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ABSTRACT

This work investigates the effects of ionizing radiation and displacement damage

on the retention of state, DC programming, and neuromorphic pulsed programming of

Ag-Ge30Se70 conductive bridging random access memory (CBRAM) devices. The re-

sults show that CBRAM devices are susceptible to both environments. An observable

degradation in electrical response due to total ionizing dose (TID) is shown during

neuromorphic pulsed programming at TID below 1 Mrad using 60Co. DC cycling in

a 14 MeV neutron environment showed a collapse of the high resistance state (HRS)

and low resistance state (LRS) programming window after a fluence of 4.9 × 1012

n/cm2, demonstrating the CBRAM can fail in a displacement damage environment.

Heavy ion exposure during retention testing and DC cycling, showed that failures

to programming occurred at approximately the same threshold, indicating that the

failure mechanism for the two types of tests may be the same. The dose received

due to ionizing electronic interactions and non-ionizing kinetic interactions, was cal-

culated for each ion species at the fluence of failure. TID values appear to be the

most correlated, indicating that TID effects may be the dominate failure mechanism

in a combined environment, though it is currently unclear as to how the displacement

damage also contributes to the response. An analysis of material effects due to TID

has indicated that radiation damage can limit the migration of Ag+ ions. The re-

duction in ion current density can explain several of the effects observed in CBRAM

while in the LRS.
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Chapter 1

INTRODUCTION

1.1 The Space Radiation Environment

Humans have long held a fascination with the night sky and its Heavenly Bodies

though not until recently have we had the opportunity and means to launch into

space to discover what is really out there. The first satellite, known as Sputnik, was

launched by the Russians on October 4, 1957 [2]. The satellite orbited the Earth every

96.2 minutes and transmitted radio signals for three weeks until its battery failed. The

success of Sputnik put pressure on the United States to step up their space program

and on January 31, 1958, the U.S. launched Explorer I. Explorer I was equipped with a

Geiger counter for the purpose of measuring cosmic rays [3],[4]. What scientists found

instead were regions around the Earth with high fluxes of trapped energetic particles;

an inner region of protons and an outer region of electrons [4]. These radiation regions

of Earth’s magnetosphere were named the Van Allen belts after James Van Allen who

designed the radiation sensors and interpreted the data from the satellite. Following

the discovery from Explorer I, subsequent Explorer and Pioneer missions included

equipment for mapping the radiation environment surrounding Earth [4]. Venturing

beyond Earth, the Pioneer V probe was placed in solar orbit between Earth and Venus

in 1960, where it discovered the interplanetary magnetic field (IMF) generated by the

Sun [5] and Pioneer X in 1973, was the first spacecraft to travels beyond the asteroid

belt and measure Jupiter’s intense magnetosphere [6]. These early space missions

mapped and helped develop an understanding of the natural radiation environment

that surrounds not only the Earth, but many of the planets in our solar system.
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Figure 1.1: Omni-directional flux of trapped (a) protons > 10 MeV and (b) electrons
> 1 MeV versus distance from Earth [7].

Knowing the flux and energies of ionized particles at different distances from Earth

has allowed engineers to design radiation hardened electronics that can survive within

Earth’s magnetosphere for years on end. Radiation hardening is a vital engineering

consideration that has allowed for the success of long term NASA, military, and

commercial space missions.

Many of our modern conveniences are made possible by communication satellites

that orbit Earth and relay data down to our smartphones, GPS receivers, and satellite

TV boxes. Inside these satellites are electronics that must survive high levels of

ionizing radiation trapped in Earth’s magnetosphere. Within the Van Allen Belts,

the main particles of concern are high energy electrons and protons. The energy and

location of the trapped charge are shown in Fig. 1.1. These charged particles can

contribute to total ionizing dose (TID) effects, enhanced low dose rate sensitivity

(ELDRS), and or single event effects (SEE). Heavier ions from coronal mass ejections

(CME) that pass near Earth, can become trapped in the magnetosphere and cause

displacement damage (DD) in electronics in addition to TID effects. Low energy
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protons can also cause DD depending on its interaction cross section with the material

it passes through. For the following work presented in this dissertation, only TID and

DD effects are considered.

1.1.1 Total Ionizing Dose

When an energetic charged particle or high energy photon passes through a ma-

terial it can cause a generation of carriers [8]. Charged particles will cause direct

ionization, meaning the particle interacts directly with the orbital electrons of the

atoms in the material through the Coulomb force. As a heavy ion passes through

the material it will lose a fraction of its energy as it interacts with the surrounding

electrons. This energy loss is known as linear energy transfer (LET). Once the ion

loses enough energy, such that it is unable to excite the surrounding bound electrons,

it will continue to lose energy through nuclear collisions, referred to as non-ionizing

energy loss (NIEL) [9]. High energy electrons transfer their energy to the surround-

ing material in a similar manner as ions. High energy electrons can also be deflected

by a charged particle in the material, resulting in the lose of kinetic energy and the

generation Bremsstrahlung X-rays. The generated X-rays can be absorbed by bound

electrons, resulting in the generation of additional free electrons.

High energy protons and electrons are not easy to produce on Earth and require

expensive accelerators only available at a limited number of locations around the

world. To test components on Earth, high energy photons sources such as X-ray

generators and Cobalt-60 (γ-rays) are used. The natural space environment does not

have a significant flux of high energy photons but photons can also cause ionization

and are a good analog for TID testing. Photons cause indirect ionization by one

of three mechanisms: photoelectric effect, Compton scattering, or pair production

[10]. In indirect ionization, as opposed to direct, the photon must first excite a single
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electron. The kinetic energy absorbed by that electron will allow it to move, causing

additional direct ionizations.

The quantity of energy absorbed by a material through electronic interactions is

known as ionizing dose. Over its lifetime in space, a material will experience many

interactions with ionized particles for a cumulative dose typically referred to as total

ionizing dose. The unit used for a dose of absorbed energy is the rad, which is

the amount of energy absorbed per mass where 1 rad = 100 erg/g. Since different

materials each have different mass and density, the rad is a unit that is specific to the

material receiving the dose (i.e. rad(Si)).

1.1.2 Displacement Damage

In addition to ionizing effects, materials can experience displacement damage when

a high energy ion passes through it [11]. An incident ion has a chance of colliding

with the nucleus of an atom in the material causing the atom to recoil, often called a

primary knock-on (PKO). If the energy transfered to the atom is high enough, it can

become displaced from its lattice site creating a vacancy. The displaced atom and its

vacancy site are known as a Frenkel pair [11]. Depending on the kinetic interaction

of the collision, the incident ion can continue to travel through the material causing

additional ionization and displacement damage. If the ion loses all of its energy in

the collision, it can take the place of the displaced atom in the lattice, referred to as

a replacement collision [11]. If the displaced atom has sufficient energy it can also

cause a cascade of damage events through the material.

1.1.3 Onwards to Jupiter

Satellites in orbit around Earth exist in a high energy radiation environment. To

prevent the performance of the electronic components from degrading, the hardware
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Figure 1.2: Comparison of high energy electrons in Earth orbit and around Jupiter
near Europa. Reprinted from [12] with permission from Elsevier.

is selected or designed to withstand its intended environment. Typically parts are

selected that can withstand several hundred krad(Si) of ionizing radiation over several

years, if not decades. Space vehicles that travel to other planets are treated no

different. The vehicle is designed to survive for the entirety of its mission. With the

increasing interest in Jupiter, first due to the pictures sent back by Voyager and now

by the photos from Juno, more missions will be sent to the gas giant and its curious

moons. The radiation environment is much harsher than Earth, with Jupiter’s large

magnetic field trapping higher energy particles than found in Earth’s magnetosphere

[12]. Jupiter’s magnetosphere is also ten times stronger than that of the Earth’s. The

plot in Fig. 1.2 shows the comparison between the two environments. With future

missions directed toward Jupiter’s moons, electronics will now need to withstand a

TID of 1 Mrad or more [12], [13]. The following work presents a non-volatile, resistive

memory technology able to survive and operate in a high energy particle environment

far beyond 1 Mrad.

With the impending physical limitations of Si CMOS technology, there has been
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a drive to develop better performance memories out of alternative materials and

architectures [14]. Research into alternative technologies eventually led to the devel-

opment of resistive memory devices. Several types of ReRAM currently exist, namely

phase-change memory (PCM), metal-oxide memory, and conductive bridging mem-

ory [15]. Radiation testing has revealed that many of these ReRAM technologies

are TID hard, with tolerance beyond that of current commercial memory used in

space applications [16], [17]. These ReRAM technologies offer a promising solution

to survivability in Jupiter’s harsh radiation environment This discourse will exam-

ine Conductive bridging random access memory (CBRAM) in 60Co γ-ray, heavy-ion

and neutron environments to evaluate its potential survival and behavior in a Jovian

environment.

1.2 CBRAM Resistive Memory

CBRAM is a non-volatile memory developed at Arizona State University. A

CBRAM cell is a two terminal metal-electrolyte-metal device [15], [18]. The bottom

cathode contact, as shown in Fig. 1.3, is an inert metal such as nickel (Ni) or tungsten

(W). The solid-electrolyte layer is a metal doped chalcogenide glass that facilitates

fast ion migration through the glass [19]. Two types of chalcogenide devices are

examined in the following studies, Ag-Ge30Se70 and Cu-SiOx. The top anode layer is

an active metal that is easily oxidized. Typically, the active metal chosen is the same

used to dope the electrolyte.

CBRAM is a type of electrochemical memory and relies on oxidation-reduction

(REDOX) reactions to form and dissolve a conductive metal filament [20], [21], [22].

When a voltage is applied to the anode contact while the cathode is grounded, the

metal (M) in the anode becomes oxidized and drifts along the applied electric field

through the electrolyte. The oxidation reaction is listed in equation 1.1 and is shown
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Figure 1.3: Filament formation and dissolution in a CBRAM cell. Applying a
positive bias transports oxidized cations through the electrolyte to form a filament.
Reversing the bias (right) reverses the REDOX reaction to dissolve the filament.

in the left most digram of Fig. 1.3. Once the metal ion reaches the cathode, the cation

gains an electron, reducing the metal. The reduction reaction is shown in equation

1.2 where z is the oxidation state of the metal. While the bias is applied, the cations

continue to migrate through the electrolyte toward the forming conductive filament.

The filament forms from the cathode contact to the anode, as shown in the second

diagram of Fig 1.3. Once the filament reaches the anode, the resistance between the

two terminals greatly reduces, resulting in a low resistance state (LRS). Reversing the

bias reverses the REDOX reaction, dissolving the conductive filament and directing

the migration of metal ions back to the anode; as shown in the right most diagram of

Fig. 1.3. With an absence of a conductive filament, the device is in a high resistance

state (HRS).

M →M z+ + ze− (1.1)

M z+ + ze− →M (1.2)

Solid electrolytes facilitate the transport of ions by offering sites for the cations to

hop between [22], [23]. In the presence of an applied electric field, the barrier between

each site is lowered in the direction of the field, allowing cations to hop to the next
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site in a coordinated fashion [24]. For a fixed temperature, the ionic drift velocity is

exponentially dependent on the field between the anode and the cathode (including

the reduced metal forming the filament). As the filament begins to grow, the field

between the contacts increases, increasing the velocity of ion migration and filament

formation. For a device with a 65 nm chalcogenide layer, initial filament formation

may take several hundred nanoseconds to complete but subsequent programming and

adjustment of the LRS can be performed in several nanoseconds [22],[25]. The rapid

adjustment ability of CBRAM is an important quality for neuromorphic program-

ming, which is discussed in more detail in Chapter 3.2.2.

1.3 Summary

This work will examine the response of CBRAM to high doses of ionizing radi-

ation as well as to heavy ion irradiation. Chapter 2 will provide the method used

to fabricate CBRAM as well as details on the film thicknesses and device geometry.

Memory devices can be evaluated in a variety of ways. To measure the electrical

properties of a single cell, current-voltage measurements are performed. Once pro-

grammed to a state, retention testing is used to measure how long that state can

be maintained. To program a memory cell in a more conventional way, pulsed pro-

gramming is used. Chapter 3 provides the procedures for evaluating the electrical

characteristics of CBRAM including programming and state sampling. Chapter 4

presents the effects of ionizing and heavy-ion irradiation on the retention of state of

CBRAM devices. In the presented experiments, the CBRAM was tested up to 24

Mrad(Ag5Ge3Se7) using 60Co and up to ∼60 Mrad(Ag5Ge3Se7) using multiple heavy

ion sources. The calculated electrical and nuclear energy losses for each ion was used

to distinguish which type of radiation environment CBRAM is most responsive to.

Chapter 5 shows the effect of 14 MeV mono-energetic neutrons and 100 keV Li-ions
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during DC programming. With increasing particle fluence, the programming window

was shown to collapse due to displacement damage effects. In Chapter 6, the neu-

romorphic pulsed programming of Ag-Ge30Se70 and Cu-SiO2 devices were tested in

a 60Co γ-ray environment. The CBRAM was shown to be susceptible to TID while

being pulsed programmed in situ. Chapter 7 offers an explanation and discussion

of the material changes occurring during irradiation. The work presented in this

dissertation is summarized in the Conclusion.
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Chapter 2

DEVICE FABRICATION

2.1 Fabrication

CBRAM devices evaluated in the following experiments were fabricated at Ari-

zona State University in the NanoFab class 100 cleanroom facility operated by the

Center for Solid State Electronics Research (CSSER). The full fabrication process is

highlighted in Fig. 2.1–2.11.

The devices begin with a four inch diameter, 525 µm thick Si p-type wafer placed

inside an Oxford Plasma Enhanced Chemical Vapor Deposition (PECVD) machine.

A 100 nm layer of SiO2 was deposited to provide isolation between the Si substrate

and the device structures (Fig. 2.1). The oxide was deposited at 350°C with 20 W

power for 1 minute and 24 seconds.

The nickel cathode layer was created by evaporating 65 nm of Ni onto the wafer

using a Lesker PVD electron-beam (e-beam) evaporator. The chamber was pumped

down to 3× 10−6 torr prior to deposition. The Ni was deposited at a deposition rate

of 0.8 Å/s to a total thickness of 65 nm, as depicted in Fig. 2.2. To pattern the Ni

contact bar, hexamethyldisilazane (HMDS) was first spun onto the Ni surface at 3500

Si

SiO2

3D cutawaycross section

Figure 2.1: 100 nm SiO2 deposited using PECVD.
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Figure 2.2: Deposition of 65 nm Ni.

Si
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Ni

UV Light

Resist

Figure 2.3: First lithography mask exposure to create cathode bar.

RPM for 30 seconds to promote resist adhesion. A 1 µm layer of AZ3312 photoresist

was spun onto the treated nickel surface at 3500 RPM for 30 seconds. The wafer was

then soft baked at 100°C for 60 seconds. Photo lithography was performed using an

EVG 620 set to 45 mJ/cm2 UV exposure. Mask #1 was used to create the Ni cathode

bar positive image in the resist (Fig. 2.3). After exposure, the resist was developed

for 90 seconds using AZ 300 MIF developer. The resist was then hard baked for three

minutes at 110°C. The exposed Ni features were etched away after 4.5 minutes, using

Nickel Etchant TFB (Nitric Acid). A representation of the etched feature is shown

in the right hand side of Fig. 2.4. The resist etch mask was removed by soaking the

wafer in acetone followed by a rinsing of isopropyl alcohol (IPA).

Several steps were used to form the active layer of the CBRAM arrays. Another
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Figure 2.4: Ni layer wet etched to create cathode bar followed by PECVD deposition
of SiO2.

layer of 100 nm PECVD SiO2 was deposited using the same recipe as the isolation

layer. A double layer resist recipe was used to pattern the SiO2 layer. HMDS was

spun on at 4000 RPM for 30 s followed by AZ4330 resist at 4000 RPM for 30 s then

soft baked at 100°C for 30 s. A second layer of AZ4330 was spun on and soft baked

for a total resist thickness of 7 µm. Mask #2 was used to pattern the device region

for etching (Fig. 2.5). The resist was exposed to 700 mJ/cm2 and developed in AZ

300 MIF for 2.5 minutes. The features shown in Fig. 2.6 were etched through the

SiO2 layer using anisotropic reactive ion etch (RIE) for 3 min 20 s. The resist for the

etch mask was removed with acetone and residual photoresist was ashed away after

10 min of O2 plasma etch. Another double layer resist was used for the lift-off layer.

Instead of two layers of AZ4330, after the application of HMDS, OCG825 resist was

spun on at 4000RPM for 30 seconds and baked at 150°C for 1 min followed by a layer

of AZ3312 spun on at 4000RPM and baked for 1 min at 95°C. The chalcogenide lift-off

feature mask #3 was used to pattern the resist with UV exposure to 45 mJ/cm2. This

lithography step is depicted in Fig. 2.7. The resist was developed for 70 s using AZ

300 MIF. The wafer was placed into a Cressington 308R thermal evaporator where,
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Figure 2.5: Second lithography mask to etch via through SiO2.

Si

SiO2

Ni

3D cutawaycross section

Figure 2.6: Vias dry etched through SiO2 to Ni layer using RIE.

as shown in Fig. 2.8, 60 nm of Ge30Se70 was thermally evaporated followed by 30 nm

Ag at a deposition rate of 1Å/s. As shown in Fig. 2.9, the Ge30Se70 layer was photo-

doped with the Ag by exposing the device side (top) of the wafer to UV light for 27

min to a dose of 5.3 J/cm2 [26]. The photo-doping process drives the Ag into the

chalcogenide layer to a saturation of 33 .at% concentration [27], [28]. The expected

Ag concentration profile is analyzed in [29]. After the photo-doping process, the wafer

was placed back into the Cressington evaporator where 35 nm of additional Ag was

deposited to form the top active metal anode. The resist was thermally shocked using

150°C before placing in acetone. The thermal shock helps to break up the deposited

film, allowing a clean lift-off with sharp features. Fig. 2.10 shows the device structure

after the resist is removed.
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Figure 2.7: Third lithography mask for device layer lift-off.
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Figure 2.8: Ge30Se70 is deposited followed by Ag.
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Figure 2.9: Ge30Se70 is photo-doped with Ag by exposing to UV light.
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Figure 2.10: Additional Ag is deposited then the wafer is soaked in acetone to
remove the resist and lift-off the excess material.
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Figure 2.11: Al is deposited and lifted off to create top anode crossbar.

The final steps create the Al crossbar contacts across the anode of the devices.

The double layer lift-off resist recipe was used for the Al features. Crossbar mask

#4 was used to pattern the Al contacts, using the EVG for a UV exposure to 45

mJ/cm2. The wafer was placed in the Lesker PVD sputtering machine and 350 nm

of Al was deposited at 1.5 Å/s at a chamber pressure of 4.1 mtorr. The resist was

again thermally shocked to allow for easy lift-off and placed in acetone. To finish

the devices, the wafer was annealed at 120°C for 20 minutes. Fig. 2.11 depicts the

complete layer stack of the CBRAM. A picture of the finished crossbar structure is

shown in Fig. 2.12.
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Figure 2.12: Fabricated crossbar tile. Zoomed image highlights the device contacts
and active device region.
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Chapter 3

DEVICE CHARACTERIZATION TECHNIQUES AND PROCEDURES

3.1 DC Testing

DC analysis is a useful technique used for extracting intrinsic electrical character-

istics of semiconductor devices. A familiar example would be a transistor where the

threshold voltage, triode/saturation regions, output resistance, and channel length

modulation can all be extracted by performing DC sweeps. DC sweeps are performed

in the lab using a source measurement unit (SMU) on a semiconductor device param-

eter analyzer such as the tried-and-true Agilent 4155B/4156C, or the newer Agilent

B1500A. The standard test signal is a linear staircase sweep with uniform step size

from a defined starting voltage Vstart to a final stopping voltage Vstop. A depiction

of a positive and negative staircase sweep with uniform step is shown in Fig. 3.1. A

sweep that increments to the stopping voltage then decrements to the initial starting

voltage is known as a double sweep.

A CBRAM element is a two terminal device. During a DC test, a bias is applied

to the anode while the cathode contact is grounded. DC testing is performed on

CBRAM cells to extract the intrinsic programming threshold, erase threshold, and

high resistance state (HRS). The low resistance state (LRS) is dependent on the

compliance current set and as such, is a user controlled parameter. The full DC

analysis of CBRAM consists of two double sweeps; one positive to program the device

and one negative to erase it. Depending on the material system of the device under

test, the sweep range will vary. Typically the programming sweep range starts at 0

V and ends at a voltage beyond the observed programming voltage. For Ag-Ge30Se70
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Figure 3.1: DC staircase sweep with uniform voltage steps. Sweeps can be performed
in an increasing or decreasing manner.

devices, the upper range is typically 0.5 V. The erase sweep range is selected in a

similar manner with -0.8 V used for the sweep range. The voltage step chosen needs

to be small enough resolve a smooth curve with good data resolution. The best rule-

of-thumb is to maintain 50 or more steps across the range of the sweep. A simple

formula for the voltage step Vstep in terms of the sweep voltage start and stop is shown

in eqn. (3.1) below.

Vstep ≤
Vstop − Vstart

50
(3.1)

The parameters used for performing programming and erase DC sweeps are shown

in Table 3.1, though depending on the behavior of an individual device, the testing

parameters may be adjusted.

A typical current-voltage (I-V) hysteresis curve for Ag-Ge30Se70 is shown in Fig.

3.2, with the red curve showing the response to the positive programming voltage

sweep and the black curve depicting the response to a negative erase sweep. The
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Table 3.1: DC Sweep Parameters for Ag-Ge30Se70 and Cu-SiO2 CBRAM

Parameter Ag-Ge30Se70 Cu-SiO2

Programming Erase Programming Erase

Vstart 0 V 0 V 0 V 0 V

Vstop 0.5 V -0.8 V 1.5 V -0.9 V

Vstep 10 mV -10 mV 20 mV 20 mV

Icompliance 1 µA 10 mA 500 nA 10 mA

Figure 3.2: DC I-V curve for an Ag-Ge30Se70 device. Key parameters are highlighted
by the arrows.

programming threshold (Vprog) is observed as an abrupt increase in current from the

HRS to the LRS. The LRS is set by the compliance current (1 µA) and is extracted

from the Ohmic response around 0 V. The erase threshold (Verase) occurs when the

current decreases back to the HRS during the erase sweep.
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Read Biasing and Retention Testing

An essential characteristic of non-volatile memory is its ability to hold a pro-

grammed state for an extended period of time. To measure the retention of state, the

CBRAM devices are programmed to a state of choice and a read bias is periodically

applied to measure the state at that moment. For the tests presented Chapter 4, a

small DC voltage is applied across the terminals while the current is measured. The

read bias is selected to be significantly smaller than the programming threshold. Cur-

rent Ag-Ge30Se70 CBRAM has a programming threshold in the order of 150 mV so

the read bias is typically selected to be 30 mV to 50 mV with the larger read voltage

used in setups with higher noise floors. Depending on the time-frame of testing, the

read voltage may be applied continuously (such as in real-time in situ testing) or

periodically over a long period of time (state endurance evaluation).

Retention testing is carried out using Sampling Mode on a parameter analyzer.

For long-term testing, a 30 mV bias is applied to the anode for approximately 15

ms while the current is sampled multiple times. Between reads, both the anode

and cathode are held at ground. Retention endurance tests may span over days or

even weeks with reads taken every hour or more depending on the time resolution

needed for the characterization. For short term retention testing the read bias may

be applied over several minutes. The most convenient method for continuous biasing

is to use Sampling Mode with the current sampling interval set at 1 s or longer. The

Sampling Mode parameters used for performing continuous and periodic testing are

summarized in Table 3.2.
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Table 3.2: DC Sampling Parameters for Retention Testing of CBRAM

Parameter Continuous

Bias

Periodic

Sample

Vsample 30 mV 30 mV

tinterval 1 s 5 ms

Nsamples ttotal/tinterval 5

fmeasure continuous 1 hr−1

3.2 Pulsed Testing

The state of a CBRAM device is manipulated by the application of an electric

field�whether it be by applying an incrementally increasing voltage until the device

changes state or by applying a voltage beyond the programming threshold for a

fraction of a second. As mentioned in Chapter 1, the programming of a CBRAM

cell is rate limited by the hoping of metal ions through the chalcogenide glass. The

resistive state of a device can therefore be controlled by applying a particular voltage

for a specific amount of time [22]. The larger the applied voltage, the faster the device

will program. For a device with a 90 nm chalcogenide layer, a bridging filament

will fully form within tens of nanoseconds [23]. Two types of pulse programming

can be performed on CBRAM devices: traditional binary state programming and

incremental neuromorphic programming.

3.2.1 Binary Cycling

To obtain the pulse widths necessary for properly tuning the resistive state, an

Arbitrary Waveform Generator such as an Agilent 81160A, is used for applying the

programming signals. A rise/fall time (trise/fall) between 50 ns to 100 ns is typically

used, with the longer ramp time used in setups with significant inductance (ringing)
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Table 3.3: Pulse Parameters for Binary State Cycling

Parameter Set (LRS) Erase (HRS)

Vpp 0.8 V -0.8 V

tpulse 10 µs 10 ms

trise/fall 100 ns 100 ns

Vread 30 mV 30 mV

issues. Since either the pulse amplitude or width can be adjusted to control the

programmed states, for simplicity, the voltage is selected to be fixed. The same

amplitude is used for both setting and erasing the filament, with the pulse polarity

inverted for erasing. Table 3.3 shows the pulse parameters used for binary state

cycling. The pulse width (tpulse) for erasing the filament is wider than the set time

to ensure that the filament is substantially dissolved.

After a pulse is applied, it is necessary to measure the resulting resistive state. In

the setup used to test the device state in Chapter 6, a DC read bias was applied using

an SMU. Instruments like the Agilent B1500 can contain high speed pulse generator

units (PGU), SMUs, and pulse measurement units (PMU). Tests performed at Sandia

National Laboratories used the B1500. In the setup at ASU, an Agilent 4156C SMU

and Agilent 81160A pulse generator were used with a LabVIEW controlled Agilent

E5250A switch matrix to switch between sources. An example programming signal

for pulsed cycling is shown in Fig. 3.3.

3.2.2 Neuromorphic Programming

The conductive filament growth of CBRAM devices can be modulated, allowing

for precise control of the resistive state. The large spread in allowed resistance states

makes the CBRAM ideal for incremental neuromorphic programming which requires

a multilevel programming capability. To perform incremental pulsed programming,
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Figure 3.3: Set, read, erase, read signal used for performing binary pulsed cycling
programming.

the device is first set to a mid-range LRS using either a DC sweep or pulsed program-

ming. For example, if the desired LRS range is from 3 kΩ to 300 kΩ, an initial LRS

of 100 kΩ may be used. Higher power pulses are needed to make the initial transi-

tion from an HRS to an LRS. Ideally, identical pulses are preferred for performing

neuromorphic programming, so it is necessary to remain in the LRS region during

operation. Neuromorphic programming varies from binary cycling, in that the same

pulse will be applied multiple times before reversing the polarity of the pulse. Lower

power pulses are used for multilevel programming to allow for smaller transitions of

states. A typical set of programming parameters are listed in Table 3.4. The action

of Potentiation and Depression are used to describe the incremental increase in con-

ductance and incremental decrease in conductance respectively [30],[31]. To perform

potentiation, a small positive pulse is applied to the device anode followed by a read

bias to measure the resulting state. The positive pulse followed by the read bias is

applied several times to incrementally increase the conductance state. Depression is

performed in a similar manner, but with a negative programming pulse. An example
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Table 3.4: Pulse Parameters for Neuromorphic Programming

Parameter Potentiation Depression

Vpp 0.8 V -0.8 V

tpulse 100 ns 10 µs

trise/fall 50 ns 50 ns

Vread 30 mV 30 mV

Figure 3.4: Incremental pulsed programming for neuromorphic applications. Pos-
itive pulses result in an incremental increase in conductance while negative pulses
cause an incremental decrease.

of neurmorphic programming of a CBRAM device is shown in Fig. 3.4. The black

curve shows the near linear trend of conductance increase with uniform pulses ap-

plied. The red curve shows the exponential like reduction of the conductance during

depression for uniform pulses. Ideally, programming parameters should be selected

such that a linear change in conductance is exhibited for each applied pulse.
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Chapter 4

EFFECTS OF RADIATION ON STATE RETENTION

4.1 Introduction

Non-volatile memory is typically used to store data for extended periods of time

so it is necessary to examine how the retention of state can be affected in a radiation

environment for use in space-based applications. CBRAM has been shown to be

total ionizing dose (TID) tolerant up to 10 Mrad(Ge30Se70) for Ag-Ge30Se70 devices

[32], [33] and 7.1 Mrad(SiO2) for Cu-SiO2 devices [34]. The previous studies did

not examine the TID or displacement damage (DD) threshold required to cause a

deviation from the programmed resistive state. This Chapter will investigate the

effects of a combined TID and DD environment generated by heavy ion bombardment

as well as examine the behavior of programmed CBRAM states in a TID environment.

Three ion environments were explored, each with a different linear energy trans-

fer (LET) and non-ionizing energy loss (NIEL). In the following tests, the CBRAM

devices were exposed to 100 keV Li, 200 keV Si, or 1 MeV Ta ions while measuring

the retention of state of the programmed CBRAM devices. A set of 200 keV Si-ion

exposure results were first presented in [35] and investigated how the resistive state

changed during an ion beam raster scan across an individual memory cell. Further

testing with Li, Ta, and Si ions was performed to determine the dose threshold at

which a CBRAM device fails to retain its state. To investigate the TID environment,

a 60Co γ-ray exposure was performed up to 27 Mrad(Ge30Se70).
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4.2 Heavy Ion Bombardment

4.2.1 Experiment Setup

Heavy ion irradiations were performed at the Ion Beam Laboratory (IBL) at

Sandia National Laboratories. Exposures using 100 keV Li+ and 200 keV Si2+ ions

were performed using the NanoImplanter (NI) raster scanning focused ion beam.

The method of using the NI to perform displacement damage studies in resistive

memory was previously demonstrated on TaOx devices by Hughart et al. in [36–38].

A Tandem accelerator was used to accelerate Ta-ions at 1 MeV down a beam line

where the beam was focused to several millimeters. Studying multiple ion types with

different electronic energy loss and nuclear energy loss through the device, allows for

a comparison of effects due to either TID or DD.

100-keV Li-ion Bombardment

For the Li-ion exposure, CBRAM crossbars with 5 µm diameter devices along the

diagonal of the array were used. A bare CBRAM die was placed on a stage inside

the vacuum chamber of the NI and probed to obtain an electrical connection. The

functionality of each device was verified using a DC I-V sweep with an Agilent B1500

parameter analyzer. Each device was set with a 10 mV double staircase sweep from

0 V to 0.5 V to 0V and erased with a sweep from 0 V to -0.8 V to 0 V. Three devices

were erased into an HRS and three were programmed to an LRS by setting a 10 µA

compliance current. A small (sub-programming threshold) DC I-V read sweep from

0 V to 30 mV was used to sample the resistive state of the device before irradiation.

Each device was exposed and tested individually. The 40 nm diameter Li beam was

raster scanned in 40 nm steps over a 25 µm × 25 µm area over a device to a fluence of

1011 ions/cm2. The device remained probed during irradiation with no bias applied.

26



After irradiation, the 30 mV read sweep was applied to measure the state of the

device. Exposures were continued in 1011 ions/cm2 fluence steps to 1012 ions/cm2

where the fluence was increased to 1012 ions/cm2 steps and at 1013 ions/cm2 the step

was increased to 1013 ions/cm2. A read sweep was performed on the device after each

fluence step. Each device was irradiated up to a total fluence of 5 × 1013 ions/cm2

or until the device shorted.

200-keV Si-ion Bombardment

The Si-ion exposures were performed in the same manner as the Li-ion testing

except that the devices used had the Al contact offset from the device area, similar

to the device shown in Fig. 4.1. The devices used were from the same wafer as the

crossbar devices but located on a separate die. Si-ion bombardment was performed

on two devices programed to an HRS and four devices set to an LRS, set using a

25 µA compliance current. Prior to exposure, each device was DC swept to verify

the functionality of the device. Each device was tested individually. The beam used

during Si testing had a 30 nm beam diameter and was raster scanned in 20 nm steps

across the device area. A 40 µm × 40 µm scan window was used to ensure that the

beam hit the device area. The devices were irradiated in 2 × 1011 ions/cm2 fluence

steps until the device was observed to fail.

1-MeV Ta-ion Bombardment

Three devices were irradiated with Tandem accelerated 1 MeV Ta ions. The

devices tested were those described in [33] with the Al contact offset from the area of

the CBRAM cell; as depicted in the inset of Fig. 4.1. The devices were wire bonded in

a 24 pin DIP and placed on a circuit board inside the beam line with BNC accessible

connections to an Agilent 4155 parameter analyzer. Two of the devices were DC
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Figure 4.1: Ta-ion beam profile on an exposed CBRAM device. The green square
marks the profile of the Ta beam and the red circled region marks the location of a
tested device. The bottom right inset shows the device in higher detail and highlights
the offset Al contact.

cycled and erased into an HRS while the third device was cycled and programmed

into an LRS with a 10 µA compliance current. The Ta ion beam was approximately

500 µm × 1000 µm and fully covered the device area, as shown in the beam profile

overlay in Fig. 4.1. During each exposure, a 50 mV read bias was applied to the

anode contact with the cathode grounded.

The beam parameters used for each ion type are shown in Table 4.1

4.2.2 SRIM Calculations

Prior to ion beam testing, Stopping and Range of Ions in Materials (SRIM) cal-

culations were performed to determine the ion energy needed such that the ion would

stop in the Ni layer or beyond [39]. The total average energy loss of each tested ion,

as it passes through a CBRAM device, is shown in Fig. 4.2. The device depth in Fig.
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Table 4.1: Beam Parameters for Heavy Ion Retention Testing

Ion Li Si Ta

Energy 100 keV 200 keV 1 MeV

Charge State 1 2 1

Initial Dwell Time 5.6 µs 0.17 µs 100 µs

Beam Current 36.0 fA 1.49 pA 89.8 fA

Scan Window 25 × 25 µm 40 × 40 µm fixed beam

Beam Step 40 nm 20 nm 0 nm

Beam Diameter 40 nm 35 nm 500 µm × 1000 µm

Initial Fluence Step 1011 ions/cm2 2× 1011 ions/cm2 1.8× 108 ions/cm2

Approx. Dose Rate

Per Dwell

4.18 × 1010 rad/s 1.04 × 1013 rad/s 3.39 × 107 rad/s

4.2 is in reference to the top of the Ag anode layer. The crossbar device used during

Li-ion testing contained 350 nm of Al so its thickness is represented as a negative

depth above the Ag interface. The material compositions and properties used for

SRIM analysis is listed in Table 4.2. The LET and NIEL of each ion as it passed

through the Ag33(Ge30Se70)67 chalcogenide layer is shown in Fig. 4.3. The results

were used to estimate the TID (rad(Ag5Ge3Se7)) deposited and the non-ionizing dose

in the switching layer of the CBRAM devices. The LET and NIEL values generated

from SRIM were converted to TID and a displacement damage dose (DDD) using the

following equations,

TID = LET · Φ ·K (4.1)

DDD = NIEL · Φ ·K (4.2)

where K = 1.6 × 10−8 rad·g·MeV−1 and Φ is the fluence in ions/cm2. Fig. 4.3

indicates that the deposited dose in the switching layer should be relatively uniform
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Table 4.2: Physical Properties and Compositions for SRIM Analysis of CBRAM

Composition Density (g/cm3) Thickness (nm)

Al 2.70 350

Ag 10.47 35

Ag5Ge3Se7 6.30 70

Ni 8.89 65

SiO2 2.32 100

Figure 4.2: SRIM calculated ion energy of Li, Si and Ta ions as they pass through
the CBRAM device.

throughout.

Transport of Ions in Matter (TRIM) is the Monte Carlo extension of SRIM and

was used to determine the distribution of ion stopping ranges throughout the material

stack. TRIM simulations were performed using 20000 ions with detailed calculations

and full damage cascade. TRIM assumes a temperature of 0 K so annealing effects

at room temperature (298 K) are not taken into consideration. The ion implantation
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Figure 4.3: LET and NIEL of a Li-ion, Si-ion and Ta-ion as they pass through the
chalcogenide switching layer.

distribution of each ion is shown in Fig. 4.4. The ion counts are binned with 25 Å

wide bins and normalized to the maximum Ta-ion count. Fig. 4.4 shows that 1 MeV

Ta-ions and 200 keV Si-ions have similar implantation profiles with the majority of

ions implanting in the Ni layer as expected from SRIM results. The 100 keV Li-ions

mostly implant in the Ni layer but the implant profile in the chalcogenide layer is more

evenly distributed than for the Si and Ta ions. The Li bombardment also implants

more ions into the Ag layer than either the Si or Ta ions.

The distribution of vacancies caused by displacement damage was also calculated

from TRIM and is shown in Fig. 4.5. The displacements are a result of NIEL

where the energy transfered scattered an atom from its original location. The total

displacements are the sum of both vacancies and replacement collisions though the

vacancies constitute more than 95% of the total displacements. Of the total vacancies,
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Figure 4.4: Heavy ion stopping ranges in the CBRAM stack calculated using TRIM.

for all three ions, displacement of Se atoms makes up for approximately 41% of the

vacancies while Ag and Ge each make up ≈29%.

4.2.3 Observed Effects

100-keV Li-ion Bombardment

For the Li ion exposure, three devices were initially set to an HRS while three oth-

ers were set to an LRS. The resistance state of the six devices versus the accumulative

Li-ion fluence is shown in Fig. 4.6. The TID calculated using SRIM is marked on

the top x-axis. Devices programmed to an HRS are plotted with dotted lines while

the devices set to an LRS are solid lines. Of the devices programmed to an LRS

only device 3 shorted after a fluence of 3×1013 ions/cm2. Devices 1 and 2 failed to

retain their initial state after a fluence of 1013 ions/cm2 but they did not short. For

the three devices programmed to an HRS devices 5 and 6 were shorted to an LRS.
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Figure 4.5: Vacancies produced by heavy ion bombardment in the Ag / Ag-GeSe /
Ni layers for Li, Si, and Ta ions.

Device 5 shorted at a fluence of 2×1013 ions/cm2. Device 6 decreased in resistance

after a fluence of 3×1012 ions/cm2 and shorted after 3×1012 ions/cm2. Device 4 did

not transition to an LRS but decreased slightly in resistance after a fluence of 1013

ions/cm2.

200-keV Si-ion Bombardment

The results of the 200-keV Si ion exposure is shown in Fig. 4.7. All six devices

tested showed a decrease in resistance at fluences above 1012 ions/cm2. HRS device

1 decreased in resistance at 2 × 1012 ions/cm2 and LRS devices 3 and 4 decreased at

1012 ions/cm2 and 3.4 × 1012 ions/cm2 respectively. HRS device 2 and LRS devices

5 and 6 did not decrease until and 2 × 1013 ions/cm2. Unlike the state transition

of device 1, once the resistive state of device 2 began to decrease, the change was
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Figure 4.6: Resistive state of CBRAM devices exposed to 100 keV Li-ions.

gradual with increasing fluence.

1-MeV Ta-ion Bombardment

The post resistance state after each pulse versus accumulative fluence is plotted

in Fig. 4.8 for the 1 MeV Ta-ion exposure. Devices 1 and 2 were set to an HRS prior

to exposure and device 3 was set to the LRS. Both devices in the HRS transitioned

to a lower resistance after a fluence of 1012 ions/cm2 and 3×1012 ions/cm2 for devices

2 and 1, respectively. The device in an LRS was only tested up to 6×1011 ions/cm2

with no significant change in resistance observed.

Fig. 4.9 was constructed to assess if TID or DDD played the greater role in the

state failure during retention testing. Using the point at which the resistance reduced

by more than a half decade, the TID and DDD were calculated at the fluence step prior

to failure. At failure, the 1-MeV Ta ions are shown to produce six times the DDD
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Figure 4.7: Resistive state of CBRAM devices exposed to 200 keV Si-ions.

Figure 4.8: Resistive state of CBRAM devices exposed to 1 MeV Ta-ions.
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Figure 4.9: Displacement damage dose and TID of each device at retention failure
due to irradiation. TID values at failure appear to be more highly correlated than
DDD for Li, Si, and Ta-ion bombardment.

as 200-keV Si and 10 times the DDD as the 100-keV Li ions though most devices

experienced resistance decreases within the same magnitude of TID. This strongly

suggests that the observed changes were a result of TID. Based on the results of

the heavy ion exposures, the mean TID threshold for resistance change was found

to be 30.1 Mrad(Ag5Ge3Se7), excluding the three extreme doses (>100 Mrad) values

encountered during Si-ion testing.

4.3 200-keV Si-ions Transient Testing

During the heavy ion retention testing, the resistive state of the CBRAM cell is

measured following the exposure to the ion beam. To better explore the behavior

of a CBRAM cell during a heavy ion beam scan, transient in situ measurements

were performed. The purpose of this test was to determine if the observed resistance
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changes due to heavy ion bombardment were gradual (uniform) across the device area

or if changes were sudden and dominant to particular areas of the device. The NI

beam can be focused to tens of nanometers in diameter and is useful for pinpointing

sensitive areas of the device [36].

4.3.1 Experiment Setup

The devices used for Si-ion transient testing were from the same wafer as the

devices used for Ta-ion testing. A bare die was loaded into the NI and the chamber

was pumped down to < 10−7 torr. The anode and cathode contacts of a single cell

were probed. An electron beam was scanned across the device to verify its position

and to align the beam over the device area. Prior to exposure the device was DC

cycled as described in Chapter 3, to obtain the I-V characteristics and to verify device

functionality. Each device was erased into the HRS prior to heavy ion exposure. The

circuit used for monitoring the device in situ is shown in Fig. 4.10. During the ion

beam scan the anode was biased with a 30 mV read voltage to monitor the change

in resistance state. The cathode was connected to an amplifier to increase the signal

into the analog-digital converter (ADC). After exposure, the device was DC cycled to

determine the functionality of the device. During the ion beam scan, the resistance

state of the CBRAM device was monitored live time during the entirety of each scan.

To ensure a resistance state change, the fluence of each scan was 4.2 × 1013 ions/cm2

or above. The beam parameters used for each device tested is shown in Table 4.3.

4.3.2 Observed Effect

All three devices were observed to decrease in resistance during the 200 keV Si

exposures. The beam parameters set for each test are listed in Table 4.3 All three

devices examined were 10 µm in diameter and were erased to the HRS prior to
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CBRAM
Amp ADC PC

Oscilloscope30 mV

Figure 4.10: Circuit used to bias and monitor the CBRAM device during Si-ion
exposure. Changes in resistance were monitored real time using an oscilloscope while
dwell number and time was logged to the computer.

Table 4.3: Test Parameters for 200 keV Si2+ in situ Ion Beam Scans

Parameter Device 1 Device 2 Device 3

Cell Diameter 10 µm 10 µm 10 µm

Dwell Time (tdwell) 200 µs 50 µs 50 µs

Ions/Dwell (Nions) 1997.3 514.9 514.9

Beam Current (Ibeam) 3.2 pA 3.3 pA 3.3 pA

Scan Window 10 × 10 µm 10 × 10 µm 15 × 15 µm

Points per Scan 286 × 286 286 × 286 429 × 429

Beam Step 35 nm 35 nm 35 nm

Beam Width 41 nm 35 nm 35 nm

Total Time per Scan 17.0 s 5.6 s 10.5 s

Fluence per Dwell 1.19× 1014

ions/cm2

4.2× 1013

ions/cm22

4.2× 1013

ions/cm2

Avg. Fluence per

Scan

1.63× 1014

ions/cm2

4.2× 1013

ions/cm2

4.2× 1013

ions/cm2
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Figure 4.11: SEM micrographs of 10 µm devices (a) prior to ion scan and (b) after
exposure to 200 keV Si2+ ion scans. A darkening caused by surface etching is observed
after exposure. The offset Al contact is shown to the left of the cell in each image.

exposure. The Nions ions per dwell, as listed in Table 4.3, were calculated from the

specified dwell time tdwell, the current Ibeam of the ion beam, and the charge of the Si

ion qzSi using the following relationship,

Nions =
Ibeamtdwell

qzSi
. (4.3)

The scan window is user defined and was kept at the limit of the device size,

as evident in Fig. 4.11 by the darkening around the device. For device 3, the scan

window was increased slightly to determine if a response could be observed when the

beam was not directly on the device. No resistance drop was observed when the beam

scanned outside of the device. The beam width varied between device tests, resulting

in a 41 nm width for device 1 instead of the approximate 35 nm × 35 nm beam

obtained for devices 2 and 3. Each device was scanned multiple times to observe

cumulative damage effects.

As apparent in Fig. 4.12–4.14, the resistance state of each device starts at a

high resistance state and is then observed to decrease in resistance during the scan.

Once one scan is completed, another scan is started immediately afterward. Sudden
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drops in resistance were observed to occur at approximately the same location on the

device each scan. Each raster scan was performed identically, allowing equivalent time

points to be associated with a position on the device. Changes occurring within the

same time frame suggest that the devices may have areas that are more sensitive to

displacement damage effects than others. The scans were halted once the resistance

state of the device began to saturate, shown prominently in Fig. 4.12 and to a lesser

extent in Fig. 4.13 and Fig. 4.14. During preliminary testing, it was observed that

the CBRAM cells could be erased to near the original HRS after exposure to one or

two scans. However, after several scans, once the resistance state began to saturate,

the devices could no longer be fully erased. The devices became locked into a low

resistance state. The devices featured in Fig. 4.12–4.14 were not erased between

scans. The fluence was selected such that the resistance state decreased during each

beam scan. The initial resistance state along with the final resistance state of each

scan was extracted and plotted in Fig. 4.15 versus ion fluence. The final resistive

state of each scan was shown to decrease gradually, similar to the response seen of

the HRS devices in 4.7.

Though the transition between resistive states looks abrupt in Fig. 4.12–4.14,

when zoomed into the first transition time-frame, the resistance decrease is shown

to take place over several hundred microseconds. For device 1, the dwell time of the

beam was 200 µs. Fig. 4.16 shows that the resistance decrease happens over 400 ms

starting at approximately 2.4 seconds into each scan. The time frame of the drop

corresponds to a 10 µm × 245 nm section of the device, as calculated using tdwell,

Points per Scan, and Beam Step listed in Table 4.3. The consistency of the resistance

drop suggests that this region may contain a residual filament or a material defect

that allows this region to be more sensitive to heavy ions. The mean projected lateral

scatter of the Si-ion within the chalcogenide layer is 66.6 ± 49.5 nm. Given the
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Figure 4.12: The resistance state of device 1 is observed to decrease each scan,
eventually saturating at an LRS. The resistance is shown to decrease abruptly at
approximately the same time each scan.

continuous response over the entire 10 µm distance across the device, the observed

behavior may have a time component to it in addition to a positional dependence.

Fig. 4.17 shows the highlighted respond of device 2. Like in Fig. 4.16, Fig. 4.17

shows that device 2 also had changes in resistive state at correlated points during each

ion beam scan. For device 2, the highlighted region shows that state changes did not

always result in a decrease in resistive state. All scans, except for scan one, showed a

decrease in resistance followed by a recovery back to the state prior to the decrease.

Device 2 had a second correlated response at 3.6 s into each scan, where the resistive

state consistently decreased each scan. Assuming that the two types of responses are

the result of the same mechanism, the heavy ions could either be causing a generation

and separation of carriers or creating vacancies that results in the migration of Ag+.

In one case, the Ag-ions begin to move (generating a current) but fail to reduce on
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Figure 4.13: The resistance state of device 2 during each 200 keV Si-ion beam scan.

Figure 4.14: The resistance state of device 3 during each 200 keV Si-ion beam scan.
The resistance is shown to decrease abruptly at approximately the same time each
scan.
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Figure 4.15: Final resistive state of CBRAM devices after each ion beam scan.

Figure 4.16: Device 1 resistance change over time for the region highlighted by the
inset graph.
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Figure 4.17: Device 2 resistance change over time for the region highlighted by the
inset graph.

the filament and in the other cause, the Ag reduces on the existing filament structure,

reducing the overall resistance.

From the SRIM results shown in Fig. 4.5, calculations estimate a total of 2640

vacancies/ion throughout the full device with 1164 vacancies/ion in the electrolyte

layer. The number of vacancies generated per dwell in the electrolyte is therefore

in the order of 2×106 (1.4×1017 vacancies/cm2) for device 1 and 6×105 (4.9×1016

vacancies/cm2) for devices 2 and 3. The actual amount of damage is much lower

than the calculated, as the calculation does not take into consideration annealing at

room temperature.
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4.4 Total Ionizing Dose

4.4.1 Experiment Setup

TID experiments were performed at Sandia National Laboratories at the Gamma

Irradiation Facility (GIF). The GIF has several dry-cell concrete rooms each with a

60Co source array and a variety of dose rates. The cells are several square meters,

allowing for the exposure rate to be controlled by varying the distance from the source.

The devices used for 60Co irradiation were the crossbar structures described in

Chapter 2. Three chips were packaged using 40 pin CDIP packages. Each chip

contains 32 devices with 20 devices accessible. The devices were DC cycled five times

in the manner described in Chapter 3 using an Agilent B1500 parameter analyzer

to verify device functionality. The package for irradiation was placed onto a test

board that allowed each pin to be accessed with a ribbon cable connection. Two

thermoluminescent dosimeters (CaF2 TLD) were placed on either side of the device

package, as shown in Fig. 4.18 and one the back of the test board behind the device

area. The device package on the test board was placed against a heat sync inside a

polypropylene box. A thermocouple was attached to the heat sync to monitor the

device temperature during irradiation. Building air supply was blown through the

box to regulate the device temperature. The packaged devices were accessible using

ribbon cables. The plastic box was placed inside a Pb-Al box to shield the devices

from scattered low energy electrons. The enclosure was suspended between two stands

and oriented such that the back-side of the board faced the pool containing the 60Co

source. The stands were placed as close to the source as possible to achieve a high

dose rate. The dose rate inside the enclosure was measured at 475 rad(Si)/s or 415

rad(Ag5Ge3Se7)/s. A picture of the text fixture is shown in Fig. 4.19.

Two separate irradiations were performed. One package was irradiated to 22.8
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Figure 4.18: 40 pin CDIP containing wire-bonded CBRAM tile. A TLD was placed
on each side of the package and one behind the device area on the backside of the
board (not shown).

Mrad(Ag5Ge3Se7) and the second was irradiated to 23.9 Mrad(Ag5Ge3Se7). The first

package had two devices erased to an HRS and two devices set to an LRS using

a 25µA current compliance. The second package had three devices set to an HRS

and five set to the LRS. One package was used as a control outside of the radiation

chamber and tested at room temperature. Three control devices were used, one in

the HRS and two set to the LRS.

The configuration used to monitor both the irradiated devices and control devices

is shown in Fig. 4.20. The devices inside the irradiation chamber were individually

accessed using two 60 ft ribbon cables connected to a printed circuit board (PCB) that

converted the ribbon cable connections to BNC coaxial connections. Coaxial cables
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Figure 4.19: Assembly used to test CBRAM during 60Co irradiation. The PCB
containing the device package was placed against a heat sync inside a plastic box. A
thermocouple was attached to the heat sync to monitor the device temperature during
irradiation. Building air supply was blown through the box to regulate temperature.
Packaged devices were accessible using ribbon cables. The plastic box was placed
inside a Pb-Al box (box cover not shown).

were connected from the PCB to individual inputs of a Yokogawa DL850 oscilloscope.

During testing, a 50 mV read bias was applied to the circuit in Fig. 4.20. During

irradiation, the resistance state of the irradiated and control devices were monitored

continuously for the duration of the test.

4.4.2 Observed Effects

Ion irradiations result in a combined environment characterized by both ionizing

and nonionizing energy loss. Separating effects due purely to TID versus displacement
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Figure 4.20: Circuit configuration used to actively monitor CBRAM devices during
60Co irradiation.

damage is a tricky process unless the mechanism responsible for the observed failures

is known. To examine the potential for TID effects, γ-ray testing using 60Co was per-

formed up to 23.9 Mrad(Ge30Se70). Fig. 4.21 shows the in situ response of the seven

devices programmed to an LRS and the 5 devices programmed to HRS. Throughout

the 16-hour exposure, several devices did drift from their initial resistance state, but

all devices maintained their relative binary state (no switch from HRS or LRS or vice

versa). One HRS device, shown as the red curve, did drift toward the LRS state,

but did not experience a sudden transition, such as those observed during ion testing.

This HRS device also started in a lower than typical HRS state, most likely due to

a partially formed filament. The control devices are shown to be very stable and

experienced very little drift during the duration of the test.

The second irradiated package had ten devices that were DC cycled pre and post

irradiation. Of those ten, eight of them were used for retention testing and the remain

two were bias but not monitored due to limitations on the number of oscilloscope

inputs. The HRS and LRS distribution of the DC sweeps pre and post irradiation is

shown in Fig. 4.22. Each device was cycled 5 times pre and post irradiation for a

total of 50 points to construct the cumulative distribution function (CDF). Fig. 4.22

shows that post the 24 Mrad(Ge30Se70) irradiation, the HRS distribution decreases

and overlaps with the LRS distribution. The LRS distribution is also observed to
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Figure 4.21: Retention of programmed resistances up to a TID of 23.9 Mrad
(Ge30Se70).

broaden slightly and had one device with an LRS state that overlapped with the

HRS distribution.

The CDF plot is useful for evaluating the population of CBRAM devices assuming

that each device is equivalent in behavior. However, since the association of HRS to

LRS of individual devices is lost in a CDF distribution, it is necessary to examine each

device’s behavior using the box plot shown in Fig. 4.23. Fig. 4.23 shows the distri-

bution of the HRS/LRS programming window ratio for the ten devices tested during

the 23.9 Mrad exposure. The box region marks the 25 percentile to 75 percentile of

the distribution while the whiskers are used to mark the minimum and maximum of

the distribution. Six of the ten devices are shown to have a tighter distribution of

49



Figure 4.22: Cumulative distribution of LRS and HRS pre and post 60Co irradiation.

HRS/LRS values following irradiation as compared to their pre-radiation distribu-

tion. Devices 4 and 10 are shown to I-V sweeps where the programming window had

collapsed (HRS/LRS = 1).

Though some drift in DC characteristics is noted post irradiation, there is no clear

evidence, given the behavior of the control devices, that these effects are a result of

TID. Testing beyond 23.9 Mrad(Ge30Se70) was not possible due to time constraints.

Though the predicted TID threshold is 30.1 Mrad, three of the devices bombarded

with ions experienced failure below 20 Mrad, as depicted in Fig. 4.9. Given that no

devices irradiated with 60Co failed during retention testing, either TID is not the sole

contributer to changes seen during heavy ion testing or further TID testing beyond

30 Mrad is necessary to require a drastic state failure.
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Chapter 5

EFFECTS OF RADIATION ON DC CYCLING

5.1 Introduction

In most applications, solid-state memory is programmed using a pulse instead of

a gradual DC sweep. DC testing is performed as a tool for evaluating how the indi-

vidual device parameters evolve, such as the HRS, LRS, and programming threshold.

DC programming involves growing and dissolving a filament within a longer time-

frame than performing pulsed programming since the applied electric field is gradu-

ally stepped over time. The relatively gradual programming provides ample time for

cation resupply to occur in the electrolyte around the growing filament [23]. As such,

DC testing on irradiated devices is useful for determining how radiation affect the

electrolyte layer and its ability to facilitate the transport of Ag+ to the region of the

developing filament. Prior works have evaluated the behavior of the cycled HRS and

LRS distributions after several TID steps. Selenide based CBRAM was found to be

60Co ionizing radiation tolerant up to 10 Mrad(Ge30Se70), with no significant changes

to the LRS or HRS during DC cycling [32]. Another test evaluated the LRS and HRS

response to 100 keV electrons up to a dose of 12 Mrad(Ag5Ge3Se7) with no obvious

effects due to TID [40]. That same study also presented the response to 9.48 × 1012

p/cm2 50 MeV protons (1.1 Mrad(Ag5Ge3Se7)). No significant change in LRS or

HRS distributions were observed for front-side irradiation, though a decrease in the

HRS distribution was measured after backside (through Si wafer) irradiation [40].

With the current evidence that Ag-Ge30Se70 CBRAM is TID hard, it was decided to

evaluate the DC response to displacement damage effects.
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In the following experiments, CBRAM devices were exposed to 14 MeV neutron

while measuring the DC characteristics at several fluence steps. The following tests

show a reduction of the HRS/LRS window with increasing fluence. This neutron work

was first presented in [35], [41]. The following work also presents heavy ion tests that

were also performed using 200 keV Si-ions. In these tests, the HRS/LRS windows

was also shown to collapse after a significant fluence of ions.

5.2 14 MeV Neutron Exposure

5.2.1 Experiment Setup

Neutron irradiations were performed at Cobham RAD Solutions in Colorado

Springs, CO using a 14.1 MeV deuterium-tritium reaction neutron generator. Two

die, each containing 32 individually accessible CBRAM cells, were mounted and wire

bonded into ceramic dual in-line packages (CDIP). A total of five cells were available

for in situ testing on one die and three cells were available on a second die. The second

package was used for the control. Control devices were not exposed to neutrons and

were tested in a room temperature laboratory environment. Ceramic lids were taped

across each package opening to protect the CBRAM from ambient light exposure [26].

Prior to irradiation, a niobium foil was taped across the lid of the package. An Aloka

dosimeter mounted inside the radiation chamber was used for active dosimetry. The

test board was mounted to a tripod and placed against the end of the neutron gen-

erator beam plate to ensure that the CBRAM received the highest possible neutron

flux, as shown in Fig. 5.1. The CBRAM cells were accessible via ribbon cables that

ran from the test board inside the chamber to a switch board outside of the chamber.

The switch board allowed each CBRAM cell to be individually accessed and tested

using an Agilent 4156A parameter analyzer.
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Figure 5.1: Packaged device placed against neutron generator plate for maximum
neutron flux. CBRAM was accessible via ribbon cable during exposure.

Prior to irradiation, each device was cycled five times using a DC staircase sweep to

verify their functionality. The devices were swept in the manner described in Chapter

3. A programming compliance current of 100 µA was used for all eight devices. The

I-V curve shown in Fig. 5.2 is characteristic of the CBRAM cells tested. The devices

were erased and left in a high resistance state during exposure.

The devices were irradiated with a mean 14 MeV neutron flux of 2.18×109 n/cm2·s.

During irradiation the anode and cathode terminals were biased to ground. The

devices were periodically cycled by DC sweeping each device five times in the manner

previously stated. The HRS and LRS of each device was extracted from the I-V

curve at the 30 mV voltage point. The read voltage was selected such that it was

conservatively smaller than the programming threshold of 100 mV. The CBRAM was

exposed to a total 14 MeV neutron fluence of 3.19×1013 n/cm2 (5.65×1013 n/cm2 1
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Figure 5.2: I-V curve of a CBRAM cell with a 100 µA programming compliance. The
window between the HRS and LRS (low current and high current) is the triangular
like opening in the programming curve. State sampling is typically taken as the 30
mV point.

MeV Si equivalent).

The control devices were tested with the same procedure and in equivalent time

steps as the exposed devices. Packaged control devices were tested in an Agilent

16442B Test Fixture to access the package pins.

5.2.2 Observed Effects

The resistance states depicted in Fig. 5.3 through Fig. 5.5 were measured by DC

cycling each device five times at each fluence step. The resistive states were sampled

from the I-V curve at 30 mV, as marked in Fig. 5.2. The following data shows that
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the programming window of each CBRAM cell collapses due to neutron exposure.

When a device fails, it becomes trapped either in an HRS or an LRS and is unable

to be programmed or erased respectively. Fig. 5.3 shows how the HRS/LRS window

was observed to decrease, with the HRS eventually becoming indistinguishable from

the LRS. Fig. 5.4 shows a case where the HRS/LRS window collapsed to a higher

resistance state. The HRS/LRS programming window of devices 4 and 5 in Fig.

5.5 are shown to fluctuate before collapsing at fluences above 2 × 1013 n/cm2. The

control devices in Fig. 5.3 through Fig. 5.5, show how the CBRAM devices are

expected to maintain a window between the LRS and HRS under nominal conditions.

The behavior of the control devices highlight the unexpected collapse of the window

between the LRS and HRS of the irradiated devices. The first notable convergence

occurred after a fluence of 4.90×1012 n/cm2 and was first measured at 1.47×1013

n/cm2. Three of the five devices programmed with 100 µA maintained a separation

between LRS and HRS up to a fluence of 2.93×1013 n/cm2 before collapsing. All

devices exhibited a steady decrease in the HRS/LRS window beyond a fluence of

1.47×1013 n/cm2.

The box plots in Fig. 5.6 show the distribution of the HRS/LRS ratio with each

fluence step. Each box contains the distribution of the five DC sweeps for all five

devices, resulting in 25 data points per box. The mean HRS/LRS is 15, prior to

irradiation. As the neutron fluence increased, the mean HRS/LRS ratio decreased

until it collapsed to 1 (no programming window). Variation in device performance

increased after a fluence of 4.90×1012 n/cm2 resulting in a wide spread of HRS/LRS

window values. All irradiated devices experienced a full convergence of the HRS/LRS

window by the conclusion of the 3.19×1013 n/cm2 exposure. The TID receive during

testing was 35.1 krad(Ag5Ge3Se7). Given that no effects due to TID have been

observed below 10 Mrad(Ag5Ge3Se7), the effects observed during neutron irradiation
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Figure 5.3: Mean HRS and LRS versus neutron fluence for CBRAM devices 1 and
2.

Figure 5.4: Mean HRS and LRS for CBRAM device 3 versus neutron fluence.
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Figure 5.5: Mean HRS and LRS versus neutron fluence for CBRAM devices 4 and
5, that became unstable before collapsing.

are most likely due to displacement damage [32], [33]. An erase sweep from 0 V to -3

V was applied to each device in an attempt to recover their original HRS. The device

states remained fixed, i.e., not switchable after performing the erase sweep, with no

observable difference between the LRS and HRS. For the devices that failed to the

HRS, no programming threshold was observed during DC cycling, meaning that no

evidence of filament growth was observed.

The cumulative distribution of the HRS and LRS are depicted in Fig. 5.7 and

Fig. 5.8 respectively. These data show a clear trend in the decrease of both the HRS

and LRS with increasing neutron fluence. The initial LRS starts off around 1.7 kΩ.

Even after the first fluence step of 4.9 × 1012 n/cm2, the HRS distribution is shown

to drift into the LRS region. The LRS distribution also experiences as decrease in

the majority of the measured resistive states, with the full LRS region spanning from
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Figure 5.6: Box plot showing the HRS/LRS window collapsing at high neutron
fluence. Bottom and top edge of each box represents the 25th and 75th percentile
distributions respectively, box whiskers span the 5th to 95th percentile, and the small
blue squares mark the mean of the distributions.

tens of Ohm to 100 kΩ.

The devices exposed to 14 MeV mono-energetic neutrons exhibited a measurable

effect due to displacement damage after approximately 1013 n/cm2 with complete

failure occurring at 3.19×1013 n/cm2. This result is slightly surprising given that no

correlation to displacement damage was distinguishable during retention testing, as

discussed in Chapter 4. This suggests that for the materials used in CBRAM, ionizing

radiation may partially counteract the effects of displacement damage. This would

be consistent with the results reported in previous TID studies on similar devices,
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Figure 5.7: Cumulative distribution of the high resistance states of the five devices
programmed with 100 µA compliance current.

which have shown that CBRAM performance can be improved in an ionizing radiation

environment [32].

The collapse of the HRS/LRS window may be due to structural changes that are

occurring in the glass layer. Electrochemical metallization memories rely on the poros-

ity of the chalcogenide glass layer to allow hoping of the active metal ions through

the glass via the coordinated motion of ions [15], [42]. Photo-doping the chalcogenide

glass with an active metal such as Ag, creates a solid electrolyte that helps to facil-

itate the movement of the metal ions and provides stability to a formed conductive

filament [27], [42]. It has been observed that the Ag photo-doped into the GeSe glass

does not homogeneously distribute throughout the material. The Ag is observed to
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Figure 5.8: Cumulative distribution of the low resistance states of the five devices
programmed with 100 µA compliance current.

nucleate in Ag rich regions, creating an isotropic mixture of Ag rich and Ag poor/Ge

rich regions [43], [19], and [44]. The Ag rich regions are typically in the order of 2

nm in diameter with less than 1 nm of Ag-poor interstitial glass between them [43].

These Ag rich regions may act as reduction sites for mobile Ag+ ions that obtain

excess electrons, though on average these sites will be neutral [19]. The formation of

the conductive filament should then be thought of as a joining of multiple nanoscale

filaments forming a continuous path between the cathode and anode.

When the device is in the HRS, the majority of the mobile Ag ions have returned to

the anode contact and enough breaks in the conductive path have occurred to greatly

limit conduction. Displacement damage may in some way reduce the ion mobility
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through the electrolyte. The Ag-Ge30Se70 material system is a disordered glass with

a variety of evolving bond formations at room temperature [44], [45], [46]. The

localized variation in material structure creates potential barriers of different heights

and thicknesses that the Ag+ ions must hop over to migrate through the electrolyte

[47], [48]. The inability to erase or further program the device to a lower resistance

state suggests that displacement damage effects have greatly inhibited the mobility of

Ag+ ions. Material changes may have occurred that resulted in an increase in potential

barrier heights, deterring the cations from hopping to the next site. Localized Ag2Se

formation or a redistribution of the glassy structure may result in a deepening of the

potential wells occupied by the Ag+, restricting the mobility of the ions [43], [44].

5.3 100 keV Li-ion Bombardment

5.3.1 Experiment Setup

Heavy ion tests were performed to evaluate how the CBRAM devices behave in

combined TID and DD environment. These tests were performed using 5 µm crossbars

with devices along the diagonal of the contact array. The device stack is the same

as described in Chapter 2 and Chapter 4, where the 350 nm thick Al anode contact

bar sits over top of the CBRAM cell. The following tests were performed on the

same die as the retention tests presented in Chapter 4 but on different devices in

the array. 100 keV Li-ion exposures were performed using the NI at Sandia National

Laboratories. The ion bombardment was performed in the same way as described in

Chapter 4, where the ion beam was raster scanned across the area of the device. Two

devices were used to examine the response of the HRS/LRS programming window.

Prior to exposure, each device was DC cycled and erased to the HRS. A 30 mV DC

read sweep was used prior to exposure and after each fluence step. Between each
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irradiation the device was DC cycled followed by another DC read prior to the next

irradiation. A 1012 ions/cm2 fluence step was used for each irradiation up to a total

fluence of 3×1013 ions/cm2 or until the device failed to switch. The HRS and LRS

were extracted from the I-V curve at the 30 mV point.

5.3.2 Observed Effects

Each device was DC cycled once after each fluence step. During exposure the

device was left in the HRS. Fig. 5.9 shows how the HRS/LRS programming window

collapsed after a fluence of 1013 ions/cm2. Fig. 5.10 shows the measured HRS and

LRS for both devices for each I-V sweep performed. Though both devices were

located on the same die, device 1 was capable of switching with an HRS/LRS ratio

10× that of device 2. Since the LRS for a given compliance can be consistently set in

room temperature lab condition, as shown by the control devices, the variation in the

programming window is typically a result of variance in the HRS [32], [49]. The 10×

HRS difference between device 1 and 2 is shown in Fig. 5.10. This HRS variation is

typically observed in research quality CBRAM devices.

The gray region of Fig. 5.10 highlights an interesting trend where the HRS and

LRS of both devices increased prior to the HRS collapsing to the LRS value (shorted).

Fig. 5.11 displays the programming sweeps of both devices during the exposures

marked by the gray area. In this region, the ohmic LRS response are shown to

become less linear with increasing fluence. The ragged profile of the LRS curve

suggests that ion migration is occurring around the filament structure. When a

device is programmed with a DC sweep, the applied positive bias initiates the REDOX

reaction while the electric field drives the Ag+ through the electrolyte. In a room

temperature lab environment, enough Ag+ is supplied to allow a stable, near ohmic,

filament to form. The non-ohmic response of the curves in Fig. 5.11 suggest that
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Figure 5.9: HRS/LRS programming ratio for the I-V sweep performed after each
100 keV Li-ion fluence step. Non-irradiated control devices marked by dotted line.

not enough Ag is being supplied to create a robust filament, resulting in a partially

dissolved filament [50]. Fig. 5.12 shows the I-V curves for the erase operations

corresponding to the programming curves of Fig. 5.11. During the reversed bias,

the ohmic response of the LRS can be resolved. The current response has more

fluctuation than the linear response of the stronger (lower) LRS recorded prior to the

observed radiation effects, though on average it still exhibits a linear trend as marked

in Fig. 5.12. The spikes of conductivity are most likely from nucleated Ag that has

come into contact with the filament but is then repelled or migrates away from the

filament. An insufficient supply of Ag+ toward a developing filament will result in a

concentration gradient, causing the filament to be partially dissolved. An illustration
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Figure 5.10: Measured HRS and LRS values for each device at each fluence step.
Gray region highlights a trend where the resistance of both the HRS and LRS in-
creased prior to shorting. Bottom portion of plot shows the response of two control
devices cycled in the same manner as the bombarded devices.

of the filament dissolution is shown in Fig. 5.13. The nonlinear response, in addition

to the increase in HRS, provides evidence that the electrolyte region of the device has

changed in such a way to diminish Ag migration. This behavior is further discussed

in the next chapter.

The programming window of the two devices collapsed after 1.2 × 1013 ions/cm2

and 3× 1013 ions/cm2. The dose at the fluence of failure was added to Fig. 4.9 and

is marked in Fig. 5.14. Fig. 5.14 shows that the dose received at failure is within the

same magnitude at failure for retention testing, suggesting that the failure mechanism

may be the same.
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Figure 5.11: Programming I-V sweeps of both irradiated devices at the fluence
steps where the resistance was observed to increase. The LRS response of the I-V
characteristic is shown to become less linear with increasing fluence.

Figure 5.12: Erase I-V sweeps of both irradiated devices at the fluence steps where
the resistance was observed to increase. The LRS curve under negative bias is shown
to be linear indicating a stable but partially dissolved filament.
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Figure 5.13: As the filament forms, the Ag+ concentration around the filament
decreases. Reduction in ion conductivity makes it difficult to resupply the cation
population within a certain period of time, resulting in a concentration gradient with
a depletion of Ag in the vicinity of the filament. Diffusive forces, generated by the
dense concentration of Ag in the filament, become dominant once the opposing electric
field decreases in strength.
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Figure 5.14: Updated TID and DDD distribution with DC cycling failure points
added.
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Chapter 6

EFFECTS OF RADIATION ON PULSE PROGRAMMING

6.1 Introduction

Pulse programming is a standard method for programming solid-state memory,

so it is necessary to evaluate the response to radiation effects. A prior study evalu-

ated the binary pulsed cycling capability of Ag-Ge30Se70 CBRAM during 60Co γ-ray

irradiation [40]. In that experiment, the devices were exposed in dose steps up to a

TID of 4.62 Mrad(Ge30Se70) and cycled 10000 times after each dose. No effects were

observed due to ionizing radiation. Further testing needs to be performed to evaluate

any effects due to displacement damage while performing pulsed programming.

In the recent past, neuromorphic programming has become a hot topic with the

development of neural network computing and machine learning. In the context of

space applications, these new computing methods can be used for processing sensor

information quickly on the satellite’s computer without the need to send the raw

information back to Earth for reduction. Several research groups have offered up

resistive memory as an alternative solution to transistor-based neuromorphic circuits

[31], [51], [52]. Two types of CBRAM, a CMOS compatible Cu-SiO2 device and a Ag-

Ge30Se70 device were shown in previous studies [31],[53], and [54] to have conductance

states that could be incrementally increased or decreased to mimic the potentiation

and depression of a synapse. The following experiment was first presented in [55] and

looks to see how neuromorphic programming of CBRAM is affected while in a 60Co

γ-ray TID environment.
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6.2 Total Ionizing Dose

6.2.1 Experiment Setup

CBRAM tiles for both device types were diced from the wafers and packaged in a

CDIP. Each device was cycled several times with a DC sweep using an Agilent 4156C

parameter analyzer to verify the functionality of each device. Prior to testing, the

Cu-SiO2 devices are subjected to a forming sweep to drive Cu into the SiO2 layer.

The DC forming sweep used a double staircase sweep with a 20 mV voltage step from

0 V to 3 V for filament formation and from 0 V to -1 V for filament dissolution.

After formation, each device was cycled several times between -1 V to 2 V. The Ag-

Ge30Se70 devices do not require a formation step, as the Ag is photo-doped throughout

the Ge30Se70. The Ag-Ge30Se70 devices were swept from 0 V to 0.5 V in 10 mV steps

for programming and from 0 V to -0.7 to erase the cell. The I-V characteristics of

the representative CBRAM cells tested prior to irradiation are shown in Fig. 6.1 and

Fig. 6.2 for the Cu-SiO2 and Ag-Ge30Se70 devices, respectively.

Each package was placed into a DIP socket inside a Gammacell 220 chamber,

which provided electrical access via ribbon cable to a switch board outside of the

irradiation chamber. All device contacts were biased to ground while the test board

was lowered into the irradiation chamber. The dose rate inside the chamber was 353

rad(SiO2)/min (308 rad(Ge30Se70)/min). Devices were exposed and tested at room

temperature. Once inside the chamber, a single device was periodically tested in the

following manner: A single pulse was applied to the anode of the device using an

Agilent 81160A arbitrary waveform generator. The cathode contact was connected

in series to a 2.3 kΩ resistor that helped to regulate the current through the resis-

tive memory cell. Neuromorphic pulsed programming was performed as described in

Chapter 3. Pulse and read operations were alternated until the device transitioned

70



Figure 6.1: I-V characteristics of the Cu-SiO2 devices prior to irradiation using a
100 µA compliance current.

from a high (low) conductance state to a low (high) conductance state. I-V sweeps

were performed prior to irradiation and periodically during the exposure to verify

the DC functionality of the device as well as observe the in situ behavior during the

DC programming. Between measurements, both terminals of the device under test

were biased to ground using an Agilent 4156C. Two Ag-Ge30Se70 devices were tested,

both in the same array. Device 1 was tested to a TID of 40 krad before switching

to device 2. Device 2 was tested starting from a TID of 1.3 Mrad(Ge30Se70) to 1.37

Mrad(Ge30Se70). Two different packages of Cu-SiO2 devices were irradiated. In each

package, only one device was accessible for testing. Device 1 was irradiated to a TID

of 70 krad(SiO2) and the second device to a TID of 1.05 Mrad(SiO2). Two control
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Figure 6.2: I-V characteristics of the Ag-Ge30Se70 devices prior to irradiation using
a 1 µA compliance current.

devices of each material type were tested at room temperature.

6.2.2 Observed Effects

Ag-Ge30Se70 Devices

The results in Fig. 6.3 and Fig. 6.4 show that no significant effects due to ionizing

radiation were observed in the DC I-V response. Some distortion to the HRS was

observed though it is inconclusive as to whether this variation is due to the repeated

operation of the device or due to a TID effect. Based on these results as well as

prior TID studies [32]-[34], and [40], the response is most likely due to repeated

cycling as well as the addition of Ag into the Ge30Se70 film during neuromorphic
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Figure 6.3: I-V characteristics of Ag-Ge30Se70 device 1 measured in situ during
radiation exposure.

testing. During DC testing, the bias is applied over several seconds with increasing

or decreasing voltage whereas in neuromorphic testing, the bias is applied briefly for

a few microseconds at a fixed voltage.

The Ag-Ge30Se70 devices were tested at 5 different exposure points: 16 krad, 24

krad, 60 krad, 1.33 Mrad, and 1.37 Mrad. The neuromorphic programming response

at each of these points, as well as the room temperature control, are shown in Fig.

6.5–6.10. During testing, it was observed that filament modulation became more un-

stable with increasing TID. Potentiation programming (to lower resistance) became

erratic, with high variability between each pulse. An increase in potentiation vari-

ability is first noticeable at 24 krad (Ge30Se70), with a degradation in the ability to

program potentiation as the TID increases. Voltage sweeps made between each set of

pulse measurements show that the CBRAM cells are functioning correctly for DC, as
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Figure 6.4: I-V characteristics of Ag-Ge30Se70 device 2 measured in situ during
radiation exposure.

depicted in Fig. 6.3 and Fig. 6.4. The increasing variation in pulse programming as

well as the stability of the DC response, suggests that the variation in potentiation

may be due to the ionizing radiation environment. The depression (thinning of the

filament) programming does not experience the same jitter seen during potentiation,

but the minimum conductance reached each cycle is observed to fluctuate with in-

creasing dose. In these tests, potentiation and depression pulses were identical but

reversed in polarity. The depression programming was observed to experience a large

initial conductance change followed by small conductance changes as compared to the

conductance change observed during potentiation. Prior studies used variable pulse

amplitudes to maintain a relatively uniform change in conductance with each pulse

[31], [53].
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Figure 6.5: Ag-Ge30Se70 control at room temperature for incremental conductance
changes programmed with 0.5 V amplitude and 1 µs width for potentiation and -0.5
V amplitude for depression. Left-side of figure illustrates initial behavior and the
right-side shows the pulse programming response after 24 hours.

Figure 6.6: Neuromorphic programming of Ag-Ge30Se70 devices programmed during
irradiation with a pulse of 0.5 V amplitude and 10 µs width for potentiation and -0.5
V amplitude for depression at a TID step of 16 krad. Potentiation and depression
range of control marked by the dotted lines.
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Figure 6.7: Neuromorphic programming of Ag-Ge30Se70 devices programmed during
irradiation with a pulse of 0.5 V amplitude and 10 µs width for potentiation and -0.5
V amplitude for depression at a TID step of 24 krad.

Figure 6.8: Neuromorphic programming of Ag-Ge30Se70 devices programmed during
irradiation with a pulse of 0.5 V amplitude and 10 µs width for potentiation and -0.5
V amplitude for depression at a TID step of 60 krad.
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Figure 6.9: Neuromorphic programming of Ag-Ge30Se70 devices programmed during
irradiation with a pulse of 0.5 V amplitude and 10 µs width for potentiation and -0.5
V amplitude for depression at a TID step of 1.33 Mrad.

Figure 6.10: Neuromorphic programming of Ag-Ge30Se70 devices programmed dur-
ing irradiation with a pulse of 0.5 V amplitude and 10 µs widths for potentiation and
-0.5 V amplitude for depression at a TID step of 1.36 Mrad.
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Cu-SiO2 Devices

The in situ I-V characteristics are shown in Fig. 6.11. The high resistance (low

conductance) state is shown to remain within the same current range throughout

the exposure. The programming voltage threshold is also shown to be extremely

consistent in Fig. 6.11. This is the first time that the I-V in situ response of Cu-

SiO2 CBRAM has been observed. Previous studies performed step stresses where

the sample was irradiated to a desired TID, with contacts left floating, before being

removed from the radiation chamber and tested in a lab setting [34]. The study in [34]

demonstrated that Cu-SiO2 cells had no observable shift in DC characteristics for a

stress exposure up to 1.5 Mrad(SiO2). The DC staircase sweep takes several seconds

to complete. The small variance of the in situ response and the pre-irradiation sweep

displays that there are no significant effects caused by the ionizing radiation on the

DC I-V behavior.

The transient pulse response of a non-irradiated Cu-SiO2 CBRAM cell at room

temperature in shown in Fig. 6.12. The pulse width and amplitude were chosen

to allow incremental changes toward a low or high conductance state. At room

temperature, a pulse amplitude of 1.1 V was used for potentiation and an amplitude

of -1.1 V was used for depression. The pulse amplitude was chosen such that it was

200 mV to 300 mV beyond the programming threshold of the device. Fig. 6.11

shows a relatively large increase in conductance during the first few pulses. After

the initial jump, the conductance change occurs more gradual. For these devices,

the conductance transitioned 3.4×10−4 S which corresponds to a resistance change of

approximately 20 kΩ.

The pulsed response of irradiated devices is shown in Fig. 6.13 and Fig. 6.14.

The transitions shown demonstrate that neuromorphic programming can be per-
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Figure 6.11: I-V characteristics of the Cu-SiO2 CBRAM cell tested in situ during
irradiation at several dose steps.

formed during gamma-ray irradiation though the observed conductance response

varies greatly from the behavior observed for the unexposed control device tested

at room temperature. The devices used during irradiation required a larger program-

ming voltage pulse than the control. The Cu-SiO2 device shown in Fig. 10 required

an increase in pulse amplitude to 1.5 V and a width of 5 µs to induce a conductance

change. A pulse amplitude of 1.5 V was used to maintain a 300mV difference above

the programming threshold of 1.2 V. The first device was tested at a TID level of

70 krad(SiO2). The irradiated device shown in Fig. 6.14 required a potentiation

pulse of 1.1 V amplitude and 10 µs width. The depression pulse was identical to

the potentiation pulse but with a reversed polarity (1.1 V). The second irradiated

device was exposed up to 200 krad then pulses were continuously applied until the

device was programmed to its pre-irradiated conductance range. The tuning of the

79



Figure 6.12: Neuromorphic conductance changes programmed with 1.1 V ampli-
tude and 1 µs width for potentiation and -1.1 V amplitude for depression for a non-
irradiated device. The left-side of the figure shows the initial programming while the
right-side shows the pulse programming behavior three hours later.

conductance was found to transition slower than on non-irradiated devices. Only 10

pulses were needed to complete a full transition for non-irradiated devices while irra-

diated devices required up to 500 pulses and requiring an enhanced pulse width of 10

µs. The programmable conductance range of the irradiated device was observed to

occur over 7.4×10−4 S, which was a wider range than the non-irradiated device. With

each cycle of potentiation and depression, the maximum potentiation state decreased,

eventually decreasing to the off-state conductance. The filament could be reformed

by performing a DC sweep.

The Cu-SiO2 device selected for irradiation had similar DC characteristics to the

device used for the control, as shown in Fig. 6.1. All devices were from the same

wafer but located on separate die. Deviations in electrical response suggest that the
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Figure 6.13: Neuromorphic programmed Cu-SiO2 devices with pulses of 1.5 V am-
plitude and 5 µs width for potentiation and -1.5 V amplitude for depression.

Figure 6.14: Incremental conductance changes at 200 krad(SiO2) with 1.1 V ampli-
tude and 10 µs width for potentiation and -1.1 V amplitude for depression.
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distorted synaptic programming shown in Fig. 6.13 and Fig. 6.14 may be a response

to ionizing radiation. Ionic Cu migration through the oxide is a slow process compared

to other forms of ECM memory [25], [56]. During the migration, Cu can easily be

reduced by a tunneling electron before the ion reaches the cathode. The increase

of trap assisted tunneling due to irradiation could increase the number of available

electrons that would reduce the mobile Cu ions [57]. Once a metal ion is reduced, it is

no longer susceptible to the applied electric field and will cease migration toward the

cathode. Filament formation would be slowed by the decrease of mobile Cu ions, as

seen in Fig. 6.13 with the decrease in potentiation programming. The result shown

in Fig. 6.14 also exhibits fluctuations during potentiation, as well as slow incremental

programming, suggesting that ionizing radiation effects with trap assisted tunneling

become significant with increasing TID.

The Ag-Ge30Se70 devices experienced a similar observable effect with a degradation

in the ability to reliably program a high conductance. Previous analysis performed in

[58], of the Ag-GexSe1−x material systems, showed that during ionizing irradiation in

atmosphere, Ge can become oxidized to create GeO2. The presence of the insulator

would cause the conductance of the film to decrease. The mean of the conductance

change caused by a single pulse is illustrated in Fig. 6.15. The effective conductance

change per pulse is shown to decrease for both the potentiation and depression pulses

with increasing TID. The largest conductance change, for both programming direc-

tions, is observed to occur within the first two pulses followed by smaller changes,

as depicted in Fig. 6.6–6.10. The maximum conductance step is also observed to

decrease with TID, which is most likely due to the decrease in the maximum obtain-

able conductance state during potentiation. The data population of the control is

representative of the conductance changes from two devices and the distribution of

TID steps is from the data shown in Fig. 6.6–6.10. The pulse used for the control
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Figure 6.15: Mean conductance change per pulse for Ag-Ge30Se70 devices versus
TID. The mean conductance change of the control (no radiation) devices is shown
in the top left corner. Conductance change produced by a pulse decreased with
increasing TID.

devices was 0.5 V / 1 µs while the irradiated devices used a 0.5 V/ 10 µs pulse.

While a TID effect was observed during pulsed programming, no significant effects

due to ionizing radiation were observed during DC I-V tests. During DC testing,

the bias is applied over several seconds, allowing ample time for the metal ions to

migrate between the anode and filament. For the Cu-SiO2 system, though a certain

percentage of the ionic Cu will be reduced due to trap assisted tunneling, as long

as a significant population of Cu ions are able to bridge the gap between the anode

and the filament, no change in behavior will be observed during DC I-V testing. The

same consideration applies to the Ag-Ge30Se70 devices. The generation of GeO2 may

decrease the conductance of the electrolyte film but ion migration is still possible

and any decrease to drift velocity will not be significantly observable during DC I-V
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testing. Slight variations from sweep to sweep in the high resistance is not uncommon

in these devices, as shown in Fig. 6.2 and Fig. 6.3, making it difficult to extract or

observe minor changes in film conductance due to ionizing radiation. Prior TID

studies in [32] and [34] found no distinguishable effects in the HRS due to ionizing

radiation during DC testing.
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Chapter 7

MECHANISMS OF RADIATION EFFECTS IN Ag −Ge30Se70 CBRAM

7.1 Introduction

The work presented in this dissertation has examined the response of CBRAM to

TID and DD environments. Each of the electrical tests performed (retention, DC cy-

cling, pulsed programming) were selected to evaluate different transport mechanisms

that function in CBRAM devices. Retention tests evaluate the stability of a pro-

grammed resistive state and any change of state observed during irradiation provides

clues as to how a filament can be formed or dissolved due to radiation. DC cycling is

a slow and energy intensive process that provides sufficient time for cation migration

to occur. Radiation effects that affect ion migration would be apparent during an

I-V sweep; as the under supply or over supply (ion current density) would distort the

I-V curve. Uniform pulse programming is a low energy method for programming the

CBRAM devices. Changes in ionic conductance can be resolved by examining how

effective each applied pulse is in modulating the existing filament. A summary of

the tests performed and their purpose, is listed in Table 7.1. This chapter takes into

consideration the radiation effects captured during testing and examines what those

responses may mean in terms of material changes.

7.2 Discussion of Material Effects

For Se-rich glasses (x < 0.33 in GexSe1−x) the introduction of Ag behaves as a

network modifier, forming Ag2Se crystalline phases throughout the chalcogenide glass

network [46], [59]. The Ag2Se nanocrystals are fast ion conductors, facilitating the
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Table 7.1: Electrical and Radiation Tests Performed and Their Purpose for Evalu-
ating Radiation Effects

Test Purpose

Retention of state Evaluates how a programmed filament is effected by TID and DD

effects. For the case of an erased device (HRS), retention testing is

useful for evaluating the susceptibility of a device to become

programmed due to radiation effects.

DC current-voltage

cycling

Evaluates how ion migration is effected by either TID or DD. During

a DC programming sweep, the stability of filament formation can

also be evaluated. DC cycling also helps for separating accumulative

effects from dose step effects.

Pulsed programming Evaluates how radiation affects the ionic and electrical conductivity

of the switching layer.

60Co γ-ray irradiation Ionizing dose environment only.

14-MeV Neutron

bombardment

Displacement damage environment with minimal TID.

Heavy ion

bombardment

Combined TID and DD environment with a significant dose of each

radiation type.

hopping of Ag+ cations through the chalcogenide glass [46], [59]. The nanocrystals

act as nucleation sites for filament growth with the dominate filament path dictated

by local fields and a sufficient ion supply. A completed bridging filament, from cath-

ode to anode, will be a connect-the-dots structure between the smaller filaments

forming from the nanocrystals [19]. Two crystalline phases exist for Ag2Se. The

α-Ag2Se phase is a body centered cubic with high ion conductivity and the β phase

is orthorhombic with a lower ionic conductivity [1], [59], [60]. The unit cell lattice

dimensions of the α and β phases are plotted in Fig. 7.1 and the bonding structure

is shown in Fig. 7.2. In bulk Ag2Se, the superionic conductor α phase only exists
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Figure 7.1: Unit cell lattice dimensions of the (a) orthorhombic β-Ag2Se phase and
(b) body-centered cubic α-Ag2Se phase.

at temperatures above 350°C [59]. One study by Sahu, et. al in [61] shows that the

temperature dependence of the α-phase depends on the size of the crystal structure,

with nanocrystals capable of existing at as low as 101°C. When Ag is photo-doped

into the Ge30Se70 glass, Ag is able to fill the voids in the glass and react with Se [1].

As the glass contracts due to UV interactions, the stress placed on the Ag2Se crystal

allows it to exist as α-Ag2Se [1], [46], [62]. For device temperatures below 100°C,

it can be inferred that any damage caused to the Ge-Se backbone would result in

the release of the pressure applied to α-Ag2Se, resulting in the immediate decay to

β-Ag2Se. The creation of β-Ag2Se during 60Co irradiations has been demonstrated

at TID up to 4.5 Mrad [1]. For reference, the X-ray diffraction (XRD) data measured

in [1] is shown in Fig. 7.3. The reduction in ion conductivity due to an increasing

percentage of β-Ag2Se could affect the supply of Ag+ ions needed to properly form

the filaments.

The transition from a super ionic conductor to a semiconductor would change the
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Figure 7.2: Unit cell structure of the (a) orthorhombic β-Ag2Se phase and [63] (b)
body-centered cubic α-Ag2Se phase [64]. The α-phase has Selenium atoms at the
lattice sites with various interstitial locations available for Ag+ hopping (gray-scale
balls).

Figure 7.3: XRD results from [1] (inset), showing the formation of β-Ag2Se after a
TID of 595 krad with the α : β ratio decreasing with dose.
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mechanism of Ag migration, greatly affecting the mobility of the ions. In its α-phase,

Fig. 7.2b shows the body-centered cubic Selenide configuration with interstitial sites

marked by gray and black balls. The interstitial locations are the sites that facilitate

rapid Ag+ hopping through the electrolyte [64]. Once the electrolyte layer transitions

to a more β-phase dominant, a portion of the Ag becomes covalently bonded to the Se,

tying up a portion of the Ag available or migration [65]. The ion migration mechanism

would become something similar to a metal-insulator devices, like Cu-SiO2, where the

metal ions migrate through voids in the insulator.

The following equation 7.1 from [22], demonstrates how the material change can

affect ion migration.

Jd = zqNiuth exp

(
−Eo

kT

)
sinh

(azqε
2kT

)
(7.1)

Jd is the ion drift current density, zq is the charge of the ion (z = 1 for Ag), Ni

is the cation concentration, Eo = 0.2 eV is the barrier hight for hopping, uth =

(2KT/mi)
1/2 u av, mi is the ion mass, a is the hopping distance, v is the hopping

frequency, ε is the applied electric field, and kT is the thermal energy. Assuming

no external change to the system, ε and T would remain about the same. Eo may

increase slightly but density functional theory calculations have shown that it should

remain about 0.2 eV [65]. The hopping distance would increase but would remain

within the same magnitude (<5Å) and because of the relation between a and v, v

should scale accordingly. The only term in Eqn. 7.1 that should have a significant

affect on the ion current density Jd is Ni. The relation could then simplify to,

Jd ∝ Ni. (7.2)

For example, if Ni = 1022 cm−3 for Ag+ in a non-irradiated electrolyte, a change by

one magnitude, to Ni = 1021 cm−3 (comparable to Cu2+ in SiO2) would diminish the
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ion drift current density by the same amount. As discussed in Chapter 5 and 6, a

decrease in the ion current would create a lag in the ion supply around the forming

filament, allowing diffusive forces to take hold once the electric field is removed. The

evidence of reduced ion current due to TID effects has been made evident by the

response of CBRAM while performing pulse programming. Looking back at Fig.

6.15, there is a predictable trend in the conductance change with increasing dose.

The erratic behavior of the potentiation during the 24 krad and 60 krad dose steps,

could also be explained by the ion supply. The application of the electric field is

controlled by the width of the voltage pulse. During the time the field is applied,

the ions only have a limited amount of time to reach the filament and reduce. If

the Ag concentration gradient becomes prevalent with increasing TID, the filament

would partially dissolve and settle in a higher resistance state. Due to the time lag

between applying the pulse and reading the state, the resistive state measured may

be captured during or after the filament dissolution. Once the electrolyte is damaged

to the point where the applied pulse is greatly ineffective in transporting ions, the

potentiation response smooths out.

For the DC cycling tests during 100 keV Li-ion exposure, failures occurred within

the same fluence range as retention testing, as shown in Fig. 5.14. The similar fluence

threshold indicates that the failure mechanism may be the same for both tests. Based

on DC sampling taken pre and post each fluence step, at failure, the devices were

observed to short prior to the I-V sweep being performed. After shorting, many

devices could be partially erased after several erase sweeps, indicating that the short

was due to an introduction of Ag and not due to a material change resulting in a

permanent conductive path. It is not yet clear what mechanism is responsible for

the introduction of excess Ag. At high TID, Ag may be introduced via local fields

created from carrier generation. The creation of the β-Ag2Se phase may reduce the
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recombination rate of carriers, allowing a buildup of charge. Further material analysis,

such as XRD and Raman spectroscopy, is necessary to determine how the switching

layer is evolving at these higher doses of radiation.
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Chapter 8

CONCLUSION

The work presented in this document investigated the effects of ionizing radiation

and displacement damage on the retention of state, DC programming, and neuromor-

phic pulsed programming of Ag-Ge30Se70 CBRAM devices. The main contribution

of this dissertation was showing that CBRAM devices are susceptible to both envi-

ronments. Material changes in the electrolyte layer due to TID has previously been

documented in [1] using bulk material films though no electrical effects have been

observed, until now. Neuromorphic pulsed programming was shown to be inhibited

by a TID environment. This dissertation demonstrated an observable electrical re-

sponse to an in situ TID environment in CBRAM at a dose below 60 krad(Ge30Se70).

Prior TID tests have only looked at the DC response and pulsed cycling using long

pulses [40]. DC cycling in a 14 MeV neutron environment (majority DD) showed a

collapse of the HRS and LRS programming window after a fluence of 4.9×1012 n/cm2,

demonstrating the CBRAM can fail in a DD environment. Heavy ion exposure dur-

ing retention testing and DC cycling, showed that failures to programming occurred

at approximately the same threshold, indicating that the failure mechanism, for the

two types of tests, may be the same. By separating the dose received from LET and

NIEL of each ion type at the fluence of failure, TID values appear to be the most

correlated, indicating that TID effects may be the dominate failure mechanism in a

combined environment. It is currently unclear as to how the displacement damage

also contributes to the response. To better understand the full mechanism of failure,

material measurements on bulk electrolyte material would need to be performed at

several dose steps, with different forms or radiation, to separate TID and DD effects.
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The doses and particle fluences evaluated in this dissertation are beyond what

a device would be exposed to in an Earth radiation environment. The majority of

results presented, though academically interesting, would only be relevant in a high

dose radiation environment, such as the Jovian environment. Prior TID testing, in

addition to the results presented in this work, show that CBRAM can be used in a

high dose Jovian environment, however, operation of CBRAM would be limited to

slow pulsing to program and erase the memory, as high speed pulsing was shown to

be susceptible to TID below 60 krad(Ge30Se70).
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