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ABSTRACT 

 The Western Continental United States has a rapidly changing and complex 

ecosystem that provides valuable resources to a large portion of the nation. Changes in 

social and environmental factors have been observed to be significantly correlated to 

usable ground and surface water levels. The assessment of water level changes and their 

influences on a semi-national level is needed to support planning and decision making for 

water resource management at local levels. Although many studies have been done in 

Ground and Surface Water (GSW) trend analysis, very few have attempted determine 

correlations with other factors. The number of studies done on correlation factors at a 

semi-national scale and near decadal temporal scale is even fewer. In this study, 

freshwater resources in GSW changes from 2004 to 2017 were quantified and used to 

determine if and how environmental and social variables are related to GSW changes 

using publicly available remotely sensed and census data. Results indicate that mean 

annual changes of GSW of the study period are significantly correlated with LULC 

changes related to deforestation, urbanization, environmental trends, as well as social 

variables. Further analysis indicates a strong correlation in the rate of change of GSW to 

LULC changes related to deforestation, environmental trends, as well as social variables. 

GSW slope trend analysis also reveals a negative trend in California, New Mexico, 

Arizona, and Nevada. Whereas a positive GSW trend is evident in the northeast part of 

the study area. GSW trends were found to be somewhat consistent in the states of Utah, 

Idaho, and Colorado, implying that there was no GSW changes over time in these states. 
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INTRODUCTION 

Water resources in the Western United States have become a growing concern 

among the inhabitants of the region. The Western U.S. has witnessed rapid population 

growth since the turn of the century (Hobbs, 2002). Population growth amid the Western 

U.S.’s arid and drought conditions have put a strain on available water resources 

(Anderson, 2005). Freshwater needed for sustaining a population makes up only 2.5% of 

the Earth’s total water. Nearly 69% of freshwater is trapped in frozen form in glaciers and 

ice caps. This means that only about 0.78% of Earth’s available water resources is usable 

freshwater (Shiklomanov, 1993). Due to projected increases in global temperatures, the 

Western U.S. expects seasonal changes in annual precipitation and snow melt events that 

directly affect water resource availability (NPS, 2017). Persistent changes in land cover, 

population growth and climate change will increase pressure on groundwater resources 

and are likely to cause permanent, non-recoverable depletion of water resources (Bell, 

2018). Planning for the sustainable management of limited water resources demands 

exhaustive monitoring and analysis of water reserve changes.  

Previous work has shown the connection between surface water and groundwater, 

though these are managed as separate resources in most states (Anderson, 2005). To 

improve understanding of the impact that environmental and social factors have on water 

resources, this study considers both ground and surface water together as a single 

resource. In this way we can better assess spatial regions that may be at risk to stressed 

water resources, as well as the most relevant influencers to that risk. 

The current and impending water crisis demands a better understanding of the 

complex relationships between terrestrial and underground hydrological systems, land 
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cover change, descriptive environmental landscape variables, and water user 

representative datasets. Only once causal and influential relationships in these systems 

are more fully understood will accurate implementation of conservative and sustainable 

use measures to prevent permanent underground aquifer damage be possible. 

 

1.1 Literature 

A few studies on Gravity Recovery and Climate Experiment (GRACE) derived 

groundwater change estimates data have been done, mostly in the context of groundwater 

recharge due to land cover change (Scanlon, 2008, Scanlon 2007, Scanlon, 2008(2)). 

Terrestrial Water Storage (TWS) depletion in the Colorado River Basin due to 

anthropogenic extraction and due to surface and soil moisture drought conditions have 

been observed (Scanlon, 2015). Many other authors have used GRACE’s unique data set 

to estimate TWS and groundwater changes in the hydrological systems by supplementing 

GRACE data with surface water, soil moisture, snow and glacial estimates of liquid water 

equivalent, as well as others (Zaitchik, 2008, Forootan, 2013). Recent studies have also 

used the GRACE data to detect possible connections with LULC change and GSW 

change (Werth, 2017). 

Little research was found on per-pixel trend analysis of the GRACE data and its 

correlation to descriptive land surface data (e.g. Land Surface Temperature (LST), 

Evapotranspiration, and Normalized Difference Vegetation Index (NDVI)). There is 

precedent in hydrological trend analysis, but neither on the scale nor the correlative scope 

of this project (Yue, 2004). These environmental variables undoubtedly have a significant 

association with the terrestrial and groundwater hydrological systems they depend on 
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(Srivastava, 2013, Niraula, 2015). There is minimal research on the association between 

groundwater systems and socioeconomic variables except in the realm of groundwater 

contamination and its impact on water users (Nahar, 2008, Ahamed, 2006). 

Analyzing GSW changes with a per-pixel trend analysis against descriptive land 

surface data and water user’s socioeconomic information is a research that can be 

expected to effectively analyze the complex interconnected relations of the basin’s 

hydrological system, its landscape, and its water users. This project attempts to fill gaps 

in research by further exploring causal pathways to water resource change, while 

providing an assessment via a case study of the Western U.S. 

 

1.2 Objectives 

Ultimately, the goal of this project is to identify regions with significant correlation 

between environmental and social factors and GSW changes in the Western United 

States. To achieve the proposed goals, this study sets forth the following objectives: 

1. Analyze the Gravity Recovery and Climate Experiment (GRACE) data alongside 

snow quantity (Snow Data Assimilation System, SNODAS) and soil moisture 

data (Global Land Data Assimilation System, GLDAS) to extract surface and 

groundwater changes between 2002 (GRACE launch date) and 2017 (GRACE 

decommission) in the Western United States. 

2. Conduct a land-use/land-cover change analysis of the study area to determine 

specific areas of change in land cover classification that are significantly 

associated with ground/surface water change areas. 
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3. Explore the slope value trends of bio-physical and environmental parameters (e.g. 

Land Surface Temperature (LST), Normalized Difference Vegetation Index 

(NDVI), Evapotranspiration (ET), etcetera) using spatio-temporal analysis 

techniques. 

4. Explore the Rate of Change value trends of socio-economic parameters (e.g. Total 

Population, Population Density, Median Household Income, Property Values) 

using spatio-temporal analysis techniques 

5. Examine the relations between the increasing and decreasing trends (slope) of the 

aforementioned bio-physical and environmental parameters and determine their 

relative significance, influence, and correlation to the increasing and decreasing 

trends (slope) of the ground/surface water storage changes. 

6. Provide transformative options for future water management and policy changes 

for sustainable water use. 

 

1.3 Results Benefits 

Ground and surface water changes, as well as their influencing factors are 

extremely valuable information to federal and regional organizations wanting to take 

appropriate actions in their respective water resource management plans based on current 

and future needs and water resource influences. This study presents surface and ground 

water trends and changes spatially as well as temporally, thereby allowing policy makers 

and planners of water resource management at local scales to consider adopting/altering 

water use plans and regulations to facilitate the allowance of sustainable use of their 

water resource systems. This research also provides information on relevant positive or 
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negative temporal trends of water resources spatially, enabling the determination of 

significantly affected regions of the Western U.S. as well as determining 

influential/causal factors of that change. Additionally, a new knowledge on the 

interaction between descriptive environmental parameters, census block scale 

socioeconomic changes, and their influence upon ground and surface water use and 

storage has been achieved. 

 

MATERIALS AND METHODS 

 2.1 Study Area 

The study area focuses on the western half of the United States, including the 

entire states of: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, 

Oregon, Utah, Washington, and Wyoming (Figure 1). The west coast of the United 

States, particularly California, has experienced substantial groundwater loss (Ojha, 2018). 

The total population of this region was estimated at almost 70 million people in 2006 

(NWE, 2018) with the majority of this growing population residing in the south west 

portion of this region, causing additional localized strain on water and power resources. 

The study area covers a region of over 2.8 million square kilometers (Table 1) of 

consistently changing social characteristics (e.g. population, property value, income, etc.) 

and environmental characteristics (LULC, vegetation, climate, hydrology, etc.) (USDC, 

2012). The regional scale of analysis provides an opportunity to evaluate the ground and 

surface water change of the region as a whole. 
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Table 1. Study Area

States Area km2 

Arizona 295,234 

California 423,972 

Colorado 269,601 

Idaho 216,443 

Montana 380,831 

New Mexico 314,917 

Oregon 254,799 

Utah 219,882 

Washington 184,661 

Wyoming 253,335 

 

Figure 1. Study Area and GRACE Resolution 
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2.2 Datasets 

2.2.1 Environmental - GSW 

Ground and surface water changes were calculated from a series of data sets, 

incorporating Total Water Storage (TWS), Soil Moisture Storage (SMS), and Snow 

Water Storage (SNO). GSW was calculated as an annual average of millimeters of liquid 

water equivalent. These data sets are all free and publicly available through the National 

Aeronautics and Space Administration (NASA) and their affiliates (Table 2).  

 

 

Table 2. GSW Isolation Datasets 

Data Source 
Spatial 

Resolution 

Temporal 

Granularity 
Units 

Temporal 

Coverage 

GSW Derived 0.5° x 0.5° 
Monthly 

Average 

millimeters 

liquid water 

equivalent 

01/2004-

06/2017 

TWS GRACE 0.5° x 0.5° 
Monthly 

Average 

centimeters 

liquid water 

equivalent 

04/2002-

06/2017 

SNO SNODAS 1km x1km 
Monthly 

Average 

millimeters 

liquid water 

equivalent 

09/2003-

01/2018 

SMS GLDAS 
0.25° x 

0.25° 

Monthly 

Average 

millimeters 

liquid water 

equivalent 

1979-present 

Note: 1 Hydrological datasets used to calculate monthly average Ground and 

Surface Water (GSW) changes, including: Total Water Storage (TWS), Snow Water 

Storage (SNO), and Soil Moisture Storage (SMS).Total Water Storage (TWS) is based on 

observations of the Gravity Recovery and Climate Experiment (GRACE) and provided 
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through the level 3 product from NASA Jet Propulsion Laboratory (JPL) (Watkins, 

2015). GRACE was a joint mission of NASA and the German Aerospace Center 

launched in March 2002 and decommissioned in October 2017. GRACE provided 

detailed measurements of Earth’s gravity field and its changes by measuring the distance 

between the twin satellites as they orbited the Earth. The resulting gravity field 

measurements displayed the ways in which mass is distributed across the Earth and how 

that changes over time. 

When interpreting GRACE TWS values, trends, and changes it is important to 

consider major water storage areas and their placement in the study area. One of the 

largest surface water bodies, the Great Salt Lake, lies in Utah. The Great Salt Lake covers 

an area of over five-thousand kilometers, and is an important consideration when 

deciphering GRACE TWS values in the study area. The other surface water lakes in this 

study area, Fort Peck Lake in Montana and Salton Sea in California, are a fraction of the 

size of Great Salt Lake. Known groundwater storage aquifer locations are also of 

particular use in analyzing and interpreting GRACE TWS data. In Figure 2 below are the 

U.S. aquifers as mapped by USGS (USGS, 2003). It is important to point out that many 

underground aquifers extend beyond their states borders while others are completely 

contained within them. For example, the Central Valley Aquifer in California is 

contained within the state, while the Basin and Range aquifers extend throughout the 

states of California, Nevada, Arizona, New Mexico, Utah, Idaho and Oregon. 
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Figure 2. Principle Aquifers of the West U.S. 

TWS change differences were provided in centimeters of liquid water equivalent 

from the 2002-2009 mean changes for the total temporal resolution of the GRACE 

satellite, from April 2002 to June 2017. The GRACE JPL provided monthly mass grids 

Global Mascons solutions have a native resolution of 3°x3° (Figure 1), which were 

multiplied by the land-grid-scaling factors also provided by NASA JPL, resulting in a 

finer 0.5°x0.5° resolution. An example of the GRACE data resolution for April 2002 is 

shown in Figure 1. The time period of the available snow water data to further isolate 

ground and surface water from TWS would not be available until January 2004, so the 

total temporal period used from the GRACE NASA JPL monthly mass grids is January 

2004 to June 2017. 
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Soil Moisture Storage (SMS) was provided from the Global Land Data 

Assimilation System (GLDAS). GLDAS is a project through NASA that uses satellite 

and ground-based observations to input into complex land surface models producing 

multiple products for mapping Earth land systems. GLDAS soil moisture dataset provides 

measurements in millimeters of liquid water equivalent of SMS up to a depth of 2 meter 

(Rodell, 2018). Below this level, for this project’s intents and purposes, we will allocate 

any water storage changes to  Ground Water Storage (GWS). SMS from GLDAS is 

available at a spatial resolution of 0.25°x0.25° for the period of 1979 to present day. The 

dataset was downscaled through interpolation on a 0.5°x0.5° grid. SMS GLDAS data are 

retrieved for the overlapping period with snow and TWS data, hence, January 2004 to 

June 2017. 

Snow Water Storage (SNO) was provided through the Snow Data Assimilation 

System (SNODAS), as part of the National Snow and Ice Data Center (NSIDC) The 

National Operational Hydrologic Remote Sensing Center (NOHRSC) developed 

SNODAS as a way to model and assimilate data in order to provide accurate estimates of 

snow cover to aid modeling of the hydrologic system. (Barret, 2003). SNO data from 

SNODAS was retrieved at a spatial resolution of 1kmx1km with the limiting temporal 

period of 28 September 2004 to 31 January 2018. The beginning of the study period 

would begin with the SNODAS initial data date of January 2004 and end with the 

GRACE terminal date of June 2017. 
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2.2.2 Environmental – MODIS 

A variety of environmental variables and descriptors were obtained from the 

Moderate Resolution Imaging Spectroradiometer (MODIS). These data sets include 

Land-Use Land-Cover (LULC), Land Surface Temperature (LST), Normalized 

Difference Vegetation Index (NDVI), and Evapotranspiration (ET) (Table 3). All of these 

data sets area free and publicly available from MODIS through NASA (MODIS, 2015). 

Table 3. MODIS Datasets 

Dataset Source 
Spatial 

Resolution 

Temporal 

Granularity 
Units 

Temporal 

Coverage 

LULC 
MOD12

Q1 
500 meters Annually 17 Classes 2002-2013 

LST 
MOD11

C3 
5600 meters Monthly Kelvin 2002-2017 

NDVI 
MOD13

A3 
1000 meters Monthly Scaled 0 to 1 2002-2017 

ET 
MOD16

A3 
500 meters Annual kg/m²/year 2002-2016 

Note: 2 Datasets acquired through MODIS, including: Land-Use/Land-Cover (LULC), 

Land Surface Temperature (LST), Normalized Digital Vegetation Index (NDVI), and 

Evapotranspiration (ET). 
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Table 4. LULC Reclassification 
 

Note: 4 MODIS Land-Use/Land-Cover (LULC) native classification scheme and 

the reclassification to the Study LULC classification scheme.Land-Use Land-Cover was 

received from the MOD12Q1 data set. The data set has a temporal coverage of 2002 to 

2013, the first and last of which were used for change detection to help correlate with our 

derived GSW data. Because of the National Land Cover Database (NLCD) would not 

have a LULC product more recent than 2013, MODIS LULC was utilized for this project. 

The native 17 classes of the LULC data set were reclassified to 9 classes which more 

accurately represented our area of focus (Table 4, Figure 3). The spatial resolution of this 

dataset is available at 500 meters, which would be resampled to our GSW 0.5°x0.5° 

resolution. 

MODIS LULC Classification 
Class 

Number 

Study LULC 

Classification 

New Class 

Number 

Water 1 Water 1 

Evergreen Needleleaf Trees 2 Forest 2 

Evergreen Broadleaf Trees 3 Forest 2 

Deciduous Needleleaf Trees 4 Forest 2 

Deciduous Broadleaf Trees 5 Forest 2 

Mixed Forest 7 Forest 2 

Closed Shrublands 8 Shrub 3 

Open Shrublands 9 Shrub 3 

Woody Savannas 10 Grass 4 

Savannas 11 Grass 4 

Grasslands 12 Grass 4 

Permanent Wetlands 13 Wetland 5 

Croplands 14 Agriculture 6 

Cropland/Natural Vegetation 15 Agriculture 6 

Urban and Built-Up 16 Urban 7 

Snow and Ice 17 Snow 8 

Barren or Sparsely Vegetated 18 Barren 9 
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Figure 3. Land use land cover maps of the study area. (a) 2002 LULC map; (b) 2013 

LULC map. 

Land Surface Temperature (LST) (MOD11C3) dataset provides monthly average 

LST from 2002 to 2017. Monthly Average LST units in native Kelvin, were adjusted to 

Celsius. Monthly average LST was averaged to annual average LST to fit the GSW 

temporal resolution. The LST data has a spatial resolution of 5600 meters, which would 

be resampled to our GSW 0.5°x0.5° resolution. 

Normalized Difference Vegetation Index (NDVI) is a commonly used indicator of 

the health of vegetation through the use of the red and near infrared spectral bands. NDVI 

is commonly scaled from -1 to 1 and also, as is the case with this dataset, from 0 to 1. 0 

meaning low vegetative health and 1 meaning peak vegetative health. NDVI was 

retrieved from the MOD13A3 dataset which provides monthly averaged NDVI from 

2002 to 2017. The spatial resolution native to the NDVI MODIS dataset is 1000 meters. 

The spatial and temporal coverage of the NDVI data was averaged and resampled to 

match the GSW 0.5°x0.5° annual average per pixel. 

(a) (b) 
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Evapotranspiration (ET) is a combined evaporation/transpiration used to describe 

the amount of water transferred from land to atmosphere. ET (MOD16A3) provides 

annual average ET from 2002 to 2016. ET is reported in kg/m²/year with a spatial 

resolution of 500 meters. The spatial resolution would be adjusted to the GSW 0.5°x0.5° 

spatial resolution. 

 

2.2.3 Social – Census 

Social descriptive variables were received from the U.S. Census Bureau from 

2000 to 2016 at Census Block level. These data sets include Total Population (TP), 

Population Density (PD), Median Household Income (MHI), and property value, or the 

Value of Owner Occupied Units (VOOU). The difference between the years 2000 and 

2016 divided by the temporal period between those two years was used to produce a Rate 

of Change (ROC) value for each of the data sets (Table 5). Each of these data sets was 

then resampled to the GSW 0.5°x0.5° spatial resolution. Total Population Rate of Change 

(TPROC) was derived from the TP at block level for each state, where the ROC was 

produced between 2000 and 2016.  

Table 5. Census Datasets 

Dataset 
Spatial 

Resolution 

Temporal 

Granularity 
Units 

Temporal 

Coverage 

TPROC Block Level Annually Total Population 2002-2016 

PDCROC Block Level Annually 
Total Population 

per Area 
2002-2016 

MHIROC Block Level Annually USD $ 2002-2016 

VOOUROC Block Level Annually USD $ 2002-2016 

 

Note: 5 Census datasets used in correlation with GSW datasets, including: Total 

Population Rate of Change (TPROC), Population Density Rate of Change (PDROC), 
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Median Household Income Rate of Change (MHIROC), and Value of Owner Occupied 

Units Rate of Change (VOOUROC). 

 

Figure 4. Total Population Rate of Change 

Population Density Rate of Change was calculated from the TP block level data, 

by incorporating the area of each of the blocks to divide from the TP of that block to 

produce PD. PD changes were calculated between 2000 and 2016 and divided by the 

temporal coverage of the data to produce a PDROC file. 
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Figure 5. Population Density Rate of Change 

Median Household Income Rate of Change (MHIROC) was calculated from the 

MHI provided at block level. The initial MHI difference was found from the first and last 

year of the available data, divided by the overall temporal coverage of the data, was 

utilized to produce the MHIROC. 
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Figure 6. Median Household Income Rate of Change 

Value of Owner Occupied Units Rate of Change (VOOUROC) was calculated 

from the census VOOU data to represent the property value at block level. The VOOU 

difference between 2000 and 2016 was divided by the total temporal coverage of the area 

to produce a VOOUROC.  
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Figure 7. Value of Owner Occupied Unit Rate of Change 

2.3 Methods 

2.3.1 GSW Isolation 

Ground and Surface Water (GSW) change was calculated based on the water 

storage equation:  

ΔTWS = ΔSMS+ΔSNO+ΔSW+ΔGW 

where TWS is Total Water Storage, SMS is Soil Moisture Storage, SNO is Snow 

Water Storage, SW is Surface Water Storage, and GW is Ground Water Storage (Nimmo, 

2005). 
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Due to the limitation of available surface water volume change data, the water storage 

equation was adapted to focus on fresh water sources for use and consumption, Ground 

and Surface Water (GSW) with the following equation:  

ΔGSW = ΔTWS – ΔSMS – ΔSNO 

where ΔGSW is Ground and Surface Water storage changes. 

Because the water storage equation is applicable on all temporal scales, SNO and 

SMS changes were calculated as differences of monthly averages against the long-term 

mean over the study period. From these SMS and SNO monthly changes, average annual 

change was derived from the two data sets. GRACE TWS changes in centimeters of 

liquid water equivalent was converted to millimeters to fit SMS and SNO annual average 

storage changes. GSW was then isolated by subtracting annual SMS and SNO changes 

from annual total TWS changes. 

Annual average GSW changes were reported from 2004 to June 2017 in 

millimeters of liquid water equivalent at a 0.5°x0.5° spatial resolution. All other data sets 

were adjusted to this spatial resolution, beforetesting for correlation. (Figure 8). 
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Figure 8. Ground and surface water mean changes 

 

2.3.2 Time Series Significant Per Pixel Slope Analysis 

The Mann-Kendall monotonic trend analysis method has recently been used in 

trend analysis of spatial data due to its powerful ability to detect trends, especially with 

hydrological data (Yue, 2002). The Mann-Kendall (MK) test’s purpose is to test whether 

there is a monotonic trend over time. An upward or downward trend indicates that the 

variable tested consistently increases or decreases over time. The equation for calculating 

is as follows: 

𝑆 = ∑ ∑ 𝒔𝒈𝒏(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗−𝑘+1

𝑛−1

𝑘−1
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where S indicates the positive or negative trend, 𝑥𝑗 − 𝑥𝑘 represents the possible 

differences where 𝑗 > 𝑘, and 𝒔𝒈𝒏(𝑥𝑗 − 𝑥𝑘) is an indicator function that takes on values 

1, 0, or -1 according to the sign of 𝑥𝑗 − 𝑥𝑘 (Gilbert, 1987) 

Utilizing the power of the Mann-Kendall monotonic trend analysis along with its 

associated rho significance test, significant linear slope trend maps were produced for the 

time series data sets, including: GSW, LST, NDVI, and ET. A 95% confidence interval 

was used in significance testing to ensure that only significant slope values produced 

would be included in the final correlation tests. The Mann-Kendall test was run on the 

native resolution of each of the LST, NDVI, and ET data sets, averaged, and resampled to 

GSW 0.5°x0.5° resolution. This results in an average significant per pixel slope of each 

of the MODIS time series data, LST, NDVI, and ET, at GSW resolution (Figure 9, Figure 

10, Figure 11, and Figure 12). 
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Figure 9. Land Surface Temperature Trend 

Figure 10. Normalized Difference Vegetation Index Trend 
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Figure 11. Evapotranspiration Trend 

 

Figure 12. Ground and Surface Water Slope 
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Due to the coarse resolution and lack of significant slope values to cover the 

entirety of the study area, the correlation test of the environmental and social factors was 

run against GSW mean changes as well as GSW significant linear slope per pixel data. 

2.3.3 LULC Change Detection 

MODIS LULC scheme consists of seventeen classes. The native seventeen 

classification was reclassified to our nine classification scheme: Water, Forest, Shrub, 

Grass, Wetland, Agriculture, Urban, Snow, and Barren Land (Table 4). 

A change detection analysis was performed between the start and end year of the 

data set (2002-2013). The area of each of the pixels was calculated in square kilometers, 

and the sum of the MODIS per GRACE pixels change was produced for each of the 

individual classifications: Water, Forest, Shrub, Grass, Wetland, Agriculture, Urban, 

Snow, and Barren. The area change for each class was calculated per GRACE pixel, with 

positive values representing kilometers of growth in the class, and negative values 

representing kilometers of removal in a class.  

 

2.3.4 Correlations 

Pearson Correlation has been proven to be a quality test to determine the spatial 

autocorrelation between separate spatial data sets (Chen, 2015). The Pearson Correlation 

is a measure of linear correlation between two variables, x and y, with values between 

positive and negative 1, where 0 is no correlation and 1 represents a total linear 

correlation. The equation for calculating the Pearson Correlation is as follows: 

𝑟 =
∑ (𝑥𝑖 − �̅�𝑛
𝑖=1 )(𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)𝑛

𝑖=1
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where 𝑛 is the sample size, 𝑥𝑖 and 𝑦𝑖 are the individual sample points indexed 

with 𝑖, and �̅� = 
1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1 , same for �̅� (Pearson, 1895). 

PC test were conducted on two levels. GSW mean changes were tested against the 

environmental and social variables previously discussed, while these same environmental 

and social variables were also tested against GSW slope values.  

 

RESULTS 

This study produced significant results in correlations of GSW mean and slope 

changes and environmental and social factors. Significant revelations in GSW trends 

were observed when the GSW trend was plotted for each state. Results of this study fall 

into three different topics: GSW Trends by State, GSW Mean Correlations, and GSW 

Slope Correlations. 

 

3.1 GSW Trends by State 

GSW trends were produced using the average monthly change in GSW calculated 

from GRACE TWS, SNODAS SNO, and GLDAS SMS. Monthly average values were 

extracted by state and plotted through the entirety of the study period for the GSW data, 

012002-06/2017. Seasonal variations in GSW can be observed, and a linear trend line fit 

to display this data. The result is 11 GSW trends by state, with a linear trend line fit to the 

trends.  

States with significant negative trends include California with a slope of -1.35, 

Arizona with a slope of -0.32, New Mexico with a slope of -0.70, and Nevada with a 
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slope of -0.42. This generally equates to a liquid water equivalent loss of ~200mm in 

California, ~50mm in Arizona, and ~50mm in Nevada (Figure 13). 

Figure 13. Negative GSW Trends 

States with significant positive trends include Washington with a slope of 0.27, 

Wyoming with a slope of 0.46, Montana with a slope of 0.92, Idaho with a slope of 0.16, 

Oregon with a slope of 0.50. This can be noted as a gain of liquid water equivalent of 

~50mm in Washington, over 50mm in Wyoming, ~150mm in Montana, ~25mm in Idaho, 

and almost 100mm in Oregon (Figure 14).  
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Figure 14. Positive GSW Trends 

The remaining two states were found to have a near zero slope, with Utah 

reporting a slope of 0.02, and Colorado with a slope of 0.02. This should be considered a 

balanced GSW trend (Figure 15). 

Figure 15. Near Zero Trends 

States with negative slopes indicate that their ground and surface water resources 

have been declining, while states with positive slopes have been increasing. States with 
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large negative slopes (California, Arizona, and New Mexico) may need to consider 

paying closer attention to water conservation efforts, considering the rate of change of 

ground and surface water is declining much more than others.  

 

3.2 GSW Mean Correlations 

 GSW mean values were tested using the Pearson Correlation (PC) to 

determine the relationship between GSW mean values and the total sixteen other 

environmental and social data sets, as well as the extent and significance of that 

relationship. This test helps to determine which environmental and social factors may 

influence or be influenced by changes in GSW (Table 6). 

Table 6 GSW Mean Correlation 

GSW Mean 

Correlation 
Pearson Correlation PC 

LST -0.425** 

ET 0.303** 

NDVI 0.290** 

Shrub -0.206** 

Barren 0.188** 

Forest 0.145** 

Agriculture -0.123** 

TPROC 0.100** 

VOOUROC 0.083** 
PDROC -0.078** 

MHIROC 0.068* 

Urban -0.082* 

Snow 0.092 

Water 0.035 

Grass 0.038 

Wetland -0.017 

Note: 6 Ground and Surface Water mean correlation values tested against 

environmental and social factors. * Denotes correlation is significant at the 0.05 level. 

**Denotes correlation is significant at the 0.01 level.Of the sixteen data sets tested 
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against the GSW mean change, LST, ET, NDVI, LULC change in Shrub, Barren, Forest, 

Agriculture, TPROC, VOOUROC, and PDROC were all significantly correlated to the 

GSW mean within a confidence interval of 99%. Further, MHIROC and LULC change in 

Urban was found to be significant within a 95% confidence interval. 

The six highest positive significantly correlated variables tested were ET, NDVI, 

Barren, Forest, TPROC, and VOOUROC. This indicates a positive relationship, where an 

increase in any of these variables should observe an increase in GSW mean changes. 

Conversely, a decrease in any of these variables expects a decrease in GSW mean 

changes. 

The four highest negative significantly correlated variables tested were LST, 

LULC change in shrub, agriculture and PDROC. This indicates a negative relationship 

between the variables, wherein an increase in any of the variables expects a decrease in 

GSW mean changes. A decrease in the value of these variables (LST, shrub, agriculture, 

and PDROC) would expect to experience an increase in GSW mean changes in that 

region. 

 

3.3 GSW Slope Correlations 

GSW slope values were tested using the Pearson Correlation (PC) to determine 

the relationship between GSW slope values and the total sixteen other environmental and 

social data sets, as well as the extent and significance of that relations ship. This test 

helps to determine which environmental and social factors may have an influence on 

GSW slopes (Table 7). 

Table 7 GSW Slope Correlation
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GSW Slope Correlation Pearson Correlation PC 

Snow 0.395** 

Forest 0.291** 

VOOUROC 0.214** 

Shrub -0.194** 

LST -0.154** 

MHIROC -0.154** 

Wetland -0.0151* 

Urban -0.104* 

Agriculture -0.094* 

NDVI -0.085* 

ET 0.071 

Barren 0.052 

Grass -0.049 

Water 0.039 

PDROC -0.009 

TPROC 0.000 

Note: 3 Ground and Surface Water mean correlation values tested against environmental 

and social factors. * Denotes correlation is significant at the 0.05 level. **Denotes 

correlation is significant at the 0.01 level. 

 

Of the sixteen data sets tested against the GSW slope LULC change associated 

with Snow, Forest, VOOUROC, Shrub, LST, and MHIROC were all found to be 

significantly correlated with GSW slope within a 99% confidence interval. Furthermore, 

LULC change in Wetland, urban, Agriculture, and NDVI were all found to be 

significantly correlated within a 95% confidence interval. Those datasets found not to be 

significantly related to GSW slope are ET, LULC change in Barren, Grass, Water, 

PDROC, and TPROC. 

Positive significant correlations with GSW include LULC change class Snow, 

Forest, and VOOUROC. Significant negative correlations to GSW slope were found in 

LULC change class Shrub, LST, MHIROC, Wetland, Urban, Agriculture, and NDVI. 

The Top three positive significant correlations were found in Snow change, Forest 

change, and VOOUROC. This indicates that an increase in any of these variables will 
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also expect an increase in GSW slope, while a decrease in any of these variables finds a 

decrease in GSW slope. 

The next three most strongly correlated variables (Shrub change, LST, and 

MHIROC) to GSW slope all have a negative relationship. Indicating that an increase in 

shrub lands, land surface temperature, or median household income would see a decrease 

in the GSW slope. While a decrease in any of these classes would expect an increase in 

GSW slope values. 

  

DISCUSSION 

GSW in the study area has significantly changed since 2004 as well as many of its 

environmental and social factors. The most significant negative changes in GSW 

occurred in the southwest portion of the study area, in the states of Arizona, California, 

and New Mexico, while the states of Oregon, Montana, Washington, and Wyoming 

experienced significant positive changes in GSW. Correlation testing between 

environmental and social variables reveals some of the causes of these trends, the most 

relevant being LST, NDVI, VOOUROC, Forest land changes, Shrub land changes, 

Agricultural land changes, and Urban land changes. 

Population growth and its environmental impacts is a growing concern in the U.S. 

with LULC lands being transformed by the growing population. Changes from natural 

land covers (Forest, Shrub, Grass, etc.) to lands conducive to population growth like 

Urban areas, Agricultural lands, and Grasslands is common in regions with growing 

populations. LULC change is prevalent in disrupting the natural hydrology of an area by 

converting the land cover of the area, thereby altering the methods by which water 
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systems behave (recharge, runoff, flows, etc.) (Nie, 2011). Although LULC changes are 

known to disrupt hydrological cycles, because of the complex interactions between 

different parts of the hydrological cycle, it can be difficult to determine direct spatial 

influencers. GSW mean changes correlation to LULC change, as seen in Table 6, indicate 

a strong relationship in Shrub land changes, Barren land changes, Forest land changes, 

Agricultural land changes, and Urban land changes. While the GSW slope correlation to 

LULC change seen in Table 7 indicates a strong relationship with Snow land changes, 

Forest land changes, Shrub land changes, Wetland land changes, Urban land changes, and 

Agricultural land changes.  

Forests have been known to be positively associated with water resources 

(Welsch, 1991). An increase in forest resources would expect an increase in GSW 

resources, as proven by this study, while any deforestation would expect a decrease in 

GSW resources in the region associated with that forest loss. Shrub lands, which are 

commonly sparse of vegetation but not quite barren or desert lands, have been found to 

be negatively affecting water resources in studies (Spera, 2016). The finding of a strong 

negative relationship with shrub land change and GSW mean and slope indicates that 

regions with significant increase in shrub lands would negatively affect GSW changes by 

disrupting infiltration and percolation for ground water as well as total water volume in 

vegetation in that region. Shrub lands are also commonly known to become emergent in 

areas where deforestation has occurred. As discussed previously forest areas are 

positively correlated to GSW changes, therefore a loss of forested area to a shrub land 

cover would expect a negative relationship with GSW. Correlation tests reveal 

Agriculture land changes to have a negative relationship with GSW changes, indicating 
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that a growth of Agricultural lands experiences a decrease in GSW changes in that 

region. Agricultural lands, as well as most any land cover change, significantly alters the 

surface/groundwater interactions, mainly through a change in groundwater recharge and 

an increase in irrigation of water resources. Agricultural changes in arid and semi-arid 

regions has been proven to be difficult to manage when considering water resources 

(Tanji, 2002). The arid regions of the southwest U.S. and the abundance of agricultural 

growth should cause concern and alarm for those involved with water resource 

management. Urban areas have been found to be negatively correlated with GSW 

changes, indicating that an increase in urban area would find a decrease in GSW. Urban 

areas consist of impervious surfaces, known for disrupting natural groundwater recharge 

into lower water aquifers. 

Changes in social variables were found to be significant for TPROC, PDROC, 

MHIROC, and VOOUROC for GSW mean change correlations, while only VOOUROC 

and MHIROC were found to be significantly correlated to GSW slope. VOOUROC was 

found to be highly positively correlated with GSW slope, indicating that as GSW rises, so 

too does VOOUROC. VOOUROC was used in this study as an indication of property 

value, and is in units of U.S. Dollars. This would indicate that it is more costly to live 

where there is more access to usable water. GSW mean was found to be negatively 

correlated with PDROC, a measure of change of population density. This indicates that as 

more people move into an area and the population in that region becomes denser, the 

usable water in that area will decline.  

Of the ten states in the study area, the states in significant decline and of most 

pressing concern in GSW resources are: Arizona, New Mexico, Nevada, and California 
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(Figure 12). It is important to consider the location of the groundwater aquifers as 

discussed previously and presented in Figure 2. One of the reasons California has such a 

strong trends and seasonality is due to the GRACE observation of the changes of the 

groundwater aquifers. California’s Central Valley Aquifer is completely contained within 

the states boundaries, and has had significant loss to its storage during the study period. 

While the Basin and Range Aquifer spreads throughout the states of concern (Arizona, 

New Mexico, Nevada and California). California had the steepest negative GSW trend, 

equating to a loss of over 100 millimeters of liquid water equivalent during the study 

period. One of the major potential drivers of the GSW change is the high increases in 

population pressure (Figure 5) due to the growing cities of San Francisco, San Diego, and 

Los Angeles. This area is experiencing a population growth which is demanding 

increasing amounts of food and water to feed. This need for food demands more 

agricultural lands which will also demand more water resources. The collection of 

excessive population growth, agricultural growth, urban land growth, natural/forest land 

loss, and persistent drought conditions make California the area of most concern for 

GSW resources. California has already been observed experiencing surface deformation 

due to over extraction of groundwater resources (Chaussard, 2017). Much of the GSW 

loss that is caused by population density increases, particularly in California, can be 

attributed to groundwater over extraction.  

 GSW mean was most significantly correlated with three environmental 

variables, LST, ET, and NDVI. LST was found to be strongly negatively correlated with 

GSW mean, indicating that rises in temperature of the land would see a fall in the GSW 

values. Conversely, negative temperature trends were to see rises in GSW mean values. 
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ET and NDVI were found to have a positive correlation with GSW mean values. LST is 

known to have a pattern opposite of ET and NDVI, which explains the correlations of 

these data sets accurately (Deng, 2018). Rises is Land Surface Temperatures correlate to 

a fall in GSW, ET, and NDVI. Increases in NDVI, a measure of the health of vegetation, 

correlate to increases in GSW, implying that the healthier the vegetation in a region, the 

more usable water there is in that region. Research in the realm of changes in NDVI and 

its hydrological impact is known, with healthy vegetation often responding to that 

amount of available water (Aguilar, 2012). ET, a measure of evaporation and 

transpiration from vegetation into the atmosphere, can be understood in this context to 

have an intimate relationship with NDVI, LST, and GSW. 

 

CONCLUSION 

 Hydrological systems and their influential relationships to the environmental and 

social factors are extensive and complex. Changes in usable water in the form of GSW 

are experiencing unprecedented changes due to environmental and social factors largely 

driven by human population growth and climate change. This research identified specific 

influential relationships between GSW changes and environmental/social factors since 

the turn of the century. The trend of the GSW changes in the study area have also been 

estimated for individual states. GSW trend analysis reveals strong negative trends in 

Arizona, California, and New Mexico, while strong positive trends were seen in Oregon, 

Montana, Washington, and Wyoming. 

 For both GSW mean and GSW slope, correlations with VOOUROC, LST, NDVI, 

and LULC change in deforestation were most significant. VOOUROC, NDVI and 
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deforestation suggest a positive correlation in GSW changes, while LST observed a 

strong negative correlation to GSW changes.  

 The Primary causes of GSW changes in the western U.S. are over extraction from 

a growing population, LULC change caused by that growth, and climate changes. This 

study found that increases in total population, population density, property value, and 

median household income, land surface temperature, vegetative health, 

evapotranspiration, and LULC change in Forest, Shrub, Agriculture, and Urban were all 

correlated to GSW changes. 

 Some of the limitations of this study include the coarse resolution of the data sets 

and the period of available data. With finer resolution data sets more descriptive 

interactions between social and environmental variables and their relationship to water 

resources could be achieved. Further, finer resolution data sets allow for the risk 

assessment to be conducted on a smaller level than at just the state. A regional descriptive 

risk assessment may be able to provide more insight to areas that need more conservative 

water management techniques than others. LULC data beyond 2013 would provide 

additional insight into the extent of current state of LULC change, possibly allowing 

stronger correlation results. 

 In conclusion, the GSW problem in the western U.S., particularly in the southwest 

states of Arizona, California, and New Mexico, has been exacerbated by the negative 

affects a growing population has on its water resources. More sustainable water use 

policies, management, and planning becomes more pressing as projected population 

growth and climate change threatens ground and surface water levels through changes in 

seasonality and rising land surface temperatures. Based on the analysis results and 
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findings of this study, it is recommended that water resource use, specifically in regions 

of high risk, be managed more conservatively and monitored more frequently. The 

detrimental effects caused by over extraction of groundwater and over use of surface 

water can cause irreversible stress and irreparable damage to underground water aquifers 

and surface watershed basins. 

 It is suggested that urban planners, city managers, and decision makers consider a 

review of their current policies and regulations that allow for urban development and land 

cover change, and incorporate a risk analysis of possible implications and risks in their 

usable water resources. Their policies need to incorporate not only the water needs of the 

population growing, but the land cover change, climate change, and status of past, 

current, and future projected usable water resource levels. 

 Additional research is needed in the relationship land cover change has with its 

water resources. Research incorporating finer scale LULC classifications could help to 

provide clearer insight on the interactions between LULC change and water resources. 

Follow up research using the GRACE Follow On mission to continue monitoring the 

state of our water resources would be beneficial to help extend GSW change trends 

beyond that of this study. The interaction of the hydrological system from atmosphere, to 

surface, to runoff, and down to percolation into the groundwater aquifer system is very 

complex. Only with further research and in depth analysis water resources and land-

use/land-cover change can we begin to more sustainably and viably plan for sustainable 

population growth amid a changing climate. 
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