
VIPLE Extensions in Robotic Simulation, Quadrotor Control Platform, and

Machine Learning for Multirotor Activity Recognition

by

Matthew De La Rosa

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2018 by the

Graduate Supervisory Committee:

Yinong Chen, Chair

James Collofello

Dijiang Huang

ARIZONA STATE UNIVERSITY

December 2018

 i

ABSTRACT

Machine learning tutorials often employ an application and runtime specific

solution for a given problem in which users are expected to have a broad understanding

of data analysis and software programming. This thesis focuses on designing and

implementing a new, hands-on approach to teaching machine learning by streamlining

the process of generating Inertial Movement Unit (IMU) data from multirotor flight

sessions, training a linear classifier, and applying said classifier to solve Multi-rotor

Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud

computing and data storage technologies to host a versatile environment capable of

logging, orchestrating, and visualizing the solution for an MAR problem through a user

interface. MAR labs extends Arizona State University’s Visual IoT/Robotics

Programming Language Environment (VIPLE) as a control platform for multi-rotors used

in data collection. VIPLE is a platform developed for teaching computational thinking,

visual programming, Internet of Things (IoT) and robotics application development. As a

part of this education platform, this work also develops a 3D simulator capable of

simulating the programmable behaviors of a robot within a maze environment and builds

a physical quadrotor for use in MAR lab experiments.

 ii

ACKNOWLEDGMENTS

I would like to express my thanks and appreciation to my supervisor, Professor

Yinong Chen for his support, encouragement, and guidance in the fulfillment of the

works presented in this thesis. I would also like to extend my gratitude to the other

members of the committee, Dr. James Collofello and Professor Dijiang Huang. A special

thanks goes out to friends, family, and colleagues whose continued support has helped

me grow as an individual. A final thanks goes to Arizona State University faculty

members who have made this possible.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION .. 1

2 BACKGROUND ... 5

VIPLE and VIPLE’s Unity Simulator .. 5

Quadrotor Control and Applications.. 8

Activity Recognition ... 10

3 MULTIROTOR ACTIVITY RECOGNITION .. 12

4 IMPLEMENTATION ... 18

 Quadrotor Build: PID Flight Controller and VIPLE Interface 18

 VIPLE-Quadrotor Data Collection Platform .. 20

 MAR Lab AWS Environment .. 21

5 EXPERIMENT AND METHODOLOGY .. 25

 MAR Training Lab Module .. 26

 MAR Classification Lab Module .. 29

6 RESULTS AND DISCUSSION .. 33

7 LIMITATIONS ... 37

8 CONCLUSION AND FUTURE WORKS ... 39

REFERENCES ... 41

 iv

TABLE OF CONTENTS

 Page

APPENDIX

A QUADROTOR HARDWARE REVISIONS .. 43

B LOSS AND ACCURACY OVER EPOCHS ... 50

C MAR LAB ENVIRONMENT SETUP GUIDELINES .. 54

 v

LIST OF TABLES

Table Page

3.1. Quadrotor-VIPLE Motion Config Options .. 15

6.1. Accuracy and Loss over Epochs ... 35

B.1. Accuracy and Loss over Epochs Dataset ... 51

 vi

LIST OF FIGURES

Figure Page

2.1. VIPLE and its Compatible Devices .. 6

2.2. VIPLE Unity Simulator v1.x – Maze Use-Case ... 7

3.1. MAR Lab Architecture Overview .. 13

3.2. VIPLE Implementation of a Series-Based Flight Plan 14

3.2.1. SimpleWait Custom Activity .. 14

3.2.2. Takeoff Custom Activity ... 14

3.2.3. Land Custom Activity ... 15

3.3. Hello Jupyter Practice Module ... 17

4.1. Active EC2 Instance Running MAR Labs Jupyter Notebook Server............... 22

5.1. Raw IMU Data Plot .. 30

5.2. IMU Data Flight Plan Classification ... 32

6.1.1. Simple Flight Plan Classification on HMC Dataset .. 33

6.1.2. Simple Flight Plan Classification on HRC Dataset ... 34

A.1. Annotated Components of Flight Controller Shield ... 45

A.2. Hardware Diagram of Flight Controller Shield .. 45

A.3. Quadrotor PID Tuning Test Rig.. 46

A.4. Quadrotor Assembly Revision 1 ... 47

A.5. Fractures in 3D Printed Frame ... 48

A.6. Quadrotor Assembly Revision 2 .. 48

A.7. Quadrotor Revision 2 Hardware Parts Nulling .. 49

C.1. Architecture Diagram of AWS MAR Lab Environment 55

 vii

LIST OF FIGURES

Figure Page

C.2. Quadrotor IAM User ... 56

C.3. MAR Lab S3 Bucket ... 56

C.4. Public Elastic IP Address .. 57

C.5. MAR Lab EC2 Instance ... 57

 1

CHAPTER 1

INTRODUCTION

Training and applying machine learning models to solve classification problems

often require a combination of skills in data collection devices, software tools, software-

hardware communication, programming, and data analysis. The solution to classification

problems often manifest in the general process of collecting data, calculating features

from the data, and formatting the features in a manner compatible with a classifier. While

the tools and libraries that exist allow data scientists to perform these tasks, there are few

tools available that are capable of teaching high school and college freshman students

how to train and apply these classifiers within the IoT and robotics fields. Writing the

scripts necessary to orchestrate such data flow and manipulation, setting up a special

runtime environment with the necessary software libraries used for training machine

learning models, and meeting the specialized hardware specifications necessary for

training classifiers on a large data set all add to the technical hurdle of teaching the core

principles of understanding machine learning.

Existing machine learning tutorials also suffer from a narrow solution scope

making curriculum difficult through example due to the vast range of methodologies

available in data acquisition and manipulation. Such tutorials like TensorFlow’s MNIST

[1] and RapidMiner’s titanic example [2] have a highly curated experience where users

work with pre-generated and pre-formatted data with pre-defined interactions in solving

specific hypothetical problems. This takes away from the first-hand experience of

obtaining or generating the data, manipulating the data, and prepping a classifier for

training and classification applications. Often, this process is hidden behind a black box

 2

that lacks the transparency, flexibility, and depth necessary to show students the process

of transforming raw data into a format that is compatible with the classifier.

Teaching machine learning through first-hand experience requires a versatile

learning environment with the ability to both orchestrate the machine learning process

and expose the underlying mechanisms in driving the orchestration. This includes

generating the data for lab use, storing and managing this data, building an interactive

environment capable of manipulating the data while showing users that process, and

using that environment to train and apply a linear classifier.

To teach users how to train and apply a linear classifier, lab activities in this study

are framed within the Multirotor Activity Recognition (MAR) problem. MAR is an

extension of the activity recognition classification problem and aims to classify windows

of raw Inertial Measurement Unit (IMU) data recorded by a quadrotor’s on-board Micro-

electromechanical Systems (MEMS) sensor to identify what action the quadrotor is

taking. The MAR lab environment operates within an educational context and performs

tasks on the user’s behalf. These tasks implement the solution to solving the MAR

problem but require users to run the scripts and inspect the console output. The work is

done to extend the capacity of ASU VIPLE (Visual IoT/Robotics Programming

Language Environment) to perform machine learning and data analysis.

Users are expected to generate data by implementing a flight plan in VIPLE to

control a quadrotor. The corresponding IMU data for that flight session is then retrieved

by the MAR lab environment. This training data can then be used to create a flight plan

classifier, thus creating a feasible solution to the MAR problem. While the scope of this

paper covers machine learning orchestration, in-depth exploratory data analysis will be

 3

excluded from the discussion. Quadrotor flight optimizations are also not considered to

be in scope, although these lab sessions could potentially provide beneficial reports to aid

in that endeavor.

The works featured in this thesis describe a system capable of reducing the

complexity involved in implementing a solution to the MAR problem. By doing so, MAR

labs aims to increase the range of audience that these tools can be used by (specifically

instructor-led labs). It is also the intention of these labs to increase the productivity in

data analysis by expediting the machine learning process through orchestration. Finally,

by building and compiling a collection of flight sessions within the MAR database, this

paper provides a framework for collecting IMU data produced by multirotor-based

platforms. By building a database of IMU data, future iterations of MAR classifiers can

be trained with more data to create a more accurate classifier.

This thesis expands on the VIPLE platform by implementing a Unity simulator

for supporting robotics programming in maze navigation and adding supported devices

by building a physical drone capable of generating data necessary for machine learning

experiments. This thesis also aims to explore the merits of implementing a fully

orchestrated machine learning pipeline where users interact through activity labs to

generate their own data, manipulate that data, and apply that data to train and use a linear

classifier by allowing users to interact with data directly, in real-time, and allowing them

to make changes to the machine learning pipeline to obtain a better understanding of what

processes take place behind the black boxes obscured by existing machine learning

libraries and tools.

 4

The rest of the thesis is organized as follows. Chapter 2 discusses the background,

the primary components involved in developing MAR labs, and the motivations for

implementing the project. Chapter 3 describes Multirotor Activity Recognition and

provides the context necessary to better understand the design decisions made when

implementing the MAR labs with respect to quadrotor controllers, activity recognition,

and existing machine learning applications in quadrotors. It also develops the solution for

the MAR problem within an educational context and describes the architectural overview

of the project in its entirety. Chapter 4 outlines the implementation, where components of

MAR labs are described individually and in more detail. Chapter 5 presents the

experiment and methodology. It describes the process of setting up MAR labs and

collecting IMU data to use in MAR labs. The effectiveness of the VIPLE & Quadrotor

platform, and the MAR labs in solving the MAR problem are discussed in this chapter.

Chapter 7 summarizes the limitations of the research and experiments. Finally, this paper

closes with a conclusion that covers contributions and future works. Details on the

quadrotor build and revisions made to the quadrotor are further explained in the

Appendix.

 5

CHAPTER 2

BACKGROUND

ASU VIPLE is a visual based IoT and robotics programming tool that allows

students to build programs and connect to hardware devices through a visual interface

[3]. The purpose of the tool is to teach the programming process with focus on the

development and deployment of programs onto a variety of robots and IoT devices [4].

The visual based aspect of VIPLE allows students to click and drag components of a

program together to build robotic applications.

To inspire application development in robotics, VIPLE has been used to teach

high school and college freshman students the programming skills necessary to create

applications. As shown in figure 2.1, several simulated and physical devices have been

developed and used for robotic applications such as NXT robots, humanoid sensors, and

integrations with IoT devices such as Alexa’s voice control [5][6]. However, recent years

have seen the wide-spread application of multirotors, Unmanned Aerial Vehicles

(UAVs), and machine learning as platforms for more recent robotic developments. Such

control mechanism for VIPLE’s quadrotor and machine learning platform are not present.

VIPLE and VIPLE’s Unity Simulator

Contributions of this research made to VIPLE include the unity simulator and the

physical quadrotor, shown in the top-left corner of figure 2.1. The VIPLE Unity

Simulator was developed with the goal of introducing users to the concept and usage of

VIPLE as a programming language and to simplify the technical hurdle of programming

IoT and robotics devices by allowing users to run VIPLE code in a virtual environment

 6

without having to physically build a robot and its testing environment. ASU VIPLE

documents, tutorials, and software downloads are available at:

http://neptune.fulton.ad.asu.edu/VIPLE/

Figure 2.1: VIPLE and its Compatible Devices

The VIPLE Unity Simulator is currently being used in FSE 100 classes with great

success. The first implementation and iterations of the VIPLE Unity Simulator were

designed for the maze use-case. In this scenario, users were able to interact with the maze

environment by adding and removing walls while interactions with the robot (the small

green block) were strictly controlled by the VIPLE process. Like all other VIPLE clients,

the VIPLE simulator was embedded with a TCP interface, allowing VIPLE to send

http://neptune.fulton.ad.asu.edu/VIPLE/

VIP
Unity Simulator

Web 3D Simulator

Lego EV3

Intel Galileo Robot

Intel Edison Robot pcDuino RobotMinnow and Curie RobotWeb 2D Simulator

BIOLOID

Raspberry Pi

Physical Quadrotor

 7

commands to the virtual robot over a localhost connection. The simulator is also

responsible for communicating simulated sensory readout back to the VIPLE host over

the TCP bridge.

Contributions made the VIPLE Unity Simulator included designing, architecting,

and implementing the first iteration as a proof of concept. The VIPLE Unity Simulator

was developed in C# on top of the Unity game engine with the use of the UnityEditor.

Unity was chosen as the primary framework for creating a 3D virtual environment due to

its simple framework library and cross platform compatibility between windows and mac.

As part of the initial proof of concept, in-game assets, implementation of user

interactivity with the virtual maze map (spawning walls, providing visual cues), and

creating controllers that allowed the virtual robot to make measurements of the virtual

environment in real-time. Figure 2.2 provides a more detailed visual of the maze use-

case.

Figure 2.2: VIPLE Unity Simulator v1.x – Maze Use-Case

The objective presented to students is to implement the wall-following algorithm

through VIPLE’s programming interface. Two virtual distance sensors, one in the front

and one on the right, were implemented to record and send real-time sensory readouts to

 8

VIPLE from within the virtual environment, allowing the user to implement a simple

wall-following algorithm. The maze consists of square blocks that can be reconfigured by

simply clicking the wall or open space to remove or add a block. Figure 2.2 shows two

different configurations.

A fully operational VIPLE Unity Simulator has been developed and since been

handed off to the undergraduate capstone projects at ASU for further development. In

pursuit of more challenging goals, the focus of this thesis shifted from providing VIPLE

with a simulator to expanding on VIPLE as a tool, to teach machine learning by building

a quadrotor capable with VIPLE and using the quadrotor-VIPLE platform as a starting

tool for teaching machine learning.

Quadrotor Control and Applications

Quadrotors are a robotic platform constructed from four rotors and placed in an

arrangement that allows them to take flight. Actions such as roll, pitch, and altitude

changes are motion controls enabled by the 6 degrees of freedom. This is achieved

through a series of computational corrections calculated by an on-board flight controller

equipped with an IMU sensor. Such computations are typically governed by a specialized

PID Controller that is responsible for maintaining the setpoint of a quadrotor’s state.

These controllers were chosen for their robust nature [7]. Multi-rotors provide six degrees

of freedom give them a high degree of controllability and versatility.

This makes the platform ideal for surveillance and sensory applications. These

applications involve use cases where an elevated platform is required to provide hard-to-

reach observations at a low cost, and possibly at scale. Such applications include the

 9

agricultural industry where autonomous quadrotors can be used for performance

measuring on plantations [8]. These quadrotors allow for automated video capture,

making it much easier for researchers and users to collect real-time data and make real-

time assessments. In cases where costs of obtaining aerial videos are a concern,

quadrotors become a necessary tool[9]. Quadrotors can also be used to address use cases

where a quick, responsive, and mobile robotic unit can be deployed in emergency

situations [10].

As multirotor-based solutions have been proposed in a growing number of

research opportunities, a fair number of studies have been dedicated to their robustness.

While precise mechanics allow a quadrotor to maintain a stable flight, works such as [11]

focus on sub-optimal conditions that quadrotors may experience. In this case, the

correctional feedback loop mechanisms in a quadrotor is expanded to include fault

detection and recovery. Such fault tolerant applications go as far as implementing a

control solution for quadrotors that suffer from a complete failure in one, two, or three

propellers [12]. Obstacle avoidance has also been a leading discussion in the multirotor

platform. Given the automated nature of most applications and the complexity of

navigating a 3D space with six degrees of freedom, there exists solutions to solving the

quadrotor collision avoidance problem [13].

With VIPLE, students can implement control algorithms to solve real problems

such as maze traversal and direct keyboard-based controllers. These qualities of VIPLE

make it an ideal tool for deploying simple control schemes to control a quadrotor. Hence

extensions and contributions made to VIPLE involve creating a quadrotor and

implementing a VIPLE compatible interface on the quadrotor. The simplicity of

 10

controlling robots through the VIPLE platform makes it an ideal tool for generating the

data used in MAR labs. In this work, VIPLE’s primary purpose is to serve as a controller

for the quadrotor. IMU data is stored locally on-board the quadrotor during each flight

session while Amazon Web Services (AWS) are used to create the appropriate linear

classifier. With these two environments, the MAR lab’s machine learning pipeline can

encompass the entire process of data collection, data manipulation, training a linear

classifier, and using said classifier to solve the MAR classification problem.

Activity Recognition

A common application of classifiers is their deployment in activity recognition.

Typically, these studies involve the deployment of IMU sensors on a subject with the

idea that specific actions produce a recognizable IMU signature. One such example is the

study on human activity recognition (HAR) [14][15] where the goal is to classify human

activities such as sitting, walking, or taking an elevator. Other solutions to HAR include

the breakdown of tasks into subtasks [16]. Typically, these studies aim to provide the

framework for context aware applications. The activity recognition problem also can be

extended towards canines as [17] shows, IMU data can be used to aid in the recognition

of canine activities such as standing or sitting through unsupervised learning. Linear

classifiers have been chosen as the specific classifier due to its common application in

supervised learning and availability within TensorFlow’s estimator API. The supervised

nature of the data stems from tagging windows of IMU data as belonging to a specific

activity. The classifier is given the appropriate classification in parallel with the data

being given, and the label for a given class is a discrete.

 11

The goal of MAR labs is to deploy similar sliding window sampling techniques to

recognize multirotor activity. The sliding window sample considers the frequency at

which the data was recorded, the length of the window, and IMU data collection

techniques. MAR extends existing activity recognition by translating IMU data signatures

to quadrotor activities. MAR was chosen since IMU data has a strong correlation to a

specific flight pattern as discussed in the PID Controller section. The strong correlation

between the IMU-based PID Controller and the activity recognition of IMU data implies

that the classification should be simple, where a given action tends to produce a unique

IMU signature.

 12

CHAPTER 3

MULTIROTOR ACTIVITY RECOGNITION

Multi-rotor Activity Recognition (MAR) is the primary focus of the thesis. The

MAR problem aims to identify the actions performed by a quadrotor in flight by

recognizing windows of raw IMU data as belonging to a specific class of multirotor

activity. During flight, a quadrotor’s roll and pitch serve as indicators to what the

quadrotor is doing. Specific activities such as strafing left tend to produce windows of

IMU data that indicate a negative roll. Likewise, strafing right tends to produce a positive

roll value. These indicators will serve as the premise for training a feasible classifier that

can make these distinctions in data and thus implement a solution to solve the MAR

problem.

To investigate the MAR problem within an educational context, training and

applying the model are built as two separate learning lab modules: the MAR Training

Lab Module, and the MAR Classification Lab Module. A cloud-based solution was used

to allow users with web-enabled devices to participate in the lab without the need for

additional hardware or software. Users participate in a lab session by running

prepopulated scripts within each lab module and inspecting the script’s console outputs.

In both lab modules, the quadrotor’s flight controller properties file is configured to

record labelled IMU data for supervised training, or unlabeled IMU data for classification

exercises. To build an environment suitable for both the VIPLE-quadrotor platform and

AWS, figure 3.1 below provides a visual description of the system’s architecture

overview capable of machine learning orchestration.

 13

Figure 3.1: MAR Lab Architecture Overview

The start of the MAR pipeline is the VIPLE and quadrotor platform used to create

a flight plan, execute the flight plan, and generate IMU data. As a control tool, VIPLE

provides the user with the ability to create and run a given flight plan with instructions on

which activities to execute (pitch, roll, etc.). Collectively, figures 3.2 and all sub-figures

3.2.x below show an example VIPLE implementation of a flight plan that the quadcopter

platform can execute. In this sequential program, the quadrotor is commanded to move

up, hover, move to the left, hover, move to the right, hover, land, then terminate the flight

session.

 14

Figure 3.2: VIPLE Implementation of a Series-Based Flight Plan

Figure 3.2.1: SimpleWait Custom Activity

Figure 3.2.2: Takeoff Custom Activity

 15

Figure 3.2.3: Land Custom Activity

Within each Robot/IoT Motion block, a custom command is defined to describe

what activity the quadrotor should be performing. Implemented on the quadrotor’s

VIPLE interface, an interpreter parses the JSON string received over TCP and writes to

shared memory the current directive received from VIPLE. All available actions and

descriptions are shown in table 3.1.

Table 3.1: Quadrotor-VIPLE Motion Config Options

Motion ID Motion Name Description

0 neutral Default receive signal (do nothing) and hover during

flight

1 false-flight Enter a flight session, but with rotors disabled

2 test Run the test script that activates each rotor in order of

[1, 2, 3, 4]

3 flight Signal flight controller to enter takeoff mode

4 stop Signal a soft stop to the flight controller, enter landing

mode

5 forward Move the quadrotor forward, decrease pitch

6 left Move the quadrotor left, decrease the roll

7 right Move the quadrotor right, increase the roll

8 backward Move the quadrotor backward, increase the pitch

9 up Increase the quadrotor baseline throttle

10 down Decrease the quadrotor baseline throttle

11 sig-stop Force stop the quadrotor and end flight session

 16

The main descriptors are timer delays that describe how long a quadrotor should

be performing an action, the activity the quadrotor should be performing, and a pointer to

the next timer-based activity execution. In the execution of each flight plan, two logs will

be stored that describe the status of the quadrotor during a flight, and the IMU data that is

directly generated from the quadrotor’s on-board MEMS sensor. Both files are stored

locally and uploaded at the end of each flight session. After executing a fight plan, the

quadrotor begins uploading IMU data to the cloud through Amazon Web Services

Command Line Interface (AWS-CLI). Further details are discussed in the next section,

implementation, however it is important to note that this process expedites the time for

access to usable data.

 Now that VIPLE has been chosen as a suitable quadrotor control platform, an

environment for the MAR lab modules must be established. Installing Python and

TensorFlow library meets the requirements for supporting a framework capable of to

training and applying a linear classifier for MAR. On top of this runtime, Jupyter

Notebooks was chosen to provide an interactive interface since scripts can be displayed

and run by the user. Jupyter Notebook’s markup cells provide lab sessions with the

necessary textual explanation and instructions for what scripts are being executed and for

what purpose, while coded cells display the code to be run along with console outputs

from the given script. These code cells are prepopulated with the scripts necessary to

implement MAR lab sessions, however these scripts can be edited by the user. Jupyter

Notebooks can also generate reports, allowing instructors to critique the results of a given

lab session. A display of every cell’s output can be shown in the results for a given lab

 17

session, even if the output contains a scripting error, or encounters an exception thrown

by the script.

Figure 3.3: Hello Jupyter Practice Module

For example, figure 3.3 shows the welcome module that runs a simple “Hello

World” program where each coded cell is accompanied by a markup cell to explain what

the python script is aiming to accomplish. As demonstrated by this welcome module,

Jupyter Notebooks can run python scripts, display the output for the given python script,

perform calculations made possible through python, and even take user input directly

from the user interface.

 18

CHAPTER 4

IMPLEMENTATION

Now that the various components of the MAR lab have been outlined, this section

describes in detail how the quadrotor was built, how various controllers were

implemented in VIPLE for the quadrotor, how IMU data was recorded by the quadrotor

and received by MAR labs, and how the MAR training and classification lab modules are

tasked in solving the MAR problem.

Quadrotor Build: PID Flight Controller and VIPLE Interface

 The quadrotor used to execute the flight plans was built with an Edison-Arduino

board as the main controller. Four brushless rotors and Electronic Speed Controllers

(ESCs) were placed on a 450mm quadrotor frame. Li-Po Batteries were used to power

the quadrotor due to their space efficiency and high energy density. The Edison-Arduino

board served as the primary flight controller for the quadrotor system. The on-board Wi-

Fi capabilities fulfill the hardware requirement needed to establish a TCP/IP connection

between the quadrotor’s VIPLE client and the ground base’s VIPLE host. However, a

custom breakout board had to be designed to meet the additional hardware specs to

include an on-board MEMS sensor and accommodations for four Pulse Width

Modulation (PWM) signals needed to drive each ESC. The custom circuit board also

includes an LED to serve as a visual indicator of the quadrotor’s status.

 To drive the quadrotor, a C++ based flight controller was implemented onto the

Edison-Arduino board through Intel’s System Studio IoT Edition to provide the

necessary stabilization for obtaining stable flight. Configuration files were created to

 19

grant users the ability to adjust the flight controller’s parameters. The most important

components to the Flight controller was the PID controller responsible for calculating the

rotor corrections needed to be executed by the on-board rotors. An internal state iterator

was responsible for switching between the various modes available on the quadrotor

(false flight, flight, test flight, standby). The flight controller was designed to operate at

250Hz by implementing software-based timer that puts the process to sleep during each

iteration of corrective calculations until the next cycle begins.

The flight controller process begins by initializing the PID controller, the internal

state machine, and the shared memory space between the controller and the VIPLE

interface. Two separate loggers open file streams within an S3 synced directory to record

the flight controller’s status and the IMU data received by the MEMS sensor. The flight

controller’s configurations were then read from disk or assigned a default value. These

configurations included the gains for the PID controller, battery level, trim settings to

prevent drifting, label configurations for files being logged, hovering throttle, and flags

for uploading flight sessions automatically to S3 on exit.

 The PID controller is a feedback loop that continuously reads from the MEMS

sensor and the system’s desired setpoint to produce a continuous output of corrective

feedback. To provide the roll, pitch, and yaw controls necessary to control a quadrotor’s

flight, a setpoint describes the system’s desired readout. In the case that a quadrotor

hovers, the setpoint for the pitch, roll, and yaw remain zero. If the desired control of the

quadrotor is to move forward, the setpoint of the pitch axis is set to a negative non-zero

value. The PID Controller consists of three components: proportional, integral, and

differential. The proportional control is responsible for calculating the difference between

 20

the input of the MEMS sensor and the setpoint. The integral component acts as an error

accumulator that allows the system to make corrections to errors that persist over a given

time (this prevents controllers from only approaching a setpoint rather than achieving the

desired setpoint). The derivative controller acts as a resistance to rate of change and helps

dampen corrective overcompensation output by other controllers. This corrective

feedback loop operates on a system-wide loop that calculates the quadrotor’s current

IMU readout, reads the quadrotor’s setpoint, calculates the angle travelled, adjusts for

drift compensation, calculates the correctional adjustments determined by the PID

calculations, and applies the PID corrections to the throttle.

VIPLE-Quadrotor Data Collection Platform

Data collection begins when a quadrotor enters flight mode. During a flight

session the Edison-Arduino board is constantly reading from the MEMS sensor and

storing the raw value into local storage. The on-bard MPU6050 can operate at a

frequency of 400kHz which is well within the range of the quadrotor’s correction

frequency of 250Hz and provides a reading of the proper acceleration of x, y, z in G’s,

and the angular velocity recorded in degrees per second (°/s) on the roll, pitch, and yaw

axis. The MPU6050 gyroscopic sensor was configured to operate at a full-scale range of

+/- 250 °/s while the accelerometer was configured to run at +/- 8 G’s. These values are

then formatted and printed through one of the flight controller’s output stream into a

*.csv file. Once the quadrotor enters landing mode and receives instructions to stop the

flight session, or a termination signal is received, the quadrotor’s flight controller

 21

executes an exit script that invokes the AWS CLI to sync new files onto the S3

environment.

 The quadrotor is also host to a VIPLE interface that interprets VIPLE’s JSON-

based messages sent and received over a TCP/IP connection (as described in the

Approach section). This interpreter runs on a separate process and communicates

directives to the flight controller over shared memory. Shell scripts orchestrate the

execution of these processes on startup. If the quadrotor does not have access to a

Wireless Local Area Network (WLAN), scripts were written to configure the Edison’s

on-board Wi-Fi antenna to enter Access Point (AP) mode, allowing the quadrotor to

broadcast its own Wi-Fi network.

For VIPLE, two different types of control methods were implemented through

VIPLE. The first manual-based control method is a key-mapped controller that accepted

key inputs from users and translated them directly to a motion control. This allows users

to have direct control over the quadrotor’s actions in real time. Featured in figure 3.2, a

second type of control scheme was implemented through VIPLE which describes a flight

plan that the quadrotor can execute automatically. This VIPLE program implements a

series of directives and timer delays and is ideal for executing multiple iterations of a

given flight plan.

MAR Lab AWS Environment

 To interact with the AWS cloud environment, the AWS-CLI was installed on-

board the quadrotor’s Edison-Arduino board. The AWS-CLI was configured with the

appropriate credentials needed to perform write commands on, AWS’ Secure Simple

 22

Storage Service (S3). More shell scripts were written to proactively upload new flight

session data. A pre-defined flight log file directory was chosen and monitored for file

changes by storing its file directory state into local storage. A ‘diff’ between this file and

the current state was performed after each flight session to search for any new flight logs.

AWS-CLI upload scripts were run upon discovering new flight logs.

 To interact with IMU data generated from flight sessions in the VIPLE-Quadrotor

platform, S3 serves as a shared space between the VIPLE-Quadrotor platform and the

AWS cloud space. The quadrotor’s AWS CLI is configured with the appropriate account

settings necessary to retrieve permissions necessary to upload files onto S3. S3 makes for

an ideal storage solution since it shares a domain with the EC2 environment and offers

scalability necessary for plenty of data storage. Write operations are limited on the public

facing interface and require that uploaders have the appropriate credentials needed to

write a file. The computationally intensive data manipulation and model training can be

offloaded to a virtual machine hosted on AWS’ Elastic Compute Cloud (EC2).

Figure 4.1: Active EC2 Instance Running MAR Labs Jupyter Notebook Server

The VMs operate on a Linux-based operating system with the appropriate

software and runtimes installed to host the MAR lab sessions. Temporary directories are

used by Jupyter Notebooks to save a lab session’s state which holds checkpoints for the

 23

trained linear classifier and IMU data transferred over from S3. The VMs come installed

with Python, TensorFlow, and Jupyter Notebooks all of which provide the necessary

framework needed to host MAR lab sessions as described in the previous section. VMs

are also configured with a public IP address via AWS’ elastic IP service allowing VM

instances to interact with the public domain. Additional security configurations were

made to allow public access to port 8888 giving users the ability to connect to the Jupyter

Notebook server over an HTTPS connection on a web-enabled device. One such VM is

shown in figure 4.1, where a t2.medium EC2 instance is running with a Public IP address.

As described by AWS documentation, T2 instances are a low-cost general-purpose

instance with burstable performance making it ideal for server applications. To access the

MAR lab modules, a user would need to enter “https://{public_ip}:8888” into the web

browser. As a minimal security measure, the Jupyter Notebook server was configured

with a self-signed SSL certificate to enable HTTPS connection. Lastly, the server was

configured with a simple password to prevent unauthorized changes made to the lab.

 Logs displayed within each lab session provide useful insight on the execution

status for a given scripted task. However, to bring better understanding to how data is

being manipulated and what the data looks like, the Jupyter notebook environment

includes libraries necessary to provide a visual representation of data being processed

during the session. It is made clear to the user what code and scripts are being run, what

task is being executed, and how that execution takes place, and what the logs report as

user-readable output for inspecting the machine learning process each step of the way. In

this case, the user has access to both read and write the code being run to orchestrate the

 24

machine learning process. In addition, TensorFlow provides a log of the linear classifier’s

runtime whether that is training progression, or classification.

The premise for the MAR Training Module is to have users train a linear classifier

to perform MAR. This linear classifier is trained using IMU data collected and described

by the Implementation section. The MAR training activity module is prepopulated with

the steps necessary to download the IMU data, extract samples by label into

subdirectories, calculate features from each sample through sliding window protocol, and

finally train a classifier.

The classification module is where users learn how to take raw, unlabeled IMU

data and convert it into a plausible flight plan. Running through the module in its entirety

and using the classifier from the previous training module would be a sufficient solution

to the MAR problem.

 25

CHAPTER 5

EXPERIMENT AND METHODOLOGY

The quadrotor can be configured to record labelled or unlabeled IMU data.

Labelled IMU data is used to train a model through supervised learning, making the

model capable of distinguishing windows of data as belonging to a specific quadrotor

activity. Unlabeled IMU data is used as an exercise dataset for the classification lab

module. If labels are enabled, then during flight, the quadrotor is responsible for making

an extra entry of what action is being performed in each IMU readout. This tags the

appropriate IMU data and labels it as belonging to a specific class of activity. Successful

flight sessions and uploads contribute to the MAR database of labelled flight data. It is

during the training phase, that users are expected to fly the drone, ideally with an even

distribution of time spent performing the different available actions.

For each lab session, the quadrotor is powered on and initialized with a boot script

that starts the VIPLE interface and flight controller process. The quadrotor is then

configured to record labelled or un-labelled flight data depending on the context of the

current session. A name is chosen for the flight session and set through the VIPLE

interface. The flight plan is then executed and IMU data is recorded for the given session.

Each MAR Lab module begins with an initialization of the runtime environment

responsible for importing the appropriate libraries, defining helper functions, and local

variables.

To demonstrate the feasibility of the lab session’s ability to classify multirotor

activities, three separate experimental procedures were performed to test the training and

accuracy of the MAR classifier. The first experiments were done by manually controlling

 26

the quadrotor through VIPLE, disabling the rotors, and holding the quadrotor device to

manually mimic the quadrotor’s action. This data set will be referred to as held-with-

manual-control (HMC). The second experiment, called held-with-rotor-control (HRC),

was recorded by enabling the rotors but holding the device to prevent drifting. The device

was again controlled manually through VIPLE; however, the quadrotor’s enabled rotors

meant the motion of the device did not have to be manually manipulated. The third and

final experiment was done by controlling the quadrotor through VIPLE, enabling the

rotors, and allowing the quadrotor to fly without any type of harness; this set will be

called Untethered Flight (UF).

MAR Training Lab Module

The session begins by downloading both the training and evaluation datasets of

raw, labelled IMU data from S3 and parsing the entries in each file into multiple sub-files

===[STEP 2 - DOWNLOAD TRAINING DATA SET]===

Please enter the name of your lab group's training dataset:

Group Name:

Downloading prepped training data...

Downloading from:mar-lab-workspace/exercise-training/group-training-dataset/held-with-manual-contro

l/imu-data-log-latest

Downloading to: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-database-train

ing-set.csv

Downloading prepped evaluation data...

Downloading from: mar-lab-workspace/exercise-training/group-training-dataset/held-with-manual-contr

ol/imu-data-log-eval-latest

Downloading to: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-database-evalu

ation-set.csv

Download completed...

===[STEP 2 - END]===

===[STEP 3 - SEPARATING DATASETS BY LABEL]===

Extracting labels for training dataset...

Extracting data labels from: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-d

atabase-training-set.csv

Extracting data labels to directories in: [./data/exercise-training-session/held-with-manual-contro

l/imu-db/]...

Extracting labels for evaluation dataset...

Extracting data labels from: ./data/exercise-training-session/held-with-manual-control/imu-db/imu-d

atabase-evaluation-set.csv

Extracting data labels to directories in: [./data/exercise-training-session/held-with-manual-contro

l/imu-db/]...

Samples have been extracted by label

===[STEP 3 - END]===

 27

based on their tagged label. During this process, the IMU file is read line by line and

stored into a labelled sample file. Once a different label is read, a new labelled sample

file is created and stored in the appropriate subdirectory.

These sample files, which now hold IMU data for a specific label, are then

traversed sequentially via the sliding window protocol with a length of 4 and a step of 1.

The average and median features are calculated for every IMU readout from each

window and stored into a file where it will be in a format ready for training the classifier.

The data is in a format that now holds a cross product of the feature and IMU data tuples:

{average-acceleration-x, average-acceleration-y, average-acceleration-z, average-gyro-

roll, average-gyro-pitch, average-gyro-yaw, median-acceleration-x, median-acceleration-

y, median-acceleration-z, median-gyro-roll, median-gyro-pitch, median-gyro-yaw}

===[STEP 4 - EXTRACT FEATURES FOR EACH LABEL]===

Calculating features for samples in the training data directory...

Extracting features for the label [backward]...

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/backward/*.csv

Extracting features for the label [forward]...

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/forward/*.csv

Extracting features for the label [left]...

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/left/*.csv

Extracting features for the label [neutral]...

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/neutral/*.csv

Extracting features for the label [right]...

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/right/*.csv

Extracting features for the label [up]...

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/up/*.csv

Extracting features for the label [down]...

Extracting features into the filepath ./data/exercise-training-session/held-with-manual-control/imu

-db/down/*.csv

The features have been extracted and stored into: ./data/exercise-training-session/held-with-manual

-control/training-feature-data-latest.csv

Calculating features for samples in the evaluation data directory...

The features have been extracted and stored into: ./data/exercise-training-session/held-with-manual

-control/evaluation-feature-data-latest.csv

===[STEP 4 - END]===

 28

The final step of the lab preps the linear classifier by configuring the appropriate

labels, feature columns, model’s checkpoint directory, and input training and evaluation

file datasets. The TensorFlow API is called to train the linear classifier for 100 epochs,

where an evaluation of the model is performed every 20 epochs.

The successful execution of all cells in the training lab module means that a linear

classifier was successfully created for the given training data. Checkpoints for the trained

model are stored by TensorFlow into a temporary directory meaning that this instance of

a trained model can be restored by TensorFlow (and the subsequent classification lab

module) for later use.

Training at epoch 0 ...

Training at epoch 1 ...

Training at epoch 2 ...

[...]

==

Detail execution of epoch 99

INFO:tensorflow:Create CheckpointSaverHook.

INFO:tensorflow:Restoring parameters from ../mar-classification-exercise/tmp/model/held-with-manual

-control/model.ckpt-35145

INFO:tensorflow:Saving checkpoints for 35146 into ../mar-classification-exercise/tmp/model/held-wit

h-manual-control/model.ckpt.

INFO:tensorflow:loss = 80.08334, step = 35146

INFO:tensorflow:global_step/sec: 89.1394

INFO:tensorflow:loss = 20.71344, step = 35246 (1.123 sec)

INFO:tensorflow:global_step/sec: 95.0501

INFO:tensorflow:loss = 90.13267, step = 35346 (1.052 sec)

INFO:tensorflow:global_step/sec: 93.2219

INFO:tensorflow:loss = 187.21191, step = 35446 (1.073 sec)

INFO:tensorflow:Saving checkpoints for 35500 into ../mar-classification-exercise/tmp/model/held-wit

h-manual-control/model.ckpt.

INFO:tensorflow:Loss for final step: 293.45258.

Evaluating model...

INFO:tensorflow:Starting evaluation at 2018-10-23-20:40:03

INFO:tensorflow:Restoring parameters from ../mar-classification-exercise/tmp/model/held-with-manual

-control/model.ckpt-35500

INFO:tensorflow:Finished evaluation at 2018-10-23-20:40:07

INFO:tensorflow:Saving dict for global step 35500: accuracy = 0.8218593, average_loss = 0.5593836,

global_step = 35500, loss = 111.832596

{'accuracy': 0.8218593, 'average_loss': 0.5593836, 'loss': 111.832596, 'global_step': 35500}

==

==

Final Model Evaluation

 accuracy: 0.8218593001365662

 average_loss: 0.5593835711479187

 loss: 111.83259582519531

 global_step: 35500

==

[DONE]

===[STEP 5 - END]===

 29

MAR Classification Lab Module

This module begins by asking the user for the group name and the flight session

to download the appropriate flight log. Displaying the full flight logs also allows users to

===[STEP 2 - DOWNLOADING FLIGHT LOG - START]===

Please enter the name of your lab group...

Group Name: held-with-manual-control

Please enter the specific flight session, or skip to choose the latest log...

Flight Session:

Pulling flight data from S3 for group [held-with-manual-control] on session [latest] ...

Downloading from: /mar-lab-workspace/exercise-classifying/group-classification-dataset/held-with-ma

nual-control/flight-log-latest

Downloading to: ./data/group-workspace/held-with-manual-control/flight-log-latest.txt

Finished download flight log to flight-log-latest.txt

========= held-with-manual-control's FLIGHT LOG =========

[ENABLED] CLASSIFICATION MODE for UNLABELLED raw IMU CSV data log...

Setting Battery Gain 1 [0.985]

Setting Roll Acc_Trim [1.73728]

Setting Roll Acc_Trim [1.73728]

Setting Roll Trim [0.81]

Setting Roll Trim [-1]

Setting Roll Trim [-35.5]

Setting Take-off Trim Rotor 1 [110]

Setting Take-off Trim Rotor 2 [0]

Setting Take-off Trim Rotor 3 [70]

Setting Take-off Trim Rotor 4 [0]

Setting Flight Trim Rotor 1 [0]

Setting Flight Trim Rotor 2 [0]

Setting Flight Trim Rotor 3 [0]

Setting Flight Trim Rotor 4 [0]

Initializing PID Flight Controller...

Initializing Analog and GPIO pins...

Initializing I2C Devices...

[DONE] Initialized I2C in Fast mode....

Initializing I2C Slave Device....

Constructing Gyro...

Initializing Gyro I2C Device....

Initializing Distance Sensor....

[DONE] Initialized Gyro I2C Device....

Constructing ESC Controller...

Initializing ESC Controller I2C Device....

[DONE] Initialized ESC Controller I2C Device....

Initializing runtime variables...

[Done] Sample Time - uSeconds = 4000

[Done] Loop Timeout - uSeconds = 4000

ENTER SETUP

Calibrating Gyro Device...

Finished Gyro Callibration...

EXIT SETUP

[Warning] Running slow by -3.00562e+06

[Warning] Running slow by -4292

[Warning] Running slow by -6634

Entering Takeoff...

Entering Flight Mode...

[Warning] Running slow by -2815

[Warning] Running slow by -6591

[Warning] Running slow by -11893

[Warning] Running slow by -17036

[Warning] Running slow by -6391

[Warning] Running slow by -2163

Entering Landing Mode...

Entering Warm Standby Mode...

[Warning] Running slow by -2.99704e+06

[Warning] Running slow by -5892

===[STEP 2 - END]===

https://54.156.204.28:8888/notebooks/multirotor-activity-recognition-lab/mar-classification-exercise/data/group-workspace/held-with-manual-control/flight-log-latest.txt

 30

confirm that the quadrotor flight was a success and that no anomalies occurred during

startup.

Figure 5.1: Raw IMU Data Plot

The appropriate raw, unlabeled IMU data for the given session is downloaded and

a file preview is printed to show the data in its raw form. As shown in figure 5.1, a visual

representation of the IMU data is then presented to the user in step 4.

===[STEP 3 - DOWNLOADING FLIGHT DATA - START]===

Pulling latest flight log data from S3 for group [held-with-manual-control]

Downloading from: /mar-lab-workspace/exercise-classifying/group-classification-dataset/held-with-ma

nual-control/imu-data-log-04-13-21-27-13.csv

Downloading to: ./data/group-dataset/held-with-manual-control/imu-latest-dataset.csv

Finished downloading flight data to imu-latest-dataset.csv

[DONE]

===[STEP 3 - END]===

 31

A set of feature functions are defined for use in the next step. These functions are

defined to take in a list of numerical decimal values as parameters and return the feature

defined by the function. In the sample above, the average and median features are simply

a direct implementation of calculating the average and median of the input parameters.

Like the training module, the raw IMU data for the entire flight session is

traversed via sliding window protocol and the average and mean features are calculated

from these windows of data. The user can also choose to run the optional cells that

describe the process of extracting the feature from a random sample of IMU data. Now

that the data is ready to be processed by the linear classifier, the next step of the lab

produces a textual description of the predicted flight plan.

===[STEP 5] - DEFINING FEATURE FUNCTIONS - START ===

Defining AVERAGE feature function

Defining MEDIAN feature function

Finished feature definitions

===[STEP 5 - DONE]===

===[STEP 6] - EXTRACTING FEATURES FROM SAMPLES OF SLIDING WINDOWS - START ===

Clearing file...

Extracting features from file [./data/group-dataset/held-with-manual-control/imu-latest-dataset.cs

v] into the directory [./data/group-workspace/held-with-manual-control/imu-and-features-dataset-lat

est.csv]

Extracting sliding window data samples from [./data/group-dataset/held-with-manual-control/imu-late

st-dataset.csv]...

Finished extracting features to imu-and-features-dataset-latest.csv

DONE

===[STEP 6 - DONE] ===

 32

Figure 5.2: IMU Data Flight Plan Classification

This description is visualized in the final step of the lab, where shaders are

applied on top of the raw IMU data graph to give a visual representation of the

quadrotor’s predicted activities during flight. It is expected that users record the flight

plan for a given flight session before starting the classification module to assess that the

flight plan produced by the classifier is correct. The successful execution of all cells

means that a linear classifier has been used to generate a hypothetical flight plan for a

given set of unlabeled IMU data. However, the accuracy and assessments made by the

classifier depend on how well-trained the classifier was.

 33

CHAPTER 6

RESULTS AND DISCUSSION

Both the training and classification lab modules were able to successfully process

the HMC, HRC, and UN dataset as described by the previous section, experimentation

and methodology. However, insufficient data was recorded for the UF dataset due to

technical issues described in the limitations section. Despite these setbacks, all reporting

from the lab sessions provided the real-time logs necessary to verify that the file

manipulations were performed correctly.

Figure 6.1.1: Simple Flight Plan Classification on HMC Dataset

 34

Figure 6.1.2: Simple Flight Plan Classification on HRC Dataset

Figures 6.1.1 and 6.1.2 provide a visual comparison of one specific flight plan

described by the following sequence: {takeoff, neutral, left, neutral, right, neutral,

forward, neutral, backward, neutral, land}. Of the two data sets, the HMC flight shows a

more distinguished pattern, however some misclassifications from the HMC dataset

could be attributed to human error of a slow reaction time. There are clear distinctions

made between the 4 second transitions between state. However, the HRC flight plan is

sparse with small windows of ‘neutral’ activity. The ‘forward’ classification for the HRC

data and HRC-trained classifier is particularly weak in this instance.

 35

Table 6.1: Accuracy and Loss over Epochs

Dataset Accuracy over Epochs Loss over Epochs

HMC

HRC

UF

Detailed logs compiled into line graphs in table 5.1 indicate that with each epoch,

the accuracy of the classifier increased. Full reference to the values is available in

Appendix C. Within the results for the HMC dataset, a default configured linear classifier

can predict class with an accuracy of approximately 82.2% percent. Logging reports

82.20%

30%

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

80.89%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100

0

200

400

600

800

1,000

1,200

1,400

0 20 40 60 80 100

58.11%

30%

35%

40%

45%

50%

55%

60%

0 20 40 60 80 100

250

300

350

400

450

500

550

0 20 40 60 80 100

 36

indicate that for every 10 epochs, it is evident that as the linear classifier adjusts its

weights to minimize the loss function, the classifier’s accuracy increases while the loss

and average loss of the model decreases. The loss is calculated via SoftMax cross entropy

by TensorFlow. The following figure shows the loss function and accuracy of the

classifier against a given validation dataset over the number of epochs on which the

classifier is trained on.

The classification lab module was able to use the classifier to deduce the flight

plan of a given flight session. Figures 6.1.1 and 6.1.2 are examples where an unlabeled

IMU dataset was shaded according to a predicted activity. A detailed description of the

classification logs show there were significant windows of misclassifications made

between the transition between states meaning that the linear classifier had a hard time

classifying the activity transition point. As evident in the classification module,

transitions between states describe a classification usually between neutral and a given

activity.

One contributing factor to the inaccuracy of the classifier was the lack of

distinguished signals between the increase altitude, neutral, and decreased altitude action.

These actions share a similar signature due to the quadrotor’s inability to determine its

altitude. Implementing a sensor onboard the quadrotor to detect the altitude would have

made for a better altitude holding algorithm since controlling the baseline throttle for all

rotors proved to be too unresponsive. The result was that the quadrotor had a delayed and

unresponsive reaction when changing altitude, making it difficult to tag windows of IMU

data where the quadrotor was actively decreasing in altitude.

 37

CHAPTER 7

LIMITATIONS

The quadrotor prototype presented in this thesis had several limitations that would

have provided the MAR database with more useful data. One such limitation was the lack

of an altitude sensor. Inclusion of an altitude device such as an ultrasonic range detector

would have helped in maintaining a more stable altitude. While adjusting the baseline

throttle for all four rotors was enough to change the altitude of the quadrotor, the altitude

adjustment was responsively slow and could result in a fast drop in altitude enough to do

a crash landing.

 The lack of a Real Time Operating System (RTOS) also contributed towards the

drifting problem. It was common that during a flight, the quadrotor would jitter due to

system interrupts that would briefly halt the flight controller, causing the quadrotor to

lose balance for a short period of time.

 The inability to measure the level of battery. As the quadrotor’s battery voltage

dropped, the rotational speed of the rotors also decreased despite receiving the same

PWM signal. To compensate for this issue, a battery gain was added to the flight

controller’s configurations requiring that users change these configurations as the

quadrotor battery becomes more drained. Implementing a voltage divider and monitoring

the battery via on-board analog pins may be enough to provide the necessary battery gain

configuration automatically.

The quadrotor also suffered from a series of drifting problems causing the

quadrotor to lean towards a preferred pitch and roll. A significant time was put into the

 38

optimization and configuration of the PID controller gains, and during a heavy crash, the

quadrotor had to be recalibrated before being flown again.

 39

CHAPTER 8

CONCLUSION AND FUTURE WORKS

This work has provided VIPLE with extensions in 3D simulation for maze

navigation and implementing a VIPLE-compatible quadrotor platform. A framework was

provided for teaching students how to train and apply linear classifiers for MAR. Without

additional hardware or software, a user is able to successfully train and apply a linear

classifier through a web-enabled device to perform MAR on flight sessions recorded by

the VIPLE and quadrotor platform.

 The primary contributions of this thesis were extending VIPLE to the quadrotor

platform, implementing an interactive machine learning pipeline for the MAR

classification problem, and creating a repository of IMU data within MAR’s database

made available for future use. With an approximate even distribution of quadrotor

activity, and by collecting the data through a manual control and manipulation of the

quadrotor, the linear classifier was able to correctly predict a multi-rotor’s activity with a

window of IMU data with approximately 82% accuracy.

Future iterations of the MAR lab sessions can be applied to other robotic activity

recognition. While quadrotors remain the focus, the pipeline described by this paper can

be applied to other IMU sensory applications for use in activity recognition. Further

iterations can also investigate automation and simplification of the current MAR labs for

use in exploratory data analysis by generating automated reports for any given flight

session.

 Future works should consider using pre-built quadrotors rather than building one

from scratch. At the time of writing, manufacturers such as DJI have recently provided

 40

open source API libraries for consumer-ready quadrotors. Though the quadrotor in this

thesis was able to sustain brief periods of flight time and perform basic activities, there

were many issues encountered with implementing a quadrotor on the Edison platform.

 While multiple instances of the VM described by the implementation section can

be instantiated to host additional lab sessions, future iterations of MAR labs may want to

consider encapsulating the Jupyter Notebook server into a Docker container to allow a

single VM Instance to host multiple MAR lab instances, allowing the creation and host of

additional MAR labs at a lower cost.

 41

REFERENCES

[1] L Deng. “The MNIST Database of Handwritten Digit Images for Machine

Learning Research”. IEEE Signal Processing Magazine, vol 29, issue 6, Nov

2012.

[2] Amber Dryer, et al. “A Middle-School Module for Introducing Data-Mining,

Big-Data Ethics and Privacy Using RapidMiner and a Hollywood Theme”.

SIGCSE ’18 Proceedings of the 49th ACM Technical Symposium on Computer

Science Education, February 2018.

[3] Gennaro De Luca and Yinong Chen. "Visual IoT/Robtics Programming

Language in p-Calculus”. The 13th International Symposium on Autonomous

Decentralized Systems, Thailand, March 2017.

[4] Yinong Chen and Hualiang Hu, "Internet of Intelligent Things and Robot as a

Service”, Simulation Modelling Practice and Theory, Volume 34, May 2013,

Pages 159–171.

[5] Yinong Chen. “Service-Oriented Computing and System Integration: Software,

IoT, Big Data, and AI as Services”, 6th edition, Kendall Hunt Publishing, 2018.

[6] Yinong Chen. Analyzing and visual programming internet of things and

autonomous decentralized systems", Simulation Modelling Practice and Theory

Volume 65, June 2016, pp. 1-10.

[7] Teppo Luukkonen. “Modeling and Control of Quadcopter.” Aalto University

School of Science, August 2011, http://sal.aalto.fi/publications/pdf-

files/eluu11_public.pdf.

[8] Vishakh Duggal, et al. “Plantation Monitoring and Yield Estimation using

autonomous Quadcopter for Precision Agriculture.” IEE International

Conference on Robotics and Automation, May 2016,

http://ieeexplore.ieee.org/document/7487716/.

[9] Michael Streber, et al. “Video-Based Estimation of Surface Currents Using a

LowCost Quadcopter.” 3rd International Conference on Biosignals, Images, and

Instrumentation, March 2017, Chennai. https://ieeexplore.ieee.org/document

/document/8049342/.

[10] Josephin Dhivya and J Premkumar. “Quadcopter based technology for an

Emergency Healthcare.” 3rd International Conference on Biosignals, Images,

http://www.public.asu.edu/~ychen10/book/socsi.html
http://www.public.asu.edu/~ychen10/book/socsi.html

 42

and Instrumentation, March 2017, Chennai.

http://ieeexplore.ieee.org/document/8082284/.

[11] M Ranjbaran and K Khorasani. “Fault recovery of an under-actuated quadrotor

Aerial Vehicle”. 49th IEEE Conference on Decision and Control (CDC),

February 2011, https://ieeexplore.ieee.org/document/5718140.

[12] Mark Mueller and Raffaello D’Andrea. “Stability and control of a quadrocopter

despite the complete loss of one, two, or three propellers. 2014 IEE International

Conference on Robotics & Automation (ICRA), June 2014,

https://ieeexplore.ieee.org/document/6906588.

[13] Babajide Salau and Rajab Challoo. “Multi-obstacle avoidance for UAVs in

indoor applications”. 2015 International Conference on Control,

Instrumentation, Communication and Computational Technologies (ICCICCT),

December 2015, https://ieeexplore.ieee.org/document/7475386.

[14] Ling Bao and Stephen S. Intille. “Activity Recognition from User-Annotated

Acceleration Data.” Massachusetts Institute of Technology, 2005,

https://ieeexplore.ieee.org/document/5204354

[15] Murat Sorkun, et al. “Human activity recognition with mobile phone sensors:

Impact of sensors and window size”. 2918 26th Signal Processing and

Communications Applications Conference (SIU). July 2018.

https://ieeexplore.ieee.org/document/8404569.

[16] Spriggs, Ekaterina H.; de la Torre, Fernando; and Herbert, Martial, “Temporal

Segmentation and Activity Classification from First-person Sensing.” 209 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

Workshops. June 2009. https://ieeexplore.ieee.org/document/5204354.

[17] Winters, Michael, et al., “Knowledge Engineering for Unsupervised Canine

Posture Detection from IMU Data.” Robotics Institute. Paper 324.

http://repository.cmu.edu/robotics/324.

 43

APPENDIX A

QUADROTOR HARDWARE REVISIONS

 44

In terms of hardware specifications, the VIPLE Quadrotor was built for recording

and sending sensory data in real-time over TCP/IP via wireless IEE 802.11a/b/g/n. The

platform is equipped with a six-axis Inertial Movement Unit (IMU) sensor, an Intel

Edison-Arduino breakout board, a 4s LI-PO Battery, a power distribution board equipped

with a 9V voltage regulator, 4 brushless motors, and 4 electronic speed controllers (ESC).

All components make the platform capable of stable flight for a quadrotor system.

All on-board sensor must fit well within the parameters of a 250Hz correction rate

calculated by the PID Controller. This hardware requirement is met by both on-board

IC’s (PCA9685 and MPU6050) which are both capable at operating at speeds faster than

the quadrotor’s correction rate.

 To accommodate these two IC’s a custom board was built to utilize the GPIO pins

available on the Edison-Arduino Board. Figure A.1 is a closeup of the custom board with

each component annotated: (A) MPU6050, (B) PCA9685, (C) Intel Edison Chip, (D)

Status LED, (E) u.fl antenna connector. Figure A.2 provides a hardware schematic that

better describes the electric connections made between all components on the custom

shield.

The flight controller software is implemented on a C++ runtime and developed

and compiled through Intel System Studio IoT Edition. The codebase for the entire flight

controller is available at: https://github.com/mldelaro/edison-pid-flight-controller. The

quadrotor’s VIPLE interface runs on a separate process also implemented in C++ and

made available in a separate repository at: https://github.com/mldelaro/quadcopter-

controller-tcp-runtime. The VIPLE program used in controlling the quadrotor are also

available at: https://github.com/mldelaro/multirotor-activity-recognition-viple.

 45

Figure A.1: Annotated Components of Flight Controller Shield

Figure A.2: Hardware Diagram of Flight Controller Shield

 46

Before beginning any lab session, the quadrotor is powered on and mounted on a

testing rack seen in figure A.3. The gain for the PID Controller is then adjusted to achieve

a normal flight. The process begins by holding the quadrotor and tuning the P-controller

to ensure that correctional forces are being applied properly when the quadrotor is tilted

off-balance. This ensures that the difference between the error and setpoint of the system

are configured correctly according to their respective roll, pitch, and yaw axis. Once the

P-controller begins to over-compensate, and the quadrotor begins to oscillate, the gain is

reduced, and the gain for the D-controller is increased. This process is then repeated for

the I-Controller until the quadrotor can achieve a stable hover.

Figure A.3: Quadrotor PID Tuning Test Rig

 47

 Figure A.4: Quadrotor Assembly Revision 1

 The first, flyable, quadrotor prototype shown in figure A.4 was built with a

quadrotor frame made from a 3D-printed standard Q450 frame (450mm x 450mm). The

frame is capable of housing the necessary components and provides a decent platform for

maintaining flight stability. However, after several initial test-flights, 3D printed ABS

frames proved to be too vulnerable to hard landings and collisions. The extent of damage

left from collisions is shown in the figure A.5 below.

 48

Figure A.5: Fractures in 3D Printed Frames

Revision 2

Figure A.6: Quadrotor Assembly Revision 2

 The 3D printed quadrotor frame was replaced with a stiff plastic frame capable of

withstanding the impact of failed flights. In addition, thread-lock was included to prevent

screws from falling out of place. The quadrotor was then fitted with plastic landing gears.

 49

Figure A.7: Quadrotor Revision 2 Hardware Parts Nulling

 50

APPENDIX B

LOSS AND ACCURACY OVER EPOCHS

 51

Table B.1: Loss and Accuracy over Epochs Dataset

Dataset HMC

 HRC

 UF

epoch loss accuracy loss accuracy loss accuracy

0 364.9385 0.276532 1192.737 0.086027 517.7102 0.291168

1 287.2623 0.47678 774.1066 0.151633 439.7259 0.336742

2 244.9039 0.539255 636.3419 0.210591 347.1531 0.493524

3 218.7955 0.609522 545.2913 0.254849 368.2013 0.421657

4 203.4566 0.648242 485.6321 0.290017 362.5511 0.426429

5 191.1816 0.676408 439.577 0.324731 349.4738 0.479501

6 183.1928 0.69178 404.5905 0.358174 340.7291 0.472782

7 176.6142 0.701784 376.4477 0.391771 330.3822 0.484468

8 170.1751 0.711097 352.4684 0.422799 343.706 0.480475

9 165.9411 0.718114 333.8918 0.451938 342.7357 0.48291

10 161.9469 0.7243 318.3945 0.477299 331.6588 0.507644

11 158.6017 0.730964 304.1555 0.501925 322.7 0.516506

12 155.9568 0.737305 292.9115 0.522655 316.3803 0.529944

13 153.1771 0.744265 281.8796 0.541461 320.9269 0.528971

14 150.5465 0.749648 272.0388 0.558904 305.8332 0.536469

15 148.829 0.753945 264.0367 0.573469 304.0445 0.536372

16 146.62 0.758539 256.198 0.587616 309.7166 0.532866

17 145.5918 0.7613 249.5483 0.599466 303.4714 0.539877

18 143.424 0.765612 243.3117 0.610971 307.745 0.537248

19 142.0269 0.768613 237.475 0.620478 300.9675 0.540364

20 140.9478 0.770881 232.3645 0.629113 297.1738 0.544065

21 139.4354 0.773756 226.8478 0.637876 299.099 0.542799

22 138.5525 0.775559 222.3137 0.645703 297.6997 0.543286

23 137.4252 0.778053 218.0389 0.653004 293.4988 0.547668

24 136.2249 0.780167 214.0128 0.659959 293.7294 0.546986

25 135.1186 0.782083 210.3694 0.666661 292.4838 0.547083

26 134.6359 0.783098 206.5446 0.672408 290.1852 0.549908

27 133.8695 0.784436 203.379 0.678038 284.6116 0.551952

28 132.7255 0.786395 200.1933 0.683032 282.6082 0.554776

29 131.953 0.787973 197.2342 0.687291 286.0105 0.550492

30 130.9581 0.789875 194.3637 0.692594 284.2039 0.551173

31 130.4243 0.79072 191.7921 0.695936 278.8916 0.556042

32 129.6099 0.792369 189.5125 0.699822 277.9456 0.555361

33 128.931 0.79344 186.8407 0.704172 276.6161 0.556042

34 128.4373 0.794623 184.3958 0.70774 276.7295 0.55799

35 127.5732 0.796399 182.1754 0.711272 274.8663 0.557893

 52

36 127.2415 0.796906 180.2734 0.714723 270.4576 0.559061

37 126.5637 0.797963 178.4303 0.71801 272.7347 0.559646

38 126.093 0.798836 176.3282 0.721697 272.6694 0.561204

39 125.5008 0.799738 174.7827 0.724321 271.745 0.561398

40 125.1229 0.800457 173.0065 0.727653 269.1653 0.561788

41 124.3918 0.801725 171.3013 0.730359 266.808 0.563833

42 124.2795 0.80195 169.8696 0.732711 265.7103 0.565294

43 123.695 0.80288 168.1864 0.736044 266.97 0.56393

44 123.3904 0.803697 166.8889 0.737969 267.684 0.565196

45 122.7073 0.804543 165.4178 0.740674 264.959 0.563833

46 122.5646 0.804951 164.1958 0.74309 263.5882 0.565488

47 122.158 0.805444 163.0384 0.745696 264.0213 0.565586

48 121.7841 0.80574 161.8298 0.748375 261.9625 0.568118

49 121.2397 0.806403 160.53 0.750835 259.5758 0.568605

50 120.8862 0.807037 159.5785 0.753205 261.1698 0.567923

51 120.8056 0.807318 158.4444 0.755267 260.5055 0.567533

52 120.1867 0.808009 157.2881 0.757691 262.7921 0.565488

53 119.9791 0.808347 156.3318 0.75958 259.6645 0.569481

54 119.7269 0.808967 155.2782 0.76185 259.1859 0.569189

55 119.2935 0.809474 154.4776 0.763157 258.585 0.569189

56 119.2257 0.809869 153.4354 0.765237 257.1381 0.57026

57 118.8954 0.810644 152.5312 0.766889 257.1774 0.569676

58 118.6285 0.81063 151.8774 0.768179 256.0153 0.569578

59 118.3192 0.81139 150.9541 0.769986 254.1434 0.57065

60 118.1169 0.811714 150.2242 0.771629 258.7646 0.568702

61 117.9384 0.812095 149.4252 0.772683 254.626 0.571039

62 117.6632 0.812518 148.626 0.774045 254.4203 0.570844

63 117.4054 0.812884 147.8685 0.775534 252.3472 0.571429

64 117.3071 0.813236 147.2647 0.776333 252.8183 0.57211

65 116.8628 0.813842 146.5217 0.777677 252.7447 0.572402

66 116.69 0.814208 145.9685 0.778757 252.6659 0.57211

67 116.6644 0.814406 145.2615 0.780129 248.5106 0.575226

68 116.3428 0.814744 144.6574 0.781391 252.1533 0.572597

69 116.173 0.814983 144.068 0.782544 249.3992 0.573376

70 115.8761 0.815293 143.5349 0.784042 250.2021 0.57474

71 115.753 0.815646 142.8875 0.785114 247.4861 0.574545

72 115.5656 0.815815 142.3905 0.786476 249.8033 0.572987

73 115.3469 0.816096 141.762 0.788028 248.6755 0.574155

74 115.2896 0.816139 141.3265 0.788927 248.0538 0.575324

75 115.0369 0.816731 140.8499 0.789781 246.5068 0.57659

 53

76 114.9013 0.816984 140.3249 0.790871 247.8456 0.575032

77 114.6746 0.817351 139.8895 0.791788 245.709 0.576492

78 114.453 0.817646 139.2858 0.793104 245.5974 0.575324

79 114.4835 0.817505 138.867 0.793686 246.2751 0.575519

80 114.2058 0.817815 138.4198 0.794857 244.9167 0.577369

81 114.0799 0.817942 137.946 0.795865 245.9108 0.574837

82 113.8991 0.818295 137.5583 0.796773 243.7553 0.576882

83 113.7537 0.818576 137.0833 0.797545 244.7948 0.576882

84 113.6025 0.818872 136.7641 0.798198 244.6373 0.576687

85 113.4908 0.819351 136.3073 0.798961 244.4905 0.577369

86 113.4383 0.819295 135.9383 0.799733 242.9488 0.577953

87 113.2587 0.819506 135.513 0.800886 243.0432 0.577953

88 113.0732 0.819859 135.2173 0.801368 242.8307 0.577466

89 112.9594 0.82007 134.7473 0.802375 243.2606 0.576687

90 112.9082 0.820253 134.3974 0.802938 242.623 0.578635

91 112.7112 0.820549 134.0045 0.803719 242.224 0.578537

92 112.6092 0.820831 133.7314 0.804128 240.9254 0.579414

93 112.4704 0.820943 133.3883 0.804809 240.5668 0.579609

94 112.3257 0.821169 133.1007 0.805617 239.4564 0.580388

95 112.2842 0.821239 132.8191 0.805989 240.5338 0.579901

96 112.1205 0.821521 132.4778 0.806798 239.2618 0.58068

97 112.0285 0.821718 132.1282 0.807778 239.7636 0.580875

98 111.9803 0.821733 131.8068 0.808486 239.6605 0.581264

99 111.8611 0.822014 131.5014 0.808931 238.3819 0.581069

 54

APPENDIX C

MAR LAB ENVIRONMENT SETUP GUIDELINES

 55

 MAR Lab environments follow the same usage guidelines outlined by Jupyter

Notebook (version 4.4.0) documentation. In general, a user begins interacting with the

MAR Lab session by visiting the public IP address of the Jupyter Notebook Server

instance. This is created and configured through AWS.

Figure C.1: Architecture Diagram of AWS MAR Lab Environment

 AWS resources are created and configured through the online AWS Management

Console as generally described by figure C.1. The purpose and usage of each component

are further described in the Implementation section under the “MAR Lab AWS

Environment” subsection.

 Interaction with the lab environment begins with the installation of the AWS CLI

on the quadrotor. Remoting into the intel Edison board and following the installation

guidelines for the AWS CLI will provide the Edison board with the ability to upload files

from the board. An AWS Identity Access Manager (IAM) user needs to be created on the

quadrotor’s behalf. As shown in figure C.2, the quadrotor user is then granted read and

write access to the S3 bucket that hosts the flight data from the quadrotor sessions.

 56

Figure C.2: Quadrotor IAM User

As shown in figure C.3, the MAR Lab environment uses a single S3 Bucket for

hosting all data collected from the Quadrotor-VIPLE platform. Versioning is enabled,

and the bucket is configured to be publicly available with read-only access.

Figure C.3: MAR Lab S3 Bucket

 57

An EC2 instance is host to the remaining software components encompassed in

the EC2 block described by figure C.1. To provide a public-facing IP address, an Elastic

IP resource is created and later used in the EC2 instance setup.

Figure C.4: Public Elastic IP Address

The VM is setup as a t2.medium instance and configured with the elastic IP

address shown in figure C.5. The setup process begins by shelling into the Linux VM

instance and following the installation documentation outlined for Python (version 3.6.4)

and TensorFlow (version 1.5.0).

Figure C.5: MAR Lab EC2 Instance Details

 58

Python and TensorFlow provide the necessary runtime for installing the Jupyter

Notebook environment. Following the documentation and guidelines for installing both

the Jupyter Notebook and the Public Jupyter Notebook Server will install the software

necessary for hosting the MAR Lab sessions. Finally, the MAR Lab sessions can be

imported into the Jupyter instance’s home directory. The content of the MAR Lab

sessions for both the training module and the classification module are available at

https://github.com/mldelaro/multirotor-activity-recognition.

