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i 

ABSTRACT 

The occurrence of micro-and nanoplastic (MNP) debris in the environment is a 

research area of considerable public health concern. Various combinations of methods for 

extraction, isolation, and quantification of MNP have been applied but literature studies 

evaluating the appropriateness and efficacy of these protocols are lacking. A meta-analysis 

of the literature (n=134; years 2010-2017) was conducted to inventory and assess the 

appropriateness of methodologies employed. Some 30.6% of studies employed visual 

identification only, which carried a calculated misidentification error of 25.8-74.2%. An 

additional 6.7% of studies reported counts for particles smaller than the cutoff value of the 

selected collection pore size, and 9.7% of studies utilized extraction solution densities 

which exclude some of the polymers commonly occurring in the environments 

investigated. A composite value of data vulnerability of 43.3% was determined for the 

sample, indicating considerable weaknesses in the robustness of information available on 

MNP occurrence and type. Additionally, the oxidizing solutions documented in the 

literature frequently were deemed unsuccessful in removing interfering organic matter. 

Whereas nanoplastics measuring <1 µm in diameter are likely principal drivers of health 

risk, polymer fragments reported on in the literature are much larger, measuring 10+ µm 

in diameter due to lack of standardized methods. Thus, current inventories of MNP in the 

environmental MNP feature data quality concerns that should be addressed moving 

forward by using more robust and standardized techniques for sampling, processing and 

polymer identification to improve data quality and avoid the risk of misclassification. 
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Introduction 

Beginning in 1972, microplastic pollution has been documented in every part of the 

world from ice cores in the Arctic to polymeric particles in Antarctica (Munari et al., 

2017; Obbard et al., 2014; Lusher, Tirelli, O’Conner, & Officer, 2015; Cózar et al., 2017; 

Bergmann et al., 2017). Despite the pervasive nature of polymeric litter, uniform methods 

to analyze and quantify these microplastics have yet to be widely adopted. After more 

than four decades of polymeric litter studies, methods of quantification are finally 

beginning to approach the smaller size range: nanoplastics (Catarino, Macchia, 

Sanderson, Thompson & Henry, 2018). 

Toxicological studies on the burden of microplastics taken up by biota have shown 

microplastics <110 µm enter the blood stream and are transported into the lymphatic 

system, bile, urine, and cerebrospinal fluid. Accumulation occurs in the liver, kidney, and 

gut at sizes <20 µm of mice, producing neurotoxic responses among others (Deng, Zhang, 

Lemos, & Ren, 2017). Microfibers have even been discovered at sizes up to 135 µm in 

the lungs of lung cancer patients with links to carcinogenic effects at sizes >10 µm in 

length (Pauly et al., 1998; Omenn et al., 1986; Wright & Kelly, 2017). Moreover, 78% of 

the US EPA’s priority pollutants are utilized to either synthesize plastics or have been 

found adsorbed onto plastic litter (Rochman et al., 2013). Sources of microplastic 

ingestion include bottled water, sea salt, sugar, beer, honey, shellfish, and crustaceans 

(Liebezeit & Liebezeit, 2017; Schymanski, Goldbeck, Humpf, & Fürst, 2018; Yang et al., 

2015).  

 One common polymer identification classification approach focuses on the size of 

plastic debris. The largest plastics occur as macroplastics (>25 mm) and mesoplastics (5-
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25 mm). Although microplastics (MP) are sometimes referred to as particles less than 5 

mm, academic literature is establishing a lower size limit of 1 µm along the longest axis 

(Andrady, 2011). Particles measuring <1 µm are classified as nanoplastics (NP) (Mattson, 

Jocic & Doverbratt, 2018). However, upper and lower size limits are openly debated in 

literature (Cole, Lindeque, Halsband, & Galloway, 2011). 

Another sub-classification scheme distinguishes primary and secondary micro-and 

nanoplastics (MNPs), dependent upon their occurrence in a manufactured, virgin state or 

as the progeny of primary plastics, resulting from mechanical, chemical, thermal, and 

ultraviolet degradation. Thus, both primary and secondary plastics over time do break 

down along a continuum from macro- to meso- to micro- to nanoplastics. 

 Due to polymer’s ubiquitous applications, MNPs are documented to occur from a 

variety of merchandise as well as from releases from point and non-point sources. 

Sources of primary MNPs include but are not limited to facial products, toothpaste, 

glitter, gel nail polishes, abrasive paints, manufactured pellets, and engineered 

nanomaterials. Sources of secondary plastics, as previously mentioned, include the 

plethora of plastic debris in the environment breaking down such as macro-and 

mesoplastic merchandises. These macro-and mesoplastics include synthetic clothing, 

food containers, wrappers, utensils, plastic bags, and fishing supplies. Point sources of 

MNPs into the environment include wastewater treatment plants, city dust, and other 

highly anthropogenic locations produced from abrasion of macroplastics. 

 MNP composition differs by environmental sample type and location. A spectrum 

of combinations of organic polymer additives, inorganic polymer additives, and polymer 

types are documented. The most common microplastic litter in sediment is as follows: 
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polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate 

(PET), polyvinyl alcohol (PVA), polyamide (PA), polyurethane (PU), and  polyvinyl 

chloride (PVC) (Burns & Boxall, 2018). Standard thermoplastics make up the vast 

majority of plastics produced and account for approximately 229 million metric tons 

globally annually (Plastic Europe, 2015). Of the polymers listed, monomer constituents 

have well established toxicity including PVC and PU causing carcinogenic effects and 

cellular mutagenicity (Lithner, Larrson, & Dave, 2011).  

Organic plastic additives such as diethyl phthalate, diethylhexyl phthalate (DEHP), 

disobutyl phthalate (DBP), and dimethyl phthalate are recorded in environmental 

microplastic samples as well (Fries et al., 2013). Inorganic plastic additives found in MPs 

include aluminum, titanium dioxide, barium, sulphur, oxygen, and zinc (Fries et. al, 

2013). Notably, DEHP and DBP have been correlated with serious developmental issues 

most likely due to endocrine disrupting effects (Heudorf, Bolker, & Jürgen, 2007). 

 Currently, MP sample processing consists of three phases: collection, extraction, 

and analysis. The collection phase can be bulk removal in sediment, water, or ice whereas 

size-specific removal involves various pore sizes of nets, sieves, or filters. Next, 

extraction involves either density separation (DS), oxidation, DS and oxidation, or no 

additional processing (NAP). The analysis phase then involves either visual only, 

material only, visual and material, or visual sample interrogation. 

 In the absence of a uniform method, this study aims at assessing the certain, or 

robust data, produced by historical methods. Likewise, addressing the uncertain, or 

vulnerable data, produced by other methods will provide additional clarity. The objective 

of this study was to identify vulnerable or flawed microplastic studies in order to prevent 
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their propagation in future studies. Additionally, recognizing potential sources of error in 

microplastic analyses will assist in creating methods for environmental nanoplastic 

analysis and quantification as literature progresses to this size range. 

 

Methods 

Literature Search. A comprehensive database of environmental microplastic studies 

was acquired following PRISMA meta-analyses guidelines (McInnes et al., 2018) of the 

following databases: Google Scholar, Science Direct, Arizona State University’s Library 

One, and ResearchGate. Advanced search terms included small plastic litter 

(microplastic, nanoplastic, microfiber, or plastic litter) and matrices of occurrence (water, 

wastewater, sediment, or soil). Journal articles excluded were as follows (1) a comparison 

of methods or novel methods, (2) occurrence of MNPs within organisms, (3) 

unpublished, (4) not accessible within the databases listed above, or (5) not translated 

into English. Inclusion criteria focused on articles which target the microplastic size 

range and collect, extract, and analyze these particles within the study.  A sample search 

term of Google Scholar is as follows: ‘allintitle: MICROPLASTIC -METHOD -

MICROALGAE -FOOD -BIOACCUMULATION -PREDICTION -MODEL -

PLANKTON -BIOTA -HERRING -ALGAE -GASTROINTESTINAL -COD  -GUT -

TROPHIC -MUSSEL -MUSSELS -FISH -CRAB -MODEL -CRUSTACEANS -

INGESTION’ (year: 2010-2017) (n=288); the ‘-‘ term denotes NOT.  Studies were 

screened individually to further identify their suitability. Exclusion criteria included 

papers exploring novel identification methods and those which enumerate microplastics 

which occur within biota. Additionally, abstracts were reviewed to further apply 
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exclusion and inclusion criteria. The literature search considered publications occurring 

on or before January 2018. The final sample of studies entering the analysis was n=134.  

 

Data Extraction and Meta-Analysis. Literature which met all criteria were then 

individually inventoried for multiple parameters including: sample environment, 

minimum collection, filter or sieve processing, and particle size, oxidative solution(s), 

density solution(s), applied quality control method(s), applied analysis method(s), and 

spectroscopy library reference for material identification. Oxidative solutions were 

categorized as none, wet peroxide oxidation (WPO), WPO & other, undefined (ND), and 

other. Density separation solution(s) were categorized as NaCl, ZnCl, none, ND, and 

other. Applied quality control methods include the following: avoidance of synthetic 

instrumentation or dishware, procedural control blanks, extraction control blanks, and 

nonsynthetic clothing, e.g. lab coat. Applied analysis methods were then categorized into 

types including: visual only, visual and macro-spectroscopy [Fourier Transform Infrared 

Spectroscopy (FTIR); Raman], micro-spectroscopy (µ-FTIR; µ-Raman; Scanning 

Electron Microscope-Energy Dispersive X-ray Spectroscopy (SEM-EDS)], visual and 

pyrolysis gas-chromatography mass spectrometry (Pyro. GC-MS), and other. For samples 

which apply spectroscopy, material identification reference are differentiated by manual 

with reference, manual with no reference, and automatic referencing which calculates a  

percentage match or best fit to material. Simple statistical analyses were then conducted 

within Microsoft Excel to innumerate and sort each category. All data included in the 

meta-analysis are provided in the Supporting Information (SI). 
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 Error analyses were conducted from this literature sample to determine sources 

and quantify prevalence. Data to determine particles analyzed outside of the sampling 

size range was extracted from the text of literature as well as graphical images. Sizes 

were determined from graphical images using microscope scale bars when provided. All 

meta-analysis literature which contained author’s calculated error values for 

misidentification of organic particles for microplastics were collected alongside total 

particles analyzed for the cumulative error analysis. Density outliers were isolated 

through binning data. 

 

Identification Error Analysis. A weighted average of cumulative error was then 

calculated using Equation 1.   

      Eq. 1 

Where: % 𝑒𝑟𝑟𝑜𝑟 is percent error of the respective study. 

𝑛 is the number of particles analyzed. 

 

Composite Data Vulnerability Analysis. The number of studies which all error 

sources occur in literature were combined to determine one composite value. Any 

repeated error sources were omitted. 

𝐷𝑎𝑡𝑎 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑂(𝑀) + 𝑂(𝐷) + 𝑂(𝑃) − 𝑂(𝑅)   Eq. 2 

Where: 𝑂(𝑀) is the occurrence of misidentification. 

𝑂(𝐷) is the occurrence of improperly applied density separation. 

𝑂(𝑃) is the occurrence of quantifying particle smaller than the minimum pore size. 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑ (% 𝑒𝑟𝑟𝑜𝑟 ×  𝑛)𝑛

𝑖=1

∑ 𝑛𝑛
𝑖=0
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𝑂(𝑅) is the occurrence of repeated error sources. 

 

Results 

Literature Meta-Analysis Results. Upon literature search (n=380) and 

application of exclusion criteria, a total of 134 studies published between 2010 and 2017 

remained for consideration. Among this body of literature, studies enumerate MPs from 

sediment, saltwater, freshwater, brackish water, wastewater treatment plants (WWTPs), 

street dust, and sea ice.  With respect to sample pre-treatment, a majority of the literature 

applied no oxidation (66.4%) (n=134) or wet peroxide oxidation (WPO) (26%)as well as 

the following: (other, 3.7%; WPO and other, 2.2%; undefined, 1.5%).  Solutions applied 

for density separation included primarily NaCl (41.8%) followed by additional separation 

compounds or lack thereof (none, 35.8%; undefined, 9%; other, 8.2%; ZnCl, 5.2%). None 

dictates the process was never applied. Undefined solvents are essentially studies which 

state using the process but never identify the solvent. Quality control methods applied 

include none (40.2%) followed by one (22.4%), two (20.1%), three (14.9%), and four 

(2.2%). Methods of polymer identification were also analyzed with the majority applying 

visual and macro-spectroscopy (34.8%), visual only (30.6%), micro-spectroscopy 

(13.4%), other (9.7%) spectroscopy only (5.2%), and visual and Pyro. GC-MS (2.2%). 

The “Other” data category in Fig. 1 includes combinations of methods that add a level of 

robustness to the study design: Pyrolysis Gas Chromatography-Mass Spectrometry (Pyro. 

GC-MS) and  microscopy with Fourier Transform Infrared Spectroscopy (FTIR), 0.7%; 

microscopy, FTIR, and  differential scanning calorimeter (DSC), 0.7%; microscopy and 

DSC, 0.7%; Pyrolysis Gas Chromatography-Mass Spectrometry (Pyro. GC-MS) and 
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Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS), 

0.7%; microscopy, FTIR, and GC-MS, 0.7%; microscopy, Raman, and FTIR, 0.7%;  

microscopy, micro-FTIR, and Attenuated Total Reflection (ATR)-FTIR, 0.7%]. Of 

studies which included spectroscopy, 26.5% verify polymer identity with no reference 

library; 39.8% manually verify polymer identity with a reference library; 33.7% employ 

automated identification libraries that include best fit or percent match. 
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Figure 1.  QC=Quality Control. Results from the meta-analysis on microplastics 

literature (n=134). Number of peer-reviewed publications by year fitting the exclusion 

criteria of this review (A), pre-processing of environmental samples (B, C), applied 

characterization or visual methods to sample (D), and smallest sieve, filter, or mesh size 

applied during processing. The red sector highlights lack of any spectroscopy, 

spectrometry, or other material verification instrument.  Applied quality control methods 

includes a combination of sample contamination mitigation techniques such as 

nonsynthetic lab instruments and apparel (E). For studies which utilizes spectroscopy, a 
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differentiation of manual, manual no reference, and manual with reference material 

identification libraries are shown (F). The red and black dashed lines show the average 

smallest extraction pore size of the sample compared the average smallest particle studied 

(F). ‘None’ dictates the process was never applied. Studies which utilize the processing 

method but do not identify the solvent are shown as ‘undefined’. The other category 

includes rarely applied methods. 

 

Vulnerability to Potential Misquantification. 

Appropriateness of sample screening procedure. Aqueous and sediment sample 

extraction typically varies in that aqueous samples focus on the filter cake whereas 

sediment samples focus on the filtrate. Thus, incidental capture and enumeration of 

particles in screens, i.e. nets or sieves, has a false positive effect on aqueous samples and 

false negative effect on sediment samples. Of course, false negatives in this instance 

would not be recorded; however, false positives are noted via microscope images of 

samples, description of minimum particle size counted, and other ways. This source of 

false positive occurs when applying sieve, mesh, or nets to retain particles of analysis and 

these incidentally captured particles by pore blockage. A small portion (6.7%;n=134) of 

literature analyzed particles which were smaller than the retaining pore size. Mismatches 

of collection size and pore size are summarized in Table 1. All of these studies occurred 

in aqueous samples. 

 

 

 



11 

 

Particle Size Targeted 

in Collection (mm) 

Smallest Particle Size 

Enumerated (mm) 

≥ 0.153 0.063 

≥ 2 0.05 

≥ 0.35 0.3 

≥ 0.35 0.3 

≥ 0.3 0.1 

≥ 0.35 0.3 

≥ 0.33 0.32 

≥ 0.15 0.1 

≥ 0.33 0.24 

Table 1. Mismatch of particles analyzed and collection pore size. Each row is from a 

different study. A total 6.7% of the meta-analysis literature database quantifies these 

particles which are incidentally captured. 

 

 Appropriateness of density separation solution. A range of solution densities are 

applied for polymeric separation; however, some applied densities do not include all 

environmental microplastic densities in literature (Figure 2). Binned solute densities were 

analyzed with respect to previously discovered microplastic polymer densities. The range 

of density (ρ) least effective at isolating common polymers was found to be in the range 

1.3 g/cm3 ≥ ρ ≥ 1.14 g/cm3 (Figure 2). Solutes within this binning range composed 9.7% 

of the 13 studies. Of all studies which apply density separation, 15.1% excluded some 

materials (n=86) However, some studies focus upon one layer of the water column, i.e., 

sea surface microlayer, littoral zone, deep-sea, and subsurface studies, and may assume 

an exclusion of microplastic densities simply by sample environment, disallowing for 

capture of transient plastics moving through the respective environment. 
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Figure 2. Densities of common marine polymers and densities of applied solutions for 

separation in 134 studies. Red lines denote the occurrence of densities found in literature 

that exclude common polymeric materials. The empirical density used is shown to the 

right of each line. An error occurs when 𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟 <  𝜌𝑠𝑜𝑙𝑢𝑡𝑒 . 

  

Misidentification. In terms of microplastic analysis, robust data is preferred to 

verify polymeric composition. If the material composition is not defined, then the particle 

may not be polymeric. As described in Figure 1.D, 30.6% of literature categorized 

particles as microplastics with only microscopy. Without the application of material 

identification, an identification error of 25.8-74.2% (n=6) was determined utilizing 

recorded errors of visually identified microplastics. This is also sometimes referred to in 

literature as observer bias and is one large source of error preventing equal comparison 

across microplastic literature. Particles commonly mistaken for microplastics or 

microfibers include fly ash, cotton fibers, and red algal fibers (Dubaish & Leibezeit, 
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2013) . Additionally, misidentification potential is found in studies categorized as “other” 

(mechanical testing, 0.7%; “hot needle testing”, 0.7%; strong acids, 0.7%). Mechanical 

testing is described as physical pressure applied to the material. Hot needle testing applies 

heat to a potential synthetic material to verify by melting point; strong acid tests also 

determined if synthetic material melted when exposed. 

 

 

Figure 3. Characterization of micro-and nanoplastics by size (Ref. in Appendix D). 

 

Other Sources of Misquantification. 

Contamination of laboratory and sampling  environments is a well-documented 

occurrence with varying effect on quantification (Mai et al., 2017). Contamination 

mitigation methods include utilizing non-synthetic materials for all processes including 

lab coat (1), instruments (2), sieves (2), dishware (2), and more. Perhaps the most robust 
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of all would be the subtraction of both extraction (3) and procedural blanks (4). In the 

peer reviewed studies analyzed, 40.3% included none of the four contamination 

mitigation techniques numbered above. Moreover, only 2.2% applied all four mitigation 

techniques. Naturally, cleansing of instruments, filtering solvents, utilizing a fume hood, 

and air filtration devices further prevent contamination. Lastly, utilization of controls or 

processing blanks, sampling blanks, testing bench surfaces, identification of research 

vessels color and material ID (Bagaev, Khatmullina, & Chubarenko, 2017), and more 

methods can prevent the contamination of samples. 

 

Importance of Nanoplastic Analysis. The smallest particle size analyzed from 

an environmental matrix is currently ~10 µm; however, the presence and potential 

abundance of nanoplastics are widely acknowledged to be produced from degradation as 

well as occurring in a manufactured state. Although the average minimum pore size of 

filtration or screening in the meta-analysis is 146.8 µm, data shows that the average 

particle size included in quantification is 354.8 µm (n=134). Additionally, an increasing 

presence of decreasing particle size with continued exposure happens over relatively 

short time periods (Hahladakis et al., 2017).  

Moreover, microplastic toxicity is directly related to particle size and mechanism 

of exposure. Persistent microfibers have been discovered in lung tissue of lung cancer 

patients at sizes up to 135 µm. Beginning at 130 µm, particles begin to enter the 

lymphatic system. Studies have also noted the occurrence of microplastics at up to 110 

µm in blood, urine, and cerebrospinal fluid of dogs following ingestion. Moreover, 

deposition in the liver, kidney, and gut increase for particles <20 µm (Deng, Zhang, 
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Lemos, & Ren, 2017). Overall, particles size influences the transport, residence, toxicity, 

and other major factors of microplastic toxicity. 

 

 

Figure 4. Health impacts of plastics and plastic additives. Gray arrows denote sources of 

exposure which have not been regulated in the US. Blue arrows denote exposure which 

have regulations in place (A). Anatomy Graphic: By Mikael Häggström (All used images 

are in public domain.) [CC0], via Wikimedia Commons (B). 

 

Interestingly, cases which involve joint replacement with polymeric materials also 

exhibit localized inflammation, necrosis, and redistribution of particles to the lungs. 

Approximately 14% of human patients with polymeric joints were discovered to have 

nanoplastics deposited in the liver or spleen. This is consistent with other studies which 

conclude particles 0.5-50 µm cause a foreign body response (Wright & Kelly, 2017). 
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Discussion 

 This literature review identified a number of vulnerabilities in the collection, 

extraction, and analysis of environmental MNP. All in all, very few microplastic methods 

of extraction, isolation, and quantification are similar. Error sources begin with sample 

processing as 6.7% of studies analyzed particles retained in nets, sieves, or filters smaller 

than the pore size of the extraction instrument. Next, 50.4% of studies used only density 

separation with 9.7% of all studies densities leaving out portions of the environmental 

polymer population. Furthermore, oxidation is not always successful for removing 

organic matter according to literature. No processing, e.g. density separation or oxidation, 

remains the greatest risk for sample misidentification particularly if applied in 

conjunction with only visual identification. Most importantly, 30.6% of the sample 

applied no methods of material identification to verify polymeric composition. Within 

30.6% of meta-analysis studies, an average 25.8-74.2% of misidentified microplastics 

was calculated from published data sources. Some studies binned within the “other” 

category contain error sources through polymeric analysis involving vulnerable methods 

such as ‘flame tests’ and mechanical prodding of objects accounting for 1.4%. 
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Figure 5. Schematic illustrating potential source of error and recommended method. 

a NAP=No Additional Processing. b DS=density separation. c n=134. d n=6. 

Path (a) illustrates sampling practices which focus on the filter cake or filtrate, 

respectively. The blue boxes denote robust methods for analysis while red boxes denote 

vulnerable methods (A). A ranking of potential for error source is shown (B). Despite a 

positive trend in publication activity, no trend can be discerned for method vulnerability. 

Data vulnerability (43.3%; n=6) is shown with the black dashed line (C). 
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Prospectively, studies can avoid these sources of error through design of methods 

focusing on the particular sample composition and desired size range. Mismatch of 

particle size and pore size is easily avoided with extraction techniques which contain a 

larger range of microplastics such as bulk or core samples. Additionally, binning particles 

by size is a reliable way to prevent any particles beyond the size range of sampling.   

Optimal density separation is applied as a two-stage method of a hyper-dense 

solution followed by a moderately dense solution (2.0 g/cm3 ≤ ρ1 then 1.3 g/cm3 < ρ2 < 

1.8 g/cm3). Note the solution is soaked for several hours, the supernatant is extracted 

carefully, and then the remaining solution is sonicated and separated by density two 

additional times (Mai et al., 2017). Oxidative solutions are optimized as a multi-stage 

system to target a desired level of organic matter removal. These solutions must be 

cleansed, sonicated, and filtered between stages as well. Application of density separation 

is most beneficial in samples consisting of sediment, whereas oxidation techniques would 

be most beneficial in highly organic sample environments such as saltwater. Both density 

separation and oxidation would be optimally applied to a highly organic sample such as 

wastewater. 
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Figure 6. Recommended method diagram with increasing data quality.  
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region, more sensitive and automated methods must be applied in order to truly quantify 

existing plastic exposure, predict future plastic exposure, prevent human bias, and assess 

the hazard of environmental MNPs. 
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Abbreviations. 

SPT, Sodium Polytungstate; PP, polypropylene; LDPE, low density polyethylene; HDPE, 

high density polyethylene; PS, polystyrene; Nylon, Nylon 12, 11 and Nylon 6 6,6; 

PMAA, poly(methyl) methacrylate; PET, polyethylene terephthalate; PVC, 

polyvinylchloride; PU, polyurethane; PES, polyester; PVF, polyvinyl fluoride; PTFE, 

polytetrafluorethylene; FTIR, Fourier Transform Infrared Spectroscopy; Pyr. GC-MS, 

Pyrolysis Gas Chromatography-Mass Spectrometry; EDS, Energy Dispersive X-ray 

Spectroscopy  
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Collection 

Size 

Min. 

Processing 

Pore Size 

Min. 

Particle 

Size 

Oxidative 

Solutions 

Density 

Separation 

I.D. Type Ref

. 

0.125 0.125 0.125 30% H2O2 

w/Fe(II) 

(WPO) 

N/A Visual Only 

(VO) 

1 

0.333 0.00022 ND 30% WPO NaCl 

(r=undefine

d) 

VO 2 

0.125 0.125 0.125 30% WPO ND VO 3 

0.02   (I) 

0.045 (II) 

Bulk (III) 

0.02 ND N/A N/A Visual & 

FTIR 

(V&FTIR) 

4 

0.3 0.3 0.3 N/A N/A V&FTIR 5 

Bulk 0.0002 0.15 30% WPO N/A µ-FTIR 6 

0.01 0.0002 0.02 35% WPO 

(A) NaOH, 

HOCl 

(37%) (B) 

ZnCl (r=1.6 

g/cm3) (A) 

NaCl 

(r=1.14 

g/cm3) (B) 

V&µ-FTIR 7 

Bulk 0.075 ND N/A NaCl 

(C=120 g/L) 

Other 8 

0.333 0.333 0.355 N/A ND Other 9 

Bulk 0.0012 0.1 30% WPO 

and 40% 

HF 

N/A VO 10 

Bulk (I) 

0.333 (II) 

0.0012 < 0.5   30% WPO ND V&FTIR 11 

Bulk 0.063 ND N/A NaCl 

(r=ND) 

VO 12 

2 0.00075 < 0.05   N/A N/A µ-FTIR 13 

0.153 0.063 0.063 WPO NaCl 

(r=undefine

d) 

VO 14 

Bulk 0.0625 ND N/A N/A VO 15 

Bulk 0.011 0.598 WPO N/A V&FTIR 16 

Bulk (I), 

0.08   (II.i) 

and 0.33   

(II.ii) 

0.0016 0.1   (I, 

II.i) and 

0.5   

(II.ii) 

N/A N/A VO 17 

0.025 0.025 0.025 WPO NaCl 

(r=1.49 

g/cm3) 

V&FTIR 18 

Bulk 0.02 0.02 N/A N/A VO 19 
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Bulk 0.035 0.044 N/A NaI (r=1.6 

g/cm3) 

V&µ-FTIR 20 

0.333 0.355 0.355 WPO NaCl 

(r=1.62 

g/cm3) 

VO 21 

3 0.001 3 N/A N/A GC-MS&µ-

FTIR 

22 

< 5   0.05 ND N/A ND FTIR 23 

Bulk 0.0007 <1   N/A NaCl 

(C=120 g/L) 

µ-FTIR 24 

Bulk 1 <1   35% WPO NaCl (r=1.2 

g/cm3) 

V&GC-MS 25 

Bulk -ND 0.781 N/A ND µ-Raman 26 

Bulk 0.032 < 0.1   N/A (A) NaCl 

(r=1.2 

g/cm3) (B) 

Ludox-TM 

40 (r=1.16 

g/cm3) 

V&FTIR 27 

<1   

capture 

0.00075 0.05 N/A NaCl 

(r=2.16 

g/cm3) 

FTIR 28 

Bulk -ND ND N/A NaCl 

(r=ND) 

µ-FTIR 29 

Bulk 0.0016 <0.020 N/A NaCl 

(C=1.18 

g/L) 

V&FTIR 30 

Bulk 0.0012 < 0.1   30% WPO ZnCl (r=1.5 

g/cm3) 

VO 31 

Bulk ND < 1   N/A NaCl 

(r=ND) 

FTIR 32 

0.5 ND < 1   N/A N/A VO 33 

Bulk ND 2 N/A NaCl (r=1.2 

g/cm3) 

V&FTIR 34 

Bulk 0.25 < 0.25   N/A NaCl (r=1.2 

g/cm3) 

FTIR 35 

2.5 x 3.5   0.001 m 0.05 N/A NaCl 

(C=140 g/L) 

V&FTIR 36 

Bulk ND ~4   N/A N/A V&FTIR 37 

Bulk ND 0.4 N/A N/A Other 38 

1 ND 1 N/A N/A VO 39 

ND ND ND N/A N/A V&FTIR 40 

0.333 (A) 

0.25 (B) 

0.2 (A) - 

(B) 

0.25   

(A&B) 

N/A N/A V&FTIR 41 
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0.35 ND >0.3   ND ND V&FTIR 42 

<2   0.0012 ND N/A N/A V&FTIR 43 

0.001 N/A 0.06 N/A N/A µ-FTIR 44 

0.35 0.1 >0.3   N/A N/A VO 45 

Bulk 0.001 ND N/A NaCl 

(C=140 g/L) 

V&µ-FTIR 46 

N/A N/A <5   N/A N/A VO 47 

Bulk 0.315 0.315 30% WPO NaCl (r=1.6 

g/cm3) 

FTIR 48 

0.01 0.01 0.01 N/A N/A V&µ-

Raman 

49 

Bulk 0.00045 ND N/A NaCl 

(r=9.043 

g/cm3) 

V&Raman 50 

Bulk 0.063 0.63 30% WPO, 

H2SO4 

NaCl (r=1.2 

g/cm3) 

V&FTIR 51 

N/A N/A ND N/A N/A FTIR 52 

Bulk 1 0.1 N/A NaCl (r=1.2 

g/cm3 and 

1.8 g/cm3) 

V&GC-MS 53 

Bulk 0.063 >0.063   N/A ND VO 54 

Bulk 0.055 ND 30% WPO CaCl2 

(r=undefine

d) 

VO 55 

0.355 N/A 0.41 N/A CalCl2 

(r=undefine

d), SrCl2 

(r=undefine

d), C2H6O 

(r=undefine

d) 

VO 56 

Bulk N/A <1   N/A NaCl  

(C=300 g/L) 

V&µ-FTIR 57 

Bulk (S) 

(W) 

0.0007 ND N/A NaCl (r=1.2 

g/cm3) 

VO 58 

Bulk 0.0008 ND 30% WPO NaCl 

(C=250 g/L) 

VO 59 

0.3   (W) 5  

+-  (S) 

0.0016 ND N/A NaCl (r=1.2 

g/cm3) 

VO 60 

Bulk 0.025 >0.063   N/A Sodium 

polytungstat

e (SPT) 

(r=undefine

d) 

Other 61 
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Bulk 0.0012 ND N/A ZnCl2 (r=1.7 

g/cm3)f 

V&Raman 62 

Bulk (S) 

0.08   (W) 

0.065   (S) ND N/A NaCl 

(r=ND) 

VO 63 

N/A  (A) 

Bulk (B) 

N/A (A) 

(B) 

<10 (A) 

<0.05 

(B) 

N/A (A) 

(B) 

N/A (A) 

SPT (r=1.5 

g/cm3)  (B) 

V&Raman&

FTIR 

64 

Bulk (S) 

0.333 m 

(W, A) 

bulk (W, 

B) 

0.1 m (W, 

A) 0.005 

(W, B) 

0.005   (S) 

0.333   

(W, A) 

0.005   

(W, B) 

(S) 

30% WPO 

(W, A) (W, 

B) (S) 

NaCl  

(r=ND) 

*C=360 

g/L* 

V&µ-

FTIR&SEM

-EDS 

65 

Bulk 0.0012 <0.5   N/A KHCO2 

(r=1.5 

g/cm3) 

V&Raman 66 

0.3 0.3 ND Novel 

method c 

NaCl  

(r=1.16 

g/cm3) 

V&FTIR 67 

Bulk 0.063 ND N/A NaCl  

(r=ND) 

VO 68 

Bulk (All) 0.0002   

(All) 

<0.3   N/A NaCl (r=1.2 

g/cm3) 

V&FTIR 69 

0.25 0.0012 <1.25   N/A N/A V&Raman 70 

Bulk 5 0.1 30% WPO NaCl (r=1.3 

g/cm3) 

µ-Raman 71 

Bulk 0.174 ND 30% WPO ZnCl (r=1.6 

g/cm3) 

VO 72 

Individual 

extraction 

ND ND ND ND V&FTIR 73 

Bulk 0.038 0.038 N/A NaCl 

(r=ND) 

V&FTIR 74 

0.3 N/A 0.3 30% WPO NaCl 

(C=300 g/L) 

V&Raman 75 

0.333 0.0007 0.5 N/A N/A V&µ-

Raman 

76 

Bulk 0.001 ND N/A NaCl 

(r=ND) 

V&µ-

FTIR&SEM

-EDS 

77 

Bulk 0.001 0.1 N/A NaCl 

(r=1.27 

g/cm3) 

V&FTIR 78 

Bulk 0.25 m 0.25 N/A NaCl (r=1.2 

g/cm3) 

VO 79 
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Bulk 0.00045 <1   N/A NaCl (r=1.2 

g/cm3) 

GC-

MS&SEM-

EDS 

80 

Bulk (S) 

0.3   (W) 

0.3 >0.3   35% WPO NaCl 

(r=ND) 

V&GC-

MS&FTIR 

81 

0.2 N/A 0.3 N/A N/A V&Raman 82 

Bulk (A) 

0.05   (B) 

0.33   (C) 2   

(D) 

0.00075 ND 34.5% 

WPO 

N/A V&µ-FTIR 83 

0.35 0.3 0.3 N/A N/A V&FTIR 84 

2   (A) 0.02   

(B) 0.33   

(C) 

0.00075 0.05 30% WPO 

(B) (C) 

N/A V&FTIR 85 

0.05 0.045 0.05 30% WPO N/A V&FTIR 86 

0.3 0.3 0.3 N/A NaCl 

(r=ND) 

VO 87 

0.333 0.0007 0.33 30% WPO NaCl (C=6 

mol/L) 

V&GC-MS 88 

0.33   (A) 

0.05   (B) 

0.0007 2   (A) 

0.05   

(B) 

20% WPO N/A V&FTIR 89 

0.3 ND 0.1 N/A ND V&FTIR 90 

0.333 N/A 0.333 N/A N/A VO 91 

Bulk 0.02 0.02 30% VIP1h ND VO 92 

Core 0.00022 <0.2   N/A N/A V&FTIR 93 

0.25 0.0012 <1.25   N/A N/A V&Raman 94 

0.33 N/A 0.32 N/A NaCl 

(r=ND) 

VO 95 

Bulk 0.174 0.5 N/A N/A VO 96 

Bulk 0.174 0.5 30% WPO ZnCl (r=1.6 

g/cm3) 

VO 97 

Bulk 0.00045 0.01 N/A NaCl (r=1.2 

g/cm3) NaI 

(r=1.8 

g/cm3) 

V&FTIR 98 

Bulk 0.001 ND 30% WPO NaCl 

(r=ND) 

µ-FTIR 99 

0.112   (W) 

0.3   (S) 

0.0012   

(W) (S) 

0.112 N/A KHCO2 

(r=1.5 

g/cm3) 

V&Raman 100 

Bulk 0.01 ≤ 0.011   30% WPO ZnCl 

(r=1.7-1.8 

g/cm3) 

V&µ-

FTIR&ATR

-FTIR 

101 
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Bulk 0.063 0.25 N/A SPT (r=ND) V&FTIR 102 

Bulk 0.002 ≤ 0.1   N/A NaCl (r=1.2 

g/cm3) NaI 

(r=1.6 

g/cm3) 

SEM-EDS 103 

Bulk 0.5 ND N/A ND VO 104 

Bulk ND 0.3 N/A N/A V&FTIR 105 

Bulk 0.0012 0.063 30% WPO NaI (r=1.6-

1.8 g/cm3) 

VO 106 

Bulk 0.0007 ND N/A NaCl 

(r=ND) 

V&FTIR 107 

0.1 (W), 

Bulk (S) 

0.03   (W), 

0.1 (S) 

0.1   

(W), 

<0.005   

(S) 

30% WPO 

(W) (S) 

NaCl 

(r=undefine

d) 

VO 108 

Bulk 0.00045 0.06 N/A NaCl (r=1.2 

g/cm3) NaI 

(r=1.8 

g/cm3) 

V&FTIR 109 

Bulk 0.007 0.51 N/A NaCl 

(r=ND) 

VO 110 

0.3   (W) 

Bulk (S) 

0.02 £ 0.5   N/A NaCl 

(r=ND) 

V&FTIR 111 

Bulk 0.01 0.02 N/A NaCl 

(r=ND) 

VO 112 

Bulk 0.063 <0.063   N/A NaCl 

(r=ND) 

Other 113 

Bulk 0.063 0.063 N/A NaCl 

(r=ND) 

VO 114 

0.15 0.02 0.1 30% KOH 

and NaClO 

N/A Other 115 

0.1 ND 1 N/A N/A V&FTIR 116 

0.333 0.25 0.333 30% WPO N/A V&SEM-

EDS 

117 

0.01 0.01 ND  sodium 

dodecylsulf

ate solution  

N/A µ-Raman 118 

0.315 N/A ND N/A N/A VO 119 

0.3 0.0045 0.5 N/A N/A V&FTIR 120 

0.5 N/A ND N/A ND VO 121 

individual 

extraction 

1 2 N/A N/A V&FTIR 122 

0.333 0.0007 0.24 N/A N/A V&FTIR 123 

Bulk 0.47 ND N/A NaCl VO 124 



43 

 

0.33 0.0007 0.1 30% WPO N/A V&FTIR 125 

3 0.5 0.5 N/A N/A V&Raman 126 

Bulk 0.032 1 N/A NaCl V&µ-

Raman 

127 

0.125 0.0008 ND 30% WPO N/A V&µ-FTIR 128 

Bulk 0.0002 ND N/A Sewater V&FTIR 129 

Bulk 0.005 ND 5% HCl NaCl 

(r=1.17g/cm

3) 

V&FTIR 130 

Sweeping 0.002 0.05 30% H2O2 ZnCl2(c=1.

78 kg/L) 

V&SEM-

EDS 

131 

ND ND ND N/A N/A FTIR 132 

Bulk 0.00045 0.02 H2O2 NaCl 

(c=1.18 g/l) 

VO 133 

Core 0.0012 ND 30% WPO NaCl 

(r=1.6-1.8 

g/ml) 

Other 134 
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APPENDIX B 

 

VISUAL IDENTIFICATION ERROR ESTIMATION 
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Error  (%) n=particle 

count 

Over or 

underestimate 

Reference 

Misidentification <50 micrometer 37.0 637 Overestimate 118 

Misidentification 50-100 

micrometer 

33.0 155 Overestimate 118 

Misidentification >100 

micrometer 

17.0 35 Overestimate 118 

Degradation or misidentification 82.5 177 Overestimate 101 

Misidentification 20.0 20 Overestimate 19 

Misidentification 47.0 32 Overestimate 53 

Fragment error SML 38.3 206 Underestimate 131 

Fragment error beach 87.2 1192 Underestimate 131 

Fiber SML 65.4 13 Overestimate 131 

Fiber beach 72.4 29 Overestimate 131 

Misidentified as plastic 39.0 674 Overestimate 129 

Microplastics identified as ash, 

GL21 

27.0 57 Overestimate 9 

Microplastics identified as ash, 

GL20 

28.0 1101 Overestimate 9 

Microplastics identified as ash, 

GL19 

11.0 21 Overestimate 9 

Microplastics identified as ash, 

GL14 

31.0 26 Overestimate 9 

Microplastics identified as ash, 

GL10 

18.0 15 Overestimate 9 

Microplastics identified as ash, 

GL9 

25.0 5 Overestimate 9 

Microplastics identified as ash, 

GL7 

4.0 3 Overestimate 9 
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APPENDIX C 

 

DENSITY SEPARATION MISMATCH 
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Sample 

Environment 

Solute Density 

(g/cm3) 
Ref. 

Water 1.14 7 

Water 1.16 67 

Water 1.2 69 

Sediment 1.2 25 

Sediment 1.2 35 

Sediment 1.2 58 

Sediment 1.3 71 

Sediment 1.27 78 

Sediment 1.2 79 

Sediment 1.2 80 

Sediment 1.2 98 

Sediment 1.2 109 

Sediment 1.17 130 
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APPENDIX D 

 

MATERIAL AND VISUAL CHARACTERIZATION SIZE LIMITATIONS 
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Characterization 

Type 
Instrument 

Minimum 

Effective Size 
Limitations 

Spectroscopy 

ATR-Fourier 

Transform Infrared 

Spectroscopy (FTIR) 

1 mm - 

Spectroscopy Raman Spectroscopy 1 mm - 

Micro-

Spectroscopy 

Microscope attached to 

FTIR 
15 mm - 

Micro-

Spectroscopy 

Microscope attached to 

Raman 
0.5 mm 

Pigmentation causes 

interference 

Spectroscopy-

Microscopy 

Scanning Electron 

Microscope with 

Energy Dispersive X-

ray Spectroscopy 

(SEM-EDS) 

0.001 mm Possibly destructive 

Microscopy 
Atomic Force 

Microscope (AFM) 
0.01 mm 

Only exterior 

interrogation 

Microscopy Light Microscope 0.5 mm 
Only exterior 

interrogation 

Microscopy 
Stereo or Dissecting 

Microscope 
1 mm 

Only exterior 

interrogation 

Spectrometry Pyrolysis GC-MS 0.001 mm 

Physically placing 

particle with tweezers 

Destructive 

 


