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ABSTRACT  
   

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing 

pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in 

the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus 

accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists 

modulate both cocaine- and methamphetamine-seeking behaviors in rat models of 

psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-

HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. 

I injected mice daily with cocaine for 20 days and then tested them 20 days after their last 

injection.  The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization 

of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in 

the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned 

place preference (CPP). Subsequent experiments showed that CP94253 given prior to 

conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure 

of drug reward; however, CP94253 given prior to testing attenuated expression of 

methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell 

types involved in CP94253 attenuation of methamphetamine-seeking, I examined 

changes in the immediate early gene product, Fos, which is a marker of brain activity 

involving gene transcription changes. Mice expressing methamphetamine-CPP showed 

elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in 

the central nucleus of the amygdala (CeA). In mice showing CP94253-induced 

attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc 

shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the 
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methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in 

the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the 

CeA, suggesting that the increases observed in methamphetamine-conditioned mice were 

due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In 

conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking 

in mice, and that the latter effect may involve normalizing activity in the amygdala and 

increasing activity in the mesolimbic pathway. These findings further support the 

potential efficacy of 5-HT1BR agonists as pharmacological interventions for 

psychostimulant craving in humans.   
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CHAPTER 1 

GENERAL OVERVIEW 

Drug addiction is a chronic and debilitating condition. Ultimately, addiction leads 

to psychological, physical, and social impairment and distress. Clinically, addiction is 

referred to as dependence and is the most severe form of substance use disorders (SUDs). 

SUDs can be thought of as a spectrum disorder along a continuum ranging from mild to 

severe. SUDs are characterized by excessive time being preoccupied with the drug or 

obtaining the drug, using the drug, persistent desire or craving for drug, continued use 

despite negative consequences, tolerance and withdrawal, followed by shame and guilt. 

The cost of SUDs is extremely high due to crime, lost work productivity, and health care 

costs. In 2007, the cost of illicit drug use was $193 billion, not including prescription 

opioids (Birnbaum et al., 2011; National Drug Threat Assessment, 2011). Prescriptions 

opioids alone cost society $78.5 billion in 2013 (Florence, Zhou, Luo, & Xu, 2016). In 

2010, the cost of alcohol and tobacco use was estimated at $249 billion (Centers for 

Disease Control and Prevention) - $300 billion (Surgeon General; Xu, Bishop, Kennedy, 

Simpson, & Pechacek, 2014). Not only is there a huge financial cost to society related to 

SUDs, but also tremendous personal burden to the individual, their friends, and family.  

Another key component of addiction is relapse (Leshner, 1997; O’Brien, 

Childress, Ehrman, & Robbins, 1998; Wallace 1992). Addiction is often perceived as a 

cycle of drug dependence with the nature of the disease including drug use, shame/guilt, 

abstinence, and relapse. Individuals will relapse numerous times while in treatment 

(McLellan, Lewis, O’Brien, & Kleber, 2000). Triggers of drug relapse during attempted 

abstinence include stress, anxiety, as well as exposure to drug-associated cues (Koob & 
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Le Moal, 2005; Sinha 2008). Cues that were previously associated with drug taking, such 

as paraphernalia, the environment, and the individuals present during the drug 

experience, can lead to craving and serve as a motivator to seek out the drug. 

Additionally, individuals may use again in hopes of reducing the withdrawal symptoms 

they are experiencing or to feel ‘normal’ again. Therefore, much research is devoted to 

examining the neural mechanisms underlying the high propensity for relapse. In addition, 

understanding the rewarding properties of drugs and the incentive motivation to seek 

drugs is important. It is imperative to find novel therapeutics for SUDs as so many 

individuals and their families suffer because of this chronic disease.  

Drugs of abuse exert their reinforcing effect primarily by activating dopamine 

neurons that originate in the ventral tegmental area (VTA) and project to the nucleus 

accumbens (NAc), prefrontal cortex (PFC), amygdala, and hippocampus (Feltenstein & 

See, 2008; Pierce & Kumaresan, 2006). This pathway is referred to as the 

mesocorticolimbic pathway and it is implicated not only in SUDs, but also behavioral 

addictions. Psychostimulant drugs are highly reinforcing due to their ability to increase 

synaptic monoamine levels. Specifically, cocaine blocks presynaptic reuptake 

transporters, which results in excess neurotransmitter in the synaptic cleft. Similarly, 

amphetamines inhibit transport, and they also reverse the transporter not only on the 

presynaptic terminals but also on the neurotransmitter storage vesicles, causing release of 

these monoamines. This mechanism appears to be critical for the initial phase of drug 

use, when the drug produces a pleasurable and positively reinforcing experience. As the 

drug use becomes chronic, the act of seeking and taking the drug becomes repetitive and 

habitual. Additionally, the individual learns that stress, anxiety, guilt, and shame can be 



 3

temporarily dampened by drug use. This maladaptive learning process and habit 

formation leads to persistent compulsive behavior to procure drugs, which is a hallmark 

of dependence in the later stages of SUDs when the negative reinforcing effects (i.e., 

relief from a negative state) of the drug become prominent. The shift from casual or 

impulsive use to compulsive drug use suggests that more enduring changes are occurring 

within this reward circuitry (Kalivas & Volkow, 2005).  Such changes involve synaptic 

plasticity that underlies, at least in part, the enduring changes in behavior (Hyman & 

Malenka, 2001; Hyman, Malenka, & Nestler, 2006; Kalivas, 2009; Kauer & Malenka, 

2007). 

Self-administration Animal Model 

The drug self-administration paradigm is an operant conditioning model in which 

an operant response, such as a lever press or nose poke into a hole, is reinforced by the 

effects of the drug (for review, see Panlilio & Goldberg, 2007). The basic assumption of 

this model is that the drug or food reward functions as a reinforcer that increases the 

likelihood of the behavior that preceded its delivery. The relationship between the 

response and the reinforcement is dictated by the schedule of reinforcement, which sets 

the number and/or timing of responses required to produce the reinforcer. Additionally, 

other stimuli, such as a light and/or tone cue, may be presented to signal the availability 

of reinforcement, i.e., a discriminative stimulus, or may be presented with the delivery of 

the reinforcer. In the latter case, the cues become associated with the reinforcer through 

Pavlovian conditioning and may become reinforcing themselves, i.e., a conditioned 

reinforcer.  

Schedules of reinforcement may require a certain number of responses that need 
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to be performed (fixed-ratio), or a certain amount of time that must pass (fixed-interval), 

for the reinforcer to be obtained. These requirements may also vary (variable-ratio and 

variable-interval schedules). For example, a variable ratio schedule 5 (VR5) schedule of 

reinforcement requires an animal to press a lever on average 5 times before delivery of 

the reinforcer. Progressive-ratio (PR) schedules assess how effective the reinforcer is by 

measuring how persistent an animal is in seeking the reinforcer (Arnold & Roberts, 

1997). Often the PR schedule of reinforcement is said to assess incentive motivation 

(Markou et al, 1993). Under the PR schedule, the number of responses required for 

reinforcement is increased with each successive reinforcer. Thus, it progressively 

becomes more and more effortful to achieve the reinforcer and eventually the animal 

ceases performing the operant behavior, or essentially ‘gives up’. The highest number of 

operant responses the animal is willing to perform is termed the breakpoint and is 

typically defined as the last ratio schedule completed before a “quit” criterion is reached. 

The breakpoint reflects the amount of ‘work’ the animal is willing to perform to achieve 

the reward. 

The environment where drug is delivered or stimuli presented with the drug 

reinforcer, such as the lever, light, and tone are predictive of the drug’s availability and/or 

effects. These stimuli eventually have conditioning effects of their own, similar to the 

ability of environmental cues associated with drug use in humans to elicit craving and 

drug-like effects (Childress, McLellan, & O’Brien, 1986; Ehrman, Robbins, Childress, & 

O’Brien, 1992; Hugdahl & Ternes, 1981; Pomerleau, Fertig, Baker, & Cooney, 1983). 

Some examples of environmental cues associated with drug use in humans can be the 

room where the drug is regularly consumed, the paraphernalia used to take the drug, and 
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the people usually present during the drug-taking experience. This type of conditioning 

contributes to addiction and relapse.  

In the drug self-administration model, the rate of self-injection is dose-dependent 

and low effort schedules typically produce an inverted U-shaped dose-response function. 

Infusions rates increase across the low to middle range of doses presumably because the 

reinforcing effects are increasing as the dose increases, whereas higher doses maintain 

less frequent responses/injection presumably because the high doses produce a transient 

satiation effect that results in longer inter-infusion intervals. These low effort schedules 

are very useful for examining drug reinforcement because the effort required is low, 

which makes these schedules less reliant on motivation and more reliant on the rewarding 

properties of the drug than effortful schedules.  

Once animals acquire self-administration, there are other manipulations that can 

be conducted with this model such as extinction/reinstatement and abstinence. These 

manipulations are typically used to mimic the human relapse condition and to investigate 

potential pharmacological interventions that can reduce reinstatement of drug-seeking 

behaviors. During extinction the animal revisits the self-administration chamber everyday 

but there are no cues or drug available. The animal learns that the operant response no 

longer produces light/tone cues nor predicts that drug is going to be available. The 

reinstatement phase begins after either the abstinence or extinction phase. After 

extinguishing the operant response, animals revisit the self-administration chamber for 

numerous types of reinstatement tests; cue reinstatement, drug-primed reinstatement, 

stress reinstatement. Importantly, different pharmacological interventions can be used to 

test for efficacy in blocking the reinstatement. Stimuli that have previously been 
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associated with the drug (i.e., paraphernalia, environment, etc.) are conditioned 

reinforcers. Conditioned reinforcers alone are capable of reinforcing the response that 

produces them. Also, these conditioned reinforcers can produce conditioned responses 

that are motivational in nature, leading an individual to seek the drug. These incentive-

motivational effects tend to translate to what is being described when humans report 

craving for a drug.  

 During forced abstinence, animals remain in their home colony and do not visit 

the self-administration chambers. Unlike extinction, the association between drug reward 

and the environment is not extinguished, but rather the animal is removed from the self-

administration environment and does not receive any exposure to the drug. During forced 

abstinence, integrity of the drug-taking behavior and the drug-associated cues 

conditioned to the drug-taking environment are preserved because the environmental cues 

associated with the drug are not experienced in the absence period (for review see 

Reichel & Bevins, 2009). During reinstatement/relapse testing, the drug-reinforced 

associations such as the lever and the self-administration environmental are fully 

intact. This model simulates some key aspects of drug relapse in humans. Chronic drug 

users will be abstinent from the drug for a period of time, whether mandated (i.e., court) 

or voluntary, before a relapse opportunity presents itself. During this time, there typically 

is little to no opportunity for drug-taking behaviors or their associated stimuli to be 

extinguished. Most treatment for SUDs does not include forced extinction of drug-taking 

behaviors or the stimuli associated with taking the drug (for review, see Ling, Rawson 

Shoptaw, & Ling, 2006). Cocaine-seeking varies as a function of time since last drug 

exposure (Tran-Nguyen et al., 1998). Grimm et al., 2001 termed this phenomenon the 



 7

“incubation” of craving (Grimm, Hope, Wise, & Shaham, 2001).  

Conditioned Place Preference Animal Models 

The conditioned place preference (CPP) paradigm is used to study both the 

rewarding and aversive effects of a drug, food, or other rewarding stimuli. The CPP 

paradigm involves a classical conditioning process where the animal learns to associate 

the internal rewarding drug experience (i.e., unconditioned stimulus) with the external 

environmental stimuli (i.e., conditioned stimulus). The association is later assessed as 

approach to, and an increase in the amount of time spent in that environment. The model 

can also be used to assess aversive effects of drugs such as lithium, which are assessed as 

avoidance of, and a decrease in the amount of time spent in the drug-associated 

environment (conditioned place aversion; CPA). 

The basic CPP procedure involves associating a drug with a particular 

environment (drug-paired compartment), and on alternating sessions a neutral state 

becomes associated with an alternate environment (vehicle-paired compartment; for 

review, see Prus, James, & Rosecrans, 2009). Typically, this is done in a 2-compartment 

apparatus in which the compartments can differ on 3 modalities; sensory, olfactory, and 

visual. Some apparatus have a small chamber in between the two main chambers that 

serves as a gate between the two main compartments. Initially, there are baseline 

preference tests where the animal has free access to both sides of the apparatus. The 

animal’s least preferred compartment becomes the drug-paired side and the initially 

preferred compartment becomes the vehicle-paired side. The drug and vehicle sessions 

alternate, typically resulting in 1-6 exposures to each side. A CPP is established if the 

animal’s preference shifts to the drug-paired compartment during a post-conditioning 
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preference test.  

The CPP model can assess incentive motivational effects of a drug priming 

injection using an extinction-reinstatement procedure similar to that used in the operant 

drug self-administration model. After a CPP is established, the extinction phase begins. 

Animals receive alternating exposures to the drug-paired and vehicle-paired 

compartments while in a drug-free state to extinguish the association formed between the 

drug and the drug-paired compartment. Extinction is evident if animals no longer show a 

preference for the drug-paired compartment when given a preference test. Next, the 

reinstatement phase assesses incentive motivation produced by a drug priming injection 

or some other motivation-inducing stimulus such as stress. Manipulations that attenuate 

reinstatement of the drug CPP are thought to impede neural processes underlying 

incentive motivational effects of the reinstating stimulus (e.g., drug priming injection).  

Sensitization Animal Models  

Repeated exposure to psychostimulant drugs can cause a variety of neural and 

behavioral changes (for review, see Robinson & Berridge, 1993). The most frequently 

studied of these phenomena is sensitization to effects of these drugs because it is 

presumed to be an important component of drug addiction (Robinson & Berridge 1993; 

Robinson & Berridge, 2008; Wolf and Ferrario, 2010). Sensitization is the opposite of 

tolerance and is sometimes referred to as reverse tolerance. With sensitization, a 

progressive amplification in behavioral responsiveness occurs after repeated treatment 

with a psychostimulant drug (Robinson & Becker 1986; Kalivas & Stewart 1991), 

typically measured as enhanced locomotor activity, rotational behavior or stereotyped 

motor patterns (Segal, Geyer & Schuckit, 1981; Robinson & Becker, 1986; Robinson & 
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Berridge, 1993; Stewart & Badiani, 1993). Typically, animals are given a low dose 

challenge injection of a psychostimulant drug (e.g., cocaine, amphetamine, 

methylphenidate, methamphetamine, etc.) days or weeks after receiving a sensitizing 

regimen of repeated daily injections of the drug. Sensitization is evident as an enhanced 

behavioral response to the challenge either compared to a pre-sensitization test or to a 

control group receiving the challenge without prior exposure to the stimulant (Browman, 

Badiani, & Robinson 1998; Kalivas, Duffy, DuMars, & Skinner, 1988; Kuribara & 

Uchihashi 1994). 

Psychostimulant sensitization involves changes in brain mesolimbic dopamine 

transmission, as well as gene expression within dopamine neurons (for review, see 

Robinson & Berridge, 2001). An associative process may contribute to behavioral 

sensitization. Incentive learning occurs when dopaminergic neurons are activated, usually 

by rewards. Previously neutral stimuli that were associated with the reward acquire 

incentive salience and are able to elicit incentive motivation that manifests as drug-

seeking behavior in animal models (Schmidt & Beninger, 2006). Sensitization is more 

robust when the animal is re-exposed to the drug in the same environment (context-

dependent) as the previous drug exposure, compared to testing in an environment that 

differs (context-independent) from where drug exposure occurred (Vezina, Giovino, 

Wise, & Stewart, 1989; Anagnostaras & Robinson, 1996; Wang & Hsiao, 2003; Vezina 

& Leyton, 2009). Incentive learning is thought to underlie psychostimulant-induced, 

context-dependent sensitization that plays a prominent role in the development of 

addiction (Anagnostaras & Robinson, 1996; Pert, Post, & Weiss, 1990). This associative 

process can explain how environmental stimuli associated with drug taking may increase 
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craving and increase the risk for relapse in addicts attempting to quit (Robinson & 

Berridge, 1993). The phenomenon of sensitization can also be due to non-associative 

learning processes. Neural sensitization without the influence of contextual stimuli has 

been shown using in-vivo slice electrophysiology (Castaneda, Becker & Robinson, 1988; 

Robinson & Becker, 1982) and with aplasia (for review, see Kandel & Schwartz, 1982). 

Therefore, repeated drug exposure can induce sensitization either associatively or non-

associatively (i.e., context-independently).  

5-HT1BRs and Drug Abuse Circuitry  

Historically, mesolimbic dopamine has been highlighted as the mechanism of 

action responsible for SUDs. However, drugs of abuse, stimulants in particular, modulate 

not only dopamine neural transmission, but also glutamate, norepinephrine, epinephrine, 

and serotonin. Serotonin plays a role in the reinforcing and incentive motivational effects 

of psychomotor stimulants and cues associated with their use (Markou et al., 1993; 

Shaham, Shalev, Lu, de Wit, Stewart, 2003; for review, see Cruickshank & Dyer, 2009 

and Filip, Frankowska, Zaniewska, Gołda, & Przegaliński, 2005). One mechanism 

involved in these effects is the action of serotonin at 5-HT1B receptors (5-HT1BRs; Clark 

& Neumaier, 2001; Filip, Alenina, Bader, & Przegaliński, 2010; Neisewander, Cheung, 

Pentkowski, 2014; Miszkiel, Filip, Przegaliński, 2011). 5-HT1BRs are autoreceptors on 5-

HT neuron terminals, including those in the VTA (for review, see Sari 2004), as well as 

heteroreceptors that modulate GABA and DA release in this region (O’Dell & Parsons, 

2004; Yan, Zheng, & Yan, 2004). They are also heteroreceptor on GABAergic striatal 

neurons that project to the VTA, ventral pallidum, and substantia nigra (Bruinvels et al., 

1994; Riad et al., 2000).  
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Studies investigating the distribution of 5-HT1BRs in the central nervous system 

have demonstrated that high densities of these receptors are located in the globus 

pallidus, nucleus accumbens, substantia nigra, and dorsal subiculum (Boulenguez et al., 

1992; Bruinvels et al., 1994; Pazos & Palacios 1985; Sari 2004; Sari et al., 1997; Sari et 

al., 1999). They are also expressed in the striatum and frontal cortex (Barnes & Sharp, 

1999; Hoyer, Hannon, & Martin, 2002). 5-HT1BRs are located on the terminals of VTA 

neurons that project to the NAc, amygdala complex, and frontal cortex (Asan, 1998). The 

localization of these receptors makes them a prime candidate for regulating the effects of 

psychostimulants. 

5-HT1BRs and Locomotor Activity 

5-HT1BRs modulate spontaneous locomotion and cocaine-induced locomotion. 

Several studies have found that 5-HT1BR agonists increase spontaneous locomotor 

activity in drug-naïve rats (Chaouloff, Courvoisier, Moisan, & Mormede, 1999; Geyer 

1996; Koe, Lebel, Fox, & Macor, 1992; Macor et al., 1990; Oberlander, Blaquière, & 

Pujol 1986; Oberlander, Demassey, Verdu, Van de Velde, & Bardelay, 1987). However, 

5-HT1BR agonists have no effect on spontaneous locomotion in rats with a history of 

cocaine self-administration (Pentkowski, Acosta, Browning, Hamilton, & Neisewander, 

2009; Przegalinski, Gołda, Frankowska, Zaniewska, & Filip, 2007). The 5-HT1BRs 

facilitate cocaine-induced hyperlocomotion in both rats and mice (Castanon, Scearce-

Levie, Lucas, Rocha, & Hen, 2000; Przegalinski, Filip, Papla, & Siwanowicz, 2001a; 

Hoplight, Vincow, & Neumaier, 2005).  However, in 5-HT1BR knockout mice (KO), 

suppressant effects were found for cocaine-induced hyperlocomotion and the acquisition 

of sensitization (Rocha et al., 1998). Interestingly, 5-HT1BR agonist effects on 
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spontaneous locomotion may be specific to rats since the drugs have no effect on 

locomotion in drug-naïve mice (Bannai, Fish, Faccidomo, & Miczek, 2007; Fish, 

McKenzie-Quirk, Bannai, & Miczek, 2008; Nasehi, Ghadimi, Khakpai, & Zarrindas, 

2017). It is important to note this species difference. However, in mice that have been 

stressed by repeated behavioral testing, the selective 5-HT1BR agonist 5-propoxy-3-

(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine (CP94253) increases 

locomotion (Tatarczynska, Kłodzińska, Stachowicz, & Chojnacka-Wójcik, 2004; 

Tatarczyńska, Antkiewicz-Michaluk, Kłodzińska, Stachowicz, & Chojnacka-Wójcik, 

2005). Collectively, these findings suggest that 5-HT1BR stimulation enhances 

locomotion in drug-naïve rats and rats or mice given cocaine or with a history of stress.   

5-HT1B receptor stimulation also enhances d-amphetamine-induced locomotor 

activity and sensitization (Fletcher & Korth, 1999; Przegalinski, Siwanowicz, Nowak, 

Papla, & Filip, 2001b). 5-HT1B receptor antagonists inhibited d-amphetamine-induced 

locomotor sensitization (Przegalinski et al., 2001b) or had no significant effect 

(Chaouloff et al., 1999). The acquisition of amphetamine-induced sensitization is blocked 

by 5-HT1BR antagonists and facilitated by agonists (Przegalinski et al., 2001b). 5-HT1BRs 

in the VTA enhance the amphetamine effects on locomotion when pharmacologically 

stimulated (Papla, Filip, & Przegalinski, 2002). Surprisingly, 5-HT1BR KO mice are more 

sensitive to the acute effects of amphetamine and show a more pronounced establishment 

of amphetamine sensitization (Bronsert, Mead, Hen, & Rocha, 2001). In summary, the 

majority of research shows a facilitatory role of 5-HT1BRs in both the acute 

hyperlocomotor effects of amphetamine and in the establishment of their sensitization. 

5-HT1BRs – Psychostimulant Conditioned Behaviors  
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 Previous research led us to discover that 5-HT1BRs modulate cocaine-related 

behaviors in opposite directions depending on whether or not animals have undergone an 

abstinence period prior to testing (Pentkowski et al., 2012; Pentkowski et al., 2014).  

More specifically, we observed an increase in cocaine intake with several 5-HT1BR 

agonists or viral overexpression of 5-HT1BRs during the maintenance phase of self-

administration (Parsons, Weiss, & Koob, 1998; Pentkowski et al., 2012; Pentkowski et 

al., 2014). In contrast, after a 21-day period of abstinence, either the 5-HT1BR agonist 

CP94253 or viral over-expression of 5-HT1BRs attenuates cocaine intake (Pentkowski et 

al., 2012; Pentkowski et al., 2014). These effects are not due to altering locomotor 

activity nor reinforcement in general as neither sucrose or food reinforcement is affected 

(Parsons et al., 1998; Przegalinski et al. 2007; Pentkowski et al., 2009). Furthermore, 

using a progressive ratio reinforcement schedule, CP94253 has similar paradoxical 

effects whereby it enhances cocaine intake on the progressive ratio schedule before 

abstinence, but decreases intake after a period of abstinence (Pentkowski et al., 2014). 

These findings suggest that 5-HT1BR activation can increase or decrease the reinforcing 

value of cocaine, as well as the motivation for cocaine, depending on whether or not 

animals have experienced a period of abstinence.  

Pharmacological and knockout approaches suggest a facilitatory role for 5-

HT1BRs in the establishment of cocaine CPP in rats and mice (Belzung, Scearce-Levie, 

Barreau, & Hen, 2000; Cervo et al., 2002).  CP94253 potentiates cocaine CPP when a 

low dose of cocaine is used rats (Cervo et al., 2002).  5-HT1BR KO mice fail to show 

reliable cocaine CPP, suggesting that stimulation of 5-HT1BRs is needed to achieve 

cocaine reward (Belzung et al., 2000). However, cocaine CPP is not affected by 
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administering a 5-HT1BR antagonist, GR127935, prior to cocaine conditioning sessions in 

rats (Cervo et al., 2002). This discrepancy may either be due to a species-specific 

difference in 5-HT1BR modulation of cocaine reward, or to difference between acute 

pharmacological blockade and the genetic knockout of 5-HT1BRs which is long-term and 

may cause changes to compensate for the loss of the receptors. In rats with a virally 

mediated over-expression of 5-HT1BRs in projections from the nucleus accumbens to the 

VTA, there is an increase in cocaine self-administration, suggesting a facilitatory role for 

VTA 5-HT1BRs (Pentkowski, 2012). Over-expression of 5-HT1BRs in the NAc Shell 

(NAcS) also enhances cocaine-induced CPP (Barot, Ferguson, & Neumaier, 2007). 

Given the similarities in pharmacological action of cocaine and 

methamphetamine, subsequent studies in our lab examined effects of 5-HT1BR agonist 

administration on methamphetamine self-administration. Surprisingly, methamphetamine 

intake was attenuated with the administration of CP94253 both before and after 

abstinence (Garcia, Cotter, Leslie, Olive, & Neisewander, 2017), contrary to our 

observations with cocaine self-administration. Also, treatment with CP94253 did not alter 

spontaneous locomotion or inactive lever responses in these rats, thereby indicating that 

the reduction in lever pressing was not a result of motoric dysfunction (Garcia et al., 

2017). Other researchers have shown that 5-HT1BR agonists attenuate d-amphetamine 

intake without an abstinence phase, as well as responding for a conditioned reward 

(Fletcher & Korth, 1999; Fletcher, Azampanah, & Korth, 2002; Miszkiel, Adamczyk, 

Filip, & Przegalinski, 2012; Miszkiel & Przegalinski, 2013). Thus, we suggest that the 5-

HT1BR is a good target for developing therapeutics for cocaine and methamphetamine 

addiction due to its 1) location in the reward circuitry, 2) ability to modulate release of 
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multiple neurotransmitter systems, and 3) potential regulatory role in drug-seeking 

behaviors.  

Fos Protein Expression 

 C-fos is a proto-oncongene that is expressed in neurons following depolarization. 

It belongs to a family of early immediate gene (EIG) transcription factors that are 

activated by a broad range of extracellular stimuli and are induced rapidly and transiently.  

Due to these characteristics of the c-fos gene, its induction is considered an indicator of 

brain changes in gene expression. Indeed, transcription factors are proteins that control 

the rate of transcription of genetic information from DNA to messenger RNA. C-fos is 

induced by a variety of stimuli relevant to signal transduction within the nervous system, 

including growth factors (Fisch, Prywes, & Roeder, 1987; Rivera & Greenberg 1990), 

depolarization (Sheng, Dougan, McFadden, & Greenberg, 1988; Sheng, McFadden, & 

Greenberg, 1990; McFadden, & Greenberg, 1990), calcium entry (Fisch et al. 1987; 

Sheng et al., 1988), the cyclic AMP/protein kinase A pathway (Sassone-Corsi, Visvander, 

Ferland, Mellon, & Verma, 1988; Fisch, Prywes, Simon, & Roeder, 1989), the protein 

kinase C pathway (Fisch et al. 1987; Gilman 1988), and others. Because many IEGs are 

induced in the nervous system in response to neurotransmitters and other physiological 

stimuli, these genes may play an important role in the function of the nervous system (for 

review, see Sheng & Greenberg, 1990). Since C-fos is activated in response to neuronal 

activity, immunohistochemical detection of the C-fos protein product, Fos, is a widely 

used tool to map activation of cells in the nervous system in response to many stimuli, 

including drugs. 

  The family of fos proteins (i.e., C-fos, fos-b, jun proteins) has been implicated in 
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regulation of cell proliferation and differentiation. Drugs of abuse have been shown to 

alter many types of transcription factors in a variety of brain regions (O’Donovan, 

Tourtellotte, Millbrandt, & Baraban, 1999; Berke & Hyman, 2000; Nestler, Hyman, & 

Malenkam 2001a; Mackler, Homan, Korutla, Conti, & Blendy, 2003). Administration of 

psychostimulants and opioid drugs causes the rapid and transient induction of several fos 

and jun proteins in the NAc and caudate-putamen (CPu; Graybiel, Moratalla, & 

Robertson, 1990; Nestler, Barrot, & Self, 2001b; Young, Porrino, & Iadarola, 1991; for a 

review, see Harlan & Garcia, 1998). Fos protein expression is also altered in the PFC and 

VTA in response to cocaine and other psychostimulants (Fanous, Lacagnina, Nikulina, & 

Hammer, 2011; Kufahl et al., 2009; Mahler & Aston-Jones, 2012). Not only can IEGs 

serve as indicators of neuronal activity, but they are also thought to represent an 

important initial step in mediating drug experience-dependent plasticity (Hyman & 

Malenka, 2001; Nestler, 2001c). The NAc, together with dopaminergic neurons in the 

VTA that innervate the NAc, mediate psychological aspects of addiction, namely, drug 

reinforcement and craving, for opiates and many other drugs of abuse (Wise & Bozarth 

1987; Koob & Bloom, 1988; Clouet, Asghar, & Brown, 1988). Therefore, we can use Fos 

expression as a reliable marker to identify the brain regions involved in various aspects of 

addiction. In particular, we can examine brain region specificity in response to the drug 

itself, drug-related cues, abstinence from the drug, or reinstatement of drug-seeking 

behavior.  

Aims of this Dissertation Research 

This dissertation aimed to examine the role 5-HT1BRs play in regulating cocaine 

and methamphetamine abuse-related behavior in mice. Much of the research 
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investigating the pre- and post-abstinence effects of 5-HT1BR agonists has been 

conducted in rats. We were specifically interested in the 5-HT1BR agonist CP94253 in 

cocaine and methamphetamine induced behaviors. I initially hypothesized that CP94252 

would have a faciliatory effect on cocaine-induced locomotion prior to abstinence but 

would block cocaine-induced sensitization after abstinence, similar to the opposing 

effects of the drug on cocaine self-administration observed by our lab in rats. I tested this 

hypothesis by examining the effects of CP45953 on cocaine-induced locomotor activity 

after a daily cocaine injection regimen for 21 days in mice who were subsequently test 

after 1 and 21 days of abstinence after the last injection. Next, I investigated the effect of 

CP94253 on the reinstatement of cocaine-primed CPP in mice. I hypothesized that mice 

initially exhibiting a CPP and having undergone extinction would reinstate their CPP 

when given a cocaine-prime injection prior to the reinstatement test, and that CP94253 

would block that reinstatement. I then examined the effects of CP94253 both on the 

acquisition and expression of methamphetamine-CPP. I hypothesized that CP94253 

would block both the acquisition of methamphetamine-CPP and the expression of 

methamphetamine-CPP. However, only the latter effect was observed. Lastly, I examined 

the potential circuitry underlying the CP94253-induced attenuation of the expression of 

methamphetamine-CPP by examining 1) Fos protein expression in regions of the 

mesocorticolimbic pathways, and 2) the types of neurons affected by the CP94253 by co-

labelling for Fos with glutamic acid decarboxylase (GAD) in GABA neurons and 

tyrosine hydroxylase (TH) on DA neurons. I accomplished this by harvesting the brain 

after the methamphetamine expression test. Based on previous research, I predicted that 

mice expressing methamphetamine-CPP would have increased levels of Fos expression 
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in the NAcS, NAc Core (NAcC), VTA, basolateral amygdala (BLA), and prelimbic 

cortex (PrL). Lastly, as a control procedure I investigated the effect of acute CP94253 

and methamphetamine on unconditioned Fos in the same brain regions. 
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CHAPTER 2 

EFFECTS OF A 5-HT1B RECEPTOR AGONIST ON LOCOMOTION AND 

REINSTATEMENT OF COCAINE-CONDITIONED PLACE PREFERENCE 

AFTER ABSTINENCE FROM REPEATED INJECTIONS IN MICE  

Der-Ghazarian et al. (2017) Frontiers in Systems Neuroscience,11:73. 

Abstract 

5-HT1B receptors (5-HT1BRs) modulate behavioral effects of cocaine. Here we 

examined the effects of the 5-HT1BR agonist CP94253 on spontaneous and cocaine-

induced locomotion and on cocaine-primed reinstatement of conditioned place preference 

(CPP) in male mice given daily repeated injections of either saline or cocaine (15 mg/kg, 

IP) for 20 days. In the locomotor activity experiment, testing occurred both 1 and 20 days 

after the final injection. In the CPP experiment, mice underwent conditioning procedures 

while receiving the last of their daily injections, which were given either during or ≥2 h 

after CPP procedures. The CPP procedural timeline consisted of baseline preference 

testing (days 12-13 of the chronic regimen), conditioning (days 14-19, 2 daily 30-min 

sessions separated by 5 h), CPP test (day 21), extinction (days 22-34; no injections), CPP 

extinction test (day 35), and reinstatement test (day 36). Mice that had not extinguished 

received additional extinction sessions prior to reinstatement testing on day 42. On test 

days, mice were pretreated with either saline or CP94253 (10 mg/kg, IP). Testing began 

30 min later, immediately after mice were primed with either saline or cocaine (5 mg/kg 

for locomotion; 15 mg/kg for reinstatement).  We found that CP94253 increased 

spontaneous locomotion in mice receiving repeated injections of either saline or cocaine 

when tested 1 day after the last injection, but had no effect on spontaneous locomotion 
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after 20 days abstinence from repeated injections. Surprisingly, cocaine-induced 

locomotion was sensitized regardless of whether the mice had received repeated saline or 

cocaine. CP94253 attenuated expression of the sensitized locomotion after 20 days 

abstinence. A control experiment in noninjected, drug-naïve mice showed that CP94253 

had no effect on spontaneous or cocaine-induced locomotion. Mice reinstated cocaine-

CPP when given a cocaine prime, and CP94253 pretreatment attenuated the cocaine 

reinstatement. The findings suggest that stress from repeated saline injections and/or co-

housing with cocaine-injected mice may cross-sensitize with cocaine effects on 

locomotion and that CP94253 attenuates these effects, as well as reinstatement of 

cocaine-CPP. This study supports the idea that 5-HT1BR agonists may be useful anti-

cocaine medications. 

Introduction 

Serotonin plays a role in the reinforcing and incentive motivational effects of 

cocaine and cocaine-associated cues (Markou et al., 1993; Shaham et al., 2003). One 

mechanism involved in these effects is the action of serotonin at 5-HT1B receptors (5-

HT1BRs; Clark & Neumaier, 2001; Filip et al., 2010; Neisewander et al., 2014; Miszkiel 

et al., 2011). Parsons and colleagues discovered that 5-HT1BR agonists shift the cocaine 

self-administration (SA) dose-effect function to the left and increase responding on a PR 

schedule of cocaine reinforcement, suggesting enhanced reinforcing value of cocaine 

(Parsons et al., 1998). These 5-HT1BR agonist effects are reversed by a 5-HT1BR 

antagonist, demonstrating that they are 5-HT1BR-mediated.  Furthermore, the agonists do 

not alter sucrose or food reinforcement or locomotion at doses that enhance the 

reinforcing value of cocaine (Parsons et al., 1998; Przegalinski et al. 2007; Pentkowski et 
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al., 2009). Surprisingly, we found that both cue and cocaine-primed reinstatement of 

cocaine-seeking behaviors are attenuated by 5-HT1BR agonists (Acosta et al., 2005; 

Pentkowski et al., 2009). These seemingly paradoxical findings led us to discover that 5-

HT1BRs modulate cocaine-related behaviors in opposite directions depending on whether 

or not animals have undergone an abstinence period prior to testing (Pentkowski et al., 

2014). Specifically, either the agonist 5-propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-

pyrrolo[3,2-b]pyridine (CP94253) or viral overexpression of 5-HT1BRs tested during the 

maintenance of daily self-administration sessions increased the reinforcing value of 

cocaine, measured as a leftward shift of the cocaine self-administration dose-effect 

function on low ratio schedules of reinforcement and an increase in intake on a 

progressive ratio schedule (Pentkowski et al., 2012, 2014). In contrast, after a 21-day 

period of protracted abstinence, the agonist attenuated cocaine intake at the same low 

dose of cocaine (0.075 mg/kg, IV) for which CP94253 had enhanced intake prior to an 

abstinence period (Pentkowski et al., 2014) and attenuated intake on a progressive ratio 

schedule of cocaine reinforcement. These findings demonstrate opposite functional 

effects of 5-HT1BR agonists pre- versus post-abstinence from cocaine self-administration. 

5-HT1BRs also modulate spontaneous locomotion and cocaine-induced 

locomotion under some circumstances. Several studies have found that 5-HT1BR agonists 

stimulate locomotor activity in drug-naïve rats (Chaouloff et al., 1999; Geyer 1996; Koe 

et al., 1992; Macor et al., 1990; Oberlander et al., 1986; Oberlander et al., 1987), but have 

no effect on spontaneous locomotion in rats with a history of cocaine self-administration 

(Pentkowski et al., 2009; Przegalinski 2007). 5-HT1BR agonist effects on spontaneous 

locomotion may be specific to rats since the drugs have no effect in drug-naïve mice 
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(Bannai et al., 2007; Fish et al., 2008; Nasehi et al., 2017). However, in mice that had 

been stressed by repeated behavior testing, CP94253 increases locomotion (Tatarczynska 

et al., 2004; Tatarczynska et al., 2005). Additionally, the 5-HT1A/1BR agonist RU24969 

dose-dependently increases spontaneous locomotion in wild type mice, but not 5-HT1BR 

KO mice (Saudou et al., 1994). CP94253, as well as another 5-HT1BR agonist CP93129, 

have been shown to potentiate cocaine-induced locomotion and cocaine sensitization in 

rats (Filip et al., 2010; Przegalinski et al., 2001a; Przegaliński, Siwanowicz, Papla, & 

Filip, 2002; Przegalinski, Papla, Siwanowicz, & Filip, 2004). Collectively, these findings 

suggest that 5-HT1BR stimulation enhances locomotion in rodents given cocaine or with a 

history of stress. 

One goal of the present study was to examine whether the abstinence-induced 

“switch” in 5-HT1BR functional modulation of cocaine-related behaviors observed in rats 

previously is also observed in mice. To this end, we investigated whether CP94253 

produces opposing effects on spontaneous and cocaine-induced locomotion before and 

after an abstinence period in C57BL/6 male mice receiving daily injections of either 

saline or cocaine (15 mg/kg, IP) for 20 days. The second goal was to investigate whether 

the incentive motivational effects of a cocaine priming injection are attenuated by 5-

HT1BR agonist treatment in mice that had undergone abstinence, similar to the decrease 

in cocaine-primed reinstatement of cocaine-seeking behavior observed previously in rats 

(Pentkowski et al., 2012; Pentkowski et al., 2014). To this end, we investigated CP94253 

effects on cocaine-primed reinstatement of extinguished cocaine-conditioned place 

preference (CPP).  

Methods 
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Animals 

Male C57BL/6 mice arrived at 5 weeks old from Jackson Laboratories 

(Sacramento, CA) and were group housed 3-4/cage in a climate-controlled facility with a 

reversed 10 h light/14 h dark cycle (lights off at 6:00 AM). Mice were handled for 2 

weeks. For the CPP experiment only, mice were transferred to single housing 1 day prior 

to the start of behavior testing.  Food and water were provided ad libitum in the home 

cage. All behavioral testing occurred between 8 AM and 4 PM. Separate groups of 

experimentally naïve mice were used for each specific experiment.  All husbandry and 

procedures adhered to the Guide for the Care and Use of Laboratory Animals (2011), and 

all experimental procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee at Arizona State University. 

Drugs 

Cocaine hydrochloride (RTI International, Research Triangle Park, NC) and 

CP94253 (Tocris Bioscience, Minneapolis, MN) were dissolved in bacteriostatic saline.  

All drugs were injected at a volume of 1 ml/100 mg of body weight. The doses used had 

been previously reported to produce cocaine- (Rao, Sorkin, A., & Zahniser, 2013; 

Shuman, Cai, Sage, & Anagnostaras, 2012; Tilley et al., 2007) and CP94253-induced 

hyperlocomotion in mice injected 30 min before testing (Bannai et al., 2007; Fish et al., 

2008; Tatarczynska et al., 2004; Tatarczynska et al., 2005). 

Apparatus 

Locomotor activity tests were conducted in Plexiglas chambers, each measuring 

35×24×31 cm high. The chambers had corn cob bedding on an acrylic floor and 

alternating black and white stripes on the walls. CPP experiments were conducted in 
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Plexiglas two-compartment apparatus with each end compartment measuring 35×24×31 

cm high and with a removable partition separating them. One compartment had cedar 

bedding beneath a wire 1×1 cm grid floor and alternating black and white vertical stripes 

on the walls. The other compartment had pine bedding beneath a parallel bar floor (5 mm 

diameter) and alternating black and white horizontal stripes on the walls. In order to 

prevent the mice from escaping from the chambers while maintaining the ability to record 

their behavior via an overhanging video camera, a rectangular tower measuring 

70×24×74 cm high of clear Plexiglas was used as an extension of the apparatus. The 

testing room was dimly lit with two overhead lamps, each containing a 25 Watt light 

bulb. A camera (Panasonic WV-CP284, color CCTV, Suzhou, China) used to record 

testing sessions was mounted 101 cm above the center of each apparatus. A WinTV 350 

personal video recorder (Hauppage, NJ, USA) captured live video encoded into MPEG 

streams. A modified version of TopScan Software (Clever Sys., Inc. Reston, VA, USA) 

was used to track the animals’ movement. This program uses the orientation of an 

animal's body parts (e.g. nose, head, center of body, forepaws, base of tail, etc.) to 

identify the animal’s location and specified behaviors. 

Experiment 1: Effects of CP94253 on spontaneous and cocaine-induced locomotion 

before and after chronic daily injections of cocaine or saline 

The timeline for Experiment 1 is shown in Fig. 1A. Adult, male C57BL/6 mice 

(n=91) were housed 4/cage, with 2 mice in each cage assigned to receive saline and 2 

assigned to receive cocaine (15 mg/kg, IP) at the same time of day for 20 consecutive 

days. The mice were further assigned to receive two different pretreatments on the test 

days. The first pretreatment was either vehicle or CP94253 (10 mg/kg, IP) and the second 
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pretreatment was either a saline or cocaine (5 mg/kg, IP) challenge injection. Thus the 

design of this experiment was a 2 (chronic saline or cocaine) X 2 (vehicle or CP94253 

pretreatment) X 2 (saline or cocaine challenge) factorial with 8 treatment groups (n=8-

11/group). Test day 1 took place on the day after the last chronic injection. After test 1, 

the mice underwent a 20-day period of no injections during which they remained in the 

colony room and their tails were marked twice per week to maintain identification. Test 

day 2 took place the day after the final abstinence (i.e., no injection) day. On both of the 

test days, mice were first placed into the test chamber for 1 h to allow for habituation. 

Immediately following this baseline period, mice were injected with either vehicle or 

CP94253 and were returned to their home cage for 30 min. Next, mice received the saline 

or cocaine challenge injection and were returned to the test chamber for an additional 60 

min. We used a lower cocaine dose for the challenge (5 mg/kg) on test day than that used 

during the daily repeated administration (15 mg/kg). This was done in order to avoid 

potential ceiling effects for detecting sensitization of locomotion, a well-known effect of 

repeated cocaine administration (Ago, Nakamura, Baba, & Matsuda, 2008; DiRocco, 

Scheiner, Sindreu, Chan, & Storm, 2009; Luo et al., 2010; Riday, Kosofsky, & Malanga, 

2012; Robison et al., 2013; Thompson, Martini, & Whistler, 2010).  

Experiment 2: Effects of CP94253 on spontaneous and cocaine-induced locomotion 

in mice without the repeated injection regimen 

In order to assess potential injection stress effects, we repeated Experiment 1 

using identical procedures and timeline except that the 5 week old, male C57BL/6 mice 

(n=47) did not receive any injections during the first 20 days of the experiment.  Thus, 

the 4 mice/cage were simply handled twice a week to color-mark tails for identification 
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purposes and were otherwise left undisturbed to minimize stress. The design was a 2 

(vehicle or CP94253 pretreatment) X 2 (saline or cocaine challenge) factorial with 4 

treatment groups (n=11-12/group). Test day procedures were identical to Experiment 1. 

Experiment 3: Effects of CP94253 on reinstatement of extinguished cocaine-CPP   

The timeline for Experiment 3 is shown in Fig. 1B. Adult, male C57BL/6 mice 

received daily injections of cocaine (15 mg/kg, IP) or saline for 11 days in order to keep 

the same number of cocaine injections prior to testing for effects of CP94253 in this 

experiment as that given in the previous experiments. Also, the mice were housed 3/cage 

and all 3 mice/cage were assigned to the same chronic drug condition. On day 12 and 13 

the mice were allowed free access to both sides of the CPP apparatus for 15 min to 

habituate them to the novel environments and to assess initial compartment preference. 

The average of the time spent in the least preferred compartment on days 12 and 13 was 

used as the baseline preference measure. On both days 12 and 13, mice received their 

chronic daily injection (saline or cocaine) in their home cage 2-3 hours after the 

preference test. On days 14-19, the mice underwent 2 daily 30-min conditioning sessions 

separated by a 5-hour period. During the morning session, mice were injected with saline 

and were placed into their initially preferred side and during the afternoon session mice 

were injected with cocaine (15 mg/kg, IP) or saline and were placed into their initially 

non-preferred side. On day 20, mice were not exposed to the apparatus, but did receive 

either saline or cocaine (15 mg/kg, IP) at the same time of day as all previous injections. 

On day 21, mice were tested for the expression of cocaine CPP for 15 min. Only 80% of 

the mice met the CPP expression criterion (spent >450 seconds in initially non-preferred 

compartment) and continued in the experiment. These mice next underwent extinction 
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training on Days 22-34. During extinction, the mice received one 30-min exposure to one 

of the compartments each day, with the particular compartment alternating across the 

days. On day 35, mice were tested for 15 min to demonstrate that their CPP had 

extinguished. Mice that extinguished were tested for reinstatement of CPP the following 

day (day 36). On test day, mice received either saline or CP94253 (10 mg/kg, IP) 30 min 

prior to the test. Immediately before the test, the mice were primed with either saline or 

cocaine (15 mg/kg, IP). Mice that did not initially extinguish received 4 more days of 

extinction with 2, 30-min sessions per day, one in each compartment. They again 

received a 15-min preference test to demonstrate that their CPP had extinguished. Mice 

that extinguished were tested for reinstatement of CPP the following day. Mice that failed 

to extinguish were removed from the study. The design of the study was a 2 (vehicle or 

CP94253 pretreatment) X 2 (saline or cocaine challenge) factorial with 4 treatment 

groups (n=9-11/group).  Additionally, a group of mice (n=14) were treated chronically 

with saline, conditioned with saline during both daily sessions, extinction-trained, and 

given a saline prime prior to testing (i.e., saline control group).  

Statistics 

Drug-induced changes in distance travelled (meters) were analyzed and graphed 

for the first 30 min of each testing session. Analyzing only 30 min of the testing session 

was done because cocaine is rapidly metabolized in mice (Rao et al., 2013; Tilley et al., 

2007) and the difference from baseline calculation controlled for individual differences in 

baseline activity. The change in distance traveled measures were analyzed by mixed 

factor ANOVAs with the following between group variables: Chronic treatment with 

cocaine or saline (Experiment 1 only); Pretreatment with CP92453 or vehicle; Challenge 



 28

with cocaine or saline prior to test. The ANOVAs also included Test day as a within 

subjects repeated measure. Interactions were further analyzed by smaller ANOVAs and t-

test with Bonferroni correction for multiple comparisons where appropriate. In addition, 

planned comparisons were conducted to test our hypothesis that CP94253 would enhance 

spontaneous locomotion and cocaine-induced locomotion pre-abstinence, but would have 

the opposite effect post-abstinence. Mice whose distance travelled score was more than 

±2 standard deviation from the mean were deemed outliers and removed from all 

analysis. For CPP, time spent in the initially non-preferred side was analyzed by ANOVA 

with test days as a repeated measures. The test days included the baseline preference test, 

the CPP test (occurred after six daily pairings with cocaine), and the extinction test 

(occurred after 18-22 sessions of extinction). This analysis was a manipulation check to 

demonstrate that cocaine-conditioned rats exhibited CPP and extinction of CPP. To 

analyze cocaine-primed reinstatement of CPP, time spent in the initially non-preferred 

compartment of the apparatus (drug-paired compartment) was analyzed by a 2 

(Pretreatment: CP94253 and vehicle) X 2 (Priming injection: Cocaine and saline) 

AVOVA. Interactions were analyzed by smaller ANOVAs and Tukey post-hoc tests.   

Results 

Experiment 1: Effects of CP94253 on spontaneous and cocaine-induced locomotion 

before and after chronic daily injections of cocaine or saline 

We first tested the hypothesis that mice given chronic cocaine treatment would 

exhibit a “switch” in 5-HT1BR agonist effects from facilitation of cocaine-induced 

locomotion during the treatment phase to inhibition of cocaine-induced locomotion after 

a period of abstinence from chronic cocaine. Surprisingly, the chronic saline group 
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behaved similarly to the chronic cocaine group (Fig. 2, panels A and B) and the analysis 

confirmed that there was no main effect  nor interactions with chronic treatment (i.e., 

chronic saline vs. cocaine). Therefore, subsequent analyses were conducted with the data 

are averaged across chronic condition as shown in Fig. 3A. This analysis revealed a main 

effect of Challenge, where the cocaine challenge increased locomotion compared to the 

saline challenge when averaged across pretreatment with Vehicle or CP94253 

[F(1,87)=62.28, p<0.001]. However, there was also a Challenge by Day interaction 

[F(1,87)=15.47, p<0.001] as shown in Fig. 3B. Subsequent pairwise comparisons with 

Bonferroni correction indicated that cocaine-challenged mice showed no difference in 

locomotion across test days, whereas saline challenged mice showed a decrease in 

locomotion after abstinence compared to before abstinence [t(43)=5.8, p<0.001].  There 

was also a Pretreatment by Day interaction [F(1,87)=32.83, p<0.001] as shown in Fig. 

3C. Subsequent pairwise comparisons indicated that mice pretreated with vehicle showed 

no difference in locomotion across test days, whereas mice pretreated with CP94253 

showed less locomotion after abstinence compared to before abstinence [Bonferroni t-

test, t(44)=5.8, p<0.001]. In addition to the ANOVAs, planned comparisons were 

conducted to test the hypothesis that CP94253 pretreatment would facilitate spontaneous 

and cocaine-induced locomotion before abstinence but inhibit these behaviors after 

abstinence. The results of these comparisons indicated that there was a significant 

increase in spontaneous locomotion after the CP94253 pretreatment compared to vehicle 

pretreatment in mice challenged with saline before abstinence from repeated injections 

[t(42)=3.0, p<0.01, Fig. 3A]. In mice challenged with cocaine, there was no difference in 

cocaine-induced locomotion between vehicle- and CP94253-pretreated mice before 
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abstinence, but the CP94253-pretreated mice showed less cocaine-induced locomotion 

than vehicle-pretreated mice after abstinence [t(45)=3.6, p<0.05, Fig. 3A]. 

Experiment 2: CP94253 has no effect in mice that have not undergone a repeated 

injection regimen 

The finding that chronic cocaine versus chronic saline treatment did not show 

differences in locomotion in the previous experiment was puzzling. We reasoned that 

stress experienced by the saline control group may have cross-sensitized the mice to 

cocaine such that both groups (i.e., chronic cocaine and chronic saline) showed sensitized 

responses to cocaine (Sorg 1992). Indeed, the control mice experienced repeated 

injections and were housed with cocaine-treated mice, and both of these manipulations 

are chronic stressors in mice (Hoplight, Vincow, & Neumaier, 2007; Ryabinin, Wang, & 

Finn, 1999). Another concern was that rather than CP94253 having opposite effects on 

cocaine-induced locomotion before and after abstinence from repeated injections, perhaps 

the agonist simply has opposite effects the first time it is given compared to the second 

time it is given. We examined these possibilities in this experiment. Naïve, non-injected 

mice arrived at the same age as in the previous experiment and were housed for 20 days 

during which they were handled twice weekly to color-mark tails for identification 

purposes and were otherwise left undisturbed. As expected, cocaine increased locomotion 

to a similar degree on the first (day 21) and second (day 42) test days as there was a main 

effect of Challenge [F(1,43)=15.15, p<0.001], but no interactions with Pretreatment or 

Day. In contrast to the effects of CP94253 observed in the repeatedly injected saline 

controls (Fig. 2A), CP94253 had no effects on locomotion in injection-naive mice (Fig. 

4). This finding suggests that the saline injections in mice from the previous experiment 
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did indeed produce stress that affected spontaneous and cocaine-induced locomotor 

activity in a 5-HT1BR-sensitive manner.  

Experiment 3: CP94253 prevents cocaine-primed reinstatement of extinguished 

cocaine CPP 

Approximately 40% of the mice preferred the side of the apparatus with 

horizontal stripes and ~60% preferred the side with vertical stripes, confirming the use of 

an unbiased apparatus. A repeated measures analysis across the baseline, CPP, and 

extinction tests showed a significant day by conditioning treatment interaction [F(2, 

106)=13.23, p<0.001; Fig. 5A]. Subsequent analyses comparing saline to cocaine 

conditioned groups on each test day showed a group difference on the CPP test day but 

no difference during baseline or extinction [Bonferroni t-test t(51)=3.98 , p<0.001]. 

These results indicate that cocaine conditioning produced CPP that was abolished by 

extinction training. In the cocaine conditioned groups, a 2 X 2 ANOVA of time spent in 

the drug-paired side during the reinstatement test revealed a significant Pre-treatment X 

Priming injection interaction [F(1,35)=4.26, p<0.05; Fig. 5B]. Subsequent post hoc 

analyses indicated that the cocaine-primed, saline-pretreated group showed significantly 

greater CPP than all other groups (Tukey tests, p<0.05). In addition comparisons of each 

group to its extinction baseline indicated that only the cocaine-primed group showed a 

significant increase in time spent in the drug-paired side relative to extinction baseline 

[t(10)=4.1, p<0.005]. Finally, the cocaine-primed, saline-pretreated group also showed a 

significantly greater amount of time spent in the drug-paired side relative to the saline 

controls [t(23)=2.4, p<0.05]. These results suggest that CP94253 attenuated cocaine-

primed reinstatement of cocaine CPP.  
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Discussion 

This study yielded partial support for our hypothesis that mice would show a 

similar abstinence-dependent change in 5-HT1BR modulation of cocaine effects as 

observed previously in rats (Pentkowski et al., 2009; Pentkowski et al., 2012; Pentkowski 

et al., 2014). We predicted that the 5-HT1BR agonist CP94253 would facilitate cocaine-

induced locomotion in mice given repeated daily injections of cocaine, but would inhibit 

this behavior after a 20-day period of abstinence, similar to the “switch” in 5-HT1BR 

agonist effects observed in rats before and after abstinence from cocaine self-

administration. Surprisingly, we found that CP94253 effects on locomotion were the 

same regardless of whether or not the mice received repeated injections of saline or 

cocaine (Fig. 2A and 2B). We then conducted further analyses without the chronic 

treatment as a factor (Fig. 3A). We found that acute administration of CP94253 initially 

increased spontaneous locomotion in mice tested on the 21st day of their chronic 

injections as predicted; however, the agonist did not alter spontaneous locomotion after a 

21-day abstinence phase. Also, the effects of the agonist on cocaine-induced locomotion 

only partially supported our predictions because CP94253 failed to alter this behavior 

initially, but did reverse the cocaine-sensitized hyperlocomotion observed after 20 days 

abstinence from daily repeated injections. Overall, the results are generally consistent 

with previous findings in rats of a facilitatory effect on cocaine-induced behavior prior to 

abstinence and an inhibitory effect after a prolonged period of abstinence. 

We had expected that the chronic repeated cocaine injections would sensitize 

mice to the cocaine challenge given on the first test day and that this effect would be 

evident as greater locomotor activity in the chronic cocaine-injected group relative to the 
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chronic saline-injected control group. Because there was no difference between these 

groups, we speculated that our chronic repeated saline injections may have stressed the 

mice in the experiment resulting in stress-induced cross-sensitization. Previous research 

has demonstrated cross-sensitization between repeated stress and repeated cocaine 

injections in both rats and mice (Boyson et al., 2014; Kikusui, Faccidomo, & Miczek, 

2005; Maeda et al, 2006; Prasad, Sorg, Ulibarri, & Kalivas, 1995; Sorg 1992), and 

repeated injections are stressful in both mice and rats (Ferguson, Sandygren, & 

Neumaier, 2009; Ryabinin et al., 1999). Another possible stressor was that the control 

mice were cohoused with the cocaine-treated mice, which may have resulted in chronic 

social stress. Although we did not notice overt signs of stress such as aggression, 

Hoplight and colleagues (2007) have previously shown that saline-injected rats pair 

housed with cocaine-injected rats have altered 5HT1BR profiles similar to that of cocaine 

treated rats, but not those housed with saline treated rats. To test this stress cross-

sensitization hypothesis, we examined spontaneous and cocaine-induced locomotion in 

mice that were group housed and left undisturbed for 20 days except for tail-marking 

twice/week. In these control mice, the second cocaine challenge failed to sensitize 

locomotion in contrast to the sensitized locomotion observed in mice were co-housed 

with cocaine-injected mice and given chronic saline injections. Furthermore, CP94253 

failed to alter either spontaneous or cocaine-induced locomotion on either test day in the 

noninjected control mice. It is important to note that these control mice were tested on 

two separate occasions after receiving CP94253 pretreatment, mitigating the idea that 

CP94253 may simply produce different effects the first versus second time it is given. 

The different pattern of behavior across the chronic saline-injected and noninjected mice, 
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coupled with the similar pattern of behavior in the chronic cocaine-injected and chronic 

saline-injected mice, support the interpretation that stress from repeated injection and 

living with cocaine-injected mice cross-sensitized the mice to cocaine. CP94253 reversed 

expression of the sensitized locomotion after a period of abstinence. Although the neural 

mechanism underlying the stress cross-sensitization effects will require further 

investigation, one likely pathway contributing to these effects is the 5-HT1BR-expressing 

medium spiny neurons projecting from nucleus accumbens (NAc) shell to the VTA. 

Previous research has shown that 5-HT1BR located on GABAergic projection neurons 

from the nucleus accumbens (NAc) shell to the VTA may mediate stress cross-

sensitization with psychostimulant drugs (Furay, McDevitt, Klaus, Miczek, & Neumaier, 

2011; Nair, Furay, Liu, & Neumaier, 2013; Miczek, Nikulina, Shimamoto, & Covington, 

2011).  

Although we had predicted that CP94253 would attenuate cocaine-sensitized 

locomotion after a period of abstinence, a previous study by Przegalinski and colleagues 

(2001b) showed that while CP94253 dose-dependently enhances hyperlocomotion 

produced by acute amphetamine administration in mice, it does not affect amphetamine 

sensitization. The present findings seem discrepant with those of Przegalinski and 

colleagues (2001b) however, we suggest that CP94253 may differentially alter 

locomotion induced by cocaine versus amphetamines based on recent work from our 

laboratory demonstrating a different pattern of changes in cocaine versus 

methamphetamine self-administration. Unlike the enhancement of cocaine self-

administration prior to abstinence (Pentkowski et al., 2009; Pentkowski et al., 2012), 

CP94253 reduces methamphetamine self-administration both before and after abstinence 
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(Garcia et al., 2017).  

 As we had predicted, CP94253 attenuated the cocaine-primed reinstatement of 

extinguished cocaine-CPP in mice that had a history of chronic cocaine administration 

followed by protracted abstinence prior to testing. Neither CP94253 pretreatment alone 

nor a saline prime prior to reinstatement testing altered preference. These control data 

suggest that reinstatement was specific to cocaine priming and that CP94253 specifically 

reversed the cocaine priming effect rather than nonspecifically altering preference. The 

findings are consistent with previous research suggesting that 5-HT1BR agonists attenuate 

incentive motivational effects of cocaine priming injections in the operant 

extinction/reinstatement model (Pentkowski et al., 2014; Przegalinski et al., 2002; 

Przegalinski et al., 2007). Collectively, the studies suggest that 5-HT1BRs modulate the 

incentive motivational effects of a cocaine prime in both rats and mice (Fletcher et al., 

2002; Parsons et al,. 1998; Pentkowski et al., 2012; Pentkowski et al., 2014).  

 Demonstrating effects of 5-HT1BR agonists on psychostimulant-induced and 

conditioned behaviors in mice is important because transgenic mice are a valuable tool 

for investigating the neural mechanisms of these behaviors. A leading hypothesis for the 

effects of the agonists on cocaine-induced behaviors suggests that 5-HT1BRs inhibit either 

GABAergic interneurons in the VTA or GABAergic medium spiny neurons projecting 

from the NAc to VTA, and this action disinhibits DA neurons (Barot et al., 2007; 

Hoplight et al., 2007; Neumaier et al., 2002; O’Dell &Parsons, 2004; Parsons, Koob, & 

Weiss, 1999; Yan & Yan, 2001). For instance, a microdialysis study suggests that 

stimulating 5-HT1BRs in the VTA inhibits GABA release from the neurons that tonically 

inhibit mesolimbic DA neurons. This leads to disinhibition of the mesolimbic DA 
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neurons, increasing dopaminergic transmission in the NAc (O’Dell & Parsons, 2004). 

Because viral-mediated overexpression of 5-HT1BRs in this pathway attenuates cocaine 

intake after abstinence (Pentkowski et al., 2012), it is likely that cocaine abstinence 

causes adaptations within the 5-HT1BR→GABAR→DA circuit in the VTA, which may 

underlie the inhibitory effects of 5-HT1BR agonists on cocaine-induced behaviors that are 

observed following protracted abstinence. Transgenic mice may be useful in elucidating 

the neural circuitry involved in 5-HT1BR agonists effects on cocaine-induced behavior. 

 In conclusion, this study demonstrates that a 5-HT1BR agonist reverses expression 

of cocaine sensitization and blocks cocaine-primed reinstatement of cocaine-CPP in 

mice. These findings offer further support for the idea that serotonin inhibits incentive 

motivational effects of cocaine through an action at 5-HT1BRs. Furthermore, this research 

suggests that 5-HT1BRs may be a useful target for developing medications for cocaine use 

disorders and that mice are a useful model for screening the potential anti-cocaine 

therapeutic effects of 5-HT1BR agonists, as well as for investigating the neural 

mechanisms involved 5-HT1BR-mediated inhibition of the incentive motivational effects 

of cocaine.  
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CHAPTER 3 

5-HT1B RECEPTOR AGONIST ATTENUATES EXPRESSION OF 

METHAMPHETAMINE-CONDITIONED PLACE PREFERENCE AND 

REVERSES FOS EXPRESSION CHANGES IN MALE MICE  

Abstract 

We investigated whether 5-HT1B receptors (5-HT1BRs) modulate 

methamphetamine (METH) reward and/or incentive motivation by measuring the effect 

of the 5-HT1BR agonist CP94253 on the acquisition and expression, respectively, of 

methamphetamine conditioned place preference (CPP) in C57BL/6 male mice. In the 

acquisition experiment, mice were pretreated with CP94253 (10 mg/kg, IP) 30 min before 

receiving methamphetamine (3 mg/kg, IP) during the conditioning procedure. For the 

expression experiment, rats that had acquired methamphetamine-CPP were given either 

saline or CP94253 (10 mg/kg, IP) 30 min prior to a test for CPP expression. We found 

that CP94253 attenuated the expression of methamphetamine-CPP, but had no effect on 

acquisition. We harvested the brains 75 min after the test for expression of 

methamphetamine-CPP in order to examine changes in expression of Fos protein as a 

marker of transcriptional activity resulting from expression of methamphetamine-CPP. 

We found that mice expressing methamphetamine-CPP had elevated Fos in the ventral 

tegmental area (VTA) and basolateral amygdala (BlA) and reduced Fos in the central 

amygdala (CeA) compared to saline controls. CP94253 given before the expression test, 

but not acutely in drug-naive mice, enhanced Fos expression in the VTA, nucleus 

accumbens (NAc) shell and core, and the dorsomedial caudate-putamen, and reversed the 

methamphetamine-conditioned changes in Fos in the CeA and BlA. Approximately 50-
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70% of the Fos in the NAc and VTA was expressed in GABA neurons regardless of 

group. By contrast, there was no Fos expressed in dopamine neurons in the VTA.  The 

findings suggest that CP94253 attenuates motivational effects of methamphetamine-

associated environment and highlight the amygdala, VTA, and NAc as potential regions 

involved in this effect. 

Introduction 

 Addiction to psychostimulants (i.e., methamphetamine, amphetamine, cocaine) 

remains a prevalent problem worldwide (NIDA, 2018) and yet there is no effective 

pharmacological intervention for this disorder. Methamphetamine binds to, and reverses, 

the dopamine (DA), serotonin (5-HT), epinephrine, and norepinephrine reuptake 

transporters, causing an increase in synaptic levels of these neurotransmitters (Elliott & 

Beveridge, 2005; Sulzer et al., 1995; Sager & Torres, 2011; Panenka et al., 2013). While 

most research on psychostimulants has focused on the role of dopamine in the 

mesolimbic pathway, serotonin also plays a role in both cocaine and methamphetamine 

addictive behaviors (for review, see Müller & Homberg, 2015 & Pierce & Kumaresan, 

2006), as well as in modulating mesolimbic dopamine neurons (Alex & Pehek, 2007; 

Van Bockstaele, Cestari, &. Pickel, 1994). One 5-HT receptor subtype found in the 

ventral tegmental area (VTA) that is known to modulate DA neurons is the 5-HT1B 

receptor (5-HT1BR; O’Dell & Parson, 2004; Yan et al., 2004). 5-HT1BRs are widely 

distributed in the brain (Bruinvels, Palacios, & Hoyer, 1993, Bruinvels et al., 1994; 

Varnas, Hurd, & Hall, 2005; Clark, McDevitt, & Neumaier, 2006), including in 

mesolimbic dopamine neurons, which possess both the transcript and protein for 5-

HT1BRs (Bruinvels et al., 1993; Pazos & Palacios, 1985), placing these receptors in the 
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hallmark addiction-reward pathway. Additionally, single nucleotide polymorphisms 

(SNPs) in the human 5-HT1BR gene have been shown to be associated with alcohol, 

cocaine and heroin abuse (Cao, LaRocque, & Li, 2013), aggressive behavior (Hakulinen 

et al., 2013) attention-deficit/hyperactivity disorder (Smoller et al., 2006) as well as 

responses to stress and anti-depressants (Mekli et al., 2011; Perroud et al., 2011; Xu et 

al., 2012). 

5-HT1BR agonists facilitate cocaine self-administration in tests occurring during 

daily access (Parsons et al., 1998); however, following a 21-day period of forced 

abstinence (post-abstinence), 5-HT1BR agonists decrease cocaine intake (Pentkowski et 

al., 2009; Pentkowski et al., 2014) and attenuate cocaine-seeking behavior in tests of both 

cue-induced and cocaine-primed reinstatement occurring after a few weeks of extinction 

training during which the rats were abstinent (Acosta, Boynton, Kirschner, & 

Neisewander, 2005; Pentkowski et al., 2009). Furthermore, following a 21-day period of 

extinction in a cocaine conditioned place preference (CPP) paradigm, CP94253 blocks 

cocaine-primed reinstatement of extinguished CPP (Der-Ghazarian et al., 2017). These 

results suggest that pre-abstinence administration of 5-HT1BR agonists facilitates the 

reinforcing properties of cocaine while post-abstinence 5-HT1BR agonists attenuate the 

effects (Przegaliński, Gołda, & Filip, 2008).  

In contrast to the effects of CP94253 observed with cocaine, we found that this 5-

HT1BR agonist attenuates methamphetamine self-administration regardless of whether 

rats undergo abstinence (Garcia et al., 2017). These findings build on previous research 

showing similar effects of 5-HT1BR agonists on d-amphetamine self-administration 

(Fletcher & Korth, 1999; Fletcher et al., 2002; Miszkiel et al., 2012; Miszkiel & 
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Przegalinski, 2013). Additionally, previous research from our lab and others have shown 

that CP94253 has no effect on sucrose or food reinforcement (Pentkowski et al., 2009; 

Przegaliński et al., 2007).  Collectively, the findings suggest that 5-HT1BR agonists 

attenuate intake of amphetamines, without the requirement of abstinence or extinction 

training. 

Cocaine-induced increases in DA mediate the reward learning and habitual 

behavior that are involved in the development of addiction (Brown et al., 1992; Bunney 

& Aghajanian 1978; Di Chiara 1998; Grimm et al., 2001; Pettit & Justice 1991; Volkow 

and Morales 2015). These processes, respectively, involve the mesocorticolimbic DA 

pathways that originate in the VTA and project to the nucleus accumbens (NAc), 

prefrontal cortex (PFC), amygdala, and hippocampus (Feltenstein & See, 2008; Pierce & 

Kumaresan, 2006) and the nigrostriatal DA pathway that originates in the substantia nigra 

pars compacta and projects to the caudate and putamen (CPu; Wise 2009). 5-HT also 

plays a complex role in the reinforcing and motivational effects of cocaine and 

amphetamines (Almalki, Das, Alshehri, Althobaiti, & Sari, 2018; Koe 1976; McFadden, 

Cordie, Livermont, & Johansen; Woolverton & Johnson 1992; for review, see 

Cunningham, Bradberry, Chang, & Reith, 1996), which may in part involve modulation 

of DA mesocorticolimbic and nigrostriatal pathways given that 5-HT neurons originating 

in the dorsal raphe nucleus project to the substania nigra (SN), CPu, NAc, and VTA 

(Anden, Dahlstrom, Fuxe, & Larsson, 1965; Fuxe & Ungerstedt, 1968; Hillarp, Fuxe, & 

Dahlstrom, 1966; Vertes, 1991). 

 5-HT1BRs exert an inhibitory effect on neuronal activity via negative coupling 

with adenylate cyclase, which in turn typically decreases neurotransmitter release (Sari, 
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2004).  The 5-HT1BRs act either as autoreceptors on 5-HT terminals (Hjorth & Tao, 1991; 

Sharp, Bramwell, & Grahame-Smith, 1989) or as heteroreceptors on terminals of non-5-

HTergic cells (i.e., DA, glutamate, or GABA; Sarhan, Cloez-Tayarani, Massot, Fillion, & 

Fillion, 1999; Boeijinga & Boddeke, 1996; Chadha, Sur, Atack, & Duty, 2000). Within 

the VTA, and 5-HT1BRs act as autoreceptors on 5-HT neuron terminals, as well as 

heteroreceptors that modulate extracellular GABA and DA in this region (O’Dell & 

Parson, 2004; Yan et al., 2004). For instance, 5-HT1BR agonist infusion into the VTA or 

viral overexpression of 5-HT1BRs inhibits VTA GABA release, and as a result DA 

neurons in this region are thought to be disinhibited (Nair et al., 2013; O'Dell & Parsons, 

2004; Yan et al., 2004). Consistent with this idea, intra-VTA 5-HT1BR agonist infusion 

increases DA release in the NAc (O'Dell & Parsons, 2004) enhances the development of 

cocaine sensitization (Przegalinski et al., 2004), and enhances amphetamine-induced 

hyperlocomotor activity (Papla et al., 2002). 

Previous pharmacological and lesion studies have identified several brain regions 

that play a role in drug-seeking behavior. This brain circuitry involves the basolateral 

amygdala (BlA; Fuchs et al., 2002, 2005; McLaughlin & See, 2003; Di Ciano & Everitt, 

2004) and the central nucleus of the amygdala (CeA; Kruzich & See, 2001; Neisewander 

et al., 2000), the core of the NAc (NAcC; Di Ciano & Everitt, 2004; Fuchs, Evans, 

Parker, &  See, 2004; Ito, , Robbins, & Everitt, 2004; Kalivas & O’Brien, 2008), the shell 

of the NAc (Alderson, Parkinson, Robbins, & Everitt, 2001; Bossert, Gray, Lu, & 

Shaham, 2006; Bossert, Poles, Wihbey, Koya, & Shaham, 2007), dorsolateral CPu 

(Fuchs, Branham, & See, 2006), the hippocampus (Fuchs et al., 2005), the dorsomedial 

PFC (McLaughlin and See, 2003; Fuchs et al., 2005), and the VTA (McFarland & 
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Kalivas, 2001; Neisewander et al., 2000)[for review, see Koob & Volkow, 2010]. Using 

Fos immunoreactivity as a marker of transcriptional activity, similar regions are involved 

in the methamphetamine-CPP. Mice expressing methamphetamine-CPP exhibit increases 

in Fos in the medial PFC (mPFC) and NAcC, but not in the NAc shell (NAcS), 

dorsomedial CPu (dmCPu), or BlA (Chiang et al., 2009). Similarly, rats exhibiting 

methamphetamine-CPP show increased Fos in the CPu (Liu et al., 2014). Cocaine CPP 

experiments have also shown an increase of Fos in the NAcC, prelimbic (PrL), and BlA, 

but not infralimbic (IL), CeA, CPu in rats expressing cocaine CPP (Miller & Marshall, 

2004; Miller & Marshall, 2005a; Miller & Marshall, 2005b).  

 The brain regions identified using Fos as a marker of brain activity associated 

with expression of psychostimulant CPP form a neural circuit.  For instance, the PrL 

projects to the BlA (Gabbott, Dickie, Vaid, Headlam, & Bacon, 1997; Gabbot, Warner, 

Jays, Salway, & Busby, 2005; Vertes 2004) whereas the IL contributes the majority of 

PFC inputs to the CeA (Hurley, Herbert, Moga, & Saper, 1991; Sesack & Bunney 1989). 

The PrL and BlA are reciprocally connected and both project to the NAcC 

(Groenewegen,1988; Groenewegen, Berendse, Wolters, & Lohman, 1990; Maurice, 

Deniau, Glowinski, & Thierry, 1998). Glutamatergic neurons in the IL projects to the 

NAcS while those in the PrL project to the NAcC (Phillipson & Griffiths, 1985; Sesack 

& Grace, 2010; Yager, Garcia, Wunsch, & Ferguson, 2015). Additionally, BlA projects 

to the NAc (French & Totterdell, 2003; Yu et al., 2017) and receives input from the VTA 

(Stevenson & Gratton, 2003). Dopaminergic neurons in the VTA innervate the NAcC, 

NAcS, amygdala, hippocampus, mPFC and ventral pallidum (Carr & Sesack, 1999; 

Kalivas & Nakamura, 1999; Napier & Maslowski-Cobuzzi, 1994; Stevenson & Gratton, 
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2003; Sesack, Carr, Omelchenko, & Pinto, 2003; Wise, 2002; Yager et al., 2015). 

Moreover, the NAcS projects to the VTA (Heimer, Zahm, Churchill, Kalivas, & 

Wohltmann, 1991). Lastly, the VTA receives projections from the mPFC (Heimer et al., 

1997), the dorsal CPu (Watabe-Uchida et al., 2012), and indirectly from the CeA 

(Geisler, Derst, Veh, & Zahm, 2007; Robbins & Everitt, 2002; for diagram see Fig. 6). 

 The purpose of this study was to examine the role of 5-HT1BRs within the 

circuitry implicated in methamphetamine reward and incentive motivation using the CPP 

model in mice. First, we examined effects of CP94253 pretreatment on the acquisition 

methamphetamine-CPP by administering the agonist prior to each methamphetamine 

amphetamine conditioning session.  Second, we examined the effects of CP94253 on the 

expression of methamphetamine-CPP by administering the agonist prior to the expression 

test day. Third, to examine brain regions involved in CP94253 effects on incentive 

motivation for methamphetamine elicited by methamphetamine-paired cues, we 

examined the effects of CP94253 on Fos protein expression in the VTA, regions of the 

mPFC, amygdala and NAc, the dmCPu, as well as other interconnected regions. Fourth, 

we further examined the phenotype of Fos-expressing cells by co-labeling with GAD67 

for GABA neurons or TH for DA neurons depending on the brain region. Lastly, as a 

control procedure we injected a naive group of mice with CP94253 and/or 

methamphetamine to investigate the effect of the drugs on unconditioned Fos protein 

expression. 

Methods 

Animals 

Male c57BL/6J mice were obtained from Jackson Laboratories (Sacramento, CA) 
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and were group housed in a climate-controlled facility with a reversed 10 h light/14 h 

dark cycle (lights off at 6:00 AM). Mice were handled approximately 1 min/day each of 

10 days. Mice in the CPP experiments (n=102; 4 weeks old) were then transferred to 

single housing so that they would be living alone during CPP procedures, which began 

the following day. Mice in the control immunohistochemistry experiments (n=30; 6 week 

old) were group housed and handled daily for at least 10 days prior to harvesting their 

tissue after acute drug administration as described below. Mice had food and water 

available ad libitum throughout the experiments. All behavioral testing occurred between 

8 AM and 4 PM and conditioning procedures took place at the same time of day for a 

given mouse. Separate groups of mice were used for each specific experiment and were 

naïve to all experimental manipulations.  All husbandry and procedures adhered to the 

Guide for the Care and Use of Laboratory Animals (2011), and all experimental 

procedures were reviewed and approved by the Institutional Animal Care and Use 

Committee at Arizona State University. 

Drugs 

Methamphetamine hydrochloride (RTI International, Research Triangle Park, 

NC) and CP94253 (Tocris Bioscience, Minneapolis, MN) were dissolved in saline.  All 

drugs were injected at a volume of 1 ml/100 mg of body weight. We chose doses of 

methamphetamine that produce CPP in mice according to previous research (Li et al., 

2014; Liao et al., 2016; Sun et al., 2016). The dose of CP94253 and the interval between 

administration for  conditioning/testing (30 min) were selected based on previous studies 

reporting effects on locomotor activity, as well as other behavioral tasks (Bannai et al., 
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2007; Der-Ghazarian et al., 2017; Fish et al., 2008; Tatarczynska et al., 2004; 

Tatarczynska et al., 2005). 

Apparatus 

CPP experiments were conducted in Plexiglas two-compartment apparatus with 

each end compartment measuring 35×24×31 cm high and with a removable partition 

separating them. One compartment had wood chips beneath a wire 1×1 cm grid floor and 

alternating black and white vertical stripes on the walls. The other compartment had pine 

bedding beneath a parallel bar floor (5 mm diameter) and alternating black and white 

horizontal stripes on the walls. In order to prevent the mice from escaping from the 

chambers while maintaining the ability to record their behavior via an overhanging video 

camera, a rectangular tower measuring 70×24×74 cm high of clear Plexiglas was used as 

an extension of the apparatus. The testing room was dimly lit with two overhead lamps, 

each containing a 25 Watt light bulb. A camera (Panasonic WV-CP284, color CCTV, 

Suzhou, China) used to record testing sessions was mounted 101 cm above the center of 

each apparatus. A WinTV 350 personal video recorder (Hauppage, NJ, USA) captured 

live video encoded into MPEG streams. A modified version of TopScan Software (Clever 

Sys., Inc. Reston, VA, USA) was used to track body movement. This program uses the 

orientation of an animal's body parts (e.g. nose, head, center of body, forepaws, base of 

tail, etc.) to identify the animal’s location and specified behaviors. 

Experiment 4: Unconditioned effects of acute CP94253 and Methamphetamine on 

Fos immunohistofluorescence    

This experiment investigated effects of acute administration of CP94253 and/or 

methamphetamine on Fos protein expression, which served as a marker of transcriptional 
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activity associated with the unconditioned effects of these drugs. These provided a 

comparison to the changes in Fos expression associated with methamphetamine-CPP in 

subsequent experiments.  Mice (N=14) were first acclimated to handling daily for 10 

days.  They were then pretreated with either vehicle or CP94253 (10 mg/kg, IP) and 30 

min later they were injected with either saline or methamphetamine (3 mg/kg, IP; n/group 

= 3-5). 90 min after the second injection, mice were perfused while deeply anesthetized 

with Avertin (300 mg/kg, IP). A 24-gauge needle was inserted into the animal’s left 

ventricle, and the right atrium was clipped with scissors. 15 ml of phosphate buffered 

saline (PBS) were perfused into the left ventricle, and after exsanguination, 20 ml of 4% 

paraformaldehyde fixative were administered. After 48 hours in 4% paraformaldehyde, 

brains were placed into a 15% sucrose solution for a 24-hour period and then transferred 

to a 30% sucrose solution. After 24 hours, the brains were frozen in OCT compound and 

stored in the -80°C freezer for future immunohistochemical analysis. 

Experiment 5: Effects of CP94253 on the acquisition of methamphetamine-CPP and 

Fos Immunohistofluorescence    

  On days 1-3 of this experiment, mice (N=40) were allowed free-access to both 

sides of the CPP apparatus for 15 min to habituate them to the novel environments. 

Baseline preference was determined from the average of time spent in each compartment 

on days 2 and 3. The mice were then assigned to conditioning groups, counterbalanced 

for baseline preference, that received either vehicle (Veh) or CP94253 (CP; 10 mg/kg, IP) 

and either saline (Sal) or methamphetamine (METH; 3 mg/kg, IP), resulting in the 

following 4 groups: Veh+Sal (n=8), CP+Sal (n=12), Veh+METH (n=10), and 

CP+METH (n=10). Conditioning took place on days 4-7 during a daily, 30-min session. 
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On days 1 and 4, mice were pretreated with vehicle or CP94253 30 min prior to the start 

of the conditioning session. Immediately prior to the session, they were given their 

assigned saline or methamphetamine injection and were placed into their initially non-

preferred side for 30 min. On days 2 and 3, mice were injected with vehicle and 30 min 

later they were injected with saline and placed into their initially preferred side for 30 

min. On day 8, mice were given a 15-min preference test for the acquisition of 

methamphetamine CPP (see Results Fig. 11A for timeline).  

Experiment 6: Effects of CP94253 on the expression of methamphetamine-CPP and 

Fos Immunohistofluorescence    

As described above, mice (n=34) were allowed free-access to both sides of the 

CPP apparatus for 15 min days 1-3 to habituate and to determine baseline preference. On 

days 4-7, the mice underwent 2 daily, 30-min conditioning sessions separated by a 5-hour 

period. During the morning session, mice were injected with saline and placed into their 

initially preferred side, and during the afternoon session, mice were injected with 

methamphetamine (1 mg/kg, IP) and placed into their initially non-preferred side. On 

days 8 and 11, mice were tested for the expression of methamphetamine CPP for 15 min 

(see Results Fig. 11B for timeline). Mice that failed to express methamphetamine-CPP on 

day 8 were eliminated from the study. On day 11, mice were pretreated with either saline 

(METH+Sal Group) or CP94253 (METH+CP Group; 10 mg/kg, IP) 30 min prior to the 

15-min test. Additionally, a control group of mice (n=10) that had received saline prior to 

each conditioning session were given a vehicle pretreatment, and 30 min later received 

saline immediately prior to testing (Veh+Sal Group). 75-min after the conclusion of the 

15 min expression test, mice underwent perfusion and their brains were harvested and 
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stored as described in Experiment 4 (note that the total amount of time that elapsed from 

the CP94253/vehicle injection until perfusion was 120 min). 

Experiment 7: Effects of acute CP94253 on Fos Immunohistofluorescence    

We further verified unconditioned effects of acute CP94253 in this experiment. A 

separate cohort of mice that had been acclimated to handling were injected with either 

saline (n=8) or CP94253 (10 mg/kg, IP; n=8).  120 min later, their brains were harvested 

after perfusion and were stored at -80oC as described for Experiment 4. 

Fos Immunohistofluorescence    

The brains were sectioned at 40 μm in the coronal plane using a cryostat (Leica 

CM1860) maintained at -18oC. Sections were collected at anatomical locations 

corresponding to levels +1.41 mm, +1.09 mm, -1.23 mm, and -3.07 mm from bregma as 

shown in Fig. 7 (Paxinos & Watson, 2013). Later, sections were rinsed with phosphate 

buffered saline (PBS) three times (15 min each) and then were incubated with 5% normal 

donkey serum (NDS) in 0.2% Triton X-100 in PBS (NDS/PBST) for 30 min at room 

temperature. Primary antibodies were diluted to the appropriate concentration in 5% 

NDS/PBST solution prior to applying them to the sections, which were then incubated for 

2 days at 4°C with gentle agitation. After rinsing in PBST three times (15 min each), the 

secondary antibody diluted in 5% NDS/PBST was added and sections were incubated for 

2 days at 4°C. After 48 hours, sections were rinsed 3 times with 0.2% PBST and mounted 

onto Fisher Selectfrost slides and a cover slip was applied using Vectashield HardSet 

antifade mounting medium with DAPI (H-1500, Vector Laboratories, Burlingame, CA). 

The antibodies utilized were chicken anti-tyrosine hydroxylase (1:1000 dilution; 

ab76442, Abcam, Cambridge, MA) with secondary antibody Alexa Fluor 647, goat anti-
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c-fos (1:1000 dilution; sc-52G, Santa Cruz Biotechnology, Santa Cruz, CA) with 

secondary antibody Alexa Fluora 488, and rabbit anti-GAD1/GAD67 (1:1000 dilution; 

198 013, Synaptic Systems, Germany) with secondary antibody Alexa Fluora 555. All 

secondary antibodies were conjugated donkey at 1:1000 dilution (ThermoFisher 

Scientific; Waltham, MA).  

Immunoreactivity Analysis 

Images were taken at 20x magnification with a Zeiss LSM800 laser scanning 

confocal microscope (Experiment 4 & Experiment 6) or an Olympus BX53 

epifluorescence microscope (Experiment 7). The regions imaged were determined using a 

mouse brain atlas (Paxinos & Franklin, 2013) as illustrated in Fig. 7 and 9. Sections taken 

at +1.41 mm from bregma contained the PrL and IL regions of the medial prefrontal 

cortex (mPFC), the nucleus accumbens shell (NAcS), and nucleus accumbens core 

(NAcC). Sections taken at +1.09 mm from bregma included the dorsal medial caudate-

putamen (dmCPu). Sections taken at -1.23 mm from bregma contained the basolateral 

amygdala (BlA) and central nucleus of the amygdala (CeA). Sections taken at −3.07 mm 

from bregma included the ventral tegmental area (VTA). In experiment 4, 1-2 tissue 

sections from one hemisphere from were imaged. For experiment 6, each region was 

analyzed using two tissue sections from one hemisphere of each animal. In experiment 7, 

three tissue sections including both hemispheres were imaged for each region. 

Occasionally, a sample was omitted due to artifacts and such decisions were made blind 

to the experimental group assignment. For all of the experiments, sample values from 

replicate sections of a region were averaged and the average value was used in the 

analyses. Images were optimized for brightness and contrast in photoshop by an 
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experimenter blind to the condition. The region of interest was then outlined manually in 

Photoshop and Fos immunoreactive cells were counted blind to treatment conditions. We 

determined the density of Fos and GAD67+Fos per mm2 in each analyzed region. To 

calculate the percent of Fos cells co-labeled with GAD67, we divided number of Fos 

cells co-labelled with GAD67 by the total number Fos labelled cells. 

Statistical Analysis 

 Fos-positive nuclei, time spent in the initially non-preferred side of the CPP 

apparatus, and rate of activity in each side of the apparatus were analyzed using 

ANOVAs with Pretreatment (Vehicle or CP94253) and Conditioning Treatment (Saline 

or METH) or Group as between group factors and Day (average baseline, CPP test, 

expression test) as a repeated measure where appropriate. Interactions were analyzed by 

smaller ANOVAs and t-tests with Bonferroni corrections where appropriate. 

Results 

Experiment 4: Unconditioned effects of acute CP94253 and Methamphetamine on 

Fos immunohistofluorescence  

The unconditioned effects of acute CP94253 (10 mg/kg) and/or 

methamphetamine (3 mg/kg) administration on Fos protein expression were examined in 

the cingulate cortex, NacC, and NAcS, BlA, CEA, hippocampus CA1 and CA3 regions, 

and VTA. An ANOVA with pretreatment (vehicle or CP94253) and treatment (saline or 

METH) as between subjects factors revealed a treatment main effect (see Fig. 8) in the 

VTA [F(1, 11) = 5.34, p<0.05] and dmCPu [F(1, 11) = 35.58, p<0.001]. In both of these 

regions, mice that received 3 mg/kg methamphetamine, regardless of pretreatment 

injection, had greater Fos expression than mice receiving saline. In the CeA, there was a 
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main effect of pretreatment [F(1, 10) = 89.43, p<0.001], a main effect of treatment [F(1, 

10) = 97.53, p<0.001] and an interaction between the two variables [see Fig. 8 and 10; 

F(1, 10) = 56.40, p<0.001]. Mice that received both CP+METH showed increased Fos 

expression when compared to all other groups. There were no effects of the drugs on Fos 

expression in the hippocampus CA1 and CA3 regions, the cingulate cortex, the BlA, or 

NAcC, or NAcS. Thus, it appears that CP94253 enhances unconditioned Fos expression 

in the CeA and that this effect is potentiated by methamphetamine. 

Verification of unbiased apparatus 

Across experiments in this study, approximately ~40% of the mice preferred the 

side of the apparatus with horizontal stripes and ~60% preferred the side with vertical 

stripes, confirming the use of an unbiased apparatus. To the extent possible, mice were 

distributed among treatment groups counterbalanced for initial side preference and 

magnitude of initial side preference. 

Experiment 5: CP94253 has no effect on acquisition of methamphetamine-CPP  

The timeline for Experiment 2 is shown in Fig. 11A. The overall ANOVA of time 

spent in the initially nonpreferred side including Pretreatment, Conditioning Treatment, 

and Day revealed strong main effects of Day [F(1,36)=70.0, p<0.0001] and Conditioning 

Treatment [F(1,36)=7.72, p<0.01] that likely obscured detecting a 3-way interaction. To 

further examine potential group differences, a simpler ANOVA with Day and Group (all 

four groups) as factors was conducted. This analysis revealed a significant Day main 

effect [F(1,36) = 70.0, p<0.001] and a Day X Group interaction [F(3,36) = 3.61, p<0.05; 

Fig. 12A]. Subsequent paired t-tests with Bonferroni correction showed a significant 

increase in time spent in the initially nonpreferred (i.e., drug-paired) side of the apparatus 
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on the test day compared to baseline for the CP+Sal [t(11)=4.93, p<0.001], the 

Veh+METH [t(9)=5.06, p=0.001], and the CP+METH [t(9)=8.61, p<0.001] groups, 

whereas there was no change across days in the Veh+Sal group. Furthermore, one-way 

ANOVAs of time spent in the initially nonpreferred side on the baseline test day showed 

no group differences [F(3,36)=1.19], whereas on the test day there was an effect of group 

[F(3,36)=3.69, p<0.05]. Comparisons to the Veh+Sal control group showed a difference 

only from the CP+METH group [t(16)=3.71, p<0.01], although there was a trend toward 

a difference from the Veh+METH group as well [t(16)=2.44, p=0.027, not significant 

with Bonferroni correction]. Collectively, these findings suggest that all drug-treated 

groups showed a shift in preference, however, the magnitude of preference shift was 

slightly higher in the methamphetamine-conditioned groups. CP94253 did not alter the 

acquisition of methamphetamine-CPP.  

 We also examined locomotor activity on the CPP test day (see Fig. 12B). Because 

mice spent varying amounts of time on each side, we calculated a locomotor activity rate 

(mm traveled/sec + SEM) by dividing distance travelled in the drug-paired or saline-

paired side of the apparatus by the total time spent in that respective side during the test. 

The overall ANOVA of activity rate revealed an effect of Conditioning Treatment 

[F(1,36)=5.09, p<0.05], indicating that methamphetamine-conditioned groups exhibited 

lower activity rates.  

Experiment 6a: CP94253 blocks the expression of methamphetamine-CPP  

The timeline for Experiment 3 is shown in Fig. 11B. We used a 

methamphetamine dose (1 mg/kg, IP) that would produce a relatively weak 

methamphetamine-CPP so that we would have the sensitivity to attenuate or enhance 



 53

CPP expression by pretreatment with CP94253. Methamphetamine-conditioned mice that 

failed to meet the acquisition criterion of ≥450 s spent in the drug-paired side on the test 

day were eliminated such that only mice exhibiting CPP were tested for CP94253 effects 

on CPP and Fos expression. Mice meeting the criterion were further divided into groups 

that received either vehicle or CP94253 prior to the second test, counterbalanced for the 

magnitude of their initial CPP expression. The final n/group ranged from 10-12. A 

repeated measures analysis of time spent in the initially nonpreferred side across the tests 

showed a significant Day main effect [F(2, 62)=44.31, p<0.001], a Group main effect 

[F(2, 31)=13.93, p<0.001], and a Day x Group interaction [F(4, 62)=5.96, p<0.001; Fig. 

13A]. To further analyze the interaction, we performed subsequent one-way ANOVAs 

across Day for each group. As expected, there were no differences across tests in the 

Sal+Veh group. There was an effect of Day in the METH+Veh group [F(2, 22)=49.41, 

p<0.001], and subsequent paired-samples t-tests with Bonferroni correction showed an 

increase in time spent on the initially nonpreferred side on both the CPP test and the 

expression test compared to the baseline test [t(11)=11.24, p<0.001; t(11)=8.78, p<0.001, 

respectively]. Lastly, there was also an effect of Day in the METH+CP Group [F(2, 

22)=22.52, p<0.001]. Subsequent paired-samples t-tests showed an increase in time spent 

on the initially nonpreferred side on the CPP test compared to the baseline test 

[t(11)=9.11, p<0.001], but no significant increase on the expression test. These findings 

are consistent with our hypothesis that stimulation of 5-HT1BRs with the agonist 

CP94253 attenuates the expression of methamphetamine-CPP.  

The locomotor activity rate (mm traveled/sec + SEM) was calculated as 

previously stated. Analysis of locomotion on the initial CPP test day indicated that mice 
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conditioned with 1 mg/kg methamphetamine travelled less distance than saline control 

mice [Conditioning main effect F(1,32)=4.57, p<0.05; see Fig. 13B]. On the expression 

test day, there were also significant differences in distance travelled across groups [F(2, 

31)=5.67, p<0.01; see Fig. 13C]. Post hoc t-tests with Bonferroni correction showed that 

methamphetamine-conditioned mice receiving CP on the expression test day exhibited 

higher distance travelled than the control Sal+Veh group (p<0.01). Within the 

methamphetamine-conditioned groups there was no significant difference in distance 

travelled during the expression test.  

Experiment 6b: Methamphetamine conditioning and CP94253 effects on Fos 

Immunohistofluorescence       

The results of Fos immunohistochemistry in mice tested for expression of 

methamphetamine-CPP with and without CP94253 pretreatment is shown in Fig. 14. 

One-way ANOVAs for each region analyzed revealed differences across groups in the 

VTA [(F(2, 23) = 5.68, p=0.01 ]; dmCPu [(F(2, 23) = 73.95, p<0.001 ];  NAcS [(F(2, 19) 

= 34.7, p<0.001 ]; NAcC [(F(2, 19) = 15.96, p<0.001 ]; CeA [(F(2, 25) = 3.69, p<0.05 ]; 

and BlA [(F(2, 24) = 4.29, p<0.05]. There were no changes in Fos expression in the 

cortical regions examined, although there was a trend toward differences across groups in 

the PrL (p=.083; see Fig. 14G). Methamphetamine conditioning effects on Fos 

expression were observed as an increase in the METH+Veh compared to the Sal+Veh 

controls in the VTA [t(16)=2.80, p=0.014] and BlA [t(17)=2.71, p=0.015], but a 

reduction in the CeA [t(17)=2.73, p=0.014]. CP94253 did not alter methamphetamine-

conditioned Fos expression in the VTA as the METH+CP did not differ from the 

METH+Veh group but was different from the control group [t(14)=3.99, p=0.001]; 
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however, the methamphetamine-conditioned increase in Fos in the BlA and decrease in 

Fos in the CeA appeared to be attenuated by CP94253 pretreatment as that METH+CP 

group did not differ from either the Sal+Veh or the METH+Veh groups. CP94253 alone 

increased Fos expression compared to both the Sal+Veh and METH+Veh groups in 

striatal subregions, including the dmCPu [t(14)=9.10, p<0.001; t(16)=9.95, p<0.001], 

NAcC [t(12)=4.62, p=0.001; t(13)=4.52, p=0.001], and NAcS [t(12)=3.46, p=0.01; 

t(13)=3.38, p<0.01]. Representative fluorescent images of Fos for the CeA, NAcS, and 

VTA are in Fig. 15. 

 Additionally, we examined co-labelling of Fos with GAD67 or TH depending on 

the brain region. We observed no co-localization of Fos with TH in the VTA. 

Approximately 70% of the Fos-labelled cells in the VTA co-labeled with GAD67, 

although there were no group differences in the number of co-labeled cells across groups 

(see Table 1 and Fig. 16). We further examined GAD67 and Fos co-labelled cells in the 

other brain regions and observed a range of co-labelling across these regions (see Table 

1), however, again there were no group differences in the percentage of co-labeled cells 

(data not shown).  

Experiment 7: Verification of unconditioned effects of CP94253 on Fos protein 

expression  

The results of our final experiment confirmed that acute exposure to CP94253 

produced an unconditioned increase in Fos expression in the CeA [t(14)=2.38, p<0.05; 

see Fig. 17E]. We found no significant differences in any of the other brain regions 

analyzed.  

Discussion 
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This study found that the 5-HT1BR agonist CP94253 attenuated the expression of 

methamphetamine-CPP in mice (Fig. 12). Specifically, the expression of 

methamphetamine-CPP that was established with four pairings of 1 mg/kg 

methamphetamine with the initially nonpreferred environment was blocked in mice 

pretreated with CP94253 (10 mg/kg, IP) prior to the preference test. The learned 

association between cues and the rewarding effects of psychostimulant drugs of abuse is 

an important component of human drug relapse and craving. Drug seeking in addicts 

often depends on the association formed between drug-paired cues and the rewarding 

effects of the drug. Methamphetamine-conditioned mice spent more time in the drug-

paired environment (i.e., cues), indicating that the mice were motivated to seek the 

environment which previously predicted drug-reward because the cues in that 

environment had acquired incentive motivational value. It is likely that CP94253 

attenuated the incentive motivational effect of the environmental cues, thereby blocking 

the expression of CPP. Consistent with this interpretation, Garcia and colleagues found 

that CP94253 attenuates methamphetamine intake on a progressive ratio schedule when 

administered both during maintenance of self-administration and after abstinence (Garcia 

et al., 2017). Progressive ratio is a high effort schedule that measures reinforcement, but 

is also sensitive to motivation to seek the reinforcer. Previous studies also report that 5-

HT1BR agonists attenuate d-amphetamine intake on a progressive ratio schedule, 

suggesting CP94253 reduced incentive motivation to seek the drug (Fletcher & Korth, 

1999; Fletcher et al., 2002; Miszkiel et al., 2012; Miszkiel & Przegalinski, 2013). 

Therefore, it is not surprisingly that CP94253 blocked the expression of 

methamphetamine-induced CPP, likely by reducing the incentive motivational effect of 
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the conditioned environmental cue to elicit drug seeking.  

By contrast, CP94253 did not block the acquisition of methamphetamine-CPP, as 

CP94253 given prior to conditioning sessions had no effect on CPP established with 2 

pairings of 3 mg/kg methamphetamine with the initially nonpreferred compartment (Fig. 

11). The lack of effect of CP94253 on acquisition suggests that the rewarding effects of 

methamphetamine were unaltered. Furthermore, this finding suggests that CP94253 did 

not affect learning and memory as evidenced by the formation of a drug-compartment 

association. The lack of CP94253 effect on acquisition is surprising, given that Garcia 

and colleagues (2017) found that CP94253 reduced the reinforcing effects of 

methamphetamine using a VR5 schedule, and drug reward is a key component of 

reinforcement. It is possible that acquisition of methamphetamine-CPP may be attenuated 

when using other parameters (i.e., different methamphetamine doses and/or conditioning 

schedules) or that 5-HT1BR stimulation becomes critical for reinforcement in animals 

with an extensive history of drug exposure as occurred in the Garcia et al. study.    

Other possible reasons for the 5-HT1BR agonist attenuation of methamphetamine-

induced CPP expression include an effect on motor capability or anxiety. Impairment in 

motor capability seems unlikely because mice receiving CP94253 exhibited increased 

locomotor activity compared to the saline control group and did not differ from the 

methamphetamine-conditioned group that displayed CPP. Furthermore, previous research 

has shown that CP94253 has no effect on sucrose or food reinforcement, which rely on 

performing an operant response (Pentkowski et al., 2009; Przegaliński et al., 2007). It is 

more difficult to ascertain whether anxiety contributed to the CP94253 blockade of 

methamphetamine-CPP expression because the role of 5-HT1BRs in anxiety is complex. 
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5-HT1BR KO mice have a phenotype that demonstrates reduced anxiety and increased 

aggression (Gingrich & Hen 2001, Groenink, van Bogaert, van der Gugten, Oosting, & 

Olivier, 2003, Guilloux et al 2011; Zhuang et al., 1999). However, experiments with 5-

HT1BR KO mice produce conflicting results on anxiety levels, with some studies 

reporting no change (Brunner, Buhot, Hen, & Hofer, 1999; Malleret, Hen, R., Guillou, 

Segu, & Buhot, 1999; Sibille et al., 2007) and others reporting reduced anxiety (Zhuang 

et al., 1999; Bouwknecht et al., 2001a). In wild type mice, CP94253 can have anxiolytic 

and antidepressant-like effects (Tatarczyńska et al., 2004; Tatarczyńska et al., 2005). In 

rats, 5-HT1BR agonists or antagonists can increase baseline anxiety levels, as well as 

cocaine-induced anxiety-like behaviors (Lin & Parsons, 2002; Hoplight et al., 2005; 

Pentkowski et al., 2009). Over-expressing 5-HT1BRs in dorsal raphe nucleus (DRN) 

projection neurons produces anxiety-like behavior in the plus maze and open field tests, 

but only after a stress-inducing procedure (Clark et al., 2002). Along this line of 

reasoning, stress often motivates drug-seeking and increases drug intake (Goeders & 

Guerin, 1994; Ahmed & Koob, 1997; Piazza & Le Moal, 1998; Logrip, Zorrilla, & Koob, 

2012). Thus, the stress associated with a CP94253-induced increase in anxiety would be 

expected to enhance expression of CPP rather than attenuate expression as observed in 

this study.  

The effects of CP94253 on psychostimulant behaviors vary across cocaine versus 

amphetamines. Although post-abstinence this agonist attenuates both methamphetamine 

and cocaine self-administration reinforcement (Garcia et al., 2017; Pentkowski et al., 

2012; Pentkowski et al., 2014), when given prior to abstinence CP94253 enhances 

cocaine reinforcement but attenuates methamphetamine reinforcement (Pentkowski et al., 
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2012; Pentkowski et al., 2014). Both methamphetamine and cocaine inhibit 5-HT, 

dopamine, and norepinephrine transporters and cause a down-regulation of these 

transporters with repeated use (Azzaro & Rutledge, 1973; Ritz, Cone, & Kuhar, 1990). 

However, they interact differently with the transporters. Cocaine inhibits monoamine 

transport back into the cell. In addition to this action, methamphetamine also redistributes 

intracellular monoamines by acting at the vesicular monoamine transporter (VMAT) 

which not only causes the release of monoamines into the cytosol but also reverses 

monoamine transport across the plasma membrane resulting in more monoamine release 

in the cytosol (Sulzer et al., 1995; Sager & Torres, 2011; Panenka et al., 2013). 

Additionally, cocaine and amphetamines produce differential effects on the releasable 

vesicular pool and on regulation of VMAT-2 (Brown, Hanson, & Fleckenstein, 2001). 

Specifically, cocaine increases VMAT-2 activity while in contrast, methamphetamine 

reduces VMAT-2 function (Brown et al., 2001). Lastly, the effects of cocaine are more 

dependent on neurotransmitter tone in the synapse than amphetamines. This may 

contribute to the paradoxical effects seen with CP94253 during pre-abstinence vs. post-

abstinence.  

Multiple manipulations in the mesolimbic system have shown that 5-HT1BRs may 

play a modulatory role in psychostimulant addiction (Neumaier et al., 2002; Filip, Papla, 

Nowak, Jungersmith, & Przegaliński, 2002; Pentkowski et al., 2012; Papla et al., 2002; 

Przegaliński et al., 2002; Przegaliński et al., 2004). The lead hypothesis for 5-HT1BR 

modulation of psychostimulant effects is that 5-HT1BRs on GABA interneurons or 

GABA terminals in the VTA of medium spiny neurons from the NAc modulate DA 

neuron activity (O’Dell & Parsons 2004; Yan et al., 2004). We explored the circuitry 
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further in this study using Fos as a marker of transcription regulation associated with 

neural processing in response to acute stimulus conditions. Specifically, we investigated 

both the unconditioned and conditioned effects of CP94253 and methamphetamine on 

Fos protein expression.  

In assessing the unconditioned effects of acute CP94253 and/or 

methamphetamine (Experiments 4 and 7), we found that CP94253 alone increased Fos in 

the CeA only (see Fig. 8 and 16) and that acute methamphetamine increased Fos in the 

dmCPu, VTA, and CeA (see Fig. 8). Interestingly in the CeA, CP94253 interacted with 

methamphetamine, resulting in a robust increase in Fos expression that was elevated 

compared to all other groups (see Fig. 8). This is consistent with a previous study 

showing increased Fos in the CeA but not the BlA after an acute injection of 20 mg/kg 

CP94253 in mice (Lee, Somerville, Kennett, Dourish, & Clifton, 2004). 

In assessing the conditioned effects of methamphetamine and their modulation by 

CP94253, we found that mice expressing methamphetamine CPP showed increased Fos 

protein expression in the VTA and BlA, and a reduction in the CeA in contrast to the 

unconditioned increase in this region (Fig. 13). In mice showing CP94253-attenuated 

expression of methamphetamine-CPP, Fos protein expression was elevated in the 

dmCPu, NAcS, and NAcC compared to both saline controls and the methamphetamine-

conditioned group (Fig. 13). CP94253 did not affect the methamphetamine-conditioned 

increase in Fos in the VTA, although there was a trend toward enhancement of this effect 

(Fig. 13). Additionally, CP94253 reversed the methamphetamine-conditioned decrease in 

Fos in the CeA and the methamphetamine-conditioned increase in the BlA. Given that 

acute CP94253 treatment in unconditioned controls from experiments 4 and 7 only 
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showed increased Fos in the CeA, the CP94253-induced increases in Fos observed in the 

dmCPu, NAcS, and NAcC of methamphetamine-conditioned mice may be related to 

processes involved in CP94253-induced attenuation of methamphetamine-CPP.  

The increased Fos observed in the VTA in mice expressing methamphetamine-

CPP was anticipated given that the VTA is a region important for reward-seeking 

behaviors, especially when these behaviors are triggered by Pavlovian cues (Roitman, 

Stuber, Phillips, Wightman, & Carelli, 2004; Yun, Wakabayashi, Fields, & Nicola, 

2004; Corbit, Janak, & Balleine, 2007; Kufahl et al., 2009; Zijlstra, Veltman, Booij, van 

den Brink, & Franken, 2009). The VTA contains dopamine (DA) and non-DA neurons, 

and both are involved in the reinforcing and motivational effects of other natural rewards 

as well as drugs (Wise & Bozarth, 1981; Ikemoto & Panksepp, 1999; Salamone, Correa, 

Farrar, & Mingote, 2007; Schultz, 2010). Given the hypothesized role of the VTA GABA 

neurons in the modulatory effects of 5-HT1BR agonists on cocaine behavioral effects, we 

hypothesized that methamphetamine CPP expression involved increased signaling in DA 

neurons that would be evident as an increase in Fos. Surprisingly, we found that none of 

the Fos co-localized with TH in dopamine neurons, but approximately 70% of the Fos co-

localized with GAD67. Furthermore, methamphetamine-conditioned Fos expression was 

further enhanced in the VTA by CP94253, contrary to our expectation that CP94253 

stimulation of 5-HT1BR heteroreceptors on GABA neurons would inhibit these cells in 

the VTA, resulting in reduced Fos expression. It is possible that the increased Fos 

expressed in the CP94253-treated, methamphetamine-conditioned mice occurs via 

disinhibition of GABAergic interneurons by CP94253-inhibited GABA afferent neurons 

to the interneurons. VTA GABA neurons are responsive to reward-predictive cues 
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(Brown et al., 2012; Cohen, Haesler, Vong, Lowell, & Uchida, 2012) and their activation 

is sufficient to disrupt reward consumption or induce avoidance behavior (Tan et al., 

2012; van Zessen, Phillips, Budygin, & Stuber, 2012). Activation of these GABAergic 

neurons may explain the CP94253-induced attenuation of methamphetamine-CPP and 

increase in Fos. It is also possible that CP94253 inhibited GABA neurons that released 

efferent glutamate neurons from inhibition given that 30% of Fos positive neurons in the 

VTA were not co-labeled with either TH or GAD67 and research has shown that the 

VTA also contains glutamatergic neurons (Dobi, Margolis, Wang, Harvey, & Morales 

2010; Hnasko, Hjelmstad, Fields, & Edwards 2012; Yoo et al., 2006). Indeed, vesicular 

glutamate transporter 2 (VGLUT2)-labeled glutamate neurons comprise approximately 

up to 35% of NAc-projecting neurons in VTA (Nair-Roberts et al., 2008; Yamaguchi, 

Wang, Li, Ng, & Morales, 2011). Research on the glutamatergic neuronal population in 

the VTA and its contribution to reward and motivation to seek psychostimulants are 

scarce. Further investigation of the sub-populations of VTA neurons expressing Fos in 

response to CP94253 is needed.  

Surprisingly, we did not observe Fos changes in the NAc in methamphetamine-

conditioned mice whilst previous research has found cocaine- or methamphetamine-CPP 

expression is associated with increased Fos in the NAcC or NAcS in mice and rats 

(Chiang et al., 2009; Miller & Marshall 2004; Miller & Marshal, 2005a; Miller & 

Marshall, 2005b). It is important to note that our expression paradigm differed from 

previous research as we had two CPP preference tests (i.e., CPP test and Expression test) 

separated by 72 hours, not a single preference test. Given the repeated exposure to the 

same stimulus (i.e., test chamber), Fos expression in methamphetamine-conditioned mice 
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likely showed tolerance and it is possible that CP94253 activated pathways involved in 

inhibiting CPP rather than pathways involved in the expression of CPP.  

Psychostimulants are directly self-administered into the NAcS and produce a CPP when 

injected into this region (McBride, Murphy, Ikemoto, 1999). The NAcS appears to be 

involved in the rewarding effects of drugs of abuse (Ito et al., 2004; Sellings & Clarke, 

2003) and in suppressing cocaine seeking after extinction (Peters, LaLumiere, & Kalivas, 

2008). The NAcC is critical for initiating cocaine seeking (Kalivas & O’Brien, 2008), is 

required for maintaining cue-elicited drug-seeking behavior (Fuchs et al., 2004; Ito et al., 

2004; Di Ciano & Everitt, 2004), and lies at the interface of motivation and movement 

(Mogenson, Jones, & Yim, 1980).  

Although no conditioned Fos expression was observed in the NAcC and NAcS, 

acute administration of CP94253 prior to the test for expression of CPP increased Fos 

expression in these regions. Thus, mice that expressed CPP on the test day showed no 

increase in Fos in the NAc, whereas mice that did not express CPP due to CP94253 

pretreatment showed an increase in Fos. The CP94253-induced Fos in these regions is not 

an unconditioned effect of CP94253 as shown in Experiments 1 and 4, but rather is an 

effect that only occurs in previously conditioned mice. Previous research has shown that 

activation of 5-HT1BRs in the NAc decreases the rewarding and reinforcing effects of 

amphetamine (Fletcher & Korth, 1999; Fletcher, 2002). Furthermore, local activation of 

5-HT1BRs in the ventral tegmental area potentiates cocaine-induced increases in 

dopamine levels in the NAc and cocaine-induced decreases in GABA (Parsons et al., 

1999; O'Dell & Parsons, 2004). Therefore, it is possible that the attenuation of 

methamphetamine-CPP may have been achieved by 5-HT1BR agonism with CP94253 in 



 64

the NAcC, NAcS, and VTA, by blocking incentive motivation to seek the drug.  In both 

the NAcC and NAcS approximately 50% of the expressed Fos co-localized with GAD67 

indicating that a large population of inhibitory neurons were activated by CP94253. 

Perhaps a functional consequence of the enhanced intracellular signaling in these GABA 

neurons that caused Fos expression is the attenuation of methamphetamine-CPP.  

We observed no changes in Fos expression in either the PrL or IL in 

methamphetamine-conditioned mice regardless of CP94253 pretreatment. It is surprising 

that methamphetamine-CPP did not affect Fos expression in the PrL because previous 

studies have shown that mice and rats expressing cocaine or methamphetamine-CPP 

exhibit increased Fos in the PrL or mPFC (Chiang et al., 2009; Miller & Marshall 2004; 

Miller & Marshal, 2005a; Miller & Marshall, 2005b).  This region is critical for initiating 

cocaine seeking along with the NAcC (Kalivas & O’Brien, 2008) and contributes to 

executive decision-making processes of response initiation and inhibition (Bechara, 

Tranel, & Damasio, 2000; Iversen & Mishkin, 1970; Weissenborn, Robbins, & Everitt, 

1997). On the other hand, the IL suppress cocaine seeking after extinction along with the 

NAcS (Peters et al., 2008) and has been shown to be critically important in extinction 

of Pavlovian fear conditioning, controlling addiction-seeking behavior, and habit 

formation (Barker, Taylor, & Chandler, 2014; Gutman et al., 2017; Killcross & 

Coutureau, 2003; Laurent & Westbrook, 2009; Peters, Kalivas, & Quirk, 2009; Sangha, 

Robinson, Greba, Davies, & Howland, 2014; Smith, Virkud, Aeisseroth, & Graybiel, 

2012). We had expected to observe a conditioned increase in Fos expression in the PrL, 

but not IL. The lack of effect in methamphetamine-conditioned mice may have been due 

to the repeated testing procedure as discussed above. The lack of a CP94253-induced Fos 
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expression in methamphetamine-conditioned mice, in contrast to the increases observed 

in striatal regions, suggests that 5-HT1BR modulation of CPP expression may occur in 

striatal regions rather than in the cortex.  

Lastly, we observed an increase of Fos in the BlA in methamphetamine-

conditioned mice which is not surprising given the BlA is the main input region of 

stimuli and is responsible for the modulation and processing of emotional memories 

(Cahill & McGaugh, 1998; Koob, 2008), memory consolidation (Pare, 2003), associative 

learning (Everitt et al., 1999; LeDoux, 2000), and has been implicated in processing and 

modifying the incentive motivational value of drug-associated contextual and discrete 

cues (Everitt et al., 1999; Fuchs & See 2002; Fuchs, Weber, Rice, & Neisewander., 2002; 

Grimm & See 2000; McLaughlin & See, 2003). Methamphetamine-conditioned mice 

showing enhanced Fos in the BlA on expression test day may reflective of the incentive 

motivational value of the drug-paired chamber. After evaluating the emotional valence of 

stimuli, the BlA sends projections to the CeA that is thought to organize the behavioral 

response and reinforce behavior (Fuchs & See 2002; Grimm & See 2000; LeDoux, 

2000). We found decreased Fos in the CeA of methamphetamine-conditioned mice. 

Given the role the CeA plays in novelty-seeking and exploratory behavior and that 

methamphetamine-conditioned mice were not exploring both chambers, there perhaps 

was reduced activation of the CeA due to the reduced need to organize behavioral output 

and engage in exploratory behavior.  

Specifically, the amygdala is thought to underlie Pavlovian learning in which 

outcomes are predicted by sensory cues (Baxter & Murray, 2002; Hampton, Adolphs, 

Tyszka, & O’Doherty, 2000; LeDoux 2000; Seymour & Dolan, 2008; Wassum & 
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Izquierdo, 2015). Additionally, the BlA receives major serotonergic projections from the 

DRN (Davis 1992; Herry et al., 2010; Johansen et al., 2010; Lowry et al., 2005); densest 

to the BlA, weaker in the CeA (Vertes 1991). This is indicative of serotonin in the 

amygdala and presumably its involvement in amygdala-mediated behaviors. Previous 

research investigating Fos in the BlA in mice expressing methamphetamine-CPP did not 

see an increase (Chiang et al., 2009). However, in rats expressing cocaine CPP, there was 

increased Fos expression in the BlA and no change in Fos in the CeA (Miller & Marshall 

2004; Miller & Marshall 2005a), even though we found a reduction of Fos in the CeA in 

methamphetamine-conditioned mice. The discrepancies in the data can again be a result 

of different CPP testing procedures. 

CP94253 reduced the increase in Fos observed in the BlA of methamphetamine-

conditioned mice which reflects a decrease in the motivational value of the meth-paired 

context which likely dampened the motivation to seek the conditioned reward 

(methamphetamine). CP94253 reversed the reduction of Fos observed in the 

methamphetamine-conditioned mice. It is possible the modulation of neuronal activity in 

the CeA by CP94253 disrupted the motivational value of the conditioned environment 

resulting in more exploratory behavior. In our study less than 20% of the Fos in the BlA 

co-localized with GAD67 indicating a role for glutamatergic neuronal population which 

is not surprising given that the principle output neurons of the BlA are glutamatergic 

(80%–90%). The methamphetamine-conditioned increase of Fos observed in the BlA, 

presumably in glutamatergic neurons, likely manifested by the emotional salience of 

methamphetamine and the drug-paired chamber. Although the majority (95%) of CeA 

neurons are GABAergic, the CeA receives glutamatergic input from the BlA (Krettek & 
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Price, 1978; Pitkanen et al., 1995; Savander, Go, LeDoux, & Pitkanen, 1995) and projects 

to the bed nucleus of the stria terminalis (BNST) and VTA. In our study, 64% of the Fos 

co-localized with GABAergic neurons in the CeA indicating a potential role for other 

neuronal subtypes.  

The present findings suggest an inhibitory role of 5-HT1BRs in the motivational 

effects of methamphetamine-paired cues given CP94253 attenuated the expression of 

methamphetamine-CPP in mice. These findings build upon previous research using rats 

demonstrating 5-HT1BR agonists reduce incentive motivation for d-amphetamine in a 

self-administration model (Fletcher & Korth, 1999; Fletcher et al., 2002; Miszkiel et al., 

2012; Miszkiel & Przegalinski, 2013). CP94253 did not block the rewarding effects of 

methamphetamine nor the learned association between environmental cues and 

methamphetamine as CP94253 did not block the acquisition of methamphetamine-CPP. 

In methamphetamine-conditioned mice, CP94253 reversed the increased Fos observed in 

the BlA and the decreased Fos observed in the CeA. CP94253 also increased Fos in the 

VTA, NAcS, and NAcC of methamphetamine-conditioned mice. Acute CP94253 only 

increased Fos in the CeA indicating that the pattern of Fos observed in 

methamphetamine-conditioned mice may be related to processes involved in CP94253-

induced attenuation of methamphetamine-CPP. Although the specific mechanisms 

responsible for the attenuating effect of 5-HT1BR agonists on methamphetamine-induced 

CPP are unclear, we hypothesize that such mechanisms may involve the 5-HT1BRs in the 

NAc, VTA, and amygdala circuitries as evidenced by our Fos data. Collectively, we 

postulate that the pattern of Fos activation in these regions reduces the incentive 

motivation to seek the methamphetamine-paired environment. Important future directions 
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include deciphering the sub-neural circuitry involved in the agonist effects. Lastly, Garcia 

et al., 2017 showed that zolmitriptan, FDA-approved 5-HT1D/1BR agonist, decreased 

methamphetamine intake when given acutely during maintenance, as well as given 

intermittently following abstinence. Given that the anti-migraine medication zolmitriptan 

is clinically available, 5-HT1BR agonists warrant further investigation as possible 

treatments for psychostimulant addiction. 
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CHAPTER 4 

CONCLUDING REMARKS 

This dissertation aimed to test the hypothesis that 5-HT1BRs modulate cocaine and 

methamphetamine abuse-related behaviors in mice. This hypothesis was examined using 

the 5-HT1BR agonist CP94253 to stimulate 5- HT1BRs. The main findings that support the 

hypothesis demonstrate that CP94253: 1) attenuated the expression of cocaine-sensitized 

locomotion after 20 days of abstinence from a 20-day, daily cocaine injection regimen 

(Chapter 2), 2) blocked cocaine-primed reinstatement of extinguished cocaine-CPP 

(Chapter 2), and 3) blocked the expression, but not the acquisition of methamphetamine-

CPP (Chapter 3).  Using Fos as a marker of brain activity to study neural circuits 

involved in expression of methamphetamine-CPP and its attenuation by CP94253, I 

found that expression of methamphetamine-CPP was accompanied by increased Fos in 

the VTA and BlA, and decreased Fos in the CeA, however CP94253 pretreatment before 

the test reversed the conditioned changes in Fos expression in both amygdala subregions 

and enhanced levels of Fos in the VTA, NAcS, NAcC, and dmCPu (Chapter 3). Acute 

CP94253 in drug-naïve controls only increased Fos in the CeA, suggesting that the 

changes in Fos observed in experimental groups were not simply due to acute effects of 

CP94253 but rather were likely due to the agonist inhibition of CPP expression. Co-

localization analyses revealed that approximately 70% of the Fos in the VTA and 50% of 

the Fos in the NAc co-localized with GAD67, whereas none of the Fos in the VTA co-

localized with TH. These findings suggest that GABAergic cell activity, but not 

dopamine cell activity, in the VTA and NAc is likely involved in the behavioral effects of 

CP94253 on expression of methamphetamine conditioning. Collectively, these exciting 
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findings support 5-HT1BRs as a novel target for pharmacological intervention aimed at 

reducing the incentive motivation to seek methamphetamine.  

The Role of 5-HT1BRs in Cocaine and Methamphetamine Addiction  

Previous studies have found that pharmacological agonism of 5-HT1BRs increases 

cocaine intake during maintenance of self-administration (Parsons et al., 1998; 

Pentkowski et al., 2009; Pentkowski et al., 2014), but the same manipulation causes a 

decrease in cocaine intake and seeking after abstinence (Pentkowski et al., 2009; 

Pentkowski et al., 2014). The CP94253 attenuation of cocaine-CPP after extinction 

suggests that stimulation of 5-HT1BRs inhibits the incentive motivational effects of the 

cocaine-paired environmental cues that normally drive expression of CPP. Consistent 

with this interpretation, CP94253 attenuates cocaine self-administration on a progressive 

ratio schedule which requires increasing amounts of motivation and effort to obtain 

reinforcement (Pentkowski et al., 2014). Thus, responding under this type of schedule 

likely reflects incentive motivation to seek cocaine after abstinence or extinction.  

The finding that CP94253 attenuated the expression of methamphetamine-CPP 

but had no effect on the acquisition of methamphetamine-CPP (Chapter 3) suggests that 

5-HT1BRs are more critically involved in motivation to seek methamphetamine than in 

the unconditioned rewarding effects of methamphetamine. CP94253 did not block the 

acquisition of methamphetamine-CPP, which suggests that the rewarding value of 

methamphetamine and the learned association between methamphetamine and the 

environmental cues were not blocked by CP94253. However, the CP94253 attenuation of 

methamphetamine-CPP expression suggests that stimulation of 5-HT1BRs is needed for 

the incentive motivation for mice to seek the drug-paired chamber on the expression test 
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day. Collectively, our data are in line with previous work that has established a role of 5-

HT1BRs in regulating both cocaine- and methamphetamine- seeking behavior (Fletcher & 

Korth, 1999; Garcia et al., 2017; Miszkiel et al., 2012; Pentkowski et al., 2009; 

Pentkowski et al., 2012; Pentkowski et al., 2014). However, 5-HT1BR agonism attenuates 

conditioned reward and methamphetamine self-administration during maintenance 

(Fletcher & Korth, 1999; Garcia et al., 2017; Miszkiel et al., 2012) and self-

administration post-abstinence (Garcia et al., 2017). It is possible that CP94253 not only 

differentially regulates drug abuse-related processes across different phases of the 

addiction cycle, but also has different effects on behavior depending on the specific 

addictive drug used, even those within the same drug-class. More research is needed to 

further investigate the role of 5-HT1BRs in reward. 

The difference between 5-HT1BR agonist effects on cocaine- and 

methamphetamine-induced behavior may be due to the properties unique to each of these 

stimulants. Both the amphetamines and cocaine inhibit 5-HT, dopamine, and 

norepinephrine transporters and cause a down-regulation of these transporters with 

repeated use (Azzaro & Rutledge, 1973; Ritz et al., 1990). However, they interact 

differently with the transporters. Cocaine inhibits monoamine transport back into the cell. 

In addition to inhibiting monoamine transport back into the cell, the class of 

amphetamine drugs redistribute intracellular monoamines by acting at the vesicular 

monoamine transporter (VMAT), which not only causes the release of monoamines into 

the cytosol but also reverses monoamine transport across the plasma membrane resulting 

in more monoamine release in the cytosol (Sulzer et al., 1995; Sager & Torres, 2011; 

Panenka et al., 2013). Additionally, cocaine and amphetamines produce differential 
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effects on the releasable vesicular pool and on regulation of VMAT-2 (Brown et al., 

2001). Specifically, cocaine increases VMAT-2 activity while in contrast, 

methamphetamine reduces VMAT-2 function (Brown et al., 2001). This may result in a 

larger releasable pool of dopamine after cocaine versus methamphetamine following 

acute or subchronic administration. This may contribute to the differences seen with 

CP94253 during pre-abstinence testing between cocaine and methamphetamine.  

The mechanisms underlying the effects of CP94253 on motivation to seek cocaine 

and methamphetamine are still unknown, however, the findings in this dissertation begin 

to unravel the neural circuitry involved in the agonist effects. In mice expressing 

methamphetamine-CPP, we observed an increase in Fos protein expression in the VTA 

and BlA, and a reduction in Fos protein in the CeA. However, when CP94253 blocked 

the expression of methamphetamine-CPP we found an increase in Fos protein expression 

in the VTA, NAcS, NAcC, and dmCPu, and importantly, CP94253 reversed the increased 

Fos observed in the BlA and the reduction seen in the CeA. The amygdala, VTA, and 

NAc are implicated in the rewarding effects of psychostimulants. We postulate that these 

circuitries are responsible for the inhibition of methamphetamine-CPP expression 

through attenuation of incentive motivation to seek the methamphetamine-conditioned 

environment. The VTA also receives projections from the dorsal CPu (Watabe-Uchida et 

al., 2012) and has been previously implicated in methamphetamine-CPP in rats (Liu et 

al., 2014), but not in mice (Chiang et al., 2009). Therefore, it is possible that the dmCPu 

also plays a role in the inhibition of methamphetamine-induced CPP expression 

following 5-HT1BR agonism by CP94253.  

Cell-specific markers co-labeled with Fos provided some insight into the circuitry 
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involved in CP94253 effects on methamphetamine-CPP expression. We observed that 

Fos protein expression occurred in GABA neurons and the proportion of GABA co-

labeled cells depended on the brain region. In the VTA, approximately 70% of the Fos 

co-localized with GAD67 and no cells co-localized with TH, suggesting a role for GABA 

neurons and not DA neurons. It is possible that the remaining 30% of Fos expressing 

neurons were glutamatergic because glutamate neurons are also found in the VTA. It is 

surprising that our results suggest that the dopaminergic VTA → NAc, the hallmark 

mesolimbic pathway involved in drug addiction, did not exhibit Fos expression but rather 

Fos expression was driven primarily by the VTA GABAergic neuronal population. In the 

NAc, approximately 50% of the Fos labeled cells were GAD67-expressing neurons, 

indicating a role for GABA neurons in the NAc as well. The remaining 50% of Fos 

labeled cells in the NAc could potentially be cholinergic interneurons, another neuronal 

family found in the NAc (Berlanga et al., 2003; Witten et al., 2010) or glutamate neurons 

(Di Ciano & Everitt, 2001). 

My interest in the effects 5-HT1BR agonists on methamphetamine CPP was in part 

due to previous work from our lab demonstrating that the FDA approved 5-TH1B/1DR 

agonist, zolmitriptan, alters methamphetamine abuse-related behaviors (Garcia et al., 

2017). Garcia et al. found that zolmitriptan, given acutely during maintenance of 

methamphetamine self-administration attenuated intake on a VR5 reinforcement 

schedule. When administered intermittently (every 2-3 days) following abstinence, 

zolmitriptan also decreased methamphetamine intake, suggesting that this 5-HT1B/1D/1AR 

agonist can reduce the reinforcing properties of methamphetamine. My findings suggest 

further investigating the therapeutic potential of FDA approved 5-HT1BR agonists for the 
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treatments of SUDs.  

Future Directions 

Our findings are exciting as they identify the role serotonin acting at 5-HT1BRs 

plays in regulating the effects of both cocaine and methamphetamine. Future work is 

needed to explore the mechanism by which 5-HT1BRs produce their inhibitory effects on 

psychostimulant abuse-related behavior, as well as the generalizability of our effects to 

other drug classes. Nearly every drug of abuse increases dopamine levels in the NAc 

(Hyman et al., 2006), but the mechanism differs across drug classes. Given these 

differences and the commonality of polydrug abuse, future work aimed at testing the 

effects of CP94253 on other drugs of abuse, such as heroin or morphine, is warranted. 

Other important questions that remain are whether effects of 5-HT1BR agonist 

depend on age, sex, character traits such as impulsivity and compulsivity, or comorbidity 

with other mental illness. Indeed, 5-HT plays an essential role in various brain functions 

including feeding, sleep, pain, mood, aggression, impulsivity, thermoregulation, 

locomotion, and learning, and has been implicated in a wide range of other psychiatric 

conditions including depression, anxiety disorders, obsessive–compulsive disorder, 

psychosis, and eating disorders (for review, see Lucki, 1998). Therefore, it seems likely 

that there are individual differences in sensitivity and effects of 5-HT1BR agonists on 

drug abuse-related behaviors that may be discovered in future research. 

Sex differences in the effects of drugs of abuse exist both in animal studies and in 

a clinical setting and should be considered while conducting drug abuse research (Brady 

& Randall 1999; Carroll & Anker, 2010; Hankoskye al., 2018).  Additionally, male and 

female rodents respond differentially when it comes to chronic stress, which is a known 
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predictor of drug abuse (Enoch, 2011). Female rodents tend to exhibit higher motivation 

for drugs across multiple phases of dependence (Becker & Hu, 2008; Lynch & Carroll, 

1999; for review, see Carroll & Anker, 2010). Even though we did not examine the 

effects of our manipulation in female mice in the current study, a current ongoing study 

in our laboratory is investigating the effect of the 5-HT1BR agonist CP94253 in female 

rats using a self-administration paradigm (Scott et al., manuscript under preparation). 

Results thus far suggest that CP94254 shifts the dose effect function for cocaine intake 

during the maintenance phase of cocaine self-administration to the left, similar to our 

previous findings in male rats (Pentkowski et al., 2009; Pentkowski et al., 2014). After a 

21-day abstinence phase, CP94253 reduces cocaine intake just as it does in male rats, 

regardless of estrus cycle phase. These results provide promising evidence that females 

respond similarly to CP94253 as males, and therefore, may also benefit from agonist 

treatment post abstinence. Further studies in females examining methamphetamine 

addiction-related behaviors are warranted.   

One limitation of this dissertation research is that we did not demonstrate that the 

effects are reversed by a 5HT1BR antagonist to definitively demonstrate the effects were 

5-HT1BR-mediated. However, previous researcher from our lab has demonstrated that 5-

HT1BR antagonist administration reverses both the attenuation and enhancement 

produced by CP94253 in rats self-administering cocaine or methamphetamine 

(Pentkowski et al., 2014; Garcia et al., 2017). CP94253 is a selective 5-HT1BR agonist 

with approximately 25- and 40-fold more selectivity for 5-HT1BRs over 5-HT1D and 5-

HT1ARs, respectively (Ki values are 89, 2, 49 and 1,600 nM for 5-HT1A, 5-HT1B, 5-HT1D, 

and 5-HT2Rs respectively; Koe et al., 1992). It is important to note that since CP94253 
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also has affinity for 5-HT1DRs (Ki = 49 nM; Koe et al., 1992) it is possible that 5-HT1DRs 

may also contribute to its effects on cocaine- and methamphetamine- seeking behavior. 

However, recent data using a 5-HT1DR agonist failed to block the expression of 

methamphetamine-CPP in rats elucidating a primary role for the 5-HT1BRs (Shahidi, 

Komaki, Sadeghian, & Soleimani, 2018).  More research is needed to determine the 

potential contribution of other receptors from the serotonin 1 family to the effects 

observed with CP94253 in the present studies. 

We used mice for this dissertation research with the idea that the tools for genetic 

manipulation are much more available and advanced than those for rats. However, with 

the advantages come disadvantages, one being the integrity of surgically implanted 

cannula in mice that are group housed for these extended experiments, and another being 

the differences in stress response between species (Hoplight et al., 2007; Ryabinin et al., 

1999;). Daily repeated injections across days causes chronic stress in mice even though it 

is only a mild stressor for rats. We observed clear cross-sensitization between cocaine 

and injection stress, and the results further suggested that group housing drug naïve mice 

with methamphetamine-treated mice was also a stressor that cross-sensitizes with 

methamphetamine (Chapter 2). We were able to decipher effects of the chronic stress in 

the saline control group in this study by changing our housing conditions. However, in 

our cocaine group, it is difficult to separate the effects of cocaine from chronic injection 

stress which is inherent in the cocaine administration regimen. It would be beneficial to 

assess chronic cocaine effects separately from chronic cocaine + stress effects but that is 

challenging in mice. Given that a contributor to relapse and initial drug use is stress, it 

would be interesting to parse out how much of a contributor stress is to continued use of 
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an illicit substance. Although stress was a limitation for aspects of the current research, 

chronic stress in studies concerning mental health outcomes may provide an even more 

accurate model.  

Mental illness tends to be comorbid with SUDs and vice versa (Kelly & Daley, 

2013; Ross & Peselow, 2012). Around 1 in 4 individuals with a serious mental health 

illness also have some type of co-occurring SUD, although this does not necessarily mean 

that one caused the other (www.drugabuse.gov/publications/research-reports/common-

comorbidities-substance-use-disorders). High rates of comorbidity are seen with anxiety 

disorders, as well as depression (Conway, Compton, Stinson, & Grant 2006; Torrens, 

Gilchrist, & Domingo-Salvany, 2011). SUDs have a high prevalence with psychotic 

illness, ADHD, bipolar, and personality disorders (De Alwis, Lynskey, Reiersen, & 

Agrawal, 2014; Florez-Salamanca et al., 2013; Torrens et al., 2011). Preclinical studies 

suggest that 5-HT1BRs may play a role in such comorbidities. For instance, Nautiyal et al. 

(2016) found that blocking 5-HT1BR autoreceptors using an inducible knock-out mouse 

attenuates behaviors that model anxiety and depression. Often those with mental illness 

‘self-medicate’ with substances. Drug use can also enhance or bring about symptoms of 

mental illness such as psychosis. Thus, it is important to consider if 5-HT1BR 

functionality and expression is affected by mental illnesses, and if 5-HT1BR regulation of 

cocaine- and methamphetamine- addictive behaviors is changed in a comorbid model.   

 Impulsivity is a known predictor of SUDs especially in combination with other 

factor such as stress, anxiety, and genetic phenotype. Impulsivity is a complex trait 

involving 1) an inability to reflect on the consequences of ones’ actions; 2) an inability to 

forego an immediate smaller reward for a larger reward in the future; and/or 3) a deficit 
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in suppressing prepotent motor responses (Chamberlain & Sahakian, 2007).  For 

example, high impulsivity precedes the escalation of cocaine self-administration behavior 

and the tendency toward compulsive cocaine-seeking and relapse (for review, see Dalley, 

Everitt, & Robbins, 2011). Furthermore, research has shown the maturation of 

connections between the PFC, basal ganglia, and cerebellum are crucial for the 

development of higher cognitive functions (Delgado 2007; Hare et al., 2008; Heyder, 

Suchan, & Daum, 2004). Those who are more impulsive tend to be risk-takers and have 

reduced control of their impulses. In a preclinical analogue, Nautiyal et al. (2015) found 

that expression of 5-HT1BR heteroreceptors in adulthood modulates impulsive behavior 

using an inducible knock out mouse model. It would be interesting to replicate some of 

our current findings using a strain of impulsive mice and investigate possible alterations 

in the role the 5-HT systems play in addiction within this strain.   

Drug use is often initiated during early adolescence (Bukstein & Horner, 2010; 

Kandel & Logan, 1984; Sheidow, McCart, Zajac, & Davis, 2012) and typically when the 

first signs of mental illness appear. Peri-adolescent rodents tend to be more sensitive to 

the rewarding and reinforcing effects of drugs of abuse (O'Dell, 2009). This 

distinguishing feature makes adolescent rodents and humans more vulnerable to drug 

effects than adults. Executive control circuits such as decision making and inhibition of 

impulses, as well as frontolimbic circuits continue to develop until early adulthood and 

are among the last group of circuits to mature (Hare et al., 2008; Kelly & Daley 2012; 

Winters et al., 2014). Neurobiological differences in the brain reward circuitry exist 

between adolescents and adults (for review, see Schepis, Adinoff, & Rao, 2008) 

including differences in basal dopamine levels (Stansfield & Kirstein, 2005), receptor 
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pruning (Seeman et al., 1987), and differences in maturation in the cannabinoid, 

glutaminergic, GABAergic and 5-HTergic systems (for review, see Schepis et al., 2008). 

The PFC circuitry not being fully development leaves adolescents with less inhibition of 

executive function and impulse control along with an increase in risk-taking behavior (for 

review, see Schepis et al., 2008). Previous research does show that adolescent rodents 

respond to serveal drugs, including cocaine, methamphetamine, alcohol, differently than 

adults (for review, see Spear 2016). Given the lack of fully developed circuits during the 

adolescent age period (for review, see Schepis et al., 2008), it would be noteworthy to 

test the effects of 5-HT1BR agonists on cocaine and methamphetamine use initiated 

during early adolescence. Peri-adolescence in mice is approximately postnatal day (PND) 

33 and the current experiment’s used mice between PND 45-50 at the beginning of the 

experiment. It would be interesting to determine if the enhancement and attenuation of 

drug-seeking behaviors follow patterns similar to that of adult rodents. Given that drug 

abuse often begins in adolescence, which is a critical period of vulnerability given 

immature circuitry, the effects of CP94253 can be tested with initial drug exposure 

initiating during the early developmental stage.    

Conclusion 

This dissertation supports the hypothesis that the 5-HT1BR agonist CP94253 can 

attenuate cocaine- and methamphetamine-seeking as well and non-conditioned drug-

related behaviors, albeit during different stages of the addiction cycle. The data from 

these experiments suggest that 5-HT1BRs reduce the motivation for cocaine and 

methamphetamine. Potential mechanisms underlying these effects may include the 

amygdala, NAc, and VTA neurocircuitries. Future lines of research should further 
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explore neuronal subtype specificity as well as the FDA approved 5-HT1B/1DR agonist 

Zomaltriptan. Lastly, it is important to investigate if the rodent model translates to 

cessation of drug seeking in humans. The findings from this dissertation point to an 

exciting avenue in understanding the influence of 5-HT1BRs in the development, 

expression, relapse, and treatment for SUDs.  
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Table 1 

Percent of Fos Co-localization with GAD67 in Methamphetamine-Conditioned mice and 
Saline-Controls 
 
 

Brain 
Region 

N 
% Co-localization 

Fos+GAD67 

VTA 26 69.7% 

dmCPu 26 55.4% 

NAcC 22 57.9% 

NacS 22 45.9% 

CeA 28 63.2% 

BlA 27 20.2% 

PrL 27 67.0% 

IL 26 34.4% 

 
 
Note. Mean+SEM of Fos positive cells co-localize with GAD67 per mm2 for the VTA, 
dmCPu, NAcS, NAcC, CeA, BlA, PrL, and IL. Mice were conditioned with saline or 
methamphetamine (1 mg/kg, IP) for 4 consecutive days. Mice that formed a 
methamphetamine-CPP were divided into 2 groups for the expression test which occurred 
72 hours after the CPP test. Saline controls received saline at all time points. One group 
of mice conditioned with methamphetamine was pretreated with saline and the other with 
10 mg/kg CP94253 30 min prior to the 15-min Expression test. 75 minutes after the 
behavior test mice were perfused transcardially and brains were harvested. Tissue was 
sliced at 40 microns. We determined the density of Fos and GAD67+Fos, per mm2 of 
each analyzed region. To calculate the percent of Fos cells co-labeled with GAD67, we 
divided number of Fos cells co-labelled with GAD67 by total Fos labelled cells. 
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Figure 1. Time for cocaine locomotor experiment (A). Timeline for cocaine CPP 
extinction-reinstatement experiment (B).   
 

 

EXPERIMENT 1 TIMELIME 

Days 1-20 Day 21 Days 22-41 Day 42 

Chronic daily 
injections 

Pre-abstinence 
test 

Abstinence (i.e., 
no injections) 

Post-abstinence 
test 

Pretreatment 
(saline or 10 mg/kg CP94253) 

30 min 

→ 
Challenge 

(saline or 5 mg/kg cocaine) 

 

A 

B 
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Figure 2. Distance traveled (meters ± SEM) by mice that received either chronic daily 
injections of saline (A) or 10 mg/kg cocaine (B) and were tested both 24 h after the last of 
20 injections (i.e., before abstinence, white bars) and 20 days after (i.e., after abstinence, 
gray bars), n=8-11/group. Contrary to prediction, there was no effect of chronic treatment 
conditions nor interactions with cocaine challenge (0 or 5 mg/kg, IP) or CP94253 (0 or 10 
mg/kg, IP), so further analyses were conducted averaged across the chronic treatment 
variable.   
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Figure 3. Contrary to prediction, there was no effect of chronic treatment conditions nor 
interactions with cocaine challenge (0 or 5 mg/kg, IP) or CP94253 (0 or 10 mg/kg, IP), so 
further analyses were conducted averaged across the chronic treatment variable (A). This 
analysis yielded a challenge injection by day interaction (B) and a pretreatment by day 
interaction (C). Asterisk (*) represents a significant post-hoc comparison, p<0.05; Plus 
sign (+) represents a significant planned comparison, p<0.05. Double plus (‡) represents 
a significant difference from respective vehicle condition, Bonferroni t-test p<0.001. 
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Figure 4. Distance traveled (meters ± SEM) by injection-naïve mice that were treated the 
same as mice in the previous experiment (see timeline on Figure 1) except that they were 
not given daily injections over the first 20 days of the experiment, but were instead left 
undisturbed in their home cages except for twice weekly tail marking for identification. 
On the test days, the mice received an injection of either saline or CP94253 (10 mg/kg, 
IP) and 30 min later received a saline or cocaine (5 mg/kg, IP) injection (n=11-12/group). 
Plus sign (+) represents a significant difference from saline-challenged groups, p<0.001 
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Figure 5. Results of 15-min preference tests to assess baseline preference, cocaine-CPP, 
and extinction of cocaine-CPP (A). Subsequently, mice that had received repeated saline 
injections (white bars) or repeated cocaine injections (black bars) prior to and during 
conditioning were tested for reinstatement of CPP (B) following pretreatment with either 
saline or CP94253 (10 mg/kg, IP) and a priming injection of either saline (Sal) or cocaine 
(15 mg/kg, IP; Coc) 30 min later and immediately prior to the test (n=9-11/group). Values 
are the time (s ± SEM) in the initially non-preferred compartment (i.e., cocaine-paired 
side for conditioned mice) and dashed line represents 50% of the total test time such that 
values above the line illustrate a preference switch. Asterisk (*) represents difference 
from saline group, Bonferroni t-test p<0.001. Plus (+) represents difference from all other 
groups, Tukey test, p<0.05.  
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Figure 6. Schematic representing efferent and afferent connections of the prelimbic 
cortex (PrL), infralimbic cortex (IL), nucleus accumbens shell (NAcS) and core (NAcC), 
caudate-putamen (CPu), basolateral amygdala (BlA), central nucleus of the amygdala 
(CeA), ventral tegmental area (VTA), dorsal raphe nucleus (DRN).  
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Figure 7. Schematic representation of coronal sections of the mouse brain taken at +1.41, 
+1.09, -1.23, and -3.07 mm from Bregma (Paxinos and Franklin, 2013). Numbers in the 
sections represent the regions analyzed for Fos as follows: (1) Prelimbic region (PrL) of 
the medial prefrontal cortex (mPFC); (2) Infralimbic region (IL) of the mPFC; (3) 
nucleus accumbens core (NAcC); (4) nucleus accumbens shell (NAcS); (5) dorsal medial 
caudate-putamen (dmCPu); (6) basolateral amygdala (BlA); (7) central nucleus of the 
amygdala (CeA); (8) ventral tegmental area (VTA). 
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Figure 8. Mean+SEM of Fos-positive cells per mm2 measured in the VTA (top), dmCPu 
(middle), and CeA (bottom) in mice pretreated with vehicle or CP94253 (10 mg/kg, IP) 
30 min prior to a second injection of either saline or methamphetamine (METH; 3 mg/kg, 
IP; n=3-5/group). Brains were harvested 90 minutes after the second injection. Asterisk 
(*) represents ANOVA main effect of treatment (methamphetamine), p<0.05; (a) 
represents ANOVA main effect of Pretreatment (CP94253) p<0.001; (b) represents 
ANOVA main effect of treatment (methamphetamine), p<0.001; (+) represents difference 
from all other groups, Bonferroni t-test, p<0.001. 
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Figure 9. Representative photomicrographs of the CeA, BlA, NacS, NacC, and VTA 
analyzed for Fos in all immunofluorescence experiments. Fos (Green), GAD67 (Red), 
and TH (Blue). GAD67 is a marker for GABA neurons while TH is a marker for 
dopaminergic.  
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Figure 10. Unconditioned effects of CP94253 (10 mg/kg, IP) and methamphetamine 
(METH; 3 mg/kg, IP) on Fos Expression (Green) in the CeA. Representative 
photomicrographs from Experiment 4 showing coronal sections at 20× magnification of 
the CeA showing the acute effects of CP94253 (10 mg/kg, IP). There is increased Fos in 
mice treated with either CP92453 or methamphetamine. When CP94253 was 
administered in combination with methamphetamine Fos increased compared to all other 
groups, Bonferroni t-test, p<0.001. Scale Bar = 50 microns. 
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Figure 11. Timeline of Experiment 5 examining the acquisition of methamphetamine-
CPP (n=8-12/group). and Experiment 6 examining the expression of methamphetamine 
CPP (n=10-12/group).   

A 

B 
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Figure 12. The time (sec +SEM) mice spent in the initially nonpreferred side during 15-
min preference tests to assess baseline preference (BL; white bars) and acquisition of 
methamphetamine-CPP (CPP; gray bars) are shown in A and locomotor activity rate (mm 
traveled/sec + SEM) is shown in B (n=8-12/group). The group titles on the X-axis 
indicate the animals’ pretreatment with either vehicle or CP94253 (10 mg/kg, IP) 30 min 
prior to receiving either saline or methamphetamine (METH; 3 mg/kg, IP). Mice were 
placed into their initially nonpreferred side immediately after these injections and during 
alternate sessions (see timeline) all groups received vehicle followed by saline 30 min 
later and were placed immediately into their initially preferred side. Dashed line 
represents 50% of the total test time such that values above the line illustrate a preference 
switch. Asterisk (*) represents difference from baseline, t-tests with Bonferroni 
correction, p<0.01. Plus (+) represents difference from vehicle/saline group, t-tests with 
Bonferroni correction, p<0.01. Double plus (‡) represents main effect of conditioning 
treatment p<0.01. 
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Figure 13. The time (sec +SEM) mice spent in the initially nonpreferred side during the 
15-min preference tests to assess baseline preference (white bars), establishment of 
methamphetamine-CPP (CPP test; gray bars), and expression of methamphetamine-CPP 
(Expression test; black bars) is shown in A. The group titles on the X-axis indicate the 
drug that mice received immediately prior to placement into the initially nonpreferred 
side during conditioning [i.e., either saline or 1 mg/kg, IP methamphetamine (METH)] 
and the drug that they received 30 min prior to the expression test (i.e., either vehicle or 
10 mg/kg, IP CP94253). All mice received saline immediately prior to placement into the 
initially preferred side during conditioning and no pretreatments were given prior to 
baseline or the initial CPP test. Dashed line represents 50% of the total test time such that 
values above the line illustrate a preference switch. Rate of distance travelled 
(mm/second +SEM) is shown for the initial CPP test day (B) and the Expression test day 
(C). Asterisk (*) represents difference from baseline, t-tests with Bonferroni correction, 
p<0.01. Plus (+) represents main effects, p<0.05.  
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Figure 14. Mean+SEM of Fos positive cells per mm2 for the (A) VTA, (B) dmCPu, (C) 
NAcS, (D) NAcC, (E) CeA, (F) BlA, (G) PrL, and the (H) IL (n=7-10/group). Mice were 
conditioned with saline or methamphetamine (1 mg/kg, IP) for 4 consecutive days. Mice 
that formed a methamphetamine-CPP were divided into 2 groups for the expression test 
which occurred 72 hours after the CPP test. Saline controls received saline at all time 
points (white bars). One group of mice conditioned with methamphetamine was 
pretreated with saline (middle grey bars) and the other with 10 mg/kg CP94253 
(rightmost grey bars) 30 min prior to the 15-min Expression test. 75 minutes after the test 
(i.e., 120 min post-pretreatment), mice were perfused transcardially, brains were 
harvested, and tissue slices (40 microns) were labeled for Fos. Asterisk (*) represents 
difference from control group, t-tests with Bonferroni correction p<0.016. Plus (+) 
represents difference from vehicle (Veh) pretreated methamphetamine-conditioned 
(METH-cond) group, t-tests with Bonferroni correction, p<0.016. 
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Figure 15. Representative photomicrographs from Experiment 6 showing coronal 
sections at 20× magnification in the CeA (left column), NAcS (middle column), and 
VTA (right column). Effects of CP94253 (10 mg/kg, IP) on Fos Expression (Green) in 
methamphetamine-conditioned (METH; 1 mg/kg, IP) and saline behavioral control mice. 
Methamphetamine-conditioned mice expressed reduced Fos in the CeA and increased 
Fos in the VTA. CP94253 increased Fos in the NAcS and VTA and reversed the decrease 
observed in the CeA. Scale bar = 50 microns. 
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Figure 16. Representative photomicrographs from Experiment 6 showing coronal 
sections at 20× magnification in the VTA. Double-label immunohistochemistry for Fos 
(green) and dopamine neuron marker TH (Blue; left panel) or GAD67 (red; right panel) 
in the VTA in methamphetamine-conditioned mice. We observed no co-localization of 
Fos with TH but approximately 70% of the Fos co-localized with GAD67. GAD67 is a 
marker for GABA neurons while TH is a marker for dopaminergic. Scale bar = 50 
microns. 
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Figure 17. Mean+SEM of Fos positive cells per mm2 for the (A) VTA, (B) dmCPu, (C) 
NAcS, (D) NAcC, (E) CeA, (F) BlA, (G) PrL, and the (H) IL (n=5-8/group). Mice were 
injected with saline (white bars) or 10 mg/kg, IP CP94253 (grey bars) 120 min prior to 
transcardial perfusion when brains were harvested for Fos protein immunohistochemistry. 
Asterisk (*) represents difference from Saline Group, t-tests p<0.05.  
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5-HT: serotonin 
BlA: basolateral nucleus  
CeA: central nucleus of the amygdala 
CPP: conditioned place preference 
CPu: caudate-putamen 
DA: dopamine  
DAPI: 4′,6-diamidino-2-phenylindole 
dmCPu: dorsomedial caudate-putamen 
FR: fixed ration 
GABA: Gamma-Aminobutyric Acid 
Glu: glutamate 
IHC: immunohistochemistry 
IL: infralimbic cortex 
KO: knockout 
PR: progressive ratio 
PrL: prelimbic cortex 
mPFC: medial prefrontal cortex 
NAc: nucleus accumbens 
NAcC: nucleus accumbens core 
NAcS: nucleus accumbens shell 
SA: self-administration 
SUD: substance use disorder 
TH: tyrosine hydroxylase 
VR: variable ratio 
VTA: ventral tegmental area 
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Curriculum Vitae 
Taleen Der-Ghazarian 

       
QUALIFICATIONS 

 Detailed statistical data analysis using Statistical Program for Social Sciences 
(SPSS) software 

o 10 plus years’ experience 
 Data analysis using SQL, R, and Python 

o 6 months experience 
 Data collection 

o Manual  
o Software Generated 
o 10 plus years’ experience 

 GraphPad Prism, Analyze and graphing software 
o 10 years’ experience 

 Extensive ability to use Word, Excel, PowerPoint 
o 18 years’ experience 

 Experience with Adobe illustrator and Adobe Photoshop 
o 2 years’ experience 

 Collaborations 
o 7 years’ experience – Interdepartmental 
o 4 years’ experience – Medical Setting 

 Mentoring Students 
o 10 plus years’ experience 

 Team Management and Lab organization 
o 10 plus years’ experience       

 Conference travel planning and organization 
o 10 years’ experience 

 Writing and implementing IACUC and IBC protocols 
o 7 years’ experience 

 Implementing Environmental, Health & Safety protocols (EH&S) 
o 7 years’ experience  

 Writing and implementing IRB protocols 
o 2 years’ experience 

 Online Course via Coursera: Teaching online 
o May 2017, 5 week course 

 Online Course via Coursera: Teaching Science at a University  
o May 2017, 5 week course 

EDUCATION 
 Neuroscience PhD 

Arizona State University, 2018 
o Under the supervision of Dr. Janet Neisewander 
o Graduate GPA: 4.0 

 
 General Experimental Psychology MA, 2012 
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California State University, San Bernardino 
o Emphasis: Behavioral Neuroscience 
o Under the supervision of Dr. Sanders McDougall and Dr. Cynthia 

Crawford 
o Graduate GPA: 4.0 
o DIDARP fellow, Sally Casanova Scholar 

 
 Biological Psychology BA, 2007 

California State University, San Bernardino 
o Psi Chi: National Honor Society in Psychology 
o Graduated with honors  

  

RESEARCH, DATA ANALYSIS, TEAM MANAGEMENT EXPERIENCE 
 Arizona State University, Research Assistant: 08/2011 - Present  

o School of Life Sciences, Neuroscience, Neuropharmacology of Drug Abuse 
Laboratory, Arizona State University, Tempe 
 I was responsible for designing the experiments I am conducting. This 

involves extensive literature reviews via the search engine Pubmed to 
design and execute a study using paradigms consistent to the literature in 
my field of study (drug abuse).  

 I collect and manage my experimental data within an SPSS database. 
Within SPSS statistical analysis on variables of interest is conducted. 

 The analyzed data is graphed using Prism and presented at conferences, 
seminars on campus, as well as publication in manuscript format.  

 Interdepartmental Collaboration with labs in the School of Life Sciences 
and as well the Psychology program in the School of Social and 
Behavioral Sciences.  

 Collaboration with St. Joseph’s Hospital, Barrow Neurological Institute. 
We first collected preliminary data to write a collaborative RO1 grant 
which received 4 years of funding. I managed the collaborative 
experiments we conducted during the 4 year span of the grant.   

 Mentorship of undergraduate research assistants: Mentor and teach 
students to conduct experiments as well as present the data at lab meetings 
(see “Students Mentored” below). 

 Mentorship of Barrett Honor College students: Mentor and teach students 
to design experiments, execute those experiments, and write a thesis. 
These students form a thesis committee and present their prospectus as 
well as their final thesis (see “Students Mentored” below). 

 Team Management is crucial for the lab to operate in an orderly fashion. I 
typically manage 4-6 assistants which requires their involvement in 
experiments, participation in data and lab  
meetings, and the maintenance and cleaning of the lab. 

 Organize conference travel for the lab (i.e., hotel and transportation) 
 Research Assistant and Lab Manager, California State University, San 

Bernardino: 03/2007 – 09/2011 
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o Department of Psychology, Neuropharmacology and Developmental 
Psychopharmacology Laboratories, California State University, San 
Bernardino 

 Similar to above with the following additions: 
 Managing and coordinating of behavioral experiments in the context of 

time and space availability. I was responsible for the scheduling of the 
behavioral experiments of all graduate students and played an overall 
supervisory role of 2 laboratories 

 Managing the breeding colony which involved reporting of the census to 
my PI daily, assigning of subjects to particular experiments, as well as 
following protocols implemented by IACUC for animal safety. 

TEACHING EXPERIENCE 
 Addiction and Recovery, Psych 334 (Spring 2018): Research and theories related 

to the psychological, behavioral and physiological basis of addiction and 
recovery. A variety of common addictive disorders will be considered including 
eating, smoking, gambling, work, sex and drugs. Learning Objectives: 1) To 
introduce students to the topic of Addiction & recovery, 2) to familiarize students 
with some of the theoretical and practical application aspects of this area, and 3) 
to provide students with enough information for them to be able to expand your 
investigation of, and/or involvement with, this area of psychology, should they 
choose to do so. 

o Lecture Professor  
o Lecture exams 
o In-class discussion/activities centered around an aspect of addiction.   

 
 Behavioral Neuroscience, Psych 442 (Winter 2018): Intensive review of the 

neural mechanisms underlying behavior. Considerable emphasis is placed on 
sensory, motor, and homeostatic functioning. Higher-order functioning, including 
learning and memory, will also be covered. Learning Objectives: The goal of 
this class is to build a strong base of general knowledge in behavioral 
neuroscience, and to prepare students for graduate level study. The information 
covered will primarily review the basic principles of the central nervous system. 

o Lecture Professor  
o Tests and Quizzes on lecture material for the first 5 weeks of the quarter 
o Class Presentations: 50% of class time is dedicated to students presenting 

a chapter from the textbook.  
o Research Paper: Based off the topic of their chosen chapter presentations, 

students find primarily research articles and incorporate them into a 
reaction paper. The first section is the Summary Section where the main 
points of each article are presented. The second section is the Evaluation 
Section where the overall quality and impact of the articles to the topic of 
interest is judged. Students assess whether the data support the author’s 
conclusions, whether the authors rejected or supported the experimental 
hypotheses presented in the Introduction, and the importance and 
relevance of the research project as it pertains to what is covered in the 
book chapter.  
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 Introduction to Experimental Psychology Writing Lab, Psych 311 (Winter 2018; 

Spring 2018; Summer 2018): Design and execution of psychological research. 
Four hours lecture and six hours laboratory. Learning Objectives: The primary 
objective of this lab class is to allow students the opportunity to experience the 
responsibilities involved in planning, conducting, and analyzing a psychological 
experiment. In addition, they will learn how to write a manuscript for publication 
of a psychological experiment. The process of doing research is vital, not the 
topic covered. The goal is to provide students with the fundamental skills needed 
to conduct and evaluate psychological research and to gain an understanding of 
the Scientific Method through hands-on experience. 

o Lecture Professor  
o Teach about Ethics in Research, APA Style writing, what plagiarism is 

and how to avoid it. 
o Conducted 2 experiments with the class and teach them experimental 

methodology and design. 
o Guide students to write manuscripts on the conducted experiments with all 

required section for a journal publication. 
 

 Anatomy & Physiology, BIO 201 (Fall 2017; Spring 2018; Summer 2018): 
Studies the structure and function of the human body. Topics include cells, 
tissues, integumentary system, skeletal system, muscular system, and nervous 
system. 

o Online Lab Teaching Assistant 
o Grading quizzes 
o Grading lab practicals 
o Grading lab reports 
o Textbook publisher: McGraw-Hill 
o Connect: Digital teaching and learning environment 
o Experience teaching an online-only course 

 
 Anatomy & Physiology, BIO 202 (Fall 2017; Spring 2018; Summer 2018): 

Studies the structure and function of the human body. Topics include 
cardiovascular, respiratory, lymphatic/immune, endocrine, renal, digestive, and 
reproductive systems. 

o Online Lab Teaching Assistant  
o Grading quizzes 
o Grading lab practicals 
o Grading lab reports  
o Textbook publisher: McGraw-Hill 
o Connect: Digital teaching and learning environment 
o Experience teaching an online-only course 

 
 Animal Physiology, BIO 360 (Spring 2016): Principles and mechanisms of 

physiological regulation in animals, with a focus on humans.  
o Lecture teaching assistant 
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o Developing test questions 
o Grading 
o Blackboard Maintenance 
o Mastering A&P: Digital teaching and learning environment 

 Question generating and grading 
o Turning Point in class clicker question management 
o Meeting with students during office hours 

 
PROFESSIONAL DEVELOPMENT AND OUTREACH  

 Served as a judge to assess travel, interview, internship, and research grants 
o 2011-2018 
o Monthly review of applications submitted by graduate students 

throughout all departments at ASU  
 GAINS (Graduate Association of Interdisciplinary Neuroscience Students) – Held 

the officer position of Treasurer: 2013, 2014, 2015 
o Hosting Brain fairs at elementary schools throughout the Phoenix 

metro area 
 Work with children of various ages to teach them about 

brain structures and function. 
o Organized “The Brain & You: Neuroscience at ASU” symposium; 

Poster session and guest speaker panel discussing: 
 ‘Career Options Outside Academia’: 2014, 2015 
 ‘The Next Step: Job Applications and Interviews’: 2016 

 
LABORATORY SKILLS 

 Unlearned behavior assessment 
o Locomotor Assessment: activity monitoring chambers (Coulbourn 

Instruments) 
o Rotorod 
o Plus maze 
o Tail flick 
o Hot plate 
o Stereotypy scale 
o Plus maze 

 Learned behavior assessment 
o Sucrose reinforced bar pressing  (Coulbourn Instruments) 
o Sucrose water preference 
o Condition place preference paradigm 
o Drug self-administration 
o Morris water maze 

 AAV Viral infusions (DREADDs) in NAc shell and core 
 Electroconvulsive Shock (ECS) 
 Injections 

o Intraperitoneal 
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o Subcutaneous 
o Intravenous 

 Surgical Skills 
o Small animal surgery 
o Operation of stereotaxic device 
o Coordinate verification  

 Microdialysis 
o Unilateral cannula implantation (caudate-putamen)  
o Operation and maintenance of microdialysis equipment (i.e., syringe 

pumps, fraction collector, tubing) 
 Microinjection 

o Bilateral cannula implantation (caudate-putamen, ventrolateral striatum, 
nucleus accumbens, medial prefrontal cortex, BLA, CEA) 

o Unilateral cannula implantation (lateral ventricles) 
o Precise microinjection procedure via Hamilton Syringes  
o Operation and maintenance of microinjection equipment (i.e., 

microinfusion syringes, syringe pumps, injectors) 
 Tissue Preparation  

o Homogenate Ligand Binding Assay 
o Dopamine HPLC 
o PKA Assay 

 Autoradiography 
 Fluorescence immunohistochemistry  
 Confocal Microscopy  
 Cardiac Perfusion 
 Brain Extraction 
 Tissue Sectioning  

o Cryostat 
o Vibrotome 

 Behavior assessment software 
o Truscan 
o Graphic State 
o Top Scan 

 Managed breeding colony 
 Makerbot2 3D printer Operation 
 Laser Etching and Rotary 

 
RESEARCH TOOLS & SKILLS 

 Data collection 
o Manual  
o Software Generated 

 Detailed statistical data analysis using Statistical Program for Social Sciences 
(SPSS) software 

o 9 plus years’ experience 
 Extensive ability to use Word, Excel, PowerPoint 

o 16 years’ experience 
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 Managed breeding colony 
o 2007-2011 

 GraphPad Prism, Analyze and graphing software 
o 9 years’ experience 

 Experience with Adobe illustrator and Adobe Photoshop 
o 2 years’ experience 

STUDENTS MENTORED 
 Cynthia Britt (Psychology undergraduate/graduate student) 
 Fausto Varela (MIDARP) 
 Tyler Stickney (MIDARP) 
 Joseph Valentine (MIDARP) 
 Joseph Pipkin (MIDARP) 
 Olga Kozanian (Psychology graduate student) 
 Ryan Lee (MARC) 
 Leslie Amodeo (Psychology undergraduate/graduate) 
 Alexandria Pothier (Psychology undergraduate/graduate) 
 Arnold Gutierrez (Psychology undergraduate/graduate/MIDARP) 
 Crystal Widarma (Biology/Chemistry undergraduate) 
 Krystal Whittenberg (Psychology undergraduate) 
 Kevin Castellanos (MARC) 
 Alena Mohd-Yusof (Psychology undergraduate/graduate) 
 Jellesa Johnson (MARC) 
 Rebecca Mirando (Undergraduate) 
 Kael Dai (Undergraduate) 
 Sam Brunwasser (Barrett’s Honors Collage/undergraduate) 
 Kathryn Stefanko (Undergraduate) 
 Pooja Viswanath (Barrett’s Honors Collage/undergraduate) 
 Vanessa Piscoya (Post baccalaureate) 
 Sean Noudali (Undergraduate) 
 Delaram Charmchi (Undergraduate) 
 Aysha Mahmud (Barrett’s Honors Collage/undergraduate) 
 Samantha Scott (PREP Program, Neuroscience MA) 
 Tanessa Call (Neuroscience PhD Rotation) 

CONFERENCE PRESENTATIONS  
 Der-Ghazarian T, Charmchi D, Noudali S, Mahmud A, Neisewander J (2017) Effects of 

a 5-HT1B receptor agonist on the acquisition and expression of methamphetamine-
conditioned place preference in C57BL/6 mice. Paper will be presented at the annual 
meeting of the Society for Neuroscience, Washington DC. 

 Der-Ghazarian T, Brunwasser S, Dai K, Stefanco K, Call T, Scott S, Noudali S, Garcia 
R, Neisewander J (2016)   Effects of a 5-HT1B receptor agonist on locomotion and 
reinstatement of cocaine-conditioned place preference after abstinence from repeated 
injections in mice. Paper presented at the annual meeting of the Society for Neuroscience, 
San Diego and International Society for Serotonin Research Meeting, Seattle WA. 
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 Der-Ghazarian T, Gao M, Wu J, and Neisewander J (2015) 5-HT1B receptor agonism 
has different effects on cocaine-induced locomotion and dopamine neuron activity in the 
VTA depending on time of testing after a repeated injection regimen in mice. Paper 
presented at American College of Neuropsychopjarmacology, Florida. 

 Der-Ghazarian T, Brunwasser S, Dai K, Pentkowski J, Neisewander J (2014) 
Effects of the 5-HT1BR agonist CP94253 on cocaine-induced locomotion before 
and after abstinence from repeated cocaine administration in C57BL/6 mice. 
Paper presented at the annual meeting of the Society for Neuroscience, 
Washington DC and The Brain and You: Neuroscience at ASU, Arizona. 

 Der-Ghazarian T, Pockros L, Mirando R, Brunwasser S, Pentkowski J, 
Neisewander J (2013) 5-HT2AR antagonism and 5-HT2CR stimulation attenuates 
hyperlocomotion produced by intra-striatal cocaine infusions. Paper presented at 
the annual meeting of the Society for Neuroscience, San Diego and The Brain and 
You: Neuroscience at ASU, Arizona. 

 McDougall SA, Pipkin JA, Der-Ghazarian T, Cortez AM, Gutierrez A, Lee RJ, 
Carbajal SM, Shaddox JL, Crawford CA (2013) Age-dependent differences in the 
persistence of cocaine-induced conditioned activity in adult and young rats: 
regional differences in Fos immunoreactivity.  Paper presented at the annual 
meeting of the International Behavioral Neuroscience Society, Dublin, Ireland. 

 Der-Ghazarian T, Varela FA, Lee R, Charntikov S, McDougall SA (2012) 
Repeated aripiprazole treatment causes receptor supersensitivity in young rats. 
Paper presented at the annual meeting of the Society for Neuroscience, New 
Orleans. 

 Pockros LA, Der-Ghazarian T, Pentkowski NS, Conway SM, Zwick K, Harder 
BG, Neisewander JL (2012) Effects of serotonin 2C receptor stimulation in the 
BLA on reinstatement of cocaine-seeking behavior and anxiety-like behavior on 
the elevated plus maze. Paper presented at the annual meeting of the Society for 
Neuroscience, New Orleans. 

 Valentine JM, Britt CE, Herbert MS, Der-Ghazarian T, Varela FA, Kozanian 
OO, Whittenburg KL, Pipkin JA, Johnson JD, Humphrey DE, Crawford (2012) 
Early methylphenidate exposure alters kappa opioid receptor mediated 
antinociception and body temperature. Paper presented at the annual meeting of 
the Society for Neuroscience, New Orleans. 

 Pentkowski NS, Harder B, Brunwasser S, Yanamandra K, Bastle R, Der-
Ghazarian T, Adams M, Alba J, Neisewander JL (2012) The effects of 5-HT1B 
receptors on motivation for cocaine vary depending on the length of abstinence. 
Paper presented at the annual meeting of the Society for Neuroscience, New 
Orleans. 

 Herbert MS, Valentine JM, Varela FA, Der-Ghazarian T, Kozanian OO, 
Amodeo LR, Whittenburg K, Lee RJ, Bradley LA, Crawford, CA (2012) The 
kappa opioid system is sensitized after early methylphenitdate exposure in the rat. 
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Paper presented at the annual meeting of the International Associated for the 
Study of Pain, Milan, Italy. 

 Pentkowski NS, Harder B, Brunwasser S, Bastle R, Der-Ghazarian T, Adams M, 
Alba J, Neisewander JL (2012) Stimulation of serotonin-1B receptors attenuates 
cocaine-abuse related behaviors following protracted withdrawal. Paper presented 
at the annual meeting of The College on Problems of Drug Dependence, Palm 
Springs. 

 Der-Ghazarian T, Guitierrez A, Widarma CB, Varela FA, McDougall SA (2011) 
Paradoxical behavioral effects of DA receptor inactivation in young rats: Receptor 
specificity. Paper presented at the annual meeting of the Society for 
Neuroscience, Washington DC. 

 Der-Ghazarian T, Pipkin JA, Gutierrez A, Carbajal SM, Cortez AM, McDougall 
SA (2011) Persistence of one-trial cocaine-induced conditioned activity in young 
and adult rats. Paper presented at the meeting of the annual Society for 
Neuroscience, Washington DC. 

 Valentine JM, Herbert MS, Der-Ghazarian T, Horn LR, Kozanian OO, Varela 
FA, Whittenburg K, Crawford, CA (2011) Effects of early methylphenidate 
exposure on DAMGO- and morphine-induced antinociception. Paper presented at 
the annual meeting of the Society for Neuroscience, Washington DC. 

 Der-Ghazarian T, Charntikov S, Varela FA, McDougall SA (2010) Effects of 
repeated aripiprazole treatment on the amphetamine-induced locomotor activity 
and stereotypy of preweanling rats. Paper presented at the annual meeting of the 
Society for Neuroscience, San Diego. 

 Der-Ghazarian T, Britt CE, Varela FA, Crawford CA, McDougall SA (2010)  
Long-term effects of postnatal manganese exposure on the expression of D2S and 
D2L receptor isoforms: impact on PKA activity, p-ERK, and p-AKT levels. Paper 
presented at the annual meeting of the Society for Neuroscience, San Diego. 

 Der-Ghazarian T, Horn LR, Herbert MS, Gutierrez A, Widarma CB, Charntikov 
S, McDougall SA (2010) Paradoxical behavioral effects of DA receptor 
inactivation in young rats: role of the dorsal caudate-putamen. Paper presented at 
the meeting of the annual Society for Neuroscience, San Diego. 

 Herbert MS, Charntikov S, Der-Ghazarian T, Horn LR, Widarma CB, 
McDougall SA (2010) Effects of D1 and D2 receptor stimulation in the dorsal 
caudate-putamen of preweanling rats: impact on locomotor activity and 
stereotypy. Paper presented at the annual meeting of the Society for 
Neuroscience, San Diego. 

 Palmer AG, Cortez AM, Herbert MS, Der-Ghazarian T, Britt CE, Castellanos 
KA, McDougall SA (2010) Temporal factors affecting the one-trial cocaine-
induced behavioral sensitization of young rats. Paper presented at the annual 
meeting of the Society for Neuroscience, San Diego. 
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 Stickney TC, Kozanian OO, Britt CE, Der-Ghazarian TS, Crawford CA (2010) 
Effects of preweanling methylphenidate exposure on sucrose preference and 
novelty-induced locomotor activity. Paper presented at the annual meeting of the 
Society for Neuroscience, San Diego. 

 Der-Ghazarian T, Britt CE, Varela F, Roper AJ, Crawford CA (2010) Effects of 
preweanling, preadolescent, and adolescent methylphenidate treatment on 
morphine-induced conditioned place preference. Paper presented at the annual 
meeting of The College on Problems of Drug Dependence, Scottsdale. 

 Taylor C, Der-Ghazarian T, Kaufman J (2010) The influence of age on 
popularity of performers between genders. Paper presented at the annual meeting 
of the Western Psychological Association, Cancun, Mexico. 

 Der-Ghazarian T, Britt C, Varela F, Roper A, Mobley R, Crawford C (2009) 
Effects of preweanling methylphenidate treatment on novelty-induced CPP.  
Paper presented at the annual meeting of the Society for Neuroscience, Chicago. 

 Herbert M, Der-Ghazarian T, Palmer A, McDougall S (2009) One-trial cocaine-
induced behavioral sensitization in the young rat: Effects of injection procedures 
and drug cues. Paper presented at the annual meeting of the Society for 
Neuroscience, Chicago. 

 Der-Ghazarian T, Martinez C, Koshino H (2009) Individual differences in 
working memory capacity and visual selective attention.  Paper presented at the 
annual meeting of the American Psychological Association, Toronto, Canada. 

 Der-Ghazarian T, Martinez C, Varela F, Crawford C, McDougall S (2008) 
Persistent effects of postnatal manganese exposure on protein kinase A (PKA) 
activity in the striatum, medial prefrontal cortex, and hippocampus of adults rats. 
Paper presented at the annual meeting of the Society for Neuroscience, 
Washington DC. 

PUBLICATIONS 
 Der-Ghazarian T, Call T, Scott S, Brunswasser S, Dai K, Noudali S, Pentkowski 

N, Neisewander J (2017) Effects of a 5-HT1B Receptor Agonist on Locomotion and 
Reinstatement of 
Cocaine-Conditioned Place Preference After Abstinence from Repeated Injections in 
Mice. Frontiers in Systems Neuroscience 11:73 

 McDougall SA, Pipkin JA, Der-Ghazarian T, Cortez AM, Gutierrez A, Lee RJ, 
Carbajal S, Mohd-Yusof A (2014) Age-dependent differences in the persistence 
of psychostimulant-induced conditioned activity in rats: effects of a single 
environment-cocaine pairing. Behavioral Pharmacology 25:695-704 

 Pockros-Burgess LA, Pentkowski NS, Der-Ghazarian T, Neisewander JL 
(2014). Effects of the 5-HT2C receptor agonist CP809101 in the amygdala on 
reinstatement of cocaine-seeking behavior and anxiety-like behavior. Journal of 
Neuropsychopharmacology 17:1751-1762 
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 Pentkowski NS, Harder BG, Brunwasser SJ, Bastle RM, Peartree NS, 
Yanamandra K, Adams MD, Der-Ghazarian T, Neisewander JL (2014). 
Pharmacological evidence for an abstinence-induced switch in 5-HT1B receptor 
modulation of cocaine self-administration and cocaine-seeking behavior. ACS 
Chemical Neuroscience 5:168-176 

 Der-Ghazarian T, Widarma CB, Gutierrez A, Amodeo LR, Valentine JM, 
Humphrey DE, Gonzalez AE, Crawford CA, McDougall SA (2014) Behavioral 
effects of dopamine receptor inactivation in the caudate-putamen of preweanling 
rats: role of the D2 receptor. Pschopharmacology 1:651-662 

 Varela FA, Der-Ghazarian T, Lee RJ, Charntikov S, Crawford CA, McDougall 
SA (2014) Repeated aripiprazole treatment causes D2 receptor up-regulation and 
dopamine supersensitivity in young rats. Journal of Pharmacology 28:376-386 

 Crawford CA, Der-Ghazarian T, Britt CE, Varela FA, Kozanian OO (2013) 
Novelty-induced conditioned place preference, sucrose preference, and elevated 
plus maze behavior in adult rats after repeated exposure to methylphenidate 
during the preweanling period. Behavioral Brain Research 246:29-35 

 Der-Ghazarian T, Gutierrez A, Varela FA, Herbert MS, Amodeo LR, and 
Charntikov S, Crawford CA, McDougall SA (2012) Dopamine receptor 
inactivation in the caudate-putamen differentially affects the behavior of 
preweanling and adult rats. Neuroscience 226C:427-440 

 McDougall SA, Pothier AG, Der-Ghazarian T, Herbert MS, Kozanian OO, 
Castellanos KA, Flores AT (2011) Importance of associative learning processes 
for one-trial behavioral sensitization of preweanling rats. Behavioural 
Pharmacology 22(7):693-702 

 Charntikov S, Der-Ghazarian T, Herbert MS, Horn LR, Widarma CB, Gutierrez 
A, Varela FA, McDougall SA (2011) Importance of D1 and D2 receptors in the 
dorsal caudate-putamen for the locomotor activity and stereotyped behaviors of 
preweanling rats. Neuroscience 183:121-133 

 McDougall SA, Der-Ghazarian T, Britt CE, Varela FA, Crawford CA (2011) 
Postnatal manganese exposure alters the expression of D2L and D2S receptor 
isoforms: Relationship to PKA activity and Akt Levels. Synapse 65(7):583-591 

 Cortez AM, Charntikov S, Der-Ghazarian T, Horn LR, Crawford CA, 
McDougall SA (2010) Age-dependent effects of kappa-opioid receptor 
stimulation on cocaine-induced stereotyped behaviors and dopamine overflow in 
the caudate-putamen: an in vivo microdialysis study. Neuroscience 169(1):203-
213 

 Der-Ghazarian T, Charntikov S, Varela FA, Crawford CA, McDougall SA 
(2010) Effects of repeated and acute aripiprazole or haloperidol treatment on 
dopamine synthesis in the dorsal striatum of young rats: comparison to adult rats. 
Journal of Neural Transmission 117(5):573-583 
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 Herbert MS, Der-Ghazarian T, Pothier A, McDougall SA (2009) One-trial 
cocaine-induced behavioral sensitization in preweanling rats: role of contextual 
stimuli. Experimental and Clinical Psychopharmacology 18(3):284-295 

 McDougall SA, Reichel CM, Farley CM, Flesher MM, Der-Ghazarian T, Cortez 
AM, Wacan JJ, Martinez CE, Varela FA, Butt AE, Crawford CA (2008) Postnatal 
manganese exposure alters dopamine transporter function in adult rats: Potential 
impact on nonassociative and associative processes. Neuroscience 154(2):848-860 

MANUSCRIPTS IN PREPARATION 
 Der-Ghazarian T, Pockros L, Pentkowski N, Mirando R, Brunwasser S, 

Neisewander J (2018) 5-HT2AR antagonism and 5-HT2CR stimulation attenuates 
intraCPu-induced cocaine hyperlocomotion. 

 Der-Ghazarian T, Noudali S, Charmchi D, Scott S, Neisewander J (2018) 5-
HT1B receptor agonist attenuates expression of methamphetamine-conditioned 
place preference and reverses Fos expression changes in male c57 mice. 

SUBMITTED MANUSCRIPTS  
 Chen D, Gao F, MA X, Yang K, Gao M, Chang Y, Der-Ghazarian T, 

Neisewander J, Su Q, Wu J (2017) Cocaine directly inhibits α6-containing 
nicotinic acetylcoline receptor-mediated currents in human SH-ER1 cells. 
October 2017 

AWARDS and SCHOLARSHIPS 
 Research and Travel Award, GPSA: 

o 2011 ($950), 2013 ($950), 2014 ($950), 2015 ($950), 2016 ($950), 
2017($950) 

 SOLS Department Travel Funding: 
o 2013 ($400), 2014 ($400), 2015 ($400), 2016 ($400), 2017 ($400) 

 Graduate College Travel Award:  
o 2017 ($500) 

 Arizona State University/Barrow Neurological Association Inter-Institutional 
Graduate Fellowship: 2013-2014  

o  Tuition coverage and $24,000 annual stipend  
 Doctoral Recruiting Fellowship, ASU: 2011-2012 

o Tuition coverage and $24,000 annual stipend  
 Graduate Equity Fellowship, CSUSB: 

o 2010-2011 ($3000), 2009-2010 ($3000) 
 California Pre-Doctoral Fellowship, Sally Casanova Scholar, CSUSB: 

o 2010-2011 ($2000) 
 MIDARP Scholar, CSUSB:  

o 2010-2011, 2009-2010, tuition reimbursement and monthly $1000 
stipend 

 First Place Award: CSUSB Research Conference Day, 2010 
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 CSUSB Research and Travel Award, ASI:  
o 2012 (1 award), 2011 (1 award), 2010 (3 awards), 2009 (3 awards), 2008 

(2 awards), 2007 (1 award)   
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