
VIPLE Extensions in Robotic Simulation, Quadrotor Control Platform, and  

Machine Learning for Multirotor Activity Recognition  

by 

Matthew De La Rosa 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  

Master of Science  

 

 

 

 

 

 

 

 

 

 

Approved November 2018 by the 

Graduate Supervisory Committee:  

 

Yinong Chen, Chair 

James Collofello 

Dijiang Huang 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

December 2018  



  i 

ABSTRACT  

   

Machine learning tutorials often employ an application and runtime specific 

solution for a given problem in which users are expected to have a broad understanding 

of data analysis and software programming. This thesis focuses on designing and 

implementing a new, hands-on approach to teaching machine learning by streamlining 

the process of generating Inertial Movement Unit (IMU) data from multirotor flight 

sessions, training a linear classifier, and applying said classifier to solve Multi-rotor 

Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud 

computing and data storage technologies to host a versatile environment capable of 

logging, orchestrating, and visualizing the solution for an MAR problem through a user 

interface. MAR labs extends Arizona State University’s Visual IoT/Robotics 

Programming Language Environment (VIPLE) as a control platform for multi-rotors used 

in data collection. VIPLE is a platform developed for teaching computational thinking, 

visual programming, Internet of Things (IoT) and robotics application development. As a 

part of this education platform, this work also develops a 3D simulator capable of 

simulating the programmable behaviors of a robot within a maze environment and builds 

a physical quadrotor for use in MAR lab experiments. 
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CHAPTER 1 

INTRODUCTION 

Training and applying machine learning models to solve classification problems 

often require a combination of skills in data collection devices, software tools, software-

hardware communication, programming, and data analysis. The solution to classification 

problems often manifest in the general process of collecting data, calculating features 

from the data, and formatting the features in a manner compatible with a classifier. While 

the tools and libraries that exist allow data scientists to perform these tasks, there are few 

tools available that are capable of teaching high school and college freshman students 

how to train and apply these classifiers within the IoT and robotics fields. Writing the 

scripts necessary to orchestrate such data flow and manipulation, setting up a special 

runtime environment with the necessary software libraries used for training machine 

learning models, and meeting the specialized hardware specifications necessary for 

training classifiers on a large data set all add to the technical hurdle of teaching the core 

principles of understanding machine learning. 

Existing machine learning tutorials also suffer from a narrow solution scope 

making curriculum difficult through example due to the vast range of methodologies 

available in data acquisition and manipulation. Such tutorials like TensorFlow’s MNIST 

[1] and RapidMiner’s titanic example [2] have a highly curated experience where users 

work with pre-generated and pre-formatted data with pre-defined interactions in solving 

specific hypothetical problems. This takes away from the first-hand experience of 

obtaining or generating the data, manipulating the data, and prepping a classifier for 

training and classification applications. Often, this process is hidden behind a black box 
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that lacks the transparency, flexibility, and depth necessary to show students the process 

of transforming raw data into a format that is compatible with the classifier. 

Teaching machine learning through first-hand experience requires a versatile 

learning environment with the ability to both orchestrate the machine learning process 

and expose the underlying mechanisms in driving the orchestration. This includes 

generating the data for lab use, storing and managing this data, building an interactive 

environment capable of manipulating the data while showing users that process, and 

using that environment to train and apply a linear classifier. 

To teach users how to train and apply a linear classifier, lab activities in this study 

are framed within the Multirotor Activity Recognition (MAR) problem. MAR is an 

extension of the activity recognition classification problem and aims to classify windows 

of raw Inertial Measurement Unit (IMU) data recorded by a quadrotor’s on-board Micro-

electromechanical Systems (MEMS) sensor to identify what action the quadrotor is 

taking. The MAR lab environment operates within an educational context and performs 

tasks on the user’s behalf. These tasks implement the solution to solving the MAR 

problem but require users to run the scripts and inspect the console output. The work is 

done to extend the capacity of ASU VIPLE (Visual IoT/Robotics Programming 

Language Environment) to perform machine learning and data analysis. 

Users are expected to generate data by implementing a flight plan in VIPLE to 

control a quadrotor. The corresponding IMU data for that flight session is then retrieved 

by the MAR lab environment. This training data can then be used to create a flight plan 

classifier, thus creating a feasible solution to the MAR problem. While the scope of this 

paper covers machine learning orchestration, in-depth exploratory data analysis will be 
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excluded from the discussion. Quadrotor flight optimizations are also not considered to 

be in scope, although these lab sessions could potentially provide beneficial reports to aid 

in that endeavor. 

The works featured in this thesis describe a system capable of reducing the 

complexity involved in implementing a solution to the MAR problem. By doing so, MAR 

labs aims to increase the range of audience that these tools can be used by (specifically 

instructor-led labs). It is also the intention of these labs to increase the productivity in 

data analysis by expediting the machine learning process through orchestration. Finally, 

by building and compiling a collection of flight sessions within the MAR database, this 

paper provides a framework for collecting IMU data produced by multirotor-based 

platforms. By building a database of IMU data, future iterations of MAR classifiers can 

be trained with more data to create a more accurate classifier. 

This thesis expands on the VIPLE platform by implementing a Unity simulator 

for supporting robotics programming in maze navigation and adding supported devices 

by building a physical drone capable of generating data necessary for machine learning 

experiments. This thesis also aims to explore the merits of implementing a fully 

orchestrated machine learning pipeline where users interact through activity labs to 

generate their own data, manipulate that data, and apply that data to train and use a linear 

classifier by allowing users to interact with data directly, in real-time, and allowing them 

to make changes to the machine learning pipeline to obtain a better understanding of what 

processes take place behind the black boxes obscured by existing machine learning 

libraries and tools. 
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The rest of the thesis is organized as follows. Chapter 2 discusses the background, 

the primary components involved in developing MAR labs, and the motivations for 

implementing the project. Chapter 3 describes Multirotor Activity Recognition and 

provides the context necessary to better understand the design decisions made when 

implementing the MAR labs with respect to quadrotor controllers, activity recognition, 

and existing machine learning applications in quadrotors. It also develops the solution for 

the MAR problem within an educational context and describes the architectural overview 

of the project in its entirety. Chapter 4 outlines the implementation, where components of 

MAR labs are described individually and in more detail. Chapter 5 presents the 

experiment and methodology. It describes the process of setting up MAR labs and 

collecting IMU data to use in MAR labs. The effectiveness of the VIPLE & Quadrotor 

platform, and the MAR labs in solving the MAR problem are discussed in this chapter. 

Chapter 7 summarizes the limitations of the research and experiments. Finally, this paper 

closes with a conclusion that covers contributions and future works. Details on the 

quadrotor build and revisions made to the quadrotor are further explained in the 

Appendix. 
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CHAPTER 2 

BACKGROUND 

ASU VIPLE is a visual based IoT and robotics programming tool that allows 

students to build programs and connect to hardware devices through a visual interface 

[3]. The purpose of the tool is to teach the programming process with focus on the 

development and deployment of programs onto a variety of robots and IoT devices [4]. 

The visual based aspect of VIPLE allows students to click and drag components of a 

program together to build robotic applications. 

To inspire application development in robotics, VIPLE has been used to teach 

high school and college freshman students the programming skills necessary to create 

applications. As shown in figure 2.1, several simulated and physical devices have been 

developed and used for robotic applications such as NXT robots, humanoid sensors, and 

integrations with IoT devices such as Alexa’s voice control [5][6]. However, recent years 

have seen the wide-spread application of multirotors, Unmanned Aerial Vehicles 

(UAVs), and machine learning as platforms for more recent robotic developments. Such 

control mechanism for VIPLE’s quadrotor and machine learning platform are not present. 

 

VIPLE and VIPLE’s Unity Simulator 

Contributions of this research made to VIPLE include the unity simulator and the 

physical quadrotor, shown in the top-left corner of figure 2.1. The VIPLE Unity 

Simulator was developed with the goal of introducing users to the concept and usage of 

VIPLE as a programming language and to simplify the technical hurdle of programming 

IoT and robotics devices by allowing users to run VIPLE code in a virtual environment 
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without having to physically build a robot and its testing environment. ASU VIPLE 

documents, tutorials, and software downloads are available at:  

http://neptune.fulton.ad.asu.edu/VIPLE/ 

 

Figure 2.1: VIPLE and its Compatible Devices 

 

The VIPLE Unity Simulator is currently being used in FSE 100 classes with great 

success. The first implementation and iterations of the VIPLE Unity Simulator were 

designed for the maze use-case. In this scenario, users were able to interact with the maze 

environment by adding and removing walls while interactions with the robot (the small 

green block) were strictly controlled by the VIPLE process. Like all other VIPLE clients, 

the VIPLE simulator was embedded with a TCP interface, allowing VIPLE to send 

http://neptune.fulton.ad.asu.edu/VIPLE/

VIP
Unity Simulator

Web 3D Simulator

Lego EV3

Intel Galileo Robot

Intel Edison Robot pcDuino RobotMinnow and Curie RobotWeb 2D Simulator

BIOLOID

Raspberry Pi

Physical Quadrotor
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commands to the virtual robot over a localhost connection. The simulator is also 

responsible for communicating simulated sensory readout back to the VIPLE host over 

the TCP bridge. 

Contributions made the VIPLE Unity Simulator included designing, architecting, 

and implementing the first iteration as a proof of concept. The VIPLE Unity Simulator 

was developed in C# on top of the Unity game engine with the use of the UnityEditor. 

Unity was chosen as the primary framework for creating a 3D virtual environment due to 

its simple framework library and cross platform compatibility between windows and mac. 

As part of the initial proof of concept, in-game assets, implementation of user 

interactivity with the virtual maze map (spawning walls, providing visual cues), and 

creating controllers that allowed the virtual robot to make measurements of the virtual 

environment in real-time. Figure 2.2 provides a more detailed visual of the maze use-

case.  

     

Figure 2.2: VIPLE Unity Simulator v1.x – Maze Use-Case 

 

The objective presented to students is to implement the wall-following algorithm 

through VIPLE’s programming interface. Two virtual distance sensors, one in the front 

and one on the right, were implemented to record and send real-time sensory readouts to 
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VIPLE from within the virtual environment, allowing the user to implement a simple 

wall-following algorithm. The maze consists of square blocks that can be reconfigured by 

simply clicking the wall or open space to remove or add a block. Figure 2.2 shows two 

different configurations. 

A fully operational VIPLE Unity Simulator has been developed and since been 

handed off to the undergraduate capstone projects at ASU for further development. In 

pursuit of more challenging goals, the focus of this thesis shifted from providing VIPLE 

with a simulator to expanding on VIPLE as a tool, to teach machine learning by building 

a quadrotor capable with VIPLE and using the quadrotor-VIPLE platform as a starting 

tool for teaching machine learning. 

 

Quadrotor Control and Applications 

Quadrotors are a robotic platform constructed from four rotors and placed in an 

arrangement that allows them to take flight. Actions such as roll, pitch, and altitude 

changes are motion controls enabled by the 6 degrees of freedom. This is achieved 

through a series of computational corrections calculated by an on-board flight controller 

equipped with an IMU sensor. Such computations are typically governed by a specialized 

PID Controller that is responsible for maintaining the setpoint of a quadrotor’s state. 

These controllers were chosen for their robust nature [7]. Multi-rotors provide six degrees 

of freedom give them a high degree of controllability and versatility. 

This makes the platform ideal for surveillance and sensory applications. These 

applications involve use cases where an elevated platform is required to provide hard-to-

reach observations at a low cost, and possibly at scale. Such applications include the 
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agricultural industry where autonomous quadrotors can be used for performance 

measuring on plantations [8]. These quadrotors allow for automated video capture, 

making it much easier for researchers and users to collect real-time data and make real-

time assessments. In cases where costs of obtaining aerial videos are a concern, 

quadrotors become a necessary tool[9]. Quadrotors can also be used to address use cases 

where a quick, responsive, and mobile robotic unit can be deployed in emergency 

situations [10]. 

As multirotor-based solutions have been proposed in a growing number of 

research opportunities, a fair number of studies have been dedicated to their robustness. 

While precise mechanics allow a quadrotor to maintain a stable flight, works such as [11] 

focus on sub-optimal conditions that quadrotors may experience. In this case, the 

correctional feedback loop mechanisms in a quadrotor is expanded to include fault 

detection and recovery. Such fault tolerant applications go as far as implementing a 

control solution for quadrotors that suffer from a complete failure in one, two, or three 

propellers [12]. Obstacle avoidance has also been a leading discussion in the multirotor 

platform. Given the automated nature of most applications and the complexity of 

navigating a 3D space with six degrees of freedom, there exists solutions to solving the 

quadrotor collision avoidance problem [13]. 

With VIPLE, students can implement control algorithms to solve real problems 

such as maze traversal and direct keyboard-based controllers. These qualities of VIPLE 

make it an ideal tool for deploying simple control schemes to control a quadrotor. Hence 

extensions and contributions made to VIPLE involve creating a quadrotor and 

implementing a VIPLE compatible interface on the quadrotor. The simplicity of 
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controlling robots through the VIPLE platform makes it an ideal tool for generating the 

data used in MAR labs. In this work, VIPLE’s primary purpose is to serve as a controller 

for the quadrotor. IMU data is stored locally on-board the quadrotor during each flight 

session while Amazon Web Services (AWS) are used to create the appropriate linear 

classifier. With these two environments, the MAR lab’s machine learning pipeline can 

encompass the entire process of data collection, data manipulation, training a linear 

classifier, and using said classifier to solve the MAR classification problem.  

 

Activity Recognition 

A common application of classifiers is their deployment in activity recognition. 

Typically, these studies involve the deployment of IMU sensors on a subject with the 

idea that specific actions produce a recognizable IMU signature. One such example is the 

study on human activity recognition (HAR) [14][15] where the goal is to classify human 

activities such as sitting, walking, or taking an elevator. Other solutions to HAR include 

the breakdown of tasks into subtasks [16]. Typically, these studies aim to provide the 

framework for context aware applications. The activity recognition problem also can be 

extended towards canines as [17] shows, IMU data can be used to aid in the recognition 

of canine activities such as standing or sitting through unsupervised learning. Linear 

classifiers have been chosen as the specific classifier due to its common application in 

supervised learning and availability within TensorFlow’s estimator API. The supervised 

nature of the data stems from tagging windows of IMU data as belonging to a specific 

activity. The classifier is given the appropriate classification in parallel with the data 

being given, and the label for a given class is a discrete. 



  11 

The goal of MAR labs is to deploy similar sliding window sampling techniques to 

recognize multirotor activity. The sliding window sample considers the frequency at 

which the data was recorded, the length of the window, and IMU data collection 

techniques. MAR extends existing activity recognition by translating IMU data signatures 

to quadrotor activities. MAR was chosen since IMU data has a strong correlation to a 

specific flight pattern as discussed in the PID Controller section. The strong correlation 

between the IMU-based PID Controller and the activity recognition of IMU data implies 

that the classification should be simple, where a given action tends to produce a unique 

IMU signature. 
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CHAPTER 3 

MULTIROTOR ACTIVITY RECOGNITION 

Multi-rotor Activity Recognition (MAR) is the primary focus of the thesis. The 

MAR problem aims to identify the actions performed by a quadrotor in flight by 

recognizing windows of raw IMU data as belonging to a specific class of multirotor 

activity.  During flight, a quadrotor’s roll and pitch serve as indicators to what the 

quadrotor is doing. Specific activities such as strafing left tend to produce windows of 

IMU data that indicate a negative roll. Likewise, strafing right tends to produce a positive 

roll value. These indicators will serve as the premise for training a feasible classifier that 

can make these distinctions in data and thus implement a solution to solve the MAR 

problem. 

To investigate the MAR problem within an educational context, training and 

applying the model are built as two separate learning lab modules: the MAR Training 

Lab Module, and the MAR Classification Lab Module. A cloud-based solution was used 

to allow users with web-enabled devices to participate in the lab without the need for 

additional hardware or software. Users participate in a lab session by running 

prepopulated scripts within each lab module and inspecting the script’s console outputs. 

In both lab modules, the quadrotor’s flight controller properties file is configured to 

record labelled IMU data for supervised training, or unlabeled IMU data for classification 

exercises. To build an environment suitable for both the VIPLE-quadrotor platform and 

AWS, figure 3.1 below provides a visual description of the system’s architecture 

overview capable of machine learning orchestration. 
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Figure 3.1: MAR Lab Architecture Overview 

 

The start of the MAR pipeline is the VIPLE and quadrotor platform used to create 

a flight plan, execute the flight plan, and generate IMU data. As a control tool, VIPLE 

provides the user with the ability to create and run a given flight plan with instructions on 

which activities to execute (pitch, roll, etc.). Collectively, figures 3.2 and all sub-figures 

3.2.x below show an example VIPLE implementation of a flight plan that the quadcopter 

platform can execute. In this sequential program, the quadrotor is commanded to move 

up, hover, move to the left, hover, move to the right, hover, land, then terminate the flight 

session. 
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Figure 3.2: VIPLE Implementation of a Series-Based Flight Plan 

 

 

Figure 3.2.1: SimpleWait Custom Activity 

 

 

Figure 3.2.2: Takeoff Custom Activity 
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Figure 3.2.3: Land Custom Activity 

 

Within each Robot/IoT Motion block, a custom command is defined to describe 

what activity the quadrotor should be performing. Implemented on the quadrotor’s 

VIPLE interface, an interpreter parses the JSON string received over TCP and writes to 

shared memory the current directive received from VIPLE. All available actions and 

descriptions are shown in table 3.1. 

 

Table 3.1: Quadrotor-VIPLE Motion Config Options 

Motion ID Motion Name Description 

0 neutral Default receive signal (do nothing) and hover during 

flight 

1 false-flight Enter a flight session, but with rotors disabled 

2 test Run the test script that activates each rotor in order of 

[1, 2, 3, 4] 

3 flight Signal flight controller to enter takeoff mode  

4 stop Signal a soft stop to the flight controller, enter landing 

mode 

5 forward Move the quadrotor forward, decrease pitch 

6 left Move the quadrotor left, decrease the roll 

7 right Move the quadrotor right, increase the roll 

8 backward Move the quadrotor backward, increase the pitch 

9 up Increase the quadrotor baseline throttle 

10 down Decrease the quadrotor baseline throttle 

11 sig-stop Force stop the quadrotor and end flight session 
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The main descriptors are timer delays that describe how long a quadrotor should 

be performing an action, the activity the quadrotor should be performing, and a pointer to 

the next timer-based activity execution. In the execution of each flight plan, two logs will 

be stored that describe the status of the quadrotor during a flight, and the IMU data that is 

directly generated from the quadrotor’s on-board MEMS sensor. Both files are stored 

locally and uploaded at the end of each flight session. After executing a fight plan, the 

quadrotor begins uploading IMU data to the cloud through Amazon Web Services 

Command Line Interface (AWS-CLI). Further details are discussed in the next section, 

implementation, however it is important to note that this process expedites the time for 

access to usable data. 

 Now that VIPLE has been chosen as a suitable quadrotor control platform, an 

environment for the MAR lab modules must be established. Installing Python and 

TensorFlow library meets the requirements for supporting a framework capable of to 

training and applying a linear classifier for MAR. On top of this runtime, Jupyter 

Notebooks was chosen to provide an interactive interface since scripts can be displayed 

and run by the user. Jupyter Notebook’s markup cells provide lab sessions with the 

necessary textual explanation and instructions for what scripts are being executed and for 

what purpose, while coded cells display the code to be run along with console outputs 

from the given script. These code cells are prepopulated with the scripts necessary to 

implement MAR lab sessions, however these scripts can be edited by the user. Jupyter 

Notebooks can also generate reports, allowing instructors to critique the results of a given 

lab session. A display of every cell’s output can be shown in the results for a given lab 
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session, even if the output contains a scripting error, or encounters an exception thrown 

by the script. 

 

Figure 3.3: Hello Jupyter Practice Module 

 

For example, figure 3.3 shows the welcome module that runs a simple “Hello 

World” program where each coded cell is accompanied by a markup cell to explain what 

the python script is aiming to accomplish. As demonstrated by this welcome module, 

Jupyter Notebooks can run python scripts, display the output for the given python script, 

perform calculations made possible through python, and even take user input directly 

from the user interface. 
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CHAPTER 4 

IMPLEMENTATION 

Now that the various components of the MAR lab have been outlined, this section 

describes in detail how the quadrotor was built, how various controllers were 

implemented in VIPLE for the quadrotor, how IMU data was recorded by the quadrotor 

and received by MAR labs, and how the MAR training and classification lab modules are 

tasked in solving the MAR problem. 

 

Quadrotor Build: PID Flight Controller and VIPLE Interface 

 The quadrotor used to execute the flight plans was built with an Edison-Arduino 

board as the main controller. Four brushless rotors and Electronic Speed Controllers 

(ESCs) were placed on a 450mm quadrotor frame. Li-Po Batteries were used to power 

the quadrotor due to their space efficiency and high energy density. The Edison-Arduino 

board served as the primary flight controller for the quadrotor system. The on-board Wi-

Fi capabilities fulfill the hardware requirement needed to establish a TCP/IP connection 

between the quadrotor’s VIPLE client and the ground base’s VIPLE host. However, a 

custom breakout board had to be designed to meet the additional hardware specs to 

include an on-board MEMS sensor and accommodations for four Pulse Width 

Modulation (PWM) signals needed to drive each ESC. The custom circuit board also 

includes an LED to serve as a visual indicator of the quadrotor’s status. 

 To drive the quadrotor, a C++ based flight controller was implemented onto the 

Edison-Arduino board through Intel’s System Studio IoT Edition to provide the 

necessary stabilization for obtaining stable flight. Configuration files were created to 
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grant users the ability to adjust the flight controller’s parameters. The most important 

components to the Flight controller was the PID controller responsible for calculating the 

rotor corrections needed to be executed by the on-board rotors. An internal state iterator 

was responsible for switching between the various modes available on the quadrotor 

(false flight, flight, test flight, standby). The flight controller was designed to operate at 

250Hz by implementing software-based timer that puts the process to sleep during each 

iteration of corrective calculations until the next cycle begins. 

The flight controller process begins by initializing the PID controller, the internal 

state machine, and the shared memory space between the controller and the VIPLE 

interface. Two separate loggers open file streams within an S3 synced directory to record 

the flight controller’s status and the IMU data received by the MEMS sensor. The flight 

controller’s configurations were then read from disk or assigned a default value. These 

configurations included the gains for the PID controller, battery level, trim settings to 

prevent drifting, label configurations for files being logged, hovering throttle, and flags 

for uploading flight sessions automatically to S3 on exit. 

 The PID controller is a feedback loop that continuously reads from the MEMS 

sensor and the system’s desired setpoint to produce a continuous output of corrective 

feedback. To provide the roll, pitch, and yaw controls necessary to control a quadrotor’s 

flight, a setpoint describes the system’s desired readout. In the case that a quadrotor 

hovers, the setpoint for the pitch, roll, and yaw remain zero. If the desired control of the 

quadrotor is to move forward, the setpoint of the pitch axis is set to a negative non-zero 

value. The PID Controller consists of three components: proportional, integral, and 

differential. The proportional control is responsible for calculating the difference between 
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the input of the MEMS sensor and the setpoint. The integral component acts as an error 

accumulator that allows the system to make corrections to errors that persist over a given 

time (this prevents controllers from only approaching a setpoint rather than achieving the 

desired setpoint). The derivative controller acts as a resistance to rate of change and helps 

dampen corrective overcompensation output by other controllers. This corrective 

feedback loop operates on a system-wide loop that calculates the quadrotor’s current 

IMU readout, reads the quadrotor’s setpoint, calculates the angle travelled, adjusts for 

drift compensation, calculates the correctional adjustments determined by the PID 

calculations, and applies the PID corrections to the throttle. 

 

VIPLE-Quadrotor Data Collection Platform 

Data collection begins when a quadrotor enters flight mode. During a flight 

session the Edison-Arduino board is constantly reading from the MEMS sensor and 

storing the raw value into local storage. The on-bard MPU6050 can operate at a 

frequency of 400kHz which is well within the range of the quadrotor’s correction 

frequency of 250Hz and provides a reading of the proper acceleration of x, y, z in G’s, 

and the angular velocity recorded in degrees per second (°/s) on the roll, pitch, and yaw 

axis. The MPU6050 gyroscopic sensor was configured to operate at a full-scale range of 

+/- 250 °/s while the accelerometer was configured to run at +/- 8 G’s. These values are 

then formatted and printed through one of the flight controller’s output stream into a 

*.csv file. Once the quadrotor enters landing mode and receives instructions to stop the 

flight session, or a termination signal is received, the quadrotor’s flight controller 
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executes an exit script that invokes the AWS CLI to sync new files onto the S3 

environment. 

 The quadrotor is also host to a VIPLE interface that interprets VIPLE’s JSON-

based messages sent and received over a TCP/IP connection (as described in the 

Approach section). This interpreter runs on a separate process and communicates 

directives to the flight controller over shared memory. Shell scripts orchestrate the 

execution of these processes on startup. If the quadrotor does not have access to a 

Wireless Local Area Network (WLAN), scripts were written to configure the Edison’s 

on-board Wi-Fi antenna to enter Access Point (AP) mode, allowing the quadrotor to 

broadcast its own Wi-Fi network. 

For VIPLE, two different types of control methods were implemented through 

VIPLE. The first manual-based control method is a key-mapped controller that accepted 

key inputs from users and translated them directly to a motion control. This allows users 

to have direct control over the quadrotor’s actions in real time. Featured in figure 3.2, a 

second type of control scheme was implemented through VIPLE which describes a flight 

plan that the quadrotor can execute automatically. This VIPLE program implements a 

series of directives and timer delays and is ideal for executing multiple iterations of a 

given flight plan. 

 

MAR Lab AWS Environment 

 To interact with the AWS cloud environment, the AWS-CLI was installed on-

board the quadrotor’s Edison-Arduino board. The AWS-CLI was configured with the 

appropriate credentials needed to perform write commands on, AWS’ Secure Simple 
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Storage Service (S3). More shell scripts were written to proactively upload new flight 

session data. A pre-defined flight log file directory was chosen and monitored for file 

changes by storing its file directory state into local storage. A ‘diff’ between this file and 

the current state was performed after each flight session to search for any new flight logs. 

AWS-CLI upload scripts were run upon discovering new flight logs. 

 To interact with IMU data generated from flight sessions in the VIPLE-Quadrotor 

platform, S3 serves as a shared space between the VIPLE-Quadrotor platform and the 

AWS cloud space. The quadrotor’s AWS CLI is configured with the appropriate account 

settings necessary to retrieve permissions necessary to upload files onto S3. S3 makes for 

an ideal storage solution since it shares a domain with the EC2 environment and offers 

scalability necessary for plenty of data storage. Write operations are limited on the public 

facing interface and require that uploaders have the appropriate credentials needed to 

write a file. The computationally intensive data manipulation and model training can be 

offloaded to a virtual machine hosted on AWS’ Elastic Compute Cloud (EC2). 

 

Figure 4.1: Active EC2 Instance Running MAR Labs Jupyter Notebook Server 

 

The VMs operate on a Linux-based operating system with the appropriate 

software and runtimes installed to host the MAR lab sessions. Temporary directories are 

used by Jupyter Notebooks to save a lab session’s state which holds checkpoints for the 
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trained linear classifier and IMU data transferred over from S3. The VMs come installed 

with Python, TensorFlow, and Jupyter Notebooks all of which provide the necessary 

framework needed to host MAR lab sessions as described in the previous section. VMs 

are also configured with a public IP address via AWS’ elastic IP service allowing VM 

instances to interact with the public domain. Additional security configurations were 

made to allow public access to port 8888 giving users the ability to connect to the Jupyter 

Notebook server over an HTTPS connection on a web-enabled device. One such VM is 

shown in figure 4.1, where a t2.medium EC2 instance is running with a Public IP address. 

As described by AWS documentation, T2 instances are a low-cost general-purpose 

instance with burstable performance making it ideal for server applications. To access the 

MAR lab modules, a user would need to enter “https://{public_ip}:8888” into the web 

browser. As a minimal security measure, the Jupyter Notebook server was configured 

with a self-signed SSL certificate to enable HTTPS connection. Lastly, the server was 

configured with a simple password to prevent unauthorized changes made to the lab. 

 Logs displayed within each lab session provide useful insight on the execution 

status for a given scripted task. However, to bring better understanding to how data is 

being manipulated and what the data looks like, the Jupyter notebook environment 

includes libraries necessary to provide a visual representation of data being processed 

during the session. It is made clear to the user what code and scripts are being run, what 

task is being executed, and how that execution takes place, and what the logs report as 

user-readable output for inspecting the machine learning process each step of the way. In 

this case, the user has access to both read and write the code being run to orchestrate the 
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machine learning process. In addition, TensorFlow provides a log of the linear classifier’s 

runtime whether that is training progression, or classification. 

The premise for the MAR Training Module is to have users train a linear classifier 

to perform MAR. This linear classifier is trained using IMU data collected and described 

by the Implementation section. The MAR training activity module is prepopulated with 

the steps necessary to download the IMU data, extract samples by label into 

subdirectories, calculate features from each sample through sliding window protocol, and 

finally train a classifier. 

The classification module is where users learn how to take raw, unlabeled IMU 

data and convert it into a plausible flight plan. Running through the module in its entirety 

and using the classifier from the previous training module would be a sufficient solution 

to the MAR problem. 
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CHAPTER 5 

EXPERIMENT AND METHODOLOGY 

The quadrotor can be configured to record labelled or unlabeled IMU data. 

Labelled IMU data is used to train a model through supervised learning, making the 

model capable of distinguishing windows of data as belonging to a specific quadrotor 

activity. Unlabeled IMU data is used as an exercise dataset for the classification lab 

module. If labels are enabled, then during flight, the quadrotor is responsible for making 

an extra entry of what action is being performed in each IMU readout. This tags the 

appropriate IMU data and labels it as belonging to a specific class of activity. Successful 

flight sessions and uploads contribute to the MAR database of labelled flight data. It is 

during the training phase, that users are expected to fly the drone, ideally with an even 

distribution of time spent performing the different available actions. 

For each lab session, the quadrotor is powered on and initialized with a boot script 

that starts the VIPLE interface and flight controller process. The quadrotor is then 

configured to record labelled or un-labelled flight data depending on the context of the 

current session. A name is chosen for the flight session and set through the VIPLE 

interface. The flight plan is then executed and IMU data is recorded for the given session. 

Each MAR Lab module begins with an initialization of the runtime environment 

responsible for importing the appropriate libraries, defining helper functions, and local 

variables. 

To demonstrate the feasibility of the lab session’s ability to classify multirotor 

activities, three separate experimental procedures were performed to test the training and 

accuracy of the MAR classifier. The first experiments were done by manually controlling 
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the quadrotor through VIPLE, disabling the rotors, and holding the quadrotor device to 

manually mimic the quadrotor’s action. This data set will be referred to as held-with-

manual-control (HMC). The second experiment, called held-with-rotor-control (HRC), 

was recorded by enabling the rotors but holding the device to prevent drifting. The device 

was again controlled manually through VIPLE; however, the quadrotor’s enabled rotors 

meant the motion of the device did not have to be manually manipulated. The third and 

final experiment was done by controlling the quadrotor through VIPLE, enabling the 

rotors, and allowing the quadrotor to fly without any type of harness; this set will be 

called Untethered Flight (UF). 

 

MAR Training Lab Module 

 

The session begins by downloading both the training and evaluation datasets of 

raw, labelled IMU data from S3 and parsing the entries in each file into multiple sub-files 

===[STEP 2 - DOWNLOAD TRAINING DATA SET]=== 

Please enter the name of your lab group's training dataset: 

Group Name:  

Downloading prepped training data... 

Downloading from:mar-lab-workspace/exercise-training/group-training-dataset/held-with-manual-contro

l/imu-data-log-latest 

Downloading to: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-database-train

ing-set.csv 

Downloading prepped evaluation data... 

Downloading from: mar-lab-workspace/exercise-training/group-training-dataset/held-with-manual-contr

ol/imu-data-log-eval-latest 

Downloading to: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-database-evalu

ation-set.csv 

Download completed... 

===[STEP 2 - END]=== 

 

===[STEP 3 - SEPARATING DATASETS BY LABEL]=== 

Extracting labels for training dataset... 

Extracting data labels from: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-d

atabase-training-set.csv 

Extracting data labels to directories in: [./data/exercise-training-session/held-with-manual-contro

l/imu-db/]... 

 

Extracting labels for evaluation dataset... 

Extracting data labels from: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-d

atabase-evaluation-set.csv 

Extracting data labels to directories in: [./data/exercise-training-session/held-with-manual-contro

l/imu-db/]... 

 

Samples have been extracted by label 

===[STEP 3 - END]=== 
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based on their tagged label. During this process, the IMU file is read line by line and 

stored into a labelled sample file. Once a different label is read, a new labelled sample 

file is created and stored in the appropriate subdirectory. 

 

These sample files, which now hold IMU data for a specific label, are then 

traversed sequentially via the sliding window protocol with a length of 4 and a step of 1. 

The average and median features are calculated for every IMU readout from each 

window and stored into a file where it will be in a format ready for training the classifier. 

The data is in a format that now holds a cross product of the feature and IMU data tuples: 

{average-acceleration-x, average-acceleration-y, average-acceleration-z, average-gyro-

roll, average-gyro-pitch, average-gyro-yaw, median-acceleration-x, median-acceleration-

y, median-acceleration-z, median-gyro-roll, median-gyro-pitch, median-gyro-yaw} 

===[STEP 4 - EXTRACT FEATURES FOR EACH LABEL]=== 

 

Calculating features for samples in the training data directory... 

 

Extracting features for the label [backward]... 

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/backward/*.csv 

Extracting features for the label [forward]... 

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/forward/*.csv 

Extracting features for the label [left]... 

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/left/*.csv 

Extracting features for the label [neutral]... 

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/neutral/*.csv 

Extracting features for the label [right]... 

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/right/*.csv 

Extracting features for the label [up]... 

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/up/*.csv 

Extracting features for the label [down]... 

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/down/*.csv 

 

The features have been extracted and stored into: ./data/exercise-training-session/held-with-manual

-control/training-feature-data-latest.csv 

 

 

Calculating features for samples in the evaluation data directory... 

 

The features have been extracted and stored into: ./data/exercise-training-session/held-with-manual

-control/evaluation-feature-data-latest.csv 

 

 

===[STEP 4 - END]=== 
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The final step of the lab preps the linear classifier by configuring the appropriate 

labels, feature columns, model’s checkpoint directory, and input training and evaluation 

file datasets. The TensorFlow API is called to train the linear classifier for 100 epochs, 

where an evaluation of the model is performed every 20 epochs. 

The successful execution of all cells in the training lab module means that a linear 

classifier was successfully created for the given training data. Checkpoints for the trained 

model are stored by TensorFlow into a temporary directory meaning that this instance of 

a trained model can be restored by TensorFlow (and the subsequent classification lab 

module) for later use. 

 

Training at epoch 0 ... 

Training at epoch 1 ... 

Training at epoch 2 ... 

[...] 

================================================================================ 

Detail execution of epoch 99 

INFO:tensorflow:Create CheckpointSaverHook. 

INFO:tensorflow:Restoring parameters from ../mar-classification-exercise/tmp/model/held-with-manual

-control/model.ckpt-35145 

INFO:tensorflow:Saving checkpoints for 35146 into ../mar-classification-exercise/tmp/model/held-wit

h-manual-control/model.ckpt. 

INFO:tensorflow:loss = 80.08334, step = 35146 

INFO:tensorflow:global_step/sec: 89.1394 

INFO:tensorflow:loss = 20.71344, step = 35246 (1.123 sec) 

INFO:tensorflow:global_step/sec: 95.0501 

INFO:tensorflow:loss = 90.13267, step = 35346 (1.052 sec) 

INFO:tensorflow:global_step/sec: 93.2219 

INFO:tensorflow:loss = 187.21191, step = 35446 (1.073 sec) 

INFO:tensorflow:Saving checkpoints for 35500 into ../mar-classification-exercise/tmp/model/held-wit

h-manual-control/model.ckpt. 

INFO:tensorflow:Loss for final step: 293.45258. 

Evaluating model... 

INFO:tensorflow:Starting evaluation at 2018-10-23-20:40:03 

INFO:tensorflow:Restoring parameters from ../mar-classification-exercise/tmp/model/held-with-manual

-control/model.ckpt-35500 

INFO:tensorflow:Finished evaluation at 2018-10-23-20:40:07 

INFO:tensorflow:Saving dict for global step 35500: accuracy = 0.8218593, average_loss = 0.5593836, 

global_step = 35500, loss = 111.832596 

{'accuracy': 0.8218593, 'average_loss': 0.5593836, 'loss': 111.832596, 'global_step': 35500} 

================================================================================ 

 

================================================================================ 

Final Model Evaluation 

  accuracy: 0.8218593001365662 

  average_loss: 0.5593835711479187 

  loss: 111.83259582519531 

  global_step: 35500 

================================================================================ 

[DONE] 

 

===[STEP 5 - END]=== 
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MAR Classification Lab Module 

 

This module begins by asking the user for the group name and the flight session 

to download the appropriate flight log. Displaying the full flight logs also allows users to 

===[STEP 2 - DOWNLOADING FLIGHT LOG - START]=== 

 

Please enter the name of your lab group... 

Group Name: held-with-manual-control 

Please enter the specific flight session, or skip to choose the latest log... 

Flight Session:  

Pulling flight data from S3 for group [ held-with-manual-control ] on session [ latest ] ... 

Downloading from: /mar-lab-workspace/exercise-classifying/group-classification-dataset/held-with-ma

nual-control/flight-log-latest 

Downloading to: ./data/group-workspace/held-with-manual-control/flight-log-latest.txt 

Finished download flight log to flight-log-latest.txt 

========= held-with-manual-control's FLIGHT LOG ========= 

[ENABLED] CLASSIFICATION MODE for UNLABELLED raw IMU CSV data log... 

Setting Battery Gain 1 [0.985] 

Setting Roll Acc_Trim [1.73728] 

Setting Roll Acc_Trim [1.73728] 

Setting Roll Trim  [0.81] 

Setting Roll Trim  [-1] 

Setting Roll Trim  [-35.5] 

Setting Take-off Trim Rotor 1 [110] 

Setting Take-off Trim Rotor 2 [0] 

Setting Take-off Trim Rotor 3 [70] 

Setting Take-off Trim Rotor 4 [0] 

Setting Flight Trim Rotor 1 [0] 

Setting Flight Trim Rotor 2 [0] 

Setting Flight Trim Rotor 3 [0] 

Setting Flight Trim Rotor 4 [0] 

Initializing PID Flight Controller... 

Initializing Analog and GPIO pins... 

Initializing I2C Devices... 

[DONE] Initialized I2C in Fast mode.... 

Initializing I2C Slave Device.... 

Constructing Gyro... 

Initializing Gyro I2C Device.... 

Initializing Distance Sensor.... 

[DONE] Initialized Gyro I2C Device.... 

Constructing ESC Controller... 

Initializing ESC Controller I2C Device.... 

[DONE] Initialized ESC Controller I2C Device.... 

Initializing runtime variables... 

[Done] Sample Time - uSeconds = 4000 

[Done] Loop Timeout - uSeconds = 4000 

ENTER SETUP 

Calibrating Gyro Device... 

Finished Gyro Callibration... 

EXIT SETUP  

[Warning] Running slow by -3.00562e+06 

[Warning] Running slow by -4292 

[Warning] Running slow by -6634 

Entering Takeoff... 

Entering Flight Mode... 

[Warning] Running slow by -2815 

[Warning] Running slow by -6591 

[Warning] Running slow by -11893 

[Warning] Running slow by -17036 

[Warning] Running slow by -6391 

[Warning] Running slow by -2163 

Entering Landing Mode... 

Entering Warm Standby Mode... 

[Warning] Running slow by -2.99704e+06 

[Warning] Running slow by -5892 

 

 

===[STEP 2 - END]=== 

https://54.156.204.28:8888/notebooks/multirotor-activity-recognition-lab/mar-classification-exercise/data/group-workspace/held-with-manual-control/flight-log-latest.txt


  30 

confirm that the quadrotor flight was a success and that no anomalies occurred during 

startup. 

 

 

Figure 5.1: Raw IMU Data Plot 

 

The appropriate raw, unlabeled IMU data for the given session is downloaded and 

a file preview is printed to show the data in its raw form. As shown in figure 5.1, a visual 

representation of the IMU data is then presented to the user in step 4. 

 

 

 

===[STEP 3 - DOWNLOADING FLIGHT DATA - START]=== 

 

Pulling latest flight log data from S3 for group [held-with-manual-control] 

Downloading from: /mar-lab-workspace/exercise-classifying/group-classification-dataset/held-with-ma

nual-control/imu-data-log-04-13-21-27-13.csv 

Downloading to: ./data/group-dataset/held-with-manual-control/imu-latest-dataset.csv 

Finished downloading flight data to imu-latest-dataset.csv 

[DONE] 

 

===[STEP 3 - END]=== 
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A set of feature functions are defined for use in the next step. These functions are 

defined to take in a list of numerical decimal values as parameters and return the feature 

defined by the function. In the sample above, the average and median features are simply 

a direct implementation of calculating the average and median of the input parameters. 

 

Like the training module, the raw IMU data for the entire flight session is 

traversed via sliding window protocol and the average and mean features are calculated 

from these windows of data. The user can also choose to run the optional cells that 

describe the process of extracting the feature from a random sample of IMU data. Now 

that the data is ready to be processed by the linear classifier, the next step of the lab 

produces a textual description of the predicted flight plan. 

===[STEP 5] - DEFINING FEATURE FUNCTIONS - START === 

 

Defining AVERAGE feature function 

Defining MEDIAN feature function 

Finished feature definitions 

 

===[STEP 5 - DONE]=== 

 

===[STEP 6] - EXTRACTING FEATURES FROM SAMPLES OF SLIDING WINDOWS - START === 

 

Clearing file... 

Extracting features from file [./data/group-dataset/held-with-manual-control/imu-latest-dataset.cs

v] into the directory [./data/group-workspace/held-with-manual-control/imu-and-features-dataset-lat

est.csv] 

Extracting sliding window data samples from [./data/group-dataset/held-with-manual-control/imu-late

st-dataset.csv]... 

Finished extracting features to imu-and-features-dataset-latest.csv 

DONE 

 

===[STEP 6 - DONE] === 
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Figure 5.2: IMU Data Flight Plan Classification 

 

This description is visualized in the final step of the lab, where shaders are 

applied on top of the raw IMU data graph to give a visual representation of the 

quadrotor’s predicted activities during flight. It is expected that users record the flight 

plan for a given flight session before starting the classification module to assess that the 

flight plan produced by the classifier is correct. The successful execution of all cells 

means that a linear classifier has been used to generate a hypothetical flight plan for a 

given set of unlabeled IMU data. However, the accuracy and assessments made by the 

classifier depend on how well-trained the classifier was. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

Both the training and classification lab modules were able to successfully process 

the HMC, HRC, and UN dataset as described by the previous section, experimentation 

and methodology. However, insufficient data was recorded for the UF dataset due to 

technical issues described in the limitations section. Despite these setbacks, all reporting 

from the lab sessions provided the real-time logs necessary to verify that the file 

manipulations were performed correctly. 

 

 

Figure 6.1.1: Simple Flight Plan Classification on HMC Dataset 
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Figure 6.1.2: Simple Flight Plan Classification on HRC Dataset 

 

Figures 6.1.1 and 6.1.2 provide a visual comparison of one specific flight plan 

described by the following sequence: {takeoff, neutral, left, neutral, right, neutral, 

forward, neutral, backward, neutral, land}. Of the two data sets, the HMC flight shows a 

more distinguished pattern, however some misclassifications from the HMC dataset 

could be attributed to human error of a slow reaction time. There are clear distinctions 

made between the 4 second transitions between state. However, the HRC flight plan is 

sparse with small windows of ‘neutral’ activity. The ‘forward’ classification for the HRC 

data and HRC-trained classifier is particularly weak in this instance. 
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Table 6.1: Accuracy and Loss over Epochs 

Dataset Accuracy over Epochs Loss over Epochs 

HMC 

  

HRC 

  

UF 

  

 

Detailed logs compiled into line graphs in table 5.1 indicate that with each epoch, 

the accuracy of the classifier increased. Full reference to the values is available in 

Appendix C. Within the results for the HMC dataset, a default configured linear classifier 

can predict class with an accuracy of approximately 82.2% percent. Logging reports 
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indicate that for every 10 epochs, it is evident that as the linear classifier adjusts its 

weights to minimize the loss function, the classifier’s accuracy increases while the loss 

and average loss of the model decreases. The loss is calculated via SoftMax cross entropy 

by TensorFlow. The following figure shows the loss function and accuracy of the 

classifier against a given validation dataset over the number of epochs on which the 

classifier is trained on. 

The classification lab module was able to use the classifier to deduce the flight 

plan of a given flight session. Figures 6.1.1 and 6.1.2 are examples where an unlabeled 

IMU dataset was shaded according to a predicted activity. A detailed description of the 

classification logs show there were significant windows of misclassifications made 

between the transition between states meaning that the linear classifier had a hard time 

classifying the activity transition point. As evident in the classification module, 

transitions between states describe a classification usually between neutral and a given 

activity.  

One contributing factor to the inaccuracy of the classifier was the lack of 

distinguished signals between the increase altitude, neutral, and decreased altitude action. 

These actions share a similar signature due to the quadrotor’s inability to determine its 

altitude. Implementing a sensor onboard the quadrotor to detect the altitude would have 

made for a better altitude holding algorithm since controlling the baseline throttle for all 

rotors proved to be too unresponsive. The result was that the quadrotor had a delayed and 

unresponsive reaction when changing altitude, making it difficult to tag windows of IMU 

data where the quadrotor was actively decreasing in altitude. 
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CHAPTER 7 

LIMITATIONS 

The quadrotor prototype presented in this thesis had several limitations that would 

have provided the MAR database with more useful data. One such limitation was the lack 

of an altitude sensor. Inclusion of an altitude device such as an ultrasonic range detector 

would have helped in maintaining a more stable altitude. While adjusting the baseline 

throttle for all four rotors was enough to change the altitude of the quadrotor, the altitude 

adjustment was responsively slow and could result in a fast drop in altitude enough to do 

a crash landing. 

 The lack of a Real Time Operating System (RTOS) also contributed towards the 

drifting problem. It was common that during a flight, the quadrotor would jitter due to 

system interrupts that would briefly halt the flight controller, causing the quadrotor to 

lose balance for a short period of time. 

 The inability to measure the level of battery. As the quadrotor’s battery voltage 

dropped, the rotational speed of the rotors also decreased despite receiving the same 

PWM signal. To compensate for this issue, a battery gain was added to the flight 

controller’s configurations requiring that users change these configurations as the 

quadrotor battery becomes more drained. Implementing a voltage divider and monitoring 

the battery via on-board analog pins may be enough to provide the necessary battery gain 

configuration automatically. 

The quadrotor also suffered from a series of drifting problems causing the 

quadrotor to lean towards a preferred pitch and roll. A significant time was put into the 
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optimization and configuration of the PID controller gains, and during a heavy crash, the 

quadrotor had to be recalibrated before being flown again. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORKS 

This work has provided VIPLE with extensions in 3D simulation for maze 

navigation and implementing a VIPLE-compatible quadrotor platform. A framework was 

provided for teaching students how to train and apply linear classifiers for MAR. Without 

additional hardware or software, a user is able to successfully train and apply a linear 

classifier through a web-enabled device to perform MAR on flight sessions recorded by 

the VIPLE and quadrotor platform. 

 The primary contributions of this thesis were extending VIPLE to the quadrotor 

platform, implementing an interactive machine learning pipeline for the MAR 

classification problem, and creating a repository of IMU data within MAR’s database 

made available for future use. With an approximate even distribution of quadrotor 

activity, and by collecting the data through a manual control and manipulation of the 

quadrotor, the linear classifier was able to correctly predict a multi-rotor’s activity with a 

window of IMU data with approximately 82% accuracy. 

Future iterations of the MAR lab sessions can be applied to other robotic activity 

recognition. While quadrotors remain the focus, the pipeline described by this paper can 

be applied to other IMU sensory applications for use in activity recognition. Further 

iterations can also investigate automation and simplification of the current MAR labs for 

use in exploratory data analysis by generating automated reports for any given flight 

session. 

 Future works should consider using pre-built quadrotors rather than building one 

from scratch. At the time of writing, manufacturers such as DJI have recently provided 
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open source API libraries for consumer-ready quadrotors. Though the quadrotor in this 

thesis was able to sustain brief periods of flight time and perform basic activities, there 

were many issues encountered with implementing a quadrotor on the Edison platform.  

 While multiple instances of the VM described by the implementation section can 

be instantiated to host additional lab sessions, future iterations of MAR labs may want to 

consider encapsulating the Jupyter Notebook server into a Docker container to allow a 

single VM Instance to host multiple MAR lab instances, allowing the creation and host of 

additional MAR labs at a lower cost. 
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APPENDIX A 

QUADROTOR HARDWARE REVISIONS 
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In terms of hardware specifications, the VIPLE Quadrotor was built for recording 

and sending sensory data in real-time over TCP/IP via wireless IEE 802.11a/b/g/n. The 

platform is equipped with a six-axis Inertial Movement Unit (IMU) sensor, an Intel 

Edison-Arduino breakout board, a 4s LI-PO Battery, a power distribution board equipped 

with a 9V voltage regulator, 4 brushless motors, and 4 electronic speed controllers (ESC). 

All components make the platform capable of stable flight for a quadrotor system. 

All on-board sensor must fit well within the parameters of a 250Hz correction rate 

calculated by the PID Controller. This hardware requirement is met by both on-board 

IC’s (PCA9685 and MPU6050) which are both capable at operating at speeds faster than 

the quadrotor’s correction rate. 

 To accommodate these two IC’s a custom board was built to utilize the GPIO pins 

available on the Edison-Arduino Board. Figure A.1 is a closeup of the custom board with 

each component annotated: (A) MPU6050, (B) PCA9685, (C) Intel Edison Chip, (D) 

Status LED, (E) u.fl antenna connector. Figure A.2 provides a hardware schematic that 

better describes the electric connections made between all components on the custom 

shield. 

The flight controller software is implemented on a C++ runtime and developed 

and compiled through Intel System Studio IoT Edition. The codebase for the entire flight 

controller is available at: https://github.com/mldelaro/edison-pid-flight-controller. The 

quadrotor’s VIPLE interface runs on a separate process also implemented in C++ and 

made available in a separate repository at: https://github.com/mldelaro/quadcopter-

controller-tcp-runtime. The VIPLE program used in controlling the quadrotor are also 

available at: https://github.com/mldelaro/multirotor-activity-recognition-viple. 
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Figure A.1: Annotated Components of Flight Controller Shield 

 

Figure A.2: Hardware Diagram of Flight Controller Shield 
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Before beginning any lab session, the quadrotor is powered on and mounted on a 

testing rack seen in figure A.3. The gain for the PID Controller is then adjusted to achieve 

a normal flight. The process begins by holding the quadrotor and tuning the P-controller 

to ensure that correctional forces are being applied properly when the quadrotor is tilted 

off-balance. This ensures that the difference between the error and setpoint of the system 

are configured correctly according to their respective roll, pitch, and yaw axis. Once the 

P-controller begins to over-compensate, and the quadrotor begins to oscillate, the gain is 

reduced, and the gain for the D-controller is increased. This process is then repeated for 

the I-Controller until the quadrotor can achieve a stable hover. 

 

Figure A.3: Quadrotor PID Tuning Test Rig 
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 Figure A.4: Quadrotor Assembly Revision 1  

 

 The first, flyable, quadrotor prototype shown in figure A.4 was built with a 

quadrotor frame made from a 3D-printed standard Q450 frame (450mm x 450mm). The 

frame is capable of housing the necessary components and provides a decent platform for 

maintaining flight stability. However, after several initial test-flights, 3D printed ABS 

frames proved to be too vulnerable to hard landings and collisions. The extent of damage 

left from collisions is shown in the figure A.5 below. 
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Figure A.5: Fractures in 3D Printed Frames 

 

Revision 2 

 

Figure A.6: Quadrotor Assembly Revision 2 

 

 The 3D printed quadrotor frame was replaced with a stiff plastic frame capable of 

withstanding the impact of failed flights. In addition, thread-lock was included to prevent 

screws from falling out of place. The quadrotor was then fitted with plastic landing gears. 
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Figure A.7: Quadrotor Revision 2 Hardware Parts Nulling 
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APPENDIX B 

LOSS AND ACCURACY OVER EPOCHS 
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Table B.1: Loss and Accuracy over Epochs Dataset 

 

 
Dataset HMC 

 
 HRC 

 
 UF 

 

epoch loss accuracy  loss accuracy  loss accuracy 

0 364.9385 0.276532  1192.737 0.086027  517.7102 0.291168 

1 287.2623 0.47678  774.1066 0.151633  439.7259 0.336742 

2 244.9039 0.539255  636.3419 0.210591  347.1531 0.493524 

3 218.7955 0.609522  545.2913 0.254849  368.2013 0.421657 

4 203.4566 0.648242  485.6321 0.290017  362.5511 0.426429 

5 191.1816 0.676408  439.577 0.324731  349.4738 0.479501 

6 183.1928 0.69178  404.5905 0.358174  340.7291 0.472782 

7 176.6142 0.701784  376.4477 0.391771  330.3822 0.484468 

8 170.1751 0.711097  352.4684 0.422799  343.706 0.480475 

9 165.9411 0.718114  333.8918 0.451938  342.7357 0.48291 

10 161.9469 0.7243  318.3945 0.477299  331.6588 0.507644 

11 158.6017 0.730964  304.1555 0.501925  322.7 0.516506 

12 155.9568 0.737305  292.9115 0.522655  316.3803 0.529944 

13 153.1771 0.744265  281.8796 0.541461  320.9269 0.528971 

14 150.5465 0.749648  272.0388 0.558904  305.8332 0.536469 

15 148.829 0.753945  264.0367 0.573469  304.0445 0.536372 

16 146.62 0.758539  256.198 0.587616  309.7166 0.532866 

17 145.5918 0.7613  249.5483 0.599466  303.4714 0.539877 

18 143.424 0.765612  243.3117 0.610971  307.745 0.537248 

19 142.0269 0.768613  237.475 0.620478  300.9675 0.540364 

20 140.9478 0.770881  232.3645 0.629113  297.1738 0.544065 

21 139.4354 0.773756  226.8478 0.637876  299.099 0.542799 

22 138.5525 0.775559  222.3137 0.645703  297.6997 0.543286 

23 137.4252 0.778053  218.0389 0.653004  293.4988 0.547668 

24 136.2249 0.780167  214.0128 0.659959  293.7294 0.546986 

25 135.1186 0.782083  210.3694 0.666661  292.4838 0.547083 

26 134.6359 0.783098  206.5446 0.672408  290.1852 0.549908 

27 133.8695 0.784436  203.379 0.678038  284.6116 0.551952 

28 132.7255 0.786395  200.1933 0.683032  282.6082 0.554776 

29 131.953 0.787973  197.2342 0.687291  286.0105 0.550492 

30 130.9581 0.789875  194.3637 0.692594  284.2039 0.551173 

31 130.4243 0.79072  191.7921 0.695936  278.8916 0.556042 

32 129.6099 0.792369  189.5125 0.699822  277.9456 0.555361 

33 128.931 0.79344  186.8407 0.704172  276.6161 0.556042 

34 128.4373 0.794623  184.3958 0.70774  276.7295 0.55799 

35 127.5732 0.796399  182.1754 0.711272  274.8663 0.557893 
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36 127.2415 0.796906  180.2734 0.714723  270.4576 0.559061 

37 126.5637 0.797963  178.4303 0.71801  272.7347 0.559646 

38 126.093 0.798836  176.3282 0.721697  272.6694 0.561204 

39 125.5008 0.799738  174.7827 0.724321  271.745 0.561398 

40 125.1229 0.800457  173.0065 0.727653  269.1653 0.561788 

41 124.3918 0.801725  171.3013 0.730359  266.808 0.563833 

42 124.2795 0.80195  169.8696 0.732711  265.7103 0.565294 

43 123.695 0.80288  168.1864 0.736044  266.97 0.56393 

44 123.3904 0.803697  166.8889 0.737969  267.684 0.565196 

45 122.7073 0.804543  165.4178 0.740674  264.959 0.563833 

46 122.5646 0.804951  164.1958 0.74309  263.5882 0.565488 

47 122.158 0.805444  163.0384 0.745696  264.0213 0.565586 

48 121.7841 0.80574  161.8298 0.748375  261.9625 0.568118 

49 121.2397 0.806403  160.53 0.750835  259.5758 0.568605 

50 120.8862 0.807037  159.5785 0.753205  261.1698 0.567923 

51 120.8056 0.807318  158.4444 0.755267  260.5055 0.567533 

52 120.1867 0.808009  157.2881 0.757691  262.7921 0.565488 

53 119.9791 0.808347  156.3318 0.75958  259.6645 0.569481 

54 119.7269 0.808967  155.2782 0.76185  259.1859 0.569189 

55 119.2935 0.809474  154.4776 0.763157  258.585 0.569189 

56 119.2257 0.809869  153.4354 0.765237  257.1381 0.57026 

57 118.8954 0.810644  152.5312 0.766889  257.1774 0.569676 

58 118.6285 0.81063  151.8774 0.768179  256.0153 0.569578 

59 118.3192 0.81139  150.9541 0.769986  254.1434 0.57065 

60 118.1169 0.811714  150.2242 0.771629  258.7646 0.568702 

61 117.9384 0.812095  149.4252 0.772683  254.626 0.571039 

62 117.6632 0.812518  148.626 0.774045  254.4203 0.570844 

63 117.4054 0.812884  147.8685 0.775534  252.3472 0.571429 

64 117.3071 0.813236  147.2647 0.776333  252.8183 0.57211 

65 116.8628 0.813842  146.5217 0.777677  252.7447 0.572402 

66 116.69 0.814208  145.9685 0.778757  252.6659 0.57211 

67 116.6644 0.814406  145.2615 0.780129  248.5106 0.575226 

68 116.3428 0.814744  144.6574 0.781391  252.1533 0.572597 

69 116.173 0.814983  144.068 0.782544  249.3992 0.573376 

70 115.8761 0.815293  143.5349 0.784042  250.2021 0.57474 

71 115.753 0.815646  142.8875 0.785114  247.4861 0.574545 

72 115.5656 0.815815  142.3905 0.786476  249.8033 0.572987 

73 115.3469 0.816096  141.762 0.788028  248.6755 0.574155 

74 115.2896 0.816139  141.3265 0.788927  248.0538 0.575324 

75 115.0369 0.816731  140.8499 0.789781  246.5068 0.57659 



  53 

76 114.9013 0.816984  140.3249 0.790871  247.8456 0.575032 

77 114.6746 0.817351  139.8895 0.791788  245.709 0.576492 

78 114.453 0.817646  139.2858 0.793104  245.5974 0.575324 

79 114.4835 0.817505  138.867 0.793686  246.2751 0.575519 

80 114.2058 0.817815  138.4198 0.794857  244.9167 0.577369 

81 114.0799 0.817942  137.946 0.795865  245.9108 0.574837 

82 113.8991 0.818295  137.5583 0.796773  243.7553 0.576882 

83 113.7537 0.818576  137.0833 0.797545  244.7948 0.576882 

84 113.6025 0.818872  136.7641 0.798198  244.6373 0.576687 

85 113.4908 0.819351  136.3073 0.798961  244.4905 0.577369 

86 113.4383 0.819295  135.9383 0.799733  242.9488 0.577953 

87 113.2587 0.819506  135.513 0.800886  243.0432 0.577953 

88 113.0732 0.819859  135.2173 0.801368  242.8307 0.577466 

89 112.9594 0.82007  134.7473 0.802375  243.2606 0.576687 

90 112.9082 0.820253  134.3974 0.802938  242.623 0.578635 

91 112.7112 0.820549  134.0045 0.803719  242.224 0.578537 

92 112.6092 0.820831  133.7314 0.804128  240.9254 0.579414 

93 112.4704 0.820943  133.3883 0.804809  240.5668 0.579609 

94 112.3257 0.821169  133.1007 0.805617  239.4564 0.580388 

95 112.2842 0.821239  132.8191 0.805989  240.5338 0.579901 

96 112.1205 0.821521  132.4778 0.806798  239.2618 0.58068 

97 112.0285 0.821718  132.1282 0.807778  239.7636 0.580875 

98 111.9803 0.821733  131.8068 0.808486  239.6605 0.581264 

99 111.8611 0.822014  131.5014 0.808931  238.3819 0.581069 
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APPENDIX C 

MAR LAB ENVIRONMENT SETUP GUIDELINES 
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 MAR Lab environments follow the same usage guidelines outlined by Jupyter 

Notebook (version 4.4.0) documentation. In general, a user begins interacting with the 

MAR Lab session by visiting the public IP address of the Jupyter Notebook Server 

instance. This is created and configured through AWS. 

 

Figure C.1: Architecture Diagram of AWS MAR Lab Environment 

 

 AWS resources are created and configured through the online AWS Management 

Console as generally described by figure C.1. The purpose and usage of each component 

are further described in the Implementation section under the “MAR Lab AWS 

Environment” subsection. 

 Interaction with the lab environment begins with the installation of the AWS CLI 

on the quadrotor. Remoting into the intel Edison board and following the installation 

guidelines for the AWS CLI will provide the Edison board with the ability to upload files 

from the board. An AWS Identity Access Manager (IAM) user needs to be created on the 

quadrotor’s behalf. As shown in figure C.2, the quadrotor user is then granted read and 

write access to the S3 bucket that hosts the flight data from the quadrotor sessions. 
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Figure C.2: Quadrotor IAM User 

 

As shown in figure C.3, the MAR Lab environment uses a single S3 Bucket for 

hosting all data collected from the Quadrotor-VIPLE platform. Versioning is enabled, 

and the bucket is configured to be publicly available with read-only access. 

 

Figure C.3: MAR Lab S3 Bucket 
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An EC2 instance is host to the remaining software components encompassed in 

the EC2 block described by figure C.1. To provide a public-facing IP address, an Elastic 

IP resource is created and later used in the EC2 instance setup.  

  

Figure C.4: Public Elastic IP Address 

 

The VM is setup as a t2.medium instance and configured with the elastic IP 

address shown in figure C.5. The setup process begins by shelling into the Linux VM 

instance and following the installation documentation outlined for Python (version 3.6.4) 

and TensorFlow (version 1.5.0). 

 

Figure C.5: MAR Lab EC2 Instance Details 
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Python and TensorFlow provide the necessary runtime for installing the Jupyter 

Notebook environment. Following the documentation and guidelines for installing both 

the Jupyter Notebook and the Public Jupyter Notebook Server will install the software 

necessary for hosting the MAR Lab sessions. Finally, the MAR Lab sessions can be 

imported into the Jupyter instance’s home directory. The content of the MAR Lab 

sessions for both the training module and the classification module are available at 

https://github.com/mldelaro/multirotor-activity-recognition. 


