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ABSTRACT

Transmission line parameters play an important role in state estimation, dynamic line
rating, and fault analysis. Because of this, several methods have been proposed in the
literature for line parameter estimation, especially using synchrophasor data. However,
success of most prior research has been demonstrated using purely synthetic data. A
synthetic dataset does not have the problems encountered with real data, such as invariance
of measurements and realistic field noise. Therefore, the algorithms developed using
synthetic datasets may not be as effective when used in practice. On the other hand, the true
values of the line parameters are unknown and therefore the algorithms cannot be directly
implemented on real data. A multi-stage test procedure is developed in this work to

circumvent this problem.

In this thesis, two popular algorithms, namely, moving-window total least squares
(MWTLS) and recursive Kalman filter (RKF) are applied on real data in multiple stages. In
the first stage, the algorithms are tested on a purely synthetic dataset. This is followed by
testing done on pseudo-synthetic datasets generated using real PMU data. In the final stage,
the algorithms are implemented on the real PMU data obtained from a local utility. The
results show that in the context of the given problem, RKF has better performance than
MWTLS. Furthermore, to improve the performance of RKF on real data, ASPEN data are
used to calculate the initial estimates. The estimation results show that the RKF algorithm
can reliably estimate the sequence impedances, using ASPEN data as a starting condition.
The estimation procedure is repeated over different time periods and the corresponding

results are presented.



Finally, the significance of data drop-outs and its impact on the use of parameter estimates
for real-time power system applications, such as state estimation and dynamic line rating, is
discussed. To address the problem (of data drop-outs), an auto regressive integrated moving
average (ARIMA) model is implemented. The ability of this model to predict the variations

in sequence impedances is demonstrated.
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CHAPTER 1

INTRODUCTION
The demand for electricity is expected to grow with time due to the advancements made in
electric vehicle technologies, and increasing number of new businesses [1]-[2]. This rising
demand, coupled with increasing renewable penetration, is increasing the stress on the
power system. Therefore, the need for robust techniques for state estimation, dynamic line
rating (DLR), and stability assessment is essential now more than ever. Accurate modeling
of transmission lines in general, and sequence impedances, in particular, play a crucial role

in all these analyses.

1.1. Transmission Line Equivalent Circuits
Depending on its length, a transmission line can be represented by three types of equivalent

circuits as described below [3]:

1. Short line (0-50 miles)

2. Medium line (50-150 miles)

3. Long line (150 miles or more)

A short length transmission line is represented by a series resistance and reactance as
shown in Figure 1.1. Shunt capacitance is usually neglected in the short line model. In the
medium line model (Figure 1.2), the line resistance and reactance are assumed to be
concentrated in the middle. The total capacitive effect between the transmission line and the

earth is divided between the two-shunt branches, one at the beginning and the other at the



end. A long transmission line is modeled as a cascade of medium line segments as shown

in Figure 1.3.
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Figure 1.1. Positive sequence small length transmission line model
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Figure 1.2. Positive sequence medium length transmission line model
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Figure 1.3. Positive sequence long length transmission line model



1.2. Conventional Line Parameter Estimation (Model-based)
Traditionally, line parameters, viz. resistance, admittance/capacitance, and
inductance/reactance were estimated using the geometry of the conductors and Carson’s

formula [4]-[5]. The dc resistance of the transmission line at temperature T is given by,

pr * |
Rger = " (1.1)

where pt represents the resistivity of the conductor at temperature T, [ is the length of the
conductor and A is the cross-sectional area. For an ac transmission line, the resistance is

usually higher because of skin effect and proximity effect.

The inductance of the transmission line can be calculated by calculating the flux linkages.

Inductance of composite conductor with unequal spacing is given by

D
L=2x 10‘71nD—Xy H/\, per conductor (1.2)
vy

where D, is the GMD (Geometric Mean Distance) and D, is the GMR (Geometric Mean

Radius). GMD and GMR are calculated using the radius of the conductor and distance

between the conductors.

The capacitance of the line can be computed by calculating the electric field of the

conductor. The capacitance of the composite conductor with unequal spacing is given by

2TE
C= ———— (1.3)

n(*Y,)

Deq = 3\/ Dap Dpc Deq (1.4)



Ds. = = \/rd™ ! (for n bundled conductor,n € {2,3}) (1.5)

where Dy, Dy, Do are the distance between the phase conductors, r is the radius of the

conductor, and d is the bundle spacing.

However, the accuracy of the conventional approach for line parameter estimation
decreases over time, as it does not account for age, usage, operating conditions, and other

factors.

1.3. Measurement-based Transmission Line Parameter Estimation

An alternative approach for estimating the line parameters is by using voltage and current
measurements taken at the opposite ends of the transmission lines. The development of
phasor measurement units (PMUSs) in the mid-1980s facilitated the measurement of highly
accurate time-stamped voltage and current phasors [6]. A PMU typically outputs at the rate
of 30 observations per second and the time-stamped data can be used for a variety of
applications [7]-[18]. According to North American SynchroPhasor Initiative (NASPI) [19],
over 2,800 networked PMUs are installed across North America as shown in Figure 1.4.
The widespread installation of PMUs in recent years has renewed interest in the
development of online methods for parameter estimation [20]-[27]. A brief overview of

these methods is provided below.



Phasor Measurement Units and Synchrophasor
Data Flows in the North American Power Grid - G

Legend
@ PMU Locations

Yt Transmission Owner Data Concentrator
% Regional Data Concentrator

/" data up to reliability coordinator

/ data between reliability coordinators
/" peer to peer data exchange

With information avalable as of March 25, 2014

Figure 1.4. PMU installations across North America [19]

In [20], the authors proposed a new algorithm for online parameter estimation of
untransposed parallel lines using a distributed line model and least squares method.
Although the authors validated the proposed algorithm with EMTP simulations, practical
considerations such as PMU measurement errors were not modeled in that work. In [21],
modal components of the characteristic impedance and propagation constants were found
using Clarke’s transformation and the authors tested their algorithms using EMTP
simulation data. However, the transmission lines were assumed to be transposed which may

not be true in general.



Parameters of the double circuit transmission line were estimated in [22]. The method used
voltage measurements from both sides and current measurements from one side to
determine the parameters of a fully transposed double circuit transmission line. However,
the method required one of the double circuit lines to be de-energized to estimate the zero-
sequence impedance, which may not be always possible in practice. In [23], the parameters
of the untransposed transmission line were calculated using equivalent pi and distributed
line models. The methods were tested using MATLAB simulations and it was concluded
that pi model could estimate parameters with three different states that have zero sequence
component as input. On the other hand, distributed line model could estimate parameters
with two different states but required the ratio of zero-sequence voltage to positive sequence
voltage to be larger compared to the equivalent pi model. However, measurement errors

were ignored in that work.

A framework for the estimation of positive sequence impedance was proposed in [24],
which also minimized the effect of measurement errors. In [25] zero sequence impedance
of the untransposed transmission line was estimated using line voltages, currents, active and
reactive powers measured by the PMU. However, PMU errors were not considered in that
work. The authors in [26] proposed a new method to estimate line parameters and
measurements simultaneously, yet the proposed method required the voltage transformer,
current transformer and PMU installed at one end of the transmission line to be pre-
calibrated. Least squares method was examined in [27], to estimate the parameters of
transposed and untransposed lines using ATP simulations. However, the method did not

account for errors in the regression matrix.



Since PMU measurements are obtained in real-time, the developed online methods can
track the variation of parameters with time. Traditionally, the line regression model used for

parameter estimation is shown in (1.6).

Z=H=+x0+¢€ (1.6)

In (1.6), Z is the data matrix, H is the regression matrix, 8 represents the parameters to be
estimated, and € represents the error. The data matrix, as well as regression matrix, are
calculated using PMU measurements. Although PMUs are more accurate (than SCADA),
their measurements do contain a noise component that is introduced by the instrumentation
channels, including the PMUs themselves. Therefore, errors in the data matrix, as well as
the regression matrix, must be accounted for, to estimate the parameters accurately. Two
prior publications [28]-[29] that accounted for errors in both the matrices are analyzed in
this work. In [28], online estimation of positive sequence line parameters of a 500 kV line
using a moving window total least squares (MWTLS) approach was proposed. In [29],
recursive Kalman filter (RKF) was used to estimate the three-phase line parameters using

synthetic data.

1.4. Motivation and Objective

Most of the prior work has focused on positive sequence line parameter estimation, which
often ignores the problems encountered in the real systems (which are three phase).
Similarly, most studies tested their results using synthetic data, which might not capture
many of the challenges encountered with real data. Therefore, there is a genuine need to

study the three-phase parameter estimation problem with real data. The main objective of



this thesis is to address this knowledge gap by using real PMU data to study the line
parameter estimation problem. The problem of online line parameter estimation is
investigated using a total least square, and a Kalman filter-based formulation, employing

PMU data obtained from a local utility.

1.5. Thesis Overview

The rest of the thesis is structured as follows. Mathematical formulation of the employed
regression model is presented in Chapter 2. Chapter 3 reviews the estimation algorithms,
namely, RKF and MWTLS. Chapter 4 presents the parameter estimation results. Chapter 5
discusses parameter estimation during data dropouts. The conclusions and future scope are

provided in Chapter 6.



CHAPTER 2

MATHEMATICAL FORMULATION
Most of the transmission lines of the local utility that provided the PMU data were within
150 miles, and therefore, a medium length transmission line was chosen for this work. A
three-phase medium length transmission line can be represented by an equivalent pi-circuit

as shown in Figure 2.1.

T’

Figure 2.1. Transmission line pi model

The transmission line is assumed to have PMUs installed at both ends. It may also be
symmetrical or unsymmetrical. The (self and mutual) series impedances of the three-phase
transmission line is given by,

Z8q Zha Zp

bc _ |7b b be| _ bc]™1
Z3q° = |Zpq Zpq Zpq|= [quc] (2.1)
b
Zpqa Zpq Zpq



The impedance matrix contains 18 unknowns (9 real + 9 imaginary). Similarly, the shunt

susceptances on either side of the transmission line are given by

B3 + B3P + B3 —B3P —Ba¢
B3PC = j -Bp®  Bp+BpP+Bj  —Bp© (2.2)
—Bg? —BgP BS + B5? + B
'Ba + Bab + Bac _Bab —BRac
q q q q q
bc _— : b b b b b
B3bc = —Bg? By + Bg? + Bg© —B° (2.3)
—B& —BSP B + B§® + BEP|

The two susceptance matrices consist of a total 18 unknowns (9 unknowns each). The
unknown parameters can be calculated by solving KCL and KVL equations. The equations

(in matrix form) are given in (2.4) and (2.5) below.

I35¢ + 135¢ = B3P  V3Pe 4+ BEPC « vabe (2.4)
Vgbe — yabe = z3abe « [3be (2.5)
I3 I3 Via Vo
In (2.4), and (2.5), I35¢ = [1pq |, 135 = |18, |, V32 = |Vpg [, V@b = |V,
I5q 1§ Vq Vo

The KCL, KVL equations given in (2.4), and (2.5) can be rewritten in the form of a
regression model to estimate the parameters. Accordingly, (2.4) and (2.5) can be rewritten

as,

Zg, = Hgp, X jOgy

Zse = Hge X O,

10

(2.6)

2.7)



The matrices described in (2.6)-(2.7) depend on the parameters described by (2.1)-(2.3).
The parametric matrices can be symmetrical or unsymmetrical. Therefore, two types of

formulations arise, namely,

Symmetrical formulation

Unsymmetrical formulation

2.1. Symmetrical Formulation
In the symmetrical formulation, it is assumed that the impedance and susceptance matrices

are symmetric. The resulting matrices for the regression model described by (2.6) are given

by
Ipq + Igp

Zon = |15g + 15, (2.8)
pq + Igp

Vi 0o 0 v 0o v v@ o o0 v® o v
Hg, =0 VP 0 VP2 v 0 0 Vo o0 vi v o0 (2.9)
0 0 Vg o v® v 0 0 Vg o v v

T
6., = [B3 BE By By BXC B By B BS BZ BY" B (210)

Similarly, matrices in the regression model corresponding to (2.7) are given by,

va— vz
Z., = |vb—ve (2.11)
VS — VS
_ b b b T
Ose = [Z3q Zpq Zpq Zpa Zpy Zfa] (2.12)

11



hi 0 0 hz 0 h3
Hee=|{0 h2 0 hl h3 0 (2.13)
0 0 h3 0 hZz hi

Va
h, =13, —j[Bs + B3> + B3* —Ba® —B°| |V (2.14)

h, =15, —j[-Bp® Bp+BR?+Bp° —Bp°||Vp (2.15)

hy =I5, —j[-B5* —BfP B+ B +B°| (VP (2.16)

2.2. Unsymmetrical Formulation
In the unsymmetrical formulation, the impedance and susceptance matrices are

asymmetric. Therefore, the matrices in the regression model described by (2.6) are given

by,
[pq + Igp

Zon = |1Bq + 15, (2.17)
Ipq + Igp

l'lsh

Vi 0 0yab g o0 0 0 VEV§gO0 Oy g o0 0 0 V&

=[0 V2 0 0 vbaybe 0 0 0 0 V2 o 0 vbaybe 0 0 0 (218
0 0VS o 0 0% % 0 00V o o0 o Va Ve O

9sh

T
= [B3 B B§ B3® Bp* BY® BSP BS® B3® B2 BY B§ BaP BS? BEC B B BEY| (2.19)

Similarly, matrices in the regression model corresponding to (2.7) are given by,

12



Vo —Vq

Zee = |VP — V2 (2.20)
Vg — Vg
— b b b b b T
s =[Z5a Zda Zba Zpa Zpi Zoq Zpa Zpy Zjdl (2.21)

hy 0 0 h, 0 0 0 0 hs
Hee=|0 h, 0 0 h; hy 0 0 0 (2.22)
0 0 hy 0 0 0 h, hy 0]
V3]
h, =13, —j[B3 + B3® + B3* —B3® —BX°||Vp (2.23)
VS|
Vo
h, = Ipg —j[~Bp® Bp+By"+Bg® —By[|Vy (2.24)
Yo
Vo
hs =I5, —j[-B5* —BfP BS+BS + B (VP (2.25)
VC
p

The matrices Zgy,, Hgp,, Ze, Hge are calculated using PMU measurements and therefore,

have real and imaginary components. Hence, (2.6) and (2.7) can be expressed as follows

Zsys Hgyus
real(zsh)] _ [—imag(Hsh) —~—
[imag(Zsh) =| real(,) | % 1Osnl (2.26)
Zimp Himp Oimp

[real(Zse)] _ [real(Hse) —imag(Hse)] 9 [real(ﬁse)

. . ) 2.27
imag(Ze)l = limag(H,.)  real(Hyo) | limag(8..) (2.27)

Initially, (2.26) is used for the calculation of the shunt susceptance matrix and the estimated
susceptance parameters are used to solve (2.27) to calculate the series impedance

parameters.

13



CHAPTER 3

ALGORITHMS
The transmission line parameters can be estimated by solving the linear equations (2.26)
and (2.27), where the entries of the matrices are obtained from PMU measurements.
Traditionally, linear regression models are solved by using the least squares method, where
we minimize the squared error between the measurements Z and the estimate HO [30] as

shown in (3.1).
J = €' = (Z— HO) ' (Z — HO) 3B

J can be minimized by equating the partial derivative of J with respect to 8 and by solving

for . On doing the minimization, we get,
0= (H™H) 'H"Z (3.2)

In the least squares method, it is assumed that the data matrix H is free of errors. However,
this assumption does not hold good when H is composed of real PMU measurements
obtained from the field. This is because field PMU may data contain sampling errors, human
errors, modeling errors, and instrument transformer errors [31]-[33]. The errors in the data

matrix can be modeled as,
Z=MH+ey) *0+e¢, (3.3)

which cannot be solved by the traditional least squares approach.

14



Several alternate methods were proposed in the literature, which accounts for the errors in
the Z matrix as well as H matrix. Two such popular algorithms, moving window total least

squares (MWTLS) and recursive Kalman filter (RKF), are considered in this work.

3.1. Moving Window Total Least Squares Method

Total least squares method was developed in [34] to solve a system of linear equations with
errors in the data matrix as well as measurement matrix. The TLS method is widely used in
signal processing to estimate the line parameters. The algorithm tries to minimize the

orthogonal distance between the estimate and the true value [35]-[37]

min[[H Z] - [H Zlll; (3.4)

In MWTLS, the matrices Z and H are calculated using an ‘n’ sample measurement
window. As the new measurements arrive, the old measurements are replaced by the moving
window. The procedure is repeated continuously until the measurements are exhausted. It
is easy to observe that an increase in window size will lead to improvement in the accuracy
of the results. To estimate the parameters, calculating the singular value decomposition of
[H Z] is the first step. The singular value decomposition is the factorization of a matrix

into the form UXVT. Therefore,
[H Z] = UZVT (3.5)

In (3.5), U denotes the left singular vectors, X denotes the singular values, and V denotes
the right singular vectors. Let cH be the number of columns in H. Then the parameters can

be estimated using (3.6) [28].

15



V(1:cH,cH + 1)

0=—
V(cH + 1,cH + 1)

(3.6)

3.2. Recursive Kalman Filter Method
Kalman filter is extensively used in signal processing to estimate the parameters of unknown

signals. For a linear discrete system, the Kalman filter formulation is given by (3.7) — (3.12),

O = Fiq * Okq + Gyq * Uk 3.7)
Z, = H, 0 (3.8)
Py = F_ P Fi" (3.9)
0y = 0; + Ky * (Zy — H0;) (3.10)
Ky = PrH] « [H Py HT + R| ™ (3.11)
P, = [1 — K Hy] * P (3.12)

where, k denotes the sample number, 8y is the priori estimate, 0, is the posteriori state
estimate, F,_,is the state transition matrix, Gi_;is the input matrix, u,_ is the priori input,
Py is the error covariance matrix of priori estimate, Py is the error covariance matrix of

posteriori estimate, R is the measurement covariance matrix.

For the transmission system with line parameters as states, the state transition matrix is

identity, and there is no input matrix [29]. Therefore (3.7) and (3.9) can be reformulated as,

O =0k 1, P =P, (3.13)

16



The operation of the RKF is shown in Figure 3.1 where K represents the Kalman gain. A
modified covariance matrix (R) is employed [39] to account for errors in the regression
matrix, H as well as in data matrix, Z. The modified covariance matrix is used to solve
(2.26) and (2.27), to estimate the line parameters, 0. In [29], it was assumed that the
impedance and susceptance matrices are symmetrical, which may not always be true. As a
result, two mathematical formulations, namely, the symmetrical formulation and the
unsymmetrical formulation are investigated in this work. The modified covariance matrices
accounting for errors in data matrix (Z) as well as regression matrix (H) are presented in the
Appendices A and B, respectively. For the detailed derivation of these formulae please see

the Appendix C.

2 —@—¥ — g

I_'l
L

Figure 3.1. Recursive Kalman filter



CHAPTER 4

TRANSMISSION LINE PARAMETER ESTIMATION

4.1. Data Pre-Processing
The sequence of steps for pre-processing the PMU data before setting them as inputs to the

parameter estimation algorithms are as follows.

File conversion
Data synchronization
Data cleaning

Estimation of complex voltages and currents

4.1.1. File Conversion

The synchrophasor data for this work are obtained from a local utility and are in a
proprietary file format. The PMU data corresponding to the period of interest are converted
to CSV files using a file exporter software provided by the utility. The CSV files thus
obtained are used for the development and testing of parameter estimation algorithms in

MATLAB [40].

4.1.2. Data Synchronization

PMU devices have an internal clock (usually a crystal oscillator) and are synchronized with
the global positioning system (GPS) for high-precision time sampling [41]. The high-
precision timestamps can be used to synchronize PMU measurements taken at different

locations. Since measurements taken at the sending end as well as the receiving are being

18



used in the estimation process in the proposed algorithm, the measurements are

synchronized based on the timestamps.

4.1.3. Data Cleaning

PMU measurements samples are synchronized with universal coordinated time (UTC)
using the GPS signals. The PMU data may be affected by the data losses [41]-[42] due to
loss of GPS synchronization or external factors. Therefore, the PMU data must be cleaned
before starting the estimation process. Several methods have been proposed in the literature
to deal with the PMU data losses [43]-[44]. However, for the initial estimation procedure,
the measurements affected by the data losses are ignored. It was observed that at times of
data losses, the voltage and current measurements are replaced by ‘0’ in the data files. Since
this is not possible in the traditional power system, the measurements with ‘0’ magnitudes

are omitted.

4.1.4. Estimation of Complex Voltages and Currents

The pre-processed data are used to calculate voltages and current in this step. The measured
synchrophasor angle can increase or decrease based on the operating conditions and is
usually wrapped between -180° and +180° [45]. Therefore, the phasor angles measured by
the synchrophasor device are unwrapped using MATLAB’s unwrap command. Thus,
unwrapped phase angles and magnitudes for voltages and currents are used to calculate the

phasor using (4.1),

Mcomplex = Mmagnitude * e_i(Mphase angle) (4.1)
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where Mpagnitude IS VOItage or current magnitude, Mppase angle 1S VOltage or current

unwrapped phase angle. Finally, the calculated voltage and current measurements are used

for the parameter estimation process.

4.2. Test Procedure

A three-stage test procedure is adopted in this work as shown in Figure 4.1. The reason for
doing so is that algorithms developed using purely synthetic data may not give the desired
performance when implemented in the field. Conversely, algorithms cannot be directly

tested using field data, because the true values of the line parameters are not known.

In the first stage, the algorithm is tested on a purely synthetic dataset. The dataset is
generated using a known set of line parameters. A white Gaussian noise is added to the
voltage and current measurements to replicate the measurement noise and the performance
of the selected algorithms (MWTLS and RKF) is evaluated by measuring the accuracy of

the estimated parameters.

In the second stage, the algorithm is tested on a pseudo-synthetic dataset generated using
field data. VVoltage measurements (PMU data) are taken from both ends of a transmission

line and current measurements are generated with a known set of line parameters using (4.2)

- (4.3).
I35 = Y3be » (VE© — Vghe) + BYevghe (42)
138 = Yge » (Vb — Vi) + BEPevghe (43)
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White Gaussian noise is added to the data similar to what was done in the first stage and

performance of the selected algorithms is assessed once more.

Finally, the algorithm is implemented on the real system, using both voltage and current
measurements obtained from PMU data obtained from the field. The performance of the

algorithm is evaluated by estimating the parameters over different time-periods.

Stage 1: Implementation on the synthetic dataset

v
Stage 2: Application to the pseudo synthetic dataset

generated using voltage (or current) measurements
from PMU

v
Stage 3: Application to the field PMU data

Figure 4.1. Three-stage test procedure for algorithm validation

4.3. Line Parameter Estimation Using Synthetic Data

In this stage, the algorithms were tested on a synthetic dataset. A training set consisting of
1,200 measurements was generated in MATLAB using the parameters of a 362 kV
transmission line with horizontal configuration [46]. The length of the transmission line was

chosen to be 50 miles with the parameters given by (4.4) - (4.5).
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15.1 + 52.1i 8.98 + 22.5i 8.77 + 18.4i
89 + 22.5i 12.26 + 51.61 8.98 + 22.5i
8.7 + 18.4i 898 + 22.51 15.18 + 52.1i

Z3be = Q (4.4)

0329 —0.057 —0.017
B3¢ = B3"* =j|-0.057 0.341 -0.057| 107* Q* (4.5)
—0.017 —0.057 0.329

To replicate the field conditions, measurement noises having characteristics
N(0,0.001%) and N(0,0.012) were added to the voltage and current measurements,
respectively. A window size of 80 was chosen for the two methods (MWTLS and RKF).
Initially, the algorithm was employed to estimate the susceptance parameters by solving
(2.26) using the symmetrical formulation. The estimated susceptance parameters were then
used to estimate impedance parameters using (2.27). Subsequently, the sequence impedance

matrix (Zpg?) was calculated using (4.6).
2032 =S"txZ3x S (4.6)

ZO ZOl ZOZ
pa  “pq  “pq 1 1 1
In (4.5), Zp? = |Zpq Zpq Zpg|,S = [1 a? az] ,a=1£120°. The simulations
Zoa Zpa Zpg 1 a a
were repeated 100 times and the average results presented in Table 4.1. The simulation
results show that both RKF and MWTLS were able to estimate the line parameters using

synthetic data. It can also be inferred from Table 4.1 that RKF performs slightly better than

MWTLS.
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Table 4.1. Simulation results on synthetic data

Mean % error

Mean % error

Impedance
Susceptance
RKF MWTLS | Parameter RKF MWTLS
Parameter
B3 0.6380 5.0108 Z3, 0.0171 0.0369
BS? 1.3280 5.6225 A 0.0176 0.0334
Bg? 4.1649 23.7815 53 0.0147 0.0414
B3P 1.2674 7.3276 VA 0.0151 0.0410
B} 0.7116 4.3268 Zq 0.0143 0.0369
BgP 1.4785 6.9901 A 0.0161 0.0443
Bac 4.6813 24.6559 Z53 0.0188 0.0344
Bb¢ 1.2906 5.8178 A 0.0154 0.0366
BS 0.6411 4.8460 ZSq 0.0171 0.0352
B2 0.7449 5.0730
Bba 1.4241 6.2243
BS 4.8987 23.9759
B3P 1.5420 7.0436
B 0.6816 4.7564
BEP 1.4482 7.1809
Ba° 4.5762 25.303
BhC 1.2380 6.2442
B 0.6812 4.8879
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4.3.1. Sensitivity analysis

A sensitivity analysis is conducted to study the effect of noise present in voltage, and
current measurements on the performance of the RKF algorithm using symmetrical
formulation. Gaussian noise of varying standard deviations (0.0005-0.01 p.u.) are added to
the voltage, and current measurements and the simulations are repeated. The results are
shown in Figures 4.2-4.3. It can be observed that even though the standard deviations of the
introduced noise increase, the percentage of error in the estimated parameters remain less
than 2%. Therefore, it can be concluded that the RKF algorithm is robust and is capable of

estimating parameters even in the presence of varying magnitude of measurement noise.

2.5

15

Percentage of error

0.5

0.0005 0.001 0.003 0.006 0.01
Standard deviation of noise (pu)

Error in susceptance Error in resistance

Error in reactance

Figure 4.2. Noise in voltage vs percentage of error
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Error in susceptance Error in resistance

Error in reactance

Figure 4.3. Noise in current vs percentage of error

4.4. Line Parameter Estimation Using Pseudo-Synthetic Data

In the next stage, pseudo-synthetic dataset was generated using voltage measurements
taken from both ends of a 500 kV transmission line during 7 AM and 8 AM. A training set
of 9,000 measurements were generated using PMU data and (4.2) - (4.3). To study the effect
of errors on the performance of the algorithms, Gaussian noise of varying magnitude were
added to the data and a sensitivity study was conducted. The results are summarized in

Figures 4.4 and 4.5.
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Figure 4.4. Noise in current vs percentage of error

100

80

T

60

40

20

#RKF #MWTLS

A

1e-06 1e-05 0.0001 0.001
Standard deviation of noise (pu)

Figure 4.5. Noise in voltage vs percentage of error
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Two inferences can be drawn from the results shown in Figures 4.4 and 4.5:

1) RKF algorithm vyields better results compared to MWTLS. Consequently, RKF was

chosen to estimate the parameters using real data.

2) The accuracy of the estimates falls drastically with increase in measurement noise.

After an in-depth analysis, it was concluded that the variation in voltage is small for the
real system as shown in Figure 4.6. This is because utilities try to maintain the voltage
constant, which eventually leads to the parameter estimation problem becoming ill-
conditioned. Table 4.2 shows the condition number of the regression matrices, and it can be
observed that the condition number of pseudo-synthetic data, in particular, H, (made of

voltage measurements) is considerably high.

=10

25~

15 -

Number of measurements

0.5

0
1.068 1.069 1.07 1.071 1.072 1.073 1.074 1.075 1.076 1.077
Voltage (pu)

Figure 4.6. Variation of the voltage of 500 kV transmission line

During this analysis, it was realized that one way to further enhance the performance of

RKF (even in presence of the ill-conditioning problem), could be by improving the quality
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of the initial estimates. Traditionally, parameters are calculated using software such as
ASPEN and stored in the SCADA database at the time of commissioning. Therefore, the
hypothesis that needed to be tested was: if ASPEN data could be utilized to calculate the

initial estimates and thereby improve the performance of RKF.

Table 4.2. Condition number of regression matrix

Condition Number of Hg, Condition Number of Hg,
Synthetic data 54.74 3.81
Pseudo-synthetic data 1.14e05 3.8e03

The transmission line is initially assumed to be transposed and symmetrical, to calculate
initial estimates using ASPEN data. Therefore, the impedance matrix is modified as shown

below.

230 = |Zpa  ZDq 73S Z3q Zpy (4.7)

b
Z3e 3 Z3 lzsq Z5y  Zpy
— |zm
- bq
Z5% Zoa Zhal Zea Za Zpa

In (4.7), Z34 denotes the self-impedance, Zg denotes the mutual impedance. From (4.6)-

(4.7).the relation between Z5 ., Z5%, ZD 4, Zpq are derived as follows,

Z3q +2 %720 = 73, (4.8)

Z3q — Zpy = Zpq (4.9)
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The calculated self and mutual impedance are used to populate the initial estimate of
impedance matrix using (4.7). The resultant matrix is used to calculate the initial estimate

of parameter vector 07 . The block diagram of the modified RKF is shown in Figure 4.7.

Lo s
k=1

Figure 4.7. Recursive Kalman filter with initial estimates calculated from ASPEN

4.5. Implementation on the Real System

Finally, the RKF algorithm was implemented on the 500 kV transmission line with PMUs
installed at both ends. PMU data are collected over 38 consecutive days for the time-period
7 AM to 8 AM. Since line parameters did not change significantly over this time-period, the
consistency of the estimates was taken as a metric for validation. Each dataset consisted of
a one-hour duration of PMU data measured at 30 samples per second. The initial estimates
were calculated utilizing ASPEN data from utility database employing (4.8) - (4.9) and fed
to RKF for final estimation. The parameters are estimated using symmetrical formulation
as well as unsymmetrical formulation and the results are summarized in Figures 4.8-4.15. It

can be observed that the estimated parameters lie in a narrow band. From the narrowness of
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the band, it can be concluded that RKF algorithm in conjunction with ASPEN data was able

to estimate the line parameters consistently.
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Figure 4.8. Estimated three-phase resistance using symmetrical formulation
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Figure 4.9. Estimated three-phase resistance using unsymmetrical formulation
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Figure 4.10. Estimated three-phase reactance using symmetrical formulation
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Figure 4.11. Estimated three-phase reactance using unsymmetrical formulation
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Figure 4.12. Estimated zero-sequence resistance using symmetrical formulation
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Figure 4.13. Estimated zero-sequence resistance using unsymmetrical formulation

32



0.0325 - ,

0.032% . 1

0.0315 ,

0.031 ]

Zero sequence reactance (pu)

0.0305 _

5 10 15 20 25 30 35
Time (days)

Figure 4.14. Estimated zero-sequence reactance using symmetrical formulation
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Figure 4.15. Estimated zero-sequence reactance using unsymmetrical formulation
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4.5.1. Time Series Analysis of Sequence Impedances

Transmission line parameters are a function of operating conditions and tend to change as
the day progresses. Therefore, to study the variation of line parameters, the estimation
procedure using the RKF algorithm (symmetrical as well as unsymmetrical formulation) is
repeated every hour and the results are presented in Figures 4.16-4.23. It can be observed
that the algorithm was able to capture the variation in line parameters with time. Further, it
can be inferred that the number of outliers in the unsymmetrical formulation is more as
compared to the symmetrical formulation. The possible reason could be the increased
number of unknowns in the unsymmetrical formulation. Since both the formulations utilized
the same sized dataset, as the number of unknowns increased, the accuracy of the
unsymmetrical formulation algorithm decreased. Also, it could be that the transmission line

under examination was symmetrical and forcing it to not be so, was leading to higher errors.
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Figure 4.16. Estimated zero-sequence resistance using symmetrical formulation
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Figure 4.17. Estimated zero-sequence resistance using unsymmetrical formulation
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Figure 4.18. Estimated zero-sequence reactance using symmetrical formulation
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Figure 4.19. Estimated zero-sequence reactance using unsymmetrical formulation
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Figure 4.20. Estimated positive-sequence resistance using symmetrical formulation
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Figure 4.21. Estimated positive-sequence resistance using unsymmetrical formulation
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Figure 4.22. Estimated positive-sequence reactance using symmetrical formulation
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Figure 4.23. Estimated positive-sequence reactance using unsymmetrical formulation
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CHAPTER 5

LINE PARAMETER ESTIMATION DURING DATA-DROPOUTS

Power system applications, such as state estimation and dynamic line rating (DLR), utilize

line parameters in their analyses as discussed below:

In state estimation, the network model, line parameters and SCADA (and/or PMU)
measurements are used to estimate the complex bus voltages of the system. It is
typical to assume line parameters as accurately known for the estimation procedure
[47]-[48].

Dynamic line rating (DLR) is an alternative to static line rating. Typically, static
line rating is determined based upon the operating temperature, solar radiation,
wind speed, ground clearance, all of which are assumed to be constant [49]. As
these assumptions are usually conservative, real-time capacity can be higher than
the static rating. As the transmission line parameters are a function of conditions
such as temperature, sag (which varies with time) it is imperative that the line
parameters, modeled as a function of these time-varying quantities, should be

included in the DLR studies [50]-[51].

In Section 4.5.1, the variation of line parameters with time was presented. It can be clearly

seen that there is a considerable change in parameters as time progresses. Therefore, it is

crucial to include the dependency of line parameter variation with time in power system

analysis. However, the applications are limited by the availability of estimated parameters,

which in turn is affected by the quality of PMU data. PMUs are occasionally affected by
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data losses as discussed in Section 4.1.3. The severity of data dropouts on a typical day for
real PMU data can be observed in Figure 5.1. To overcome this problem, transmission line
parameters need to be predicted at times of data dropouts using past estimates. Auto

Regressive Integrated Moving Average (ARIMA) [52] model can be used for this purpose.
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Figure 5.1. Voltage magnitude of a 500 kV transmission line for 24 hours

5.1. Overview of ARIMA

ARIMA models are widely used for time series analysis such as forecasting wind power
[53] and electricity prices [54]. Autoregressive component of ARIMA model uses ‘p’ past
values to estimate the current value of the time-series. Here, the current value is estimated
as a linear combination of previous values [55]. The auto-regressive (AR) model is given

by

f(B) = 1 — f,B® — f,BZ — --- — f,BP (5.1)
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In (5.1), B is the Backshift operator and a; is the error at time t. On the other hand, moving
average model uses a linear combination of white noise in the previous measurements to

estimate the present value. The moving average (MA) model is given by
g(B) =1-g,B' —g,B*..— g4BI (5.2)

It is assumed that the orders of AR and MA components are p and q, respectively. The
integration component (w,) of the ARIMA model is used to capture the non-stationary

behavior of the parameters and is given by (5.3)-(5.4).

Wt - VdZt or Zt = det (5-3)

S Wi = zwt + Wi_1 + Wi_» + .- (54‘)
j=0

An ARIMA model [52] is a combination of auto-regressive, moving average, and

integration models, and is given by,
f(B)w; = g(B)ay (5.5)

To design an ARIMA model, the order of auto-regressive, moving average, and integration
models must be determined. The order of integration component is the number of times of
difference of z, required to produce a stationary process. On the other hand, the orders of
AR and MA components are determined iteratively until the requirements of the accuracy
are met. The chosen model is trained using past estimates and percentage of error of
predicted values are calculated. If the accuracy of the model is less than the desired value,

the procedure is repeated by changing the order of the model.
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An independent ARIMA model can be designed for each parameter of interest. Once a data
dropout is detected, the model is trained using the estimates up to the time of dropout and

is used for forecasting until good data become available.

5.2. Application of ARIMA Models

In this section, the use of ARIMA models to predict the parameter values using past
estimates is investigated. The estimation results from the previous section are utilized for
this work and a dataset of 372 estimates is created. The dataset is split into two subsets: a
training set of 300 estimates, and a testing set comprising of 72 estimates. First, the proposed
ARIMA model is used to forecast zero sequence resistance. An ARIMA model of order
(80,1,1) is chosen for this analysis. The model is trained in MATLAB using the training
dataset and the trained model is used to predict the subsequent 72 estimates (testing dataset).
The procedure is repeated for zero-sequence reactance. The zero-sequence impedance was
used for this purpose because the power utility was interested in tracking the values of their

zero sequence impedances over time.

The forecasted values are compared with the test set and the results are summarized in
Figures 5.2-5.3, and Table 5.1. It can be observed from the figures that the zero-sequence
resistance varies between 0.9 and 1.2 p.u., while, the zero-sequence reactance varies
between 0.995 and 1.005 p.u. As the forecasted error will be small if the parameter variation
is low, the accuracy of the forecast of zero sequence resistance is comparatively less in
comparison to the zero-sequence reactance. From Table 5.1, it is observed that the mean
and median estimation errors are less than 4% and less than 0.2% for zero-sequence

resistance and zero-sequence reactance, respectively. Therefore, it can be concluded that
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ARIMA models can be successfully used to forecast line parameters from past estimates.
An added advantage is that ARIMA model can also be used to detect an outlier in the actual

estimation results (highlighted by red ovals in Figures 5.2 and 5.3).

Table 5.1. Results of ARIMA model

Parameter Mean Error (%) Median Error (%)
Zero-sequence resistance 3.8654 2.87
Zero-sequence reactance 0.1128 0.10
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Figure 5.2. Observed and forecasted zero-sequence resistance using ARIMA model;

outliers are highlighted by red ovals
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CHAPTER 6

CONCLUSION & FUTURE SCOPE

6.1. Conclusion

Transmission line parameters, in general, and zero-sequence impedance, in particular, play
an important role in power systems operations, control, and protection. Online methods for
transmission line parameter estimation using synchrophasor data were investigated in this
work. Two popular algorithms for parameter estimation problems, namely, MWTLS and
RKF were selected. The algorithms were tested on a synthetic dataset generated in
MATLAB and it was concluded that the algorithms can estimate the line parameters with

less than 2% error.

In the next stage, a pseudo-synthetic dataset was generated using PMU data and the
algorithms were re-applied. The results showed that the performance of RKF was better
than MWTLS. In addition, it was observed that the accuracy of the estimates was sensitive
to noise in the voltage measurements. After a thorough investigation, it was found that the
variation of voltages with time was small because utilities maintained their voltages close
to 1 p.u., which led to the problem becoming ill-conditioned. As a result, the effect of noise

on the accuracy of the results was magnified.

One way to improve the accuracy of the estimates was by providing an improved initial
estimate. Therefore, for the third stage, the RKF algorithm with initial estimates obtained
from ASPEN data was implemented on a 500 kV transmission line operated by a local
utility. The estimation procedure was repeated over a period of one month and the results
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were documented. The estimation results proved that the algorithm was able to estimate the
zero-sequence impedance consistently. Furthermore, it was able to follow the variation of

line parameters over the course of a day.

Lastly, an auto regressive integrated moving average (ARIMA) model was implemented
to predict the variations in sequence impedances during data dropouts. The simulation
results indicated that the mean and median estimation errors were less than 4% and 0.2%
for zero-sequence resistance and zero-sequence reactance, respectively. Additionally,

ARIMA model was capable of detecting outliers in the estimates.

6.2. Future Scope

In this work, focus has only been on the noises added by the PMUs themselves, and not
those that are added by the instrument transformers (ITs). The transformation ratios
associated with each IT can change with time introducing additional errors into the
measurements. Therefore, these additional errors must be accounted for, to increase the

estimation accuracy.

Several methods were proposed in recent years to estimate the line parameters considering
instrument transformer errors. In [56], the physical behavior of the conductor is used to
determine the positive sequence parameters on laboratory datasets considering instrument
transformer errors. In [44], an iterative algorithm is employed to estimate positive sequence
parameters of a distribution network using MATLAB simulations. In [45], a robust
estimator insensitive to bad data are used to estimate three-phase line parameters. However,

it was tested on a fully transposed line and it required a minimum of 10% loading which
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may not be possible in real-life. It can be observed that current work either focuses on
positive sequence or is not sufficiently validated using field data. Therefore, the algorithms
for three-phase line parameter estimation considering PMU errors as well as instrument
transformer errors need further attention and extensive testing before they are applied in

practice.
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The modified measurement covariance matrix for the calculation of susceptance
parameters using symmetrical formulation is presented in this section. If the susceptance

parameter matrix to be estimated is denoted by t, from (2.10), t is found to be,
t=0g, (A1)

For a Gaussian noise of N (0, sigv?), N(0, sigc?) in the voltage and current measurements,

respectively, the covariance matrix is shown below.

Rnew(1,1) = sigv?[(t(1) + t(4) + t(6))" + (t(7) + £(10) + £(12))") + t(4)?
+ t(6)? + t(10)? + t(12)?] + 2

* sigc? (A.2)
Rnew(2,2) = sigv? [(t(2) +t(4) +£(5))" + (1(8) + £(10) + t(11))2)
+t(4)% +t(5)% + t(10)2 + t(11)?] + 2
* sigc? (A.3)
Rnew(3,3) = sigv? [(t(3) + £(5) + t(6))” + (t(9) + t(11) + t(12))")
+t(5)% + t(6)% + t(11)% + t(12)%] + 2
* sigc? (A.4)
Rnew(1,2) = sigv?[—(t(1) + t(4) + t(6)) * t(4) — (£(2) + t(4) + t(5)) * t(4)
+ t(5) * t(6) — (t(7) + t(10) + t(12))  t(10)

— (t(8) + t(10) + t(11)) = t(10) + t(11) * t(12)] (A.5)
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Rnew(1,3) = [—(t(1) + t(4) + t(6)) * t(6) — (t(5) + t(3) + t(6))(6) + t(4)
« t(5) — (t(7) + t(10) + t(12)) = £(12) — (£(11) + t(9) + t(12))

* £(12) + t(10) = t(11)] = sigv? (A.6)

Rnew(2,3) = [—(t(2) + t(4) + t(5)) * t(5) — (t(3) + t(5) + t(6)) *t(5) + t(4)

* t(6) — (t(8) + t(10) + t(11)) = t(11) — (£(9) + t(11) + t(12))

* t(11) + t(10) * t(12)] * sigv? (A.7)
Rnew(2,1) = Rnew(1,2) (A.8)
Rnew(3,1) = Rnew(1,3) (A.9)
Rnew(3,2) = Rnew(2,3) (A.10)

Let the impedance parameter matrix to be estimated be denoted by t. Then, from (2.12), t

is found to be,

_ [ real(0,) (A1)

B lmag(ese)

The modified measurement covariance matrix for the calculation of impedance parameters

using symmetrical formulation is presented below.

Rnewimp(1,1)
= sigc? = (t(1)? + t(4)? + t(6)% + t(7)? + t(10)% + t(12)?) — sigv?
« ([t(1) t(4) t(6)]*Bp = (Bp)" = ([t(1) t(4) t(E)DT) — sigv?
* ([t(7) t(10) t(12)] «Bp = (Bp)™ * ([t(7) t(10) t(12)DT)

+ sigv? (A.12)
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Rnewimp(1,2)
= sige? (([t(1) t(4) t(6) t(7) t(10) t(12)])
* ([t(4) t(2) t(5) t(10) t(8) t(AD™) — sigv? ([t(1) t(4) t(6)]
*Bp * (Bp)" * ([t(4) t(2) t(5)DT) — sigv? ([t(7) t(10) t(12)] * Bp

« (Bp)" * ([t(10) t(8) t(1DT) (A.13)

Rnewimp(1,3)
= ([t(1) t(4) t(6) t(7) t(10) t(12)]
+ ([t(6) t(5) t(3) t(12) t(11) (9] T)sigc® — sigv?
* ([t(1) t(4) t(6)] *Bp * (Bp)™ * ([t(6) t(5) t(3)D™) — sigv®
* ([t(7) t(10) t(12)] = Bp * (Bp)T

+ ([t(12) t(11D) t(9)DDH (A.14)

Rnewimp(1,4)
= ([t(1) t(4) t(6) —t(7) —t(10) —t(12)]
« ([t(7) t(10) t(12) t(1) t(4) t(6)])T)sige? — sigv?
* ([t(1) t(4) t(6)] * Bp * (Bp)™  ([t(7) t(10) t(12)])) + sigv?

« ([t(7) £(10) t(12)] «Bp = (Bp)" * ([t(1) t(4) t(6)DT)  (A.15)

Rnewimp(1,5)
= ([t(1) t(4) t(6) —t(7) —t(10) —t(12)
« ([t(10) £(8) t(11) t(4) t(2) t(5)])Msige? — sigv?
« ([t(1) t(4) t(6)] = Bp = (Bp)" = ([t(10) t(8) t(11)])T) + sigv®
« ([t(7) £(10) t(12)] * Bp * (Bp)" = ([t(4) t(2) t(5)DT) (A.16)
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Rnewimp(1,6)
= ([t(1) t(4) t(6) —t(7) —t(10) —t(12)]
* ([t(12) t(11) t(9) t(6) t(5) t(3)]T )sige? — sigv?
« ([t(1) t(4) t(6)] *Bp » (Bp)™ = ([t(12) t(11) t(D]T) + sigv?

« ([t(7) t(10) t(12)] * Bp * (Bp)”

+ ([t(6) t(5) t(3)DT) (A.17)
Rnewimp(2,1) = Rnewimp(1,2) (A.18)
Rnewimp(2,2)

= sigc? * (t(4)? + t(2)% + t(5)? + t(10)? + t(8)% + t(11)?) — sigv?
+ ([t(4) t(2) t(5)] * Bp * (Bp)™ * ([t(4) t(2) t(5)]T) — sigv?
+ ([t(10) £(8) t(11)] *Bp * (Bp)" * ([t(10) t(8) t(1DT)

+ sigv? (A.19)

Rnewimp(2,3)
= ([t(4) t(2) t(5) t(10) £(8) t(11)]
« ([t(6) t(5) t(3) t(12) t(11) t(N])T )sige® — sigv®
+ ([t(4) t(2) t(5)] = Bp = (Bp)" = ([t(6) t(5) t()])T) — sigv?
+ ([t(10) t(8) t(11)] * Bp = (Bp)"

+ ([t(12) t(11) t(9)DH (A.20)

58



Rnewimp(2,4)
= sigc? = ([t(4) t(2) t(5) —t(10) —t(8) —t(11)]
* ([6(7) £(10) £(12) t(1) t(4) t(6)DT) — sigv? * ([t(4) t(2) t(5)]
*Bp = (Bp)" * ([t(7) t(10) t(12)]))"
+ sigv?([t(10) £(8) t(11)] * Bp * (Bp)”

* ([t(1) t(4) t6)DT) (A.21)

Rnewimp(2,5)
= ([t(®) t2) t(5) —t(10) —&(8) —t(11)]
« ([t(10) £(8) t(11) t(4) t(2) t(5)])T )sige® — sigv?
« ([t(4) t(2) t(5)] * Bp * (Bp)™ = ([t(10) t(8) t(1])T) + sigv?
+ ([t(10) t(8) t(11)] * Bp = (Bp)T

« ([t(4) t(2) tGIDT) (A.22)

Rnewimp(2,6)
= ([t(4) t(2) t(5) —t(10) —t(8) —t(11)]
* ([6(12) t(11) t(9) t(6) t(5) t(3)])T)sige? — sigv?
* ([t(4) t(2) t(5)] *Bp * (Bp)" * ([t(12) t(11) t(9)DT) + sigv?

* ([£(10) t(8) t(11)] = Bp = (Bp)"

+ ([t(6) t(5) t(3)DT) (A.23)
Rnewimp(3,1) = Rnewimp(1,3) (A.24)
Rnewimp(3,2) = Rnewimp(2,3) (A.25)
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Rnewimp(3,3)
= sigc? * (t(6)? + t(5)% + t(3)? + t(12)% + t(11)? + t(9)?) — sigv?
« ([t(6) t(5) t(3)] * Bp * (Bp)™ = ([t(6) t(5) t(3)DT) — sigv?
« ([6(12) t(11) £(9)] *Bp = (Bp)™ * ([t(12) t(11) t(HD™)

+ sigv? (A.26)

Rnewimp(3,4)
= ([t(6) t(5) t(3) —t(12) —t(11) —t(9)]
+ ([t(7) £(10) t(12) t(1) t(4) t(6)])T )sige? — sigv?
« ([t(6) t(5) t(3)] *Bp * (Bp)™ * ([t(7) t(10) t(12)DT) + sigv®

« ([t(12) t(11) £(9)] *Bp = ([t(1) t(4) L&D (A.27)

Rnewimp(3,5)
= ([t(6) t(5) t(3) —t(12) —t(11) —t(9)]
« ([t(10) t(8) t(11) t(4) t(2) t(5)])T )sige® — sigv?
+ ([t(6) t(5) t(3)] *Bp * (Bp)™ * ([t(10) t(8) t(1])T) + sigv?

« ([t(12) t(11) t(9)]*Bp = (Bp)" * ([t(4) t(2) t(5)DT) (A.28)

Rnewimp(3,6)
= ([t(6) t(5) t(3) —t(12) —t(11) —t(9)]
* ([£(12) t(11) t(9) t(6) t(5) t(3)])M)sige? — sigv?
+ ([t(6) t(5) t(3)] *Bp = (Bp)" * ([t(12) t(11) t(9)DT) + sigv?
+ ([t(12) t(11) t(9)] = Bp = (Bp)" * ([t(6) t(5) t(3)DT)  (A.29)

Rnewimp(4,1) = Rnewimp(1,4) (A.30)
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Rnewimp(4,2) = Rnewimp(2,4) (A.31)

Rnewimp(4,3) = Rnewimp(3,4) (A.32)
Rnewimp(4,4) = Rnewimp(1,1) (A.33)
Rnewimp(4,5)

= ([t(7) t(10) t(12) t(1) t(4) t(6)]
+ ([t(10) t(8) t(11) t(4) t(2) t(5)]T) sigc? — sigv?
* ([t(7) t(10) £(12)]* Bp * (Bp)™ = ([t(10) t(8) t(1)DT) — sigv?

« ([t(1) t(4) t(6)] * Bp = (Bp)" = ([t(4) t(2) (5D (A.34)

Rnewimp(4,6)
= ([t(7) £(10) t(12) t(1) t(4) t(6)]
« ([£(12) t(11) t(9) t(6) t(5) t(3)DN" )sige? — sigv?
« ([£(7) t(10) t(12)] = Bp = (Bp)" = ([t(12) t(11) t(9]T) — sigv?

« ([t(1) t(4) t(6)] *Bp = (Bp)" * ([t(6) t(5) t(3)D) (A.35)

Rnewimp(5,1) = Rnewimp(1,5) (A.36)
Rnewimp(5,2) = Rnewimp(2,5) (A.37)
Rnewimp(5,3) = Rnewimp(3,5) (A.38)
Rnewimp(5,4) = Rnewimp(4,5) (A.39)
Rnewimp(5,5) = Rnewimp(2,2) (A.40)
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Rnewimp(5,6)

= ([t(10) £(8) t(11) t(4) t(2) t(5)]

+ ([t(12) t(11) t(9) t(6) t(5) t(3A)T) sigc? — sigv?

« ([t(10) t(8) t(11)]+Bp = (Bp)" = ([t(12) t(11) t(9)DT) — sigv?

* ([t(4) t(2) t(5)]* Bp * (Bp)" * ([t(6) t(5) t(3)D™)

Rnewimp(6,1) = Rnewimp(1,6)

Rnewimp(6,2) = Rnewimp(2,6)

Rnewimp(6,3) = Rnewimp(3,6)

Rnewimp(6,4) = Rnewimp(4,6)

Rnewimp(6,5) = Rnewimp(5,6)

Rnewimp(6,6) = Rnewimp(3,3)
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Let the susceptance parameter matrix to be estimated be denoted by t. Then, from (2.19), t

is given by,
t=0g, (B.1)

The modified measurement covariance matrix for the calculation of susceptance

parameters using unsymmetrical formulation is presented below.

Rnew(1,1) = 2 *sigc? + sigv? * [(t(1) + t(4) + t(9))? + t(4)? + t(9)?
+ (t(10) + t(13) + t(18))? + t(13)? + t(18)?] (B.2)
Rnew(2,2) = 2 = sigc? + sigv? = [(t(2) + t(5) + t(7))? + t(5)% + t(7)?

+ (t(11) + t(14) + t(16))? + t(14)? + t(16)?] (B.3)

Rnew(3,3) = sigv? * [(t(3) + t(6) + t(8))% + t(6)? + t(8)?
+ (t(12) + t(15) + t(17))? + t(15)? + t(17)?] + 2

* sigc? (B.4)
Rnew(1,2) = sigv?[—(t(1) + t(4) + t(9)) * t(7) — (t(2) + t(8) + t(7)) * t(4)
+ t(9) * t(5) — (t(10) + £(13) + t(18)) * t(16)
— (t(11) + t(14) + t(16)) * t(13) + t(18) = t(11)] (B.5)
Rnew(1,3) = sigv? [—(t(1) +t(4) + t(9)) * t(6) — (t(3) + t(6) + t(8)) * t(9)

+t(4) * t(8) — (£(10) + t(13) + t(18)) * t(15))

— (t(12) + t(15) + t(17) = t(18) + t(13) * t(17)] (B.6)
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Rnew(2,3) = sigv?[—(t(2) + t(5) + t(7)) = t(8) — (t(3) + t(6) + t(8)) * t(5)

+ t(7) = t(6) — (t(12) + t(15) + t(17)) * t(14)

— (t(11) + t(14) + t(16)) * t(17) + t(16) * t(15)] (B.7)
Rnew(2,1) = Rnew(1,2) (B.8)
Rnew(3,1) = Rnew(1,3) (B.9)
Rnew(3,2) = Rnew(2,3) (B.10)

Let the impedance parameter matrix to be estimated be denoted by t. Then, from (2.21), t

is given by,

_ [real(Bse)
= [imag(ese) (B-1D)

The modified measurement covariance matrix for the calculation of impedance parameters
using unsymmetrical formulation is presented below.
Rnewimp(1,1)

= sigc?(t(1)? + t(4)? + t(9)? + t(10)2 + t(13)% + t(18)?)

— sigv?([t(1) t(4) t(9)] = Bp = (Bp)" = ([t(1) t(4) t(NDT) — sigv?

« ([£(10) t(13) t(18)]  Bp = (Bp)" = ([t(10) t(13) t(18)]))") + 2

* sigv? (B.12)
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Rnewimp(1,2)
= ([t(1) t(4) t(9) t(10) t(13) t(18)] ([t(7) t(2) t(5) t(16) t(11) t(14)]D™)
— sigv? * ([t(1) t(4) t(9)] *Bp * Bp)™  ([t(7) t(2) t(5)DT) — sigv?

+ ([t(10) t(13) t(18)] *Bp * (Bp)T = ([t(16) t(11) t(14)DT) (B.13)

Rnewimp(1,3)

= sigc?([t(1) t(4) t(9) t(10) t(13) t(18)]

« ([t(6) t(8) t(3) t(15) t(17) t(12))T ) — sigv?

« ([t(1) t(4) t(9)] = Bp * (Bp)™ = ([t(6) t(8) t(3)T) — sigv?

+ ([t(10) t(13) t(18)]*Bp * (Bp)T * ([t(15) t(17) t(12)DT) (B.14)
Rnewimp(1,4)

= sigc2([t(1) t(4) t(9) —t(10) —t(13) —t(18)]

« ([t(10) t(13) t(18) t(1) t(4) t(DD™) — sigv?

« ([t(1) t(4) t(9)] *Bp * (Bp)™ * ([t(10) t(13) t(18)DT) + sigv?

« ([t(10) t(13) t(18)] = Bp = (Bp)™ = ([t(1) t(4) t(9DT) (B.15)
Rnewimp(1,5)

= sigc?([t(1) t(4) t(9) —t(10) —t(13) —t(18)]

+ ([t(16) t(11) t(14) t(7) t(2) t(5)DT) — sigv?

* ([t(1) t(4) t(9)] = Bp = (Bp)" * ([t(16) t(11) t(14)DT) + sigv?

« ([t(10) t(13) t(18)]  Bp = (Bp)" * ([t(7) t(2) t(5)D")  (B.16)
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Rnewimp(1,6)
= sigc?([t(1) t(4) t(9) —t(10) —t(13) —t(18)]
+ ([t(15) t(17) t(12) t(6) t(8) t(3A)PDT ) — sigv?
« ([t(1) t(4) t(9)]*Bp * (Bp)™  ([t(15) t(17) t(12)DT) + sigv?

« ([t(10) t(13) t(18)] = Bp  (Bp)" * ([t(6) t(8) t(DD")  (B.17)
Rnewimp(2,1) = Rnewimp(1,2) (B.18)

Rnewimp(2,2)
= (t(7)? +t(2)?2 + t(5)? + t(16)% + t(11)? + t(14)?)sigc? — sigv?
* ([6(7) t(2) t(5)] * Bp * (Bp)™ = ([t(7) t(2) t(5)DT) — sigv?
« ([t(16) t(11) t(14)] = Bp = (Bp)" = ([t(16) t(11) t(14)D™) + 2

* sigv? (B.19)

Rnewimp(2,3)
= sige2([t(7) t(2) t(5) t(16) t(11) t(14)]
+ ([t(6) t(8) t(3) t(15) t(17) t(12))T) — sigv?
+ ([t(7) t(2) t(5)] = Bp = (Bp)™ * ([t(6) t(8) t(3)DT) — sigv?

+ ([t(16) t(11) t(14)] * Bp * (Bp)T * ([t(15) t(17) t(12)]T) (B.20)

Rnewimp(2,4)
= sigc?([t(7) t(2) t(5) —t(16) —t(11) —t(14)]
« ([£(10) t(13) t(18) t(1) t(4) t(HDT) — sigv®
+ ([t(7) t(2) t(5)] * Bp = (Bp)" * ([t(10) t(13) t(18)])" ) + sigv*

* ([£(16) t(11) t(14)] = Bp = (Bp)" = ([t(1) t(4) (DD (B.21)
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Rnewimp(2,5)
= sigc?([t(7) t(2) t(5) —t(16) —t(11) —t(14)]
« ([t(16) t(11) t(14) t(7) t(2) t(5)T) — sigv®
* ([t(7) £(2) t(5)] * Bp * (Bp)" * ([t(16) t(11) t(AHDT) + sigv?

« ([t(16) t(11) t(14)] = Bp = (Bp)™ = ([t(7) t(2) t(5)T) (B.22)

Rnewimp(2,6)
= sigc?([t(7) t(2) t(5) —t(16) —t(11) —t(14)]
« ([t(15) t(17) t(12) t(6) t(8) t(3)DT) — sigv?
« ([t(7) t(2) t(5)] = Bp = (Bp)" * ([t(15) t(17) t(12)])T) + sigv?

« ([t(16) t(11) t(14)] = Bp = (Bp)™ * ([t(6) t(8) t(3)D™)  (B.23)
Rnewimp(3,1) = Rnewimp(1,3) (B.24)
Rnewimp(3,2) = Rnewimp(2,3) (B.25)

Rnewimp(3,3)
= sigc? * (t(6)? + t(8)? + t(3)? + t(15)? + t(17)? + t(12)?)
— sigv? = ([t(6) t(8) t(3)] » Bp * (Bp)™ = ([t(6) t(8) t(3)D™)
— ([t(15) t(17) t(12)] «Bp = (Bp)"

* ([t(15) £(17) t(12)DT) * sigv? + 2 * sigv? (B.26)
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Rnewimp(3,4)
= ([t(6) t(8) t(3) —t(15) —t(17) —t(12)]
+ ([£(10) £(13) £(18) t(1) t(4) t(9DT )sige? — sigv?
* ([t(6) t(8) t(3)] * Bp = (Bp)™  ([t(10) t(13) t(18)]DT) + sigv?

« ([t(15) t(17) t(12)] = Bp = (Bp)™ = ([t(1) t(4) t(9DT)  (B.27)

Rnewimp(3,5)
= sigc2([t(6) t(8) t(3) —t(15) —t(17) — t(12)]
« ([t(16) t(11) t(14) t(7) t(2) t(5)DT) — sigv?
+ ([t(6) t(8) t(3)]*Bp = (Bp)™ * ([t(16) t(11) t(1H]T) + sigv?

« ([t(15) t(17) t(12)] = Bp = (Bp)™ = ([t(7) t(2) t(5)DT)  (B.28)

Rnewimp(3,6)
= sigc?([t(6) €(5) t(3) —t(15) —t(17) —t(12)]
« ([t(15) t(17) t(12) t(6) t(8) t()D" ) — sigv?
« ([t(6) t(8) t(3)] = Bp(Bp)" = ([t(15) t(17) t(12)D") + sigv?

« ([t(15) t(17) t(12)] = Bp = (Bp)" = ([t(6) t(8) t(3)D")  (B.29)

Rnewimp(4,1) = Rnewimp(1,4) (B.30)
Rnewimp(4,2) = Rnewimp(2,4) (B.31)
Rnewimp(4,3) = Rnewimp(3,4) (B.32)
Rnewimp(4,4) = Rnewimp(1,1) (B.33)
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Rnewimp(4,5)
= sigc?([t(10) t(13) t(18) —t(1) —t(4) —t(9)]
+ ([t(16) t(11) t(14) t(7) t(2) t(5)]DT ) — sigv?
+ ([£(10) €(13) €(18)] » Bp » (Bp)" * ([t(16) t(11) t(14)])T) — sigv?

* ([t(1) t(4) t(9)]*Bp = Bp)™ * ([t(7) t(2) t(GDT) (B.34)

Rnewimp(4,6)
= sigc?([t(10) t(13) t(18) —t(1) —t(4) —t(9)]
* ([t(15) t(17) t(12) t(6) t(8) t(3)DT) — sigv?

« ([£(10) t(13) t(18)] = Bp = (Bp)™ = ([t(15) t(17) t(12)D™) — sigv?

* ([t(1) t(4) t(9)]*Bp * (Bp)™ = ([t(6) t(8) t(3)DNT) (B.35)
Rnewimp(5,1) = Rnewimp(1,5) (B.36)
Rnewimp(5,2) = Rnewimp(2,5) (B.37)
Rnewimp(5,3) = Rnewimp(3,5) (B.38)
Rnewimp(5,4) = Rnewimp(4,5) (B.39)
Rnewimp(5,5) = Rnewimp(2,2) (B.40)

Rnewimp(5,6)
= sigc?([t(16) t(11) t(14) —t(7) —t(2) —t(5)]
« ([t(15) £(17) t(12) t(6) t(8) t()])T) — sigv?
+ ([t(16) t(11) t(14)] * Bp * (Bp)T * ([t(15) t(17) t(12)PDT) — sigv?

« ([t(7) t(2) t(5)] «Bp = (Bp)" * ([t(6) t(8) t(DDT)  (B.41)
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Rnewimp(6,1) = Rnewimp(1,6)

Rnewimp(6,2) = Rnewimp(2,6)

Rnewimp(6,3) = Rnewimp(3,6)

Rnewimp(6,4) = Rnewimp(4,6)

Rnewimp(6,5) = Rnewimp(5,6)

Rnewimp(6,6) = Rnewimp(3,3)
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APPENDIX C

CALCULATION OF IMPEDANCE COVARIANCE MATRIX: SYMMETRICAL

FORMULATION
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Let the impedance parameter matrix to be estimated is given by 0, from (2.12)

0 = [real{Bs.} imag{Bs.}] =[6; 6, 65 0, 65 65 0, 65 69 0;9 0,1 0,5 ] (C.1)
From (2.11) — (2.16), the derivation of the covariance matrix is presented below.
Calculation of diagonal element:

R(1,1) = 2(oy)?
+ Var{real(h;6, + h,0, + h30;)

—imag(h, 67 + h;6,9 + h301,)} (C.2)
Using property, Var(aX — bY) = a?Var(X) + b?Var(Y) — 2abCOV(X,Y), we get

R(1,1) = 2(oy)? + Var{real(h;0; + h,08, + h36,)}
+ Var{imag(h,0, + h,6;5 + h36,,)}

— 2C0V{real(h,0; + h,0, + h38,),imag(h;8, + h,0,, + h36,,)} (C.3)

h
=>R(1,1) = 2(oy)? + Var {real <[91 0, 0] [h:])}
h;

hy
+ Var {imag <[97 010 O12] [hZD}
h;
h,; hy
— 2COoV {real <[91 0, 0¢] [h2]>,imag<[97 010 012] [hZD} (C.4)
h; h;

Using property, COV(AX + a,BTY + b) = ACOV(X, Y)B, we get
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hy hy
2C0oV {real ([61 0, 06l [hZD ,imag ([97 010 O12] [hzl)}
h; h;
hl hl 67
=2[0; 04 B6¢]COV {real ([hZD,imag([hZD} [910] (C.5)
h; h31/)164,

Using property that real and imaginary components of a complex number are uncorrelated

(same as orthogonal in geometric terms), we get

o)

Therefore,

e
R(1,1) = 2(oy)? + Var {real([el 0, 0] h; >}

[h,]
_hl_
+Var{imag<[97 610 912] h2 )} (C 7)
h,
[1pq Ve
=>R(1,1) = 2(oy)? + Var{real | [6; 05 6] [IDq| — BaP [V}
IC VC
L Pq P
I5q] Ve \
+ Var{imag| [6; 619 012]| [IBq|— B2P¢ [V} (C.8)
I5q Vo /
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rja
Ipq

Va

=> R(1,1) = 2(oy)? + Varsreal| [6; 6, 6] ng — [0, 8,4 96]ngc Vrl))

IC

Ipq
I5q]
+ Var{imag| [6; 619 612]|I3g
[5q.
Vg
—_ [67 910 elZ]B]a)bC VIE)
Vo

Vo

(C.9)

Combining properties, Var(aX — bY) = a?Var(X) + b?Var(Y) — 2abCOV(X,Y) and

Var(AX + b) = AVar(X)AT, and knowing that voltages and currents are uncorrelated, we

get

Ia
pq 01
R(1,1) = 2(oy)? + [0, 04 O¢]Var{real IBq [94]
I5q B6
a-
Vo 0,
+[0; 04 Og]Var{real| B2P¢|VP||¢ |6,
A B¢
ng 97_
+[67 610 612]Var{imag ng [910
[5q 012
Vp
+ [0, 019 06q]Var<imag Bf}bc Vrk,’
Vo
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(0¢)? 0 0 [61]

=>R(1,1) =2(cy)*+[06; 08, B6]| 0 (oc)*> O |[[6s
0 0 (Gc)z
VET\) 64
+ [0, 04 06g]Var<real ngc VIE’ [94]
Vs 06
(Gc)2 0
+[0; 610 O12] O (0¢)? [ew]
0 0 (GC) 012
Vi
+[6;, 819 612]Var{imag| B3>C|VD 910] (C.11)
A 012

Now, since B3"¢ is purely imaginary, B3> = jB, and therefore,

Vi real (Vf,‘) + jimag (VI‘;“)
Var{real [ B3¢ |VP| | ¢ = Var{real| jB|real (V}) + jimag (V}) (C.12)
Vp | real (V§) + jimag (V§)
V3 imag (V3)
=> Var<{real | B3> [VP| |t = Var{ —| B [imag (V) (C.13)
[Vp imag (Vy)

Defining, C = —B, and using property Var(AX + b) = AVar(X)AT, we get

Ve ([imag (V)
Var{real | B3> |V} = CVary{ |imag (V})|C” (C.14)
A  [imas ()
Vo ((oy)? 0 0
=> Var{real | B*[VP| |t =C|] 0 (op)> 0 |CT (C.15)
_VS [ 0 0 (ov)?
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Vi
VQD} = (oy)?CCT = (oy)?BBT (C.16)
Vo

=> Var {real <Bf‘,b°

Similarly,

Var {imag <ngc

Substituting these values in the expression of R(1,1), and solving, we get

V2 real (V3)
VI?D} = BVar< |real (V)| ¢ BT = (oy)?BBT (C.17)
Vs real (V§)

01
R(L,1) = 2(ov)* + (6c)*{(8,)* + (84)* + (86)%} + (ov)? {[91 6, ©6]BBT \94 }
B¢
+ (00)*{(87)% + (819)* + (612)%}
07
+ (ov)? {[67 610 012]BBT [ewn (C.18)
012
Now as BBT = —B2%¢(B3")", we get
R(L1D) = 2(ov)* + (6c)*{(81)* + (84)* + (86)* + (87)% + (819)* + (812)%}
[
— (oy)? {[91 6, 66]B3P<(B3PC) [94]
B¢
07
+108, 650 By,]Bab<(BabS)’ [ew]} (C.19)
012

Calculation of non-diagonal element:
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R(l,Z) = COV{I‘eal(hlel + h294 + h396)

— imag(h,0, + h,0;¢ + h30;,),real(h;0, + h,0, + h;65)

- imag(hlelo + hzeg + h3911)} (C 20)

hy
=>R(1,2) = COV{real<[61 0, B¢]|h, )

[h; ]
'hy T hy

- imag<[67 010 012]|h2 ),real <[94 0, 06s] [hzb
[h; ] h,
-hl.

- lmag ([910 68 611] hz )} (C 21)
[h;]

Combining properties, COV(X; +X,,Y) = COV(X4,Y) + COV(X,,Y) and

COV(aX,bY) = abCOV(X,Y), we get
COV(X; — X5, X5 — X,) = COV(X,,X3) — COV(X4,X,) — COV(X,, X3) + COV(X,, X,)

Substituting this relation in the expression of R(1,2), we get

hy hy
R(1,2) = COV {I‘eal ([91 94, 96] [hz]) , real <[e4 62 65] [h2‘>}
hy hy

hy hy)]
— COV{real ([91 94, 96] [hzl),imag<[910 68 611] h2 )
hy

hy hy
— COV 1mag<[97 610 612] hz ),real ([64 62 65] hz )

L hy
+ COV lmag <[e7 610 612] hZ ) , lmag ([610 68 611] [hz])} (C 22)
h;
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Using property, COV(AX + a, BTY + b) = ACOV(X, Y)B, we get

h, h,
cov {real ([91 0, 6] [hZD,imag ([910 B 011] [hZD}
hs hs
hy hy 010
=10, 05 6¢]COV {real ([hZD ,imag ([hZD} [ Og ] (C.23)
h; h31/ 71844

h, h,
COV{imag<[97 010 012] [h2]>,real<[94 6, 05] [h2]>>
h; h;
h, h; 0,
=[0, 049 912]C0V{real<[h2]>,imag<[h2 )} [92] (C.24)
hs h; G

Using property that real and imaginary components of a complex number are uncorrelated

(same as orthogonal in geometric terms), we get

o)

Therefore,

R(1,2)

hy hy
= COV{real ([91 0, 0] [hZD,real ([94 6, 0s] [hZD}
h; h;

hy h,
+ COV {imag<[97 010 O12] [hZD ,imag <[910 Bs 014] thD} (C.25)
hs hs
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[ I3
=>R(1,2) = COV real\[e1 0, 66| [IBg
IC

pq
'VS \ ng VS \
— B3> VP yreal| [6, 6, 65]| |Ipg|—Babe[Vp
Vs I5q Vo
( ng
+COV<{imag| [6; 010 012]( |15,
\ 15
Vo \ I5q Ve \
Vs I5q Vp

Ia
pPq
R(1,2)=COV{real<[61 0, 0] Ilgq]—[el 6, 66]BabC

i)

I5q
+ CoV {imag ([97 010 012] [ng‘
I5q

V5 I5q
—[6; 61 6:5]B3>C v§>,imag<[elo Bs 044] [ng\

| V5 ] I5q

Vs Ipq
Vé) , real [94 92 65] ng
Vo I

Vs

b
Vp
Vo

—[6, 6, 65]B3"*

.VS
—[610 65 6:11]B3P|VD >} (C.27)
VC
L Vp
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Ia
pq
=>R(1,2) = COV{[B; B, 6g]real| |13,

Ipq
Vo] I5q
—[6; 6, Oglreal| B3> |VP| |, [64 6, Os]real( |Ipq
V§ I¢
L Vp pPq
-VS.
—[64 6, 6s]real| B3> |VD
| Vp
[15q
+ COV<[B6; B©1y 6i;]imag IBq
I5q
V5] I5q
—[67 610 ©i12]imag ngc VS ,[810 0g 611]imag Iqu]
[V ] I5q
_VS_
—[610 Bg 6;q]imag| B3> |V (C.28)
| Vp |

Combining properties, COV(X; +X,,Y) = COV(X4,Y) + COV(X,,Y) and

COV(aX,bY) = abCOV(X, Y), we get
COV(X, — X,, X5 — X,) = COV(Xy,X3) — COV(Xy,X,) — COV(X,, X3) + COV(X,, X,)

Substituting this relation in the expression of R(1,2), and knowing that voltages and

currents are uncorrelated, we get
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R(1,2)

= COV

+ COV

|
|

+ COV|{ [0

I5q I3

pq
0, Oglreal IBq ,[04 06, Og]real ng
Ipq I5q
% vV
abc | yb abc b
0, Oglreal| Bi°°|Vp[],[64 ©; Os]real| B3¢ [Vy
Vs VC
[5q
010 612]imag| |15| | [610 ©s Gll]imag[ ‘
Ipq
Ve
010 61z]imag( B3 |VP|],[610 Bg 61;]imag| B> vg (C.29)
Vo Vp

Using property, COV(AX + a, BTY + b) = ACOV(X, Y)B, we get

R(1,2) =01, O, GG]COV{realq D real(

Dk
) o)
Jome ()

) o

Vb

+[0; O, 66]COV{1'eal<BabC
VC

+ [67 610 elz]COV {lmag<l

+ [67 610 912]COV {lmag <ngc

Vb
VS

b
Vp
Vo

e

Using property COV(X, X) = Var(X), we get
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ng 0,
R(1,2) =[6; 064 B¢]Var{real ng [92
I5q 05

Vo1\) 10
4
+[6; 04 B6g]Var<{real ngc VIE’ [92]
Vs | 05
ng 0107
+[6;, 06 06;iz]Var{imag ng [98
I5q 011
Vo 010
+[6; 650 6;2]Var<imag| B3> |Vp 98] (C.31)
Vs 014
5q (6c)> 0 0 Y
As  Vari{real| |15, =l 0 (0c)? 0 |, Var{real | B3b° A =
I5q 0 0 (00)? V5
. I5q (60)? 0 0
—(oy)?Bab(Babe) ", Var<imag| |15, = 0 (0c)? 0 and
1S, 0 0 (00)?
Vp
Var{imag [ B3¢ (V0| | b = —(oy)2Bab<(B2b<)", we get
VC
p
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(GC)2 0 0 64
R(1,2)=[6; 8, 8] 0 (60)*> O [921
0 0 (00)?]|16s

04

T
—[6; 0, 96](0v)2BSbC(BSbC) [22]
5

(Gc)z 0 0 ] 010
+[6; 010 042]| O (0c)? 0 [98]
0 0 (0c)?] 1811
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