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ABSTRACT 

 

Understanding changes and trends in biomedical knowledge is crucial for 

individuals, groups, and institutions as biomedicine improves people’s lives, supports 

national economies, and facilitates innovation. However, as knowledge changes what 

evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional 

concept from biomedicine, there are significant increases in publications, citations, 

funding, collaborations, and other explanatory variables or contextual factors.  What is 

observed in the microbiome, or any historical evolution of a scientific field or scientific 

knowledge, is that these changes are related to changes in knowledge, but what is not 

understood is how to measure and track changes in knowledge. This investigation 

highlights how contextual factors from the language and social context of the microbiome 

are related to changes in the usage, meaning, and scientific knowledge on the 

microbiome. Two interconnected studies integrating qualitative and quantitative evidence 

examine the variation and change of the microbiome evidence are presented. First, the 

concepts microbiome, metagenome, and metabolome are compared to determine the 

boundaries of the microbiome concept in relation to other concepts where the conceptual 

boundaries have been cited as overlapping. A collection of publications for each concept 

or corpus is presented, with a focus on how to create, collect, curate, and analyze large 

data collections. This study concludes with suggestions on how to analyze biomedical 

concepts using a hybrid approach that combines results from the larger language context 

and individual words. Second, the results of a systematic review that describes the 

variation and change of microbiome research, funding, and knowledge are examined. A 
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corpus of approximately 28,000 articles on the microbiome are characterized, and a 

spectrum of microbiome interpretations are suggested based on differences related to 

context. The collective results suggest the microbiome is a separate concept from the 

metagenome and metabolome, and the variation and change to the microbiome concept 

was influenced by contextual factors. These results provide insight into how concepts 

with extensive resources behave within biomedicine and suggest the microbiome is 

possibly representative of conceptual change or a preview of new dynamics within 

science that are expected in the future. 
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INTRODUCTION 

The microbiome concept is a multidimensional object with various contextual 

interpretations, including but not limited to a microbial community in the human body, a 

microscopic biome, or the aggregate microbial genome of an organism. I argue context is 

necessary to better understand the different historical trajectories, variation, and changes in 

microbiome knowledge. In this dissertation, I use the term context to refer to a frame of 

reference. Social context includes actors, individuals, groups, institutions, settings or 

environments. Langauge context includes words, phrases, concepts, definitions, and meaning. 

Historical context includes events, moments, trends, people, or things.  

This dissertation analyzes the contextual factors related to changes in the usage, meaning, 

and scientific knowledge of the microbiome. Contextual factors are explanatory variables which 

offer explanation into the microbiome phenomena, and include: historical events, words, phrases, 

language patterns, material artifacts, individuals, and social groups. Scientific knowledge or 

knowledge, is the encoded experience of actors with material and social dimensions that 

determines which actions are possible in a historical situation  (Renn & Laubichler, 2017a). 

Understanding the transmission of knowledge and changes in knowledge requires analyzing the 

social and material dimensions of knowledge. Knowledge can be shared within a group or 

society via the use of material artifacts such as instruments or texts.  Many contextual factors 

stemming from history, society, and language have been speculated as to influencing 

microbiome knowledge, but to date there is no systematic studies or empirical evidence to 

validate these claims. To fill this gap, this dissertation focuses on contextual factors that are 

directing measurable changes to the usage and meaning of the microbiome concept.   
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My initial unit of analysis for analyzing the knowledge of the microbiome are proxies of 

knowledge from the language contexts and the social contexts of the microbiome such as: words, 

phrases, individuals, groups, institutions, and the environment(s) of where the microbiome was 

used and interpreted.  

This investigation answers the question, what contextual factors influenced the variation 

and change of the microbiome? In this project, I use an interdisciplinary approach to identify and 

analyze the variation and change of the microbiome within a dataset that includes over 55,000 

articles from publicly available biomedical documents. Throughout this dissertation, I play close 

attention to the relationships between social, language, and historical context into the 

development of the microbiome concept and the evolution of scientific knowledge. By using a 

combination of qualitative and quantitative methods, I highlight a spectrum of microbiome 

conceptualizations, and provide evidence of a link between the variation and changes of the 

microbiome concept to language and social contexts. Based on the empirical and qualitative 

results, this study brings new understanding to the influential historical, social, and language 

contexts that contributed to the development of the microbiome.  

I have organized this dissertation into four self-containing chapters which detail my 

approach and the results of my investigation into the variation and change of the microbiome and 

the language and social context using the microbiome – (1) A contextual review of microbiome 

literature, (2) review of approaches measuring knowledge, (3) incorporating big data and data 

driven science and research (DDSR), (3) conceptual boundaries of microbiome, metabolome, 

and metagenome and (5) a systematic review of the factors influencing the language and social 

context of the microbiome.  
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In the first chapter, I provide background on the microbiome and overview the previous 

attempts to understanding the microbiome using context. I introduce the debates swirling the 

microbiome such as: the origins of the microbiome, who deserves credit for the microbiome, 

how the microbiome is used now, and what is the intended usage of the microbiome. I show how 

specific intellectual or social factors have been claimed to influence the microbiome including 

ecological interpretations, biomedical interpretations, government resources, and institutional 

norms. Ultimately, the conclusion of the review is the microbiome is still not well understood 

because of multiple microbiome interpretations emerging from different contexts, confusion on 

meaning and usage, and the extreme variation and change to the microbiome over time (Huss, 

2014; Marchesi & Ravel, 2015a).  

In the second chapter, I argue traditional approaches to measuring and analyzing 

knowledge within biomedicine, with particular emphasis on systematic reviews, ontologies, and 

text mining, do not accurately identify or measure changes in knowledge within biomedicine. In 

general, the relevant literature for analysis on context and knowledge spread across disciplines 

traditionally having few connections and include methods on: textual analysis, content analysis, 

and knowledge analysis (Stubbs, 2001; Labov, 2001; Blei & Lafferty, 2007; Cetina, 2009; P. 

Baker, 2010; Loet Leydesdorff, 2010; Renn & Laubichler, 2017b; Hesse, Moser, & Riley, 2015; 

Burkette & Jr, 2018). I connect and highlight these traditions throughout this dissertation, but 

due to time and space I cannot encompass all intricacies and details of each discipline and so 

only the most relevant information to this thesis is provided. First, I review the importance of 

context in assessing knowledge and point out how many approaches generally ignore context and 

contextual differences. I then zoom out from biomedicine and review other approaches to 

understanding knowledge and discuss measuring knowledge from publications and citations. I 
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detail the strengths and weaknesses of using publications and citations as proxies of knowledge, 

but argue that both are problematic and by themselves are poor indicators of knowledge changes. 

I move to concepts and conceptual change, and provide a summary of how concepts and 

conceptual change have been used historically to show how knowledge changes. I display how 

difficult it is to link changes in knowledge to conceptual change by emphasizing the complexity 

of language in regards to conceptual variation and context, specifically how one concept can 

have multiple interpretations, multiple concepts can have the same interpretation, and how 

interpretation is influenced by context. Circling back to biomedicine, I argue approaching 

conceptual change from a complexity science perspective provides insight into how knowledge 

change is dependent on context and helps motivate a study across multiple scales and 

dimensions. Finally, I introduce the theoretical framework which I drew upon for analyzing the 

history of knowledge which integrates contextual factors as explanatory variables developed by 

Jurgen Renn and Manfred Laubichler (Renn & Laubichler, 2017a). 

In the third chapter, I argue for the necessity of incorporating big data and data driven 

research and science (DDSR) approaches to study the microbiome concept. To argue this claim, I 

engage the historical context of big data and substantiate how the current phenomena of big data 

is different than any previous moment in history. I stress how big data provides more 

contextually specific information across multiple scales and dimensions resulting in novel 

research methods, questions, and results such as: the decoding of the human genome and 

evidence of the Higgs Boson have been attributed to the use of big data. I, also, detail the 

complexity inherit to big data, specifically focusing on the “five V’s of big data,” these being the 

volume, velocity, veracity, variety, and validity of big data. I argue that the inherit complexity of 

big data is in fact a benefit, and provides the opportunity for researchers and scientists to design 
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experiments and studies across new dimensions and across larger scales than ever before. While 

the potential and benefits for big data are well known, there is still disagreement and confusion 

on how to handle and deal with big data. I argue here, that DDSR approaches through systematic 

and repetitive experimentation and analysis enhance the capture, curation, and analysis of big 

data. I, also, present the criticisms of big data and my counter arguments towards those 

criticisms.  

In the fourth chapter, I show how the microbiome is a separate concept from the 

metagenome and metabolome.  To prove this claim, I provide the results from a series of 

experiments on a corpus collected on the microbiome (MB Corpus) and compare this with 

corpora on concepts that are cited as being confused with the microbiome concept, specifically 

the concepts of metagenome and the metabolome. I apply a hybrid of qualitative and quantitative 

methods including topic models, frequency analyses, keywords in context, collocational 

analyses, lexical profiles, and collocate networks to analyze both the language context and the 

specific usage of the each word. My results characterize differences between the – (1) 

microbiome and the metabolome, and (2) the microbiome and the metagenome, specific to the 

larger language environment, occurrence and co-occurrence of words, and knowledge of words 

used. However, changes in the parameters of the analysis yielded results that suggest the 

difference between the concepts is not a discrete boundary.  

In the fifth chapter, I explore the development of the microbiome according to different 

contexts by systematically comparing the variation and change of the language and social 

context of the microbiome. Using a combination of experiments, I analyzed the variation and 

change in social and language context and specific contextual factors such as: publications, 

citations, authors, MeSH terms, and unique MeSH terms over time in the MB Corpus. A factor 
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introducing variation and change in the development of the microbiome over time was attributed 

to the microbiome being an innovation (Rogers, 2010). Specifically, the microbiome was shown 

to have: a relative advantage over similar the concepts metagenome and metabolome, 

microbiome knowledge was highly compatible with the knowledge bases of the social systems in 

which it was used, the complexity of the microbiome allowed the microbiome to be separated 

into different conceptualizations, the range of different meanings attributed to the microbiome 

were evidence of the trialability of the microbiome across contexts, multiple events increased the 

observability of the microbiome, and the adoption rate of the microbiome across diverse systems 

showed the characteristic S-curve of adopted innovations, which are attributes that characterize 

an innovation being adopted (Kapoor, Dwivedi, & Williams, 2014). Evidence of the variation 

and changes in knowledge of the microbiome were described using the results from a topic 

model, MeSH analysis, and collocational analysis. PLOS One was unusually prolific in 

producing microbiome publications from 2008 to 2014 compared to all other journals based on 

an analysis of producers of microbiome research outputs with a focus on high producers of 

microbiome publications and predicted gatekeepers of knowledge (Crane, 1967; McGinty, 1999; 

Siler, Lee, & Bero, 2015). PLOS One was compared to other journals (Nature and Science) and 

the National Institutes of Health project abstracts using MeSH terms, collocates, and topic 

models to show similarities and differences in knowledge from cited gatekeepers of knowledge 

based on previous research (Alsheikh-Ali, Qureshi, Al-Mallah, & Ioannidis, 2011; Moore, 

Neylon, Eve, O’Donnell, & Pattinson, 2017).The results of the MeSH terms, topic model, and 

collocate comparisons of high producers to gatekeepers showed differences in the similarities of 

knowledge  and convergence of knowledge suggesting changes to the microbiome were 

influenced by specific contextual factors.  
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This dissertation advocates that through the integration of big data and data driven 

science and research approaches high-dimensional data that cuts across multiple contexts are 

more accessible than ever before. The analysis of the dynamics of both language and social 

contexts and their interactions to identify contextual factors of the microbiome, provides 

understanding into how historical transformations in science relate to changes in knowledge, and 

expand the repertoire in generating hypotheses for understanding the evolution of knowledge. 

The strategy for understanding the evolution of scientific knowledge of the microbiome concept, 

with an emphasis on integrating big data for measurable changes, yields insight into future 

experiments and projects integrating big data and hybrid qualitative and quantitative approaches.  

This dissertation supports and provides new evidence for recognizing the importance of 

social, language, and historical context on biomedical concepts and scientific knowledge. Big 

data and the novel approaches used in this dissertation makes it possible to achieve a description 

of how specific words, phrases, and discourses correlate to specific factors from different 

contexts. The results from this study can then be used to study other the trajectories of other 

concepts, analyze language and social contexts, and provides suggestions on what influences 

knowledge. Additionally, by pursuing a systematic approach that incorporates complex relational 

data, this study provides novel methods for research in the anticipation of the utility of big data. 

Big data is an important consideration for this study and future studies, as the current situation 

within biomedicine and science in general is that the amount of data available for analysis has far 

exceeded the capacity to analyze it. Therefore, it is imperative to understand how data driven 

science and research approaches can be utilized for real world problems and solutions within 

science.  
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Research Hypothesis and Objectives 

My dissertation tests the hypothesis that knowledge of the microbiome has changed and 

evidence of this change is found in the changes to the usage and meaning of the microbiome or 

language context, and changes to the social structure and material artifacts or the social context 

of who uses the microbiome and where. My strategy is to identify and analyze specific 

contextual factors influencing specific changes to the microbiome. My project focuses on 

isolating, tracing, and measuring the link between contextual factors and changes to the 

microbiome through analysis of the microbiome concept across different scales and dimensions.  

In order to test this hypothesis the following must be described:  

1) Language context (words, phrases, sentences) characterizing the variation and changes 

of the microbiome in text,  

2) Social context (social groups, categories, environment) characterizing the social 

variation and changes to the actors that have used the microbiome, and  

3) Historical context or characterizing the changes in the language and social context 

according to time.  

The primary research question for this dissertation is: What are factors influencing the 

microbiome concept? One goal of this project is detail how contextual factors, linguistic factors 

(frequency of use, associations with other linguistic variables, and relationships within and 

between these variables) and social factors (characteristics of authors, publications, journals, and 

the associations within and between these variables) influenced the variation and changes to the 

usage and meaning of the microbiome. Another goal is to create a meaning of the microbiome 

based on language in use, or meta-meaning, and compare the meta-meaning created with other 

definitions of the microbiome from other ontologies. A third goal, is to characterize the influence 

of these factors by assessing the similarity and convergence of microbiome knowledge between 

groups and across groups. 
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Research into contextual factors found that usage of terms in the scientific literature was 

a driver that impacted companies’ adoption for eco-innovation policies (Bossle, 2016). In 

Representing Scientific Knowledge: The Role of Uncertainty, Chaomei Chen and Min Song 

found that the emergence of a specialty is determined by the two key drivers, 1) knowledge 

measured via terms in article titles, abstracts and 2) the research fronts associated with the 

knowledge (i.e. term in citations) (Chen & Song, 2017). However, this study was based on the 

assumption that terms or concepts across networks have the same meaning across time. 

Contextual factors are also dependent on the unit of analysis, such as an article, citation, author, 

and cannot be described as a having universal properties across different networks or levels of 

analyses (Meyer & Goes, 1988; Loet Leydesdorff, 2013). Aaron Cicourel has pointed out, “at 

any given time knowledge depends on the particular state of methods in use,” alluding to how 

results are dependent on which metrics are used when conducting multilevel analyses across 

different dimensions or scales (Cicourel, 1964, p. 164). Therefore, this project by identifying and 

evaluating contextual factors on the microbiome by integrating big data may provide vision into 

how to create experiments integrating multi-dimensional data across time scales.  

 By answering the research question insight will be gained on the how scientific 

knowledge on the microbiome concept was influenced by social factors, language factors, or 

some combination of factors. Moreover, by characterizing the factors that influenced the 

microbiome these results can be used to assess the dynamics of other processes within 

biomedicine and science. Specifically, how knowledge evolves and how social and linguistic 

variables impact knowledge processes. 
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Methods 

By answering the research question, what are factors influencing the microbiome 

concept? Other supplementary questions related to how knowledge on the microbiome, must 

also be considered. These supplementary questions range from: What is the microbiome 

concept? How is the microbiome dependent on context? Who has influenced the microbiome, 

and what is evidence of their influence? Where was microbiome research focused and how has 

that changed over time? Is the microbiome an innovation or rebranded concept? How did 

knowledge on the microbiome evolve? To answer this range of questions, an interdisciplinary 

approach was used to identify contextual factors including: language usage patterns, social 

groups, and variation and changes to the microbiome knowledge. Every publicly available 

scientific publication and funded project abstract with the word microbiome in the text and the 

metadata for each individual article or abstract was collected. The metadata collected included 

explanatory variables from the language context of the microbiome, or language factors 

including: the words used with the microbiome in text, the phrases used with the microbiome, 

categorizations of texts via medical subject headings (MeSH terms), and the specific discourse a 

phrase is a part of. The metadata, also, included explanatory variables from the social context of 

the microbiome or social factors: author and co-authors, journal name, institutions of the authors, 

country of publication, and impact of the publication. Additionally, the metadata anchored the 

linguistic and social factors via publication or fiscal year, and helps facilitate a constant dialogue 

with the historical context of the microbiome, as many of the ancillary questions posed as a part 

of this study are examined via specific slices of time. By identifying, analyzing, and bringing 

together different factors, a data synthesis from the publications, abstracts, and metadata helped 
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trace and map the influential words, phrases, events, individuals, groups, institutions, and 

networks influencing the usage and meaning of the microbiome over time.  

The methods for this dissertation are organized by background chapters and experiments. 

However, due to the sheer amount of background information on the different approaches, only 

brief discussions of the experimental research questions and methods are presented here. George 

Lundberg warns of how brilliant scientists can make major mistakes when stepping outside of 

their specialties, while Pierre Bourdieu argues science advances by crossing disciplinary 

boundaries (Lundberg et al., 2012; Bourdieu & Wacquant, 1992). Agreeing with the Bourdieu’s 

opinion, analyzing the historical, language, and social context of the microbiome requires an 

interdisciplinary collection of methods from: linguistics, sociology, digital humanities, computer 

science, and history of science. Each of these disciplines has rich theoretical understandings that 

accompany the methods. Therefore, preceding the experiments a thorough collection and review 

on how different approaches and an in depth literature review was conducted. The literature 

review investigated approaches using language, social, and historical contexts to characterize 

knowledge in science and biomedicine, and how knowledge on the microbiome has changed. 

This project is designed to understand and measure how knowledge on the microbiome evolved. 

To accomplish this task, five chapters with two experiments are included.  

Data Collection and Curation 

Prior to any experiment, the first task was to create a collection of full text documents or 

corpus. Publicly accessible articles were identified by searching for the microbiome as a topic or 

in the text from JSTOR, Web of Science, and PubMed. From these multiple databases. 32,632 

articles on the microbiome and their corresponding metadata were identified. Articles were 

removed from the final microbiome corpus (MB Corpus) if the publication was a duplicate, was 
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not open access, or if the publication could not be converted to a text. This resulted in 27,977 

articles on the microbiome from 1900 to 2017, a detailed description of this process is presented 

in the fourth chapter. After the MB Corpus was finalized the metadata was cleaned and curated 

for duplicates, errors, and missing values. This process took multiple iterations and included a 

combination of computational and hand disambiguation for the final cleaned metadata. Each full 

text article in the MB Corpus has a metadata line including the following information, PubMed 

ID (if applicable), Publication Title, Journal Title, National Library of Medicine MeSH Term(s), 

Author(s) Last Name and Author(s) First Name, Author Affiliation(s), and the Abstract.  

Following the creation of the MB Corpus, three additional corpora were collected using a similar 

method based on a single concept. In total there five corpora with their accompanying metadata: 

1. MB Corpus (27,977 articles): collection of publications with microbiome as the 

search term 

2. MB Project Corpus (10,401 projects): collection of funded microbiome projects 

with microbiome as the search term 

3. Metabolome Corpus (16,818): collection of publications with metagenome as the 

search term 

4. Metagenome Corpus (10,741): collection of publications with metabolome as the 

search  

These corpora were collected and used for preliminary studies prior to the final experiments.  
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 CONTEXTUAL REVIEW OF THE MICROBIOME LITERATURE 

Background  

 

Science and scientific knowledge is influenced by the context in which it occurs (Kuhn, 

1970; Popper, 2002; Cetina & Reichmann, 2015). Previous studies measuring scientific 

knowledge have used different methods to characterize and analyze scientific discovery. The 

sociology of knowledge, for example, has emphasized using knowledge itself as the unit of 

analysis and explores the stability/instability of knowledge dynamics through discourses, 

practices, communication, and details how these social processes limit or direct knowledge 

(Durkheim & Mauss, 1963; Bourdieu, 1977; Mannheim, 1995; Scheler, 2012). Sociology of 

science focuses on opposing knowledge claims and the scientific production of knowledge,   

examining social groups, institutional environments, laboratories, methods, and the objects of 

scientific inquiry as the units of analysis (Merton, 1970; Bloor, 1991; Bijker, 1993).  History of 

science, has analyzed the “social factors” or forms of organization, social influences from 

politics or economics, social practices and costs of science or “intellectual factors,” and the  

ideas, concepts, methods, evidence of science, and scientific knowledge (Kuhn, 1970; Shapin, 

1996).  Linguistics, meanwhile, studies the history of words, individual and cultural knowledge, 

shared knowledge, and knowledge of language (Wardhaugh, 2009; Burkette & Kretzschmar, 

2018).  My approach meets at the intersection of these discplines by exploring the historical, 

language, and social context of the microbiome.  

I argue historical, language, and social context is critical in understanding history, 

variation, and changes to knowledge. Historical context provides information on the conditions 

in which something takes place and explains the development of social and intellectual factors. 
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Understanding historical context provides insight into who, what, where, when, and why of 

sources and evidence and provides understanding beyond an act or thing itself. To illustrate, an 

analysis of the historical context of epidemiological studies highlighted the heterogeneity and 

dissimilarity in epidemiologic data on mental disorders, brought to light issues with how the 

mentally ill were being underserved, and delivered the basis for the creation of uniform basic 

data on mental disorders (Regier et al., 1984).  Language context is the words, concepts, phrases, 

definition(s), patterns, and meaning of words and has been used as both a social factor and 

intellectual factor influencing knowledge. William Labov is his groundbreaking work on the 

language context of New York City (NYC), was able to show that New York City is a single 

speech community, social groups within NYC were the source of language variation and change, 

and language context is an identifier that differentiates individuals (Labov, 2006).  Social context 

refers to social actors, individuals, groups, institutions, setting, and the environment and has also 

been used as both a social and intellectual factor influencing knowledge. Studies emphasizing 

social context include concepts and information on the relationships among the units of analysis, 

focusing on individual behavior within relationships, the behavior of social groups, formal social 

categories or informal social connections, or social patterns that create social structures 

(Wasserman & Faust, 1994).   

Past research on the microbiome concept has been interpreted according to specific 

intellectual or social factors along relatively small time scales, with many works focusing on 

possible origins of the microbiome and then abruptly jumping to the present, debate on who 

coined the microbiome, declarations of how the microbiome is being used now, or directions on 

how the microbiome should be used (J Lederberg & McCray, 2001; Prescott, 2017; Eisen, 2015; 
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Ursell, Metcalf, Parfrey, & Knight, 2012). Absent from this body of work is a comprehensive 

study of the context and contextual factors contributing to the development and evolution of the 

microbiome. I argue that in order to understand the variation and changes to the microbiome 

concept, a systematic study of the contextual factors influencing the microbiome is necessary. I 

argue context is crucial in understanding sources of variation and change. Previous research on 

the gene has shown that the gene was interpreted differently based on context, with some experts 

arguing how contextual differences of the gene concept are so different leading to a “classical 

gene concept” and a “contemporary molecular gene concept” (Burian, 2004; Falk, 2004). 

Context, also, helps to understand the influences that are directing changes, as William Labov 

was able to show social factors including age, sex, socioeconomic status, and community were 

responsible to specific variants in the English language to be adopted, diffused, and transmitted 

(Labov, 2001).  

I use context to help understand the variation and changes to the microbiome over time. 

This requires a comprehensive sense of context across multiple scales and dimensions, analyzing 

both short and long time scales (Maasen & Weingart, 2013).  In this chapter, I focus on the 

different interpretations of the microbiome from historical, language, and social contexts. Within 

the historical context, I focus on the events, moments, trends, and people or things at specific 

times that have been cited as the origin of the microbiome. I highlight the historical context of 

the microbiome links scientific luminaries such as Antonie van Leeuwenhoek, Charles Darwin, 

Ivan Wallin, HJ Muller, and Theodosius Dobzhansky to the origin of the microbiome 

(Bordenstein, n.d.; Ursell et al., 2012). Yet, the most accepted and cited origin of the microbiome 

belongs to the Nobel Laureate Joshua Lederberg (L. V. Hooper & Gordon, 2001).  Despite the 
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overwhelming support to Lederberg’s some contest this origin of the microbiome. Both Susan L. 

Prescott and Johnathon Eisen claim the current usage and interpretation of the microbiome 

originates from an article that predates Lederberg’s claim and describe the additional evidence of 

other instances of the microbiome occurring in text prior to Lederberg’s claim  (Eisen, 2015; 

Prescott, 2017). I agree that Lederberg’s claim to the microbiome is problematic given there are 

numerous other instances of the microbiome occurring in text prior to Lederberg’s 2001 

commentary. However, Prescott and Eisen both use a quote as proof the interpretation of the 

microbiome has not changed over time. I consider how Eisen and Prescott fail to provide 

substantial historical, linguistic, or social evidence to support their claim of how the microbiome 

is currently being used or what the definition of the microbiome is/was in the literature.  

Adopting a language context perspective, I highlight the words, concepts, phrases, 

definition(s), and meaning that have been used with the microbiome concept. I argue most 

researchers and scientists attempting to define the microbiome create their own definition by 

ignoring previous interpretations. These multiple definitions for the microbiome concept, have 

led to confusion and misuse of the terms microbiome, metabolome, metagenome, and microbiota 

and an active debate has emerged on if the microbiome is a separate concept from metabolome, 

metagenome, and microbiota. I also advocate multiple interpretations of the microbiome have led 

to indecision on if there is a single core human microbiome or separate microbiomes such as the 

lung microbiome, skin microbiome, intestinal microbiome, and describe how some 

interpretations have conceptualized the microbiome to manifest beyond humans, like Julian 

Marchesi and Jacques Ravel, whose microbiome interpretation describes “entire habitats” and 

includes viruses, the genes of all microorganisms in the habitat, and environmental conditions 
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(Marchesi & Ravel, 2015a). I argue while most of these attempts to define the microbiome are 

motivated to create a single microbiome concept, the end result is more confusion. Further, I 

show that many studies on the microbiome have acknowledged the importance of the language 

context or vocabulary and lexicon of the microbiome to understand the usage and meaning of the 

microbiome, but studies have failed to provide evidence confirming if there is or is not a 

standardized microbiome vocabulary or common microbiome language.  

Focusing on the social context, I maintain the social actors, or individuals, groups, 

institutions, setting, and environment are critical to understanding the microbiome. I argue that 

the microbiome has different uses across social contexts and drawing examples from 

biomedicine and ecology.  I emphasize within biomedicine the microbiome is used to describe a 

single human microbiome or multiple separate microbiomes on a person, such as a lung, hand, or 

gut microbiome, while ecology uses the microbiome as another instance of the concept biome or 

microbiota.  This usage within ecology removes most of the debate surrounding the microbiome 

as a new concept or rebranded concept. However, the comparison between ecology and 

biomedicine illustrates how social contexts can have different interpretations for the same 

concept. I also show the interpretative differences based on social context on the microbiome 

may not have distinct boundaries, as Gregory W. Schneider and Russell Winslow argue that both 

ecology and epidemiology contributed to the microbiome (Schneider & Winslow, 2014). I agree 

John Huss’s argument several factors contributed to form the microbiome and social context can 

be used to inform the interpretation of the language context, but I maintain no studies have 

provided evidence of this connection, or on the variation in use or meaning of the microbiome 

across social contexts. 
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In summary, the purpose of this chapter is to provide the historical, language, and social 

contexts important in understanding the variation and range of interpretations to the microbiome 

and highlight changes to scientific knowledge specific to the microbiome.   

Historical Context 

 

The historical context of the microbiome describes the events, moments, trends, people, 

or things at specific moments related to the historical development of the microbiome.  

The biomedical narrative of the microbiome situates the historical context as far back as Antonie 

van Leeuwenhoek 1632–1723 and Leewenhoek’s discovery of different microorganisms, 

“Studies of the human microbiome started with Antonie van Leuwenhoek who, as early as the 

1680s, had compared is oral and fecal microbiota,”  (Ursell et al., 2012). Other biological and 

scientific luminaries ascribed to the biomedical narrative include Charles Darwin, Ivan Wallin, 

HJ Muller, and Theodosius Dobzhansky as part of the historical origins of the microbiome 

(Bordenstein, n.d.). Yet, most of these claims lack direct evidence, textual or otherwise, linking 

the individual to the microbiome. Thus, while Van Leeuwenhoek is considered “the father of 

microbiology” and was the first to observe and describe unicellular and multicellular organisms 

which he referred to as “animalcules”, Leeuwenhoek never explicitly used the word microbiome 

in text (Gest, 2004; Scher & Abramson, 2011).  Similarly, though Darwin, Wallin, Muller, and 

Dobzhansky made major contributions to biology and microbiology, there is no direct evidence 

linking the microbiome to their work.  

As of 2018, the most popular description of the microbiome supported by textual 

evidence begins in April 2001, when the Nobel laureate Joshua Lederberg claimed he coined the 
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microbiome in “Omics Sweet 'Omics - A Genealogical Treasury of Words,” a commentary he 

co-authored with Alexa McCray: 

In physics, probably starting with Faraday's ion, cation, anion, the -on suffix has tended 

to signify an elementary particle, later materially focused on the photon, electron, proton, 

meson, etc., whereas -ome in biology has the opposite intellectual function, of directing 

attention to a holistic abstraction, an eventual goal, of which only a few parts may be 

initially at hand. The accompanying table illustrates a number of prevailing examples. It 

includes Lederberg's own recent coinage of microbiome, to signify the ecological 

community of commensal, symbiotic, and pathogenic microorganisms that literally share 

our body space and have been all but ignored as determinants of health and disease. (J 

Lederberg & McCray, 2001) 

A month later in May of 2001, Lora Hooper and Jeffrey Gordon provide support for Lederberg’s 

claim by citing a personal communication between Lederberg and the co-authors on the 

microbiome: 

The Nobel laureate Joshua Lederberg has suggested using the term “microbiome” to 

describe the collective genome of our indigenous microbes (microflora), the idea being 

that a comprehensive genetic view of Homo sapiens as a life-form should include the 

genes in our microbiome. (L. V. Hooper & Gordon, 2001) 

Lederberg would continue to advocate for his claim to the microbiome through a fixed 

combination of words, repeating the phrase, “I call the microbiome,” as seen in the first 

paragraph of the 2004 article Of Men and Microbes, Lederberg states, “Understanding this 

cohabitation of genomes within the human body — what I call the microbiome — is central to 

understanding the dynamics of health and disease,” and again in the same piece:  

It would thus broaden our philosophical horizons if we think of a human—a body space 

in any human—as more than an organism. It is a superorganism with an extended 

genome that includes not only its own cells but also the fluctuating microbial genome set 

of bacteria and viruses that shares that body space. Some of these one-time invaders have 

become permanently established in our cells, even crossed the boundary line and entered 

our own genome. I call that extended set of companions the microbiome, and pray for 

more research on how they impact our lives, besides the flare-ups, the blunders, we call 

disease. (Joshua Lederberg, 2004) 
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Considering this evidence, Lederberg’s claim to the microbiome is situated in the historical 

context of the year 2001 from the commentary he co-authored and his personal communication 

with Hooper in Gordon. Biomedicine scientists have generally supported Lederberg’s claim 

citing Lederberg and McCray, “The concept of the human microbiome was first suggested by 

Joshua Lederberg, who coined the term “microbiome…”, this quote comes from the paper 

describing the National Institutes of Health(NIH) Human Microbiome Project (HMP1) Working 

Group, a collection of over 200 scientists at 80 institutions (NIH HMP Working Group et al., 

2009; Schneider & Winslow, 2014). Combined, the HMP1paper, Lederberg’s personal 

communication, the ‘Omics paper, and Hooper and Gordon’s paper, have been cited thousands 

of times strengthening Lederberg’s claim to the microbiome. However, a growing number of 

publications and scientists are arguing against Lederberg’s claim that he was responsible for 

discovering, coining, and popularizing the microbiome. 

One of the most vocal critics of Lederberg’s claim is Susan L. Prescott, in her article the 

History of Medicine: Origin of the Term Microbiome and Why It Matters, Prescott attacks 

Lederberg’s claim and those that have fallen victim to the “microbiome zeitgeist”:  

Such is the case within the microbiome zeitgeist. For example, it is continuously claimed 

that the term microbiome was ‘coined’ by Nobel laureate-microbiologist Joshua 

Lederberg in a 2001. This statement of coinage is presented as fact in 100’s of recent 

research papers, including those in journals devoted to pediatrics (Tracy, Cogen, & 

Hoffman 2015) allergy/immunology (Bonamichi-Santos et al. 2015) and even in papers 

originating from the United States National Institutes of Health, Human Microbiome 

Project (Proctor 2016; NIH Human Microbiome Working Group et al. 2009). In an article 

purporting to set the record straight on microbiome terminology, it is even claimed that 

the term microbiota was defined for the first time by Lederberg in 2001 (Marchesi and 

Ravel 2015). Remarkably, a ‘History of Medicine’ article in a recent Annals of Internal 

Medicine issue makes this same claim that Lederberg coined the term in 2001 (Podolsky 

2017)…Despite these claims, the evidence is crystal clear – Lederberg did not coin the 

term microbiome. (Prescott, 2017) 



21 
 

 

Prescott draws attention to historical uses of the word ‘microbiome’ in text predating 

Lederberg’s claim and cites a text written 13 years before Lederberg’s commentary, arguing the 

usage of microbiome in this text is more aligned with how the microbiome is currently used in 

microbiology: 

A convenient ecological framework in which to examine biocontrol systems is that of 

the microbiome. This may be defined as a characteristic microbial community occupying 

a reasonably well defined habitat which has distinct physio-chemical properties. The term 

thus not only refers to the microorganisms involved but also encompasses their theatre of 

activity. (Whipps, Lewis, & Cooke, 1988) 

Prescott’s argument also touches on falsehoods in science or what she calls ‘scientific myth’, 

consequences to scientific practice and science policy, and the ethical struggle within science 

that legitimate sources are given their due credit. She argues Lederberg’s claim to the 

microbiome is not simply a case of citation errors but is a case of unfounded attribution 

(Prescott, 2017). Though Prescott’s argument is a valid concern and highlights the importance of 

historical accuracy, ethics, and factual referencing, she lacks supporting evidence to substantiate 

her claim of how the microbiome is currently used in the literature.  Further, she fails to provide 

multiple instances of where the microbiome has been used prior to Lederberg’s claim.  

Jonathon Eisen in his What Does the Microbiome Mean? And Where Did It Come From? 

A Bit of a Surprise…, also uses the 1988 citation and usage of the microbiome as evidence 

against Lederberg’s claim, and makes two of the same counterclaims Prescott makes: 1) Whipps, 

Lewis, and Cook’s usage of the microbiome denotes how the microbiome is being used in the 

community right now, and 2) the interpretation of the microbiome as a community/communities 

of organisms aligns with the historical usage of the microbiome (Eisen, 2015). Eisen’s argument 

emphasizes the earliest occurrences of microbiome but fails to provide other supporting 
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historical, linguistic, or social evidence to support his claims of how the microbiome is being 

used now, or what the first definition of the microbiome is in the literature. Further, if time was 

the only dimension used to settle the debate, the first use of the word microbiome in print 

occurred in a book reviewing dentistry (odontological) techniques in 1949, “On sait, d’autre part, 

le rôle que joue le PH dans l’évolution du microbiome intestinal. Il est plausible d’admettre qu’à 

la faveur des lésions intestinales et des modifications du PH intestinal, les migrations parasitaires 

ou microbiennes peuvent” (Revue odontologique, 1949). Translating from French to English, this 

quote reads as, “We know, on the other hand, the role of the PH in the evolution of the gut 

microbiome. It is plausible to assume that the favor of the intestinal lesions and intestinal pH 

changes, parasitic or microbial migration” (Eisen, 2015). Yet, this text doesn’t provide any 

definition of the microbiome, implying that the reader either understood the word or would infer 

the definition from textual clues.   

The first scientific article to use the microbiome was authored by John Mohr in 1952, 

titled Protozoa as indicators of pollution, Mohr writes, “The protozoan fauna (as a matter of fact, 

the whole microbiome) is poor in species and individuals, and those present are rather typical 

polysaprobes (Mohr, 1952). Similar to the text from 1949, Mohr does not provide any definition 

for the microbiome and the above sentence is the only occurrence of the microbiome in the text.  

Both of these texts only mention the microbiome once, but are rarely cited or even acknowledged 

as part of the microbiome’s history or development. Some researchers have erroneously pointed 

to Léonce Priouleau’s work in 1894, in the Archives of tocology and of gynecology as the first 

instance of microbiome, but this is actually a reference to microbisme, a commonly used term in 

the late 1800’s and early 1900’s (Eisen, 2015). These occurrences of the microbiome outside 
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biomedicine and the misinterpretations of the microbiome for other concepts imply the 

microbiome is multidimensional concept with interpretations dependent on context.  

Thus, Prescott and Eisen argument on the Lederberg not being the first to use the 

microbiome in text is accurate, as the microbiome was used prior to 2001 with the earliest 

instance being 1949, and the earliest use in a scientific article in 1952. Prescott and Eisen’s 

counterclaim, Whipps, Lewis, and Cook’s use of microbiome is the first and most commonly 

used interpretation is not substantiated by enough evidence (Eisen, 2015; Prescott, 2017). 

Further, this claim cannot be proven using historical context (in text occurrence) alone but 

requires an understanding of the language and social context of the microbiome over time.  Put 

another way, to track how the microbiome developed, the language context (usage and meaning) 

of the microbiome needs to be understood at different points in time, with respect to the social 

context (location and social environment).  

Language Context 

Other researchers have emphasized language context or words, concepts, phrases, 

definition(s), patterns, and meaning as the most critical aspects to understanding the microbiome. 

Lots of attention and interest has gone into the definition and meaning of the microbiome, with 

the majority of scientists and experts providing their own interpretation to the microbiome.  In 

Defining the Human Microbiome, Luke K Ursell and co-authors define the microbiome as “the 

catalog of the microbial taxa associated with humans and their genes” and argue previous 

misunderstandings with defining the microbiome are due to contextual factors related to 

language use, i.e. confusion in terminology between microbiome, microbiota, and metagenomics 

(Ursell et al., 2012).  Yet, the authors later in the same work then proceed to contradict 
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themselves and explain the microbiome definition is still in flux and dependent on other 

concepts: 

…new findings are leading us to question the concepts that are central to establishing the 

definition of the human microbiome, such as the stability of an individual’s microbiome, 

the definition of the OTUs (Operational Taxonomic Units) that make up the microbiota, 

and whether a person has one microbiome or many. (Ursell et al., 2012)  

This passage highlights another confusing aspect related to the language context and 

interpretation of the microbiome, specifically in some texts the microbiome and other body 

regions are referred to as one collective microbiome or a core microbiome, while in other texts 

there are multiple separate microbiomes for different parts of the body, e.g. the intestinal 

microbiome, vaginal microbiome, and lung microbiome (Turnbaugh et al., 2009; Preidis & 

Versalovic, 2009; Lamont et al., 2011; Erb-Downward et al., 2011). 

Agreeing with Ursell, Julian Marchesi and Jacques Ravel in The Vocabulary of 

Microbiome Research: A Proposal, point to the misuse and misinterpretation of the microbiome 

with other concepts (Marchesi & Ravel, 2015a).  Interestingly, Marchesi and Ravel mention and 

cite Lederberg and McCray’s commentary as the first definition of microbiota, not the 

microbiome, and agree with Ursell on the point of microbiota and metagenomics being confused 

with microbiome, but then add the term metabolome as another term being confused with 

microbiome: 

This rapid evolution of the field (microbiome) has been accompanied by confusion in the 

vocabulary used to describe different aspects of these communities and their 

environments. The misuse of terms such as microbiome, microbiota, metabolomic, and 

metagenome and metagenomics among others has contributed to misunderstanding of 

many study results by the scientific community and the general public alike. (Marchesi & 

Ravel, 2015a) 
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Marchesi and Ravel, also, provide another broad definition of the microbiome which extends the 

parameters of the microbiome past humans and their genes to now include, “the entire habitat, 

including the microorganisms (bacteria, archaea, lower and higher eukaryotes, and viruses), their 

genomes (i.e. genes) and the surrounding environmental conditions,” (Marchesi & Ravel, 

2015a).   Marchesi and Ravel address other contextual issues of language when stating their goal 

in providing a definition of the microbiome is to create a “common language” and “hope that a 

consensus use of these terms could be adopted in the near future. This editorial aims at 

stimulating a discussion and standardizing the vocabulary of microbiome research” (Marchesi & 

Ravel, 2015a). However, by adding the ambiguous terms “habitat” and “surrounding 

environmental conditions,” Marchesi and Ravel’s new definition is more complex and requires 

interpretations of habitat, surrounding, environment, and surrounding, in order to understand 

where a microbiome begins/ends compared to a biome, macrobiome, or an ecological web. Thus, 

like Ursell, Marchesi and Ravel’s microbiome definition creates more misunderstanding on the 

microbiome concept. Moreover, their goal in creating a common language and standardized 

vocabulary on the microbiome assumes there is no pre-existing common language or 

standardized vocabulary on the microbiome and the parameters of the microbiome are 

understood. 

 However, two years before Marchesi and Ravel, Martin Blaser argued that the 

microbiome has a “general vocabulary” and “operating lexicon”, in The Microbiome Explored: 

Recent Insights and Future Challenges, Blaser states, “For a new research field such as the study 

of the human microbiome, much of the conceptual and technical infrastructure had to be built 

from scratch. Both the HMP and MetaHit contributed greatly to these infrastructures and have 

helped establish a general vocabulary, operating lexicon, and tool-kit for further studies” (Blaser, 
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Bork, Fraser, Knight, & Wang, 2013). Marchesi and Ravel overlook Blaser’s claim when 

pushing for a common language and standardized vocabulary, along with most of the historical 

context of the microbiome. Yet, no study has come forward with evidence to confirm/deny 

Blaser’s claim of a general vocabulary. Further, Blaser while emphasizing the language context 

points to the importance of social context in understanding the usage of the microbiome by 

describing how the HMP and Metahit “helped establish” a general vocabulary and operating 

lexicon of the microbiome, but here again there has been no studies that have investigated a link 

between HMP, Metahit, or any other social groups influence on the usage and meaning of the 

microbiome or the microbiome lexicon.   

It may be the case that the microbiome is undefinable or there is no consensus knowledge 

of the microbiome, as The American Academy of Microbiology, concedes in the Human 

Microbiome FAQ, “there is not yet a fully agreed upon definition” of the microbiome (American 

Society for Microbiology, 2013). Even Dr.  Lita Proctor, the program director for the HMP1, said 

after six years at the end of the HMP “…scientists are struggling to figure out how to think about 

the microbiome” (Mole, 2013). Still, other studies integrating social context have provided 

insight into the variation and changes of concepts and knowledge over time (Labov, 2001; 

Lawrence Edwards et al., 2016).  

Social Context 

The social context of the microbiome is the social actors, individuals, groups, institutions, 

setting, and environment, or who used the microbiome and where the microbiome was used.  In 

general, the microbiome has been used by a broad range of individual scientists, researchers, 

clinicians, politicians, and the general public. Socially these individuals belong to different 

groups and institutions, such as biomedicine or ecology, and these groups have characteristically 
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different uses of the microbiome. Within the scientific community the microbiome was named as 

one of “the breakthroughs of the year” in 2011 and 2013, and featured in two special issues in 

the journal Science (Science, 2011, 2013; “Science,” 2012; “Science,” 2016). More recently, a 

number of journals dedicated specifically to microbiome research have popped up: Biofilms and 

Microbiomes (Nature), Microbiome Journal (biomed Central), Microbiome Science and 

Medicine, and the Human Microbiome Journal. Microbiome centers are now common in medical 

schools, and biology, engineering, ecology, and veterinary medicine departments. Additionally, 

the microbiome has piqued the interest of industry, as an article in the Wall Street Journal 

reported from 2011 to 2015 there was $75.3 billion invested in microbiome based research firms 

and,” venture-capital interest in the microbiome- the collection of microbes that inhabit humans, 

animals and plants- is growing like a culture in a petri dish. ” (Gormley, 2016). Further, 

microbiome analysis as a service is now available via companies such as uBiome and VIOME, 

who offer at home clinical microbiome test or a Microbiome CounselorTM that provide 

“microbiome-based precision medicine” and “technology that’ll analyze your microbiome to find 

the best foods for your body,” and advertised on popular media outlets ranging from Forbes, 

Marie Claire, and cable television (“Home | uBiome,” 2018; “VIOME- ga2,” 2018). From these 

observations, it is no wonder the microbiome has been characterized as one of the most 

important biomedical innovations which touches on practically all branches of science (Prescott, 

2017).   

Differences in microbiome knowledge has manifested into diverse interpretations of the 

microbiome across scientific disciplines. Biomedicine emphasizes the discovery, diffusion, and 

transmission of microbiome knowledge, and generally uses the microbiome to describe either a 

human microbiome or microbiome specific to a region of the human body. However, there are 
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still disagreements within biomedicine on  if there is a single human microbiome, multiple 

microbiomes (lung, hand, gut) per person, or a universal core microbiome (Shade & 

Handelsman, 2012). Within biomedicine, also, many are unsure if the microbiome is a separate 

concept from metagenome, metabolome, microbiota (Ursell et al., 2012; Marchesi & Ravel, 

2015a). 

In ecology, there is little debate on the discovery and diffusion of microbiome knowledge 

or concern with who deserves the credit for coining the term. Ecology uses the microbiome as a 

synonym to biome or microbiota and in most instances the microbiome is combined with other 

concepts within ecology, e.g. a root microbiome, a coral core microbiome, a soil microbiome, 

lake microbiome, an earth microbiome (D Ainsworth et al., 2015; Lundberg et al., 2012; Shade 

& Handelsman, 2012).  Ed Yong, , I Contain Multitudes: The Microbes Within Us and a 

Grander View of Life, goes so far to claim the microbiome and “all zoology” is based on 

ecology, “All zoology is really ecology. We cannot fully understand the lives of animals without 

understanding our microbes and our symbioses with them. And we cannot fully appreciate our 

own microbiome without appreciating how those of our fellow species enrich and influence their 

lives” (Yong, 2016). Yong’s book displays the public interest in the microbiome and an 

emphasis on an ecological narrative for the microbiome, as his book has been featured across 

multiple mediums as an authoritative source on the microbiome: from the New York Times book 

review “(According to Ed Yong) In a way, the science of the microbiome had two false starts…” 

, National Public Radio’s book summary “ (I Contain Multitudes) Shares unique perspectives 

into the role of the human microbiome in human health, identity, and ability, explaining in 

comprehensive, lighthearted detail how microbes shape and protect life on Earth in unexpected 

ways, to Bill Gates blog  “And he (Yong) offers realistic optimism that our growing knowledge 
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of the human microbiome will lead to great new opportunities for enhancing our health,” 

(Weiner, 2018; Gross, n.d.; Gates, 2017) . How this book was branded as an authoritative source 

on the microbiome is surprising, as Yong focuses more on the practice of microbiology and the 

study of microorganisms rather than the microbiome, his sweeping narrative includes some 

relatively obscure historical figures from the last 500 years of microbiology, such as: 

Leeuwenhoek, Hooke, Louis Pasteur, Robert Koch, Charles Darwin, Martinus Beijerinck, 

Thomas Huxley, Theodor Escherich, Elie Metchnikoff, Theodor Rosebury, René Dubos, Carl 

Woese, Ralph Woese, Norman Pace, Ed DeLong, David Relman, Jeff Gordon, and Rob Knight.  

Yong’s perspective on the typifies the ecological perspective, as he uses the microbiome as 

another instance of a different concept, in this case microbiota, “All of us have an abundant 

microscopic menagerie, collectively known as the microbiota or microbiome” (Yong, 2016).   

Nevertheless, the ecological conceptualization of microbiome adds to the overall 

confusion of how to interpret the microbiome by suggesting the microbiome is synonymous with 

microbiota. As previously mentioned, biomedicine has an ongoing debate on if the microbiome 

is a separate concept from other concepts, including microbiota, metagenome,  and metabolome 

(Ursell et al., 2012; Huss, 2014; Marchesi & Ravel, 2015a). It is critical to separate the 

microbiome and the microbiota as conceptual ambiguity is detrimental to concepts, according to 

Dr. Lesley Hoyles, “The microbiota refers to the micro-organisms and viruses associated with 

the human gastrointestinal tract. The microbiome refers to the genetic make-up of the whole of 

the microbiota: i.e. the genes from all the bacteria, eukaryotes, archaea and viruses,” (Hoyles, 

n.d.). Yet, The differences between the ecological interpretation and the biomedical 

interpretation is not so clear according to Gregory W. Schneider and Russell Winslow, as they 
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suggest that the microbiome is a new word and part of a larger “new lexicon” that is related to 

the language and social context of the Human Microbiome Project, ecology, and epidemiology: 

In developing this new lexicon, the scientists who authored the June 2012 Nature article 

have gravitated toward the language of ecology and epidemiology, emphasizing words 

and phrases like “human-associated microbial communities,” ecology and populations, 

diversity and abundance, mutualism and competition, habitats and microhabitats. Using 

this language as a touchstone, the researchers approach the individual human as a 

collection of nested habitats, with various regions populated by various collections of 

microbes, One crucial word in this account, is community, used here in its typical 

ecological sense, referring to a group of plants or animals living in a specific region or 

habitat under relatively similar conditions, or the region in which these organisms live.  

(Schneider & Winslow, 2014). 
 

Schneider and Winslow also bring to light some of the larger philosophical issues of an 

ecological or biological interpretation of the microbiome and how the interpretation of the 

microbiome changes other concepts, i.e. how does the interpretation of the microbiome as a 

community change the interpretation of concepts like individual, species, and human. Though 

Schneider and Winslow, argue that the ‘language of ecology and epidemiology’ influenced the 

usage and meaning of the microbiome, they fail to provide any historical or language evidence to 

support this claim instead offering what they call the “typical ecological sense”. Thus, while their 

argument connects and accentuates the importance of language and social contexts to understand 

the microbiome, it is difficult to support their specific claims.  

John Huss, also, emphasizes the social context of the microbiome referring to an 

“ecological preconception” and also recognizes the importance of the language and historical 

context of the microbiome, acknowledging a “curious tension” between if the microbiome is a 

neologism or a rebranded concept from ecology:  

“The status of the human microbiome—whether it should be considered an organ, an 

internal feature of our developmental environment, or whether it should be assimilated 
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into an overall ecological preconception of the human being as superorganism—is also 

up for discussion (Foxman 2008, Juengst 2009)”. (Huss, 2014)  

 

Huss ultimately argues that the microbiome is a new word and that microbiome research created 

a new ontology based on the social context of the microbiome, a “tools-to-theories heuristic” as 

the main influence of the microbiome stating that, “I shall argue, the primary drivers of the 

ontology emerging from microbiome research are its tools, including metagenomics” and, “A 

look at the scientific literature reveals that there are several factors operating simultaneously to 

shape an emerging ontology. What I have emphasized are the role of tools- largely metagenomic 

methods and statistical techniques- in shaping these ontological categories” (Huss, 2014). Huss 

promotes an interpretation of the microbiome that integrates social, historical, and language 

context, “several factors operating simultaneously to shape and emerging ontology” and 

separates the microbiome from other concepts by providing his own definitions for the 

microbiome, metagenome, and enterotypes. While the most inclusive of contextual evidence, 

some criticize Huss for lack of empirical evidence towards his claim the social context, or tools, 

methods, and statistical techniques, has influenced the microbiome (Adami & Bracken, 2016).  

Moving forward, I argue that the social context of where and who uses the microbiome 

provides insight into how the microbiome concept was used and interpreted. Looking at 

biomedicine compared to ecology, biomedicine emphasizes on the discovery and diffusion of the 

microbiome, whereas, ecology focuses on linking the microbiome to other concepts within 

ecology, specifically biome and microbiota. Examination of the social context of the microbiome 

helps to determine the general vocabulary (or lack thereof) of the microbiome concept and the 

microbiome lexicon. This is important as the interpretation of other concepts may change based 

on the interpretation of microbiome, specifically in the cases of community, organism, or human. 
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Social context, also, provides insight into who has influenced the usage and meaning of the 

microbiome. Yet, to date no studies on the microbiome that have provided evidence on the actual 

usage and interpretation of the microbiome across social contexts.  

Summary  

To understand the usage and meaning of the microbiome, the historical, language, and 

social context of the microbiome must be considered. Some studies have briefly discussed the 

influence of one context on another, i.e. how the historical context influences the language 

(Lederberg, Prescott, Eisen), or how the language influences the social (Ursell, Marchesi & 

Ravel, Blaser), but to date no study has systematically analyzed how factors from these different 

contexts have influenced the usage and meaning of the microbiome. Although, many of the 

studies do not claim to accomplish this task, understanding the microbiome along these different 

contexts is a prerequisite to understand the variation in the usage and meaning of the microbiome 

over time. By systematically evaluating the factors influencing the microbiome across different 

contexts, insight into who, what, where, when, and how specific to the microbiome can be 

answered. While research on the microbiome has been conducted with specific regards to the 

historical, language, or social context of the microbiome, few studies have attempted to integrate 

these different contexts. Additionally, all studies on the microbiome have so far, failed to provide 

substantial evidence towards their claims on the variation of the microbiome or influences on the 

microbiome.  
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KNOWLEDGE: REVIEW OF PREVIOUS APPROACHES 

Background 

In a collection of three articles from 2005 to 2016, clinician and professor of medicine 

John P. A. Ioannidis advocated that one of the major problems within biomedicine today is 

“context placement and information gain,” specifically pointing to the lack of awareness of what 

is already known within biomedicine so new knowledge can be placed in the appropriate 

biomedical context (Ioannidis, 2005, 2014, 2016b). Ionnadis’ sentiment echoes with medical 

professionals, scientists, and researchers within biomedicine and science at large, as increases in 

scientific publications, citations, and research output due to big data have led to questions about 

how to measure knowledge and changes in knowledge (Lazer, Kennedy, King, & Vespignani, 

2014). Some of the more popular traditional approaches to measuring and understanding 

knowledge within biomedicine include systematic reviews, biomedical ontologies, and text 

mining using natural language processing (NLP) (Moher et al., 2015). Other methodologies in 

the humanities and social sciences have used publications, citations, or concepts to measure 

knowledge. In most cases, the broad argument is the study of material artifacts or research 

outputs are useful because these objects are proxies of knowledge (Jong & Slavova, 2014). Yet, 

there are criticisms on how accurately these proxies reflect knowledge and how to use these 

proxies to assess changes in knowledge (Bellis, 2009). 

In this chapter, I review approaches used to measure knowledge, focusing on systematic 

reviews, ontologies, and text mining within biomedicine. First, I argue these methods by 

themselves are ineffectual and do not accurately reflect changes in knowledge within 

biomedicine. Further, I contend novel approaches are necessary to take advantage of big data and 

the current surge of publications, citations, and information and manage issues related to 
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analyzing high dimensional data. I begin by reviewing how systematic reviews, ontologies, and 

text mining have been used to measure and analyze knowledge within biomedicine. I highlight 

how systematic reviews are considered the gold standard due to the amount of time, data, and 

expertise required to be completed, but are ineffectual in measuring knowledge because of a 

dependence on rigid protocols that are unresponsive to differences in context and bias towards 

clinically defined outcomes. Similarly, I argue that while ontologies provide conceptual models, 

interpretations, and shared vocabularies, ontologies do not accurately reflect knowledge because 

knowledge within biomedicine is dynamic and dependent on context, specifically the cases 

where a single concept has separate interpretations and multiple concepts have a single 

interpretation. Likewise, text mining and Natural Language Processing (NLP) has been used with 

both systematic reviews and ontologies to improve data identification, collection, and 

categorization, but most text mining approaches cannot explain knowledge differences across 

contexts, such as when concepts change or when different contexts interpret words differently. 

Corpus Linguistics, on the other hand, is better suited to discovering small differences within 

language but require more time, effort, and human guidance than NLP methods. I argue here that 

a hybrid of NLP and Corpus Linguistic methods, combined with other approaches could be a 

powerful approach to understanding changes in knowledge.  

Next, I examine other approaches used in the social sciences and humanities to measure 

knowledge including publication metrics, citation analysis, knowledge maps, and conceptual 

change. I begin by providing some of the historical context of publications as a unit of analysis in 

analyzing knowledge, and refer to the excellent work by Derek de Solla Price and Eugene 

Garfield in using publications as a means to communicate, produce, and quantify the growth of 

scientific knowledge (D. De Solla Price, 1986; Garfield, 1955). Publications provide the ability 
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to compare researchers and scientists, can predict future academic success, and have been used to 

map the trajectory of scientific knowledge (Garfield, 1972; D. De Solla Price, 1986). However, I 

point publications by themselves are inaccurate proxies of knowledge as the content and related 

knowledge within publications are subject to extreme variability. Citations and citation dynamics 

of scientific articles and patents, also, have been used to trace the spread of scientific knowledge. 

Here, I agree citation dynamics are useful in mapping and linking authors and scientific 

specialties, but I argue that citations cannot be used to analyze changes in knowledge since 

citations and citation dynamics are unpredictable and not well understood (Edge, 1979; van 

Raan, 2004; Ke, Ferrara, Radicchi, & Flammini, 2015).  

Concepts and conceptual change have also been used to assess changes in scientific 

knowledge. I recognize both the qualitative and quantitative approaches to analyzing concepts 

and highlight how the History and Philosophy of Science (HPS) has focused on analyzing 

concepts and issues related to understanding the nature and meaning of concepts, emphasizing 

the work of Thomas Kuhn and Paul Feyerabend (P. Feyerabend, 1962, pp. 28–97; Kuhn, 1970). I 

show other approaches have analyzed concepts computationally with quantitative results 

including knowledge maps, maps of science, and knowledge-based economy models. Yet, while 

many of these approaches frame historical inquiry as an experiment with testable hypotheses and 

emphasis on statistical results, I argue that most of these approaches fail to take into 

consideration conceptual variation within and across contexts.   

After teasing out the different arguments supporting and criticizing publications, 

citations, and concepts as proxies to understand changes in knowledge, I argue integrating 

insights from the science of complex systems in studying the variation and changes to concepts 

and knowledge. 
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 In the second half of the paper I argue that language is a complex system, and the 

analysis of complex systems or complexity science can help to understand variation and changes 

in language and in scientific knowledge. I present an overview of complex systems or 

complexity science. I agree with previous studies arguing language is a complex system and 

consists of multiple components and variants at the same time with properties that scale. I argue 

complexity science has provided tools and methods to understand variation and change within a 

complex system, and insight from complexity science can help in understanding how knowledge 

changes within language, social, and historical systems and data (Kretzschmar, 2015). At this 

point, I review the previous studies suggesting how social and historical context influence 

knowledge, including William Labov’s study of New York City and George Zipf’s study of 

Ulysses by James Joyce (Labov, 2006; George Kingsley Zipf, 2012). I claim the power law 

distributions commonly found in language and other complex systems, or the A-curve, can be 

used to show the variation and range of knowledge for a specific social context by displaying 

variation and change of words used over time.   

Lastly, I propose adopting a framework from Jurgen Renn and Manfred Laubichler for 

analyzing the history of knowledge which emphasizes the use of context to systematically 

analyze the variation and changes to scientific knowledge (Renn & Laubichler, 2017a). I show 

results from preliminary experiments using Renn and Laubichler’s framework on the variation 

and change of knowledge on the microbiome. Based on these results, I argue this framework 

offers a method to link multiple proxies of knowledge from different contexts to analyze the 

contextual factors or explanatory variables which characterize the variation, changes, and 

evolution of the microbiome. In summary, this chapter aims to provide a better understanding of 

the approaches and practices used to measure and assess scientific knowledge within 
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biomedicine and in science and help to clarify and deflate some of the tensions in debates about 

complex systems and language with respect to measuring knowledge.  

Biomedical Knowledge Approaches:  

Understanding changes and trends in biomedicine and biomedical knowledge is crucial for 

individuals, groups, and institutions as biomedicine improves people’s lives, supports national 

economies, and leads to innovation  (McGuire & Albert, 2014). Recently, biomedicine has 

experienced a rapid growth in data as a result of the emergence of new research areas such as 

genomics, molecular biology, gene therapy, personalized medicine, and pharmacogenetics 

(Clarke, Mamo, Fosket, Fishman, & Shim, 2010). This data from new research areas, in 

combination with increased data from patients, populations, health care systems, have drastically 

increased biomedical research outputs and knowledge.  The National Library of Medicine 

(NLM), an important resource in understanding the growth of biomedical research, provides an 

index of scientific articles for researchers and scientists. Using the number of articles indexed in 

NLM as an indicator of the growth of biomedical knowledge, 813,598 articles were added to the 

approximately 24 million already indexed articles in the NLM (“NLM Detailed Indexing 

Statistics,” 2018). The tremendous increase and aggregate of biomedical research data presents a 

unique opportunity to better understand and further biomedical knowledge and foster biomedical 

discovery. However, current approaches to understanding biomedical knowledge has not met the 

needs of scientists, researchers, patients, clinicians, administrators, and policy makers, because 

the flow of knowledge from biomedicine is too slow and in most instances the scope is too 

narrow  (Krumholz, 2014). Within biomedicine knowledge is commonly assessed via systematic 

reviews, ontologies, or Natural Language Processing (NLP).  
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systematic reviews. 

Systematic reviews are an approach to synthesize evidence, summarize, and characterize the 

knowledge within a research area by using the data and content within papers or study results, 

this includes analysis of patients, interventions, comparison, outcomes, and treatments (Mulrow, 

1994). The general steps in a systematic review are: define a review question, create parameters 

for inclusion and exclusion of studies, search for studies and collect data, analyze the data, and 

offer an interpretation based on the findings (Moher et al., 2015).  Most systematic reviews are 

designed to collect data using a specific form to pull out the same numerical data from each 

article such as: number of participants, mean treatment outcomes, time intervals between 

treatments, and so on (Moher et al., 2015). Due to the amount of time, effort, and expertise 

required for a review, they are considered the gold standard in biomedicine for understanding the 

knowledge of a research domain (Green-Hennessy, 2013; Impellizzeri & Bizzini, 2012). Though, 

there are different review approaches to synthesizing complex biomedical data, including 

narrative reviews which focus on explanation and interpretation,  results from a survey of 

different biomedical reviews found ystematic reviews received more citations than narrative 

reviews and were thought to be superior to narrative reviews in answering research questions, 

reproducibility, and dealing with bias   (Faggion, Bakas, & Wasiak, 2017; Greenhalgh, Thorne, 

& Malterud, 2018). However, most systematic reviews only provide a small reflection of 

knowledge directly related to social and historical context because the methods for reviews 

overlook qualitative data and rely on simple, discrete, and quantitative data and leads to results 

used for judgements rather than explanations  (Greenhalgh & Peacock, 2005; Pawson, 

Greenhalgh, Harvey, & Walshe, 2005).  Further, the enormous uptick in the use of systematic 

reviews has led to the mass production of unnecessary, redundant, and conflicting systematic 



39 
 

reviews,  and in spite of the increase in available research outputs most systematic reviews have 

used only a relatively small fraction of the huge amounts of data available  (Ioannidis, 2016a).  

Systematic reviews are useful in comparing and analyzing specific forms of data and 

have an important purpose in biomedicine, but knowledge is context dependent and subject to 

variation and change.  Synthesizing complex evidence requires novel approaches beyond 

systematic reviews. These approaches need to be able to integrate complex contextual data 

generated by diverse methodologies, the results from which can be used to better understand 

knowledge and help meet the needs of anyone who can benefit from biomedical data (Dixon-

Woods, Agarwal, Shona, Young, Jones, & Sutton, 2004).  Ludwik Fleck, in his book Genesis 

and Development of Scientific Fact,  details how the knowledge on the concept of syphilis was 

influenced by social and cultural contextual factors and explains how these factors shaped the 

interpretation of syphilis from a broad interpretation which included other sexually transmitted 

diseases, a pharmacologically-based interpretation which included other diseases cured by 

mercury,  a causal interpretation related to a pathological symptoms caused by Treponema 

pallidum, to finally a unified single concept of syphilis (Fleck & Kuhn, 1981; Löwy, 1988). 

Knowledge of addiction, also, has undergone multiple interpretations dependent on context 

influenced by social and intellectual factors related to the treatment and diagnosis of addiction. 

The range of interpretations characterizing addiction include: a moral emphasis and non-medical 

problem with diagnosis and treatment of addiction conducted by volunteers in communities and 

shelters, forced treatment of addiction in jails, to addiction now being diagnosed and treated by 

medical professionals with an emphasis on pharmacological treatments like methadone (W. L. 

White, 1998).  A more recent study on developmental biology, using the entire catalog of the 

General Embryological Information Service, found that the diversification of research on 
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developmental biology was driven by contextual factors, including: semantic, social, cultural, 

intellectual, economic, and institutional, and highlighted that knowledge changes were indicators 

of innovation and growth within the field (Crowe et al., 2015).The cases of syphilis, addiction, 

and developmental biology, as with many other cases in the history of medicine and 

biomedicine, display how knowledge is contextual and influences interpretation, diagnosis, 

treatment, practice, and use  (Garrison, 1921; Ackerknecht & Haushofer, 2016).  Thus, context is 

critical to understand changes in knowledge. A contextual emphasis to the study of knowledge 

resonates with a growing number of researchers, scientists, and clinicians advocating scientific 

knowledge extends beyond systematic reviews, controlled experiments, and rigid protocols 

(Malterud, 2001; Maasen & Weingart, 2013).  

ontologies. 

Ontologies emphasize simple syntheses of the knowledge of a research domain through the 

creation of controlled vocabularies, conceptual relationships, and repositories of data.  

(Ramaprasad & Syn, 2015). In biomedicine ontologies are primarily used as repositories of 

knowledge that are used to catalogue individuals, concepts, publications, and citations.  

Repositories built from ontologies also serve as conceptual models which deliver consistency, 

direction, and defined knowledge for sharing and incorporation by a community or domain 

(Spasic, Ananiadou, McNaught, & Kumar, 2005). To integrate knowledge, ontologies link things 

in the world to concepts, provide meaning and definitions for concepts, and create shared 

understanding on concepts (Rubin et al., 2006). The four main features of ontologies in 

biological and biomedical research are 1) standard identifiers for classes and relations that 

characterize phenomena, 2) definitions and vocabulary, 3) metadata describing how the classes 

and relations are interpreted, and 4) machine-readable axioms and interpretations enabling 
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computational capacities to features of the interpretations of classes and relations. (Hoehndorf, 

Schofield, & Gkoutos, 2015). The Medical Subject Headings (MeSH) ontology provided by the 

NLM, is one of the most well-funded, curated, and used ontologies in the world (pmhdev, n.d.). 

MeSH are a controlled vocabulary used to index the largest biomedical literature database, 

MEDLINE, linking journals, documents, books, and audivisuals through a common conceptual 

ontology and vocabulary for researchers (Fieschi, Coiera, & Li, 2004). As of 2018, the MeSH 

terminology includes 28,939 main headings [MH], which are used to index content within 

MeSH. The choice of main headings or terms according to the NLM website on MeSH are “set 

forth in standard reference works, when these can be made to agree”  (“MeSH Preface,” 2014; 

“Whats New for 2018 MeSH,” 2017). Many studies have used the MeSH database for 

information retrieval, comparison of texts, text classification, citation analysis, identifying 

research trends, characterizing research profiles, and MeSH indexing (Kim, Fiorini, Wilbur, & 

Lu, 2017; Mao & Lu, 2017). 

 However, despite being the significant amount of resources and effort being put into 

MeSH, MeSH suffers from issues found with other ontologies such as lack of context, difficulty 

keeping up with the pace of new concepts, and differences in interpretation (Hoehndorf et al., 

2015; Ramaprasad & Syn, 2015).  Multiple studies found a significant amount of context missing 

from the MeSH representation of concepts and  (Lu, Kim, & Wilbur, 2009; K. Liu et al., 2015; 

Peng et al., 2016). The multiple concepts listed by MeSH for the microbiome, as seen in Figure 

1, make it difficult to understand if the microbiome is one concept or many a the result when 

searching for “microbiome” in the MeSH returns “microbiota” not microbiome, and on the page 

returned has other concepts listed with the microbiome as “Entry Term(s): Microbial 

Community, Microbial Community Composition, Microbial Community Structure, and 
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Microbiome, Human,” and the page also refers to another concept in the “See Also: 

Metagenome”. The MeSH Ontology results, also, creates additional confusion by listing the 

same interpretation or scope note for the concepts of microbiota, microbiome, and human 

microbiome, the interpretation listed as: “The full collection of microbes (bacteria, fungi, virus, 

etc.) that naturally exist within the human body as identified by their genomic sequence 

regardless of whether or not they can be cultured,” as seen in Figure 2 (“MeSH Browser,” n.d.). 

Other problems with the MeSH ontology include: new biomedical concepts are added to the 

MeSH long after these new concepts have been found frequently in the literature, MeSH terms 

may in some cases not actually be present in the publication but added by indexers to a list of 

keywords for publications, changes in terms and knowledge are not re-indexed in MeSH or any 

of the ontologies provided by the NLM as the NLM cannot re-index or add changed or new 

terminology to previously published articles, and incompatible computer descriptors and manual 

descriptions for context within MeSH (Aronson et al., 2000; M. Huang, Névéol, & Lu, 2011; 

Mao & Lu, 2017). Therefore, the MeSH ontology does not provide the most accurate knowledge 

or indicators of knowledge and as in the example of the microbiome, can create more confusion 

surrounding concepts and the interpretation of concepts. While, the MeSH database contains 

important knowledge used to understand concepts, such as words used to define a concept, 

author affiliations, methods, tools, and other contextual factors important to understanding a 

concept, the current ontology does not take advantage of the information available (M. Huang et 

al., 2011; Mao & Lu, 2017).  

With so many fields, subfields, and divisions between biomedicine researchers, biomedical 

ontologies could serve an important purpose in helping to understand the knowledge landscape 

of biomedicine. Biomedicine is distributed into highly specialized fields and subfields with little 
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communication amongst disciplines, MeSH and other ontologies could be used to identify 

connections between individual elements of biomedical knowledge and help clarify the many 

overlaps and misrepresentations of the biomedical knowledge throughout biomedical literature 

(J. Swan, Bresnen, Newell, & Robertson, 2007; Newell, Robertson, Scarbrough, & Swan, 2009). 

However, without a single standardized ontology many point out that biomedicine has too many 

ontologies with many overlapping concepts or terms, ontologies are too specific for practical use, 

and ontologies within the same domain have major differences in content and interpretation 

(Pesquita, Faria, Falcão, Lord, & Couto, 2009; Rubin et al., 2006; Kamdar, Tudorache, & 

Musen, 2017; Faria et al., 2018). A promising alternative to a standardized biomedical ontology 

that could help ameliorate many of the problems with ontologies in biomedicine is to link 

concepts to textual content and emphasize contextual language, social, and historical differences.  

Context is important when mapping a concept to an ontology because concepts exhibit 

variation in both form and function. This variation can be seen when the same concept has 

multiple interpretation or when multiple concepts have the same interpretation. In the case of one 

concept with multiple interpretations,  the concept of a promoter is defined by different social 

contexts which results in biology defining a promoter as a “binding site in a DNA chain at which 

RNA polymerase binds to initiate transcription of messenger RNA by one or more nearby 

structural genes”, whereas a promoter in chemistry is a “substance that in very small amounts is 

able to increase the activity of a catalyst”  (Spasic et al., 2005). Likewise, the concept Ferritin 

has multiple interpretations within the social context of biology, as both a protein that stores and 

releases iron and as a laboratory test (Jutz, van Rijn, Santos Miranda, & Böker, 2015; “Ferritin 

test - Mayo Clinic,” n.d.). Whereas, the concepts PTEN and MMAC1, are two different concepts 

for the same gene (Naguib et al., 2015). Simply stated, the problem with mapping concepts to 
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ontologies is that words having multiple meanings, like the word apple has one meaning as a 

fruit and another meaning as Apple the technology company, and different words can have the 

same meaning, as the past tense of the verb sneak has a standard past tense sneaked and a 

nonstandard past tense snuck which are both present in the English language as irregular verbs. 

With these issues related to concepts, meaning, and context in using ontologies, it is problematic 

for ontologies to measure or characterize changes knowledge without referring to context. Some 

have claimed computational approaches such as text mining, can help provide clarity on the 

knowledge about a concept by limiting the potential meanings of a concept within a text by using 

text and textual content to link concepts, contexts, and knowledge to ontologies, (Koehler et al., 

2005; Mortensen et al., 2015). 

Text is an important resource within biomedicine, as publications, citations, methods, results, 

and patient records are all proxies of knowledge within biomedicine based on text. Text mining 

approaches provide quick and computationally cheap methods to understanding knowledge and 

concepts within textual data and have become more popular because of the increasing volume of 

biomedical research and hypothesized subsequent increases in knowledge (Aronson, 2001; Fan, 

Wallace, Rich, & Zhang, 2006; Spasic et al., 2005; C.-C. Huang & Lu, 2016).  In general, text 

mining approaches can be either supervised or unsupervised. Both approaches make use of 

algorithms and computation and focus on classification, clustering, associations, and 

relationships within textual data (Aggarwal & Zhai, 2012). Supervised approaches to text mining 

are directed methods to understanding textual data when there is a specific target in mind and 

unsupervised approaches focus on finding latent structures or relations among data (Aggarwal & 

Zhai, 2012).  Both supervised and unsupervised analysis of textual data within biomedicine have 

been conducted using natural language processing (NLP) for named entity recognition, 
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relationship extraction, information retrieval, and normalization of concepts (Renganathan, 

2017). 

natural language processing (NLP). 

NLP is a collection of methods to analyze words and the relationship of words quickly within 

large collections of text (K. B. Cohen & Demner-Fushman, 2014). Generally, NLP approaches to 

analyzing language focus on: characterizing words or texts based on the statistical analysis of the 

frequencies of documents, sentiments (words with pre-defined meanings), correlations between 

words, and clustering of words. The terms computational linguistics (CL) and Natural Language 

Processing (NLP) are mistakenly used interchangeably, but most of the literature acknowledges 

CL as the larger subfield while NLP is a part of CL (Manning & Schütze, 1999). NLP from this 

perspective is a methodology of tools and engineering solutions to analyze language or create 

results from textual data (Alexander Clark, Fox, & Lappin, 2013). In most NLP studies, meaning 

is directly interpreted from usage and usage is evaluated through the probabilities and patterns of 

linguistic variables in language. NLP offers fast computational time when analyzing large 

amounts of data, because in most cases model training and model output is based on a document 

or collection of documents reduced to a word-document matrix or bag of words (BoW). The 

reduction of the data increases speed but comes with deficiencies in interpretation and meaning 

of results as NLP ignores context. 

One NLP approach to characterizing the sentiment or meaning of words and documents is 

sentiment analyses (SA). SA characterizes the sentiment or opinion content of a text or word via 

sentiments designated to specific words prior to the analysis. In most cases, the sentiments are  

used to create results that focus on binary oppositions, i.e. for or against, like or dislike, good or 

bad, positive or negative (Pang & Lee, 2008). SA can be unsupervised or supervised, with the 
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supervised approaches requiring a lot of work and effort to create lexicons or vocabularies to use 

in the analysis of text. SA has been used to improve products based on reviews, analyze attitudes 

towards people or events, and evaluate responses via social media sites like twitter, Facebook, 

and Instagram (Baccianella, Esuli, & Sebastiani, n.d.). The results of sentiment analysis have 

also been used to estimate the overall sentiment of texts, highlight the most used positive and 

negative words, and be used to understand attitudes and opinions (B. Liu, 2012). However, 

criticisms of SA include the validity of the meaning attributed to words and the difficulty in 

understanding categorizing or measuring opinion in language like cases of irony, sarcasm, and 

rhetoric in text (Wiegand, Balahur, Roth, Klakow, & Montoyo, 2010).  

Another NLP approach for characterizing words or documents is the topic frequency – 

inverse document frequency (tf-idf) statistic, which classifies documents based on the frequency 

of their words in relation to the entire corpus. The tf-idf or text frequency- inverse document 

frequency statistic counts the number of occurrences of each topic or word in each document of a 

collection of documents or corpus and compares these frequencies with the number of 

occurrences of words based on the full corpus    (Blei, Ng, & Jordan, 2003). Studies that use tf-

idf have been used to increase the speed and efficiency of information retrieval in queries by 

characterizing and classifying documents in corpora (Trstenjak, Mikac, & Donko, 2014). 

However, criticisms of tf-idf point to how tf-idf does not assume a mathematical model (usually 

it is explained via Shannon’s Information theory), in most documents the dimensionality or size 

of the topics is too large, and tf-idf does not provide information about the inter or intra- 

document structure (Blei et al., 2003).  

Analysis of words and how they co-occur or sets of co-occurring linguistic variables within a 

given window or n-grams (i.e. N=2 is a bigram) is another NLP approach to characterizing text. 
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N-grams characterize the relationship between one item (letters, words, syllables, phonemes) in a 

sequence of n-items (one item= unigram, two items= bigram, three items=trigram) (P. F. Brown, 

deSouza, Mercer, Pietra, & Lai, 1992). N-gram analyses are based on a probabilistic model or 

language model (LM), with LM probabilities coming from the mathematics of Markov Chains 

(bigrams and trigrams) and Shannon’s Entropy Theory (Seneta, 2006; Shannon, 1948). N-grams 

have been used to create text or subject classifiers for authors, texts, or words supporting both 

supervised and unsupervised learning algorithms, like decision trees, Naive Bayes, k-nearest 

neighbors, neural networks, and support vector machines (Miao, Kešelj, & Milios, 2005). While 

computational fast and easy to run, criticisms of n-grams include: high rate of data-based errors, 

optical character recognition of large text can lead to miscalculations (i.e. cursive and older 

written texts), no weight or difference in significance of one paper from another, differences in 

test vs. training corpus, difficulty in detecting differences in meaning or context of words due to 

the complexity of language, and narrow interpretative scope  (Zhang, Zhao, & LeCun, 2015). 

Many critics of NLP argue a combination of usage, close reading, and domain expertise provides 

better interpretation and understanding of texts, language, and knowledge (Alexander Clark et 

al., 2013; Renganathan, 2017).  

 

topic models. 

Topic modeling is a flexible NLP approach used to discover the main themes of texts, 

provide an organizational structure to documents according to themes, and model both text and 

metadata of documents (Ramage, Hall, Nallapati, & Manning, 2009). Topic modeling is part of 

larger field of probabilistic textual modeling focused on predictive models and topic 

representations of a text or collection of texts and refer to a range of machine learning algorithms 
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including both supervised and unsupervised approaches.  Generally, topic models characterize 

the words from a text or collection of documents into meaningful groups and helps lead to the 

discovery of unique patterns of words which group together (Blei, 2012). A topic model assumes 

a set of latent topics, a topic being a cluster of words, can be predicted via a multinomial 

distribution of all words, and models every document in a corpus to a set of topics (Chang, 

Gerrish, Wang, Boyd-graber, & Blei, 2009). Generally used in biological and medical document 

mining, topic modeling has also been used for biological and biomedical text mining to discover: 

genes and functional groups, ontological terms and their latent relationships, DNA sequences, 

whole genomes, shape descriptors and brain surface, and clinical events and category of patients  

(Lee, Liu, Kelly, & Tong, 2014; Masseroli, Chicco, & Pinoli, 2012; La Rosa, Fiannaca, Rizzo, & 

Urso, 2015; Dawson & Kendziorski, 2012; L. Liu, Tang, Dong, Yao, & Zhou, 2016). 

Among the many different topic models, latent Dirichlet allocation (LDA) is one of the more 

widely used. LDA is a completely unsupervised machine learning algorithm which models a 

single document or a collection of documents as a mixture of topics with the total number of 

topics being a flexible number chosen by the researcher beforehand. Topics are hidden within 

text as groups of words, and LDA predicts the proportion of topics for any document using 

Markov chain Monte Carlo (MCMC) convergence diagnostics, Gibbs sampling, and Bayesian 

nonparametrics to yield fuzzy clusters of words (topics) occurring together and the probability of 

these clusters appearing in a document (Blei, 2012). Topic models have also been used to  

identify themes or patterns in a document or collection of documents, trends on the linguistic 

surface, and reduce the dimensionality of textual data (Blei & Lafferty, 2007; L. Liu et al., 2016). 

The result of a topic model are topics, words, and the probabilities of both used to discover 

hidden themes in large collections of documents and reduce the dimensionality of text (Blei et 
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al., 2003; L. Liu et al., 2016). Topic models have also been used to make specific claims about 

the structure or changes of knowledge. An LDA topic model from PubMed Central articles and 

citations was used to map the knowledge structure and the overall trends in bioinformatics field 

(Song & Kim, 2013). Another study modeled the interests of authors (i.e. whether authors 

addressed a single topic or multiple topics in their work) by creating an LDA author-topic model 

(Rosen-Zvi, Griffiths, Steyvers, & Smyth, 2004) 

Topic modeling can be used to divide a word into different senses or contexts, but a topic 

model cannot determine the part of speech (noun, adjective, or verb) of a word. This is a critical 

distinction, as language is nuanced and complicated, a word can have multiple interpretations, or 

multiple words can have a single interpretation, and many words carry different connotations and 

denotations. The denotation vs the connotation for the word snake (i.e. snake as an animal vs. 

snake as a malicious person) highlights these distinctions, as do the subtle differences in 

connotations in the words unique, different, and peculiar as all of the words can be used 

synonymously but have different implied meanings with unique being more socially acceptable 

than peculiar (English & Underwood, 2016). Other criticisms, of topic models include their 

sensitivity to noise, a topic model algorithm ignores the syntax of the texts it processes by 

looking at the groups of words occurring together, but the model does not take into account 

location or word order and will include words from any location within a text such as the title, 

headers, footnotes, page numbers, or citations (Underwood, 2012). Some critics, describe 

deficiencies in how LDA topic models represents texts, as there is no standard methodology for 

determining the number of topics to use, overfitting can occur due to the large number of free 

parameters, and the use of the Dirichlet in the model restricts the clusters of words and is not 

compatible with Zipf’s law (Gerlach, Peixoto, & Altmann, 2018). Thus, topic models provide 
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insight into word clusters and underlying themes of text, but ignore word order and location, and 

should be used with other methods for interpreting the meaning of words.  

Within biomedicine all of these NLP approaches have been used to speed up the text 

clustering and classification or text mining process leading to a substantial decrease in  the 

amount of time required to carry out systematic reviews by (Thomas, McNaught, & Ananiadou, 

2011).  A systematic review on text mining approaches for study identification in systemic 

reviews found that text mining did save time and help in screening papers for systematic reviews 

(O’Mara-Eves, Thomas, McNaught, Miwa, & Ananiadou, 2015). However, as already 

mentioned systematic reviews are not an accurate indicator of knowledge. Systematic reviews 

only provide a sample of the knowledge in a given area and do not account for all the knowledge 

in an area or domain, systematic reviews do not measure knowledge or provide insight into how 

knowledge changed or what influenced change, and systematic reviews integrating text mining 

do not overcome these issues (Greenhalgh & Peacock, 2005; Pawson et al., 2005).  

Beyond systematic reviews, text mining has been used in other ways to understand 

knowledge within biomedicine. A survey of biomedical text mining by Aaron Cohen and 

William Hersh, details how researchers have used NLP approaches combined with text mining to 

manage information overload within biomedicine, and found NLP was useful in Name Entity 

Recognition (NER), text classification, relationship extraction, and hypothesis generation (A. M. 

Cohen & Hersh, 2005). Yet, Cohen and Hersh stress the inadequacy of current text mining 

results when dealing with contextual issues such as: when a concept has multiple different 

interpretations based on context, many biomedical concepts have several names that refer to the 

same thing, gene names are often confused with the function of the gene, and biological entities 

have multi-word name as in “carotid artery” (A. M. Cohen & Hersh, 2005).  
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The National Institutes of Health has held multiple conferences, symposiums, created the 

NLM Indexing Initiative and other events emphasizing the use of text mining tools and NLP 

with biomedical data and texts. The NLM provides multiple resources detailing how to integrate 

NLP and text mining approaches and makes selections of biomedical data for these approaches 

freely available. Yet, while the NIH provides numerous tools and resources for analyzing textual 

data, many of these resources are outdated with broken links or links to pages not working in 

most cases. Reviewing these resources, they were found to be unhelpful in providing basic tasks 

for understanding the difference between concepts, separating unique concepts, or in assessing 

how knowledge within biomedicine has changed. The Unified Medical Language System 

(UMLS) Terminology Services, for example, is a set of files and software that integrates 

different biomedical and health vocabularies to link health information, medical terms, drug 

names, and billing codes cataloged by the NIH. Many of the tools available from the NIH use the 

UMLS or parts of the UMLS include: the Metathesaurus, Semantic Network, and the 

SPECIALIST Lexicon and Lexical Tools,the LexAccess Web Tool to search for terms, an 

Interactive Medical Text Indexer (MTI) which provides indexing recommendations for text 

based on MeSH terms, a MTI Machine Learning Package which provides machine learning 

algorithms to analyze texts,  MEDLINE N-gram set for individual users, Phrase2MeSh that 

searches for matches between a phrase and MeSH indexing assigned, MeSh on Demand with 

identifies MeSH terms and lists similar articles to the submitted text,  MetaMapwhich plots 

biomedical texts to the UMLS Metathesaurus or identifies Metathesaurus concepts in a text, and 

others. The UMLS can be installed locally on a computer and be used by individuals for free. 

According to the NIH, the UMLS and the aforementioned tools have been used to group 
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synonymous terms into concepts, categorize concepts, determine relationships between concepts, 

and for health statistics reporting (“UMLS Quick Start Guide,” n.d.).  

Using these tools to discover more information on the microbiome yielded little to no useful 

results in understanding how the microbiome has changed or what the microbiome is, as in 

Figure 3., the results from a search using the Metathesauras for microbiome returned “No 

matching results found” with suggestions for “Did you mean: microbe, microban, microbio, 

microbase, and microbead.”  Most of the tools seem to be made for use by either computer 

scientists or text mining specialists and not anyone else, as many of the tools require the user to 

provide their own source text for analysis, a lexicon or dictionary, and an understanding of the 

difference between different NLP techniques, e.g. topic models, N-grams, latent semantic 

analysis, Vector Support Machines, and so on (Aronson, 2001; Yeh, Ke, Yang, & Meng, 2005; 

Z. Luo, Duffy, Johnson, & Weng, 2010; C.-C. Huang & Lu, 2016). The tools being provided by 

the NLM, also, were primarily built to support or use NIH data as the tools not requiring user 

inputs used datasets or results from NLM resources. Studies using these tools have provided 

interesting results, but the results are based on the MeSH and other biomedical ontologies and 

therefore have all the previously mentioned issues related to concepts, context, and knowledge 

(Holzinger & Jurisica, 2014; C.-C. Huang & Lu, 2016). Still, despite these issues with text 

mining approaches based in NLP, these approaches are commonly used to understand changes in 

knowledge within biomedicine because of the high demand for insight into biomedical 

knowledge and knowledge from data (Holzinger & Jurisica, 2014). While NLP has received 

more attention, a small handful of studies have used methods and approaches from linguistics, 

specifically Corpus Linguistics, to gain insight into biomedical knowledge (Seale, Ziebland, & 

Charteris-Black, 2006; Lawrence Edwards et al., 2016).  
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corpus linguistics: corpora, keywords, and collocation. 

Linguistics provide models and theories for the study of language, language use, and the 

knowledge within language. According to linguists, language is a complex phenomenon and 

process.  Language is a set of items, or linguistic variables such as sounds, words, grammatical 

structures, multi-word units (chunks, clusters, sequences, phrases), semantic categories, and so 

on (Hudson, 1996; Wardhaugh, 2009). Linguistic models and theories focus on linguistic 

variables of language as variables in models to explain language variation (Levshina, 2015). 

Some subfields within linguistics focus on different levels of language including: phonetics, 

morphology, syntax, semantics, and pragmatics, whereas other linguistic subfields study specific 

aspects of languages: sociolinguistics, historical linguistics, psycholinguistics, linguistics 

typology, and language acquisition (P. Baker, 2010). While more studies have gravitated toward 

computational linguistics or NLP within biomedicine, a handful of studies within biomedicine 

have used methods and approaches from Corpus Linguistics to study language and knowledge 

(Adolphs, Brown, Carter, Crawford, & Sahota, 2004; K. B. Cohen & Demner-Fushman, 2014; L. 

Liu et al., 2016). 

Corpus linguistics studies language in use and how language occurs naturally in texts. 

Language in use encompasses studying language patterns of linguistic variables, language 

variation between a group of speakers/writers, and language of different texts or groups of texts 

(Stefanowitsch & Gries, 2003). In linguistics, language is a system of linguistic communication 

particular to a group of individuals that has a variety of modes communication and linguistics 

items, modes of communication include written, spoken, and signed modes of communication; 

and linguistic items or linguistic variables are objects in language which can include sounds, 

words, grammatical structures, and so on (Wardhaugh, 2009). Using these two definitions as first 
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principles, language variation is variation in pronunciation, spelling, or usage of linguistic 

variables, and is a feature of a collection of linguistic variables (P. Baker, 2006). Corpus 

linguistic studies emphasize the use of text-based analysis to discover and assess the extent of the 

complexity of patterns of linguistic variables. Empirical analyses of linguistic variables lead to 

the discovery of unusual cases of language, such as rare linguistic frequencies and patterns 

related to social or intellectual contexts. Corpus based studies, in general, analyze the 

occurrences of a linguistic variable, or a single text or collection of texts (Biber, 2006). To 

accomplish this efficiently, corpus linguistic studies utilize computers and computational 

techniques during the data collection, curation, and analysis of texts for faster and larger analyses 

than a traditional close reading or introspection of the text (Biber, Douglas, Biber, Conrad, & 

Reppen, 1998). Corpus linguistics have revealed complex association patterns, or how linguistic 

variables are used in association with other linguistic variables from language context(s) or non-

linguistic variables from other contexts (Biber, 2006). When analyzed from a Corpus Linguistic 

perspective, association patterns have shown the variability of language specific to different 

social groups, across time for a specific individual, and different varieties of language based on 

situation or registers, e.g. newspaper, academic article, or wanted ad (Biber, 2006). The unit of 

analysis within Corpus Linguistics is a corpus (or corpora plural), which is a ‘body’ or large 

collection of objects in which language occurs naturally that acts as a representative sample of a 

particular language variety, e.g. computer files, sound files, video data, and scientific articles 

(Hettel, 2013). 

 Assuming a corpus is representative of a language, a corpus captures the variety and 

specifics of language used at a specific time and/or place and corpus linguistics studies show 

frequencies, patterns, variation, and changes in language (Hunston, 2002).The difference 
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between textual databases compared to corpora are in the size and scope of the collection of 

texts, a textual database will have text data arranged as part of a relational database management 

schema, where the text data are organized as tables, and often times in a  database the textual 

data is a combination written language and other variables, e.g. timestamps, social demographic 

data, or metadata (Hettel, 2013). Corpora used for corpus linguistics are usually a collection of 

written or spoken examples of text sampled based on a specific question or project. Corpus 

linguistic analyses can be carried out on data from textual databases, and corpus linguistic 

analyses have been conducted on a range of textual data from a single section or passage of a text 

to collections of millions of documents (P. Baker, 2010). However, in most instances the results 

from studies using textual databases or single textual objects cannot be used to make 

generalizations about language use beyond the source of the text (Kretzschmar, 2009) 

The majority of corpus linguistic studies create or use a general or reference corpora as a 

baseline for comparison between other corpora.  A reference corpus is usually a large 

representative sample of the population under study and can consist of 1) texts from multiple 

sources, e.g. newspapers, articles, and books, or 2) texts from one data source, e.g. scientific 

articles from a specific journal. The gold standard for reference corpora is the Standard Corpus 

of Present-Day Edited American English for use with Digital Computers better known as the 

Brown corpus, created by Henry Kucera and W. Nelson Francis in 1964, which consisted of 1 

million words created from multiple sources of English language text, e.g. samples from 

newspapers, books, articles, published in 1964 (Francis & Kucera, 1964). The Brown corpus of 

1960’s along with three other corpora: 1)The Lancaster Oslo-Bergen (LOB) created from British 

language texts from the 1970s, 2) the Freiberg-Brown (FLOB) created from British language 

texts from 1991, 3) and the Freiberg-Brown corpus of American English from texts published in 
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1992, are known as the Brown ‘Family” of Corpora and have been used to show variation and 

change in multiple Corpus Linguistic studies of language across social dimensions between 

English and British language (P. Baker, 2010).  

Yet, not all corpora or corpus-based projects require large samples of text. Some corpus 

linguistics projects use specialized corpora, which have specific a priori restrictions on data 

capture.  The Michigan Corpus of Academic Spoken English (MICASE), consists of around 2 

million words of contemporary university speech via recordings from events, e.g. lectures, 

classroom discussions, seminars, advising sessions, at the University of Michigan  (Simpson-

Vlach & Leicher, 2006). This specialized corpus has been used to study the academic language 

use at the University of Michigan and found differences in gender, disciplinary divisions based 

on frequency of language use (Reppen, Fitzmaurice, & Biber, 2002).  Some linguists argue that 

MICASE is only contextually relevant to studies based on academic language at the University 

of Michigan, while others some argue that the results from studies using MICASE are 

representative of all academic spoken English (Aijmer & Stenström, 2004) 

Most corpus linguistic studies use a combination of a specialized corpora and reference 

corpora to discover unusual cases of variation within language (P. Baker, 2006). In most cases, a 

reference corpus provides information on normal patterns of language that are then compared to 

a specialized corpus to identify what linguistic variables are frequent or infrequent in the 

specialized corpus. Some studies have compared two or more specialized corpora, but in these 

cases issues of size, content, composition, and generalizability between the corpora must be 

considered (Biber et al., 1998). Generally, Corpus Linguistics analyzes frequency of linguistic 

variables especially words in a corpus. Frequency is important, as frequency can highlight the 

focus of a text or collection, indicate markedness, and characterize the relationship between two 
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words (P. Baker, 2010). Differences in frequency can show power imbalances or preferences or 

what is considered to be the ‘norm’ and what is the deviant or the ‘outsider ’(Douglas, 1966; 

Cixous, Cohen, & Cohen, 1976). Results from a frequency analysis of words can indicate a 

preference in the use of specific phrases characteristic of social classes, identify and characterize 

the difference between corpora based on time or other dimensions, including geography, 

institutions, and other social contextual factors (Trudgill, 1979; Labov, 2001).  

Using the frequency of words a frequency profile can be created to emphasize differences 

in the patterns in language and reflect the components we tend to use with particular 

people/groups or in particular situations of use, social context, historical contexts, or knowledge 

of a system (Burkette & Jr, 2018). Frequency profiles have been used in biomedicine to compare 

professional vs lay language, compute semantic similarities within ontologies, and study long-

term knowledge changes in cultural, historical, and linguistic meaning (Kokkinakis & Gronostaj, 

2006; Batet, Sánchez, & Valls, 2011; Guiliano, Fraistat, Brown, Muñoz, & Denbo, 2011). The 

frequency of all words (tokens) compared to unique words (types) or token type ratio (TTR), 

shows the amount of variation in a text and is used to characterize the specificity or complexity 

of the language context. The TTR is calculated by dividing the total number of types or different 

words by the total number of words or tokens (P. Baker, 2010). The TTR shows the lexical 

variation of a particular text, with a high TTR indicating a high lexical variation and a low TTR 

indicating a low lexical variation.  

Concordance analyses provide context to frequency-based results and help to confirm 

claims about language variation and change via a table that displays all the occurrences of a 

linguistic variable along with the context the linguistic variable is used in, i.e. the words or 

sentences the linguistic variable was used with. For example, the word ‘bat’ without any context 
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can refer to a small mammal or a tool for hitting a ball, but by viewing the language context in 

which the word was used, a mention of someone at the plate or is ball in the sentence as opposed 

to mentions of nocturnal eating or winged flying animal, it can be determined which bat was 

referred to (Hettel, 2013). Generally, concordance analyses are used to help support 

interpretations of the meaning and uses of words and assist in identify linguistic patterns, and 

used in conjointly with other analyses such as keyword analyses and collocational analyses 

(Stubbs, 1995) 

  Keyword analysis identify the lexical focus or lexical saliency of texts by comparing the 

relative frequency of words between different corpora and reveals the words which occur more 

in one corpus compared to another corpus (Kronberger & Wagner, 2000a). In most cases, a 

keyword” or “key words” are statistically significant words based on a comparison between two 

corpora. Keywords are not mutually exclusive, and a keyword in one corpus can occur in the 

corpus used for comparison. Different statistical measures can be used to determine the keyness 

of a word between by comparing the frequencies of all words between two corpora, as shown in 

Table 1 (M. Scott, 2018). The results from a keyword analysis is a list of keywords, or a 

Keywords in Context list (KWIC), both will be used interchangeably from this point forward, 

that show both positive and negative keywords. Positive keywords are words that tend to appear 

in one corpus compared to the other, and negative keywords are infrequent words found in one 

corpus compared to the other.  Keywords have been used to show the difference between word 

usage between countries, in groups and out groups, how identity was constructed, and provided 

insight into language variation and change (Gabrielatos & Baker, 2008; P. Baker, 2012). Within 

biomedicine, keywords have been used to analyze the of opinions of practice-based research, 

comments from patients, the knowledge within communication events in a clinical setting, and 
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the evolution of research fields (Huntley et al., 2018; Maramba et al., 2015; Adolphs et al., 2004; 

Pérez et al., 2016). However, criticism of keywords or KWIC stress keywords are not absolutes 

and reveal tendencies in language, a keyword in one corpus does not mean that the word is not a 

part of another corpus. These tendencies are based off statistical tests, and depending on the 

statistical test, size of the corpora, and the reference corpus the results may be different (Oakes & 

Farrow, 2007). Other criticisms of keywords are they have no standardized cut off point and 

larger corpora generally produce more keywords than smaller corpora. It is recommended the 

results of KWIC analyses are examined within the corpora with close reading and concordance 

lists for validation and supporting evidence.    

Collocational analyses show the relationships between linguistic phenomena and provide 

direct evidence of the links between words within small windows of text by taking into account 

the position of words co-occurring with each other (Firth, 1951; Clear, 1993; Evert, 2008).Two 

words collocate when they frequently occur near or next to each other. Collocates are calculated 

using a node word of interest and a span of words to the right or left to determine the strength of 

relationship between words. Collocates provide contextual information about words, reveal 

subtle meanings about words not explicitly mentioned in text, and emphasize both word 

occurrence and word order (Herbst, 1996; Hettel, 2013). Though all words co-occur together to 

some degree, in many cases specific are statistically more likely to occur together more 

frequently than other words. Considering the millions of words within the English language, 

many of those words are not used near other words ever, any of the potential millions words 

could occur together in a phrase or combination as there is no rule against it, but within language 

certain words occur together in statistically significant ways more than other words (Burkette & 

Jr, 2018). In Words and Phrases: Corpus Studies of Lexical Semantics, Stubbs argues that 
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collocates detail knowledge of language, knowledge of individual words, knowledge of 

predictable combinations of words, and cultural knowledge of which combinations of words are 

used: 

“The individual word round can mean "circular", and the individual word table can mean 

"a piece of furniture with a flat top, which people can sit at, so that they can eat, write, 

and so on". The phrase round table has one meaning which is simply due to the 

combination of these individual meanings: something which is both "round" and a 

"table". However, it is also used in longer phrases such as round table talks. This means 

that a group of people, with interests and expertise in some topic, are meeting as equals to 

discuss some problem. This meaning relies on additional cultural knowledge: we would 

not fully understand the phrase unless we also knew that it is often used of discussions 

between political groups who are trying to reach agreement after some conflict.” (Stubbs, 

2001, p. 10). 

 

Stubbs provides evidence of how the meaning of words is easily observable when looking at 

collocates, despite words having so many meanings, again round and table can be interpreted 

different ways, as in: a round number, a table wine, a timetable, Knights of the Round Table, 

table manners, drink someone under the table, payments made under the table (Stubbs, 2001). 

Another example using collocates, highlights how collocates for the word cool are most often 

used with other words indicating recipes like dry cool place  and allow to cool in the 1960s, but 

collocates for cool in the 1990’s are more frequently used in metaphorical expressions such as 

keep cool, he looked cool (P. Baker, 2012). Collocates are unidirectional, meaning that if a word 

(w2) is a collocate of the node word (w1), this does not provide evidence that w1 is a collocate of 

w2.  Like keywords, collocates are calculated with a range different statistical tests used for 

collocates including: Mutual Information (MI), MI3, Log-likelihood ratio, Z-score, T-score, Chi-

square, and the Dice coefficient, see Table 1.  

Each statistical test or association measure highlights different relationships of words, but 

some of the tests yield overlapping results. MI emphasizes exclusivity between collocates and 
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highlights unusual combinations that occur infrequently and in many cases MI scores will 

include typos or other errors in text (Evert & Krenn, 2004). MI is sometimes used with a 

minimum threshold for occurrence for the collocate, collocation, or both (Evert, 2008). MI3 is 

the cubed version of MI and also results in relatively infrequent collocations, but in contrast to 

the results of an MI score the MI3 score gives more weight to observed frequencies (Evert, 

2008). In general, Mutual Information and Z-score both give high scores to words with low 

frequencies, whereas Log-likelihood, T-score, tends to favor words with high frequencies. Some 

studies argue the use of one score over the other depending on the question, and other studies 

suggest using a combination of scores to determine a range of collocates, as each test emphasizes 

either frequency or saliency of words (P. Baker, 2006). Using a corpus of publications created 

based on a search for microbiome, the top 20 collocates of microbiome with their subsequent 

frequencies are shown to highlight the differences and similarities in results between each 

statistical test or association measure, displayed in Table 2. Collocates have been used to show 

the variation in language use (i.e. words and their collocates) and how variation is influenced by 

social factors including prestige, relative location, and interactions (Kemp-Dynin, 2005). 

Collocates within biomedicine have been used to analyze: language used with gout, social media 

texts, college curriculums, relationships between diseases and geography, age stereotypes, and 

redundancies in electronic health records (Lawrence Edwards et al., 2016; Türker, Şehirli, & 

Demiral, 2016; Budgell, 2016; Porter, Atkinson, & Gregory, 2015; Ng, Allore, Trentalange, 

Monin, & Levy, 2015; R. Cohen, Elhadad, & Elhadad, 2013). Therefore, collocates provide 

understanding of the relationship between words and how those relationships determine meaning 

and knowledge.  
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 However, criticism of collocates are similar to the criticisms of keywords, as the 

flexibility in the use of collocate approaches indicates no standardized methodology, different 

statistical tests will yield different results, and results require human interpretation and 

comparisons with other supporting evidence. Noam Chomsky and other generative linguists 

point out that corpus linguistics replace induction with a hypothetico-deductive mode of 

reasoning, and argue no corpus of data can be used as the basis for linguistic generalizations 

because a corpus is an incomplete and unintentional pool of words (Chomsky & Halle, 1965, p. 

15). Yet, counter to this, analyses of language reveal common patterns such as Zipf’s law (which 

will be discussed later) which have been found occurring across multiple dimensions and scales 

and in other complex systems.  Thus, Corpus Linguistics methods identify and analyze complex 

association patterns in which linguistic features are used in association with other linguistic and 

non-linguistic features in language. Within biomedicine, Corpus Linguistic studies have been 

limited because of the time and expertise required to carry out experiments compared to NLP 

approaches (Seale et al., 2006; Lawrence Edwards et al., 2016). Corpus Linguistics provides 

tools to analyze and focus on the variation and change of specific linguistic variables, words, or 

concepts over time. These analyses provide insight into smaller changes of knowledge at the 

level of language and individual words or concepts and provide interpretative value beyond the 

model used for words and words co-occurring with each other. However, corpus linguistics is not 

an optimal approach when dealing with high dimensional data over large time scales and does 

not solve all issues of creating knowledge from data.  

The NIH created the Big Data to Knowledge (BD2K) initiative to: 1) improve the ability to 

locate big data; 2) develop and disseminate data analysis methods and software; 3) enhance 

training in biomedical big data and data science; 4) establish centers of excellence in data science 
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to test novel ideas and approaches and as a response to the problem of creating knowledge from 

data (Margolis et al., 2014). With big data and the influx of textual content the NIH and other 

government agencies are incentivizing the use of textual data as a source of information and 

knowledge (Manning & Schütze, 1999; J. Swan et al., 2007).  However, many complexities arise 

including: multiple concepts, differences in interpretation, changing concepts, and complex 

relationships between concepts, when using language context as a proxy of knowledge and as the 

unit of analysis. Previous studies have shown the processes of knowledge diffusion, 

dissemination, transmission, utilization, and integration for biomedicine are contextual and 

different than that of physics, mathematics, or other fields (M. E. J. Newman, 2001; Green, 

Ottoson, García, & Hiatt, 2009). NLP provides a collection of quantitative methods to provide 

empirical evidence for variation and change in language by classifying texts via text 

categorization and information retrieval, and has been used to analyze, classify, categorize, and 

describe biomedical data. However, NLP approaches ignore contextual nuances of language and 

language use and cannot explain contextual differences between things like concepts or words 

(Jose, 2003). Corpus Linguistic approaches are more adept at understanding more nuanced 

differences in language, but require more time, effort, and human direction during analyses. I 

argue a hybrid approach of NLP, Corpus Linguistic, and other methods should be adopted to 

gain insight into biomedical knowledge.  While, it is recognized both NLP and Corpus 

Linguistics have been used to gain insight into biomedical knowledge, a review of the literature 

as of this dissertation points to these two approaches being used in separate studies and never in 

combination.  Additional approaches are needed to help account for the variation and change in 

scientific knowledge within biomedicine. With this in mind, I turn to review common 
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approaches from other domains used to measure and track knowledge, including publications, 

citations, and concepts.  

Publications and Citations as Knowledge Review 

Derek de Solla Price in, Little Science, Big Science … and Beyond, accurately predicted 

science was going to get “big” through exponential growth in manpower, publications, and 

citations (D. De Solla Price, 1986). Price’s novel approach to quantify the growth in science was 

to use publications as the unit of analysis and as a means to show how scientists’ ‘communicate 

knowledge’ and produce ‘new knowledge’ (D. De Solla Price, 1986, pp. 56–58). Following in 

Price’s example, many studies have used publication counts as a measure of the knowledge 

produced by individuals, institutions, and scientific fields (Tabah, 1999; Bellis, 2009). 

Subsequent studies have confirmed the exponential growth of science and the growth of 

scientific knowledge based on scientific publications and citations, or material artifacts 

(Sandström & Besselaar, 2016). Publication data metrics have also been used to characterize 

productivity and determine funding, job promotions, and the impact of a scientists’ work (S. 

Carley, Porter, & Youtie, 2013; Jong & Slavova, 2014). Publication counts have also become 

valuable in comparing the outputs of actors (e.g. individuals, journals, institutions, research 

groups, countries), determining academic superstars, and analyzing trajectories of scientific 

knowledge (Y. Liu & Rousseau, 2010). Within biomedicine, publication analyses are often 

included in systematic reviews or meta analyses and include summaries of the type of study 

design, institutional setting, type of outcomes, number of treatment groups, and number of 

patients (Buchwald et al., 2004).  

However, with the increased use of publication counts and publication data metrics as a 

way to evaluate researchers, research, and scientific knowledge, there has also been an increase 
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in the number of papers published and a decrease in the overall scientific contribution or content 

of publications (Hicks, Wouters, Waltman, de Rijcke, & Rafols, 2015). Scientists and authors 

now under pressure to produce more papers sacrifice quality for quantity and are in a mindset of 

‘publish or perish’ (Sandström & Besselaar, 2016). In an effort to produce more papers, authors 

have increasingly engaged in unethical research practices including: fraud, ghost authors, 

plagiarism, a single publication being published in multiple locations, and splitting research into 

multiple fragments for the sake of publication (Rawat & Meena, 2014). Scientific journals have 

also contributed to decreases in the quality of content within publications. Scientific papers are 

being retracted at alarming rates because the barriers to publication in scientific journals has 

lowered and predatory journals solely focused on publishing will publish anything for a fee 

including fake papers created by computer algorithms or papers based on pop culture references 

(Steen, Casadevall, & Fang, 2013; Van Noorden, 2014). Within biomedicine, the increase in 

papers has also seen an  increase in systematic review articles with most of the reviews being 

characterized as “ unnecessary, misleading, and conflicted” and “Instead of promoting evidence-

based medicine and health care, these instruments often serve mostly as easily produced 

publishable units or marketing tools,” (Ioannidis, 2016a, p. 1). These combined behaviors of 

authors and journals to produce and publish more publications by lowering the quality of the 

content of papers, highlight how publications by themselves are unreliable proxies of knowledge. 

Even Price confirmed this point agreeing historically publications are inaccurate measures of 

knowledge: 

Only incidentally does the paper serve as a carrier of information, an announcement of 

new knowledge promulgated for the good of the world, a giving of free advantage to all 

one’s competitions. Indeed, in past centuries it was not uncommon for a Galileo, Hooke, 

or Kepler to announce his discovery as a cryptogram of jumbled letters that reserved 
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priority without conferring the information that would help his rivals. (D. De Solla Price, 

1986, p. 61). 

  

Admittedly, some of these cryptograms were followed up by actual publications and this practice 

is not the norm, but given the problems with publications some have turned to using how a 

publication is cited or citation counts and citation metrics as a measure of knowledge.  

 Similar to publications, citations have been used in many studies to observe and measure 

knowledge (Bellis, 2009; Keramatfar & Amirkhani, 2018). One of the strongest advocates of 

citation analyses, Eugene Garfield, recognized the cognitive potential of citation indexes and 

created the Science Citation Index (SCI) to promote the use of citations as an approach to gain 

insight into knowledge and scientific disciplines(Garfield, 1955). Using citation dynamics based 

on citations as the unit of analysis to analyze the trajectories and collective behavior of citations, 

Garfield describes his vision for the citation analyses of the SCI: 

…to build a model of the journal communication network that will provide more 

functional definitions of disciplines and specialties, that will make it possible to define in 

detail how different fields of knowledge interact, that will provide methods of predicting 

interdisciplinary impact, and that will provide more effective ways of monitoring 

research performance (Garfield, 1972, p. 478).  

Following Garfield’s lead, citation dynamics have been used to: identify key documents in a 

field, map scientific specialties, describe the structure and change of research fronts, 

intellectually link authors, quantify  impact, and as a means to trace the transmission of 

knowledge within scientific communication  (Garfield, 1955, 1972; Pinski & Narin, 1976; 

Lewison, Rippon, & Wooding, 2005; Bellis, 2009).  Price also advocated using citation 

dynamics to measure knowledge by commenting how citations are a form of “scholarly 

bricklaying” and are used in “maintaining intellectual property” and help to establish “priority 

claims” by forming a “corpus of common knowledge” (D. De Solla Price, 1986, pp. 58–59, 71).  
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Price also noticed through analysis of citation dynamics citations followed power-law 

distributions and posited a model of cumulative advantage for publications (Derek De Solla 

Price, 1976). Price’s cumulative advantage model states the probability of a publication to garner 

new citations is correlated to the number of citations a publication already has  (Derek De Solla 

Price, 1976; Ke et al., 2015). Other studies have confirmed the mechanism of cumulative 

advantage via the study of citation dynamics or preferential attachment, by observing 

heterogeneous connectivity patterns in networks across domains (Barabási & Albert, 1999; M. 

Newman, Barabási, & Watts, 2011). Within biomedicine, the NIH offers an iCite tool to help in 

the analysis of citations (https://icite.od.nih.gov/).  

However, the study of the citation dynamics has also revealed unpredictable behavior in 

citations which make citations an unreliable proxy of knowledge.  The majority of citations have 

been shown to have specific lifespans which are time dependent creating radically different 

results for the same citation or collection of citations depending on when the analysis is 

conducted (Jaffe, Trajtenberg, & Henderson, 1993; Roach & Cohen, 2012). Generally, most 

citations have relatively small windows of time to become frequently cited, but some citations 

are ‘sleeping beauties’ and have ‘second acts’ or delayed impacts and see a considerable increase 

in citations many years after being published (van Raan, 2004; Ke et al., 2015; Wang, 2013). The 

time window of citations and the phenomena of sleeping beauties and second acts stress how 

little is understood about authors’ motivations and choices on who they cite, and the difficulties 

in predicting publication impacts via citation dynamics. Several studies investigating author’s 

motivation and choice have revealed:  how the value of specific citations were not as important 

to the citing authors as it was to the citation metrics, some citations were used to bolster prestige 

claims for friends or themselves, highly cited papers were not related to intellectual significance 

https://icite.od.nih.gov/
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or scientific impact, and subjective criteria for citations centered on the publications age (with 

newer publications being used more than older publications) or specificity (with publications 

published from higher journal impact factors being cited more than other publications) (Cole & 

Cole, 1974; Bellis, 2009; MacRoberts & MacRoberts, 2018). In a study asking authors to self-

report about how and why they cited specific papers, the self-reports showed the motivation for 

citing didn’t sync with the actual use of the citation and the role of a specific citation was 

minimal towards knowledge claims (Amsterdamska & Leydesdorff, 1989; L. Leydesdorff, 

1998). Other criticisms of citations focusing on issues of impact and social context of citations 

include: lack of understanding what citations say about influence, citations ignores the context of 

the content within the publication and only shows that a citation was used not how influential or 

how often a citation occurs in a text, it is not always the case that the most highly cited papers 

are the most important ones, it is unknown if highly cited papers are pushing science progress 

through evolution or revolution, and highly cited papers may consist of easier as opposed to 

difficult findings (Edge, 1979; Ioannidis, 2014; MacRoberts & MacRoberts, 2018).  Further, the 

behavior and dynamics of publications and citations have major differences related to social 

context. Biomedical publications and citations have different characteristics and attributes than 

publications and citations in physics, or math. Previous results have shown biomedical 

publications have more collaborators per author, a larger selection of articles that could 

potentially be cited, on average more papers per author, and on average more authors per paper 

than astrophysics, condensed matter physics, high energy and physics theory (M. E. J. Newman, 

2001).  

In summary, both publications and citations are inaccurate measures of knowledge 

because of the quality and content of publications and the nescience towards the use of citations 
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and citation dynamics. Though, publication counts and metrics based on publications have 

become so ubiquitous counting publications are a standard approach to analyze, quantify, and 

measure individuals, institutions, and scientific knowledge, publications are unreliable as a way 

to understand knowledge and knowledge changes. Like publications, citations and citation 

dynamics are another approach to measure and empirically quantify changes in knowledge, but 

citations also fail to accurately depict knowledge because they are complex material artifacts 

with dynamics that are not well understood.  

Concepts, Knowledge Maps, and Knowledge-Based Economy Review 

Conceptual change is directly related to the structure and growth of scientific knowledge. 

History has shown the addition of new concepts such as gravity, molecule, and virus, were 

introduced as scientific knowledge changed, and the removal or replacement of concepts like 

aether, phlogiston, and spontaneous generation within the scientific discourse paralleled changes 

in scientific knowledge (P. R. Thagard, 1988). Similar to individuals and material artifacts, 

concepts can be analyzed as actors in the process of changes to knowledge and scientific 

advancement (Surman, Stráner, & Haslinger, 2014). Using concepts as an actor allows for a finer 

grained analysis of publications, citations, and other textual artifacts, and enables the use of the 

content within material artifacts as the unit(s) of analysis (Franzosi, 2004). This approach 

removes some of the ambiguity of measuring knowledge from a publication or citation, as 

publications or citations may contain hundreds of concepts. Analyses of concepts can highlight 

the variation of concepts within a language context like: how multiple concepts can have the 

same interpretation, a single concept has multiple interpretations, variation in form or function, 

and how change or differences at the word level (i.e. one word) alter in what way a concept is 

interpreted or used.  
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Traditional historical and philosophical approaches to analyzing concepts has focused on 

the nature of concepts and the meaning of concepts, specifically on the commensurability or 

incommensurability of concepts. Thomas Kuhn, argued substantively if two dissimilar 

theoretical methodologies, what he called paradigms, use a given word or term with 

fundamentally unalike and incommensurable meanings then communication is impossible across 

the two paradigms on a specific word and lead to no logical choice between two theories (Kuhn, 

1970, p. 103). Paul Feyerabend said the information and interpretation of two theories cannot 

compared if the theories contain incommensurable concepts (P. Feyerabend, 1962; P. K. 

Feyerabend, 1970).  

The challenge of incommensurable concepts and issues related to concepts and their 

meaning are significant when considering if scientists can refer to the same concept across space 

and time, as there have been previous cases where issues related to conceptual ambiguity and the 

incommensurability of concepts led to diminished impact, scientific interest, and support of 

specific concepts (Lakoff, 1975; Zadeh, 1976; Drieschner, Lammers, & van der Staak, 2004). 

Gregor Mendel's groundbreaking work on genetics, for example, is one of the most well-known 

examples of the debates on the meaning and usage of concepts having deleterious effects to a 

scientists’ work and career (Sandler & Sandler, 1985). Multiple studies have confirmed after 

Mendel’s work was neglected and disregarded for 34 years, Mendel was so deeply disappointed 

by the lack of response to his historic papers on the concept of heredity, Mendel refused to 

publish his later works and became abbot of his monastery, giving up his research on heredity 

with his previous unpublished and potential future works permanently lost (Iltis, 1932; Henig, 

2017). In psychology, the multiple uses of the concept “harm” in the psychological literature 

resulted in inaccurate diagnoses, scientific and public misperceptions, and splintered discourses 
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(Furedi, 2016; Haslam, 2016). Several studies have traced the gene concept and argued the gene 

has multiple meanings, anchored at different points in time, which are directly influenced by 

social, historical, and language context (Keller, 2002; Rheinburger & Muller-Wille, 2017). Some 

have gone so far as to claim biologists and molecular biologists have ascribed meanings so 

different to the “gene” concept there is now a “classical gene concept” and a “contemporary 

molecular gene concept” (Brigandt, 2010, p. 26). Like the arguments made by Kuhn and 

Feyerabend, researchers have argued these different characterizations of gene inhibit 

communication of the word gene across contexts and gene should be divided multiple concepts 

(Gray, 1992; Neumann-Held, 1999; Portin, 2002; El-Hani, 2007) 

Misinterpretations in conceptual use and meaning have led to exceedingly broad patent 

rights to industry and prohibited further research on innovative breast cancer drugs by 

researchers in studies from science policy (Bar‐Shalom & Cook‐Deegan, 2002). Further, 

incommensurable concepts when used for science policy can result in social and economic 

constraints, historical inaccuracies, underachieved outcomes, biased analyses, and misguided 

science policy  (Grzeda, 2005; Olfati-Saber, Fax, & Murray, 2007). Contested concepts, also,  

have lower rates of collaboration between scientists, less evolution of scholarly activity, and 

received less funding than non-contested concepts (D. U. Hooper et al., 2005) 

Without delving into the debates as to what a concept is, a simple representation defines a 

concept as a single idea represented as a word or words (e.g. a phrase), this definition of concepts 

allows for concepts to be analyzed computationally as parts of texts with quantifiable results (K. 

Carley, 1993). Paul Thagard in Conceptual Revolutions employs this representation in a 

computational analysis of new concepts to measure changes in scientific knowledge and support 

his argument of the slow growth of knowledge within science punctuated my major conceptual 



72 
 

revolutions such as: Newtonian mechanics, Lavoisier’s oxygen theory, and Darwin’s theory of 

natural selection (P. Thagard, 1992). Thagard describes the process of conceptual change by,” 

conceptual combination in which new concepts derive from parts of old ones” and uses the 

example of the concept of sound waves “is the result of conjoining the concept of sound with the 

concept of a wave” (P. Thagard, 1992, p. 8). Thagard’s emphasis on past epistemology and the 

history and philosophy of science to better understand conceptual change is important and his 

computational analysis of texts yields quantifiable results on how scientific knowledge has 

changed, but Thagard’s approach is problematic because it neglects the social context of the 

words being used and assumes that the meaning of words is static and unchanging.  

Other approaches to measuring knowledge have used publications, citations, and 

concepts in varying combinations as proxies for knowledge to create knowledge maps and 

quantifiable results. Due to the sheer number of approaches and domains contributing to 

measuring knowledge including knowledge acquisition, knowledge engineering, and knowledge 

representation, the focus here will be to understand knowledge as it has been used to understand 

the social contexts or language context of concepts. For many of these studies, knowledge is 

defined as units of information and meaningful relationships exist between those units and 

sources of knowledge, which include: individuals, organizations, communities, and literature, 

and this definition also suggest that knowledge can be combined into knowledge collections in 

the form of databases, ontologies, and vocabularies (Eppler, 2008; Balaid, Abd Rozan, Hikmi, & 

Memon, 2016). By adopting this definition knowledge maps visualize words or keywords as a 

representation of a concept, and the location of these words can occur in the title, citation, or 

within the content of a publication. This definition also allows for the analysis of the 

relationships between concepts and other things like: concepts and other actors, concepts and 



73 
 

social variables, and concepts and events. Most knowledge maps visualize the relationships 

between words, articles, patents, citations, metadata, and authors allowing the unit(s) of analysis 

in a knowledge map to be flexible and tailored to specific question(s) and hypotheses of interest 

(Balaid et al., 2016; Owen-Smith & Powell, 2004; Rosvall & Bergstrom, 2008).  

Some of the first knowledge maps were domain visualizations created from citation data, 

like “The Use of Citation Data in Writing the History of Science” by Garfield et al., which 

highlighted the history and discovery of the DNA code using statistics and network analysis 

(Garfield, Sher, & Torpie, 1964). In the article, Garfield and his co-authors argued computers 

could “aid the historian of science” by helping to identify and order key events and analyze the 

interrelationships and importance of key events (Garfield et al., 1964, p. i). Other studies have 

used knowledge maps or maps of science to visualize the structure of scholarly communities and 

networks, detail the growth and evolution of scientific fields, show how research topics diffuse, 

identify key actors or events within a discipline, inform policy decision, assess research 

performance, and provide insight into the dynamics of communicating knowledge across 

multiple dimensions (Noyons, 2001; Börner, Chen, & Boyack, 2003; Rafols, Porter, & 

Leydesdorff, 2010; Mutschke, Scharnhorst, Belkin, Skupin, & Mayr, 2017). Domain 

visualizations or maps of science are knowledge maps visualizing specific topics within a 

domain, collection of articles, or databases related to a domain. Studies using domain 

visualizations have depicted how methods, ideas, models, or results travel from one field to 

another by creating a knowledge map and tracing a pathway through the scientific literature 

(Almeida & Kogut, 1999; Breschi & Catalini, 2010). 

With so many possible units of analysis, knowledge maps and the units on the maps can 

be analyzed by a range of either ‘inter-’ or ‘co-‘relationships between units, including: 
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intercitation, interdocument, coassignment, co-classification, co-citation, co-word, or other 

measures from social network and network analyses such as: betweenness, indegree, outdegree, 

centrality, etc.(Börner et al., 2003; H. D. White & McCain, 1997). In most studies, multiple maps 

are used as the basis for the interpretation of the results. In CiteSpace II: Detecting and 

Visualizing Emerging Trends and Transient Patterns in Scientific Literature, Chaomei Chen 

describes a methodology to map the trends and patterns contributing to a concept’s evolution in 

scientific literature using concepts and citation networks (Chen, 2006a). Chen’s approach 

identifies words from scientific abstracts, titles, and cited references in combination with author 

data (name, discipline, who they cite, who cites them) and journal data (title of journal, 

publication domain, year of publication, citation years) to create networks across multiple time 

slices and networks of combined time slices.  The software and method Chen developed 

connects documents that cite each other (citation networks), networks that connect documents 

that cite the same articles (co-citation networks), and concept networks from journal abstracts or 

titles, and uses a combination of co-citation, co-occurrence of words, and network analysis 

(Chen, 2006b, 2015). In a case study on mass-extinction research, to identify and evaluate the 

factors influencing concepts, Chen’s effective knowledge visualization shows what group of 

concepts (i.e. words) has been used in mass extinction research historically and what articles, 

authors, and citations are connected to the concepts in mass extinction research (Chen, 2006a). 

Effective knowledge visualizations are designed to reduce visual search time, provide improved 

understanding of complex data, reveal unnoticed relations via visual inspection, and enable 

datasets to be observed from multiple perspectives simultaneously (Tufte, 1998). Knowledge 

map visualizations are useful because they are flexible and can be made from a wide range of 

different datatypes including: linear, planar, temporal, multidimensional, tree data; created with 
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different functions like: overview, enhancement, historical analysis, and extraction of data; and 

display the data as landscapes, circle plots, term plots, networks, bar charts, scatterplots, or 

correlograms to help with interpretation of the data (Shneiderman, 1996).  

The “knowledge-based economy” framework from economics and organizational science 

has been used with knowledge maps as a framework for understanding knowledge in complex 

systems such as economies, government, and industries (Godin, 2006; Loet Leydesdorff, 2010). 

The knowledge-based economy is the “production and services based on knowledge-intensive 

activities that contribute to an accelerated pace of technological and scientific advance as well as 

equally rapid obsolescence,” (Powell & Snellman, 2004). Using this definition, most knowledge-

based economy studies have measured the knowledge-base of a system via patents and the 

information within patents (i.e. citations or terms in citation data) as proxies for knowledge and 

knowledge processes. An advantage of patent and patent citation data is patent data can be 

analyzed across multiple dimensions including time, industries, institutions, and individuals 

when knowledge or a proxy of knowledge is conceptualized as a word, or citation (Roach & 

Cohen, 2012). Previous studies have created models from patent citation frequencies and created 

empirical results claiming to pinpoint where knowledge is produced, knowledge flows, changes 

in the knowledge related to the distribution of power in biomedicine, used to predict biomedical 

innovation, and used to make recommendations for policy surrounding biomedical innovation 

(Jaffe et al., 1993; Jaffe & Trajtenberg, 1998; Mogoutov, Cambrosio, Keating, & Mustar, 2008; 

Walsh, Cho, & Cohen, 2005). For example, by analyzing forward citation of patents (i.e. the 

references to a specific patent by later patents) the authors of, “Patents as proxies: NIH Hubs of 

Innovation,” advocated the volume of patents and patent citations could be used as a proxy for 

‘knowledge creation’ and implemented as a metric for evaluating the return on investment for 
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biomedical research funding (Kalutkiewicz & Ehman, 2014).Yet, this study and others using 

patent data to create knowledge maps have issues with validity and interpretation, specifically 

empirical results from patent analyses are noisy measures of knowledge flows because patents 

are generally used to satisfy legal obligations and may not reflect actual intellectual influences or 

knowledge (Loet Leydesdorff, Kogler, & Yan, 2017).  

Other criticisms of patents and patent citation studies have grown in recent years as the 

desire to understand knowledge and how knowledge flows have been recognized as important to 

understanding innovation (Jaffe & Trajtenberg, 1998; Agrawal & Henderson, 2002; Roach & 

Cohen, 2012). Similarly, knowledge maps and the knowledge-based economy framework 

provide methods to characterize and measure the structure of knowledge quantitatively and 

integrate multiple sources of information, but as previously mentioned publications, citations, 

and patents are inaccurate proxies of knowledge and their utility is limited in the interpretation of 

how concepts can change over time. Most studies using patents or knowledge maps, wrongly 

assume no change in all units of analysis from: individuals, publications, citations, and most 

importantly concepts and are not context specific. Rarely do knowledge maps or maps of science 

account for conceptual variation or differences in context, and instead create multi-modal maps 

across time scales creating fuzzy relationships between actors. In network analysis, it is difficult 

to interpret individual relationships and the dynamics of those relationships over time because 

node and network level relationships are subject to destabilization causing the dynamics to be 

unpredictable (K. Carley, n.d.; K. M. Carley, Lee, & Krackhardt, 2002; M. Newman et al., 

2011).  By adding other dimensions to links, the importance of links become subject to greater 

variation and it becomes difficult to interpret different statistical measures are actually showing 

and measuring. The betweenness centrality score on a multi-modal map linking concepts, 
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articles, people, institutions, and events in one space can highlight the most central actor but does 

not help to interpret the relationships among the actors or justify why these actors are related. 

Many of these different actors are part of complex systems which have unique properties, 

behaviors, and dynamics at different scales.  

Previous work on complex systems has revealed language is a complex system (Beckner 

et al., 2009; Kretzschmar, 2015). Many studies looking at the complexity of language have 

provided insight and direction into interpreting language data and highlight some of the features 

of the complex system of language which need to be considered when analyzing concepts and 

knowledge related to concepts. 

Language as a Complex System: Studies on the Variation and Change in Language  

Language is a complex system with multiple components and multiple variants (words, 

multi-word phrases) co-existing and interacting synchronously (Ellis & Larsen-Freeman, 2009). 

Language has the same characteristics of other complex systems such as: open system, orderly, 

dynamic, scaling properties, and imbalance, and different factors influencing an individual’s 

language (idiolect) and a community’s language (communal language) at different strengths and 

at different times  (Beckner et al., 2009). Studies have shown how an individual’s language and 

communal language are interdependent; an individual’s language comes from social context or 

interactions with other individuals in a communal language, and communal language comes 

from individual’s languages interacting (Beckner et al., 2009; Burkette & Kretzschmar, 2018). 

This dynamic interaction of language and contextual factors can amplify or negate each other’s 

effects and/or compete with each other, suggesting in order to understand the dynamic nature of 

language and the factors influencing language, language is best modeled as a complex adaptive 

system (CAS) with the following key features: (1) language as a system involves things 
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interacting with each other, (2) the speaker’s language use (behavior) is based on their 

experience, (3) a speaker’s language is the result of competing factors, and (4) language 

originates from context, which includes experience, social interaction, and cognitive processes 

(Beckner et al., 2009).  

These ideas are common in sociolinguistics, or the study of language variation and 

change using language context and social context.  Language variation can be studied at a 

specific instance of time or synchronic variation, or examined across different slices of time or 

events or diachronic variation (P. Baker, 2010). For the purpose of this dissertation, variation 

relates specifically to synchronic variation. Variation explains the possibilities or range of 

language context or phenomena within a specific historical and/or social context and change 

details what happened over time. Studies in language variation can describe how word is used 

differently based on geography, as in 2010 the word fecal in American English is spelled with 

the vowel /e and pronounced with emphasis on the vowel /e similar to ear, whereas in British 

English the word spelling is faecal with an emphasis on the vowels /æ similar to bat. Studies 

emphasizing synchronic language variation have studied the difference in socio-cultural 

variables among speakers of the same language at the same time and have been used to identify 

relationships between language change and social change (P. Baker, 2010). William Labov’s 

study, The Social Stratification of New York City, showed how variation of macro-sociological 

categories of socioeconomic class, sex class, ethnicity and age were correlated with language 

context, specifically words and linguistic variables or parts of words (Labov, 2006). Labov 

demonstrated direct analysis and systematic comparison of social and linguistic factors can be 

accomplished with a sociolinguistic variable, or a linguistic variable which co-varies not only 

with other linguistic elements, but also with a number of extra-linguistic independent variables 
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such as social class, age, sex, ethnic group, or contextual style (Milroy, 1987, p. 10). Labov was 

influenced by the work of Antoine Meillet, who argued the sporadic nature of language change 

can only be explained by the correlations with the social structure of the speech community in 

which it takes place, “From the fact that language is a social institution, it follows that linguistics 

is a social science, and the only variable element that we can resort to in accounting for linguistic 

change is social change,” (Meillet, 1926). Labov extends Meillet’s claims, by emphasizing 

communities and individuals, stating “community is prior to the individual... language of 

individuals cannot be understood without knowledge of the community of which they are 

members” (Labov, 2006, p. 5).. Peter Trudgill building on Labov’s work highlighted how the 

function of language is to establish social relationships and convey clear and concise information 

stating “that both of these aspects of linguistic behavior are reflections of the fact that there is a 

close inter-relationship between language and society, “(Trudgill, 1979, p. 14).  

Many studies in sociolinguistics analyze social variation in language by characterizing 

social groups based on their use or lack of use of linguistic variables. A study conducted by 

Labov showed a prestige form of specific words (floor and fourth) varied based on social class, 

specifically the prestige form was used most frequently by people in higher social class, used the 

least by those in the lowest class, and over time those in the middle-class usage of the words 

shifted over time toward the prestige form (Labov, 2006). Labov’s study shows two approaches 

to understanding language variation, 1) analysis of the linguistic forms (variables) and their 

distribution, and 2) analysis of the speakers and their behavior (Milroy & Gordon, 2003, p. 8). 

Other studies have analyzed “frequency profiles” to highlight the differences in tendencies of 

word usage in relation to social variables such as gender, age, and social group (Rayson & 

Garside, 1997; Hettel, 2013; Burkette & Kretzschmar, 2018). Variation can also refer to varieties 
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of language, how speakers use the same language differently, or differences in social and 

linguistic variables. Gender-based variation in language shows specific differences of language 

use in the language of men and women from a corpus of 10 million words from the British 

National Corpus (Schmid, 2003). Another synchronic study of language from the 1960’s found 

American texts had more of a bias towards men than a corpus based on British texts at the same 

time, evident by more frequent use of masculine words such as he, boy, and man (Leech, 

Rayson, & Wilson, 2014). Another study compared seven different countries who all 

communicate using the same language and identified what words were unique to each of the 

seven different cultures (Oakes & Farrow, 2007). 

Diachronic variation studies have been used to characterize and explore the changes in 

the distribution of words in relation to historical context, or time and events, and how changes in 

word usage relates to social context like a specific community or group (Bergs & Diewald, 2008; 

Hilpert & Gries, 2009). For this dissertation, diachronic variation or change is the phenomena 

where language is used differently depending on one or more contextual variables (P. Baker, 

2010). Language change incorporating temporal associations for comparisons of language 

context can reveal how language context or linguistic variables of a language change over time 

and how the populations or locations related to a language change over time, or more simply 

how language context changes are related to social context and how social context changes are 

related to language context. A diachronic analysis of a corpus made from scripts from television 

series Star Trek found that societal changes in gender roles from 1966 to 1993 were reflected in 

the language behaviors (female language behaviors characterized as emphasizing a community 

among speakers and male language behaviors characterized as more concerned with the effective 

transmission of information) of characters in the television show (Rey, 2014). Another study 
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over a longer period of time found from 1961 to 2001, the use of male pronouns has decreased 

while the use of female pronouns has increased in the British English (Sigley & Holmes, 2002). 

Other diachronic studies have found authors gave more dialogue to characters of their own 

gender compared to characters of the opposite gender, and revealed American Spoken English is 

more relaxed and abstract compared to British Spoken English (S. Conrad & Biber, 2009). 

However, studies on language changes over time are less common and generally more difficult 

to conduct due to issues related to collecting data over time for communities or individuals. 

Generally, studies on language change will use the same actors at two different points in time. 

These approaches are useful and provide direction on how to conduct studies on language 

variation and change and incorporate links between language and social and historical contexts. 

However, the systematic study of changes in language and social groups is difficult because of 

exponential increases in variants and non-normal scaling of variants over time. 

The non-linear or non-normal or power law distributions in language are also found in 

other complex systems and have been identified in other analyses of: cities, incomes, 

earthquakes, heart rate, forest fires,  and the variation in words (Mitchell, 2009). George 

Kingsley Zipf found an A-curve or power law distribution of word frequencies by showing any 

word’s (word A) frequency is approximately inversely related to the rank of  word A’s frequency 

in a frequency list of all words, or 1/rank of all words, and this pattern of word frequencies scales 

as it occurs in single publications, books like Ulysses by James Joyce, or in collections of 

publications (George K. Zipf, 1935). Zipf’s law helps explain a specific pattern in language 

which shows most words in a sample of language have a low frequency of use and only a few 

words have a high frequency of use. (George Kingsley Zipf, 1946). By plotting all the words 

from a text or collection of texts on a frequency by rank plot results in creating an A-curve, 
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which visualizes the variation of all words at a specific time, which words which occur more 

frequently and less frequently, and how the pattern of word frequency scales across multiple 

dimensions. Scaling within complex systems provide insight into which variables influence each 

other to change, specifically how variables scale in relation to other variables over time provides 

insight into causal mechanisms of the system under study (Barabási & Albert, 1999; Lobo, 

Bettencourt, Strumsky, & West, 2013). Zipf proposed his law operates because different words 

have nonidentical meanings and it is easier for people to attach different meanings to an old word 

rather than come up with a new word (George Kingsley Zipf, 2016). While this interpretation has 

been debated, confirmation of this phenomena is shown in Figure 4a-b., by plotting and 

comparing the frequency by rank graph for a single text and for a collection of 14 articles 

collected on the microbiome. Other studies have used the A-curve to create frequency profiles of 

words for different groups, and their results confirmed properties of scaling across different 

language contexts and the ability to characterize different social groups’ use of language, how 

word usage differentiates groups, and the relationship between language use and social context 

(Kretzschmar, 2015; Burkette & Jr, 2018). Incorporating an understanding of the usage of all 

words at specific moment in time with insight into how most words are used infrequently and 

only a few words are used frequently, provides understanding into the range of knowledge of a 

system, and by repeating this process for multiple time slices the variation of all words can then 

be compared to the changes in word frequencies across different times. Studies of language 

incorporating Zipf’s law and language as a complex system, have shown how language evolves 

similar to evolution of species or how the frequency of use determines selection and when new 

changes enter a system, the changes that are best at surviving and reproducing are used more and 

eventually win out (Mufwene, 2002, 2009). Thus, by comparing the frequencies of words over 
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time it is possible to determine which words were selected and survived and which words did 

not, and because this phenomena scales across dimensions it is possible to analyze both single 

words and aggregates of words from different social and historical contexts.  

Still, complex systems are characterized by both variation and change across multiple 

scales and levels. To understand both variation and change across different levels (system 

compared to individual word) a hybrid approach incorporating analysis of all words in the 

system and a systematic analysis of the changes in statistical frequency of a single word is 

needed. Such an approach could trace the pattern of a single variant over time and indicate the 

specific usage and direction of change for concepts. William Kretzschmar hypothesized about an 

approach by modeling the frequency of single words as a “phase transition” similar to other 

complex systems, arguing the changes in frequency of a single word over time are indicative of 

the direction of change for a word (Kretzschmar, 2009). By analyzing multiple A-curves, data 

can be obtained on the usage of a single variant (concept) over time, which can then be used to 

plot the trajectory of usage over time for a single variant (Kretzschmar, 2009). Concepts which 

are adopted exhibit the form of an “S-curve” when plotting the frequency on the Y-axis and time 

on the X-axis, while other concepts which are rejected, static, or subject to problematic adoption 

also exhibit specific curves as shown in Figure 5a-. Similar S-curves are observed when 

modeling density of contact in networks, spread of variants within a population, or diffusion of 

within a social system (Kretzschmar, 2009; Labov, 1994; Rogers, 2010). This approach analyzes 

both the variation of all words at a single time and the direction of change of single concepts 

over time. Assuming, conceptual change is a proxy for knowledge changes, this approach can 

used to compare new and old concepts, track the changes in usage of concepts, measure the 

range of knowledge of a concept, and the characterize the change of concepts as adoption or 
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rejection. Preliminary analysis of two words related to the microbiome concept show differences 

in usage and highlight the potential use of this approach to understand the adoption and rejection 

of different concepts within a collection of articles on the word microbiome, displayed in Figure 

5a-d.  Thus, by understanding the aggregate and individual pattern of words over time and across 

different scales we can provide analysis into concepts and account for variation and change in 

language and by proxy understand how knowledge changed.    

Emphasizing the link between language change and biological change highlights how 

complexity science provides direction into the analysis of complex systems that consist of 

different components but similar properties like: multiple components interacting at the same 

time, multiple variants co-existing, and changes over time (Burkette & Jr, 2018). A study using 

A-curves and S-curves, could show both the variation of words and the direction of change of a 

single word in the context of language, this analysis could be done across different scales, and 

identify which words/concepts were adopted or rejected by a system over time.  

Yet, as previously mentioned word usage is not the only thing pushing conceptual 

change. Through contact and interaction, language as a complex system is influenced by social 

and historical factors driving variation and change (Labov, 1972; Milroy & Gordon, 2003; 

Wardhaugh, 2009). Change in language can be caused by interactions of agents within the 

system including: individuals, groups, material artifacts, words, concepts, and knowledge, and 

these agents can change spontaneously or over time, and any agent can use concepts differently 

over time and can be influenced by other agents use of concepts (Bybee, 2007; Kretzschmar Jr, 

2010). Bruno Latour and co-authors, articulated this point, and argued knowledge produced in 

laboratories that were scientific facts, are iteratively produced as the results of material, 

experimental practices, biased observations, contingent interpretations, and based on established 
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styles of thought(Knorr-Cetina & Mulkay, 1983).Therefore, determining conceptual change 

requires understanding variation and changes across multiple dimensions, and knowledge on 

concepts is dependent on language context and other contexts, specifically who is using and 

interpreting them, when, and for what reasons (Cetina, 2009; Fujimura, 1996). A framework is 

needed which allows for the analysis of actors across different systems and integrates contextual 

factors to measure changes in knowledge.  

Knowledge and Context 

Drawing on a framework based on networks and contexts developed by Jurgen Renn and 

Manfred Laubichler in Extended Evolution and the History of Knowledge, I argue the analysis of 

the history of knowledge requires a perspective of extended evolution. “Knowledge” is the 

encoded experience of actors and is a mental structure with material and social dimensions that 

determines which actions are possible in a historical situation, knowledge may be shared within a 

group or society via the use of material artifacts such as instruments or texts, and the social and 

material dimension of knowledge  are important for understanding the transmission of 

knowledge from one generation to the next (Renn & Laubichler, 2017a). Institutions according 

to this framework, represent encoded collective experience and are a means of reproducing the 

social relations existing within a given group or society, which results in shared behaviors 

connected by cognitive, social and material links (M. Laubichler & Renn, 2015; Renn & 

Laubichler, 2017a). Renn and Laubichler using historical examples from biology, culture, 

history, technology, and language, showed the origin of variation was a result of the properties of 

complex systems: actors, actions, and their results; context is material means used by an actor to 

reach an action and the result of actions, contexts of action represent knowledge and institutions 

which can be used to share, transmit, and transform regulative structures; networks of human 
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actions include a material and social culture, and knowledge itself may be externally represented 

and shareable (Renn & Laubichler, 2017a). This framework provides the flexibility to model 

material artifacts, individuals, groups, institutions, and systems as actors.  I experimentally tested 

this framework with a concept currently the subject of increasing scientific debate, the 

microbiome. The debates on the microbiome center around the knowledge on the microbiome, 

specifically what is the microbiome, is the microbiome a new concept or a rebranded concept 

and is there a distinction based on context, i.e. multiple interpretations? When did the 

microbiome emerge in the scientific literature? Where and how has the microbiome been used 

and in what contexts? What contextual factors have influenced knowledge on the microbiome?  

Previous attempts to understand what has driven the use and meaning of the microbiome 

have focused on small changes based on qualitative interpretations of historical context, 

language context, or social context. A few studies have combined explanatory variables or 

factors from these different contexts for their arguments, but most studies emphasizing the 

historical context of the microbiome focus on the history of microbiology and on important dates 

of when the microbiome was used in text (Eisen, 2015; Prescott, 2017). Generally, the studies 

emphasizing the language context of the microbiome stay away from the historical context and 

focus on definitions, either claiming that there is no definition of the microbiome or proposing a 

new definition and in some cases entirely new vocabularies (Ursell et al., 2012; Blaser et al., 

2013; Marchesi & Ravel, 2015a). The studies that emphasizing the social context of the 

microbiome focus on the specific domain of interpretation for the microbiome and the social 

processes related to the use of the microbiome (Shade & Handelsman, 2012; Schneider & 

Winslow, 2014). Admittedly, there is some overlap across the different contexts, but currently no 
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study has leveraged the different contexts systematically to measure and analyze the contextual 

factors influencing changes to scientific knowledge on the microbiome.  

This framework provides an approach to use contextual factors as explanatory variables 

to characterize specific changes to the microbiome. By identifying the contextual variation in the 

microbiome over time, the specific changes to the microbiome which were adopted and were 

diffused can be identified.  Specific changes to the usage and meaning of the microbiome are 

dependent on social context. By tracking the development of these changes in the historical and 

language context, or words, phrases, and meaning of the microbiome used over time, a 

determination on which social contexts were influencing the microbiome can be made. Similarly, 

changes in the social context of who uses the microbiome are performed by specific actors who 

in some cases have compatible and other cases incompatible knowledge with the microbiome. 

By analyzing the contextual factors of the microbiome, many of the debates surrounding the 

evolution and use of the microbiome including: the meaning of the microbiome, who/what 

influenced changes to the microbiome, and how knowledge on the microbiome transformed, can 

be settled.  

 Integrating this framework with methods and approaches to understanding knowledge 

variation and change, requires detailed understanding of language variation and change. Words 

or concepts can be used to define knowledge of language and highlight variation and change 

based on the contextual use of individual words and how words co-occur together (Hettel, 2013; 

Stubbs, 1995). As previously mentioned, methods from Corpus Linguistics and NLP can help 

with the understanding knowledge of concepts at different scales. NLP provides insight into the 

relationship between a concept and the totality of knowledge within a discourse through 

characterization and classification, whereas Corpus Linguistics highlights the relationship 



88 
 

knowledge of language, knowledge of individual words, knowledge of predictable combinations 

of words, and cultural knowledge of combinations of words through analyses of individual words 

(Stubbs, 2001). Novel methods such as lexical profiles and collocate networks, not typically used 

within biomedicine, have also shown potential in summarizing and displaying information in a 

clear and systematic manner, so as to facilitate comparison and the discovery of knowledge 

patterns and trajectories.  

Lexical profiles, provide a coherent and interpretable summary of node words and 

collocates. Lexical profiles have been used to create systematic summaries of observed meanings 

for a word within a corpus, interpretations linking contextual factors, and differences of meaning 

based on knowledge (Hettel, 2013; Stubbs, 2001). In this example from Michael Stubbs, he 

creates a lexical profile which reveals the context, sense, and cultural knowledge of the word 

chopped, and the words in close proximity of the word chopped using the 20 most frequent 

collocates of chopped: finely, fresh, parsley, onion, garlic, tbsp., tomatoes, oz, peeled, add, off, 

onion(s), salt, pepper, chives, herbs, tablespoons, dried, small, tsp, and less often with collocates 

like: off, up, and down (Stubbs, 2001, p. 95). Using the node word and the collocates, these 

results show how the meaning of chopped can generally be described as a part of a recipe, and 

the when the words chopped and add both co-occur that the probability of the text being a recipe 

is near 100 percent (Stubbs, 2001, p. 95). Using Stubbs notation, a lexical profile can be shown 

simply by: 

 node word (number of occurrences of node word in corpus): < collocate1, 

collocate2, … collocaten > 

The lexical profile then for the example from above would be: 

 chopped(n)< finely, fresh, parsley, onion, garlic, tbsp., tomatoes, oz, peeled, add, 

off, onion(s), salt, pepper, chives, herbs, tablespoons, dried, small, tsp> 
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The node word and the number of occurrences of a node word in the corpus are followed by a 

colon (:), then the commercial at (<) signifies the set of elements or collocate data, followed by 

the first collocate of interest, and a comma separating each subsequent collocate of interest, and 

then ending with a commercial at in the opposite direction signifying the end of the set (>). The 

lexical profile notation can also include the percentage of the occurrence of each collocate with 

the node word: 

 node word (number of occurrences of node word in corpus): < collocate1 

(percentage of occurrence of collocate1 with node word), collocate2 (percentage 

of occurrence of collocate1 with node word), … collocaten (percentage of 

occurrence of collocaten with node word) > 

  The lexical profile can include collocates of collocates based on the researcher’s 

preference:  

 node word (number of occurrences of node word in corpus): < collocate1 

(percentage of occurrence of collocate1 with node word) <collocate of collocate1 

(percentage of occurrence of collocate of collocate1 with collocate 1) >> 

In including collocates of collocates, the (<) is used to separate the collocate of the collocate, and 

again this allows the researcher to add as many collocates of collocates to the lexical profiles. 

This method has also been used to compare collocates across different social and temporal 

contexts, being represented as: 

node wordc t (n):<w4, w5,…, wn+1>; where c = context , t = time 

Networks derived from combinations of the content within material artifacts, the material 

artifacts themselves, or the metadata associated with the material artifacts were previously 

described as ways to map knowledge and provide insight into social context and structures. 

Collocates and collocational analyses have been reviewed as a method to understand the patterns 

in co-occurring words. Building on this method, collocational networks emphasize the distance, 

frequency, and exclusivity of collocates (Brezina, McEnery, & Wattam, 2015). Within language, 
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collocates are the actors in a language context which communicate the meaning and semantic 

structure of a text or corpus. The criteria for identifying collocates are analogous the criteria used 

for data collection used to create social networks, citation networks, or knowledge maps. 

Criterion for collocates and other networks include: distance which specifies which direct 

neighbors are to be included as part of the analysis, frequency of interaction or the frequency of 

co-occurrence between actors, and directionality or the dyadic link between actors describing 

asymmetrical or symmetrical relationships. By implementing these criteria the end result is a set 

of actors and events, and the events which detail the interaction and relationship between actors 

can then be visualized as a complex network of relationships (Williams, 1998). Previous studies 

using collocational networks have shown within discourses, or language in use, there are specific 

lexical patterns that can be visualized as networks representing the knowledge structure of 

language (G. Brown, Gillian, & Yule, 1983; Stubbs, 1983; Brezina et al., 2015). Thus, the 

framework by Renn and Laubichler combined with the methods mentioned in this chapter 

provide novel approaches to measure and understand changes in knowledge.   

Preliminary analyses were completed to measure if changes in knowledge on the 

microbiome could be discovered based on context using a combination of methods and the 

framework of the history of knowledge. The first preliminary analysis completed was a 

concordance analyses, to discover the variation and range of words used with the word 

microbiome, from a corpus created from microbiome publications from 1900 to 2014. 

Concordance analyses show the relationship between words of interest and how the words co-

occurring with words of interest change over time. The concordance analysis for each word 

compared collocates of the word of interest, e.g. microbiome, and words co-occurring within 4 

words in front of or behind the word of interest after stop words were removed. This is 
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significant as the probability of two words occurring with each other is statistically extremely 

low (Stubbs, 2001). The criteria determining which collocates to include collocates were: (1) 

appeared within four words of word of interest (2) not the word combination Human 

Microbiome Project, (3) Mutual information Score (MI) of equal to or greater than three which 

indicated a strong association with the word of interest with the collocate, and (4) occurred at 

least 5 times within all publications. The results from the concordance analyses were used to 

create collocate networks. The networks were visualized as a force-directed network graph, 

which colored collocates based on their score according to the Newman Grouping algorithm 

using the ORA software package (version v3.0.9.9.33). The rapid diversification of the discourse 

around the microbiome concept was seen when comparing all collocates of microbiome as 

identified with MI Score from 2007 and 2014. The total number of collocates from the words of 

interest, microbiome, gastrointestinal, ecology, science, biology, genomics, and microbiology 

increased from 180 (2007) to 6352 (2014), as seen in Figure 6a-b. These graphs highlighted the 

possible actions or word combinations of the microbiome concept with other words of interest in 

2007 and 2014 and displayed a dynamic network of microbiome knowledge across time at a 

finer scale than publications, citations, or static representations of concepts.  

A publication to co-authorship network was created from metadata associated with the 

microbiome articles from 1900 to 2014. The publication network visualizes the transmission of 

knowledge between material artifacts and actors.  The co-authorship network consisted of 7257 

(out of approximately ten thousand authors) connected by publications as seen in Figure 7., 

highlighting the scientific and scholarly network or intellectual ties within the microbiome (J. 

Scott, 2017). The network of intellectual ties was created to show how people are connected by 

specific knowledge or what they know contained in publications specific to the microbiome. 
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Previous work on intellectual ties has shown=mutually relevant knowledge is the most important 

characteristic within scientific communities (Moody, 2004; Rodriguez & Pepe, 2008; J. Scott & 

Carrington, 2011). These figures demonstrated how microbiome knowledge changed specific to 

context and contextual factors and how it was possible to link multiple proxies of knowledge on 

the microbiome using Renn and Laubichler’s framework.  

These preliminary analyses have demonstrated the variation and change to microbiome 

knowledge and how differences in context must be considered when analyzing microbiome 

knowledge. Also, these results show how it is possible to measure and track knowledge across 

multiple scales and dimensions via specific variants. The first chapter of this dissertation was the 

result of the in depth literature review conducted to understand how language, social, and 

language context has been used to interpret and understand the microbiome. The results of the 

review on the microbiome and this chapter helped guide collection of publications and data for 

this study and informed how to analyze microbiome knowledge.   

Summary 

As something changes, what evidence do we have that something changes? Publications, 

citations, and concepts can be evaluated for trends and patterns, which may point to explanatory 

variables or contextual factors. However, what we observe in the historical evolution of a 

scientific field or scientific knowledge, is these changes are related to changes in knowledge, but 

what is not understood is how to measure and track changes in knowledge. To understand how 

knowledge changes and evolves, requires analysis beyond papers, citations, and concepts. It 

requires a framework integrating the dynamics of language, social, and historical systems and 

their interactions across different scales. An analysis of contextual factors analyzes both the 

changes in language context as a proxy to understand the changes in scientific knowledge, and 
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how things change in particular social context as carried out by specific individuals and 

institutions. Historical transformations captured by events and changes in social networks have 

feedbacks to scientific knowledge (Rivera, Soderstrom, & Uzzi, 2010; Shi, Foster, & Evans, 

2015). Therefore, to understand how contextual factors influence scientific knowledge specific 

questions need to be asked in order to determine if and how knowledge has changed. The 

framework adopted by this dissertation engages new questions concerning the relation between 

biomedicine and the different contexts intersecting the microbiome, which implies new dynamics 

between local and global worlds of knowledge and context (Burri & Dumit, 2007).  With the 

intention of understanding the knowledge variation and change to the microbiome, a systematic 

analysis of the factors contributing to the variation and change of the microbiome is needed.  
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Figures and Tables 

 

 

Figure 1.Results for “microbiome” in MeSH.  
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Figure 2. MeSH descriptor data 2019 for microbiome.  
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Figure 3. UMLS search result for microbiome.  
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Table 1. Association measures for words from (M. Scott, 2018). 

 

  

Mutual Information

Log to base 2 of (A divided by (B times C))

A = joint frequency divided by total tokens

B = frequency of word 1  divided by total tokens

C = frequency of word 2  divided by total tokens

MI3

Log to base 2 of ((J cubed) times E divided by B)

J = joint frequency

F1 = frequency of word 1

F2 = frequency of word 2

E = J + (total tokens-F1) + (total tokens-F2) + (total tokens-F1-F2)

B = (J + (total tokens-F1)) times (J + (total tokens-F2))

T Score

(J - ((F1 times F2) divided by total tokens)) divided by (square root of (J))

J = joint frequency

F1 = frequency of word 1

F2 = frequency of word 2

Z Score

(J - E) divided by the square root of (E times (1-P))

J = joint frequency

S = collocational span

F1 = frequency of word 1

F2 = frequency of word 2

P = F2 divided by (total tokens - F1)

E = P times F1 times S

Log Likelihood

2*(  a Ln a + b Ln b + c Ln c + d Ln d

 - (a+b) Ln (a+b)

 - (a+c) Ln (a+c)

 - (b+d) Ln (b+d)

 - (c+d) Ln (c+d)

 + (a+b+c+d) Ln (a+b+c+d))

a = joint frequency

b = frequency of word 1 - a

c = frequency of word 2 - a

d := frequency of pairs involving neither word 1 nor word 2

and "Ln" means Natural Logarithm
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Table 2. Top 20 collocates of microbiome in MB Corpus by different association measures, 

colored words are collocates by more than one measure.  
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Figure 4a-b. Frequency by rank of one text and fourteen texts. 4a. Frequency by rank one text. 

4b. Frequency by rank of fourteen texts 

. 
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Figure 5a-d. Examples of S-Curves over time. 5a. Adoption of concept over time. 5b. 

Problematic adoption over time. 5c. Rejection over time. 5d. Stasis of concept over time.  
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Figure 6a-b. Collocate Network for MB Corpus. 6a. Collocates of microbiome 2007. 6b. 

Collocates of microbiome 2014. 
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Figure 7. Author to publication network of microbiome publications 1900 to 2014. 

  



103 
 

BIG DATA AND DATA DRIVEN SCIENCE AND RESEARCH 

Background 

As a result of the big data, there is an amalgamation of methods from distinct cultures 

and methodologies with an emphasis on computation or digital, as seen in computational social 

science, computational and digital history and philosophy of science, and digital humanities 

(Guiliano et al., 2011; M. D. Laubichler, Maienschein, & Renn, 2013; English & Underwood, 

2016). Researchers with from different backgrounds are trading and collaborating with each 

other to share tools, information, and knowledge on how to analyze and understand big data (M. 

E. J. Newman, 2001; Ankeny & Leonelli, 2016). Some speculate big data will produce important 

theoretical changes for the social sciences and for sociology in particular, aligning with Bruno 

Latour when he said, “change the instruments and you change the entire social theory that goes 

with them” (Latour, 2009, p. 156).  However, some are unsure if these changes will produce any 

revolutionary changes in paradigms, or if these changes will be similar to other cases where a 

field and its traditions are subverted to other fields as in the example of social networks and 

network science (Fleck & Kuhn, 1981; J. Scott, 2017). Others speculate big data will push the 

humanities and social sciences into Pasteur’s quadrant of actionable knowledge (Underwood, 

2017). To better understand big data, this chapter will explore aspects of the historical, social, 

and language context of big data, giving specific attention to the challenges of integrating big 

data and DDSR methods into experiments, how big data can be used to help interpret high 

dimensional data, and present a case for the necessity of big data to measure and track changes in 

scientific knowledge such as the microbiome concept.  
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Context 

Big data is powerful and useful and the drastic shift in the amount of available 

information has made using big data and data driven science critical to all scientific disciplines. 

Generally, big data refers to the size or amount of data. In industry, big data is central to the 

operations of the largest companies in the world like Google, Amazon, and Facebook (Stephens 

et al., 2015).  In popular media, big data has become the subject of various news articles, radio, 

and television programs (Labrinidis & Jagadish, 2012). In government,  there are big data ‘plans’ 

and big data ‘working groups’, e.g. the Big Data Research and Development Strategic Plan and 

the Big Data Interagency Working Group, that are going to scale up big data projects in the 

United States (“Big Data - NITRDGROUPS,” n.d.). The challenges in translating knowledge 

from big data within biomedicine has been recognized by the Big Data to Knowledge or BD2K 

initiative by the National Institutes of Health (Lazer et al., 2009). What unites these different 

areas is how big data provides an unprecedented historical context which leads to novel 

questions, experiments, and results previous generations could not have imagined.  

Big data makes it possible to do things not possible before such as identify business 

trends, personalize medicine at the level of the genome, fight wars using remote drones, and 

measure changes in scientific knowledge (Lazer et al., 2014). Big data consists of a combination 

of images, videos, sound recordings, and texts. Sometimes this data is messy, unorganized, and 

unstructured data or in other instances the data can be pristine, formatted, and accessible 

structured data. While data has been present throughout history and in different contexts, what 

makes the current situation with big data different from periods is the form and function of the 

data and the potential results and the ease of access to high end computational capacity. One of 

the most well-known and successful results from big data was sequencing of the first human 
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genome via the Human Genome Project (HGP) (Yang, 2013).Following the success of the HGP, 

a wave of large scale big data projects emerged following the success of the HGP including: 

CERN’s large Hadron Collider (LHC), the Panoramic Survey Telescope and Rapid Response 

System (Pan-STARRS), and the National Oceanic and Atmospheric Administration (NOAA) 

Big Data Project (Choudhury, Fishman, McGowan, & Juengst, 2014; Natarajan & Philipoff, 

2018). Like the HGP, all of these large international or cross-laboratory data driven projects 

represent the largest scale and scope of big data projects, as they generate petabytes of data per 

day, bring together massive teams and resources, generate multiple scientific discoveries, and 

form new lines of economic growth (Hey, Tansley, & Tolle, 2009). Recently, big data and big 

data technologies have been increasingly used for biomedical insight into biomedical collections, 

organisms, and knowledge (J. Luo, Wu, Gopukumar, & Zhao, 2016; Z. Luo et al., 2010; 

Moerchen, Fradkin, Dejori, & Wachmann, 2008). 

Most big data projects take advantage of recent increases in computing power via 

multiple cores, multiple levels of memory, distributed data centers, and cloud computing to 

analyze and test data. However, recent advances in computational power show the progress made 

in computational speed and power. Initially the HGP took over 13 years and three billion dollars 

to sequence the first human genome, whereas with advances in data analytics and computation 

have decreased the time and cost to only a few days and around thousand dollars to conduct the 

same analysis (Ceri, 2018). Easily accessible and cheap cloud computing services leverages the 

power of multiple computers and can use thousands of computers to answer a single specific 

search query in less than 1 second (Marr, 2015). These increases in power and decreases in cost 

to integrate high end computational architecture have made the processing of bigger data sets 

faster and easier to implement (Guo, Ning, Hou, Hu, & Guo, 2018; Liang & Liu, 2018). In the 



106 
 

wake of these advances, the US government created the Big Data Research and Development 

Strategic Plan and the Big Data Interagency Working Group to scale up big data projects in the 

United States (“Big Data - NITRDGROUPS,” n.d.). Additionally, the National Institutes of 

Health (NIH) and the National Science Foundation (NSF) have grant openings for over $250 

million to projects using big data (Margolis et al., 2014). Still, even with increased resources to 

implement big data projects, more availability and access to large datasets, and diminished 

technological hurdles many scientists are still not taking advantage of big data (Callebaut, 2012) 

Historical context of big data 

Some criticize big data is not a new phenomenon but a recurring theme within science 

and society. These critics point to other historical examples of the ever-increasing amounts of 

information and the problems information overload causes. One of the staunchest advocates of 

this position is Ann Blair, she has pointed out society has dealt with information overload or 

data-deluges consistently through history,  from Lucius Annaeus Seneca the 1st century 

philosopher “ the abundance of books is a distraction;” to  Gutenberg’s printing press, suddenly, 

“there were far more books than any single person could master, and no end in sight,” to 

Erasmus the 16th century poet and priest, “ [printers] fill the world with pamphlets and books 

that are foolish, ignorant, malignant, libelous, mad, impious, and subversive, and such is the 

flood that even things that might have done some good lose all their goodness… Is there 

anywhere on earth exempt from these swarms of new books?“ (A. Blair, 2003; A. M. Blair, 

2011; “Information Overload Is Not Unique To Digital Age,” n.d.). Others have cited the 

foretelling of the challenges of data within science: 

“The summation of human experience is being expanded at a prodigious rate, and the 

means we use for threading through the consequent maze... The investigator is staggered 
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by the findings and the conclusions of thousands of other workers- conclusions which he 

cannot find time to grasp, much less remember.” (Bush, 1996, p. 37). 

Fremont Rider, a Wesleyan University Librarian, described the problem of volume of data within 

libraries in 1944, as he estimated that libraries in Universities were doubling in size every sixteen 

years (starting in 1944), and that if this growth rate continues the Yale library collection would 

be around 200,000,000 volumes, that would require a library staff of over six thousand people, 

(“A Very Short History Of Big Data,” n.d.; Molyneux, 1994). 

However, the current situation is different based on: how much new data is being created, 

the different types of data, the new sources of data, the capacity to use data, and the high 

dimensionality and scales of information the data provides. A 2016 report from IBM highlighted 

that 90% of the data in the world (in 2016) had been created from 2014 to 2016, this translated 

into 2.5 quintillion bytes of data a day, with the global total of data estimated to be around 2.7 

zettabytes (“10 Key Marketing Trends for 2017,” n.d.). While, information overload has 

occurred over time, these numbers point to a different pace and volume in output of data. Also, 

drawing on extensive engagement with the literature, the current era of big data is different from 

other historical contexts because the current era of big data is: huge in volume, created in or near 

real time, diverse in structure, massive in scope (entire populations), fine grained and indexical, 

relational with common fields across different data sets, flexible with new fields added easily 

that increase the size of the data, and scalable with size expanding rapidly (Boyd & Crawford, 

2012; Kitchin, 2014). To many this data represents opportunities ushering in a “data revolution” 

or an “era of big data.” This era of big data has created a premium on big data and has scientists, 

organizations, and the public looking for access and ways to use big data for data driven projects 
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(Breddels & Veljanoski, 2018). Yet, many of the same reasons explaining how the current 

historical context with big data is unique also highlight the complexity of big data.  

Complexity of big data  

Many emphasize the volume or amount of data and call it “big data.” Some of the most 

well-known projects utilizing big data or big data projects are/were large international or cross-

laboratory projects using enormous volumes of data like: the Human Genome Project,  the 

Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), and the National 

Oceanic and Atmospheric Administration (NOAA) Big Data Project (Ahmad, Testani, & Desai, 

2016; Calvard, 2016). These projects constitute the largest scale and scope of big data projects, 

as they generate petabytes of data per day, bring together massive teams and resources, generate 

multiple scientific discoveries, and are the basis for new lines of economic growth (Hey et al., 

2009). These projects show how big data relates to the volume or the amount of data now 

available, but as previously mentioned big data also includes four other characteristics. 

 The five characteristics of big data or ‘the five V’s” of big data are: 1) the volume or size 

of the data, 2) the variety or the lack of harmonization of the data from different sources, 

formats, and structures, 3) the velocity or the rate at which data and results are being created, 4) 

the veracity of the data or uncertainty of the data quality,  and 5) the value or insight that can be 

gained from the data (Gudivada, Rao, & Raghavan, 2015). Each of the five V’s has a set of 

inherent challenges which are directly related to the others. Curated digitized relational databases 

are a commonly used big data source and a brief description of an analysis using data from these 

databases will highlight how the five V’s are related.  

Large curated relational databases have been around since the 1960’s, but only recently 

have these databases provided open access to their data (Boyd & Crawford, 2012). These 
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databases come from many different sectors and include: The Library of Congress, Amazon, 

YouTube, Google, the National Energy Research Scientific Computing Center (NERSC), and the 

National Library of Medicine (NLM) (Hitzler & Janowicz, 2013; Marr, 2015). In most cases the 

volume of these databases ranges from terabytes to zettabytes. The variety of data ranges from 

multimodal unstructured to semi-structured data which includes: text, video, audio, and 

metadata.  Additionally, the velocity or amount of data generated by the day (or in some cases by 

the minute) is larger than the aggregate of the previous data stored and/or analyzed. The veracity 

of data from missing values or noise cannot easily be transformed and often large portions of 

data are unusable or alters the entire distribution of data. The value of the data depends on the 

usability and results from data, in some cases to update previous analysis and in others to 

validate new directions.Yet, while the five V’s of big data highlight some of the challenges when 

working with big, the potential for big data and the emergence of publicly accessible databases 

has more scientists and looking for approaches to manage big data (Zhou et al., 2014).  

To some the difficulty in incorporating big data into their projects is lack of the technical 

and computational skills to include a big data service or technology like: cloud-based 

technology, Structured Query Language (SQL), distributed storage platforms (i.e. Hadoop, 

Cloudera, and MongDB), machine learning methods, or the resources to create a large project. 

Yet, while many of these platforms and software are used in some big data projects, they are not 

necessary to incorporate big data into a project or experiment. Previous studies utilizing big data 

have used a range of highly technical or computational tools and methods, while some projects 

have used simpler tools and methods such as pens, papers, completed analyses manually.  
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Analyzing data in multiple dimensions sometimes requires understanding how multiple 

systems interact and lack of this understanding turns people away from big data analytics. It is 

difficult to analyze differences common in big data, such as heterogeneous data types (e.g. audio, 

text, measurement, and metadata), possible inherent semantic associations, and the multi-

dimensional relationships linking different features of the data together, especially when dealing 

with biomedical data (Ahmad et al., 2016; Labrinidis & Jagadish, 2012). This has resulted in 

some other projects utilizing big data for studies at smaller scales and with narrower scopes. 

Some data-driven projects are conducted in a single laboratory, on individual observations, or 

based on a single subject (M. Swan, 2013). Many of these projects have emphasized how big 

data can be used to reproduced traditional results, and create new interdisciplinary techniques, 

questions, and insights for researchers (M. D. Laubichler et al., 2013; Kitchin, 2014). Others 

complain big data results in unnecessary added complexity and some of this complexity comes 

from new sources of information known as “digital breadcrumbs” or “data exhaust” left from 

everyday transactions with phones, the internet, or attributes of the data which have never been 

collected before or used in an experiment (Boiten, 2016; Trusov, Ma, & Jamal, 2016). Some see 

data exhaust as contributing to the unknown data lakes and data sinks consisting of unusable 

data. But these new sources of information have changed what data-driven projects are possible 

and enables studies with greater breadth, depth, scale, and immediacy when compared to 

previous research (Lazer et al., 2014). 

metadata. 

New sources of information from data exhaust, generally exists in the form of an 

annotation or metadata about the data itself. This metadata is well suited for both quantitative 

and qualitative methods as it provides a link between the historical, social, and cultural context 
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of the data to language context. For example, longitudinal social network data was rare and 

costly to gather prior to the data revolution, so many studies turned to small group studies or 

cross-sectional analyses (Doreian & Stokman, 1997; Wasserman & Faust, 1994; Friemel, 2011). 

However, the data revolution has made longitudinal data and metadata more available and now 

more researchers are conducting data-driven longitudinal analysis across many different fields 

(M. Newman et al., 2011; English & Underwood, 2016). Yet, while many use these examples to 

highlight the insights and knowledge from big data to date there is no standardized big data 

methodology or protocol to guide researchers and scientists and few accessible frameworks 

applying big data across domains (Kelling et al., 2009). 

Data driven science and research (DDSR) 

DDSR approaches capture, curate, and enhance the analysis of big data through 

systematic and repetitive experimentation and analysis. As Bruno Strasser in “Data-Driven 

sciences: From wonder cabinets to electronic databases”, articulates, DDSR: 1) promotes 

collaboration between individuals with different disciplinary backgrounds then those who 

created the data, 2) facilitates statistically based analysis, and 3) creates large amounts of data 

from the lab (Strasser, 2012) .  

Generally, a common starting point in DDSR is creating a workflow(s) of the steps 

required to complete the experiment or project. For example, the Large Hadron Collider (LHC) 

computing-grid software that led to the discovery of the Higgs Boson was based on a unique and 

systematic data-driven workflow which was able to capture tens of petabytes (1 petabyte=10^6 

gigabytes) of data per year, analyze data at every stage of the data collection (trigger analyses), 

direct the data to specific destinations within the data architecture, coordinate the analysis of the 

data via multiple systems on the computing grid for registered users from any location, and 



112 
 

repeat these processes with little user maintenance (Alekseev et al., 2016; Britton & Lloyd, 

2014). While the illustrated LHC computing-grid workflow did not illustrate the analyses as part 

of the workflow, in many cases there can be multiple abstract steps, i.e. the results of one 

analysis- a univariate statistical tests- leads to a different analysis- a multivariate statistical test 

that are part of the process(Assunção, Calheiros, Bianchi, Netto, & Buyya, 2015). Also, any 

combination of the following processes: importing data, merging data, cleaning data, 

standardizing data, normalizing data, cleaning for duplicates, analyzing data (preprocessing, 

aggregation, transformation, evaluation), exporting, and repeating or modifying this process 

based on time and resources, could be necessary at any step in a DDSR project.  

Workflows generally are flexible iterative collection of methods and processes that help 

guide the study or experiment. The main purposes of creating a systematic workflow for data-

driven projects are: reproducibility and legitimacy of studies, expedite projects’ data capture for 

future analyses, and highlights any possible selection/publication bias, detection bias, and 

reporting bias of experiments (Moher et al., 2015). For example, in a data-driven textual analysis 

workflow from biomedicine, a systematic workflow highlights the capture and curation of 8,394 

articles from multiple databases, the rationale behind the changes to the dataset throughout the 

experiment, and the results of the processing of the data in a clearly articulated simplified 

workflow graphic (Aiello et al., 2016). Although, implementing a DDSR workflow is analogous 

to designing an experiment based in the scientific method, i.e. there is a question, research, 

hypothesis, experiment, analysis, and then results are compared to a hypothesis, most DDSR 

projects implement multiple exploratory analyses at many stages of the experiment rather than 

towards the end. 
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exploratory data analysis (EDA). 

Exploratory data analysis (EDA) consists of summary statistics, dimensionality 

reduction, clustering, and visualization of the data so variables of interest, relationships between 

variables, and patterns of behavior are more easily identified (Tukey, 1977; Cleveland, 1985). 

EDA can be performed before data capture is finished, as a supplemental analysis to help with 

understanding primary results or can be conducted post-hoc to understand other relevant data 

features. Though EDA consists of many different techniques, visualization has become 

increasingly important as hidden patterns within data have increased the utility of visual 

analytics (Tufte, 1990, 1997, 1998). To illustrate, in Anscombe’s Quartet, four data sets share 

many statistical properties, e.g. mean, variance, correlation, and regression line, shown in the 

tables in Figure 8. However, the bivariate scatter plots or visualization of the data shows how the 

visual analysis is crucial to understanding the characteristic differences in the data sets, 

visualized in the figures in Figure 8 (Ansecombe, 1973; Tufte, 1985). Also, visual analysis by 

human experts is often a critical and repeated process in data-driven projects as visual analysis of 

data takes advantage of inherent pattern matching abilities, edge detection, shape recognition, 

and can provide alternative findings to automatic algorithms (Ware, 2012). Additionally, 

previous studies have shown interpretation and results of data-driven analyses were improved by 

combining human reasoning with visualization (Keim et al., 2008; McCosker & Wilken, 2014). 

Therefore, exploring the data and visual analysis are important to data-driven approaches and 

help provide the context needed to design or redesign a model, experiment, or project. 

replication. 

Several projects using DDSR approaches have shown how it is possible to replicate 

previous findings or other studies using big data and DDSR. The inability to replicate previous 
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results is a major issue in science as increased reports of fraud, manipulated statistical analysis, 

and false research findings have led to multiple “replication projects” and intense debates on 

scientific practice (M. Baker, 2015; Ioannidis, 2005). The estimated replication-failure rate of 

scientific results is estimated at 80% and have scientists, policy makers, and the public asking for 

methods and approaches with repeatable (M. Baker, 2016).  

Previous results from big data projects using DDSR were able to go beyond just 

replicating previous results and provide more sophisticated models of previously studied 

phenomenon. For example, in a case study by Manfred Laubichler, Jane Maienschein, and 

Juergen Renn, “Computational perspectives in the history of science: To the memory of Peter 

Damerow,” their results: 1) confirmed computational data-driven approaches could replicate 

known historical results of dozens of malaria scholars over multiple decades, and 2) provided 

evidence data-driven computational methods can be used to create more sophisticated models 

that are broader in scope than previous models and 3) provide insight into historical phenomena 

beyond traditional approaches  (M. D. Laubichler et al., 2013). In this quote from the text, 

Laubichler, Maienschein, and Renn (2013) mention the benefits of incorporating big data within 

historical analysis to model dynamic processes and move past correlation into: 

 “…specific causal models as explanations of scientific change and innovation that are 

less based on singular cases and more representative of the totality of scientific activity, 

both within any given period or research domain as well as across a wide range of fields 

and historical and geographical areas.” (M. D. Laubichler et al., 2013, p. 124). 

Also, other studies have provided additional evidence  more sophisticated models created from 

DDSR outperform simpler models especially when the number of parameters is large or when 

there is risk of overfitting the data due to small sample size (Witten & Eibe, 2001). These results 

and others have provided evidence on how DDSR and big data can be used to replicate the 
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previous work of researchers, help to develop more sophisticated models, and provide insight 

into historical phenomena.  

Thus, DDSR approaches have helped the science in becoming more open to scrutiny, 

faster, flexible, and responsive to current contextual issues (Hesse et al., 2015). Nonetheless, 

criticisms of DDSR have emerged which attack DDSR as different than knowledge-driven 

science.  

Criticisms 

Both critics and advocates of data-driven science have articulated the differences in 

methods and approaches compared to knowledge-driven science. This perspective generally 

appears in industry or business marketing for big-data analytics and has made erroneous claims 

about data-driven insight presenting a new form of knowledge production and how big data frees 

science from theory and tradition (Hey et al., 2009). A common theme within this view is the 

superior ability of machines and computers to make comparison, classifications, or make 

“smarter” decisions compared to human investigators (Andy Clark, 2013). For many, results 

from unsupervised machine learning and automated programs combined with the ability to 

analyze the results of hundreds of different algorithms across massive datasets are evidence of 

the ability of data to speak for itself (M. Anderson & Anderson, 2011) . Advocates of this view 

see DDSR as a means to go beyond correlation into causal models and prediction using 

intelligent machines to reduce data and produce results (C. Anderson, 2008). 

Yet, even this data first perspective can be viewed as one of the ‘old ways’ with the 

emphasis on big data and data-driven results simply being a reinterpretation of empiricism with 

renewed emphasis on results and evidence (A. M. Blair, 2011; Kitchin, 2014).  The empiricist 

perspective articulates how data-driven science is inductive and epistemologically different from 
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the deductive scientific method, i.e. hypotheses and insights that emerge from data and not 

expertise or insight (Kelling et al., 2009; Callebaut, 2012). Others have taken the empiricist 

perspective of DDSR as far as to argue how the scientific method and scientists are no longer 

necessary for science, anyone can now construct models and test hypotheses through simulation 

and data-based experiments (Prensky, 2009).  

counter argument to criticisms: context 

 

Counter to these arguments is the reality of how data-driven science and research projects 

and results require context for interpretation. Data can never interpret itself without human 

interpretation providing the concepts, theories, and knowledge for the algorithm or analysis 

(Gould, 1981). Those who argue data is free from theory ignore the fact any captured data is 

always shaped or interpreted by the technology collecting the information, the platforms 

distributing the data, and the data ontology used to organize the data (Kitchin, 2014). Even if all 

the capture processes are part of an automated workflow absent of any human interaction, any 

algorithms used to process the data are products of science and specific scientific approaches 

influenced by previous theories, frameworks, and paradigms (Leonelli, 2012). Also, the idea that 

data can speak for itself suggests anyone can interpret the data or the results of data-driven 

science without contextual knowledge.  However, taking an example from biomedicine a 

gastroenterologist can automatically identify IBD or AHI in string of text but a computer 

scientist analyzing data coming across would assume this was unimportant or an error in text (R. 

Cohen et al., 2013).   

Additionally, while the possibility of analysis being conducted by anyone is democratic, 

it has a latent implication only statisticians or a specific kind of ‘anyone’ can interpret the results. 
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Even statisticians, computer, and data scientists stress the importance of context, domain 

expertise, and the perils of interpreting data correlations without contextual knowledge.   

Context is always necessary to interpret data because without context significant results 

and discoveries may in fact be occurring due to chance. This problem is a major concern when 

using DSSR with big data as it is possible to provide supporting evidence for any argument. 

Essentially, the problem with seeking a needle without any parameters and devoid of meaning in 

massive haystacks of data, is that too many bits of straw look like needles (James, Witten, 

Hastie, & Tibshirani, 2013). For example, when performing a regression analysis with multiple 

extraneous variables the result will always produce a large and statistically significant 

association between two variables that may in fact have no effect on each other (Wheelan & 

Davis, 2014). Also, without theory and context it is difficult to ascertain correlation or causality, 

reverse causality or causality going in both directions, omitted variable bias where a variable 

takes on multiple explanatory roles, or multicollinearity (Wheelan & Davis, 2014).  

Theory and context, also, provide insight into phenomenon and help guide research since any 

two variables with monotonic variation over time will yield a correlation. The misinterpretations 

of data have led to many studies citing spurious correlations and mistaking correlation for 

causation, i.e. how a positive or negative association between two variables does not always 

mean that a change in one is the source of the change in the other (Ioannidis, 2005). Some of the 

more outlandish published examples of spurious correlations from data-driven science include: 

1) US spending on science, space, and technology, is correlated with the number of suicides by 

hanging, strangulation, and suffocation, 2) Number of people who drowned by falling into a pool 

correlates with the number of films actor Nicolas Cage appeared in, and 3) the Per capita 

consumption of chicken by the pound correlates with the total US crude oil barrel imports 
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(Reinhart, 2015; Vigen, 2015).   Though these misinterpretations on the surface seem humorous 

they lead to compromised results and unreproducible research (Wheelan & Davis, 2014). Theory 

and context are especially critical in DDSR with big data because the size and complexity of big 

data increases the chances of misinterpretations occurring. Therefore, bigger data is not always 

better, and the interpretations of data-driven results need to be explored using theory and context 

from domain expertise.  

Summary 

 

Thus, the views big data and DDSR is a new form of knowledge production or empiricism 

reborn, falter under scrutiny and context. The path forward advocated by this dissertation is 

DDSR approaches create novel workflows, models, and results. Using big data with DDSR 

benefits from a flexible framework acknowledging knowledge within the history, context, and 

epistemologies of different research domains. Further, by understanding the limitations of big 

data and acknowledging the importance of context to interpreting results, DDSR approaches 

represent an opportunity to draw valuable insights from big data by exploring, extracting, and 

analyzing interconnected data sets, replicating previous results, fostering interdisciplinary 

collaborative research, and developing more sophisticated models.   
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Figures and Tables 

 

 

Figure 8. Ansecombe’s Quartet as a table and as a collection of four graphs (Tufte, 1990).  
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CONCEPTUAL BOUNDARIES OF THE MICROBIOME, METAGENOME, AND 

METABOLOME 

Abstract 

context. 

The microbiome is a multidisciplinary concept with several interpretations describing the 

microbiome as a collection of microbes and microbial cells. Microbiome research outputs have 

experienced dramatic increases in publications, citations, and funded projects. However, amongst 

this proliferation there are still debates on whether the microbiome is a separate concept from 

metabolome and metagenome, or if these three concepts are the same concept.  

objective.  

This study analyzes three corpora or collections of publications created for each concept, 

the 224 million word Microbiome Corpus (MB Corpus) consisting of 27977 publications, the 

150 million word Metabolome Corpus (MetaB Corpus) consisting of 16,818 publications, and 

the 78 million word Metagenome Corpus (MetaG Corpus) consisting of 10,741 publications, to 

describe the similarities and differences of the metabolome and metagenome in comparison to 

the microbiome. To accomplish this, a combination of qualitative and quantitative approaches 

was used to study the content of each corpora and the words used with each concept.  

 results.  

 The results indicate there are differences in the content, words, and definitions of the 

microbiome compared to the metagenome and metabolome. Topic models of MetaG Corpus and 

MetaB Corpus showed both corpora have similar topics (a cluster of words) to the MB Corpus, 

but no topics consisted of the same clusters of words across corpora. Categories from Keyword 

in Context analyses (KWIC) revealed differences in patents, approaches, diseases, and 
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environments between the three corpora. Concordance and collocation analyses revealed 

suggestively different words co-occurring with the microbiome compared to the metabolome and 

metagenome when considering word distance, frequency, and exclusivity to each concept. 

However, the dissimilarities between the co-occurring words and each concept reduce when the 

scope of the collocational analyses is widened to include first and second order collocates.  

Introduction 

 This paper has two purposes. First, a novel hybrid approach is presented combining 

quantitative and qualitative analyses of differences between large bodies of texts. This work 

provides direction on how to analyze concepts and by proxy biomedical knowledge in an era of 

big data by integrating seemingly disconnected methods from innovative work done in the social 

sciences, linguistics, and the history and philosophy of science (Adolphs et al., 2004; Franzosi, 

2004; Labov, 2006; M. D. Laubichler et al., 2013).  The second purpose, is to report a more 

detailed and experimentally based description of the microbiome concept than previous studies, 

thereby extending the evidence base for the argument the microbiome is a separate concept from 

other biomedical concepts (Ursell et al., 2012; Blaser et al., 2013; Huss, 2014; Marchesi & 

Ravel, 2015a).  

historical context. 

Adults have around 40 trillion human cells but 10 times that number of microbial cells 

(Turnbaugh et al., 2007). Genetically we inherit 23,000 different genes from our mother and 

father, but our microbes provide around 3,000,000 genes (Whitman, Coleman, & Wiebe, 1998). 

This collection of microbes and microbial cells within our bodies, on our appendages, and in 

small niche ecosystems have all been called ‘the microbiome’. Recently, the microbiome has 

been associated as a key factor in understanding disease, health, and changes what it means to be 
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human, “the concept of a microbiome has implications for how we think of ourselves because it 

challenges the view of ourselves as atomistic individual organisms,” (Rhodes, Gligorov, & 

Schwab, 2013, pp. 1–2; Huss, 2014; Schneider & Winslow, 2014; Rees, Bosch, & Douglas, 

2018). The microbiome is so critical to understanding humans after the publication of the human 

genome sequence it was argued the genome sequence would be “incomplete until the synergistic 

activities between humans and microbes were understood” and “Without understanding the 

inhabitants of the human microbiome and the mutualistic human microbial interactions that it 

supports, our portrait of human biology will remain incomplete (Davies, 2001; Council, Studies, 

Sciences, & Applications, 2007, p. 38). Some advocate the microbiome provides a new 

interpretation on how important microbes were to human evolution and natural selection, “the 

genomes from the microbiome endow us with physiologic capacities we have not had to evolve 

on our own and thus are both a manifestation of who we are genetically, metabolically, and 

influence our well-being.” (Gordon et al., 2005, p. 1).  

In 2008, the National Institutes of Health (NIH) recognized the importance of 

microbiome research and created the Human Microbiome Project (HMP1). The HMP1 was a 

major interdisciplinary effort to study the microbiome, resulting in a comprehensive analysis of 

the microbial genes and genomes of the mouth, gut, vagina, and skin  (NIH HMP Working 

Group et al., 2009). The HMP1 was modeled after the Human Genome Project (HGP) and 

became another large collaborative data-driven project within biomedicine. While the scientists 

contributing to the HGP brought about a slow and steady conceptual evolution in biology, the 

architects of the HMP believed their results through would spark a Kuhnian paradigm shift in 

human biology (Watson & Cook-Deegan, 1990; Ankeny & Leonelli, 2016). Proponents of the 

microbiome believed the paradigm shift would forever change the scientific knowledge base 
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concerning the relationship between microbial community functions and their environment and 

thrust concepts such as metagenome/genomes, microbiomes, species, evolution, and ecosystem 

into significance (Juengst & Huss, 2009). When the HMP1 ended in 2012, the microbiome 

research yielded new diagnostic biomarkers for health, a plethora of new medicinal drugs, 

innovative industrial applications, novel theories on nutrition requirements, and new 

recommendations for the cycle of food production (The Human Microbiome Project Consortium 

et al., 2012; Mole, 2013). However, what is undetermined is what if any changes occurred to 

microbiome knowledge (Juengst & Huss, 2009; Rhodes et al., 2013).  

The multiple interpretations and uses of the microbiome in different context create major 

obstacles in assessing the knowledge on the microbiome. Some have argued the microbiome is a 

just a new combination of “micro” and “biome,” others have claimed there are multiple 

microbiome including a lung, gut, vaginal, and hand microbiomes, and some have extended 

microbiome past humans to include animal microbiomes, environmental microbiomes, and space 

microbiomes (Shade & Handelsman, 2012; Lundberg et al., 2012). Beyond the scope of the 

microbiome, there are arguments the microbiome is a case of conceptual innovation, while others 

say the microbiome is simply a rebranded concept (J Lederberg & McCray, 2001; Prescott, 

2017). Contradictory studies on patent data have been released for the microbiome because of 

the conceptual ambiguity and misuse of the microbiome, as one study described little to no 

increase in the average patent activity for patents based on microbiome research and a different 

study reported a significant increase in the number microbiome patents (Jones, 2013; Sun, Fiala, 

& Lowery, 2016).  

Knowledge of the microbiome is continuously changing as a result of the use, variation, 

and range of interpretations on the microbiome (Morton, 2013). The microbiome is at risk of 
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becoming a hyper object, or a concept with vast temporal and spatial dimensions with unknown 

contextual boundaries, as the microbiome means different things to different people.(Morton, 

2013). A high-dimensional approach to analyze the contextual data is needed to understand the 

microbiome concept. Yet, this is problematic as it is unclear if the microbiome is a separate 

concept from the concepts ‘metabolome’ and ‘metagenome’ even when context is limited to the 

domain of biomedicine (Ursell et al., 2012; Marchesi & Ravel, 2015a). Lack of conceptual 

understanding of the microbiome has already led to methods, studies, and results being attributed 

to other concepts (Marchesi & Ravel, 2015a; Rees et al., 2018). This is problematic as other 

cases of conceptual ambiguity have resulted in decreased funding, weakened interest, and 

scientific death (Falk, 2004; Rhodes et al., 2013; Ackerknecht & Haushofer, 2016). Thus, the 

conceptual ambiguity of the microbiome is both a historical problem for characterizing 

microbiome research and a contemporary problem that needs to be dealt with urgently. In this 

experiment I propose a combination of both qualitative and quantitative approaches to provide 

clarity to the debate on if the microbiome is a distinct concept separate from other cited concepts. 

If the microbiome is found to be a separate concept, I hope to create a more useful interpretation 

of the microbiome based on language context or how the microbiome was used in scientific 

literature. 

In this paper, I examine the microbiome using five different contextual language analysis 

strategies: topic models, frequency analyses, keywords or Keywords in Context (KWIC), 

collocates, and collocate networks. Using topic models, I analyzed the biomedical discourse 

surrounding the concepts microbiome, metabolome, and metagenome on topic models trained on 

the 224 million word Microbiome Corpus (MB Corpus) consisting of 27977 publications, the 

150 million word Metabolome Corpus (MetaB Corpus) consisting of 16,818 publications, and 
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the 78 million word Metagenome Corpus (MetaG Corpus) consisting of 10,741 publications. 

Using KWIC, I characterized the differences in the tendencies of keywords that are statistically 

significant into inductively created categories by comparing the MB Corpus to the MetaB 

Corpus and the MB Corpus to the MetaG Corpus.  Using collocates, I described the differences 

in language knowledge used in defining the microbiome, metabolome, and metagenome. Using 

collocate networks, I determined how word choice spans are critical in defining the concepts of 

microbiome, metabolome and metagenome.  

Objectives 

 

Given the multiple interpretations of the microbiome concept, the purpose of this 

experiment is to provide insight into the knowledge of the microbiome, with regards to the 

following questions: 

 

RQ1: What are the characteristics differences of the language content of the microbiome, 

metagenome, and metabolome? 

RQ2: How is the language used with the microbiome, metagenome, and metabolome 

similar/dissimilar? 

RQ 3: What is the microbiome based on usage?  
 

These questions will be answered with three datasets created from freely available publications 

collected from Web of Science Core Collection, JSTOR, PubMed, and PubMed Central (PMC). 

The publications were identified using a search for the concept of interest (e.g. microbiome, 

metabolome, or metagenome) as a topic or as a word within the publication. This resulted in a 

collection of publications or corpus for the microbiome (MB Corpus), metagenome (MetaG 

Corpus), and metabolome (MetaB Corpus). These corpora provide a means to compare the 

language context or discourse across corpora and for examination of individual words within a 

specific corpus. Multiple approaches are used to triangulate the similarities/dissimilarities 
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between the microbiome and the metagenome, and the microbiome and the metabolome. The 

paper concludes with a discussion of the different results and a reflection on the limitations of 

this method.  

 

Materials and Methods 

systematic searches. 

A qualitative review of search terms for the microbiome has shortcomings, specifically 

occurrences of false positives. False positives occurred within searches when the search string 

includes a word of interest, but the word did not occur in the actual body of the text and only 

occurs as a computer-generated keyword for the article, or as one of the words in the title or 

citations of the article. Other instances of false positive in searches for this study occurred when 

the only usage of a word was in reference to a database or project, as in the case of the 

occurrence of the word microbiome only being used in the text as part of the ‘Human 

Microbiome Project’. To minimize this problem, both computer and manual methods were used 

during the collection, curation, and review of articles within each corpus.  

Three separate reviewers (Kenneth D. Aiello, Chuquan Shang, and Jasmine Ninita Riggs) 

reviewed and downloaded publications for each corpora as PDFs in WOS, JSTOR, PubMed, and 

PMC. A pilot test was conducted to remove any erroneous occurrences of the microbiome in 

articles only having the word “microbiome” in the title, citation, where the microbiome was only 

referenced as the Human Microbiome Project, or where the full text was unavailable on a corpus 

of microbiome articles and from 1900 to 2017. Duplicates were removed during both a 

computational review and manual review. After the initial cleaning was finished, the final 

combined list of publications was arranged by their associated metadata to be reviewed again, 
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and any duplicates were again removed. Articles were excluded if they were not open access 

during the time of collection the full collection and curation process is displayed in Figure 9. All 

the PDF files were converted into text files using a combination of Adobe Tools and python 

scripts. During this process non-English articles had a high rate of unsuccessful conversion and 

resulted in all non-English publications being removed, the workflow detailed in Figure 9. This 

process resulted in the creation of the MB Corpus and was repeated for each corpus. This 

resulted in a total of 27,977 publications for the MB Corpus, 16,818 publications in the MetaB 

Corpus, and 10,741 publications in the MetaG Corpus. To validate the corpora and the collection 

method, descriptive statistics combined plots of word frequency by word rank for all words were 

used, as seen in Table 3. and Figure10a-c. Zipf’s law was observed for each corpus, in 

accordance with previous studies and results (George K. Zipf, 1935; Hettel, 2013; Moreno-

Sánchez, Font-Clos, & Corral, 2016).  

data analysis. 

topic models. 

 A distant view of the underlying themes, content, and language context of each corpus 

were created using topic models. Topic models are a collection of generative probabilistic 

models used to label topics in data. Latent Dirichlet allocation (LDA) topic models are an 

unsupervised machine learning algorithm that assumes: V words, K topics, and N document(s) in 

a document or collection of documents.  The output of each LDA model includes the topic 

probability distribution over documents matrix (N x K) and the word probability distribution over 

topics matrix (K x V), resulting in a soft cluster of words or  topic, as seen in Figure 11 (L. Liu et 

al., 2016).  LDA topic models of 20, 100, and 1000 topics were created for each corpus. Due to 

K being specified a priori, model training of the word term space of documents compared with 
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the topic space of documents revealed a 20-topic model for each corpus was most beneficial for 

comparison between corpora. as topic space (K x V) was smaller than word space. The two 

hyperparameters of alpha and beta were set at 5.0 and 0.1 respectively, and the results may 

include other attributes of publications including, author, title, location details, and references. 

The relations or distance among the words or topics are not depicted with the results of a topic. A 

list of words of that were to be ignored by the model, or stoplist, were created iteratively and 

used with each corpus to remove function words like: the, what, and, and so on. The topic 

models were created using the corpora and the software MALLET (McCallum, 2018).   

frequency analyses. 

Frequency analyses of the words in each corpus were used to discovery differences in the 

frequency of words and words clusters between the corpora. These frequency analyses were 

conducted using Wordsmith software (Version 6.0) to produce WordLists that contained the raw 

frequency of words in each corpus (M. Scott, 2018). The frequency analyses for each corpus 

yielded lists containing both words of interest and function words. Generally content words like 

nouns, verbs, adjectives, and adverbs were found to be words of interest, whereas function words 

like the, of, a, are, etc., provided little insight during the analyses. Many of the function words 

and other words not included in the analyses were removed through the use of a stoplist. The for 

the frequency analyses contained words ignored during the analyses, different from the topic 

model stoplists. The frequency analysis stoplists were created through manual repeated 

examination of the frequency analyses for each corpus. The frequency analyses also showed 

multiple lemmas from stems of words, as the stem of analyze in the MB Corpus showed both 

American and British English lemmas such as: analysis, analyses, analyzes, analyzed, and 

analysed. Lemmas were combined to represent one word during analysis by using a 
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lemmatization list (one for each corpora) during the processing of the WordLists. The 

lemmatization lists were created through manual repeated examination of the frequency analyses 

for each corpus. 

concordance. 

Concordances provided the ability see and read the range of contexts in which the word 

microbiome, metagenome, and metabolome, and other words of interest were used in their 

original context. Concordance analyses from Wordsmith software (Version 6.0)  provided a list 

of all the examples of a word and the surrounding language context of a word or phrase specific 

to each corpus. Manual reading and interpretation of the words co-occurring with the 

microbiome, metagenome, and metabolome were supported by usage of the words in the text. 

The results of the concordance analyses were often used as a means of additional evidence to 

help guide the interpretation of results from the keywords, collocates, lexical profiles, and 

collocate networks.  

keywords. 

 

The tendencies of words occurring more frequently in one corpus compared to another 

were discovered using keyword analyses. Using the data from the frequency analyses, keyword 

analyses were conducted using Wordsmith software (Version 6.0) to create Keywords in Context 

(KWIC) lists. The KWIC lists showed the top 500 keywords that were statistically significant 

(using Log-likelihood) based on differences in the frequency in the MB Corpus compared to the 

MetaG Corpus, and the MB Corpus compared to the MetaB Corpus were examined. The KWIC 

lists were useful preliminary word lists helping to isolate language patterns specific to each 

corpus and assisted in identifying differences the between the words used in each corpus. 

Additionally, insight into the corpora and the keywords were found using the KWIC lists in 
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combination with a keyword cluster list.  This facilitated comparative aspects of the range of 

knowledge within these corpora of text to be discovered. Categories of keywords were created as 

a result of applying a coding scheme to the keywords and keyword clusters, with evidence 

supported by the frequency lists and concordances of the keywords to evaluate the actual 

language use (D. H. Hymes & Gumperz, 1972; D. Hymes, 2013). 

collocates. 

  

 Knowledge of individual words and the predictable combinations of words were found 

through collocational analyses. Collocational analyses from Wordsmith software (Version 6.0) 

revealed collocates, or words co-occurring with a word of interest at a greater frequency then by 

chance. Using the words microbiome, metagenome, and metabolome as node words, collocates 

were found using the frequency of occurrence of the node word compared to the frequency of 

occurrence of words within a span of eight total words (four words to the left or right). Results 

highlighting the most common interpretations and uses of words within each corpus were found 

by using a combination of common statistical tests used to measure he strength of association 

between words. These statistical tests included MI3, Log-likelihood, T-score, and Z-score. To 

mitigate biases related to the dispersion of words in a text, differences in total words, and 

difference in number of texts, only the top 20 collocates shared collocates in at least two of the 

four scores were used following previous studies (Rayson & Garside, 1997; Kilgarriff, 2001; 

Ghadessy, Henry, & Roseberry, 2001; Stubbs, 2001; Burkette & Kretzschmar, 2018).  

lexical profiles. 

Systematic, coherent, and comprehensive interpretations for microbiome, metabolome, 

and metagenome were created based on summaries of the language context derived. These 

summaries were derived from information on node words, collocates, and their respective 
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frequencies into a lexical profile. The twenty strongest shared collocates based on scores from 

MI3, Log-likelihood, T-score, and Z-score of microbiome, metabolome, and metagenome were 

used to in combination with evidence from the frequency analyses and concordance analyses to 

create lexical profiles for each concept. The following notation was used: 

 node word (number of occurrences of node word in corpus): < collocate1 

(percentage of occurrence of collocate1 with node word), collocate2 (percentage 

of occurrence of collocate1 with node word), … collocaten (percentage of 

occurrence of collocaten with node word) > 

collocate networks. 

The representation of knowledge and meaning for each concept was reviewed and 

compared for similarities using the results from collocational networks. The collocational 

networks were created using each concept as the central node or ego within the collocational 

network. To compare networks, only communal collocates across concepts were used as direct 

links to the node concepts, or first order collocates. Collocational analyses were then conducted 

on the first order collocates to identify second order collocates or collocates of the first order 

collocates. Ego networks were then created for each concept with the node word (microbiome, 

metagenome, metabolome) being linked to shared first order collocates across the concepts, and 

first order collocates linked to their respective top twenty collocates (second order collocates). In 

total, four collocate networks were created: microbiome with shared collocates with 

metagenome, microbiome with shared collocates with metabolome, metagenome with shared 

collocates with microbiome, and metabolome with shared collocates with microbiome, 

represented as: microbiome C MetaG 2001-2017<>; metagenome C MB 2001-2017 <>; microbiome C MetaB 

2001-2017<>; and metabolome C MB 2001-2017 <> respectively. Differences between networks were 

evaluated using the Jaccard Index or Jaccard Similarity Coefficient, which measures the 
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similarity between networks based on a score between 1.0 and 0.0, 1.0 representing 100% 

similarity (P. Jaccard, 1912; Wasserman & Faust, 1994).  

Results 

RQ1: What are the characteristics differences of the language content of the microbiome, 

metagenome, and metabolome? 

topic models. 

Overall, the topic models suggested there is a great deal of shared content from the 

microbiome to the metabolome and even more so between microbiome and the metagenome, and 

the word microbiome clusters with other words in each collection. The topic models for each 

concept also highlighted differences in latent themes represented by word clusters between each 

corpus. Looking at topic bins from a topic model set to 20 topics with each topic consisting of 20 

words for each concept related to bacteria, 28 of the same words were found in 8 topics on 

bacteria in the MB Corpus and 3 topics on bacteria in the MetaB Corpus, these words were: 

aureus ,bacteria, bacterial, coli, community, composition, diet, disease, diversity, doi, fecal, 

growth, gut, host, human, infection, intestinal, mice, microbial, microbiome, microbiota, 

pubmed, resistance, species, strain, strains, studies, virulence, presented in Table 4. However, 

differences from the topic model between MB Corpus and MetaB Corpus suggest topics on 

bacteria within the MB had an environmental (environment, fungi, plant, root, soil, water) and an 

oral (dental, gingivitis, plaque, periodontitis, saliva) focus; compared to the topics on bacteria 

from the MetaB Corpus had a metabolic (acid, fermentation, glucose) and obesity (body, fat, 

food, metabolism) focus.  

Comparison of topic model bins for bacteria between 8 topic bins from the MB Corpus 

and 7 topic bins from the MetaG Corpus revealed 69 of the same words in topic bins which 



133 
 

included: abundance, analysis ,antibiotic, antibiotics, antimicrobial, bacteria, bacterial, coli, 

communities, community, composition, coral, data, diet, disease, diversity, doi, environmental, 

fecal, fermentation, fish, food, fungal ,fungi, growth, gut, health, healthy, high, host, human, 

infection, insect, intestinal, isolates, marine, mice, microbial, microbiology, microbiome, 

microbiota, oral, otus, plant, plants, production, pubmed, relative, resistance, rhizosphere, root, 

rrna, rumen, sample, samples, sequences, sequencing, skin, soil, soils, species strain, strains, 

streptococcus, studies, study, table, virulence, water, see Table 5. Differences from the topic 

model between MB Corpus and MetaG Corpus suggest topics on bacteria in the MB Corpus had 

a gastroenterological (acid, food, lactic, lactobacillus, milk, probiotics, yeast), oral (dental, 

gingivitis, plaque, periodontitis, saliva), and entomological (drosophilia, insects, larvae) focus; 

compared to topics on bacteria from the MetaG Corpus had a body of water (freshwater, lake, 

ocean, sea), and immunological (immune, immunity, infection, inflammation, inflammatory) 

focus. Also, the word microbiome was in found in at least one topic in the results of all three 

corpora. 

frequency analyses. 

  

The frequency analyses showed differences in the words, articles, and use of words 

within each corpus. The type/toke ratio (TTR) was used to evaluate the lexical density of each 

corpus. The MB Corpus had the highest TTR at 0.76, the MetaG was lower than MB Corpus at 

0.69, and the MetaB had the lowest TTR at 0.54, displayed in Table 3. Differences in patterns of 

word usage were found when the frequencies and ranks of the words of interest were compared 

from the frequency analyses after the stoplists and lemmatization lists were applied, as depicted 

in Table 6. Biology and biomedical words like cell, gene, analyse, and study were found in the 
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three corpora. Yet, in general more supporting evidence for differences in the overall language 

context of each corpora were found by comparing the top-ranking words from each corpora.  

keywords. 

  

 Keywords and Keyword in Context (KWIC) lists were created with the MB Corpus as the 

corpus of analysis and the MetaB Corpus and MetaG Corpus as the reference corpora, and vice 

versa using Wordsmith Tools (M. Scott, 2018). Differences in tendencies of word usage between 

each corpus showed positive keywords for the MB Corpus in comparison to the MetaB Corpus 

displayed in Table 7. The keywords were calculated using Log-likelihood with negative 

keywords not included as part of the analysis. The same process was used to discover the 

positive keywords for the MB Corpus in comparison to the MetaG Corpus 

The most noticeable differences in tendencies between the MB Corpus and MetaB 

Corpus were articulated into selected keyword categories including: patient/population, 

approaches, disease/disorder/condition, symptoms, process, unit of analysis, and 

location/environment, presented in Table 8. Validation of keywords between corpora were 

supported by frequency analyses and concordance. To illustrate, the word children was a 

categorized as a patient/population keyword when the MB Corpus was compared to the both the 

MetaB Corpus and the MetaG Corpus. To determine which keyword category children belonged 

to, the context of the word children was evaluated using data from the frequency analysis of MB, 

which showed children occurred 73, 487 times in 7,989 texts, which represents an estimated 29% 

dispersion of the word children across the MB Corpus.  These numbers indicate that the word is 

used multiple times in each text and not a random pattern. The actual context of use of children 
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from the concordance analysis was used to determine the category children belonged to the 

patient/population category, with typical uses of the word like: 

“Data were obtained from a total number of 32,206 swabs and in twenty-two percent (N 

= 6,956) S. aureus was present. After excluding patients for whom age was unknown 

6037 (87,8%) adults (aged 18+) and 840 (12,2%) children (aged 4 to 17) were included 

in our study sample, of which 56% were female” (van Bijnen et al., 2014). 

“Children who were exclusively breastfed until at least 6 months of age (n = 71) did not 

show an increase in diarrheal rates associated with antibiotic exposure (Table 3). 

Conversely, among children who had discontinued exclusive breastfeeding before 6 

months (n = 394), any early antibiotic exposure was associated with a 48% relative 

increase in diarrheal rates (IRR: 1.48, 95% CI: 1.23, 1.78) “(Rogawski et al., 2015) 

“Our initial evaluation of this hypothesis used data available in the Autism Speaks 

Autism Treatment Network (AS-ATN) database that includes a large sample of 2-17 year 

old children and youth with ASD ascertained at medical centers across the U.S. and 

Canada ” (Marler et al., 2017).  

Using this approach for all keywords, keywords distinguished the difference in the 

selected keywords categories between the corpora. In the patient/population category, differences 

in the MB Corpus and MetaB Corpus showed keywords associated with humans and animals like 

adults, cattle, children, fish, infant, mice,  and pigs tended to occur in the MB Corpus; whereas 

the keywords of patient/population of MetaB Corpus showed tendencies towards smaller parts of 

organisms like cells, genes, and tissues, and plant related keywords leaves, roots, seeds,  and 

seedlings. Examining differences in keywords based on the disease/disorder/condition category 

found keywords like asthma, diarrhea, dysbiosis, enterocolitis, hiv, ibd, obesity, and 

periodontitis were used more often in the MB Corpus; while keywords for the same category for 

the MetaB corpus exhibited tendencies to use keywords such as alzheimer’s, and cancer. 

Keywords distinguishing the patients/population of study in the MB Corpus included a 

greater quantity and variety of words associated with humans, including keywords such as adult, 

animal, children, infant, neonatal, and women, compared to the keywords for population/patients 
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of MetaG Corpus which revealed keywords like enzyme, eukaryote, gene, prokaryote, and virus. 

Significant tendencies in the location/environment category of keywords, also, showed a larger 

repertoire of keywords related to the body in the MB Corpus including bile, body, brain, breast, 

colon, gut, intestinal, kidney, liver, lung, stomach, and vagina; compared to keywords tending to 

relate to water in the MetaG Corpus like coastal, freshwater, hypersaline, lake, marine, oceans, 

pacific, seawater, and waters.   

The results of the KWIC analyses confirms a difference in the words used in the MB 

Corpus compared to the MetaG Corpus, and the MB Corpus in comparison to the MetaB Corpus.  

The keywords results reinforce the findings of the topical model but provides detail and context 

at the word level beyond the topic model results. These results support previous results using 

KWIC to compare sensitive variations in the language context of large collections of biomedical 

text and text collections in general (Seale et al., 2006; Kronberger & Wagner, 2000b).  

RQ2: How is the language used with the microbiome similar/dissimilar to the language 

used with metagenome, and metabolome? 

collocates & lexical profiles. 

 The knowledge and meaning of the microbiome was dissimilar compared to the 

metagenome and metabolome. First, to examine if differences in corpus size, words, types, and 

occurrences of node word (i.e. node word representing the concept the corpus was built on and 

the focal point of the analysis) would have a large impact on the results (refer to Table 10.), the 

top 20 collocates from three 5,000 article random samples, MB 1, MB 2, and MB3 from the MB 

Corpus were compared with microbiome as the node word, see Table 11.  Results from the 

collocational analysis showed a high similarity between the top 20 shared collocates for each 

random sample and the Top 20 collocates from the MB Corpus. Table 12 shows a comparison of 
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the top 20 collocates for each sample compared to the top 20 collocates for the MB Corpus, the 

collocates colored in red are shared collocates between the MB Corpus and the random sample 

and the collocates which were unique to the specific sample were not-highlighted.  This 

approach was used to find the shared collocates for microbiome in the MB Corpus, metabolome 

in the MetaB Corpus, and metagenome in the MetaG Corpus. 

Clear differences arose between the microbiome and the other concepts looking at the top 

shared collocates for each concept, see collocates of microbiome in the MB Corpus depicted in 

Table 13., collocates of metagenome in the MetaG Corpus in Table 14., and collocates of MetaB 

in Table 15., and when represented as lexical profiles:  

microbiome
2001-2017

<gut 23%, human 17%, intestinal 4%, oral 3%, analysis 3%, host 3%, 

core 3%, changes 2%, analysis 3%, host 3%, core 3%, changes 2%, project 2%, healthy 

2%, studies 2%, skin 2%, vaginal 2%, lung 2%, obesity 2%, disease 1%, infant 1%, role 

1%, diversity 1%> 

 

metagenome 2001-2017 <analysis 6%, sequencing 6%, data 6%, gut 4%, genome $5, 

assembly 4%, soil 3%, reads 3%, study 3%, microbial 3%, genes 3%, wide 3%, human 

3%, viral 2%, shotgun 2%, whole 2%, marine 2%, metatranscriptome 2%, rumen 1%, 

derived 1%, novo 1%, accessing 1%> 
 

metabolome2001-2017 <human 14%, analysis 11%, database 8%, transcriptome 8%, 

proteome 6%, data 5%, changes 4%, hmdb 4%, microbiome 3%, serum 3%, plasma 3%, 

profiling 3%, genome 2%, wide 2%, gut 2%, urine 2%, arabidopsis 2%, coverage 1%, 

golm 1%, fecal 1%, exo 1%, lipidome 1%, epigenome 1%> 

The differences in the usage and meaning of the microbiome compared to the metagenome and 

metabolome are magnified when looking at the communal collocates between the concepts, as 

only four communal collocates (gut, human, analysis, and changes) were revealed between 

microbiome and metagenome, and three communal collocates (gut, human, and analysis) were 

discovered between microbiome and metabolome, displayed in Table 16 and Table 17 

respectively. The similarity between the collocates was low, the Jaccard Score (J) for J = 
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(microbiome2001-2017, metagenome2001-2017) = 7.5%, and J = (microbiome2001-2017, metabolome2001-

2017) = 7.7%. Combined, these results show the microbiome concept as a separate concept from 

metagenome and metabolome. These results, also, shed some light on the possible 

misinterpretations between the microbiome concept and the other concepts, as microbiome was a 

collocate of metabolome and the communal collocates gut and human are the top collocates for 

microbiome.  

collocation networks. 

 Interestingly, the differences in knowledge surrounding the concepts are less pronounced 

when communal collocates between the concepts are used as a starting point for creating 

collocate networks. The node concepts and the associated communal collocates (C) were 

simplified to: 

microbiome C MetaG 2001-2017<gut 23%, human 17%, analysis 3%> 

metagenome C MB 2001-2017 <analysis 6%, gut 4%, human 3%> 

microbiome C MetaB 2001-2017<gut 23%, human 17%, analysis 3%, changes 2%>  

metabolome C MB 2001-2017 <human 14%, analysis 11%, changes 4%, gut 2%> 

Each of the networks depicts the semantic structure and knowledge associated within close 

proximity of each concept, created from the node concept, first order collocates, and second 

order collocates, graphed in Figures 10-14. The networks were created using ORA, the central 

node being the concept, the first order collocates as orange nodes, and the second order nodes as 

grey nodes, with the links colored by source node (“CASOS Tools: Network Analysis Data | 

CASOS,” n.d.). The similar knowledge between the node concepts increases drastically (40% 

between microbiome and metagenome and 30% between microbiome and metabolome) when 

communal collocates with second order collocates are used: J (microbiome2001-2017  : 
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<gut<>;human<>;changes<>;>, metagenome2001-2017 : <gut<>; human<>;changes<>;>)= 47%, 

and J (microbiome2001-2017  <gut<>;human<>;changes<>; analysis<>;>, metabolome2001-2017 

<gut<>;human<>;changes<>;analysis<>;>) = 37.1%. Therefore, these results suggest the 

conceptual boundaries of the microbiome concept and the concepts metagenome and 

metabolome are less distinct when incorporating communal collocates and second order 

collocates.  

RQ 3: What is the microbiome based on usage? 

Major differences in the knowledge of the words and combination of words within a span 

of 8 words to each concept were found via the shared 20 collocates for each concept. The 

microbiome concept had a total of 20 shared collocates: analysis, changes, core, disease, 

diversity, gut, healthy, host, human, infant, intestinal, lung, obesity, oral, project, research, role, 

skin, studies, and vaginal. Many of these collocates were found to be specific microbiomes via 

supporting evidence from frequency analysis and concordance. Based on this analysis, there are 

multiple different microbiomes and the microbiome can be interpreted as any 1 or all these 

meanings and at any given time (Lawrence Edwards et al., 2016). 

Discussion 

The results suggest the microbiome is a separate concept from metagenome and 

metabolome, based on results from the larger global language context depicted in the topic 

models and keywords, and the dissimilar knowledge of the concepts microbiome, metabolome, 

and metagenome. However, this distinction is not a discrete boundary as results from the 

collocate networks highlight the complex knowledge structure of biomedical concepts changes 

depending on the emphasis of analysis. Multiple representations of the microbiome concept were 

also found, ranging from the larger human and core microbiome, to smaller niches such as a gut, 
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intestinal, lung, oral, skin, and vaginal microbiome. These results suggest the microbiome 

concept may in fact be an amalgam of multiple microbiome concepts, separated by contextual 

differences.  

 A discussion on the status of the microbiome vocabulary is justified by these results, as 

the results support an evaluation and possible revision of microbiome language made by 

previous studies (Huss, 2014; Rhodes et al., 2013). Comprehensive reform of microbiome 

language is not necessary, but these results highlight possible sources of confusion between the 

concepts. Suggestions on how to add specificity or eliminate ambiguity on the microbiome could 

come from scientists, researchers, and other microbiome experts but not from these results. 

Refining scientific knowledge is a daunting task that requires many considerations to be weighed 

including preferences, states, and preferred language.  The reward for which is applicability, 

understanding, and effectiveness of the microbiome concept.  

These experiments make both a substantive and methodological contribution to the 

interpretation and knowledge of the microbiome by confirming and adding to hypothesized 

unique characteristics of the language use and knowledge of the microbiome (Bordenstein, n.d.; 

Marchesi & Ravel, 2015a; Prescott, 2017). Analysis of large collections of text across multiple 

dimensions and scales is one of the advantages of these methods over conventional analysis 

applied to studies of biomedical concepts and language. Possible objections to these conclusions 

about the microbiome based on this approach include: the methods ignore temporal fluctuations, 

the results emphasize majority of use and are biased towards more recent usage and knowledge 

of the concepts. Variation has been found at the level of individuals, and individuals have 

influenced the trajectory of concepts and knowledge over time (Labov, 1972; Burri & Dumit, 

2007; Cetina, 2009). This is not a deficiency of the current analysis, but more of a specification 
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made by the objectives and the data collection. The results from the analyses, up to this point, 

provide evidence given a specific set of documents based on each word, there are characteristic 

differences at the word, combination of words, and themes which can be extended to the form, 

function, and interpretation of each word. However, the selection of each corpora limits the 

results specific to each word, i.e. results are based on a corpus built on the word microbiome 

compared to a corpus built on the word metabolome or metagenome there were significant 

differences. This does not account for the possibility the knowledge or interpretation of the 

microbiome is distinct based on other search criteria. Specifically, the chance the microbiome 

may have existed without the explicit use of the word microbiome or other possible connotations 

associated with the microbiome.  

However, this approach provides direction for future analyses to be conducted on other 

groups, individuals, concepts, or knowledge if textual data is available. Specifically, 

understanding on how other contextual factors beyond usage, distance, and exclusivity within 

language influence knowledge might be compared. Social and historical factors have influenced 

variation and diachronic change of the microbiome may be discovered based on the MB Corpus 

and accompanying metadata. Lastly, this approach provides the capacity for a more interpretative 

and empirical construction of biomedical knowledge within corpora but can also be applied to 

smaller social constructions such as individuals or groups. Interpretative understanding of the 

differences in large collection of texts is the advantage of using this method as it removes a priori 

views of the researcher from the identification of features of interest, as the results are identified 

using statistical procedures.   

 



142 
 

Figures and Tables 

 

 

Figure 9. Systematic collection of articles for MB Corpus. 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32,632 articles identified from electronic and hand searches 

 

1236 duplicate studies removed 

  

 
31,396 articles and associated metadata cleaned for errors in 

publication dates, author names, author institutions, citations, 

article title, publication title 

2,931 articles excluded due to limited 

access  

  

 
28,465 articles assessed for eligibility (word/pdf formats) 

27,977 text files included in analyses 

 

488 records excluded due to conversion 

problems 
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Table 3. Descriptive statistics for the Microbiome Corpus, Metabolome Corpus, and 

Metagenome Corpus. 
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Figure 10a-c. Word frequency by rank. 10a. MB Corpus word frequency by rank. 10b. MetaB 

word frequency by rank Corpus. 10c. MetaG Corpus word frequency by rank. 
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Figure 11. Topic modeling process and results. 

 

  



146 
 

Table 4. Topic bins for bacteria from MB Corpus compared to MetaB Corpus. The following 

topics (topic 0, 2, 5, 8, 11, 13, 16, 17) from the MB Corpus had the word bacteria as a result. The 

words in red were words also found in the topic model of the MetaB. 
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Table 5. Topic bins for bacteria from MB Corpus compared to MetaG Corpus. The following 

topics (topic 0, 2, 5, 8, 11, 13, 16, 17) from the MB Corpus had the word bacteria as a result. The 

words in red were words also found in the topic model of the MetaG Corpus.  
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Table 6. Comparison of ranks and frequencies of words of interest from the corpora. Differences 

in the top 20 ranked words after stoplists and lemmatization lists were applied.  
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Table 7. Positive keywords in the MB Corpus compared to the MetaB Corpus  
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Table 8. Comparison of significant keyword categories MB Corpus compared to MetaB Corpus 
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Table 9. Comparison of significant keyword categories MB Corpus compared to MetaG corpus  
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Table 10. Descriptive statistics for collocate analyses of node word in MB Corpus, MetaG 

Corpus, and MetaB Corpus.  
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Table 11. Descriptive statistics of 5,000 article random samples (MB 1, MB 2, MB 3) compared 

to MB Corpus 
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Table 12. Comparison of top 20 shared collocates  
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Table 13. Top 20 shared collocates of microbiome in MB Corpus.
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Table 14. Top 20 shared collocates of metagenome in MetaG Corpus. 
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Table 15. Top 20 collocates of metabolome in MetaB Corpus. 
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Table 16. Communal collocates between microbiome and metagenome. 
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Table 17. Communal collocates between microbiome and metabolome. 
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Figure 12. Collocate network of microbiome :< changes, gut, human>.
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Figure 13. Collocate network of metagenome :< analysis, gut, human>. 
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Figure 14. Collocate network of microbiome :< gut, human, analysis, changes>. 
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Figure 15. Collocate network of metabolome: < human, analysis, changes, gut>. 
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SYSTEMATIC REVIEW OF THE FACTORS INFLUENCING THE EVOLUTION OF THE 

MICROBIOME CONCEPT 

Abstract 

This article provides the results of an exhaustive review on the questions, how has 

microbiome research, funding, and knowledge evolved over time? This review provides both 

innovative methods for the process of studying literature in a systematic and ordered way, and 

highlights how these methods lead to novel questions and conclusions. This article studies the 

contextual factors influencing the microbiome via a reproducible methodology using biomedical 

literature and peer-reviewed articles. Drawing on a framework of extended evolution and the 

history of knowledge from Renn and Laubichler, variation and changes to the microbiome were 

characterized, clarified, and traced (Renn & Laubichler, 2017b). Characterizing the microbiome 

as an innovation helped to understand sources of variation and change in microbiome 

knowledge, social, and language context. It was discovered the microbiome is an innovation 

based on the relative advantage, compatibility, complexity, trialability, observability, and rate of 

adoption, conclusions that are in accordance with previous studies on the innovation in 

biomedicine, healthcare, and other domains (Greenhalgh et al., 2005; Rogers, 2010). 

Introduction 

Producing reviews of multi-dimensional heterogeneous evidence is a challenging 

methodological area. Unanswered questions remain on how to provide insight on scientific 

knowledge from diverse synchronic and diachronic data sets using both qualitative and 

quantitative methods (Greenhalgh et al., 2005; Lazer et al., 2009). Systematic reviews are used 

within biomedicine and other domains, as most systematic reviews are transparent and 

demanding syntheses of large bodies of evidence following rigid protocols to produce 
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quantitative data and results (Dixon-Woods & NHS Health Development Agency, 2004; Dixon-

Woods, Agarwal, Jones, Young, & Sutton, 2005). Systematic reviews are a way for experts to 

keep up to date with their field, a starting point for practice guidelines, provide justification for 

granting agencies, investigate cost-effectiveness, diagnostic or prognostic questions, and inform 

policy (Buchwald et al., 2004; Petticrew & Roberts, 2005). A systematic review is planned 

around clearly formulated questions using a systematic approach to identify, organize, and 

analyze relevant research using quantitative data. The studies included in the review provide the 

data used to address a research question using any relevant type of research (Moher et al., 2015). 

However, valuable insight and interpretation beyond simple description have been found in 

studies integrating qualitative evidence in systematic reviews (Greenhalgh et al., 2018). The 

study described in this chapter was used as an opportunity to apply novel approaches to the 

synthesis of evidence across multidisciplinary fields on the microbiome concept.  

Scientists have identified the microbiome as the key to understanding disease, health, and 

what it means to be human (“Me, myself, us,” 2012; The Human Microbiome Project 

Consortium et al., 2012). Researchers of the microbiome argue the human genome sequence is 

incomplete until the synergistic activities between humans and microbes, or the microbiome, are 

understood (Davies, 2001; Venter et al., 2001). In 2007, the National Institutes of Health (NIH) 

recognized the importance of microbiome research and announced the Human Microbiome 

Project (HMP). The HMP was a 5-year and $150,000,000 interdisciplinary effort to study the 

microbiome and catalogue the distinct microbial communities on the human body (Relman & 

Falkow, 2001; The Human Microbiome Project Consortium et al., 2012). The HMP resulted in 

new diagnostic biomarkers for health, medicinal drugs, industrial applications, theories on 
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nutrition requirements, and recommendations for the cycle of food production (The Human 

Microbiome Project Consortium et al., 2012).    

Interest in the microbiome has translated into large amounts of funding and resources. 

The White House Office of Science and Technology Policy (OSTP) announced a National 

Microbiome Initiative (NMI) with a combined Federal agency investment of more than $121 

million in Fiscal Year (FY) 2016 and 2017 to study the microbiome(s) of different ecosystems 

and organisms, with other stakeholders and institutions, like the Bill and Melinda Gates 

Foundation, Health Ministries Network, and The BioCollective LLC committing upwards of 

$400 million  (“Announcing the National Microbiome Initiative,” 2016). The full scope of 

government funded investment on microbiome research is much larger, according to data from 

the Federal Research Portfolio Online Reporting Tools (RePORT), the number of projects and 

subprojects associated with the microbiome from 2004 to 2017 increased from 1 to 1403 projects 

and funding for microbiome projects increased by 101% (from $33,725,501 to $3,411,212,659), 

shown in Table 18.  (“Search Results - NIH RePORTER - NIH Research Portfolio Online 

Reporting Tools Expenditures and Results,” n.d.; “Federal RePORTER - Project Search 

Results,” n.d.).  

Despite this wide interest, the origin of the ‘microbiome concept’ or ‘microbiome’ has 

not been plainly defined in research or studies on the subject. Historically, some historians and 

scientists speculate the microbiome concept could be traced as far back as Antonie van 

Leeuwenhoek 1632–1723 (Forum, 2013). Van Leeuwenhoek is considered “the father of 

microbiology” and was the first to observe and describe microorganisms, which he referred to as 

“animalcules” (Scher & Abramson, 2011). Yet, Leeuwenhoek never explicitly used the word 

microbiome in text and this causal link has no empirical data nor have any studies been 
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published investigating this matter in a systematic way.  The majority of the "animalcules" 

Leeuwenhoek observed were unicellular and multicellular organisms he observed in pond water 

(Gest, 2004). In 2001, Joshua Lederberg claimed to create the concept and meaning of the 

microbiome. Lederberg defined the microbiome as “the ecological community of commensal, 

symbiotic, and pathogenic microorganisms that literally share our body space” (J Lederberg & 

McCray, 2001). However, the first use of the word microbiome in print occurred in a book 

reviewing dentistry techniques in 1949, “we know, on the other hand, the role of the pH in the 

evolution of gut microbiome” (Revue odontologique, 1949). Subsequently in 1952, John Mohr 

uses the microbiome concept to explain unicellular organisms (protozoans) with organisms 

(polysaprobes) inhabiting decomposing lakes, “ the protozoan fauna (as a matter of fact, the 

whole microbiome) is poor in species and individuals, and those present are rather typical 

polysaprobes” (Mohr, 1952). These ambiguities create difficulties in understanding the evolution 

and history of the microbiome and the trajectory of scientific knowledge associated with the 

microbiome.  

The conceptual debate on the microbiome occurs across multiple dimensions, as 

microbiome research is observed and conceptually experimented (i.e. tried out) in many different 

fields including but not limited to ecology, molecular biology, microbiology, and medicine. 

Ecology uses the microbiome to describe large geographic regions of niche bacterial 

environment, for example the coral core microbiome represents the coral community and niche 

coral habitats (D Ainsworth et al., 2015). While, microbiology uses the microbiome in to 

reference fungi and viruses, such as the luminal contents of ileum, cecum, and colon or specific 

intestinal regions in mice (Preidis & Versalovic, 2009). A search for microbiome in the PubMed 

Medical Subject Headings Thesaurus or MeSH , the world’s largest controlled vocabulary, 
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resulted in unclear conceptual boundaries as the results displayed microbiota as the “preferred” 

concept, and microbiome, microbial community, and microbiome as “related” concepts (“MeSH 

Preface,” 2014; “MeSH Browser,” n.d.).  Even the American Academy of Microbiology admits 

that, “there is not yet a fully agreed upon definition” of the microbiome (American Society for 

Microbiology, 2013, p. 3).  

The gatekeepers of conceptual innovations and knowledge are historically high impact 

journals on the cutting edge of science or a field (Lyytinen, Baskerville, Iivari, & Te’eni, 2007). 

This implies new knowledge and the overall knowledge of the microbiome should converge with 

these journals. However, to ensure a study of the microbiome as an occasion that connects and 

produces new knowledge, there is a growing need to quickly assess and analyze the ever-

growing deluge of information from multiple scientific fields and research outputs that are 

simultaneously defining and deploying the term (Fuller, Revere, Bugni, & Martin, 2004; 

Smalheiser, 2017). 

The expansion and diversification associated with the term microbiome has led to large 

amounts of data on the microbiome including: microbiome articles, the journals in which these 

articles appear, the NIH Medical Subject Headings (MeSH) terms categorizing these journals, 

and NIH project proposals. This study analyzes the big data traces and tractable indicators of 

what the microbiome is and how the microbiome has evolved combined with qualitative 

inferences based on the contextual specifics of the usage of the microbiome in text. The results 

from this study provide insight into how scientific knowledge and the microbiome research field 

evolved and how knowledge on the microbiome was influenced. 
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Methodological challenges  

Traditional systematic reviews collect data on a specific question with a priori inclusion 

and exclusion criteria providing parameters on what type of articles to include (e.g. randomized 

controlled trials, cross-sectional, double blind, other reviews, etc.) and to remove from study. In 

this study, all articles with microbiome in the text were collected, excluding articles with the only 

occurrence of microbiome in the title, abstract, or references, or instances where microbiome was 

used only as part of the multi-word unit “The Human Microbiome Project.” A wide-ranging 

literature search for articles in the PubMed, Web of Science (WOS), and Journal Storage 

(JSTOR) databases was conducted in July 2015 and again in January 2018. The specific search 

strategy used was dependent on the database. PubMed was searched via the [Text Word] option 

in the builder for ‘microbiome’ with a filter on for publication date from 1900/01/01 to 

2017/12/31. In the Web of Science (WOS) the topic microbiome was searched with a timespan: 

1900-2018, in all available WOS Core Collection: Citation Indexes, e.g. Science Citation Index 

Expanded (SCI-EXPANDED) –from 1900 to present, Social Sciences Citation Index (SSCI) 

from 1956 to present, Arts & Humanities Citation Index (A&HCI) from 1975 to present, and 

Emerging Sources Citation Index (ESCI) from 1900 to present. JSTOR was searched with 

microbiome full-text option and date range 1900 to 2017. All bibliographic records for relevant 

articles were collected. These records included: the citing article, the cited references, author(s) 

and co-author(s), journal of publication, publication year, and MeSH term for the journal of 

publication, and were downloaded from Web of Science (WOS), PubMed, National Library of 

Medicine (NLM), and via manual searches in October 2016 and August 2018. Additionally, 

manual searches were conducted in the NLM catalogue for journal MeSH terms. No language 

restrictions were applied. 
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Inclusion criteria for articles included peer-reviewed articles with no limits on: language, 

study design, and year of publication before 2018. Commentaries, editorial notes, and opinion 

articles were included. All published articles with microbiome in the text, the journal publication 

catalogued in NLM, and journal publication catalogued in NCBI with MeSH were included. 

Inclusion criteria for citations included citations with no limits on language, study design, and 

publication before 2018. Only cited articles from articles found from the literature search were 

included. Inclusion criteria for government funded microbiome projects and project data 

included any project funded by a US government agency prior to 2018 with microbiome in the 

abstract. Any projects without microbiome in the abstract were excluded.  

Full text open-access articles were analyzed, as an emphasis on how the microbiome was 

explicitly conceptualized and how those conceptualizations changed over time was the focus of 

this study. This was problematic, as the copyright on articles changed over time, the total number 

of articles available at any given time was dependent on article copyrights, and many articles 

only provided abstracts. Different databases, also, had in many cases contained overlapping 

articles with other databases and had differences in the span of time microbiome research was 

published, i.e. the first article in JSTOR that matched the criteria was published in 1952 whereas 

the first article in PubMed that matched the criteria was published in 2002. This brought to light 

another issue, social contextual factors influencing the microbiome would be focused on 

biomedicine by collecting articles from PubMed and PubMed Central (PMC) only. Previous 

studies have shown social networks influence language use, patterns, and diffusion linguistic 

variables (Labov, 2001; Milroy, 1987; Milroy & Gordon, 2003). Other studies have shown that 

the diffusion of concepts and innovations is influenced by social capital and trends in use (J. 

Swan et al., 2007; Rogers, 2010).  
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To create wide-ranging datasets and overcome these issues, the full text of articles from 

WOS, JSTOR, PubMed, and PMC along with the associated metadata for each article, and 

government funded project abstracts on the microbiome and associated metadata were collected. 

Based on the results of the literature search, articles were collected four times, twice in 2014 and 

twice in 2018. The collections in 2014 were used to test the speed and efficiency of the collection 

methods and gathered articles and the associated metadata from articles that matched the criteria 

of microbiome in the text, published from 1900 to 2014 from JSTOR, Web of Science (WOS), 

PubMed, and PubMed Central. The collections in 2018, gathered articles and the associated 

metadata from articles that matched the criteria of microbiome in the text, with publication dates 

from 1900 to 2017 from JSTOR, WOS, PubMed, and PubMed Central.  

Projects were collected twice, once in 2014 and again in 2018. The project collection in 

2014, gathered projects and associated metadata from projects that matched the criteria of 

microbiome in the abstract, with Fiscal Year (FY) dates between 1900 to 2014 from the National 

Institutes of Health (NIH) Research Portfolio Online Reporting Tools (RePORTer) and the 

Federal Research Online Reporting Tools (RePORTer). The project collection in 2018, gathered 

projects and associated metadata from projects that matched the criteria of microbiome in the 

abstract, with Fiscal Year (FY) dates between 1900 to 2018 from the National Institutes of 

Health (NIH) Research Portfolio Online Reporting Tools (RePORTer) and the Federal Research 

Online Reporting Tools (RePORTer). 

A hybrid of computational and manual approaches were used to collect, clean, and curate 

microbiome articles, projects, and metadata.  Major inaccuracies and large portions of data were 

absent from the result of unsupervised data collection from well-known and highly cited 

biomedical ontologies, journal repositories, and databases. To illustrate, PubMed the 
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microbiome’s representation in articles or how many articles the microbiome occurred in, from 

2002 to 2014 microbiome increased by 694% (2 to 1388), but upon closer inspection of the 

actual use of microbiome in the articles; the word microbiome did not actually appear in all 1388 

texts provided by PubMed as some texts labeled by curators with keyword microbiome only had 

microbiome in the title, references, or used as part of The Human Microbiome Project. After 

close reading of the texts, many of the texts identified via PubMed discussed microbiota with no 

mention of the microbiome. Previous results have indicated the PubMed MeSH definitions of 

microbiome and microbiota are the same, displayed in Figure 2. Operational definitions for 

microbiome and microbiota are diverse, and the boundaries between microbiome and microbiota 

may prove the two concepts to be related but they are not equivalent (Prescott, 2017). 

Unsupervised results from the WOS had similar issues, as the WOS article count from 1900 to 

2017 on the microbiome was 14986, compared to the total published articles collected from 

JSTOR, WOS, PubMed, and PubMed Central in the MB Corpus being 27,977, a 187% 

difference in articles, displayed in Table 19.  

Results on total funded microbiome projects had similar issues with inaccurate data or 

data spread among multiple sources. The microbiome has 0 “Total Number of Research/Disease 

Areas” faded according to NIH categorical spending based on Research, Condition, and Disease 

Categories (RCDC), which provides results from NLP text mining on the annual number of 

grants, contracts, and other funding mechanisms for NIH (“NIH Categorical Spending -NIH 

Research Portfolio Online Reporting Tools (RePORT),” n.d.). Some microbiome data was found 

but still wildly inaccurate on the Federal RePORTer site, as there was a 187% difference in 

microbiome funded projects between Federal RePORTer results (5,563 projects) and the results 

from the MB Project Corpus, which consisted of data from Federal RePORTer combined with 
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NIH RePORTer (10,401), and a 183% difference in total funding between Federal RePORTer 

results ($3,411,212,659) and the results from the MB Project Corpus ($6,239,782,378), which 

consisted of data from Federal RePORTer combined with NIH RePORTer, depicted in Table 20. 

Upon closer inspection, the microbiome did not appear in all project abstracts based on 

automated query results.  Again, a combination of computational and manual cleaning was used 

to provide the final accurate data for the MB Project Corpus.  

Other inaccuracies based on author affiliations, multiple author representations for one 

author (e.g. K. Aiello, K. D. Aiello, Ken D. Aiello, Kenneth D. Aiello, Kenneth Daniel Aiello), 

and incomplete information required cleaning of metadata for the MB Corpus. With no standard 

protocol on how to collect, clean or curate metadata, a worksheet was created to organize 

collection of metadata. The worksheet collected: PubMed ID, PubMed Central ID, WOS 

Accession number, article title, publication year, journal title, National Library of Medicine 

Catalog Medical Subject Heading for journal, abstract and author names (last, name, middle 

initial) for the first 10 authors, the last author, and up to three affiliations for each author. 

Metadata for the MB Project Corpus had similar issues and had to be cleaned via a combination 

of computational and manual cleaning, the MB Project Corpus worksheet collected data on:  

project abstract, project terms, project title, public health relevance, administering institute or 

center (IC), application ID, award notice date, funding opportunity announcement, project 

number, type, activity (R01, R02, etc.), serial number, IC, support year, program official 

information (last name, first name), project start date, project end date, study section, subproject 

number, contact principal investigator (PI) ID, contact PI/Project leader, other PI or project 

leader(s), congressional district, department of PI, data universal numbering system (DUNS) 

Number, Federal Information Processing Standards (FIPS) Number, organization ID Institutional 
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Profile File (IPF), organization name, organization state, organization city, organization type, 

organization zip, organization country, American Recovery and Reinvestment Act (ARRA) 

indicator, budget start date, budget end date, Catalog of Federal Domestic Assistance (CFDA) 

Number, funding mechanism, fiscal year (FY), funding IC, FY direct costs, FY indirect costs, 

FY total cost by IC, FY total cost (sub-projects). After all information was collected the data was 

reviewed by the Data Mining and Informatics Team at the Laubichler Lab and a final review of 

the data was tested for accuracy using a combination of supervised and unsupervised methods. 

The final breakdown of sources contributing to the analyses consisted of 27,977 articles collected 

compiled into a Microbiome (MB) Corpus, displayed in Table 3. Collection of projects used the 

same protocol resulted in 10,401 projects, presented in Table 20 .  

History of knowledge 

Applying the theoretical framework developed by Jurgen Renn and Manfred Laubichler 

in Extended Evolution and the History of Knowledge, the analysis of the history of knowledge 

requires a perspective of extended evolution (Renn & Laubichler, 2017a). Using results from 

networks and contexts and the social and material dimensions of knowledge, ‘knowledge’ is the 

encoded experience of actors which manifests as a mental structure with material and social 

dimensions, determining which actions are possible in a historical situation, knowledge may be 

shared within a group or society via the use of material artifacts such as instruments or texts 

(Renn & Laubichler, 2017a). Shared behaviors connected by cognitive, social and material links 

are the social relations within a given group or society, and encoded collective experience can be 

represented by institutions according to this framework (M. Laubichler & Renn, 2015; Renn & 

Laubichler, 2017a). Previous results using this framework highlighted: origins of variation were 

the result of the properties of complex systems, context was the material means used by an actor 
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to reach an action and the result of actions, contexts of action represented knowledge, institutions 

were used to diffuse and transform regulative structures, networks of human actions included a 

material and social culture, and knowledge itself was externally represented and shareable (Renn 

& Laubichler, 2017a).  

Material artifacts and the content within publications and projects, and the individuals, 

groups, institutions, and systems producing the material artifacts can be modeled as actors within 

this framework.  Contextual factors suggesting explanatory variables characterizing specific 

changes to the microbiome can be identified from actors and determined as influential in driving 

changes to the microbiome based on usage. Accepted and proliferated changes to the 

microbiome will be investigated for historical trajectory and patterns.  Previous studies have 

identified specific changes to the usage and meaning of the microbiome were dependent on 

context and influenced by contextual factors (Shade & Handelsman, 2012; Huss, 2014). At any 

given moment there is variation in the knowledge of the microbiome and this explains the 

multiple states of the microbiome concept at one time, but changes toward specific forms and 

usage of the microbiome in the language context, i.e. words, phrases, and meaning of the 

microbiome are intentional acts or processes orchestrated by actors (Knorr-Cetina & Mulkay, 

1983; Labov, 2001; Owen-Smith & Powell, 2004). Similarly, variations in the social context of 

who uses the microbiome are performed by specific actors at a specific time but the introduction 

of variation and adopted changes to microbiome knowledge are the result of the accumulation of 

differences in the social context including impact, observability, trialability, complexity, 

compatibility, relative advantage, and adoption rate (Labov, 1972; Halliday & Hasan, 1991; 

Beckner et al., 2009; Rogers, 2010). Many of the debates surrounding the development and use 

of the microbiome including: the meaning of the microbiome, who/what influenced changes to 
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the microbiome, and how knowledge on the microbiome transformed, can be settled by 

systematically analyzing the contextual factors of the microbiome.  

Objectives 

Given the variation and changes to the microbiome, the purpose of this experiment is to 

provide insight into the knowledge of the microbiome, with regards to the following questions: 

RQ1: How has the microbiome research outputs developed over time? 

RQ2: Is the microbiome an innovation? 

RQ 3: What is evidence of the variation and changes to microbiome knowledge?  

To answer these questions two different datasets will be utilized, 1) a collection of 

articles published on the microbiome from 1900 to 2017 with associated metadata or the MB 

Corpus, 2) US funded projects on the microbiome with associated metadata or the MB Project 

Corpus. These datasets enable a multi-pronged approach for describing the scientific literature, 

knowledge base, and variation and change to the microbiome. The goal of this study is to 

determine the contextual factors influencing changes to the microbiome concept analyzing the 

variation and changes to the language and social context of the microbiome. 

Results 

How has microbiome research outputs developed over time?  

increases in microbiome research, resources, and knowledge. 

 Microbiome research outputs, resources, and knowledge as measured by the MeSH 

terms, and observability and usage of the microbiome measured by the number of authors and 

co-authors, in general increased over time. The overall trend showed the majority of substantial 

increases for all research outputs, resources, and knowledge occurred prior to 2009 and smaller 

percent increases trended for all categories after 2010, displayed in Table 21. Prior to 2005, there 

was little evidence of the microbiome appearing in the text of articles, journals, government 
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funded project abstracts, and only a handful authors wrote microbiome articles or cited 

microbiome research. However, the number of articles, journals, government funded projects, 

MeSH terms, and authors grows substantially from 2005 to 2017. The largest percent increase 

for the majority of research outputs and social systems occurred between the years 2004 to 2005: 

the number of articles increased by 500%, the number of journals increased by 400%, the 

number of unique MeSH increased by 300%, the total number of MeSH increased by 333%, and 

number of authors and co-authors increased by 2100%, while the largest increase in citations 

occurred from 2003 to 2004 increasing by 333%, and government funded projects had the largest 

increase from 2005 to 2006 increasing by 500%, displayed in Table 22. While the smallest 

percent increase for all research outputs (excluding the years from 2001 to 2005) occurred 

between the years 2016 to 2017: the number of articles increased by 4.0 %, the number of 

projects increased by 18.8%, the number of journals increased by 5.8%, the number of citations 

increased by 16.6%, the unique number of MeSH terms had a decrease of -0.86%, the total 

MeSH terms had an increase by 0.45%, though the smallest percent increase for authors occurred 

from 2015 to 2016 only increasing by 18.6% percent, exhibited in Table 22.  

The microbiome as an innovation 

The four main elements in the diffusion of innovations are:  1) an innovation, or an idea, 

practice, or object, which undergoes diffusion; diffusion is the process by which an innovation is 

communicated through, 2) communication channels over, 3) time, and 4) a social system of 

actors (Rogers, 2010). In this study, the microbiome is the innovation, and the various channels, 

or means by which messages get from one actor to another, are represented as articles, citations, 

projects, journals, and MeSH journal categories. Five attributes known to be characteristic of 
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adopted innovations are described in detail with respect to the microbiome, these include: 

relative advantage, compatibility, complexity, trialability, and observability (Rogers, 2010).  

relative advantage. 

Relative advantage describes how an innovation is observed as better than other ideas and 

may be measured by economic benefits, and social prestige (Greenhalgh et al., 2005). The 

concepts metabolome and metagenome were used as comparisons to highlight relative advantage 

of the microbiome, as the last chapter detailed the confusion around these concepts and previous 

studies have shown well-funded concepts carry economic advantage and social prestige 

(Norredam & Album, 2007; Arcaya, Arcaya, & Subramanian, 2015).  Results from combined 

Federal RePORTer and NIH RePORTer projects and funding from 1980 to 2017 on microbiome, 

metabolome, and metagenome projects, showed the microbiome had a relative advantage in 

more total projects (10,401) compared to metabolome (1038) and metagenome (772), and more 

total funding ($6,239,782,378) compared to metabolome projects ($516,687,021) and 

metagenome projects ($663,858,34) displayed in Table 23.  

Highly cited papers published in gatekeeper journals are another indicator of social 

prestige (Callaham, Wears, & Weber, 2002; Ioannidis, Boyack, & Klavans, 2014). The most 

highly cited paper on the microbiome was published in a prestigious journal and is highly cited, 

the article “An obesity-associated gut microbiome with increased capacity for energy harvest,” 

has been cited over 4,000 times averaging over 300 citations per year since being published in 

2006 and was published in the high-profile journal Nature (Turnbaugh et al., 2006). In contrast, 

the most highly cited article on the metabolome is not as highly cited nor in a journal with a high 

impact factor, (“Metabolomics – the link between genotypes and phenotypes”) with 1,905 

citations (Fiehn, 2002). Likewise, the most highly cited article on the metagenome (“A human 



179 
 

gut microbial gene catalogue established by metagenomic sequencing”) is not as highly cited as 

the most highly cited microbiome article with only 3,680 citations (Qin et al., 2010) 

compatibility. 

Compatibility describes the degree to which an innovation is perceived as being aligned 

with the (social, language, and historical) contextual knowledge of actors within a system 

(Kapoor et al., 2014).  Generally, more compatible ideas fit more closely with an individual’s 

knowledge and skills, are less uncertain to adopters, and makes it easier for individuals to 

actively shape the knowledge of an idea (Denis, Hébert, Langley, Lozeau, & Trottier, 2002; 

Fennell & Warnecke, 2013). The word microbiome is compatible with 43 other words with the 

suffix -ome according to Joshua Lederberg in ”Ome Sweet ‘Omics—A Genealogical Treasury of 

Words” (J Lederberg & McCray, 2001). Within biomedicine, the microbiome has also been 

described as compatible with metagenome and metabolome based on the results from the 

collocate networks from last chapter, and according to the scientific literature the microbiome is 

related to the human genome with the microbiome being called the “Second Genome” (Marchesi 

& Ravel, 2015b; Grice & Segre, 2012). The microbiome vocabulary and ontology has also been 

found to be compatible across domains with microbiome being interpreted as another instance of 

a biome, niche, or habitat in ecology  (Whipps et al., 1988; Shade & Handelsman, 2012). The 

compatibility of microbiome knowledge has been extended to individuals who never used the 

word microbiome in text, as some have attributed Antonie Van Leeuwenhoek’s study of 

animalcules as instance of microbiome knowledge (Ursell et al., 2012). 

complexity. 

Complexity of an innovation is the extent to which an innovation is perceived as difficult 

to understand and summarizes the ability of a social system to comprehend an innovation 
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(Rogers, 2010). Analysis of microbiome knowledge over time via the ratio of total collocates of 

the microbiome compared to the occurrences of microbiome in the text, showed the complexity 

of the microbiome reduced over time. From 2001 to 2010 the number of collocates of the 

microbiome exceeded the number of occurrences of microbiome, but from 2011 to 2017 the 

number of occurrences of microbiome exceeded the total collocates, displayed in Table 24. 

Complexity can also be reduced when an innovation can be fragmented into adaptable parts and 

adopted incrementally (Meyer & Goes, 1988; Plsek & Plsek, 2003). The microbiome has been 

broken down into multiple different concepts such as: gut microbiome, intestinal microbiome, 

lung microbiome, skin microbiome, and vaginal microbiome as argued by experts and supported 

by the results from the last chapter (Shade & Handelsman, 2012; Huss, 2014; Schneider & 

Winslow, 2014).  

trialability. 

 Trialability explains how an innovation may be tested or experimented with (Rogers, 

2010). Previous studies have shown actors giving meaning to an innovation were testing the 

trialability of the innovation (Yetton, Sharma, & Southon, 1999). In this regard, knowledge is 

unique because it provides multiple opportunities for actors to implement, on a limited-time 

basis, the microbiome concept even if they have had little prior exposure or experience. The 

creation of knowledge on the microbiome via interpretations, vocabularies, or proxies of 

knowledge like articles, citations, and projects provides a low-risk occasion for authors, co-

authors, and government agencies to experiment with the microbiome concept. Evidence of this 

experimentation was exhibited through repeated attempts by experts in creating new definitions, 

new ontologies, or new vocabularies for the microbiome (J Lederberg & McCray, 2001; Ursell et 

al., 2012; Blaser et al., 2013; Marchesi & Ravel, 2015b). The broad usage of the microbiome 
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across domains beyond biomedicine was used as additional evidence of the trialability of the 

microbiome, as the microbiome has been used to describe: habitats like anaerobic environments, 

ecosystems like cornfields, localities like New York City, microbial communities like biofilm, 

nice spaces like anoxic  waters, and populations like coyotes in Arizona (Shade & Handelsman, 

2012).  

observability. 

Observability is how visible the innovation is to others as perceptibility stimulates 

awareness and usage (Rogers, 2010). The observability of the microbiome has peaked in relation 

to events in the historical and social context of the microbiome. The observability for the 

microbiome was high when The Human Microbiome Project Consortium announced the NIH 

Human Microbiome Project (HMP) in 2007 and results from the HMP 2012, as confirmed by the 

citations to the publications of the announcement (3158) and results (3760). Both the 

announcement and results were published in the high profile journal Nature (Turnbaugh et al., 

2007; The Human Microbiome Project Consortium et al., 2012).  Other events increasing the 

observability of the microbiome included: the high profile journal Science named the 

microbiome the breakthrough of the year in in 2011 and 2013, and other research journals 

dedicated to the microbiome including: Biofilms and Microbiomes by Nature in 2014, 

Microbiome Journal (biomed Central) , Microbiome Science and Medicine, and the Human 

Microbiome Journal (Science, 2011, 2013). Additional evidence of the observability of the 

microbiome includes microbiome centers in institutions, industrial investment, and home 

microbiome analyses advertised in magazines and televisions (Gormley, 2016; “Home | 

uBiome,” 2018; “VIOME- ga2,” 2018).  
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adoption rate. 

The attributes listed here are interrelated and have contributed to increases in the 

adoption rate and diffusion of the microbiome within different social systems. The adoption rate 

of an innovation is innovation specific and system specific. In most cases, an adopted innovation 

will display an S-shaped curve when the number of adopters of an innovation are plotted over 

time, shown in Figure 16 (Valente, 1996; Rogers, 2010). The data from the MB Corpus metadata 

and MB Project Corpus metadata highlighted S-shaped curves or the initial characteristics of S-

shaped curves (long tail to the left prior to rate of adoption taking off) for the microbiome in the 

following systems: publications, projects, journals, citations, project funding, authors and co-

authors, total MeSH categories by year, and unique MeSH categories by year, displayed in 

Figure 17a-h. 

Change and variation in knowledge 

mesh terms. 

The results from the NLM MeSH terms used with the journals for the microbiome shows 

a large range of knowledge. There were 4889 total unique MeSH terms from 2001 to 2017 and 

the 54,705 total MeSH terms from 2001 to 2017, presented in Table 21. 

topic models. 

 Results from topic models of the microbiome for each year provided insight into the 

knowledge of the microbiome at the discourse level and the global language variation of the MB 

Corpus over time. Microbiome as a word did not appear in a topic from multiple iterations of a 

20-topic model of 20 words per topic for the years 2001, 2002, 2003, and 2004, but in topic 

models of the years 2005 to 2017 the microbiome appeared in an average of less than 2 topics 

per year.  The topics highlighted variation between the latent themes surrounding the 
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microbiome. From 2005 and 2006 topics on the microbiome consisted of bacterial, abundance, 

genes, and from 2007 to 2017 topics on microbiome contained words like bacterial, diseases gut, 

human, host, intestine, microbial, microbiota, and skin dominated, displayed in Table 25. 

keywords. 

Thematic differences between early years and late years of microbiome research were 

reinforced from the results of keyword analysis which compared: 1) MB Corpus articles from 

2001 to 2006 (MB Corpus Pre-2007) and, 2) articles from the MB Corpus post 2007 to 2017 

(MB Corpus Post 2007). The top statistically significant keywords (using Log-likelihood) based 

on differences in the frequency in the MB Corpus Pre-2007 compared to the MB Post-2007 

Corpus were examined and used to create KWIC lists. Keywords and Keyword in Context 

(KWIC) lists were created with the MB Pre-2007 Corpus as the corpus of analysis and the MB 

Post 2007 as the reference corpora, and vice versa using Wordsmith Tools (M. Scott, 2018). 

Differences in tendencies between each corpus were calculated using Log-likelihood, which 

showed positive keywords for the MB Pre-2007 Corpus in comparison to the MB Post-2007 

Corpus. Negative keywords were not used. 

The KWIC lists were useful preliminary word lists used to help isolate language patterns 

specific to each corpus and assisted in identifying differences between the language context and 

discourse of each corpus. Differences in knowledge at the word level characterized by tendencies 

of word usage within these large bodies of text were identified using KWIC lists in combination 

with a keyword cluster list, which enabled examination of important and meaningful 

comparative aspects. Categories of keywords were created as a result of applying a coding 

scheme to the keywords and keyword clusters, with evidence supported by the frequency lists 
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and concordances of the keywords to evaluate contextual language use (D. H. Hymes & 

Gumperz, 1972; D. Hymes, 2013).  

The most noticeable differences in tendencies between the MB Pre-2007 Corpus and MB 

Post-2007 Corpus based on selected keyword categories, exhibited in Table 26. Validation of 

keywords and keyword categories between corpora were supported by frequency analyses and 

concordance. In the patient/population category, the MB Pre-2007 Corpus resulted in keywords 

associated with references to larger organisms like human, and humans, mouse, mice, and 

animals as subjects; whereas the keywords of patient/population of MB Post-2007 research 

resulted in different age-based descriptions of humans or keywords describing relationships 

between humans with references like children and maternal, gender categories of humans such 

as women, and words commonly used to describe humans as a unit of analysis like cohort, 

participants, patients and subjects. There was an increase in the range and emphasis of diseases 

between corpora, as the MB Pre-2007 Corpus only disease was enteritis, compared to MB Post-

2007 Corpus which had disease as a keyword and other diseases including: clostridium difficile, 

colorectal (cancer), depression, diabetes, dysbiosis, ibs and infection. An emphasis on areas of 

the body were in both corpora, but the MB Pre-2007  emphasized the gastrointestinal system 

with keywords like cecal, distal, gastric and intestine, while the MB Post-2007 Corpus keywords 

gravitated towards multiple areas in the body such as: blood, bowel, kidney, liver, skin, stool and 

vaginal, also the MB Post-2007 Corpus emphasized ecological based microbiomes such as 

biofilm, fungal, marine, root, soil, and water. 

scholarly network. 

 There was increased variation and drastic changes in the social context of the microbiome 

as visualized in a scholarly network of authors and co-authors (red nodes) linked to publications 
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(green nodes), Figure 18a-q. The scholarly network connected authors and co-authors to their 

articles and allowed for authors to be connected to multiple articles at one time. The scholarly 

network revealed scientific activity on the microbiome was limited and isolated to a small 

number of authors and their articles from 2001 to 2005, as there were no connections linking 

authors to multiple papers and all papers had less than three co-authors, visualized in Figure 18a-

d. The interconnectivity increased starting in 2005, as among all papers there were more papers 

with three or more co-authors and less with two authors, displayed in Figure 18e. The 

interconnectivity continued to grow over time as every year witnessed increases in authors, 

articles, number of authors per article, and authors linked to multiple papers, demonstrated in 

Figure 18f-q.  

collocates. 

The knowledge and meaning of the microbiome emphasized two primary 

conceptualizations from 2001 to 2017, a human microbiome and a gut microbiome. The 

knowledge of human and gut microbiome accounted for a significant amount of usage, as 22% of 

all times human was used in the MB Corpus it was used with microbiome, and 19% of all times 

gut was used it was used with microbiome, based on strength of association within a span of 8 

words (4 words to the left or right) and calculated by the overall frequency of the word with 

microbiome within that span divided by the how many times microbiome occurs in the corpus, 

presented in Figure 19 (Stubbs, 1995, 2001; M. Scott, 2018) . Other interpretations of the 

microbiome emerged from 2001 to 2017 including:  core microbiome, disease microbiome, 

healthy microbiome, infant microbiome, liver microbiome, lung microbiome, oral microbiome, 

kidney microbiome, role microbiome, root microbiome, skin microbiome, soil microbiome, and 
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vaginal microbiome; but all these interpretations averaged less than 1% of occurrences used with 

microbiome, displayed in Figure 20.  

stability. 

When surveying the field of microbiome research, it is continually important to keep in 

mind that the concept, while gaining in popularity, does not connote the same meaning in every 

field or subfield.  It is expected a variety in production to produce a variety in usage as the 

publications on the microbiome span a wide variety of journals. There is not a guaranteed 

mechanism to enforce any consistency across journals because papers are published from a wide 

variety of journals, among different actors, housed in different organizations, and with different 

interests and goals.  The stability of the journal corpora indicated that some influence causes the 

collocates to change over time and a larger stability coefficient indicated that the collocates in 

two time periods are more similar, demonstrating the similarity of knowledge between the two 

corpora.  

Microbiome knowledge demonstrated increased stabilization over time within the MB 

Corpus. The stability was measured by the Jaccard similarity score of the top 20 shared 

collocates between consecutive years in the MB Corpus, i.e. top shared 20 collocates of 2001 

compared to top shared 20 collocates of microbiome in 2002, top 20 collocates of 2002 

compared to the top 20 collocates of 2003, and so on. The Jaccard Similarity (J) has been widely 

used to determine the variation and changes of group and network dynamics based on the 

overlap between networks over time (P. Jaccard, 1912; J. Jaccard, Wan, & Turrisi, 1990; 

Wasserman & Faust, 1994; Li, An, Wang, Huang, & Gao, 2016). The similarity for the 

microbiome increased starting in 2005 to 2006, underwent one decrease between 2013 to 2014, 
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but then continued to increase exhibiting an extremely high average of J= 41.2 from 2001 to 

2017 and a J= of 90% from 2015 to 2017, displayed in Table 27.  

The variation in knowledge of other specific social contexts cited to influence knowledge 

were determined by similar analyses on corpora created from journal and time based slices of the 

MB Corpus (Rowlands, 2002; J. Scott & Carrington, 2011; Loet Leydesdorff, 2013).  Each 

corpus was created from all articles published by that journal from 2001 to 2017, even though 

some journals did not publish in every year from 2001 to 2017, the following corpora were 

created:  PLOS One from 2008 to 2017, Nature from 2006 to 2017, Science in 2001 then 2005 

and from 2007 to 2017, and a corpus based on NIH Project abstracts from 2005 to 2017. PLOS 

One and the NIH Project abstracts proved to have the most stable knowledge surrounding the 

microbiome of all the other contexts analyzed, with an average J=38.7 from 2008 to 2017 and 

J=38.7% from 2004 to 2017 respectively, while Science and Nature exhibited little knowledge 

stability on the microbiome with an average J=8.2% from 2005 to 2017 in the Science Corpus 

and J=13% from 2006 to 2017 in the Nature Corpus (the Science Corpus did not have 

publications in the MB Corpus in 2002 to 2004 and in 2006, so 2001 was compared to 2005, and 

2005 was compared to 2007, as they were the consecutive years of published articles), displayed 

in Table 27 and plotted in Figure 21.   

Major changes in the characteristic knowledge of the microbiome occurred in all contexts 

over time. The similarity for all contexts was less than 15% similar when the first year was 

compared to the last year for each corpus. Comparisons of the top 20 collocates from the first 

year for each corpus compared to the last year top 20 collocates for each year for each corpus: 

MB Corpus 2001 to 2017, PLOS One Corpus 2008 to 2017, Science Corpus 2008 to 2017, 
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Nature Corpus 2006 to 2017, NIH Abstract Corpus 2004 to 2017, showed 2.8%, 13.5%, 2.5%, 

and 13% similarity respectively, presented in Table 28.  

convergence. 

Comparison of the both the variable form or state of MB knowledge and the final form 

compared to the trajectory of knowledge, or convergence, provided insight into the influence of a 

specific journal over the microbiome knowledge over time.  Convergence is the tendency of 

knowledge characteristics to evolve superficially similar collocates under similar environmental 

conditions (J. Jaccard et al., 1990; Wasserman & Faust, 1994; Li et al., 2016). Convergence for 

each year was determined by comparing the similarity between a one-year slice of a corpus to the 

collocates from the MB Corpus for each year, i.e. MB Corpus 2008 compared to Science Corpus 

2008, MB Corpus 2009 compared to Science Corpus 2009, and so on, displayed in Figure 22. 

Convergence of the final form of microbiome knowledge compared to other social contexts was 

calculated using the Jaccard similarity score of the collocates from the MB Corpus 2017 

compared to every year in each of the corresponding corpora, i.e. MB Corpus 2017 compared to 

PLOS One 2008, MB 2017 compared to PLOS One 2009, and so on, with results displayed in 

Figure 23.   

The results showed PLOS one had unusually high convergence with the MB Corpus for 

each year and with the MB 2017 collocates despite the total representation of PLOS One articles 

decreasing over time. PLOS One articles were less than 1% of the entire MB Corpus in 2016 and 

2017 but had a high collocational similarity (60%) to the MB Corpus. Science initially had a 

high convergence of knowledge with the microbiome but, over time the similarity between the 

two corpora grew and never recovered past 25%. Nature had two peaks of convergence with the 

microbiome in 2007 and 2016, but both never reached over 50% with the MB Corpus. NIH 
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Project abstracts had increased convergence with the MB Corpus, but the highest convergence 

with the MB 2017 was a 60% similarity to the MB Corpus collocates in the years 2015 and 2016.   

Discussion 

The change and variation of the microbiome was examined by using computational and 

manual methods to evaluate the influence of contextual factors on subsequent proxies of 

knowledge within a tradition. Emergent trends and transient patterns of the microbiome research 

field were discovered from the systematic analysis of contextual factors. We identified key 

factors influencing the microbiome based on differences in language, social, and/or historical 

context. A synthesis embracing the ambiguities and complexities of microbiome research was 

created by unraveling and aggregating the different uses of the microbiome specific to context. 

Evidence supporting and launching new narratives within microbiome research became clear 

through systematic analysis of the contextual factors.  

It was discovered the microbiome is an innovation based on the relative advantage, 

compatibility, complexity, trialability, observability, and rate of adoption, conclusions that are in 

accordance with previous studies on the innovation in biomedicine, healthcare, and other 

domains (Greenhalgh et al., 2005; Rogers, 2010). This link between action and knowledge is 

critical, as an innovation involves both new knowledge and the decision to adopt, because 

someone may have known or have experienced an innovation for some time but have not acted 

(rejected or accepted) the innovation yet. Diffusion of innovations, simply helps characterize 

communication and relates the language context of new ideas and their meaning to the social 

context and processes evident by adoption and social change. In diffusion theory and research, 

other attempts have yielded understanding into the history and spread of knowledge of: new 

drugs, risk factors for a disease, hybrid corn, concept of preventive addiction, new administrative 
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practices, from a range of different social categories at different scales including: individuals, 

farmers, physicians, public health officers, health professionals, and other formal and informal 

groups, to entire states or nations (Valente, 1996; Yetton et al., 1999; Rogers, 2010; Kapoor et 

al., 2014). Generally, modeling the diffusion of innovation describes if an idea is accepted, 

directed, and managed, or disseminated, by measuring the subsequent social changes. These 

social changes can be seen with the S-curve and if communication is the process by which 

scientists and researchers create and share knowledge, then communication can be modeled 

using text networks, knowledge networks, co-authorship networks, co-citation networks or a 

combination of these networks (Valente, 1996; Fennell & Warnecke, 2013). The microbiome 

was characterized as an innovation according to the attributes of adopted innovations and 

behavior of microbiome research outputs following Roger’s model (Rogers, 2010). A robust and 

in-depth contextual review of influential factors added value to the qualitative and quantitative 

analyses. 

What is striking about the development of the microbiome is the volume of the research 

outputs, range of actors involved, and variety of usage across different contexts. Rather than 

emerge from antecedent science of the 19th and 20th centuries as a coherent object of scientific 

study, the microbiome has proliferated across medicine, microbiology, genetics, immunology, 

and more.  Moreover, the variety of usage detected by collocate analysis indicates the functional 

definition of the term “microbiome” changes across both discipline and publication.  

Due to the rapid growth of medical information, data, and knowledge there is a need for 

novel research approaches to measure conceptual change, changes in knowledge, and how 

contextual factors influence knowledge. Systematic reviews and ontologies like MeSH terms by 

design create conformity and maintain regularity within biomedicine. Systematic reviews 
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provide syntheses of information summarized and condensed into a single article, and MeSH 

serves an important role in indexing the biomedical literature through updated and controlled 

vocabulary, subject content, and biomedical information. However, in order to gain insight into 

how scientific innovation and knowledge formation occurs other avenues of engaging with the 

literature are becoming more necessary due to new dynamics within science, specifically open 

access publishing and the PLOS One model of publishing peer reviewed articles.  

 The results show interesting patterns for PLOS One. PLOS One stood out as unusually 

prolific as PLOS One led all journals publishing articles on the microbiome from 2008 to 2016, 

2017 was the only year PLOS One did not publish the most articles but ended up publishing 309 

articles representing the third most articles published on the microbiome. Thus, we observe 

PLOS taking a pivotal role in research publications about the microbiome, specifically 

conversations around medicine and human health.  PLOS One contributes to the operational 

definition of microbiome as a feature of the human body that matters to the science of human 

health and medicine. Nevertheless, the entirety of recent microbiome research is not concentrated 

on applications for medicine and health. PLOS One’s topical connection to the microbiome 

knowledge and quantity of publications make it an influential force in contemporary research on 

the microbiome,  but publications related to medicine account for only a fraction (albeit a 

significant one) of the overall research corpus.   

When surveying the field of microbiome research, it is continually important to keep in 

mind that the concept, while gaining in popularity, does not connote the same meaning in every 

field or subfield.  The publications on the microbiome span a wide variety of journals. Because 

papers are published from a wide variety of journals--and there is not a guaranteed mechanism to 

enforce any consistency across them--we can expect a variety in production to produce a variety 
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in usage.  Forces such as PLOS One and NIH ontologies may in the end bring more consistency, 

but at this point the full significance of the term is still being discovered.  We are witnessing a 

bloom in activity that has been generative for scientific research of many types, not a 

culmination of longstanding biomedical discourse.   

 The MB Corpus and the MB Project Corpus illustrates how the availability of data has 

increased the amount of information that is available for analysis. This availability is a result of 

efforts by government agencies to become more transparent in how they fund science (Bertot, 

Jaeger, & Grimes, 2010; Collins & Tabak, 2014; “Enhancing Reproducibility through Rigor and 

Transparency,” n.d.).  Also, contributing is a rise in open access journals like PLOS One as 

other publishers and journals have made efforts to create similar research outlets, i.e. 

Nature Communications, and Science Advances.  Further, both government agencies and 

journals provide access to large repositories of data and metadata through application 

programming interfaces (APIs).  

Discussion of this work with peer reviewers and experts on biomedical knowledge have 

helped articulate possible dynamics at work which have thrust PLOS One to be at the bleeding 

edge of research and knowledge in the case of the microbiome. PLOS One’s unique model of 

publishing allows authors to publish articles quickly in a broad range of disciplines based on 

scientific merit and not subjective judgements of impact (Savage & Vickers, 2009; Alsheikh-Ali 

et al., 2011). Being judged on scientific merit allows authors to contribute to compatible or 

interrelated research areas and experiment with different subjects for low-cost with high reward 

(Savage & Vickers, 2009; Rogers, 2010). Compared to other journals, every article in PLOS One 

is open access and freely observable to others and allows for science to be organized and 

communicated across contexts. Authors can create stronger applications for scientific funding via 
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increased publication and citation rates of their work by publishing multiple articles in PLOS 

One in a shorter time compared to the amount of time and knowledge required to publish and 

article in traditional scientific journals. The PLOS One publishing model is leading a new 

dynamic within science which allows for huge variation and a large variety of domains to 

publish original research in one place, greater influence of open-access journals on research and 

funding, and innovative methodological approaches and results that push research results across 

scientific disciplines.  

The results from this study indicate scientists are still determining the definition and 

significance of the microbiome, and it is far from a singular concept. Further, these results 

combined with the results from the previous chapter suggest the microbiome concept and 

microbiome knowledge is a phenomena with fuzzy boundaries better interpreted as a spectrum of 

differences across different contexts. Understanding the variation and changes to this spectrum 

provides insight into the development of the microbiome according to specific influences. 

Microbiome knowledge from 2001 to 2017 as a spectrum is presented in Table 29, using the top 

shared collocates for each year from the MB Corpus. Comparing this spectrum of microbiome 

knowledge to a different context, displayed in Table 30, highlights the differences/similarities 

and convergence/divergence of microbiome knowledge between the two social contexts and 

provides insight into the influence and direction of microbiome knowledge.  
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Figures and Tables 

 

Table 18. Total projects and funding for microbiome research from Federal RePORTer. 

Fiscal 

Year 

Total Projects Federal 

Reporter 

Total Funding Federal 

Reporter All Agencies 

2004 0 0 

2005 0 0 

2006 0 0 

2007 0 0 

2008 40 $33,725,501  

2009 135 $99,717,036  

2010 191 $149,858,593  

2011 238 $144,740,020  

2012 346 $272,586,985  

2013 431 $248,898,136  

2014 665 $402,858,683  

2015 894 $550,308,247  

2016 1220 $694,093,968  

2017 1403 $814,425,490  

Total 5563 $3,411,212,659  
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Table 19. WOS Articles compared to articles collected. 

Year 
Articles 

Collected 

Web of Science 

Collection 

1952 1 0 

2001 3 0 

2002 2 2 

2003 1 0 

2004 1 1 

2005 6 3 

2006 16 6 

2007 47 19 

2008 185 75 

2009 266 126 

2010 325 202 

2011 846 405 

2012 1472 717 

2013 2135 1180 

2014 3169 1681 

2015 5636 2520 

2016 6596 3495 

2017 6862 4554 

Total 27977 14986 
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Table 20. Federal RePORTer microbiome projects compared to MB Project Corpus. 

 

  

Fiscal 

Year

Total Projects Federal 

Reporter

Total Projects MB 

Project Corpus

Total Funding Federal 

Reporter All Agencies

Total Funding MB Project 

Corpus

2004 0 1 0 $592,593 

2005 0 1 0 $688,680 

2006 0 6 0 $2,628,540 

2007 0 16 0 $5,991,477 

2008 40 75 $33,725,501 $49,677,745 

2009 135 259 $99,717,036 $179,547,050 

2010 191 365 $149,858,593 $270,342,632 

2011 238 445 $144,740,020 $251,596,328 

2012 346 648 $272,586,985 $499,312,243 

2013 431 807 $248,898,136 $452,924,952 

2014 665 1227 $402,858,683 $745,570,649 

2015 894 1660 $550,308,247 $1,020,186,492 

2016 1220 2235 $694,093,968 $1,238,106,324 

2017 1403 2656 $814,425,490 $1,522,616,673 

Total 5563 10401 $3,411,212,659 $6,239,782,378 
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Table 21. Research Outputs, NLM MeSH, and authors over time. 

 

  

Year Publications Projects Journals Citations

Unique total 

of NLM 

MesH

NLM MeSH Authors

2001 3 0 2 0 2 3 5

2002 2 0 2 0 2 2 5

2003 1 0 1 3 2 2 3

2004 1 1 1 13 3 3 1

2005 6 1 5 40 12 13 22

2006 16 6 10 136 17 30 68

2007 47 16 31 386 28 87 209

2008 185 75 104 980 98 339 782

2009 266 259 136 2001 146 557 1218

2010 325 365 162 3834 172 642 1693

2011 846 445 326 6731 262 1722 4038

2012 1472 648 480 12090 345 3012 7208

2013 2135 807 620 19793 464 3919 10476

2014 3169 1227 863 30879 633 6210 16287

2015 5636 1660 1325 46742 857 11344 26239

2016 6596 2235 1436 65452 927 13380 31124

2017 6862 2656 1519 76306 919 13440 44681

Total 27568 10401 7023 265386 4889 54705 144059
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Table 22. Percent increase over time. 

Year Articles Projects Journals Citations 
MeSH 

Unique 

MeSH 

Total 
Authors 

2001   0.00 0.00 0.00 0.00 0.00 

2002 -33.33 0.00 0.00 0.00 0.00 -33.33 0.00 

2003 -50.00 0.00 -50.00 0.00 0.00 0.00 -40.00 

2004 0.00 0.00 0.00 333.33 50.00 50.00 -66.67 

2005 500.00 0.00 400.00 207.69 300.00 333.33 2100.00 

2006 166.67 500.00 100.00 240.00 41.67 130.77 209.09 

2007 193.75 166.67 210.00 183.82 64.71 190.00 207.35 

2008 293.62 368.75 235.48 153.89 250.00 289.66 274.16 

2009 43.78 245.33 30.77 104.18 48.98 64.31 55.75 

2010 22.18 40.93 19.12 91.60 17.81 15.26 39.00 

2011 160.31 21.92 101.23 75.56 52.33 168.22 138.51 

2012 74.00 45.62 47.24 79.62 31.68 74.91 78.50 

2013 45.04 24.54 29.17 63.71 34.49 30.11 45.34 

2014 48.43 52.04 39.19 56.01 36.42 58.46 55.47 

2015 77.85 35.29 53.53 51.37 35.39 82.67 61.10 

2016 17.03 34.64 8.38 40.03 8.17 17.95 18.62 

2017 4.03 4.03 4.03 4.03 4.03 4.03 43.56 

 

  



199 
 

Table 23. Comparison of projects and funding between microbiome, metabolome, and 

metagenome. 

 

  



200 
 

Table 24. Comparison of microbiome occurrences to microbiome collocates. 
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Table 25. Topic model results on MB Corpus 2005 to 2017. 
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Table 26. Comparison of significant keywords MB Corpus Pre-2007 to MB Post-2007. 
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Table 27. Knowledge stability over time measured by Jaccard similarity score. 

 

Years MB J PLOS One J Science J Nature J NIH J 

2001, 2002 0 N/A N/A N/A N/A 

2002, 2003 0 N/A N/A N/A N/A 

2003, 2004 0 N/A N/A N/A N/A 

2004, 2005 0 N/A N/A N/A 100 

2005, 2006 15.6 N/A 8.6 N/A 31.6 

2006, 2007 17.6 N/A 0 13.7 42.9 

2007, 2008 37.9 N/A 0 14.3 14.3 

2008, 2009 42.3 13.5 7.1 14.8 21.2 

2009, 2010 42.3 27.6 8.1 11.1 20.8 

2010, 2011 48.1 28.6 2.5 8.1 53.8 

2011, 2012 51.9 37.9 5.2 11.1 11.1 

2012, 2013 78.3 53.8 10.3 8.1 8.1 

2013, 2014 70.8 48.1 14.3 8.1 11.1 

2014, 2015 73.9 42.9 10.3 11.1 48.1 

2015, 2016 90.5 48.1 14.3 25 66.7 

2016, 2017 90.4 48.1 17.6 17.6 73.9 

 

Science* Slices from the corpus compared 2001 to 2005 because no articles were published in 2002 to 

2004, and 2005 compared to 2007 because no articles were published in 2006.  
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Table 28. Change in knowledge measured by Jaccard similarity score. 

 

Corpus Years J 

MB Corpus  2001, 2017 2.8 

PLOS One 2008, 2017 13.5 

Science 2008, 2017 2.5 

Nature 2006, 2017 6.5 

NIH  2004, 2017 13 
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Table 29. Spectrum of shared microbiome collocates in MB Corpus. 
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Table 30. Spectrum of shared microbiome collocates in Nature articles on the microbiome.  
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Figure 16. Diffusion process of an innovation over time. 
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Figure 17 a-h. Adoption rates of microbiome in different systems. 17a. Total publications over 

time. 17b. Total projects over time. 17c. Total journals over time. 17d. Total citations over time. 

17e. Total funding over time. 17f. Authors and co-authors over time. 17g. Total MeSH over 

time. 17h. Unique MeSH over time. 
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Figure 18a-q. Scholarly network of MB. 18a. 2001 MB scholarly network. 18b. 2002 MB 

scholarly network. 18c. 2003 MB scholarly network. 18d. 2004 MB scholarly network. 18e. 

2005 MB scholarly network. 18f. 2006 MB scholarly network. 18g. 2007 MB scholarly network. 

18h. 2008 MB scholarly network. 18i. 2009 MB scholarly network. 18j. 2010 MB scholarly 

network. 18k. 2011 MB scholarly network. 18l. 2012 MB scholarly network. 18m. 2013 MB 

scholarly network. 18n. 2014 MB scholarly network. 18o. 2015 MB scholarly network. 18p. 

2016 MB scholarly network. 18q. 2017 MB Scholarly network. 
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Figure 19. Collocates associated with microbiome from 2001 to 2017.  

 

  



211 
 

Figure 20. Collocates associated with microbiome by less than 1.0%. 

 

time. 
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Figure 21. Change in knowledge over time measured by Jaccard similarity (J). 
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Figure 22. Knowledge convergence over time. 
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Figure 23. Knowledge convergence toward MB 2017 over time. MB 2017 over time. 
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CONCLUSION 

In this thesis, I detail a systematic strategy to identify social, language, and historical 

contextual factors influencing the variation and change to the microbiome. My hypothesis is 

specific contextual factors were related to specific changes to the microbiome concept and 

microbiome knowledge. The first part of the thesis, chapters one through three, are reviews and 

descriptions of first principles, concepts, methods, and background information. The first chapter 

focuses on an extensive review of the microbiome literature and aims at identifying differences 

in knowledge according to historical, language, and social contexts. The second chapter 

concentrates on a review of previous approaches to measure and understand knowledge changes 

within biomedicine and other domains.  I adopt the Renn and Laubichler history of knowledge 

framework to understand changes in scientific knowledge by integrating data from language, 

social, and historical systems and their interactions across different scales combined with an 

analysis of contextual factors. The third chapter details the availability of data and describes the 

benefits of integrating big data and data driven science and research into novel approaches, 

methods, and models.  

The second part of the thesis, chapters four and five, are experiments to identify specific 

changes to the microbiome emerging within the language and social context of the microbiome. 

In chapter four, I examine the similarities and differences between the microbiome and the 

concepts metabolome and metagenome using a hybrid approach combining qualitative and 

quantitative methods. Previous studies and experts have argued the microbiome, metabolome, 

and metagenome are often times confused as the same concept (Huss, 2014; Marchesi & Ravel, 

2015b). This confusion has the potential to diminish microbiome research, funding, and impact. I 

find characteristic differences and patterns in the language context of the microbiome by 
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comparing both the metagenome and metabolome from a Microbiome Corpus of 27,977 articles, 

a Metabolome Corpus of 16,818 articles, and a Metagenome Corpus of 10,741 articles.  Using 

topic models, frequency analyses, and keywords, I find differences in the discourse, themes, and 

words between the microbiome and the metabolome and metagenome.  I also evaluate the 

similarity and dissimilarity in the language usage, context, and knowledge between the concepts 

using collocates, lexical profiles, and collocation networks. My analyses reveal differences in the 

usage of words and co-occurring words related to the microbiome, metagenome, and 

metabolome. The combined results suggest the microbiome is a separate concept from 

metabolome and metagenome and validate a discussion on the status of the microbiome 

vocabulary.  

The findings of my analysis provide an opportunity to analyze concepts and scientific 

knowledge using tractable evidence from language usage. My analysis indicates biomedical 

knowledge of the microbiome is dissimilar to the metabolome and metagenome. However, I find 

the separation between the interpretations of the microbiome, metabolome, and metagenome are 

dependent on the parameters of the collocate networks and the distance between collocates and 

the node word(s). This implies possible connections between other collocates and representative 

knowledge structures. In other words, while this study highlights the differences between the 

concepts the results also suggest similarities of underlying knowledge components between the 

microbiome, metabolome, and metagenome. To better understand biomedical knowledge future 

research needs to explore if these are universal knowledge components to biomedicine, parts of 

latent knowledge structures, or socio-cultural artifacts. 
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 In chapter five, I develop a methodology to systematically identify and analyze 

contextual factors influencing the microbiome concept. The methodology analyzes changes in 

the global language and social context of microbiome research and details the changes to 

individual words, combinations of words, and knowledge related to the microbiome. In order to 

assess the variation and change in the language and social context of the microbiome, I analyze 

the specific material, social, and language dimensions of the microbiome concept from a dataset 

of roughly 28,000 microbiome articles and 10,000 microbiome projects. My analyses show 

increases in microbiome articles, projects, journals publishing articles on the microbiome, MeSH 

terms for journals, and authors from 2001 to 2017. I implement an analysis based on Everett 

Roger’s diffusion of innovations model to analyze the microbiome according to the attributes of 

innovations and the rate of adoption of innovations. The main factors motivating adoption of an 

innovation include relative advantage, compatibility, complexity, trialability, and observability. I 

find the rate of adoption of the microbiome is positively influenced by these attributes. The 

attributes of innovation also provides insight into sources of social and cultural variation on 

microbiome usage and knowledge. I also examine other contextual factors cited to influence 

knowledge including scholarly and scientific networks and journal specific discourses. I discover 

a drastic increase in the authors and papers connected by a scholarly and scientific network of the 

microbiome. This results offer another explanation into the variation of microbiome usage. To 

assess variation and change in microbiome knowledge, I analyze the stability of microbiome 

knowledge in the Microbiome Corpus, PLOS One Corpus, Science Corpus, Nature Corpus, and 

NIH Project Corpus.  I analyze the knowledge stability of the microbiome corpus and evaluate 

the change in knowledge using collocates from 2001 comparing them to collocates in 2017. I 

find microbiome knowledge in the Microbiome Corpus becomes increasingly stable over time. 
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Repeating this analysis on journal discourses I find different patterns of variation in microbiome 

knowledge but only PLOS One shows indications of knowledge stability. To analyze the change 

in microbiome knowledge, I compare microbiome collocates from the first year of the 

Microbiome Corpus to the last year. I find significant amount of change as the collocates have a 

low similarity score. Repeating this analysis on journal discourses, my results again show low 

similarity scores. To identify the influence of journal discourses on microbiome knowledge, I 

measure the convergence of the Microbiome Corpus discourse to Microbiome Corpus, PLOS 

One Corpus, Science Corpus, Nature Corpus, and NIH Project Corpus. My results highlight 

knowledge convergence between journal discourses and the microbiome corpus.  

 The results from the experiments of this dissertation highlight a hybrid approach to 

understanding the variation and changes to scientific knowledge. I provide quantitative and 

qualitative evidence showing the microbiome is a separate concept from metabolome and 

metagenome, and variation and change to microbiome knowledge emerges from contextual 

factors related to language and social contexts. These results support results and evidence from 

previous studies and provide new directions for future research.  

The future interpretations and use of the microbiome is based on knowledge. Science 

defines and shapes knowledge, as knowledge within science is a reflection of the social, 

language, and historical context. The microbiome is seen as a biomedical concept and is subject 

to possible constraints due to research strategies in biomedicine. According Peter Conrad, who 

studies medical sociology, the influx of new concepts such as: ADHD, Post traumatic stress 

disorder, along with the increased impact of medicine and medical concepts in the past fifty 

years has resulted in the jurisdiction of medicine growing to new problems that were not 

previously deemed to fall into the medical sphere medicine, or the medicalization of concepts (P. 
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Conrad, 1992) . Some analysts have suggested the growth of medical jurisdiction, medicalization 

increases the amount of medical social control over human behavior (Clarke et al., 2010). The 

key issue, remains in the context of those concepts or how they concepts are defined because the 

power to have a particular set of (medical) definitions dictates how a particular concept is studied 

and within which domain (P. Conrad, 2007). Critics have recently emphasized how 

medicalization has increased the profitability and markets of pharmaceutical and 

biotechnological firms and led to disease mongering or disease brandin . 

Medicalization also suggests context is the most adequate method of understanding a 

concept and its causes. Previous studies have shown how alcoholism and anorexia can be better 

understood with a broader perspective than biomedicine, as they both can be understood as 

psychiatric disorders, manifestations of genetics, or as complex concepts that also intersect 

personal, psychological, and social factors (P. Conrad & Schneider, 2010). Understanding 

medicine as a culture, opens up novels perspectives on knowledge practices and epistemic 

features in biomedicine, insight into the construction and fashioning of knowledge objects within 

science, and on the arrangements and mechanisms in biomedicine that shape what is known and 

how it is known  (J. Swan et al., 2007; Green et al., 2009; Cetina, 2009). 

Considering the microbiome is shaped by contexts beyond biomedicine, provides insight 

that future work on the microbiome needs to go beyond the biomedical perspective into other 

areas.  From a legal perspective, what the microbiome is determines who owns the microbiome, 

individuals or the environment, which then further relates to if knowledge from the microbiome 

is an open resource which is directly related to property rights (Rhodes et al., 2013). How the 

microbiome is defined and used in a language context determines who the microbiome belongs 

to, which is directly tied to property issues, patents, and licensing of genetic samples (Colaianni 
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& Cook‐Deegan, 2009).  As the microbiome goes beyond the practice of medicine into legal 

issues, the microbiome will impact social systems, legal systems, ethics, and research. Police 

have already started experimenting with using evidence from microbiome research as a tool for 

law enforcement agencies to improve trace evidence options (Hampton‐Marcell, Lopez, & 

Gilbert, 2017).  Other see a future where the microbiome as a tool for identification crosses 

social systems and can be used by doctors, insurers, and employers (Rees et al., 2018). 

Therefore, the use and meaning of the microbiome relates to larger issues within science 

regarding discovery, recognition, and institutional norms within science.  

As science continues to grow at an ever increasing pace it is critical to understand the 

historical past and future trajectory of science, to understand where we have been, and where we 

are at in specific moments in time. This dramatic growth of information or big data has created 

new objects and dimensions which require new tools and perspectives. Yet, many scientists and 

researchers and scientists are still struggling with how to use big data. The experiments and 

results within this prospectus provide a methodology for data driven science and research with 

specific use cases and contribute to the conversations about the problems and resolutions within 

big data projects. Understanding how knowledge changes in the microbiome offers new tools 

and perspectives on how to identify and measure changes to scientific knowledge, and delivers 

insight into mechanisms of change within science. It is possible changes to the microbiome may 

be indicative of a specific pattern for the microbiome or part of a new dynamic within science. 

Future work needs to consider if the microbiome is a singular phenomena or how the evolution 

of the microbiome illustrates how concepts with resources and attention behave within 

biomedicine and science, or if the microbiome is a unique case and represents a change in how 
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concepts evolve. Understanding these dynamics are critical as the behavior of the microbiome is 

either representative of conceptual change or what we can expect in the near future.  
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