 0.538601)

when p1 = 0.7, and

(c∗, λ) ≈ (0.145169 [km/day], 0.529397) ≈ (52.9868 [km/year], 0.529397)

when p1 = 1. The contour plots in Fig. 5.6.21, Fig. 5.6.9,Fig. 5.6.4,Fig. 5.6.13, and

Fig. 5.6.17 demonstrate that

c♦ ≈ 26 [km/year] when p1 = 0,

c♦ ≈ 37 [km/year] when p1 = 0.3,

c♦ ≈ 43 [km/year] when p1 = 0.5,

c♦ ≈ 45 [km/year] when p1 = 0.7,

and

c♦ ≈ 47 [km/year] when p1 = 1.
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Therefore, the asymptotic speeds c∗, which we get by solving the system (4.4.7),

are quite close to asymptotic speeds c♦, which we get from the contour plots. In

addition, the asymptotic speeds c∗ and c♦ confirm that the epidemic model on a

bounded domain Ω with Dirichlet boundary conditions shows a less severe epidemic

outbreak than the epidemic model on Rn, and the spread of the disease modeled on

Ω is not as fast as the spread of the disease modeled on Rn, as discussed in Section

3.6. Also, The numerical results confirm for the spreading speeds c∗ and c♦ that the

latent period with fixed length gives the smallest spreading speeds, as discussed in

Section 4.4.1. In addition, the numerical simulations confirm that Theorem 2.6.5 in

Section 2.6.3 holds.

When p1 = 0, all rabid foxes are territorial, and the asymptotic speeds of spread

c∗ that we obtain by solving the system (4.4.7) for a latent period of fixed length can

be compared with the asymptotic speeds in (van den Bosch et al. (1990)). There are

differences in some assumptions and in the determination of parameters, though; for

instance, it is assumed in (van den Bosch et al. (1990)) that the sizes of the home-

ranges decrease with fox density while we assume them to be independent. For a fox

population density S0 of 4.6 [fox/km], we obtain an asymptotic speed of rabies spread

c∗ ≈ 28.3 [km/year], while (van den Bosch et al., 1990, Fig.7) shows an asymptotic

speed of about 33 [km/year] when S0 = 4.6 [fox/km2]. Furthermore, for this case, the

asymptotic speed of rabies spread c∗ compares quite well with the observed speeds

about 27 [km/year] in (Bögel et al. (1976)) and from 20 to 60 [km/year] according to

(Lloyd (1980)).

The numerical simulations depict that the density of diffusing rabid foxes R1

decays when t ≤ τ , then it increases for a period of time when the infected foxes leave

the latent period at t > τ, as shown in Fig. 5.6.1, Fig. 5.6.2, Fig. 5.6.3, Fig. 5.6.6,

Fig. 5.6.7, Fig. 5.6.8, Fig. 5.6.10, Fig. 5.6.11, Fig. 5.6.12, Fig. 5.6.14, Fig. 5.6.15,

121



Fig. 5.6.16, Fig. 5.6.18, Fig. 5.6.19, and Fig. 5.6.20. The decrease in the density of

diffusing rabid foxes is because the death from rabies ν1, which gives the rabid foxes

as few as five days on average to live (Anderson et al. (1981); Murray et al. (1986);

Murray (1989); Murray and Seward (1992)).

The density of territorial rabid foxes R2, on the other hand, remains zero when

t ≤ τ because we assume there are no territorial rabid foxes initially at time zero.

When t > τ , we see R2 grows again before it loses some of its members with rate ν2,

as demonstrated in Fig. 5.6.1, Fig. 5.6.2, Fig. 5.6.3, Fig. 5.6.6, Fig. 5.6.7, Fig. 5.6.8,

Fig. 5.6.10, Fig. 5.6.11, Fig. 5.6.12, Fig. 5.6.14, Fig. 5.6.15, Fig. 5.6.16, Fig. 5.6.18,

Fig. 5.6.19, and Fig. 5.6.20.

Since, by assumptions, no foxes are born and infected foxes cannot recover and

become susceptible again, the densities of susceptible foxes continue to decrease, as

shown in Fig. 5.6.1, Fig. 5.6.2, Fig. 5.6.3, Fig. 5.6.6, Fig. 5.6.7, Fig. 5.6.8, Fig. 5.6.10,

Fig. 5.6.11, Fig. 5.6.12, Fig. 5.6.14, Fig. 5.6.15, Fig. 5.6.16, Fig. 5.6.18, Fig. 5.6.19,

and Fig. 5.6.20.

The embedded pair of Runge-Kutta methods was implemented in a variable step-

size environment with the estimates of the local discretization errors computed ac-

cording to the formula

EST(tn+1) =
∥∥ŷn+1 − yh(tn+1)

∥∥
2
,

(see Section 5.4). The stepsize hn from tn to tn+1 = tn + hn for n = 0, 1, . . ., is

accepted if

EST(tn+1) ≤ TOL,

but if

EST(tn+1) > TOL,
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the stepsize is rejected, and the computations are repeated with a halved stepsize

hn/2. Fig. 5.6.5 demonstrates that most of rejected steps occur for Tol = 10−3.
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Chapter 6

NUMERICAL SIMULATIONS OF SPREAD OF RABIES: LATENT PERIOD

WITH EXPONENTIALLY DISTRIBUTED LENGTH

6.1 Abstract

We describe a numerical algorithm for the simulation of the spread of rabies in

a spatially distributed fox population. As we already know, the model considers

both territorial and wandering rabid foxes and includes a latent period for the infec-

tion. The resulting systems are mixtures of partial differential and integral equations.

They are discretized in the space variable by central differences of second order and by

the composite trapezoidal rule. In a second step, the ordinary differential equations

we obtained are discretized in time by explicit continuous Runge-Kutta methods of

fourth order for ordinary and delay differential systems. The results of the numer-

ical calculations are compared for latent periods of exponentially distributed length

and for various proportions of territorial and wandering rabid foxes. The speeds of

spread observed in the simulations are compared to spreading speeds obtained by an-

alytic methods and to observed speeds of epizootic frontlines in the European rabies

outbreak 1940 to 1980.

6.2 The Model

We consider the system in (3.4.5) with Ω to be a bounded domain on R, which

represents the habitat of foxes. So, when the latent period is exponentially distributed,
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the spread of rabies is described by

∂tS(x, t) = −βS(x, t)

∫
Ω

[
κ1(x, z)R1(z, t) + κ2(x, z)R2(z, t)

]
dz

=: −B(x, t),

∂tR1(x, t) = D∇2
xR1(x, t) + p1I(x, t)− ν1R1(x, t),

∂tR2(x, t) = p2I(x, t)− ν2R2(x, t),

∂tI(x, t) = θB(x, t)− θI(x, t),

(6.2.1)

with given initial conditions

S(x, 0) = S0(x), R1(x, 0) = R◦1(x), R2(x, 0) = R◦2(x), I(x, 0) = I0(x), x ∈ Ω.

The boundary conditions are given by

R1(x, t) = w(x, t), x ∈ ∂Ω, t > 0. (6.2.2)

As before, S(x, t) denote the density of susceptible foxes at time t whose home-ranges

center at location x ∈ R. Further, R1(x, t) are the diffusing rabid foxes at location

x and time t, R2(x, t) are the territorial rabid foxes at time t whose home-ranges

center at location x, and I(x, t) is the rate at which foxes in the latent period become

infectious. The parameters ν1 > 0 and ν2 > 0 are the per capita rabies death rates

of diffusing and territorial rabid foxes, respectively. p1 is the chance of a rabid fox

to diffuse, and p2 the chance to be territorial, pj ≥ 0 and p1 + p2 = 1. β > 0 is

the rate at which the meeting of a susceptible and rabid fox leads to the infection

of the susceptible fox. B(x, t) is the incidence of the disease, i.e., the number of

new cases per unit of time. D > 0 is the diffusion constant. κ1(x, z) denotes the

rate at which a fox with home-range center x visits the location z ∈ Ω. The rate at

which a susceptible fox with home-range center x meets a territorial rabid fox with
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home-range center z is given by

κ2(x, z) =

∫
Ω

κ1(x, y)κ1(z, y)dy, (6.2.3)

which means that it is the rate at which they both visit some common point y ∈ Ω.

The nonnegative continuous functions S0, R◦1, R
◦
2 and I0 are the initial densities of

the susceptible foxes, diffusing rabid foxes, territorial rabid foxes, and transition rate,

respectively.

6.3 Discretization in Space

We use the method of lines to find finite difference approximations for the spatial

derivatives (see, e.g., Schiesser (2013); Schiesser and Griffiths (2009)), then we use

the continuous explicit Runge Kutta methods of order four and three to solve the

systems of nonlinear ordinary differential equations. The continuous Runge-Kutta

method was derived by Owren and Zennaro (Owren and Zennaro (1991, 1992b,a)),

and it is discussed in (Bellen and Zennaro (2003)). The continuous Runge-Kutta

method was recently applied by (Alanazi et al. (2018a, 2019); Bartoszewski et al.

(2015); Jackiewicz et al. (2014)).

We discretize the partial differential equation PDE by using central in space second

order scheme. The integrals in (6.2.1) are approximated using composite trapezoid

rule. Another approach to approximate integrals in (6.2.1) is by using Gauss-Hermite

quadrature rule (see, e.g., Jackiewicz et al. (2006)).

As before, we use the notations R1,i(t), R2,i(t), and Si(t), Qi(t), and Ii(t) for the

approximations of R1(xi, t), R2(xi, t), S(xi, t), Q(xi, t), and I(xi, t), respectively.

We consider Ω = [−a, a] to be a bounded domain on R to represent the habitat

of foxes. Let xi to be a sequence of uniformly spaced points on [−a, a], such that

xi = −a+ ih, where h = 2a
N+1

is the spacing stepsize and i = 0, ..., N + 1. In addition,
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we define zk be a sequence of uniformly spaced points on [−a, a], such that zk =

−a+ kh, k = 0, ..., N + 1, and h = 2a
N+1

. We replace x with xi for i = 1, ..., N, and set

Qi(t) =

∫ a

−a
[κ1(xi − z)R1(z, t) + κ2(xi − z)R2(z, t)]dz.

From the previous section, we have Qi(t) = Q1,i(t) +Q2,i(t), where Q1,i(t) and Q2,i(t)

are defined in (5.3.3). Therefore, when i = 1, ..., N , we obtain the following nonlinear

systems of differential equations for the model in (6.2.1)

S ′i(t) =− βSi(t)Qi(t),

R′1,i(t) =D
R1,i+1(t)− 2R1,i(t) +R1,i−1(t)

h2
+ p1Ii(t)− ν1R1,i(t),

R′2,i(t) =p2Ii(t)− ν2R2,i(t),

I ′i(t) =θβSi(t)Qi(t)− θIi(t).

(6.3.1)

We assume that (6.3.1) satisfy the following boundary conditions

R1(−a, t) = w1(t), R1(a, t) = w2(t), t ≥ 0,

where w1(t) and w2(t) are given functions. So, when i = 1, the scheme for R1 shall

be

R′1,1(t) =D
R1,2(t)− 2R1,1(t)

h2
+
D

h2
w1(t) + p1I1(t)− ν1R1,1(t), (6.3.2)

and when i = N , the scheme for R1 shall be

R′1,N(t) =D
R1,N−1(t)− 2R1,N(t)

h2
+
D

h2
w2(t) + p1IN(t)− ν1R1,N(t), (6.3.3)

with the following initial conditions,

Si(0) =S0(xi),

R1,i(0) =R◦1(xi),

R2,i(0) =R◦2(xi),

Ii(0) =I0(xi),

(6.3.4)

for i = 1, ..., N.
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6.4 Discretization in Time

We introduce the notation

S(t) =


S1(t)

...

SN(t)

 , R1(t) =


R1,1(t)

...

R1,N(t)

 , R2(t) =


R2,1(t)

...

R2,N(t)

 ,

I(t) =


I1(t)

...

IN(t)

 , y(t) =



S(t)

R1(t)

R2(t)

I(t)


, y0 =



S(0)

R1(0)

R2(0)

I(0)


.

We define f(y(t)) to be the right hand side of the differential equation system in

(6.3.1). Therefore, the systems in (6.3.1) with the initial conditions in (6.3.4) can be

written as  y′(t) = f
(
y(t)

)
, t ≥ 0,

y(0) = y0 ∈ R4N ,
(6.4.1)

where f : R4N → R4N .

The problems (6.4.1) will be solved by the explicit continuous Runge-Kutta method

of fourth order with s = 6 stages, and the embedded discrete Runge-Kutta method

of third order, which is used for the estimation of local discretization errors of the

method of order four. This embedded pair was proposed by Owren and Zennaro

(Owren and Zennaro (1991, 1992b,a)), see also (Bellen and Zennaro (2003)). The

coefficients of this embedded pair are given by the Butcher table with continuous
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c A

yh b(θ)

ŷn+1 b̂

=

0

1
6

1
6

11
37

44
1369

369
1369

11
17

3388
4913

−8349
4913

8140
4913

13
15

− 36764
408375

767
1125

− 32708
136125

210392
408375

1 1697
18876

0 50653
116160

299693
1626240

3375
11648

yh(tn + θhn) b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ)

ŷn+1
101
363

0 − 1369
14520

11849
14520

0 0

,

Table 6.1: The coefficients of the optimal pair of continuous and discrete Runge-Kutta

method of order p = 4 with s = 6 stages.

weights bi(θ) given by

b1(θ) = −866577
824252

θ4 + 1806901
618189

θ3 − 104217
37466

θ2 + θ,

b2(θ) = 0,

b3(θ) = 12308679
5072320

θ4 − 2178079
380424

θ3 + 861101
230560

θ2,

b4(θ) = − 7816583
10144640

θ4 + 6244423
5325936

θ3 − 63869
293440

θ2,

b5(θ) = −624375
217984

θ4 + 982125
190736

θ3 − 1522125
762944

θ2,

b6(θ) = 296
131

θ4 − 461
131

θ3 + 165
131

θ2.

(6.4.2)

To compute the approximate solution for the ordinary differential equation yh(tn), we

search for the index q such that tn ∈ (tq, tq+1], then the approximation shall be

yh(tn) = b1(θ)F1,q + b2(θ)F2,q + b3(θ)F3,q + b4(θ)F4,q + b5(θ)F5,q

+ b6(θ)F6,q,

(6.4.3)
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where bi(θ) is in (6.4.2),

θ =
tn − τ − tq
tq+1 − tq

∈ (0, 1], (6.4.4)

and

Fk,q = f
(
yh(tq + ckhq)

)
, (6.4.5)

for k = 1, 2, 3, 4, 5, 6, hq = tq+1 − tq, and c = [c1, c2, c3, c4, c5, c6]T . The estimation of

the local discretization errors are given by

EST(tn+1) =
∥∥ŷn+1 − yh(tn+1)

∥∥
2
.

and the initial stepsize h0 is computed by

h0 = min

{
0.01 τ,

TOL1/5

‖f(0, y0)‖2

}
,

where TOL is the accuracy tolerance, and it is selected by the user of the code. Then

for n = 0, 1, . . ., the stepsize hn from tn to tn+1 = tn + hn is accepted if

EST(tn+1) ≤ TOL.

The new stepsize hn+1 from tn+1 to tn+2 = tn+1 + hn+1 is computed by

hn+1 = η hn

(
TOL

EST(tn+1

)1/5

,

where η is a safety coefficient to avoid too many rejected steps. In our implementation

of the code we have chosen η = 0.8. If

EST(tn+1) > TOL,

the stepsize is rejected, and the computations are repeated with a halved stepsize

hn/2.

The construction of embedded pairs of continuous and discrete Runge-Kutta meth-

ods employed in this section, and their convergence and order properties, are discussed

in (Owren and Zennaro (1991, 1992b,a)) and in the monographs (Bellen and Zennaro

(2003); Hairer et al. (1993)).
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6.5 Units Check

From Table 5.3 and Table 5.4, the net units of both sides of the equations in

(6.2.1) are consistent, (fox/km
day

).

6.6 Numerical Experiments and Simulations

In this section, we present the results of numerical experiments for (6.2.1) with

continuous Runge-Kutta methods of order four implemented in a variable stepsize

environment as described in Section 6.4. We compute approximations to these sys-

tems for x ∈ [−a, a], a = 50 [km], and t ∈ [t0, tend], t0 = 0 [day], tend = 180 [day]. We

choose N = 199 unless otherwise specified.

We assume the Dirichlet boundary conditions at x = −a and x = a, of the form

R1(−a, t) = w1(t) = 0 [fox/km], R1(a, t) = w2(t) = 0 [fox/km], t ∈ [0, tend],

and initial conditions

Si(0) = S0(xi), R1,i(0) = R◦1(xi), R2,i(0) = R◦2(xi), Ii(0) = I0(xi),

i = 1, 2, . . . , N , where the functions S0(x), R◦1(x), R◦2(x), and I0(x) are defined by

R◦1(x) =

 0.2 [fox/km], −5 ≤ x ≤ 5,

0 [fox/km], otherwise,

R◦2(x) = 0 [fox/km], I0(x) = 0 [fox/km], x ∈ [−a, a].

As in Section 5.6, if we assume

κ1(z) = Γ1(z, b) =
1√
4πb

e
−z2
4b , (6.6.1)

then

κ2(z) = Γ1(z, 2b). (6.6.2)
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We let Γ2(t, x) to be the fundamental solution of ∂t − ∆x in two space dimensions.

Then the mean maximum distance of a territorial fox from the center of its home-

range (the mean radius of its home-range) is given by

r0 =

∫
R2

|z|Γ2(z, b)dz =

∫
R2

|z|(4bπ)−1e−|z|
2/(4b)dz,

where | · | being the Euclidean norm in R2. We translate the integral into polar

coordinates (z1, z2) = (r cos θ, r sin θ), where 0 ≤ r ≤ ∞ and θ ∈ [0, 2π), so we shall

have

r0 =
1

4πb

∫ 2π

0

∫ ∞
0

r2e−r
2/(4b)drdθ =

1

2b

∫ ∞
0

r2e−r
2/4bdr = b1/2π1/2,

(see Section 5.6). So the mean area of the home range is

A = πr2
0 = bπ2.

So b = Aπ−2 [km2]. A is between 2 and 8 [km2] according to (Toma and Andral

(1977)), the average area is taken as 5 [km2] by (Källén et al. (1985)) and (Murray

et al. (1986)). Then b is 5π−2 [km2] ≈ 0.506605918 [km2]. If the latent period has ex-

ponentially distributed length with constant exit rate θ, then we have θ = 1/τ [1/day].

The numerical values of the parameters S0, β,D, b, τ, ν1 and ν2 are also summarized

in Table 4.1.

6.6.1 I. p1 = p2 = 0.5

We assume the chance for a rabid fox to diffuse or to be territorial is equal, i.e.,

p1 = p2 = 0.5. The basic reproduction number of the rabies is

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The discrete forms of (6.2.1) with the boundary conditions in (6.2.2) give us

the numerical results presented on Fig. 6.6.1–6.6.5. Fig. 6.6.1 and Fig. 6.6.2 show
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the dynamics of susceptible foxes, diffusing rabid foxes, and territorial rabid foxes

at specific times. Surface plots of approximations Sh(x, t), R1,h(x, t), R2,h(x, t) and

Ih(x, t) to S(x, t), R1(x, t), R2(x, t) and I(x, t) are presented on Fig. 6.6.3. Fig. 6.6.4

depicts contour plots of susceptible foxes, diffusing rabid foxes, the territorial rabid

foxes. The contour plots in Fig. 6.6.4 demonstrate that rabies spreads with asymptotic

speed

c♦ ≈ 81 [km/year].

We also present in Fig. 6.6.5 the stepsize pattern for the algorithm described in

Section 6.4 for the accuracy tolerances TOL = 10−3, 10−6, 10−9, and 10−12. On these

figures the rejected steps are denoted by ‘×’.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6.1: Approximations Sh(x, t), R1,h(x, t), R2,h(x, t) and Ih(x, t) to S(x, t),

R1(x, t), R2(x, t) and I(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = p2 = 0.5.
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Figure 6.6.2: Approximations of fox population densities at different times when

p1 = p2 = 0.5.
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Figure 6.6.3: Surface plots of approximations Sh(x, t), R1,h(x, t), R2,h(x, t) and Ih(x, t)

to S(x, t), R1(x, t), R2(x, t) and I(x, t) when p1 = p2 = 0.5 and N = 59.
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Figure 6.6.4: Contour plots of approximations Sh(x, t) (top), R1,h(x, t), R2,h(x, t) and

Ih(x, t) (bottom) to S(x, t), R1(x, t), R2(x, t) and I(x, t) when p1 = p2 = 0.5.
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(a) (b)

(c) (d)

Figure 6.6.5: Variable stepsize pattern for the algorithm based on continuous Runge-

Kutta method of fourth order with N = 119, p1 = p2 = 0.5, and Tol = 10−3(a),

10−6(b), 10−9(c), 10−12(d). Rejected steps are denoted by ‘×’.
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6.6.2 II. p1 = 0.3, p2 = 0.7

Since there are no changes to the density of I as we change p1 or p2, we are not

going to discuss the density of I in this case and in the coming cases. The basic

reproduction number of the rabies

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The discrete forms of the model in (6.2.1) with the boundary conditions in (6.2.2)

give us the numerical results presented on Fig. 6.6.6–6.6.9. Fig. 6.6.6 and Fig. 6.6.7

show the dynamics of susceptible foxes, diffusing rabid foxes, and territorial rabid

foxes at specific times. Surface plots of approximations Sh(x, t), R1,h(x, t), and

R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t) are presented on On Fig. 6.6.8. Fig. 6.6.9

depicts contour plots of susceptible foxes, diffusing rabid foxes, the territorial rabid

foxes. The contour plots in Fig. 6.6.9 demonstrate that rabies spreads with asymptotic

speed

c♦ ≈ 73 [km/year].
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6.6: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 0.3 and p2 = 0.7.
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Figure 6.6.7: Approximations of fox population densities at different times when

p1 = 0.3 and p2 = 0.7.
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Figure 6.6.8: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 0.3, p2 = 0.7, and N = 59.
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Figure 6.6.9: Contour plots of approximations Sh(x, t) (top), R1,h(x, t) (middle), and

R2,h(x, t) (bottom) to S(x, t), R1(x, t), and R2(x, t) when p1 = 0.3 and p2 = 0.7.
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6.6.3 III. p1 = 0.7, p2 = 0.3

The basic reproduction number of the rabies is

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The discrete forms of the model in (6.2.1) with the boundary conditions in (6.2.2)

give us the numerical results presented on Fig. 6.6.10–6.6.13. Fig. 6.6.10 and Fig. 6.6.11

show the dynamics of susceptible foxes, diffusing rabid foxes, and territorial ra-

bid foxes at specific times. Surface plots of approximations Sh(x, t), R1,h(x, t), and

R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t) are presented on On Fig. 6.6.12. Fig. 6.6.13

depicts contour plots of susceptible foxes, diffusing rabid foxes, the territorial rabid

foxes. The contour plots in Fig. 6.6.13 demonstrate that rabies spreads with asymp-

totic speed

c♦ ≈ 91 [km/year].
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6.10: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 0.7 and p2 = 0.3.
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Figure 6.6.11: Approximations of fox population densities at different times when

p1 = 0.7 and p2 = 0.3.
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Figure 6.6.12: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 0.7, p2 = 0.3, and N = 59.
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Figure 6.6.13: Contour plots of approximations Sh(x, t) (top), R1,h(x, t) (middle), and

R2,h(x, t) (bottom) to S(x, t), R1(x, t), and R2(x, t) when p1 = 0.7 and p2 = 0.3.
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6.6.4 IV. p1 = 1, p2 = 0

Since p1 = 1, all rabid foxes diffuse. The basic reproduction number of the rabies

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The discrete forms of the model in (6.2.1) with the boundary conditions in (6.2.2)

give us the numerical results presented on Fig. 6.6.14–6.6.17. Fig. 6.6.14 and Fig. 6.6.15

show the dynamics of susceptible foxes, diffusing rabid foxes, and territorial ra-

bid foxes at specific times. Surface plots of approximations Sh(x, t), R1,h(x, t), and

R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t) are presented on On Fig. 6.6.16. Fig. 6.6.17

depicts contour plots of susceptible foxes, diffusing rabid foxes, the territorial rabid

foxes. The contour plots in Fig. 6.6.17 demonstrate that rabies spreads with asymp-

totic speed

c♦ ≈ 97 [km/year].

We also calculate c♦ using contour plots for different values of S0 when all rabid foxes

diffuse, i.e., p1 = 1. These speeds are given in Table 6.2.

S0 [fox/km] c♦ [km/year] c∗ [km/year]

1.5 30 33

2.0 45 50

2.5 61 64

3 73 76

4.6 97 105

Table 6.2: Comparison between c♦ and c∗ for various values of S0 when the latent

period has exponentially distributed length and p1 = 1. Other numerical values of

the parameters are in Table 4.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6.14: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 1 and p2 = 0.
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Figure 6.6.15: Approximations of fox population densities at different times when

p1 = 1 and p2 = 0.
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Figure 6.6.16: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 1, p2 = 0, and N = 59.
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Figure 6.6.17: Contour plots of approximations Sh(x, t) (top) and R1,h(x, t) (bottom)

to S(x, t) and R1(x, t) when p1 = 1 and p2 = 0.
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6.6.5 V. p1 = 0, p2 = 1

In the fifth case, we assume all infectious foxes are territorial. The basic repro-

duction number of the rabies

R0 =
(p1

ν1

+
p2

ν2

)
βS0 = 4.6 > 1.

The discrete forms of the model in (6.2.1) with the boundary conditions in (6.2.2)

give us the numerical results presented on Fig. 6.6.18–6.6.21. Fig. 6.6.18 and Fig. 6.6.19

show the dynamics of susceptible foxes, diffusing rabid foxes, and territorial ra-

bid foxes at specific times. Surface plots of approximations Sh(x, t), R1,h(x, t), and

R2,h(x, t) to S(x, t), R1(x, t), and R2(x, t) are presented on On Fig. 6.6.20. Fig. 6.6.21

depicts contour plots of susceptible foxes, diffusing rabid foxes, the territorial rabid

foxes. The contour plots in Fig. 6.6.21 demonstrate that rabies spreads with asymp-

totic speed

c♦ ≈ 61 [km/year].
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6.18: Approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to S(x, t), R1(x, t),

and R2(x, t) at t=0, 20, 30, 90, 120, 180 when p1 = 0 and p2 = 1.
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Figure 6.6.19: Approximations of fox population densities at different times when

p1 = 0 and p2 = 1.
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Figure 6.6.20: Surface plots of approximations Sh(x, t), R1,h(x, t), and R2,h(x, t) to

S(x, t), R1(x, t), and R2(x, t) when p1 = 0, p2 = 1, and N = 59.
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Figure 6.6.21: Contour plots of approximations Sh(x, t) (top), R1,h(x, t) (middle), and

R2,h(x, t) (bottom) to S(x, t), R1(x, t), and R2(x, t) when p1 = 0 and p2 = 1.
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6.7 Discussion and Conclusions

When the latent period is exponentially distributed, the unique solutions of the

system (4.5.5) are

(c∗, λ) ≈ (0.182245 [km/day], 0.773071) ≈ (66.5195 [km/year], 0.773071)

when p1 = 0,

(c∗, λ) ≈ (0.235233 [km/day], 0.550237) ≈ (85.86 [km/year], 0.550237)

when p1 = 0.3,

(c∗, λ) ≈ (0.253677 [km/day], 0.522531) ≈ (92.592 [km/year], 0.522531)

when p1 = 0.5,

(c∗, λ) ≈ (0.268893 [km/day], 0.504089) ≈ (98.146 [km/year], 0.504089)

when p1 = 0.7, and

(c∗, λ) ≈ (0.288236 [km/day], 0.484747) ≈ (105.206 [km/year], 0.484747)

when p1 = 1. The contour plots in Fig. 6.6.21, Fig. 6.6.9,Fig. 6.6.4,Fig. 6.6.13, and

Fig. 6.6.17 demonstrate that

c♦ ≈ 61 [km/year] when p1 = 0,

c♦ ≈ 73 [km/year] when p1 = 0.3,

c♦ ≈ 81 [km/year] when p1 = 0.5,

c♦ ≈ 91 [km/year] when p1 = 0.7,

and

c♦ ≈ 97 [km/year] when p1 = 1.
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Therefore, the asymptotic speeds c∗, which we get by solving the system (4.5.5),

are quite close to asymptotic speeds c♦, which we get from the contour plots. In

addition, the asymptotic speeds c∗ and c♦ confirm that the epidemic model on a

bounded domain Ω with Dirichlet boundary conditions shows a less severe epidemic

outbreak than the epidemic model on Rn, and the spread of the disease modeled on Ω

is not as fast as the spread of the disease modeled on Rn, as discussed in Section 3.6.

Furthermore, the latent period with fixed length always gives the smallest spreading

speeds (see Section 4.4.1).

(Murray et al. (1986); Murray and Seward (1992)) assume that all rabid foxes

diffuse, foxes reproduce and die from natural causes, and rabid foxes exit the latent

period with exponentially distributed length. Hence, we compare the asymptotic

speeds in (Murray et al. (1986); Murray and Seward (1992)) to the speeds c∗ that we

have by solving the system (4.5.5) and to the speeds c♦ that we have from contour

plots when the latent period has exponentially distributed length and p1 = 1. The

unique solutions of the system (4.5.5) show that the asymptotic velocity of rabies

spread c∗ ≈ 105.2 [km/year] with S0 = 4.6 [fox/km] and β = 73 [km2/year], while the

speeds of initial waves are about 103 [km/year] with carrying capacity of 4.6 [fox/km2]

and β = 80 [km2/year] in (Murray and Seward, 1992, Table 2) when there are no

immune rabid foxes. Another remarkable thing is that the spreading speeds c∗ and

c♦ that are in Table 4.2 with β = 80 [km2/year] and Table 6.2 with β = 73 [km/year],

respectively, compare quite well with the velocity of the epidemic in (Murray et al.,

1986, Table 3) and (Murray and Seward, 1992, Table 2) for β = 80 [km2/year] and

different values of S0 and when there are no immune rabid foxes in (Murray and

Seward (1992)). This suggests that ignoring the natural turnover of fox population

does not have a huge impact on the speed of rabies spread.
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The numerical simulations depict that the density of diffusing rabid foxes R1

decays until some of the infected foxes exit the latent period with mean length θ, as

shown in Fig. 6.6.1, Fig. 6.6.2, Fig. 6.6.3, Fig. 6.6.6, Fig. 6.6.7, Fig. 6.6.8, Fig. 6.6.10,

Fig. 6.6.11, Fig. 6.6.12, Fig. 6.6.14, Fig. 6.6.15, Fig. 6.6.16, Fig. 6.6.18, Fig. 6.6.19,

and Fig. 6.6.20. The decrease in the density of diffusing rabid foxes is because the

death from rabies ν1, which gives the rabid foxes as few as five days on average to live

(Anderson et al. (1981); Murray et al. (1986); Murray (1989); Murray and Seward

(1992)).

Since we assume there are no territorial rabid foxes initially at time zero, the

density of territorial rabid foxes R2 is zero, as presented in Fig. 6.6.1(a). When some

of the infected foxes leave the latent period, we see R2 grows again before it loses

some of its members with rate ν2, as demonstrated in Fig. 6.6.1, Fig. 6.6.2, Fig. 6.6.3,

Fig. 6.6.6, Fig. 6.6.7, Fig. 6.6.8, Fig. 6.6.10, Fig. 6.6.11, Fig. 6.6.12, Fig. 6.6.14,

Fig. 6.6.15, Fig. 6.6.16, Fig. 6.6.18, Fig. 6.6.19, and Fig. 6.6.20.

Since, by assumptions, no foxes are born and infected foxes cannot recover and

become susceptible again, the densities of susceptible foxes continue to decrease, as

shown in Fig. 6.6.1, Fig. 6.6.2, Fig. 6.6.3, Fig. 6.6.6, Fig. 6.6.7, Fig. 6.6.8, Fig. 6.6.10,

Fig. 6.6.11, Fig. 6.6.12, Fig. 6.6.14, Fig. 6.6.15, Fig. 6.6.16, Fig. 6.6.18, Fig. 6.6.19,

and Fig. 6.6.20.

The embedded pair of Runge-Kutta methods was implemented in a variable step-

size environment with the estimates of the local discretization errors computed ac-

cording to the formula

EST(tn+1) =
∥∥ŷn+1 − yh(tn+1)

∥∥
2
,
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(see Section 6.4). The stepsize hn from tn to tn+1 = tn + hn for n = 0, 1, . . ., is

accepted if

EST(tn+1) ≤ TOL,

but if

EST(tn+1) > TOL,

the stepsize is rejected, and the computations are repeated with a halved stepsize

hn/2. Fig. 6.6.5 show that almost all rejected steps occur for Tol = 10−3.
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Chapter 7

DISCUSSION AND CONCLUSIONS

Previous mathematical models have assumed that either all rabid foxes are territorial

(van den Bosch et al. (1990)) or all rabid foxes diffuse (Källén et al. (1985); Liu

(2013); Murray et al. (1986); Murray (1989); Murray and Seward (1992); Ou and Wu

(2006)). Differently from these studies, our model assumes that some of the rabid

foxes essentially behave like susceptible and exposed foxes and keep their home-ranges,

while the other rabid foxes loose the attachment to their home-range and disperse by

diffusion. We call the first ones territorial rabid foxes and the second ones diffusing

(wandering (Toma and Andral (1977))) rabid foxes. The question we are trying to

answer is how the partition of rabid foxes into territorial and diffusing rabid foxes

influences the spreading speed of fox rabies. To tackle this question analytically, we

reduced (2.2.2) to a single nonlinear integral equation

u(x, t) = u0(x, t) +

∫ t

0

∫
Rn
ξ(r, |x− z|)F (u(z, t− s))dzdr.

u is the cumulative rate of rabid foxes meet the susceptible foxes. The integral kernel

ξ essentially consists of convolutions of the movements of territorial foxes about the

center of their home-range κ1 and of the fundamental solution of the partial differential

operator ∂t − D∆x and of Υ, and F (u) = 1 − e−u. u0 combines the various initial

conditions, and it is given in (2.3.37). Biologically, ξ is the contribution of diffusing

and territorial rabid foxes to the infection rate.

For special form of (2.2.2) with arbitrary distributed length of the latent state, we

show that space-time Laplace transform is given by

Ξ(c, λ) =
(
− p1κ̂1(λ)

ν1 + λc− λ2D
− p2(κ̂1(λ))2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r)
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if ν1 + λc− λ2D > 0, otherwise Ξ(c, λ) =∞, where

κ̂1(λ) =

∫
Rn
e−λz1κ1(z)dz.

For the numerical computation of c∗, we assume that the movements of territorial

foxes about the center of their home-range are normally distributed, i.e.,

κ1(z) = Γn(z, b) = (4πb)−n/2e−|z|
2/(4b), z ∈ Rn, (7.0.1)

where | · | is the Euclidean norm on Rn, b > 0, and Γn is the fundamental solutions

associated with the differential operator ∂t−∆x for n space dimensions. Then κ̂1(λ) =

ebλ
2

(see, Proposition 2.5.1), and

Ξ(c, λ) = −
( p1e

bλ2

ν1 + λc− λ2D
+
p2e

2bλ2

ν2 + λc

)
βS0

∫ ∞
0

e−λcrdΥ(r).

The basic reproduction number of rabies is given by

R0 = Ξ(0, 0) =
(p1

ν1

+
p2

ν2

)
βS0.

If R0 > 1, the asymptotic spreading speed c∗ > 0 is uniquely determined as the

solution of the system

Ξ(c∗, λ) = 1,
d

dλ
Ξ(c∗, λ) = 0. (7.0.2)

Otherwise, if R0 ≤ 1, we define c∗ := 0.

(Sartwell (1950, 1966)) concludes that the log-normal distribution perfectly fits the

incubation periods of various infectious diseases. (Farrell (2017); Farrell et al. (2018))

discuss the distribution of the time between infection and disease induced death for

data from infection experiments involving tiger salamander larvae and ranavirus.

They find that log-normal distribution fits these data better than Gamma and Weibull

distributions (Farrell (2017); Farrell et al. (2018)). The length of the latent period

has been also described by a distribution of fixed length or by Gamma distribution
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in many works (see, e.g., Beretta and Kuang (2001); Jones et al. (2012, 2013, 2016)).

When we assume the length of the latent period is log-normally distributed, we obtain

Ξ(c, λ) =

(
p1e

λ2b

ν1 + λc− λ2D
+
p2e

2λ2b

ν2 + λc

)
βS0(

1√
2π

∫ ∞
0

exp

(
−1

2
t2
)(

e−λcme
−σt

+ e−λcme
σt
)
dt

)
.

(7.0.3)

Therefore, as σ → 0, we have

Ξ(c, λ)→

(
p1e

λ2b

ν1 + λc− λ2D
+
p2e

2λ2b

ν2 + λc

)
βS0e

−λcm.

So, as σ → 0 in (7.0.3), the length of the latent period converges to a distribution

of fixed length m. On the other hand, when we assume that the latent periods is

Gamma distribution, we obtain

Ξ(c, λ) =

(
p1βS0e

bλ2

ν1 + λc− λ2D
+
p2βS0e

2bλ2

ν2 + λc

)(
h

h+ τλc

)h
. (7.0.4)

If h = 1, the length of the latent period is exponentially distributed. In addition,(
h

h+τλc

)h
→ e−λcτ as h→∞. Therefore, as h→∞ in (7.0.4), the length of the latent

period converges to a distribution of fixed length τ .

Rabies moves with speed ranging from 30 to 60 [km/year] according to (van den

Bosch et al. (1990); Toma and Andral (1977)) and from 20 to 60 [km/year] accord-

ing to (Lloyd (1980)). A study performed in three areas in the state of Baden-

Württemberg (Germany) from January 1963 to March 31, 1971, found that the cen-

ter of the frontwave moved at about 27 [km/year] (Bögel et al. (1976)) while the

mean distance of new cases ahead of the frontline within a month was approximately

4.8 [km] (Bögel et al. (1976); Moegle et al. (1974)). We calculated c∗ numerically for

latent periods of fixed length and Gamma distributed length by solving (7.0.2).
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When we assume the latent periods is Gamma distribution with h = 1, the length

of the latent period is exponentially distributed, and c∗ will be

(c∗, λ) ≈ (0.182245 [km/day], 0.773071) ≈ (66.5195 [km/year], 0.773071)

when p1 = 0,

(c∗, λ) ≈ (0.235233 [km/day], 0.550237) ≈ (85.86 [km/year], 0.550237)

when p1 = 0.3,

(c∗, λ) ≈ (0.253677 [km/day], 0.522531) ≈ (92.592 [km/year], 0.522531)

when p1 = 0.5,

(c∗, λ) ≈ (0.268893 [km/day], 0.504089) ≈ (98.146 [km/year], 0.504089)

when p1 = 0.7, and

(c∗, λ) ≈ (0.288236 [km/day], 0.484747) ≈ (105.206 [km/year], 0.484747)

when p1 = 1. A plot of c∗ versus p1 when the length of the latent period is exponen-

tially distributed is given in Fig. 4.10.1. Also, when the length of the latent period

is exponentially distributed, the asymptotic speeds c♦ that we get from the contour

plots in Chapter 6 demonstrate that

c♦ ≈ 61 [km/year] when p1 = 0,

c♦ ≈ 73 [km/year] when p1 = 0.3,

c♦ ≈ 81 [km/year] when p1 = 0.5,

c♦ ≈ 91 [km/year] when p1 = 0.7,
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and

c♦ ≈ 97 [km/year] when p1 = 1.

For h = 5, we obtain

(c∗, λ) ≈ (0.0958041 [km/day], 1.01582) ≈ (34.9685 [km/year], 1.015829)

when p1 = 0,

(c∗, λ) ≈ (0.140481 [km/day], 0.558589) ≈ (51.2754 [km/year], 0.558589)

when p1 = 0.3,

(c∗, λ) ≈ (0.151185 [km/day], 0.537392) ≈ (55.1824 [km/year], 0.537392)

when p1 = 0.5,

(c∗, λ) ≈ (0.159787 [km/day], 0.523766) ≈ (58.3222 [km/year], 0.523766)

when p1 = 0.7, and

(c∗, λ) ≈ (0.170476 [km/day], 0.510225) ≈ (62.2238 [km/year], 0.510225)

when p1 = 1.

When the latent period has a fixed length, we have following speeds

(c∗, λ) ≈ (0.0774794 [km/day], 1.20104) ≈ (28.28 [km/year], 1.20104)

when p1 = 0,

(c∗, λ) ≈ (0.121047 [km/day], 0.566099) ≈ (44.1821 [km/year], 0.566099)

when p1 = 0.3,

(c∗, λ) ≈ (0.129782 [km/day], 0.548928) ≈ (47.3705 [km/year], 0.548928)
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when p1 = 0.5,

(c∗, λ) ≈ (0.136702 [km/day], 0.538601) ≈ (49.8961 [km/year], 0.538601)

when p1 = 0.7, and

(c∗, λ) ≈ (0.145169 [km/day], 0.529397) ≈ (52.9868 [km/year], 0.529397)

when p1 = 1. A plot of c∗ versus p1 when the latent period has a fixed length is

presented on Fig. 4.10.1. On the other hand, the numerical simulations for this case

show that

c♦ ≈ 26 [km/year] when p1 = 0,

c♦ ≈ 37 [km/year] when p1 = 0.3,

c♦ ≈ 43 [km/year] when p1 = 0.5,

c♦ ≈ 45 [km/year] when p1 = 0.7,

and

c♦ ≈ 47 [km/year] when p1 = 1.

It seems that as h → ∞, the more realistic speeds we have. Also, we conclude

that the asymptotic speeds c∗, which we get by solving the system (7.0.2), are quite

close to asymptotic speeds c♦, which we get from the contour plots. In addition, the

asymptotic speeds c∗ and c♦ confirm that the epidemic model on a bounded domain

Ω with Dirichlet boundary conditions shows a less severe epidemic outbreak than

the epidemic model on Rn, and the spread of the disease modeled on Ω is not as

fast as the spread of the disease modeled on Rn, as discussed in Section 3.6. The

reason for choosing Dirichlet boundary conditions has also discussed in Section 3.6.

Another important observation is that the numerical results confirm for the spreading

speeds c∗ and c♦ that the latent period with fixed length gives the smallest spreading
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speeds, as discussed in Section 4.4.1. In addition, the numerical simulations confirm

that Theorem 2.6.5 in Section 2.6.3 holds.

Our results show that the spreading speed is a decreasing function of the mean

length of the latent period τ, and the spreading speed is an increasing function of

β, S0, D and the durations 1/νi of the infectious periods for diffusing and territorial

rabid foxes and also of b if κ1 is given by (7.0.1). b is a measure of how far territorial

foxes move away from the center of their home-ranges if this distance is normally

distributed (2b is the variance of the normal distribution in each direction), and S0

is the initial value of the density of susceptible foxes. A study in three areas in

the state of Baden-Württemberg of Germany finds that the mean distance of new

rabies cases ahead of the monthly determined rabies frontline very slightly decreases

if the hunting indicator of the fox density (foxes shot per km2 per year) increases

(Bögel et al., 1976, Table 3). The likely explanation is that the home-range size is

not independent of fox density but depends on it in a decreasing fashion as observed

in (Sargeant (1972)) and assumed in (van den Bosch et al., 1990, Sec.7.2) where b is

assumed to be proportional to 1/S0 (van den Bosch et al., 1990, (7.6)). Differently

from (Bögel et al. (1976); van den Bosch et al. (1990)), we assume b and S0 to be

independent.

Also, c∗ increases as we increase the proportion of wandering rabid foxes p1 when

the latent period has fixed length, exponentially distributed length, and Gamma

distributed length, as demonstrated by the numerical simulations shown in Fig. 4.10.1.

The last happens for what we believe is a realistic choice of parameters b and D. In

general, the monotone behavior of c∗ as a function of p1 depends on the relation

between b and D, as depicted in Fig. 4.8.1. In addition, the numerical results in

Fig. 4.8.1 suggest that R0 may not need to be very close to 1 for the results in

Theorem 4.8.1 to hold.
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Hence, to impede the spread of the disease when latent periods have arbitrary

distributed length, we need to decrease the values of β, S0, b, and D and increase the

rates of Υ, ν1, and ν2 based on the theorems discussed in Section 2.6.3 and Fig. 4.10.1.

When p1 = 0, all rabid foxes are territorial, and the asymptotic speeds of spread

c∗ that we obtain by solving the system (4.4.7) for a latent period of fixed length can

be compared with the asymptotic speeds in (van den Bosch et al. (1990)). There are

differences in some assumptions and in the determination of parameters, though; for

instance, it is assumed in (van den Bosch et al. (1990)) that the sizes of the home-

ranges decrease with fox density while we assume them to be independent. For a fox

population density S0 of 4.6 [fox/km], we obtain an asymptotic speed of rabies spread

c∗ ≈ 28.3 [km/year], while (van den Bosch et al., 1990, Fig.7) shows an asymptotic

speed of about 33 [km/year] when S0 = 4.6 [fox/km2]. Furthermore, for this case, the

asymptotic speed of rabies spread c∗ compares quite well with the observed speeds

about 27 [km/year] in (Bögel et al. (1976)) and from 20 to 60 [km/year] according to

(Lloyd (1980)).

The rabies model in (Murray, 1989, Sec.20.4) (Murray et al. (1986); Murray and

Seward (1992)) incorporates the turnover of the fox population into an epidemic

model with diffusing rabid foxes and exponentially distributed length of the latent

period. Newborn foxes enter the population at a fixed per capita rate and all foxes are

subject to a natural density-dependent per capita death rate. We have not included

this turnover in order to be able to analyze a model that includes territorial rabid

foxes. In reality, fox reproduction is seasonal. In Britain, e.g., most cubs are born

between mid-March and mid-April (Lloyd, 1980, p.115) as it seems to be the case in

continental Europe (Toma and Andral, 1977, III.A.2). In order to have an educated

guess about the impact of population turnover, we look at the special case of our model

with the same assumptions, including that susceptible and incubating foxes stay at
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the center of their home-ranges all the time. In Table 4.2, we compare spreading

speeds that have been determined by numerically solving system (4.5.5) with the

minimum wave speeds calculated in (Murray, 1989, Sec.20.4) (Murray et al. (1986);

Murray and Seward (1992)). The results agree qualitatively and are not too different

quantitatively. For instance, the unique solutions of the system (4.5.5) show that the

asymptotic velocity of rabies spread c∗ ≈ 112 [km/year] with S0 = 4.6 [fox/km] as

in Table 4.2, while the speeds of initial waves are about 103 [km/year] with carrying

capacity of 4.6 [fox/km2] as in (Murray and Seward, 1992, Table 2) when there are

no immune rabid foxes. A non-spatial endemic model with non-seasonal births is

compared to one with birth pulses in (Roberts and Kao (1998)), and though there

are differences in the solution behavior they are not too pronounced. This gives us

encouraging results that the qualitative behavior of the spreading speed is not affected

by the omission of population turnover and that the quantitative results contain useful

information as long as they are seen as approximations in Table 4.2.
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B.1 Latent Period of Fixed Length

Here is a Mathematica code that solves numerically the system of equations (4.4.7)
when the latent period has a fixed length. Ξ(c∗, λ) is given in (4.4.4).

1 (∗ Def ine the parameters o f the model ∗)
2 tau=28;
3 beta =0.2 ;
4 d=200/365;
5 p1=0.5;
6 p2=1− p1 ;
7 nu1=0.2;
8 nu2=0.2;
9 b= 0.506605918 ;

10 (∗ Def ine the i n i t i a l f unc t i on S 0 ∗)
11 S0=4.6;
12 (∗ Def ine the system o f non l in ea r equat ions f o r c and lb ∗)
13 eq1=(p1∗beta ∗S0/(nu1+lb ∗c−lb ˆ2∗d) ) ∗Exp [ lb ˆ2∗b−lb ∗c∗ tau ]+
14 ( p2∗beta ∗S0/(nu2+lb ∗c ) ) ∗Exp [2∗ lb ˆ2∗b−lb ∗c∗ tau ] ;
15 eq2=D[ eq1 , lb ] ;
16 s o l=FindRoot [{ eq1==1,eq2==0},{ lb ,1/2} ,{ c , 1 / 5 } ] ;
17 lb=lb / . s o l ;
18 c=c / . s o l ;
19 c1= c ∗365

B.2 Latent Period of Exponentially Distributed Length

The following is a Mathematica code that solves numerically (4.5.5), where Ξ(c∗, λ)
is given by (4.5.4).

1 (∗ Def ine the parameters o f the model ∗)
2 theta =1/28;
3 beta =0.2 ;
4 d=200/365;
5 p1=0.5;
6 p2=1−p1 ;
7 nu1=0.2;
8 nu2=0.2;
9 b= 0.506605918 ;

10 (∗ Def ine the i n i t i a l f unc t i on S 0 ∗)
11 S0=4.6;
12 (∗ Def ine the system o f non l in ea r equat ions f o r c and lb ∗)
13 eq1=(p1∗beta ∗S0/(nu1+lb ∗c−lb ˆ2∗d) ) ∗( theta /( theta+lb ∗c ) ) ∗Exp [ lb ˆ2∗b]+
14 ( p2∗beta ∗S0/(nu2+lb ∗c ) ) ∗( theta /( theta+lb ∗c ) ) ∗Exp [2∗ lb ˆ2∗b ] ;
15 eq2=D[ eq1 , lb ] ;
16 s o l=FindRoot [{ eq1==1,eq2==0},{ lb ,1/3} ,{ c , 1 / 3 } ] ;
17 lb=lb / . s o l ;
18 c=c / . s o l ;
19 c1= c ∗365

B.3 Latent Period of Gamma Distributed Length

The following is a Mathematica code that solves numerically (4.6.5), where Ξ(c∗, λ)
is given by (4.6.4).
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1 (∗ Def ine the parameters o f the model ∗)
2 tau=28;
3 beta =0.2 ;
4 h=2;
5 d=200/365;
6 p1=0.5;
7 p2=1− p1 ;
8 nu1=0.2;
9 nu2=0.2;

10 b= 0.506605918 ;
11 (∗ Def ine the i n i t i a l f unc t i on S 0 ∗)
12 S0=4.6;
13 (∗ Def ine the system o f non l in ea r equat ions f o r c and lb ∗)
14 eq1=(p1∗beta ∗S0/(nu1+lb ∗c−lb ˆ2∗d) ) ∗Exp [ lb ˆ2∗b ]∗ (h/(h+tau∗ lb ∗c ) ) ˆh+
15 ( p2∗beta ∗S0/(nu2+lb ∗c ) ) ∗Exp [2∗ lb ˆ2∗b ] ∗ ( h/(h+tau∗ lb ∗c ) ) ˆh ;
16 eq2=D[ eq1 , lb ] ;
17 s o l=FindRoot [{ eq1==1,eq2==0},{ lb ,1/2} ,{ c , 1 / 5 } ] ;
18 lb=lb / . s o l ;
19 c=c / . s o l ;
20 c1= c ∗365
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Here are Matlab codes for the systems of ordinary differential equations (5.3.5)
and delay differential equations (5.3.6) when the latent period has a fixed length.

1 % Def ine system o f ord inary d i f f e r e n t i a l equat ions by d i s c r e t i z a t i o n in
2 % space v a r i a b l e s o f the model f o r the spread o f r ab i e s in a s p a t i a l l y
3 % d i s t r i b u t e d fox populat ion f o r 0<=t<=tau (work with Z . Jack i ew icz and

H. Thieme )
4 %
5 f unc t i on yp=fg ( t , y )
6 N=length (y ) /3 ;
7 % Def ine parameters o f the model
8 tau=28;
9 beta =0.2 ;

10 D=200/365;
11 p1=0.5;
12 p2=1−p1 ;
13 nu1=0.2;
14 nu2=0.2;
15 % Def ine g r i d s in space v a r i a b l e s
16 a=50;
17 de lx=2∗a /(N+1) ;
18 xh0=−a ;
19 xhNp1=a ;
20 xh=l i n s p a c e (−a+delx , a−delx ,N) ;
21 zh0=−a ;
22 zhNp1=a ;
23 zh=l i n s p a c e (−a+delx , a−delx ,N) ;
24 % Def ine ve c t o r s S , R1 , and R2
25 S=y ( 1 :N) ;
26 R1=y(N+1:2∗N) ;
27 R2=y(2∗N+1:3∗N) ;
28 % Def ine Sp
29 Sp=ze ro s (N, 1 ) ; % Reserve s to rage
30 f o r i =1:N
31 Th=(de lx /2) ∗( kappa1 (xh ( i )−zh0 ) ∗w1( t )+kappa2 (xh ( i )−zh0 ) ∗R2(1) ) ;
32 f o r k=1:N
33 Th=Th+delx ∗( kappa1 (xh ( i )−zh (k ) ) ∗R1(k )+kappa2 (xh ( i )−zh (k ) ) ∗R2(k ) ) ;
34 end
35 Th=Th+(de lx /2) ∗( kappa1 (xh ( i )−zhNp1) ∗w2( t )+kappa2 (xh ( i )−zhNp1) ∗R2(N) ) ;
36 Sp( i )=−beta ∗S( i ) ∗Th;
37 end
38 % i f ( t>=0 & t<=tau )
39 % Def ine R1p
40 R1p=ze ro s (N, 1 ) ; % Reserve s to rage
41 R1p(1)=(D/ de lx ˆ2) ∗(−2∗R1(1)+R1(2) )+(D/ de lx ˆ2) ∗w1( t )−nu1∗R1(1) ;
42 f o r i =2:N−1
43 R1p( i )=(D/ de lx ˆ2) ∗(R1( i −1)−2∗R1( i )+R1( i +1) )−nu1∗R1( i ) ;
44 end
45 R1p(N)=(D/ de lx ˆ2) ∗(R1(N−1)−2∗R1(N) )+(D/ de lx ˆ2) ∗w2( t )−nu1∗R1(N) ;
46 % Def ine R2p
47 R2p=ze ro s (N, 1 ) ; % Reserve s to rage
48 f o r i =1:N
49 R2p( i )=−nu2∗R2( i ) ;
50 end
51 % end
52 yp=[Sp ;R1p ;R2p ] ;
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1 % Def ine system o f de lay d i f f e r e n t i a l equat ions by d i s c r e t i z a t i o n in
2 % space v a r i a b l e s o f the model f o r the spread o f r ab i e s in a s p a t i a l l y
3 % d i s t r i b u t e d fox populat ion (work with Z . Jack i ew icz and H. Thieme )
4 %
5 f unc t i on yp=f ( t , y , z )
6 N=length (y ) /3 ;
7 % Def ine parameters o f the model
8 tau=28;
9 beta =0.2 ;

10 D=200/365;
11 p1=0.5;
12 p2=1−p1 ;
13 nu1=0.2;
14 nu2=0.2;
15 % Def ine g r i d s in space v a r i a b l e s
16 a=50;
17 de lx=2∗a /(N+1) ;
18 xh0=−a ;
19 xhNp1=a ;
20 xh=l i n s p a c e (−a+delx , a−delx ,N) ;
21 zh0=−a ;
22 zhNp1=a ;
23 zh=l i n s p a c e (−a+delx , a−delx ,N) ;
24 % Def ine ve c t o r s S , Stau , R1 , R1tau , R2 and R2tau
25 S=y ( 1 :N) ;
26 Stau=z ( 1 :N) ;
27 R1=y(N+1:2∗N) ;
28 R1tau=z (N+1:2∗N) ;
29 R2=y(2∗N+1:3∗N) ;
30 R2tau=z (2∗N+1:3∗N) ;
31 % Def ine Sp
32 Sp=ze ro s (N, 1 ) ; % Reserve s to rage
33 f o r i =1:N
34 Th=(de lx /2) ∗( kappa1 (xh ( i )−zh0 ) ∗w1( t )+kappa2 (xh ( i )−zh0 ) ∗R2(1) ) ;
35 f o r k=1:N
36 Th=Th+delx ∗( kappa1 (xh ( i )−zh (k ) ) ∗R1(k )+kappa2 (xh ( i )−zh (k ) ) ∗R2(k ) ) ;
37 end
38 Th=Th+(de lx /2) ∗( kappa1 (xh ( i )−zhNp1) ∗w2( t )+kappa2 (xh ( i )−zhNp1) ∗R2(N) ) ;
39 Sp( i )=−beta ∗S( i ) ∗Th;
40 end
41 % Def ine R1p and R2p
42 R1p=ze ro s (N, 1 ) ; % Reserve s to rage
43 R2p=ze ro s (N, 1 ) ; % Reserve s to rage
44 Thtau=(de lx /2) ∗( kappa1 (xh (1 )−zh0 ) ∗w1( t−tau )+kappa2 (xh (1)−zh0 ) ∗R2tau (1 ) ) ;
45 f o r k=1:N
46 Thtau=Thtau+delx ∗( kappa1 (xh (1 )−zh (k ) ) ∗R1tau (k )+kappa2 (xh (1)−zh (k ) ) ∗

R2tau (k ) ) ;
47 end
48 Thtau=Thtau+(de lx /2) ∗( kappa1 (xh (1 )−zhNp1) ∗w2( t−tau )+kappa2 (xh (1)−zhNp1) ∗

R2tau (N) ) ;
49 R1p(1)=(D/ de lx ˆ2) ∗(−2∗R1(1)+R1(2) )+(D/ de lx ˆ2) ∗w1( t )+p1∗beta ∗Stau (1 ) ∗

Thtau−nu1∗R1(1) ;
50 R2p(1)=p2∗beta ∗Stau (1 ) ∗Thtau−nu2∗R2(1) ;
51 f o r i =2:N−1
52 Thtau=(de lx /2) ∗( kappa1 (xh ( i )−zh0 ) ∗w1( t−tau )+kappa2 (xh ( i )−zh0 ) ∗R2tau

(1) ) ;
53 f o r k=1:N
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54 Thtau=Thtau+delx ∗( kappa1 (xh ( i )−zh (k ) ) ∗R1tau (k )+kappa2 (xh ( i )−zh (k ) ) ∗
R2tau (k ) ) ;

55 end
56 Thtau=Thtau+(de lx /2) ∗( kappa1 (xh ( i )−zhNp1) ∗w2( t−tau )+kappa2 (xh ( i )−zhNp1) ∗

R2tau (N) ) ;
57 R1p( i )=(D/ de lx ˆ2) ∗(R1( i −1)−2∗R1( i )+R1( i +1) )+p1∗beta ∗Stau ( i ) ∗Thtau−nu1∗R1

( i ) ;
58 R2p( i )=p2∗beta ∗Stau ( i ) ∗Thtau−nu2∗R2( i ) ;
59 end
60 Thtau=(de lx /2) ∗( kappa1 (xh (N)−zh0 ) ∗w1( t−tau )+kappa2 (xh (N)−zh0 ) ∗R2tau (1 ) ) ;
61 f o r k=1:N
62 Thtau=Thtau+delx ∗( kappa1 (xh (N)−zh (k ) ) ∗R1tau (k )+kappa2 (xh (N)−zh (k ) ) ∗

R2tau (k ) ) ;
63 end
64 Thtau=Thtau+(de lx /2) ∗( kappa1 (xh (N)−zhNp1) ∗w2( t−tau )+kappa2 (xh (N)−zhNp1) ∗

R2tau (N) ) ;
65 R1p(N)=(D/ de lx ˆ2) ∗(R1(N−1)−2∗R1(N) )+(D/ de lx ˆ2) ∗w2( t )+p1∗beta ∗Stau (N) ∗

Thtau−nu1∗R1(N) ;
66 R2p(N)=p2∗beta ∗Stau (N) ∗Thtau−nu2∗R2(N) ;
67 yp=[Sp ;R1p ;R2p ] ;
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Here is a Matlab code for the system of ordinary differential equations (6.3.1)
when the latent period has exponentially distributed length.

1 % Def ine system o f ord inary d i f f e r e n t i a l equat ions by d i s c r e t i z a t i o n in
2 % space v a r i a b l e s o f the model f o r the spread o f r ab i e s in a s p a t i a l l y
3 % d i s t r i b u t e d fox populat ion (work with Z . Jack i ew icz and H. Thieme )
4 %
5 f unc t i on yp=f ( t , y )
6 N=length (y ) /4 ;
7 % Def ine parameters o f the model
8 theta =1/28;
9 beta =0.2 ;

10 D=200/365;
11 p1=0.5;
12 p2=1−p1 ;
13 nu1=0.2;
14 nu2=0.2;
15 % Def ine g r i d s in space v a r i a b l e s
16 a=50;
17 de lx=2∗a /(N+1) ;
18 xh0=−a ;
19 xhNp1=a ;
20 xh=l i n s p a c e (−a+delx , a−delx ,N) ;
21 zh0=−a ;
22 zhNp1=a ;
23 zh=l i n s p a c e (−a+delx , a−delx ,N) ;
24 % Def ine ve c t o r s S , R1 , R2 , and I
25 S=y ( 1 :N) ;
26 R1=y(N+1:2∗N) ;
27 R2=y(2∗N+1:3∗N) ;
28 I=y(3∗N+1:4∗N) ;
29 % Def ine Sp and Ip
30 Sp=ze ro s (N, 1 ) ; % Reserve s to rage
31 Ip=ze ro s (N, 1 ) ; % Reserve s to rage
32 f o r i =1:N
33 Th=(de lx /2) ∗( kappa1 (xh ( i )−zh0 ) ∗w1( t )+kappa2 (xh ( i )−zh0 ) ∗R2(1) ) ;
34 f o r k=1:N
35 Th=Th+delx ∗( kappa1 (xh ( i )−zh (k ) ) ∗R1(k )+kappa2 (xh ( i )−zh (k ) ) ∗R2(k ) ) ;
36 end
37 Th=Th+(de lx /2) ∗( kappa1 (xh ( i )−zhNp1) ∗w2( t )+kappa2 (xh ( i )−zhNp1) ∗R2(N) ) ;
38 Sp( i )=−beta ∗S( i ) ∗Th;
39 Ip ( i )=theta ∗beta ∗S( i ) ∗Th−theta ∗ I ( i ) ;
40 end
41 % Def ine R1p
42 R1p=ze ro s (N, 1 ) ; % Reserve s to rage
43 R1p(1)=(D/ de lx ˆ2) ∗(−2∗R1(1)+R1(2) )+(D/ de lx ˆ2) ∗w1( t )+ . . .
44 p1∗ I (1 )−nu1∗R1(1) ;
45 f o r i =2:N−1
46 R1p( i )=(D/ de lx ˆ2) ∗(R1( i −1)−2∗R1( i )+R1( i +1) )+ . . .
47 p1∗ I ( i )−nu1∗R1( i ) ;
48 end
49 R1p(N)=(D/ de lx ˆ2) ∗(R1(N−1)−2∗R1(N) )+(D/ de lx ˆ2) ∗w2( t )+ . . .
50 p1∗ I (N)−nu1∗R1(N) ;
51 % Def ine R2p
52 R2p=ze ro s (N, 1 ) ; % Reserve s to rage
53 f o r i =1:N
54 R2p( i )=p2∗ I ( i )−nu2∗R2( i ) ;
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55 end
56 yp=[Sp ;R1p ;R2p ; Ip ] ;

191


