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ABSTRACT

Biochemical reactions underlie all living processes. Their complex web of interac-

tions is difficult to fully capture and quantify with simple mathematical objects. Ap-

plying network science to biology has advanced our understanding of the metabolisms

of individual organisms and the organization of ecosystems, but has scarcely been

applied to life at a planetary scale. To characterize planetary-scale biochemistry, I

constructed biochemical networks using global databases of annotated genomes and

metagenomes, and biochemical reactions. I uncover scaling laws governing biochemical

diversity and network structure shared across levels of organization from individuals

to ecosystems, to the biosphere as a whole. Comparing real biochemical reaction

networks to random reaction networks reveals the observed biological scaling is not a

product of chemistry alone, but instead emerges due to the particular structure of

selected reactions commonly participating in living processes. I perform distinguisha-

bility tests across properties of individual and ecosystem-level biochemical networks

to determine whether or not they share common structure, indicative of common

generative mechanisms across levels. My results indicate there is no sharp transition

in the organization of biochemistry across distinct levels of the biological hierarchy—a

result that holds across different network projections.

Finally, I leverage these large biochemical datasets, in conjunction with planetary

observations and computational tools, to provide a methodological foundation for the

quantitative assessment of biology’s viability amongst other geospheres. Investigating

a case study of alkaliphilic prokaryotes in the context of Enceladus, I find that the

chemical compounds observed on Enceladus thus far would be insufficient to allow

even these extremophiles to produce the compounds necessary to sustain a viable

metabolism. The environmental precursors required by these organisms provides a
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reference for the compounds which should be prioritized for detection in future plane-

tary exploration missions. The results of this framework have further consequences in

the context of planetary protection, and hint that forward contamination may prove

infeasible without meticulous intent. Taken together these results point to a deeper

level of organization in biochemical networks than what has been understood so far,

and suggests the existence of common organizing principles operating across different

levels of biology and planetary chemistry.

ii



DEDICATION

Dedicated to my grandpa—your jocular disposition and appreciation of nature were an

inspiration to me, and they continue to inspire me every day.

iii



ACKNOWLEDGMENTS

There are many people to whom I owe thanks for helping get me to the end of

my PhD: My mom and dad, for always encouraging me to pursue my interests with

unwavering support; my brother, for the much needed distractions of lighthearted

articles and games; Melissa, who was always down to talk about life, science, and

field my weird biochem questions; everyone in eLife/Elife/ELife/ELIFE—but special

thanks to. . . Doug, an invaluable resource not only for his intellect but his patience;

Cole, who was a sounding board for my crazy ideas and shared my love of music and

the outdoors; Jake, who stoked my entrepreneurial and artistic spirits; Tucker, who

was an enigma; Hyunju, who embraced continually editing and improving our work;

and of course Sara, whose curiosity and positivity were infectious—and who brought

me to, and sent me to, conferences and workshops of all subjects, and never had to be

convinced of the value of that sort of thing.

Shout out to all the coffee shops (and the baristas therein) that caffeinated me

through my PhD... Gold Bar, where I came often at the start of my PhD to code and

read; Cartel and Sip, where I came to work in mornings and afternoons; The Gelato

Spot, where I wrote large parts of my third and fourth chapters late at night; and

Royal, where I was a regular every week for most of graduate school.

Lastly, thanks to my partner Liz who has supported me in every way imaginable

through most of my PhD—be it with delectable cooking, words of encouragement, or

planning fun nights out after long weeks, just to name a few of the ways.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 UNIVERSAL SCALING ACROSS BIOCHEMICAL NETWORKS ON

EARTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Scaling laws describe biochemical networks and catalytic

diversity across levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Real networks exhibit different scaling behavior than random

chemical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Scaling-laws represent shared constraints re-emerging across

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Network structure predicts evolutionary domain . . . . . . . . . . . 26

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Obtaining genomic and metagenomic information . . . . . . . . . . 33

2.5.1.1 Genomes (PATRIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1.2 Metagenomes (JGI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1.3 Biosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Network Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



CHAPTER Page

2.5.2.1 Biological Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2.2 Parsed Biological Networks . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2.3 Random Genome Networks . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2.4 Random Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2.5 Frequency-sampled Random Reaction Networks . . . . . . 38

2.5.3 Fitting network measure scaling and permutation tests . . . . . 38

2.5.4 Predicting evolutionary domain from topology . . . . . . . . . . . . . 40

2.6 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Network Representations of Catalyzed Biochemical Reaction 41

2.6.2 Topological Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.2.1 Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2.2 Clustering coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2.3 Shortest path length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.2.4 Assortativity (degree correlation coefficient) . . . . . . . . . 43

2.6.2.5 Betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.9 Supplementary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9.1 Data file S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9.2 Data file S2A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9.3 Data file S2B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.9.4 Data file S2C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 NO LOVE FOR POWER-LAWS IN BIOCHEMICAL NETWORKS . . . 61

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



CHAPTER Page

3.2 Author Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Where biochemical systems succeed and fail scale-free clas-

sifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.1.0.1 Goodness-of-fit p-value. . . . . . . . . . . . . . . . . . . . . . . 71

3.4.1.0.2 Tail size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1.0.3 The power-law exponent, α. . . . . . . . . . . . . . . . . . . 72

3.4.2 Meeting the threshold for scale-free classification is depen-

dent on the network representation . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2.0.1 Comparing to alternative distributions. . . . . . . . . 73

3.4.2.0.2 Goodness-of-fit p-value. . . . . . . . . . . . . . . . . . . . . . . 73

3.4.2.0.3 Tail size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.2.0.4 The power-law exponent, α. . . . . . . . . . . . . . . . . . . 74

3.4.2.0.5 Correlation of results between projections. . . . . . 75

3.4.3 Distinguishing individuals and ecosystems based on their

degree distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.3.0.1 Multinomial regression. . . . . . . . . . . . . . . . . . . . . . . 75

3.4.3.0.2 Random Forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.1 Obtaining biological data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.2 Generating Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6.3 Assessing the power-law fit on degree distributions . . . . . . . . . 85

vii



CHAPTER Page

3.6.4 Classifying network scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6.4.0.1 Standard error and correlation. . . . . . . . . . . . . . . . 89

3.6.5 Classifying levels of biology using degree distribution data . . 90

3.6.5.0.1 Multinomial regression. . . . . . . . . . . . . . . . . . . . . . . 90

3.6.5.0.2 Random forest classifiers. . . . . . . . . . . . . . . . . . . . . . 91

3.7 Supporting Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7.1 Supporting Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7.2 Supporting Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 ASSESSING THE VIABILITY OF BIOCHEMICAL NETWORKS

ACROSS PLANETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Prokaryotic viability on Enceladus . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Identifying the compounds necessary to make prokaryotes

viable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.1 Defining the networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.2 Executing the network expansion . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.3 Identifying minimal seed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.4 Comparing and clustering seed sets . . . . . . . . . . . . . . . . . . . . . . . 117

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



CHAPTER Page

APPENDIX

A STATEMENT OF CO-AUTHOR PERMISSIONS . . . . . . . . . . . . . . . . . . . 134

ix



LIST OF TABLES

Table Page

1 Percentage of Networks in Each Dataset with Nodes in the LCC . . . . . . . . . . . . 56

2 Distinguishability of Individuals and Ecosystems, and Ecosystems and Ran-

dom Genome Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Random Forest Accuracy by Network Projection Type. . . . . . . . . . . . . . . . . . . . . 94

4 Compounds Used for Enceladus Seed Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Compounds in the Target Metabolite Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

x



LIST OF FIGURES

Figure Page

1 Enzyme Diversity of Ecosystems across Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Three Alternative Scenarios for How Biochemical Network Structure Might

Be Similar or Dissimilar across Levels of Organization . . . . . . . . . . . . . . . . . . . . . . 15

3 Common Scaling Laws Describe Biochemical Networks across Levels of Or-

ganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Scaling Laws Distinguish Biochemical Networks from Random Networks

across Levels of Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Scaling Laws for Individuals and Ecosystems Are Statistically Distinguishable

for Some Network and Catalytic Diversity Measures . . . . . . . . . . . . . . . . . . . . . . . 26

6 The Biosphere-Level Chemical Reaction Network . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Percentage of Nodes in the Largest Connected Component (LCC) of a Network

versus the Size of Its LCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Reaction Knockout for Unipartite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Additional Network Measures for Individuals and Ecosystems Show Universal

Scaling across Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 Scaling of Bipartite Network Structure for Individuals and Ecosystems . . . . . . 49

11 Additional Network Measures for Randomly Sampled Individuals and Ran-

domly Sampled Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

12 Scaling of Bipartite Network Structure for Randomly Sampled Individuals

and Randomly Sampled Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13 Distributions of Network Sizes for Each Domain and across Levels of Organi-

zation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

14 Biochemical Diversity and Network Topology Measures for Parsed Datasets . 53

xi



Figure Page

15 Biochemical Diversity and Network Topology Measures for Domain-Weighted

Frequency-Sampled Random Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

16 The Process to Encode a Biochemical Reaction as a Network Representation 55

17 How Biochemical Datasets Are Decomposed into Network Projections . . . . . . . 67

18 The Vast Majority of Individual and Ecosystem Level Networks Are Not

Scale-Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

19 The Number of Network Projections within Each Dataset Which Meet Some

Scale-Free Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

20 The Distribution of P-Values, Tail-Sizes, and Power-Law Alpha Values for

Biochemical Network Degree Distributions, over All Network Projections . . . . 71

21 How Alternative Distributions Compare to the Powerlaw across Each Network

Projection Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

22 Correlations between Network Projections Which Meet Scale-Free Criteria . . 77

23 Predicting Individuals and Ecosystems from Degree Distribution Data Using

Multinomial Regression vs. Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

24 Predicting Individuals and Ecosystems from Degree Distribution Data Using

Multinomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

25 Histograms from the Network Expansions for Prokaryotes Using the Enceladus

Seed Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

26 Characteristics of Minimal Seed Sets Which Produce Target Metabolites . . . . 105

27 Similarity of All Seed Sets within Each Organism . . . . . . . . . . . . . . . . . . . . . . . . . . 106

28 The Similarity of Seed Sets between Organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

29 The Top 100 Most Common Seed Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



Figure Page

30 The Network Expansion of Earth’s Biosphere Using Compounds Available

on Enceladus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xiii



Chapter 1

INTRODUCTION

There is increasing interest in whether biology is governed by general principles,

not tied to its specific chemical instantiation or contingent upon its evolutionary

history [1–3]. Such principles would be strong candidates for being universal to all life

[4, 5]. Universal biology, if it exists, would have important implications for our search

for life beyond Earth [6–9], for engineering synthetic life in the lab [10, 11], and for

solving the origin of life [12, 13]. Systems biology provides promising quantitative

tools for uncovering such general principles [14–16]. So far, systems approaches have

primarily focused on specific levels of organization within biological hierarchies, such

as individual organisms [17, 18] or ecological communities [19, 20], and are rarely

applied to the biosphere as a whole. But, biology exhibits some of its most striking

regularities moving up in levels of organization from individuals to ecosystems, and

these regularities may only truly manifest at the level of ecosystems, and ultimately the

biosphere [21, 22]. For example, while individual organismal lineages fluctuate through

time and space, the functional and metabolic composition of ecological communities

is stable [23, 24]. To understand the general principles governing biology, we must

understand how living systems organize across levels, not just within a given level

[25–27].

But what is the best way to quantitatively describe the relationship between

these living systems existing in embedded hierarchical levels? By what means can we

capture how an individual cell’s biochemical reactions interface with neighboring cells,

and the cellular communities that intertwine to sustain the biosphere?

1



One option (natural to a physicist) would be to use statistical mechanics. Statistical

mechanics was developed in the 19th century for studying and predicting the behavior of

systems with many components. It has been hugely successful in its application to those

physical systems well-approximated by idealized models of non-interacting particles.

However, real-world systems are often much more complex, leading to a realization

over the last several decades that new statistical approaches are necessary to describe

biological and technological systems. Among the most logical mathematical frameworks

for developing the necessary formalism is network theory, which projects the complex

set of interactions composing real systems onto an abstract graph representation

[16, 17, 28–37]. Such representations are powerful in their capacity to quantitatively

describe the relationship between components of complex systems and because they

permit inferring function and dynamics from structure [38–42].

Here, a network (or alternatively a graph) is simply a mathematical structure

which can capture the relationship between components in a system [32, 34]. There

are two building blocks of a network, the nodes and edges. Depending on what type

of relationships we are hoping to describe, we can vary the components of our system

represented by these node and edges. Perhaps the most canonical real-world example

of a network is a social network. In this network, nodes often represent people, with

edges connecting people who are friends. The algorithms developed around network

theory then allow us to easily quantify properties of this social network which are of

interest to researchers studying social systems.

For instance, say we are interested in how “cliquey” the physics department at

ASU is—that is, does everyone tend to intermingle equally, or does there tend to be

more mingling between small groups of people? First, we would want to obtain a list

of all the students in the department. This defines all the nodes in our network, since

2



each student is represented as a node. Then we would want to get a list of friends

for each of those students. This defines all the edges in our network, since an edge in

this case simply represents if two people are friends. Collectively, the arrangement of

all the nodes and links in a network is called the network topology. Using a network

clustering algorithm on the network topology, we could then estimate the number

of clusters in the department. If there are many clusters, then we would say the

department is cliquey.

As easily as we can represent a social system using a network formalism, we

can represent a chemical system. Instead of nodes and edges denoting people and

friendships as they do in a social network, a chemical system would denote nodes and

edges as chemical compounds and shared reactions. For instance, in using network

theory to describe a chemical system, two nodes would be connected if they constituted

compounds on opposite sides of a reaction.

The simplicity of network theory’s description of a system as complex as biochem-

istry is exactly why it is such a useful tool for probing the architecture of life. To fully

characterize living chemical processes, the collective behavior of reactions must be

understood—considering only individual components (molecules) is inadequate. The

structure of how these components interact with one another via reactions is precisely

what separates organized biological systems from messy chemical ones [13, 43, 44].

However, the problem of characterizing the structure of real-world systems is

compounded by the fact there are often many ways to coarse-grain a real system to

generate a network representation, each corresponding to a different way for a set of

interactions to be projected onto a graph. For example, metabolic networks—describing

the transformation of matter through catalysis of reactions—may be represented in

different ways. In our initial chemical network example, nodes (compounds) were
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connected by edges (reactions) if they appeared on opposite sides of a reaction. This

is referred to as a unipartite graph—’uni’ because there is only one type of node.

If we want to capture how enzymes fit into the network, we can represent enzymes

and compounds as two disjoint node types—and now we are dealing with a bipartite

network. Each of these different representations of the the same biochemical system

are referred to as network projections. In the bipartite projection, we would connect

compounds nodes to enzymes nodes if the enzyme requires or produces that compound

as part of any reactions it catalyzes. We could also imagine representing both reactions

and compounds as nodes in a bipartite network, connecting a reaction node to a

compound node if it is involved in the reaction.

These graphs projections can have different large-scale topological properties, even

when projected from the same underlying system [45–47]. The challenge of choosing a

projection arises because biochemical networks are themselves a multi-layer system

consisting of enzymes and their catalyzed reactions; enzymes (often abstracted away

in network representations) control the biological organization we aim to characterize

through reactions.

There is a rich body of literature which has made use of the fact that biochemical

systems can be represented using network theory for describing the complexity of life.

In general, this research has focused on a subset of biochemistry—such as metabolism—

and a subset of the hierarchy of life—such as individuals or the biosphere.[48–55].

For this dissertation, since I am interested in properties universal across life,

and not just subsets of living processes, I instead construct networks inclusive of

every known catalyzed reaction (regardless of pathway) at the scale of individuals,

ecosystems, and the biosphere as a whole.

In order to do this, I leverage two global databases of genomes and metagenomes,
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sampled from across life on Earth—the Pathosystems Resource Integration Center

(PATRIC) [56], and the Joint Genome Institute’s Integrated Microbial Genomes and

Microbiomes database (JGI IMG/m) [57]. In conjunction with reaction data cataloged

in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [58], it is possible to

construct biochemical networks for each individual organism (genome) and ecosystem

(metagenome). Building on prior work studying biosphere-level models of metabolism

[53–55], I use the database of all 8, 000+ enzymatically catalyzed reactions cataloged

in KEGG as a proxy for the biochemistry of the biosphere as a whole, modeled as a

‘soup of enzymes’ by disregarding the boundaries of individual species [19]. Network

representations of ecosystem-level and biosphere-level biochemistry are ‘compartment-

free’ in that no knowledge of individual species is included. Throughout each chapter

of this dissertation, I utilize the above global databases of omic data and enzymatically

catalyzed reaction data, in conjunction with network theory, to describe the structure

of biology.

In the first chapter of this dissertation, I seek to determine whether biochemical

networks display scaling laws governing their topology and chemical diversity which are

similar across levels, indicative of the existence of self-organizing principles universal

across life in the biosphere. A widely implemented framework for assessing commonality

across different systems is to look at their scaling behavior [59–64]. If scale-invariant

properties are found, it can be suggestive of deep, underlying organizing principles [3,

65, 66]. For example, organismal metabolic rates were observed to vary with organismal

body mass to the 3
4
power, even over enormous scales of 21 orders of magnitude [67].

Later a model based on fundamental physical principles, like minimizing energy

dissipation in fractal circulation systems was found to reproduce this scaling [65].

Another example is how distinctive scaling laws emerge in critical systems [68].
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The majority of network analyses applied to biochemistry have focused on the

structure within individual metabolic network degree distributions [41, 48, 69] I

instead focus on topological measures such as average shortest path length, average

clustering coefficient and assortativity (degree correlation coefficient), which are

directly comparable across different networks, allowing me to make statements about

regularities existing across biochemistry sampled from different levels of organization

in a manner that has not been possible in previous work focusing only on a given

level.

I show that biochemical networks share universal organizational properties across

levels, characterized by scaling laws determining how topology and biochemical

diversity change with network size. These scaling relations exist independent of

evolutionary domain or level of organization, applying across the nested hierarchy of

individuals, ecosystems, and the biosphere.

For the second chapter of my dissertation, I return to the topic of how best to

represent biochemical networks in order to capture properties representative of the

system that the network is describing. Within the formalism of network theory, one

of the simplest ways to capture insights into the global structure of a network is to

analyze the shape of its degree distribution—that is, the distribution of number of

connections that each node has. A huge volume of research into various complex

biological, technological and social networks has therefore focused on identifying the

shape of the corresponding degree distributions for network projections describing

those systems. One of the most significant results emerging from these analyses is that

many networks describing real-world systems exhibit ostensibly ’scale-free’ topology

[70–74], characterized by a power-law degree distribution. The allure of scale-free

networks is in part driven by the simplicity of their underlying generative mechanisms,
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for example a power-law degree distribution can be produced by relatively simple

preferential attachment algorithms [70], or to a lesser extent through optimization

principles [75]. This raises the question of determining which projection to analyze,

and whether or not a real-world system should be considered “scale-free” if only some

of its network projections exhibit power-law degree distributions.

Applying a newly developed formalism based on rigorous statistical methods, I find

that a majority of biochemical networks are not scale-free, independent of projection

or level of organization. I also demonstrate how the network properties analyzed herein

can be used to distinguish individual and ecosystem level networks, and find that

independent of projection, individuals and ecosystems share very similar structure.

For my third chapter, I pivot away from describing the topology of biological

networks, and instead use a dynamic biochemical network methodology to answer a

complementary question about life’s organization—how does it interface with the planet

from which it emerges? Despite the biosphere’s apparent interminable coexistence

with the geosphere, there remain many open questions on the matter of life persisting

in Earth’s absence. Quantifying the viability of Earth life outside of our own geosphere

is also necessarily important for understanding the possibility of terraformation, and

for forward contamination in the context of planetary protection [76–78].

To begin to address these topics, I must first lay the framework for determining

the environmental conditions required for a species to produce or acquire the chemical

compounds necessary to yield a viable metabolism. For this, I utilize the network

expansion method [79]: an organism can catalyze a reaction only if it has access to

the necessary substrates. The organism catalyzes all the reactions it can based on the

compounds available in its network, and then adds the new compounds it can generate
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to its network. This process proceeds iteratively until the organism can produce no

new compounds.

Network expansion models have been used to explore the scope of chemicals

accessible to biology across space and time on Earth, and how changing environments

and changing biochemical networks impact one another [80]. For example, the models

have been utilized to identify how oxygen drastically altered life’s biochemical networks

during the great oxygenation event [54]; how biochemistry differed before phosphorous

was widely available [53]; how organismal scopes vary across the tree of life [80, 81];

and how organismal metabolic variability is impacted both in the presence of diverse

environments and the presence of other species [82].

I lay out a framework for using network expansions to address the question of

life’s viability amongst other planetary chemistries, and then we work through a

case study of this framework to determine the viability of varying Earth organisms

within Enceladus’s planetary context. The results hint that forward contamination

from individuals may be much less concerning than contamination by a microbial

ecosystem which can emulate the robustness and catalytic capabilities of the biosphere—

reinforcing the perspective that the emergence of life on a planet is an extension of

the planet’s geosphere [21, 83].
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Chapter 2

UNIVERSAL SCALING ACROSS BIOCHEMICAL NETWORKS ON EARTH

This chapter was written in collaboration with Hyunju Kim, Cole Mathis, Jason

Raymond and Sara I. Walker. It is pending acceptance in Science Advances. An

earlier version is posted on bioRxiv [84]

2.1 Abstract

The application of network science to biology has advanced our understanding

of the metabolism of individual organisms and the organization of ecosystems, but

has scarcely been applied to life at a planetary scale. To characterize planetary-scale

biochemistry, we constructed biochemical networks using a global database of 28,146

annotated genomes and metagenomes, and 8,658 cataloged biochemical reactions. We

uncover scaling laws governing biochemical diversity and network structure shared

across levels of organization from individuals to ecosystems, to the biosphere as a

whole. Comparing real biochemical reaction networks to random reaction networks

reveals the observed biological scaling is not a product of chemistry alone, but instead

emerges due to the particular structure of selected reactions commonly participating

in living processes. We show the topology of biochemical networks for the three

domains of life is quantitatively distinguishable, with > 80% accuracy in predicting

evolutionary domain based on biochemical network size and average topology. Taken

together our results point to a deeper level of organization in biochemical networks

than what has been understood so far.
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2.2 Introduction

There is increasing interest in whether biology is governed by general principles,

not tied to its specific chemical instantiation or contingent upon its evolutionary

history [1–3]. Such principles would be strong candidates for being universal to all life

[4, 5]. Universal biology, if it exists, would have important implications for our search

for life beyond Earth [6–9], for engineering synthetic life in the lab [10, 11], and for

solving the origin of life [12, 13]. Systems biology provides promising quantitative

tools for uncovering such general principles [14–16]. So far, systems approaches have

primarily focused on specific levels of organization within biological hierarchies, such

as individual organisms [17, 18] or ecological communities [19, 20], and are rarely

applied to the biosphere as a whole. But, biology exhibits some of its most striking

regularities moving up in levels of organization from individuals to ecosystems, and

these regularities may only truly manifest at the level of ecosystems, and ultimately the

biosphere [21, 22]. For example, while individual organismal lineages fluctuate through

time and space, the functional and metabolic composition of ecological communities

is stable [23, 24]. To understand the general principles governing biology, we must

understand how living systems organize across levels, not just within a given level

[25–27].

In order to explore regularities within and between levels of organization, we adopt

a network view of biochemistry [17],[48, 50, 85] by constructing biochemical reaction

networks from genomic and metagenomic data. We show biochemical networks

share universal organizational properties across levels, characterized by scaling laws

determining how topology and biochemical diversity change with network size. These

scaling relations exist independent of evolutionary domain or level of organization,
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applying across the nested hierarchy of individuals, ecosystems, and the biosphere.

The biochemical diversity and network properties driving this scaling behavior are

predictive of evolutionary domain, indicating the biochemical network structure for

each domain is distinct even though all three conform to the same scaling behavior.

Our results provide a first quantitative demonstration that the application of network

theory at a planetary scale can uncover properties existing across different levels of

organization within the biosphere, and can be predictive of major divisions within a

given level (such as evolutionary domains). On the whole, our results provide new

paths forward for identifying universal properties of life.

Our analysis begins with a global database of genomes and metagenomes, sampled

from across life on Earth. We leverage available existing annotated genomic data

representing the three domains of life, including genomes of 21,637 bacterial taxa and

845 archaeal taxa from the Pathosystems Resource Integration Center (PATRIC) [56],

and 77 eukaryotic taxa from the Joint Genome Institute (JGI) [57]. Our metagenomic

data includes 5,587 metagenomes from JGI cataloging ecosystem-level biochemical

diversity across the planet, see Fig. 1.

From this data, we constructed biochemical networks for each individual organism

(genome) and ecosystem (metagenome) using reaction data cataloged in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [58]. Building on prior work study-

ing biosphere-level models of metabolism [53–55], we use the database of all 8,658

enzymatically catalyzed reactions cataloged in KEGG (at the time of data retrieval)

as a proxy for the biochemistry of the biosphere as a whole, modeled as a ‘soup of

enzymes’ by disregarding the boundaries of individual species [19]. Network represen-

tations of ecosystem-level and biosphere-level biochemistry are ‘compartment-free’ in

that no knowledge of individual species is included. Previous topological analyses of
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Figure 1. Enzyme diversity of ecosystems across Earth. Shown is the geographical
distribution of the 5,587 ecosystems in our study, colored by the number of different
enzyme functional classes (enzyme commission (EC) numbers) encoded in sampled
metagenomes (data from JGI). Despite large variances in the enzyme diversity and
what enzymes are present in each ecosystem, all ecosystems sampled are found to
conform to the same scaling behavior for biochemical diversity and topology as a
function of biochemical network size, see Fig. 3.

biochemical networks have primarily focused on the subset of biochemical reactions

associated with metabolism [50, 85]. Since we are interested in properties universal

across life, and not just subsets of living processes, we instead construct networks

inclusive of every known catalyzed reaction (regardless of pathway) coded by the

respective genome or metagenome, provided the reaction is cataloged in KEGG.

Adopting a network representation allows systematic quantification of topological

properties using graph theory and statistical mechanics [16, 17, 29, 30, 34–37]. Using

two different graph projections, we compare biochemical networks across levels to test

whether they are similar or different and compare to biologically-motivated, randomly

sampled networks (see Methods for details on network construction). Our use of the

term ‘random’ herein refers to the random sampling procedures we implement to

generate ensembles sharing some—but not all—properties with the ensemble of real
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biochemical networks (described below and in the Methods). These are specifically

used to isolate those properties of the real biochemical networks driving the reported

scaling behavior, and should be distinguished from more generic random networks,

such as Erdös-Rényi random graphs typically contrasted to chemical or biochemical

networks (see e.g. [48, 86, 87]). A widely implemented framework for assessing

commonality across different systems is to look at their scaling behavior [59–64].

If scale-invariant properties are found, it can be suggestive of deeper, underlying

organizing principles [3, 65, 66], such as when distinctive scaling laws emerge in critical

systems [68]. We therefore sought to determine whether biochemical networks display

scaling laws governing their topology and chemical diversity which are similar across

levels, indicative of the existence of self-organizing principles universal across biological

levels.

There are three alternative scenarios to be tested relating network structure across

individuals, ecosystems and the entire biosphere, each is shown in Fig. 2. In the

first, biochemistry does not have shared network structure across levels, and different

scaling behaviors emerge at different levels. In the second scenario, biochemistry has

shared network structure across levels, but this shared structure can be fully explained

by the structure of random chemical networks (generated from random collections

of biochemical reactions used by biology). In this case, real biochemical reaction

networks would be statistically indistinguishable from random reaction networks,

implying the self-organizing principles are solely chemical and not biological in origin.

In a third scenario, biochemistry has shared structure across levels, which is different

from that of random reaction networks. We find the third scenario to be consistent

with our analysis, suggesting the presence of universal organizing principles unique

to biology that recur across biological levels of organization. We show these can be
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explained as an emergent property of the topological structure of the most common

reactions participating in living processes.

Before proceeding to the details of our results, it is worth noting the well-known

challenges associated with the introduction of statistical artifacts when coarse-graining

real-world systems to generate graphical representations [47, 88]. For example, bipartite

network representations of biochemistry (treating reactions and substrates as two

disjoint sets of nodes) have information that cannot be recovered from unipartite

representations (which treat only substrates as nodes). The challenge of choosing a

projection arises because biochemical networks are themselves a multi-layer system

consisting of enzymes and their catalyzed reactions; enzymes (often abstracted away

in network representations) control the biological organization we aim to characterize.

To ensure the regularities we report are reflective of the true underlying organization

of biochemistry, and are not statistical artifacts introduced by a specific choice of

coarse-graining, we therefore consider both a unipartite and bipartite projection in our

analysis [47]. We also compare catalytic diversity—quantified in terms of the number of

enzymes and reactions—across levels, which is independent of network representation.

As we will show, common scaling laws describing biochemical networks across levels of

organization are consistently observed in each of these different views of biochemistry,

confirming our results are independent of the type of network representation.

One remaining consideration once a network representation is adopted is how

to analyze it. So far, the majority of network analyses applied to biochemistry

have focused on the ‘scale-free’ structure of metabolic networks [41, 48, 69]. For

example in a seminal paper by Jeong et al. [48], it was shown (using a unipartite

representation) that metabolic networks from all three domains of life exhibit the

characteristic power-law degree distribution of a scale-free network, with similar scaling
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Figure 2. Three alternative scenarios for how biochemical network structure might be
similar or dissimilar across levels of organization. For each scenario, illustrative plots
show examples of scaling behavior of some network property as function of network
size, where each data point corresponds to the measure for a single instance of a
network. In the first (A) biochemistry does not exhibit common network structure
across levels, and different properties emerge at different levels. In the second (B),
biochemistry has a common network structure across all levels, but this structure is
also shared by random chemical networks. In the final scenario (C), biochemistry has
shared structure across all levels, which is different from that of random chemical
networks. Our results are consistent with this third scenario, indicative of universal
organizing principles recurring across biological levels, which are unique to biology
(not shared by random chemistry), which we show arises due to the network structure
of common reactions shared across life on Earth.
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exponents for bacteria, archaea and eukaryotes. This and other previous work has

focused primarily on properties within single instances of a network (e.g. an individual

organism’s metabolism), with similar structure to biology (such as the scale-free

property) reported in chemical networks more generally [86, 87, 89, 90]. However, as

we stated earlier, our interest is in looking at properties across networks (e.g. describing

ensemble properties of biochemical networks at the individual and ecosystem-level).

We therefore focus on topological measures such as average shortest path length,

average clustering coefficient and assortativity (degree correlation coefficient), which

are directly comparable across different networks, allowing us to make statements about

regularities existing across biochemistry sampled from different levels of organization

in a manner that has not been possible in previous work focusing only on a given

level.

2.3 Results

2.3.1 Scaling laws describe biochemical networks and catalytic diversity across levels

Organisms can vary widely in their number of genetically encoded reactions, and

ecosystems generally include more encoded reactions than individuals do. We therefore

compare topological properties relative to the size of biochemical networks as a relevant

scaling parameter for our analysis. We define network size as the number of molecules

connected through catalyzed reactions within the largest connected component (LCC)

for a given biochemical network. We focus analyses on the LCC since some measures

are not defined on disconnected networks. The LCC includes > 90% of compounds for

all but the smallest networks in our study, and > 97% of compounds for the largest
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(see Supplementary Section on Topological Measures, Supplementary Fig. SI 7, and

Supplementary Table SI 1). The fact that the LCC is not 100% of the network could

be attributable to missing data in the annotation of genomes and metagenomes. We

therefore verified our results are not sensitive to similar magnitude of missing data by

confirming the scaling trends reported here are not affected when 10% of nodes are

randomly removed (see Supplementary Fig. SI 8). Furthermore, our results reported

below suggest larger proportions of missing data (as often occurs for genomes or

metagenomes missing many annotated genes) would not significantly affect our results,

as we find the reported scaling behavior is primarily driven by the topological structure

of the most common reactions found across all of biology. We also verified our results

hold when analyzing a more balanced subset of our data, avoiding disproportionately

large contributions by genetically similar taxa (see Supplementary Fig. SI 14 and Fig.

SI 15).

We calculate several frequently implemented topological measures for the LCC

for each network (see Supplementary Section on Topological Measures). We classify

properties (e.g. topological or diversity measures) as universal when they scale in the

same way across levels. We identify these cases by properties which scale according to

the same fit across levels (e.g. network average clustering coefficient scales linearly with

network size for both individuals and ecosystems, and we thus identify this scaling as

universal across levels). Shared fit functions across levels suggest mechanisms driving

the structure of biochemical networks may be independent of level of organization;

in such a case individuals and ecosystems could both be subject to the same general

principles acting to architect them. That is, we do not require the scaling coefficients

to be exactly the same (indicating the tuning of mechanisms generating structure

in individuals and ecosystems), but we do require the same fit to be shared across
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our data (indicating the possibility of shared generative mechanisms) to qualify as

universal.

To test whether biology exhibits universal scaling behavior across levels, we first

determined how topological properties and biochemical diversity vary with size for

all individuals and ecosystems in our data set. Measured values for the unipartite

representation and catalytic diversity (enzymes, reactions) are shown in Fig. 3 as

a function of network size (see Supplementary Fig. SI 10 for data on bipartite

representation which exhibits similar consistency across levels). We find individuals

and ecosystems scale according to the same functional form for each network and

diversity measure, with similar scaling coefficients (for fits and confidence intervals,

see Supplementary Data S1). Scaling for individuals and ecosystems is therefore

universal. For some measures (assortativity and betweenness) the biosphere falls

within the 95% confidence interval observed for fits of ecosystem level scaling. An

exception is clustering coefficient, where the biosphere significantly departs from the

observed ecosystem scaling: this could be attributable to missing data on global

enzymatic diversity (which falls slightly below what our scaling laws would predict).

Topological measures that scale following power-law fits (y = y0x
β, where β = βind

for individuals and β = βeco for ecosystems) include: average betweenness (βind =

−1.1581, βeco = 1.136), average shortest path length (βind = −0.117, βeco = −0.084),

and number of edges (βind = 1.219, βeco = 1.243). Both biochemical diversity

measures also scale according to power-law fits: number of enzyme classes (a proxy

for enzymatic diversity) (βind = 1.294, βeco = 1.838), and number of reactions

(βind = 1.229, βeco = 1.319). Average clustering coefficient scales with a linear fit

(y = mx+ y0, m = mind for individuals and m = meco for ecosystems) for individuals

and ecosystems (mind = 3.77 ∗ 10−5, meco = 3.32 ∗ 10−5). These results rule out the
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possibility scaling laws are level-specific (Fig. 2a). The observed scaling laws confirm

biochemical networks exhibit shared structure across levels of organization, where

network properties and biochemical diversity are largely determined by size as the

relevant scaling parameter.

2.3.2 Real networks exhibit different scaling behavior than random chemical net-

works

The observed universal scaling across individuals and ecosystems could be unique

to biology, or it could arise due to self-organizing principles of chemistry. If the later

is true, we should expect randomly sampled chemical networks to exhibit the same

fit functions across networks as real biochemical networks do. Testing this requires

comparison to randomly sampled chemical networks, which must be generated with

an appropriate biologically-relevant control to be informative [91]. Since we are

interested in the global organization of biochemistry, we constructed control random

chemical reaction networks (henceforth called random reaction networks) by merging

randomly sampled reactions from the KEGG database following a flat distribution

where all reactions are equally likely to be sampled (see Methods for details on network

construction). This random sampling produces ensembles of random reaction networks

that globally (over the ensemble) share the same chemical reactions as our biosphere.

We performed the same analyses on the ensemble of random reaction networks as

real biochemical networks. We observe random reaction networks do not scale according

to the same functional form as biochemical networks for some network topology

measures (Fig. 4, first column). The fits for average clustering coefficient of random

reaction networks favor a power-law function (y = y0x
β, with βran = 0.6401), compared
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Figure 3. Common scaling laws describe biochemical networks across levels of
organization. Scaling of biochemical measures for individuals (left column) and
ecosystems (right column) share the same functional form for biochemical diversity
(enzyme and reaction diversity) and for topological measures. Shown from top to
bottom are: (A) number of reactions (NR), and number of enzyme classes (NEC). (B)
average shortest path (< l >), and average clustering coefficient (< C >). All
measures are as a function of the size of the largest connected component
(NCompounds). Ecosystems include metagenomes (red) and the biosphere-level network
(Earth icon). Fits for each dataset (solid lines) are shown with 95% confidence
intervals (dashed lines). For reference, shown in light grey is data for all biochemical
networks (individuals, ecosystems, biosphere). Additional measures are shown in
Supplementary Fig. SI 9, and scaling for bipartite networks is shown in
Supplementary Fig. SI 10.
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to the linear function favored by the biochemical networks. Fits for assortativity

favor a linear function for random reaction networks (y = mx+ y0; mran = −4.5255),

whereas for biochemical networks it was found to not scale with size (Supplementary

Data S1). That is, there are certain aspects of the topology of random reaction

networks that scale with network size in a manner that is entirely distinct from

that of real biochemistry. The qualitative differences in scaling behavior indicate

the real and random biochemical networks represent different universality classes.

In addition to these qualitative differences in scaling behavior, we also observed

statistically significant quantitative differences in the random chemical networks:

scaling relationships for randomly sampled biochemical networks do not overlap

with real biological individuals in many cases. Topological measures in random

reaction networks which scale according to power-law fits (y = y0x
β, β = βran for

random reaction networks) include: average betweenness (βran = −1.0595), average

shortest path length (βran = −0.0543), and number of edges (βran = 1.2459). Both

biochemical diversity measures also scale according to power-law fits: number of

enzyme classes (βran = 1.10156), and number of reactions (βran = 1.3590). We

conclude the organizational properties of random chemical networks cannot alone

explain the scaling laws observed for real biochemical networks.

2.3.3 Scaling-laws represent shared constraints re-emerging across levels

Our results establish that Earth’s biochemistry exhibits universal scaling behavior

across levels of organization not explainable by the organizational patterns of randomly

sampled chemistry alone. A natural next question is whether ecosystems inherit their

properties from individuals, or whether they instead exhibit similar structure due to
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Figure 4. Scaling laws distinguish biochemical networks from random networks across
levels of organization. Shown are random reaction networks created by sampling
biochemical reactions from a flat distribution (left column), frequency-sampled
random reaction networks created by sampling reactions based on the frequency
distribution observed across all organisms (center column), and random genome
networks (right column). Merged networks composed of individuals include bacteria
only (light blue), archaea only (dark blue), eukarya only (blue-green), and all
domains combined (purple). (A) Scaling of biochemical diversity. Diversity measures
and fit are as described in Fig. 3. For reference, all real biochemical network data
from Fig. 3 is shown in light grey. Additional measures are shown in Supplementary
Fig. SI 11. (B) Scaling of network structure. Measure and fit descriptions match
those described in Fig. 3. For reference, all real biological networks from Fig. 3 are
shown in light grey. Additional measures are shown in Supplementary Fig. SI 11, and
scaling for bipartite networks shown in Supplementary Fig. SI 12. We find random
reaction networks do not recover the same fit functions as real biological networks for
assortativity and clustering, whereas frequency-sampled random reaction networks
and random genome networks only differ for assortativity, but nonetheless are
statistically distinguishable from real biochemical networks some measures.
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similar constraints re-emerging at different levels. Addressing this requires determining

whether or not scaling behavior for individuals is statistically distinguishable from

ecosystems. We assumed as a null hypothesis scaling relationships are consistent

across levels of organization, and performed a permutation test [92], using the scaling

coefficient as the test statistic (see Methods on Fitting network measure scaling and

permutation tests). We find scaling relationships are not distinguishable for individuals

and ecosystems when analyzing average node betweenness and average shortest path

length (Supplementary Table 2). However, scaling coefficients are distinguishable

for number of reactions, number of edges, number of enzyme classes, and mean

clustering coefficient, with p-values < 10−5 in most cases. Confidence intervals on

scaling coefficients for ecosystem topology are narrower than for individuals, indicating

ecosystem scaling is more tightly constrained. Although biochemical networks for

individuals and ecosystems share similar scaling behavior, they are not drawn from

the same distributions; allowing the possibility shared constraints operate at each

level separately.

We next sought to identify sufficient constraints for recovering the observed scaling

across levels. To do so, we constructed a different ensemble of random reaction

networks by merging randomly sampled reactions from the KEGG database, but

this time weighting the sampling frequency of biochemical reactions by the number

of individual genomes where the reactions are found (henceforth called frequency-

sampled random reaction networks, see Methods for details of their construction).

This random sampling produces ensembles of random chemical networks that, as

before, globally (over the ensemble) share the same reactions as our biosphere, but

also has the additional property of sharing same frequency distribution of reactions

over ‘individuals’ as our biological dataset. This random ensemble therefore more
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closely reproduces properties of real biological networks than that introduced in

the previous section. Since most highly connected nodes (participating in many

reactions) are common to all three domains, e.g. ATP and H2O [48, 93] this sampling

procedure yields random control networks that tend to include the most common

compounds used by life. We find the scaling behavior of this ensemble of random

networks much more closely matches the observed scaling trends in real biology (Fig.

4, second column). Whereas we observe qualitative differences for scaling of clustering

in the previous case, here the fit function is the same as for the clustering coefficient

for both the real biochemical networks and the frequency-sampled random reaction

networks. In fact, all fit functions are the same as those for real biochemical networks,

with the exception of assortativity. Additionally, for measures sharing the same fit

functions, fewer measures distinguish biological networks from frequency-sampled

random reaction networks than from random reaction networks without this constraint.

We can therefore conclude the network structure of the most frequently occurring

reactions across life on Earth is an important driver of the observed scaling behavior

for the real networks.

To further confirm scaling emerges due to these shared properties across all life,

we next generated simulated ecosystem-level networks by merging randomly sampled

genome networks from each domain individually and from all three domains together

(see Supplementary Materials and Methods for details on network construction).

This allows us to determine how scaling behavior could be the same or different

for an archaeasphere (archaea alone), bacteriasphere (bacteria alone), eukaryasphere

(eukarya alone), or artificial ecosystems (all three domains) (Fig. 4, third column).

We find the functional forms of scaling relationships are the same for real ecosystems

and these randomly merged organismal networks (hereafter called random genome
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networks). This is somewhat surprising given it is not in general true randomly

selected subnetworks of a network have the same structure as the original network [94]

(e.g., individuals as subnetworks of ecosystems do not necessarily have to share the

same structure). However, we also checked whether scaling exponents and coefficients

are statistically distinguishable for real ecosystems and random genome networks,

using the same permutation tests as before, and find they are for most measures (see

Supplementary Table SI 2). Random genome networks and real ecosystems exhibit

exponents distinguishing their scaling coefficients for most topological measures and for

number of enzymes, with p-values < 10−5. Scaling of betweenness is indistinguishable

between the two datasets. These results indicate random genome networks differ

from real ecosystems in many of the same ways individuals do. However, just as

scaling of assortativity qualitatively distinguishes individual biochemical networks

from the frequency-sampled random reaction networks, scaling of assortativity also

distinguishes random genome networks from real ecosystems, whereas it does not

distinguish real individuals from real ecosystems (Fig. 5). Taken on the whole, these

results suggest scaling behavior for real ecosystems arises due to organizing principles

operative at the level of ecosystems, and is not solely an emergent property due to

merging individual-level networks.

Combining these results for frequency-sampled random reaction networks with that

of random genome networks indicates the existence of individuals sharing a common

set of biochemical reactions is a sufficient condition for networks of all sizes (from

small individuals to large ecosystems) to exhibit the scaling behavior observed in

real living systems. Taken together with the results of the previous section, we can

conclude the particular form of the scaling relations observed across life on Earth
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Figure 5. Scaling laws for individuals and ecosystems are statistically distinguishable
for some network and catalytic diversity measures. Shown are the results of a
permutation test to determine whether properties of biochemical networks
constructed from individual genomes scale differently than those constructed from
metagenomes (ecosystems). For each network measure the test statistic is shown as a
vertical dashed line, while the null distribution is shown as a solid line (see Methods
on Fitting network measure scaling and permutation tests for more details). Blue
squares indicate scaling behavior is indistinguishable between levels of organization,
while green squares show measures which can distinguish scaling of individuals from
that of ecosystems.

emerges due to the structure of interactions among compounds common across all life,

which is not in general characteristic of non-biological chemical reaction networks.

2.3.4 Network structure predicts evolutionary domain

Any general organizing principles in biology must be consistent with the variation

responsible for the diversity of life we are already familiar with. Since the three

domains of life represent the most significant evolutionary division in the history of

26



life [95], we therefore also tested whether or not network structure can distinguish

individuals sampled from the three domains (see Methods on Predicting evolutionary

domain from topology). To approach this question, we first investigated compounds

shared across all domains to determine which compounds are distinct to each domain

and which are universal to all three. We identified the contributions of each domain

to the biosphere as a whole by comparing compounds at the biosphere-level to those

across the networks of individuals, identified by evolutionary domain. We do so

by identifying which compounds are unique to each domain and which are shared

across all three domains, determined from annotated data in the 22,559 genomes

in our dataset. At the biosphere-level, 0.44% of compounds are unique to archaea,

3.14% are unique to bacteria, and 17.08% are unique to eukarya, reaffirming each

domain represents significantly different metabolic strategies and genetic architectures,

as is well established by earlier work [95]. However, it is also well established all

life on Earth shares a common set of core-biochemistry [96]: a higher percentage of

compounds, constituting 37.23% of the biosphere-level network, are shared across all

three domains in our dataset (Fig. 6A,B,C,D), including hubs such as ATP, and H2O

as mentioned previously. Since many more chemical compounds are shared across all

three domains than are unique to each, one might a priori expect the organization of

these compounds into biochemical networks to not be predictive of domain.

We find the opposite to be true: despite a large fraction of shared biochemical

compounds, the organization of those compounds into networks is distinct for each

domain. We find in most cases average topology normalized to size can reliably

predict evolutionary domain (Fig. 6E). In many cases prediction accuracy is > 80%,

when only a single topological measure is used. By contrast, topology or size alone

provides significantly less accurate predictions. This demonstrates biochemical network
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Figure 6. The biosphere-level chemical reaction network. The biosphere-level network
is constructed from the union of all 22,559 genomic networks in our study. Each
panel shows the same biosphere-level network, with nodes (representing compounds)
in white and edges (representing their connections) in grey. Node size indicates
degree within the network. Colors indicate biochemical compounds used in (A) all
three domains of life (yellow), (B) in archaea only (pink), (C) in eukarya only (green)
and (D) in bacteria only (blue). Although many more chemical compounds are
shared across all three domains than are unique to each, the organization of these
compounds into biochemical networks is distinct for each domain based on statistical
testing which shows (E) catalytic diversity and biochemical network topology can
predict evolutionary domain. Shown is the estimated prediction accuracy (y-axes) for
each measure and each domain. The colors of each bar indicate prediction accuracy
of a given measure for a particular domain: red is comparable to random guessing
(y ≤ 33% accuracy); yellow is better than random but not completely predictive
(33% < y ≤ 67%); green is predictive of domain (67% < y). The horizontal line
indicates 80% prediction accuracy.
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structure can be predictive of the taxonomic diversity of individuals. Combined with

our other results this suggests the same biochemical network properties (topology

and catalytic diversity) driving regularity across levels of organization can also be

predictive of major evolutionary divisions within a given level, providing evidence the

regularities identified herein are indeed consistent with a signature of global organizing

principles for biochemistry.
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2.4 Discussion

Our analyses reveal biochemical networks display common scaling laws governing

their topology and biochemical diversity, which are independent of the level of organi-

zation they are sampled from. These scaling laws cannot be fully explained by the

structure of random reaction networks that do not account for the structure of the

subset of reactions shared across life on Earth. We were also able to confirm the same

topological regularities occurring across levels of organization within the biosphere

can be predictive of evolutionarily divisions within a level, using the three domains

as an exemplar. Collectively, our results indicate a deeper level of organization in

biochemical networks than what is understood so far, providing a new framework

for understanding the planetary-scale organization of biochemistry and how nested

hierarchical levels are structured within it.

A key implication of our analysis is the importance of individuals sharing a common

set of biochemical reactions in shaping the universal scaling laws observed across

hierarchical levels. Scaling laws often emerge in systems where universal mechanisms

operate across different scales, yielding the same effective behavior independent the

specific details of the system. It is in this sense scaling laws can uncover universal

properties, motivating their widespread use in physics and increasing application to

biology [59, 63, 65, 97–100]. Here we have shown the relevant scaling parameter

for biochemical organization is the number of biochemical compounds (in a network

representation this is the size of the network). Individuals, ecosystems and the

biosphere obey much the same scaling behavior for biochemical network structure,

indicating the same universal mechanisms could operate across all three levels of

organization. In physics, this kind of universality usually implies there is no preferred
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scale or basic unit. However, in the biological example uncovered here, the presence

of specific scaling relations observed in real biochemical networks can be explained

by biological individuals (lower-level networks) sharing a common set of reactions as

basic ‘units’.

Future work should explore the connections between the scaling relationships

reported here and other work characterizing scaling behavior across living processes.

For example, our results indicate ecosystems are more tightly constrained than

individuals, better displaying the regularities of biochemical network architecture.

However, projecting ecosystem-level scaling to the biosphere as a whole does not

recover the observed network properties for the biosphere-level network. Recently,

scaling laws describing microbial diversity were used to predict Earth’s global microbial

diversity, and in particular to highlight how much diversity remains undiscovered [61].

It could be an analogous case here, where the uncovered scaling relations could be

used to predict missing enzymatic diversity in the biosphere. Furthermore, one area

of intensive investigation is allometric scaling relations [61, 97, 100], including how

shifts in metabolic scaling could be indicative of major transitions in evolutionary

hierarchies [59]. Allometric scaling laws are derived by viewing living systems as

localized physical objects with energy and power constraints. Here, scaling emerges

due to an orthogonal view of living systems as distributed processes transforming

matter within the space of chemical reactions. The connections between these different

aspects of scaling in living organization remain to be elucidated.

A final implication of our work is the consequences for our understanding of the

origin of life, before the emergence of species. The existence of common network

structure across all scales and levels of biochemical organization suggests a logic to

the planetary-scale organization of biochemistry [101], which—if truly universal—
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would have been operative at the origin of life. While our analysis has uncovered

universal scaling behavior for extant life, arising due to the structure of connectivity

and diversity among the most common biochemical compounds and reactions, it

remains to be determined whether the particular scaling reported is a by-product

of shared biochemistry across all life, or if fundamental constraints on biochemical

network structure, operative across scales from individuals to planets, drives lower-level

individuals to necessarily share common reactions. If the latter is true it would have

important implications for understanding the processes operative at the time of the

last universal common ancestor. If the same global network structure, characterized

by the same scaling laws, described Earth’s biosphere throughout its evolutionary

history, the emergence of individuals (as selectable units) with shared biochemistry

would have played an important role in mediating a transition in the organization of

Earth’s chemical reaction networks. Even if we could assume the same planetary-scale

chemistry for a lifeless world, we should expect to see dramatically different scaling

for a hierarchically organized biosphere of nested evolutionary units where ‘units’

are defined by a shared subset of biochemical architecture across all life [102, 103].

An important question for future work is identifying the planetary-drivers of Earth’s

biosphere-level biochemical network structure and how this has structured living

systems across nested levels over geological timescales. This will require characterizing

the organization of planetary-scale biochemistry, as developed here, within the broader

context of studying a planet’s geologic and atmospheric evolution. It remains an

open question as to what will ultimately explain the universal structure of Earth’s

biochemical networks, or whether we should expect all life to exhibit similar scaling

behavior, even on other worlds.

32



2.5 Materials and Methods

2.5.1 Obtaining genomic and metagenomic information

2.5.1.1 Genomes (PATRIC)

Archaea and bacteria genomic datasets were obtained from PATRIC [56]. Enzyme

commission (EC) numbers were obtained from ec_number column in the pathway

data of each taxon. Eukarya genomic datasets were obtained from the Joint Genome

Institute’s (JGI) integrated microbial genomes database and comparative analysis

system (IMG/M)[57]. All eukarya data used in this study was sequenced at JGI.

All EC numbers used to construct eukarya biochemical networks were obtained from

the list of total enzymes associated with each eukaryote. EC numbers were used in

conjunction with KEGG enzyme and reaction data in order to build biochemical

networks for each taxon.

2.5.1.2 Metagenomes (JGI)

Metagenomic data was obtained from JGI IMG/M [57]. All metagenomic data used

in this study was sequenced at JGI. All EC numbers used to construct metagenomic

biochemical networks were obtained from the list of total enzymes associated with

each metagenome. These EC numbers were used in conjunction with KEGG enzyme

and reaction data in order to build biochemical networks for each metagenome.

Our metagenomic data comes from a wide variety of ecosystems associated with

the natural environment, host organisms, and human-made environments from across
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the globe (see Fig. 1). The metagenomes were sampled from a variety of locations,

inclusive of 51 different bodies of water, countries, or Antarctica. The largest categories

of sampled ecosystems includes aquatic, terrestrial, plant, wastewater, fungi, insect,

mammal, and air, among many others. They come from, for example, soil, marine

and freshwater environments, thermal springs, digestive systems, sediments, sludges,

and the deep subsurface. Metagenomes were collected over a variety of altitudes,

from sea level to a few thousand meters above sea level. Terrestrial and aquatic

metagenomes include surface samples as well as those from depths of cms to thousands

of meters below the surface. Samples also range in pH from nearly 0 to over 9, and

in temperature from just above 0 degrees celsius to 90 degrees celsius. At present

it is impossible to say how representative the diversity of life sampled so far is of

the total biodiversity of life on Earth (which is presently unknown and not well-

constrained). Nonetheless, the breadth of environments in our sample suggests that

our dataset includes a reasonable representation of known biodiversity. Additional

environmental and omic information is publicly available on JGI’s IMG website

(https://img.jgi.doe.gov/cgi-bin/m/main.cgi).

2.5.1.3 Biosphere

To create the biosphere network, we included all (at the time our data was retrieved)

8,658 enzymatically catalyzed reactions in KEGG.
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2.5.2 Network Construction

In this study, all biochemical reaction networks consist of chemical compounds

that are involved in biochemical reactions: two chemical compounds are connected to

each other when one is a reactant and the other is a product of the same biochemical

reaction (see Supplement Section on Network Representations of Catalyzed Biochemi-

cal Reaction for more details). The different types of biochemical reaction networks

come from how we select a set of reactions to be included in each network, which is

described below. Note that all edges in the networks in this paper are represented

as undirected and unweighted since our interests lie on the presence or absence of

particular reactions in given networks and, in principle, all biochemical reactions can

happen in both directions depending on the environment.

2.5.2.1 Biological Networks

For each biological network, we include all catalyzed biochemical reactions anno-

tated in each genome or metagenome. More specifically, we consider three different

levels of organization: individual organisms, ecosystems and the biosphere. For the

construction of individual networks, we utilize the genome data of 21,637 bacterial

taxa and 845 archaeal taxa from the Pathosystems Resource Integration Center

(PATRIC)[56], as well as 77 eukaryotic taxa from the Joint Genome Institute (JGI)[57].

From this data, we obtain the set of classes of enzymes for each genome. All reactions

catalyzed by this set of enzymes and present in the Kyoto Encyclopedia of Genes

and Genomes (KEGG)[58] database are included in the network representation of

the corresponding genome. Similarly, for the network representation of each of the
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5,587 ecosystems from JGI, we include all reactions catalyzed by the ecosystem’s

coded enzymes, provided they are catalogued in the KEGG dataset. Finally, for the

biosphere network, we include all 8,658 enzymatically catalyzed reactions in KEGG.

2.5.2.2 Parsed Biological Networks

We also analyzed a parsed subset of biological data, in order to reduce the relative

size differences between each of our domain datasets. This allows us to test whether

our results are consistent with a more balanced representation of biodiversity from

each domain. Starting with all bacteria genomes, we selected one representative

genome containing the largest number of annotated ECs from each genus. Unique

genera (genera only represented by a single genome) were also included in our parsed

data. Uncultured/candidate organisms without genera level nomenclature are also

included in the parsed dataset. The parsed archaea dataset was created in the same

way. Because we have much less extensive data from eukarya, the parsed results

include all eukarya (there is no “parsed” eukarya).

2.5.2.3 Random Genome Networks

To construct a random genome network, we sample individual networks uniformly

at random from the set of all individual organisms in our data set and merged them

into one random genome network. When a set of multiple individual networks are

merged, every node and edge present in any individual network is added to the resulting

network with equal weight regardless of how many individual networks include them.

We built four types of random genome networks with individual networks sampled
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from only archaea, only bacteria, only eukarya and from integration of all the three

domains. The number of individual networks merged to form each random genome

networks is defined as the sample size. The sample size ranges from 1 to 200 for

845 archaea genomes, from 1 to 200 for 21,637 bacteria genomes, from 1 to 77 for

77 eukarya genomes and from 1 to 477 for all genomes in the three domains. We

selected 10 sets of individual networks for every sample size, and merged them to

generate 2,000 random genome networks from individual archaea networks, 2,000 from

individual bacteria networks, 770 from individual eukarya networks and 4,770 from

all individual networks across the three domains.

2.5.2.4 Random Reaction Networks

In this paper, random reaction networks are generated by merging randomly

sampled reactions from all biochemical reactions from the KEGG data regardless of

whether a known enzyme is cataloged for the reaction. We note 31.46% of chemical

compounds in the biosphere network are not included in the genomic data in our

study, therefore our construction uniformly sampling the entire KEGG database,

the random reaction networks can include enzymatically catalyzed reactions not

included in our genomic data. Nonetheless our sampling procedure is biased to

generate networks with similar biochemistry to that of the genomic networks (since

compounds common to all three domains tend to be highly connected (participate in

many reactions) this uniform sampling procedure yields random networks biased to

include the most common compounds used by life). Most biological networks for real

individual organisms and ecosystems contain 200 - 5000 reactions. To build the random

reaction networks with size similar to real individual organisms and ecosystems, we
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selected a random number between 200 and 5000, sampled that number of reactions

from KEGG data uniformly at random and merged these into a random reaction

network. Repeating this, we constructed 5,000 random reaction networks in total.

2.5.2.5 Frequency-sampled Random Reaction Networks

With the goal of creating an ensemble of random networks more similar to real

biological networks, we also generated random reaction networks by sampling reactions

with probability proportional to their frequency across the set of all individual biological

networks. We computed the frequency of every reaction as the number of genomes

that includes enzymes catalyzing that reaction to generate a frequency distribution

for the occurrence of reactions across our genome-level networks. We then selected a

random number between 200 and 5000 and sampled that same number of reactions

according to this frequency distribution. By repeating this procedure, we generated

5,000 frequency-sampled random networks. As a check to confirm our results are

independent of the relative sizes of our domain datasets, we also generated 5,000

random reaction networks with the same size as members of the ensemble of frequency-

sampled random reaction networks, but instead sampled reactions according to the

sum of domain-frequencies, computed within each domain and normalized by size of

the domain (see Supplementary Fig. SI 15).

2.5.3 Fitting network measure scaling and permutation tests

For each network measure, a scaling relationship was fit as a function of the size

of the largest connected component (LCC) of the network. For each measure, three
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different models were tested, a power law of the form y = y0x
β, a linear relationship

of the form y = βx + y0, and a quadratic function of the form y = β1x + β2x
2 + y0.

For both the assortativity measures, the preferred fit was also compared to a constant

y = β. The preferred model was chosen as the one which minimized cross validation

errors, according to 10-fold cross validation, across the entire data set.

Once a model was chosen, a simulated permutation test was performed to determine

whether the scaling relationship for a given attribute was the same for ecosystems

and individuals or if it was distinct [92]. We took as the null hypothesis that the

scaling relationship across different levels of organization is constant, and used the

fitted scaling parameters (for individuals and ecosystems) as the test statistic. We

used fitted 1,000,000 resamples of the complete dataset to estimate the likelihood

of the fit for individuals (or ecosystems) to have been drawn randomly from the

complete dataset. We performed this test for both the ecosystem and individuals,

if there was a difference in the estimated likelihoods we took the greater of the two.

These likelihoods are the (two-sided) p-values reported in Table SI 2. The same

procedure was followed to determine the distinguishability of ecosystem networks with

the randomized controls (random genome networks, and random reaction networks).

Random reaction networks were distinguishable from ecosystems networks for all

measures, with p-values = 10−6.

To estimate the true scaling parameters, and 95% confidence intervals a bootstrap

sample of 100,000 was used for each network attribute [92]. If the permutation

test allowed us to reject the hypothesis of a constant scaling relationship across

individuals and ecosystems to a confidence greater than 0.01, the scaling parameters

were estimated separately for the individuals and ecosystems, otherwise the complete
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dataset was fit. The scaling parameters (and confidence intervals) for distinct domains

were also estimated using a bootstrap of 100,000 samples.

For scaling fits and confidence intervals see Supplementary Data file S1.

2.5.4 Predicting evolutionary domain from topology

To demonstrate topological features of genomes from different domains are dis-

tinct, multinomial regression was used. Specifically, we implemented models where

the domain of the network was the response class and a single topological feature,

normalized by the size of the largest connected component (LCC) of the network was

the dependent variable. We found topological features of networks alone were often

not predictive of the domain, but the ratio of the topological properties to the size

of the network provided a more accurate prediction. Prior to the regression these

normalized topological measures were scaled and centered [92]. The regression was

implemented in base R using the glm(..), function. In order to control for over fitting

the training data was composed of an equal number of samples from each domain. In

particular only 35 networks of each domain were sampled and the model was tested

on the remaining data. This process was repeated 100 times and the average model

error is reported in the main text Fig. 6E.
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2.6 Supplementary Information

2.6.1 Network Representations of Catalyzed Biochemical Reaction

The process to encode a biochemical reaction as the network representation can be

described with the diagram below (Fig. SI 16) as follows: (a) Suppose that a chemical

reaction R catalyzed by an enzyme E is given, which transforms chemical compounds

C1 and C2 to C3 and C4. (b) The reaction, R, can be described in a reaction

diagram, or a directed bipartite network representation, where the reactants C1 and

C2 are connected to the reaction node and the products C3 and C4 are connected

as products from the same reaction. In principle, this biochemical reaction, R, can

happen in opposite direction depending on the environment. Therefore, in bipartite

network representation, the edges connecting chemical compounds and the reactions

are considered as bidirected, which is equivalent to undirected for our analysis. (c)

The unipartite network representation of the reaction, R, shows how the reaction

information is embedded in the network. In the unipartite network representation,

nodes are substrates and a reactant is connected directly to a product if they are

connected to the same reaction in the corresponding reaction diagram.

2.6.2 Topological Measures

To characterize the structure of biochemical networks, we utilized some of the

most frequently used topological measures. The detailed descriptions about these

topological measures can be found in [34]. Here, we briefly review these measures.

For computing each measure, we used the Python software package, NetworkX [104].
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The topological measures implemented in this paper include average degree, average

clustering coefficient, average shortest path length, assortativity (degree correlation

coefficient), and node betweenness. We calculate all network measures on the largest

connected component (LCC) of each network, for the following reasons: 1. Several

network measures only make sense to calculate on connected components (e.g. av-

erage shortest path), focusing on the LCC therefore permits all network measures

implemented in our study to be calculated for all networks; 2. The largest connected

component for each network generally contains the vast majority of nodes (> 90%)

for the vast majority of networks in each dataset (the only exception is the random

reaction networks, of which only ∼ 76% have a largest connected component with at

least 90% of a network’s nodes). See Table SI 1 and Fig. SI 7 for distribution of sizes

of the LCC by dataset.

2.6.2.1 Degree

The degree of a node i, ki is the total number of connections between i and rest of

the network. The average degree < k > in this paper is the average of ki for all nodes

in the LCC of a given network.

2.6.2.2 Clustering coefficient

The local clustering coefficient for a node i, Ci measures the local density of edges

in a network by considering the number of connected pairs of neighbors of i. Hence,

Ci is defined as,
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Ci =
2Li

ki(ki − 1)
(2.1)

where ki is the degree of node i and Li is the number of connections between

neighbors of i. A large value of Ci indicates the highly interconnected neighborhood

of i. The variable Ci is measured by using a Networkx method clustering(..). We

computed < C >, the average of Ci, over all nodes in the LCC of each network.

2.6.2.3 Shortest path length

The shortest path length, lij between a given pair of two nodes i and j is defined

as the minimum number of edges connecting the two nodes in a given network. The

variable lij is computed using the Networkx method shortest_path_length(..).

We calculated the average shortest path length, < l > by averaging lij for every pair

of nodes in LCC of a given network.

2.6.2.4 Assortativity (degree correlation coefficient)

Assortativity measures the tendency of two nodes with similar properties to be

connected in a given network. The assortativity coefficient proposed by Newman [40]

is formulated as follows:

r =

∑
xy xy(exy − axby)

σaσb
(2.2)

where exy is defined as the fraction of edges between a node with value x and

one with value y for a given node attribute, and ax and by are the fraction of edges

coming into and going out from nodes of value x and y respectively. The variables
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σa and σb are the standard deviations of the distributions of ax and by. When the

considered attribute of nodes is their degree, the assortativity becomes the degree

correlation coefficient, quantifying the correlation between the degrees of nodes on

either side of an edge. Hence, for undirected networks in our study, ax = by and

σaσb = σ2. If r < 0, the network is assortative, i.e. nodes with similar degree

tend to be connected to each other. If r > 0, the network is disassortative, i.e.

nodes in it tend to be paired to other nodes with different degrees. For an arbitrary

network, −1 ≤ r ≤ 1. To measure the assortativity r, we used a Networkx method

degree_assortativity_coefficient(..).

2.6.2.5 Betweenness

Betweenness centrality of a node, Bi is defined as [105],

Bi =
∑
s,t∈V

σ(s, t|i)
σ(s, t)

(2.3)

where V is the set of all nodes in a network, and σ(s, t) and σ(s, t|i) denote the

number of all shortest paths from s to t , and the number of the shortest paths through

a given node i, respectively. Replacing σ(s, t|i) with σ(s, t|e) for an edge e, one can

also formulate the edge betweenness. The variable Bi measures degree of importance

of i for the interactions between subsets of a given network. To compute Bi, Networkx

methods betweenness_centrality(..) is implemented and < B > is average of Bi

over every node in LCC of a given network.
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2.7 Supplementary Figures
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Figure 7. Percentage of nodes in the largest connected component (LCC) of a
network versus the size of its LCC. Shown is the percentage of nodes in the LCC, as a
function of the size of the network’s largest connected component: (A) for all
biological individuals (archaea, bacteria, eukarya). (B) for all biological ecosystems
(from JGI, KEGG). (C) for randomly sampled individuals (archaea, bacteria, eukarya,
and random individuals drawn from all domains). (D) for randomly sampled
reactions. (E) Pointplot of biological networks (individuals and ecosystems) and
random reaction networks, binned in increments of 100 compound nodes. Bars show
one standard deviation of networks within a bin.
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Figure 8. Reaction knockout for unipartite networks. Diversity and topological
measures shown for biological networks (left column), randomly sampled individual
networks (center column), and randomly sampled reaction networks (right column).
Original networks (bold colors) are compared to networks in the same category with
10% of their reactions randomly removed (pale colors). Random reaction networks
are shown for comparison, but do not have knocked-out reactions (and cannot, by
nature of their construction). Network measure scaling trends are not impacted by
the removal of 10% of reactions, indicating our results are robust to missing data.
Rows from rom top to bottom show: number of reactions (NR), number of edges
(NEdges), avg. shortest path length (< l >), avg. clustering coefficient (< C >), avg.
betweenness of nodes (< B >), assortativity (r).
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Figure 9. Additional network measures for individuals and ecosystems show universal
scaling across levels. Scaling behavior for additional topological measures for
unipartite networks, to what is shown in main text Fig. 3. From top to bottom,
number of edges (NEdges), average node betweenness (< B >), assortativity (r).

48



Figure 10. Scaling of bipartite network structure for individuals and ecosystems.
Shown are topological measures for bipartite representations of biochemical networks
for individuals and ecosystems. Our results demonstrate universal scaling behavior
across levels is consistent across both unipartite and bipartite representations. Rows
from top to bottom show number of edges (NEdges), average shortest path length
(< l >), average node betweenness (< B >), assortativity (r), and average clustering
coefficient (< C >).
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Figure 11. Additional network measures for randomly sampled individuals and
randomly sampled reactions. Scaling behavior for additional topological measures to
those shown in main text Fig. 4. From top to bottom, number of edges (NEdges),
average node betweenness (< B >), and assortativity (r).

50



Figure 12. Scaling of bipartite network structure for randomly sampled individuals
and randomly sampled reactions. Shown are topological measures for bipartite
representations of the random reaction networks and random genome networks. Our
results show consistent scaling behavior in comparing the different data sets for both
unipartite and bipartite representations. Rows from top to bottom, number of edges
(NEdges), average shortest path length (< l >), average node betweenness,
assortativity (r), and average clustering coefficient (< C >).
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Figure 13. Distributions of network sizes for each domain and across levels of
organization. Top row: The relative distribution of network sizes (normalized to 1
over all networks of a given type) for networks in each domain (left), and the total
number of networks in individuals and ecosystems (right). Bottom row: The relative
distribution of network sizes for networks in each domain, for parsed datasets (left),
and the total number of networks in individuals and ecosystems, for parsed datasets
(right).

52



Figure 14. Biochemical diversity and network topology measures for parsed datasets.
Shown are data for unipartite representations of the parsed networks we analyzed.
Left column, from top to bottom: number of reactions (NR), number of ECs (NEC),
average shortest path length (< l >), and average clustering coefficient (< C >).
Right column, from top to bottom: number of edges (NEdges), average node
betweenness (< B >), and assortativity (r).
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Figure 15. Biochemical diversity and network topology measures for domain-weighted
frequency-sampled random reaction networks. Shown are data for unipartite
representations of the domain-weighted frequency-sampled random reaction networks
we analyzed. These were created by sampling reactions based on the frequency
distribution observed within each domain, with reactions from each domain given an
equal probability to be sampled. Left column, from top to bottom: number of
reactions (NR), number of ECs (NEC), average shortest path length (< l >), and
average clustering coefficient (< C >). Right column, from top to bottom: number of
edges (NEdges), average node betweenness (< B >), and assortativity (r).
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Figure 16. The process to encode a biochemical reaction as a network representation.
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2.8 Supplementary Tables

Table 1. Percentage of networks in each dataset with x% of nodes in the LCC.
x

Group > 85% > 90% > 95%
Biological individuals and Archaea 99.17 97.75 86.39
ecosystems Bacteria 99.84 99.65 87.53

Eukarya 100.00 100.00 98.70
JGI 98.10 97.06 88.42
KEGG 100.00 100.00 100.00

Random genome Archaea 100.00 100.00 99.75
Bacteria 100.00 100.00 100.00
Eukarya 100.00 100.00 100.00
JGI 100.00 100.00 100.00
KEGG 100.00 100.00 100.00

Random reaction KEGG 95.72 76.86 13.54

Table 2. Distinguishability of individuals and ecosystems, and ecosystems and
random genome networks.

Distinguishability
Distinguishable Levels of Ecosystems and
of Organization Random Genome

Property (p-value) Networks (p-value)
Number of Reactions, NR Yes (10−6) Yes (10−5)
Number of Enzyme classes, NEC Yes (10−6) NA
Average Betweenness (nodes), < B > No (0.272) No (0.14)
Average Betweenness (edges), < BEdges > No (0.185) No (0.08)
Number of Edges (LCC), NEdges Yes (10−6) Yes (10−5)
Mean Degree (LCC), < k > Yes (10−5) Yes (10−5)
Mean Clustering Coefficient (LCC), < C > Yes (0.00853) Yes (10−5)
Average Shortest Path Length (LCC), < l > No (0.26893) Yes (10−5)
Assortativity (LCC), r No (0.0761) No (0.210)
Assortativity for bipartite graphs (LCC), rbipartite No (0.0563) No (0.256)
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2.9 Supplementary Data

Data is not included as part of dissertation, but is available upon reasonable request.

2.9.1 Data file S1

Scaling parameters for topological measures with 95% confidence intervals. Data

file S1 contains information for the scaling laws described in the main text. These

data describe how various network and enzymatic properties scale with network size

(the number of nodes in the largest connected component). This file has 11 columns

(plus an index column) which identify the parameters of the fits. Each row is a

different fit and each column contains information about the fit. The column entitled

y.var indicates which network/enzymatic measure is being compared to network

size. The column entitled projection indicates whether the network measure was

applied to the unipartite or bipartite graph representation. The column level in-

dicates the biological level of organization, value of individual corresponds to a

network constructed from genomic data, ecosystem indicates a network constructed

from metagenomic data, ranRxn_individual indicates networks of random biochem-

ical reactions, syn_individual_all indicates networks constructed from random

combinations of individual networks, parsed indicates networks constructed from

parsed datasets (except for eukarya), bio_rand_uni indicates networks of random

biochemical reactions weighted by their occurrence across all individual datasets,

bio_rand_domain indicates networks of random biochemical reactions weighted by

their occurrence within each domain, with each domain’s reactions given an equal

probability to be included. The column labeled group indicates which part of the data
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set was used, this column only matters for the individual level columns. A group

value of bacteria indicates scaling values for bacterial networks, similarly for the

other two domains. The column entitled scaling indicates how the measure scales

with size, with powerlaw meaning that measure scales following a power law, while

linear means the measure scales linearly. A value of mean in the scaling column

is used to show the measure does not scale with size. The remaining 6 columns

contain numerical values for the scaling fits and their 95% confidence intervals. The

mathematical meaning of these values depends on the scaling behavior of that measure

(i.e. the corresponding value in the scaling column). The value of alpha is always

related to how the measure changes with size, while beta is always related to the

intercept. If the scaling behavior is linear, then the measure scales according to

y.var ∼ alpha ∗ (size) + beta, such that alpha is the slope of the line and beta is the

intercept. If the scaling behavior is a power law, then the measure scales according to

y.var ∼ exp(beta)∗(size)alpha, such that alpha is the scaling exponent and exp(beta)

is the intercept. The 95% confidence intervals have the same interpretation with

the alphaP column indicating the upper bound on alpha and the alphaM column

indicating the lower bound on alpha, the same convention is used for betaP and

betaM. Measures that do not scale with size have values of zero in the alpha column,

and the mean value is given in the beta column, with 95% of the distribution falling

between betaM and betaP.

2.9.2 Data file S2A.

Summary of measured network properties, by domain. Data file S2A contains

a statistical summary of network properties, grouped by domain. Each row in the
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first column contains the name of the partition of data being described in that row,

with “JGI” indicating the metagenomic data. Each column in the first row identifies

the property which is being summarized in the rows below. The properties are as

follows: nbr_rxn is the number of reactions encoded by the genome/metagenome;

nbr_nodes is the number of nodes in the network; nbr_edges is the number of edges

in the network; nbr_connected_components is the number of connected components

in the network; nbr_nodes_lcc is the number of nodes in the largest connected

component (LCC) of the network; nbr_edges_lcc is the number of edges in the

LCC of the network; ave_degree_lcc is the average node degree in the LCC of

the network; ave_clustering_coeff_lcc is the average clustering coefficient in

the LCC of the network; ave_shortest_path_length_lcc is the average shortest

path length in the LCC of the network; ave_betweenness_nodes_lcc is the average

node betweenness in the LCC of the network; ave_betweenness_edges_lcc is the

average edge betweenness in the LCC of the network; assortativity_lcc is the

average assortativity in the LCC of the network; attribute_assortativity_lcc is

the average attribute assortativity of the LCC of the network; diameter_lcc is the

diameter of the LCC of the network; nbr_ecs is the number of enzyme commission

numbers in the network. The statistical property being measured over all networks in

a group, for a particular measure, are listed in each cell. The statistical properties are

the count (number of networks), mean, std (standard deviation), minimum, maximum,

and the quartiles.
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2.9.3 Data file S2B.

Summary of measured network properties, by levels (parsed data only). Data file

S2B contains a statistical summary of network values, grouped together for the parsed

networks (parsed archaea, parsed bacteria, and all eukarya). The format of the csv is

otherwise identical to S2A (see description above).

2.9.4 Data file S2C.

Summary of measured network properties, by levels (parsed data excluded). Data

file S2C contains a statistical summary of network values, grouped together by level

for all data, excluding the parsed networks. “Individual” includes archaea, bacteria,

and eukarya, and “ecosystem” includes all JGI metagenomic networks. The format of

the csv is otherwise identical to S2A (see description above).
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Chapter 3

NO LOVE FOR POWER-LAWS IN BIOCHEMICAL NETWORKS

This chapter was written in collaboration with Hyunju Kim, and Sara I. Walker. It

has been submitted to PLoS Computational Biology.

3.1 Abstract

Biochemical reactions underlie all living processes. Like many biological and

technological systems, their complex web of interactions is difficult to fully capture and

quantify with simple mathematical objects. Nonetheless, a huge volume of research has

suggested many real-world biological and technological systems—including biochemical

systems—can be described rather simply as ‘scale-free’ networks, characterized by a

power-law degree distribution. More recently, rigorous statistical analyses across a

variety of systems have upended this view, suggesting truly scale-free networks may

be rare. We provide a first application of these newer methods across two distinct

levels of biological organization: analyzing a large ensemble of biochemical networks

generated from the reactions encoded in 785 ecosystem-level metagenomes and 1082

individual-level genomes (representing all three domains of life). Our results confirm

only a few percent of individual and ecosystem-level biochemical networks meet the

criteria necessary to be anything more than super-weakly scale-free. Leveraging the

simultaneous analysis of the multiple coarse-grained projections of biochemistry, we

perform distinguishability tests across properties of individual and ecosystem-level

biochemical networks to determine whether or not they share common structure,
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indicative of common generative mechanisms across levels. Our results indicate there

is no sharp transition in the organization of biochemistry across distinct levels of the

biological hierarchy—a result that holds across different network projections. This

suggests the existence of common organizing principles operating across different levels

of organization in biochemical networks, which can best be elucidated by analyzing

all possible coarse-grained projections of biochemistry across all scales in tandem.

3.2 Author Summary

Fully characterizing living systems requires rigorous analysis of the complex webs

of interactions governing living processes. Here we apply new statistical approaches

to analyze a large data set of biochemical networks across two levels of organization:

individuals and ecosystems. We find that independent of level of organization, the

standard ’scale-free’ model is not a good description of the data. Interestingly, there is

no sharp transition in the shape of degree distributions for biochemical networks when

comparing those of individuals to ecosystems. This suggests the existence of common

organizing principles operating across different levels of biochemical organization

that can best be elucidated by considering multiple coarse-grained representations in

tandem, warranting further research to explain.

3.3 Introduction

Statistical mechanics was developed in the 19th century for studying and predicting

the behavior of systems with many components. It has been hugely successful in

its application to those physical systems well-approximated by idealized models of
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non-interacting particles. However, real-world systems are often much more complex,

leading to a realization over the last several decades that new statistical approaches are

necessary to describe biological and technological systems. Among the most natural

mathematical frameworks for developing the necessary formalism is network theory,

which projects the complex set of interactions composing real systems onto an abstract

graph representation [17, 28–33]. Such representations are powerful in their capacity

to quantitatively describe the relationship between components of complex systems

and because they permit inferring function and dynamics from structure [38–42].

Network theory has been especially useful for studying metabolism. Metabolism

consist of catalyzed reactions that transform matter along specific pathways, creating

a complex web of interactions among the set of molecular species that collectively

compose living things [48–52]. It is the collective behavior of this system of reactions

that must be understood in order to fully characterize living chemical processes–

counting only individual components (molecules) is inadequate. The structure of how

those components interact with one another (via reactions) really matters: in fact it

is precisely what separates organized biological systems from messy chemical ones [13,

43, 44].

Within the formalism of network theory, one of the simplest ways to capture insights

into the global structure of a network is to analyze the shape of its degree distribution.

A huge volume of research into various complex biological, technological and social

networks has therefore focused on identifying the scaling behavior of the corresponding

degree distributions for network projections describing those systems. One of the

most significant results emerging from these analyses is that many networks describing

real-world systems exhibit ostensibly “scale-free” topology [70–74], characterized by a

power-law degree distribution. The allure of scale-free networks is in part driven by the
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simplicity of their underlying generative mechanisms, for example a power-law degree

distribution can be produced by relatively simple preferential attachment algorithms

[70], or to a lesser extent through optimization principles [75]. For truly scale-free

networks the probability to find a node with degree x should scale as:

f(x) = x−α . (3.1)

For numerous biological and technological systems, including metabolic networks, the

scaling exponent, α, is reported with values in the range 2 < α < 3. The apparent

ubiquity of scale-free networks across biological, technological and social networks has

fueled some to conjecture scale-free topology as a unifying framework for understanding

all such systems, with the enticing possibility these seemingly diverse examples could

in reality arise from relatively simple, universal generating mechanisms [70, 74, 75,

106, 107].

However, this story is far from complete. Recently developed statistical tests to

rigorously examine whether observed distributions share characteristics with a power-

law, or are instead more similar to other heavy tailed distributions, have revealed

that true scale-free networks may not be as ubiquitous as previously supposed [69,

108]. These tests reveal that while it is superficially possible for a network to appear

scale-free, more rigorous analysis can reveal a structure more similar to other heavy-

tailed distributions such as the log-normal distribution, or even non heavy-tailed

distributions like the exponential distribution [69, 107–109].

The problem of characterizing the global structure of real-world systems is further

compounded by the fact there are often many ways to coarse-grain a real system

to generate a network representation, each corresponding to a different way for set

of interactions to be projected onto a graph. For example, metabolic networks may

be represented as unipartite or bipartite graphs, depending on whether one chooses
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to focus solely on the statistics over molecules (or reactions) and their interactions

(requiring a unipartite representation) or instead to include both molecules and

reactions as explicit nodes in the graph (where molecules and reactions represent two

classes of nodes in a bipartite representation) [45–47]. These graphs can have different

large-scale topological properties, even when projected from the same underlying

system. This raises the question of determining which projection to analyze, and

whether or not a real-world system should be considered “scale-free” if only some of

its network projections exhibit power-law degree distributions. Broido and Clauset

recently developed a methodology to compare the degree distributions of network

projections of different complexities, classifying the degree to which they are scale-free

on a scale from “Not scale-free” all the way to “strongest” [108]. This provides a

framework for statistically analyzing many projections of a given system to determine

how well scale-free structure describes the real underlying system when projected onto

its different coarse-grained representations.

Herein, we build from the work of Broido and Clauset with specific application

to the problem of characterizing biochemical systems. A novelty in our approach is

recognizing that in order to really understand the structure of real-world biological

(and technological) systems, the relevant scale(s) for performing such analysis must

also be considered. In particular, many biological and technological systems are

hierarchical, with networks describing interactions across multiple levels. For example,

one may study the biochemistry of individual species, but ultimately the function

of an individual in a natural system depends on a complex interplay of interactions

among the many species comprising its host ecosystem. In this way, biochemistry

is hierarchically organized into individuals and ecosystems. Indeed, much discussion

about universal properties of life has shifted focus from individuals to ecosystems as
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the relevant scale best capturing the regularities of biological organization [21, 84]. It is

unclear at present whether analysis of biochemical networks at the level of individuals

or ecosystems will best uncover their structure and permit identifying generative

mechanisms for biology, or whether all levels must be considered simultaneously.

In what follows, we perform statistical analysis of an ensemble of biochemical

systems generated from 785 ecosystem-level metagenomes and 1082 individual-level

genomes (representing all three domains of life). Our results include the first analysis of

scale-free network structure for the different projections of ecosystem-level biochemistry,

significantly expanding on on earlier work focusing on the large-scale organization

of individual metabolic networks only [45–48, 69, 108]. Like Broido and Clauset,

we consider all possible projections of biochemical systems to graphs simultaneously,

whereas most prior work on the organization of biochemistry has only considered

one or at most a few projections [52, 110–113]. We find a majority of biochemical

networks are not scale-free, independent of projection or level of organization. We also

demonstrate how the network properties analyzed herein can be used to distinguish

individual and ecosystem level networks, and find that independent of projection,

individuals and ecosystems share very similar structure. These results have potentially

deep implications for identifying underlying rules of biochemical organization at both

the individual and ecosystem-level by providing constraints on whether the same or

different generative mechanisms could operate to organize biochemistry across multiple

scales.
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Figure 17. How biochemical datasets are decomposed into network projections. (A)
Networks are generated from the set of reactions encoded in each
genome/metagenome starting from a bipartite representation, and projecting different
combinations of attributes. The bold, rounded flowchart nodes show the result of
each combination of projections applied in this study. (B) The different network
projection types of a simple example dataset, composed of two KEGG reactions:
R01773 & R01775. The nomenclature used in this paper’s figures is below each
network visualization (in this example the entire graph is the same as the largest
connected component). (C) How the reactions used in the network visualization
example above appear in the KEGG database [58, 114, 115]
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3.4 Results

Utilizing the framework developed by Broido and Clauset [108], we used the full

set of biochemical reactions encoded in each genome and metagenome to construct

eight distinct network representations of each respective biochemical system. This

resulted in 8656 network projections for the 1082 individual-level biochemical datasets,

and 6280 network projections for the 785 ecosystem-level biochemical datasets. Each

representation corresponds to a different coarse-graining of the underlying system of

reactions (i.e. the underlying dataset) (Fig. 17). We determine whether or not these

datasets are scale-free, and analyze the aspects of them, and their diverse projections,

that tend to lend themselves to be more or less scale-free. The alternative distributions

that we compare to the power-law are: The exponential distribution, the log-normal

distribution, the stretched exponential distribution, and the power-law distribution

with a cutoff (see [69, 108] for more details on these distributions).

We first classified each dataset in terms of how scale-free it is. A dataset is

classified as: Super-Weak if for at least 50% of network projections, none of the

alternative distributions are favored over the power-law; Weakest if for at least 50%

of network projections, the power-law hypothesis cannot be rejected (p ≥ 0.1); Weak

if it meets the requirements of the Weakest set, and there are at least 50 nodes in

the distribution’s tail (ntail > 50); Strong if it meets the requirements of both the

Super-Weak and Weak set, and that the median scaling exponent is between two and

three (2 < α̂ < 3); and Strongest if it meets the requirements of the Strong set for

at least 90% of graphs, rather than 50%, and for at least 95% of graphs none of the

alternative distributions are favored over the power-law.

Our results indicate most biochemistry at the individual and ecosystem-level is
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characterized by networks that are “super-weakly” scale-free (Fig. 18). That is,

while the power-law is better than other models for fitting the shape of their degree

distributions, the power-law is not itself a good model. When doing a goodness-of-fit

test, we find that the majority of network representations of each genomic/metagenomic

dataset have p < 0.1, indicating there is less than a 10% chance that our data is truly

power-law distributed. This effectively rules out the possibility that our data is drawn

from a power-law shaped degree distribution, despite the fact that, when compared

to other distributions through log-likelihood ratios, 99% of all datasets do not favor

alternative heavy tail distributions for the majority of their network-projections (Fig.

19, top row).

Figure 18. The vast majority of individual and ecosystem level networks are not
“scale-free”. Left: Most datasets are super weak, indicating that when compared to
other models, a power-law distribution is a better fit. However, the power-law
distribution is not a “good” fit for most dataset network representations. No networks
meet the “Strongest” criteria defined by Broido and Clauset al.[108]. Overlaid values
show the percent of networks of each level which fall into each category, ±2SD. Right:
The relationship between scale-freeness and largest network size across projections n.
All datasets containing networks larger than approximately 2100 nodes have degree
distributions that rule out fitting well to a power-law.

69



Figure 19. The number of network projections within each dataset which meet some
scale-free criteria. Left column: The number of network projections within each
dataset which meet some scale free-criteria, where each dataset falls into one of nine
bins. Normalized to total number of datasets in a level. Criteria from top to bottom:
No alternative distributions favored over power-law in log-likelihood ratio (1st row);
p ≥ 0.1 (2nd row); ntail > 50 (3rd row); 2 < α < 3 (4th row). Dashed lines show: the
cutoff for number of networks in a dataset required to meet the threshold criteria for
“Super-Weak” (1st row), and “Weakest” (2nd row). Right column: The number of
network projections, across all datasets, which meet some scale-free criteria, binned
by projection type. Normalized to the total number of each projection within a level.
Criteria same as left column. Red bars indicate individual-level datasets/networks,
and blue bars indicate ecosystem-level datasets/networks. Black error bars show
±2SD.
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3.4.1 Where biochemical systems succeed and fail scale-free classifications

Figure 20. The distribution of p-values, tail-sizes, and power-law alpha values for
biochemical network degree distributions, over all network projections. Left column:
The goodness-of-fit p-values of networks. When p ≥ 0.1 (dashed line), it indicates
that there is at least a 10% chance of the power-law distribution being a plausibly
good fit to a network’s degree distribution. Center column: Tail size of networks.
When ntail ≥ 50 (dashed line), it indicates that the tail of distribution is large enough
to reliably fit. Right column: Power-law exponent α values of networks. When
2 < α < 3 (between dashed lines), it indicates that a network meets the criteria of
having a power-law exponent which falls into scale-free territory. The top row shows
distributions for individuals in red. The bottom row shows distributions for
ecosystems in blue. Insets indicate the number (and percent) of networks which meet
the criteria, ±2SD.

3.4.1.0.1 Goodness-of-fit p-value.

The “weakest” requirement for a scale-free network introduced by Broido and

Clauset stipulates over 50% of a dataset’s network-projections must have a power-law

goodness-of-fit p ≥ 0.1. For both individuals and ecosystems, only 6% of network-
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projections meet this requirement (Fig. 20, left column). This goodness-of-fit p-value

requirement is the most restrictive of all scale-free requirements.

3.4.1.0.2 Tail size.

Setting aside the fact each subsequent scale-free requirement builds on the re-

quirement(s) of the preceding one, we find 98% of individual networks and 99% of

ecosystem networks do meet the requirement of ntail > 50 for a scale-free degree

distribution (Fig. 20, center column).

3.4.1.0.3 The power-law exponent, α.

Only 50% of individual-level networks and 51% of ecosystem-level networks meet

the requirement that 2 < α < 3 for their degree distribution. The goodness-of-fit p

value requirement, followed by the requirement constraining values of α, are the most

restrictive when determining whether a biochemical network’s degree distribution

should be considered scale free (Fig. 20, right column).

3.4.2 Meeting the threshold for scale-free classification is dependent on the network

representation

We find the results of each requirement listed above for classifying topology as scale-

free differ across the eight network projection types for each dataset. Unsurprisingly,

for most requirements, there exists a minute difference between the values observed

for the largest connected component and entire graph of a given network projection
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type (Fig. 19, right column). Depending on the measure, there is a noticeably

larger difference between the major network projection types, e.g., between bipartite,

unipartite-reactions, unipartite-compounds (where all substrates participating in the

same reaction are connected), and unipartite-compounds (where substrates on the

same side of a reaction are not connected) (Fig. 19, right column).

3.4.2.0.1 Comparing to alternative distributions.

Over 99% of individual and ecosystem-level datasets have 6 projections which do

not favor any other distribution over the power-law (Fig. 19, top row, left column). No

datasets have more than 6. The other two projections nearly always favor at least one

other distribution over the power-law distribution–either the log-normal, exponential,

stretched exponential, or power-law with exponential cutoff (Fig. 19, top row, right

column). There are only 3 of the 6280 ecosystem-level network projections (across

the 785 ecosystem-level datasets) that do not favor at least one of the alternative

distributions. Oftentimes all four are favored over the power-law distribution (Fig. 21,

rows 3-4). These results are identical, within 95% confidence, for both individuals

and ecosystems.

3.4.2.0.2 Goodness-of-fit p-value.

Out of all datasets, 80% of individuals and 84% of ecosystems have only a single

projection type with p ≥ 0.1 for a power-law fit to their degree distribution. This

indicates the majority of datasets would still not meet the “weakest” requirement for

scale-free even with a threshold that lowered the percent of a dataset’s projections
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needed to 25% (2 networks) instead of 50% (4 networks) (Fig. 19, 2nd row, left

column). The unipartite projection where substrates on the same side of a reaction are

not connected (unipartite-subs_not_connected) was the most likely to satisfy p ≥ 0.1.

For the two unipartite-compound projections, the difference between individuals and

ecosystems is within the error. The unipartite-reaction projections were the least likely

to satisfy p ≥ 0.1, which is consistent with the observation that these networks always

favor an alternative distribution as a better fit to the data than the power-law (Fig.

19, 2nd row, right column). As we initially reported, the majority of datasets do not

meet the p-value threshold for being considered scale-free, although ecosystems-level

datasets are more likely to meet the threshold.

3.4.2.0.3 Tail size.

Out of all datasets, 98% of individuals and 96% of ecosystems meet ntail > 50 for

all projection types (Fig. 19, 3rd row, left column). For 7 of the projection types,

there is no difference between individuals and ecosystems, within 95% confidence (Fig.

19, 3rd row, right column).

3.4.2.0.4 The power-law exponent, α.

Out of all datasets, 95% of individuals and 97% of ecosystems meet 2 < α < 3

for 4 of 8 projection types (Fig. 19, bottom row, left column). The two types of

unipartite-compound networks contribute to the datasets which meet the alpha-range

requirement the majority of the time. That is, chances are if a dataset has at least 4

projection types meeting 2 < α < 3, two of them are going to be unipartite-compound
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network projections (Fig. 19, bottom row, right column). The results are similar for

both individuals and ecosystems.

3.4.2.0.5 Correlation of results between projections.

Because 8 different network projections are derived from a single biochemical

dataset, there is reason to expect the proportions of each projection type meeting

any given scale-free criteria are correlated. We therefore constructed a Pearson

correlation matrix to test whether there are correlations between projections (Fig.

22). Unsurprisingly, we find that values from projections of a network’s LCC and

entire graph are highly correlated. All types of unipartite compound networks tend

to be correlated. Values across many other projection types are barely correlated for

the p-value and ntail criteria. Ecosystems tend to show more correlation, across all

projection types, than individuals.

3.4.3 Distinguishing individuals and ecosystems based on their degree distributions

3.4.3.0.1 Multinomial regression.

We used multinomial regression on network and degree distribution data from the

above analyses to attempt to distinguish individuals from ecosystems. Most measures

cannot reliably distinguish between these two levels of organization, with only network

size and network tail size data distinguishing the two levels better than chance. Using

only network size, ecosystems could be correctly identified in test data 72.23% of
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Figure 21. How alternative distributions compare to the powerlaw across each
network projection type. The proportion of network projections, across all datasets,
that favor either the power-law distribution (1.0), an alternative distribution (-1.0),
or are inconclusive (0.0). Each row shows a different network projection type. Each
column is a different distribution with which the power-law is being compared to.
From left to right is the exponential; log-normal; stretched exponential; and power-law
with cutoff. Dashed line is constant at proportion = 0.5 across all subplots. Red bars
indicate individual-level networks, and blue bars indicate ecosystem-level networks.
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Figure 22. Correlations between network projections which meet scale-free criteria.
Correlation matrix heatmaps show type how different types of network projections
correlate in their proportions of networks which meet some scale-free criteria. Rows
are for each of the different scale-free criteria (p-value, ntail and α), and columns are
for individual and ecosystem-level networks. Heatmaps show the correlation between
values for each projection type, where the values are of the proportion of networks
which meet the scale-free threshold criteria of: p ≥ 0.1 (top row); ntail > 50 (center
row); 2 < α < 3 (bottom row). Values from projections of a network’s LCC and
entire graph are highly correlated. All types of unipartite compound networks tend to
be correlated. Values across many other projection types are barely correlated for the
p-value and ntail criteria. Ecosystems tend to show more correlation, across all
projection types, than individuals.
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the time, whereas individuals could be correctly identified 85.33% of the time (Fig.

23, left columns). When normalizing other measures to network size, the only one

that improved in distinguishing individuals and ecosystems to be better than chance

was dexp (Fig. S24). This is a measure of which type of distribution is favored (or

neither) when doing a log-likelihood ratio test between the power-law and exponential

distribution.

3.4.3.0.2 Random Forest.

Random forest classifiers are a supervised machine learning technique that use

decision trees to make classifications. When using random forests to try and distinguish

individuals and ecosystems based on network and distribution data, we find ecosystems

can be correctly predicted 87.01% of the time, and individuals can be correctly

predicted 95.82% of the time (Out of bag, OOB, error rate is 7.91%). However, the

size of the network and size of the degree distribution tail once again are the best

relative predictors. Without network size and tail size, the prediction accuracy drops

to 79.27% for ecosystems and 94.81% for individuals (OOB error rate of 11.80%).

When doing random forest classification by projection type, the prediction accuracies

are still above 75% for ecosystems and 91% for individuals across all projections, which

is better than multinomial regression models even when information about network

size is included (Fig. 23, left columns; Table S3). Mean degree was the best predictor

across all network projection types.
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Figure 23. Predicting individuals and ecosystems from degree distribution data using
multinomial regression vs. random forest. Each subplot shows the accuracy of using a
particular network or statistical measure to predict whether that network data came
from an biological individual or ecosystem. The left plots show prediction accuracy
from using multinomial regression across all network projection types, and the right
plots show prediction accuracy using random forest on each type of projection. The
random forest classifier is much better at predicting individuals and ecosystems
correctly from network data, even without direct access to network size. All random
forest predictions have an accuracy of at least 75% across all projection types.
Subplots measures are: power-law alpha value; log-likelihood result from power-law
vs. exponential; log-likelihood result from power-law vs. log-normal; log-likelihood
result from power-law vs. power-law with exponential cutoff; log-likelihood result
from power-law vs. stretched exponential; the network mean degree; network node
size; degree distribution tail size; network edge size; the p-value of the goodness-of-fit
test for the power-law model; cutoff degree value for network tail. These are the only
predictors used in the random forest classifier. Prediction accuracy is random if
≤ 50%, Fair if > 50%, and Good if ≥ 75%.
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3.5 Discussion

Our results indicate biochemical systems across individuals and ecosystems are, at

best, only weakly scale-free. This is revealed by studying all possible projections of

biochemical systems in tandem: only six of the eight network projection types analyzed

favor power-law distributions over alternatives and in all cases the power-law is not

itself a good fit to the data. Nonetheless, we can conclude individuals and ecosystems

both share qualitatively similar degree distribution characteristics, and while this is a

very coarse-grained measure of network structure, it suggests the possibility of shared

principles operating across levels of organization to architect biochemical systems. The

random forest distinguishability analyses demonstrate using a combination of all the

results of scale-free analyses completed in this paper can predict, better than chance,

whether the data comes from individuals or ecosystems. Individuals are perhaps

more tightly constrained in coarse-grained network structure, based on being able

to more accurately predict them based on simple network characteristics. Whether

or not this structure is truly a universal property of life’s chemical systems is more

difficult to conclude. Based on the sample sizes, we are confident our results hold

over the population of genomes and metagenomes in the JGI and PATRIC databases.

However, the observed scaling is only reflective of biology universally if the databases

are unbiased in sampling from all of biology on Earth, and this is impossible to

know with certainty (see textit e.g. proposals of ‘shadow life’ and reports of missing

biota [61, 116]). Nonetheless, the fact that multiple levels and multiple projections of

biochemistry reveal common structure suggests universal principles may be within

reach if cast within an ensemble theory of biochemical network organization.

Achieving such a theory requires recognizing that, unlike simple physical systems
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where statistics over individual components is sufficient to describe and predict their

behavior, biological and technological systems require additional information about the

structure of interactions among their many components. This is well-known, but how

to project this structure onto simple mathematical objects that can be quantifiably

characterized and compared remains a central problem of complex systems science. In

physics, the relevant coarse-graining procedure is well understood, but we are not so far

in complexity science: the first hurdle we must traverse is to identify the proper coarse-

grained network representations for analysis. Existing literature cautions against using

unipartite network projections, as it is argued they can lead to “wrong” interpretations

of system properties such as degree in biochemical networks [47, 117]. We find instead

that whether or not this conclusion should be drawn is highly dependent on the

particular characteristics of degree or the degree distribution under consideration. For

example, all network projection types, aside from unipartite reaction networks, favor

power-law degree distributions over other heavy-tailed alternatives (Fig. 19, top row).

For power-law α ranges 2 < α < 3, bipartite networks show similar results to the

unipartite reaction networks of individuals, but different results for ecosystems and

unipartite compound networks (Fig. 19, fourth row). Almost all projections show

differing results for meeting the scale-free p-value cutoff (Fig. 19, second row). While

other literature [45, 46] has advocated for unipartite networks (with all compounds

participating in a reaction connected–called uni-compounds here), we find that these

networks overestimate power-law goodness-of-fit p-values and α values compared to

reaction and bipartite networks (Fig. 19). The similarities and differences in the

structure of different projections provides insight into the actual structure of the

underlying system of interest. Given that there is no obvious answer for whether a

system is scale-free, we advocate for studying all projections possible: regardless of
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whether or not a given projection is scale-free, all projections provide insights into the

structure of the underlying system. In physics we have become accustomed to one

unique coarse-grained descriptor providing insight into the structure of a system. It

may be that to really understand complex interacting systems, such as the systems of

reactions underlying all life on Earth, we must forget the allure of simple, singular

models. Instead, to characterize the regularities associated with living processes, we

should perform statistical analyses over many (still relatively simple) coarse-grained

projections.

3.6 Materials and Methods

3.6.1 Obtaining biological data

Bacteria and Archaea data were obtained through PATRIC [118]. Starting with

the 21,637 bacterial genomes available from the 2014 version of PATRIC, we created a

parsed dataset by selecting one representative genome containing the largest number

of annotated ECs from each genus. Unique genera (genera only represented by a single

genome) were also included in our parsed data. Uncultured/candidate organisms

without genera level nomenclature are left in the parsed dataset. This left us with

1152 parsed bacteria, from which we chose 361 randomly to use in this analysis.

Starting with 845 archaeal genomes available from the 2014 version of PATRIC, we

randomly chose 358 to use in this analysis. Enzyme Commission (EC) numbers

associated with each genome were extracted from the ec_number column of each

genome’s .pathway.tab file.

Eukarya and Metagenome data were obtained through JGI IMG/m [119]. All 363
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eukaryotic genomes available from JGI IMG/m as of Dec. 01, 2017 were used. Starting

with the 5586 metagenomes available from JGI IMG/m as of June 20, 2017, 785

metagenomes were randomly chosen for this paper’s analyses. Enzyme Commission

(EC) numbers associated with each genome/metagenome were extracted from the list

of Protein coding genes with enzymes, and metagenome EC numbers were obtained

from the total category. All JGI IMG/m data used in this study were sequenced at

JGI.

Because each EC number corresponds to a unique set of reactions that an enzyme

catalyzes, the list of EC numbers associated with each genome and metagenome can

be used to identify the reactions that are catalyzed by enzymes coded for in each

genome/metagenome. We use the Kyoto Encyclopedia of Genes and Genomes (KEGG)

ENZYME database to match EC numbers to reactions, and the KEGG REACTION

database to identify the substrates and products of each reaction [58, 114, 115]. This

provides us with a list of all chemical reactions that a genome/metagenome’s enzymes

can catalyze.

3.6.2 Generating Networks

Each genomic/metagenomic dataset is used to construct eight representations of

biochemical reaction networks. We refer to each type of representation as a “network

projection type“ throughout the text:

1. Bipartite graph with reaction and compound nodes. A compound node Ci is

connected to a reaction node Ri if it is involved in the reaction as a reactant or

a product. Abbreviated in figures as bi-full.
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2. Unipartite graph with compound nodes only. Two compound nodes Ci and Cj are

connected if they are both present in the same reaction. A reaction’s reactant

compounds are connected to each other; a reaction’s product compounds are

connected to each other; and a reaction’s reactant and product compounds are

connected. Abbreviated in figures as uni-compounds.textit

3. Unipartite graph with reaction nodes only. Two reaction nodes Ri and Rj are

connected if they involve a common compound. Abbreviated in figures as

uni-reactions.

4. Unipartite graph with compound nodes only (alternate). Two compound nodes

Ci and Cj are connected only if they are both present on opposite sides of the

same reaction. A reaction’s reactant compounds are not connected to each

other; a reaction’s product compounds are not connected to each other; but

a reaction’s reactant and product compounds are connected. Abbreviated in

figures as uni-subs_not_connected.

There exists a version of each of these four network construction methods for the

largest connected component (LCC), and for the entire graph, yielding a total of eight

network projections for each dataset (Fig. 17). These network projection types are

signified in the figured by appending -largest and -entire to the network projection

abbreviations. Some datasets may yield identical networks for their LCC and entire

graph, if there is exists only a single connected component.
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3.6.3 Assessing the power-law fit on degree distributions

As defined in Clauset, 2009 [69], a quantity x obeys a power law if it is drawn

from a probability distribution

f(x) = x−α, (3.2)

where α, the exponent/scaling parameter of the distribution, is a constant. In order

to estimate α, we follow the methods described in Clauset, 2009 [69], and use an

approximation of the discrete maximum likelihood estimator (MLE)

α̂ ' 1 + n

[
n∑
i=1

ln
xi

xmin − 1
2

]−1

, (3.3)

where xmin is the lower bound of power-law behavior in our data, and xi, i=1,2,...,n,

are the observed values x such that xi ≥ xmin. The standard error of our calculated α

is given by

σ =
α̂− 1√
n

+ O(1/n), (3.4)

where the higher-order correction is positive [69]. Because many quantities only

obey a power-law for values greater than some xmin, the optimal xmin value must

be calculated. The importance of choosing the correct value for xmin is discussed in

detail in Clauset et al, 2009 [69]. If it is chosen too low, data points which deviate

from a power-law distribution are incorporated. If it is chosen too high, the sample

size decreases. Both can change the accuracy of the MLE, but it is better to err too

high than too low.

In order to determine xmin, we use the method first proposed by Clauset et al., 2007

[120], and elaborated on in Clauset et al., 2009 [69]: we choose the value of xmin that

makes the probability distributions of the measured data and the best-fit power-law

model as similar as possible above xmin. The similarity between the distributions is
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quantified using the Kolmogorov-Smirnov or KS statistic, given by

D = max
x≥xmin

|S(x)− P (x)|, (3.5)

where S(x) is the cumulative density function (CDF) of the data for the observations

with value at least xmin, and P (x) is the CDF for the power-law model that best fits

the data in the region x ≥ xmin. Our estimate of xmin is the one that minimizes D.

We used the github respository made available in Broido and Clauset [108] to

determine the optimal xmin of all our degree distributions, and to subsequently

calculate the MLE in order to determine the scaling exponent α and the standard

error on α, σ [121].

A power-law can always be fit to data, regardless of the true distribution from

which it is drawn from, so we need to determine whether the power-law fit is a

good match to the data. We do this by sampling many synthetic data sets from a

true power-law distribution, recording their fluctuation from power-law form, and

comparing this to similar measurements on the empirical data in question. If the

empirical data has similar form to the synthetic data drawn from a true-power law

distribution, then the power-law fit is plausible. We use the KS statistic to measure

the distance between distributions.

We use a goodness-of-fit test to generate a p-value which indicates the plausibility

of a hypothesis. The p-value is defined as the fraction of the synthetic distances that

are larger than the empirical distance. If p is large (close to 1), then the difference

between the empirical data and the model can be attributed to statistical fluctuations

alone; if it is small, the model is not a plausible fit to the data [69]. We follow the

methods in Clauset et al., 2009 [69]–and implement them with the github package used

in Broido and Clauset [108]–to generate synthetic datasets and measure the distance

between distributions. Following these methods, we chose to generate 1000 synthetic
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datasets in order to optimize the trade-off between having an accurate estimation of

the p-value and computational efficiency. If p is small enough (p < 0.1) the power law

is ruled out. Put another way, it is ruled out if there is a probability of 1 in 10 or less

that we would by chance get data that agree as poorly with the model as the data we

have [69]. However, measuring a p ≥ 0.1 does not guarantee that the power-law is the

most likely distribution for the data. Other distributions may match equally well or

better. Additionally, it is harder to rule out distributions when working with small

sample sizes.

A better way to determine whether or not data is drawn from a power-law

distribution is to compare its likelihood of being drawn from a power-law distribution

directly to a competing distribution [69, 122]. We use the exponential, stretched-

exponential, log-normal, and power-law-with-cutoff distributions as four competing

distributions to the power-law. While we cannot compare how the data fits between

every possible distribution, comparing the power-law distribution to these four similarly

shaped competing distributions helps us ensure that our results are valid.

We use the log-likelihood ratio test R [69, 122] to compare the power-law distribu-

tion to other candidate distributions,

R = LPL − LAlt, (3.6)

where LPL and LAlt are the log-likelihoods of the best fits for the power-law and

alternative distributions, respectively. This can be rewritten as a summation over

individual observations,

R =

ntail∑
i

[`
(PL)
i − `(Alt)

i ], (3.7)
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with the log-likelihood of single observed degree values under the power-law

distribution, `(PL)
i , and alternative distribution, `(Alt)

i , are summed over the number of

model observations, ntail.

If R > 0, the power-law distribution is more likely; if R < 0, the competing

candidate distribution is more likely; if R = 0, they are equally likely. Just like with

the goodness of fit test, we need to make sure our result is statistically significant

(p < 0.01). The methodology described here summarizes the methodology introduced

by Clauset et al., 2009, and described again in Broido and Clauset, 2018 [69, 108] and

more details such as the exact formulas for alternative distributions, and derivation of

the p-value for R can be obtained therein.

3.6.4 Classifying network scaling

We classify each genomic/metagenomic dataset, as represented by the set of eight

network projection types, as having some categorical degree of ”scale-freeness“ from

”super-weak“ to ”strongest“. This classification scheme was introduced by Broido

and Clauset, 2018 [108] in order to compare many networks with different degrees of

complexity, and the definitions below were extracted from therein:

• Super-Weak: For at least 50% of graphs, none of the alternative distributions

are favored over the power law.

The four remaining definitions are nested, and represent increasing levels of direct

evidence that the degree structure of the network data set is scale free:

• Weakest: For at least 50% of graphs, the power-law hypothesis cannot be rejected

(p ≥ 0.1).
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• Weak: The requirements of the Weakest set, and there are at least 50 nodes in

the distribution’s tail (ntail > 50).

• Strong: The requirements of the Weak and Super-Weak sets, and that 2 < α̂ < 3.

• Strongest: The requirements of the Strong set for at least 90% of graphs, rather

than 50%, and for at least 95% of graphs none of the alternative distributions

are favored over the power-law.

Categorizing a network as ”Super-Weak“ is in effect saying that that network’s

degree distribution data is better modeled by a power-law fit than alternative distri-

butions. This is independent of whether or not the power-law model is a good fit

to the data, which is what is what the ”Weakest“ and ”Weak“ definitions emphasize.

A network may be classified as ”Super-Weak“ without meeting any of the nested

definition’s criteria. Similarly, a network may be classified as ”Weak“ without meeting

the criteria in the ”Super-Weak“ definition. We believe this framework is a proper way

to classify the degree-distributions of biochemical networks, given that there are many

different accepted ways to represent biochemical reactions as networks, and each has

their pros and cons [45–47].

3.6.4.0.1 Standard error and correlation.

The black error bars on each plot represent 2 standard deviation (2SD) around the

sample proportion p̂ (the height of the bar, which we also refer to as the mean). This is

equivalent to 2 standard error around the mean (2SEM), or a 95% confidence interval

for the true population proportion p (true population mean). Standard deviation was

calculated by treating each category as a binomial distribution, meaning the standard

deviation is given by:
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√
p(1− p)

n
(3.8)

Although the errors for each plot’s categories are calculated independently, there

is co-variance between many of them. This is especially true for the right column

of Fig. 19, where all bars of a color total to a fixed number of datasets, with each

dataset falling into one of the 8 network projection type bins. Because of this, we

also calculated the correlations between each network projection type, across both

individuals and ecosystems (Fig. 22). The correlation matrices were calculated by

using the pandas function DataFrame.correlation(method='pearson') on a matrix

of binomially distributed True/False values representing whether each dataset passed

or failed specific scale-free criteria for p-value, tail size, or power-law exponent value

(α), for each network-projection.

3.6.5 Classifying levels of biology using degree distribution data

We used two different statistical methods, multinomial regression and random

forest classifiers, in conjunction with the scale-free classification scheme above in

order to test if individuals and ecosystems were distinguishable based on their degree

distribution characteristics.

3.6.5.0.1 Multinomial regression.

For our multinomial regression, the response class is the biological level (individual

or ecosytem), and a single network or statistical measure is the dependent variable. In

order to control for over fitting the training data was composed of an equal number of
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samples from each level. The number of networks used for training data was chosen to

be equal in size to 80% of all ecosystem projections, because there were less ecosystem

datasets used than individual datasets. This corresponded to 80% of 6280 networks (of

all projection types), or 5024 networks. The model was tested on the 20% of the data

that it was not trained on. This process was repeated 100 times and the average model

error is reported in the results and Fig. 23, left columns. The multinom and predict

functions from the R-package nnet were used to do the multinomial regression.

3.6.5.0.2 Random forest classifiers.

We used a random forest to attempt to classify networks as falling into the category

of individuals or ecosystems. In the first scenario, we used 11 predictors: power-

law alpha value (α); log-likelihood result from power-law vs. exponential (dexp);

log-likelihood result from power-law vs. log-normal (dln); log-likelihood result from

power-law vs. power-law with exponential cutoff (dplwc); log-likelihood result from

power-law vs. stretched exponential (dstrexp); the network mean degree (< k >);

network node size (n); degree distribution tail size (ntail); network edge size (nedges);

the p-value of the goodness-of-fit test for the power-law model (p); and cutoff degree

value for network tail (xmin). In the second scenario, we repeated the random forest

without the three predictors which can be directly used to quantify the size of a

network (n, ntail, and nedges). In the third scenario, we repeated the random forest

without the three predictors on each network projection type independently. For

each scenario, we randomly split our data in two halves: one for training, and one

for testing (for the third scenario, each training and testing set is 1/8 as large as

for the first two scenarios, since we run the classifier on each network projection
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type independently). In all scenarios, we use the randomForest function from the

R-package randomForest for classification. Three features were used to construct

each tree (mtry=3), which is ≈ √nfeatures, with 100 trees generated each time (enough

time for the out-of-bag, or OOB, estimate of the error rate to level off).

3.7 Supporting Information

3.7.1 Supporting Figure
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Figure 24. Predicting individuals and ecosystems from degree distribution data using
multinomial regression. Each subplot shows the accuracy of using a particular
network or statistical measure to predict whether that network data came from an
biological individual or ecosystem. The subplots in the right column are the accuracy
of using a measure after being normalized to network size. Unsurprisingly, network
size is by far the best way to accurately predict whether data comes from an
individual or ecosystem (left blue star). Once normalized to size, whether or not a
degree distribution favors an exponential fit compared to a power-law fit becomes a
decent predictor (right blue star). Subplots measures are: power-law alpha value;
log-likelihood result from power-law vs. exponential; log-likelihood result from
power-law vs. log-normal; log-likelihood result from power-law vs. power-law with
exponential cutoff; log-likelihood result from power-law vs. stretched exponential; the
network mean degree; network node size; degree distribution tail size; network edge
size; the p-value of the goodness-of-fit test for the power-law model; cutoff degree
value for network tail. Prediction accuracy is random if ≤ 50%, Fair if > 50%, and
Good if > 75%. 93



3.7.2 Supporting Table

Table 3. Random forest accuracy by network projection type.
Network projection type Prediction accuracy (%) OOB error (%)

Ecosystem Individual
bi-full-entire 75.58 93.75 13.83
bi-full-largest 75.45 94.83 13.29
uni-compounds-entire 81.44 93.76 11.36
uni-compounds-largest 80.81 93.67 11.79
uni-reactions-entire 80.95 93.67 11.36
uni-reactions-largest 80.40 93.08 12.33
uni-subs_not_connected-entire 76.12 92.93 13.93
uni-subs_not_connected-largest 77.47 91.64 14.36

The predictors used in the random forest are the same predictors used in the
multinomial regression: power-law alpha value; log-likelihood result from power-law
vs. exponential; log-likelihood result from power-law vs. log-normal; log-likelihood
result from power-law vs. power-law with exponential cutoff; log-likelihood result
from power-law vs. stretched exponential; the network mean degree; network node
size; degree distribution tail size; network edge size; the p-value of the goodness-of-fit
test for the power-law model; cutoff degree value for network tail. See methods for
description of network projection types.
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Chapter 4

ASSESSING THE VIABILITY OF BIOCHEMICAL NETWORKS ACROSS

PLANETS

4.1 Abstract

The concept of the origin of life implies that initially, life emerged from a non-living

medium. If this medium was Earth’s geochemistry, then that would make life, by

definition, a geochemical process. The extent to which life on Earth today could

subsist outside of the geochemistry from which it is embedded is poorly quantified.

By leveraging large biochemical datasets in conjunction with planetary observations

and computational tools, this research provides a methodological foundation for the

quantitative assessment of our biology’s viability in the context of other geospheres.

Investigating a case study of alkaline prokaryotes in the context of Enceladus, we find

that the chemical compounds observed on Enceladus thus far would be insufficient to

allow even these extremophiles to produce the compounds necessary to sustain a viable

metabolism. The environmental precursors required by these organisms provides a

map for the compounds which should be prioritized for detection in future planetary

exploration missions. The results of this framework have further consequences in

the context of planetary protection, and hint that forward contamination may prove

infeasible without meticulous intent.
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4.2 Introduction

It is probable that the geochemical process known as life had already commenced

when today’s oldest minerals began to crystallize. While there is widely accepted

evidence that the process of life has been present on Earth continuously for the past

3.4Gy [123], the lack of evidence prior to this date has more to do with the paucity

of fossil-preserving rocks than concrete evidence of life’s absence [124, 125]. Despite

the biosphere’s apparent interminable coexistence with the geosphere, there remain

many open questions on the matter of life persisting in Earth’s absence [21, 101],

not to mention the questions of Earth persisting in life’s absence [126–128]. For

example, Visionaries dream of terraforming planets while program officers fret over

“contaminating” them [76–78]. While the terraformers tend to believe that seeding

another planet would require careful human or robotic (and usually Earth-assisted)

cultivation, planetary protection officers take the more conservative stance that a

small, semi-sterilized spacecraft of Earth origin could cause life to spill onto a planet

in the same way that a small perturbation to a super cooled liquid would cause the

entire volume to quickly crystallize. In both cases, there is the predominately implicit

assumption that Earth-life would be viable outside of the Earth.

When life is viewed as a geologic process, this is a somewhat surprising assumption.

In the words of Morowitz et al., “the metabolic character of life is a planetary

phenomenon, no less than the atmosphere, hydrosphere, or geosphere” [129]. If this

“metabolic character of life” is truly a planetary phenomenon, does that imply that

life is inextricable from the planet through which it emerged? Or is it possible that an

infinitesimal component of our biosphere—a sliver of a sliver of Earth’s biochemical
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diversity captured in a few species—could be enough to imbue another world with

Earth’s vitality?

To begin to address these questions, we must first lay the framework for determining

the environmental conditions required for a species to produce or acquire the chemical

compounds necessary to yield a viable metabolism. For this, we utilize the network

expansion method [79]: an organism can catalyze a reaction only if it has access to the

necessary substrates. The initial substrates, called the seed set, are the compounds

available to the organism from the environment. Initially, these are the only compounds

in the organism’s network—an abstract representation of the biochemistry able to be

utilized by the organism with the given compounds. The organism catalyzes all the

reactions it can based on the compounds available in its network, and then adds the

new compounds it can generate to its network. This process proceeds iteratively until

the organism can produce no new compounds. The state of the organism’s network

when expansion ceases is referred to as the organism’s scope—and it contains all of the

compounds which can be synthesized by an organism, plus the compounds provided

by the environment (the seed set).

While there are other methods which can be used to computationally assess

organismal viability, relying on some combination of integer linear programming,

kinetic modeling using differential equations, elementary mode analysis, and flux

balance analysis (FBA), they require catalytic rates which are difficult to acquire

and sparsely catalogued, or a curated list of stoichiometrically balanced reactions

[130]. FBA is perhaps the most common method for assessing organismal viability,

and operates by solving for the relative fluxes of reactions needed in order for steady

state production of compounds identified necessary for organismal growth. Despite

FBA requiring more constrained information and computational resources, network
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expansion has been shown to give near identical results for identifying compounds

produced (the network scope) [130, 131].

Network expansion models have been used to explore the scope of chemicals

accessible to biology across space and time on Earth, and how changing environments

and changing biochemical networks impact one another [80]. For example, the models

have been utilized to identify how oxygen drastically altered life’s biochemical networks

during the great oxygenation event [54]; how biochemistry differed before phosphorous

was widely available [53]; how organismal scopes vary across the tree of life [80, 81];

and how organismal metabolic variability is impacted both in the presence of diverse

environments and the presence of other species [82].

We propose using network expansions to address the question of life’s viability

amongst other planetary chemistries in two fundamental ways: For a set of organisms

and a set of planetary environments, how many target substrates can each organism

produce across the environments? The inverse question—For a set of organisms and a

set of planetary environments, what chemical seed sets must be provided in order to

produce the substrates which are necessary to the organism’s viability?

We work through a case study of this framework to determine the viability of

varying Earth organisms within Enceladus’s planetary context. Because Enceladus

has an ocean with high pH (11-12) [132], we choose to focus on the viability of

prokaryotic alkaliphiles. Because other environmental factors are less well constrained,

and parameters like temperature and salinity could vary substantially across locations,

we do not place any further restrictions on the organismal metabolisms that we run

network expansions on [133]. We show that based on the compounds we currently know

to be present in Enceladus’s subsurface ocean [134], none of the analyzed organismal

metabolisms are viable. In order to verify that this is not solely due to the lack of
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phosphate, a prominent bioessential compound on Earth which has not been detected

on Enceladus (likely due to Cassini instrument detection thresholds), we show that

adding phosphate as a seed compound still results in no viable organisms. Using an

algorithm developed to solve the inverse network expansion problem [135], we identify

minimal sets of substrates that satisfy the requirements of what these alkaliphilic

organisms would have to acquire externally in order to produce the target substrates.

We find that these organisms tend to require complex molecules and coenzymes,

lowering the likelihood that the organisms could be viable on Enceladus, given their

lack of detection. Nonetheless, when the full catalytic repertoire of Earth’s biosphere

is available, we find that nearly all target substrates are able to be synthesized from

a seed set consisting only of the compounds currently observed on Enceladus (plus

phosphate). Although these reactions are not the product of organisms which are

solely alkaliphilic, these results hint that forward contamination from individuals

may be much less concerning than contamination by a microbial ecosystem which

can emulate the robustness and catalytic capabilities of the biosphere—reinforcing

the perspective that the emergence of life on a planet is an extension of the planet’s

geosphere [21, 83]. More importantly, by leveraging large biochemical datasets

in conjunction with planetary observations and computational tools, this research

provides a methodological foundation for the quantitative assessment of our biology’s

viability in the context of other geospheres.

4.3 Results

Based on target metabolites necessary for many living organisms, we first sought

to determine if the compounds which have thus far been identified on Enceladus were
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sufficient to produce the target metabolites in a set of organisms which would be

viable in an environment with the alkalinity present on Enceladus [132].

We ran the network expansion algorithm on the subset of archaea and bacteria

with documented environmental pH in the ranges of 9-11 [58, 114, 115], using a seed

set of compounds which have been identified on Enceladus from observations aboard

Cassini’s Ion and Neutral Mass Spectrometer (INMS) [134] (Table 4).

Name Formula KEGG Compound ID
Water (H2O) C00001
Carbon Dioxide (CO2) C00011
Carbon Monoxide (CO) C00237
Hydrogen (H2) C00282
Formaldehyde (H2CO) C00067
Methanol (CH3OH) C00132
Ethylene oxide (C2H4O) C06548
Ethanol (C2H6O) C00469
Hydrogen sulfide (H2S) C00283
Ammonia (NH3) C00014
Nitrogen (N2) C00697
Hydrogen Cyanide (HCN) C01326
Methane (CH4) C01438
Acetylene (C2H2) C01548
Ethylene (C2H4) C06547
Propene (C3H6) C11505
Propane (C3H8) C20783
Benzene (C6H6) C01407
Phosphate (H3PO4) C00009

Table 4. Compounds used for Enceladus seed set. All compounds from Waite et al.,
2009 [134] that were present in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) were included. Phosphate was added to the seed set for additional analyses.

We deem an organism or network to be fully viable if, given a set of environmental

seed compounds, it has the catalytic repertoire to produce all the compounds in its

network which intersect with a pre-defined set of target metabolites. For this study,

we adopt the list of target metabolites defined by Freilich et al (2009) [82], (Table 5).
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In that study, the authors found that the organisms which were found to be viable,

based on these target metabolites, accurately predicted the ecological compositions of

known environments across many habitats and bacterial metabolisms.

Name KEGG Compound ID Name KEGG Compound ID
ATP C00002 NAD+ C00003
NADH C00004 NADPH C00005
NADP+ C00006 ADP C00008
UDP C00015 FAD C00016
AMP C00020 Acetyl-CoA C00024
L-Glutamate C00025 GDP C00035
Glycine C00037 L-Alanine C00041
UDP-N-acetyl-D-glucosamine C00043 GTP C00044
L-Lysine C00047 L-Aspartate C00049
Adenosine 3’,5’-bisphosphate C00054 CMP C00055
L-Arginine C00062 CTP C00063
L-Glutamine C00064 L-Serine C00065
L-Methionine C00073 UTP C00075
L-Tryptophan C00078 L-Phenylalanine C00079
L-Tyrosine C00082 L-Cysteine C00097
UMP C00105 CDP C00112
Glycerol C00116 L-Leucine C00123
dATP C00131 L-Histidine C00135
GMP C00144 L-Proline C00148
L-Asparagine C00152 L-Valine C00183
L-Threonine C00188 10-Formyltetrahydrofolate C00234
dCMP C00239 Hexadecanoic acid C00249
Riboflavin C00255 dGTP C00286
Phosphatidylethanolamine C00350 dAMP C00360
dGMP C00362 dTMP C00364
Ubiquinone C00399 L-Isoleucine C00407
dCTP C00458 dTTP C00459
1,2-Diacyl-sn-glycerol C00641 Siroheme C00748
UDP-N-acetylmuramate C01050 Hexadecanoyl-[acp] C05764
Cardiolipin C05980 Diglucosyl-diacylglycerol C06040
Heme O C15672 (2E)-Octadecenoyl-[acp C16221
Undecaprenyl-diphospho-... C05890
N-acetylmuramoyl-... C05894
(N-acetylglucosamine)-L C05899

Table 5. Compounds in the target metabolite set. Target list adopted from Freilich et
al (2009) [82]
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4.3.1 Prokaryotic viability on Enceladus

We find that none of these organisms, across bacteria and archaea, can produce

any target metabolites with the few identified organic and inorganic compounds on

Enceladus. In fact, they are found to produce only a fraction of the compounds

possible given their reaction network (Fig. 25). However, this was not surprising

given the lack of detection of any phosphorous containing compounds. Because of

this, we repeated the expansion with the addition of phosphate. While this increased

the scope of the organismal seed sets, again, no target compounds were able to be

produced. Although in the latter case, we note that the organismal scopes increased

in size (Fig. 25A).

4.3.2 Identifying the compounds necessary to make prokaryotes viable

Running network expansions on pre-established seed sets are useful for determining

the set of compounds which can be part of an organism’s scope. However, as we found

in the section above, if we are aiming to produce a specific set of target compounds,

there is no guarantee that a chosen seed set will do that. For this reason, it is useful

to identify an algorithm which can identify the seed set needed to produce a target set,

given a reaction network. We thus sought to identify subsets of all compounds involved

in each organism’s network which could feasibly produce all the target compounds in

that network.

There are three obvious ways to go about this. We could imagine searching for: 1)

a single minimal seed set (no subsets of which can produce all target metabolites), 2)

the smallest minimal seed set (where there are no sets with fewer elements which can

102



Figure 25. Histograms from the network expansions for prokaryotes using the
Enceladus seed set. (A) How the scope size changes for all organisms when adding
phosphate to the seed set adopted from Waite et al. [134]. In neither case do any
target compounds get produced for any organisms. (B) An overview of the
distribution of number of target compounds across all organisms (out of 65 possible
based on the target set from Freilich et al. [82]. (C) The maximum theoretical sizes
of networks, if scopes were able to take advantage of full organismal reaction
networks. Orange bars are for archaea, and blue bars are for bacteria.
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produce all target metabolites), or 3) all minimal seed sets (the set of all sets that

can produce all target metabolites).

We chose to identify a subset of all minimal seed sets for the archaea and bacteria

under consideration, because finding the smallest minimal seed set is an NP-hard

problem (Cottret et al., 2008), and because it would result in only a single environment

in which a target set could be produced. Finding any given minimal seed set requires

a polynomial-time algorithm, so for computational tractability we chose to identify

100 random minimal seed sets for each of the 28 aforementioned archaea, and for 36 of

the aforementioned 266 bacteria. We follow the algorithm described in Handorf et al.,

2008 to create random minimal seed sets which attempt to minimize the likelihood of

obtaining seed sets with large complex biomolecules where possible (see methods).

We first take an overview of the minimal seed sets we find which produce target

compounds for each of the analyzed organisms. We find that the environmental seed

sets needed are often smaller in size, but more complex (as quantified by the mean

molecular weight of the seed sets needed) (Fig. 26). This is especially true for the

bacteria, while for archaea the seed sets tend to be composed both of more complex

molecules and more of them. Interestingly, there no seeds identified which require

more than four of the compounds which have been identified as part of the Enceladus

seed set.

Next we look at how similar each of the 100 minimal seeds sets for each organism

are to one another. We find that across all organisms, the archaea seed sets tend

to have more self-similarity compared to the bacteria. Two archaea share about a

quarter of the compounds across all their seed sets, on average (Fig. 27).

We then turn to examine how seed sets necessary to produce viable organisms differ

104



Figure 26. Characteristics of minimal seed sets which produce target metabolites. (A)
A rank ordered plot of the smallest minimal seed sets, by number of compounds
involved in each seed set. (B) The mean molecular weights of the smallest seed sets,
by size, of the seed sets with the smallest size. Note that many organisms have
multiple minimal seed sets of the same size, but of different mean molecular weights.
(C) A rank ordered plot of the smallest minimal seed sets, by weight. (D) The mean
molecular weights of the smallest seed sets, by size, of the seed sets with smallest
mean molecular weight. Orange bars are archaea, and blue lines are bacteria, with
each organism represented on the x-axis. The black dashed lines in each case shows
the size and weight values for the Enceladus seed set.
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Figure 27. Similarity of all seed sets within each organism. The rank ordered mean
jaccard index is shown for all 100 minimal seed sets we calculated for each organism.
Bacteria are shown in blue and archaea are shown in orange.

between organisms. We find that archaea seed sets tend to be more similar to one

another than bacteria seed sets. Nonetheless, comparing organisms within domains

leads to similar seed sets much more often than comparing organisms between domains

(Fig. 28). This result holds true even when, instead of comparing the union of seed

sets of organism 1 to the union of seed sets of organism 2, we compare the minimum

seed set of organism 1 to organism 2. In this case we are looking at the minimal seed

set of each organism that has the smallest mean molecular weight (Fig. 28B). However,

we find that clustering the jaccard similarity between the union of organism seed sets

results in more accurate clustering of the two domains we investigate (orange and blue

squares above and to the left of the cluster maps show whether the row is an archaea

or bacteria, respectively). The hierarchical clustering produced from unions shows

that is is possible to correctly group archaea and bacteria from only their minimal

seed sets necessary for viability. This is an interesting result, complementary to that
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of Ebenhoh et al (2006), who showed that organisms which are more closely related

appear to have more similar reaction scopes, as measured by the Jaccard distance

[136]. Such distinguishability in seed sets might be useful in identifying a relationship

with taxonomy, for the purpose of expeditiously discerning the organisms which could

be most likely to be risks for planetary contamination, or beneficial for terraformation.

We turn to looking at the 100 most common seed compounds, to get some idea

of the types of molecules we would expect to need to detect on Enceladus for this

alkaliphiles to be viable. As might be expected, the majority of these compounds

fall into common biochemical categories such as coenzymes, cofactors, amino acids,

compound used for fatty acid synthesis, and other key metabolic pathways. It is

notable that some of these compounds are target compound themselves, implying that

these compounds are less likely to be synthesized by simpler compounds within these

organismal metabolisms, and instead must be provided by the environment where

possible.

Finally, we return to the initial set of seed compounds identified on Enceladus

to examine if, with the full catalytic repoiroire of Earth’s biosphere utilizing the

geochemistry of Enceladus, it is possible to produce the compounds essential for

prokaryotic organismal viability. Using only the compounds identified on Enceladus,

plus phosphate, leads to the ability to produce nearly all target metabolites, and those

needed for most prokaryotic life. The expansion is missing siroheme, a cofactor used

for sulfur reduction in metabolic pathways, as well as heme, a complex used for a

variety of biological functions including electron transfer and redox reactions.

This would seem to indicate that if it was possible to transplant the entire

catalytic repertoire of the Earth to Enceladus, it would be possible to maintain
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Figure 28. The similarity of seed sets between organisms. The clusters of two
methods of organism comparisons are shown. (A) We take the union of all 100 seed
sets within each organism, and compare them to one another using the jaccard index.
(B) We take the minimal seed set of the smallest mean molecular weight of all 100
seed sets within each organism, and compare them to one another using the jaccard
index. In both cases, the clustering separates out the domains (domain of each
organism shown as blue squares for bacteria and orange squares for archaea above
and below the cluster map.
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Figure 29. The top 100 most common seed compounds. (A) Rank ordered. The
proportion of each found in archaea (orange) vs. bacteria (blue) seed sets are shown.
(B) The molecular weights of each of the top 100 most common seed compounds. The
domain of organism which most often contains seed sets with the compounds are
shown as the color of the bar (archaea is orange and bacteria is blue).

minimal metabolic viability for most prokaryotic organisms, provided that most of the

reactions could be catalyzed in the high pressure alkaline environment. However, this

is dependent on the exact structure of the individual organismal networks present.

One strategy for terraforming might be to try and produce the minimal ecosystem

which can reproduce the catalytic potential of the biosphere to send to another planet.

Conversely, one potential strategy for making sure that a spacecraft is adequately

sterilized might be to take a biological sample from a clean room spacecraft and

annotate its metagenome. Then a network expansion could be run on the metagenomic

network, with a conservative seed set, to ensure that none of the biochemistry would

be viable at the spacecrafts destination.
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Figure 30. The network expansion of Earth’s biosphere using compounds available on
Enceladus. Nearly all possible target metabolites are produced in this circumstance,
with siroheme and heme being the notable missing compounds.

4.4 Discussion

In this research, we laid out a framework to quantify the chemical compounds

necessary to assess the viability of Earth’s biochemistry in the context of other

geospheres. We examine this framework as applied to Enceladus, executing the

network expansion algorithm across metabolic networks of alkaliphilic bacteria and

archaea in the chemical environment of Enceladus’ subsurface ocean. We find that no

organisms analyzed can produce any of the pre-established target metabolites in this

environment. However, a key element of life on Earth, phosphorous, has not yet been

detected on Enceladus. We determine that incorporating phosphorous, by adding

phosphate as a seed compound, does not change our results—there are still no target

metabolites produced from any of the prokaryotes analyzed.
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Next we investigated what it would take for these organisms to be viable, finding

that the chemical complexity of the seed sets, or number of seeds present, has to be

much higher. In many scenarios, both number of compounds and mean molecular

weight of the compounds present must increase. By analyzing the jaccard index within

minimal seed sets of organisms, we find that there are many unique seed sets which

produce equally viable organisms across archaea and bacteria. We also find that

between different taxa, seeds are more similar between two bacteria and between

two archaea than when comparing organisms of different domains. The similarity

of seed sets needed for organismal viability clusters organisms into their domains,

indicating that there may be further ways to identify environments suitable to specific

taxonomies across planets.

Finally we showed that when the catalytic capability of the entire biosphere is

expanded around the Enceladus seed set (including phosphate), the target compounds

necessary for viability are produced. This could indicate that, in principle, if the bulk

biochemical diversity of Earth life could be transplanted to another planet via simple

prokaryotic organisms, these organisms might be able to sustain a viable metabolism.

Thus, embedding themselves into a planet from which they did not emerge with

consequences for both life and the planet.

It is worth noting that the above study provides only a basic proof of concept for the

idea of utilizing the well-developed technique of network expansion to quantitatively

addressing the most pressing questions of astrobiology. There are many ways that

this work could be expanded in order to better reflect geochemical reality as well as

incorporate more theoretical considerations. For example, we could permute the initial

conditions of the network expansions to force the inclusion of the observed Enceladus
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compounds into the randomized seed sets. Or we could more strictly constrain the

shuffling between high/low molecular mass compounds in these seed sets.

There are further details which could help direct our search for compounds on

other planets if we wish to improve this framework’s accuracy. For instance, we

know that the presence/absence of cofactors is a big influence on the scope size for

a seed set [79], so prioritizing our search for these compounds would provide high

scientific returns. We could also measure viability as a gradient [82], and compare

viability of organisms in other planetary contexts to the average viability of organisms

across environments on Earth. We could investigate the specific metabolic pathways

which are enriched or depleted in these environments [53]. Laboratory work here on

Earth could also focus on better identifying reaction reversibility within organismal

metabolic networks, as irreversible reaction networks would allow for more efficient

algorithms used to identify minimal seed sets [80, 137, 138].

We might additionally included more statistical or theoretical constraints. For

instance, can we identify distributions of molecular weights of compounds which tend

to support biochemistry? Or link the expansions with knowledge of biochemical

network topology, in order to find structural gaps in organismal networks which need

to be filled to produce viable organisms [84]?

Moreover, the subset of organisms analyzed could be expanded to include organisms

with greater metabolic diversity, or contracted to attempt to provide a better match

between what we know about organismal environments on Earth with what we

know about Enceladus. We could analyze the metabolisms of ecosystems, through

metagenomic data, in addition to simple genomes. If we were specifically focused

on the question of planetary contamination, we might also rerun these analyses on

organisms which are known to exist in spacecraft sterilized clean rooms, like Bacillus
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pumilus SAFR-032 [139]. Further network expansion analyses could even be used to

guide development of the composition of spacecraft materials to avoid metals which, if

in contact with certain environments, could provide rich sources of cofactors or other

compounds.

To summarize, the results from our network expansion analyses of alkaliphiles on

Enceladus shows that there appears to be little risk of viability of these organisms,

based on what we know about the chemical composition of the oceans. However,

forward contamination, jeopardizing planetary protection, could be a much bigger

risk if larger proportions of life’s catalytic potential are transported to other planets

unintentionally. This seems remarkably less likely, although spacecraft clean room

microbial ecosystems are not well characterized. Intentionally seeding a planet with

life seems likely only in the circumstance where a metabolism is specifically tailored

to the environment, and even then there are questions about how well it could be

self-sustaining. We believe that because life on Earth was a product of Earth’s

geochemistry, there is a significant bias to be viable only in a geochemical environment

similar to the Earth’s. While there is much more work to be done to quantify the

risks, or possibilities, of Earth life being viable amongst other geospheres, we believe

that we have laid significant groundwork for exciting research in this domain.

4.5 Materials and Methods

4.5.1 Defining the networks

In order to run the network expansion algorithm from a seed set, we first had to

define our networks. To identify the reactions and compounds present in the metabolic
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networks of individual organisms, we collected data from the Joint Genome Institute’s

Integrated Microbial Genomes and Microbiomes database (JGI IMG/m) [119]. We

located all archaea and bacteria which contained metadata on environmental pH, and

filtered to those organisms with pH in the range of 9-11, approximately what might

be expected in Enceladus’s ocean [132]. For our case study, we extracted data from

all 28 archaea and 266 bacteria matching this criteria. We downloaded the Enzyme

Commission (EC) numbers associated with each genome from the organism’s list of

‘Protein coding genes with enzymes‘. Each organisms list of EC numbers was mapped

to the reactions which they catalyze using the Kyoto Encyclopedia of Genes and

Genomes [58, 114, 115]. Using a combination of Biopython [140], the KEGG REST

API, and TogoWS [141] to collect all KEGG ENZYME, REACTION, and COMPOUND data,

we created reaction-compound networks for each organism. Each organisms network

contains all of the reactions which all of its catalogued enzymes can catalyze, and all

of the compounds involved in those reactions.

4.5.2 Executing the network expansion

As outlined in the introduction, the network expansion process works as follows:

An organism, defined by a fixed set of reactions which it has the ability to catalyze,

can catalyze a reaction only if it has access to the necessary substrates. The initial

substrates, called the seed set, are the compounds available to the organism from the

environment. Initially, these are the only compounds in the organism’s network. The

organism catalyzes all the reactions it can based on the reactions and compounds

available in its network, and then adds the new compounds it can generate to its

network. This process proceeds iteratively until the organism can produce no new
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compounds. The state of the organism’s network when expansion ceases is referred to

as the organism’s scope—and it contains all of the compounds which can be synthesized

by an organism, plus the seed set provided by the environment.

We assume that all reactions are reversible, both because the KEGG database

recommends to not trust its reaction reversibility field, and because reaction direc-

tionality in nature depends on the concentrations of products and reactants, which

we do not track here.

We ran the network expansion algorithm on the aforementioned subset of archaea

and bacteria with documented environmental pH in the ranges of 9-11, using a seed

set of compounds which have been identified on Enceladus from observations aboard

CASSINI’s Ion and Neutral Mass Spectrometer (INMS) [134]. We additionally ran

this seed set when including phosphate, which is likely present in small amounts from

water-rock interactions, despite the lack of detection from Cassini’s INMS [142].

We also ran the network expansion of KEGG in its entirety (incorporating all

catalogued compounds and reactions), representing the full catalytic and metabolic

potential of the biosphere, on the seed set of Enceladus with phosphate (Table 5).

4.5.3 Identifying minimal seed sets

We follow the algorithm described in Handorf et al., 2008 [135] to create random

minimal seed sets which attempt to minimize the likelihood of obtaining seed sets

with large complex biomolecules where possible:

A seed S is minimal if its scope ΣS contains the target compounds T and no

proper subset of S fulfills this condition. S is a minimal seed set if:
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T ⊆ Σ(S) and ∀S ′ ⊂ S : T 6⊂ Σ(S ′) (4.1)

To find minimal seed sets for each organism, we start by creating a list of all the

compounds involved in all the reactions that the organism can catalyze. Because the

target compounds are by definition the intersection of an organisms compounds with

the target metabolites, the target compounds must be present in this list. Going down

the list, we check if removing a substrate will cause a network expansion seeded with

the remaining substrates to successfully produce all target compounds. If the removal

does not impact the target compounds produced, the substrate stays removed. Else,

we add it back to the list. Then we move onto the next substrate in the list, repeating

until the entire list is traversed.

In this algorithm, the order of the list affects the minimal seed set which gets

identified, so it is necessary to permute the list and repeat the algorithm to identify

each of the 100 minimal seeds. However, we do not want to start with a completely

randomized list for each organism, because ideally we want to remove large complex

compounds, as to be left with seed sets composed preferentially with simpler com-

pounds which are more abiogenically plausible to find in a uninhabited environment.

Previous research has shown that the scopes of single complex biochemicals tend to

be reachable by sets of simpler molecules [79]. Because of this, we initially order

every list from largest to smallest molecular weight, but then perturb them such that

heavier compounds tend to stay near the top, thus getting preferentially removed.

Compounds without associated weights were added in random locations in the list.

We again follow the method laid out by Handorf et al. [135]. From the list, two

randomly chosen compounds with mass difference ∆m get exchanged with probability

p:
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p =


exp(∆m

β
) if ∆m > 0

1 if ∆m ≤ 0

The only exception to this rule is that if one of the compounds does not contain

weight information, then p = 0.5. The parameter beta represents the degree of disorder

allowed in the list, where β = 0 forbids disorder and β = ∞ ignores disorder. We

follow the choice of Handorf et al. [135] and choose β = 20 amu.

4.5.4 Comparing and clustering seed sets

Similarity of seed sets were calculated using the Jaccard index. Clustering was

computed using scipy.cluster.hierarchy.linkage(method=’average’), where

average refers to the unweighted pair group method with arithmetic mean (UPG-MA)

algorithm.
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Chapter 5

CONCLUSION

Biology is a menagerie of processes across scales on Earth. It is microscopic cells

feeding on indivisible particles, and global ecosystems driven by tectonic motions.

Despite this, my analyses reveal biochemical networks display common scaling laws

governing their topology and biochemical diversity that cannot be fully explained

by the structure of random reaction networks. These laws are independent of the

level of organization they are sampled from, and seem to persist across different

coarse grainings, as characterized by varying network projections. When considered

alongside geochemical data, I find that these biochemical networks provide a medium

for quantitatively investigating the viability of Earth life outside of our planet. An

initial case study of biochemistry’s viability on Enceladus suggests that individual

organisms cannot attain essential compounds, and instead might require the support

of biological functions at the scale of an ecosystem or biosphere. Collectively, my

results indicate a deeper level of organization in biochemical networks than what is

understood so far, providing a new framework for understanding the planetary-scale

organization of biochemistry and how nested hierarchical levels are structured within

it.

A key implication of my analysis is the importance of individuals sharing a common

set of biochemical reactions in shaping the universal scaling laws observed across

hierarchical levels. As described in the introduction, scaling laws often emerge in

systems where universal mechanisms operate across different scales, yielding the same

effective behavior independent the specific details of the system. It is in this sense
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scaling laws can uncover universal properties, motivating their widespread use in

physics and increasing application to biology [59, 63, 65, 97–100]. In Chapter 2, I

show that the relevant scaling parameter for biochemical organization is the number

of biochemical compounds (in a network representation this is the size of the network).

Individuals, ecosystems and the biosphere obey much the same scaling behavior

for biochemical network structure, indicating the same universal mechanisms could

operate across all three levels of organization. In physics, this kind of universality

usually implies there is no preferred scale or basic unit. However, in the biological

example uncovered here, the presence of specific scaling relations observed in real

biochemical networks can be explained by biological individuals (lower-level networks)

sharing a common set of reactions as basic ‘units’.

Future work should explore the connections between the scaling relationships

reported here and other work characterizing scaling behavior across living processes.

For example, individuals are perhaps more tightly constrained in coarse-grained

network structure, based on being able to more accurately predict them based on

simple network characteristics. But ecosystems are more tightly constrained than

individuals using more descriptive topological measures that can describe paths and

clustering within biochemical networks. Whether or not this structure is truly a

universal property of life’s chemical systems is more difficult to conclude. Projecting

ecosystem-level scaling to the biosphere as a whole does not recover the observed

network properties for the biosphere-level network. Recently, scaling laws describing

microbial diversity were used to predict Earth’s global microbial diversity, and in

particular to highlight how much diversity remains undiscovered [61]. It could be an

analogous case here, where the uncovered scaling relations could be used to predict

missing enzymatic diversity in the biosphere. Allometric scaling laws are derived by
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viewing living systems as localized physical objects with energy and power constraints.

Here, scaling emerges due to an orthogonal view of living systems as distributed

processes transforming matter within the space of chemical reactions.

How to project this structure onto simple mathematical objects that can be

quantifiably characterized and compared remains a central problem of complex systems

science. In physics, the relevant coarse-graining procedure is well understood, but we

are not so far in complexity science: the first hurdle we must traverse is to identify

the proper coarse-grained network representations for analysis. Existing literature

cautions against using unipartite network projections, as it is argued they can lead to

”wrong“ interpretations of system properties such as degree in biochemical networks

[47, 117]. In chapter 3, I find instead that whether or not this conclusion should be

drawn is highly dependent on the particular characteristics of degree or the degree

distribution under consideration. For example, all network projection types, aside

from unipartite reaction networks, favor power-law degree distributions over other

heavy-tailed alternatives to simply describe biochemical systems. The similarities and

differences in the structure of different projections provides insight into the actual

structure of the underlying system of interest. Given that there is no obvious answer

for whether a system is scale-free, we advocate for studying all projections possible:

regardless of whether or not a given projection is scale-free, all projections provide

insights into the structure of the underlying system.

An important task, stemming from this work, is identifying the planetary-drivers

of Earth’s biosphere-level biochemical network structure and how this has structured

living systems across nested levels considering their geochemical context. It remains

an open question as to what will ultimately explain the universal structure of Earth’s

biochemical networks, or whether we should expect Earth life to exhibit similar scaling
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behavior, even on other worlds. In order to address this important question, in chapter

4 I lay out a framework to quantify the chemical compounds necessary to assess the

viability of Earth’s biochemistry in the context of other geospheres. I examine this

framework as applied to Enceladus, executing the network expansion algorithm across

metabolic networks of alkaliphilic bacteria and archaea in the chemical environment of

Enceladus’ subsurface ocean. I find that no organisms analyzed can produce any of the

pre-established target metabolites in this environment. I determine that incorporating

phosphorous by adding phosphate as a seed compound does not change my results.

Instead, it appears that for these organisms to be viable, the chemical complexity of

the seed sets, or number of seeds present, has to be much higher.

While chapter 4 provides these results, it is meant to act more of a proof of principle

and proposed procedure to increase the quantitative nature of research investigating

the possibility of planetary contamination as well as terraformation. There are many

ways that this work could be expanded in order to better reflect geochemical reality

as well as incorporate more theoretical considerations. For instance, can we identify

distributions of molecular weights of compounds which tend to support biochemistry?

Or link the expansions with knowledge of biochemical network topology, that we

describe in Chapters 2 and 3, in order to find structure gaps in organismal networks

which need to be filled to produce viable organisms [84]?

Intentionally seeding a planet with life seems likely only in the circumstance where

a metabolism is specifically tailored to the environment, and even then there are

questions about how well it could be self-sustaining. I believe that because life on

Earth was a product of Earth’s geochemistry, there is a significant bias to be viable

only in a geochemical environment similar to the Earth’s. While there is much more

work to be done to quantify the risks, or possibilities, of Earth life being viable
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amongst other geospheres, I believe that we have laid significant groundwork for

exciting research in this domain.

A final implication of my work is the consequence for our understanding of the

origin of life, before the emergence of species. The existence of common network

structure across all scales and levels of biochemical organization suggests a logic to the

planetary-scale organization of biochemistry [101], which—if truly universal—would

have been operative at the origin of life. While my analysis has uncovered universal

scaling behavior for extant life, arising due to the structure of connectivity and

diversity among the most common biochemical compounds and reactions, it remains

to be determined whether the particular scaling reported herein is a by-product

of shared biochemistry across all life, or if fundamental constraints on biochemical

network structure, operative across scales from individuals to planets, drives lower-level

individuals to necessarily share common reactions. If the latter is true it would have

important implications for understanding the processes operative at the time of the

last universal common ancestor. If the same global network structure, characterized

by the same scaling laws, described Earth’s biosphere throughout its evolutionary

history, the emergence of individuals (as selectable units) with shared biochemistry

would have played an important role in mediating a transition in the organization of

Earth’s chemical reaction networks.
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