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ABSTRACT 

Transmission line parameters play an important role in state estimation, dynamic line 

rating, and fault analysis. Because of this, several methods have been proposed in the 

literature for line parameter estimation, especially using synchrophasor data. However, 

success of most prior research has been demonstrated using purely synthetic data. A 

synthetic dataset does not have the problems encountered with real data, such as invariance 

of measurements and realistic field noise. Therefore, the algorithms developed using 

synthetic datasets may not be as effective when used in practice. On the other hand, the true 

values of the line parameters are unknown and therefore the algorithms cannot be directly 

implemented on real data. A multi-stage test procedure is developed in this work to 

circumvent this problem.  

In this thesis, two popular algorithms, namely, moving-window total least squares 

(MWTLS) and recursive Kalman filter (RKF) are applied on real data in multiple stages. In 

the first stage, the algorithms are tested on a purely synthetic dataset. This is followed by 

testing done on pseudo-synthetic datasets generated using real PMU data. In the final stage, 

the algorithms are implemented on the real PMU data obtained from a local utility. The 

results show that in the context of the given problem, RKF has better performance than 

MWTLS. Furthermore, to improve the performance of RKF on real data, ASPEN data are 

used to calculate the initial estimates. The estimation results show that the RKF algorithm 

can reliably estimate the sequence impedances, using ASPEN data as a starting condition. 

The estimation procedure is repeated over different time periods and the corresponding 

results are presented.  



 

 

ii 

Finally, the significance of data drop-outs and its impact on the use of parameter estimates 

for real-time power system applications, such as state estimation and dynamic line rating, is 

discussed. To address the problem (of data drop-outs), an auto regressive integrated moving 

average (ARIMA) model is implemented. The ability of this model to predict the variations 

in sequence impedances is demonstrated. 
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CHAPTER 1 

INTRODUCTION 

The demand for electricity is expected to grow with time due to the advancements made in 

electric vehicle technologies, and increasing number of new businesses [1]-[2]. This rising 

demand, coupled with increasing renewable penetration, is increasing the stress on the 

power system. Therefore, the need for robust techniques for state estimation, dynamic line 

rating (DLR), and stability assessment is essential now more than ever. Accurate modeling 

of transmission lines in general, and sequence impedances, in particular, play a crucial role 

in all these analyses. 

1.1. Transmission Line Equivalent Circuits 

Depending on its length, a transmission line can be represented by three types of equivalent 

circuits as described below [3]: 

1. Short line (0-50 miles) 

2. Medium line (50-150 miles) 

3. Long line (150 miles or more) 

A short length transmission line is represented by a series resistance and reactance as 

shown in Figure 1.1. Shunt capacitance is usually neglected in the short line model. In the 

medium line model (Figure 1.2), the line resistance and reactance are assumed to be 

concentrated in the middle. The total capacitive effect between the transmission line and the 

earth is divided between the two-shunt branches, one at the beginning and the other at the 
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end. A long transmission line is modeled as a cascade of medium line segments as shown 

in Figure 1.3.  

 

Figure 1.1. Positive sequence small length transmission line model 

 

Figure 1.2. Positive sequence medium length transmission line model 

 

Figure 1.3. Positive sequence long length transmission line model 
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1.2. Conventional Line Parameter Estimation (Model-based) 

Traditionally, line parameters, viz. resistance, admittance/capacitance, and 

inductance/reactance were estimated using the geometry of the conductors and Carson’s 

formula [4]-[5]. The dc resistance of the transmission line at temperature T is given by,  

𝑅dc,T =
𝜌T ∗ 𝑙

𝐴
                                                                                                                               (1.1) 

where 𝜌T represents the resistivity of the conductor at temperature T, 𝑙 is the length of the 

conductor and 𝐴 is the cross-sectional area. For an ac transmission line, the resistance is 

usually higher because of skin effect and proximity effect.  

The inductance of the transmission line can be calculated by calculating the flux linkages. 

Inductance of composite conductor with unequal spacing is given by  

𝐿 = 2 × 10−7ln
𝐷xy

𝐷yy
    H m⁄  per conductor                                                                          (1.2) 

where 𝐷xy is the GMD (Geometric Mean Distance) and 𝐷xx is the GMR (Geometric Mean 

Radius). GMD and GMR are calculated using the radius of the conductor and distance 

between the conductors. 

The capacitance of the line can be computed by calculating the electric field of the 

conductor. The capacitance of the composite conductor with unequal spacing is given by 

𝐶 =  
2𝜋𝜀

ln (
𝐷𝑒𝑞

𝐷𝑠𝑐
⁄ )

                                                                                                                      (1.3) 

𝐷𝑒𝑞 = √ 𝐷𝑎𝑏 𝐷𝑏𝑐  𝐷𝑐𝑎
3                                                                                                                (1.4) 
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𝐷𝑠𝑐 =     = √𝑟𝑑𝑛−1
𝑛

 (for n bundled conductor, 𝑛 ∈ {2, 3} )                                            (1.5) 

where 𝐷𝑎𝑏 , 𝐷𝑏𝑐, 𝐷𝑐𝑎 are the distance between the phase conductors, r is the radius of the 

conductor, and d is the bundle spacing. 

However, the accuracy of the conventional approach for line parameter estimation 

decreases over time, as it does not account for age, usage, operating conditions, and other 

factors. 

1.3. Measurement-based Transmission Line Parameter Estimation 

An alternative approach for estimating the line parameters is by using voltage and current 

measurements taken at the opposite ends of the transmission lines. The development of 

phasor measurement units (PMUs) in the mid-1980s facilitated the measurement of highly 

accurate time-stamped voltage and current phasors [6]. A PMU typically outputs at the rate 

of 30 observations per second and the time-stamped data can be used for a variety of 

applications [7]-[18]. According to North American SynchroPhasor Initiative (NASPI) [19], 

over 2,800 networked PMUs are installed across North America as shown in Figure 1.4. 

The widespread installation of PMUs in recent years has renewed interest in the 

development of online methods for parameter estimation [20]-[27]. A brief overview of 

these methods is provided below. 
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Figure 1.4. PMU installations across North America  [19] 

In [20], the authors proposed a new algorithm for online parameter estimation of 

untransposed parallel lines using a distributed line model and least squares method. 

Although the authors validated the proposed algorithm with EMTP simulations, practical 

considerations such as PMU measurement errors were not modeled in that work. In [21], 

modal components of the characteristic impedance and propagation constants were found 

using Clarke’s transformation and the authors tested their algorithms using EMTP 

simulation data. However, the transmission lines were assumed to be transposed which may 

not be true in general.  
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Parameters of the double circuit transmission line were estimated in [22]. The method used 

voltage measurements from both sides and current measurements from one side to 

determine the parameters of a fully transposed double circuit transmission line. However, 

the method required one of the double circuit lines to be de-energized to estimate the zero-

sequence impedance, which may not be always possible in practice. In [23], the parameters 

of the untransposed transmission line were calculated using equivalent pi and distributed 

line models. The methods were tested using MATLAB simulations and it was concluded 

that pi model could estimate parameters with three different states that have zero sequence 

component as input. On the other hand, distributed line model could estimate parameters 

with two different states but required the ratio of zero-sequence voltage to positive sequence 

voltage to be larger compared to the equivalent pi model. However, measurement errors 

were ignored in that work.  

A framework for the estimation of positive sequence impedance was proposed in [24], 

which also minimized the effect of measurement errors. In [25] zero sequence impedance 

of the untransposed transmission line was estimated using line voltages, currents, active and 

reactive powers measured by the PMU. However, PMU errors were not considered in that 

work. The authors in [26] proposed a new method to estimate line parameters and 

measurements simultaneously, yet the proposed method required the voltage transformer, 

current transformer and PMU installed at one end of the transmission line to be pre-

calibrated. Least squares method was examined in [27], to estimate the parameters of 

transposed and untransposed lines using ATP simulations. However, the method did not 

account for errors in the regression matrix. 
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Since PMU measurements are obtained in real-time, the developed online methods can 

track the variation of parameters with time. Traditionally, the line regression model used for 

parameter estimation is shown in (1.6). 

𝐙 = 𝐇 ∗ 𝛉 + 𝛜                                                                                                                               (1.6) 

In (1.6), 𝐙 is the data matrix, 𝐇 is the regression matrix, 𝛉 represents the parameters to be 

estimated, and 𝛜 represents the error. The data matrix, as well as regression matrix, are 

calculated using PMU measurements. Although PMUs are more accurate (than SCADA), 

their measurements do contain a noise component that is introduced by the instrumentation 

channels, including the PMUs themselves. Therefore, errors in the data matrix, as well as 

the regression matrix, must be accounted for, to estimate the parameters accurately. Two 

prior publications [28]-[29] that accounted for errors in both the matrices are analyzed in 

this work. In [28], online estimation of positive sequence line parameters of a 500 kV line 

using a moving window total least squares (MWTLS) approach was proposed. In [29], 

recursive Kalman filter (RKF) was used to estimate the three-phase line parameters using 

synthetic data. 

1.4. Motivation and Objective  

Most of the prior work has focused on positive sequence line parameter estimation, which 

often ignores the problems encountered in the real systems (which are three phase). 

Similarly, most studies tested their results using synthetic data, which might not capture 

many of the challenges encountered with real data. Therefore, there is a genuine need to 

study the three-phase parameter estimation problem with real data. The main objective of 
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this thesis is to address this knowledge gap by using real PMU data to study the line 

parameter estimation problem. The problem of online line parameter estimation is 

investigated using a total least square, and a Kalman filter-based formulation, employing 

PMU data obtained from a local utility.  

1.5. Thesis Overview 

The rest of the thesis is structured as follows. Mathematical formulation of the employed 

regression model is presented in Chapter 2. Chapter 3 reviews the estimation algorithms, 

namely, RKF and MWTLS. Chapter 4 presents the parameter estimation results. Chapter 5 

discusses parameter estimation during data dropouts. The conclusions and future scope are 

provided in Chapter 6. 
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CHAPTER 2 

MATHEMATICAL FORMULATION 

Most of the transmission lines of the local utility that provided the PMU data were within 

150 miles, and therefore, a medium length transmission line was chosen for this work. A 

three-phase medium length transmission line can be represented by an equivalent pi-circuit 

as shown in Figure 2.1. 

 

Figure 2.1. Transmission line pi model 

The transmission line is assumed to have PMUs installed at both ends. It may also be 

symmetrical or unsymmetrical. The (self and mutual) series impedances of the three-phase 

transmission line is given by, 

 𝐙pq
abc = [

Zpq
a Zpq

ab Zpq
ac

Zpq
ba Zpq

b Zpq
bc

Zpq
ca Zpq

cb Zpq
c

] = [𝐘pq
abc]

−1
                                                                                (2.1)  
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The impedance matrix contains 18 unknowns (9 real + 9 imaginary). Similarly, the shunt 

susceptances on either side of the transmission line are given by 

𝐁p
abc = j [

Bp
a + Bp

ab + Bp
ac −Bp

ab −Bp
ac

−Bp
ba Bp

b + Bp
ba + Bp

bc −Bp
bc

−Bp
ca −Bp

cb Bp
c + Bp

ca + Bp
cb

]                                            (2.2) 

𝐁q
abc = j [

Bq
a + Bq

ab + Bq
ac −Bq

ab −Bq
ac

−Bq
ba Bq

b + Bq
ba + Bq

bc −Bq
bc

−Bq
ca −Bq

cb Bq
c + Bq

ca + Bq
cb

]                                            (2.3) 

The two susceptance matrices consist of a total 18 unknowns (9 unknowns each). The 

unknown parameters can be calculated by solving KCL and KVL equations. The equations 

(in matrix form) are given in (2.4) and (2.5) below. 

𝐈pq
abc + 𝐈qp

abc = 𝐁p
abc ∗ 𝐕p

abc + 𝐁q
abc ∗ 𝐕q

abc                                                                               (2.4) 

𝐕p
abc − 𝐕q

abc = 𝐙pq
abc ∗ 𝐈pq

abc                                                                                                         (2.5) 

In (2.4), and (2.5), 𝐈pq
abc = [

Ipq
a

Ipq
b

Ipq
c

] , 𝐈qp
abc = [

Iqp
a

Iqp
b

Iqp
c

] , 𝐕pq
abc = [

Vpq
a

Vpq
b

Vpq
c

] , 𝐕qp
abc = [

Vqp
a

Vqp
b

Vqp
c

] 

The KCL, KVL equations given in (2.4), and (2.5) can be rewritten in the form of a 

regression model to estimate the parameters. Accordingly, (2.4) and (2.5) can be rewritten 

as, 

𝐙sh = 𝐇sh × j𝛉sh                                                                                                                         (2.6) 

𝐙se = 𝐇se × 𝛉se                                                                                                                           (2.7)  
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The matrices described in (2.6)-(2.7) depend on the parameters described by (2.1)-(2.3). 

The parametric matrices can be symmetrical or unsymmetrical. Therefore, two types of 

formulations arise, namely, 

 Symmetrical formulation 

 Unsymmetrical formulation                                              

2.1. Symmetrical Formulation 

In the symmetrical formulation, it is assumed that the impedance and susceptance matrices 

are symmetric. The resulting matrices for the regression model described by (2.6) are given 

by 

𝐙sh = [

Ipq
a + Iqp

a

Ipq
b + Iqp

b

Ipq
c + Iqp

c

]                                                                                                                        (2.8) 

𝐇sh = [

Vp
a 0 0

0 Vp
b 0

0 0 Vp
c

Vp
ab 0 Vp

ac

Vp
ba Vp

bc 0

0 Vp
cb Vp

ca

Vq
a 0 0

0 Vq
b 0

0 0 Vq
c

Vq
ab 0 Vq

ac

Vq
ba Vq

bc 0

0 Vq
cb Vq

ca

]                (2.9) 

𝛉s𝐡 = [Bp
a Bp

b Bp
c Bp

ab Bp
bc Bp

ca Bq
a Bq

b Bq
c Bq

ab Bq
bc Bq

ca]
T
                               (2.10) 

Similarly, matrices in the regression model corresponding to (2.7) are given by,   

𝐙se = [

Vp
a − Vq

a

Vp
b − Vq

b

Vp
c − Vq

c

]                                                                                                                       (2.11)  

𝛉se = [Zpq
a Zpq

b Zpq
c Zpq

ab Zpq
bc Zpq

ca ]
T
                                                                       (2.12) 
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𝐇se = [
h1 0 0
0 h2 0
0 0 h3

h2 0 h3
h1 h3 0
0 h2 h1

]                                                                                 (2.13) 

h1 = Ipq
a − j[Bp

a + Bp
ab + Bp

ac −Bp
ab −Bp

ac] [

Vp
a

Vp
b

Vp
c

]                                                        (2.14) 

h2 = Ipq
b − j[−Bp

ba Bp
b + Bp

ba + Bp
bc −Bp

bc] [

Vp
a

Vp
b

Vp
c

]                                                        (2.15) 

h3 = Ipq
c − j[−Bp

ca −Bp
cb Bp

c + Bp
ca + Bp

cb] [

Vp
a

Vp
b

Vp
c

]                                                        (2.16) 

2.2. Unsymmetrical Formulation 

In the unsymmetrical formulation, the impedance and susceptance matrices are 

asymmetric. Therefore, the matrices in the regression model described by (2.6) are given 

by, 

𝐙sh = [

Ipq
a + Iqp

a

Ipq
b + Iqp

b

Ipq
c + Iqp

c

]                                                                                                                     (2.17) 

𝐇sh

= [

Vp
a 0 0

0 Vp
b 0

0 0 Vp
c

Vp
ab 0 0

0 Vp
ba Vp

bc

0 0 0

0 0 Vp
ac

0 0 0
Vp
cb Vp

ca 0

Vq
a 0 0

0 Vq
b 0

0 0 Vq
c

Vq
ab 0 0

0 Vq
ba Vq

bc

0 0 0

0 0 Vq
ac

0 0 0
Vq
cb Vq

ca 0
] (2.18) 

𝛉s𝐡

= [Bp
a Bp

b Bp
c Bp

ab Bp
ba Bp

bc Bp
cb Bp

ca Bp
ac Bq

a Bq
b Bq

c Bq
ab Bq

ba Bq
bc Bq

cb Bq
ca Bq

ac]
T
 (2.19) 

Similarly, matrices in the regression model corresponding to (2.7) are given by,     
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𝐙se = [

Vp
a − Vq

a

Vp
b − Vq

b

Vp
c − Vq

c

]                                                                                                                      (2.20)  

𝛉se = [Zpq
a Zpq

b Zpq
c Zpq

ab Zpq
ba Zpq

bc Zpq
cb Zpq

ca Zpq
ac ]

T
                                     (2.21) 

𝐇se = [

h1 0 0 h2 0 0 0 0 h3
0 h2 0 0 h1 h3 0 0 0
0 0 h3 0 0 0 h2 h1 0

]                                                         (2.22) 

h1 = Ipq
a − j[Bp

a + Bp
ab + Bp

ac −Bp
ab −Bp

ac] [

Vp
a

Vp
b

Vp
c

]                                                        (2.23) 

h2 = Ipq
b − j[−Bp

ba Bp
b + Bp

ba + Bp
bc −Bp

bc] [

Vp
a

Vp
b

Vp
c

]                                                        (2.24) 

h3 = Ipq
c − j[−Bp

ca −Bp
cb Bp

c + Bp
ca + Bp

cb] [

Vp
a

Vp
b

Vp
c

]                                                        (2.25) 

The matrices 𝐙sh, 𝐇sh, 𝐙se, 𝐇se are calculated using PMU measurements and therefore, 

have real and imaginary components. Hence, (2.6) and (2.7) can be expressed as follows 

[
real(𝐙sh)

imag(𝐙sh)
]

⏞        
𝐙sus

= [
−imag(𝐇sh)

real(𝐇sh)
]

⏞        
𝐇sus

× [𝛉sh]⏞
𝛉sus

                                                                               (2.26) 

[
real(𝐙se)

imag(𝐙se)
]

⏞        

𝐙imp

= [
real(𝐇se) −imag(𝐇se)

imag(𝐇se) real(𝐇se)
]

⏞                  

𝐇imp

× [
real(𝛉se)

imag(𝛉se)
]

⏞        

𝛉imp

                                         (2.27) 

Initially, (2.26) is used for the calculation of the shunt susceptance matrix and the estimated 

susceptance parameters are used to solve (2.27) to calculate the series impedance 

parameters. 
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CHAPTER 3 

ALGORITHMS 

The transmission line parameters can be estimated by solving the linear equations (2.26) 

and (2.27), where the entries of the matrices are obtained from PMU measurements. 

Traditionally, linear regression models are solved by using the least squares method, where 

we minimize the squared error between the measurements 𝐙 and the estimate 𝐇𝛉̂ [30] as 

shown in (3.1). 

𝐉 = 𝛜T𝛜 = (𝐙 − 𝐇𝛉̂)
T
(𝐙 − 𝐇𝛉̂)                                                                                              (3.1) 

J can be minimized by equating the partial derivative of J with respect to 𝛉 and by solving 

for 𝛉. On doing the minimization, we get, 

𝛉̂ = (𝐇T𝐇)−1𝐇T𝐙                                                                                                                       (3.2) 

In the least squares method, it is assumed that the data matrix H is free of errors. However, 

this assumption does not hold good when 𝐇 is composed of real PMU measurements 

obtained from the field. This is because field PMU may data contain sampling errors, human 

errors, modeling errors, and instrument transformer errors [31]-[33]. The errors in the data 

matrix can be modeled as, 

𝐙 = (𝐇 + 𝛜H) ∗ 𝛉 + 𝛜z                                                                                                               (3.3) 

which cannot be solved by the traditional least squares approach.  
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Several alternate methods were proposed in the literature, which accounts for the errors in 

the Z matrix as well as H matrix. Two such popular algorithms, moving window total least 

squares (MWTLS) and recursive Kalman filter (RKF), are considered in this work.    

3.1. Moving Window Total Least Squares Method 

Total least squares method was developed in [34] to solve a system of linear equations with 

errors in the data matrix as well as measurement matrix. The TLS method is widely used in 

signal processing to estimate the line parameters. The algorithm tries to minimize the 

orthogonal distance between the estimate and the true value [35]-[37] 

min‖[𝐇 𝐙] − [𝐇̂ 𝐙̂]‖2                                                                                                  (3.4) 

In MWTLS, the matrices Z and H are calculated using an ‘n’ sample measurement 

window. As the new measurements arrive, the old measurements are replaced by the moving 

window. The procedure is repeated continuously until the measurements are exhausted. It 

is easy to observe that an increase in window size will lead to improvement in the accuracy 

of the results. To estimate the parameters, calculating the singular value decomposition of 

[𝐇 𝐙] is the first step. The singular value decomposition is the factorization of a matrix 

into the form 𝐔𝚺𝐕T. Therefore, 

[𝐇 𝐙] =  𝐔𝚺𝐕T                                                                                                                         (3.5) 

In (3.5), U denotes the left singular vectors, 𝚺 denotes the singular values, and V denotes 

the right singular vectors. Let 𝑐𝐻 be the number of columns in H. Then the parameters can 

be estimated using (3.6) [28]. 
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𝛉̂ = −
𝐕(1: 𝑐𝐻, 𝑐𝐻 + 1)

𝐕(𝑐𝐻 + 1, 𝑐𝐻 + 1)
                                                                                                        (3.6) 

3.2. Recursive Kalman Filter Method 

Kalman filter is extensively used in signal processing to estimate the parameters of unknown 

signals. For a linear discrete system, the Kalman filter formulation is given by (3.7) – (3.12), 

𝛉k
− = 𝐅k−1 ∗ 𝛉k−1 + 𝐆k−1 ∗ 𝐮k−1                                                                                            (3.7) 

𝐙k = 𝐇k𝛉k                                                                                                                                   (3.8) 

𝐏k
− = 𝐅k−1𝐏k−1𝐅k−1

T                                                                                                                 (3.9) 

𝛉k = 𝛉k
− + 𝐊k ∗ (𝐙k − 𝐇k𝛉k

−)                                                                                               (3.10) 

𝐊k = 𝐏k
−𝐇k

T ∗ [𝐇k𝐏k
−𝐇k

T + 𝐑]
−1
                                                                                           (3.11) 

𝐏k = [𝐈 − 𝐊k𝐇k] ∗ 𝐏k
−                                                                                                             (3.12) 

where, k denotes the sample number, 𝛉k
− is the priori estimate, 𝛉k is the posteriori state 

estimate, 𝐅k−1is the state transition matrix, 𝐆k−1is the input matrix, 𝐮k−1 is the priori input, 

𝐏k
− is the error covariance matrix of priori estimate, 𝐏k is the error covariance matrix of 

posteriori estimate, R is the measurement covariance matrix.  

For the transmission system with line parameters as states, the state transition matrix is 

identity, and there is no input matrix [29]. Therefore (3.7) and (3.9) can be reformulated as,  

𝛉k
− = 𝛉k−1, 𝐏k

− = 𝐏k−1                                                                                                             (3.13) 
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The operation of the RKF is shown in Figure 3.1 where K represents the Kalman gain. A 

modified covariance matrix (R) is employed [39] to account for errors in the regression 

matrix, H as well as in data matrix, Z. The modified covariance matrix is used to solve 

(2.26) and (2.27), to estimate the line parameters, 𝛉. In [29], it was assumed that the 

impedance and susceptance matrices are symmetrical, which may not always be true. As a 

result, two mathematical formulations, namely, the symmetrical formulation and the 

unsymmetrical formulation are investigated in this work. The modified covariance matrices 

accounting for errors in data matrix (Z) as well as regression matrix (H) are presented in the 

Appendices A and B, respectively. For the detailed derivation of these formulae please see 

the Appendix C. 

 

Figure 3.1. Recursive Kalman filter 
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CHAPTER 4 

TRANSMISSION LINE PARAMETER ESTIMATION 

4.1. Data Pre-Processing 

The sequence of steps for pre-processing the PMU data before setting them as inputs to the 

parameter estimation algorithms are as follows. 

 File conversion 

 Data synchronization 

 Data cleaning 

 Estimation of complex voltages and currents 

4.1.1. File Conversion 

The synchrophasor data for this work are obtained from a local utility and are in a 

proprietary file format. The PMU data corresponding to the period of interest are converted 

to CSV files using a file exporter software provided by the utility. The CSV files thus 

obtained are used for the development and testing of parameter estimation algorithms in 

MATLAB [40]. 

4.1.2. Data Synchronization 

PMU devices have an internal clock (usually a crystal oscillator) and are synchronized with 

the global positioning system (GPS) for high-precision time sampling [41]. The high-

precision timestamps can be used to synchronize PMU measurements taken at different 

locations. Since measurements taken at the sending end as well as the receiving are being 
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used in the estimation process in the proposed algorithm, the measurements are 

synchronized based on the timestamps. 

4.1.3. Data Cleaning  

PMU measurements samples are synchronized with universal coordinated time (UTC) 

using the GPS signals. The PMU data may be affected by the data losses [41]-[42] due to 

loss of GPS synchronization or external factors. Therefore, the PMU data must be cleaned 

before starting the estimation process. Several methods have been proposed in the literature 

to deal with the PMU data losses [43]-[44]. However, for the initial estimation procedure, 

the measurements affected by the data losses are ignored. It was observed that at times of 

data losses, the voltage and current measurements are replaced by ‘0’ in the data files. Since 

this is not possible in the traditional power system, the measurements with ‘0’ magnitudes 

are omitted. 

4.1.4. Estimation of Complex Voltages and Currents 

The pre-processed data are used to calculate voltages and current in this step. The measured 

synchrophasor angle can increase or decrease based on the operating conditions and is 

usually wrapped between -180 and +180 [45]. Therefore, the phasor angles measured by 

the synchrophasor device are unwrapped using MATLAB’s unwrap command. Thus, 

unwrapped phase angles and magnitudes for voltages and currents are used to calculate the 

phasor using (4.1), 

Mcomplex = Mmagnitude ∗ e
−i(Mphase angle)                                                                           (4.1) 
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where Mmagnitude is voltage or current magnitude, Mphase angle is voltage or current 

unwrapped phase angle. Finally, the calculated voltage and current measurements are used 

for the parameter estimation process. 

4.2. Test Procedure 

A three-stage test procedure is adopted in this work as shown in Figure 4.1. The reason for 

doing so is that algorithms developed using purely synthetic data may not give the desired 

performance when implemented in the field. Conversely, algorithms cannot be directly 

tested using field data, because the true values of the line parameters are not known. 

In the first stage, the algorithm is tested on a purely synthetic dataset. The dataset is 

generated using a known set of line parameters. A white Gaussian noise is added to the 

voltage and current measurements to replicate the measurement noise and the performance 

of the selected algorithms (MWTLS and RKF) is evaluated by measuring the accuracy of 

the estimated parameters. 

In the second stage, the algorithm is tested on a pseudo-synthetic dataset generated using 

field data. Voltage measurements (PMU data) are taken from both ends of a transmission 

line and current measurements are generated with a known set of line parameters using (4.2) 

- (4.3).  

𝐈pq
abc = 𝐘pq

abc ∗ (𝐕p
abc − 𝐕q

abc) + 𝐁p
abc𝐕p

abc                                                                              (4.2) 

𝐈qp
abc = 𝐘pq

abc ∗ (𝐕q
abc − 𝐕p

abc) + 𝐁q
abc𝐕q

abc                                                                              (4.3) 
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White Gaussian noise is added to the data similar to what was done in the first stage and 

performance of the selected algorithms is assessed once more. 

Finally, the algorithm is implemented on the real system, using both voltage and current 

measurements obtained from PMU data obtained from the field. The performance of the 

algorithm is evaluated by estimating the parameters over different time-periods. 

 

Figure 4.1. Three-stage test procedure for algorithm validation 

4.3. Line Parameter Estimation Using Synthetic Data  

In this stage, the algorithms were tested on a synthetic dataset. A training set consisting of 

1,200 measurements was generated in MATLAB using the parameters of a 362 kV 

transmission line with horizontal configuration [46]. The length of the transmission line was 

chosen to be 50 miles with the parameters given by (4.4) - (4.5).  
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𝐙pq
abc = [

15.1 +  52.1i 8.98 +  22.5i 8.77 +  18.4i
8.9 +  22.5i 12.26 +  51.6i 8.98 +  22.5i
8.7 +  18.4i 8.98 +  22.5i 15.18 +  52.1i

] Ω                                         (4.4) 

 𝐁p
abc = 𝐁q

abc = j [
0.329 −0.057 −0.017
−0.057 0.341 −0.057
−0.017 −0.057 0.329

]  10−3  Ω−1                                           (4.5) 

To replicate the field conditions, measurement noises having characteristics 

N(0, 0.0012) and N(0, 0.012) were added to the voltage and current measurements, 

respectively. A window size of 80 was chosen for the two methods (MWTLS and RKF). 

Initially, the algorithm was employed to estimate the susceptance parameters by solving 

(2.26) using the symmetrical formulation. The estimated susceptance parameters were then 

used to estimate impedance parameters using (2.27). Subsequently, the sequence impedance 

matrix (𝐙pq
012) was calculated using (4.6).  

𝐙pq
012 = 𝐒−1 ∗ 𝐙pq

abc ∗   𝐒                                                                                                               (4.6) 

In (4.5), 𝐙pq
012 = [

Zpq
0 Zpq

01 Zpq
02

Zpq
10 Zpq

1 Zpq
12

Zpq
20 Zpq

21 Zpq
22

] , 𝐒 = [
1 1 1
1 a2 a
1 a a2

] , a = 1∠120°. The simulations 

were repeated 100 times and the average results presented in Table 4.1. The simulation 

results show that both RKF and MWTLS were able to estimate the line parameters using 

synthetic data. It can also be inferred from Table 4.1 that RKF performs slightly better than 

MWTLS. 
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Table 4.1. Simulation results on synthetic data 

 

Susceptance 

Parameter 

Mean % error 

Impedance 

Parameter 

Mean % error 

RKF MWTLS RKF MWTLS 

Bp
a 0.6380 5.0108 Zpq

a  0.0171 0.0369 

Bp
ba 1.3280 5.6225 Zpq

ba 0.0176 0.0334 

Bp
ca 4.1649 23.7815 Zpq

ca  0.0147 0.0414 

Bp
ab 1.2674 7.3276 Zpq

ab 0.0151 0.0410 

Bp
b 0.7116 4.3268 Zpq

b  0.0143 0.0369 

Bp
cb 1.4785 6.9901 Zpq

cb  0.0161 0.0443 

Bp
ac 4.6813 24.6559 Zpq

ca  0.0188 0.0344 

Bp
bc 1.2906 5.8178 Zpq

cb  0.0154 0.0366 

Bp
c  0.6411 4.8460 Zpq

c  0.0171 0.0352 

B𝑞
a 0.7449 5.0730 

Bq
ba 1.4241 6.2243 

Bq
ca 4.8987 23.9759 

Bq
ab 1.5420 7.0436 

Bq
b 0.6816 4.7564 

Bq
cb 1.4482 7.1809 

Bq
ac 4.5762 25.303 

Bq
bc 1.2380 6.2442 

Bq
c  0.6812 4.8879 
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4.3.1. Sensitivity analysis 

A sensitivity analysis is conducted to study the effect of noise present in voltage, and 

current measurements on the performance of the RKF algorithm using symmetrical 

formulation. Gaussian noise of varying standard deviations (0.0005-0.01 p.u.) are added to 

the voltage, and current measurements and the simulations are repeated. The results are 

shown in Figures 4.2-4.3. It can be observed that even though the standard deviations of the 

introduced noise increase, the percentage of error in the estimated parameters remain less 

than 2%. Therefore, it can be concluded that the RKF algorithm is robust and is capable of 

estimating parameters even in the presence of varying magnitude of measurement noise. 

 

Figure 4.2. Noise in voltage vs percentage of error 
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Figure 4.3. Noise in current vs percentage of error 

4.4. Line Parameter Estimation Using Pseudo-Synthetic Data 

In the next stage, pseudo-synthetic dataset was generated using voltage measurements 

taken from both ends of a 500 kV transmission line during 7 AM and 8 AM. A training set 

of 9,000 measurements were generated using PMU data and (4.2) - (4.3). To study the effect 

of errors on the performance of the algorithms, Gaussian noise of varying magnitude were 

added to the data and a sensitivity study was conducted. The results are summarized in 

Figures 4.4 and 4.5.  
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Figure 4.4. Noise in current vs percentage of error 

 

Figure 4.5. Noise in voltage vs percentage of error 
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Two inferences can be drawn from the results shown in Figures 4.4 and 4.5:  

1) RKF algorithm yields better results compared to MWTLS. Consequently, RKF was 

chosen to estimate the parameters using real data.  

2) The accuracy of the estimates falls drastically with increase in measurement noise.  

After an in-depth analysis, it was concluded that the variation in voltage is small for the 

real system as shown in Figure 4.6. This is because utilities try to maintain the voltage 

constant, which eventually leads to the parameter estimation problem becoming ill-

conditioned. Table 4.2 shows the condition number of the regression matrices, and it can be 

observed that the condition number of pseudo-synthetic data, in particular, 𝑯𝒔𝒉 (made of 

voltage measurements) is considerably high. 

 

Figure 4.6. Variation of the voltage of 500 kV transmission line 

During this analysis, it was realized that one way to further enhance the performance of 

RKF (even in presence of the ill-conditioning problem), could be by improving the quality 
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of the initial estimates. Traditionally, parameters are calculated using software such as 

ASPEN and stored in the SCADA database at the time of commissioning. Therefore, the 

hypothesis that needed to be tested was: if ASPEN data could be utilized to calculate the 

initial estimates and thereby improve the performance of RKF. 

Table 4.2. Condition number of regression matrix 

 Condition Number of 𝑯𝒔𝒉 Condition Number of 𝑯𝒔𝒆 

Synthetic data 54.74 3.81 

Pseudo-synthetic data 1.14e05 3.8e03 

  

The transmission line is initially assumed to be transposed and symmetrical, to calculate 

initial estimates using ASPEN data. Therefore, the impedance matrix is modified as shown 

below. 

 𝐙pq
abc = [

Zpq
a Zpq

ab Zpq
ac

Zpq
ba Zpq

b Zpq
bc

Zpq
ca Zpq

cb Zpq
c

] = [

Zpq
s Zpq

m Zpq
m

Zpq
m Zpq

s Zpq
m

Zpq
m Zpq

m Zpq
s

]                                                                (4.7) 

In (4.7), Zpq
s  denotes the self-impedance, Zpq

m  denotes the mutual impedance. From (4.6)-

(4.7), the relation between  Zpq
s , Zpq

m , Zpq
0 , Zpq

1
 are derived as follows, 

Zpq
s + 2 ∗ Zpq

m = Zpq
0                                                                                                                   (4.8) 

Zpq
s − Zpq

m = Zpq
1                                                                                                                           (4.9) 
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The calculated self and mutual impedance are used to populate the initial estimate of 

impedance matrix using (4.7). The resultant matrix is used to calculate the initial estimate 

of parameter vector 𝛉1
−. The block diagram of the modified RKF is shown in Figure 4.7.  

 

Figure 4.7. Recursive Kalman filter with initial estimates calculated from ASPEN 

4.5. Implementation on the Real System 

Finally, the RKF algorithm was implemented on the 500 kV transmission line with PMUs 

installed at both ends. PMU data are collected over 38 consecutive days for the time-period 

7 AM to 8 AM. Since line parameters did not change significantly over this time-period, the 

consistency of the estimates was taken as a metric for validation. Each dataset consisted of 

a one-hour duration of PMU data measured at 30 samples per second. The initial estimates 

were calculated utilizing ASPEN data from utility database employing (4.8) - (4.9) and fed 

to RKF for final estimation. The parameters are estimated using symmetrical formulation 

as well as unsymmetrical formulation and the results are summarized in Figures 4.8-4.15. It 

can be observed that the estimated parameters lie in a narrow band. From the narrowness of 
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the band, it can be concluded that RKF algorithm in conjunction with ASPEN data was able 

to estimate the line parameters consistently.  

 

Figure 4.8. Estimated three-phase resistance using symmetrical formulation 

 

Figure 4.9. Estimated three-phase resistance using unsymmetrical formulation 
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Figure 4.10. Estimated three-phase reactance using symmetrical formulation 

 

Figure 4.11. Estimated three-phase reactance using unsymmetrical formulation 
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Figure 4.12. Estimated zero-sequence resistance using symmetrical formulation 

 

Figure 4.13. Estimated zero-sequence resistance using unsymmetrical formulation 
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Figure 4.14. Estimated zero-sequence reactance using symmetrical formulation 

 

Figure 4.15. Estimated zero-sequence reactance using unsymmetrical formulation 
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4.5.1. Time Series Analysis of Sequence Impedances 

Transmission line parameters are a function of operating conditions and tend to change as 

the day progresses. Therefore, to study the variation of line parameters, the estimation 

procedure using the RKF algorithm (symmetrical as well as unsymmetrical formulation) is 

repeated every hour and the results are presented in Figures 4.16-4.23. It can be observed 

that the algorithm was able to capture the variation in line parameters with time. Further, it 

can be inferred that the number of outliers in the unsymmetrical formulation is more as 

compared to the symmetrical formulation. The possible reason could be the increased 

number of unknowns in the unsymmetrical formulation. Since both the formulations utilized 

the same sized dataset, as the number of unknowns increased, the accuracy of the 

unsymmetrical formulation algorithm decreased. Also, it could be that the transmission line 

under examination was symmetrical and forcing it to not be so, was leading to higher errors. 

 

Figure 4.16. Estimated zero-sequence resistance using symmetrical formulation 
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Figure 4.17. Estimated zero-sequence resistance using unsymmetrical formulation 

 

Figure 4.18. Estimated zero-sequence reactance using symmetrical formulation 



 

 

 

36 

 

Figure 4.19. Estimated zero-sequence reactance using unsymmetrical formulation 

 

Figure 4.20. Estimated positive-sequence resistance using symmetrical formulation 
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Figure 4.21. Estimated positive-sequence resistance using unsymmetrical formulation 

 

Figure 4.22. Estimated positive-sequence reactance using symmetrical formulation 
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Figure 4.23. Estimated positive-sequence reactance using unsymmetrical formulation
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CHAPTER 5 

LINE PARAMETER ESTIMATION DURING DATA-DROPOUTS 

Power system applications, such as state estimation and dynamic line rating (DLR), utilize 

line parameters in their analyses as discussed below:  

• In state estimation, the network model, line parameters and SCADA (and/or PMU) 

measurements are used to estimate the complex bus voltages of the system.  It is 

typical to assume line parameters as accurately known for the estimation procedure 

[47]-[48].  

• Dynamic line rating (DLR) is an alternative to static line rating. Typically, static 

line rating is determined based upon the operating temperature, solar radiation, 

wind speed, ground clearance, all of which are assumed to be constant [49]. As 

these assumptions are usually conservative, real-time capacity can be higher than 

the static rating. As the transmission line parameters are a function of conditions 

such as temperature, sag (which varies with time) it is imperative that the line 

parameters, modeled as a function of these time-varying quantities, should be 

included in the DLR studies [50]-[51]. 

In Section 4.5.1, the variation of line parameters with time was presented. It can be clearly 

seen that there is a considerable change in parameters as time progresses. Therefore, it is 

crucial to include the dependency of line parameter variation with time in power system 

analysis. However, the applications are limited by the availability of estimated parameters, 

which in turn is affected by the quality of PMU data. PMUs are occasionally affected by 
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data losses as discussed in Section 4.1.3. The severity of data dropouts on a typical day for 

real PMU data can be observed in Figure 5.1. To overcome this problem, transmission line 

parameters need to be predicted at times of data dropouts using past estimates. Auto 

Regressive Integrated Moving Average (ARIMA) [52] model can be used for this purpose. 

 

Figure 5.1. Voltage magnitude of a 500 kV transmission line for 24 hours 

5.1. Overview of ARIMA 

ARIMA models are widely used for time series analysis such as forecasting wind power 

[53] and electricity prices [54]. Autoregressive component of ARIMA model uses ‘p’ past 

values to estimate the current value of the time-series. Here, the current value is estimated 

as a linear combination of previous values [55]. The auto-regressive (AR) model is given 

by 

f(B) = 1 − f1B
1 − f2B

2 −⋯− fpB
p                                                                                      (5.1) 
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In (5.1), B is the Backshift operator and at is the error at time 𝑡. On the other hand, moving 

average model uses a linear combination of white noise in the previous measurements to 

estimate the present value. The moving average (MA) model is given by  

g(B) = 1 − g1B
1 − g2B

2…− gqB
q                                                                                        (5.2) 

It is assumed that the orders of AR and MA components are 𝑝 and 𝑞, respectively. The 

integration component (wt) of the ARIMA model is used to capture the non-stationary 

behavior of the parameters and is given by (5.3)-(5.4). 

wt = ∇
dzt or zt = S

dwt                                                                                                             (5.3) 

S wt =∑wt +wt−1 +wt−2 +⋯

∞

j=0

                                                                                        (5.4) 

An ARIMA model [52] is a combination of auto-regressive, moving average, and 

integration models, and is given by, 

f(B)wt = g(B)at                                                                                                                          (5.5) 

To design an ARIMA model, the order of auto-regressive, moving average, and integration 

models must be determined. The order of integration component is the number of times of 

difference of 𝑧𝑡 required to produce a stationary process. On the other hand, the orders of 

AR and MA components are determined iteratively until the requirements of the accuracy 

are met. The chosen model is trained using past estimates and percentage of error of 

predicted values are calculated. If the accuracy of the model is less than the desired value, 

the procedure is repeated by changing the order of the model. 
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An independent ARIMA model can be designed for each parameter of interest. Once a data 

dropout is detected, the model is trained using the estimates up to the time of dropout and 

is used for forecasting until good data become available. 

5.2. Application of ARIMA Models 

In this section, the use of ARIMA models to predict the parameter values using past 

estimates is investigated. The estimation results from the previous section are utilized for 

this work and a dataset of 372 estimates is created. The dataset is split into two subsets: a 

training set of 300 estimates, and a testing set comprising of 72 estimates. First, the proposed 

ARIMA model is used to forecast zero sequence resistance. An ARIMA model of order 

(80,1,1) is chosen for this analysis. The model is trained in MATLAB using the training 

dataset and the trained model is used to predict the subsequent 72 estimates (testing dataset). 

The procedure is repeated for zero-sequence reactance. The zero-sequence impedance was 

used for this purpose because the power utility was interested in tracking the values of their 

zero sequence impedances over time. 

The forecasted values are compared with the test set and the results are summarized in 

Figures 5.2-5.3, and Table 5.1. It can be observed from the figures that the zero-sequence 

resistance varies between 0.9 and 1.2 p.u., while, the zero-sequence reactance varies 

between 0.995 and 1.005 p.u. As the forecasted error will be small if the parameter variation 

is low, the accuracy of the forecast of zero sequence resistance is comparatively less in 

comparison to the zero-sequence reactance. From Table 5.1, it is observed that the mean 

and median estimation errors are less than 4% and less than 0.2% for zero-sequence 

resistance and zero-sequence reactance, respectively. Therefore, it can be concluded that 
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ARIMA models can be successfully used to forecast line parameters from past estimates. 

An added advantage is that ARIMA model can also be used to detect an outlier in the actual 

estimation results (highlighted by red ovals in Figures 5.2 and 5.3). 

Table 5.1. Results of ARIMA model 

Parameter Mean Error (%) Median Error (%) 

Zero-sequence resistance 3.8654 2.87 

Zero-sequence reactance 0.1128 0.10 

 

 

Figure 5.2. Observed and forecasted zero-sequence resistance using ARIMA model; 

outliers are highlighted by red ovals 



 

 

 

44 

 

 

Figure 5.3. Observed and forecasted zero-sequence reactance using ARIMA model; 

outliers are highlighted by red ovals  
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CHAPTER 6 

CONCLUSION & FUTURE SCOPE 

6.1. Conclusion 

Transmission line parameters, in general, and zero-sequence impedance, in particular, play 

an important role in power systems operations, control, and protection. Online methods for 

transmission line parameter estimation using synchrophasor data were investigated in this 

work. Two popular algorithms for parameter estimation problems, namely, MWTLS and 

RKF were selected. The algorithms were tested on a synthetic dataset generated in 

MATLAB and it was concluded that the algorithms can estimate the line parameters with 

less than 2% error.  

In the next stage, a pseudo-synthetic dataset was generated using PMU data and the 

algorithms were re-applied. The results showed that the performance of RKF was better 

than MWTLS. In addition, it was observed that the accuracy of the estimates was sensitive 

to noise in the voltage measurements. After a thorough investigation, it was found that the 

variation of voltages with time was small because utilities maintained their voltages close 

to 1 p.u., which led to the problem becoming ill-conditioned. As a result, the effect of noise 

on the accuracy of the results was magnified.  

One way to improve the accuracy of the estimates was by providing an improved initial 

estimate. Therefore, for the third stage, the RKF algorithm with initial estimates obtained 

from ASPEN data was implemented on a 500 kV transmission line operated by a local 

utility. The estimation procedure was repeated over a period of one month and the results 
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were documented. The estimation results proved that the algorithm was able to estimate the 

zero-sequence impedance consistently. Furthermore, it was able to follow the variation of 

line parameters over the course of a day.  

Lastly, an auto regressive integrated moving average (ARIMA) model was implemented 

to predict the variations in sequence impedances during data dropouts. The simulation 

results indicated that the mean and median estimation errors were less than 4% and 0.2% 

for zero-sequence resistance and zero-sequence reactance, respectively. Additionally, 

ARIMA model was capable of detecting outliers in the estimates. 

6.2. Future Scope 

In this work, focus has only been on the noises added by the PMUs themselves, and not 

those that are added by the instrument transformers (ITs). The transformation ratios 

associated with each IT can change with time introducing additional errors into the 

measurements. Therefore, these additional errors must be accounted for, to increase the 

estimation accuracy. 

Several methods were proposed in recent years to estimate the line parameters considering 

instrument transformer errors. In [56], the physical behavior of the conductor is used to 

determine the positive sequence parameters on laboratory datasets considering instrument 

transformer errors. In [44], an iterative algorithm is employed to estimate positive sequence 

parameters of a distribution network using MATLAB simulations. In [45], a robust 

estimator insensitive to bad data are used to estimate three-phase line parameters. However, 

it was tested on a fully transposed line and it required a minimum of 10% loading which 
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may not be possible in real-life. It can be observed that current work either focuses on 

positive sequence or is not sufficiently validated using field data. Therefore, the algorithms 

for three-phase line parameter estimation considering PMU errors as well as instrument 

transformer errors need further attention and extensive testing before they are applied in 

practice. 
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APPENDIX A 

MODIFIED MEASUREMENT COVARIANCE MATRIX FOR SYMMETRICAL 

FORMULATION 
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The modified measurement covariance matrix for the calculation of susceptance 

parameters using symmetrical formulation is presented in this section. If the susceptance 

parameter matrix to be estimated is denoted by t, from (2.10), t is found to be, 

𝐭 = 𝛉s𝐡                                                                                                                                     (A. 1) 

For a Gaussian noise of 𝑁(0, sigv2), 𝑁(0, sigc2) in the voltage and current measurements, 

respectively, the covariance matrix is shown below. 

𝐑𝐧𝐞𝐰(1,1) =  sigv2[(𝐭(1) + 𝐭(4) + 𝐭(6))
2
+ (𝐭(7) + 𝐭(10) + 𝐭(12))

2
) + 𝐭(4)2

+ 𝐭(6)2 + 𝐭(10)2 + 𝐭(12)2] + 2

∗ sigc2                                                                                                              (A. 2)  

    𝐑𝐧𝐞𝐰(2,2) =  sigv2 [(𝐭(2) + 𝐭(4) + 𝐭(5))
2
+ (𝐭(8) + 𝐭(10) + 𝐭(11))

2
)             

+ 𝐭(4)2 + 𝐭(5)2 + 𝐭(10)2 + 𝐭(11)2] + 2

∗ sigc2                                                                                                       (A. 3) 

    𝐑𝐧𝐞𝐰(3,3) =  sigv2 [(𝐭(3) + 𝐭(5) + 𝐭(6))
2
+ (𝐭(9) + 𝐭(11) + 𝐭(12))

2
)           

+ 𝐭(5)2 + 𝐭(6)2 + 𝐭(11)2 + 𝐭(12)2] + 2

∗ sigc2                                                                                                       (A. 4) 

    𝐑𝐧𝐞𝐰(1,2) =  sigv2[−(𝐭(1) + 𝐭(4) + 𝐭(6)) ∗ 𝐭(4) − (𝐭(2) + 𝐭(4) + 𝐭(5)) ∗ 𝐭(4)

+ 𝐭(5) ∗ 𝐭(6) − (𝐭(7) + 𝐭(10) + 𝐭(12)) ∗ 𝐭(10)

− (𝐭(8) + 𝐭(10) + 𝐭(11)) ∗ 𝐭(10) + 𝐭(11) ∗ 𝐭(12)]                         (A. 5)  
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    𝐑𝐧𝐞𝐰(1,3) =  [−(𝐭(1) + 𝐭(4) + 𝐭(6)) ∗ 𝐭(6) − (𝐭(5) + 𝐭(3) + 𝐭(6))(6) + 𝐭(4)

∗ 𝐭(5) − (𝐭(7) + 𝐭(10) + 𝐭(12)) ∗ 𝐭(12) − (𝐭(11) + 𝐭(9) + 𝐭(12))

∗ 𝐭(12) + 𝐭(10) ∗ 𝐭(11)]   ∗ sigv2                                                            (A. 6) 

    𝐑𝐧𝐞𝐰(2,3) = [−(𝐭(2) + 𝐭(4) + 𝐭(5)) ∗ 𝐭(5) − (𝐭(3) + 𝐭(5) + 𝐭(6))   ∗ 𝐭(5) + 𝐭(4)

∗ 𝐭(6) − (𝐭(8) + 𝐭(10) + 𝐭(11)) ∗ 𝐭(11) − (𝐭(9) + 𝐭(11) + 𝐭(12))

∗ 𝐭(11) + 𝐭(10) ∗ 𝐭(12)] ∗ sigv2                                                              (A. 7)  

    𝐑𝐧𝐞𝐰(2,1) =  𝐑𝐧𝐞𝐰(1,2)                                                                                               (A. 8) 

    𝐑𝐧𝐞𝐰(3,1) =  𝐑𝐧𝐞𝐰(1,3)                                                                                             (A. 9) 

   𝐑𝐧𝐞𝐰(3,2) =  𝐑𝐧𝐞𝐰(2,3)                                                                                            (A. 10) 

Let the impedance parameter matrix to be estimated be denoted by t. Then, from (2.12), t 

is found to be, 

𝐭 =  [
real(𝛉se)

imag(𝛉se)
]                                                                                                            (A. 11) 

The modified measurement covariance matrix for the calculation of impedance parameters 

using symmetrical formulation is presented below. 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,1)

= sigc2  ∗ (𝐭(1)2 + 𝐭(4)2 + 𝐭(6)2 + 𝐭(7)2 + 𝐭(10)2 + 𝐭(12)2) − sigv2  

∗ ([𝐭(1)   𝐭(4)   𝐭 (6)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(1)  𝐭(4)  𝐭(6)])T ) − sigv2  

∗ ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(7)  𝐭(10)  𝐭(12)])T)

+ sigv2                                                                                                           (A. 12) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,2)

= sigc2 (([𝐭(1)  𝐭(4)  𝐭(6)  𝐭(7)  𝐭(10)  𝐭(12)])

∗ ([𝐭(4)  𝐭(2)  𝐭(5)  𝐭(10)  𝐭(8)  𝐭(11)])T ) − sigv2 ([𝐭(1)  𝐭(4) 𝐭(6)]

∗ Bp ∗ (Bp)T ∗ ([𝐭(4)  𝐭(2)  𝐭(5)])T) − sigv2 ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp

∗ (Bp)T ∗ ([𝐭(10)  𝐭(8)  𝐭(11)])T)                                                           (A. 13) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,3)

= ([𝐭(1)  𝐭(4)  𝐭(6)  𝐭(7)  𝐭(10)  𝐭(12)]

∗ ([𝐭(6)  𝐭(5)  𝐭(3)  𝐭(12)  𝐭(11)  𝐭(9)])T)sigc2 − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(6)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T) − sigv2

∗ ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp ∗ (Bp)T

∗ ([𝐭(12)  𝐭(11)  𝐭(9)])T)                                                                        (A. 14) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,4)

= ([𝐭(1)  𝐭(4)  𝐭(6)   − 𝐭(7)   − 𝐭(10)   − 𝐭(12)]

∗ ([𝐭(7)  𝐭(10)  𝐭(12)  𝐭(1)  𝐭(4)  𝐭(6)])T)sigc2 − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(6)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(10)  𝐭(12)])T) + sigv2

∗  ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(1)  𝐭(4)  𝐭(6)])T)        (A. 15) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,5)

= ([𝐭(1)  𝐭(4)  𝐭(6)   − 𝐭(7)   − 𝐭(10)   − 𝐭(12)

∗ ([𝐭(10)  𝐭(8)  𝐭(11)  𝐭(4)  𝐭(2)  𝐭(5)])T)sigc2 − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(6)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(10)  𝐭(8)  𝐭(11)])T) + sigv2

∗ ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(4)  𝐭(2)  𝐭(5)])T)           (A. 16) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,6)

= ([𝐭(1)  𝐭(4)  𝐭(6)   − 𝐭(7)   − 𝐭(10)   − 𝐭(12)]

∗ ([𝐭(12)  𝐭(11)  𝐭(9)  𝐭(6)  𝐭(5)  𝐭(3)])T )sigc2 − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(6)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(12)  𝐭(11)  𝐭(9)])T) + sigv2

∗  ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp ∗ (Bp)T

∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T)                                                                          (A. 17) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,1) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,2)                                                                               (A. 18)  

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,2)

= sigc2 ∗ (𝐭(4)2 + 𝐭(2)2 + 𝐭(5)2 + 𝐭(10)2 + 𝐭(8)2 + 𝐭(11)2) − sigv2

∗ ([𝐭(4)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(4)  𝐭(2)  𝐭(5)])T ) − sigv2

∗ ([𝐭(10)  𝐭(8)  𝐭(11)] ∗ Bp ∗ (Bp)T ∗  ([𝐭(10)  𝐭(8)  𝐭(11)])T )

+ sigv2                                                                                                      (A. 19) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,3)

= ([𝐭(4)  𝐭(2)  𝐭(5)  𝐭(10)  𝐭(8)  𝐭(11)]

∗ ([𝐭(6)  𝐭(5)  𝐭(3)  𝐭(12)  𝐭(11)  𝐭(9)])T )sigc2 − sigv2

∗ ([𝐭(4)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T) − sigv2

∗ ([𝐭(10)  𝐭(8)  𝐭(11)] ∗ Bp ∗ (Bp)T

∗ ([𝐭(12)  𝐭(11)  𝐭(9)])T)                                                            (A. 20) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,4)

= sigc2 ∗ ([𝐭(4)  𝐭(2)  𝐭(5)  − 𝐭(10)   − 𝐭(8)   − 𝐭(11)]

∗ ([𝐭(7)  𝐭(10)  𝐭(12)  𝐭(1)  𝐭(4)  𝐭(6)])T) − sigv2 ∗ ([𝐭(4) 𝐭(2)  𝐭(5)]

∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(10)  𝐭(12)]))T

+ sigv2([𝐭(10)  𝐭(8)  𝐭(11)] ∗ Bp ∗ (Bp)T

∗ ([𝐭(1)  𝐭(4)  𝐭(6)])T)                                                                 (A. 21) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,5)

= ([𝐭(4)  𝐭(2)  𝐭(5)   − 𝐭(10)   − 𝐭(8)   − 𝐭(11)]

∗ ([𝐭(10)  𝐭(8)  𝐭(11)  𝐭(4)  𝐭(2)  𝐭(5)])T )sigc2 − sigv2

∗ ([𝐭(4)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(10)  𝐭(8)  𝐭(11)])T) + sigv2

∗  ([𝐭(10)  𝐭(8)  𝐭(11)] ∗ Bp ∗ (Bp)T

∗ ([𝐭(4)  𝐭(2)  𝐭(5)])T)                                                                (A. 22) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,6)

= ([𝐭(4)  𝐭(2)  𝐭(5)   − 𝐭(10)   − 𝐭(8)   − 𝐭(11)]

∗ ([𝐭(12)  𝐭(11)  𝐭(9)  𝐭(6)  𝐭(5)  𝐭(3)])T)sigc2 − sigv2

∗ ([𝐭(4)  𝐭(2)  𝐭(5)] ∗ Bp ∗  (Bp)T  ∗ ([𝐭(12)  𝐭(11)  𝐭(9)])T) + sigv2

∗ ([𝐭(10)  𝐭(8)  𝐭(11)] ∗ Bp ∗ (Bp)T

∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T)                                                                             (A. 23) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,1) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,3)                                                                                (A. 24) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,2) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,3)                                                                               (A. 25) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,3)

= sigc2 ∗ (𝐭(6)2 + 𝐭(5)2 + 𝐭(3)2 + 𝐭(12)2 + 𝐭(11)2 + 𝐭(9)2) − sigv2

∗ ([𝐭(6)  𝐭(5)  𝐭(3)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T ) − sigv2

∗ ([𝐭(12)  𝐭(11)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗  ([𝐭(12)  𝐭(11)  𝐭(9)])T)

+ sigv2                                                                                                     (A. 26) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,4)

= ([t(6)  𝐭(5)  𝐭(3)   − 𝐭(12)   − 𝐭(11)   − 𝐭(9)]

∗ ([𝐭(7)  𝐭(10)  𝐭(12)  𝐭(1)  𝐭(4)  𝐭(6)])T )sigc2 − sigv2

∗ ([𝐭(6)  𝐭(5)  𝐭(3)] ∗ Bp ∗ (Bp)T   ∗ ([𝐭(7)  𝐭(10)  𝐭(12)])T) + sigv2

∗ ([𝐭(12)  𝐭(11)  𝐭(9)] ∗ Bp ∗ ([𝐭(1)  𝐭(4)  𝐭(6)])T)                    (A. 27) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,5)

= ([𝐭(6)  𝐭(5)  𝐭(3)   − 𝐭(12)   − 𝐭(11)   − 𝐭(9)]

∗ ([𝐭(10)  𝐭(8)  𝐭(11)  𝐭(4)  𝐭(2)  𝐭(5)])T )sigc2 − sigv2

∗ ([𝐭(6)  𝐭(5)  𝐭(3)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(10)  𝐭(8)  𝐭(11)])T) + sigv2

∗  ([𝐭(12)  𝐭(11)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(4)  𝐭(2)  𝐭(5)])T)    (A. 28) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,6)

= ([𝐭(6)  𝐭(5)  𝐭(3)   − 𝐭(12)   − 𝐭(11)   − 𝐭(9)]

∗ ([𝐭(12)  𝐭(11)  𝐭(9)  𝐭(6)  𝐭(5)  𝐭(3)])T)sigc2 − sigv2

∗ ([𝐭(6)  𝐭(5)  𝐭(3)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(12)  𝐭(11)  𝐭(9)])T) + sigv2

∗ ([𝐭(12)  𝐭(11)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T)      (A. 29) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,1) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,4)                                                                            (A. 30) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,2) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,4)                                                                            (A. 31) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,3) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,4)                                                                              (A. 32) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,4) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,1)                                                                              (A. 33) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,5)

= ([𝐭(7)  𝐭(10)  𝐭(12)  𝐭(1)  𝐭(4)  𝐭(6)]

∗ ([𝐭(10)  𝐭(8)  𝐭(11)  𝐭(4)  𝐭(2)  𝐭(5)])T ) sigc2 − sigv2

∗ ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(10)  𝐭(8)  𝐭(11)])T) − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(6)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(4)  𝐭(2)  𝐭(5)])T)            (A. 34) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,6)

= ([𝐭(7)  𝐭(10)  𝐭(12)  𝐭(1)  𝐭(4)  𝐭(6)]

∗ ([𝐭(12)  𝐭(11)  𝐭(9)  𝐭(6)  𝐭(5)  𝐭(3)])T )sigc2 − sigv2

∗ ([𝐭(7)  𝐭(10)  𝐭(12)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(12)  𝐭(11)  𝐭(9)])T) − sigv2

∗  ([𝐭(1)  𝐭(4)  𝐭(6)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T)               (A. 35) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,1) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,5)                                                                                 (A. 36) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,2) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,5)                                                                                (A. 37) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,3) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,5)                                                                                (A. 38) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,4) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,5)                                                                                (A. 39) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,5) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,2)                                                                                (A. 40) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,6)

= ([𝐭(10)  𝐭(8)  𝐭(11)  𝐭(4)  𝐭(2)  𝐭(5)]

∗ ([𝐭(12)  𝐭(11)  𝐭(9)  𝐭(6)  𝐭(5)  𝐭(3)])T) sigc2 − sigv2

∗ ([𝐭(10)  𝐭(8)  𝐭(11)] ∗ Bp ∗ (Bp)T  ∗ ([𝐭(12)  𝐭(11)  𝐭(9)])T) − sigv2

∗ ([𝐭(4)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(5)  𝐭(3)])T)             (A. 41) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,1) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,6)                                                                             (A. 42) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,2) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,6)                                                                            (A. 43) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,3) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,6)                                                                           (A. 44) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,4) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,6)                                                                           (A. 45) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,5) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,6)                                                                          (A. 46) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,6) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,3)                                                                         (A. 47) 
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APPENDIX B 

MODIFIED MEASUREMENT COVARIANCE MATRIX FOR UNSYMMETRICAL 

FORMULATION 
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Let the susceptance parameter matrix to be estimated be denoted by t. Then, from (2.19), t 

is given by, 

𝐭 = 𝛉s𝐡                                                                                                                                     (B. 1) 

The modified measurement covariance matrix for the calculation of susceptance 

parameters using unsymmetrical formulation is presented below. 

  𝐑𝐧𝐞𝐰(1,1)  = 2 ∗ sigc2  +   sigv2 ∗ [(𝐭(1) + 𝐭(4) + 𝐭(9))2 + 𝐭(4)2 + 𝐭(9)2

+ (𝐭(10) + 𝐭(13) + 𝐭(18))2 + 𝐭(13)2 + 𝐭(18)2]                                 (B. 2) 

𝐑𝐧𝐞𝐰(2,2) = 2 ∗ sigc2  +  sigv2 ∗ [(𝐭(2) + 𝐭(5) + 𝐭(7))2 + 𝐭(5)2 + 𝐭(7)2

+ (𝐭(11) + 𝐭(14) +  𝐭(16))2 + 𝐭(14)2 + 𝐭(16)2]                               (B. 3) 

  𝐑𝐧𝐞𝐰(3,3)  =  sigv2 ∗ [(𝐭(3) + 𝐭(6) + 𝐭(8))2 + 𝐭(6)2 + 𝐭(8)2

+ (𝐭(12) + 𝐭(15) +  𝐭(17))2 + 𝐭(15)2 + 𝐭(17)2] + 2

∗ sigc2                                                                                                              (B. 4) 

𝐑𝐧𝐞𝐰(1,2) =  sigv2[−(𝐭(1) + 𝐭(4) + 𝐭(9)) ∗ 𝐭(7) − (𝐭(2) + 𝐭(8) + 𝐭(7)) ∗ 𝐭(4)

+  𝐭(9) ∗ 𝐭(5) − (𝐭(10) + 𝐭(13) + 𝐭(18)) ∗ 𝐭(16)

− (𝐭(11) + 𝐭(14) + 𝐭(16)) ∗ 𝐭(13) + 𝐭(18) ∗ 𝐭(11)]                        (B. 5) 

𝐑𝐧𝐞𝐰(1,3) =  sigv2 [−(𝐭(1) + 𝐭(4) + 𝐭(9)) ∗ 𝐭(6) − (𝐭(3) + 𝐭(6) + 𝐭(8)) ∗ 𝐭(9)

+ 𝐭(4) ∗ 𝐭(8) − (𝐭(10) + 𝐭(13) + 𝐭(18)) ∗ 𝐭(15))

− (𝐭(12) + 𝐭(15) + 𝐭(17) ∗ 𝐭(18) + 𝐭(13) ∗ 𝐭(17)]                     (B. 6) 
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𝐑𝐧𝐞𝐰(2,3) =  sigv2[−(𝐭(2) + 𝐭(5) + 𝐭(7)) ∗ 𝐭(8) − (𝐭(3) + 𝐭(6) + 𝐭(8)) ∗ 𝐭(5)

+   𝐭(7) ∗ 𝐭(6) − (𝐭(12) + 𝐭(15) + 𝐭(17)) ∗ 𝐭(14)

− (𝐭(11) + 𝐭(14) + 𝐭(16)) ∗ 𝐭(17) +  𝐭(16) ∗ 𝐭(15)]               (B. 7) 

𝐑𝐧𝐞𝐰(2,1) =  𝐑𝐧𝐞𝐰(1,2)                                                                                         (B. 8) 

𝐑𝐧𝐞𝐰(3,1) =  𝐑𝐧𝐞𝐰(1,3)                                                                                         (B. 9) 

𝐑𝐧𝐞𝐰(3,2)  =  𝐑𝐧𝐞𝐰(2,3)                                                                                       (B. 10) 

Let the impedance parameter matrix to be estimated be denoted by t. Then, from (2.21), t 

is given by, 

𝐭 = [
real(𝛉se)

imag(𝛉se)
]                                                                                                           (B. 11) 

The modified measurement covariance matrix for the calculation of impedance parameters 

using unsymmetrical formulation is presented below. 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,1)

=  sigc2(𝐭(1)2 + 𝐭(4)2 + 𝐭(9)2 + 𝐭(10)2 + 𝐭(13)2 + 𝐭(18)2)

− sigv2([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(1)  𝐭(4)  𝐭(9)])T) − sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗  Bp ∗ (Bp)T ∗ ([𝐭(10)  𝐭(13)  𝐭(18)])T) + 2

∗ sigv2                                                                                                            (B. 12) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,2)  

=  ([𝐭(1)  𝐭(4)  𝐭(9)  𝐭(10)  𝐭(13)  𝐭(18)] ([𝐭(7)  𝐭(2)  𝐭(5)  𝐭(16)  𝐭(11)  𝐭(14)])T)

− sigv2 ∗  ([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(2)  𝐭(5)])T) − sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(16)  𝐭(11)  𝐭(14)])T )                        (B. 13) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,3)

=  sigc2([𝐭(1)  𝐭(4)  𝐭(9)  𝐭(10)  𝐭(13)  𝐭(18)]

∗  ([𝐭(6)  𝐭(8)  𝐭(3)  𝐭(15)  𝐭(17)  𝐭(12)])T  ) − sigv2

∗  ([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(8)  𝐭(3)])T) − sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T )  (B. 14) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,4)

=  sigc2([𝐭(1)  𝐭(4)  𝐭(9)  − 𝐭(10)   − 𝐭(13)   − 𝐭(18)]

∗  ([𝐭(10)  𝐭(13)  𝐭(18)  𝐭(1)  𝐭(4)  𝐭(9)])T) − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(10)  𝐭(13)  𝐭(18)])T ) + sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(1)  𝐭(4)  𝐭(9)])T)      (B. 15) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,5)

=  sigc2([𝐭(1)  𝐭(4)  𝐭(9)   − 𝐭(10)   − 𝐭(13)   − 𝐭(18)]

∗  ([𝐭(16)  𝐭(11)  𝐭(14)  𝐭(7)  𝐭(2)  𝐭(5)])T ) − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗  ([𝐭(16)  𝐭(11)  𝐭(14)])T) + sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(2)  𝐭(5)])T)       (B. 16) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,6)

=  sigc2([𝐭(1)  𝐭(4)  𝐭(9)   − 𝐭(10)   − 𝐭(13)   − 𝐭(18)]

∗ ([𝐭(15)  𝐭(17)  𝐭(12)  𝐭(6)  𝐭(8)  𝐭(3)])T  ) − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T) + sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(8)  𝐭(3)])T)        (B. 17) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,1) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,2)                                                                                (B. 18) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,2)

=  (𝐭(7)2 + 𝐭(2)2 + 𝐭(5)2 + 𝐭(16)2 + 𝐭(11)2 +  𝐭(14)2)sigc2 − sigv2

∗ ([𝐭(7)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(2)  𝐭(5)])T) − sigv2

∗ ([𝐭(16)  𝐭(11)  𝐭(14)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(16)  𝐭(11)  𝐭(14)])T) + 2

∗ sigv2                                                                                                         (B. 19) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,3)

=  sigc2([𝐭(7)  𝐭(2)  𝐭(5)  𝐭(16)  𝐭(11)  𝐭(14)]

∗  ([𝐭(6)  𝐭(8)  𝐭(3)  𝐭(15)  𝐭(17)  𝐭(12)])T) − sigv2

∗ ([𝐭(7)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(8)  𝐭(3)])T) − sigv2

∗ ([𝐭(16)  𝐭(11)  𝐭(14)] ∗ Bp ∗ (Bp)T   ∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T) (B. 20) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,4)

=  sigc2([𝐭(7)  𝐭(2)  𝐭(5)  − 𝐭(16)   − 𝐭(11)   − 𝐭(14)]

∗ ([𝐭(10)  𝐭(13)  𝐭(18)  𝐭(1)  𝐭(4)  𝐭(9)])T ) − sigv2

∗ ([𝐭(7)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(10)  𝐭(13)  𝐭(18)])T  ) + sigv2

∗ ([𝐭(16)  𝐭(11)  𝐭(14)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(1)  𝐭(4)  𝐭(9)])T)    (B. 21)  
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,5)

=  sigc2([𝐭(7)  𝐭(2)  𝐭(5)   − 𝐭(16)   − 𝐭(11)   − 𝐭(14)]

∗ ([𝐭(16)  𝐭(11)  𝐭(14)  𝐭(7)  𝐭(2)  𝐭(5)])T) − sigv2

∗ ([𝐭(7)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(16)  𝐭(11)  𝐭(14)])T ) + sigv2

∗ ([𝐭(16)  𝐭(11)  𝐭(14)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(2)  𝐭(5)])T) (B. 22) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,6)

=  sigc2([𝐭(7)  𝐭(2)  𝐭(5)  − 𝐭(16)   − 𝐭(11)   − 𝐭(14)]

∗  ([𝐭(15)  𝐭(17)  𝐭(12)  𝐭(6)  𝐭(8)  𝐭(3)])T ) − sigv2

∗  ([𝐭(7)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T ) + sigv2

∗ ([𝐭(16)  𝐭(11)  𝐭(14)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(8)  𝐭(3)])T)      (B. 23) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,1) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,3)                                                                              (B. 24) 

    𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,2)  =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,3)                                                                          (B. 25)    

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,3)

=  sigc2 ∗ (𝐭(6)2 + 𝐭(8)2 + 𝐭(3)2 + 𝐭(15)2 + 𝐭(17)2 +    𝐭(12)2)

− sigv2 ∗ ([𝐭(6)  𝐭(8)  𝐭(3)] ∗ Bp ∗ (Bp)T ∗  ([𝐭(6)  𝐭(8)  𝐭(3)])T)

− ([𝐭(15)  𝐭(17)  𝐭(12)] ∗ Bp ∗  (Bp)T  

∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T) ∗ sigv2 + 2 ∗ sigv2                                   (B. 26) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,4)

=  ([𝐭(6)  𝐭(8)  𝐭(3)   − 𝐭(15)   − 𝐭(17)   − 𝐭(12)]

∗  ([𝐭(10)  𝐭(13)  𝐭(18)  𝐭(1)  𝐭(4)  𝐭(9)])T )sigc2 − sigv2

∗ ([𝐭(6)  𝐭(8)  𝐭(3)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(10)  𝐭(13)  𝐭(18)])T) + sigv2

∗ ([𝐭(15)  𝐭(17)  𝐭(12)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(1)  𝐭(4)  𝐭(9)])T)         (B. 27) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,5)

= sigc2([𝐭(6)  𝐭(8)  𝐭(3)   − 𝐭(15)   − 𝐭(17)   − 𝐭(12)]

∗  ([𝐭(16)  𝐭(11)  𝐭(14)  𝐭(7)  𝐭(2)  𝐭(5)])T ) − sigv2

∗  ([𝐭(6)  𝐭(8)  𝐭(3)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(16)  𝐭(11)  𝐭(14)])T) + sigv2

∗ ([𝐭(15)  𝐭(17)  𝐭(12)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(2)  𝐭(5)])T)          (B. 28) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,6)

=  sigc2([𝐭(6)  𝐭(5)  𝐭(3)   − 𝐭(15)   − 𝐭(17)   − 𝐭(12)]

∗  ([𝐭(15)  𝐭(17)  𝐭(12)  𝐭(6)  𝐭(8)  𝐭(3)])T  ) − sigv2

∗ ([𝐭(6)  𝐭(8)  𝐭(3)] ∗ Bp(Bp)T ∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T) + sigv2

∗ ([𝐭(15)  𝐭(17)  𝐭(12)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(8)  𝐭(3)])T)         (B. 29) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,1) = 𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,4)                                                                                  (B. 30) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,2) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,4)                                                                                 (B. 31) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,3) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,4)                                                                               (B. 32) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,4) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,1)                                                                              (B. 33) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,5)

=  sigc2([𝐭(10)  𝐭(13)  𝐭(18)   − 𝐭(1)   − 𝐭(4)   − 𝐭(9)]

∗   ([𝐭(16)  𝐭(11)  𝐭(14)  𝐭(7)  𝐭(2)  𝐭(5)])T  ) − sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(16)  𝐭(11)  𝐭(14)])T) − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(7)  𝐭(2)  𝐭(5)])T)          (B. 34) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,6)

=  sigc2([𝐭(10)  𝐭(13)  𝐭(18)   − 𝐭(1)   − 𝐭(4)   − 𝐭(9)]

∗ ([𝐭(15)  𝐭(17)  𝐭(12)  𝐭(6)  𝐭(8)  𝐭(3)])T ) − sigv2

∗ ([𝐭(10)  𝐭(13)  𝐭(18)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T ) − sigv2

∗ ([𝐭(1)  𝐭(4)  𝐭(9)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(8)  𝐭(3)])T)               (B. 35) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,1)  =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,5)                                                                          (B. 36) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,2) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,5)                                                                          (B. 37) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,3) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,5)                                                                          (B. 38) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,4) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,5)                                                                          (B. 39) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,5) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,2)                                                                        (B. 40) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,6)

=  sigc2([𝐭(16)  𝐭(11)  𝐭(14)   − 𝐭(7)   − 𝐭(2)   − 𝐭(5)]

∗  ([𝐭(15)  𝐭(17)  𝐭(12)  𝐭(6)  𝐭(8)  𝐭(3)])T ) − sigv2

∗ ([𝐭(16)  𝐭(11)  𝐭(14)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(15)  𝐭(17)  𝐭(12)])T) − sigv2

∗ ([𝐭(7)  𝐭(2)  𝐭(5)] ∗ Bp ∗ (Bp)T ∗ ([𝐭(6)  𝐭(8)  𝐭(3)])T)       (B. 41) 
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𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,1) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(1,6)                                                                    (B. 42) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,2) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(2,6)                                                                    (B. 43) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,3) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,6)                                                                   (B. 44) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,4) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(4,6)                                                                    (B. 45) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,5) =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(5,6)                                                                   (B. 46) 

𝐑𝐧𝐞𝐰𝐢𝐦𝐩(6,6)  =  𝐑𝐧𝐞𝐰𝐢𝐦𝐩(3,3)                                                                   (B. 47) 

 

 

 

 

  



 

 

 

72 

APPENDIX C 

CALCULATION OF IMPEDANCE COVARIANCE MATRIX: SYMMETRICAL 

FORMULATION 
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Let the impedance parameter matrix to be estimated is given by 𝛉, from (2.12) 

𝛉 = [𝑟𝑒𝑎𝑙{𝛉se} 𝑖𝑚𝑎𝑔{𝛉se}] = [θ1  θ2  θ3  θ4  θ5  θ6  θ7  θ8  θ9  θ10  θ11  θ12 ]  (C. 1) 

From (2.11) – (2.16), the derivation of the covariance matrix is presented below. 

Calculation of diagonal element: 

R(1,1) = 2(σV)
2

+  Var{real(h1θ1 + h2θ4 + h3θ6)  

− imag(h1θ7 + h2θ10 + h3θ12)}                                                                (C. 2) 

Using property, Var(a𝐗 − b𝐘) = a2Var(𝐗) + b2Var(𝐘) − 2abCOV(𝐗, 𝐘), we get 

R(1,1) = 2(σV)
2 +  Var{real(h1θ1 + h2θ4 + h3θ6)}

+ Var{imag(h1θ7 + h2θ10 + h3θ12)}

− 2COV{real(h1θ1 + h2θ4 + h3θ6), imag(h1θ7 + h2θ10 + h3θ12)} (C. 3) 

=> R(1,1) = 2(σV)
2 + Var {real ([θ1 θ4 θ6] [

h1
h2
h3

])}

+ Var {imag([θ7 θ10 θ12] [

h1
h2
h3

])}

− 2COV {real ([θ1 θ4 θ6] [

h1
h2
h3

]) , imag([θ7 θ10 θ12] [

h1
h2
h3

])} (C. 4) 

Using property, COV(𝐀𝐗 + a, 𝐁T𝐘 + b) = 𝐀COV(𝐗, 𝐘)𝐁, we get 



 

 

 

74 

2COV {real ([θ1 θ4 θ6] [

h1
h2
h3

]) , imag([θ7 θ10 θ12] [

h1
h2
h3

])}

= 2[θ1 θ4 θ6]COV {real ([

h1
h2
h3

]) , imag([

h1
h2
h3

])} [

θ7
θ10
θ12

]                    (C. 5) 

Using property that real and imaginary components of a complex number are uncorrelated 

(same as orthogonal in geometric terms), we get 

COV {real ([

h1
h2
h3

]) , imag ([

h1
h2
h3

])} = 0                                                                                (C. 6) 

Therefore, 

R(1,1) = 2(σV)
2 + Var {real ([θ1 θ4 θ6] [

h1
h2
h3

])}

+ Var {imag([θ7 θ10 θ12] [

h1
h2
h3

])}                                                  (C. 7) 

=> R(1,1) = 2(σV)
2 + Var{real

(

 [θ1 θ4 θ6] ([

Ipq
a

Ipq
b

Ipq
c

] − 𝐁p
abc [

Vp
a

Vp
b

Vp
c

])

)

 }

+ Var{imag

(

 [θ7 θ10 θ12] ([

Ipq
a

Ipq
b

Ipq
c

] − 𝐁p
abc [

Vp
a

Vp
b

Vp
c

])

)

 }             (C. 8) 
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=> R(1,1) = 2(σV)
2 + Var {real ([θ1 θ4 θ6] [

Ipq
a

Ipq
b

Ipq
c

] − [θ1 θ4 θ6]𝐁p
abc [

Vp
a

Vp
b

Vp
c

])}

+ Var {imag([θ7 θ10 θ12] [

Ipq
a

Ipq
b

Ipq
c

]

− [θ7 θ10 θ12]𝐁p
abc [

Vp
a

Vp
b

Vp
c

])}                                                            (C. 9) 

Combining properties, Var(a𝐗 − b𝐘) = a2Var(𝐗) + b2Var(𝐘) − 2abCOV(𝐗, 𝐘) and 

Var(𝐀𝐗 + b) = 𝐀Var(𝐗)𝐀T, and knowing that voltages and currents are uncorrelated, we 

get 

R(1,1) = 2(σV)
2 + [θ1 θ4 θ6]Var {real ([

Ipq
a

Ipq
b

Ipq
c

])} [

θ1
θ4
θ6

]

+ [θ1 θ4 θ6]Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ1
θ4
θ6

]

+ [θ7 θ10 θ12]Var {imag([

Ipq
a

Ipq
b

Ipq
c

])} [

θ7
θ10
θ12

]

+ [θ7 θ10 θ12]Var {imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ7
θ10
θ12

]                       (C. 10) 
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=> R(1,1) = 2(σV)
2 + [θ1 θ4 θ6] [

(σC)
2 0 0

0 (σC)
2 0

0 0 (σC)
2

] [

θ1
θ4
θ6

]

+ [θ1 θ4 θ6]Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ1
θ4
θ6

]

+ [θ7 θ10 θ12] [

(σC)
2 0 0

0 (σC)
2 0

0 0 (σC)
2

] [

θ7
θ10
θ12

]

+ [θ7 θ10 θ12]Var {imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ7
θ10
θ12

]                      (C. 11) 

Now, since 𝐁p
abc is purely imaginary, 𝐁p

abc = j𝐁, and therefore,  

Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} = Var{real(j𝐁 [

real (Vp
a) + jimag (Vp

a)

real (Vp
b) + jimag (Vp

b)

real (Vp
c) + jimag (Vp

c)

])}          (C. 12) 

=> Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} = Var{−(𝐁 [

imag (Vp
a)

imag (Vp
b)

imag (Vp
c)

])}                               (C. 13)   

Defining, 𝐂 = −𝐁, and using property Var(𝐀𝐗 + b) = 𝐀Var(𝐗)𝐀T, we get 

Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} = 𝐂Var{[

imag (Vp
a)

imag (Vp
b)

imag (Vp
c)

]} 𝐂T                                              (C. 14) 

=> Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} = 𝐂 [

(σV)
2 0 0

0 (σV)
2 0

0 0 (σV)
2

] 𝐂T                              (C. 15) 
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=> Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} = (σV)
2𝐂𝐂T = (σV)

2𝐁𝐁T                                        (C. 16) 

Similarly,  

Var {imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} = 𝐁Var{[

real (Vp
a)

real (Vp
b)

real (Vp
c)

]}𝐁T = (σV)
2𝐁𝐁T                     (C. 17) 

Substituting these values in the expression of R(1,1), and solving, we get 

R(1,1) = 2(σV)
2 + (σC)

2{(θ1)
2 + (θ4)

2 + (θ6)
2} + (σV)

2 {[θ1 θ4 θ6]𝐁𝐁
T [

θ1
θ4
θ6

]}

+ (σC)
2{(θ7)

2 + (θ10)
2 + (θ12)

2}

+ (σV)
2 {[θ7 θ10 θ12]𝐁𝐁

T [

θ7
θ10
θ12

]}                                               (C. 18) 

Now as 𝐁𝐁T = −𝐁p
abc(𝐁p

abc)
T
, we get 

R(1,1) = 2(σV)
2 + (σC)

2{(θ1)
2 + (θ4)

2 + (θ6)
2 + (θ7)

2 + (θ10)
2 + (θ12)

2}

− (σV)
2 {[θ1 θ4 θ6]𝐁𝐩

𝐚𝐛𝐜(𝐁𝐩
𝐚𝐛𝐜)

𝐓
[

θ1
θ4
θ6

]

+ [θ7 θ10 θ12]𝐁𝐩
𝐚𝐛𝐜(𝐁𝐩

𝐚𝐛𝐜)
𝐓
[

θ7
θ10
θ12

]}                                            (C. 19) 

Calculation of non-diagonal element: 



 

 

 

78 

R(1,2) = COV{real(h1θ1 + h2θ4 + h3θ6)  

− imag(h1θ7 + h2θ10 + h3θ12), real(h1θ4 + h2θ2 + h3θ5)  

− imag(h1θ10 + h2θ8 + h3θ11)}                                                     (C. 20) 

=> R(1,2) = COV {real ([θ1 θ4 θ6] [

h1
h2
h3

])

− imag([θ7 θ10 θ12] [

h1
h2
h3

]) , real ([θ4 θ2 θ5] [

h1
h2
h3

])

− imag([θ10 θ8 θ11] [

h1
h2
h3

])}                                                      (C. 21) 

Combining properties, COV(𝐗1 + 𝐗2, 𝐘) = COV(𝐗1, 𝐘) + COV(𝐗2, 𝐘) and 

COV(a𝐗, b𝐘) = abCOV(𝐗, 𝐘), we get 

COV(𝐗1 − 𝐗2, 𝐗3 − 𝐗4) = COV(𝐗1, 𝐗3) − COV(𝐗1, 𝐗4) − COV(𝐗2, 𝐗3) + COV(𝐗2, 𝐗4) 

Substituting this relation in the expression of R(1,2), we get 

R(1,2) = COV {real ([θ1 θ4 θ6] [

h1
h2
h3

]) , real ([θ4 θ2 θ5] [

h1
h2
h3

])}

− COV {real ([θ1 θ4 θ6] [

h1
h2
h3

]) , imag([θ10 θ8 θ11] [

h1
h2
h3

])}

− COV {imag([θ7 θ10 θ12] [

h1
h2
h3

]) , real ([θ4 θ2 θ5] [

h1
h2
h3

])}

+ COV {imag([θ7 θ10 θ12] [

h1
h2
h3

]) , imag([θ10 θ8 θ11] [

h1
h2
h3

])} (C. 22) 
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Using property, COV(𝐀𝐗 + a, 𝐁T𝐘 + b) = 𝐀COV(𝐗, 𝐘)𝐁, we get 

COV {real ([θ1 θ4 θ6] [

h1
h2
h3

]) , imag([θ10 θ8 θ11] [

h1
h2
h3

])}

= [θ1 θ4 θ6]COV {real ([

h1
h2
h3

]) , imag([

h1
h2
h3

])} [

θ10
θ8
θ11

]            (C. 23) 

COV {imag([θ7 θ10 θ12] [

h1
h2
h3

]) , real ([θ4 θ2 θ5] [

h1
h2
h3

])}

= [θ7 θ10 θ12]COV {real ([

h1
h2
h3

]) , imag([

h1
h2
h3

])} [

θ4
θ2
θ5

]          (C. 24) 

Using property that real and imaginary components of a complex number are uncorrelated 

(same as orthogonal in geometric terms), we get 

COV {real ([

h1
h2
h3

]) , imag ([

h1
h2
h3

])} = 0 

Therefore, 

R(1,2)

= COV {real ([θ1 θ4 θ6] [

h1
h2
h3

]) , real ([θ4 θ2 θ5] [

h1
h2
h3

])}

+ COV {imag([θ7 θ10 θ12] [

h1
h2
h3

]) , imag([θ10 θ8 θ11] [

h1
h2
h3

])}              (C. 25) 
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=> R(1,2) = COV{real

(

 [θ1 θ4 θ6] ([

Ipq
a

Ipq
b

Ipq
c

]

− 𝐁p
abc [

Vp
a

Vp
b

Vp
c

])

)

 , real

(

 [θ4 θ2 θ5] ([

Ipq
a

Ipq
b

Ipq
c

] − 𝐁p
abc [

Vp
a

Vp
b

Vp
c

])

)

 }

+ COV{imag

(

 [θ7 θ10 θ12] ([

Ipq
a

Ipq
b

Ipq
c

]

− 𝐁p
abc [

Vp
a

Vp
b

Vp
c

])

)

 , imag

(

 [θ10 θ8 θ11] ([

Ipq
a

Ipq
b

Ipq
c

] − 𝐁p
abc [

Vp
a

Vp
b

Vp
c

])

)

 } (C. 26) 

R(1,2) = COV{real ([θ1 θ4 θ6] [

Ipq
a

Ipq
b

Ipq
c

] − [θ1 θ4 θ6]𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , real([θ4 θ2 θ5] [

Ipq
a

Ipq
b

Ipq
c

]

− [θ4 θ2 θ5]𝐁p
abc [

Vp
a

Vp
b

Vp
c

])}

+ COV{imag([θ7 θ10 θ12] [

Ipq
a

Ipq
b

Ipq
c

]

− [θ7 θ10 θ12]𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , imag([θ10 θ8 θ11] [

Ipq
a

Ipq
b

Ipq
c

]

− [θ10 θ8 θ11]𝐁p
abc [

Vp
a

Vp
b

Vp
c

])}                                                                                   (C. 27) 
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=> R(1,2) = COV{[θ1 θ4 θ6]real ([

Ipq
a

Ipq
b

Ipq
c

])

− [θ1 θ4 θ6]real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , [θ4 θ2 θ5]real ([

Ipq
a

Ipq
b

Ipq
c

])

− [θ4 θ2 θ5]real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])}

+ COV{[θ7 θ10 θ12]imag([

Ipq
a

Ipq
b

Ipq
c

])

− [θ7 θ10 θ12]imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , [θ10 θ8 θ11]imag([

Ipq
a

Ipq
b

Ipq
c

])

− [θ10 θ8 θ11]imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])}                                                (C. 28) 

Combining properties, COV(𝐗1 + 𝐗2, 𝐘) = COV(𝐗1, 𝐘) + COV(𝐗2, 𝐘) and 

COV(a𝐗, b𝐘) = abCOV(𝐗, 𝐘), we get 

COV(𝐗1 − 𝐗2, 𝐗3 − 𝐗4) = COV(𝐗1, 𝐗3) − COV(𝐗1, 𝐗4) − COV(𝐗2, 𝐗3) + COV(𝐗2, 𝐗4) 

Substituting this relation in the expression of R(1,2), and knowing that voltages and 

currents are uncorrelated, we get 
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R(1,2)

= COV{[θ1 θ4 θ6]real ([

Ipq
a

Ipq
b

Ipq
c

]) , [θ4 θ2 θ5]real ([

Ipq
a

Ipq
b

Ipq
c

])}

+ COV{[θ1 θ4 θ6]real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , [θ4 θ2 θ5]real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])}

+ COV{[θ7 θ10 θ12]imag([

Ipq
a

Ipq
b

Ipq
c

]) , [θ10 θ8 θ11]imag([

Ipq
a

Ipq
b

Ipq
c

])}

+ COV{[θ7 θ10 θ12]imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , [θ10 θ8 θ11]imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} (C. 29) 

Using property, COV(𝐀𝐗 + a, 𝐁T𝐘 + b) = 𝐀COV(𝐗, 𝐘)𝐁, we get 

R(1,2) = [θ1 θ4 θ6]COV{real([

Ipq
a

Ipq
b

Ipq
c

]) , real([

Ipq
a

Ipq
b

Ipq
c

])} [

θ4
θ2
θ5

]

+ [θ1 θ4 θ6]COV{real(𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , real(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ4
θ2
θ5

]

+ [θ7 θ10 θ12]COV{imag([

Ipq
a

Ipq
b

Ipq
c

]) , imag([

Ipq
a

Ipq
b

Ipq
c

])}[

θ10
θ8
θ11

]

+ [θ7 θ10 θ12]COV{imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

]) , imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ10
θ8
θ11

] (C. 30) 

Using property COV(𝐗, 𝐗) = Var(𝐗), we get 
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R(1,2) = [θ1 θ4 θ6]Var {real ([

Ipq
a

Ipq
b

Ipq
c

])} [

θ4
θ2
θ5

]

+ [θ1 θ4 θ6]Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ4
θ2
θ5

]

+ [θ7 θ10 θ12]Var {imag([

Ipq
a

Ipq
b

Ipq
c

])} [

θ10
θ8
θ11

]

+ [θ7 θ10 θ12]Var {imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} [

θ10
θ8
θ11

]                        (C. 31) 

As Var {real ([

Ipq
a

Ipq
b

Ipq
c

])} = [

(σC)
2 0 0

0 (σC)
2 0

0 0 (σC)
2

], Var {real (𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} =

−(σV)
2𝐁p

abc(𝐁p
abc)

T
, Var {imag([

Ipq
a

Ipq
b

Ipq
c

])} = [

(σC)
2 0 0

0 (σC)
2 0

0 0 (σC)
2

] and 

Var {imag(𝐁p
abc [

Vp
a

Vp
b

Vp
c

])} = −(σV)
2𝐁p

abc(𝐁p
abc)

T
, we get 
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R(1,2) = [θ1 θ4 θ6] [

(σC)
2 0 0

0 (σC)
2 0

0 0 (σC)
2

] [

θ4
θ2
θ5

]

− [θ1 θ4 θ6](σV)
2𝐁p

abc(𝐁p
abc)

T
[

θ4
θ2
θ5

]

+ [θ7 θ10 θ12] [

(σC)
2 0 0

0 (σC)
2 0

0 0 (σC)
2

] [

θ10
θ8
θ11

]

− [θ7 θ10 θ12](σV)
2𝐁p

abc(𝐁p
abc)

T
[

θ10
θ8
θ11

]                                     (C. 32) 

=> R(1,2) = (σC)
2[θ1 θ4 θ6 θ7 θ10 θ12]

[
 
 
 
 
 
θ4
θ2
θ5
θ10
θ8
θ11]
 
 
 
 
 

− (σV)
2

{
 
 

 
 [θ1 θ4 θ6]𝐁p

abc(𝐁p
abc)

T
[

θ4
θ2
θ5

] + [θ7 θ10 θ12]

𝐁p
abc(𝐁p

abc)
T
[

θ10
θ8
θ11

]
}
 
 

 
 

      (C. 33) 

 

 


